
Formal Model of Exploit-Resistant Systems

Sepehr Minagar

Bachelor of Computer Hardware Engineering

Master of Information Technology (Honours)

A thesis submitted for the degree of Doctor of Philosophy at

Monash University in 2018

Faculty of Information Technology

i

Copyright notice

c© Sepehr Minagar 2018

ii

Abstract

Malicious code execution is a form of exploitation that plays a significant role in

various forms of cyber crime. The statistics, of vulnerabilities reported in the last

few years that could lead to arbitrary code execution, show that malicious code

execution is still a significant problem. The body of research can be divided into two

branches: (i) Vulnerability Removal; (ii) Detection and Prevention of Exploitations.

Currently there is an iterative trend of proposed solutions that are followed by

circumvention methods. This is due to the fact that the majority of the solutions

do not follow a formal approach in expressing the proposed method. A formal

approach can provide the proof of correctness for a solution that can withstand any

future attack. Providing a formal method will also clearly state the assumptions

or preconditions that need to be satisfied for the proof to be valid. Unfortunately,

the lack of formal approaches has led to solutions that have hidden assumptions.

Another shortcoming of ad-hoc solutions is unclear guarantees.

The underlying cause of almost all remote malicious code execution attacks is the

memory corruption where the adversary gains write access to memory outside the

scope provisioned by the programmer. The adversary then can use various methods

to exploit this capability. The exploitation method can be divided into two broad

categories: (i) Code Injection; (ii) Code Reuse. In code injection the adversary uses

the memory corruption capability to write instructions in the memory of the target

machine to achieve a malicious intent. The flow of execution is then changed to

the injected code in the target machine’s memory. The code reuse can be divided

into two subtypes: (i) Control Flow Hijack; (ii) Control Flow Bending. In both

methods the adversary changes the flow of execution to an existing code in the

target machine’s memory. The difference between control flow hijack and control

flow bending is that in the former the control flow is violated compared to benign

execution of the program, whereas in the latter form of attack the flow of execution

follows a valid edge of the benign execution of the program. Another form of attack

defined as memory leakage is used to gain information about the target machine,

iii

such as memory addresses for code and data that can be used in crafting malicious

code execution attacks.

This thesis develops a theoretical model for exploit-resistant systems that can

prevent the code execution on a vulnerable target machine. The Ideal Control

Flow Integrity (ICFI) model protects against code injection and code reuse leading

to control flow hijack attacks by protecting all of the valid edges of the flow of

execution. To address the difficulty of the dynamic linking in previous formal work

of the classic Control Flow Integrity, a dynamic registration is provided for authentic

calls and their corresponding returns. This model is the first formal work that is

provably secure against code injection and code reuse leading to control flow hijack

attacks.

The memory model divided into integrity and confidentiality, prevents memory

corruption and address leakage attacks respectively. The model enforces defined

memory protection rules through a combination of memory cell protection levels

and machine instruction micro operations that verify these levels. The integrity

model protects against corruption attacks that could lead to any form of malicious

code execution on the target machine, including code reuse leading to control flow

bending which cannot be prevented by the ICFI method. The integrity model can

provably protect against memory corruption attacks leading to control flow change

including the non-control data attack. The confidentiality model will prevent the

address leakage which can be used in preparing malicious code execution attacks.

The formal approach enables proving the correctness of the solution as well as general

applicability for various architectures, operating systems, and compilers.

An implementation of code memory authenticity is provided as a proof of concept

for content-based protection of executable memory. This is achieved by combining

the social concept of trust in producer of the code and integrity of the code content

by performing code authentication before execution. In this implementation the

code of the executable is verified in a demand paging approach where only the part

iv

of the code that must be loaded into memory for execution is verified, reducing the

verification time to its minimum.

v

Declaration

This thesis contains no material which has been accepted for the award of any other

degree or diploma at any university or equivalent institution and that, to the best

of my knowledge and belief, this thesis contains no material previously published or

written by another person, except where due reference is made in the text of the

thesis.

Signature:

Print Name: Sepehr Minagar

Date: 5 July 2018

vi

Publications during enrolment

Minagar, S., Srinivasan, B. and Le, P.D., 2017, December. A Formal Model for

an Ideal CFI. In International Conference on Information Security Practice and

Experience (pp. 707-726). Springer, Cham. Melbourne, Australia.

vii

Acknowledgements

This research was supported by a Monash Graduate Scholarship.

This research was supported by an Australian Government Research Training Pro-

gram (RTP) Scholarship.

There are no words by which I could express my eternal debt and gratitude to my

parents and my two lovely sisters for their boundless love and support.

I would like to thank professor Bala Srinivasan for his continuous support, everlast-

ing patience, and invaluable feedbacks without which this thesis would not be in

existence.

I would like to thank Dr. Phu Dung Le for his support and guidance during my

candidature.

I would also like to thank Dr. Viranga Ratnaike for proofreading my work. His

thesis was covering the areas of knowledge representation and emergent semantics

with no little, if any, overlap with my work.

I am also thankful to all my friends who certainly have made life more enjoyable

here in Australia.

viii

Contents

List of Tables . xiii

List of Figures . xiv

1 Introduction . 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Research Goals . 4

1.4 Contribution . 5

1.5 Thesis Structure . 8

2 Literature Review . 11

2.1 Introduction . 11

2.2 Vulnerability Removal . 12

2.2.1 Formal Software Verification 12

2.2.2 Model Checking . 12

2.2.3 Static Analysis . 14

2.3 Safe Programming Language . 15

2.3.1 Type Safety . 16

2.3.2 Proof Carrying Code . 17

2.4 Exploitation Prevention . 18

2.4.1 Non-executable Stack or Data Memory 18

2.4.2 Address Space Layout Randomisation 21

2.4.3 Return Oriented Programming and Defences 22

ix

2.4.4 Heap-based Attacks . 28

2.4.5 Control Flow Integrity . 29

2.4.6 Coarse-Grained CFI . 33

2.4.7 Fine-Grained CFI . 37

2.4.8 Attacks on CFI . 44

2.4.9 Proposed Method . 45

2.5 Summary . 46

3 A Formal Model of Ideal Control Flow Integrity 47

3.1 Introduction . 47

3.2 Instruction Types and Flow of Execution 48

3.3 Machine Model . 50

3.3.1 Notations . 51

3.3.2 Propositional Dynamic Logic 53

3.4 Attack Model . 58

3.5 Protective Measures . 62

3.5.1 Forward Edge . 64

3.5.2 Backward Edge . 66

3.6 Theorems of ICFI . 70

3.6.1 Premises . 70

3.6.2 Theorems . 71

3.7 Summary . 73

4 Memory Integrity Model . 77

4.1 Introduction . 77

4.2 Memory Corruption . 78

4.3 Memory Safety . 79

4.3.1 Spatial Memory Safety . 79

4.3.2 Temporal Memory Safety . 83

4.3.3 Complete Memory Safety . 84

x

4.3.4 Tag-based Architecture . 84

4.3.5 Type-based Non-interference Languages 85

4.4 Memory Model . 86

4.4.1 Memory and Register Representation 87

4.4.2 Preliminary Definitions for Memory Integrity Model 87

4.4.3 Requirements of Memory Integrity Model 94

4.4.4 Instructions Enforcing Memory Integrity Model 103

4.4.5 A Discussion on Compiler Requirements 115

4.4.6 Theorem of the Memory Integrity Model 120

4.5 Memory Confidentiality Model . 123

4.5.1 Preliminary Definitions . 123

4.5.2 Requirements of Memory Confidentiality Model 125

4.5.3 Instruction Requirements for Confidentiality Model Enforce-

ment . 127

4.5.4 Theorem of Confidentiality Model 132

4.6 Summary . 134

5 Realisation of Code Memory Authenticity and Alternative Memory

Models . 137

5.1 Introduction . 137

5.2 Code Memory Integrity . 139

5.2.1 A Signature-based Code Memory Integrity 139

5.2.2 Memory Blocks and Paging 141

5.2.3 Implementation of Page-by-Page Verification 144

5.2.4 Code Integrity Verification in Linux 148

5.2.5 Content-based Access Control and Authentication: A Discussion152

5.3 x86 Sample Code Analysis . 153

5.3.1 Simple Buffer Overflow in ICFI Model 154

5.3.2 Simple Buffer Overflow in Memory Integrity Model 158

5.4 Address Space Division for Memory Integrity Model 160

xi

5.4.1 Division of Address Space . 160

5.4.2 Instruction Requirements for Address Space Division 161

5.5 Protection of Operating System Memory 165

5.5.1 Memory Privilege Model . 166

5.5.2 Requirements of the Memory Privilege Model 169

5.5.3 Instruction Requirements for the Memory Privilege Model . . 170

5.6 Summary . 179

6 Conclusion . 181

6.1 Introduction . 181

6.2 Contributions . 182

6.3 Future Research . 185

References . 187

Appendix A Page-by-Page Verification for Linux Kernel 205

A.1 Introduction . 205

A.2 Modification of Linux Kernel . 205

A.2.1 Modification of main.c . 205

A.2.2 Required Changes in main.c 214

A.2.3 Code of Modified memory.c 220

A.2.4 Required Changes to memory.c 241

A.2.5 Compiling Kernel with initrd 252

A.2.6 Message Authentication Code for Executable Code Pages . . . 253

A.2.7 Time Measurements of MAC Function for Sample Executable

Files . 258

xii

List of Tables

2.1 Static Analysis Precision for Forward edge in Burow et al. survey [1] 36

3.1 Notation summary . 52

3.2 Machine instructions and semantics 53

3.3 PDL expressions of machine instructions 57

3.4 Instruction preconditions to prevent control flow hijack attack 75

4.1 Notation summary . 104

4.2 Summary of instruction semantics . 105

5.1 Time Measurements for the Page-by-Page Verification Method versus

the Entire Content Verification Method (µ seconds) 151

5.2 Memory Privilege Levels . 166

A.1 MAC function time measurements for /bin/tar file (µ seconds) . . . 258

A.2 MAC function time measurements for /bin/grep file (µ seconds) . . 258

A.3 MAC function time measurements for /bin/ls file (µ seconds) 258

xiii

List of Figures

1.1 Reported vulnerabilities that could lead to arbitrary code execution . 3

2.1 Buffer overflow attack with injected shell code 19

2.2 The general idea of return-into-libc exploitation technique 20

2.3 The general idea of Return Oriented Programming 23

2.4 Loading a value into %edx register using ROP 23

2.5 Storing the content of %eax into memory cell at %edx+24 using ROP 24

2.6 Difficulty of implementing CFI with library functions 31

2.7 Difficulty of implementing CFI with library functions in equivalent

classes technique . 32

3.1 Control Flow Graph in dynamically linked executable 63

3.2 Set of Authentic Calls for the executable foo and library lib. 65

3.3 Functions’ entry points and their associated return point(s) 67

3.4 Verifying an authentic call (forward edge) 68

3.5 Run-time mappings of associated return point(s) of authentic function

calls . 69

4.1 Relations between defined sets for program variables, assigned mem-

ory and process memory . 98

5.1 Page message authentication code generation process. 146

5.2 Folder name generation for page message authentication code. 147

xiv

Chapter 1

Introduction

1.1 Motivation

The role of computer systems in our daily life is ever increasing. The number of

systems capable of executing programs will only increase with the addition of a va-

riety of devices such as smartphones, tablets, and the Internet of Things. Errors in

design, implementation and usage of these devices, operating systems, and applica-

tions running on these devices will also increase as long as security is not considered

in all phases. These errors will lead to vulnerabilities that when exploited can cause

a variety of problems. Malicious code execution is a form of exploitation that runs

a piece of code crafted by the attacker on a targeted vulnerable machine to achieve

nefarious goals. This could be used to gain access to the target machine to disclose

sensitive information to the attacker which then may be used for financial gain. It

can be used in digital espionage by a state against other states, organisations against

competition, or state surveillance violating individuals’ privacy and freedom. The

attack on larger organisations, whether private or governmental, could have more

adverse results, leading to disclosure of millions of records of sensitive information of

the customers of the targeted organisations. The malicious remote code execution

can be combined with other malware to form more advanced forms of attack, for

instance in crafting ransomeware in digital extortion.

1

2 CHAPTER 1. INTRODUCTION

Preventing a successful exploitation can be achieved by one of the two possible

approaches. The first approach is to remove all the vulnerabilities within the system.

A computer system that has no vulnerability cannot be exploited. This requires the

design, implementation, and usage to be all flawless which has been deemed very

difficult to achieve. The second approach is to detect and protect against exploita-

tion. Here a system that is vulnerable can resist the exploitation attempts. The

benefit of such a system is that some of the errors or weaknesses can be tolerated

which leads to faster development without the adverse effects of security attacks.

It will also allow the usage of some of the development tools, such as efficient pro-

gramming languages that lack security by design, with relatively small changes in

the programming and compiler.

Common Vulnerability and Exposure (CVE), maintained by an international

community, is a standardised database of publicly known security vulnerabilities [2].

Each vulnerability receives a unique identifier in the database when discovered and

reported along with a standard description. A review of the reported vulnerabilities

in the CVE database that could lead to arbitrary code execution shows that a

steady number of new vulnerabilities have been discovered in the past eight years

(Figure 1.1) [3]. The increase in the number of reported vulnerabilities in recent

years shows the relevance and significance of this problem today.

1.2 Background

The programs in execution are stored in volatile system memory, hence the first step

for malicious code execution is to gain access to system memory. Memory corruption

is the underlying access point for almost all methods of exploitation that lead to

malicious code execution. These methods of exploitation can be divided into two

broad categories: (i) Code Injection; and (ii) Code Reuse.

In the Code Injection method the attacker uses the memory corruption capability

to copy his or her crafted machine instructions into the target machine’s memory,

and change the flow of execution to the injected code.

1.2. BACKGROUND 3

0

200

400

600

800

1000

1200

1400

1600

2009 2010 2011 2012 2013 2014 2015 2016 2017

914

1059
997 987

937

1030

1467
1406

1119

Figure 1.1: Reported vulnerabilities that could lead to arbitrary code execution

In the Code Reuse method the attacker changes the flow of execution to code

that already exists in the target machine’s memory as part of either the code of the

vulnerable executable or the shared libraries. In this method the attacker injects

selected addresses and parameters to guide the flow of execution toward his or her

malicious intent, choosing functions or sets of instructions in the memory of the

target machine.

If the intended execution of the program is defined as the benign execution of

the program then the latter method can be divided into two subclasses. The first

subclass can be defined as the attack that violates the control flow of the benign

execution by changing it to a function or instruction that has never been part of the

benign execution. This method of attack is called control flow hijack. The second

subclass can be defined as the attack that changes the flow of execution to a path

that does not violate the benign execution of the program. This is achieved by

corrupting the non-control data of the program to influence the flow of execution.

This method of attack is called control flow bending.

Considering that both code injection and code reuse leading to control flow hijack

violate the benign execution path of an exploitable program, then both can be

4 CHAPTER 1. INTRODUCTION

classified as control flow hijack attacks. Another form of exploitation is information

leakage where the adversary by exploiting the targeted programs discloses sensitive

information such as cryptographic keys or memory addresses. The leaked memory

addresses can be used in crafting exploitation where the attacker needs to change

the flow of execution to a given address in the target system memory.

In the past few decades various methods have been proposed to counter various

exploitation techniques. One common shortcoming of the majority of these methods

is the lack of logically provable solutions. The problem with ad-hoc and heuristic

solutions is that the assumptions are not defined clearly. For instance, in the case of

a stack canary1 the assumption is that to overwrite the return address stored in the

stack the value of the canary must also be overwritten. This does not take into ac-

count the possibility of precisely overwriting the return address without overwriting

the canary value which is possible with integer overflow of array indices. The other

problem with informal solutions is that the provided guarantees are not well defined.

For instance, in the case of Address Space Layout Randomisation or various forms

of Coarse-Grain Control Flow Integrity, it is not clear to what extent the solution

makes the system more secure.

1.3 Research Goals

To prevent a successful exploitation its requirements must be removed. To achieve

this, the common requirements of exploitations that could lead to code execution

must first be identified, as it is desirable to provide a solution that is generally

applicable and not specific to one form of exploitation. All exploitation techniques

that execute code on a target machine have to change the flow of execution to the

adversary’s intended code. The goal is to identify how this is achieved and how it

can be prevented, regardless of the vulnerability of the target system. In order to

1A random value stored after the pushed return address at top of the stack. The given name
refers to canaries used in coal mines as a warning method for the level of carbon monoxide.

1.4. CONTRIBUTION 5

prove the correctness of the solution a branch of formal logic is used to express the

proposed work in this thesis.

1.4 Contribution

Current architectures allow a single privilege memory address space with flexible

indirect jump instructions that can change the flow of execution to any location

within that range. This flexible design combined with the mixture of control and

non-control data storage in the same address space and memory corruption vul-

nerabilities enable the attacker to circumvent most of the proposed solutions. The

solutions that can provide complete protection against particular vulnerabilities or

exploitations are often too expensive to implement in current architectures. Propos-

ing alternative architectural designs for processor instruction sets and memory struc-

tures can lead to better architectures with security policy enforcements embedded

as part of an instruction set that would remove the possibility of circumvention. Us-

age of a formal approach to provide proofs of correctness and security will provide

strong guarantees that will not be invalidated in time.

The contributions can be divided into the following:

(C1) Ideal Control Flow Integrity (ICFI) model to prevent control flow hijack at-

tacks : For a control flow hijack attack to succeed, the flow of execution must

be changed from the programmer’s intended path that this thesis refers to as

benign execution, to the beginning of the adversary’s intended code. ICFI is a

formal model that can prevent all forms of control flow hijack attacks on a tar-

get machine. The ICFI model is the first formal method that allows dynamic

linking and relocatable executables and is provably secure. It protects both

forward indirect jumps used for function calls and backward indirect jumps

used for function returns. ICFI uses the most precise control flow graph possi-

ble for an executable code for both forward and backward edges. The integrity

precondition of the executable code assures the content of the executable code

6 CHAPTER 1. INTRODUCTION

is intact throughout the execution of the code. The model can be used as a

foundation to evaluate whether an implementation satisfies any of the defined

requirements, for modern processors, operating systems, or compilers.

(C2) Memory Integrity model to prevent control flow hijack and control flow bend-

ing attacks : The control flow bending attack uses non-control data to change

the flow of execution without violating the benign execution path of the code.

This is due to the corruption of the user data that affects the flow of exe-

cution. To protect against this type of attack a memory integrity model is

defined that divides all program variables into two groups: Trusted and Un-

trusted. The model protects the trusted variables by marking the memory

cells associated to these variables as having higher level of integrity compared

to untrusted variables. A method of classification of untrusted variables is

defined as part of the policy enforcement of the model to allow flow of in-

formation from user-provided input. This model is provably secure and can

prevent memory corruption that leads to control flow hijack and control flow

bending attacks.

(C3) Memory Confidentiality model to prevent memory address leakage: Exploita-

tions that disclose memory addresses to the attacker are used in crafting code

execution attacks. For instance if the address of the commonly used C li-

brary is disclosed to the attacker, it can be used to craft return-into-libc code

reuse attacks or any of the Return Oriented Programming or Jump Oriented

Programming attacks. To protect against this type of attack a memory confi-

dentiality model is defined. Similar to the integrity model, the memory con-

fidentiality model marks the memory cells containing addresses differently to

all other variables. By defining rules that are enforced using the machine

instructions as well as the compiler, address leakage attacks are prevented.

(C4) An implementation of Code Memory Authenticity as a proof of concept for

memory integrity precondition of the ICFI model : Code memory integrity is a

1.4. CONTRIBUTION 7

precondition that must be satisfied in all machine states during the execution

of a program in the ICFI model. A code memory authenticity for a Linux

kernel is implemented using the demand paging concept, where the code is

divided into fixed-length non-overlapping pages and only required pages are

loaded into memory. The implementation authenticates each code page using a

system-wide key before the flow of execution is transferred to the newly loaded

page. Since loading the demanded page into memory is part of the operating

system responsibility, the Linux kernel is modified to perform the authentica-

tion. The implementation shows the feasibility and the cost of satisfying the

code integrity precondition of the ICFI model using the existing architecture.

It also uses authentication instead of integrity to emphasise the existing social

model of trust in the producer of the code not to have malicious intent rather

than finding methods to detect or deduce the intent from the executable code.

(C5) Address Space Separation model as a more cost-effective alternative to the

memory integrity model : The realisation of the memory integrity model re-

quires an additional bit for every cell of the volatile memory of the system.

In the Address Space Separation model, the process address space is divided

into two parts: low and high integrity levels. A register will contain the ad-

dress of the first memory cell that belongs to the high integrity address space

of a process, allowing flexible division of the address space between low and

high integrity memory cells. The required changes to the policy enforcement

is then expressed in micro operations of the machine instructions. This alter-

native memory integrity model eliminates the need to change the structure of

the system memory as well as the additional bit per cell requirement of the

original model.

(C6) Memory Privilege model as an alternative memory model to combine integrity

and confidentiality models : The combination of memory integrity and confi-

dentiality models requires the adjustment of the policy enforcement for each

machine instruction. This model shows the possibility of the combined model

8 CHAPTER 1. INTRODUCTION

and introduces the additional protection of operating system memory against

malicious processes.

1.5 Thesis Structure

The thesis is structured into six chapters starting with this introduction. Chapter

Two provides a literature review that covers various topics. It starts with a review of

the proposed methods that remove vulnerabilities by either finding the vulnerability

in the body of the code or by defining safe programming languages that remove

the possibility of certain types of errors. Then there is a discussion of methods

that prevent a successful exploitation. These can be categorised into various types.

Chapter Two ends with a discussion of the various methods of the Control Flow

Integrity (CFI) which influences this work.

Chapter Three defines the ICFI model (C1). A description of Propositional

Dynamic Logic (PDL) is provided. It is used in expressing the attack and preventive

measures in the formal model. The instructions of a machine model proposed in the

literature is defined, and then modified according to the requirements of the ICFI

model. The types of instructions and how they affect the flow of execution is then

discussed followed by definition of required protective measures. The theorems and

proof of the scheme is then discussed and the chapter concludes with a summary.

The memory integrity and confidentiality models are discussed in Chapter Four

(C2 and C3). A review of the literature related to memory corruption and proposed

solutions is provided at the beginning of the chapter. To define the requirements of

the memory integrity model, the gap between high level programming languages and

machine language concepts is bridged. The abstract concepts related to code and

functions in high level programming languages are connected to machine language

concrete instructions using preliminary definitions which are at times refined as the

chapter progresses. The chapter then specifies the requirements of the integrity

model. The requirements should be satisfied partly by the programmer; partly by

the compiler and micro operations of the machine instructions. Once all of the

1.5. THESIS STRUCTURE 9

requirements are defined, the theorem is expressed and its proof is discussed. The

memory confidentiality model section follows a similar structure and the chapter

concludes with a discussion.

Chapter Five is dedicated to realisation ideas. The concepts of the authenticity

of the code and the socially accepted trust in the producer of the code are discussed

at the beginning of this chapter. Then follows a description of how this can be

implemented using a public or private key signature scheme and in a system with

on-demand paging. As a proof of concept, a page-by-page verification of executable

code is implemented including the shared libraries for the Linux operating system

(C4). The logic of the page-by-page verification for a Linux kernel is discussed after

the formal evaluation of the effect of on-demand paging on the proof of the ICFI

method and the relation of authenticity and integrity of the code pages. The details

of the implementation and the code of modified kernel source files are provided in

Appendix of the thesis. An example of a compiled code of a program vulnerable to

buffer overflow is then provided to show how each of the formal models would protect

against this attack. The chapter then proposes an alternative realisation of memory

integrity to decrease the cost in terms of memory space (C5). The chapter shows

how the instructions must change to accommodate such a realisation. The memory

integrity and confidentiality models can be realised in a combined system (C6). The

combined model also includes the protection of operating system against malicious

user processes. The required changes in instructions to achieve this combined model

that protects the program against malicious users and operating system against

malicious processes is then discussed. The chapter concludes with a discussion on

other realisation aspects of the thesis.

The thesis concludes with a final chapter that summarises the contributions and

discusses future work.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

2.1 Introduction

Successful execution of malicious code by an adversary on a target system relies

on two requirements, the existence of vulnerabilities and a method of exploiting

those vulnerabilities. The proposed protective methods in the literature can be

categorised into two broad classes, namely removal of vulnerabilities and detection

and prevention of exploitations. This chapter discusses various solutions proposed

in the literature in both classes to protect computer systems against malicious code

execution.

Various vulnerability removal methods and the difficulties of such solutions are

described in Section 2.2. Eliminating the possibility of errors leading to the vulner-

abilities, by removing features of the high level programming language or the low

level machine language, is discussed in Section 2.3.

The methods of detection and prevention of the exploitation are studied in Sec-

tion 2.4. An overview of the proposed method is given in Section 2.4.9 and a

summary in Section 2.5.

11

12 CHAPTER 2. LITERATURE REVIEW

2.2 Vulnerability Removal

This section discusses various methods of analysing the code to detect and remove

vulnerabilities. The proposed methods range from formal through semi-formal to

ad-hoc or heuristic.

2.2.1 Formal Software Verification

Formal software verification refers to techniques that aim at providing a formal

method to verify if a software artefact meets its design goals and defined require-

ments [4], [5]. The formal aspect refers to techniques that are based on logic, set

theory, and algebra. These methods are used to define the specification of software

systems models and verification of their properties. A software system abstract

model can be used to verify if the system satisfies a given set of functional require-

ments as well as assuring a set of defined non-functional properties [4].

2.2.2 Model Checking

Model Checking is a formal method whose goal is to detect behavioural anomalies

of software systems by performing formal verification of suitable models of those

systems. In this method a state reachability analysis is performed in which the

verifier searches the state space for error states where the program fails to satisfy a

specified property. The faults that made the error state reachable are then removed

and the procedure is repeated [4]. Chen and Wagner [6] discuss a model checking

approach in finding potential violation in sequence of security operations e.g. system

calls, by modelling the security property as Finite State Automata and the program

as a Push Down Automaton. Schwarz et al. [7] further extend their technique to

analyse the entire Red Hat Linux 9 distribution with around 60 million lines of

code. There are a few obstacles that prevent the integration of this technique into

the development process. One obstacle is comprised of gaps between the concepts,

2.2. VULNERABILITY REMOVAL 13

notations, and models that are used to design large-scale systems. Another obstacle

is the scalability problem [4].

There exist techniques that will help reduce the state space and overcome the

scalability issue. One such technique is Predicate Abstraction where only certain

predicates over data are tracked, instead of tracking program data as the state [4].

The predicates are expressed in Boolean variables and compose an over-approximation

of the original program. The use of predicates as Boolean variables reduces the size

of the state space compared to the program state defined by the value of its data.

Another technique is the use of pre- and post-conditions for procedures of a pro-

gram and an automated theorem proving tool to check the defined conditions. In

this method a statement that is a logical formula with true or false values identifies

the conditions that must be met before entering a procedure. The pre-condition

only involves the global variables and the input arguments of the procedure. The

post-condition on the other hand describes the outcome of the procedure, and is

accomplished if the procedure is called and its pre-conditions met. Both pre- and

post-conditions are expressed as Boolean variables with for-all (∀) and there-exists

(∃) quantifiers. The verification process aims to formulate the correctness problem

as the verification of the relationship between the pre-conditions assumed to be true

at the beginning of the program execution and the post-conditions that must be

true at the end of execution [4].

The advantage of the theorem proving approach over model checking is that

the defined constraints are on states rather than instances of states. Hence a theo-

rem proving technique can reason about an infinite state space without exhaustive

searching. The draw back of this method is the required effort and expertise in

proper expression of predicates for pre- and post-conditions and in deciding the va-

lidity of a theorem. In practice the output needs to be verified by a human [4]. This

to some extent defeats the purpose of using an automated tool.

14 CHAPTER 2. LITERATURE REVIEW

2.2.3 Static Analysis

Static Analysis is a semi-formal method in which the source code of a program is

analysed to retrieve information that can be used for purposes such as optimisation

or security flaw discovery [4]. The static analysis focus is on particular issues of the

programming language that could lead to security flaws, for instance uninitialised

variables, dereferencing uninitialised pointers, or leaving out the allocated memory.

Wagner et al. [8] propose a static analysis to detect buffer overrun vulnerabilities

by formulating the string operation as an “integer constraint” problem and using

graph theory to solve the constraints. In a similar approach Ringenburg and Gross-

man [9] combine a whitelist with static analysis to compensate for the precision

versus security trade-off. Yet another example is the work of Chen and Wagner [10]

where the goal is to eliminate format string vulnerability in Debian Linux, taking

advantage of type qualifiers in their static analysis. Avots et al. [11] have developed

a pointer analysis for the C programming language based on a points-to algorithm

using a binary decision diagram representation which could decrease the overhead

of a dynamic string-buffer bounds checker. A shortcoming of this approach is that

it is generally designed for a specific vulnerability. There is a trade-off between the

precision and security which results in the generation of false positives and may

require the human interaction in the verification process.

Breuer and Pickin [12] propose Symbolic Approximation, which is another semi-

formal static analysis, as a customisable program logic for C which can be used to

assign an approximation of semantics to programs written in this language. This

is done by sweeping the code and constructing logical predicates with conditional

variables where changes in their values depend upon the configured logic for each

of the C statements. The code is then verified by evaluating all of the reachable

predicates from each point of the code by propagating the point using the four

principal components of compositional program logic, namely: normal, return, break,

and goto. This is achieved by defining three conditional variables for three phases of

the execution of a program fragment: initial, during, and final using a method that

2.3. SAFE PROGRAMMING LANGUAGE 15

is quite similar to the approach originally proposed by Hoare [13] which attempted to

provide a basis for the logic of computer programming. A single precondition/triple

post-condition format is proposed to specify the program logic of C and objective

functions. The triple post-condition specifies the conditions under normal, return,

and break exits of a program fragment. The analyser then verifies the code to

determine if the propagation of a specified initial precondition would violate any

of the rules defined as objective functions by developing the corresponding post-

conditions [12]. The format also includes pre- and post-contexts which specify the

context and output of a prevailing goto respectively, verifying whether a label is

reached by execution of a goto literal or by sequential execution that traverses the

associated label for the given goto. Breuer and Pickin [14] refer to their abstract

interpretation of C code as a “configurable 3-phase Hoare-style logic” which can be

used to analyse large scale code such as the kernel of a Linux operating system. They

also provide an example for using this method to check for existence of deadlocks due

to improper use of spinlocks which could lead to a denial of service attack. Breuer

and Pickin [15, 16] further develop this approach, naming the approach symbolic

approximation and introduce the use of symbolic machines constructed based on

the proposed symbolic approximation.

2.3 Safe Programming Language

The goal in creation of safe programming languages is to remove the programming

constructs that could lead to vulnerabilities. For instance the ability to use point-

ers to variables and the manipulation of pointers by the programmer could lead

to incorrect address calculation and memory corruption. Removing this capabil-

ity can remove a class of vulnerabilities in the programs produced under the safe

programming language.

16 CHAPTER 2. LITERATURE REVIEW

2.3.1 Type Safety

One of the major issues of flexible and powerful high level languages such as C is

that it does not provide Type Safety. This has led to the proposal of Type Qualifiers

and other type safety measures for high level languages. Foster et al. [17] propose

a framework to extend a language, with a set of standard types, to a qualified

type system where the rules that govern the language’s standard types are followed.

This is done by adding qualifier annotations that allow assignment of qualifiers to

types and qualifier associations that identify what needs to be checked for qualified

types. The qualifier inference rules then will check the invariants expressed by the

programmer. Shankar et al. [18] use a type theoretic analysis technique based on

the aforementioned framework [17] to detect format string vulnerability by assign-

ing tainted qualifiers to variables containing user input and untainted qualifiers to

internal and verified variables. They check when a tainted variable is sent to a func-

tion that expects untainted arguments. A similar technique was used by Johnson

and Wagner [19] to find user and kernel pointer bugs in a Linux kernel using a type

qualifier inference tool called CQual. Other examples of type qualifiers can be found

in flow-sensitive [20], flow-insensitive [21] and semantic [22] type qualifiers.

In another approach, Necula et al. [23] describe their scheme of type safety for

existing programs in C as the combination of type inference and run-time checking.

Their type system, which is called CCured, keeps track of certain information about

the memory area that is pointed to by each pointer. For dynamic pointers this

information must be updated at run-time as the area pointed to by the pointer does

not have a fixed type through out execution.

Any type safety defined in high level language may not be preserved after com-

pilation to the low level assembly language which has resulted in the proposal of

Typed Assembly Languages (TAL). Morrisett et al. [24] define a type system for a

conventional assembly language that could maintain the type information through all

compilation phases. Their compiler is designed to translate a polymorphic lambda

calculus system to a TAL for a generic RISC instruction set. This strongly typed

2.3. SAFE PROGRAMMING LANGUAGE 17

TAL allows more control over certain operations for certain types such as arithmetic

over pointers, dereferencing, or control transfer. To provide a more realistic exam-

ple of their work, Morrisett et al. [25] present a TAL designed for the Intel IA32

architecture along with a C-like high level language called Popcorn. They show how

high level language features can be compiled to a TAL assembly language. They

define a variant of TAL for a stack that will preserve the type of anything pushed

into the stack including the return address [26].

2.3.2 Proof Carrying Code

The concept of Proof Carrying Code (PCC) proposed by Necula [27] is defined as

a framework to provide a general mechanism that would enable the receiver of a

code fragment to verify that it can be executed safely on the receiver’s machine. In

this scheme it is suggested that the code fragment will carry a detailed and precise

“explanation”, i.e. proof, of why it satisfies the receiver’s safety policy. It can be

verified that the explanation is correct and it belongs to the code fragment [27].

Appel [28] argues that Necula’s PCC is type-specific and proposes a scheme that

would avoid any commitment to a particular type system. Instead the operational

semantics of the machine code are defined in an expressive logic that can be used as a

foundation for mathematics suitable for higher-order logic. Hamid et al. [29] propose

a syntactic approach to Foundational PCC (FPCC) which avoids reasoning about

the types in underlying typed machine by providing a typing derivation accompanied

with the soundness proof of the type system rather than its semantic.

As mentioned before in FPCC a properly expressive logic is used to define both

the concept of safety and the operational semantic of machine code without commit-

ting to any particular type system. The producer of the executable code must then

provide a proof that the code satisfies the safety conditions using the foundational

logic. This proof will accompany the executable code and is verifiable by the re-

ceiver of the code. Hamid et al. [29] use a Calculus of inductive Constructions (CiC)

which is an extension of a higher order typed lambda calculus called the Calculus

18 CHAPTER 2. LITERATURE REVIEW

of Constructions (CC) to define safety policies and proofs. Their defined machine

model is quite powerful to model any stored-program computer system. Its modified

variant is used by Abadi et al. [30] in their proposed Control Flow Integrity (CFI).

2.4 Exploitation Prevention

This section discusses the techniques that try to hinder the exploitation of memory

errors. These techniques are generally ad-hoc solutions and lack a formal approach.

Van der Veen et al. [31] provide a twenty-five year survey of literature regarding the

attacks, countermeasures and statistics of memory errors.

The Morris worm, released in 1988, was the first widespread Internet worm. It

was considered as a wakeup call for much needed security in design, implementa-

tion, and configuration of any system connected to distributed networks such as

the Internet [31, 32]. The analysis of the worm revealed that it exploited a buffer

overflow vulnerability in the gets() function of the fingerd BSD-Unix daemon

and a misconfiguration in sendmail program that allowed the attacker to use the

DEBUG command to execute other commands on the server [33]. The worm had the

ability to copy multiple files compiled for different systems and could access the

publicly readable password file for further analysis. The Computer Emergency Re-

sponse Team Coordination Center (CERT/CC) was formed as a response to Morris

worm [34].

2.4.1 Non-executable Stack or Data Memory

In a classic buffer overflow attack, the buffer located at the top of the stack of a vul-

nerable process is overflowed. The input to the vulnerable process that overflows the

stack contains the attacker’s shell code which is comprised of machine instructions.

The overflowed buffer precisely overwrites the return address that is pushed by the

calling function onto the top of the stack, so that it would point to the shell code.

Once the called function executes the ret instruction, the control of the execution

2.4. EXPLOITATION PREVENTION 19

 Attacker’s code
Overwritten Return Address%esp

Stack

 Attacker’s code
 Attacker’s code
 Attacker’s code
 Attacker’s code
 Attacker’s code

O
ve
rfl
ow

 buffer

Figure 2.1: Buffer overflow attack with injected shell code

will be transferred to the attacker’s shell code which generally creates a remote shell

for the attacker to access the target system [35, 36]. Figure 2.1 shows the idea of a

classic buffer overflow attack.

The non-executable stack, proposed by Solar Designer1 [37], was the first secu-

rity countermeasure against stack overflow [31]. Cowan et al. [38] proposed a scheme

named StackGuard that inserts random bit patterns between the return address and

the function arguments and variables. The random bit pattern referred to as a ca-

nary or cookie will be checked before return. This technique will detect an overwrite

of the return address in case the overflow overwrites the canary as well. In some

special cases the canary is predictable or a low cost brute-force technique, such as

the scenario described in [39], can be used to guess the value of the canary. In such

cases, it is possible to overwrite the canary with a correct value and bypass this

protection mechanism. Under certain conditions an adversary may be able to use

a pointer located after the buffer to change the return address without overwriting

the canary [40]. Etoh2 and Yoda3 [41] proposed the rearrangement of local vari-

ables at compile time in such a way that buffers would be located after pointers to

avoid pointer corruption by buffer overflow. The rearrangement of the variables is

1A hacker alias name.
2A hacker alias name.
3A hacker alias name.

20 CHAPTER 2. LITERATURE REVIEW

Address of ”/bin/sh”

Return address after system()

Address of system()

buffer

Overwritten old %ebp

Libc

system()

Libc Data

“/bin/sh”

Stack

O
ve

rfl
ow

Figure 2.2: The general idea of return-into-libc exploitation technique

not always possible for instance for pointers inside structures, dynamic arrays, and

functions that accept variable numbers of arguments [39].

Solar Designer [42] explains an exploit to bypass the non-executable stack. This

exploit, which is referred to as return-into-libc, instead of injecting code as part

of the user input that overflows the stack of the vulnerable process, overwrites the

return address with the address of system() followed by the address of a /bin/sh

string both within the C library. Upon the execution of the return instruction the

control is transferred to the system() function and the address of the /bin/sh

string will be treated as the argument for the function. This will create a shell for

the attacker. Since no code is actually executed from the stack, the non-executable

feature of the stack is bypassed. Figure 2.2 displays the idea of a return-into-libc

exploitation technique.

In the C programming language, strings are terminated with a NULL which is an

all-zero byte, hence the shell code or return-into-libc exploit which is fed as input to

the vulnerable process cannot contain zero bytes anywhere in the middle of the input

as it would terminate the string and the attacker’s payload would be incomplete.

2.4. EXPLOITATION PREVENTION 21

Solar Designer [42] proposed that the shared libraries be loaded to addresses that

contain a zero-byte to prevent the return-into-libc exploit. This technique however

was shown to be ineffective by Nergal4 [43].

2.4.2 Address Space Layout Randomisation

The PaX security team [44] proposed that the non-executable feature should be

generally applied to all data pages, and instead of mapping the shared library to

addresses that contain zero, the entire address space of the process should be ran-

domised. This approach that is referred to as Address Space Layout Randomisation

(ASLR) uses random addresses to memory map the text, dynamic loader, and shared

library for the executable code. It also randomises the addresses for allocated heap

and stack. As the attacker needs the address of the injected shell code in a classic

buffer overflow attack or the address of a function within the C library for a return-

into-libc exploit, the ASLR technique makes it difficult to guess these addresses.

Nergal [43] explains a more advanced return-into-libc exploit where arbitrary num-

ber of function calls can be chained together and the knowledge of the stack or

shared library address is not required to succeed. The chaining multiple function

calls allows the attacker to insert zero bytes whenever required by using one func-

tion call to insert zeros as argument for the next function call, hence overcoming

the problem of having zeros as part of the overflow payload. Nergal [43] also points

out that the ASLR technique used at the time had weaknesses such as:

• local exploits could retrieve the addresses from /proc file system;

• the random base addresses could be brute-forced, this is also discussed by

Shacham et al. [45];

• the library and stack addresses could be leaked by exploiting format string

vulnerabilities;

4A hacker alias name.

22 CHAPTER 2. LITERATURE REVIEW

• functions that are not position-independent and cannot be memory-mapped

randomly (e.g. su) can be targeted by the attacker;

• a function can be called using its Procedure Linkage Table (PLT) entry [46],

as the process itself needs to find the shared library for instance the executable

files with Executable and Linkable Format (ELF) in Linux use such mecha-

nism;

• by passing appropriate arguments to the dynamic linker’s dl-resolve() func-

tion the actual address of a function can be determined.

2.4.3 Return Oriented Programming and Defences

The non-executable attribute for data pages is widely adopted by most operating

systems and supported by most hardware manufacturers [31]. This feature is also

referred to as either W ⊕X for mutually exclusive Write and eXecute access rights

or simply as NX for Non-eXecutable. The W ⊕ X technique and Stack Smashing

Protection which are added to the GNU C compiler and used by default make

the classic code injection technique difficult, however there exist some special cases

where certain attacks are possible [39].

One such case is the general exploitation technique of return-into-lib [43] which

is further developed to return to a chunk of code rather than any library function

[47]. A Turing-complete programming language is developed where the attacker can

induce arbitrary behaviour by chaining short instruction sequences, referred to as

gadgets, that are present in the target program’s address space [48–50]. Each of these

sequences end with a return instruction. This technique is called Return-Oriented

Programming (ROP). Figure 2.3 shows the general idea of a ROP attack.

The return instruction is needed to take advantage of the stack of the vulnerable

process. The overflow payload contains a combination of addresses for identified

gadgets and any argument that may be needed for any of the gadgets. The gadgets

are divided into five groups: load/store, arithmetic and logic, control flow, system

2.4. EXPLOITATION PREVENTION 23

Value/argument

Address of gadget%esp

Stack

Libc

Inst
...
ret

Data

Intended Destination

Address of gadget

Inst
...
ret

Inst
...
ret

Value/argument

Address of gadget

Value/argument

Value/argument
O
ve
rfl
ow

Figure 2.3: The general idea of Return Oriented Programming

calls, and function calls. Figure 2.4 shows an example for loading a value into the

%edx register [50].

Intended_value

Address of gadget%esp

Stack

Libc

pop %edx
ret

Figure 2.4: Loading a value into %edx register using ROP

Figure 2.5 shows a store example where the content of the %eax register is stored

in memory. The first gadget pops the intended address of the destination minus

24 into the %edx register. The second gadget then stores the content of the %eax

register at location %edx+24 [50]. The choice of gadgets is based on their availability

in the executable code and any of the shared libraries accessible by the executable

code.

24 CHAPTER 2. LITERATURE REVIEW

Address of gadget%esp

Stack Libc

pop %edx
ret

Address of destination-24 movl %eax, 24(%edx)
ret

Address of gadget

Data

Intended Destination

+24

Figure 2.5: Storing the content of %eax into memory cell at %edx+24 using ROP

Although ROP is introduced as a form of stack buffer overflow attack, it can be

used with other memory errors. This is done by using the first gadget to set up the

%ebp register, which in x86 architecture points to the stack frame, to point to an

arbitrary memory location to launch the rest of the chains of gadgets [50]. This will

be triggered by the execution of the ret instruction from the first gadget [50]. Among

other memory errors that can be used in conjunction with ROP are heap overflow,

integer overflow, and format string vulnerabilities. In an integer overflow attack

the array bounds are manipulated by overflowing array indices, which could in turn

result in heap or stack overflow [51, 52]. A format string vulnerability could allow

the attacker to write fixed size arbitrary values anywhere in memory for instance

updating the Global Offset Table (GOT) entry [53, 54]. The ROP exploitation

technique has been shown to be effective on various architectures including x86,

SPARC and ARM processors [50, 55]. Bletsch et al. [56] propose Jump-Oriented

Programming (JOP) as another form of code reuse attack where the gadgets end

with an indirect jump rather than return. The methods discussed in the remainder

of this section aim to detect and/or prevent ROP attack or its variants.

2.4. EXPLOITATION PREVENTION 25

Chen et al. [57] have designed a detection mechanism based on some of the

characteristics of ROP attacks and perform a statistical analysis on ROP gadgets

to determine two thresholds that they use to detect ROP: the gadget size and the

sequence length. They perform a run-time analysis for each ret instruction to detect

if any of the two thresholds is violated. Davi et al. [58] propose a run-time integrity

monitoring scheme that verifies static measurements of the executable code at load

time. Run-time checks are then added to the loaded code using code rewriting

techniques that will monitor changes in the data segment particularly in stack to

detect ROP attacks. In this mechanism the untrusted data is marked as tainted

and a dynamic taint analysis makes sure that the taint data is not misused for

instance as a pointer. A taint tracking mechanism counts the number of instructions

between two returns based on the analysis that most of ROP gadgets have 3 to 5

instructions before ret instruction [58]. The aforementioned techniques however rely

on modifiable characteristics of ROP attacks which can be changed by the adversary.

Lu et al. [59] have shown that it would be possible to make ROP attacks, packed,

using printable ASCII code and polymorphic.

Chen et al. [60] focus on three control flow instructions: call, ret, and jmp.

They argue that by using a shadow stack the ret instruction that does not have

a corresponding call entry can be identified. As the call instruction is often used

to transfer the flow of execution to a function, it can be checked to see if the code

at the called address matches one of the two possible function prologues: frame

function, or non-frame function. Each of these two types start with a fixed set of

instructions. For the jmp instruction, the direct jump is considered benign as the

adversary cannot control the offset, but for the indirect jump their observation is

that it is not used between different library functions and this feature can be used

to identify a ROP attack [60].

Onarlioglu et al. [61] have developed a scheme to remove mechanisms that are

necessary to chain gadgets from the executable code. Their focus is also on call,

ret, and indirect jmp instructions. To make sure that a function is called using

26 CHAPTER 2. LITERATURE REVIEW

its start address, a cookie that is based on a run-time encryption key and a pre-

determined function identifier is pushed on top of the stack. Every call or jmp

instruction is preceded by a code which verifies the cookie for the called function.

This is done using code-rewrites. In the x86 architecture it is possible for the opcode

of one instruction to appear as part of the opcode of another instruction due to the

complexity of the architecture. To avoid the use of such unintended instructions in

the x86 architecture, they propose a technique for aligned execution of free-branch

instructions [61]. This is achieved by inserting an alignment sled e.g. using the

nop instruction before the instruction that contains for instance an unaligned ret.

This will enforce aligned execution of this instruction whenever the execution flow

reaches the alignment sled [61]. Both of these techniques require code rewriting and

as previous methods lack formal approaches.

Davi et al. [62] propose a scheme to incorporate a ROP detection and prevention

mechanism, referred to as ROPDefender, into a Just-In-Time (JIT) compiler-based

instrumentation that is called a Dynamic Binary Instrumentation (DBI) framework.

This is done using a code cache and a virtual machine that contains the JIT-compiler.

The program is executed under DBI control which will follow the ROPdefender

return address check enforcement. The ROPdefender uses several shadow stacks in

a multi-thread environment. This technique is based on a specific feature of ROP

attack namely the use of a ret instruction at the end of each gadget and cannot

detect similar code-reuse attacks such as JOP [56,62]

Another form of ROP is the Return Oriented Rootkits which target the kernel

of operating systems for code-reuse attacks. Li et al. [63] have developed a scheme

to remove the ret instruction from the kernel of the FreeBSD operating system.

This includes the unintended appearance of ret opcodes within other instruction

opcodes as mentioned before due to the complexity of x86 architecture. They also

propose a return indirection technique that instead of storing the return address, an

index to a table is pushed on top of the stack. Each index points to an entry on a

centrally managed table that contains the return address for its corresponding call.

2.4. EXPLOITATION PREVENTION 27

This technique makes it difficult for the adversary to choose arbitrary gadgets and

use their addresses as return points. This however cannot protect against classic

return-into-lib type of attack as the return index can still be overwritten with a

different index [63].

Bletch et al. [64] propose a technique that checks the control flow transfer after

it takes place to detect any violation. This is achieved by adding a small snippet of

lock code before each instruction capable of indirect transfer of flow of execution.

The valid destination of the indirect transfer correspondingly has the unlock code.

A violation is detected when a control transfer tries to lock an already locked value

in memory. This results in termination of the execution. In this technique called

Control Flow Locking the adversary may succeed at most once.

Pappas et al. [65] have developed a mechanism to randomise the executable code

in-place in order to hinder the adversary’s attempt to use some of the identified gad-

gets. They use several code transformation techniques including atomic instruction

substitution, instruction reordering, and register reassignment. According to their

experimental results their approach prevents some of the existing ROP attacks on

known vulnerable software.

