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Abstract

Understanding the dynamic mechanisms of some key financial and economic

quantities plays a central role in an array of decision making processes such as

risk management, portfolio allocation, and more generally managerial planning

in response to macroeconomic forecasts. This thesis develops Bayesian infer-

ential methodologies for dynamic hierarchically specified models relevant to

certain empirical economic and financial settings. The new models are flexible

and are therefore able to accommodate non-standard distributional shapes as

well as nonlinear relationships between variables. Bayesian inference is obtained

by sampling from the relevant posterior densities using Markov Chain Monte

Carlo (MCMC) simulation techniques. In addition, the thesis also develops

a novel portfolio optimization method for high-dimensional portfolio selection

problems.

The thesis, then, is largely based around three distinct chapters that each

contributes to different aspects of the economic and financial modeling and

forecasting literatures. The first paper is concerned with modelling bank loan

recovery data that has, marginally, a non-standard distributional shape, along

with a collection of potential high-dimensional recovery determinants. The dis-

tributional features are accounted for using a Gaussian mixture model along

with a hierarchical regression model structure coupled with a prior. In addi-

tion, a Markov-switching mechanism is incorporated as a proxy for a latent

credit cycle, helping to explain differences in observed recovery rates over time.

Utilizing data extracted from Moody’s Ultimate Recovery Database, we are

able to demonstrate how the probability of default and certain loan-specific
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and other variables hold different explanatory power with respect to recovery

rates over ‘good’ and ‘bad’ states in the credit cycle.

The second paper proposes an extension to the Vector Auto-Regressive

(VAR) model introduced into empirical economics by Sims (1980). The model

is adapted to suit multivariate time series data observed with mixed frequen-

cies, i.e., when certain variables observed only at low frequency (e.g. quarterly)

while others are observed at high frequency (e.g. monthly), as well as unknown

form of nonlinearity present between variables. The nonlinearities between vari-

ables are accommodated through a Gaussian process prior for the unknown

function. Bayesian analysis of the model, which is specified in a state-space

form, is amenable to the use of MCMC methods. Utilizing the framework of

Stroud, Müller, and Polson (2003), an auxiliary mixture model is introduced

to facilitate the MCMC sampling. Conditional on a vector of latent indicator

variables, the auxiliary mixture model reduces to a linear Gaussian state space

model, and the efficient block sampling algorithms of Carter and Kohn (1994)

and Frühwirth-Schnatter (1994) is employed to jointly update all unobserved

states.

The third paper develops a new framework for determining portfolios with

stable out-of-sample performance in the presence of a large universe of under-

lying assets. The proposed approach builds upon taking the advantage of both

subset resampling Shen and Wang (2017) and parameter regularization Fan,

Zhang, and Yu (2012) within a unified framework. By exploiting a hierarchi-

cal clustering algorithm, subsets of assets are randomly sampled while having

controlled maximum correlation. These subsets are used as regularization tar-

gets when constructing subportfolios which are then averaged to stabilize the

final portfolio weights. We show that the resulting portfolio strategy compares

favorably with state-of-the-art strategies across a range of different covariance

structures in a simulation setup. The usefulness of the proposed method is

also illustrated using the Fama-French industrial portfolios and large U.S. stock
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market benchmarks.
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Chapter 1

Introduction

1.1 Background

Understanding the dynamic mechanisms of some key financial and economic

quantities plays a central role in an array of decision making processes such

as risk management, portfolio allocation, and more generally managerial plan-

ning in response to macroeconomic forecasts. Recently, a considerable amount

of economic and financial literature has placed an emphasis on the validation

of economic and financial theory where an empirical model’s performance is

assessed predominantly on its out-of-sample forecast performance. The well

known adage that “simple, parsimonious models tend to be the best for out-of-

sample forecasting...” (Diebold, 1998) suggests the notion that a mis-specified

model can have better predictive ability than an imprecisely estimated larger

encompassing model, but correctly specified, due to the bias-variance trade-off.

Regarding the development of new econometric forecasting models, one no-

table strand of research that has spurred a large literature and has had sig-

nificant implication for forecasting price distributions involves the notion of

“volatility clustering”. Often described as “large changes tend to be followed

by large changes, of either sign, and small changes tend to be followed by small

changes” (Mandelbrot, 1963), the statistical modelling of this identified feature

of financial price returns distributions was first explored in the seminal paper

(Engle, 1982) on autoregressive conditional heteroscedastic models (ARCH).
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The ARCH model, along with its close relative Generalised ARCH (GARCH),

introduced by Bollerslev (1986), is a strong example of how an econometric

modelling approach can provide a characterization of an important feature of

observed data, leading to the delivery of improved forecasts.

The Bayesian inferential approach, often implemented via Markov chain

Monte Carlo (MCMC) simulation techniques, has arguably become the primary

approach for dealing with complicated model structures, particularly within a

dynamic hierarchical framework. Believes about certain static parameters or

the evolution of dynamic factors that impact on the observed process may be

incorporated through a carefully constructed prior distribution.

Concurrent with the advancement of the use of Bayesian inference in ap-

plied settings is the growth of penalized regression methods. These methods,

that promote the use of less elaborated, or ‘sparse’, models, trade-off bias and

variance with the specific aim of improving out-of-sample forecast performance.

Moreover, penalized regression (also known as ‘shrinkage’) methods have been

shown to deliver predictive gains in high-dimensional settings, where the number

of variables is of similar, or greater size than that of the sample size available.

In general, modeling and forecasting are two major tasks used by practition-

ers and scholars of economics and finance. The former might typically involve

the use of a combination of modern economic and finance theory and expert

judgment to build a mathematical representation relevant to data observed in

some empirical setting.Often it is a conceptual model which is then used for

multiple purposes - story telling, policy experiments and forecasting. The lat-

ter attempts to go further, exploiting statistical regularities in the available

data to produce predictions of future outcomes that are then used as manage-

ment tools to guide policy, manage risks and for other programmatic decision

making. As a consequence of recent innovations in strict modeling assumptions

previous assumed may now be re-assessed or relaxed in light of available modern

statistical and econometric tools.
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Amongst all, there have been enormous advances in Bayesian modeling and

computational technologies useful for economic and financial data. In particu-

lar, there have been advances in MCMC techniques for hierarchical modeling

strategies known as a state space model, particularly suitable for time series

data. Through the use of a hierarchical structure, the various features apparent

in observed data may be attributed to different model components, and can

provide forecast distributions that accommodate, among other things, latent

dynamics, parameter uncertainty, and model uncertainty. Another modeling

advances including the development of Gaussian process where an entire func-

tional form may be treated as known, such a model fits neatly into a hierarchical

modeling framework, offering expanded opportunities to relax previous held as-

sumptions.

More recently, research relating to high-dimensional statistics and their use

in economic and financial settings has gained recognition. Amongst all, the

Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996)

that performs automated variable shrinkage and selection in a regression context

where a large number of potential predictor variables is available, has featured

heavily in relevant theoretical and empirical research. It is interesting to con-

sider the success of the LASSO from a frequentist perspective, as it trades off

estimation bias and variance as it forces some parameter estimates to shrunk to

zero. This feature is particularly in line with the forecasting literature’s empha-

sis on the so-called principle of parsimony. Arguably, the LASSO is amongst

the most influential recent developments in statistical methodology, and has

implications for both modelling and forecasting.

In keeping with the above reflections, the focus of this thesis is twofold.

It first considers the development of modeling architectures that help to em-

pirically characterize the main features of the distributional shapes, dynamic

patterns and other dependence present in the observed data. Two chapters,

namely Chapter 3 and 4, each details a hierarchically structured time series
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model incorporating a modern prior – the Bayesian LASSO prior in Chapter

3 and a Gaussian process prior in Chapter 4 – both designed to overcome dis-

tinct problems in a real-world empirical problem. These models are flexible and

contain latent variables within their hierarchical structures. Inference for these

models relies upon Bayesian machinery and takes full advantages of MCMC

simulation techniques.

In addition to the modeling and methodological issues addressed, this thesis

also investigates key empirical questions. We investigate the connection between

bank loan recovery rate determinants and changing general economic environ-

ment using a dataset extracted from Moody’s Ultimate Recovery Database.

The recovery rate is naturally restricted to lie over the unit interval with large

concentrations of observed rates at or just near each the boundary. Moreover,

there is a large set of potential recovery determinants available, and the liter-

ature suggests that only a few of these seems to be relevant, depending on the

state of economy, see Khieu, Mullineaux, and Yi (2012) and Hu and Perraudin

(2002). We utilize an idea from Altman and Kalotay (2014) and build a hierar-

chical model that builds upon a finite Gaussian mixture model. This is able to

capture the clustering behavior in the observed recovery rates, by attaching a

latent ordered probit regression that links the recovery determinants to each of

the Gaussian mixture components. In addition, and to account for systemically

time-varying changes in the recovery rate distribution, the final model consid-

ered allows for time-varying coefficients that dependents upon the prevailing

state of the “credit cycle”. Given the state of the credit cycle, the relevance of

each recovery determinant is examined through the use of the Bayesian LASSO

proposed by Park and Casella (2008). The resulting model is relatively parsi-

monious in the sense that only a few recovery determinants are found to play a

key role in explaining the observed recovery rate distribution.

Next, we develop a semi-parametric Vector Auto-Regressive model for data

sampled at different frequencies. Mixed frequency data is often encountered
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in macroeconomic studies. For example, researchers are often concerned with

so-called “Taylor rule”, which is essentially a monetary policy reaction function

that describes the nominal interest rate set by the central bank in reaction to

the inflation rate and to the gross domestic product (GDP). For most countries,

GDP measures are sampled at most quarterly, while higher frequency measures

for other quantities such as the interest rate and inflation are readily available.

Rather than dropping observations and modeling the joint process sampled at

a common low frequency, a flexible VAR model is developed to accommodate

the mixed frequency data in this framework we are also able to accommodate

nonlinear co-movement between variables through a Gaussian process prior.

This allows researchers to investigate the functional form of the monetary policy

reaction function instead of relying on the restrictive linearity assumption.

A second contribution is made with regard to the development of modeling

strategy for the challenging and high-dimensional portfolio setting (Markowitz,

1952). The nature of the problem inherent in a given dataset of large dimension

has been shown to differ considerably depending on the cross-sectional corre-

lation structure. Moreover, the intrinsic predictability of the data also plays

an important role in determining a final allocation. Clearly, a sparse strategy

that seeks a bias-variance trade-off is desirable in this setting. It is well-known

that performance of a standard mean-variance optimal portfolio deteriorates

out-of-sample, presumably due to the estimation error of the input parameters

(the mean and covariances of the asset returns). On this basis, we introduce

a method for controlling estimation error and thereby producing stable out-of-

sample performance in a high-dimensional setting. We bridge ideas from two

diversified strands of the literature, namely, the use of the random subspace

method (Ho, 1998) and parameter regularization (Tibshirani, 1996). More pre-

cisely, we combine a number of subportfolios constructed using a regularization

method that employs a tailored regularization target, itself is selected by ex-

ploiting the hierarchical clustering algorithms of Bühlmann et al. (2013) and
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in such a way that the maximum correlation between the targeted assets is

controlled. Therefore, the proposed method produces what is referred to as a

Targeted Regularized Portfolio (TRP). The subportfolio weights are then av-

eraged to produce the overall portfolio weights, In a Monte Carlo simulation

study, the proposed TRP achieves promising improvements over the gross expo-

sure constrained portfolios of Fan, Zhang, and Yu (2012). Finally, we illustrated

the utility of the TRP method in the context of two empirical applications cov-

ering four datasets associated with the Fama-French industrial portfolios and

two large U.S. stock market benchmarks.

1.2 Outline of thesis

The thesis is comprised of six chapters. Following this introductory chapter,

Chapter 2 reviews the fundamental concepts of Bayesian inference. Several com-

monly used MCMC methods for posterior simulation are explained, including

the Gibbs sampler and Metropolis-Hasting algorithms. The general structure of

a state space model and algorithms enabling efficient Bayesian posterior infer-

ence for them, are also detailed. A discussion of the LASSO penalized regression

method is reviewed both from a Frequentist point of view and the corresponding

Bayesian prior of Park and Casella (2008). In addition, the idea of Gaussian

process priors for Bayesian nonparametric function estimation is detailed.

Next, Chapter 3 considers an empirical application that makes use of a

Bayesian hierarchical model. Specifically, we develop a dynamic predictive

model along with the corresponding Bayesian inferential methodology required

to analyze the model for bank loan recovery rates. In particular, variable shrink-

age is performed conditional on the underlying states of the credit cycle using

a Bayesian LASSO. Our results illustrate the importance of using a dynamic

model that can handle time-varying conditions, as there is significant variation
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in the explanatory power of the variables depending on such conditions, yielding

new insights previously unavailable from the established literature.

Chapter 4 proposes an extension of a commonly used VAR model in the con-

text of a particular macroeconomic study. The proposed model accommodates

variables sampled at different frequencies as well as an unknown and potentially

nonlinear reaction function that describes the nature of variable co-movement

in the model using a Gaussian process prior. Again, the inferential methodol-

ogy is developed and implemented via an innovative MCMC algorithm that is

seen to be an extension of an existing method for nonlinear state space models

proposed by Stroud, Müller, and Polson (2003). Unlike the existing method,

the new algorithm incorporates a random nonlinear latent process.