Tran et al. [66] have shown that return-into-lib(c)5 attacks can be used for their

side-effects despite the flexibility or expressiveness of such attacks being questioned

in the literature [50, 63]. In this technique, POSIX standard functions are used

to construct Turing-complete return-into-lib(c) code reuse attacks capable of per-

forming arbitrary operations solely using the side-effects of these functions. That

is instead of using the straight forward features of library functions the focus is on

performing the normal operations, i.e. arithmetic/logic, memory access, branching,

and system calls, using the effects of certain functions on memory and registers. For

instance to perform arithmetic operations they take advantage of wordexp() func-

tion along with itoa() and atoi() functions as the wordexp() function only works

with strings. On a Windows platform they use the OffsetRect() function designed

5Referring to either return-into-libc or more generic attacks as return-into-lib.

28 CHAPTER 2. LITERATURE REVIEW

to move a rectangular shape within the screen to perform addition and subtrac-

tion [66]. The use of standard functions allows for developing cross-platform attacks

while identified ROP gadgets would differ between different operating systems.

2.4.4 Heap-based Attacks

While the stack-based buffer overflow has received more attention in both exploita-

tion techniques and countermeasures, the heap-based buffer overflows are no less

important. The heap overflow vulnerability has been around for almost as long as

stack-based overflows, however due to the availability and ease of use of the latter

they have been less popular. Conover and the w00w00 security team [67] describe a

heap-based buffer overflow that could lead to overwriting a function pointer. In [68]

heap overflow techniques for System V and GNU C Library implementations are

described where the attacker is capable of overwriting the management informa-

tion of the adjacent block which could lead to an arbitrary memory write using

the unlink technique [69]. Another heap overflow technique takes the advantage of

doubly linked lists in managing memory chunks. The attacker crafts a fake chunk

with corrupted forward and backward pointers, and tricks the dlmalloc() function

into processing it [70]. The forward pointer points to the address of a function

pointer (e.g. an entry on GOT) minus 12 and the backward pointer points to the

attacker’s shell code. When the unlink() macro tries to adjust the freed fake chunk

it overwrites the function pointer with the address of the attacker’s shell code. The

vulnerabilities used in aforementioned techniques were patched in 2004, but in an

article published under the alias of Phantasmal Phantasmagoria six other techniques

were discussed that could theoretically lead to exploitation [71]. The practical proof

of concept for these techniques were published in 2009 under the alias of Black-

ngel [72]. The heap overflow exploitation has become more difficult, due to the

W ⊕X memory page attribute and ASLR technique which requires a memory leak

exploitation for a successful code execution. This issue has been discussed in more

recent articles and is specified as the reason why the underground hacker community

2.4. EXPLOITATION PREVENTION 29

is reluctant in sharing these techniques publicly [73–75]. A heap overflow exploita-

tion technique is described in [73] for jemalloc(), a user space memory allocator

that is used in Mozilla Firefox and FreeBSD as well as a standalone version. Other

examples of the technique are shown as a remote heap overflow of the Microsoft IIS

7.5 [74] and the VLC media player on FreeBSD [75].

One technique that is used to counter ASLR is a heap spray attack where the

adversary allocates either a large number of small memory chunks or a sufficient

number of large chunks filled with the shell code [76]. The goal is to make the address

of the shell code predictable. Each piece of shell code is wrapped in a large nop sled

to make transfer of control easier. This technique is mainly used in malicious PDF

documents [77] and in various web browsers using JavaScript [78]. This technique

can also use ROP to bypass the non-executable data page protection [77]. Several

detection techniques are proposed which mainly focus on the characteristic of the

spraying technique [79–81] and more can be found in the literature.

2.4.5 Control Flow Integrity

Control Flow Integrity (CFI) proposed by Abadi et al. [82] is an exploitation pre-

vention technique that focuses on the transfer of the flow of execution to prevent

a malicious transition. This technique has created a new branch of research in the

past decade where the most of the focus has been on providing a practical implemen-

tation of the original work without formal analysis. The research in this area can

be divided into three broad categories: (i) Classic CFI; (ii) Coarse-Grained (CG)

CFI; and (iii) Fine-Grained (FG) CFI. Each of the CG and FG methods can be

divided into forward or backward if the protection is only afforded to one of the

edges. Burow et al. [1] take a more in-depth analysis approach and provide more

details and finer classification based on the precision and accuracy of the studied

methods as well as the performance and security aspects. They have assigned scores

to the surveyed methods which will be reported in the following subsections when

these methods are discussed.

30 CHAPTER 2. LITERATURE REVIEW

Classic CFI

Classic CFI provides a mechanism to enforce the static Control Flow Graph (CFG)

of executable code at run-time [82]. Abadi et al. [82] modified a machine model

developed by Hamid et al. [29] by adding a label instruction and dividing the memory

into code and data where the non-executable condition holds for all data memory.

The executable code is then instrumented and rewritten, so that each indirect jump

is preceded with a series of instructions that verifies whether the calculated address is

the intended destination. The main difference of this approach with other protection

techniques is that they represent the proposed scheme formally and provide logical

proofs of the correctness of the mechanism given their assumptions. This approach,

however, has a major drawback that has made the implementation of the original

work impractical. The issue is that the label instruction introduces rigidity to the

architecture where flexibility was intended. To clarify this point the introduction of

the indirect jump instruction in modern processors is to enable dynamic linking and

shared libraries, whereas the use of the label instruction with unique labels prevents

the use of shared dynamically linked libraries. Among their proposed solution is the

use of multiple labels however the return is using the indirect jump instruction as

well. Since all indirect jumps must have a calculated address that is preceded with

a unique label using the label instruction, a return from a library function must

check all of the potential destinations to return to within all executable codes that

call that library function. Figure 2.6 shows the difficulty of implementing CFI with

library functions.

Another solution is the use of code duplication, in which case much better secu-

rity is achieved at the expense of additional memory. The in-place code duplication

removes the need for an indirect jump instruction as well as the use of dynamic

linking, shared libraries, and even function calls, in which case the indirect jump in-

struction can be eliminated from the architecture altogether. The code duplication

with the assumption of protected code memory can be proven secure without CFI.

2.4. EXPLOITATION PREVENTION 31

main()

foo lib

f001

ret
call f001

call f001

next_ins

next_ins

1

23

4

Figure 2.6: Difficulty of implementing CFI with library functions

To address the problem of multiple call sites and return, Abadi et al. [30] suggest

the use of equivalent classes of IDs. That is indirect jumps from multiple sources to

the same destination would receive the same ID (e.g. vertices 1 and 3, and vertices

2 and 4 in Figure 2.6). This technique however would be more permissive than the

actual execution flow of the program. In their original work it is stated that the

dynamic library is excluded for simplicity [82]. In fact the code instrumentation

for ID checks with equivalent classes will pose a problem in linking dynamically

with shared libraries. This is due to the fact that functions could be called from

different executable code. Hence the class of return ID could have members of

different executable code. For instance vertices 3 and 6 in Figure 2.7 belong to the

same equivalent class, and will be assigned the same ID which could enable the

attacker to return to the middle of the function f001 from the call made in the

foo executable. To counter this a shadow call stack is used to securely associate

the return of a function call to its most recent call site [30]. Use of an equivalent

class violates the condition used to prove the correctness of the approach namely

the uniqueness of the labels. The unique label distinguishes the edge that is part

of the CFG of the program from any other destination. When it is replaced with a

32 CHAPTER 2. LITERATURE REVIEW

main()

foo lib

f001()

ret
call f001

call f002

next_inst

next_inst

1

4
f002()

ret

call f002
next_inst 2

5

3

6

Figure 2.7: Difficulty of implementing CFI with library functions in equivalent
classes technique

class of addresses it no longer provides the security guarantees that the execution

will follow the intended path.

In their later work [30] shadow call stack is used for returns but is not proven

to be equivalent with unique labels and is not part of the formal work. In the

classic CFI, forward and backward edges are treated the same. Both use an indirect

jump [82], whereas in all implementations that provide protection for both forward

and backward edges returns are treated differently.

Another issue of the classic CFI is that the in-line policy enforcement does not

address the problem of ROP gadgets in architectures with variable length instruc-

tion sets where the opcodes of indirect jump instructions could occur within other

instructions in the code memory since these invalid jumps cannot be protected. One

thing to keep in mind is that all of the proposed work that can be categorised as

exploitation prevention is under the vulnerability assumption. That is the system

or code that is being analysed is assumed vulnerable. It is not known in advance the

exact technique that will be used to exploit that vulnerability. Hence the proposed

protection must also provide adequate measures to protect against the assumption

that the adversary can find a way to use an address which points to the middle of

2.4. EXPLOITATION PREVENTION 33

an instruction through a new form of attack. In other words it must be formally

proven that in the proposed solution it is not possible to jump to the middle of an

instruction regardless of the used vulnerability or exploitation technique.

2.4.6 Coarse-Grained CFI

The second category of CFI is Coarse-Grained where the security is sacrificed for

better performance. In this category valid destinations are divided into two or three

equivalent classes and the indirect jumps can only jump to their identified class.

Bletch et al. [64] propose a method to protect against abuse of three types of

control flow operations. The first type is identified as unintended code which can be

defined as the opcode of instructions such as ret, call and jmp that appear within

other instructions’ opcodes. The second type is the ret instruction and the third

type the call and jmp instructions. To protect against the first type they proposed

the use of Software Fault Isolation (SFI) [83] techniques by aligning all variable-

size instructions. This is achieved through changes at assembly level by preventing

any instruction exceeding a predefined number of bytes in length. Then all indirect

jump instructions are restricted to target only the aligned addresses. All the target

addresses are also aligned which includes the instruction after a function call, first

instruction of a function etc. To protect against the other two types they propose

the use of a technique called Control Flow Locking. In this technique a mutex-like

control flow key is used that will be locked at the call site at the time of the call;

and unlocked at the target of the indirect transfer of control flow. The method has

the capability to increase the precision of equivalent classes by using a multi-bit key,

however in proposed implementation four equivalent classes are defined enforcing a

policy based on static analysis of the source code [64].

Davi et al. [84] discuss their approach in preventing control flow attacks in smart-

phones. They face various challenges due to the differences between smartphone

architectures and operating systems with Personal Computer (PC) systems. In this

method a static analysis of the binary code is performed to generate the CFG of

34 CHAPTER 2. LITERATURE REVIEW

the executable code. A list of valid target addresses are generated using heuristics,

based on the indirect jump instruction used, and is saved as part of the generated

CFG. At run-time the calculated address is checked against the saved values in the

CFG to verify whether the current target address is among the list of valid addresses.

Niu and Tan [85] use a variable size alignment method which requires the use of

an additional table for each executable code to record the beginning of the aligned

chunks of code. The indirect transfer of the control flow is restricted to the begin-

ning of the aligned chunks, by instrumenting the executable code to verify the target

address using the chunk table before executing the indirect jump/call instruction.

The use of the indirect jump/call instruction is prohibited for any target address

within the same chunk. Only direct jump can be used to transfer the flow of execu-

tion to a target address within the same aligned chunk of code. In this method all

aligned chunks of the code for an executable that are recorded in the same table can

be considered as one equivalent class, as the verification allows any of the recorded

addresses to be a valid target for any of the indirect transfer of control instructions.

Zhang et al. [86] have developed a Compact Control Flow Integrity and Ran-

domisation (CCFIR) that only requires the binary code of the executable. In this

scheme relaxed rules of CFI are enforced by redirecting all of the indirect control

transfers to a dedicated section called Springboard. Springboard has a special struc-

ture for three different types of indirect transfer of control: call/jump to a function,

return from a sensitive function (e.g. system() in libc), and return from a normal

function. They use the equivalent classes in their scheme and assign a different ID

for each type. Each type has a code stub with a special address on Springboard.

SFI [83] techniques are used to protect access to the entries in the Springboard [86].

Zhang and Sekar [87] propose a coarser CFI by using two IDs: one for function calls

and one for jumps and returns (replacing return with jump instruction).

Criswell et al. [88] devise a control flow integrity method for an operating system,

by using a Secure Virtual Architecture (SVA) and instrumenting the code of the

operating system with a virtual instruction set of the proposed SVA. The run-time

2.4. EXPLOITATION PREVENTION 35

checks are then inserted when translating from the virtual instruction set to the

target processor’s native instructions. This method is coarse-grained as all functions

are assigned to the same equivalent class and it is possible to return to a different

call site from a called function. They also provide a partial formal proof of their

proposed method in their SVA virtual machine model [88].

A forward-edge approach proposed by Gawlik and Holz [89], to protect C++ vir-

tual tables, performs a static analysis of the executable code to identify instructions

that load a virtual table. Various policies then can be enforced using heuristics or

type reconstruction of object-oriented code where the latter case is deemed imprac-

tical [89]. The heuristic is that a virtual table is stored in non-writable pages and

contains virtual function pointers that point to read-only executable pages. The ver-

ification process checks whether the aforementioned conditions are met for identified

virtual table dispatchers.

Another coarse-grained forward edge approach is proposed by Zhang et al. [90]

to protect the C++ virtual tables. In this method the virtual table is checked to be

read-only and the binary code is rewritten to verify assigned IDs to virtual tables

in virtual function dispatches.

Yuan et al. [91] propose a hardware-assisted method to detect and prevent vio-

lation of the flow of control of the executable code. In this method the Last Branch

Register (LBR) and Performance Monitoring Unit (PMU) are used together to ver-

ify whether the target of an indirect jump is a valid destination or not. A bitmap

table is created for valid jump-from addresses for indirect transfer of control instruc-

tions which are then mapped to valid target addresses using a hash table. Another

bitmap table is used to identify valid entry points for each module. A static analysis

is performed on the executable code to identify the call sites and the target of the

indirect calls. If a function pointer is used the target is then classified based on the

type of the return value. All functions that return a value of the same type are then

classified into the same equivalent class. The verification is performed as part of the

interrupt service routine of LBR + PMU hardware interrupts.

36 CHAPTER 2. LITERATURE REVIEW

Mohan et al. [92] propose a technique to combine coarse-grained CFI with fine-

grained artificial diversification. In this technique some of the indirect control trans-

fer instructions are protected using a bounds checking technique. The bounds for

each of the protected indirect control transfers are stored in a table whose base ad-

dress is protected against information leakage attacks. A trade-off is made between

the accuracy of the enforced coarse-grained CFI policy and the performance, but the

approach has the potential to increase the precision to fine-grained CFI with higher

efficiency penalties. The introduction of Intel Memory Protection eXtension (MPX)

instructions will increase the efficiency of this technique. The goal of this approach,

similar to other coarse-grained CFI, is to reduce the number of available ROP gad-

gets to the attacker. This depends on the selected bounds and the unavailability of

the bounds table to the attacker.

All of the methods discussed above receive the same score for the forward-edge

protection in the survey of Burow et al. [1], with the exception of the work of Zhang

et al. [90] which receives a lower score for precision. The given score is classified

as Static Analysis Precision Forward Edge (SAP.F.) score of 2 representing class-

hierarchy analysis (Table 2.1).

Table 2.1: Static Analysis Precision for Forward edge in Burow et al. survey [1]

SAP.F.
Score

Precision

0 No forward branch validation
1a ad-hoc algorithms and heuristics
1b context- and flow-insensitive analysis
1c labelling equivalence classes
2 class-hierarchy analysis
3 rapid-type analysis
4a flow-sensitive analysis
4b context-sensitive analysis
6 dynamic analysis (optimistic)

Goktas et al. [93] have shown that coarser CFI approaches are vulnerable to

attacks. They take advantage of the equivalent classes and have identified two types

of gadgets that are still available to the adversary under CFI rules. Although the

length of the gadgets are longer and this would decrease the flexibility in chaining

2.4. EXPLOITATION PREVENTION 37

the gadgets, it is shown that the attack is still possible by either using the library

functions for their side effects [66] or finding new gadgets that comply with the

coarse CFI rules [93]. In their technique they succeeded in transforming a code-

reuse attack to a code-injection attack, by calling an API function or making a

system call to change the protection privileges on allocated memory to execute

the injected code. Davi et al. [94] also analyse a range of CG CFI solutions and

heuristic ROP attack detection techniques. They use a combined most restrictive

CFI policy and show that an adversary that could only use one system library can

achieve a Turing-complete gadget set. Carlini and Wagner [95] also discuss the

inadequacy of heuristic techniques in detection of ROP attacks. It is shown that

some of the CG CFI methods are completely insecure and others do not provide

strong guarantees [96].

As mentioned earlier when the unique labels are replaced with classes of labels,

the conditions of the formal work no longer hold. Hence the security of these schemes

cannot logically be compared with the classic CFI as it does not satisfy the premises

of classic CFI. However, a different property can be defined for this type of protection

as a level of security to compare these types of techniques with a system that does

not employ such techniques.

2.4.7 Fine-Grained CFI

The third category of CFI is Fine-Grained where the equivalent class of valid des-

tinations is refined and not limited to two or three classes. The analysis of the

executable code produces a more precise CFG. First the methods that have received

the SAP.F. score of 4 as shown in Table 2.1 are discussed. This score represents a

method that uses a flow- and or context-sensitive analysis of the executable code.

Wang and Jiang [97] use a technique to redirect indirect control transfer instruc-

tions to a secure target table containing valid destinations to provide control flow

integrity for the code of a Hypervisor. If an adversary is able to perform arithmetic

38 CHAPTER 2. LITERATURE REVIEW

operation with indices to the secure table it may be possible to change the flow of

execution even with the added redirection.

Pewny and Holz [98] propose a compiler-based analysis of the source code of

executables for iOS devices to determine valid targets for jump instructions. The

policy is then enforced during compilation where binary rewriting will no longer be

necessary. This will address the problem of encrypted or signed applications which

is a common feature of iOS devices. First a list of allowed targets is generated for

each indirect jump instruction and the basic block of the indirect jump instruction.

The corresponding list of allowed targets is stored in a table referred to as Control

Flow Wish (CFW). The CFG of the code is then generated based on the produced

CFW. That is an edge between two basic block of the code in CFG will only be

added if the target basic block is within the CFW of the source. To enforce the

policy a piece of code is added before each jump that restricts the targets of that

jump to the list of allowed targets in CFW.

SAFEDISPATCH can be categorised as a forward-edge fine-grained CFI but

with a focused domain [99]. It provides protection for C++ virtual tables where an

attacker can use various techniques such as a heap-based dangling pointer to call

a different virtual method than was intended. The virtual tables are a common

feature in C++ and are used for polymorphism. This approach is fine-grained as it

uses the object class to verify the list of valid methods that can be invoked by an

object. To identify the list of valid destinations it performs a variant static Class

Hierarchy Analysis and then uses code instrumentation to add the verification code

to the method calls of objects with various optimisations [99]. The domain of this

protective measure by design is limited to the virtual tables of C++ and is forward

edge as it only protects against hijacking the virtual tables.

The work of Tice et al. [100] is conceptually similar to SAFEDISPATCH in that

the goal is the protection of forward-edge indirect jumps in C++. Their approach

differs from the previous work in regard to implementation aspect. The verification

code is produced by the compiler rather than binary code instrumentation. The

2.4. EXPLOITATION PREVENTION 39

advantage of this approach, as stated in [100], is that it does not restrict compiler

optimisation, operation modes, and other features such as position independence

and the exceptions of C++ as well as limitation on the use of dynamically loaded

libraries and ASLR. This method is classified as Fine-Grained since it introduces

various imprecisions based on the type of target and applied analysis. The targets are

comprised of virtual tables and indirect calls where different techniques are applied

for each type. To address the issue of what is referred to as mixed code where the

verification fails the control is transferred to a fail function which performs more

in-depth analysis to verify the calculated address. A white-listed library technique

is used in this scenario. This Forward-Edge FG CFI takes a better approach towards

implementation of CFI in that it integrates the policy enforcement with production

compilers, however it still relies on other techniques for protecting the return or

backward-edge indirect transfer of control flow.

A hardware-assisted CFI policy enforcement is proposed by Davi et al. [101].

This is achieved by defining four states in the program execution namely: normal,

entry to function, exit from function, and CFI policy violation. In this approach

the CFI policy enforcement is assisted in hardware by the introduction of two new

instructions: CFIBR and CFIRET. The CFIBR is used to label the function calls

and the CFIRET instruction will label the return from function. At the beginning

each function a CFIBR instruction is inserted which will have a label as an immediate

operand. The forward edge policy is enforced by allowing the indirect jumps only to

a CFIBR instruction preventing any jumps to the middle of a function. The CFIBR

upon execution will store the embedded label in secure storage which will indicate

that the function has been entered. The CFIRET instruction will verify whether this

return is from a currently executing function by checking the secure storage where

the CFIBR instruction stored its label. This is done by emitting CFIRET after each

indirect jump instruction with the same label as the CFIBR at the beginning of the

called function. HAFIX provides a hardware-assisted FG CFI policy enforcement

40 CHAPTER 2. LITERATURE REVIEW

for backward-edges [102] where the protection for forward edge is the same as the

work in [101].

Binary hardening is a method proposed by Payer et al. [103] that enforces an

FG CFI policy. In this approach the three types of indirect transfer of control, jmp,

call, and ret, are protected by the following policies. The call instruction can

only use an address at the beginning of a valid function which is defined for an

object by analysing the symbol table of the executable code. The jmp instruction

is allowed only to use an address within the object itself or an address of a valid

function where the latter case is for tail call optimisations. The ret instruction will

always transfer the flow of execution back to the caller by using a shadow stack.

The implementation uses the Executable and Linkable Format (ELF) binaries in

Ubuntu. In case the executable code is stripped of its symbol table, the policy

enforcement falls back to a CG precision for calls and jumps within the executable

code.

The classic or original CFI methods receive the same SAP.F. score of 4, as

discussed for the aforementioned methods in Burow et al. survey [1]. The following

methods receive higher scores for better precision in analysing the executable code

and produced CFG.

Prakash et al. [104] discuss a technique to provide a more accurate CFI policy

to protect virtual function calls for COTS C++ binaries. Their approach does not

require the source code, symbol, and debug information. It relies on standard C++

compilation. The steps to generate the policy are as follows: (i) identify all indirect

jumps as candidates for analysis; (ii) transform the x86 instructions to an intermedi-

ate language for data flow analysis; (iii) identify virtual function call sites using the

performed data flow analysis; (iv) create template signatures based on C++ standard

Application Binary Interface (ABI) and scan the read-only section of the binary

for matches; (v) enforce the policy based on identified call sites and vtables using

dynamic code instrumentation.

2.4. EXPLOITATION PREVENTION 41

Niu and Tan [105] developed a method that allows separate compilation which

is necessary for dynamic linking. In order to generate a precise policy, code modules

are augmented with auxiliary type information which is then used when generating

the CFG of the C code. To enable dynamic linking, the Equivalence Class Numbers

(ECN) for branches and targets are linked to IDs and kept in two separate tables.

This removes the global uniqueness condition for ECNs which was required in classic

CFI. The ability to update the tables at runtime allows loading libraries dynamically

and adjusting the CFG accordingly. This is done using a transaction technique

where there are two transaction types: check and update. The more frequent check

transaction is a read-only operation; the update transaction can lock and change

the tables. For each indirect branch instruction the check transaction is performed

using code instrumentation. In another work Niu and Tan use the Modular CFI

approach to protect against JIT spraying attacks [106]. Modular CFI is an FG

CFI with dynamic linking capability for code in C which protects both forward and

backward edges of indirect control transfers.

Cryptographically enforced CFI is a method proposed by Mashtizadeh et al. [107]

where a Message Authentication Code (MAC) is generated for all control flow objects

when the object is stored. The MAC is verified when it is loaded. At the beginning

of the execution of the code a random value is generated as the MAC key which

is stored in reserved registers. Four types of pointers are defined: a pointer to a

function, a return address, a pointer to a method, a pointer in vtable. The pointer

along with the type of the pointer is then encrypted using the Advanced Encryption

Standard (AES) algorithm with a 128-bit key. To reserve the registers, changes are

made to the ABI that assures the compiler will not leak the MAC key. Two virtual

instructions that will be translated to machine specific code are added: macptr

which generates the MAC for a pointer; checkptr which verifies the MAC for a

pointer. The compiler then identifies the type of pointer as stated above for indirect

transfer of the flow of execution and inserts the virtual instructions accordingly.

42 CHAPTER 2. LITERATURE REVIEW

Van der Veen et al. [108] have developed PathArmor, an FG Context-Sensitive

CFI that uses the Last Branch Record (LBR) registers, a feature of Intel processors,

to efficiently monitor the flow of execution and a kernel module to verify calls to

sensitive functions. The efficiency of their work relies on the LBR capability of the

processor as well as pruning the CFG of the program which avoids path explosion

in path analysis. This is however, at the cost of precision of the CFI policy under

the assumption that the adversary will need one of the sensitive functions to achieve

a meaningful attack. To further enhance the efficiency of their method, the veri-

fied path is cached which eliminates the on-demand static analysis for the second

execution of the same path. The kernel module intercepts calls to sensitive system

functions which then sends a request to the path analysis component of the PathAr-

mor. Context-Sensitivity is achieved by analysing the last 16 branches compared to

other approaches where the individual indirect jumps are considered to be valid or

invalid. The path is verified by searching the pruned CFG of the executable, to find

a path that contains the recorded edges in LBR registers with the exact same order

using a Depth First Search algorithm. PathArmor does not track the flow of exe-

cution within libraries and cannot protect against exploiting the vulnerable library

functions. This is due to the limitation on the number of the LBR registers that

would cause path pollution and destruction of the program context when tracing

the execution flow of library functions. PathArmor is a practical and efficient CFI

method with a delayed policy enforcement that would prevent a successful exploita-

tion if it involves a call to a well-defined set of sensitive functions. It nevertheless is

a FG and Context-Sensitive CFI approach.

Niu and Tan [109] propose an FG CFI enforcement policy that uses previous CFI

techniques to generate a static CFG which is used as an upper bound for the enforced

CFG. The required edges of the enforced CFG are added lazily depending on the

program input. A performance optimisation technique used in this method is called

address activation where instead of adding edges to the enforced CFG, the target

addresses are added to a white-list. This technique achieves a better performance

2.4. EXPLOITATION PREVENTION 43

at the cost of the precision of the enforced policy. Another technique to increase the

performance is using idempotent policy enforcement code instrumentation that will

change to no operations after the first execution. This requires runtime writes to the

code pages. To address the potential code injection attack, a sandbox is used where

the virtual code pages are marked read only within the sandbox and writable outside,

both pointing to the same physical page. The backward-edge protection is also less

precise than the shadow stack by allowing the function to return to all call sites

that have called this function at the time of return. Their experimental work shows

that even though the enforced CFG theoretically could grow to its upper bound, in

practice it rarely grows to more than 30% of the static CFG. Although they argue

that the adversary faces the program coverage problem, which is considered a hard

problem, it seems the adversary could use a constraint problem solving technique

to focus on the paths that could potentially achieve the intended results and reduce

the number of paths that need to be checked. The per-input CFI builds on top of

the Modular CFI approach with performance enhancing techniques that relax some

of the forward and backward edge control policies. It requires complex runtime code

rewrites.

To protect the kernel of the operating system Ge et al. [110] have developed

a CFI policy enforcement for kernel software and have implemented the proposed

method for the FreeBSD and MINIX operating systems. In this method a set of valid

function addresses is generated for each kernel function pointer given the fact that

the function pointers are used in a restricted way in the kernel. To determine the

valid list of target addresses, a static taint analysis is performed. Since the operations

on function pointers in the kernel is limited to assignment and dereference, two

constraints are defined for pointers. If the pointer is a function pointer then the

only allowed operation is an assignment. The second constraint is that no other

pointer besides a function pointer can point to a function. The taint analysis then

will report any violation of the described constraints. In another step the call sites

are statically mapped to their corresponding return instructions by adding the call

44 CHAPTER 2. LITERATURE REVIEW

site to the set of valid return addresses for that return. This approach is an FG CFI,

as for both forward and backward edges a list of valid targets is generated which

is more accurate than having one or two equivalent class for labels. This, however,

introduces imprecision compared to a method that allows exactly one valid target

for an indirect transfer of the flow of execution.

2.4.8 Attacks on CFI

Carlini et al. [96] assess the effectiveness of various practical implementations of

CFI. They show that Coarse-Grained CFI is broken and the AIR6 metric is not

an effective measure of the security of a CFI scheme as it fails to capture two

important properties: (i) the maximum reachable targets of a branch instruction;

and (ii) the importance of the reachable targets. They propose a Basic Exploitation

Test (BET) to rule out the broken schemes. If an enforced CFI fails the BET it

immediately shows that the scheme is insecure whereas passing the test does not

provide any security guarantees. They also propose attacks on a defined fully-precise

static CFI and discuss the effectiveness of such a scheme with and without a shadow

stack. Based on their analysis an attacker with partial control over memory can

perform Turing-complete computation if a dispatcher function can be reached using

non-control data attacks. The attacker can bend the enforced fully-precise CFI

policy within the valid CFG to reach powerful library functions using the dispatcher

function even with the shadow stack. The CG CFI schemes are shown to be broken,

whereas a fully-precise static CFI provides a certain level of security when using the

shadow stack. This cannot prevent against non-control data only attacks where the

adversary can bend the rules of the enforced policy without violation.

Hu et al. [111] have proposed a systematic approach to the generation of data-

oriented exploits that will follow the enforced CFI rules and avoid invalid memory

accesses. The attacks could result in information disclosure which could be used to

6Average Indirect target Reduction.

2.4. EXPLOITATION PREVENTION 45

retrieve sensitive data such as passwords and cryptographic keys, or privilege esca-

lation which can be used to alter system call parameters or configuration settings.

The data-flow stitching technique allows the adversary to search for data-flow paths

that can exploit memory errors in the vulnerable software to launch attacks that

do not hijack the flow of execution, do not violate the DEP, and can bypass ASLR

protective measure. The technique uses a two dimensional data-flow graph based

on memory addresses of variables and the execution time. To optimise the search

scope, the path constraints are modelled using symbolic execution. The feasibility

of an exploit is verified using a SMT7 solver. Their prototype has successfully found

data-flow paths to exploit various applications to leak sensitive information or priv-

ilege escalation or both. A data-flow exploit does not violate any of the protective

measures enforced to protect against code injection or code reuse attacks, including

an ideal CFI policy that protects the flow of execution.

2.4.9 Proposed Method

To give the reader an idea where the thesis method fits in the current state of the

research, it is briefly discussed here. The method is similar to the classic CFI in

that a formal approach is taken to express the problem and prove the correctness of

the proposed solution. In this regard, as no complete implementation is proposed,

it is different from all CG and FG methods discussed in this chapter. It differs from

the classic CFI as it addresses the problem that makes the classic CFI impractical

to implement, namely dynamic linking. Propositional Dynamic Logic (PDL) is used

to express the execution of programs comprised of atomic instructions and express

the consequences using logical predicates. The main problem of the Classic CFI

method is that it introduces imprecision for any potential implementation. The

approach addresses the precision problem of Classic CFI by expressing the required

policy enforcements as part of atomic execution of each indirect jump instruction.

The method allows the enforcement of the most precise control flow graph that is

7Satisfiability Modulo Theories.

46 CHAPTER 2. LITERATURE REVIEW

possible in any CFI method without memory corruption prevention. Since different

checks are needed for function calls (forward edge) and returns (backward edge),

the indirect jump instruction is divided into two types for forward and backward

edges of the flow of execution, and apply different checks according to the direction

of the edge. The flexibility of the imposed controls allow the use of dynamic linking

and shared libraries along with position independence. The result of the proposed

solution is then expressed in two theorems with proofs.

2.5 Summary

Malicious code execution relies on two requirements: (i) a vulnerability within the

target system; and (ii) an exploitation that uses the vulnerability to achieve a ma-

licious intent. The trend of research idealistically aims at removing all possible

vulnerabilities and produce error free systems both in hardware and software, but

this has shown to be difficult in practice. This is due to the complexity of hardware

and software as well as the gap between the semantics of high level programming

languages and machine language.

Another approach is to either make a successful exploitation impossible despite

the vulnerability or at least significantly reduce its chance. There has been many

proposed solutions that address a particular problem in a very specific way, for

instance the use of canaries in preventing stack buffer overflow. These types of

solutions generally rely on certain assumptions which may not be true under different

circumstances and are not clearly defined, making it difficult to reason about and

evaluate their correctness. A better approach is to consider a formal method in

which the problem, any assumption or precondition, and the proposed solution can

be clearly and logically defined where the proof of soundness and correctness can be

described and evaluated.

Chapter 3

A Formal Model of Ideal Control

Flow Integrity

3.1 Introduction

In recent years a significant amount of work has been done to prevent or to mitigate

the exploitation of a vulnerable machine. The focus of most of this trend of research

has been on the transfer of the flow of execution by enforcing a policy that would

make it impossible, impractical, or difficult for an adversary to successfully execute a

crafted sequence of instructions which may or may not be part of the executable code

of the vulnerable program. As discussed in the previous chapter all of the work in this

area, with the exception of the original Control Flow Integrity (CFI) [82], focus on

practical implementations rather than formal approaches that can provide provable

and strong guarantees. Some of these works have been shown to be completely

insecure. Others are hard to analyse formally. A formal approach provides the

required foundation upon which implementations for various architectures, operating

systems, and compilers can be realised.

In this chapter, a formal model is proposed to express the problem of exploitation

and a solution with proof. The instruction types and their effect on the flow of

execution are formally defined. It is proven that protecting two properties can

47

48CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

prevent control flow hijack attacks. The first property is the integrity of the block

of code and the second property is the integrity of the flow of execution. To achieve

this, the logic of the flow of execution and the effect of various instructions on change

in the flow of execution is discussed in Section 3.2. To control the scope of the formal

work without loss of generality, in Section 3.3, a machine model is defined that is

capable of modelling modern processors. In Section 3.4 the attack model is defined

to express the necessary conditions needed by the proposed CFI enforcement to

protect against the defined attack. The focus is particularly on control data attacks

that lead to a control flow hijack. In Section 3.5 the required protective measures

to protect the integrity of the block of code as well as its flow of execution are

described. The theorems that link all these concepts are presented in Section 3.6.

The chapter concludes with Section 3.7.

3.2 Instruction Types and Flow of Execution

All machine instructions influence the execution path of an executable code. They

can be divided into four types: sequential, conditional branch, direct jump, and

indirect jump. For sequential instructions the Program Counter (PC) register is

incremented by one. For direct jump instructions the destination is some address

w embedded in the instruction. The change of the flow of execution for the con-

ditional branch depends on a condition. When true, the flow directly jumps to an

address w provided in the instruction; when false the PC is incremented by one.

For indirect jump and return instructions the destination is an address provided

from the content of a register. Other forms of change in flow of execution in more

complex architectures may provide various versions of these types. These additional

instructions provide more options such as specifying memory locations as operands

and different sizes for immediate operands. Based on how an instruction changes

the flow of execution, these instructions would fall into one of the aforementioned

categories. To further clarify this point these categories of instructions are defined

based on their effects on PC as follows:

3.2. INSTRUCTION TYPES AND FLOW OF EXECUTION 49

• Sequential: {instruction| pc = pc+ 1};

• Direct Jump: {instruction| pc = w} where w is an address given as an

operand;

• Conditional Branch: {instruction| if condition then pc = w else pc = pc+ 1}

where w is an address given as an operand;

• Indirect Jump: {instruction| pc = register}.

The flow of execution in high level languages is an abstract concept. The pro-

gramming constructs provide more complex tasks to be performed with simpler

syntaxes. Almost all high level programming languages provide constructs for con-

ditional statements, loops, direct jumps, and function calls and returns. One impor-

tant point about the flow of execution is that the functions in high level languages

have well defined boundaries, a clear entry point, and one or more return point(s).

The labels and direct jumps in languages that define such control structures are

only allowed within the boundary of a defined function. That is the flow of exe-

cution cannot be changed to a label outside the boundary of a function. Although

the compilers translate the high level language to correct equivalent code in machine

language, the well defined function boundaries no longer exist in the equivalent code

due to the flexibility of instructions such as indirect jumps which could allow paths

that were not possible in the corresponding high level program. In this sense a func-

tion call in a high level language would be translated to a more permissive jump or

call instruction with the memory address of the specified function as its parameter.

It is more permissive as in a high level language the function call is restricted to

the start of a defined function using a unique name, whereas a jump can be to any

address within the address space of the program. For a program that does not rely

on any external library at the end of compilation, all of the virtual addresses of the

defined functions are known and their names can be replaced with their addresses.

Local function calls can be performed with direct jump instructions, however calls

50CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

for dynamically linked library functions require indirect jump instructions where the

address of a called function is determined at run time.

Before making the call to a function, at run-time, the return address must be

recorded. The corresponding return instruction restores this recorded address to

transfer the flow of execution back to the instruction after the call. The return

instruction depends on information that is only available at run-time.

The formal approach is based on the types of the instructions and their effects on

the execution path. To state the preconditions that are necessary to prevent certain

types of attacks, a model capable of representing any stored program machine is

used. Propositional Dynamic Logic (PDL) is used to formally express the machine

model and the attacks, and to reason about the protective measures.

3.3 Machine Model

To make the propositions and the arguments easier to express, a simple but real-

istic machine model, which has been used previously in the literature for a similar

purpose [29, 30], is used with improvements and in the context of PDL. The ma-

chine is comprised of a processor with a register file of 32 registers, a designated and

separate register as Program Counter (PC), and byte-addressable random access

memory. The state of the machine is considered as the content of memory, register

file, and PC. The definition of words, memory cells, register files, and machine states

are as follows:

Word = {0, 1}∗

Mem = address → Word

Regnum = {0, 1, ..., 31}

Regfile = Regnum → Word

State = Mem × Regfile × PC

The machine has a load-store architecture where no direct operation is performed

on memory cells as operands except for load and store instructions. The machine

3.3. MACHINE MODEL 51

has six sequential instructions; one for each of direct jump, conditional branch, and

indirect jump; and one instruction for return from a function call. The halt in-

struction is used to mark the end of an executable code, and is used in the model to

stop the execution when a violation of the defined rules occurs. In implementation

however these violations can be dealt with by redirecting the flow of execution to

an exception handling code. As the machine model is a generic model so that it can

be applied to various architectures, the memory is chosen as byte-addressable. The

instructions can be of variable length. This will allow the model to be applied to

complex architectures where the destination address for indirect jump instruction

could be to the middle of the opcode of an instruction. The decoding function rep-

resents the notion of decoding the instruction i in machine language to its semantic

and is defined as follows.

Definition 3.3.1. Decode(i) : {0, 1}∗ → A ∪ {illegal}

The Decode function can identify the length of an instruction. For sequential

instructions pc + 1 represents the notion of the calculated address of the next in-

struction based on the length of the current instruction. Table 3.1 provides the

summary of the notation used to express the semantic of the machine instructions.

The instruction set is shown in Definition. 3.3.2.

Definition 3.3.2. A
def
= nop | add rd, rs, rt | addi rd, rs, w | movi rd, w | ld rd, rs(w) |

st rd(w), rs | bgt rs, rt, w | jd w | jmp rs | ret rs | halt

This abstract machine with arithmetic, load/store, and conditional branch in-

structions and Random Access Memory (RAM) can model any stored program com-

puter system. The equivalence of RAM models and Turing machines are discussed

in detail by Aho, Hopcroft, and Ullman [112].

3.3.1 Notations

In this section various notations that are used throughout this chapter are explained.

The state of the machine is comprised of the content of the memory, register file,

52CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

and PC, however each instruction has a limited effect on the state. In other words,

it only makes a small and specific change in a memory cell, register, and PC. The

notations Reg(rs) andMem(w) express the content of a register or a specific memory

cell. They represent the content of register rs and the content of memory at address

w respectively. The operator “←” expresses the assignment in “target ← value”

where target represents a register in a register file or PC, or a memory cell and the

value represents the value of that register or memory cell after the completion of the

action using the given notation for each. Since PC is a separate register from the

register file (and for brevity), to express the content of PC the notation pc is used

rather than Reg(pc). To specify a particular element in a state the “.” operator

is used. For instance s.Reg(rs) expresses the content of the register rs in state s.

To express the new state versus the previous state the prime notation is used for

the state that immediately follows the current one. For instance, the notation s′.pc

expresses the content of PC in the state that follows the s state where both s and

s′ states are present in a given expression. When necessary to express multiple

states the subscript notation is used, for instance the states s1, s2, . . . , sk. Table 3.1

provides a summary of the notation used to express the semantic of the machine

instructions.

Table 3.1: Notation summary

Notation Semantic

← Assignment as target← value

Mem(w) Content of memory at address w

Mem No change in memory state

Reg(rx) Content of register rx in register file

Reg No change in the state of the register file

pc Content of the program counter

∈emb Embedded as immediate operand as w ∈emb ix
dot / . Partial element of the state e.g. s.pc: content of pc in state

s

3.3. MACHINE MODEL 53

Table 3.2: Machine instructions and semantics

Operation Instruction
Semantic

State Transition

no operation nop (Mem,Reg, pc+ 1)
add registers add rd, rs, rt (Mem, rd ← Reg(rs) +Reg(rt), pc+ 1)
add registers
and words

addi rd, rs, w (Mem, rd ← Reg(rs) + w, pc+ 1)

move a word into
a register

movi rd, w (Mem, rd ← w, pc+ 1)

load ld rd, rs(w) (Mem, rd ←Mem(Reg(rs) + w), pc+ 1)
store st rd(w), rs (Mem(Reg(rd) + w)← Reg(rs), Reg, pc+ 1)
branch greater
than

bgt rs, rt, w (Mem,Reg, w) when Reg(rs) > Reg(rt)

(Mem,Reg, pc+ 1) when Reg(rs) ≤ Reg(rt)
direct jump jd w (Mem,Reg, w)
indirect jump jmp rs (Mem,Reg,Reg(rs))
return ret rs (Mem,Reg,Reg(rs))
Halt halt Halt state

To show the similarity of the machine model with previous work in the literature,

the semantic of the instructions as the state transition is expressed in the form of a

3-tuple representing the content of memory, registers and PC before and after the

execution of instruction i respectively. For simplicity the state transition is expressed

as changes within the elements of the tuple. When there is no change in the content

of memory or register file it is expressed as Mem and Reg respectively. For instance

the state transition for the instruction add rd, rs, rt in Table 3.2 is expressed as

(Mem, rd ← Reg(rs) +Reg(rt), pc+ 1) where the first element represents no change

to the content of the memory, the second element represents the changes to the

content of register rd in the register file using the assignment operation, and the last

element represents the change to PC where only the value is expressed.

For the remainder of this chapter, however, the PDL notation is used to express

the semantics of instructions.

3.3.2 Propositional Dynamic Logic

Propositional logic can be used to provide a formal foundation in defining and dis-

cussing attacks and corresponding protective measures for executable code. The

54CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

correctness of such measures can be proven using the rules of propositional logic.

Modern processors have finite sets of instructions designed to perform a well-defined

task with a specific effect on the machine state. It is quite reasonable to use a branch

of logic that can capture and combine those two aspects. PDL is used to reason

about the abstract machine model where the set of basic actions is the set of machine

instructions. The set of propositions is about the state of the abstract machine. The

language and notations of PDL are described in [113], and were originally proposed

by Fischer and Ladner [114].

Definition 3.3.3. Language of PDL: Let p and a range over the set of basic propo-

sitions P and set of basic actions A respectively. Then the formulas ϕ and action

statements α of propositional dynamic logic are given by the following Bakus Naur

form (BNF):

ϕ
def
= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈α〉ϕ | [α]ϕ

α
def
= a | ?ϕ | α1;α2 | α1 ∪ α2 | α∗

As shown in the definition above, the language of PDL is comprised of two

BNF forms, representing the logical formulas and the action statements. These

formulas are linked together by a label transition system which is defined later in this

section. The atomic action a, which ranges over the instruction set of the machine

model (Decode(a) ∈ A), defines a binary relation as follows where Decode(a) is the

decoding function (Definition. 3.3.1).

Definition 3.3.4. Ra = {→a: (s, s′) ⊆ S × S|Decode(a) ∈ A}

The binary relation Ra in a given state s, specifies that there is a state s′ which

is the result of executing the instruction a in state s and (s, s′) ∈ Ra. A program

or an executable code α is comprised of well-formed atomic actions according to

the rules of action statements in Definition. 3.3.3. To express various notions of an

executable code construct, the following operators are used in PDL.

• Sequence is expressed by the operator “;”. For the action symbols a and b the

binary relations Ra and Rb are defined on S respectively. The action sequence

3.3. MACHINE MODEL 55

a; b is then given by the following relation:

Ra ◦Rb = {(s, s′)|∃s0 ∈ S : (s, s0) ∈ Ra ∧ (s0, s
′) ∈ Rb}.

• Choice is defined by the operator ∪. For the action symbols a and b the binary

relations Ra and Rb are defined on S respectively. The action sequence a ∪ b

is given by Ra ∪Rb.

• Test is expressed using the notation ?ϕ where ϕ is a formula. A test can be

defined as a binary relation which is a subset of the identity relation on S.

The action is defined by the following relation:

R?ϕ = {(s, s)|s ∈ S, s |= ϕ}.

• Iteration is represented by the operator “∗”. For the action symbol a binary

relation Ra is defined on S. The action sequence a∗ is given by the following

relation:

Ra
∗ = I ∪Ra ∪Ra

2 ∪Ra
3 ∪

The expressive power of PDL allows a unified and simple representation of pro-

gramming language constructs [113]. For instance an if statement of the form:

if ϕ then α1 else α2 where ϕ is a well-formed logical formula and α1 and α2 are

well-formed action statements can be represented as: (?ϕ;α1) ∪ (?¬ϕ;α2). A loop

of the form: while ϕ do α can be represented in PDL as (?ϕ;α)∗; ?¬ϕ. These sim-

plify the program equivalence or correctness analysis regardless of the programming

language by transforming the program to its PDL representation or vice versa. The

focus of the thesis, however, is on atomic actions and their effect on the transition

of the flow of execution in very simple combinations of these atomic actions rather

than the overall logic of the program.

The two modal operators ♦ (diamond) and � (box) capture the notions of ∃ and

∀ in predicate logic respectively, with regard to the execution of actions and logical

statements. That is the modal operators diamond and box represent the following

for the action statement α and logical formula ϕ:

• 〈α〉ϕ: some execution of α satisfies ϕ;

56CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

• [α]ϕ: all executions of α satisfy ϕ.

A Label Transition System (LTS) brings together the notion of actions and the

propositions about the effects of those actions on the state of the system [113]. To

construct an LTS as defined in [113], the set of states ranges over the machine states

comprised of the content of memory, register file, and PC, the set P is the set of

propositions and the set A the set of machine instructions which will form the set

of labels. The LTS is then defined as follows.

Definition 3.3.5. The triple M = (S,R, V) is a label transition system over the

propositions P and basic actions A such that:

• S is the set of machine states as (Mem,Reg, pc);

• Ra = {→a: (s, s′) ⊆ S×S|Decode(a) ∈ A} (Definition 3.3.1) is a set of labelled

transitions from state s to state s′ after the execution of the instruction a;

• V : S → P (p) is a valuation function that determines the value of a proposition

p ∈ P in a state s ∈ S.

The PDL expression for each of the machine instructions (atomic actions a ∈ A)

in the (s, s′) transition (Ra) is shown in the Table 3.3. The operator “=” in the

proposition is the logical equality operator that is true if the left and right values

are equal and false otherwise.

Using the PDL expression, the types of instructions in the abstract model are

defined, and will be used in categorisation of the necessary preconditions for each

type.

Definition 3.3.6. Instruction Types: In the defined LTS where M = (S,R, V), the

following sets can be formally defined:

• Sequential: SQ = {i|Decode(i) ∈ A ∧ (s, s′) ∈ Ri ∧ [i]s′.pc = s.pc+ 1};

• Direct Jump: DJ = {i|Decode(i) ∈ A ∧ (s, s′) ∈ Ri ∧ [i]s′.pc = w ∈emb i};

3.3. MACHINE MODEL 57

• Conditional Branch: CB = {i|Decode(i) ∈ A∧ (s, s′) ∈ Ri ∧ [i]s′.pc = w ∈emb

i ∨ s′.pc = s.pc+ 1};

• Indirect Jump: IJ = {i|Decode(i) ∈ A ∧ (s, s′) ∈ Ri ∧ [i]s′.pc = s.Reg(rs)}.

It can be stated that A = SQ ∪ DJ ∪ CB ∪ IJ ∪ {halt} and SQ ∩ DJ ∩

CB ∩ IJ ∩ {halt} = ∅. Hence to reason about the properties of code execution the

validity of the arguments for the four sets that impact the execution path can be

verified and in this way all possible transfer of the flow of execution will be covered.

The three sets DJ , CB, and IJ are specifically designed to change the flow of

execution beyond the normal sequential flow whereas the set SQ contains all the

other instructions. Calling library functions in dynamically linked executables and

returns require indirect jump instructions as the target destination is unknown at

compile-time and needs to be calculated at run-time.

The notion of a program as stored in memory must be distinguished from the

program execution. The finite computation sequence of a program α as defined

Table 3.3: PDL expressions of machine instructions

Relation PDL expression Propositions
Rnop [nop]p1 p1 ≡ s′.pc = s.pc+ 1
Radd [add rd, rs, rt]p1 ∧ p2 p1 ≡ s′.Reg(rd) = s.Reg(rs)+s.Reg(rt)

p2 ≡ s′.pc = s.pc+ 1
Raddi [addi rd, rs, w]p1 ∧ p2 p1 ≡ s′.Reg(rd) = s.Reg(rs) + w

p2 ≡ s′.pc = s.pc+ 1
Rmovi [movi rd, w]p1 ∧ p2 p1 ≡ s′.Reg(rd) = w

p2 ≡ s′.pc = s.pc+ 1
Rld [ld rd, rs(w)]p1 ∧ p2 p1 ≡ s′.Reg(rd) = s.Mem(s.Reg(rs) +

w)
p2 ≡ s′.pc = s.pc+ 1

Rst [st rd(w), rs]p1 ∧ p2 p1 ≡ s′.Mem(s.Reg(rd) + w) =
s.Reg(rs)
p2 ≡ s′.pc = s.pc+ 1

Rjd [jd w]p1 p1 ≡ s′.pc = w
Rbgt bgt rs, rt, w ≡

[(?ϕ; jd w) ∪ (?¬ϕ;nop)]p1 p1 ≡ s′.pc = w ∨ s′.pc = s.pc+ 1
ϕ ≡ s.Reg(rs) > s.Reg(rt)

Rjmp [jmp rs]p1 p1 ≡ s′.pc = s.Reg(rs)
Rret [ret rs]p1 p1 ≡ s′.pc = s.Reg(rs)
Rhalt [halt]p1 p1 ≡ ⊥

58CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

in [115] and denoted as CS(α) is the set of all possible sequences of atomic steps

in the execution of the program α. Using this definition logical statements can be

made about any partial sequence that would belong to this set. The term com-

putation sequence, which is by itself a program in the context of PDL, is used to

refer to the order of execution of instructions that are not necessarily located in

contiguous memory locations. To refer to the program as stored, the term memory

sequence is used. As a simple clarification of the goal here for instance a successful

code injection attack would involve a memory sequence that does not belong to the

memory sequence of the program α. For an exploitable program the execution of

the program would allow the injection of the code and transfer of the flow of exe-

cution to the injected code. Since it is possible to execute the injected code, it also

belongs to the possible computation sequences of the program regardless of whether

it was anticipated by the programmer. When the sequence of atomic instructions

of a program in execution is used in PDL expressions, it refers to all of its possible

computation sequences. This is specially useful when logical statements are made

about the execution of the attacker’s intended computation sequence as part of the

execution of an exploitable program.

3.4 Attack Model

An attack model describes the capability of an adversary and allows for clear as-

sumptions which will further clarify the analysis of any proposed protective measure.

Various models have been discussed in the literature which in general can be defined

as arbitrary memory write access by the adversary. These attack models come with

certain restrictions such as Data Execution Prevention (DEP, W ⊕X, or NX) [116]

and separation of code and data memory. Depending on the proposed method

there are additional memory spaces that are inaccessible to the adversary which are

generally defined as part of the assumptions or premises of the work. A shadow

stack [1,30], and safe memory for code pointers [117] are examples of such memory

3.4. ATTACK MODEL 59

spaces. Another important aspect of defining an attack model which is directly con-

nected to the preventive methods is the adversary’s exploitation technique. That is

how the adversary uses the described arbitrary memory write to exploit the target

machine. From this aspect the exploitation can be broadly categorised as Code In-

jection and Code Reuse attacks where a standalone code injection under the DEP

assumption is prevented. The term standalone is used as it may still be possible to

combine a code reuse attack with code injection where code reuse is used to load

and then execute the adversary’s injected code. To demonstrate the link between

the exploitation technique and the protective measure two different types of Control

Flow Graph (CFG) are defined:

• A fully precise dynamic CFG of an executable is the ideal CFG which can be

defined as the intended execution path of the code by the programmer under

the benign execution. The full precision only allows one target for any change

in the flow of execution and the dynamism allows the run-time calculation of

the address.

• A fine-grained dynamic CFG of an executable is defined as the intended ex-

ecution path of the code by the programmer, under the benign execution for

specified function calls or a list of valid targets according to a pointer analysis

for each function pointer.

The three types of attack described by Carlini et al. [96] are used to classify the

attacks as follows.

1. Control Data Attack leading to control flow hijack: The adversary changes the

flow of execution to a target that violates the fully precise dynamic CFG. This

type includes both code injection and code reuse. The key point is that the

execution path has never been part of any benign execution of the program.

2. Non-control Data Attack leading to control flow bending which in this thesis

is divided into two types.

60CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

• Type I: The adversary changes the flow of execution to a target that

does not violate the fully precise dynamic CFG. This includes any data

corruption that could influence the decision points in flow of execution

(decision parameters of the conditional branch instruction) or change of

parameters passed to a valid function (e.g. an edge of the fully precise

dynamic CFG to execve() with corrupted parameters).

• Type II: The adversary changes the flow of execution to a target that

does not violate a fine-grained dynamic CFG. The adversary can choose

from a list of valid targets that are generated for a particular function

pointer due to the imprecision of the pointer analysis.

3. Information Leakage Attack : The adversary performs a non-control data at-

tack that does not violate the fully precise dynamic CFG that leads to disclo-

sure of sensitive information.

To summarise: the first type of attack involves the use of an invalid edge of a fully

precise dynamic CFG of the program; the second and fourth types make use of

the precise edge, but with corrupted input which results in either confined code

execution or information disclosure [96]; and the third type uses one of the valid

targets that are generated due to imprecision of pointer analysis for functions.

In order to discuss countermeasures, first the attack needs to be formally defined.

In general terms if a successful attack is expressed as proposition p for the exploitable

executable α and the adversary’s intended computation sequence β, then the fact

that at least one execution of α results in successful exploitation (hence exploitable)

can be expressed in PDL as: 〈α; β〉p. Measures are proposed that would result in

all executions of the exploitable program α satisfying the proposition ¬p expressed

as: [α; β]¬p. The proposition satisfiability depends on the type of the attack and

the protective measure. The focus of this chapter is the first and third types of

attack that involve the use of an invalid edge or a valid target from a list, whereas

the second and fourth types cannot be defended against even with the Ideal CFI

enforced. The control flow hijack attack is formally defined as follows.

3.4. ATTACK MODEL 61

Definition 3.4.1. Let the exploitable program α be comprised of the memory se-

quence of atomic actions a1; a2; . . . ; an, the adversary’s program β be the computa-

tion sequence b1; b2; . . . ; bm, and CS(α) the set of all possible computation sequences

of the program α, given the program α is exploitable then there exists a partial com-

putation sequence α1 that leads to the execution of the adversary’s intended program

β and α1; β ∈ CS(α). The proposition p :=“successful control flow hijack” is con-

sidered to be true for the computation sequence 〈α1; β〉p if and only if ak is the last

instruction in α1 and b1 the first instruction of the adversary’s intended computation

sequence β and b1 6= ax where ax ∈ α the next action under benign execution of α.

The successful control flow hijack is simply expressed as 〈ak; b1〉p focusing on the

transition from the benign execution to the adversary’s computation sequence.

The distinction between computation sequence and memory sequence is clear

when comparing the user program α with the adversary’s sequence β that for in-

stance would be scattered over much larger memory sequences in case of a heap

spray, or scattered over the code of the program α as ROP gadgets, or be an in-

jected memory sequence on the overflown stack, crafted to be executed as the given

sequence b1; b2; . . . ; bm. Definition 3.4.1 expresses that if a program is exploitable

then there exists a computation sequence of the program that transfers the flow of

execution to the intended computation sequence of the adversary.

The countermeasure against the control flow hijack is formally defined by focus-

ing on the transition of the flow of execution to the first instruction of the adversary

summarised as ak; b1 where 1 ≤ k ≤ n. To satisfy the proposition p :=“successful

control flow hijack” in the state transition (sk, sk+1) ∈ Rak the instruction ak must

belong to one of the following sets (Definition 3.3.6):

1. ak ∈ SQ

2. ak ∈ DJ

3. ak ∈ CB

4. ak ∈ IJ

62CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

5. ak ∈ {halt}

If the proposed protective measures are expressed as the proposition ψ as a pre-

condition to the execution of the exploitable program α comprised of atomic actions

a1; a2; . . . ; an under attack with the adversary’s intended computation sequence β

comprised of atomic actions b1; b2; . . . ; bm, then the notion of preventing the success-

ful exploitation can be expressed as ψ =⇒ [α; β]⊥. That is the transition from

exploitable code to the intended code of the adversary will fail in all executions of

α. The next section formally defines the required precondition(s) ψ to satisfy the

aforementioned expression.

3.5 Protective Measures

To protect the integrity of the flow of execution at run time, it is necessary to add the

required controls that assure the flow of execution follows the intended path by the

programmer. The classic CFI [82] adds unique labels to all of the targets of indirect

jumps, and then enforces the policy using in-line reference monitors that precede

indirect jumps to verify whether the label of the target of that indirect jump is valid.

Function call and return are both handled with the indirect jump instruction. The

policy is enforced through labelling. This however creates problems with dynamic

library functions as these functions can be called from different executable code

and the same function may be called from different points making multiple paths

available for return. Figure 3.1 clarifies this point where two different executable

code (foo and bar) call the same function (f2) from a dynamically linked library.

The static CFG of the executable foo has six edges (numbered 1 to 6 in Fig-

ure 3.1), however by execution time not all edges are valid paths at all times, which is

why even a fully precise static CFG is more permissive than the intended execution

path. This is due to the fact that a return instruction of a function creates an edge

to all of the call sites to that function, but only the edge to the most recent call is

valid at run-time. For example in Figure 3.1 edges 3 and 6 for return from function

3.5. PROTECTIVE MEASURES 63

main()

foo lib

f1()

ret
call f1

call f2

next_inst

next_inst

1

4
f2()

ret

call f2
next_inst 2

5

3

6

main()

bar

call f2
next_insta

b

Figure 3.1: Control Flow Graph in dynamically linked executable

f2 in library lib are both valid edges in CFG, but edge 3 is only valid when the

most recent call is within the function f1. Edge 6 is only valid when the most recent

call is from executable foo. The validity of the edges depend on information that is

only available at run-time. For the library functions, as the same code is available

to multiple executable code, the edges are only valid in the execution context of

each code e.g. the edge b is not valid in the context of the executable foo. In the

above example the execution context of the program foo at run-time will contain

the addresses of the functions in the shared library as well as the return address for

each function call at any given state of the program during the execution. These

addresses are control metadata of the program in execution. The execution context

then can be defined as the relevant control metadata of the benign execution of the

program α at a given state. In an abstract model this can simply be referred to

as the intended execution path without too much concern for data structures that

implement the concept. The required information to protect this intended path will

be discussed in the following sections. In the approach the forward and backward

edges of the control flow, to and from a function, are treated accordingly using two

different machine instructions that require different verifications.

64CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

3.5.1 Forward Edge

An edge in a CFG is defined using both starting point and end point. To protect

an edge, both points must be considered. In the case of a forward edge, the start is

the offset of the jump instruction; the end is the called function. If the start point is

neglected in the provided protective method, then the CFG will be reduced to a list

of targets where any of the targets can be a valid destination for an indirect jump.

To assure that both ends of an edge are verified in the current execution context it

is required that the offset of the indirect jump instruction and the destination of

the call be recorded at compile time. The function can be a library and dynamically

linked or a local function. For analysis it is assumed that all function calls whether

local or dynamically linked are all translated to an indirect jump instruction. That

is the call to local functions, although translatable to direct jump, are treated similar

to library functions and translated to an indirect jump instruction by compiler. To

simplify the notation in provided definitions the called function is referred to as

fx ∈ α ∨ α′. The notation fx ∈ α represents a local function. The notation fx ∈ α′

represents a library function where α′ ≡
⋃libj

0≤j≤m expresses the union of all libraries

that are accessible to the executable α. At run-time the addresses will be adjusted

to physical addresses which is commonly supported in hardware. This allows the

code to be position independent. For reasons that are explained later only forward

edges are translated to indirect jump instruction. For returns from function calls a

dedicated return instruction is used.

To protect the forward edges, the valid destination for each forward indirect

jump instruction is uniquely specified for the executable α comprised of an atomic

instruction sequence a1; a2; . . . ; an and called functions f1; f2; . . . ; fm in its set of

Authentic Calls (AC) as follows.

Definition 3.5.1. Set of Authentic Calls for Executable α using Libraries α′:

AC
def
= {(κ, fx) | aκ ∈ α,Decode(ak) = jmp rs ∧ fx ∈ α ∨ α′} where α′ ≡

⋃libj
0≤j≤m

Recording the indirect jump instruction address precisely specifies where within

the body of the code a destination is reachable. In other words an indirect jump

3.5. PROTECTIVE MEASURES 65

main()

foo lib

f1()

retcall f1

call f2

next_inst

next_inst

f2()

ret

call f2
next_inst

fx()

ret

call fx
next_inst

ret

x
x+1

y
y+1

z
z+1

…

w

…

…

w+1

AClib

…
(w,f2)

…

ACfoo
(x,f1)
(y,f2)

…
(z,fx)

Figure 3.2: Set of Authentic Calls for the executable foo and library lib.

instruction can be executed if and only if it is located at a pre-recorded address and

its destination is also a registered address for this unique indirect jump. This will

be added as a precondition to the jump instruction. Figure 3.2 shows the set of

authentic calls for the executable foo.

As it will be shown, the theorem proves the execution will follow the defined pre-

cise edge if the provided precondition is satisfied. The goal is to provide precisely

one valid edge for each indirect jump instruction. However as it has been discussed

in the literature [89,99,100,104] there are circumstances where multiple valid desti-

nations exist at compile time. One such case is the use of a function pointer. In this

case the elements of the AC set can be defined as 3-tuples (condition, offset, target)

where the first element specifies a verifiable condition for the target to be valid. To

make this point clear, the set of Authentic Calls for the program α comprised of

atomic actions a1; a2; . . . ; an can be redefined as follows.

Definition 3.5.2. Set of Authentic Calls

AC
def
= {(cj, κ, tj)} such that the following conditions hold:

• cj ∈ {T, F}

• aκ ∈ α ∧Decode(ak) = jmp rs

66CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

• tj ∈ (α ∨ α′) where α′ ≡
⋃libj

0≤j≤m

where cj = T =⇒ V alid(tj) and the V alid() function expresses that the target tj

is a valid target for the condition cj.

The condition cj has the value T for the normal function calls where the destina-

tion virtual address is known at compile time or is in the form c1c2 . . . cj−1cjcj+1 . . . cq

for the target tj and the fixed offset κ. The condition cj is comprised in such a way

that it only allows one valid destination at run-time.

The key point is that if it is not possible to generate a precise list of valid

destinations (t1, t2, . . . , tq) with verifiable conditions (c1, c2, . . . , cq) that uniquely

identifies the valid target for a particular indirect jump (fixed κ) at run-time, then

the theorem can only guarantee that the execution path will be as precise as the

provided list, which would be fine-grained but not fully precise. It also means that

the program is non-deterministic where there exists a point in the program that

at least two destinations are unconditionally reachable. In such case performing a

control flow bending attack not only includes passing corrupted input to a reachable

function (Type I) but also choosing a destination from a valid list (Type II).

3.5.2 Backward Edge

Each function fx ∈ α∨α′, (α′ ≡
⋃libj

0≤j≤m), starting at a defined offset in α∨α′, has at

least one or more associated return point(s). To record the location of each return

instruction within the body of a function that can be used to verify a backward

edge, the set of associated return point(s) is defined as follows.

Definition 3.5.3. Set of Return Point(s) for executable α calling library functions

fj ∈ α ∨ α′ where α′ ≡
⋃libj

0≤j≤m:

RP
def
= {(fj, ξ)} such that the following conditions hold:

• fj is the function logical address

• aξ ∈ fj ∧Decode(aξ) = ret rs is a valid return point for function fj

3.5. PROTECTIVE MEASURES 67

The set of associated return point(s) specifies the valid return instructions of a

called function. Registering the offset of these instructions will prevent the execution

of a return opcode that appears in the middle of other instructions in complex

architectures by verifying the offset at run-time. The emphasis is on protecting

both ends of a valid backward edge to prevent such attacks. The association of

return point(s) for each function of executable foo and library lib is shown in

Figure 3.3.

RPlib
(f1, vf1,1)
(f2, vf2,1)

…

RPfoo
(fx, vfx,1)
(fx, vfx,2)

…
main()

foo lib

f1()

retcall f1

call f2

next_inst

next_inst

f2()

ret

call f2
next_inst

fx()

ret

call fx
next_inst

ret

x
x+1

f1+vf1,1

y
y+1

z
z+1

f2+vf2,1

fx+vfx,1
fx+vfx,2

…

w

…

…

w+1

Figure 3.3: Functions’ entry points and their associated return point(s)

The forward edge requires checking whether the tuple (instruction address, func-

tion address) belongs to the set of authentic calls. The forward verification is shown

in Figure 3.4.

The return however requires two checks: (i) whether the return is an associated

return point for this function; and (ii) whether the destination address is authentic.

One way of performing these two verifications is by creating a run-time mapping,

at the time of the call, that maps the two tuples. The first tuple belongs to the set

AC which contains: (instruction address, authentic function x). The second tuple

belongs to the corresponding set RP which contains: (function x, return point(s)).

These two tuples have a shared element, the called function, which can be used to

form a 3-tuple containing: (return address, function x, associated return point(s) of

function x). This 3-tuple will uniquely identify the valid target address to return

68CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

main()

foo lib

f1()

retcall f1

call f2

next_inst

next_inst

f2()

ret

call f2
next_inst

fx()

ret

call fx
next_inst

ret

x
x+1

f1+vf1,1

Verify
(x,f1) in ACfoo

y
y+1

z
z+1

f2+vf2,1

fx+vfx,1
fx+vfx,2

ACfoo
(x,f1)
(y,f2)

…
(z,fx)

…

AClib

…
(w,f2)

…w

RPfoo
(fx, vfx,1)
(fx, vfx,2)

…

RPlib
(f1, vf1,1)
(f2, vf2,1)

…

…

…

…

1

w+1

Figure 3.4: Verifying an authentic call (forward edge)

to as well as a valid return instruction. Given a function may have multiple return

points, at run-time multiple mappings can be created, however only one of the return

instructions will be executed and all the corresponding mappings will be removed

before executing the return instruction. Alternatively, in implementation of this

model, the function can only have one return instruction and all other return points

can be converted to direct jumps to the address of the one return instruction.

The Set of Runtime Mapping which associates the return point(s) of a function

defined in executable code α∨α′ (local or library) and called within the executable

code α at the time of the call (run-time) is formally defined as follows.

Definition 3.5.4. Set of Runtime Mapping for executable α is a per call sequence

(with order and repetition): RM
def
= {(κ+1, fj, ξ)} such that the following conditions

hold:

• (κ, fj) ∈ ACα∨α′

• (fj, ξ) ∈ RPα∨α′

The elements of this set are 3-tuples. The first element is the address to return to

in the calling code α pointed to by pc+ 1. The second element is Reg(rs) pointing

to the start of the called function fj in α ∨ α′. The third element is the associ-

ated return point for the called function fj recorded in RPα∨α′ . For each return

instruction it can be then verified, at the time of return, if there exists a 3-tuple in

3.5. PROTECTIVE MEASURES 69

(w+1,f2,f2+ vf2,1)
Verify

main()

foo lib

f1()

retcall f1

call f2

next_inst

next_inst

f2()

ret

call f2
next_inst

fx()

ret

call fx
next_inst

ret

x
x+1

f1+vf1,1

Verify
(x,f1)

y
y+1

z
z+1

f2+vf2,1

fx+vfx,1
fx+vfx,2

ACfoo
(x,f1)
(y,f2)

…
(z,fx)

…

AClib

…
(w,f2)

…w

RPfoo
(fx, vfx,1)
(fx, vfx,2)

…

RPlib
(f1, vf1,1)
(f2, vf2,1)

…Create RMf1
(x+1,f1,f1+ vf1,1)

…

…

…

1

1

Verify
(w,f2)

2

w+1

Create RMf2
(w+1,f2,f2+ vf2,1)

2

3

Remove RMf23

4
Verify

(x+1,f1,f1+ vf1,1)
4 Remove RMf1

RM
(x+1,f1,f1+ vf1,1)1

RM
(x+1,f1,f1+ vf1,1)1
(w+1,f2,f2+ vf2,1)2

RM
(x+1,f1,f1+ vf1,1)1

3

RM
4

Figure 3.5: Run-time mappings of associated return point(s) of authentic function
calls

the set RP where the target address matches the first element, the address of this

function matches the second element, and the address of current return instruction

matches the third element (Figure 3.5). This mapping entry is created per func-

tion call (Steps 1 and 2 in Figure 3.5) and will be removed if a match is found

at the time of the authentic corresponding return (Steps 3 and 4 in Figure 3.5).

The mapping creates the necessary execution context which allows achieving a fully

precise dynamic (context-sensitive) and depth independent enforcement of the CFI

policy. The context-sensitivity is achieved by uniquely identifying the return asso-

ciated with the call. This distinguishes the valid edge from all available edges of

a static CFG. The depth-independence is achieved as the run-time mapping does

not limit the number of consecutive function calls before execution of any return

instruction. Consecutive function calls are simply added as new elements to the set

and are removed at the time of their corresponding return. In the literature, the

shadow stack is considered a necessary condition for enforcing a fully precise CFI [96]

whereas in this abstract model the data structure used for implementation could be

in the form of a control stack, a shadow stack, or any other structure as long as it

stores the specified elements used in verification and policy enforcement. If a rogue

return instruction is defined as the opcode of return within the opcode of another

70CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

instruction, then it can be observed that this model can prevent the execution of a

rogue return instruction. However, a shadow stack can only protect against change

in the return address and is theoretically vulnerable against execution of a rogue

return instruction.

3.6 Theorems of ICFI

The theorems of the Ideal CFI specify the necessary and sufficient conditions

for an abstract machine to prevent the control flow hijack of a vulnerable program.

Before the theorems are stated, the premises of this model are discussed in the

following section.

3.6.1 Premises

The first assumption which is a required precondition is expressed in the literature

as non-executable data or code and data memory separation. The thesis, however,

expresses this condition as integrity of the code of an executable which is a stronger

requirement. This condition is necessary with an adversary with arbitrary memory

write capability. To denote the integrity property of the executable code α comprised

of the atomic instruction sequence a1; a2; . . . ; an, the notation Int(α) is used as a

logical proposition with true or false values. The premises of the ICFI model are

defined as follows.

(A1) The precondition Int(α)∧j=1..mInt(libj) states that the code of the program α

and the libraries called by the program α cannot be changed by the adversary

(the integrity of the code is intact). For clarity this precondition is expressed

as Int(α) ∧ Int(α′) where Int(α′) ≡ ∧j=1..mInt(libj).

(A2) The adversary cannot directly change the content of the program counter.

This is represented as the post conditions on the actions (machine instructions)

which specify how the content of pc is affected as part of the logical semantic

of the defined atomic actions.

3.6. THEOREMS OF ICFI 71

(A3) The attacker cannot modify the following sets belonging to any executable

code: AC (set of Authentic Calls), RP (set of associated Return Point(s), and

RM (set of Run-time Mappings). The integrity of these sets for instance could

be protected with signatures, some form of secure storage, or memory bounds.

We can represent this for any executable code α as Int(RPα) ∧ Int(ACα) ∧

Int(RMα).

3.6.2 Theorems

The first theorem states that the integrity precondition is a necessary and sufficient

condition to prevent control flow hijack attacks, defined in Section 3.4, for a pro-

gram that only contains sequential, direct jump, and conditional branch type of

instructions.

Theorem 3.6.1. For the exploitable program α with memory sequence of atomic

instructions: a1; a2; . . . ; an and with an adversary’s intended computation sequence

of β comprised of atomic actions b1; b2; . . . ; bm, for a computation sequence of α that

includes the partial computation sequence ak; b1 then Int(α) =⇒ [ak; b1]⊥, where

1 ≤ k ≤ n and ak ∈ SQ ∪DJ ∪ CB.

Proof: For execution sequence ak; b1 there will be one of the following (A2):

1. ak ∈ SQ which always satisfies sk+1.pc = sk.pc+ 1:

• for k < n: ak and b1 are in consecutive memory locations (SQ property)

which implies b1 6= ak+1 ∈ α (violates Int(α) A1)

• for k = n: an = halt and an /∈ SQ ∪ DJ ∪ CB ∧ [halt; b1]⊥ (A4 and

semantic of halt instruction: [halt]⊥)

2. ak ∈ DJ which always satisfies sk+1.pc = w′:

• w′ 6= w ∈emb ak (ak is overwritten to point to b1 violates Int(α) A1)

• w′ = w hence sk.Mem(w) = b1 6= ay ∈ α (ay in benign execution of α is

overwritten with b1 violates Int(α) A1)

72CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

3. ak ∈ CB which always satisfies sk+1.pc = w′ ∨ sk+1.pc = sk.pc+ 1 and implies

ak+1 = b1 ∨ sk.Mem(w′) = b1:

• k < n implies ak and b1 are in consecutive memory locations and b1 6=

ak+1 ∈ α (violates Int(α) A1)

• k = n, an = halt and an /∈ SQ∪DJ ∪CB ∧ [halt; b1]⊥ (A4 and semantic

of halt instruction: [halt]⊥)

• sk.Mem(w′) = b1:

– w′ 6= w ∈emb ak (ak is overwritten to point to b1 violates Int(α) A1)

– w′ = w hence sk.Mem(w) = b1 6= ay ∈ α (ay in benign execution of

α is overwritten with b1 violates Int(α) A1)

The second theorem states that if a program contains an indirect jump instruc-

tion the integrity property is necessary but not sufficient to prevent a control flow

hijack attack. Additional checks must be performed to prevent such attacks.

Theorem 3.6.2. For the exploitable program α with memory sequence of atomic

instructions: a1; a2; . . . ; an with an adversary’s intended computation sequence of β

of atomic actions b1; b2; . . . ; bm, a computation sequence of α that contains the partial

sequence of ak; b1, and Int(α′) ≡ ∧x=1..mInt(libx) then:(
Int(α) ∧ Int(α′)

)
∧
(

(k, ε) ∈ ACα∨α′ ∨ (z, ε, ξ) ∈ RM
)

=⇒ [ak; b1]⊥, where

1 ≤ k ≤ n and ak ∈ IJ .

Proof: For execution sequence ak; b1 where ak ∈ IJ which always satisfies

sk+1.pc = sk.Reg(rs), there will be one of the following (A2):

1. Decode(ak) = jmp rs then:

• sk.Reg(rs) 6= fj violates (k, fj) ∈ ACα∨α′ (protected by A3)

• sk.Reg(rs) = fj implies b1 6= ay ∈ α ∨ α′ (ay the beginning of fj is

overwritten by b1 violates Int(α) ∧ Int(α′) A1)

Hence: Int(α) ∧ (k, fj) ∈ AC =⇒ [jmp rs; b1]⊥.

3.7. SUMMARY 73

2. Decode(ak) = ret rs then:

• (sk.Reg(rs), fj, sk.pc) /∈ RM which implies either

(sk.Reg(rs), fj) /∈ ACα ∨α′ , (unauthentic call to local or library function)

or (fj, sk.pc) /∈ RPα ∨α′ , (unregistered return from local or library func-

tion)

• (sk.Reg(rs), fj, sk.pc) ∈ RM implies b1 6= az ∈ α ∨ α′ (az belonging to

benign execution of α is overwritten with b1 violates Int(α)∧Int(α′) A1)

Hence: A1− 3 ∧ (x+ 1, fj, ξ) ∈ RM =⇒ [ret rs; b1]⊥.

Table 3.4 summarises the required preconditions for each instruction to prevent

control flow hijack attacks.

3.7 Summary

A control flow hijack attack is a form of exploitation where the adversary changes

the flow of execution from the programmer’s intended path to an injected or existing

block of code that violates the benign execution of the program. One way to prevent

such exploitation is to prevent the change of the flow of execution from the intended

path. This chapter discussed a formal model to protect against control flow hijack

attacks. It proposed the necessary conditions to protect all forms of change in the

flow of execution by categorising the machine instructions based on their effect on

the PC register that controls the execution path of the program. The instructions

are divided into four types: sequential, direct jump, conditional branch, and indirect

jump. The required conditions are expressed in two theorems. The first theorem

specifies that the integrity property of an executable code can protect against these

attacks as long as all instructions are of type sequential, direct jump, or conditional

branch. This is due to the fact that for the aforementioned instructions, change

of the flow of execution from the intended path requires adversarial code content

change that would violate the integrity of the code. The second theorem states

74CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

that the integrity property of the executable code is a necessary condition but is

not sufficient if the code contains an indirect jump instruction for which additional

checks must be performed. The additional check for an indirect jump is required

as the change in flow of execution can happen without changing the code content.

To protect the flow of execution, it is necessary to verify if the destination address

which is provided as the content of a register is an authentic address, or in other

words, is the intended destination by the programmer. The check for return needs

to verify that two conditions are satisfied. The first condition is whether the return

instruction belongs to a function such that the function was entered through an

authentic call. The second condition is whether the destination address is next to

the authentic call. This is done by creating a dynamic map at the time of the call

that links the registered return point(s) of the called function to the return address

after the authentic call.

In a control flow bending attack the adversary changes the flow of execution

by corrupting non-control data, which influences the flow of execution but does

not violate the programmer’s intended path. For instance the adversary corrupts

a variable that affects a conditional branch instruction. Another example of such

attack is when the adversary changes the parameters passed to a function where

the call to the function belongs to a benign execution of the program, for instance

passing “/bin/sh” to execve() function instead of any other intended executable

file. The proposed ICFI model cannot prevent these types of attack as the benign

execution path is not violated. To protect against these types of attacks, non-

control data variables that could affect the flow of execution must be protected

from corruption. In Chapter Four a memory model that can prevent these types

of attacks is discussed. Another protective measure is proposed to protect against

memory address leakage that is used by the adversary to craft control flow attacks.

3.7. SUMMARY 75

Table 3.4: Instruction preconditions to prevent control flow hijack attack

Instruction PDL expressions
nop ∈ SQ Int(α) =⇒ [nop]p1

p1 ≡ s′.pc = s.pc+ 1
add ∈ SQ Int(α) =⇒ [add rd, rs, rt]p1 ∧ p2

p1 ≡ s′.Reg(rd) = s.Reg(rs) + s.Reg(rt)
p2 ≡ s′.pc = s.pc+ 1

addi ∈ SQ Int(α) =⇒ [addi rd, rs, w]p1 ∧ p2
p1 ≡ s′.Reg(rd) = s.Reg(rs) + w
p2 ≡ s′.pc = s.pc+ 1

movi ∈
SQ

Int(α) =⇒ [movi rd, w]p1 ∧ p2

p1 ≡ s′.Reg(rd) = w
p2 ≡ s′.pc = s.pc+ 1

ld ∈ SQ Int(α) =⇒ [ld rd, rs(w)]p1 ∧ p2
p1 ≡ s′.Reg(rd) = s.Mem(s.Reg(rs) + w)
p2 ≡ s′.pc = s.pc+ 1

st ∈ SQ Int(α) =⇒ [st rd(w), rs]p1 ∧ p2
p1 ≡ s′.Mem(s.Reg(rd) + w) = s.Reg(rs)
p2 ≡ s′.pc = s.pc+ 1

jd ∈ DJ Int(α) =⇒ [jd w]p1
p1 ≡ s′.pc = w

bgt ∈ CB Int(α) =⇒ bgt rs, rt, w ≡ [(?ϕ; jd w) ∪ (?¬ϕ;nop)]p1
p1 ≡ s′.pc = w ∨ s′.pc = s.pc+ 1
ϕ ≡ s.Reg(rs) > s.Reg(rt)

jmp ∈ IJ Int(α) ∧ Int(α′) =⇒ [(?ϕ; jmp rs) ∪ (?¬ϕ;halt)](p1 ∧ p2) ∨ ⊥
ϕ ≡

(
s.pc, s.Reg(rs)

)
∈ ACα∨α′

p1 ≡ s′.pc = s.Reg(rs)
p2 ≡ RM ∪ {(s.pc + 1, s.Reg(rs), rpi) where s.Reg(rs) points to fj and
(fj, rp1..x) ∈ RPα∨α′

ret ∈ IJ Int(α) ∧ Int(α′) =⇒ [(?ϕ; ret rs) ∪ (?¬ϕ;halt)](p1 ∧ p2) ∨ ⊥
ϕ ≡ (s.Reg(rs), fj, s.pc) ∈ RM
p1 ≡ s′.pc = s.Reg(rs)
p2 ≡ RM −

(
s.Reg(rs), fj, rp1..x

)
where (fj, rp1..x) ∈ RPα∨α′

halt Int(α) =⇒ [halt]p1
p1 ≡ ⊥

76CHAPTER 3. A FORMALMODEL OF IDEAL CONTROL FLOW INTEGRITY

Chapter 4

Memory Integrity Model

4.1 Introduction

Memory corruption is the underlying cause of malicious code execution where the

adversary affects the flow of execution by either changing the control or non-control

data. In this chapter a formal model to protect the integrity of the memory against

memory corruption leading to exploitations is provided. The goal of this formal

model is to prevent the adversary controlling a corrupted memory cell that will

affect the flow of execution. The model can then prevent the attacks defined in the

previous chapter as non-control data attacks leading to control flow bending as well

as the other control flow hijack attacks.

A confidentiality model is then discussed to protect against information leakage

attacks, aimed particularly to prevent the leakage of memory addresses that can

be used in crafting control flow attacks. Sections 4.2 and 4.3 provide a review of

the literature regarding memory corruption and the countermeasures. The memory

integrity model is defined in Section 4.4 which provides protection against memory

corruption leading to all forms of change in flow of control. The memory confi-

dentiality model that prevents leaking of memory addresses is then discussed in

Section 4.5. The chapter is concluded in Section 4.6.

77

78 CHAPTER 4. MEMORY INTEGRITY MODEL

4.2 Memory Corruption

Szekeres et al. [118] describe the memory corruption attacks through a 6-step pro-

cess. The first step is to make a pointer invalid which happens when a pointer:

(i) goes out of bounds; or (ii) becomes a dangling pointer. A dangling pointer is a

pointer that is pointing to a deleted object. Dereferencing an invalid pointer will

cause an error which can be classified as:

1. a Spatial Error : happens when an out of bound pointer is dereferenced;

2. a Temporal Error : happens when a dangling pointer is dereferenced.

To make a pointer go out of bounds an attacker can use various exploitation tech-

niques such as [118]:

• triggering an unchecked allocation failure which could make a pointer Null

and exploitable in kernel-space [119];

• manipulating an array pointer without bounds checking in a loop which results

in buffer overflow or underflow;

• manipulating the index to an array with bounds checking vulnerability which

could result in array pointer pointing to an arbitrary location (e.g. integer

overflow, sign manipulation or truncation);

• corrupting another pointer as a primary step in achieving one of the aforemen-

tioned techniques.

To make a pointer a dangling pointer an attacker can exploit an incorrect exception

handler responsible for deallocating an object but which does not reinitialise the

pointer to the object as part of the deallocation process. The temporal memory

errors are also known as use-after-free vulnerability [118] as the pointer is used after

returning the memory it was pointing at to the memory management process. An

exploited pointer that is under the attacker’s control can escape the locality of the

exploited pointer and be used with a global range [118]. In the second step the

4.3. MEMORY SAFETY 79

attacker may read or write the exploited pointer to achieve one of the following

outcomes:

• to modify a data pointer, to make another pointer go out of bounds;

• to modify the code section of the executable, leading to a code corruption

attack;

• to modify a code pointer, which leads to a control flow hijack attack;

• to modify a data variable, leading to a control flow bending attack;

• to modify an output data variable, leading to information leakage.

4.3 Memory Safety

Various methods have been proposed to provide memory safety to protect against

spatial or temporal errors or both. In the following section these protective measures

are discussed.

4.3.1 Spatial Memory Safety

Nagarakatte et al. [120] propose a pointer bounds checking technique to provide

spatial memory safety. Their goal is to achieve source code compatibility, complete-

ness, and separate compilation. They classify other solutions in two broad classes:

(i) Object-based; and (ii) Pointer-based.

In the object-based approach, bounds information is associated with objects

rather than the pointer to the object. The disadvantages of this method are: (i)

the out of bounds pointer requires special treatment; (ii) verifying the bounds of

a pointer to an object becomes a range lookup which is implemented using a low

performance splay tree data structure; (iii) the implementation generally does not

capture all spatial memory violations and is incomplete.

In the pointer-based approach, the base and bound information of each pointer

is tracked with the pointer itself referred to as fat pointer representation. The

80 CHAPTER 4. MEMORY INTEGRITY MODEL

pointer-based approach addresses the issue of multiple pointers pointing to the same

object of the object-based approach as each pointer has its own base and bound

information. This method can provide complete spatial memory safety, however the

existing solutions such as CCured [23] require modification to the source code where

due to the changes of the memory layout these modifications require programmer

intervention.

To achieve spatial memory safety SoftBound [120] uses disjoint metadata for

each pointer that contains the base and bound of that pointer. The code is then

instrumented to verify the bounds of the pointer at each read and write. The disjoint

metadata does not change the memory layout which provides the compatibility of

the object-based approach. The association of the base and bound information per

pointer, provides the completeness of the pointer-based approach.

In SoftBound the C code is translated to a generic intermediate form, where

for every pointer value the corresponding base and bound intermediate values are

created. To provide pointer checking, for each dereference of the pointer, code is

inserted that verifies the base and bound of that pointer (Listings 4.1 and 4.2).

Listing 4.1: Pointer check function [120]

void check(ptr , base , bound , size) {

if ((ptr < base) || (ptr + size > bound)) {

abort();

}

}

Listing 4.2: Pointer dereference [120]

check(ptr , ptr_base , ptr_bound , sizeof (*ptr));

value = *ptr; // original load

To address the two ways of pointer creation in C, SoftBound inserts code at each

malloc() call-site to set the values of base and bound for the pointer that receives

the returned value for the allocated memory (Listing 4.3). If the returned value is

NULL the bound is also set to NULL.

4.3. MEMORY SAFETY 81

Listing 4.3: Pointer check for dynamically allocated memory [120]

ptr = malloc(size);

ptr_base = ptr;

ptr_bound = ptr + size;

if (ptr == NULL) ptr_bound = NULL;

For the global and stack-allocated objects, SoftBound inserts code to set the base

of the pointer and the bound is set to one byte past the size of the object which is

known in advance (Listing 4.4).

Listing 4.4: Pointer check for stack-allocated pointers [120]

int array [100];

ptr = &array;

ptr_base = &array [0];

ptr_bound = ptr_base + sizeof(array);

In pointer assignments, which may also involve pointer arithmetic including array

indexing, the left-hand side receives the base and bound of the original pointer

(Listing 4.5).

Listing 4.5: Verification for pointer assignment and arithmetic [120]

newptr = ptr + index; // or &ptr[index]

newptr_base = ptr_base;

newptr_bound = ptr_bound;

To avoid internal object overflow, SoftBound allows narrowing the bounds of

pointers which however could result in false violation for certain C idioms.

Davietti et al. [121] have designed HardBound, a hardware supported method of

bound checking for pointers that adopts the principle of fat pointers without chang-

ing the memory layout. In this method each memory cell and register is virtually

considered to be a triple (value, base, bound). A one-bit tag per memory cell will

distinguish non-pointer variables from pointers, where the former does not require

bound checking. The base and bound information for each pointer is stored in a

shadow memory space and every pointer operation is verified against these values.

82 CHAPTER 4. MEMORY INTEGRITY MODEL

The design allows the tag and bound information to be cached to reduce the re-

quired memory access for each bound check operation. The compiler will generate

the required setbound instruction for each pointer at the time of definition of the

pointer which will initialise the base and bound of that pointer in the associated

shadow storage. For each pointer operation the compiler will generate the required

instructions to verify whether the pointer is within its defined bounds. The Hard-

Bound method does not require change in the C program, does not change the

memory layout, and achieves better performance than the software methods such

as CCured [121].

In the Intel Memory Protection Extensions (MPX) four new 128-bit registers and

eight instructions are introduced to provide bounds checking for pointers [122]. The

new Intel MPX instructions check the lower and upper bounds of a pointer against

its current value and throw an exception if the bounds are violated. As four registers

are not sufficient to provide bounds checking for all pointers the bounds registers

can be spilled. The spilling bounds can also be used to pass pointers as function

call parameters. The MPX-enabled processors allow the four bounds registers, two

configuration registers, and one status register to be saved during context switches.

This requires operating system support. The new MPX instructions are treated as

nop instructions for the processors that do not support these instructions allowing

the compilation for the new instruction set to be backward compatible. In 64-bit

mode the MPX processor allows a 2 Gigabyte Bound Directory where each entry

points to a 4 Megabyte Bounds Table. Each Bounds Table entry contains the lower

bound, upper bound, pointer value, and a reserved metadata field. The Bound

Directory is allocated from virtual memory as a Demand Zero page and is only

allocated when a page fault occurs. To use the features of Intel MPX processors,

compilers must implement the following [122]:

• For each pointer, the bounds must be calculated according to the C/C++

standard.

• Before each pointer dereference the bounds must be verified.

4.3. MEMORY SAFETY 83

• For each pointer, the Bounds Table entry must be maintained.

• Assembler and linker must be modified accordingly to support new Intel MPX

instructions.

The MPX instructions provide a low overhead, hardware-assisted spatial memory

safety implementation tool that could remove the out-of-bounds use of pointers

given that the operating system and compiler are MPX enabled and the user code

is properly instrumented.

4.3.2 Temporal Memory Safety

Dangling pointers and double-free errors are created due to manual memory man-

agement and could lead to crashes, data corruptions, and security vulnerabilities.

There are various methods aiming at identifying these types of memory errors. The

temporal checking methods can be divided into two broad categories: (i) location-

based; and (ii) identifier-based. In location-based approaches the status of each

memory location is recorded in an auxiliary data structure and maintained using

allocation and deallocation code, malloc() and free() respectively. This approach

however fails to detect dangling pointers for reallocated memory locations [123]. In

other similar methods a tree structure or a shadow-space is used for all of the allo-

cated regions of the memory which leads to slow lookup or high memory overhead

respectively [123].

In identifier-based approaches, a unique key which is never reused is assigned to

each allocated memory region and associated with each pointer. This will assure

that the identifier will persist even if the memory is freed. The implementation of

identifier-based approach can be classified into two classes: (i) per-pointer metadata;

and (ii) set-based. One method of implementation using per-pointer metadata is

using the concept of a fat pointer through change of the structure of the pointer.

This will result in change of memory layout and compatibility issues. The set-

based approach requires that the identifier be added to a set for the allocations

84 CHAPTER 4. MEMORY INTEGRITY MODEL

and removed for deallocations. This is generally implemented using hash tables and

could result in significant run-time overheads.

Most of these methods are incomplete and cannot find all temporal errors [123].

To address this issue and overhead in terms of memory and performance, Na-

garakatte et al. [123] propose an approach based on two techniques: (i) each al-

located memory region is associated with a unique key; and (ii) the unique identi-

fier is stored disjoint to the memory region avoiding memory layout change. The

Compiler-Enforced Temporal Safety for C (CETS) stores the disjoint metadata to

keep the memory layout unchanged and uses compiler-based instrumentation and

directly-accessed data structures to avoid performance degradation. The CETS lock

and key approach stores two word fields for each pointer: (i) a unique allocation key;

and (ii) a lock address pointing to a lock location. The lock location is verified for

each temporal access. To protect against calling free() on pointers not returned

by malloc() and double-free errors, CETS maintains a map from keys to pointers

that can be freed.

4.3.3 Complete Memory Safety

The SoftBound and CETS combined provide complete memory safety with 116%

overhead [118, 123]. Using the Intel MPX instruction set may significantly improve

the performance of the spatial memory safety approaches. Both methods provide

formal proofs using the Coq automated theorem prover for a fragment of C and in

a single-thread environment [120,123].

4.3.4 Tag-based Architecture

Various forms of security policies have been proposed in the literature as in-line

reference monitors such as software compartmentalisation (Sandboxing), Control-

Flow Integrity, and memory bounds checking. Amorim et al. [124] describe a formal

method to define such policies using a tag-based architecture where the architecture

can accommodate required tags for the defined policy. To formally prove their work

4.3. MEMORY SAFETY 85

they propose a high-level symbolic machine and verify four micro policies namely: (i)

dynamic sealing to protect cryptographic keys and specify encrypted data in mem-

ory; (ii) compartmentalisation; (iii) control-flow integrity; and (iv) memory safety.

In this work the specification of the micro policy is defined using an ideal abstract

machine with a PUMP-like architecture [125] where the instruction semantics have

a built-in information flow policy. A symbolic machine is then used for each of the

information-flow polices to dynamically express the required mechanisms for that

policy. Then a concrete machine implements the specified mechanism in symbolic

machine with a software controller that interacts with these low-level mechanisms.

The formal work proves the correctness of the transitions from the abstract machine

to the proposed implementation in the concrete machine. The result however relies

on the accuracy and security of the specified information-flow policy. For instance

the CFI policy in the proposed tag-based architecture implements the equivalent

policy of Abadi et al. [30] which suffers from inaccuracy of equivalent classes. The

flexibility of the proposed tag-based architecture comes with the price of overlap-

ping policies with similar goals. For instance the CFI policy and memory safety are

both targeting the different aspects of vulnerability and exploitation. A complete

and secure implementation of memory safety would make the CFI policy redundant.

Dhawan et al. [125] propose an architecture that can enforce any policy that can

be expressed using a defined tag-based rule structure. This tag-based architecture,

called PUMP, is used in the formal work of Amorim et al. [124] as a generic policy

enforcement in the form of an in-line reference monitor.

4.3.5 Type-based Non-interference Languages

Volpano and Smith [126] propose a type-based approach to enforce confidentiality

and integrity of the program data flow. The general idea is that all program inputs

and outputs are classified with appropriate security labels. To prevent the program

from leaking sensitive data, a classified output of the program at some level cannot

change due to change only in the input at a higher level. This would otherwise mean

86 CHAPTER 4. MEMORY INTEGRITY MODEL

the information at a higher security level is leaked by observing the change in the

lower security level output. This policy enforcement is defined based on data types

for security labels that identify the sensitivity of data types. The operations allowed

using the security-typed data is then specified by various rules that when followed

guarantees the policy enforcement. The type system is then formally proved to

be sound and complete [126]. The non-interference property however can be too

strong for practical implementation. For instance in the login process, the user

provides a password which has a higher security level than user provided data.

For the login process to succeed, the information provided by the user needs to

be compared with the stored password, which violates the non-interference policy

rules [127]. To address this issue, Li and Zdancewic [127] propose a generalised

framework for downgrading strong non-interference policies that can be enforced in

practice using mechanisms such as type systems. In this method the non-interfering

program expressed as f(h, l) is factored into two parts: (i) fH(h, l) represents the

high security part; and (ii) fL(l) represents the low security part. The observation is

that the low security part does not rely on high security input. In this approach the

proof of non-interference is provided by transforming the original program to the

aforementioned structure for a low security part that does not rely on high security

input and a downgrading policy function for a part that depends on both high level

and low level security input [127].

4.4 Memory Model

This section describes a memory model inspired by Biba’s integrity model [128] and

Bell-LaPadulla’s confidentiality model [129]. The integrity model aims to prevent

memory corruption by assigning different levels of integrity based on the trustwor-

thiness of the variables. The confidentiality model can prevent memory leaks by

assigning a higher confidentiality level to memory cells that contain sensitive pro-

gram internal values. The goal of both models is to protect the program in execution

against attacks rather than protecting user provided values. The integrity model

4.4. MEMORY MODEL 87

and the required preconditions are discussed first, followed by the changes to the

instruction set that enforce these requirements. The theorem of this model with its

proof is stated in a separate subsection. The confidentiality model is then defined

with a similar structure.

4.4.1 Memory and Register Representation

To accommodate the new requirements to protect memory from corruption and

unauthorised disclosure of content the structure of memory and its representation

is redefined. In this new model each memory cell is represented as a 4-tuple:

(Address, Content, Integrity Level, Confidentiality Level).

Each register is also represented as a 4-tuple:

(Register Number, Content, Integrity Level, Confidentiality Level).

The memory definition is amended as follows for an l-bit architecture with two levels

for each of the integrity and confidentiality levels of memory cells and registers.

Definition 4.4.1. Memory :

Mem : {0, 1}l × {0, 1}l × {0, 1} × {0, 1}

Definition 4.4.2. Register file:

Reg : {0, 1, . . . , 31} × {0, 1}l × {0, 1} × {0, 1}

Before discussing the requirements of the memory model in terms of conditions

and checks built into machine instructions, various high level abstract concepts

need to be linked to their representations in the more concrete machine model. The

following section creates this link between these concepts in high level programs and

their corresponding representations in the machine model.