Chapter 5 focus specifically on developing a novel approach, TRP, for high-

dimensional portfolio selection. The new TRP method builds upon the foun-

dations developed by Tibshirani (1996) who proposed the original LASSO to

perform variable shrinkage and selection simultaneously, justified by prior belief

in a sparse model structure. The usefulness of this approach is illustrated in a

Monte Carlo study and in four empirical applications, in which found that the

TRP method performs well out-of-sample.

This thesis concludes with Chapter 6, where its contributions from aforemen-

tioned chapters are reflected upon, and an outline of potential future research

directions is given.
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Chapter 2

Bayesian Inference in Financial

Econometrics

2.1 Fundamentals of Bayesian Inference

The Bayesian inferential paradigm may be considered as a framework for updat-

ing update prior belief about the primary elements of a data generating process

(DGP), i.e. the stochastic mechanism from which the data are thought to arise,

and with the updating taking place after observations from the DGP are re-

vealed. In contrast to its main alternative, the frequentist approach, Bayesian

inference conditions only on the particular sample data at hand rather than

with reference to many hypothetical repeated samples from the DGP. There-

fore, under the Bayesian framework, probability distributions are viewed as

expressions of one’s degree of uncertainty (or belief) about unknown quantities,

and not, as from the frequentist view, as a characterization of the relative fre-

quency of associated with the hypothetical repeated samples. Bayes’ theorem

is the central mechanism for this update, with two sources of information, prior

and sample information, being combined via this theorem. In its simplest form,

Bayes’ theorem is given by

p(θ|y1:T ) ∝ p(θ)L(θ|y1:T )
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where p(θ) denotes the prior probability density function (pdf, or density) asso-

ciated with the prior distribution for the unknown parameter θ, L(θ|y1:T ) stands

for the likelihood function for θ, taken as the joint pdf of the data realizations

y1:T = (y1, · · · , yT )′ conditionally given θ, with p(θ|y1:T ) then the resultant pos-

terior pdf. This posterior pdf delivers the θ that characterizes the uncertainty

about θ that remains after observing the sample evidence.

Implicitly, the update mechanism is also conditional on a specific economet-

ric model M that defines the likelihood function. For simplicity of exposition,

we suppress the explicit dependence on M in the notation when there is only

one model specification involved in the discussion. Note that θ will be a finite

dimensional parameter when working in a parametric model setting, while for

semi- or non-parametric models, θ may be, potentially, of infinite dimension.

Hence, Bayesian inference is the formalization of a prior distribution reflect-

ing prior belief about an unknown parameter, and then using Bayes’ theorem

to update that belief in light of observed data. Once the Bayesian posterior dis-

tribution has been obtained, uncertainty about a predicted future observation,

yT+1 say, can be expended through the predictive posterior pdf, given by

p(yT+1|y1:T ) =

∫
p(yT+1, θ|y1:T )dθ. (2.1)

The integrand in (2.1), i.e., p(yT+1, θ|y1:T ) is the joint posterior density of the

future observation and the parameter, obtained via composition, with

p(yT+1, θ|y1:T ) = p(yT+1|y1:T , θ)× p(θ|y1:T ),

where p(yT+1|y1:T , θ) is typically available directly from the specified model.

This posterior predictive pdf can also be expressed as an expectation with re-

spect to the posterior distribution for θj, i.e.,

p(yT+1|y1:T ) = Eθ|y1:T
[p(yT+1|y1:T , θ)] . (2.2)
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From the two expressions in (2.1) and (2.2) it can be seen that the posterior

predictive density is obtained by marginalizing over the posterior uncertainty

about θ, yielding a predictive distribution that will tend to have a greater degree

of dispersion compared with one produced by conditioning on a single value,

for example, a point estimate, of θ.

Due to the computational burden imposed by the integration involved in

Bayes’ theorem to produce, and ultimately use, the posterior distribution, var-

ious methods have been devised to facilitate the use of the Bayesian paradigm.

Since analytic solutions are rarely available in practice, and hence simulation-

based integration techniques have gained rapid recognition with the declining

cost of computing power.

In what follows, we describe the basic structure of a MCMC for poste-

rior computation, with an emphasis on the widely used Gibbs sampling and

Metropolis-Hasting algorithms.

2.2 Markov chain Monte Carlo sampling

The posterior distribution, which encodes all uncertainty regarding the model

unknowns, is of fundamental interest in Bayesian inference. A summary mea-

sure, κ, associated with a distribution have pdf p(θ), and expressed as

κ =

∫
h(θ)p(θ)dθ,

where h(·) is a deterministic function. The basic idea of Monte Carlo meth-

ods is to generate a sample θ(1), θ(2), · · · , θ(G) from the distribution p, either

directly or indirectly, and then use the average of corresponding evaluations

h(θ(1)), h(θ(2)), · · · , h(θ(G)) to approximate κ. As h(·) may take different func-

tional forms, any population characteristics or even density itself, can be ob-

tained based on such a sample of draws from the distribution p.
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Direct Monte Carlo (MC) methods, where independent draws of θ are gen-

erated from the distribution p, may be difficult to draw independent samples,

particular when the dimension of θ is large. In such case, MCMC sampling

methods provide an alternative approach for obtaining a sample from p. As the

name suggests, MCMC produces a sequence of dependent draws from the target

posterior distribution. Provided the draws are produced using an approximate

Markovian dependence structure, the resulting sequence of draws will have a

long-term (ergodic) distribution equal to the target posterior distribution.

Given a draw θ(i−1) at iteration i−1, the next draw θ(i) is drawn conditionally

from a transition distribution (kernel), denoted by K(θ(i), θ(i−1)), as

θ(i) ∼ p(θ(i)|θ(i−1), y1:T ).

Under mild conditions, the Markov chain will deliver (dependent) draws from

the desired posterior distribution, with some arbitrary initial value θ(0).

To ensure the initial value θ(0) plays no crucial role in the convergence to the

target posterior density, the Markov chain needs to be irreducible. Furthermore,

an irreducible Markov chain is ergodic if all of its states are aperiodic and

positive recurrent. See, for example, Robert and Casella (2013) for details. As

a result, the empirical average based on the sample produced by the MCMC

method

κ̂ =
1

G

G∑
i=1

h(θ(i))

will be a valid approximation of the corresponding posterior expectation since

κ̂
P→ E [h(θ)|θ, y1:T ] as G→∞.

In practice, various alternatives exist for constructing such a Markov chain

that converges to the target distribution. In this section, we review two dom-

inating approaches used in the Bayesian computation literature, namely the
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Metropolis-Hastings (MH) algorithm, whose root can be tracked back to Metropo-

lis et al. (1953) and Hastings (1970). The MH algorithm nests the Gibbs sam-

pler, which enjoyed an initial surge of popularity originating from the paper of

Geman and Geman (1984) and Gelfand and Smith (1990).

2.2.1 Metropolis-Hastings algorithm

The idea of the Metropolis-Hastings algorithm is to accept or reject a draw from

some proposal (instrumental) distribution that is easy to simulate from with an

appropriate MH acceptance ratio. This accept-reject mechanism is somewhat

similar to an accept-reject algorithm in an independent MC setup. However, the

MH approach generates dependencies in the resulting sample. In what follows,

the general MH algorithm is first introduced along with a brief discussion on

the choice of the proposal density. Details for the implementation of certain

variants employed in this thesis are provided subsequently.

To make the MH idea concrete, consider the case when the entirety of

the posterior distribution p(θ|y1:T ) is unknown and hence direct sampling ap-

proaches are infeasible. A MH algorithm proceeds by generating a candidate

draw θ∗ from a designated proposal density q(θ∗|θ(i−1)) from where a sample of

draws may be feasibly obtained. The candidate draw θ∗ is then accepted with

probability given by

α(θ∗, θ(i−1)) = min

{
p(θ∗|y1:T )

p(θ(i−1)|y1:T )

q(θ(i−1)|θ∗)
q(θ∗|θ(i−1))

, 1

}
,

otherwise, the proposal θ∗ is discarded with the value θ(i) set equal to θ(i−1).

Thus, the resulting value θ(i) may be a repetition of the value θ(i−1). In addition,

the transition kernel for the MH algorithm given by

K(θ(i), θ(i−1)) = α(θ(i), θ(i−1))q(θ(i)|θ(i−1)) + (1− α(θ(i−1)))δθ(i−1)(θ(i)),
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where

α(θ(i−1)) =

∫
α(θ∗, θ(i−1))q(θ∗|θ(i−1))dθ∗

and where δθ(i−1)(·) denote the Dirac mass on θ(i−1). Now, we formally state the

MH algorithm below in Algorithm 1. Clearly, the calculation of the acceptance

probability α(θ∗, θ(i−1)) requires the target posterior to be known up to a nor-

malizing constant. Furthermore, the proposal draw is accepted with probability

one when the ratio of p(θ∗|y1:T )/q(θ∗|θ(i−1), y1:T ) is large relative to the value

p(θ(i−1)|y1:T )/q(θ(i−1)|θ∗, y1:T ).

Algorithm 1 Metropolis-Hastings algorithm

1: Inputs: y1:T : data observations; G: number of iterations; θ(0): initial value;
p(θ∗|y1:T ): target density; q(θ∗|θ(i−1), y1:T ): proposal density;

2: for i = 1→ G do
3: Generate θ∗ from the proposal density q(θ∗|θ(i−1), y1:T );
4: Calculate

α(θ∗, θ(i−1)) = min

{
p(θ∗|y1:T )

p(θ(i−1)|y1:T )

q(θ(i−1)|θ∗, y1:T )

q(θ∗|θ(i−1), y1:T )
, 1

}
;

5: Generate u from a uniform distribution U(0, 1);

6: If u < α(θ∗, θ(i−1)), set θ(i) = θ∗, otherwise, set θ(i) = θ(i−1);

7: Outputs: A sample of G draws from p(θ|y1:T ).

In line with an accept-reject algorithm, the success of the MH algorithm is

closely related to the choice of the proposal density q(·). A minimal necessary

condition for the MH algorithm to produce draws form the target posterior is

that the support of the proposal density covers the entire support of the target

density. The distributional shape of an ideal proposal is that it matches closely

to the target density. In the extreme case when the proposal density coincides

with the target density exactly, the MH algorithm reduces to the Gibbs sampler.

This case is discussed in the following section. An interesting variant of the MH

algorithm, known as the random walk Metropolis-Hastings (RWMH) algorithm,

arises when the proposal density is symmetric. Specifically, the proposals θ∗ is
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constructed as

θ∗ = θ(i−1) + εi,

where εi are i.i.d and from a distribution that is symmetric about zero. The

RWMH is outlined below in Algorithm 2. For simplicity of exposition, we con-

sider a widely used distribution, εi ∼ N (0, aσ2
∗), where a is a positive constant

which is fixed by controlling the acceptance rate (Gelman, Roberts, and Gilks,

1996). The choice of this tuning parameter is crucial: a choice of a that is too

Algorithm 2 Random walk Metropolis-Hastings algorithm

1: Inputs: y1:T : data observations; G: number of iterations; θ(0): initial value;
p(θ∗|y1:T ): target density; N (θ(i−1), σ2

∗): proposal density;
2: for i = 1→ G do
3: Generate θ∗ from the proposal density N (θ(i−1), aσ2

∗);
4: Calculate

α(θ∗, θ(i−1)) = min

{
p(θ∗|y1:T )

p(θ(i−1)|y1:T )
, 1

}
;

5: Generate u from a uniform distribution U(0, 1);

6: If u < α(θ∗, θ(i−1)), set θ(i) = θ∗, otherwise, set θ(i) = θ(i−1);

7: Outputs: A sample of G draws from p(θ|y1:T ).

small will result in only very small movement in the Markov chain due to pro-

posed draws only ever deviate slightly from the previous chain value. Whereas,

a choice of a that is too large will likely produce extreme proposals that are

associated with extremely small acceptance probability α(θ∗, θ(i−1)), leading to

long sequences where a single value is repeated in the Markov chain. Both

of these result in slow movement of the chain towards its target. To select a

a that delivers good convergence properties, Chen and So (2006) propose to

select a having an acceptance probability of 25% to 50%. It has now become

evident that in some cases, especially in high-dimensional problems, it can be

very difficult, if not impossible, to construct an appropriate proposal distribu-

tion that approximates the joint posterior density well. Against this drawback,
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we describe a sampling scheme that does not need an accept-rejection step to

be valid, namely, the Gibbs sampler.

2.2.2 Gibbs Sampling

Gibbs sampling is an efficient technique to generate from a desired posterior

distribution indirectly, without having to calculate the relevant posterior den-

sity (see, e.g., Casella and George, 1992). In many data modelling settings,

such as these explained in this thesis, it is impractical or impossible to simu-

late directly from the joint posterior distribution or to construct an appropriate

proposal density that can be used in a MH algorithm. Indeed, the computa-

tional burden for evaluating multi-dimensional integrals increases exponentially

as the dimension of a problem increases, which is often referred to as the “curse

of dimensionality”. In this instance, the Gibbs sampling algorithm, or “Gibbs

sampler”, turns the curse into a blessing by partitioning the unknown vector

into a collection of sub-blocks. One finds, then, for each sub-block, the full

conditional posterior distribution, which will ideally be of a recognizable form.

As a result, a sample of draws of the entire vector of unknowns can be obtained

iteratively by alternatively simulating the sub-blocks of unknowns from this

corresponding full conditional posteriors. Intuitively speaking, conditional den-

sities are used in Gibbs sampler since the joint posterior density can be derived

by using only the full conditional densities, for example,

p(θ1, θ2|y1:T ) =
p(θ1|θ2, y1:T )∫

p(θ1|θ2, y1:T )/p(θ2|θ1, y1:T )dθ1

,

while this generally does not hold for using marginal densities.