4.4.2 Preliminary Definitions for Memory Integrity Model

User input in a vulnerable program provides the opportunity of exploitation to the

adversary. That is a program that does not interact with user in any way cannot

be exploited even if it is vulnerable. In the concept of programming languages,

88 CHAPTER 4. MEMORY INTEGRITY MODEL

the interaction with user is performed through the use of variables. The variables

however serve a broader purpose than interaction with the user. They store the state

of the program during execution. To distinguish between different types of variables

based on their purpose, the variables are categorised. The relationship between the

higher abstraction level that is the variables and the lower abstraction that is the

memory cells assigned to these variables can then be formally defined. Two general

categories of variables are defined in the model:

1. User provided, which defines variables provided by user and includes any form

of input such as standard input/output, file, and network;

2. Program internal, which defines variables that are used by the programmer as

part of the internal state of the program.

The integrity level then will be assigned to each category based on the level of trust.

Variables that are used internally by a program will be treated as containing trusted

values; variables provided by the user will be treated as untrusted. To allow the

flow of information between user input and program internal when necessary, in

the proposed approach, the integrity level can be changed by the use of explicit

instructions, conditional on passing an explicitly defined test when the change is

from a lower integrity level to a higher integrity level. These instructions and their

semantics are discussed in more detail in a later section.

First two sets of variables are defined: (i) those that require high integrity; and

(ii) those that require low integrity. To make sure that the two sets will partition

the set of all variables of the executable code α and that all variables will have a

defined integrity level, all variables that must be treated as low integrity are declared

explicitly by the programmer. All of the other variables are assigned to have a high

level of integrity. Using this approach, user provided variables can be declared by

the programmer as low integrity variables and untrusted at the beginning of the

code execution.

4.4. MEMORY MODEL 89

Definition 4.4.3. Set of Variables of the executable code α:

Vα
def
= {v|V ariable(v) ∈ α}

Definition 4.4.4. Set of Low Integrity Level Variables of the executable code α:

LVα
def
= {v|v ∈ Vα ∧ IntegrityLevel(v) = Low}

Definition 4.4.5. Set of High Integrity Level Variables of the executable code α:

HVα
def
= Vα − LVα

Based on the given definition it holds that Vα = HVα∪LVα and HVα∩LVα = ∅.

Assigning a high integrity level to all the variables that are not explicitly excluded

is justified based on the fact that if a variable is not provided by the user, it is by

principle outside direct user control. The goal of the integrity model is to protect the

internal state of the program from unauthorised modification that results in change

in the flow of execution. Thus, it would be logical to define the boundary between

user provided input and the program internal by including all the variables used in

the program that are not provided by users in the high integrity set regardless of their

effect on flow of execution. This is a conservative approach in classifying variables

which means all of the variables that contain sensitive values such as pointers, array

indices, variables that are part of an expression for a conditional branch, or a loop

will be set to the high integrity level and will be protected against corruption.

The user input, however cannot be completely isolated as the program often

needs to process user data and the flow of execution may change depending on

the provided input. To make sure a user provided variable will change from low

integrity to high integrity when a condition is met, the programmer must define an

explicit test so that when it is satisfied the variable can be trusted. This will allow

the transition from an untrusted state of a user provided variable to trusted at a

later point during the execution whenever such a transition would be needed. To

clarify, a transition from low integrity to high integrity is required whenever the user

provided variable would affect the flow of execution. As mentioned before, a low

integrity variable can be classified as high when it passes its explicitly defined test.

The test must be done after the variable is provided by the user. The transition

90 CHAPTER 4. MEMORY INTEGRITY MODEL

of the integrity level must happen before reading another variable from the user

to remove the opportunity of corruption after a successful test. The test can be as

simple as one instruction or as complex as a program. The test however must return

either True or False for any given variable v. The security of the model relies on

the correctness of the classification test for any variable v. It would depend on the

properties of the variable and its use. For instance if a variable is of type string,

the test of the length of the variable may be enough to satisfy its trustworthiness or

it may require testing the content as well as the length to avoid certain characters,

patterns, or checking against a black or white list. As another example for integers,

the test could involve a range of acceptable values. To associate such test with

its corresponding variable, a set of Classification Tests is defined such that the

elements of this set are 2-tuples representing the defined classification test and the

low integrity level variable.

Definition 4.4.6. Set of Classification Tests:

CTα
def
= {(ϕ, v)|v ∈ LVα ∧ ϕ(v) ∈ α ∧ ϕ(v) = True if v can be trusted}

Since the classification test is done on user provided value it will always involve a

low integrity element. To protect the integrity of the test itself the untrusted value

must be compared to a high integrity element. The result of a successful test then

can elevate the integrity level of the variable associated with that test. Using this

approach, before a conditional branch is used, all user provided values involved in

the conditional branch can be tested and elevated to high integrity if successful. It

also allows the flexibility for more complex tests on logical expressions that can be

left for the compiler.

Given the integrity level of a variable is decided by the programmer and a vari-

able is a high level language concept that will be translated and associated to a

memory address or a range in the generated low level machine code, it is necessary

to express this relationship formally. The concept of Type is used to bridge the

association of variables and assigned memory cells, as the type-based approach is

a well studied and understood topic. Without loss of generality, the compiler of a

4.4. MEMORY MODEL 91

high level programming language can be assumed to produce correct code for the

type of a variable. The correct number of memory cells will be assigned to each vari-

able of any defined type. This mapping of high level program variables to memory

addresses for the executable code α (in machine language) can be expressed as an

abstract function for which concrete instructions can be generated by a compiler.

The association of program variables to memory cells according to the variable size

plays a major role in the proposed memory integrity model. The assumption is that

the compiler generates correct code for every usage of the variable within the body

of the code, meaning the size of the variable is tightly controlled in the generated

code.

Definition 4.4.7. Map(v) : Memv[m,m + l − 1] where v ∈ Vα ∧ Type(v) : τ ∧

Size(τ) : l

Since a variable may require more than one memory cell depending on the type

size, a new notation is introduced to represent a memory range associated with a

given variable. The expression Type(v) : τ specifies that variable v is of type τ ; the

expression Size(τ) : l specifies that the type τ requires l memory cells. The memory

range is expressed as Memv[m,m+ l − 1] in the definition of the abstract function

Map(v). This range can grow from lower addresses to higher addresses or vice versa.

It has no effect on the formal representations if the same policy applies to all variables

in the same context. If memory grows from higher addresses to lower addresses the

range can be expressed as Memv[m,m − l + 1]. The former representation is used

in the remainder of this chapter, however as stated before the results will hold if the

same policy is followed and address calculations are applied accordingly. A mixture

of both policies can also be used, as long as it can be determined from the context

which policy is applicable for a given variable to memory mapping. The required

rules of the integrity model can then be enforced in the related range in that context.

All variables that are provided by the user must be treated as untrusted, unless

an explicit test clears that variable for transition to higher integrity. Following this

92 CHAPTER 4. MEMORY INTEGRITY MODEL

principle, if a variable is provided by the user more than once throughout the pro-

gram, its integrity level must be reset to low prior to the new reading. Although

implementations of such models are not discussed in detail in this thesis, as part of

enforcement of this model it seems necessary to require that library functions that

deal with user input use low integrity level instructions as defined in the following

section. This will allow catching variables that are not set properly by the program-

mer or are being reused, that is, are being read from the user for a second time after

classification.

The variables are classified into two broad groups: trusted and untrusted. It

must be emphasised that in the context of the memory integrity model, there is a

difference between terms valid and trusted. In this model a variable may contain

a value that is not valid, but the variable can be trusted because it is under the

programmer’s control. On the other hand a variable may contain a valid value and

not be trusted because it is under a user’s control. The memory integrity model does

not aim to eliminate the programming mistakes or provide correctness guarantees for

the program, rather it provides a means to prevent users gaining control of memory

outside the boundaries defined by the programmer throughout the program and

corrupting memory that may affect control flow. To clarify the point, for instance a

dangling pointer may cause the program to crash but it would also prevent the user

controlling the value of that pointer by enforcing the rules of the memory integrity

model.

To provide formal definitions and required protective measures against memory

corruption there is a need for a formal representation of the corruption itself. The

memory corruption can be considered to be at least one unauthorised memory write.

Since the attacker’s access to memory is through user provided input, this can be

expressed as a write for the variable that is being misused to an address not within

its associated range. To express this formally, first a simple abstract memory write

for a variable to its associated address is defined as follows.

4.4. MEMORY MODEL 93

Definition 4.4.8. Write(v)
def
= Memv[m,m + l − 1] ← V alue(v) where v ∈ Vα ∧

Type(v) : τ ∧ Size(τ) : l

Variables are high level programming concepts which are represented in the ma-

chine level with assignment of memory cells. A variable may require more than one

memory cell to store its value. The abstract memory write function for a variable

expresses that correct instructions will be generated by the compiler for the cor-

rect memory range assigned to the variable by the Map(v) program. The Map(v)

program uses the type and size of a variable to assign a range of memory cells to

the variable. The Write(v) program reinforces the fact that the compiler generates

correct code for every memory write operation of a variable. The V alue(v) function

expresses the content of the variable v that is being written to its associated memory

cells. The address calculation in the proposed machine model is of the form: base

+ offset.

An abstract ReadIO() function is defined for a variable, to express the distinction

of the input/output operations from other memory accesses. This will help in formal

definition of the rules for the memory integrity model. The abstract ReadIO(v)

for variable v expresses the process of transferring user provided input stored in a

memory mapped range of addresses, referred to as MemIO. The formal expression

omits the process of reading the user provided input from the IO device to MemIO

as this operation can be flexible and independent of the variable size. As it will be

discussed the memory IO addresses will always be set to low integrity level.

Definition 4.4.9. ReadIO(v)
def
= Memv[m,m + l − 1] ← MemIO[mio,mio + l −

1] where v ∈ Vα ∧ Type(v) : τ ∧ Size(τ) : l

The ReadIO(v) program would be comprised of appropriate number of load

and store instructions depending on the size of the variable. After discussing in

more detail the instructions of the machine model, the definition will be amended

(Definition 4.4.30).

A memory corruption then would be either manipulation of the parameters of

address calculation involved in one or more memory writes, or a direct corruption

94 CHAPTER 4. MEMORY INTEGRITY MODEL

of a pointer that is dereferenced for various purposes. The corruption would then

include any of the following scenarios: when base, offset or both parameters used in

calculating the target address of a memory write are out of their intended bounds

or when a register that contains the target of an indirect jump, another memory

write, or a memory read is corrupted. It will be shown that if the requirements of

the memory integrity model is followed the aforementioned cases will be detected

and prevented.

4.4.3 Requirements of Memory Integrity Model

To protect against memory corruption the integrity model must meet certain re-

quirements. The first requirement is quite straightforward and is based on the

classification of the variables and the trustworthiness of each of these classes. To

express this notion formally, there needs to be a formal definition of the set of user

provided variables as one of the discussed classes.

Definition 4.4.10. The Set of User Provided Variables for executable code α:

UVα
def
= {v | v ∈ Vα ∧ v provided by user }

The first Memory Integrity Requirement (MIR) states that all user provided

variables must be assigned to low integrity level defined by the set of low integrity

variables for the executable code α.

∀v ∈ UVα =⇒ v ∈ LVα

This will assure all user provided input to the program will initially be con-

sidered untrusted. The notion of variables however is a high level programming

language concept. To express it in more concrete form, variables need to be bound

to their associated memory cells which are actually used in code execution. The

notation Mem(m) is used to express retrieving memory content at address m. To

express retrieving the integrity level of the memory cell at address m, the notation

MemIL(m) is used.

An abstract link is provided between variables and their associated sizes, in

terms of memory cells in Definition 4.4.7 using the abstract function Map(). Here

4.4. MEMORY MODEL 95

the link between the integrity level of a variable and the integrity level of the memory

cells assigned to the variable is expressed. Without loss of generality, it is assumed

that the compiler will produce the correct machine language code regarding the

size of variables in terms of memory cells. This will set the proper integrity level

for all of the associated memory cells to each variable and the proper level for the

machine language instructions generated to process the variables according to their

level. The latter point will become clearer during discussion of the enforcement of

the integrity requirements with machine instructions in the following section. The

amended definition of variable to memory mapping is as follows.

Definition 4.4.11. Set of Variable to Memory Map for executable α:

MVα
def
= {Memv[m,m + l − 1] | v ∈ Vα ∧ Type(v) : τ ∧ Size(τ) : l ∧ ∃! m ∈

Mem ∧MemILv[m,m+ l − 1] = ILv}

In the above definition ILv expresses the integrity level of the the variable v. For

brevity, MemIL(m) = ILv∧MemIL(m+1) = ILv∧· · ·∧MemIL(m+ l−1) = ILv

is expressed in a range form for variable v as MemILv[m,m+ l − 1] = ILv.

The sets of low and high integrity memory associated with low and high integrity

variables (respectively) for the executable code α can be defined as follows.

Definition 4.4.12. Set of Low Integrity Variable to Memory Map for executable

code α:

MV Lα
def
= {Memv[m,m+l−1]|Memv[m,m+l−1] ∈MVα∧MemILv[m,m+l−1] =

Low}

Definition 4.4.13. Set of High Integrity Variable to Memory Map for executable

code α:

MVHα
def
= {Memv[m,m+l−1]|Memv[m,m+l−1] ∈MVα∧MemILv[m,m+l−1] =

High}

This definition also enforces the second requirement of the integrity model which

simply states that all memory cells associated with a variable will be set to the same

integrity level as that variable.

96 CHAPTER 4. MEMORY INTEGRITY MODEL

So far in the classification of required memory of an executable code only vari-

ables defined by the programmer are considered. The code in execution, however,

may require other memory spaces not associated with any variable within the code.

To represent this notion the process memory is defined for the executable code α.

To keep the definition consistent with defined sets for program variables, the same

memory range notation is used for the process memory. The defined ranges for user

provided variables in the formal model, however are associated with the abstract

variable name. For consistency, the set of execution variables is defined to associate

abstract variable names with the allocated memory during execution.

Definition 4.4.14. Set of Execution Variables for the executable code α:

EVα
def
= {Memv[m,m+ l − 1]|Abstract(v) ∧ Size(v) : l}

This set simply represents any memory that is required during execution of α

that is not associated with any defined variable within the program. The function

Abstract() will assign a unique random name to such variables which is not required

for any implementation, rather only for formal representations. The set of process

memory for the executable code α then can be defined as a set where the elements

would represent the associated memory cells with variables which are either defined

by the programmer or required during execution and represented abstractly.

Definition 4.4.15. Set of Process Memory for the executable code α:

PMα
def
= MVα ∪ EVα

For the set of all memory space assigned to the process of the executable code

α, the subsets of low integrity and high integrity are defined.

Definition 4.4.16. Set of Low integrity Process Memory for the executable code

α:

PMLα
def
= {Memv[m,m+l−1]|Memv[m,m+l−1] ∈ PMα∧MemILv[m,m+l−1] =

Low}

Definition 4.4.17. Set of High integrity Process Memory for the executable code

α:

4.4. MEMORY MODEL 97

PMHα
def
= {Memv[m,m+l−1]|Memv[m,m+l−1] ∈ PMα∧MemILv[m,m+l−1] =

High}

The notion of setting the integrity levels of memory cells assigned to all user pro-

vided variables to low can now be expressed as the first requirement of the memory

integrity model.

MIR 1. ∀v ∈ UVα =⇒ Memv[m,m+ l − 1] ∈ PMLα

The second requirement, which is a logical assumption, states that all memory

cells assigned to a variable are set to the integrity level of that variable. This

requirement is expressed formally in the definition of the low and high integrity

process memory and expressed in general as follows.

MIR 2. ∀v,Memv[m,m+ l − 1] ∈ PMα : MemILv[m,m+ l − 1] = ILv

The two sets of low and high integrity process memory will partition the set

of process memory. That is PMLα ∪ PMHα = PMα and PMLα ∩ PMHα = ∅.

The sets of memory associated to low and high integrity variables are subsets of

the low and high integrity process memory respectively: MV Lα ⊂ PMLα and

MVHα ⊂ PMHα.

Before the code execution starts, all process memory that are not explicitly set

to low integrity level must be set to high integrity level. The same policy must be

applied for the set EVα during execution. This shapes the third requirement of the

memory integrity model.

MIR 3. ∀v ∈ Vα − UVα : Memv[m,m+ l − 1] ∈ PMHα

It is worth mentioning that the size of program variables are determined by their

types, whereas the size of the required memory during execution which is outside

the programmer’s control is determined by either the compiler or operating system.

In either case the integrity level of this type of process memory can be set explicitly

by the compiler or operating system. In formal expression this type of memory

is represented by abstract variable names to keep the defined sets compatible. In

98 CHAPTER 4. MEMORY INTEGRITY MODEL

Variables

User Provided

Program Internal

Does not affect flow of
execution

Affects flow of execution

Low Integrity

High Integrity

Memory for program in
execution

(virtual variables)

High Integrity

High Integrity

Classification TestSet: V

Set: UV

Set: PMH

Set: MVL
Set: PML

Set: V - UV

Memory associated to
Program Internal

Set: EV

Set: MVH

Set: MV

Before Execution During Execution

Temporary Storage

Figure 4.1: Relations between defined sets for program variables, assigned memory
and process memory

other words the generated code is correct for the purpose of the execution of α

regardless of the formal representation of the memory used during execution. From

an implementation point of view this means that the integrity level of memory used

during execution must be set to high by default. The integrity level must only

change when explicitly required, for instance in case of temporary storage of a low

integrity register. A diagram of the relations between defined sets can be found in

Figure 4.1.

Here the general idea of a memory corruption based on Definition 4.4.8 is de-

scribed. The enforcement of the integrity requirements using the added checks to

machine instructions are discussed in detail in the following section. Given the

abstract function Write() is supposed to store the value of a variable in its associ-

ated memory cells, it will contain at least a store instruction in its machine code.

A memory corruption can be defined as at least a store instruction outside the

defined boundaries of a variable. The following definition formally expresses this

general idea.

Definition 4.4.18. Memory Corruption:

∀v ∈ PMα where
(
Type(v) : τ ∧ Size(τ) : l

)
∨
(
Abstract(v) ∧ Size(v) : l

)
,

4.4. MEMORY MODEL 99

for the partial program Write(v) with atomic actions a1; a2; . . . ; an

∃ak ≡ st rd(w), rs where mx = sk.Reg(rd) + w /∈Memv[m,m+ l − 1]

It is assumed that mx ∈ PMα, as the process address space can be tightly

controlled with virtual addressing or segmentation. Based on the definition, if

mx /∈ Memv[m,m + l − 1] then mx would belong to another range such as mx ∈

Memu[m
′,m′ + l′ − 1] associated with the variable u (defined by the programmer

or abstractly) and will have the following cases: (i) u ∈ PMHα; or (ii) u ∈ PMLα.

That is the integrity level of the memory cell pointed to by mx is either set to high

or it is set to low. The corruption is done using user provided input. This means

the variable v will have a low level of integrity. The integrity level of the memory

cells assigned to the variable v will consequently be set to low. If the integrity level

of the memory cell pointed to by mx is set to high a mismatch of integrity will oc-

cur. This is due to the Write(v) program performing low integrity memory writes

for the low integrity variable v. It will be shown in the following section that the

atomic store instruction(s) belonging to the Write(v) program can only access low

integrity memory cells.

If mx points to an address outside the associated range for variable v but the

integrity level of the memory cell is set to low, the corruption will occur. This

however is inconsequential for a control flow attack as all memory cells that will

affect the flow of execution are set to high integrity or have to pass an explicit test.

This means corruption of low integrity memory cells will either corrupt a cell that

has no effect on flow of execution or will be tested before being elevated to high

integrity. There must be no opportunity to corrupt a low integrity level variable

that has passed its classification test. The elevation of the associated memory cells

must be done before reading another variable from the user. This forms the fourth

requirement of the integrity model.

MIR 4a. ∀v1, v2 ∈ UVα ∧ ∃(ϕ, v1) ∈ CTα ∧ Classify(v1) : a1; a2; . . . ; an

1. “if ϕ(v1) then Classify(v1) else halt()”
C→
((

?ϕ(v1);Classify(v1)
)
∪
(
?¬ϕ(v1);halt

))
2. ∀ak ∈ Classify(v1) =⇒ ak /∈ ReadIO(v2)

100 CHAPTER 4. MEMORY INTEGRITY MODEL

The ReadIO(v) formally defined in Definition 4.4.9 is a program that reads the

user provided value from MemIO, and stores it in its corresponding location in

memory for a variable v. Classify(v) is a program that represents the change

of the integrity level of the variable v. The requirement states that for any two

user provided variables v1 and v2 if there exists a classification test for variable v1

such as ϕ(v1) and it passes the test successfully expressed as “ϕ(v1) = True”, then

the transition of the integrity level of the variable v1 happens before reading the

variable v2 from the user. This is demonstrated using the notation
C→ that expresses

the notion of “is compiled to”. The requirement is that the classification test is

enforced using the high level programming construct if-then-else for the variable

v1 and it is translated to the given PDL formula. The formula then is constructed

using the test and sequence operator as ?ϕ(v1);Classify(v1) expressing that there

are no other instructions between the action sequence of the classification test and

the action sequence of the classification of the variable. This is reinforced by the

choice operator conditioned on unsuccessful test followed by the halt instruction.

The second requirement expresses that for all atomic instructions of the program

Classify(v1), none belong to the program ReadIO(v2). This is required to remove

the opportunity of corruption that may be available by reading the second variable

before elevating the first variable that has passed its associated classification test.

After defining the machine instructions, the requirement above will be discussed in

more detail (Section 4.4.5).

The last requirement of the model states that the compiler will produce instruc-

tions according to the integrity level of the memory or registers involved. That

is each instruction has the capability of enforcing the requirements of the memory

integrity model and the compiler will use the instructions accordingly. This will

assure that low integrity and high integrity content will not be mixed together with-

out explicit instruction(s) to increase or decrease the integrity level when necessary

and according to the rules preventing user-controlled corruption of high integrity

memory.

4.4. MEMORY MODEL 101

The general PDL expression in MIR 5 specifies a test ϕ that must be satisfied

for successful execution of the instruction and the logical statement p that must

be satisfied in all possible executions of the provided action sequence (?ϕ; ak) ∪

(?¬ϕ;halt). In all cases the p statement only expresses the condition related to

the rules of integrity model that must be satisfied when the test ϕ ≡ >. The case

where ϕ ≡ ⊥ and logical statements regarding the semantics of the instructions are

omitted. The expressions ϕ ≡ > and p ≡ > express that the instruction has no

precondition or postcondition for memory integrity to satisfy.

MIR 5. ∀ak ∈ α =⇒
[
(?ϕ; ak) ∪ (?¬ϕ;halt)

]
p

• ak = (nop ∨ jd w ∨movi rd, w ∨ halt) =⇒ ϕ ≡ > ∧ p ≡ >

The no operation, jump direct, move immediate operand, and halt instructions

do not require any verification for memory integrity.

• ak = add rd, rs, rt =⇒ ϕ ≡ sk.RegIL(rd) = sk.RegIL(rs) = sk.RegIL(rt)

• ak = addi rd, rs, w =⇒ ϕ ≡ sk.RegIL(rd) = sk.RegIL(rs)

The arithmetic and logic operations can be done on registers with same integrity

levels. The result can only be stored in a register with the same integrity level.

• ak = ld rd, rs(w) =⇒ ϕ ≡ sk.RegIL(rs) = H ∧ p ≡ sk+1.RegIL(rd) =

sk.MemIL(sk.Reg(rs) + w)

The integrity level of the register that receives the content of a memory cell

will be set to the integrity level of that memory cell. The integrity level of the

register used for address calculation will be high.

• ak = st rd(w), rs =⇒ ϕ ≡ sk.RegIL(rd) = H∧sk.RegIL(rs) = sk.MemIL(sk.Reg(rd)+

w) ∧ p ≡ >

The store instruction must verify that the target memory location has the

same integrity level of the register that is being stored. The compiler will

explicitly set the integrity level of the target memory before executing this in-

struction in the case of temporary storage, or it will be the same if the store

102 CHAPTER 4. MEMORY INTEGRITY MODEL

logically follows an earlier load. The register used for address calculation must

have a high integrity level.

• ak = bgt rs, rt, w =⇒ ϕ ≡ sk.RegIL(rs) = H ∧ sk.RegIL(rt) = H ∧ p ≡ >

The conditional branch instruction affects the flow of execution based on the

content of two registers. The integrity levels of these registers must be high.

• ak = (jmp rs ∨ ret rs) =⇒ ϕ ≡ sk.RegIL(rs) = H ∧ p ≡ >

The indirect jump and return instructions use the content of a register as the

target address, hence the integrity level of the register must be high.

A more detailed expression of the last requirement for each instruction will be

provided in the following section. New instructions that are necessary to explicitly

change the integrity level of memory cells or registers are also discussed.

The informal summary of the requirements can be stated as follows:

1. All user provided variables must be declared explicitly by the programmer and

the integrity level of the assigned memory cells to these variables must be set

to low.

2. The integrity levels of all memory cells associated with a variable will be set

to the integrity level of that variable.

3. The integrity levels of all other memory cells used in the program must be set

to high, except memory cells used for temporary storage of low integrity level

variables or registers during execution.

4. If a low integrity variable will be used in a decision that will influence the flow

of control in any way, it must have a classification test and be elevated as soon

as it passes the test (before reading the next variable from the user).

5. The part of the code dealing with low integrity operations, will use low integrity

instructions operating on registers and memory locations set to low integrity

4.4. MEMORY MODEL 103

levels. This is enforced as part of the semantic of the atomic instructions and

by appropriate instruction generation of the compiler.

The enforcement of the last two requirements through machine instructions is dis-

cussed in the following section.

4.4.4 Instructions Enforcing Memory Integrity Model

The main goal of memory integrity model is to limit what can be corrupted by the

attacker to the user provided values that have no effect on the flow of execution

and are already under the user’s or adversary’s control. This will ultimately make

the attack ineffective. This is achieved in three main steps. The first step is to

classify memory into two broad classes and mark the memory cells accordingly. The

second step is to define rules for the flow of information from the lower category

to the higher. The third step is to enforce the defined rules at atomic instruction

execution to prevent unauthorised flow of information. The previous sections have

discussed the first two steps. This section deliberates more on the requirements of

each atomic instruction, which falls under the third step of achieving the goal of the

memory integrity model.

Before discussing the requirements of instructions in more detail, a summary

of the notation used to express the semantics of each instruction is provided. To

represent the register content the notation Reg(rRegnum) is used, which is the same

as the notation in the previous chapter. RegIL(rRegnum) is used to represent the

the integrity level of a register. Similarly Mem(x) is used for memory content at

address x; MemIL(x) is used for the memory integrity of the cell at address x. The

notation summary can be found in Table 4.1.

The instruction set prior to the required checks of the integrity model from the

previous chapter is summarised in Table 4.2. For clarity the preconditions of Ideal

Control Flow Integrity (ICFI) will be removed in the remainder of this chapter.

The enforcements in atomic instructions related to ICFI will be simply referred to

as ICFI Conditions.

104 CHAPTER 4. MEMORY INTEGRITY MODEL

Table 4.1: Notation summary

Notation Semantic

← Assignment as target← value

Mem(x) Content of memory at address x

Memv[m,m+ l−1] Memory cells assigned to variable v of size l starting at ad-
dress m

MemIL(x) Integrity Level of memory at address x

Reg(rx) Content of register rx in the register file

RegIL(rx) Integrity Level of register rx in the register file

ILv Integrity Level of variable v

pc Content of the program counter

∈emb Embedded as an immediate operand as w ∈emb ix
dot / . Partial element of the state e.g. s.pc: content of pc in state s

s Current state

s′ Next state (after execution of the current instruction)

Since the focus of the integrity model is on the flow of information and there are

various instructions that have no effect on memory or registers, these instructions

can be excluded from the discussion. These instructions are: nop, halt, and jd

which do not require any changes as these instructions do not change the content

of memory or any register in the register file. The jump direct instruction uses

an immediate operand as an address where a successful exploitation would require

corruption of the code memory. As the corruption would need a memory write to

code memory it can be prevented either under the read only memory for code, the

memory integrity model, or as discussed in the previous chapter under the integrity

precondition of the executable code for ICFI. The movi instruction can change the

content of a register, however as the operand and the register are both embedded in

the instruction itself and similar to direct jump cannot be changed during execution

with read only memory or integrity assumption of the code, this instruction does not

require any change under the integrity model. To distinguish the instructions that

require additional verification under the memory integrity model from their previous

version, the first letter of the instruction is changed to a capital letter. For instance

the new load instruction will be expressed as Ldrd, rs(w) which will be constructed

4.4. MEMORY MODEL 105

Table 4.2: Summary of instruction semantics

Instruction Semantics
[nop]p1
p1 ≡ s′.pc = s.pc+ 1
[add rd, rs, rt]p1 ∧ p2
p1 ≡ s′.Reg(rd) = s.Reg(rs) + s.Reg(rt)
p2 ≡ s′.pc = s.pc+ 1
[addi rd, rs, w]p1 ∧ p2
p1 ≡ s′.Reg(rd) = s.Reg(rs) + w
p2 ≡ s′.pc = s.pc+ 1
[movi rd, w]p1 ∧ p2
p1 ≡ s′.Reg(rd) = w
p2 ≡ s′.pc = s.pc+ 1
[ld rd, rs(w)]p1 ∧ p2
p1 ≡ s′.Reg(rd) = s.Mem(s.Reg(rs) + w)
p2 ≡ s′.pc = s.pc+ 1
[st rd(w), rs]p1 ∧ p2
p1 ≡ s′.Mem(s.Reg(rd) + w) = s.Reg(rs)
p2 ≡ s′.pc = s.pc+ 1
[jd w]p1
p1 ≡ s′.pc = w
bgt rs, rt, w ≡ [(?ϕ; jd w) ∪ (?¬ϕ;nop)]p1
p1 ≡ s′.pc = w ∨ s′.pc = s.pc+ 1
ϕ ≡ s.Reg(rs) > s.Reg(rt)
[(?ϕ; jmp rs) ∪ (?¬ϕ;halt)](p1 ∧ p2) ∨ ⊥
ϕ ≡ ICFI Condition ((s.pc, s.Reg(rs)) ∈ ACα∧α′

p1 ≡ s′.pc = s.Reg(rs)
p2 ≡ ICFI Condition (s′.RMα = s.RMα + (s.pc+ 1, s.Reg(rs), rp1...m))
[(?ϕ; ret rs) ∪ (?¬ϕ;halt)](p1 ∧ p2) ∨ ⊥
ϕ ≡ ICFI Condition ((s.Reg(rs), fj, rp

fj
1...m) ∈ s.RMα

p1 ≡ s′.pc = s.Reg(rs)

p2 ≡ ICFI Condition (s′.RMα = s.RMα − (s.Reg(rs), fj, rp
fj
1...m))

[halt]p1
p1 ≡ ⊥

using its previous semantic with added verifications. This will also demonstrate the

relation and changes between the two versions of these instructions.

Considering the integrity model at its core is dealing with the content of memory

and registers, instructions that update the content of a memory cell or register are

considered first. The required rules for load and store instructions can be defined

as follows.

106 CHAPTER 4. MEMORY INTEGRITY MODEL

Definition 4.4.19. Load Instruction:

Ld rd, rs(w) ≡
[(

?ϕ; ld rd, rs(w)
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2 ∧ p3) ∨ ⊥ such that:

• ϕ ≡ s.RegIL(rs) = H

• p1 ≡ s′.RegIL(rd) = s.MemIL(s.Reg(rs) + w)

• p2 ≡ s′.Reg(rd) = s.Mem(s.Reg(rs) + w)

• p3 ≡ s′.pc = s.pc+ 1

The requirement for the new load instruction is that the integrity level of the

register used for the address of the memory cell must be high. Since the target

register would represent the content of the addressed memory cell, it will be set to

the same integrity level as the source memory cell. The integrity requirement of the

address is enforced by specifying condition ϕ in the PDL expression of the instruc-

tion that when True the ld instruction will be executed and the halt instruction

otherwise. This is expressed as ϕ ≡ s.RegIL(rs) = H which specifies the integrity

level of register rs used in address calculation, as Reg(rs) + w must be high. This

is due to the fact that the integrity level of all memory addresses must be high

regardless of the integrity level of the cell they are pointing to. That is all memory

addresses are considered as the program internal state and must never be controlled

by the user. The outcome of the execution of the load instruction is expressed as

the three logical statements p1, p2, and p3. The first statement expresses that in

the new machine state the integrity level of the destination register rd is set to the

same level as the the memory cell at address Reg(rs) + w, where w represents the

offset provided as an embedded value within the load instruction itself. The second

logical predicate expresses the semantic of the load instruction. In the new machine

state the destination register will contain the content of the memory cell addressed

as Reg(rs)+w. The last logical outcome of the load instruction in the new machine

state is that the program counter is incremented by one.

The store instruction writes the content of a register into memory, and from

this aspect it would provide the opportunity for memory corruption.

4.4. MEMORY MODEL 107

Definition 4.4.20. Store Instruction:

St rd(w), rs ≡
[(

?ϕ; st rd(w), rs
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.MemIL(s.Reg(rd) + w) = s.RegIL(rs) ∧ s.RegIL(rd) = H

• p1 ≡ s′.Mem(s.Reg(rd) + w) = s.Reg(rs)

• p2 ≡ s′.pc = s.pc+ 1

Similarly for the new store instruction, the integrity level of the register used

in address calculation of the target memory must be high. The store instruc-

tion differs from the load in the sense that the destination register in load always

represents the memory cell and must also represent its integrity level, whereas in

store there are circumstances that must be checked whether the integrity levels

of the register and the target memory match to assure that high integrity mem-

ory is not corrupted by low integrity content. This can be enforced by adding

another condition to the store instruction that verifies whether the source regis-

ter and the target memory cell have the same integrity level. This is expressed in

PDL as a choice between the sequence of a test ϕ and st instructions, and the

sequence of the test ?¬ϕ and halt instructions. The ϕ condition then specifies two

requirements for a successful execution of the store instruction. The first defined

as s.MemIL(s.Reg(rd) + w) = s.RegIL(rs) expresses the condition that the in-

tegrity level of the memory cell at address Reg(rd) + w and the integrity level of

the rs register are equal. The second expressed as s.RegIL(rd) = H enforces the

requirement of high integrity levels for address calculation. The outcome of the suc-

cessful execution of the store instruction is expressed as the two logical statements

p1 and p2. The first statement expresses the semantic of the store instruction as

s′.Mem(s.Reg(rd) +w) = s.Reg(rs). This specifies that in a new machine state the

memory cell at the address calculated as the content of rd plus the embedded value

w will contain the content of the register rs. The second statement simply specifies

that the program counter will be incremented by one in the new machine state.

108 CHAPTER 4. MEMORY INTEGRITY MODEL

More complex instructions such as push and pop, which are not discussed in the

model, can be constructed using the load and store instructions, reserved registers

for stack pointers, and an instruction that unconditionally sets the integrity level

of the memory cell at the top of the stack according to the integrity level of the

register that is being pushed. The unconditional setting of the memory cell to low

integrity only applies when the target memory cell is used as temporary storage and

is guaranteed to be free. This can be achieved by limiting the required memory

writes for user provided input to one variable at a time and setting the associated

memory to low integrity, as discussed in the previous section. Depending on the

architecture, the logic used to deal with function calls may differ. One strategy

is to use the current stack frame to store the content of the register file. The

integrity of the stack registers can be guaranteed by setting the integrity level of

these registers to high. This will assure that when these registers are pushed to

the top of the stack, the integrity level of the assigned memory cells will be set

to high. As the attacker will only have access to low integrity memory cells the

stack pointers cannot be corrupted. When the stack pointers can be trusted then

the push and pop instructions can be trusted to explicitly set the integrity level of

the memory cell pointed to by the stack pointers according to the integrity level

of the register that is being pushed to the top of the stack. The pop instruction

would behave similar to load, as the target register will be overwritten in process

of restoring a previous state of the program in execution. A stack buffer overflow

attack takes advantage of the vulnerabilities that involve the store instruction and

an incorrect memory address (base or offset) pointing to memory cells in the stack

rather than push and pop instructions. In this scenario a store instruction for a low

integrity register cannot be executed if the integrity level of the memory cell with

the calculated target address is high. This will stop an unchecked store instruction

within a loop as soon as the instruction tries to perform a write into a memory cell

with the high integrity level. The corruption then will be limited to memory cells

set to low integrity. This will only include memory associated with user provided

4.4. MEMORY MODEL 109

variables that have not been read from the user or do not influence the flow of

execution.

The conditional branch instruction affects the flow of execution based on a con-

dition, hence it can only use registers that are set to the high integrity level as the

condition of the branch. This will assure that low integrity content cannot affect the

flow of execution. For user provided values to be used in changing the flow of exe-

cution, they must first pass the classification test and be changed to high integrity.

This is discussed as part of the conditional change of integrity levels of registers and

memory cells further in this chapter.

Definition 4.4.21. Branch Greater Than Instruction:

Bgtrs, rt, w ≡
[(

?ϕ1;
(
(?ϕ2; jdw) ∪ (?¬ϕ2;nop)

))
∪
(

?¬ϕ1;halt
)]
p1∨⊥ such that:

• ϕ1 ≡ s.RegIL(rs) = H ∧ s.RegIL(rt) = H

• ϕ2 ≡ s.Reg(rs) > s.Reg(rt)

• p1 ≡ s′.pc = w ∨ s′.pc = s.pc+ 1

The requirement of the conditional branch is enforced by constructing the Bgt

instruction as a choice between the sequence of a test ϕ1 and the semantic of the

conditional branch and the complement of the test and halt instruction. The test

ϕ1 verifies whether the integrity levels of both registers used in deciding the flow

of execution are high. If this test fails the execution will halt. In case that the

test ϕ1 succeeds the test ϕ2 combined with a choice decide the flow of execution. If

ϕ2 succeeds, then the direct jump instruction jd with the embedded address w is

executed; if it fails, the no operation instruction nop will be executed. The successful

execution of the conditional branch is expressed as logical statement p1, where in

the new machine state the program counter is either containing the address w as

embedded in the Bgt instruction or is incremented by one.

Indirect jump and return instructions use the content of a register as an address

to jump or return to, and clearly affect the flow of execution based on a run-time

value. This value must also be of high integrity and outside the reach of corruption

110 CHAPTER 4. MEMORY INTEGRITY MODEL

by user provided input. This is achieved by requiring both indirect jump and return

instructions to use only registers set to high integrity.

Definition 4.4.22. Indirect Jump Instruction:

Jmp rs ≡
[
(?ϕ; jmp rs) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegIL(rs) = H ∧ ICFIconditions

• p1 ≡ s′.pc = s.Reg(rs)

• p2 ≡ ICFI conditions

For indirect jump this is shown in PDL as a sequence of a test ϕ and the jmp

instruction or the sequence of the test ¬ϕ and the halt instruction. The test

is constructed using the condition that the integrity level of the register used in

address calculation, rs, must be high. The ICFI conditions can be enforced in a

similar manner and are discussed in detail in the previous chapter. The program

counter in the new machine state will contain the content of the register rs after

successful execution of the indirect jump instruction. Similarly, to enforce the ICFI

requirements the ICFI conditions can be expressed as part of the semantic of the

indirect jump, which has been discussed in detail in the previous chapter.

The return instruction, similar to indirect jump instruction can only use a high

integrity register for return address.

Definition 4.4.23. Return Instruction:

Ret rs ≡
[
(?ϕ; ret rs) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegIL(rs) = H ∧ ICFIconditions

• p1 ≡ s′.pc = s.Reg(rs)

• p2 ≡ ICFI conditions

These two instructions are similar in the context of the memory integrity model

however differ in the context of ICFI.

4.4. MEMORY MODEL 111

To avoid accidental mixture of low integrity content with high integrity con-

tent which could lead to memory corruption, the arithmetic operations can only be

performed on registers with the same integrity level.

Definition 4.4.24. Add Instruction:

Add rd, rs, rt ≡
[
(?ϕ; add rd, rs, rt) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegIL(rd) = s.RegIL(rs) = s.RegIL(rt)

• p1 ≡ s′.Reg(rd) = s.Reg(rs) + s.Reg(rt)

• p2 ≡ s′.pc = s.pc+ 1

To enforce the aforementioned requirement, the Add and Addi instructions are

both expressed as a sequence of a test and the corresponding instruction, or the

complement of the same test and the halt instruction. In the Add instruction the

involved registers must all be of the same integrity level. This is stated in PDL

as the logical statement s.RegIL(rd) = s.RegIL(rs) = s.RegIL(rt) specifying that

registers rd, rs and rt, all have the same integrity level.

The outcome from the add instruction is defined using two logical statements

expressing the fact that in the new machine state the register rd contains the result

of addition between the content of registers rs and rt, and the fact that the program

counter is incremented by one.

Definition 4.4.25. Add Immediate Instruction:

Addi rd, rs, w ≡
[
(?ϕ; addi rd, rs, w) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegIL(rd) = s.RegIL(rs)

• p1 ≡ s′.Reg(rd) = s.Reg(rs) + w

• p2 ≡ s′.pc = s.pc+ 1

The Addi instruction differs from Add instruction in that it only requires two

registers and the test is expressed as: s.RegIL(rd) = s.RegIL(rs) for these two

involved registers. The outcome is similarly expressed as the logical statements

112 CHAPTER 4. MEMORY INTEGRITY MODEL

specifying the content of the register rd and program counter in the new machine

state.

To allow increase or decrease of the integrity level when needed, according to

the locality and logic of the generated executable code, instructions that can change

the integrity level of registers or memory cells are needed. First the unconditional

instructions to change the integrity level of a register or a memory cell are defined.

Then the various requirements and conditions that must be met to avoid abuse of

these instructions in memory corruption are described.

Definition 4.4.26. Change Register Integrity Level :

[Intreg rt, il]p1 ∧ p2 such that:

• p1 ≡ s′.RegIL(rt) = il

• p2 ≡ s′.pc = s.pc+ 1

The outcome of the execution of this instruction is defined as two logical state-

ments. The first statement specifies that the integrity level of the register rt in new

machine state will be equal to the embedded integrity level in the instruction il.

The second statement expresses that the program counter is incremented by one in

the new machine state.

Similarly, to change the integrity level of the memory at address Reg(rd) + w

the memory instruction can be used. Although this instruction is a new instruc-

tion under the memory integrity model, intmem rd(w), il is used to express the

semantic of the instruction without the required verification of the target memory

address to build up the instruction that is intended. The intermediate expression

intmem rd(w), il will not be a valid instruction by itself and will not be used in code

generation.

Definition 4.4.27. Change Memory Integrity Level :

Intmem rd(w), il ≡
[(

?ϕ; intmem rd(w), il
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2)∨⊥ such that:

• ϕ ≡ s.RegIL(rd) = H

4.4. MEMORY MODEL 113

• p1 ≡ s′.MemIL(s.Reg(rd) + w) = il

• p2 ≡ s′.pc = s.pc+ 1

The memory version of changing an integrity level instruction uses a memory ad-

dress. All memory addresses must use high integrity registers in address calculation.

The instruction is constructed as a sequence of a test ϕ and an unconditional change

of the integrity level of the memory cell at address Reg(rd) + w, or the sequence of

the complement of the test and the halt instruction. The result of a successful exe-

cution of the instruction is expressed as two logical statements specifying that in the

new machine state the integrity level of the memory cell addressed as Reg(rd) + w

will be set as il, and the program counter will be incremented by one.

Given the conditional branch instruction can only use registers with high in-

tegrity levels and the need to perform a test on user provided input, it must be

considered how to define a condition which would allow the transition of the in-

tegrity level from low to high for user provided input. This can be achieved by

conditioning the elevation of the integrity level of a memory cell on two essential

elements of a classification test for a variable. The first essential element is the user

provided value itself or some derived value from it, for instance the length or the

type. This first element can be of low integrity. The second essential element is

a high integrity value which represents the expected value or an acceptable value.

The second element will protect the integrity of the test itself by assuring that the

adversary can only control one of the two elements in any classification test and that

the element is always tested against a high integrity element. The high integrity

element can be an elevated value which means it has passed its own specific test

and now can be trusted. The result of a successful test would be the elevation of

the associated memory cell to this test. This will allow the construction of more

complex tests that could verify and increase the integrity level of multiple elements

in more complex expressions. Although this instruction can combine the classifica-

tion test of a variable and the classification of the memory cell associated to it, both

114 CHAPTER 4. MEMORY INTEGRITY MODEL

ϕ(v) ∈ CTα and Classify(v) are considered as programs with certain requirements

that will be discussed shortly.

Definition 4.4.28. Conditional Set Memory Integrity Level :

Cintmem rd(w), rs, rt ≡
[(

?ϕ; intmem rd(w), H
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2) ∨⊥ such

that:

• ϕ ≡ s.Reg(rt) < s.Reg(rs) ∧ s.RegIL(rs) = H ∧ s.RegIL(rd) = H

• p1 ≡ s′.MemIL(s.Reg(rd) + w) = H

• p2 ≡ s′.pc = s.pc+ 1

The three aforementioned elements of the conditional change of integrity level for

a memory cell are integrated in the construction of the instruction as part of the test

ϕ and the result of successful execution of the instruction in the logical statement

p1. As the instruction is only used to elevate the integrity level, there is no need to

provide the integrity level as an immediate operand within the instruction itself. The

instruction is represented in PDL as the sequence of a test ϕ and the unconditional

change of the integrity level of the memory cell addressed by s.Reg(rd) +w to high;

or the sequence of the complement of the test and the instruction halt. This assures

that the violation of the test will stop the execution. The test ϕ then is comprised

of three logical statements that must be true for the test to be successful. The first

statement specifies the comparison of the low integrity element of the classification

test, register rt, with the high integrity element, register rs. The second statement

assures that the high integrity element is verified by checking the integrity level of the

register rs. The third statement assures that the integrity level of register rd, which

would contain a memory address base, is high. The result of the successful execution

of the instruction is defined as two logical statements expressing the elevation of the

integrity level of the memory addressed by Reg(rd) + w and the increment of the

program counter in the new machine state.

For completeness the conditional change of integrity level is provided for a register

as well. The conditional set register integrity instruction is similar to its memory

4.4. MEMORY MODEL 115

counterpart, with the exception that the result of a successful test would be the

elevation of a register.

Definition 4.4.29. Conditional Set Register Integrity Level :

Cintreg rd, rs, rt ≡
[
(?ϕ; Intreg rd, H) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.Reg(rt) < s.Reg(rs) ∧ s.RegIL(rs) = H

• p1 ≡ s′.RegIL(rd) = H

• p2 ≡ s′.pc = s.pc+ 1

This instruction for instance can be used for optimisation in case of simple data

structures of the maximum length of a register. In this scenario, a user provided

variable is read from input/output memory into a register. A classification test is

performed to elevate the integrity level of the register. The register then will be

used in a conditional branch instruction and the integrity level of the register is set

back to low for repeating this procedure. Rather than elevating the memory cell to

high before the branch and lowering it after, the test can be performed on the copy

of the variable’s value in a register. The copy can be used as a representative of the

variable in the conditional branch instruction. The generated code will be correct if

the memory cell will contain the final value of the variable and the integrity level of

the memory cell is set to the appropriate value. The optimisation however is outside

the scope of this thesis.

4.4.5 A Discussion on Compiler Requirements

Having defined the requirements of the instructions for the memory integrity model,

the potential avenue of attack and the sequences of instructions that must be avoided

by the compiler can be discussed in more detail. The unconditional change of

memory integrity or register instructions combined with store have the capability

to overwrite high integrity memory locations. To avoid abuse of these instructions

as part of an exploitation, their combined use must be tightly controlled by the

116 CHAPTER 4. MEMORY INTEGRITY MODEL

compiler. Change of the integrity level of registers and memory hence can be done

conditionally or unconditionally, depending on the locality and logic of the program

to remove the opportunity of exploitation by the adversary. More precisely, the

elevation of the integrity level must be limited to a specific part of the program

and separate from the parts where the user and therefore the adversary have write

access to memory. This is justified, as lowering the integrity level of memory or

registers will not lead to memory corruption that could change the flow of execution

as all registers used in address calculation require high integrity levels as part of

their semantics, as well as the conditional branch instruction.

The partial programs Map(v) and Classify(v) require the change of integrity

level for memory cells either unconditionally or conditionally. These programs may

also use the load and store instructions. The ReadIO(v) program transfers the

user provided input from IO memory to memory cells assigned to variables. This

program also uses the load and store instructions. By separating the classification

of the associated memory cells from the write operation, the memory corruption

will be limited to programming errors where the corruption cannot be controlled by

the attacker. Otherwise it is part of the benign execution of the program. That is,

it will happen with valid user input and cannot be considered as exploitation. The

goal is to remove the opportunity of corruption from each of these partial programs.

The Map(v) program uses unconditional change of integrity level instructions to

set up the integrity levels of the associated memory cells for all variables. As this

program is executed before the program α, it is outside the reach of the adversary

since its execution occurs before any of the ReadIO(v) programs for ∀v ∈ UVα.

This can be formally expressed by considering a high level program A comprised of

high level functions fi ∈ A ∨ libj for j = 1, . . . , n. Each function is compiled to a

corresponding machine code comprised of (i) a function prologue; (ii) an equivalent

machine code of the function; and (iii) a function epilogue. This can be formally

expressed as the last memory integrity requirement as follows.