As an illustration, consider a two-stage Gibbs sampler, where the vector of

unknowns may be partitioned into two sub-blocks, θ = {θ1, θ2}. The two-stage
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Gibbs sampler then alternatively simulates from the respective full conditionals

θ
(i)
1 ∼ p(θ

(i)
1 |θ

(i−1)
2 , y1:T ), and

θ
(i)
2 ∼ p(θ

(i)
2 |θ

(i)
1 , y1:T ).

It’s worth noting that not only the Gibbs sequence
{
θ

(i)
1 , θ

(i)
2

}
is a Markov

chain, whose ergodic distribution is joint pdf given by p(θ1, θ2|y1:T ). Also as a

by-product, each of {θ1} and {θ2} is a Markov chain. As is evident now, the

transition kernel of the two-stage Gibbs sampler is given by

K(θ(i), θ(i−1)) = p(θ
(i)
1 |θ

(i−1)
2 , y1:T )p(θ

(i)
2 |θ

(i)
1 , y1:T ).

After obtaining a sufficient long Gibbs sequence, the average of the condi-

tional densities f(θ1|θ(i)
2 , y1:T ) and f(θ2|θ(i)

1 , y1:T ) may be used to approximate

the marginal densities f(θ1|y1:T ) and f(θ2|y1:T ), i.e.,

p̂(θ1|y1:T ) =
1

G

G∑
i=1

p(θ1|θ(i)
2 , y1:T ) and p̂(θ2|y1:T ) =

1

G

G∑
i=1

p(θ2|θ(i)
1 , y1:T ),

where G is the number of draws in the generated Gibbs sequence. The rational

behind such result arises from by first recognizing the transition kernel of the

chain, for instance, the kernel for the sub-chain {θ1} is obtained by integrating

out θ2,

K(θ
(i)
1 , θ

(i−1)
1 ) =

∫
p(θ

(i)
1 |θ

(i−1)
2 , y1:T )p(θ

(i)
2 |θ

(i)
1 , y1:T )dθ2.
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Then, following Robert and Casella (2013), it can be shown that p(θ1|y1:T ) is

the invariance distribution associated with {θ1}, since for any θ1 = θ∗, we have

p(θ∗1|y1:T ) =

∫
p(θ∗1|θ2, y1:T )p(θ2|y1:T )dθ2

=

∫
p(θ∗1|θ2, y1:T )

∫
p(θ2|θ1, y1:T )p(θ1|y1:T )dθ1dθ2

=

∫ ∫
p(θ∗1|θ2, y1:T )p(θ2|θ1, y1:T )dθ2p(θ1|y1:T )dθ1

=

∫
K(θ∗1, θ1)p(θ1|y1:T )dθ1.

For a general multi-stage Gibbs sampler with k partition, θ = {θ1, θ2, · · · , θk},

the algorithm is as follows. Therefore, a sample of {θ1, · · · , θk} from joint pos-

Algorithm 3 k-stage Gibbs sampling algorithm

1: Inputs: y1:T : data observations; G: number of iterations; θ(0): initial
value; p(θ

(i)
1 |θ

(i−1)
2 , θ

(i−1)
3 , . . . , θ

(i−1)
k , y1:T ),· · · , p(θ

(i)
k |θ

(i)
1 , θ

(i)
2 , . . . , θ

(i)
k−1, y1:T ):

full conditional posterior distributions;
2: for i = 1→ G do
3: Generate θ

(i)
1 from p(θ

(i)
1 |θ

(i−1)
2 , θ

(i−1)
3 , . . . , θ

(i−1)
k , y1:T );

4: Generate θ
(i)
2 from p(θ

(i)
2 |θ

(i)
1 , θ

(i−1)
3 , . . . , θ

(i−1)
k , y1:T );

5:
...

6: Generate θ
(i)
k from p(θ

(i)
k |θ

(i)
1 , θ

(i)
2 , . . . , θ

(i)
k−1, y1:T );

7: Outputs: A sample of G draws of {θ1, · · · , θk} from p(θ1, · · · , θk|y1:T ).

terior is produced, and any marginal sequence of θ(i) converges to its marginal

posterior with pdf p(θj|y1:T ).

We conclude this section by illustrating the usefulness of the Gibbs sampling

along with the data-augmentation technique. As will become clear, the Gibbs

sampler is closely related to the idea of data augmentation of Tanner and Wong

(1987). Consider the Gaussian mixture model, a collection of Gaussian densi-

ties that are commonly used to approximate density with irregular forms. Let

y1:T = (y1, y2, · · · , yT ) be the vector of observed data. The mixture of Gaussian
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distribution is given by

p(yt|θ, w) =
k∑
j=1

wjp(yt|µj, σ2
j ), for t = 1, 2, · · · , T,

where p(·|µj, σ2
j ) is the Gaussian density having mean µj and variance σ2

j and

k is the number of mixture components. The mixture weight, wj, is associated

with the j-th mixture component, for j = 1, . . . , k, and with
∑k

j=1wj = 1. A

Gibbs sampling strategy can be readily implemented in this setting when con-

ditionally conjugate prior distributions are assumed. Specifically, if we assume

(µj, σ
2
j ) ∼ NIG(m̄j, h̄j, s̄j, ν̄j) for j = 1, · · · , k, corresponding to the Normal-

Inverse Gamma distribution with density function proportional to

p(µj, σ
2
j ) ∝ (σ2

j )
−
v̄j
2
−1 exp

(
− s̄j

2σ2
j

)
(σ2

j )
− 1

2 exp

(
− h̄j(µ− m̄j)

2

σ2
j

)
.

In such case the data-augmentation approach will associate with every obser-

vation a latent and random indicator variable Zt ∈ (1, . . . , k), whose realized

value Zt = zt indicates the mixture component to be associated with yt. Once

augmented with the indicator variable, the mixture model can be written as

Zt ∼Mk(1; πt,1, · · · , πt,k), yt|zt ∼ p(yt|µzt , σ2
zt),

where Mk(·) denotes a k-dimensional multi-nominal distribution with prob-

ability parameter vector (πt,1, · · · , πt,k). Then, with fixed mixture weights

w1, · · · , wk for mixture components, the joint posterior distribution for all un-

knowns is given by

p
({
µj, σ

2
j

}k
j=1

, {zt}Tt=1 |y1:T , {wj}kj=1

)
∝p
(
{(µj, σj)}kj=1

)
p
(
{zt}Tt=1 | {wj}

k
j=1

)
× p

(
y1:T |

{
(µj, σ

2
j )
}k
j=1

, {zt}Tt=1

)
∝p(

{
(µj, σ

2
j )
}k
j=1

)
T∏
t=1

p(zt| {wj}kj=1)p(yt|
{

(µj, σ
2
j )
}k
j=1

).
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In this setup, direct sampling from the joint posterior is difficult since the vector

of unknowns is of large dimension. Further, while its analytical form is known,

the integrating constant required to compute posterior probabilities is unknown.

However, the Normal-Inverse Gamma is conditionally conjugate to the Gaussian

distribution, then a set of full conditional distribution may be derived, with each

available in closed-form. Specifically, we have

µj, σj|z1:T , y1:T ∼ NIG( ¯̄mj,
¯̄hj, ¯̄sj, ¯̄νj) for each j = 1, · · · , k,

zt| {(µj, σj), wj}kj=1 ∼Mk(1, ¯̄πt) for each t = 1, · · · , T,

where

¯̄mj = ¯̄h−1
j (h̄jm̄j +

T∑
t=1

Izt=jyt),

¯̄hj = h̄j + nj,

¯̄sj = s̄j +
T∑
t=1

Izt=jy2
t + h̄jm̄

2
j − ¯̄hj ¯̄m2

j

¯̄νj = v̄j + nj,

nj =
∑

Izt=j and ¯̄πt = (¯̄πt,1, · · · , ¯̄πt,k) with ¯̄πj ∝ wjp(yt|µj, σ2
j ). Given the initial

values of the static parameter vector θ =
(
{µj, σj}kj=1

)
, a sample from the

posterior posterior may be obtained by exploiting a two-stage Gibbs sampler,

which is summarized in Algorithm 4.

If the mixture weights, w1:k, are random and unknown a priori, a Dirichlet

distribution prior

p1, · · · , pk ∼ Dk(γ1, · · · , γk)

may be used for the mixture weights. In particular, Dirichlet distribution is con-

ditionally conjugate to the multi-nominal distribution, and the full conditional
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Algorithm 4 Gibbs sampling algorithm for Gaussian mixture models with
fixed mixture weights

1: Inputs: y1:T : data observations; G: number of iterations; θ(0): initial value;
NIG( ¯̄mj,

¯̄hj, ¯̄sj, ¯̄νj), Mk(1, ¯̄πt): full conditional posterior distributions;
2: for i = 1→ G do
3: Generate Zt, for t = 1, 2, · · · , T , from

Zt| {(µj, σj), wj}kj=1 ∼Mk(1, ¯̄πt);

4: Generate {µj, σj}, for j = 1, 2, · · · , k, from

µj, σj|z1:T , y1:T ∼ NIG( ¯̄mj,
¯̄hj, ¯̄sj, ¯̄νj);

5: Outputs: A sample of G draws of θ from p(θ|y1:T ).

Algorithm 5 Gibbs sampling algorithm for Gaussian mixture models with
random mixture weights

1: Inputs: y1:T : data observations; G: number of iterations; θ(0): initial value;
NIG( ¯̄mj,

¯̄hj, ¯̄sj, ¯̄νj), Mk(1, ¯̄πt), Dk(γ1 + n1, · · · , γk + nk): full conditional
posterior distributions;

2: for i = 1→ G do
3: Generate Zt, for t = 1, 2, · · · , T , from

Zt| {(µj, σj), wj}kj=1 ∼Mk(1, ¯̄πt);

4: Generate {µj, σj}, for j = 1, 2, · · · , k, from

µj, σj|z1:T , y1:T ∼ NIG( ¯̄mj,
¯̄hj, ¯̄sj, ¯̄νj);

5: Generate wj, for j = 1, 2, · · · , k, from

w1:k|z1:T ∼ Dk(γ1 + n1, · · · , γk + nk);

6: Outputs: A sample of G draws of θ from p(θ|y1:T ).
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posterior for the mixture weights are known in closed-form, which is given by

w1:k|z1:T ∼ Dk(γ1 + n1, · · · , γk + nk).

In such case the Gibbs-based sampler will involve an additional step to gener-

ate w1:k. We summarized the algorithm to implement the Gibbs sampler for

Gaussian mixture models with random mixture weights in Algorithm 5, where

the vector of static parameter is given by θ =
(
{µj, σj}kj=1, {ωj}kj=1

)
.

In what follows, we describe the role of prior distributions played in Bayesian

inference, with an emphasis on a shrinkage prior in a regression context, and

priors to be specified for unknown function.

2.3 Prior Specification

The prior distribution, p(θ), through which the investigator’s initial belief re-

garding the unknown parameter θ is quantified, is an essential component of

Bayesian inference. Traditionally, specification of the prior distribution (or sim-

ply, ‘the prior’) is determined (strictly) before (i.e. prior to) observing the data.

The investigator’s prior knowledge about θ, such as its plausible values and

known restrictions, would be incorporated into this distributional specification.

Within the context of a given parametric model, a prior distribution may be clas-

sified as belonging to one of two categories: informative and non-informative,

with the classification referencing whether the distribution is ‘sharp’ or ‘diffuse’

relative to the available sample information. In relatively simple models at

least, the latter will often lead to posterior parameter estimates that are nu-

merically similar to those obtained by optimising the likelihood function alone.

In contrast, when the prior information is sharp, posterior inference can be

heavily influenced by the prior, and consequently the evidence from data may

impact little on the resulting inferential conclusions. In reality, the aim is to
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produce posterior inference that is a combination of both investigator’s prior

belief and sample evidence. The resulting posterior distribution can be used

to quantify uncertainties of interest, for instance, the marginal posterior means

can be considered as the optimal Bayesian point estimator under mean-squared

error loss.

For some DGPs, notably those in the exponential family class, the so-called

‘natural conjugate’ prior is available. Such a prior distribution provides analytic

tractability of the resulting posterior due to the fact that the prior and posterior

belong to same family of distributions. The hyper-parameters of the natural

conjugate prior may be selected to provide relatively weak (uninformative) prior

information, relative to the likelihood function, or to provide strong information.

As such these priors are somewhat flexible with regard to their influence on

posterior inference.

In addition, more contemporary approaches to the specification of the prior

are often more pragmatic than idealogical. Rather than relying purely on sub-

jective considerations, certain methodologies for articulating priors have been

proposed in the literature that reflect an attempt to minimize subjectivity.

Such priors, commonly referred to as ‘reference priors’ aim to produce inference

that depends only on the data and the assumed DGP, thereby rendering pos-

terior inference that would, it is argued, be more palatable to non-Bayesians

and applied practitioners who may lack the skills to formally develop proba-

bilistic priors consistent with subjective concerns. See Berger, Bernardo, and

Sun (2009) for recent advances and references relating to earlier development.

In many situations, however, determining a suitable prior will be challenging,

and particularly so when dealing with DGPs that involve many parameters.

Conjugate and reference priors are often not available, leaving the analyst to

grapple with trying to match true prior belief regarding potential outcomes

with rich enough DGP structures to accommodate the increasing volume and

complexity of data that are observed. Often these DGP structures involve
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nonlinearities, time-varying behavior and other complex dependencies. In such

a setting, not only is the prior difficult to specify, but so also is the computational

problem of obtaining, and working with, the posterior distribution.

As aforementioned, computation of the posterior distribution is a direct con-

sequence of the choice of the prior specification. In the remainder of this section,

we focus on the discussion of two particular pragmatic prior specifications for

certain unknown parameters in relevant to models investigated in this thesis,

and the resulting MCMC-based computation strategies needed to obtained the

resulting posterior distribution.

2.3.1 The Bayesian LASSO

When a large set of predictor variables is available in a regression context, an

investigator is often interested in improving the overall model predictive accu-

racy of the regression model (out-of-sample) as well as determining the subset

of covariates most relevant to this prediction. This take is made particularly

challenging when the number of covariates is large and, as is often the case,

when potential covariance exists between the regressors. For this purpose, the

LASSO of Tibshirani (1996) was proposed, from a frequentist perspective. The

LASSO results in an `1 penalized least squares estimator of the coefficients β

in a linear regression model, e.g.,

y = Xβ + ε, (2.3)

produced through an `1 penalized least square method, where y = [y1, · · · , yT ]′

is a vector of univariate responses, X =
[
x′1, · · · ,x′p

]
is a T × p design matrix

and ε = [ε1, · · · , εT ]′ is a vector of random error. Under this framework, an

estimator of the parameter vector β is obtained by solving

min
β
||y −Xβ||22 + λ||β||1,
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where λ is the Lagrange multiplier that governs the size of the penalty due to the

L1 norm of β given by ||β||1, which is typically called the “shrinkage” parameter.

This penalty serves to off-set the usual sum of squared errors criteria, given by

||y −Xβ||22, which may be improved by the inclusion of additional regressors.

The aforementioned minimization problem can be recast as an Lagrangian

dual problem which takes the following form:

min
β
||y −Xβ||22, s.t. ||β||1 ≤ c(λ),

where there exists a unique c(λ) that corresponds to λ. In particular, the LASSO

reduces to the ordinary least squares (OLS) estimator when λ = 0 and, on the

other hand, leads to a constant model when λ = ∞. In practice, λ may be

often selected using a cross-validation technique over a grid of plausible values

of λ, such as obtained in using the Least Angle Regression (LARS) algorithm

proposed by Efron et al. (2004).

Unlike the OLS estimator, which is unbiased for the parameter β when all

required regressors are included in the model, the LASSO introduces a small

amount of bias in order to reduce the overall variance of the estimator. Thus

the LASSO retains the desirable features of both subset selection (Guyon and

Elisseeff, 2003) and ridge regression (Hoerl and Kennard, 1970) while performing

variable shrinkage and selection simultaneously. It is hoped that by doing so

the overall predictive performance will be improved over that of OLS.

Tibshirani (1996) also gives a Bayesian interpretation for the regression

analysis techniques of LASSO and its relative, ridge regression. The LASSO

estimator can be interpreted as the Bayesian posterior mode under a Gaus-

sian likelihood corresponding to (2.3) and under the assumption of independent

double-exponential priors for each βj, given by

p(βj|λ) =

p∏
j=1

λ

2
exp (−λ|βj|) .
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Park and Casella (2008), however, show that the corresponding posterior dis-

tribution is not necessarily unimodal as this result depends upon the choice

of the prior for σ2, where σ2 denotes the noise variance. For example, the

joint posterior distribution of β and σ2 is bimodal when a scale-invariant prior

p(σ2) ∝ 1/σ2 will be used, regardless of the distribution assumed for ε. On

the other hand, ridge regression implicitly uses independent normal prior dis-

tributions for each regression coefficient having mean zero and with a variance

parameter that is inversely proportional to the shrinkage parameter.

To mitigate this issue, Park and Casella (2008) propose the Bayesian LASSO

based on a conditional (independent) Laplace prior of the form

π(β|σ2, λ) =

p∏
j=1

λ

2
√
σ2

exp
(
−λ|βj|/

√
σ2
)

(2.4)

The resulting joint conditional prior along with the non-informative marginal

prior p(σ2) ∝ 1/σ2 ensures a unimodal posterior distribution for the regression

parameters. This prior also has the added benefit that a sample from the

posterior distribution is relatively easy to obtain due to a representation of the

Laplace distribution as a scale mixture of normal distributions. That is, for

scalar valued β, if β ∼ Laplace(τ), then its pdf is given by

p(β | τ) =
τ

2
exp (−τ |β|) ,

for −∞ < β < ∞ and τ > 0. Then, if we take β given variance s as having a

N (0, s) distribution and assume that s itself is exponentially distributed, with

rate parameter τ 2/2, then, in fact, the marginal distribution of β is Laplace(τ)

with

p(β | τ) =

∫ ∞
0

1√
2πs

exp
(
−β2/2s

) τ 2

2
exp

(
−τ 2s/2

)
ds.

Given the produce form in (2.4), not only can a conditional Laplace prior be

used for β1, · · · , βp but in fact independent conditional exponential priors, given
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the shrinkage parameter, λ, may be used.

Based on the aforementioned representation, the regression model with Gaus-

sian errors, under the Bayesian LASSO prior, has a hierarchical structure that

can be exploited when simulating from the joint posterior distribution. This

hierarchical model is represented as

y1:T |X,β, σ2 ∼ N (Xβ, σ2IT ),

β|σ2, τ 2
1 , · · · , τ 2

p ∼ N (0p, σ
2Dτ ),

Dτ = diag(τ 2
1 , τ

2
2 , . . . , τ

2
p ),

τ 2
1 , . . . , τ

2
p |σ2 ∼ λ2

2
exp

(
−λ2τ/2

)
,

σ2 ∼ π(σ2)

That is, the Bayesian LASSO assumes an independent (hyper) prior structure,

with

τ 2
1 , τ

2
2 , . . . , τ

2
p | λ2 iid∼ Exp(λ2/2),

and where Exp(s) denotes the exponential distribution with rate parameter s,

corresponding to a mean value of 1/s. The shrinkage parameter of the Bayesian

LASSO can be chosen by the use of an appropriate hyper-prior, e.g., a Gamma

distribution for λ2, given by

p(λ2) =
δr

Γ(r)
(λ2)r−1e−δλ

2

.

If a conditionally conjugate prior is used for σ2, the following efficient Gibbs

algorithm (Algorithm 6) simulates from the joint posterior distribution of σ2, λ

and the auxiliary variables τ 2
1 , τ

2
2 , . . . , τ

2
p . The inverse-Gaussian density used in

Algorithm 6 is given by

f(x) =

√
λ

2π
x

3
2 exp

{
−λ(x− µ)2

2µ2x

}
,



Chapter 2. Bayesian Inference in Financial Econometrics 27

Algorithm 6 Gibbs sampling algorithm for the Bayesian LASSO

1: Inputs: y1:T , X: data observations; G: number of iterations; θ(0) =(
β

(0)
1:p , τ

(0)
1:p , λ

2(0), σ2(0)
)

: initial value; IG(¯̄a, ¯̄b), Gamma(¯̄r, ¯̄δ), Inverse-

Gaussian(¯̄µ, ¯̄λ), N ( ¯̄A, ¯̄B): full conditional posterior distributions;
2: for i = 1→ G do
3: Generate error variance parameter

σ2|y1:T , X ∼ IG(¯̄a, ¯̄b),

where ¯̄a = (n+p−1)
2

and ¯̄b = (y1:T−Xβ)′(y1:T−Xβ)
2

+ βD−1
τ β
2

;

4: Generate LASSO shrinkage parameter

λ2|y1:T , X, σ
2, {τj} ∼ Gamma(¯̄r, ¯̄δ),

where ¯̄r = p+ r̄ and ¯̄δ =
∑p

j=1 τ
2
j + δ̄;

5: Generate the inverse local shrinkage parameter, for j = 1, · · · , p,

1/τ 2
j |y1:T , X, σ

2, λ2 ∼ Inverse-Gaussian(¯̄µ, ¯̄λ),

where ¯̄µ =
√

λ2σ2

β2
j

and ¯̄λ = λ2;

6: Generate the regression parameters,

β|y1:T , X, σ
2, τ1:p ∼ N ( ¯̄A, ¯̄B),

where ¯̄A = (X ′X +D−1
τ )X ′y1:T and ¯̄B = σ2(X ′X +D−1

τ )−1;

7: Outputs: A sample of G draws of θ from p(θ|y1:T , X).
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where µ is a location parameter and λ is a shape parameter.

The Bayesian LASSO has a few advantages over the ordinary frequentist

LASSO. First, the turning parameter λ in ordinary LASSO is typically chosen

by cross validation, which does not appear to have a strong theoretical basis

(Zou, 2006). The Bayesian LASSO offers an alternative through the use of a

hyperprior for λ (implied by the hyper-prior on λ2). In contrast, for example, a

single value may be selected for λ so that the resulting β coefficient estimates

resemble those of the standard frequentist LASSO, for example via an empirical

Bayes approach. Of course, the Bayesian can take full advantage of the existing

parameter uncertainties by marginalising over the prior structures to produce,

for example, Bayesian point and interval estimates for the regression coefficients.

On the other hand, however, and with probability one, the Bayesian LASSO

does not permit an individual regression parameter to be set to zero in the pos-

terior, and hence no reduction in the number of regressors is obtained. Rather,

only the influence of regressors will be diminished. If reduction to a subset

of covariates is desired, decision rules based on marginal Bayesian creditable

intervals may be used (Park and Casella, 2008). Overall, the Bayesian LASSO

is a powerful technique for regression problems when a large set of covariates is

available, as is the case of the empirical applications investigated in Chapter 4

and Chapter 5 of this thesis.

In the following section, we turn to the discussion of another useful prior for

modelling unknown functions.

2.3.2 The Gaussian Process Prior

We discuss now a useful prior for non-parametric function estimation. A com-

mon task in data analysis is to estimate a function g(x) given some noisy obser-

vations y1:T at given input locations x = (x1, · · · , xT )′. A parametric approach
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to this problem is to select a particular class of functions, for example, poly-

nomial class, as the model and then to estimate the parameters involved in

that model class by minimizing an appropriate loss function at observed data

points, e.g., mean squared error between the fitted values and the observed val-

ues associated with x, hereby, yielding a ‘best fitting’ model for the given data

set.

In contrast, Gaussian process is a prior may be used to produce a nonpara-

metric Bayesian method for function estimation. Knowledge of the function val-

ues g(x) is encapsulated in the prior distribution p(g(x)) and updated through

the likelihood function p(y1:T |x, g(x)), encompassing Bayesian nonlinear regres-

sion,

p(g(x)|y1:T , x) =
p(g(x))p(y1:T |g(x), x)

p(y1:T |x)
,

where p(g(x)|y1:T , x) is the posterior distribution. This approach provides a joint

probability distribution over the function value g(x1) · · · , g(xk) given particular

collection of regressors x1, · · · , xk, conditioned on the observed data. Roughly

speaking, nonparametric modeling using a Gaussian Process extends the way of

expressing belief about the unknown function g(x) using probability distribution

over an infinite dimensional object, namely g(x) itself. In particular, Gaussian

process has a few advantages over parametric approaches. First, investigator

can express beliefs about the functions via the prior distribution instead of

having to pick a particular class of parametric functional forms. Second, not

only does the Gaussian process provide a posterior distribution over possible

functions but also it accounts for the uncertainty about that function.

As the name suggests, a Gaussian process is a stochastic process that is

completely specified by a mean functionm(x) and a covariance function k(xi, xj)

for all i, j ∈ (1, · · · , n). It may be considered as a distribution over the space

of functions where the function values (or outputs), at any finite collection of
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points x1, · · · , xn are jointly Gaussian, with


g(x1)

...

g(xn)

 ∼ N


m(x1)

...

m(xn)

 ,

k(x1, x1) · · · k(x1, xn)

...
. . .

...

k(xn, x1) · · · k(xn, xn)


 .

As a result, the marginal prior distributions for each function value g(xi) is also

Gaussian with a particular mean and variance given by m(xi) and k(xi, xj).

On the other hand, for given input locations x1 and x2, the covariance between

corresponding function values is specified by the covariance function k(x1, x2).

To demonstrate the usefulness of the Gaussian process, we consider the case

where of an additive Gaussian noise,

yt = g(xt) + εt,

where εt ∼ N (0, σ2
ε). With the added assumption that the errors, denoted by ε,

are mutually independent, the conditional likelihood function associated with

observations y1, · · · , yT at given inputs x1, · · · , xT is given by

p(y1:T |x, g1:T ) =
T∏
t=1

N (yt; gt, σ
2
ε),

where g1:T = g(x1), · · · , g(xT ). For additive Gaussian noise, the posterior dis-

tribution for function values is analytically tractable. Specifically, the posterior

distribution can be obtained using conditional linearity property of multivariate

Gaussian distribution since y1:T and g1:T are jointly Gaussian, i.e.,

y1:T

g1:T

 ∼ N

m(x)

m(x)

 ,
K(x,x) + σ2

εIT K(x,x)

K(x,x) K(x,x)


 ,
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and the conditional linearity property of multivariate Gaussian yields

p(g1:T |y1:T ,x) = N (m(x)+K
[
K + σ2

εIT
]−1

(y1:T−m(x)), K−K
[
K + σ2

εIT
]−1

K),

where K is the T × T matrix given by K = K(x,x). Similarly, the posterior

distribution of function evaluations associated with a set of test points, i.e.,

values comprising to (x̄k, g(x̄k)) not associated with any observations y1:T for

t = 1, · · · , T , denoted x̄, is also Gaussian,

p(ḡ|y1:T ,x, x̄) = N (m, s),

where

m = m(x̄) +K(x̄,x)
[
K(x,x) + σ2

εIT
]−1

(y1:T −m(x))

s = k(x̄, x̄)−K(x̄,x)
[
K(x,x) + σ2

εIT
]−1

K(x, x̄).