4.4. MEMORY MODEL 117

MIR 6. ∀fi ∈ (A ∨ libj), i = 1, . . . , n1, j = 1, . . . , n2 then

fi
C→ (βi;αi; γi) =⇒ ∀vik ∈ fi,Map(vik) ∈ βi, k = 1, . . . , n3

The notation
C→ expresses the compilation process from a high level function

to low level machine instructions. The action sequence βi is the prologue for the

function fi. The action sequence αi is the equivalent machine code of the function

fi. The action sequence γi is the epilogue for the function fi. The prologue code,

βi, will perform all the required preparations for the execution of the equivalent

machine code αi for function fi, including but not limited to associating required

memory for the local variables. The function prologue can perform other tasks such

as setting up the new stack frame for the called function. In this case the Map(v)

will be part of the prologue of function fi where the variable v is a local variable

in that function. The epilogue of a function then can perform any required clean

up task, for instance resetting the integrity level of any necessary memory location

that was set up by the function prologue. The MIR 6 states that the association

of the memory cells to variables are done before the execution of the code starts.

The requirement also expresses that the association of variables does not need to be

done all at once for all variables of the program, it can be done per function as the

execution progresses. However, for every function the association of memory cells to

local variables is done before the execution of the equivalent machine code of that

function starts.

Once Map(v) sets the appropriate integrity level for the associated memory

cells for each variable v ∈ Vα, during the execution of the program α, the partial

programs ReadIO(v) for v ∈ UVα will read the user provided values and store them

in associated memory. An abstract definition for the ReadIO(v) has been provided

in Definition 4.4.9. Now the requirement that the ReadIO(v) program not perform

any conditional or unconditional change of integrity level instruction can be added.

This can be expressed by amending the definition of ReadIO(v) as follows:

Definition 4.4.30. For the program ReadIO(v) comprised of atomic actions

a1; a2; . . . ; an where v ∈ UVα then ∀ak ∈ ReadIO(v) :

118 CHAPTER 4. MEMORY INTEGRITY MODEL

• ak = Ld rd, rs(w) =⇒
(
sk.Reg(rs) + w ∈ MemIO[mio,mio + l − 1] ∧

MemIL[mio,mio + l − 1] = L
)

• ak = St rd(w), rs =⇒ sk.RegIL(rs) = L

• ak 6=
(
Intreg rt, il∨Cintreg rd, rs, rt∨Intmem rd(w), il∨Cintmem rd(w), rs, rt

)
The first requirement of the program ReadIO(v) is that the integrity levels of all

memory cells in the Memory IO range are set to low. Consequently all the required

load instructions will set the temporary registers, used in transferring the user

provided input from Memory IO, to associated memory cells to low integrity. The

second requirement states that all store instructions will perform memory writes

using a low integrity register as the source. The third requirement is that none

of the conditional or unconditional changes of register or memory integrity level

instructions are used in the ReadIO(v) program.

When dealing with user provided variables, the change of integrity level from

low to high can only happen after passing the corresponding classification test and

will happen using the corresponding Classify() program for that variable. The

Classify(v) program will control the use of conditional or unconditional change of

memory integrity instructions based on the the starting address and the size of the

variable v. Since the Classify(v) program is only concerned with the integrity level

of the variable v not its content, it does not require any store instruction. The

registers are temporary storage and the load instruction keeps the integrity level

of the variables intact when stored in registers. As a general rule, the Classify(v)

program does not require any change of register integrity as it elevates the integrity

level of a variable by changing the integrity level of the associated memory cells.

There may be exceptions for this rule for optimisation purposes which is outside the

scope of this model. An example would be for simple data structures that can be

stored in a register. The classification test and consequent elevation can all be done

using the copy of the variable in the register where the variable will be declassified

4.4. MEMORY MODEL 119

right after participating in a conditional branch, for instance to be reread from the

user.

This can be specified as rules for the compiler and formally expressed as follows:

For the program Classify(v) comprised of atomic actions a1; a2; . . . ; an, generated

by compiler, ∀ak ∈ Classify(v), ak 6= (Intreg rt, H ∨ Cintreg rd, rs, rt). This can

be added to the fourth requirement of the memory integrity model. The fourth

requirement has stated that for any two user provided variables v1 and v2, if v1 has

a classification test and has been provided by the user then the classification must

happen before reading another user provided variable such as v2. The requirement

was expressed in two conditions for any two variables v1 and v2 ∈ Vα (MIR 4a).

Given the corruption opportunity exists during ReadIO(v2) and can be achieved

using the store instruction, the requirement can state that the Classify(v1) does

not contain any low integrity store instruction. Adding the rule for setting the

register integrity level for Classify(v) the requirement can be amended as follows.

MIR 4b. ∀v ∈ UVα ∧ ∃(ϕ, v) ∈ CTα then:

1. “if ϕ(v) then Classify(v) else halt()”
C→
((

?ϕ(v);Classify(v)
)
∪
(
?¬ϕ(v);halt

))
2. Classify(v) : a1; a2; . . . ; an =⇒ ∀ak ∈ Classify(v):

• ak 6= St rd(w), rs ∧ sk.RegIL(rs) = L

• ak 6= (Intreg rt, H ∨ Cintreg rd, rs, rt)

The first requirement expresses that the high level programming construct “if ϕ(v)

then Classify(v) else halt()” is compiled to a choice dependant on the classifica-

tion test without any other actions between the test and the classification action

sequence.

One more condition must be specified for the Classify(v). That is the change of

memory integrity will not be performed outside the associated range of memory cells

to variable v. This is assured as all registers used in address calculation, in this case

rd in Intmem rd(w), H instruction, must have the high integrity level and cannot be

directly affected by user provided input. The ReadIO(v) program for any variable v

120 CHAPTER 4. MEMORY INTEGRITY MODEL

cannot perform any high integrity memory write. Given the ICFI requirements are

in place, the code of the program cannot be modified by the adversary to change

the value of the embedded offset w. The code can be equally protected by setting

the integrity level of the code memory to high as well as making the code memory

read only. Another avenue of attack would be the length of the variable v. Since

it is a user provided variable defined by the programmer, its type and consequently

its length are known in advance by the compiler. Proper numbers of conditional

or unconditional changes of memory integrity level instructions can be generated

by the compiler, to classify the associated memory cells for the variable v. This

requirement can be expressed as:

∀Intmem rd(w), H ∈ Classify(v), Reg(rd) + w ∈ Memv[m,m + l − 1] where

Type(v) : τ ∧ Size(τ) : l.

The fourth requirement with all conditions can be expressed as follows:

MIR 4. ∀v ∈ UVα ∧ ∃(ϕ, v) ∈ CTα ∧ Classify(v) : a1; a2; . . . ; an ∧ Type(v) :

τ ∧ Size(τ) : l

1. “if ϕ(v) then Classify(v) else halt()”
C→
((

?ϕ(v);Classify(v)
)
∪
(
?¬ϕ(v);halt

))
2. ∀ak ∈ Classify(v):

• ak 6= St rd(w), rs ∧ sk.RegIL(rs) = L

• ak 6= (Intreg rt, H ∨ Cintreg rd, rs, rt)

• ak =
(
Intmem rd(w), H ∨Cintmem rd(w), rs, rt

)
=⇒ sk.Reg(rd) +w ∈

Memv[m,m+ l − 1]

With all requirements of the memory integrity specified, the theorem and its

proof can now be stated.

4.4.6 Theorem of the Memory Integrity Model

This section provides the theorem of the memory integrity model and its proof.

4.4. MEMORY MODEL 121

Theorem 4.4.1. For the program α in execution with its set of process memory

PMα where PMα = PMLα ∪PMHα ∧PMLα ∩PMHα = ∅ and the corresponding

classification tests CTα, given the rules of memory integrity model (MIR 1-6) then

all computation sequences of the program α will be benign.

Proof : A memory corruption as defined in Definition 4.4.18 is a store instruc-

tion that attempts to write outside the boundary of a variable, whether defined by

programmer or abstract. Such a store instruction under the defined machine model

would be St rd(w), rs where mx = Reg(rd)+w is the calculated address for the store

operation. The proof is divided into two parts where the first part assumes that the

store instruction belongs to the ReadIO(v) program and studies the possibilities of

exploitation. The second part of the proof studies whether the attacker could control

the parameters of the store instruction that is not part of a ReadIO(v) program,

particularly when the instruction is writing a high integrity source register into a

high integrity memory location. It can be argued that corruption of a low integrity

location is inconsequential as either the target does not affect the flow of execution,

or if it does, it has a classification test which will detect the corruption.

1. St rd(w), rs ∈ ReadIO(v) =⇒ RegIL(rs) = L based on Definition 4.4.30 and

for the store instruction to be a memory corruption: mx /∈Memv[m,m+ l−

1] ∧mx ∈Memv′ [m
′,m′ + l′ − 1]. There can be the following cases:

(a) v′ is a defined variable hence v′ ∈ Vα where there will be two possibilities:

i. v′ ∈ UVα where using the MIR 1 rule v′ ∈ PMLα, where by the def-

inition of PMLα and MIR 1-2 MemIL(mx) = L and the corruption

would be inconsequential as:

A. the variable v′ has no effect on flow control and does not require

passing a classification test

B. the variable v′ has an effect on flow control and requires passing

a classification test which will detect the corruption

122 CHAPTER 4. MEMORY INTEGRITY MODEL

NB: If the variable v′ has passed its test, then it will be classified

before the attacker has the opportunity to corrupt v′.

ii. v′ /∈ UVα where using the MIR 3 rule v′ ∈ PMHα =⇒ MemIL(mx) =

H and given RegIL(rs) = L, the store instruction will halt accord-

ing to the semantic of the instruction (MIR 5)

(b) v′ is an abstract variable and there will be the following two possibilities:

i. v′ ∈ PMLα =⇒ MemIL(mx) = L and given RegIL(rs) = L

the corruption will be inconsequential as the attacker can corrupt

a temporary storage of a low integrity register (since v′ is abstract

variable)

ii. v′ ∈ PMHα =⇒ MemIL(mx) = H, and given RegIL(rs) =

L, the store instruction will halt according to the semantic of the

instruction (MIR 5)

2. St rd(w), rs /∈ ReadIO(v). For mx = Reg(rd) + w, consider the case where

MemIL(mx) = H ∧ RegIL(rs) = H and the calculated address or the con-

tent of rs is controlled by the attacker. This part of the proof considers the

scenarios under which an attacker can control a calculated address and/or a

high integrity register content.

(a) attacker changes w embedded in the store instruction which violates

the Int(α) assumption under the ICFI model, or code memory read-only

assumption.

(b) attacker controls rd

(c) attacker controls rs

For the attacker to control either rd or rs one the following sequences must

happen:

(a) a memory location belonging to a user provided value is first corrupted

and then changed to high integrity (requires Intmem or Cintmem). The

4.5. MEMORY CONFIDENTIALITY MODEL 123

value is then loaded from memory to a register which is used as rd or rs.

This sequence (changing integrity level of memory cells of user provided

variable) can only be part of the Classify(v) program where no low

integrity store is permitted (MIR 4).

(b) a memory location belonging to a user provided value is first corrupted

and then loaded into a register. The register is then elevated to high

integrity used as rd or rs. This sequence of instructions is not needed

for any reason as elevation of integrity level for user provided variables

must be performed on the memory cells assigned to the variable. The

compiler must not generate such sequence which is specified as MIR 4 for

instructions of the Classify(v).

NB: The other possible scenario for using the unconditional change of the

integrity level, for either memory cells or registers is the Map() function,

where as specified by MIR 6 for any given machine code of a function the

Map() is performed at the prologue of that function where there is no

opportunity for corruption by the attacker.

4.5 Memory Confidentiality Model

The goal of the memory confidentiality model is to protect against memory leak

attacks. In this model only the leaks that result in revealing the memory addresses

of the process address space are considered. The leaked address can be the loading

address of the executable code, shared libraries, heap, or stack. The knowledge of

the memory addresses can help the adversary to craft exploits to influence the flow

of execution.

4.5.1 Preliminary Definitions

This section discusses the preliminary definitions that will be used in formal expres-

sion of the memory confidentiality model. The concept of assigned memory cell(s)

124 CHAPTER 4. MEMORY INTEGRITY MODEL

to a variable expressed previously in Definition 4.4.7 is revisited first. The Map(v)

function associates a memory range expressed as Memv[m,m+ l− 1] with the vari-

able v, which belongs to the set of all variables of the program α expressed as Vα.

The size of the associated range, l, depends on the type of the variable v expressed

using the Type() and Size() functions.

In the memory confidentiality model the goal is to protect against leaking the

memory addresses. Given only variables of pointer type contain memory addresses

the scope of the type of variables can be limited to pointers. The set of all pointer

variables for the program α is defined as follows.

Definition 4.5.1. Set of all pointers for the program α:

PTRα
def
= {x|x ∈ Vα ∧ Type(x) : ptr ∧ Size(ptr) : l}

Given in some high level languages it is possible to retrieve the memory address

of a variable using an operator, the usage of such operator on variables must also

be considered. To define this set, Ampersand (&) is used as the address retrieving

operator and the retrieved address will be considered as an abstract variable as

follows.

Definition 4.5.2. Set of all ampersand operator on variables for the program α:

Ampα
def
= {x|x = &v ∧ v ∈ Vα}

The programmer may also use variables for pointer manipulations where such

variables must also be declared as highly confidential to avoid the mixture of address

related expressions that could lead to part of the code revealing memory addresses.

Definition 4.5.3. Set of all address-related variables for the program α:

AVα
def
= {i|Type(i) = integer ∧ ∃x ∈ PTRα, i, v ∈ Vα where mv = x + i ∈

Memv[m,m+ l − 1]}

A memory leak can now be defined as a store instruction that writes a regis-

ter that contains a memory address to a memory cell within the address range of

MemIO.

4.5. MEMORY CONFIDENTIALITY MODEL 125

Definition 4.5.4. Memory leak :

st rd(w), rs such that the following conditions hold:

• Reg(rs) = mx ∈Memx[m,m+ l − 1] ∧
(
x ∈ Vα ∨ Abstract(x)

)
• Reg(rd) + w ∈MemIO

The definition is comprised of two logical statements about the store instruction

that is considered as a memory leak. The first statement expresses that the register

rs contains an address in a memory range associated with a variable of the program

or an abstract run-time variable. The second statement expresses that the calculated

address for the store instruction using the register rd and the offset w is in the

MemIO address range.

4.5.2 Requirements of Memory Confidentiality Model

To protect the variables of the pointer type, it is required that the confidentiality

levels of all pointer variables be set to high. This can be expressed formally as

follows.

MCR 1. ∀x ∈ PTRα ∪ Ampα ∪ AVα =⇒ Memx[m,m+ l − 1] ∈MHCα

Similar to the rules of the memory integrity model, the confidentiality levels of

all memory cells assigned to a variable will be set to the same value. To express

the confidentiality level of memory cells and registers, MemCL() and RegCL()

notations are used respectively. The second requirement of the confidentiality model

can be expressed as follows.

MCR 2. ∀x,Memx[m,m+ l − 1] ∈ PMα : MemCLx[m,m+ l − 1] = CLx

The PMα expresses the process memory of the program α in execution.

The third requirement states that the confidentiality levels of all other variables

will be set to low.

MCR 3. ∀x ∈ Vα −
(
PTRα ∪ Ampα ∪ AVα

)
=⇒ Memx[m,m+ l − 1] ∈MLCα

126 CHAPTER 4. MEMORY INTEGRITY MODEL

MCR 4. Explicit declassification:

(x ∈ PTRα ∪ Ampα ∪ AVα) ∧Declassify(x) =⇒ MemCLx[m,m+ l − 1] = L

This requirement states that the compiler will only generate instructions that

lower the confidentiality level of a memory cell or a register that contains a mem-

ory address after the initialisation only if the programmer explicitly declassifies a

memory address to be used in program output.

The MCR 5 expresses the requirements of each machine instruction similar to

the expressions used for integrity model.

MCR 5. ∀ak ∈ α =⇒
[
(?ϕ; ak) ∪ (?¬ϕ;halt)

]
p

• ak = (nop ∨ jd w ∨movi rd, w ∨ halt) =⇒ ϕ ≡ > ∧ p ≡ >

The no operation, jump direct, move immediate operands, and halt instructions

do not require any verification for memory confidentiality.

• ak = add rd, rs, rt =⇒ ϕ ≡ sk.RegCL(rd) = sk.RegCL(rs) = sk.RegCL(rt)

• ak = addi rd, rs, w =⇒ ϕ ≡ sk.RegCL(rd) = sk.RegCL(rs)

The arithmetic and logic operations can be done on registers with the same

confidentiality level. The result can only be stored in a register with the same

confidentiality level.

• ak = ld rd, rs(w) =⇒ ϕ ≡
(
sk.RegCL(rs) = H

)
∧ p ≡

(
sk+1RegCL(rd) =

sk.MemCL(sk.Reg(rs) + w
)

The register that receives the content of a memory cell will be set to the same

confidentiality level of that memory cell. Since the register used for address

calculation contains an address, it must have a high confidentiality level.

• ak = st rd(w), rs =⇒ ϕ ≡
(
sk.RegCL(rd) = H∧(sk.RegCL(rs) = sk.MemCL(sk.Reg(rd)+

w)
)
∧ p ≡ >

The store instruction must verify that the target memory location has the

same confidentiality level of the register that is being stored. The compiler will

4.5. MEMORY CONFIDENTIALITY MODEL 127

explicitly set the confidentiality level of the target memory before this instruc-

tion in case of temporary storage, or it will be the same if the store logically

follows an earlier load. The register used for address calculation must have a

high confidentiality level.

• ak = bgt rs, rt, w =⇒ ϕ ≡ sk.RegCL(rs) = sk.RegCL(rt) ∧ p ≡ >

The conditional branch instruction must compare the values of the registers

with the same confidentiality levels to assure that information is not leaked

by deduction from the execution path if the compared values contain address

information.

• ak = jmp rs =⇒ ϕ ≡ sk.RegCL(rs) = H ∧ p ≡ >

• ak = ret rs =⇒ ϕ ≡ sk.RegCL(rs) = H ∧ p ≡ >

The indirect jump and return instructions use the content of a register as the

target address, hence the confidentiality level of the register must be high.

4.5.3 Instruction Requirements for Confidentiality Model

Enforcement

The goal of the memory confidentiality model is to protect addresses of the process

memory from leaking to the user. At this stage, the protection of user data is not

considered in the discussed model and can be explored in future work. Similar to the

integrity level the nop, halt, and jd instructions do not require any changes with

regard to the memory confidentiality model as these instructions do not change the

content of memory or any register in the register file. The movi instruction changes

the content of a register however the operand is provided as an embedded value

with the instruction itself. If the code of the program can be read by the user the

value of the operand is already disclosed. If the instruction is used to initialise a

register with a high confidentiality level then the usage of the movi instruction can

be considered as an explicit declassification.

128 CHAPTER 4. MEMORY INTEGRITY MODEL

The conditional branch instruction, Bgt, can potentially leak information through

deduction if it compares registers with confidential content, as the execution path

would reveal information if one of the values is known to the adversary.

Definition 4.5.5. Branch Greater Than Instruction:

Bgtrs, rt, w ≡
[(

?ϕ1;
(
(?ϕ2; jdw) ∪ (?¬ϕ2;nop)

))
∪
(

?¬ϕ1;halt
)]
p1∨⊥ such that:

• ϕ1 ≡ s.RegCL(rs) = s.RegCL(rt)

• ϕ2 ≡ s.Reg(rs) > s.Reg(rt)

• p1 ≡ s′.pc = w ∨ s′.pc = s.pc+ 1

The new Bgt instruction is constructed using two tests and two choices. The first

test ϕ1 verifies that both registers are of the same confidentiality level. If this test

fails the execution will be halted. This is expressed as the choice ∪(?¬ϕ1;halt) and

∨⊥ as the outcome of the execution of the instruction. The second test ϕ2 performs

the comparison of the values of the registers. Based on the result, the choice decides

the flow of execution which would be between the direct jump to embedded address

w or the execution of the no operation instruction. This is expressed as the logical

statement p1 which shows the two possible outcomes as the content of the program

counter in the next machine state.

The jmp and ret instructions use register contents as target addresses. Hence

the confidentiality levels of these registers must be high.

Definition 4.5.6. Indirect Jump Instruction:

Jmp rs ≡
[
(?ϕ; jmp rs) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegCL(rs) = H ∧ ICFI conditions

• p1 ≡ s′.pc = s.Reg(rs)

• p2 ≡ ICFI conditions

Definition 4.5.7. Return Instruction:

Ret rs ≡
[
(?ϕ; ret rs) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

4.5. MEMORY CONFIDENTIALITY MODEL 129

• ϕ ≡ s.RegCL(rs) = H ∧ ICFI conditions

• p1 ≡ s′.pc = s.Reg(rs)

• p2 ≡ ICFI conditions

To enforce the confidentiality level some changes must be made to the instruc-

tions which are described as follows. Any instruction that updates the content of a

memory cell or a register must follow the confidentiality rules. The required rules

for load and store instructions are defined as part of the instruction semantic.

Definition 4.5.8. Load Instruction:

Ld rd, rs(w) ≡
[(

?ϕ; ld rd, rs(w)
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2 ∧ p3) ∨ ⊥ such that:

• ϕ ≡ s.RegCL(rs) = H

• p1 ≡ s′.RegCL(rd) = s.MemCL(s.Reg(rs) + w)

• p2 ≡ s′.Reg(rd) = s.Mem(s.Reg(rs) + w)

• p3 ≡ s′.pc = s.pc+ 1

For the load instruction, the requirement is that the confidentiality level of

the target register must be set to the same level of the source memory cell. The

confidentiality level of the register used in address calculation must be high as it

contains address information. The first requirement is expressed as part of the

logical statement p1 which will be true for all executions of the load instruction.

The other two logical statements express the semantic of the load instruction. The

second requirement is expressed as a test with a choice that will execute the load

instruction if the test ϕ succeeds, and stops the execution if the test fails.

The store instruction must verify the confidentiality level of the target memory

cell before storing the content of a register at the calculated memory address. The

target memory cell must be of the same confidentiality level as the source register

for the store instruction to execute successfully otherwise the execution will halt.

Another requirement of the store instruction is that the confidentiality level of the

register used in address calculation must be high.

130 CHAPTER 4. MEMORY INTEGRITY MODEL

Definition 4.5.9. Store Instruction:

St rd(w), rs ≡
[(

?ϕ; st rd(w), rs
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.MemCL(s.Reg(rd) + w) = s.RegCL(rs) ∧ s.RegCL(rd) = H

• p1 ≡ s′.Mem(s.Reg(rd) + w) = s.Reg(rs)

• p2 ≡ s′.pc = s.pc+ 1

The described conditions are expressed using the PDL test notation ϕ that when

true the micro instruction st rd(w), rs will be executed and when false the halt

instruction. The micro instruction st rd(w), rs is not considered a valid instruction

on its own and cannot be used by the compiler in code generation.

To avoid accidental mixture of confidential content with other content, which

could lead to a memory leak, the arithmetic operations can only be performed on

the registers with the same confidentiality level.

Definition 4.5.10. Add Instruction:

Add rd, rs, rt ≡
[
(?ϕ; add rd, rs, rt) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegCL(rd) = s.RegCL(rs) = s.RegCL(rt)

• p1 ≡ s′.Reg(rd) = s.Reg(rs) + s.Reg(rt)

• p2 ≡ s′.pc = s.pc+ 1

The PDL test ϕ expresses the requirement that all involved registers have the

same confidentiality level, whereas the logical statements p1 and p2 express the

semantic of the new Add instruction.

Definition 4.5.11. Add Immediate Instruction:

Addi rd, rs, w ≡
[
(?ϕ; addi rd, rs, w) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegCL(rd) = s.RegCL(rs)

• p1 ≡ s′.Reg(rd) = s.Reg(rs) + w

4.5. MEMORY CONFIDENTIALITY MODEL 131

• p2 ≡ s′.pc = s.pc+ 1

The Addi instruction requires two registers where both must have the same

confidentiality level.

To allow the programmer to output the memory addresses for troubleshooting

purposes, instructions to declassify a pointer variable is needed. That is to allow

the memory address to be stored at a memory IO location, it must first be explicitly

declassified by the programmer. The declassification then can be translated by the

compiler to a change memory or register confidentiality level. These instructions

can also be used by the Map(x) program to set up the appropriate confidential-

ity level for pointer variables at the beginning of the execution of the program α.

For any given high level programming function, the prologue and epilogue machine

code (similar to the discussion of the integrity model) will perform the required

preparation and clean up tasks before the execution of a function starts and after

it ends. That is, in a more concrete scenario the Map() function will perform the

required memory association for local variables of called functions progressively as

the program execution continues.

Definition 4.5.12. Change Memory Confidentiality Level :

[confmem rs(w), cl]p1 ∧ p2 such that:

• p1 ≡ s′.MemCL(s.Reg(rs) + w) = cl

• p2 ≡ s′.pc = s.pc+ 1

This instruction unconditionally changes the confidentiality level of the memory

location addressed by Reg(rs) + w to the embedded confidentiality level. This is

expressed as the logical statement p1 whereas the second logical predicate states

that the instruction is a sequential instruction that increments the program counter

by one.

Definition 4.5.13. Change Register Confidentiality Level :

[confreg rs, cl]p1 ∧ p2 such that:

132 CHAPTER 4. MEMORY INTEGRITY MODEL

• p1 ≡ s′.RegCL(rs) = cl

• p2 ≡ s′.pc = s.pc+ 1

This instruction changes the confidentiality level of a given register to the em-

bedded confidentiality level cl.

4.5.4 Theorem of Confidentiality Model

Theorem 4.5.1. For the program α in execution with its sets of low and high con-

fidentiality memory MLCα and MHCα where PMα = MLCα ∪MHCα ∧MLCα ∩

MHCα = ∅ and given the explicit declassification rule and the requirements of mem-

ory confidentiality model (MCR 1-5) then all computation sequences of the program

α will not reveal any memory address if no variable is explicitly declassified.

Proof Sketch: Using the definition of the memory leak there would be a store

instruction as St rd(w), rs where rs contains a memory address which is expressed as

Reg(rs) = mx ∈Memv[m,m+ l − 1]. Since the confidentiality level of the MemIO

address range is set to low it holds that MemCL
(
Reg(rd) + w

)
= L. The store

instruction has built-in checks that verifies the confidentiality level of the target

address with the confidentiality level of the register rs. For the store instruction to

succeed one of the following scenarios must happen:

1. given the register rs contains a memory address then the confidentiality level

of this register has been explicitly changed to low;

2. the memory cell that contains an address is explicitly changed to low confi-

dentiality and the value is loaded into register rs using a load instruction.

As there is no need for explicit change of the confidentiality level for the program

to perform its benign execution and that the explicit declassification is only used

when the purpose of the program is to output the memory address, then in either

of the above scenarios the goal of the program is to expose the memory address.

On the other hand when no explicit declassification instruction is used there is

4.5. MEMORY CONFIDENTIALITY MODEL 133

simply no path in the execution of the program that would allow the change of

the confidentiality level of a memory cell or register from high to low. The store

instruction that is part of the memory leak would not successfully execute.

Proof: Using the definition of the memory leak there is at least a store instruc-

tion St rd(w), rx1 such that:

1. Reg(rx1) = mx ∈ Memx[m,m + l − 1] ∧
(
x ∈ Vα ∨ Abstract(x)

)
, the register

rx1 contains an address belonging to a variable of the program or an abstract

variable and all address variables will have high confidentiality level, hence

MemCL(mx) = H.

2. my = Reg(rd)+w ∈MemIO, the target of the store instruction is an address

in memory IO.

By the definition of memory IO, the confidentiality levels of all memory cells in

MemIO[] range are set to low, hence: MemCL(my) = L. For the store instruction

to succeed (semantic of the instruction) the confidentiality level of the rx1 register

must also be low: RegCL(rx1) = L. Given that the register rx1 contains an address,

its confidentiality level in the current state is low, and the memory cell from which

the register is loaded contains an address and must have been given the high confi-

dentiality level (MCR 1), one of the following sequences of instructions must belong

to a computation sequence of the program α for a memory leak to succeed:

1. Ld rx1, rx2(w); confreg rx1, L;St rd(w), rx1 where the load instruction loads

the address into a register rx1, the confreg instruction changes the confi-

dentiality level of the register rx1 and then the store instruction writes the

content of the rx1, which contains an address, into memory IO.

2. confmem rx2(w), L;Ld rx1, rx2(w);St rd(w), rx1 where the confmem instruc-

tion changes the confidentiality level of the memory cell addressed atReg(rx2)+

w, the load instruction transfers the content of the memory cell addressed at

Reg(rx2) +w into rx1 which will set the confidentiality level of the rx1 register

134 CHAPTER 4. MEMORY INTEGRITY MODEL

to low and the store instruction will write the content of that register into

memory IO.

Given there is no explicit declassification for the program α, both the confreg and

confmem instructions are unnecessary and must not be generated by the compiler

after the initialisation of the program.

4.6 Summary

Memory corruption can be used by the adversary to perform malicious code execu-

tion attacks. The vulnerability can be used to corrupt control data to hijack the

flow of execution to blocks of code intended by the attacker. It can also be used to

corrupt non-control data to bend the flow of execution such that malicious intent

is achieved while not violating the benign execution path of the program. Other

forms of memory corruption attacks can disclose sensitive information such as mem-

ory addresses that can be used in crafting malicious code execution exploitations.

In Chapter Three, a formal model was proposed that can prevent the control flow

hijack attacks. The proposed ICFI model however cannot prevent control flow bend-

ing attacks and memory address leakage attacks where the benign execution flow is

not violated by the adversary.

This chapter defined two models for memory architecture to protect against

memory corruption that would otherwise lead to control flow attacks and memory

address leakage. The first model aims to hinder the adversary’s ability to corrupt

memory cells that will affect the flow of execution. This will effectively prevent any

type of control flow hijack or control flow bending attack. To achieve this goal the

model formally defines two classes of variables: (i) user provided variables considered

as untrusted; and (ii) program internal variables considered as trusted. These classes

of trusted and untrusted, or low and high integrity, will partition the process memory

of a program in execution. Formally defined rules of the integrity model will make

sure that low integrity values will not affect the flow of the execution. This is

4.6. SUMMARY 135

mainly ensured by separating the instructions that affect the integrity of memory

cells from the instructions that change the memory content. More specifically by

limiting user’s write access only to low integrity memory cells where corruption will

be inconsequential. The result of the proposed model is expressed as a theorem with

a formal proof.

The memory confidentiality model will prevent the attacker from leaking memory

addresses that could be used in crafting other exploitations. Similar to integrity

model two classes of variables are defined: (i) memory address and address-related

variables considered as confidential; and (ii) all other variables considered as non-

confidential. The two sets will partition the process memory of the program in

execution where the confidential set will be protected from leakage. This is achieved

by classifying memory IO address range as non-confidential and limiting the write

access to this range from only non-confidential registers. Formally defined rules

will assure that the classified memory cells as confidential cannot be written in

the memory IO address range without being explicitly declassified. The explicit

declassification will require the programmer to use high level programming language

qualifiers to specify where the compiler can generate instructions that will declassify

variables containing memory addresses.

In Chapter Five, the potential realisation of code memory integrity as a precon-

dition to the ICFI model is discussed. The implementation adds a page-by-page

authentication mechanism to a Linux kernel that is triggered by the page fault ex-

ception. A potential realisation of the integrity model, that reduces the cost of

memory architecture by dividing the process address space, is also proposed in the

following chapter. The address division will require changes to the micro operations

and semantics of the machine instructions. Another alternative memory model is

the combination of integrity and confidentiality for various types of variables. This

is discussed in detail in Chapter Five. The proposed model also protects the memory

of the operating system against malicious user processes in addition to the combined

protection of confidentiality and integrity for the process variables.

136 CHAPTER 4. MEMORY INTEGRITY MODEL

Chapter 5

Realisation of Code Memory

Authenticity and Alternative

Memory Models

5.1 Introduction

In the previous chapters two main theoretical models were proposed to prevent

successful exploitation of a vulnerable system. In Chapter Three, an Ideal Control

Flow Integrity (ICFI) model was described, where the model could resist against

control flow hijack attacks by verifying both forward and backward edges of the

transfer of the flow of execution. A required precondition of the ICFI model is

the integrity of the code, which will protect against misuse of the direct jump and

conditional branch instructions as well as overwriting of the code of the program by

the attacker. A realisation of this precondition is proposed in this chapter as a form

of code memory authentication in a demand paging system for a Linux kernel.

In Chapter Four, a memory model was discussed with focus on two properties

of memory cells: integrity and confidentiality. The first property is protected in

the memory integrity model. It prevents corruption of user-provided variables that

could lead to any form of unauthorised transfer of the flow of execution, including

137

138 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

control flow bending attacks. A potential realisation of this model to reduce the

cost of memory is described in this chapter, as an address space division for the

integrity model. The second property is protected in the memory confidentiality

model. It aims to prevent leakage of memory addresses that can be used in crafting

other forms of exploitation. The two models require extra bits for memory cells

and registers to represent the level of integrity and confidentiality. The instructions

enforce the required policy according to various rules. A combined model to protect

both properties is discussed in this chapter. It provides protection of the operating

system memory against malicious user processes.

In this chapter a realisation of the code memory integrity precondition of the

ICFI is provided. The implementation, discussed in Section 5.2, performs a page-

by-page authentication of the code for a Linux kernel. A formal representation of

signature-based authentication and the effects of demand paging on the ICFI model

are discussed. This representation is followed by the overall design and required

changes to the kernel, to achieve this proposed code memory authenticity. An anal-

ysis of a vulnerable high level language program under each of the ICFI and memory

integrity models is discussed in Section 5.3 to further clarify the requirements and

potential of each model. In Section 5.4 an alternative realisation of the memory

integrity model is discussed, including the required changes in micro operations of

each instruction to enforce the policy in the proposed solution. The cost of the

alternative is decreased in terms of required memory space. A combined memory

model to protect both integrity and confidentiality properties for different types of

variables is discussed in Section 5.5. This alternative model can also protect the

memory of the operating system against malicious user processes. The required

changes to the instructions to enforce the combined policies are discussed in detail.

The chapter concludes with a summary in Section 5.6.

5.2. CODE MEMORY INTEGRITY 139

5.2 Code Memory Integrity

A precondition to the Ideal Control Flow Integrity, as discussed in the third chapter,

is the integrity of the executable code. How this can be achieved is discussed from a

formal point of view, using cryptographic methods on the content of the executable

code in Section 5.2.1. The effect of on-demand paging on the ICFI model and

the provided proof is discussed in Section 5.2.2. An implementation of one of the

proposed approaches is also discussed in Section 5.2.3. A short review of literature

related to code integrity verification for the Linux operating system followed by the

analysis of the implementation is discussed in Section 5.2.4. One of the potential

outcomes of the implementation for access control is discussed in Section 5.2.5.

5.2.1 A Signature-based Code Memory Integrity

The integrity property can verify whether the code has been modified since a given

point in time, but cannot determine the authenticity or the identity of the origin or

producer of the code. The non-executable data memory or mutually exclusive Write

and eXecute access to memory (W ⊕ X) property makes the executable memory

pages not writable and the writable pages not executable. To some extent this

property can be considered as providing the integrity property of the executable

code. This however lacks certain security properties. Firstly, all memory pages,

including pages that will be used for executable code, have to be writable first. The

permission is then changed for the executable pages to read-only and for data pages

to non-executable. Hence there is a mechanism for changing the permission on any

page. If this mechanism is exploitable, then the integrity property can be bypassed.

Secondly, integrity is assured as long as the correct page is loaded from the correct

file and cannot give any assurance about the code content. To address these issues,

code authentication is used as it provides stronger control based on the content of

the executable code, which assures only authentic code is loaded into memory.

To assure authenticity and integrity of the code that reaches the execution state,

a signature scheme formally defined by Goldreich [130] is used. The signature scheme

140 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

can be symmetric or asymmetric. This allows the use of more efficient implemen-

tations of these algorithms. The two conditions are combined to create a signature

scheme (symmetric or asymmetric) with the security condition as follows [130]:

Definition 5.2.1. The triple (G,S, V) of all probabilistic polynomial-time algo-

rithms, is a Secure Signature Scheme that satisfies the following conditions:

1. On input, 1n, algorithm G (the key generator) outputs a pair of bit strings

(s, v) as a signing and verifying pair where n is the security parameter.

2. For every pair (s, v) in the range of G(1n) and for every executable code

α ∈ {0, 1}∗, algorithms S (Signing) and V (Verification) satisfy:

Pr[Vv(α, β) = 1] = 1

where β = Ss(α) is the signature using the signing key s, Vv(α) is the verifica-

tion algorithm using the corresponding verifying key v, and the probability is

taken over the internal coin tosses of algorithms S and V.

3. For every executable code α ∈ {0, 1}∗ and all probabilistic polynomial-time

oracle machines M and their set of queries on input x denoted as QO
M(x), and

the corresponding output denoted as MO(x), every positive polynomial P and

all sufficiently large n it holds that:

• in the Private-key signature scheme:

Pr[Vv(α, β) = 1 and α /∈ QSs
M (1n) where (s, v) ← G(1n) and (α, β) ←

MSs(1n)] < 1
P (n)

.

• in the Public-key signature scheme:

Pr[Vv(α, β) = 1 and α /∈ QSs
M (v) where (s, v) ← G(1n) and (α, β) ←

MSs(v)] < 1
P (n)

.

As the producer of the code is explicitly trusted in this proposed model, the

authenticity of an executable code must be checked by tracing it back to its producer.

To achieve this an identification value will be used to uniquely identify the code

producer. Defining a trust model or discussing properties that would make an

5.2. CODE MEMORY INTEGRITY 141

executable code trustworthy are outside the thesis scope. This thesis defines a

Trusted Entity as an entity that is the producer of an executable code and explicitly

trusted within the system not to have malicious intent. The set T is defined as the

set of l-bit values that uniquely identifies each Trusted Entity within the system.

Definition 5.2.2. T={x | x← {0, 1}l is a unique identifier of a Trusted entity}

The signature scheme binds the executable code to the trusted entity, by first

associating a key pair with the id of the trusted entity and then using the signing

key to produce a signature for the executable code. Each Trusted Entity has a (s, v)

key pair which is bound to its unique identifier id by the KeyVault function that is

defined as follows.

Definition 5.2.3. KeyV ault = {(s, v, id) | (s, v) ← G(1n) of (G,S, V) Secure

Signature Scheme and id ∈ T}

As authenticity provides authentication in addition to integrity for an executable

program α: Auth(α, id) =⇒ Int(α), then the notation Auth(α, id) can be used in

place of Int(α). The signature verification can be done for the entire executable code

or page-by-page as required by the flow of execution. In the following section, there

is a discussion of the formal requirements of page-by-page verification of authenticity

for executable code.

5.2.2 Memory Blocks and Paging

Paging is a memory management technique that is used in modern operating systems

to provide a more efficient means of managing the memory allocated to programs

in execution. Regardless of the technique used, this mechanism, which is generally

supported in hardware, provides a way of translating a logical address to a physical

address and removes the requirement of loaded blocks of the executable code being

in contiguous memory locations. From an abstract point of view, the theorem results

hold in such architectures, as long as the paging mechanism is implemented correctly

and is not exploitable by itself. To demonstrate this point the memory blocks of the

142 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

executable code α, comprised of an atomic instruction sequence a1; a2; . . . ; an, are

defined as a sequence of fixed-length non-overlapping blocks P1;P2; . . . ;Pm where

m = n
page size

. Each of the memory blocks Pi can be considered as a program αi for

which the two theorems will hold with some adjustments. An adjustment is only

needed where the boundaries of the memory blocks are traversed. In other words an

adjustment in expressing the theorems and proofs is needed in the state transition

from user code to the adversary code ak; b1 in the following scenarios:

1. ak ∈ SQ and ak is the last instruction of the page Pi where either ak is the

very last instruction of the program α which needs to be halt and ak /∈ SQ, or

the next instruction is the first instruction of page Pi+1 and b1 6= ak+1 ∈ Pi+1

which then violates Int(α). The integrity in the paging scenario is discussed

later in this section.

2. ak ∈ DJ and w ∈emb ak and there will be one of the following scenarios:

• aw ∈ Pi (that is the direct jump is to the same page);

• aw ∈ Px (the jump is to another page);

in either case b1 6= ay ∈ (Pi ∨ Px) violates Int(α).

3. ak ∈ CB this is the combination of the previous two scenarios (four combina-

tions):

• ak is the last instruction of the page Pi and the condition is not true in

which case the first instruction of the page Pi+1 needs to be executed

(b1 6= ak+1 ∈ Pi+1 violates Int(α));

• ak is not the last instruction and the condition is true and jump is to the

same page Pi (b1 6= ax ∈ Pi violates Int(α));

• the condition is true in which case regardless of whether ak is or is not

the last instruction of the page Pi, the direct jump happens; the jump

could be to the same page Pi (b1 6= ax ∈ Pi violates Int(α)) or another

page Px (b1 6= ay ∈ Px violates Int(α)).

5.2. CODE MEMORY INTEGRITY 143

4. ak ∈ IJ in which case the second theorem requires the verification of the des-

tination address based on the sets ACα and RMα and the address conversion

determines the validity of the destination.

For the integrity of the program α in a paging system the following definition

can be used.

Definition 5.2.4. Program Integrity in Demand Paging:

For the program α of size n, and comprised of a sequence of fixed-length non-

overlapping blocks P1;P2; . . . ;Pm where m = d n
page size

e, (and Pm padded with zero

when m 6= n
page size

), then:

Int(α) ≡ Int(P1P2 . . . Pm) ⇐⇒ Int(P1) ∧ Int(P2) ∧ · · · ∧ Int(Pm).

To take advantage of the efficiency of the paging mechanism in verification of

the integrity of the programs in execution, the integrity property can be used on the

individual pages. As shown in the first three scenarios the requirement comes down

to the integrity of the individual page (Pi, Pi+1, or Px). Assuming that the paging

mechanism by itself is not exploitable then the state transition to the adversary code

is prevented. In the fourth scenario the integrity of the individual page is necessary

but not sufficient as the destination is determined by the content of a register which

could be what the adversary intends. The integrity of the target page would still

be intact. This issue which is the same problem without paging is addressed by use

of the destination address verification where the paging mechanism is considered in

address translations when dealing with ACα and RMα sets. In this case only the

integrity of the pages on the execution path is necessary, not the entire code of the

program α. To map the code authenticity, as discussed in previous section, to the

paging mechanism and integrity of each page a set of Block Signatures is defined for

the executable α.

The Block Signatures for each executable code α comprised of pages P1;P2; . . . Pm

produced by a trusted entity with id ∈ T , with associated signature key pair (s, v)

where (s, v, id) ∈ KeyV ault is defined as follows.

144 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

Definition 5.2.5. ∀Pk ∈ α:

BlockSignatures
def
= {(k, Sigk) | Sigk = Sign(s, Pk) ∀k ∈ 1..m where (s, v, id) ∈

KeyV ault}

5.2.3 Implementation of Page-by-Page Verification

To provide a proof of concept a page-by-page verification scheme for a Linux ker-

nel is implemented. The Linux kernel used is Version 3.8.2 of the Ubuntu 12.04

distribution.

Authenticated Code Execution in Demand Paging System

In the Linux operating system all executable code is memory mapped for execution.

A page fault exception will occur when the requested address is within a page that

has not been loaded into memory by the OS. To prevent loading unverified code into

system memory in a demand paging system, the verification of the content of a code

page must happen before the page is loaded into memory or some time before the

execution of the first instruction in that page. A page-by-page verification scheme

can verify the authenticity of a code page at the time of the page fault exception

handling procedure. This will assure that only the part of the code required for

execution is verified before the flow of execution is transferred to the loaded page.

If a page does not pass the verification, the process execution will be aborted by

the OS. To achieve a better performance the verification uses a type of Message

Authentication Code (MAC) for each page.

The do fault() function in memory.c in the Linux kernel performs the opera-

tion of loading a page that has caused a page fault exception. In this implementation

the kernel is compiled with a method of loading an initial RAM disk which detects

the required device drivers and other kernel modules, and loads them into memory

along with the final kernel image. To support this method of boot using the initial

RAM disk or initrd, a two stage verification is done. Two separate passwords are

used to implement a password-based MAC method used for both stages. In the

5.2. CODE MEMORY INTEGRITY 145

first stage, a small body of the code that is necessary to load drivers as part of the

initrd procedure is verified using a key derived from the chosen initrd password.

The SHA256 of this password is used as the key that is concatenated with the page

content for all pages of the executable files contained in the initrd image. This

key is only used for the pages necessary to load the code up to the point where a

password can be entered by user during booting. Once the password is entered, the

remainder of the code including the code required for the remainder of the initrd

procedure will use the entered password by the user. The password and the SHA256

digest of the password is stored in a memory structure (listing A.91) defined in the

memory.c file (listing A.8).

A global variable (listing A.10) specifies whether the page-by-page verification

must use the initrd key or the system-wide key derived from the user-provided

password during the boot process. The initrd key variable (listing A.3) will con-

tain the provided key through the boot command line option which is defined and

allocated in the main.c file (listing A.1) under the init folder in Linux kernel source.

The do fault() function in the memory.c file is modified to verify the authen-

ticity of the code. Two functions, do verify page mac() and sha256 mac(), are

added to perform the code page authentication.

The first function, shown in Algorithm 5.1, performs the verification of the re-

quested page for the current process by passing a pointer to the filename of the

current process and a pointer to the page structure. For clarity, the memory alloca-

tion and error handling is omitted from the algorithm. The C code of the function

is provided in Listing A.18.

Once the appropriate key is chosen the name of the directory where the MAC

of the page is stored is generated. The SHA256 hash value is generated for the

concatenation of the secret value and the content of the page. The sha256 mac()

function (listing A.17) in the modified memory.c file performs this operation. The

message digest of the secret value concatenated with each page for all executable

1Listings labelled as A.n are provided in the Appendix.

146 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

Algorithm 5.1: Verify Page MAC

Function verify page mac
Data: filename, page
Result: Page MAC verification succeeded or failed

if the integrity password is set then
key ← key derived from user-provided password

else
key ← initrd key

fnsha2 ← sha256 hash(filename)
pmac ← “/hashes/” || hexadecimal string(fnsha2)
page mac ← sha256 mac(key, page)
pmac ← pmac || hexadecimal string(page mac)
if file(pmac) not found then

return with verification failure
return without error

code and libraries within the system is generated and stored under the /hashes

folder. The overall logic of generating message authentication code for each page of

an executable code is shown in Figure 5.1.

Password

SHA256

SHA256

Page x

Page MAC

Executable Code

Figure 5.1: Page message authentication code generation process.

To make the content of the folder more manageable, the message digests for

each executable code are stored under the same folder. The name of the folder

containing all of the page MACs is chosen as the hash of the name of the executable

5.2. CODE MEMORY INTEGRITY 147

code including its path within the file system. The process of generating the folder

name for page MACs is shown in Figure 5.2.

Path + Filename SHA256

/hashes/

Path to page
MAC

Figure 5.2: Folder name generation for page message authentication code.

To make the verification process more efficient each message digest is used as a

filename with no content. Using this approach the verification succeeds if the file is

found under the appropriate folder for the given page at run time. If a file is not

found the verification will fail.

The Algorithm 5.2 shows the logic of the modifications made to the do fault()

function. The C code is provided in Listing A.19.

Algorithm 5.2: Logic of modification added to do page fault()

if page is executable then
if page is associated with a file then

filename ← full path and name of executable file
if verify page mac(filename, page) failed then

kill the process

The first if statement verifies that the page is an executable page. The second

if statement verifies that the page is memory-mapped with a file. The full path of

the executable file is stored in a variable to be passed to the MAC function. The

MAC function is then called passing the filename and page structure as parameters.

If the verification succeeds the execution will continue normally and if it fails a

148 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

jump is executed which will send the KILL signal to the current process. To avoid

triggering a kernel oops2, the do fault() returns 0 as a normal outcome.

Two command line boot options are added to pass the two required MAC keys.

The first key is required for verifying the pages of executable files included in initrd.

The initrd key boot option is read and evaluated to its 256-bit binary value as the

initrd key. The second key is derived from a system-wide password to verify the

pages of the files that are executed. The system-wide password will be read from

the user during boot. The encrypted ipass boot option contains the SHA1 of

the password encrypted using the Advance Encryption Standard (AES) 128-bit key

in the Cipher Block Chain (CBC) method. To generate the key and Initialisation

Vector (IV) for the AES-CBC mode of operation, the password is passed through

SHA256. The first 128-bit is used for the key; the second 128-bit as the IV. During

booting after the user enters a password, it can be verified whether the correct

password is entered by decrypting the boot option and comparing the result with

SHA1 of the entered password. The required code to read the boot options from the

boot command and the password from the user is added to the main.c (listing A.1)

file under the init directory of the kernel source.

5.2.4 Code Integrity Verification in Linux

This section provides a brief review of the literature for various methods of code

integrity or authenticity verification implemented in Linux. A discussion on advan-

tages of the approach and comparisons to the previous work is then provided. A

security and efficiency analysis for the approach is also discussed.