The marginal likelihood in this setting is obtained by averaging over the possible

function values g1:T , i.e.,

p(y1:T |x) =

∫
p(y1:T |x, g1:T )p(g1:T |x)dg1:T .

Hence, since g1:T follows a multivariate Gaussian distribution, this marginal

likelihood is tractable under the assumption of Gaussian noise, in particular,

the log marginal likelihood function is given by

log p(y1:T |x) = −1

2
(y1:T−m(x))′(K+σ2

εIT )−1(y1:T−m(x))−1

2
|K+σ2

εIT |−
T

2
log 2π.

Notably, having a closed-form expression for the (log) likelihood is useful when

there are unknown hyper-parameters in the covariance function.
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The covariance function k(·, ·) is a fundamental element for a Gaussian pro-

cess as it expresses belief regarding the properties of the underlying function. It

generates the so called Gram matrix K whose (i, j) entry is Kij = k(xi, xj), for

given input locations x. The most commonly-used covariance function appears

to be the ‘squared exponential’ covariance (kernel) function (Rasmussen and

Williams, 2006) which takes the form

kSE(xi, xj) = σf exp

(
−(xi − xj)2

2`2

)
,

where σf and ` are hyper-parameters. This squared exponential kernel is in-

finitely differentiable, so its derivatives are available at all orders. For instance,

the first derivative of this kernel function respect to xj = µ̄ is given by

∂k(xi, µ̄)

∂µ̄
=

∂

∂µ̄

{
σf exp

(
− 1

2`2
(xi − µ̄)2

)}
=

∂

∂µ̄

{
exp

(
− 1

2`2
(xi − µ̄)2

)}
k(xi, µ̄)

= −`−2(xi − µ̄)k(µ̄, xi),

which is a scalar.

For the purpose of illustration, we plot the posterior of Gaussian process

using a squared exponential covariance function with prior mean m(x) = 0 for

all x in Figure 2.1. Notably, the uncertainty in the function values collapses

around observations and expands as we move away from data points. As is

common in nonparametric function estimation, the GP posterior returns to the

prior as we move away from the data, resulting in bias and large uncertainty

near the boundaries of the support produced by x.

Having discussed the role of prior distributions played in Bayesian inference,

we focus on the discussion of state space models in the context of Bayesian

inference in the following section.
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Figure 2.1: Gaussian process posterior using a squared expo-
nential kernel. The blue line shows the mean of the posterior
distribution, along with 95% creditable interval (gray shaded

area).

2.4 Bayesian Inference for State Space Models

A state space model (SSM) provides a unified framework for time series analy-

sis. In this approach a series of observations y1, · · · , yT are associated with an

unobserved series of state variables α1, · · · , αT over time. The evolution of the

state variable and the corresponding observations are assumed to be governed

by the stochastic mechanism under study. With knowledge of the observations

y1:T = y1, · · · , yn, a main purpose of a state space analysis is to infer the rele-

vant distributions for latent variables α1, · · · , αT , along with the estimation of

any static parameters and the forecasting of future outcomes.

State space modeling is used in a range of research areas of broad and cur-

rent interest. A well-studied example of a state space model useful to model

financial time series is the stochastic volatility model (Kim, Shephard, and

Chib, 1998; Jacquier, Polson, and Rossi, 2002; Eraker, Johannes, and Polson,

2003). Another example is to analyze high-dimensional time series, for example,

biological data sets, using the state space representation for dynamic graphic
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models (Carvalho and West, 2007). Not only does the SSM framework encom-

pass a wide range of real applications on its own, but also it is conveniently

used as a workhorse facilitating many existing time series models, including

moving average (MA) model, vector autoregressive (VAR) model, as well as

for inference when dealing with missing data. Exploiting the state space repre-

sentation, powerful MCMC simulation methods facilitate Bayesian inference in

these complex settings.

The empirical applications investigated in this thesis are developed using

certain state space representations arising from a Bayesian hierarchical model,

and a mixed frequency VAR model, respectively. In each case, the state space

representation is used to connect latent processes to the observations, with

conditional inference undertaken through the development of targeted MCMC

algorithms. In each cases, the challenge of the problem is essentially due to

the presence if a high-dimensional latent variable. Thus, the SSM provides the

foundation needed for the modeling and inferential framework used in Chapters

3 and 4.

A general discrete-time SSM may often be explicitly stated using the follow-

ing form

yt = f(αt, εt, φ) εt
ind∼ p(εt|αt, φ) (2.5)

αt+1 = g(αt, ηt, φ) ηt
ind∼ p(ηt|αt, φ) (2.6)

for t = 1, · · · , T , where φ denotes a vector of static parameters and the equa-

tions (2.5) and (2.6), associated with yt and αt are called the measure equation

and the state transition equation respectively. Both yt and αt can potentially

be multivariate. A feature of this model, as aforementioned is that, in the

time series context, the dynamics involved are typically expended as device

only through αt, whose process usually assumed to follow a first-order Markov

process starting with α0 ∼ p(α0|φ). The SSM is completed with assumptions
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regarding the random disturbances εt and ηt, which will have distribution with

zero mean and with possibly correlated covariance structure. For simplicity of

exposition, we denote the vector of latent states a0:T = (α0, · · · , αT )′ for the

reminder of this section.

In this generic SSM setup, the joint density function for y1:T and α0:T is

given by

p(y1:T , α1:T |φ) = p(α0|φ)
T∏
t=1

p(yt|αt, φ)p(αt|αt−1, φ),

and hence given a prior pdf for φ, p(φ), the joint posterior satisfies

p(φ, α0:T |y1:T ) ∝ p(y1:T |α0:T , φ)p(α0:T |φ)p(φ)

=

[
T∏
t=1

p(yt|αt, φ)

][
p(α0|φ)

T∏
t=1

p(αt|αt−1, φ)

]
p(φ).

In terms of actually computing this posterior distribution, a two-stage Gibbs

sampling method can at least be conceptually used for posterior simulation,

consisting of alternatively generating

φ ∼ p(φ|y1:T , α0:T ),

and

α0:T ∼ p(α0:T |φ, y1:T )

alternatively. However, unless the SSM takes a linear Gaussian, or a discrete

finite state, form, then the objective of computing the state variables rapidly

becomes cumbersome as T increases. Nevertheless, the theory of state filtering

and smoothing suggests how to update knowledge of a system as a new obser-

vation yt is made available. Specifically, the conditional density, p(yt|y1:t−1, φ),

as well as the filtered density, p(αt|y1:t, φ), are found progressively via

p(yt|y1:t−1, φ) =

∫
p(yt|αt, φ)p(αt|y1:t−1, φ)dαt
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and

p(αt|y1:t, φ) =
p(αt|y1:t−1, φ)p(yt|αt, φ)

p(yt|y1:t, φ)
,

as each observation yt becomes available for t = 1, 2, · · · , T . Moreover, the state

predictive density given by

p(αt|y1:t−1, φ) =

∫
p(αt|αt−1, φ)p(αt−1|y1:t−1, φ)dαt−1,

and the so called smoothed distribution given by

p(αt|y1:T , φ),

are often of interest. The closed-form solutions for these densities that char-

acterize uncertainties of interest, however, are only available in very limited

settings.

In what follows, a class of state space models is described, namely, linear

Gaussian SSM. In this special setting, several of the desired distributional quan-

tities are readily computed.

2.4.1 Linear Gaussian state space models

The linear Gaussian SSM, also known as the dynamic linear model, consists of

the joint regression equations

yt = ct + Ztαt + εt εt
ind∼ N (0, Ht) (2.7)

αt+1 = dt +Rtαt + ηt ηt
ind∼ N (0, Qt) (2.8)

that are each linear in αt as well as having additive Gaussian disturbances εt

and ηt respectively, and that are assumed to be temporally independent for all t.

The vectors ct and dt are of dimensions k and l, being the same dimension as yt

and αt respectively and Zt and Rt are conformable matrices that are potentially
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relevant upon static parameters. For simplicity of exposition, we assume the

measurement disturbance, εt, is independent of the state disturbance, ηt, for

t = 1, 2, · · · , T .

In the special case of linear Gaussian SSM and conditionally given a value

of φ, the filtered and smoothed distributions can be derived analytically, with

the imposing of the initial assumption that

α0 ∼ N (a0, P0).

Owing to the linear and additive structure of (2.7) and (2.8) along with the ad-

ditive Gaussian error terms, the joint distribution of all observations and states

is Gaussian. Exploiting the properties of the multivariate Gaussian conditional

distribution, and marginal distributions of any state variable, αt, conditional on

any subset of observations, may be analytically obtained via a recursive update

rule. In this setting, the progressive procedure to attain analytic results for the

latent states is called the Kalman filter recursions (Kalman, 1960).

The idea of Kalman filtering is to revise the predicted mean and variance of

αt as yt becomes available. Since a Gaussian distribution is fully characterized

by its mean and variance, the update of the mean and variance is sufficient to

fully update each distribution which occurs as follows. For each t, we denote

respectively, the predictive mean and variance for αt, conditional on y1:t−1 =

(y1, · · · , yt−1) by at|t−1 and Pt|t−1, i.e.,

at|t−1 = E(αt|y1:t−1)

Pt|t−1 = V(αt|y1:t−1)
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and also denote the updated, or filtered, mean and variance for αt, conditional

on y1:t, by at|t and Pt|t, i.e.,

at|t = E(αt|y1:t)

Pt|t = V(αt|y1:t).

Now, for given initializations, a0 = a0|0 = E(α0) and P0 = P0|0 = V(α0), the

Kalman filter recursions, given by

at|t−1 = dt−1 +Rt−1at−1|t−1 (2.9)

Pt|t−1 = Rt−1Pt−1|t−1R
′
t−1 (2.10)

vt = yt − ct − Ztat|t−1 (2.11)

Ft = ZtPtZ
′
t +Ht (2.12)

Mt = Pt|t−1Z
′
t (2.13)

at|t = at|t−1 +MtF
−1vt (2.14)

Pt|t = Pt|t−1 −MtF
−1M ′

t , (2.15)

for t = 2, · · · , T . Having obtained via the Kalman filter each of the one-step

ahead mean and variance, the likelihood function associated with the dynamic

linear model may be expressed through a prediction-error decomposition, i.e.,

p(y1:T |φ) = p(y1|φ)
T∏
t=1

p(yt|y1:t−1, φ), (2.16)

with each component of (2.16) being a Gaussian pdf given by

p(yt|yt−1, φ) = p(vt|φ)

= |Ft|
1
2 (2π)

−Tk
2 exp

{
−1

2
v′tF

−1
t vt

}
,

for t = 1, · · · , T , where vt is given in (2.11) and Ft is given in (2.12). The
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result follows directly from the Kalman filter recursions which progressively

introduce, and then marginalize over the uncertainty in each αt analytically

while conditional on each observed value of yt. As a consequence, maximum

likelihood (ML) inference for a vector of static parameters is straightforward,

since the Gaussian likelihood function may be computed exactly, via (2.16),

noting that both vt and Ft are expressions of φ.

Also of interest are the smoothed marginal distributions given by p(αt|y1:T , φ)

for t = 0, 1, 2, · · · , T . These marginal smoothed distribution have been fully up-

dated and can help provide an understanding of the underlying state process in

many applications. For a comprehensive discussion of the use of the marginal

smoothed distributions for frequentist inference, refer to Durbin and Koopman

(2012).

The focus in Bayesian inference, however, is to obtain samples from the joint

smoothed distribution, namely pdf p(α0:T |y1:T ). In this linear Gaussian setting,

it is possible to draw α0:T = α0, · · · , αT from its joint posterior distribution in

a single block. This block sampling algorithm is referred to as forward filtering,

backward sampling (FFBS) in the MCMC literature and is attributed to both

Carter and Kohn (1994) and Frühwirth-Schnatter (1994). This result is due to

the fact that the density of the joint distribution can be decomposed into the

product of conditional densities

p(α1, · · · , αT |y1:T , φ) = p(αT |y1:T , φ)p(αT−1|αT , y1:T , φ) · · · p(α0|α1:T , y1:T , φ),

(2.17)

with each of the densities in the decomposition shown in (2.17) generated in re-

versed order, for t = T, T −1, · · · , 1, 0, recursively as follows. Having completed

a forward pass through the Kalman filter, as discussed above, the smoothed dis-

tribution for the terminal state, p(αT |y1:T , φ), is immediately available as it is

the same as the filtered distribution at final time T . Hence a draw of αT denoted

as α∗T , may be obtained. Thus, through this initialization at time t = T , at
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each subsequent time, the previously obtained filtered distribution, proceeded

with time t − 1, i.e., p(αt−1|y1:t−1), is now updated with the draw α∗t via the

transition density p(α∗t |αt−1). This yields the revised pdf p(αt−1|α∗t , y1:T ) from

which a draw α∗t−1 may be obtained. Specifically, the backward sampling algo-

rithm for the state variables α0:T given the means and variances, at|t and Pt|t,

respectively, from the filtered distributions which have already been produced,

via the Kalman filter and the backward sampling, proceeds as follows:

The backward sampling algorithm

1. For t = T , generate α∗T from

αT |y1:T , φ ∼ N (aT |T , PT |T )

2. For t = T − 1, T − 2, · · · , 1, 0, sequentially generate α∗t from

αt|α∗t+1, y1:T , φ ∼ N (at|T , Pt|T ),

where

at|T = at|t + Pt|tR
′
tP
−1
t+1|t(α

∗
t+1 − at+1|t)

Pt|T = Pt|t + Pt|tR
′
tP
−1
t+1|tRtPt|t.