Related Work

The first code integrity verification for the Linux operating system is Tripwire,

where the message digest of the executable codes are generated and stored in a

database [131]. The message digests are then verified periodically. If the verification

2A kernel oops is a deviation from correct behavior of the Linux kernel.

5.2. CODE MEMORY INTEGRITY 149

fails the system administrator will be alerted. The original work had major short-

comings in that the executable codes are vulnerable between the verification periods

and that the hash values are generated using the Cyclic Redundancy Code which

does not contain cryptographically strong hash functions. Van Doorn et al. [132] pro-

posed the first attached signature verification for Executable and Linkable Format

(ELF) binaries, by adding the signature as a custom header to the executable file.

This method uses public key encryption to sign the executable files. Catuogno and

Visconti [133] proposed a method in which the executable code handler will verify

the integrity of the code. The two approaches differ in how they verify the dynam-

ically linked libraries. Another proposed technique is the digsig approach [134]

where the public key signature of the executable code is verified before the execu-

tion starts. A kernel module is then responsible for verification of the signature.

This approach relies on the Linux Security Module (LSM) framework that provides

a modular security policy architecture for SE Linux [134]. The signature verification

is triggered by the security file mmap LSM hook. If the verification is successful,

the result will be cached. If the executable file is opened with write access which

can be detected whenever the security inode permission hook is triggered, the

cache entry for the executable will be removed. The problems with this method are

the cost of public key signature verification in terms of required processing time and

that the kernel module can be unloaded using a vulnerability in the system.

Other methods use similar concepts with differences in techniques for authentic-

ity verification and implementation. For instance a detached signature verification

approach using a symmetric algorithm that uses the execve() system call as the

trigger for verification has been implemented in [135]. To achieve a better perfor-

mance, the Cipher Block Chaining (CBC) with the Advanced Encryption Standard

(AES) is used on the SHA256 of each executable code. The do execve() kernel

function is modified to verify the encrypted hash of the executable code. A pass-

word is used to generate the symmetric key and Initialisation Vector (IV) for the

CBC-AES-128 algorithm. The first 128 bits of the SHA256 of the password is used as

150 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

the key; the second 128 bits are used as the IV. The advantage of this approach com-

pared to other methods is that the signature is detached which makes the approach

independent of the type of executable code. Another advantage is the efficiency of

the symmetric algorithm compared to public key methods. One disadvantage of this

approach is that given the libraries are not directly executed and are loaded by the

dynamic loader, the code of the dynamic loader must also be modified to verify the

authenticity of the library file. Another disadvantage is that the entire code of the

binary executable is verified.

Security and Efficiency Analysis

The page-by-page verification has the advantage of using the same method for both

executable code and the libraries, as all executable code in the Linux kernel are

loaded using the memory map technique. Another advantage of this approach is

that only the requested pages are verified in contrast to the entire code in other

approaches. In addition, as long as the page is in memory, no page fault will occur.

This acts as a form of cache without any extra implementation effort. If the veri-

fication does not succeed, then only the time to verify a single page is required to

reject the execution of the unauthorised code.

As the page-by-page verification only checks the authenticity of required pages,

it is expected that the total verification time of the executable code and library

pages will be less than the method where the entire executable code and all of the

libraries are verified. A time measurement experiment has been conducted using an

Intel Core i5 650 processor at 3.2 GHz with 8GB of DDR3 RAM and an Intel 120GB

SSD hard drive. As the time measurements fluctuate with each execution, a single

execution time measurement is performed and the time for each page verification is

recorded. To compare the page-by-page method with the full content verification

method, a C program performs a similar operation, SHA256(Key || file content),

on the executable code. The execution time of the full content verification is recorded

for the executable file and all of the required libraries. When the libraries were the

5.2. CODE MEMORY INTEGRITY 151

same for different executable files, in the case of the full content verification method

the same time measurement was assumed in calculating the total verification time.

Table 5.1 shows the recorded time for four executable code instances and their

required libraries.

Table 5.1: Time Measurements for the Page-by-Page Verification Method versus the
Entire Content Verification Method (µ seconds)

File name Page-by-Page # executed pages Avg. per page Entire Content

/bin/busybox 5484 58 94.5 24809

/bin/tar 8345 211 39.5 29646

/bin/grep 6303 157 40.1 22855

/bin/ls 7165 188 38.1 27926

The executable /bin/busybox is compiled statically and does not rely on any

library functions. Tables A.1, A.2, and A.3 provided in the Appendix show the

required libraries for each of /bin/tar, /bin/grep, and /bin/ls respectively. The

verification time for each individual executable and library is also reported.

To achieve a better performance the process of generating the MAC for a page can

be pipelined by reading the content from the file. As the hash functions are designed

using a compression engine with two inputs, comprising the result of previous step

and a message block, the process of generating the MAC for the page can start

as soon as the first block sized data is read from the disk. This will reduce the

total time of generating the hash of the page, to the time to execute the hash

algorithm on a single message block. Reading from the disk will likely be slower

than digesting a single message block. This however requires precise coordination

between the function resolving the page fault and the registered method for reading

a file from disk. This can be achieved by allocating memory to store the intermediate

values accessible to the kernel’s lower level file operations where these values can be

generated as soon as a message block is read from disk. The final message digest will

be available for the do fault() function to verify. This has not been implemented

in the approach.

152 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

The security of the approach can be analysed from two aspects: (i) the type of

access to the MAC storage; and (ii) the security of the MAC generation mechanism.

It is assumed that the folder which contains the MACs of pages for all executable

code is mounted as read only or as an immutable file system, although this aspect

has not been implemented. This is a security requirement as the write access to

MAC storage will give the adversary the opportunity to perform a Denial of Service

attack by deleting any of the MACs stored in that file system. The adversary cannot

add any authentic MAC for any unauthorised executable code without knowing the

system-wide password used to generate the stored MACs, even if the file system is

mounted as read/write. A system call can be added to provide a secure interface

for adding new MACs for new or updated executable files which can be controlled

with user privileges.

The security of the generated MACs depends on the SHA256 algorithm and the

difficulty of the password. Since SHA256 is a one way algorithm the only methods

available to generate a valid MAC for a page is to either perform a brute-force attack

on the password or find a collision for the hash algorithm that generates the same

MAC. As no collision has been found for the SHA256, the algorithm is considered

cryptographically strong. Given the SHA256 of a password is concatenated with the

page content, the most efficient attack would be a dictionary attack on the password.

The maximum length of the password is set to 64 characters providing a large enough

set of possible passwords to render the dictionary attack computationally infeasible.

5.2.5 Content-based Access Control and Authentication: A

Discussion

This section proposes a method of content-based access control that provides stronger

protection against execution of unauthorised executable files by users. The imple-

mentation of this proposed approach is left for future work. Only a brief overview

of the design of such a method is provided.

5.3. X86 SAMPLE CODE ANALYSIS 153

The combination of a page-by-page verification mechanism and a key ring struc-

ture can provide a form of content-based access control. To achieve this, a key can

be generated for each user within the system and the MACs of the pages of the

allowed executable code for each user will be generated and stored separately. The

generated keys can be stored securely in a key ring file and be loaded into memory

during the boot process for faster access. In this case the folder name where the

MACs for each executable file are stored can also be scrambled using a cryptographic

method similar to the MAC generation process, which will simplify the management

of the MACs. To perform the page-by-page verification, the do verify page mac()

function will have access to the key ring memory or file storage structure to retrieve

the corresponding key according to the process or user privilege level. The access

control can be enforced by generating the MACs only for executable code that a user

is allowed to run within the system. In this approach even if the user has access

to copies of unauthorised executable files, she will not be able to run these files on

the system. Finer control can be achieved by aligning functions to pages and only

signing pages that contain allowed functions. This can provide a better control than

any white- or black-list approach as the control is enforced based on the content of

the code rather than a name reference to the file.

5.3 x86 Sample Code Analysis

This section discusses two hypothetical scenarios where the ICFI and memory in-

tegrity models are implemented and also discusses how the exploitation would be

prevented in each scenario. Given this thesis has provided the proof of the theorems

in the defined abstract machine, this example is only provided to relate the concept

to a widely used architecture and to demonstrate the complexity of potential imple-

mentations. The example is not an actual implementation of either of the proposed

models.

154 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

5.3.1 Simple Buffer Overflow in ICFI Model

This section discusses a simple buffer overflow example in the ICFI model. The C

code of this example is shown in Listing 5.1.

Listing 5.1: C code of a simple buffer overflow vulnerability

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

void bof(char *str) {

char buffer [100];

strcpy(buffer , str);

return;

}

int main (int argc , char *argv []) {

bof(argv [1]);

return 0;

}

Compiling the code on a 64-bit Ubuntu operating system using the gcc compiler

produces an ELF executable with various headers and sections. The compiled code

of the main() and bof() functions are shown in Listings 5.2 and 5.3.

Listing 5.2: Assembly of the main() function

00000000004005 db <main >:

4005db: 55 push rbp

4005dc: 48 89 e5 mov rbp ,rsp

4005df: 48 83 ec 10 sub rsp ,0x10

4005e3: 89 7d fc mov DWORD PTR [rbp -0x4],edi

4005e6: 48 89 75 f0 mov QWORD PTR [rbp -0x10],rsi

4005ea: 48 8b 45 f0 mov rax ,QWORD PTR [rbp -0x10]

4005ee: 48 83 c0 08 add rax ,0x8

4005f2: 48 8b 00 mov rax ,QWORD PTR [rax]

5.3. X86 SAMPLE CODE ANALYSIS 155

4005f5: 48 89 c7 mov rdi ,rax

4005f8: e8 99 ff ff ff call 400596 <bof >

4005fd: b8 00 00 00 00 mov eax ,0x0

400602: c9 leave

400603: c3 ret

400604: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax *1+0x0]

40060b: 00 00 00

40060e: 66 90 xchg ax,ax

A C program normally receives two arguments argc and argv for the main()

function. The argc argument specifies the number of command line arguments that

have been passed to the program. If no command line argument is passed, the name

of the program would be the only argument that the code receives. The rdi register

contains the argc parameter. The rsi register contains the address to the beginning

of argv which is an array of strings specifying all command line options passed to

the program. The first command line string is passed to the executable code using

the address to the first byte of the string in memory. This address is stored as the

second element of argv[] array and is passed to the bof() function as argv[1].

The following instructions prepare the rdi register to contain the address of the

command line string. The string address is the second element of the argv[] array

after the program name.

mov rax ,QWORD PTR [rbp -0x10]

add rax ,0x8

mov rax ,QWORD PTR [rax]

mov rdi ,rax

Once the rdi register is ready, the function bof() is called using a direct call

instruction where the address of the bof() function is provided as an immediate

operand. In the ICFI model, the thesis assumed local functions would also use

indirect instructions to unify the treatment of function calls. In the proposed model

the tuple: (4005f8,400596) would belong to the set ACbof . For the call to the

library function strcpy() in bof(), the target address of the direct call is the

address of an entry in the Procedure Linkage Table (PLT). The PLT is a trampoline

156 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

that allows the transfer of the flow of execution to a dynamic library function. In

this case the PLT entry contains an indirect call, using an address as its operand,

to read the target of the call which points to an entry in .got.plt section of the

ELF binary. This entry will be initialised with the address of the dynamic loader of

the system where after the first call to the library function, strcpy() in this case, it

will load the C library and resolve the address by overwriting the entry of .got.plt

for the called function. To satisfy the requirement of the ICFI model, the tuple

(4005bf, strcpy()) must be in the set ACbof . The call must use an indirect call

instruction using a register. At runtime the PC can be checked to contain base +

4005bf; the register to contain the address of strcpy().

Listing 5.3: Assembly of the bof() function

0000000000400596 <bof >:

400596: 55 push rbp

400597: 48 89 e5 mov rbp ,rsp

40059a: 48 83 c4 80 add rsp ,0 xffffffffffffff80

40059e: 48 89 7d 88 mov QWORD PTR [rbp -0x78],rdi

4005a2: 64 48 8b 04 25 28 00 mov rax ,QWORD PTR fs:0x28

4005a9: 00 00

4005ab: 48 89 45 f8 mov QWORD PTR [rbp -0x8],rax

4005af: 31 c0 xor eax ,eax

4005b1: 48 8b 55 88 mov rdx ,QWORD PTR [rbp -0x78]

4005b5: 48 8d 45 90 lea rax ,[rbp -0x70]

4005b9: 48 89 d6 mov rsi ,rdx

4005bc: 48 89 c7 mov rdi ,rax

4005bf: e8 9c fe ff ff call 400460 <strcpy@plt >

4005c4: 90 nop

4005c5: 48 8b 45 f8 mov rax ,QWORD PTR [rbp -0x8]

4005c9: 64 48 33 04 25 28 00 xor rax ,QWORD PTR fs:0x28

4005d0: 00 00

4005d2: 74 05 je 4005d9 <bof+0x43 >

4005d4: e8 97 fe ff ff call 400470 <__stack_chk_fail@plt

>

4005d9: c9 leave

5.3. X86 SAMPLE CODE ANALYSIS 157

4005da: c3 ret

In the page-by-page code authentication, if the paging mechanism is not vulner-

able then the content of the code is not changed. This satisfies the integrity premise

of the ICFI model. Direct calls use immediate operands. If the integrity of the

code is intact and there is no indirect forward control transfer instruction within

the body of the code, then the trampoline section is the only avenue of attack. If

all of the addresses of the dynamic library functions are resolved and the table is

protected before the execution is started, then the requirements of the forward edges

are satisfied. This is due to the fact that the attacker can modify neither individual

direct calls to the trampoline entries nor the entries of PLT table. If the library

functions call other functions within that library, the transfer of the flow of execu-

tion must be a direct jump. The Gnu C Compiler, gcc, provides a compile option to

disable the lazy loading of a dynamic library and resolution of names to addresses

for the library functions. This compile option is referred to as RELocation Read

Only (RELRO) which will resolve all of the library function names to their addresses

at load time of the executable code. A method described by Di Federico et al. [136]

can perform a code reuse attack on ELF binaries compiled with partial or full RELRO

option provided that the code is not position independent. A used library for the

ELF is not compiled with full RELRO, or the DT DEBUG feature of the ELF binary is

enabled to intercept events related to loading the executable. The system-wide full

RELRO compile will have performance impact which will be a trade-off for achieved

security.

For the backward edge the functions can be modified to have one return in-

struction. If multiple return points are necessary a direct call can be made from

each of the alternate return points to the return instruction. This will simplify the

backward edge verification using a control data stack or a shadow stack. Since it is

necessary to verify the offset of the return instruction to avoid abuse of the return

opcode that may appear within other instructions, having a single exit point for

158 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

each function requires one entry on the shadow stack per function call. In the ex-

ample at the time of the call for bof() in main() the three-tuple (4005fd, 400596,

4005da) will be stored in RMbof (or shadow stack). At the time of return it can be

verified whether the return address is base + 4005fd and (4005f8 - SizeOf(call

instruction),400596) ∈ ACbof and whether PC
?
=base + 4005da. When com-

piling all of the executable code within the system including the shared libraries

with the full RELRO option combined with the page-by-page verification of the code,

a shadow stack with a single return instruction for all functions can potentially

satisfy all the requirements of the ICFI model as long as the page permissions are

protected and cannot be exploited and the programs are not allowed to dynamically

generate code pages. A formal equivalence analysis of each of the aformentioned

implementations is required to prove that all of the requirements of the ICFI model

are satisfied.

5.3.2 Simple Buffer Overflow in Memory Integrity Model

This scenario assumes the C programming language has the qualifier low integrity

to define variables with low integrity levels and that memory cells as well as registers

have the integrity level bits. Given the command line options are provided by the

user then the argv[] variable must be defined as low integrity. Looking at the

source of the bof.c it can be observed that passing argv[1] to bof() function will

then pass that variable to the strcpy() function which will try to copy the content

of one variable to the other. The variable is referred to as str within the body

of bof.c. The str variable is not defined as low integrity whereas the argv[1] is

defined as low integrity. This will result in a compilation error hence the code can

be rewritten as shown in Listing 5.4.

Listing 5.4: C code of a simple buffer overflow vulnerability under memory integrity

model

#include <stdlib.h>

#include <stdio.h>

5.3. X86 SAMPLE CODE ANALYSIS 159

#include <string.h>

void bof(low integrity char *str) {

char buffer [100];

strcpy(buffer , str);

return;

}

int main (low integrity int argc , low integrity char *argv []) {

bof(argv [1]);

return 0;

}

It is worth mentioning that the pointer itself is of high integrity however the memory

location that it is pointing to is of low integrity. The declaration of the buffer[]

variable will also result in a compilation error. As in the strcpy() function, there

is an integrity level mismatch when the content of one variable is being copied to

the other. Listing 5.5 shows the corrected code.

Listing 5.5: C code of a simple buffer overflow vulnerability under memory integrity

model

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

void bof(low integrity char *str) {

low integrity char buffer [100];

strcpy(buffer , str);

return;

}

int main (low integrity int argc , low integrity char *argv []) {

bof(argv [1]);

160 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

return 0;

}

The compilation of the program will result in machine code that sets aside 100 bytes

of memory at the top of the stack of the bof() function. The integrity level of these

bytes will be set to low by the function prologue. The integrity levels of memory

cells before and after the associated memory of the buffer variable will be set to

high. If the argv[1] variable contains more than 100 bytes the mov instruction

in the strcpy() function for the 101th byte will result in an exception due to an

integrity level mismatch between source and destination addresses.

5.4 Address Space Division for Memory Integrity

Model

To implement the memory integrity or confidentiality model in a byte addressable

memory architecture there has to be one bit per byte for each security property.

The cost in this case would be two bits per byte to implement both memory models

or 20%. To decrease the cost of the memory model and simplify the architecture,

an address space division can be implemented instead. The address space division

focuses on a single property structure and rules. A brief description of a model

follows where both properties are considered.

5.4.1 Division of Address Space

Recalling from the previous chapter, each memory cell was assigned a memory in-

tegrity level, low or high, by setting the value of a bit to 0 or 1. The memory cells

then can be mixed in the available address space of the program in execution. The

protection of memory cells from corruption is achieved using the machine instruc-

tions by enforcing various rules according to the memory integrity level. Another

approach to achieve the same level of security can be done by completely separating

the address space for low and high integrity levels, and enforcing the rules using the

5.4. ADDRESS SPACE DIVISION FOR MEMORY INTEGRITY MODEL 161

machine instructions. Most of the memory integrity rules will stay the same, whereas

some of the rules must be modified to accommodate the new memory structure.

In this method two dedicated registers specify the lower and higher bounds of the

process address space in a system without the integrity model. Then to implement

the model an additional register is needed to store the lower bound of the high

integrity address space. This will divide the address space into two parts for each

low and high integrity level. The address stored in the boundary register minus one

will then specify the higher bound of the low integrity address space. The other

two registers will then mark the lower bound of low integrity address space and

the higher bound of high integrity address space. The register can be set by the

operating system when setting up the program for execution. The option can be

given to the programmer to specify how the boundary must be set.

Since the individual cells no longer have the integrity level, the change of integrity

level would be implemented as a copy of memory cells from the low integrity address

space to the high integrity address space. The assigned memory cells to the involved

variable must also be changed for as long as the variable is set to high integrity. The

same rules of the change of memory integrity level apply to this implementation.

The micro operations of the Classify() function, in its simplest form, would involve

a load instruction from the low integrity address space, followed by a change in

integrity level of the load target register from low to high and a store instruction

in the high integrity level address space. The following section describes in more

detail the necessary changes for this method.

5.4.2 Instruction Requirements for Address Space Division

First the dedicated register is defined for the memory integrity boundary. For clarity

LB, HB, and IB express Lower Bound, Higher Bound and Integrity Bound respec-

tively. Letters L and H express the Low integrity level and the High integrity level

for a memory cell or a register.

162 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

Definition 5.4.1. Memory Integrity Bound Register :

for mLB and mHB the lower and higher bounds of the process address space for

program α:

∀m ∈ PMα =⇒ m ∈ [mLB,mHB] then: Reg(rmib) = mIB such that:

• mIB ∈ [mLB,mHB]

• ∀m ∈ [mLB,mIB − 1] =⇒ MemIL(m) = L

• ∀m ∈ [mIB,mHB] =⇒ MemIL(m) = H

The value of the register can be set by a privileged instruction at the initialisa-

tion time before the execution of the program begins. As the content of the rmib

register does not change during the execution of the program α, in micro operation

expressions the notation Reg(rmib) is used. This indicates the content is the same in

both s and s′ states for each instruction. The cost of implementing integrity level for

registers is low as they are low in number, however the registers can also be divided

into low and high integrity groups. This approach would unnecessarily complicate

the expressions, so the remainder of this section continues with using an integrity

level for the register file.

Then the load instruction can be defined as follows.

Definition 5.4.2. Load Instruction:

Ld rd, rs(w) ≡
[(

?ϕ; ld rd, rs(w)
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2 ∧ p3) ∨ ⊥ such that:

• ϕ ≡ s.RegIL(rs) = H

• p1 ≡
(
s′.RegIL(rd) = s.MemIL(s.Reg(rs)+w)

)
≡
(
s.Reg(rs)+w < Reg(rmib) =⇒

s′.RegIL(rd) = L)
)
∧
(
s.Reg(rs) + w ≥ Reg(rmib) =⇒ s′.RegIL(rd) = H)

)
• p2 ≡ s′.Reg(rd) = s.Mem(s.Reg(rs) + w)

• p3 ≡ s′.pc = s.pc+ 1

Since the integrity level for registers are still in place, the ϕ expression remains

the same. The semantic of the instruction also would be the same in this approach.

5.4. ADDRESS SPACE DIVISION FOR MEMORY INTEGRITY MODEL 163

The change is made to the logical statement p1 that expresses the outcome of the

instruction for integrity level. The load instruction copies the integrity level of the

memory cell as well as the content. In this case depending on the value of Reg(rs)+w

compared to Reg(rmib) the integrity level will be set to low or high. That is if the

value of s.Reg(rs) +w is less than the integrity bound register then the memory cell

belongs to the low integrity address space of the program α. If the value is greater

than or equal to the rmib content, the memory cell has high integrity.

The store instruction can similarly be defined as follows.

Definition 5.4.3. Store Instruction:

St rd(w), rs ≡
[(

?ϕ; st rd(w), rs
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ ϕ1 ∧ ϕ2

– ϕ1 ≡ s.MemIL(s.Reg(rd) +w) = s.RegIL(rs) ≡
(
s.RegIL(rs) = L =⇒

s.Reg(rd) + w < Reg(rmib)
)
∧
(
s.RegIL(rs) = H =⇒ s.Reg(rd) + w ≥

Reg(rmib)
)

– ϕ2 ≡ s.RegIL(rd) = H

• p1 ≡ s′.Mem(s.Reg(rd) + w) = s.Reg(rs)

• p2 ≡ s′.pc = s.pc+ 1

The store instruction changes the content of the memory. To prevent the cor-

ruption it must verify if the integrity level of the target memory cell matches that

of the register being stored. In this approach the verification is changed from a

comparison of the integrity levels for each register and memory cell to a comparison

of the address of the target memory cell with the content of rmib. Based on the

result it can be determined if it matches the integrity level of the register that is

being stored. This is expressed as the logical statement ϕ1 as part of the required

test for the store instruction ϕ.

Given there is no longer an integrity level bit per memory cell, the conditional

and unconditional changes of memory integrity level instructions are not required.

164 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

The change of memory integrity level is done by copying the memory cells from

low to high integrity address spaces. The change is only needed for a subset of

variables, the user-provided variables that affect the flow of execution, which need

to be identified by the programmer. The load instruction copies the integrity level

of the source memory cell. To store the content at a high integrity level memory

address, the integrity level of the destination register in the load instruction must

be raised to high before being used as the source for the store instruction. This

sequence of instructions must be limited to the Map() and Classify() functions.

Since the change of memory integrity level is done as part of the Classify()

or Declassify() operations for program variables, the association of memory cells

with variables must be updated after the completion of the transfer of memory cell

content from one address space to another. The requirements of the Classify(v)

function for v ∈ UVα must change to reflect the characteristic of this approach.

MIR 4. ∀v ∈ UVα ∧ ∃(ϕ, v) ∈ CTα ∧ Classify(v) : a1; a2; . . . ; an ∧ Type(v) :

τ ∧ Size(τ) : l, it holds that:

1. “if ϕ(v) then Classify(v) else halt()”
C→
((

?ϕ(v);Classify(v)
)
∪
(
?¬ϕ(v);halt

))
2. ∀ak ∈ Classify(v):

• ak 6= St rd(w), rs ∧ sk.RegIL(rs) = L

• ak; ak+1; ak+2 = Ld ry, rx(w); Intreg ry, H;St rx′(w
′), ry =⇒

(
sk.Reg(rx)+

w ∈Memv[m,m+ l− 1]
)
∧
(
sk+2.Reg(rx′) +w′ ∈Memv[m

′,m′ + l− 1]
)

• ak; ak+1; ak+2 = Ld ry, rx(w);Cintreg ry, rs, rt;St rx′(w
′), ry =⇒

(
sk.Reg(rx)+

w ∈Memv[m,m+ l− 1]
)
∧
(
sk+2.Reg(rx′) +w′ ∈Memv[m

′,m′ + l− 1]
)

The first requirement expresses that there is no other instruction between the

action sequence of the classification test and the classification program. This is

specified using the notion of “compiled to” with notation
C→ from a high level pro-

gramming construct “if-then-else” to a choice dependent on the classification

test. The second requirement is divided into two subclasses. The first subclass

5.5. PROTECTION OF OPERATING SYSTEM MEMORY 165

specifies that none of the atomic instructions of the partial program Classify() for

variable v is performing the store operation for low integrity memory. The sec-

ond subclass expresses that the elevation of the integrity level for any register is

limited only to registers involved in transferring the content of the memory cells

associated with the variable v in the low integrity address space to the associated

memory cells in the high integrity address space. This is shown in two parts for

unconditional and conditional change of the integrity level for the temporary reg-

ister involved in a memory transfer operation. The two address ranges assigned to

variable v during the execution of Classify(v) are expressed as Memv[m,m+ l−1]

and Memv[m
′,m′+ l− 1] for the low and high integrity address ranges respectively.

To achieve this two registers will contain the base addresses of each range, specified

as rx and rx′ for low and high integrity levels respectively. At the completion of the

Classify(v) program only the high integrity address range must be associated with

variable v. This requires the ability to dynamically change the associated memory

to variables. Since the variables of this type are declared at the beginning of the

program the appropriate machine code can be generated to enforce this requirement.

5.5 Protection of Operating System Memory

The memory integrity model can be extended to protect the Operating System (OS)

memory against user processes. This can be achieved by increasing the number of

integrity level bits from one to two. A combination of the confidentiality and the

integrity model in this case would require four bits per memory cell which would

be quite expensive. An alternate approach is to use the combination of two bits to

represent a privilege level rather than integrity and confidentiality levels. At the

lowest level the privilege specifies a low integrity and low confidentiality memory

cell. The memory cells assigned to the lowest privilege level would be the user-

provided variables. All the other program internal variables with the exception of

memory addresses will be assigned to Privilege Level 1 (PL1). At the next level will

be the memory addresses which will receive Privilege Level 2 (PL2). All memory

166 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

cells associated with the OS will receive Privilege Level 3 (PL3), which will include

both OS internal variables as well as memory addresses and pointers. The OS can

use lower level privileges to interact with users and processes.

5.5.1 Memory Privilege Model

This section describes a memory model that can be used to protect the OS memory

against user processes and user processes from malicious users. Initially, the privilege

level is defined as a combination of the integrity and confidentiality levels. The

memory structure and register file structures are the same as in the previous chapter.

To be complete, all required definitions that need not be changed compared to the

previous chapter are repeated in this section with minimal explanation for brevity.

Definition 5.5.1. Memory :

Mem : {0, 1}l × {0, 1}l × {0, 1} × {0, 1}

Definition 5.5.2. Register file:

Reg : {0, 1, . . . , 31} × {0, 1}l × {0, 1} × {0, 1}

The two-bit memory and register privilege level, expressed as RegPL and MemPL,

would represent the four possible levels shown in Table 5.2.

Table 5.2: Memory Privilege Levels

Privilege Level Associated to

Level 0 User Provided Variables

Level 1 Program Internal and Transitional User Provided Variables

Level 2 Program Addresses and Address Variables (Pointers)

Level 3 Operating System Memory

The definitions of the set of variables and the set of user-provided variables are

the same as in the previous chapter.

Definition 5.5.3. Set of Variables of the executable code α:

Vα
def
= {v|V ariable(v) ∈ α}

5.5. PROTECTION OF OPERATING SYSTEM MEMORY 167

Definition 5.5.4. The Set of User Provided Variables for executable code α:

UVα
def
= {v | v ∈ Vα ∧ v provided by user }

The abstract notion of the association of memory cells with program variables

is provided in the definition of the Map() function.

Definition 5.5.5. Map(v) : Memv[m,m + l − 1] where v ∈ Vα ∧ Type(v) : τ ∧

Size(τ) : l

The set of associated memory cells to variables then can be expressed as follows.

Definition 5.5.6. Set of Variable to Memory Map for executable α:

MVα : {Memv[m,m + l − 1]|v ∈ Vα ∧ Type(v) : τ ∧ Size(τ) : l ∃! m ∈ Mem ∧

MemPLv[m,m+ l − 1] = PLv}

The change in privilege level for the transitional user-provided variables must also

be conditioned on a classification test. The definition of the classification test hence

will be the same as in the previous chapter and is repeated here for completeness.

Definition 5.5.7. Set of Classification Tests for transition from PL0 to PL1:

CTα
def
= {(ϕ, v)|v ∈ LVα ∧ ϕ(v) ∈ α ∧ ϕ(v) = True if v can be trusted}

The abstract ReadIO() and Write() functions are the same as the definition in

the previous chapter.

Definition 5.5.8. Write(v)
def
= Memv[m,m + l − 1] ← V alue(v) where v ∈ Vα ∧

Type(v) : τ ∧ Size(τ) : l

Definition 5.5.9. ReadIO(v)
def
= Memv[m,m + l − 1] ← MemIO[mio,mio + l −

1] where v ∈ Vα ∧ Type(v) : τ ∧ Size(τ) : l

Based on the given definitions the MemIO will always have PL0 when reading

from and writing to the associated address range.

In the combined model the address and address-related variables will be set to

PL2. To assign the appropriate privilege, the set of program pointers PTRα, the

Ampersand operator on variables Ampα, and the set of address-related variables

AVα are defined as follows.

168 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

Definition 5.5.10. Set of all pointers for the program α:

PTRα
def
= {x|x ∈ Vα ∧ Type(x) : ptr ∧ Size(ptr) : l}

Definition 5.5.11. Set of all ampersand operators on variables for the program α:

Ampα
def
= {x|x = &v ∧ v ∈ Vα}

Definition 5.5.12. Set of all address-related variables for the program α:

AVα
def
= {i|Type(i) = integer ∧ ∃x ∈ PTRα, i, v ∈ Vα where mv = x + i ∈

Memv[m,m+ l − 1]}

The definitions of the set of execution variables as well as the set of process

memory do not require any changes.

Definition 5.5.13. Set of Execution Variables for the executable code α:

EVα
def
= {Memv[m,m+ l − 1]|Abstract(v) ∧ Size(v) : l}

Definition 5.5.14. Set of Process Memory for the executable code α:

PMα
def
= MVα ∪ EVα

The definitions of PM0α, PM1α and PM2α are as follows.

Definition 5.5.15. Set of Privilege Level 0 Process Memory for the executable code

α:

PM0α
def
= {Memv[m,m+l−1]|Memv[m,m+l−1] ∈ PMα∧MemPLv[m,m+l−1] =

0}

Definition 5.5.16. Set of Privilege Level 1 Process Memory for the executable code

α:

PM1α
def
= {Memv[m,m+l−1]|Memv[m,m+l−1] ∈ PMα∧MemPLv[m,m+l−1] =

1}

Definition 5.5.17. Set of Privilege Level 2 Process Memory for the executable code

α:

PM2α
def
= {Memv[m,m+l−1]|Memv[m,m+l−1] ∈ PMα∧MemPLv[m,m+l−1] =

2}

5.5. PROTECTION OF OPERATING SYSTEM MEMORY 169

5.5.2 Requirements of the Memory Privilege Model

The first requirements of memory integrity and confidentiality models can be defined

as part of the first requirement of the memory privilege model that expresses how

the privilege levels are assigned to program variables.

MPLR 1. Privilege assignment rules:

(a) ∀v ∈ UVα =⇒ Memv[m,m+ l − 1] ∈ PM0α

(b) ∀v ∈ Vα − (UVα ∪ PTRα ∪ Ampα ∪ AVα) : Memv[m,m+ l − 1] ∈ PM1α

(c) ∀x ∈ PTRα ∪ Ampα ∪ AVα =⇒ Memx[m,m+ l − 1] ∈ PM2α

The next requirement expresses that all memory cells associated with a variable

will be set to the same privilege level.

MPLR 2. ∀v,Memv[m,m+ l − 1] ∈ PMα : MemPLv[m,m+ l − 1] = PLv

The following requirement enforces the rules for the Classify() function that

changes the privilege level of transitional user-provided variable from PL0 to Level

PL1. The rule expresses that the Classify(v) function will not contain any low level

store operation, does not elevate the privilege level of a register, and only elevates

the privilege level of cells associated with the variable v.

MPLR 3. ∀v ∈ UVα ∧ ∃(ϕ, v) ∈ CTα ∧ Classify(v) : a1; a2; . . . ; an ∧ Type(v) :

τ ∧ Size(τ) : l, it holds that:

1. “if ϕ(v) then Classify(v) else halt()”
C→
((

?ϕ(v);Classify(v)
)
∪
(
?¬ϕ(v);halt

))
2. ∀ak ∈ Classify(v):

• ak 6= St rd(w), rs ∧ sk.RegPL(rs) = 0

• ak 6= (Privreg rt, 1 ∨ Cprivreg rd, rs, rt).

• ak =
(
Privmem rd(w), 1 ∨ Cprivmem rd(w), rs, rt

)
=⇒ sk.Reg(rd) +

w ∈Memv[m,m+ l − 1]

170 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

This requirement enforces the explicit declassification of memory addresses which

will be needed for debugging purposes.

MPLR 4. Explicit declassification of the address containing variables:

(x ∈ PTRα ∪ Ampα ∪ AVα) ∧Declassify(x) =⇒ MemPLx[m,m+ l − 1] = 0

The following memory privilege requirement expresses that for n programs in

execution α1, α2, . . . , αn the memory ranges not associated with any of the processes

will belong to the OS and set to PL3.

MPLR 5. ∀Mem[] /∈ PMα1 ∪ PMα2 ∪ · · · ∪ PMαn =⇒ (Mem[] ∈ MemOS ∧

MemPL[] = 3)

The micro operations of each instruction will enforce the execution rules of the

privilege model.

MPLR 6. Semantics and micro operations of each instruction.

5.5.3 Instruction Requirements for the Memory Privilege

Model

To enforce the rules of the memory privilege model, any instruction that can affect

the program variables whether user-provided, program internal, or abstract must

follow certain rules. In this section the micro operations of such instructions are

discussed. The requirements of the load instruction is specified first. Given the

registers are temporary storage for memory cells, the destination register in the load

instruction will be set to the same privilege level as the source memory. The register

used for address calculation then must have PL2, as all addresses are considered to

have high integrity and are highly confidential. The latter condition is defined as

the test ϕ and the former as the logical statement p1 which will be satisfied in all

execution of the load instruction. The logical statements p2 and p3 express the

semantic of the load instruction.

Definition 5.5.18. Load Instruction:

Ld rd, rs(w) ≡
[(

?ϕ; ld rd, rs(w)
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2 ∧ p3) ∨ ⊥ such that:

5.5. PROTECTION OF OPERATING SYSTEM MEMORY 171

• ϕ ≡ s.RegPL(rs) = 2

• p1 ≡ s′.RegPL(rd) = s.MemPL(s.Reg(rs) + w)

• p2 ≡ s′.Reg(rd) = s.Mem(s.Reg(rs) + w)

• p3 ≡ s′.pc = s.pc+ 1

For the store instruction, the target memory cell must have the same privilege

level as the source register to avoid memory corruption or memory address leaks.

The register used in address calculation must have PL2.

Definition 5.5.19. Store Instruction:

St rd(w), rs ≡
[(

?ϕ; st rd(w), rs
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡
(
s.MemPL(s.Reg(rd) + w) = s.RegPL(rs)

)
∧ s.RegPL(rd) = 2

• p1 ≡ s′.Mem(s.Reg(rd) + w) = s.Reg(rs)

• p2 ≡ s′.pc = s.pc+ 1

The privilege comparison is specified as the first of the two conditions of the test

ϕ. The privilege level of register rd is specified as the second.

The conditional branch instruction can use registers of the same privilege level

in its comparison to change the flow of execution. Another requirement is that

the privilege levels of the registers used in comparison must be at least PL1 to

prevent the user-provided values being used without any test in changing the flow

of execution.

Definition 5.5.20. Branch Greater Than Instruction:

Bgtrs, rt, w ≡
[(

?ϕ1;
(
(?ϕ2; jdw) ∪ (?¬ϕ2;nop)

))
∪
(

?¬ϕ1;halt
)]
p1∨⊥ such that:

• ϕ1 ≡ s.RegPL(rs) = s.RegPL(rt) ≥ 1

• ϕ2 ≡ s.Reg(rs) > s.Reg(rt)

• p1 ≡ s′.pc = w ∨ s′.pc = s.pc+ 1

172 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

For the indirect jump and return instructions, the register used as the target

address must be of PL2. If the ICFI conditions are also enforced, the target address

must be an authentic address for the indirect jump instruction.

Definition 5.5.21. Indirect Jump Instruction:

Jmp rs ≡
[
(?ϕ; jmp rs) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegPL(rs) = 2 ∧ ICFIconditions

• p1 ≡ s′.pc = s.Reg(rs)

• p2 ≡ ICFI conditions

For the return instruction, the register that contains the return address must

have PL2. If the ICFI rules are enforced, the return must be a registered return for

this function, the call to the function must be an authentic call, and the destination

must be a valid destination for that authentic call.

Definition 5.5.22. Return Instruction:

Ret rs ≡
[
(?ϕ; ret rs) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegPL(rs) = 2 ∧ ICFIconditions

• p1 ≡ s′.pc = s.Reg(rs)

• p2 ≡ ICFI conditions

The arithmetic and logic instructions can only perform operations on registers

of the same privilege level. This will prevent the mixture of values with different

privilege levels that could lead to violation of integrity or confidentiality.

Definition 5.5.23. Add Instruction:

Add rd, rs, rt ≡
[
(?ϕ; add rd, rs, rt) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegPL(rd) = s.RegPL(rs) = s.RegPL(rt)

• p1 ≡ s′.Reg(rd) = s.Reg(rs) + s.Reg(rt)

5.5. PROTECTION OF OPERATING SYSTEM MEMORY 173

• p2 ≡ s′.pc = s.pc+ 1

The Addi instruction accepts one immediate operand which does not require a

privilege check, as the content of the code is protected under either code memory

integrity or the mutual exclusive property of code memory for write and execute

access.

Definition 5.5.24. Add Immediate Instruction:

Addi rd, rs, w ≡
[
(?ϕ; addi rd, rs, w) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨ ⊥ such that:

• ϕ ≡ s.RegPL(rd) = s.RegPL(rs)

• p1 ≡ s′.Reg(rd) = s.Reg(rs) + w

• p2 ≡ s′.pc = s.pc+ 1

To change the privilege level of a register either conditionally or unconditionally,

the Cprivreg or Privreg instructions are used respectively.

Definition 5.5.25. Change Register Privilege Level :

[Privreg rt, pl]p1 ∧ p2 such that:

• p1 ≡ s′.RegPL(rt) = pl

• p2 ≡ s′.pc = s.pc+ 1

The conditional change of the privilege level of a register uses the comparison of

a higher privilege level register with a lower privilege level register as a test. When

successful, the privilege level of a third register can be set to an embedded value.

Conditionally on a test, this instruction then can be used either in classification of

a user-provided value for a variable or the elevation of a variable from PL1 to PL2.

Definition 5.5.26. Conditional Change Register Privilege Level :

Cprivreg rd, rs, rt, pl ≡
[
(?ϕ;Privreg rd, pl) ∪ (?¬ϕ;halt)

]
(p1 ∧ p2) ∨⊥ such that:

• ϕ ≡ s.Reg(rt) < s.Reg(rs) ∧ s.RegPL(rs) ≥ pl

• p1 ≡ s′.RegPL(rd) = pl

174 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

• p2 ≡ s′.pc = s.pc+ 1

The memory equivalent of the change of privilege level instructions are as follows.

Definition 5.5.27. Change Memory Privilege Level :

Privmem rd(w), pl ≡
[(

?ϕ; privmem rd(w), pl
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2) ∨ ⊥ such

that:

• ϕ ≡ s.RegPL(rd) = 2

• p1 ≡ s′.MemPL(s.Reg(rd) + w) = pl

• p2 ≡ s′.pc = s.pc+ 1

For the unconditional change of the privilege level, the register used for address

calculation must have PL2. The privmem rd(w), pl instruction expresses the se-

mantic of the change of the privilege level of a memory cell without any conditions.

This micro instruction will not be a valid instruction on its own and will not have

a valid opcode.

Definition 5.5.28. Conditional Change of Memory Privilege Level :

Cprivmem rd(w), rs, rt, pl ≡
[(

?ϕ; privmem rd(w), pl
)
∪
(
?¬ϕ;halt

)]
(p1 ∧ p2) ∨⊥

such that:

• ϕ ≡
(
s.Reg(rt) < s.Reg(rs)

)
∧
(
s.RegPL(rs) ≥ pl

)
∧
(
s.RegPL(rd) = 2

)
• p1 ≡ s′.MemPL(s.Reg(rd) + w) = pl

• p2 ≡ s′.pc = s.pc+ 1

The conditional change of the memory privilege level uses a comparison between

a lower privilege level register and a higher privilege level register as a test to elevate

the privilege level of a target address. This is expressed as the ϕ test which is

comprised of three logical statements. The first statement is the comparison of the

contents of the registers rt and rs in state s. The second statement expresses that the

privilege level of the register rs is at least equal to the embedded value of privilege

5.5. PROTECTION OF OPERATING SYSTEM MEMORY 175

level pl. The third statement assures that the register used in address calculation is

of PL2.

Given there are four privilege levels in this model, the various circumstances that

change the privilege levels must be discussed. The first change of privilege level is

needed when a user-provided variable that is used in flow of execution decisions has

passed its classification test and must be elevated from PL0 to PL1. The second

change of privilege level is needed when an internal variable of the program or an

elevated user-provided variable is used in some form of address calculation. This

type of change in privilege level could result in user-provided variables being used in

address calculation which may result in exploitations. The classification of the user-

provided value must also assure any further elevation of privilege level will not result

in exploitation of the program. Secondary classification tests can be defined for such

cases. The third type of privilege level elevation is from PL1 or PL2 to PL3, that

is from the user space to the operating system space. The operating system must

define classification tests for these types of elevation of privilege level of variables

from the user space to the operating system space. The lowering of privilege levels

must also be considered for instance from the operating system space (PL3) to the

user space (PL2-PL0) to be used as user space addresses, trusted variables, or to be

used as output to the user. The program can also print out addresses as part of the

debugging process (PL2 to PL0). This will require explicit declassification of the

memory address variables. The defined instructions have the required flexibility to

address all of the aforementioned scenarios. The compiler for the user program and

the operating system must ensure the proper instructions are used for each elevation

of a privilege level to prevent potential exploitations.

The above cases can be summarised as the following corollaries.

Corollary 5.5.1. For the program α in execution with its set of process memory

PM0α, PM1α, and PM2α where PMα = PM0α ∪ PM1α ∪ PM2α and PM0α ∩

PM1α ∩ PM2α = ∅ and the corresponding classification tests (for user-provided

176 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

variables) CTα, given the rules of memory privilege model (MPLR 1-6) then all

computation sequences of the program α will be benign.

Using the memory integrity model theorem (Theorem 4.4.6), it can be shown

that:

• PMLα = PM0α and PMHα = PM1α ∪ PM2α

• MPLR1a satisfies MIR1

• MPLR1b and c satisfy MIR3

• MPLR2 satisfies MIR2

• MPLR3 satisfies MIR4

Following the same logic for the proof of the memory integrity model theorem and

the definition of memory corruption (Def. 4.4.18) there will be at least a store

instruction that attempts a write outside the boundary of a variable. The instruction

would be St rd(w), rs where mx = Reg(rd)+w is the calculated address for the target

memory cell. Similar to the memory integrity model two cases are considered. In

the first case the store operation is part of the ReadIO(v) program; in the second

case the store operation is not part of the ReadIO(v) program.

1. St rd(w), rs ∈ ReadIO(v) =⇒ RegPL(rs) = 0 (Def. 5.5.9 and MemPLIO[] =

0) and based on MPLR1a and Definition 5.5.15 for this instruction to perform

a memory corruption: mx /∈Memv[m,m+ l−1]∧mx ∈Memv′ [m
′,m′+ l′−1],

there exist the following cases:

(a) v′ is a defined variable

i. v′ ∈ UVα where using MPLR1a: MemPL(mx) = 0 and the corrup-

tion will be inconsequential (v′ does not affect the flow of execution).

Hence its corruption either has no effect on the flow of execution or

if v′ affects flow of execution it must have a classification test which

will detect the corruption MPLR2,3.

5.5. PROTECTION OF OPERATING SYSTEM MEMORY 177

ii. v′ /∈ UVα where MemPL(mx) = 1∨MemPL(mx) = 2 (MPLR1b and

c) and given the store instruction in this case is part of ReadIO(v)

then RegPL(rs) = 0. Given MPLR6 for the store instruction

(Def. 5.5.19) this will result in a program halt.

(b) v′ is an abstract variable (given the store instruction is part of ReadIO(v)

then RegPL(rs) = 0)

i. MemPL(mx) = 0 the corruption of privilege 0 is inconsequential

(low integrity temporary storage)

ii. MemPL(mx) = 1 results in a halt (MPLR6, semantic of store

instruction as in Def. 5.5.19)

iii. MemPL(mx) = 2 the same as Privilege Level 1

2. St rd(w), rs /∈ ReadIO(v). The cases whereMemPL(mx) = 1∧RegPL(rs) = 1

and MemPL(mx) = 2 ∧ RegPL(rs) = 2 are considered, as any mismatch

between privilege levels will result in an exception (MPLR6 for store in

Def. 5.5.19). Also considered is how the content of either rs or rd can be

controlled by the attacker:

(a) a memory location that belongs to a user-provided value is corrupted and

then changed to PL1 or PL2 and then loaded into either rs or rd. The

sequence of instructions that change the privilege level of a user-provided

variable can only be part of Classify(v) where no PL0 store operation

is permitted (MPLR6). This means the corruption has happened before

the classification test and is not possible after elevation of the privilege

level.

(b) a memory location that belongs to a use-provided value is corrupted and

loaded into a register. Then the register is elevated to PL1 or PL2 and

affects the content of rs or rd. This sequence is not needed and must not

be generated by the compiler.

178 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

A similar corollary can be defined for address leakage prevention using PL2 memory

and register level.

Corollary 5.5.2. For the program α in execution with its set of process memory

PM0α, PM1α, and PM2α where PMα = PM0α ∪ PM1α ∪ PM2α and PM0α ∩

PM1α ∩ PM2α = ∅, given the rules of the memory privilege model (MPLR1-6),

then no execution of α will leak a memory address if no explicit declassification is

used.

Using the memory confidentiality model theorem (Theorem 4.5.4), it can be

shown that:

• MLCα = PM0α ∪ PM1α and MHCα = PM2α

• MPLR1c satisfies MCR1

• MPLR1a and b satisfy MCR3

• MPLR2,4 and 5 satisfy MCR2,4, and 5

Similarly the OS versus user space protection can be defined as a corollary by

showing the equivalence of the sets of variables and the built-in micro operations of

instructions and given rules of the memory privilege model. The OS protection can

only prevent OS memory corruption. All OS memory, which includes addresses, are

set to the highest privilege level that protects against unauthorised writes but not

incorrect reads.

Corollary 5.5.3. For user processes in execution αi, i = 1, . . . , n and the Operating

System in execution with the following user and OS memory spaces:

• MemUser[] = PMα1 ∪ PMα2 ∪ · · · ∪ PMαn =⇒ MemUserPL[] ≤ 2

• MemOS[] = Mem[]−MemUser[] =⇒ MemOSPL[] = 3

Then by defining:

• IL = L ≡ PL ≤ 2 ∧ IL = H ≡ PL = 3

5.6. SUMMARY 179

• PML = MemUser[]

• PMH = MemOS[]

and using the MIR1-6 and explicit classification of user memory after passing the

classification test, then all computation sequences of OS will not contain memory

corruptions leading to control flow attacks on the OS flow of execution.

5.6 Summary

The integrity of code memory is a precondition to the ICFI model as discussed in

Chapter Three. A page-by-page verification of code memory has been implemented

that assures only authenticated and authorised code will be loaded into memory.