According to this procedure, the FFBS algorithm efficiently generates a joint

draw of α∗0:T from the joint conditional posterior distribution p(α0:T |y1:T , φ).

In conjunction with an additional step to generate a draw of φ conditionally

given α∗0:T and y1:T , a two-stage Gibbs sampling approach will produce an er-

godic Markov chain whose stationary distribution is the relevant joint posterior

distribution of all unknowns.

In the following subsection, we introduce a class of SSMs whose state variable

may take on only a finite number of distinct values.
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2.4.2 Markov Switching State Space Model

Arguably, the most prominent illustration of the use of this SSM, at least in the

economics and finance literature, is the Markov switching model of Hamilton

(1989). It has been extensively employed to analyze business cycle and volatility,

see, for example, Kim and Nelson (1999a), Eo and Kim (2016) and Chen, So, and

Lin (2009) among others. This model permits multiple dependence structures

that encompass distinct time series behaviors in different regimes. As the name

suggests, the switching mechanism is governed by a state variable that follows

a first order Markovian structure, featuring the fact that the current value of

the state depends on its immediate past. To illustrate the idea, we consider a

two state Markov switching model for the conditional mean in a linear model

setting. Let yt be a univariate response variable and Xt be a p-dimensional

vector of covariates, both indexed by t = 1, 2, · · · , T . The observation at time

t is extended given the state variable St as

yt = Xtβst + εt, εt ∼ N (0, σ2
ε)

where st = 0, 1 may equal zero or one. The value of St is unobserved but

assumed to follow a first-order Markov process with transition matrix given by

P =

p00 p10

p01 p11

 , (2.18)

where p00 = Pr(St = 0|St−1 = 0), p11 = Pr(St = 1|St−1 = 1), p10 = 1 − p00

and p01 = 1− p11. This Markov process typically initializes with its long-term

(ergodic) probabilities given by Pr(S0 = 0) = p0 and Pr(S0 = 1) = 1− p0. Note

that the normality assumption imposed on the disturbance term εt in (2.4.2) is

not essential but is convenient as it simplifies our discussion here.

Given the first-order Markov transition matrix in (2.18) and the initial state
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probability p0, the joint density of all states S0:T and observations y1:T , given

the static parameter φ = (β0, β1, σ
2
ε , p00, p11) is given by

Pr(S0:T , y1:T |φ) = Pr(S0 = s0|φ)
T∏
t=1

[Pr(St = st|St−1 = st−1, φ)p(yt|st, φ)] .

As in the case detailed in Section 2.4.1, if the filtered distribution for each of the

latent states, here S0, S1, · · · , ST , can be obtained, the calculation of the exact

likelihood function is feasible. The resulting filtering algorithm often referred

to as the Hamilton filter, which is used to evaluate the likelihood function for

any given value of the static parameter φ = (β0, β1, σ
2
ε , p00, p11).

The idea of the Hamilton filter is to compute the filtering probabilities,

Pr(st = i|y1:t, φ) for each value i = 0 and i = 1. Those conditional probabilities

are computable as St can only take on a finite number of values, here just two.

With the initial values Pr(S0 = i|φ), for i = 0 and i = 1, the Hamilton filter

progressively computes

Pr(St = 0|y1:t−1, φ) =p00 Pr(St−1 = 0|y1:t−1, φ) + p10 Pr(St−1 = 1|y1:t−1, φ)

Pr(St = 1|y1:t−1, φ) =1− Pr(St = 0|y1:t−1, φ)

p(yt|y1:t−1, φ) = Pr(St = 0|y1:t−1, φ)p(yt|y1:t−1, St = 0, φ)

+ Pr(St = 1|y1:t−1, φ)p(yt|y1:t−1, St = 1, φ)

Pr(St = 0|y1:t, φ) =
Pr(St = 0|y1:t−1, φ)p(yt|y1:t−1, st = 0, φ)

p(yt|y1:t−1, φ)

Pr(St = 1|y1:t, φ) =1− Pr(St = 0|y1:t, φ)

for t = 1, 2, · · · , T . Hence given data values y1:T , the filtered probabilities

Pr(St = i|y1:t), for i = 0 or 1, may be calculated, for any given value of φ.
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It is also straightforward to simulate adversely the state variables s0:T from

the joint posterior distribution using a backward sampling algorithm. Note

Pr(St = i|y1:T , st+1 = j, φ) =
pij Pr(St = i|y1:t, φ)

Pr(St+1 = j|y1:t, φ)
, (2.19)

for any i = 0 or 1 and any j = 0 or 1. Hence given the filtered probabilities

Pr(St = i|y1:t, φ), for i = 0, 1, the transition probabilities pij for i = 0, 1 and

j = 0, 1, as well as a draw of St+1 = s∗t+1 from Pr(St+1 = st+1|y1:T , φ), a draw

of St from (2.19) can be obtained. Now, given a draw of S0:T , it is easy to

recognize that under independent and conditionally conjugate priors, draws of

the parameters β0, β1 and σ2
ε may all be obtained. Finally, under independent

and conditionally conjugate Beta priors, B(ū0,0, ū0,1) and B(ū1,1, ū1,0), for p00

and p11 respectively, given these regression parameters, the latent states S0:T

and the data y1:T , draws of the parameters in the Markov transition matrix may

be sampled from Beta distributions, with

p00|s0:T ∼ B(ū0,0 + n0,0, ū0,1 + n0,1) and

p11|s0:T ∼ B(ū1,1 + n1,1, ū1,0 + n1,0),

where B(a, b) denotes the Beta distribution on (0, 1), having mean a
a+b

and

variance ab
(a+b)2(a+b+1)

, here with

n1,0 =
T∑
t=1

(St|St−1 = 0),

n1,1 =
T∑
t=1

(St|St−1 = 1),

and n0,0 = nSt=0 − n1,0 and n0,1 = nSt=1 − n1,1. Accordingly, denote θ/β all the

elements contained in the parameter vector θ except β for any β, where β is

a generic notation. Then, the backward sampling algorithm is summarized in

Algorithm 7.
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Algorithm 7 Gibbs sampling algorithm for the Markov switching model

1: Inputs: y1:T : data observations; G: number of iterations;

θ(0) =
(
p

(0)
00 , p

(0)
11 , β

(0)
0 , β

(0)
1 , σ

2(0)
ε

)
: initial value; p(p00|s0:T ), p(p11|s0:T ),

p(β1|s0:T , y1:T , φ/β1), p(β0|s0:T , y1:T , φ/β0), p(σ2
ε |y1:Tφ/σ2

ε
): full conditional

posterior distributions;
2: for i = 1→ G do
3: For t = 1, 2, · · · , T , compute the filtered distribution p(St = i|y1:t, φ),

then generate S0:T from

S1:T ∼ p(S0:T |y1:T , φ)

using the Hamilton filter and a backward sampler;

4: Generate the vector of static parameters φ by sampling each element
from

p00 ∼ p(p00|s0:T ), p11 ∼ p(p11|s0:T ), β0 ∼ p(β0|s0:T , y1:T , φ/β0),

β1 ∼ p(β0|s0:T , y1:T , φ/β1) and σ2
ε ∼ p(σ2

ε |y1:T , φ/σ2
ε
);

5: Outputs: A sample of G draws of θ and S0:T from p(θ, S0:T |y1:T ).

As illustrated with the previous two SSMs, simulating the state variables

requires each of the predictive, filtered and smoothed distributions to have

closed-form solutions. However, these quantities are not available when an

SSM involves either nonlinear functional forms or non-Gaussian disturbance

terms, or both. This situation arises often, including in the modeling setting in

Chapter 3 and 4. In the following section, we extend the discussion of SSMs to

a nonlinear setting, and provide a description of certain MCMC algorithms for

posterior simulation that will prove to be useful for the work presented in the

later chapters.

2.4.3 Nonlinear state space models

In the presence of nonlinear functions or non-Gaussian error terms, the Kalman

filter and corresponding backward sampling algorithm detailed in Section 2.4.1

no longer provide a means to sample from the relevant (conditional) joint state
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distribution. In a non-Gaussian SSM setting, closed-form solutions of the fil-

tering and smoothing state distributions are not available, except for in the

special discrete Markov switching setting as demonstrated in Section 2.4.2. A

variety of methods have been proposed to try to sample the latent state vec-

tor, such as the particle filtering methods and approximation based methods,

have been proposed in a range of nonlinear settings. The former, also known

as sequential Monte Carlo (SMC), which employs sequential importance sam-

pling/resampling methods first introduced by Gordon, Salmond, and Smith

(1993). In particular, as the particle filter produces an unbiased estimate of the

likelihood function, so called pseudo-marginal approaches have been developed

in an attempt to use SMC technique within an MCMC environment (see, for

example, Beaumont, 2003,Andrieu and Roberts, 2009 and Pitt et al., 2012). An

alternative approach to dealing with the nonlinear SSMs is used in this thesis.

In particular, an approach using an auxiliary mixture model to approximate

the relevant target sampling distributions from which latent variable draws are

generated using an FFBS algorithm is used. Once the candidate draw has been

generated from the approximating model, it is either accepted or rejected using

a MH acceptance probability.

Most relevant to this approximation strategy is to approximate the filtered

distributions via a mixture of Gaussian components. Specifically, consider the

case where the model under study has a state space representation, given by

yt = c+ Zαt + εt εt
ind∼ N (0, H)

αt = d+ g(αt−1) + ηt ηt
ind∼ N (0, Q).

Notice that here the nonlinearity occurs only in the state transition equation

via the function g(·). Note also that even though the measurement equation is

linear in αt and the measurement and state disturbances εt and ηt are assumed to

be Gaussian, the Kalman filter will not produce the correct filtered distribution
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since a nonlinear transformation (e.g., g(·)) of a Gaussian random variable (e.g.,

αt−1) is, in general, not Gaussian. By way of notation to simplify the discussion,

we suppress any explicit dependence on the static parameter φ.

The approximating auxiliary mixture model approach used here was intro-

duced by Stroud, Müller, and Polson (2003), hereafter referred as SMP. In the

current setting, this approach is to replace the nonlinear model with Gaussian

mixture model. The choice of the approximating Gaussian component is un-

dertaken in an adaptive way, depends on the location of the state vector to

be sampled. To facilitate the sampling, a collection of auxiliary mixture in-

dicator variables is used. A important feature of this approach is that when

conditioned on the relevant mixture indicators, the auxiliary model reduces to

a linear Gaussian SSM and as such that a standard FFBS algorithm may be

applied to produce a candidate draw from the joint posterior distribution of

state variables. In particular, the SMP method employs a collection of prede-

termined grid points denoted by, {µ̄1, µ̄2, · · · , µ̄K} , each from the support of

αt, to construct a set of local linear approximations of the nonlinear function

at given grid points, {µ̄1, µ̄2, · · · , µ̄K}. Each grid point, µ̄j, corresponds to a

state-dependent mixture weight, pa(ut|αt), through

pa(ut = j|αt) = ψ(αt; µ̄j, σ̄
2
j )/

K∑
k=1

ψ(αt; µ̄k, σ̄
2
k),

where ut denotes the mixture indicator variable attached to αt, that can take

values from {1, 2, · · · , K}, and where ψ(αt; µ̄k, σ̄
2
k) denotes a Gaussian density

with mean µ̄k and variance σ̄2
k. The local linearization of the nonlinear function

g are produced bu undertaken a first order Taylor series expansion of g around

each µ̄k for k = 1, · · · , K. In particular, we define

bk =
∂g(µ̄k)

∂αt
ak = g(µ̄k)− bkµ̄k (2.20)
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and hence define, conditional on the the mixture indicator, ut, the mixture

component by

pa(αt+1|αt, ut = k) ∼ N (ak + bkαt, Q),

resulting the approximating conditional measurement model given by

pa(yt|αt) =
K∑
k=1

pa(yt|αt, ut = k)pa(ut = k|αt).

Following SMP, a hybrid Gibbs based algorithm is used to simulate from

the posterior distribution of the state variables, p(α0:T |y1:T ). This algorithm is

summarized in the following as Algorithm 8. Note that in Step 3 of of the SMP

algorithm, the mixture indicators are easily sampled owing to the fact that each

ut can take on only a limited number of possible values. Once a vector of state

α0:T is generated from its fill conditional posterior distribution, an additional

step can be taken within MCMC to update the vector of static parameters, φ

given α0:T and y1:T .

An essential aspect required of the SMP approach is that the auxiliary mix-

ture model approximate the underlying nonlinear SSM well. As the state vec-

tor is typically of high dimension, the approximation error could accumulate

rapidly, resulting in an MCMC chain that moves very slowly due to a low MH

acceptance probability. This problem is amplified when the nonlinear function

is unknown, as is the case in Chapter 4. This case also requires an alternative

approach to select the local linearization parameters ak and bk.

2.5 Conclusion

In this chapter, we have reviewed some key elements of Bayesian inference that

are most relevant to the contributions made in this thesis. As is evident by

now, while th posterior distribution is determined by the prior specification

and the form of the likelihood function, its evaluation may rely heavily on a
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Algorithm 8 The SMP algorithm

1: Inputs: y1:T : data observations; G: number of iterations; {µ̄1, µ̄2, · · · , µ̄K}:
a set of grid points; {σ̄1, σ̄2, · · · , σ̄K}, {a1, a2, · · · , aK}, {b1, b2, · · · , bK}: tun-
ning parameters;

2: for i = 1→ G do
3: Generate the mixture indicator variables u1:T from

pa(u1:T |y1:T , α1:T ) ∝
T−1∏
t=0

pa(αt+1|αt, ut)pa(ut|αt);

4: Generate the vector of candidate state variables, α∗0:T from the full con-
ditional posterior distribution under the auxiliary mixture model, via
FFBS,

pa(α0:T |u1:T , y1:T ) ∝ p(α0)
T∏
t=1

p(yt|αt)pa(αt+1|αt, ut)pa(ut|αt);

5: Accept the candidate draw with the Metropolis-Hastings probability

α(α∗0:T , α
(i−1)
0:T )

=1 ∨
T∏
t=0

p(yt|α(i−1)
t )pa(α

(i−1)
t+1 |α

(i−1)
t )

p(yt|α∗t )pa(α∗t+1|α∗t )
×

p(yt|α∗t )pa(α∗t+1|α∗t )
p(yt|α(i−1)

t )pa(α
(i−1)
t+1 |α

(i−1)
t )

;

6: Outputs: A sample of G draws of α0:T jointly from p(α0:T |y1:T , φ).
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computable approach, such as MCMC. The development of an effective and

efficient MCMC algorithm in any given situation – particularly those where

high-dimensional and time-dependent latent variables are involved – requires

care. The building blocks contained in the current chapter underpin the new

methodologies proposed for the more complex models presented in Chapters 4

and 5.
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Chapter 3

The Determinants of Bank Loan

Recovery Rates in Good times

and Bad - New Evidence

In the chapter, we find that factors explaining bank loan recovery rates vary

depending on the state of the economic cycle. Our modeling approach incorpo-

rates a two-state Markov switching mechanism as a proxy for the latent credit

cycle, helping to explain differences in observed recovery rates over time. Using

US bank default loan data from Moody’s Ultimate Recovery Database and cov-

ering the pre-and post-GFC period, this paper develops a dynamic predictive

model for bank loan recovery rates, accommodating the distinctive empirical

features of the recovery rate data while incorporating a large number of pos-

sible determinants. We find that the probability of default and certain loan-

specific and other variables hold different explanatory power with respect to

recovery rates over ‘good’ and ‘bad’ times in the credit cycle, meaning that the

relationship between recovery rates and certain loan characteristics, firm char-

acteristics and the probability of default differs depending on underlying credit

market conditions. Our findings demonstrate the importance of accounting

for countercyclical expected recovery rates when determining capital retention

levels.
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3.1 Introduction

Loan defaults are inevitable events within a bank’s loan book. Credit risk man-

agement processes require banks to accurately model loan default probabilities

and subsequent recovery rates (RRs, hereafter). These models are a key com-

pliance requirement for banks subscribing to the Advanced Internal Ratings

Based (AIRB) models. Furthermore, the latest International Financial Report-

ing Standards on Financial Instruments (IFRS 9) in particular requires entities

to reflect on a default probability based on best available forward looking infor-

mation. An accurate understanding of RR performance over time is critical for

banks, and could potentially result in more efficient use of capital. In this paper,

we study the interaction of borrower characteristics, loan features and macroe-

conomic conditions together with other key criteria with respect to probability

of default (PD, hereafter) and RRs across credit cycles.

Several previous studies have investigated the determinants of RRs. See,

for example, Altman et al. (2005), Acharya, Bharath, and Srinivasan (2007),

Bruche and Gonzalez-Aguado (2010), Khieu, Mullineaux, and Yi (2012) and

Altman and Kalotay (2014). However, the systemically time-varying PD and

RR response to different credit and economic cycles does not appear to have

been captured. Most studies assume a constant association between PD and

RR, potentially leading to an inaccurate assessment of RR risk (Resti, 2002;

and Altman et al., 2005).

In addition, most of the contemporary literature concerning RR determi-

nants does not focus specifically on bank loans. Altman and Kalotay (2014),

using the same set of determinants to study bank loans and corporate bonds,

combine bank loans with corporate bonds, whereas Mora (2015) investigates

corporate bonds only. Bank loans are fundamentally different to other securi-

ties; typically, they are senior to traded corporate debt. Due to the different

repayment hierarchy, this tends to make bank loan RRs higher. Furthermore,
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a bank generally has much greater access to customers’ financial information

than other types of investor, forcing covenant compliance if any financial ra-

tios or loan covenants are breached. Therefore, given their access to non-public

information, banks are more likely to enforce bankruptcy than other key stake-

holders, and hold more power over borrower firms with respect to RRs. Ad-

ditionally, banks may gain access to underlying assets as their fixed/floating

charges allow them to be paid before other creditors.

Khieu, Mullineaux, and Yi (2012) studied bank loans, but do not examine

RRs through the 2007/08 financial crisis and beyond. They also impose para-

metric assumptions/constraints which are embedded within the models they

employ. The limitation of such an approach is that it assumes distributions

for the data that may be quite different from observed RRs. Furthermore, a

quasi-likelihood method is employed. The RRs are modelled using a Bernoulli

likelihood that does not naturally accommodate observed RRs that fit inside

the unit interval. This approach is replicated by Khieu, Mullineaux, and Yi

(2012), who also employ a linear modelling approach where the errors are ef-

fectively assumed to be normal - an assumption contrary to the observed RR

distributions.

In view of the above, this paper develops a dynamic predictive model for

bank loan RRs, allowing for good and bad times. This enables us to ascertain

whether variable relations are constant over time, while accounting for the dis-

tinctive multi-modal shape found in the empirical distribution of the data. We

also account for a range of other relevant factors in a dynamic framework, as

such variables have only previously been considered as RR predictors in static

contexts. Here, however, the predictors are conditional upon the underlying

economic and credit cycle, which in turn we characterize in line with Bruche

and Gonzalez-Aguado (2010) with two distinct states - good and bad.

Utilizing data from Moody’s Ultimate Recovery Database, this study focuses

on defaulted bank loans between 1987 and 2015 in the United States (US).
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In order to manage the latent economic states and the flexible nature of the

empirical RR distribution, a Bayesian inferential methodology is developed,

exploiting the hierarchical structure, along the lines of Kim and Nelson (1999b).

Moreover, due to concerns regarding the large number of available predictors,

and the fact that many of these regressors may be correlated, we incorporate

a LASSO prior for the regression components. The inferential results from the

dynamic model are subsequently compared to the available static versions, with

new insights reported, contributing further to the literature.

Overall, we find more significant loan characteristics during good times.

Conversely, during bad times, only certain collateral determinants are related

to RRs. This finding reinforces the notion that not all of a firm’s assets facilitate

a full loan recovery, with inventory and accounts payable more likely to achieve

such an objective. This has consequences for discounts that banks apply to

assets offered as collateral. The size of the discount should, we argue, not only

depend on the riskiness and liquidity of the assets being offered, but also on the

credit cycle.

The type of recovery process is not directly related to RRs in either cycle,

however, when the time to emerge is considered alongside prepackaged recovery

processes, some interesting results are found. Banks are found to have lower

RRs during a bad cycle when there is no prepackaging. Conversely, recoveries

in a good cycle, result in a higher RR, suggesting banks need to be mindful

of the likely resolution time involved during such processes at the origination

time.

We find RRs are significantly affected by the condition of the economy’s

countercyclicality and the borrowers’ characteristics. Khieu, Mullineaux, and

Yi (2012) report no association; however, as we control for cycles, we find larger

firm size is associated with reduced RRs during bad times and the opposite dur-

ing good times. Our finding highlights the importance of carefully considering

the definition of idiosyncratic risk, particularly the tail risk of the bank loan
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loss distribution. During bad times, banks need to give greater weight to their

tail-risk forecasts, covering any unexpected losses from their large customers by

allocating further economic capital. Once again, such findings have an impact

on IFRS 9 implementation with respect to forward-looking judgments.

Finally, in line with Khieu, Mullineaux, and Yi (2012), we use the all-in-

spread (AIS) measure as our proxy for PD and report a statistically negative

association only during bad cycles. PD and RR have historically been found

to be negatively related. Although several important advances have previously

been made using credit risk modelling techniques, at the individual loan level

the relation between PD and RR has remained an open question. Our study

provides evidence of a negative relationship during bad times only, suggesting

the presence of systemic time variation in this context.

Overall, such findings have a direct impact on a bank’s loan loss distribution,

which is a vital component for determining capital allocation. The default loan

recovery process suggests loan, recovery, borrower, economic and PD features

need to be dynamically managed for banks to optimally allocate capital across

credit cycles. Clearly then, debt recovery is time-varying and the potential risk

of not accurately addressing such variables in the credit risk process will lead

to potentially under- or over-providing for future loan losses.

These findings support the Basel III framework’s recommendations for the

use of countercyclical buffers, creating an environment where the banking sector

is protected from periods of excessive aggregate credit growth. So capital buffers

assist against such a build-up phase and help the banks’ going concern when

RRs underperform. Conversely, during bad times, capital buffers are essential,

as the supply of credit may be curtailed by regulatory capital requirements.

Furthermore, throughout bad times, the banking system may also experience

further unexpected loan losses emanating from lower RRs. This is a major

issue for reporting entitles, as in line with IFRS 9, they are required to provide

forward-looking judgments.
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Therefore, if RRs may be accurately forecasted during different cycles, cap-

ital buffers would be an effective tool to address the countercylicality nature of

the economy, managing the complex environment of absorbing any unexpected

credit losses. This view ensures the banking sector applies appropriate pruden-

tial practices, including maintaining capital requirements and controls for banks

to operate within a bad cycle, but flexible enough to adjust accordingly during

better periods. This has important implications for the pro-cyclicality effects

of credit risk models, particularly the larger banks using an AIRB approach.

The remainder of our paper proceeds as follows. In Section 3.2, we review

the literature determining RRs and the proposed econometric specifications for

the model calibrated with and without the latent credit cycle variable. Section

3 contains a description of the Moody’s dataset used for the empirical analysis.

The Bayesian inferential framework and corresponding MCMC simulation al-

gorithms are then detailed in Section 3.4. This is followed by the results of our

analysis and evaluation of our proposed models and their predictive capability

in Section 3.5. Section 3.7 concludes with a discussion and suggested directions

for future research.

3.2 Literature review

Financial market participants, including bank regulators, are increasingly con-

cerned with the management of risky assets, particularly bank loans. It is crucial

to consider risk factors and market conditions at the time of placing an invest-

ment, but how these factors vary over time is also becoming increasingly viewed

as critically important for making lending decisions. It is of particular impor-

tance to be mindful of the PD and subsequent loan recovery prospects during

different or extreme conditions, as this will be critical to achieving expected

return to finance providers, such as banks. The consequences of not considering

this state- dependent risk can be severe for a bank, and may reach far beyond
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manageable levels, as was demonstrated in the financial crisis of 2008. This pro-

found failure in prudential regulation, and corporate governance, attributable

to poor operational risk management practices (Financial Crisis Inquiry Com-

mission, 2011), underscores the importance of understanding financial risk, and

in particular, credit risk, when pricing corporate loan contracts.

When a corporate borrower defaults, the lender endeavours to recover the

outstanding debt using available collateral and liquidity mechanisms. Default

alone, while not ideal for the borrower in terms of their ability to establish or

maintain a strong credit rating, does not imply that the outstanding balance

of the loan cannot ultimately be fully recovered during the post default period.

In the vast majority of cases, lenders recover their full entitlement. However,

there are many occasions when none or only a part of the outstanding indebted

balance is recovered. Not surprisingly, the projected RR in the event of default

is one of the key inputs when determining the price of any credit-related finan-

cial contract, including the value of the fundamental investment itself. Loss

Given Default (LGD) is defined as one minus the RR, where the RR represents

the proportion of the borrowed funds recovered (referred to as the exposure at

default, or EAD) after the borrower goes into default. Hence, it is important

for lenders to understand the factors that affect the actual RR, so appropriate

decisions, including loan terms, can be made. Further motivation is provided

by regulators, who require financial institutions to show evidence of pruden-

tial planning and modelling, and to ensure regulated capital requirements, as

specified by the Basel III or governmental financial regulators, are maintained.

There are three main variables that determine the credit risk of a credit-

based financial contract: the PD, the RR in the event of default and exposure

at default (EAD), which is the total value to which the lending institution is

exposed. Altman, Resti, and Sironi (2004) points out that while significant

attention has been paid to PD, RR and its apparent inverse relation with PD

has attracted less attention. Notably, the RR is often treated as a constant



Chapter 3. The Determinants of Bank Loan Recovery Rates in Good times

and Bad - New Evidence
57

variable, independent of PD. Existing studies have documented some empirical

irregularities in the observed RR distribution. Schuermann (2004) finds that

the concept of average recovery, a quantity often reported by rating agencies,

is potentially very misleading, as the recovery distribution is restricted to exist

over the unit interval. This restriction implies that the lender cannot lose or

recover more than the outstanding amount at the time of default. Notably,

the observed RR distribution is typically U-shaped, with the largest relative

frequency occurring near or at unity, a non-negligible mass around zero, and

a spread of RRs observed across the interval itself. A flexible nonlinear model

is more appropriate to reflect the relationship of this RR distribution with a

number of loan or firm characteristics.

Additionally, a range of econometric methods have been previously used to

study RRs, including ordinary least squares (OLS), beta regression and a quasi-

maximum likelihood estimation (QMLE) and a fractional regression method-

ology, as explored by Gupton et al. (2002), Acharya, Bharath, and Srinivasan

(2007) and Khieu, Mullineaux, and Yi (2012), respectively. Such analyses pro-

vide further insight into the possible determinants of a loan’s expected RR.