The page-by-page verification compared to previous methods has the advantage

that it uses the same mechanism for executable code and shared libraries and only

checks the code that is needed according to the flow of execution rather than the

entire code of the executable file. The security of the proposed approach relies

on immutability of the storage of page MACs and the infeasibility of dictionary

attacks on the selected password. An equivalence analysis of the combination of the

proposed page-by-page verification with a single return point of all functions with a

shadow stack and RELRO compilation of all executable code could potentially satisfy

all requirements of the ICFI model.

The proposed potential realisation of the memory integrity model in this chapter

reduces the cost of required memory by the original model discussed in Chapter

Four. This is achieved by dividing the address space between low and high integrity

levels. The micro operations of instructions must change for the address space

division realisation of the memory integrity model. The most significant change is

the implementation of the Classify() function which would require the copy of the

variable content from the low integrity address space to the high integrity and the

change of any further reference to the variable.

180 CHAPTER 5. CODE MEM. AUTHENTICITY & ALT. MEM. MODELS

The proposed combined integrity and confidentiality memory model can protect

both properties and provide an additional feature. This model can protect the OS

memory against malicious user processes. The micro operations of the instructions

must change to enforce the requirements of the combined model. More complex

models and architectures can be built using the fundamental principles of the in-

tegrity and confidentiality memory models.

Chapter 6

Conclusion

6.1 Introduction

A computer system can have vulnerabilities which are weaknesses created due to

errors during design, implementation, or use of the system. An exploitation is a

method of abusing one or more vulnerabilities to gain more access to the target

system that is allowed through normal communication channels. One of the widely

used types of exploitation is malicious code execution where the adversary can ex-

ecute crafted code on the target machine. Depending on the type of vulnerability

and method of exploitation, the malicious code execution can gain various levels of

control over the target system which can then be used for malicious purposes. The

reported number of vulnerabilities that could lead to arbitrary code execution in

the Common Vulnerability and Exposure (CVE) database indicates the significance

of the problem [3]. As the number of computer devices increases with the increase

in number of smart phones, other mobile devices, and Internet of Things (IoT), the

number of systems that can be the target of remote code execution by the attacker

will also increase unless the vulnerabilities are removed from these systems or the

exploitations are prevented.

The exploitation of the target system that leads to malicious code execution can

be divided into two broad categories. In the first category the adversary injects

the intended malicious code in the target machine’s memory and changes the flow

181

182 CHAPTER 6. CONCLUSION

of execution to the crafted code. In the second category the attacker reuses the

code that already exists in the target machine’s memory such as library functions

to achieve her goal. The second category can be further divided into two classes

based on whether the benign execution flow is violated or not. Given all machine

code must be loaded into memory for execution, all remote code execution attacks

exploit the memory corruption vulnerability to gain some form of control over the

target machine. Another form of exploitation is to gain information by leaking the

content of the target machine’s memory. This type of exploitation usually does not

violate the flow of execution.

6.2 Contributions

For a vulnerable system to resist exploitation it must remove the requirements of

a successful attack. Current modern architectures have various fundamental design

flaws from a security point of view by providing too much flexibility, for example

through indirect jump instructions, using a single privilege model for memory, and

mixing the control and non-control data in memory. Proposing alternative architec-

tures can help design better processors and memory structures with more flexibility

in enforcing security policies without sacrificing the performance. Using formal ap-

proaches will enable proving the correctness of the solution and provide clear and

provable security guarantees.

The contributions can be summarised as follows:

(C1) Ideal Control Flow Integrity model to prevent control flow hijack attacks : For

any remote code execution to succeed it must change the flow of execution from

what was intended by the programmer to what is intended by the attacker. To

address this a model, called an Ideal Control Flow Integrity (ICFI), is proposed

that protects against control flow hijack attacks by enforcing three essential

policies. The first policy is the integrity of the executable code which pro-

tects against overwriting the code of the executable or abusing the immediate

6.2. CONTRIBUTIONS 183

operands of direct jump and conditional branch instructions. The second en-

forced rule aims to protect the forward edges in control flow transfers which are

used in calling dynamically linked library functions. The third policy protects

the backward edge which is used to return from called functions. This model

is the first provably secure model that allows dynamic linking and relocatable

executable code. An abstract machine model proposed in the literature is used

to express similar concepts with modifications required for ICFI. Propositional

Dynamic Logic (PDL) is used to express logical premises and statements for

proposed policy enforcements.

(C2) Memory Integrity model to prevent control flow hijack and control flow bending

attacks : A solution is provided to protect against non-control data memory

corruption attacks where the flow of execution is not violated by the exploita-

tion. In this solution, referred to as the memory integrity model, the memory

cells and registers have an extra bit that indicates the integrity level of that

memory cell or register. The required rules for the programmer, compiler,

and machine instructions to prevent user-provided variables corrupting any

memory cell that may influence the flow of execution are then defined. In this

model the corruption opportunity is taken away from the attacker by limiting

the machine instructions that read user-provided input to only low integrity

memory cells. If the user-provided input will affect the flow of execution, then

the programmer must specify an explicit test that can assure that the provided

input can be trusted by the program. PDL is used for this model to formally

express the micro operations of the instructions, and prove the correctness of

the model in preventing memory corruption attacks that could lead to control

flow hijack or control flow bending attacks.

(C3) Memory Confidentiality model to prevent memory address leakage: To prevent

memory address leakage the memory confidentiality model is defined that is

similar to the integrity model in principle. The difference is that memory cells

and registers containing memory addresses are considered to be confidential

184 CHAPTER 6. CONCLUSION

compared to all other memory cells and registers. This will limit the flow of in-

formation between high and low confidential containers except when intended

by the programmer.

(C4) An implementation of Code Memory Authenticity as a proof of concept for the

memory integrity precondition of ICFI model : A page-by-page verification of

code memory for the Linux operating system implements the first step of the

ICFI model in providing code memory integrity for all executable code within

the system which includes the shared libraries. The implementation improves

the performance by only verifying the code that is going to be executed com-

pared to other methods where the entire code of the executable is verified.

A Message Authentication approach is used that requires only hash functions

and a password to achieve a form of authentication for each executable code

page.

(C5) Address Space Separation model as a more cost-effective alternative to the

memory integrity model : A realisation of the memory integrity model is also

proposed where the cost of required memory is reduced. This is achieved by di-

viding the memory into two separate address spaces for low and high integrity

cells. The required changes compared to the formal model are discussed in

detail.

(C6) Memory Privilege model as an alternative memory model to combine the in-

tegrity and confidentiality models : In a combined model to protect integrity

and confidentiality a solution is proposed that can protect the operating sys-

tem against user processes by assigning four privilege levels to memory cells

and registers. The combined model achieves protection of the operating sys-

tem against user process memory, process memory addresses from leakage, and

memory cells affecting the flow of execution from corruption by user-provided

input.

6.3. FUTURE RESEARCH 185

6.3 Future Research

The forward and backward edge protection of the ICFI model can be implemented

by modifying the compiler to generate the required sets of Authentic Calls and

Return Point(s) for each executable code and library function. The RELocation

Read Only or RELRO option of the Gnu C Compiler, gcc performs all name to address

resolutions for library functions. An equivalence analysis of the above feature for

dynamic loaders combined with proposed page-by-page verification can potentially

satisfy the forward edge requirement of the proposed ICFI model. For backward

edge protection the shadow stack with a single return point for functions can satisfy

the backward edge requirement of ICFI. Further research can potentially provide

the equivalence proofs of the aforementioned forward and backward edge protection

to the requirements of ICFI and provide provable security against control flow hijack

attacks for modern operating systems. The function pointers require further research

to specify how the disjoint set of conditions that specify one valid target per condition

can be defined and implemented. Another aspect of research for the disjoint set of

conditions for forward edge protection is the possibility of a multi-layer scenario

where the conditions are tested in a hierarchical model.

The proposed memory model is similar to the Code Pointer Integrity (CPI) work

of Kuznetsov et al. [117] and DataShield proposed by Carr and Payer [137]. In CPI

only a subset of code pointers are protected whereas the proposed memory models in

this thesis protect all memory cells. DataShield provides a method for programmer

to declare sensitive variables using a type-based mechanism where illegal reads and

writes to the instances of the sensitive types will be prevented. The goals of integrity

and confidentiality models in this thesis differ from DataSheild. The goal of the in-

tegrity model is only to prevent memory corruptions leading to control flow attacks.

The confidentiality model aims to prevent the leakage of memory addresses. All

pointer checking mechanisms such as Softbound [120], Hardbound [121], and Intel

MPX [122], need to store metadata related to the pointer in some fashion which re-

quires extra memory access whenever the pointer is dereferenced. The most efficient

186 CHAPTER 6. CONCLUSION

solution would still require a single memory read to access the bounds information

of a pointer and at least one additional instruction to verify the validity of the infor-

mation for that pointer. The cost of the proposed models in this thesis will be the

preparation of the memory layout and any classification of low integrity variables

that will affect the flow of execution. In terms of memory the cost of the models is

the additional bits per memory cells or additional registers and micro operations in

case of address space separation. Once the memory cells are classified accordingly

the policy enforcement has no additional cost regardless of how many times the

variables are used or the pointers are dereferenced during the program execution.

Further research into the memory integrity and confidentiality model can use

the proposed machine model to provide more complex instructions to address the

complexity of modern architectures. Building prototypes of the proposed machine

model in virtual or physical forms can enable further research into the complexity of

the architecture and security/performance trade-off. Further research into required

compiler rules and potential optimisations without sacrificing the achieved security

is needed to avoid bypassing the required security measures.

References

[1] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and

M. Payer, “Control-Flow Integrity: Precision, Security, and Performance,”

ACM Comput. Surv., vol. 50, no. 1, pp. 1–33, 2017.

[2] “Common Vulnerability and Exposure - About CVE,” https://cve.mitre.org/

about/, 2017, accessed on 15-04-2018.

[3] “Common Vulnerability and Exposure - Download CVE,” http://cve.mitre.

org/data/downloads/allitems.csv, 2017, accessed on 17-09-2017.

[4] E. Damiani, C. Ardagna, and N. El Ioini, “Formal methods for software veri-

fication,” in Open Source Systems Security Certification. Springer US, Jan.

2009, pp. 1–26.

[5] G. Klein, “Operating system verification—an overview,” Sadhana, vol. 34,

no. 1, pp. 27–69, Feb. 2009.

[6] H. Chen and D. Wagner, “MOPS: an infrastructure for examining security

properties of software,” in Proceedings of the 9th ACM Conference on Com-

puter and Communications Security, 2002, pp. 235–244.

[7] B. Schwarz, H. Chen, D. Wagner, G. Morrison, J. West, J. Lin, and W. Tu,

“Model checking an entire linux distribution for security violations,” in Pro-

ceedings of the 21st Annual Computer Security Applications Conference, Dec.

2005, pp. 10–22.

187

https://cve.mitre.org/about/
https://cve.mitre.org/about/
http://cve.mitre.org/data/downloads/allitems.csv
http://cve.mitre.org/data/downloads/allitems.csv

188 REFERENCES

[8] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step

towards automated detection of buffer overrun vulnerabilities.” in Symposium

on Network and Distributed System Security (NDSS), 2000, accessed on

03-01-2018. [Online]. Available: http://www.isoc.org/isoc/conferences/ndss/

2000/proceedings/039.pdf

[9] M. F. Ringenburg and D. Grossman, “Preventing format-string attacks via

automatic and efficient dynamic checking,” in Proceedings of the 12th ACM

Conference on Computer and Communications Security, 2005, pp. 354–363.

[10] K. Chen and D. Wagner, “Large-scale analysis of format string vulnerabili-

ties in debian linux,” in Proceedings of the 2007 workshop on Programming

languages and analysis for security, 2007, pp. 75–84.

[11] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam, “Improving software

security with a c pointer analysis,” in Proceedings of the 27th international

conference on Software engineering. ACM, 2005, pp. 332–341.

[12] P. T. Breuer and S. Pickin, “One million (LOC) and counting: Static analy-

sis for errors and vulnerabilities in the linux kernel source code,” in Reliable

Software Technologies–Ada-Europe 2006. Springer Berlin Heidelberg, 2006,

pp. 56–70.

[13] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun.

ACM, vol. 12, no. 10, pp. 576–580, 1969.

[14] P. T. Breuer and S. Pickin, “Checking for deadlock, double-free and other

abuses in the linux kernel source code,” in Computational Science–ICCS 2006.

Springer Berlin Heidelberg, 2006, pp. 765–772.

[15] ——, “Symbolic approximation: an approach to verification in the large,”

Innovations in Systems and Software Engineering, vol. 2, no. 3-4, pp. 147–

163, Oct. 2006.

http://www.isoc.org/isoc/conferences/ndss/2000/proceedings/039.pdf
http://www.isoc.org/isoc/conferences/ndss/2000/proceedings/039.pdf

REFERENCES 189

[16] ——, “Verification in the light and large: large-scale verification for fast-

moving open source c projects,” in 31st IEEE Software Engineering Workshop

(SEW 2007), 2007, pp. 246–255.

[17] J. S. Foster, M. Fahndrich, and A. Aiken, “A theory of type qualifiers,” SIG-

PLAN Notices, vol. 34, no. 5, pp. 192–203, 1999.

[18] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Detecting format string

vulnerabilities with type qualifiers.” in Proceedings of the 10th USENIX Secu-

rity Symposium, 2001, pp. 201–220.

[19] R. Johnson and D. Wagner, “Finding user/kernel pointer bugs with type in-

ference.” in Proceedings of the 13th USENIX Security Symposium, 2004.

[20] J. S. Foster, T. Terauchi, and A. Aiken, “Flow-sensitive type qualifiers,” SIG-

PLAN Notices, vol. 37, no. 5, pp. 1–12, 2002.

[21] J. S. Foster, R. Johnson, J. Kodumal, and A. Aiken, “Flow-insensitive

type qualifiers,” ACM Transactions on Programming Languages and Systems-

TOPLAS, vol. 28, no. 6, pp. 1035–1087, 2006.

[22] B. Chin, S. Markstrum, and T. Millstein, “Semantic type qualifiers,” SIG-

PLAN Notices, vol. 40, no. 6, pp. 85–95, 2005.

[23] G. C. Necula, S. McPeak, and W. Weimer, “CCured: type-safe retrofitting of

legacy code,” SIGPLAN Notices, vol. 37, no. 1, pp. 128–139, 2002.

[24] G. Morrisett, D. Walker, K. Crary, and N. Glew, “From system f to typed

assembly language,” ACM Transactions on Programming Languages and

Systems-TOPLAS, vol. 21, no. 3, pp. 527–568, 1999.

[25] K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker, S. Weirich,

and S. Zdancewic, “TALx86: A realistic typed assembly language,” in 1999

ACM SIGPLAN Workshop on Compiler Support for System Software Atlanta,

GA, USA, 1999, pp. 25–35.

190 REFERENCES

[26] G. Morrisett, K. Crary, N. Glew, and D. Walker, “Stack-based typed assembly

language,” Journal of Functional Programming, vol. 12, no. 01, pp. 43–88,

2002.

[27] G. C. Necula, “Proof-carrying code. design and implementation,” in Proof

and System-Reliability, ser. NATO Science Series. Springer Netherlands, Jan.

2002, vol. 62, pp. 261–288.

[28] A. Appel, “Foundational proof-carrying code,” in Proceedings 16th Annual

IEEE Symposium on Logic in Computer Science, 2001, pp. 247–256.

[29] N. Hamid, Zhong Shao, V. Trifonov, S. Monnier, and Zhaozhong Ni, “A syn-

tactic approach to foundational proof-carrying code,” in Proceedings 17th An-

nual IEEE Symposium on Logic in Computer Science, 2002, pp. 89–100.

[30] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity

principles, implementations, and applications,” ACM Transactions on Infor-

mation and System Security, vol. 13, no. 1, pp. 1–40, Oct. 2009.

[31] V. van der Veen, L. Cavallaro, and H. Bos, “Memory errors: the past, the

present, and the future,” in Research in Attacks, Intrusions, and Defenses.

Springer Berlin Heidelberg, 2012, pp. 86–106.

[32] H. Orman, “The morris worm: a fifteen-year perspective,” IEEE Security &

Privacy, vol. 1, no. 5, pp. 35–43, 2003.

[33] E. H. Spafford, “The internet worm program: an analysis,” SIGCOMM Com-

put. Commun. Rev., vol. 19, no. 1, pp. 17–57, 1989.

[34] “About Us -The CERT Division,” http://www.cert.org/about/, Feb. 2015,

accessed on 20-12-2017.

[35] A. One, “Smashing the stack for fun and profit,” http://phrack.org/issues/

49/14.html, Nov. 1996, accessed on 03-01-2018.

http://www.cert.org/about/
http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html

REFERENCES 191

[36] A. mudge@l0pht.com, “How to write buffer overflows,” http://insecure.org/

stf/mudge buffer overflow tutorial.html, 1995, accessed on 03-02-2015.

[37] S. Designer, “Linux kernel patch from the openwall project: README,” http:

//www.openwall.com/linux/README.shtml, 1997, accessed on 03-02-2015.

[38] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic adaptive de-

tection and prevention of buffer-overflow attacks,” in Proceedings of the 7th

USENIX Security Symposium, 1998, pp. 346–355.

[39] A. Zabrocki, “Scraps of notes on remote statck overflow exploitation,” http:

//www.phrack.org/issues/67/13.html#article, Nov. 2010, accessed on 11-02-

2015.

[40] Bulba and Kil3r, “Bypassing StackGuard and StackShield,” http://www.

phrack.org/issues.html?issue=56&id=5#article, 2000, accessed on 05-01-2014.

[41] H. Etoh and K. Yoda, “Protecting from stack-smashing attacks,” Technical

report, IBM Research Divison, Tokyo Research Laboratory, Jun. 2000.

[42] S. Designer, “Getting around non-executable stack (and fix),” http://seclists.

org/bugtraq/1997/Aug/63, Aug. 1997, accessed on 16-12-2013.

[43] Nergal, “The advanced return-into-lib (c) exploits: PaX case study,” http:

//www.phrack.org/issues.html?issue=58&id=4#article, 2001, accessed on 05-

01-2014.

[44] PaX Security Team, “Address space layout randomization,” https://pax.

grsecurity.net/docs/aslr.txt, 2001, accessed on 03-02-2015.

[45] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,

“On the effectiveness of address-space randomization,” in Proceedings of the

11th ACM Conference on Computer and Communications Security, 2004, pp.

298–307.

http://insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://www.openwall.com/linux/README.shtml
http://www.openwall.com/linux/README.shtml
http://www.phrack.org/issues/67/13.html#article
http://www.phrack.org/issues/67/13.html#article
http://www.phrack.org/issues.html?issue=56&id=5#article
http://www.phrack.org/issues.html?issue=56&id=5#article
http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Aug/63
http://www.phrack.org/issues.html?issue=58&id=4#article
http://www.phrack.org/issues.html?issue=58&id=4#article
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt

192 REFERENCES

[46] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically returning

to randomized lib (c),” in Proceedings of the 25th Annual Computer Security

Applications Conference, 2009, pp. 60–69.

[47] S. Krahmer, “x86-64 buffer overflow exploits and the borrowed code

chunks exploitation technique,” http://packetstorm.igor.onlinedirect.bg/

papers/bypass/no-nx.pdf, 2005, accessed on 13-12-2013.

[48] H. Shacham, “The geometry of innocent flesh on the bone: return-into-libc

without function calls (on the x86),” in Proceedings of the 14th ACM Confer-

ence on Computer and Communications Security, 2007, pp. 552–561.

[49] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good instruc-

tions go bad: generalizing return-oriented programming to RISC,” in Proceed-

ings of the 15th ACM Conference on Computer and Communications Security,

2008, pp. 27–38.

[50] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented pro-

gramming: Systems, languages, and applications,” ACM Transactions on In-

formation and System Security, vol. 15, no. 1, pp. 1–34, Mar. 2012.

[51] Blexim, “Basic integer overflows,” http://phrack.org/issues/60/10.html, Dec.

2002, accessed on 06-02-2015.

[52] O. Horovitz, “Big loop integer protection,” http://phrack.org/issues/60/9.

html, Dec. 2002, accessed on 06-02-2015.

[53] gera and riq, “Advances in format string exploitation,” http://phrack.org/

issues/59/7.html, Jul. 2002, accessed on 06-02-2015.

[54] C. Planet, “A eulogy for format strings,” http://www.phrack.org/issues/67/

9.html#article, Nov. 2010, accessed on 11-02-2015.

http://packetstorm.igor.onlinedirect.bg/papers/bypass/no-nx.pdf
http://packetstorm.igor.onlinedirect.bg/papers/bypass/no-nx.pdf
http://phrack.org/issues/60/10.html
http://phrack.org/issues/60/9.html
http://phrack.org/issues/60/9.html
http://phrack.org/issues/59/7.html
http://phrack.org/issues/59/7.html
http://www.phrack.org/issues/67/9.html#article
http://www.phrack.org/issues/67/9.html#article

REFERENCES 193

[55] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and

M. Winandy, “Return-oriented programming without returns,” in Proceed-

ings of the 17th ACM Conference on Computer and Communications Security,

2010, pp. 559–572.

[56] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented program-

ming: a new class of code-reuse attack,” in Proceedings of the 6th ACM Sym-

posium on Information, Computer and Communications Security, 2011, pp.

30–40.

[57] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, “DROP: Detecting

return-oriented programming malicious code,” in Information Systems Secu-

rity. Springer Berlin Heidelberg, 2009, pp. 163–177.

[58] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity measurement

and attestation: towards defense against return-oriented programming at-

tacks,” in Proceedings of the 2009 ACM workshop on Scalable trusted com-

puting, 2009, pp. 49–54.

[59] K. Lu, D. Zou, W. Wen, and D. Gao, “Packed, printable, and polymorphic

return-oriented programming,” in Recent Advances in Intrusion Detection, ser.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, Jan. 2011,

vol. 6961, pp. 101–120.

[60] P. Chen, X. Xing, H. Han, B. Mao, and L. Xie, “Efficient detection of the

return-oriented programming malicious code,” in Information Systems Secu-

rity, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

Jan. 2010, vol. 6503, pp. 140–155.

[61] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-free: defeat-

ing return-oriented programming through gadget-less binaries,” in Proceedings

of the 26th Annual Computer Security Applications Conference. ACM, 2010,

pp. 49–58.

194 REFERENCES

[62] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: a detection tool to

defend against return-oriented programming attacks,” in Proceedings of the 6th

ACM Symposium on Information, Computer and Communications Security,

2011, pp. 40–51.

[63] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating return-oriented

rootkits with “return-less” kernels,” in Proceedings of the 5th European con-

ference on Computer systems. ACM, 2010, pp. 195–208.

[64] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating code-reuse attacks with

control-flow locking,” in Proceedings of the 27th Annual Computer Security

Applications Conference. ACM, 2011, pp. 353–362.

[65] V. Pappas, M. Polychronakis, and A. Keromytis, “Smashing the gadgets: Hin-

dering return-oriented programming using in-place code randomization,” in

IEEE Symposium on Security and Privacy (SP), May 2012, pp. 601–615.

[66] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning, “On the

expressiveness of return-into-libc attacks,” in Recent Advances in Intrusion

Detection, ser. Lecture Notes in Computer Science. Springer Berlin Heidel-

berg, Jan. 2011, vol. 6961, pp. 121–141.

[67] M. Conover, “w00w00 on heap overflows,” http://hamsa.cs.northwestern.edu/

media/readings/heap overflows.pdf, 1999, accessed on 03-01-2018.

[68] Anonymous, “Once upon a free()...” http://phrack.org/issues/57/9.html, Nov.

2001, accessed on 06-02-2015.

[69] S. Designer, “JPEG COM marker processing vulnerability in netscape

browsers and microsoft products, and a generic heap-based buffer

overflow exploitation technique,” http://www.openwall.com/articles/

JPEG-COM-Marker-Vulnerability, Jul. 2000, accessed on 11-02-2015.

[70] M. Kaempf, “Vudo malloc tricks,” http://phrack.org/issues/57/8.html, Nov.

2001, accessed on 11-02-2015.

http://hamsa.cs.northwestern.edu/media/readings/heap_overflows.pdf
http://hamsa.cs.northwestern.edu/media/readings/heap_overflows.pdf
http://phrack.org/issues/57/9.html
http://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
http://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
http://phrack.org/issues/57/8.html

REFERENCES 195

[71] P. Phantasmagoria, “The malloc maleficarum,” https://www.securityfocus.

com/archive/1/413007/30/0/threaded, 2005, accessed on 19-02-2014.

[72] Blackngel, “The malloc des-maleficarum,” http://www.phrack.org/issues.

html?issue=66&id=10, Nov. 2009, accessed on 19-02-2014.

[73] huku and argp, “Pseudomonarchia jemallocum, or on exploiting the jemalloc

memory manager,” http://www.phrack.org/issues/68/10.html#article, Apr.

2012, accessed on 11-02-2015.

[74] Redpantz, “Exploiting MS11-004 microsoft IIS 7.5 remote heap buffer over-

flow,” http://www.phrack.org/issues/68/12.html#article, Apr. 2012, accessed

on 11-02-2015.

[75] huku and argp, “Exploiting VLC, a case study on jemalloc heap overflows,”

http://www.phrack.org/issues/68/13.html#article, Apr. 2012, accessed on 11-

02-2015.

[76] B. Hawkes, “Attacking the vista heap,” http://2008.ruxcon.org.au/files/2008/

hawkes ruxcon.pdf, 2008, accessed on 13-12-2013.

[77] P. Van Eeckhoutte, “Exploit writing tutorial part 11 : Heap spray-

ing demystified,” https://www.corelan.be/index.php/2011/12/31/

exploit-writing-tutorial-part-11-heap-spraying-demystified/, Dec. 2011,

accessed on 11-02-2015.

[78] ——, “DEPS – precise heap spray on firefox and IE10,” https://www.corelan.

be/index.php/2013/02/19/deps-precise-heap-spray-on-firefox-and-ie10/, Feb.

2013, accessed on 11-02-2015.

[79] P. Ratanaworabhan, B. Livshits, and B. Zorn, “Nozzle: A defense against

heap-spraying code injection attacks,” in Proceedings of the 18th USENIX

Security Symposium, 2009, pp. 169–186.

https://www.securityfocus.com/archive/1/413007/30/0/threaded
https://www.securityfocus.com/archive/1/413007/30/0/threaded
http://www.phrack.org/issues.html?issue=66&id=10
http://www.phrack.org/issues.html?issue=66&id=10
http://www.phrack.org/issues/68/10.html#article
http://www.phrack.org/issues/68/12.html#article
http://www.phrack.org/issues/68/13.html#article
http://2008.ruxcon.org.au/files/2008/hawkes_ruxcon.pdf
http://2008.ruxcon.org.au/files/2008/hawkes_ruxcon.pdf
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.corelan.be/index.php/2013/02/19/deps-precise-heap-spray-on-firefox-and-ie10/
https://www.corelan.be/index.php/2013/02/19/deps-precise-heap-spray-on-firefox-and-ie10/

196 REFERENCES

[80] F. Gadaleta, Y. Younan, and W. Joosen, “BuBBle: A javascript engine level

countermeasure against heap-spraying attacks,” in Engineering Secure Soft-

ware and Systems, ser. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, Jan. 2010, vol. 5965, pp. 1–17.

[81] J. Song, J. Song, and J. Kim, “Detection of heap-spraying attacks using string

trace graph,” in Information Security Applications, ser. Lecture Notes in Com-

puter Science. Springer International Publishing, Jan. 2015, pp. 17–26.

[82] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “A Theory of Secure

Control Flow,” in Formal Methods and Software Engineering, ser. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, Jan. 2005, vol. 3785,

pp. 111–124.

[83] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “XFI: Soft-

ware guards for system address spaces,” in Proceedings of the 7th symposium

on Operating systems design and implementation, 2006, pp. 75–88.

[84] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,

S. Nürnberger, and A.-R. Sadeghi, “MoCFI: A Framework to Mitigate

Control-Flow Attacks on Smartphones.” in Symposium on Network and

Distributed System Security (NDSS), 2012, accessed on 04-01-2018. [Online].

Available: http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/

2017/09/07 2.pdf

[85] B. Niu and G. Tan, “Monitor integrity protection with space efficiency and

separate compilation,” in Proceedings of the 20th ACM Conference on Com-

puter and Communications Security, 2013, pp. 199–210.

[86] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, L. Szekeres, S. McCamant,

D. Song, and Wei Zou, “Practical Control Flow Integrity and Randomization

for Binary Executables,” in IEEE Symposium on Security and Privacy (SP),

May 2013, pp. 559–573.

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/07_2.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/07_2.pdf

REFERENCES 197

[87] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries.” in Pro-

ceedings of the 22nd USENIX Security Symposium, 2013, pp. 337–352.

[88] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete Control-Flow

Integrity for Commodity Operating System Kernels,” in IEEE Symposium on

Security and Privacy (SP), May 2014, pp. 292–307.

[89] R. Gawlik and T. Holz, “Towards automated integrity protection of C++

virtual function tables in binary programs,” in Proceedings of the 30th Annual

Computer Security Applications Conference. ACM, 2014, pp. 396–405.

[90] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “VTint:

Defending virtual function tables integrity,” in Symposium on Network and

Distributed System Security (NDSS), 2015, accessed on 05-01-2018. [Online].

Available: http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/

2017/09/03 1 2.pdf

[91] P. Yuan, Q. Zeng, and X. Ding, “Hardware-Assisted Fine-Grained Code-Reuse

Attack Detection,” in Proceedings of 18th International Symposium of Re-

search in Attacks, Intrusions and Defenses. Springer International Publish-

ing, Nov. 2015, pp. 66–85.

[92] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz, “Opaque

control-flow integrity,” in Symposium on Network and Distributed System Se-

curity (NDSS), 2015, accessed on 05-01-2018. [Online]. Available: http://wp.

internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/06 3 2.pdf

[93] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of Control:

Overcoming Control-Flow Integrity,” in IEEE Symposium on Security and

Privacy (SP), May 2014, pp. 575–589.

[94] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose, “Stitching the gadgets:

On the ineffectiveness of coarse-grained control-flow integrity protection,” in

Proceedings of the 23rd USENIX Security Symposium, 2014, pp. 401–416.

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/03_1_2.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/03_1_2.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/06_3_2.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/06_3_2.pdf

198 REFERENCES

[95] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern defenses,”

in Proceedings of the 23rd USENIX Security Symposium, 2014, pp. 385–399.

[96] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-flow

bending: On the effectiveness of control-flow integrity,” in Proceedings of the

24th USENIX Security Symposium, 2015, pp. 161–176.

[97] Zhi Wang and Xuxian Jiang, “HyperSafe: A Lightweight Approach to Provide

Lifetime Hypervisor Control-Flow Integrity,” in IEEE Symposium on Security

and Privacy (SP), May 2010, pp. 380–395.

[98] J. Pewny and T. Holz, “Control-flow restrictor: compiler-based CFI for iOS,”

in Proceedings of the 29th Annual Computer Security Applications Conference.

ACM, 2013, pp. 309–318.

[99] D. Jang, Z. Tatlock, and S. Lerner, “SAFEDISPATCH: Securing C++

virtual calls from memory corruption attacks,” in Symposium on Network and

Distributed System Security (NDSS), 2014, accessed on 05-01-2018. [Online].

Available: http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/

2017/09/02 4 0.pdf

[100] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, . Erlingsson, L. Lozano,

and G. Pike, “Enforcing forward-edge control-flow integrity in gcc & llvm,” in

Proceedings of the 23rd USENIX Security Symposium, 2014, pp. 941–955.

[101] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-Assisted Fine-Grained

Control-Flow Integrity: Towards Efficient Protection of Embedded Systems

Against Software Exploitation,” in Proceedings of the 51st Annual Design Au-

tomation Conference. ACM, 2014, pp. 1–6.

[102] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,

O. Arias, and Y. Jin, “HAFIX: hardware-assisted flow integrity extension,”

in Proceedings of the 52nd Annual Design Automation Conference. ACM,

2015, pp. 1–6.

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/02_4_0.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/02_4_0.pdf

REFERENCES 199

[103] M. Payer, A. Barresi, and T. R. Gross, “Fine-Grained Control-Flow Integrity

Through Binary Hardening,” in Proceedings of the 12th International Confer-

ence of Detection of Intrusions and Malware and Vulnerability Assessment.

Springer International Publishing, Jul. 2015, pp. 144–164.

[104] A. Prakash, X. Hu, and H. Yin, “vfGuard: Strict protection for virtual

function calls in COTS C++ binaries,” in Symposium on Network and

Distributed System Security (NDSS), 2015, accessed on 05-01-2018. [Online].

Available: http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/

2017/09/11 2 2.pdf

[105] B. Niu and G. Tan, “Modular control-flow integrity,” SIGPLAN Notices,

vol. 49, no. 6, pp. 577–587, 2014.

[106] ——, “RockJIT: Securing Just-In-Time Compilation Using Modular Control-

Flow Integrity,” in Proceedings of the 21st ACM Conference on Computer and

Communications Security, 2014, pp. 1317–1328.

[107] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazieres, “CCFI: Crypto-

graphically Enforced Control Flow Integrity,” in Proceedings of the 22nd ACM

ACM Conference on Computer and Communications Security, 2015, pp. 941–

951.

[108] V. v. d. Veen, D. Andriesse, E. Goktas, B. Gras, L. Sambuc, A. Slowinska,

H. Bos, and C. Giuffrida, “Practical Context-Sensitive CFI,” in Proceedings of

the 22nd ACM Conference on Computer and Communications Security, 2015,

pp. 927–940.

[109] B. Niu and G. Tan, “Per-Input Control-Flow Integrity,” in Proceedings of the

22nd ACM Conference on Computer and Communications Security, 2015, pp.

914–926.

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/11_2_2.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/11_2_2.pdf

200 REFERENCES

[110] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-Grained Control-Flow In-

tegrity for Kernel Software,” in Proceedings of 2016 IEEE European Sympo-

sium on Security and Privacy (EuroS&P), Mar. 2016, pp. 179–194.

[111] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic genera-

tion of data-oriented exploits,” in Proceedings of the 24th USENIX Security

Symposium, 2015, pp. 177–192.

[112] J. E. Hopcroft, J. D. Ullman, and A. V. Aho, The design and analysis of

computer algorithms. Addison-Wesley, 1975.

[113] J. van Benthem, H. van Ditmarsch, J. van Eijck, and J. Jaspars, “Chapter 6:

Logic and Action,” in Logic in Action, Feb. 2016, accessed on 05-01-2018.

[114] M. J. Fischer and R. E. Ladner, “Propositional dynamic logic of regular pro-

grams,” Journal of computer and system sciences, vol. 18, no. 2, pp. 194–211,

1979.

[115] D. Harel, D. Kozen, and J. Tiuryn, Propositional Dynamic Logic. MIT Press,

2000, pp. 163–190.

[116] S. Andersen and V. Abella, “Data Execution Prevention. Changes to Func-

tionality in Microsoft Windows XP Service Pack 2, Part 3: Memory Protec-

tion Technologies,” https://technet.microsoft.com/en-us/library/bb457155.

aspx, Aug. 2004, accessed on 05-01-2018.

[117] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,

“Code-Pointer Integrity.” in Proceedings of the 11th USENIX Symposium on

Operating System Design and Implementation, 2014, pp. 147–163.

[118] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in Memory,”

in IEEE Symposium on Security and Privacy (SP), May 2013, pp. 48–62.

https://technet.microsoft.com/en-us/library/bb457155.aspx
https://technet.microsoft.com/en-us/library/bb457155.aspx

REFERENCES 201

[119] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kguard: Lightweight

kernel protection against return-to-user attacks,” in Proceedings of the 21st

USENIX Security Symposium, 2012, pp. 459–474.

[120] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, “SoftBound:

highly compatible and complete spatial memory safety for c,” SIGPLAN No-

tices, vol. 44, no. 6, pp. 245–258, 2009.

[121] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hardbound:

Architectural support for spatial safety of the c programming language,” SIG-

PLAN Notices, vol. 43, no. 3, pp. 103–114, 2008.

[122] R. Ramakesavan, D. Zimmerman, and P. Singaravelu, “In-

tel memory protection extensions (intel mpx) enabling guide,”

https://pdfs.semanticscholar.org/bd11/4878c6471cb5ae28546a594bf25ba5c25c6f.pdf,

Apr. 2015, accessed on 05-01-2018.

[123] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, “CETS: compiler

enforced temporal safety for C,” SIGPLAN Notices, vol. 45, no. 8, pp. 31–40,

2010.

[124] A. A. d. Amorim, M. Dns, N. Giannarakis, C. Hritcu, B. C. Pierce, A. Spector-

Zabusky, and A. Tolmach, “Micro-Policies: Formally Verified, Tag-Based Se-

curity Monitors,” in IEEE Symposium on Security and Privacy (SP), May

2015, pp. 813–830.

[125] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith,

J. Thomas F. Knight, B. C. Pierce, and A. DeHon, “Architectural Support

for Software-Defined Metadata Processing,” SIGPLAN Notices, vol. 50, no. 4,

pp. 487–502, 2015.

202 REFERENCES

[126] D. Volpano and G. Smith, “A type-based approach to program security,” in

TAPSOFT ’97: Theory and Practice of Software Development: 7th Interna-

tional Joint Conference CAAP/FASE. Springer Berlin Heidelberg, Jun. 1997,

pp. 607–621.

[127] P. Li and S. Zdancewic, “Downgrading policies and relaxed noninterference,”

SIGPLAN Notices, vol. 40, no. 1, pp. 158–170, 2005.

[128] K. J. Biba, “Integrity considerations for secure computer systems,” MITRE

CORP BEDFORD MA, Tech. Rep., Apr. 1977, accessed on 05-01-2018.

[Online]. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/a039324.pdf

[129] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical

foundations,” MITRE CORP BEDFORD MA, Tech. Rep., Nov. 1973,

accessed on 05-01-2018. [Online]. Available: http://www.dtic.mil/dtic/tr/

fulltext/u2/770768.pdf

[130] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications.

Cambridge university press, 2009.

[131] G. H. Kim and E. H. Spafford, “The design and implementation of tripwire: a

file system integrity checker,” in Proceedings of the 2nd ACM Conference on

Computer and Communications Security, 1994, pp. 18–29.

[132] L. van Doorn, G. Ballintijn, and W. A. Arbaugh, “Design and

implementation of signed executables for linux,” Technical Report CS-

TR-4259, Computer Science Department, University of Maryland, Digital

Repository at the University of Maryland, Tech. Rep., 2002. [Online].

Available: http://hdl.handle.net/1903/1139

[133] L. Catuogno and I. Visconti, “A Format-Independent Architecture for Run-

Time Integrity Checking of Executable Code,” in Security in Communication

Networks. Springer Berlin Heidelberg, Jan. 2003, vol. 2576, pp. 219–233.

http://www.dtic.mil/dtic/tr/fulltext/u2/a039324.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/770768.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/770768.pdf
http://hdl.handle.net/1903/1139

REFERENCES 203

[134] A. Apvrille, D. Gordon, S. E. Hallyn, M. Pourzandi, and V. Roy, “DigSig:

Runtime Authentication of Binaries at Kernel Level.” in Proceedings of the

18th USENIX Conference on System Administration, 2004, pp. 59–66.

[135] S. Minagar, “Efficient code verification prior execution,” Monash University,

Minor Thesis, Jun. 2012.

[136] A. Di Federico, A. Cama, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “How

the elf ruined christmas,” in Proceedings of the 24th USENIX Security Sym-

posium, 2015, pp. 643–658.

[137] S. A. Carr and M. Payer, “DataShield: Configurable Data Confidentiality and

Integrity,” in Proceedings of the 2017 ACM on Asia Conference on Computer

and Communications Security. ACM, 2017, pp. 193–204.

204 REFERENCES

Appendix A

Page-by-Page Verification for

Linux Kernel

A.1 Introduction

In this appendix the complete code of the implemented page-by-page verification

for the selected Linux kernel is provided. The required steps to compile the kernel

with modified files and the required steps to generate the secure hash values for all

pages of the executable files within the system is also discussed.

A.2 Modification of Linux Kernel

In this section first an overview of the changes made to the source of the selected

Linux kernel is provided. The details of each added, header file, variable, or function

is then discussed in more detail in the following subsections.

A.2.1 Modification of main.c

The content of the modified main.c under the init folder in kernel source is shown

in Listing A.1. For brevity and convenience part of the code that has not changed is

omitted in such a way that it would be clear where the added functions are located

205

206 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

within the body of the code. Comments are added to help further identify the added

code.

Listing A.1: C code of init/main.c

/*

* linux/init/main.c

*

* Copyright (C) 1991, 1992 Linus Torvalds

*

* GK 2/5/95 - Changed to support mounting root fs via NFS

* Added initrd & change_root: Werner Almesberger & Hans Lermen ,

Feb ’96

* Moan early if gcc is old , avoiding bogus kernels - Paul

Gortmaker , May ’96

* Simplified starting of init: Michael A. Griffith <grif@acm.org

>

*/

#include <linux/types.h>

#include <linux/module.h>

/*

OMITTED

*/

#include <linux/file.h>

#include <linux/ptrace.h>

// Page -by -Page Verification: Modifications begin here

// added required external functions and variables

#include <linux/integrity_check.h>

// Page -by -Page Verification: Modifications end here

A.2. MODIFICATION OF LINUX KERNEL 207

#include <asm/io.h>

#include <asm/bugs.h>

#include <asm/setup.h>

/*

OMITTED

*/

/*

* Unknown boot options get handed to init , unless they look like

* unused parameters (modprobe will find them in /proc/cmdline).

*/

static int __init unknown_bootoption(char *param , char *val , const

char *unused)

{

repair_env_string(param , val , unused);

/* Handle obsolete -style parameters */

if (obsolete_checksetup(param))

return 0;

/* Unused module parameter. */

if (strchr(param , ’.’) && (!val || strchr(param , ’.’) < val))

return 0;

if (panic_later)

return 0;

if (val) {

/* Environment option */

unsigned int i;

for (i = 0; envp_init[i]; i++) {

208 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

if (i == MAX_INIT_ENVS) {

panic_later = "Too many boot env vars at ‘%s’";

panic_param = param;

}

if (! strncmp(param , envp_init[i], val - param))

break;

}

envp_init[i] = param;

} else {

/* Command line option */

unsigned int i;

for (i = 0; argv_init[i]; i++) {

if (i == MAX_INIT_ARGS) {

panic_later = "Too many boot init vars at ‘%s’";

panic_param = param;

}

}

argv_init[i] = param;

}

return 0;

}

// Page -by-Page Verification: Modifications begin here

/* First define a variable for initrd key passed as boot option

* then read the passed value as a key (256-bit) and store in

initrd_key global vbariable

*/

char initrd_boot_option_key [65];

u8 initrd_key [32];

EXPORT_SYMBOL(initrd_key);

static int __init set_initrd_key(char *str)

{

A.2. MODIFICATION OF LINUX KERNEL 209

int i,j, err = 0;

strncpy(initrd_boot_option_key , str , 64);

initrd_boot_option_key [64] = ’\0’;

unsigned char c1, c2;

j = 0;

for (i = 0; i < strlen(initrd_boot_option_key); i = i + 2) {

c1 = hexval ((unsigned char) initrd_boot_option_key[i]);

c2 = hexval ((unsigned char) initrd_boot_option_key[i + 1]);

if ((c1 < 0) || (c2 < 0)) {

printk("Bad parameter :%s", initrd_boot_option_key);

err = 1;

break;

}

c1 = c1 << 4;

initrd_key[j] = c1 | c2;

j++;

}

return err;

}

__setup("initrd_key=", set_initrd_key);

/* Read the boot option passed as encrypted_ipass

* and store it in an init data variable with the same name

* then get the password from user during boot

* generate key and iv from the provided password

* verify the entered password and the encrypted password provided

via boot option

*/

char __initdata encrypted_ipass[MAX_INTEGRITY_PASSWORD_LEN +1];

static void __init set_enc_ipass(char *str)

210 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

{

strncpy(encrypted_ipass , str , MAX_INTEGRITY_PASSWORD_LEN);

encrypted_ipass[MAX_INTEGRITY_PASSWORD_LEN] = ’\0’;

return;

}

__setup("encrypted_ipass=", set_enc_ipass);

/* gets the passphrase and verifies if it is entered correctly */

static void __init get_integrity_pass(void)

{

char integpass[MAX_INTEGRITY_PASSWORD_LEN + 1], c, enc_pass [33],

dec_pass [33], sha1_md [20];

unsigned char c1,c2;

int fd ,i = 0,err , retry = 0, match = 0,j,k;

struct termios termios;

u8 keyiv [32];

enc_pass [32] = ’\0’;

// Reading the password from the console , since it is early using

low level /dev/console method

fd = sys_open("/dev/console", O_RDWR , 0);

if (fd >= 0) {

while ((! match) && (retry < 3)) {

printk(KERN_NOTICE "Enter integrity password:");

c = ’\0’;

sys_ioctl(fd , TCGETS , (long)&termios);

termios.c_lflag |= ICANON;

// prevent the password to echo when being typed

termios.c_lflag &= ~ECHO;

sys_ioctl(fd , TCSETSF , (long)&termios);

i = 0;

while (i < MAX_INTEGRITY_PASSWORD_LEN - 1) {

sys_read(fd, &c, 1);

if (c == ’\n’) {

integpass[i] = ’\0’;

A.2. MODIFICATION OF LINUX KERNEL 211

break;

}

integpass[i] = c;

i++;

}

integpass[MAX_INTEGRITY_PASSWORD_LEN] = ’\0’;

/* Calculate the SHA1 message digest of the entered password

*/

err = sha1_hash ((u8 *) integpass , (u8 *) sha1_md , i);

/* Generate the key and IV from entered password */

err = get_key_iv(integpass , keyiv);

j = 0;

for (i = 0; i < strlen(encrypted_ipass); i = i + 2) {

c1 = hexval ((unsigned char) encrypted_ipass[i]);

c2 = hexval ((unsigned char) encrypted_ipass[i + 1]);

if ((c1 < 0) || (c2 < 0)) {

printk("Bad parameter :%s", encrypted_ipass);

break;

}

c1 = c1 << 4;

enc_pass[j] = c1 | c2;

j++;

}

/* Decrypt the provided boot option via encrypted_ipass to

get the SHA1 message digest */

dec_blkcipher(enc_pass , keyiv , (u8 *) dec_pass , keyiv + 16 ,

32);

/* Compare the two values */

match = 1;

for (k = 0; k < 20; k++)

if (dec_pass[k] != sha1_md[k]) {

match = 0;

break;

212 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

}

retry ++;

}

termios.c_lflag |= ECHO;

sys_ioctl(fd , TCSETSF , (long)&termios);

sys_close(fd);

}

if (!match)

panic("Wrong password , kernel will crash :)\n");

else

set_integrity_pass(integpass);

}

//Page -by-Page Verification: Modifications end here

static int __init init_setup(char *str)

/*

OMITTED

*/

static noinline void __init kernel_init_freeable(void)

{

/*

* Wait until kthreadd is all set -up.

*/

wait_for_completion (& kthreadd_done);

/* Now the scheduler is fully set up and can do blocking

allocations */

gfp_allowed_mask = __GFP_BITS_MASK;

/*

A.2. MODIFICATION OF LINUX KERNEL 213

* init can allocate pages on any node

*/

set_mems_allowed(node_states[N_MEMORY]);

/*

* init can run on any cpu.

*/

set_cpus_allowed_ptr(current , cpu_all_mask);

cad_pid = task_pid(current);

smp_prepare_cpus(setup_max_cpus);

do_pre_smp_initcalls ();

lockup_detector_init ();

smp_init ();

sched_init_smp ();

do_basic_setup ();

/* Open the /dev/console on the rootfs , this should never fail */

if (sys_open ((const char __user *) "/dev/console", O_RDWR , 0) <

0)

printk(KERN_WARNING "Warning: unable to open an initial console

.\n");

// Page -by-Page Verification: Modifications begin here

//a short delay to allow the password prompt to be seen by user

ssleep (2);

preempt_disable ();

get_integrity_pass ();

preempt_enable ();

// Page -by-Page Verification: Modifications end here

(void) sys_dup (0);

214 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

(void) sys_dup (0);

/*

* check if there is an early userspace init. If yes , let it do

all

* the work

*/

if (! ramdisk_execute_command)

ramdisk_execute_command = "/init";

if (sys_access ((const char __user *) ramdisk_execute_command , 0)

!= 0) {

ramdisk_execute_command = NULL;

prepare_namespace ();

}

/*

* Ok , we have completed the initial bootup , and

* we’re essentially up and running. Get rid of the

* initmem segments and start the user -mode stuff ..

*/

}

}

A.2.2 Required Changes in main.c

The modification starts with adding a header file inetgrity check.h to the main.c

The header contains the definition of the external functions and memory structures

defined in memory.c and referenced in main.c. The Listing A.2 shows the content

of the added header file.

Listing A.2: Code of integrity check.h

#define MAX_INTEGRITY_PASSWORD_LEN 64

extern char integrity_pass [];

A.2. MODIFICATION OF LINUX KERNEL 215

extern int integrity_password_is_set;

extern void set_integrity_pass(char *integ_pass);

extern int get_key_iv(char *passphrase , u8 *keyiv);

extern int dec_blkcipher(u8 *block , u8 *key , u8 *out , u8 *iv , int

len);

extern unsigned char hexval(unsigned char in);

extern int sha1_hash(u8 *in , u8 *out , int len);

extern int sha256_hash(u8 *in , u8 *out , int len);

extern void printhex(unsigned char *in , int size);

}

To read the initrd key boot command line option first an array of characters

must be defined to contain the passed value. The binary value of the hex key must be

then evaluated and stored in a global variable to be used in page verification function.

The Listing A.3 shows the required code to define the initrd key variable.

Listing A.3: Definition of required variables for initrd key boot option and the

corresponding global variable

char initrd_boot_option_key [65];

u8 initrd_key [32];

EXPORT_SYMBOL(initrd_key);

The function set initrd key() receives the boot option as a string to be con-

sidered as a hex value and calculates its binary value (listing A.4).

Listing A.4: C code of set initrd key()

static int __init set_initrd_key(char *str)

{

int i,j, err = 0;

strncpy(initrd_boot_option_key , str , 64);

initrd_boot_option_key [64] = ’\0’;

unsigned char c1, c2;

j = 0;

for (i = 0; i < strlen(initrd_boot_option_key); i = i + 2) {

216 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

c1 = hexval ((unsigned char) initrd_boot_option_key[i]);

c2 = hexval ((unsigned char) initrd_boot_option_key[i + 1]);

if ((c1 < 0) || (c2 < 0)) {

printk("Bad parameter :%s", initrd_boot_option_key);

err = 1;

break;

}

c1 = c1 << 4;

initrd_key[j] = c1 | c2;

j++;

}

return err;

}

__setup("initrd_key=", set_initrd_key);

}

The setup() function associates a function with a given boot parameter where

the associated function receives the value of the boot parameter as a variable and

performs the necessary operations. The encrypted ipass boot option is similar to

initrd key boot option in the fact that the content is considered a hexadecimal

value and must be evaluated to its binary value. An initial variable is needed to

store the provided boot option value which will be used in verifying the entered

password by the user. Given the plaintext to the encryption algorithm is SHA1 of

the password, the input length to CBC-AES is 160 bits which will be padded to

two blocks of 32 bytes. Listing A.5 shows the required code to read and store the

encrypted ipass boot option.

Listing A.5: Definition of initialisation data to store boot option encrypted ipass

and associated function set enc ipass()

char __initdata encrypted_ipass [65];

static void __init set_enc_ipass(char *str)

{

A.2. MODIFICATION OF LINUX KERNEL 217

strncpy(encrypted_ipass , str , 64);

encrypted_ipass [64] = ’\0’;

return;

}

__setup("encrypted_ipass=", set_enc_ipass);

}

The provided boot option is then used to verify the entered password by the user.

Listing A.6 shows the code to read the password from the low level /dev/console

without echo. The entered password is then verified by generating SHA256 of the

entered password to be used as key and IV to decrypt the binary value of passed

encrypted ipass as boot option. If the decrypted value matches the SHA1 of the

entered password the provided password is correct otherwise the user can attempt

another password up to maximum three tries.

Listing A.6: C code of get integrity pass()

static void __init get_integrity_pass(void)

{

char integpass[MAX_INTEGRITY_PASSWORD_LEN + 1], c, enc_pass [33],

dec_pass [33], sha1_md [20];

unsigned char c1,c2;

int fd ,i = 0,err , retry = 0, match = 0,j,k;

struct termios termios;

u8 keyiv [32];

enc_pass [32] = ’\0’;

// Reading the password from the console , since it is early using

low level /dev/console method

fd = sys_open("/dev/console", O_RDWR , 0);

if (fd >= 0) {

while ((! match) && (retry < 3)) {

printk(KERN_NOTICE "Enter integrity password:");

c = ’\0’;

sys_ioctl(fd , TCGETS , (long)&termios);

termios.c_lflag |= ICANON;

218 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

// prevent the password to echo when being typed

termios.c_lflag &= ~ECHO;

sys_ioctl(fd , TCSETSF , (long)&termios);

i = 0;

while (i < MAX_INTEGRITY_PASSWORD_LEN - 1) {

sys_read(fd, &c, 1);

if (c == ’\n’) {

integpass[i] = ’\0’;

break;

}

integpass[i] = c;

i++;

}

integpass[MAX_INTEGRITY_PASSWORD_LEN] = ’\0’;

/* Calculate the SHA1 message digest of the entered password

*/

err = sha1_hash ((u8 *) integpass , (u8 *) sha1_md , i);

/* Generate the key and IV from entered password */

err = get_key_iv(integpass , keyiv);

j = 0;

for (i = 0; i < strlen(encrypted_ipass); i = i + 2) {

c1 = hexval ((unsigned char) encrypted_ipass[i]);

c2 = hexval ((unsigned char) encrypted_ipass[i + 1]);

if ((c1 < 0) || (c2 < 0)) {

printk("Bad parameter :%s", encrypted_ipass);

break;

}

c1 = c1 << 4;

enc_pass[j] = c1 | c2;

j++;

}

/* Decrypt the provided boot option via encrypted_ipass to

get the SHA1 message digest */

A.2. MODIFICATION OF LINUX KERNEL 219

dec_blkcipher(enc_pass , keyiv , (u8 *) dec_pass , keyiv + 16 ,

32);

/* Compare the two values */

match = 1;

for (k = 0; k < 20; k++)

if (dec_pass[k] != sha1_md[k]) {

match = 0;

break;

}

retry ++;

}

termios.c_lflag |= ECHO;

sys_ioctl(fd , TCSETSF , (long)&termios);

sys_close(fd);

}

if (!match)

panic("Wrong password , kernel will crash :)\n");

else

set_integrity_pass(integpass);

}

}

The process of reading the password from console must be added to the boot

sequence by adding a function call to the get integrity pass() function at an

appropriate time where the necessary code exists to perform the low level read from

the /dev/console. The call is added to the function kernel init freeable() as

shown in Listing A.7.

Listing A.7: C code of kernel init freeable()

static noinline void __init kernel_init_freeable(void)

{

/*

OMITTED

220 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

*/

do_basic_setup ();

/* Open the /dev/console on the rootfs , this should never fail */

if (sys_open ((const char __user *) "/dev/console", O_RDWR , 0) <

0)

printk(KERN_WARNING "Warning: unable to open an initial console

.\n");

// Page -by-Page Verification: Modifications begin here

//a short delay to allow the password prompt to be seen by user

ssleep (2);

preempt_disable ();

get_integrity_pass ();

preempt_enable ();

// Page -by-Page Verification: Modifications end here

/*

OMITTED

*/

}

}

A.2.3 Code of Modified memory.c

The content of the modified mm/memory.c file in kernel source is shown in Listing A.8.

Similar to the init/main.c file for brevity part of the file content is omitted.

Listing A.8: C code of mm/memory.c

/*

A.2. MODIFICATION OF LINUX KERNEL 221

* linux/mm/memory.c

*

* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds

*/

/*

OMITTED

*/

#include <linux/gfp.h>

#include <linux/migrate.h>

#include <linux/string.h>

/*

OMITTED

*/

/* Page -by-Page Verification: Modifications begin here

required header files

*/

#include <linux/delay.h>

#include <linux/crypto.h>

#include <crypto/sha.h>

#include <linux/scatterlist.h>

#include <linux/mm_types.h>

#include <linux/sched.h>

#include <linux/binfmts.h>

#include <linux/fs.h>

#define MAX_INTEGRITY_PASSWORD_LEN 64

/* Page -by-Page Verification: Modifications end here */

222 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

#include <asm/io.h>

#include <asm/pgalloc.h>

#include <asm/uaccess.h>

#include <asm/tlb.h>

#include <asm/tlbflush.h>

#include <asm/pgtable.h>

#include "internal.h"

/* Page -by-Page Verification: Modifications begin here */

// structure to store the integrity passowrd and generated SHA256 of

the password

static struct integrity_secret_info {

char integrity_pass[MAX_INTEGRITY_PASSWORD_LEN + 1];

u8 key[SHA256_DIGEST_SIZE];

} integ_sec;

int integrity_password_is_set = 0;

extern char initrd_pass [];

extern u8 initrd_key [];

void printhex(unsigned char *in , int size) {

int i;

for (i = 0; i < size; i++) {

printk("%02x", in[i]);

}

return;

}

/* Generates 256 bits SHA256 message digest from passphrase which

is used as Key and IV */

int get_key_iv(char *passphrase , u8 *keyiv) {

struct hash_desc desc;

int ret = 0;

struct scatterlist hash_sg;

A.2. MODIFICATION OF LINUX KERNEL 223

sg_init_one (&hash_sg , passphrase , strlen(passphrase));

desc.tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);

ret = IS_ERR(desc.tfm);

if (ret) {

return -ret;

}

desc.flags = 0;

ret = crypto_hash_digest (&desc , &hash_sg , strlen(passphrase),

keyiv);

if (ret) {

return -ret;

}

return 0;

}

/* Used in init/main.c to set the values of integrity_secret_info

during boot */

void set_integrity_pass(char *integ_pass)

{

int len ,err;

if (strlen(integ_pass) <= MAX_INTEGRITY_PASSWORD_LEN)

len = strlen(integ_pass);

else

len = MAX_INTEGRITY_PASSWORD_LEN;

strncpy(integ_sec.integrity_pass , integ_pass , len);

integ_sec.integrity_pass[MAX_INTEGRITY_PASSWORD_LEN] = ’\0’;

integrity_password_is_set = 1;

err = get_key_iv(integ_sec.integrity_pass , integ_sec.key);

if (err) {

printk("Error generating key and iv from passphrase\n");

}

224 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

return;

}

int dec_blkcipher(u8 *block , u8 *key , u8 *out , u8 *iv , int len) {

struct crypto_blkcipher *tfm_blkcipher;

struct blkcipher_desc desc;

int ret = 0;

struct scatterlist cipher_in , cipher_out;

sg_init_one (&cipher_in , block , 32);

sg_init_one (&cipher_out , out , len);

tfm_blkcipher = crypto_alloc_blkcipher("cbc(aes)",

CRYPTO_ALG_TYPE_BLKCIPHER ,0);

desc.tfm = tfm_blkcipher;

ret = IS_ERR(tfm_blkcipher);

if (ret) {

printk("Error allocating CBC_AES encryption algorithm\n");

return ret;

}

ret = crypto_blkcipher_setkey(tfm_blkcipher , key , 16);

if (ret) {

printk("Error setting encryption key\n");

return ret;

}

crypto_blkcipher_set_iv(tfm_blkcipher , iv , 16);

crypto_blkcipher_decrypt (&desc , &cipher_out , &cipher_in , len);

crypto_free_blkcipher(tfm_blkcipher);

return 0;

}

/* converts a hex digit to its binary value */

unsigned char hexval(unsigned char in) {

A.2. MODIFICATION OF LINUX KERNEL 225

if ((in >= ’0’) && (in <= ’9’))

return in - ’0’;

if ((in >= ’a’) && (in <= ’f’))

return in - ’a’ + 10;

if ((in >= ’A’) && (in <= ’F’))

return in - ’A’ + 10;

return -1;

}

int sha1_hash(u8 *in , u8 *out , int len) {

struct scatterlist hash_sg;

struct crypto_hash *tfm;

struct hash_desc desc;

int ret;

sg_init_one (&hash_sg , in, len);

desc.tfm = crypto_alloc_hash("sha1", 0, CRYPTO_ALG_ASYNC);

ret = IS_ERR(desc.tfm);

if (ret) {

printk("Crypto hash allocation for sha1 failed\n");

return -ret;

}

desc.flags = 0;

ret = crypto_hash_init (&desc);

if (ret) {

printk("Error initializing crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_update (&desc , &hash_sg , len);

if (ret) {

printk("Error updating crypto hash\n");

goto out_with_error;

226 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

}

ret = crypto_hash_final (&desc , out);

if (ret) {

printk("Error finalizing crypto hash\n");

goto out_with_error;

}

crypto_free_hash(tfm);

return 0;

out_with_error:

crypto_free_hash(tfm);

return -ret;

}

int sha256_hash(u8 *in , u8 *out , int len) {

struct scatterlist hash_sg;

struct crypto_hash *tfm;

struct hash_desc desc;

int ret;

sg_init_one (&hash_sg , in, len);

desc.tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);

ret = IS_ERR(desc.tfm);

if (ret) {

printk("Crypto hash allocation for sha256 failed\n");

return -ret;

}

desc.flags = 0;

ret = crypto_hash_init (&desc);

if (ret) {

printk("Error initializing crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_update (&desc , &hash_sg , len);

if (ret) {

A.2. MODIFICATION OF LINUX KERNEL 227

printk("Error updating crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_final (&desc , out);

if (ret) {

printk("Error finalizing crypto hash\n");

goto out_with_error;

}

crypto_free_hash(tfm);

return 0;

out_with_error:

crypto_free_hash(tfm);

return -ret;

}

int sha256_mac(u8 *in , u8 *out , int len , u8 *key , int keylen) {

struct scatterlist hash_sg , key_sg;

struct hash_desc sechash_desc;

int ret;

sg_init_one (&hash_sg , in, len);

sg_init_one (&key_sg , key , keylen);

sechash_desc.tfm = crypto_alloc_hash("sha256", 0,

CRYPTO_ALG_TYPE_SHASH);

ret = IS_ERR(sechash_desc.tfm);

if (ret) {

printk("Crypto hash allocation for sha256 failed\n");

return -ret;

}

sechash_desc.flags = 0;

ret = crypto_hash_init (& sechash_desc);

if (ret) {

228 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

printk("Error initializing crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_update (& sechash_desc , &key_sg , keylen);

if (ret) {

printk("Error updating crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_update (& sechash_desc , &hash_sg , len);

if (ret) {

printk("Error updating crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_final (& sechash_desc , out);

if (ret) {

printk("Error finalizing crypto hash\n");

goto out_with_error;

}

crypto_free_hash(sechash_desc.tfm);

return 0;

out_with_error:

crypto_free_hash(sechash_desc.tfm);

return -ret;

}

/* Page -by-Page Verification: Modifications end here*/

#ifndef CONFIG_NEED_MULTIPLE_NODES

/* use the per -pgdat data instead for discontigmem - mbligh */

unsigned long max_mapnr;

struct page *mem_map;

A.2. MODIFICATION OF LINUX KERNEL 229

EXPORT_SYMBOL(max_mapnr);

EXPORT_SYMBOL(mem_map);

#endif

/*

OMITTED

*/

/*

* We enter with non -exclusive mmap_sem (to exclude vma changes ,

* but allow concurrent faults), and pte mapped but not yet locked.

* We return with mmap_sem still held , but pte unmapped and

unlocked.

*/

static int do_anonymous_page(struct mm_struct *mm , struct

vm_area_struct *vma ,

unsigned long address , pte_t *page_table , pmd_t *pmd ,

unsigned int flags)

{

struct page *page;

spinlock_t *ptl;

pte_t entry;

pte_unmap(page_table);

/* Check if we need to add a guard page to the stack */

if (check_stack_guard_page(vma , address) < 0)

return VM_FAULT_SIGBUS;

/* Use the zero -page for reads */

if (!(flags & FAULT_FLAG_WRITE)) {

entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),

230 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

vma ->vm_page_prot));

page_table = pte_offset_map_lock(mm, pmd , address , &ptl);

if (! pte_none (* page_table))

goto unlock;

goto setpte;

}

/* Allocate our own private page. */

if (unlikely(anon_vma_prepare(vma)))

goto oom;

page = alloc_zeroed_user_highpage_movable(vma , address);

if (!page)

goto oom;

__SetPageUptodate(page);

if (mem_cgroup_newpage_charge(page , mm , GFP_KERNEL))

goto oom_free_page;

entry = mk_pte(page , vma ->vm_page_prot);

if (vma ->vm_flags & VM_WRITE)

entry = pte_mkwrite(pte_mkdirty(entry));

page_table = pte_offset_map_lock(mm, pmd , address , &ptl);

if (! pte_none (* page_table))

goto release;

inc_mm_counter_fast(mm , MM_ANONPAGES);

page_add_new_anon_rmap(page , vma , address);

setpte:

set_pte_at(mm, address , page_table , entry);

/* No need to invalidate - it was non -present before */

update_mmu_cache(vma , address , page_table);

unlock:

pte_unmap_unlock(page_table , ptl);

A.2. MODIFICATION OF LINUX KERNEL 231

return 0;

release:

mem_cgroup_uncharge_page(page);

page_cache_release(page);

goto unlock;

oom_free_page:

page_cache_release(page);

oom:

return VM_FAULT_OOM;

}

//Page -by-Page Verification: Modifications begin here

// -- function added:

int do_verify_page_mac(char *filename , struct page *page)

{

u8 *macofpage , *filenamesha2;

int err = 0, i, k, j;

unsigned char *addr , *hashdir , *sig;

struct file *file;

u8 *key;

if (unlikely (! integrity_password_is_set)) {

key = initrd_key;

}

else {

key = integ_sec.key;

}

filenamesha2 = kzalloc(SHA256_DIGEST_SIZE , GFP_KERNEL);

if (! filenamesha2) {

printk("Cannot allocate memory for hash of the page\n");

return VM_FAULT_OOM;

}

232 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

err = sha256_hash ((u8 *) filename , filenamesha2 , strlen(filename)

);

if (err) {

printk("Generating SHA256 hash of the filename failed !\n");

return -EPERM;

}

hashdir = kzalloc (73, GFP_KERNEL);

if (! hashdir) {

return VM_FAULT_OOM;

}

sprintf(hashdir , "/hashes/");

k = 8;

for (i = 0; i < SHA256_DIGEST_SIZE; i++) {

sprintf(hashdir + k, "%02x", (unsigned char) *(filenamesha2 + i

));

k = k + 2;

}

hashdir [73] = ’\0’;

macofpage = kzalloc(SHA256_DIGEST_SIZE , GFP_KERNEL);

if (! macofpage){

printk("Cannot allocate memory for hash of the page\n");

return VM_FAULT_OOM;

}

addr = page_address(page);

err = sha256_mac ((u8 *) addr , macofpage , PAGE_SIZE , key ,

SHA256_DIGEST_SIZE);

if (err) {

kfree(macofpage);

kfree(hashdir);

return -EACCES;

}

sig = kzalloc ((SHA256_DIGEST_SIZE * 2) + 74, GFP_KERNEL);

A.2. MODIFICATION OF LINUX KERNEL 233

sprintf(sig , "%s/", hashdir);

k = 73;

for (j = 0; j < SHA256_DIGEST_SIZE; j++){

sprintf(sig + k, "%02x", (unsigned char) *(macofpage + j));

k = k + 2;

}

sig[(SHA256_DIGEST_SIZE * 2) + 74] = ’\0’;

file = filp_open(sig , O_RDONLY , FMODE_READ);

err = IS_ERR(file);

if (err) {

kfree(hashdir);

kfree(filenamesha2);

kfree(macofpage);

kfree(sig);

return -EPERM;

}

filp_close(file , NULL);

kfree(hashdir);

kfree(filenamesha2);

kfree(macofpage);

kfree(sig);

return 0;

}

//Page -by-Page Verification: Modifications end here

/*

* __do_fault () tries to create a new page mapping. It aggressively

* tries to share with existing pages , but makes a separate copy if

* the FAULT_FLAG_WRITE is set in the flags parameter in order to

avoid

* the next page fault.

234 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

*

* As this is called only for pages that do not currently exist , we

* do not need to flush old virtual caches or the TLB.

*

* We enter with non -exclusive mmap_sem (to exclude vma changes ,

* but allow concurrent faults), and pte neither mapped nor locked.

* We return with mmap_sem still held , but pte unmapped and

unlocked.

*/

static int __do_fault(struct mm_struct *mm , struct vm_area_struct *

vma ,

unsigned long address , pmd_t *pmd ,

pgoff_t pgoff , unsigned int flags , pte_t orig_pte)

{

pte_t *page_table;

spinlock_t *ptl;

struct page *page;

struct page *cow_page;

pte_t entry;

int anon = 0;

struct page *dirty_page = NULL;

struct vm_fault vmf;

int ret = 0;

int page_mkwrite = 0;

/*Page -by-Page Verification: Modifications begin here

defining required variables: */

int err = 0;

unsigned char *buf;

char *filename;

//Page -by-Page Verification: Modifications end here

/*

* If we do COW later , allocate page befor taking lock_page ()

* on the file cache page. This will reduce lock holding time.

*/

A.2. MODIFICATION OF LINUX KERNEL 235

if ((flags & FAULT_FLAG_WRITE) && !(vma ->vm_flags & VM_SHARED)) {

if (unlikely(anon_vma_prepare(vma)))

return VM_FAULT_OOM;

cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE , vma , address);

if (! cow_page)

return VM_FAULT_OOM;

if (mem_cgroup_newpage_charge(cow_page , mm , GFP_KERNEL)) {

page_cache_release(cow_page);

return VM_FAULT_OOM;

}

} else

cow_page = NULL;

vmf.virtual_address = (void __user *)(address & PAGE_MASK);

vmf.pgoff = pgoff;

vmf.flags = flags;

vmf.page = NULL;

ret = vma ->vm_ops ->fault(vma , &vmf);

if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |

VM_FAULT_RETRY)))

goto uncharge_out;

if (unlikely(PageHWPoison(vmf.page))) {

if (ret & VM_FAULT_LOCKED)

unlock_page(vmf.page);

ret = VM_FAULT_HWPOISON;

goto uncharge_out;

}

/*

236 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

* For consistency in subsequent calls , make the faulted page

always

* locked.

*/

if (unlikely (!(ret & VM_FAULT_LOCKED)))

lock_page(vmf.page);

else

VM_BUG_ON (! PageLocked(vmf.page));

page = vmf.page;

/*Page -by-Page Verification: Modifications begin here

For executable pages verify the authenticity of the page */

if (vma ->vm_flags & VM_EXEC) {

if (vma ->vm_file != NULL) {

buf = kzalloc(PATH_MAX , GFP_KERNEL);

if (!buf)

return VM_FAULT_OOM;

filename = dentry_path(vma ->vm_file ->f_dentry , buf , PATH_MAX)

;

err = do_verify_page_mac(filename , page);

if (err) {

printk(KERN_WARNING "Secure hash verification failed for

process %s, file:%s, page index:%lx\n", current ->comm ,

filename , page ->index);

ret = err;

if (buf)

kfree(buf);

goto out_verification_failed;

}

ret = 0;

if (buf)

kfree(buf);

A.2. MODIFICATION OF LINUX KERNEL 237

}

}

//Page -by-Page Verification: Modifications end here

/*

* Should we do an early C-O-W break?

*/

if (flags & FAULT_FLAG_WRITE) {

if (!(vma ->vm_flags & VM_SHARED)) {

page = cow_page;

anon = 1;

copy_user_highpage(page , vmf.page , address , vma);

__SetPageUptodate(page);

} else {

/*

* If the page will be shareable , see if the backing

* address space wants to know that the page is about

* to become writable

*/

if (vma ->vm_ops ->page_mkwrite) {

int tmp;

unlock_page(page);

vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;

tmp = vma ->vm_ops ->page_mkwrite(vma , &vmf);

if (unlikely(tmp &

(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {

ret = tmp;

goto unwritable_page;

}

if (unlikely (!(tmp & VM_FAULT_LOCKED))) {

lock_page(page);

if (!page ->mapping) {

ret = 0; /* retry the fault */

unlock_page(page);

238 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

goto unwritable_page;

}

} else

VM_BUG_ON (! PageLocked(page));

page_mkwrite = 1;

}

}

}

page_table = pte_offset_map_lock(mm, pmd , address , &ptl);

/*

* This silly early PAGE_DIRTY setting removes a race

* due to the bad i386 page protection. But it’s valid

* for other architectures too.

*

* Note that if FAULT_FLAG_WRITE is set , we either now have

* an exclusive copy of the page , or this is a shared mapping ,

* so we can make it writable and dirty to avoid having to

* handle that later.

*/

/* Only go through if we didn’t race with anybody else ... */

if (likely(pte_same (* page_table , orig_pte))) {

flush_icache_page(vma , page);

entry = mk_pte(page , vma ->vm_page_prot);

if (flags & FAULT_FLAG_WRITE)

entry = maybe_mkwrite(pte_mkdirty(entry), vma);

if (anon) {

inc_mm_counter_fast(mm , MM_ANONPAGES);

page_add_new_anon_rmap(page , vma , address);

} else {

inc_mm_counter_fast(mm , MM_FILEPAGES);

page_add_file_rmap(page);

if (flags & FAULT_FLAG_WRITE) {

A.2. MODIFICATION OF LINUX KERNEL 239

dirty_page = page;

get_page(dirty_page);

}

}

set_pte_at(mm, address , page_table , entry);

/* no need to invalidate: a not -present page won’t be cached */

update_mmu_cache(vma , address , page_table);

} else {

if (cow_page)

mem_cgroup_uncharge_page(cow_page);

if (anon)

page_cache_release(page);

else

anon = 1; /* no anon but release faulted_page */

}

pte_unmap_unlock(page_table , ptl);

if (dirty_page) {

struct address_space *mapping = page ->mapping;

int dirtied = 0;

if (set_page_dirty(dirty_page))

dirtied = 1;

unlock_page(dirty_page);

put_page(dirty_page);

if ((dirtied || page_mkwrite) && mapping) {

/*

* Some device drivers do not set page.mapping but still

* dirty their pages

*/

balance_dirty_pages_ratelimited(mapping);

}

240 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

/* file_update_time outside page_lock */

if (vma ->vm_file && !page_mkwrite)

file_update_time(vma ->vm_file);

} else {

unlock_page(vmf.page);

if (anon)

page_cache_release(vmf.page);

}

return ret;

unwritable_page:

page_cache_release(page);

return ret;

uncharge_out:

/* fs’s fault handler get error */

if (cow_page) {

mem_cgroup_uncharge_page(cow_page);

page_cache_release(cow_page);

}

return ret;

out_verification_failed:

force_sig(SIGKILL , current);

return 0;

}

static int do_linear_fault(struct mm_struct *mm , struct

vm_area_struct *vma ,

/*

OMITTED

*/

A.2. MODIFICATION OF LINUX KERNEL 241

A.2.4 Required Changes to memory.c

After the inclusion of the required header files, a memory structure is defined to

store the page verification password and the SHA256 of the password. Listing A.9

shows the definition of this memory structure.

Listing A.9: Definition of memory structure to store page verification password and

key

static struct integrity_secret_info {

char integrity_pass[MAX_INTEGRITY_PASSWORD_LEN + 1];

u8 key[SHA256_DIGEST_SIZE];

} integ_sec;

}

The definition of the global variable integrity password is set which indi-

cates whether the initrd key must be used to verify the pages or the system-wide

key is shown in Listing A.10.

Listing A.10: Definition of global variable integrity password is set and external

variable initrd key

int integrity_password_is_set = 0;

extern u8 initrd_key [];

}

The get key iv() is a wrapper function that generates the SHA256 message

digest of the provided password which can be used as key and IV for CBC-AES

algorithm.

Listing A.11: C code of get key iv()

int get_key_iv(char *passphrase , u8 *keyiv) {

struct hash_desc desc;

int ret = 0;

struct scatterlist hash_sg;

sg_init_one (&hash_sg , passphrase , strlen(passphrase));

desc.tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);

242 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

ret = IS_ERR(desc.tfm);

if (ret) {

return -ret;

}

desc.flags = 0;

ret = crypto_hash_digest (&desc , &hash_sg , strlen(passphrase),

keyiv);

if (ret) {

return -ret;

}

return 0;

}

The function set integrity pass(), shown in Listing A.12, receives the in-

tegrity password and sets up the memory structure of integrity verification by copy-

ing the integrity password and the SHA256 hash of the password to the defined

memory location. This function is called from the get integrity pass() function

within init/main.c file, after the entered password by user is verified to be correct.

Listing A.12: C code of set integrity pass()

void set_integrity_pass(char *integ_pass)

{

int len ,err;

if (strlen(integ_pass) <= MAX_INTEGRITY_PASSWORD_LEN)

len = strlen(integ_pass);

else

len = MAX_INTEGRITY_PASSWORD_LEN;

strncpy(integ_sec.integrity_pass , integ_pass , len);

integ_sec.integrity_pass[MAX_INTEGRITY_PASSWORD_LEN] = ’\0’;

integrity_password_is_set = 1;

err = get_key_iv(integ_sec.integrity_pass , integ_sec.key);

if (err) {

printk("Error generating key and iv from passphrase\n");

A.2. MODIFICATION OF LINUX KERNEL 243

}

return;

}

The function dec blkcipher() is a wrapper function that performs CBS-AES-

128 decryption on a provided block of code given the key and IV and returns the

plaintext stored in a memory location pointed to by the passed by reference pointer

in. The code is shown in Listing A.13.

Listing A.13: C code of dec blkcipher()

int dec_blkcipher(u8 *block , u8 *key , u8 *out , u8 *iv , int len) {

struct crypto_blkcipher *tfm_blkcipher;

struct blkcipher_desc desc;

int ret = 0;

struct scatterlist cipher_in , cipher_out;

sg_init_one (&cipher_in , block , 32);

sg_init_one (&cipher_out , out , len);

tfm_blkcipher = crypto_alloc_blkcipher("cbc(aes)",

CRYPTO_ALG_TYPE_BLKCIPHER ,0);

desc.tfm = tfm_blkcipher;

ret = IS_ERR(tfm_blkcipher);

if (ret) {

printk("Error allocating CBC_AES encryption algorithm\n");

return ret;

}

ret = crypto_blkcipher_setkey(tfm_blkcipher , key , 16);

if (ret) {

printk("Error setting encryption key\n");

return ret;

}

crypto_blkcipher_set_iv(tfm_blkcipher , iv , 16);

crypto_blkcipher_decrypt (&desc , &cipher_out , &cipher_in , len);

crypto_free_blkcipher(tfm_blkcipher);

244 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

return 0;

}

The function hexval() calculates the binary value of a hexadecimal digit passed

as a character. This function is used to evaluate the initrd key and encrypted ipass

boot option values into the corresponding binary value.

Listing A.14: C code of hexval()

unsigned char hexval(unsigned char in) {

if ((in >= ’0’) && (in <= ’9’))

return in - ’0’;

if ((in >= ’a’) && (in <= ’f’))

return in - ’a’ + 10;

if ((in >= ’A’) && (in <= ’F’))

return in - ’A’ + 10;

return -1;

}

The code for generating the SHA1 and SHA256 message digest is shown in

Listing A.15 and Listing A.16.

Listing A.15: C code of sha1 hash()

int sha1_hash(u8 *in , u8 *out , int len) {

struct scatterlist hash_sg;

struct crypto_hash *tfm;

struct hash_desc desc;

int ret;

sg_init_one (&hash_sg , in, len);

desc.tfm = crypto_alloc_hash("sha1", 0, CRYPTO_ALG_ASYNC);

ret = IS_ERR(desc.tfm);

if (ret) {

printk("Crypto hash allocation for sha1 failed\n");

A.2. MODIFICATION OF LINUX KERNEL 245

return -ret;

}

desc.flags = 0;

ret = crypto_hash_init (&desc);

if (ret) {

printk("Error initializing crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_update (&desc , &hash_sg , len);

if (ret) {

printk("Error updating crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_final (&desc , out);

if (ret) {

printk("Error finalizing crypto hash\n");

goto out_with_error;

}

crypto_free_hash(tfm);

return 0;

out_with_error:

crypto_free_hash(tfm);

return -ret;

}

The SHA1 hash is used to verify the entered password during boot whereas the

SHA256 is used to generate key and IV from the password for CBC-AES algorithm

as well as generating the key for page MACs.

Listing A.16: C code of sha256 hash()

int sha256_hash(u8 *in , u8 *out , int len) {

struct scatterlist hash_sg;

struct crypto_hash *tfm;

struct hash_desc desc;

int ret;

246 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

sg_init_one (&hash_sg , in, len);

desc.tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);

ret = IS_ERR(desc.tfm);

if (ret) {

printk("Crypto hash allocation for sha256 failed\n");

return -ret;

}

desc.flags = 0;

ret = crypto_hash_init (&desc);

if (ret) {

printk("Error initializing crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_update (&desc , &hash_sg , len);

if (ret) {

printk("Error updating crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_final (&desc , out);

if (ret) {

printk("Error finalizing crypto hash\n");

goto out_with_error;

}

crypto_free_hash(tfm);

return 0;

out_with_error:

crypto_free_hash(tfm);

return -ret;

}

The function sha256 mac() generates the MAC by performing SHA256 hash

function on concatenation of the provided key with the input in. The output is

A.2. MODIFICATION OF LINUX KERNEL 247

stored in the memory location provided with the reference out. The input size is

passed as the parameter len and the key size is passed as the parameter keylen.

Listing A.17: C code of sha256 mac()

int sha256_mac(u8 *in , u8 *out , int len , u8 *key , int keylen) {

struct scatterlist hash_sg , key_sg;

struct hash_desc sechash_desc;

int ret;

sg_init_one (&hash_sg , in, len);

sg_init_one (&key_sg , key , keylen);

sechash_desc.tfm = crypto_alloc_hash("sha256", 0,

CRYPTO_ALG_TYPE_SHASH);

ret = IS_ERR(sechash_desc.tfm);

if (ret) {

printk("Crypto hash allocation for sha256 failed\n");

return -ret;

}

sechash_desc.flags = 0;

ret = crypto_hash_init (& sechash_desc);

if (ret) {

printk("Error initializing crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_update (& sechash_desc , &key_sg , keylen);

if (ret) {

printk("Error updating crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_update (& sechash_desc , &hash_sg , len);

248 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

if (ret) {

printk("Error updating crypto hash\n");

goto out_with_error;

}

ret = crypto_hash_final (& sechash_desc , out);

if (ret) {

printk("Error finalizing crypto hash\n");

goto out_with_error;

}

crypto_free_hash(sechash_desc.tfm);

return 0;

out_with_error:

crypto_free_hash(sechash_desc.tfm);

return -ret;

}

The do verify page mac() function performs the entire operation of the page

verification by first identifying which key must be used (initrd key versus integ sec.key).

The function then allocates the required memory to store the path to the folder

where the MAC of the pages are stored. Once the complete path is generated the

integrity verification key is used as initial value for SHA256 followed by the content

of the page. Once the complete path and filename are generated the function will

search for the file to check if it can be opened. If the file can be opened it would

indicate that the MAC for that page exists and the verification succeeds otherwise

the verification fails.

Listing A.18: C code of do verify page mac

int do_verify_page_mac(char *filename , struct page *page)

{

u8 *macofpage , *filenamesha2;

int err = 0, i, k, j;

A.2. MODIFICATION OF LINUX KERNEL 249

unsigned char *addr , *hashdir , *pmac;

struct file *file;

u8 *key;

if (unlikely (! integrity_password_is_set)) {

key = initrd_key;

}

else {

key = integ_sec.key;

}

filenamesha2 = kzalloc(SHA256_DIGEST_SIZE , GFP_KERNEL);

if (! filenamesha2) {

printk("Cannot allocate memory for hash of the page\n");

return VM_FAULT_OOM;

}

err = sha256_hash ((u8 *) filename , filenamesha2 , strlen(filename)

);

if (err) {

printk("Generating SHA256 hash of the filename failed !\n");

return -EPERM;

}

hashdir = kzalloc (73, GFP_KERNEL);

if (! hashdir) {

return VM_FAULT_OOM;

}

sprintf(hashdir , "/hashes/");

k = 8;

for (i = 0; i < SHA256_DIGEST_SIZE; i++) {

sprintf(hashdir + k, "%02x", (unsigned char) *(filenamesha2 + i

));

k = k + 2;

}

250 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

hashdir [73] = ’\0’;

macofpage = kzalloc(SHA256_DIGEST_SIZE , GFP_KERNEL);

if (! macofpage){

printk("Cannot allocate memory for hash of the page\n");

return VM_FAULT_OOM;

}

addr = page_address(page);

err = sha256_mac ((u8 *) addr , macofpage , PAGE_SIZE , key ,

SHA256_DIGEST_SIZE);

if (err) {

kfree(macofpage);

kfree(hashdir);

return -EACCES;

}

pmac = kzalloc ((SHA256_DIGEST_SIZE * 2) + 74, GFP_KERNEL);

sprintf(pmac , "%s/", hashdir);

k = 73;

for (j = 0; j < SHA256_DIGEST_SIZE; j++){

sprintf(pmac + k, "%02x", (unsigned char) *(macofpage + j));

k = k + 2;

}

pmac[(SHA256_DIGEST_SIZE * 2) + 74] = ’\0’;

file = filp_open(pmac , O_RDONLY , FMODE_READ);

err = IS_ERR(file);

if (err) {

kfree(hashdir);

kfree(filenamesha2);

kfree(macofpage);

kfree(pmac);

return -EPERM;

}

A.2. MODIFICATION OF LINUX KERNEL 251

filp_close(file , NULL);

kfree(hashdir);

kfree(filenamesha2);

kfree(macofpage);

kfree(pmac);

return 0;

}

The function will free the allocated memory for its internal variables before

returning.

The Listing A.19 shows the modifications in do page fault() function that

adds the page verification.

Listing A.19: C code of modified part of do fault() kernel function

if (vma ->vm_flags & VM_EXEC) {

if (vma ->vm_file != NULL) {

buf = kzalloc(PATH_MAX , GFP_KERNEL);

if (!buf)

return VM_FAULT_OOM;

filename = dentry_path(vma ->vm_file ->f_dentry , buf , PATH_MAX)

;

err = do_verify_page_mac(filename , page);

if (err) {

printk(KERN_WARNING "Secure hash verification failed for

process %s, file:%s, page index:%lx\n", current ->comm ,

filename , page ->index);

ret = err;

if (buf)

kfree(buf);

goto out_verification_failed;

}

ret = 0;

if (buf)

252 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

kfree(buf);

}

}

A.2.5 Compiling Kernel with initrd

To be able to compile the kernel from its source few packages must be installed.

The required packages include linux-kernel-devel, fakeroot, build-essential,

kernel-package, and libncurese5-dev. These packages can be installed on Ubuntu

system using the apt-get install command. Before compiling the kernel first the

command make menuconfig must be used in the kernel source directory to choose

the modules that need to be compiled directly into the kernel image rather than as

loadable modules. The required cryptographic modules such as SHA family of hash

functions and AES symmetric encryption algorithm with CBC mode of operation

are selected. After selecting the required modules the make configuration must be

saved. To compile the kernel the following command can be issued.

fakeroot make-kpkg --initrd --append-to-version=pg kernel-image kernel-headers

This will compile the kernel using the saved configuration and generate the kernel

image, an initrd image and kernel headers. To distinguish the kernel image that

performs the page-by-page verification a postfix is added to the image name. The

images are generated as installable packages which are then installed in the system

using the following commands.

dpkg -i linux-headers-3.8.2pg_3.8.2pg-10.00.Custom_amd64.deb

dpkg -i linux-image-3.8.2pg_3.8.2pg-10.00.Custom_amd64.deb

Since the generated image for initrd will also perform the page-by-page veri-

fication, the MACs of the executable code pages for the files stored in that image

must also be generated. First a temporary folder is created to unpack the image,

and the hashes folder is created.

A.2. MODIFICATION OF LINUX KERNEL 253

mkdir /tmp/img

cd /tmp/img

gzip -cd /boot/initrd.img-3.8.2pg | cpio -imd --quiet

mkdir hashes

The MACs is then generated for all executable code using two passwords, the initrd

password and the system-wide password. After generating the MACs for the exe-

cutable code, the original initrd image is renamed. The unpacked folder that

contains the MACs will be packed to form the new image using the following com-

mands.

mv /boot/initrd.img-3.8.2pg{,.old}

find . | cpio --quiet -H newc -o | gzip -9 -n > /boot/initrd.img-3.8.2pg

The /boot/grub/grub.cfg must be changed to pass the required boot options for

the compiled kernel image. The entry for the compiled kernel in the grub.cfg is

as follows for the initrd password of JustAPassword and system-wide password of

AnotherPass as an example.

linux /boot/vmlinuz-3.8.2pg root=UUID=d4748e25-3d2f-44f4-9502-2fa2ed02f8cc ro

console=ttyS0 console=tty0

encrypted_ipass=f5f3f2b48cbf8fc633388fbd0999076b68a778927faaced80a625d6c57d79cd8

initrd_key=d87c959055ec60007ac6580063710e00e1a1fcb281ab6be0a1638b0b7b57ecff

ignore_loglevel nosplash text

A.2.6 Message Authentication Code for Executable Code

Pages

To perform the required cryptographic transformations for each page of the exe-

cutable codes the openssl library is used. This library can be installed by issuing

apt-get install libssl-dev. A function written in C is used to generate MACs

for each page of the executable code. To compile any C code that uses any of the

openssl library functions, the -lcrypto option must be added to the gcc command

254 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

line. To generate the SHA256 message digest for the path and filename of each ex-

ecutable code another function written in C is used. The compiled binary is then

used in shell scripts to generate the MACs and store the values under appropriate

folders under the /hashes folder.

The Listing A.20 shows the code of sechash.c that accepts three command line

options that pass the required parameters to generate the MAC for each page of an

executable code. The parameters are the password, the path and filename of the

executable code, and the destination folder for the generated MACs.

Listing A.20: Code of sechash.c function

#include "string.h"

#include "stdio.h"

#include "stdlib.h"

#include <openssl/sha.h>

#include <openssl/evp.h>

#include <sys/stat.h>

#include <sys/types.h>

#include "stdint.h"

void printhex(unsigned char *c, unsigned long len , int direction) {

int i;

if (direction)

for (i = 0; i < len; i++)

printf("%02x", *(c + i));

else

for (i = len - 1; i >= 0; i--)

printf("%02x", *(c + i));

return;

}

int main(int argc , char *argv []) {

A.2. MODIFICATION OF LINUX KERNEL 255

FILE *fin , *fout;

unsigned char buf[128] , first_word [8], byte , *page , md[32], *fname ,

key[32], ** somekey;

unsigned char *hashfn , c = ’\0’;

int i, err , j, k;

size_t bytesread;

int dir = 1;

const unsigned char * pass;

unsigned int mdlen = 32;

EVP_MD_CTX *mdctx;

pass = argv [1];

SHA256(pass , strlen(pass), key);

if (argc == 1) {

printf("No filenmae was specified\n");

return -1;

}

fin = fopen(argv[2], "rb");

if (fin == NULL) {

printf("Error opening file %s to read\n", argv [2]);

goto out_with_error;

}

page = malloc (4096);

if (page == NULL) {

printf("Out of memory\n");

fclose(fin);

return;

}

fname = malloc(strlen(argv [3]) + 66);

if (fname == NULL) {

256 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

printf("Out of memory\n");

free(page);

goto out_with_error;

}

if ((mdctx = EVP_MD_CTX_create ()) == NULL) {

printf("Error in creating EVP for message digest\n");

free(page);

goto out_with_error;

}

do {

bytesread = fread(page , 1, 4096, fin);

if (bytesread != 4096) {

// Zeroing remainder of the last page

for (j = bytesread + 1; j < 4096; j++)

*(page + j) = 0x0;

}

if(1 != EVP_DigestInit_ex(mdctx , EVP_sha256 (), NULL)){

printf("Error initializing EVP\n");

free(page);

goto out_with_error;

}

if(1 != EVP_DigestUpdate(mdctx , key , 32)) {

printf("Error updating EVP message digest with password\n");

free(page);

goto out_with_error;

}

if(1 != EVP_DigestUpdate(mdctx , page , 4096)) {

printf("Error updating EVP message digest with page content\n

");

free(page);

A.2. MODIFICATION OF LINUX KERNEL 257

goto out_with_error;

}

if(1 != EVP_DigestFinal_ex(mdctx , md , &mdlen)){

printf("Error finalizing message digest\n");

free(page);

goto out_with_error;

}

sprintf(fname , "%s/", argv [3]);

k = strlen(argv [3]) + 1;

for (j = 0; j < 32; j++){

sprintf(fname + k, "%02x", (unsigned char) *(md + j));

k = k + 2;

}

fname[strlen(argv [3]) + 65] = ’\0’;

fout = fopen(fname , "wb");

if (fout == NULL) {

printf("Error opening file %s to write\n", fname);

fclose(fin);

free(page);

free(fname);

goto out_with_error;

}

fwrite(NULL , 0, 0, fout);

fclose(fout);

i++;

} while (bytesread == 4096);

free(page);

fclose(fin);

return 0;

258 APPENDIX A. PAGE-BY-PAGE VERIFICATION FOR LINUX KERNEL

out_with_error:

return 1;

}

A.2.7 Time Measurements of MAC Function for Sample

Executable Files

This section reports the measured execution time of generating the MAC for selected

executable files.

Table A.1: MAC function time measurements for /bin/tar file (µ seconds)

Executable file or library MAC function time
/lib/x86 64-linux-gnu/ld-2.15.so 2754
/lib/x86 64-linux-gnu/librt-2.15.so 608
/lib/x86 64-linux-gnu/libpthread-2.15.so 2483
/lib/x86 64-linux-gnu/libc-2.15.so 16881
/bin/tar 6920
Total time 29646

Table A.2: MAC function time measurements for /bin/grep file (µ seconds)

Executable file or library MAC function time
/lib/x86 64-linux-gnu/ld-2.15.so 2754
/lib/x86 64-linux-gnu/libdl-2.15.so 301
/lib/x86 64-linux-gnu/libc-2.15.so 16881
/bin/grep 2919
Total time 29646

Table A.3: MAC function time measurements for /bin/ls file (µ seconds)

Executable file or library MAC function time
/lib/x86 64-linux-gnu/ld-2.15.so 2754
/lib/x86 64-linux-gnu/librt-2.15.so 608
/lib/x86 64-linux-gnu/libacl.so.1.1.0 592
/lib/x86 64-linux-gnu/libattr.so.1.1.0 371
/lib/x86 64-linux-gnu/libpthread-2.15.so 2483
/lib/x86 64-linux-gnu/libselinux.so.1 2234
/lib/x86 64-linux-gnu/libc-2.15.so 16881
/bin/ls 2003
Total time 27926

	List of Tables
	List of Figures
	Introduction
	Motivation
	Background
	Research Goals
	Contribution
	Thesis Structure

	Literature Review
	Introduction
	Vulnerability Removal
	Formal Software Verification
	Model Checking
	Static Analysis

	Safe Programming Language
	Type Safety
	Proof Carrying Code

	Exploitation Prevention
	Non-executable Stack or Data Memory
	Address Space Layout Randomisation
	Return Oriented Programming and Defences
	Heap-based Attacks
	Control Flow Integrity
	Coarse-Grained CFI
	Fine-Grained CFI
	Attacks on CFI
	Proposed Method

	Summary

	A Formal Model of Ideal Control Flow Integrity
	Introduction
	Instruction Types and Flow of Execution
	Machine Model
	Notations
	Propositional Dynamic Logic

	Attack Model
	Protective Measures
	Forward Edge
	Backward Edge

	Theorems of ICFI
	Premises
	Theorems

	Summary

	Memory Integrity Model
	Introduction
	Memory Corruption
	Memory Safety
	Spatial Memory Safety
	Temporal Memory Safety
	Complete Memory Safety
	Tag-based Architecture
	Type-based Non-interference Languages

	Memory Model
	Memory and Register Representation
	Preliminary Definitions for Memory Integrity Model
	Requirements of Memory Integrity Model
	Instructions Enforcing Memory Integrity Model
	A Discussion on Compiler Requirements
	Theorem of the Memory Integrity Model

	Memory Confidentiality Model
	Preliminary Definitions
	Requirements of Memory Confidentiality Model
	Instruction Requirements for Confidentiality Model Enforcement
	Theorem of Confidentiality Model

	Summary

	Realisation of Code Memory Authenticity and Alternative Memory Models
	Introduction
	Code Memory Integrity
	A Signature-based Code Memory Integrity
	Memory Blocks and Paging
	Implementation of Page-by-Page Verification
	Code Integrity Verification in Linux
	Content-based Access Control and Authentication: A Discussion

	x86 Sample Code Analysis
	Simple Buffer Overflow in ICFI Model
	Simple Buffer Overflow in Memory Integrity Model

	Address Space Division for Memory Integrity Model
	Division of Address Space
	Instruction Requirements for Address Space Division

	Protection of Operating System Memory
	Memory Privilege Model
	Requirements of the Memory Privilege Model
	Instruction Requirements for the Memory Privilege Model

	Summary

	Conclusion
	Introduction
	Contributions
	Future Research

	References
	Appendix A Page-by-Page Verification for Linux Kernel
	Introduction
	Modification of Linux Kernel
	Modification of main.c
	Required Changes in main.c
	Code of Modified memory.c
	Required Changes to memory.c
	Compiling Kernel with initrd
	Message Authentication Code for Executable Code Pages
	Time Measurements of MAC Function for Sample Executable Files