Nevertheless, most approaches have some shortcomings. Notably, standard OLS

ignores the unique distributional aspects of the observed RRs, despite the fact

that the resulting RR values predicted from the model need not be bounded

between zero and one. It also assumes constant marginal effects for each of the

explanatory variables, a feature that is also unlikely given the constrained RR

distribution. Furthermore, while the beta distributions underpinning a beta

regression framework covers some variation of distributional densities over the

unit interval, they cannot simultaneously accommodate a relative frequency

mass in the middle of the unit interval with the relative large frequency masses

observed around zero and one (De Servigny and Renault, 2004). Finally, while

the model underlying the QMLE-based approach accommodates the constraints

of the observed RR values, it does so at the expense of a coherent distribution



Chapter 3. The Determinants of Bank Loan Recovery Rates in Good times

and Bad - New Evidence
58

model, fitting as it does a model for (binary) Bernoulli observations when in

fact the values of RR may also lie inside the zero to one range, with clustering

at 0 or 1.

The unsatisfactory features of the existing parametric approaches in the RR

context have led to the development of more flexible models. Nonparametric

methods have been shown to sometimes outperform their parametric counter-

parts in terms of accommodating non-linear relations between observed RRs

and certain conditioning variables (Qi and Zhao, 2011). However, Bastos (2010)

and Qi and Zhao (2011) find such flexible predictive models are more likely to

over-fit the data and do not tend to work well in predicting future defaulted

loan recoveries. Similarly, regression trees can become overly large and appear

to produce results sensitive to assumed distribution and the dataset used. For

example, Bastos (2010) and Qi and Zhao (2011) report very distinctive trees

based on different datasets.

Modelling the determinants of RRs has shown them to be a function of

individual loan characteristics, firm characteristics or fundamentals, industry

variables, recovery process variables and macroeconomic factors. However, Alt-

man et al. (2005) also demonstrates a negative association between an aggregate

measure of the underlying default rate over a given period and the average RR,

suggesting that changes in the underlying credit environment can also impact

RRs. Hu and Perraudin (2002) observe a similar negative relationship from

data covering the period 1971-2000. In response, Bruche and Gonzalez-Aguado

(2010) define a two-state latent credit cycle variable and suggests that a 99%

credit VaR (the Value at Risk for a portfolio consisting of bank loans and cor-

porate bonds) is underestimated by more than 1.5% of the total outstanding

amount if the credit cycle is omitted. The focus of this current research is to

enhance the understanding of RR for corporate loans, addressing the limitations

of the aforementioned literature. This is achieved by investigating RR in rela-

tion to appropriate firm and loan variables, in a time variant framework that
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allows for different economic circumstances, including major shocks such as the

financial crisis of 2008. We use a less restrictive Bayesian, non-linear approach,

accounting for time variation in the relationship between RR and PD.

3.3 Data from Moody’s Ultimate Recovery

Database (1987- 2015)

We investigate RRs from Moody’s Ultimate Recovery Database over the period

1987 through to 2015. A suitable RR variable is selected, with associate loan re-

covery processes and borrower characteristics extracted from the same dataset.

In addition, we obtain macroeconomic and industry variables, such as a credit

spread variable as a proxy for the PD, to be used as the RR determinants.

The definitions, data sources and features of these determinants are provided

in Section 3.3.1, following information about the RR variable.

3.3.1 Data description

The recovery data and other information about the defaulting firms and instru-

ments are extracted from Moody’s Ultimate Recovery Database, resulting in a

set of 1,611 defaulted bank loans of US firms originated by an array of syndi-

cated lending institutions over the period 1987 through 2015. Consistent with

other empirical studies within the recovery literature (Khieu, Mullineaux, and

Yi, 2012 and Altman and Kalotay, 2014), we use Moody’s Discounted Recovery

Rate variable as the relevant empirical RR measure.

A complete set of loan recovery determinants associated with each of the

observed RRs, as used by Khieu, Mullineaux, and Yi (2012), is also employed.

Broadly speaking, the available determinants address: loan characteristics, re-

covery process, borrower characteristics, as well as macroeconomic, industry
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and PD. The observed determinants relating to borrower characteristics are ob-

tained through manual matching of these firms with Standard & Poor’s Compu-

stat firms based on both CUSIP numbers and also firm names. Definitions for

each of these determinants are provided in Table 3.6. Typically, the defaulted

loans have debt values, at the time of default, of greater than $50 million. This

information, provided in Section 3.3.2, follows discussion of the key features of

the RR data.

3.3.2 Recovery rates and their determinants

The RR variable we use is defined as the nominal settlement recovery amount

discounted back from each settlement instrument’s trading date to the last date

cash was paid on the individual defaulted instrument, using the instrument’s

own effective interest rate. This key recovery measure takes account of the time

value of money for the effective settlement period. The sample here, covering

1987 through 2015, is split between term loans (48%) and revolvers (52%), i.e.,

loans that can be repaid and re-drawn any number of times within a term.

About 7.6% of the recoveries have some type of reorganization plan that share-

holders have approved prior to, or at the time of, the bankruptcy filing.

Frequency plots (histograms) of both the raw RR and its transformed values

(corresponding to (3.3.1)) for the sample period are shown in Figure 3.1. Note

the data concentration on the extreme right boundary of both graphs. While

extreme modes associated with RR values at zero and unity are present, the

mode at zero is almost negligible compared to that associated with full recov-

ery. This feature is in line with the tendency towards left skewness typically

associated with RRs for bank loans Altman and Kalotay (2014). Given that

the observed distribution of the RR is neither symmetric nor unimodal, the use

of the average or median recovery as a single summary measure for the entire

distribution is potentially very misleading. In particular, for this sample the
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average RR is 80.8%, while the median value is 100%, indicating that the dis-

tribution is indeed skewed to the left. It can be seen that both boundaries of the

distribution have attracted concentrations, corresponding to the extremes of no

recovery on the left and full recovery on the right, although the right boundary

behavior dominates.
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Figure 3.1: Histograms of the discounted recovery rates (RR)
(top panel) and of the transformed discounted RRs (y) (bottom

panel), 1987-2015.

Details of each of the RR determinants considered are described in Table

3.6. Additional descriptive statistics for the determinants are provided in Ta-

ble 3.1, along with those for the observed RR data. Overall, the summary

statistics of the RR determinants for the sample period here are similar to

those found in Emery (2007) and Khieu, Mullineaux, and Yi (2012), suggesting

that in aggregate the data here are, by and large, in line with those of ear-

lier studies. Furthermore, as per Khieu, Mullineaux, and Yi (2012), the firm
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Figure 3.2: Number of defaults (top panel) and the RR out-
comes by year (bottom panel), 1987-2015.

characteristics in our baseline analyses are measured one year before default.

In terms of loan characteristics, however, our dataset reports larger average

loan sizes ($224m compared to $142m) than Khieu, Mullineaux, and Yi (2012),

with similar increases in the average term loan size, in the average revolver

value and in the values of loans secured by all assets. With respect to recov-

ery process characteristics, the average length of time a sample firm stays in

default is 13 months with a maximum of 13 years. Most of the firms in the

sample defaulted in a non-prepackaged bankruptcy, whereas 10% went through

prepackaged bankruptcy and 13% had private workouts. Similar to McConnell,

Lease, and Tashjian (1996) and Khieu, Mullineaux, and Yi (2012) the mean

RR for loans with a reorganization plan lie between those for loans resolved in

the traditional bankruptcy and those for loans going through the other forms

of default resolution. With respect to borrower characteristics, the mean and
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median cash flows, relative to total assets for the settlement sample firm, are

16% and 9%, respectively. Figure 3.2 shows the number of defaults and recovery

outcomes over time. More defaults are observed around 1993, 2003 and 2008,

and more low recovery rates are also observed over these years.

3.4 A hierarchical econometric model for bank

loan recovery rates

The starting point for our investigation is to determine the role of a complete

set of recovery determinants, as explored by Khieu, Mullineaux, and Yi (2012).

However in this research we implement a more enhanced and flexible modelling

framework, and also use an extended sample that includes the GFC to ensure the

capture of different economic conditions. The proposed methodology addresses

two key challenges previously identified in the RR modelling literature, namely

that the observed RR distribution has a distinctive (non-Gaussian) shape, and

that when plotted over time the RRs appear to exhibit varying behavior -

possibly owing to differences in the underlying PD. The first issue is addressed

through the use of a finite Gaussian mixture model, first implemented on a

combined loan and bond dataset by Altman and Kalotay (2014). This approach

enables the RR determinants to be stochastically connected to the observed RRs

through a latent predictive regression structure. In addition, to capture cyclical

aspects such as the impact of the GFC, we augment the model structure with

a Markov switching mechanism within the predictive regression model. In this

framework, the regression coefficients depend on the state of the credit cycle,

where the state corresponds to either a ‘credit upturn’ or a ‘credit downturn’ -

i.e. a ‘good’ state or a ‘bad’ one. The coefficient estimates we obtain for each

credit state provide insight into the procyclical effects of RR determinants. To

combine the Gaussian mixture components, the latent predictive regression and
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Markov switching mechanism, a hierarchical model is developed and estimated

using a fully Bayesian inferential approach. The Bayesian approach enables a

flexible hierarchical structure, which is estimated jointly and has the benefit of

the consideration of each model component individually (i.e., marginally) while

accounting for the uncertainty present in the remaining components.

Before detailing the form of the hierarchical model, also known as a ‘state

space’ model, and describing the associated Bayesian inferential framework,

following Altman and Kalotay (2014) we transform the observed RRs from

the unit interval to the real line via the inverse of the cumulative distribution

function (cdf) associated with the standard normal distribution, denoted by

Φ−1(·). Specifically, if RRi denotes the observed (appropriately discounted) RR

value associated with defaulted loan i, we obtain the transformed RR value,

denoted by yi and given by

yi = Φ−1(RR∗i ) (3.1)

where

RR∗i =


ε if RRi = 0

RRi if 0 < RRi < 1

1− ε if RRi = 1,

for i = 1, 2, . . . , n. As is typical, before transformation is undertaken, the values

of RRi at zero are replaced with a small positive value, ε, and values at unity

are replace with 1−ε, so that the yi values are all finite.1 It is the distribution of

these yi values that we model. Note that positive yi values result whenever the

original RRi > 0.5. We now turn to the hierarchical model specification and the

Bayesian inferential framework used to estimate it. Section 3.4.1 first details

the Gaussian mixture model where membership to each mixture component is

1We use ε = 1×10−8 since Altman and Kalotay (2014) find mixture model is not sensitive
to the choice of ε.
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predicted by a latent regression on RR determinants. The regression coefficients

here are shown in their static form, without the Markov switching component,

which is described later in Section 3.4.2. Section 3.4.3 then summarizes a com-

putational strategy suitable for Bayesian inference to be conducted for the full

dynamic model. Details regarding the algorithms required and implementation

of the computational strategy are given in Section B of the Appendix.

3.4.1 A mixture model from recovery rate determinants

Having transformed each original RR observation, yi is then treated as arising

from one of J distinct Gaussian distributions, with the jth distribution having

mean and variance denoted by µj and σ2
j , with µ1 < µ2 < · · · < µJ . From the

investor’s perspective, recovery outcomes from a mixture component having

a larger mean will be preferred, e.g. the J th mixture component is preferred

over the (J − 1)st, etcetera, with the first component being least desired, and

therefore the ordering is imposed to retain the ability to interpret each of the

categories.

Next, the connection between the mixture components and the RR deter-

minants occurs through a latent ordered probit regression framework (Albert

and Chib, 1993), which permits a range of explanatory variables, including

loan, borrower, recovery process and macroeconomic or industry conditions,

to characterize the probability of yi being in component j of the Gaussian

mixture. In particular, the determinants associated with loan i, denoted by

x1,i, x2,i, . . . , xK,i, are related to a latent variable zi through the regression equa-

tion

zi = β0 + β1x1,i + · · ·+ βKxK,i + εi, (3.2)

with εi ∼ N(0, 1). The latent (unobserved) zi is referred to as a predictive

score for defaulted loan i, while the vector β = (β0, β1, . . . , βK)′ contains the
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regression coefficients that describe the marginal impact of each of the determi-

nants on this predictive score. The predictive score for loan i in (3.2) relates to

each of the J Gaussian mixture components via a set of so-called ‘cut-points’,

c = (c0, · · · , cJ), with c0 = −∞, c1 = 0, cJ = +∞, so that when in fact

loan i belongs to group j, the jth mixture probability may be calculated as

Pr(cj−1 < zi ≤ cj). Although the values of c0, c1 and cJ are fixed for identifica-

tion purposes (see again Albert and Chib (1993)) the locations of the remaining

cut-points (here c2 and cJ−1) are treated as unknowns to be estimated. The

values of µj and σ2
j are also estimated, essentially being determined by those yi

that are predicted by the regression to fall in category j.

Up to this point, the approach used here largely follows that of Altman and

Kalotay (2014), apart from our use of a wider set of determinants as discussed

in Appendix A. However, as described in the next section, we introduce an

additional Markov switching component to the framework, so that the impact

of the RR determinants is able to vary with the credit environment, whether

good or bad, at the time of default. We also introduce a prior for β, associated

with the LASSO and discussed in Section 3.4.3.

3.4.2 The credit cycle

To incorporate the notion of an underlying dynamic credit cycle, a two-state

Markov switching component is added to the mixture model with latent pre-

dictive regression framework outlined in Section 3.4.1. This binary credit cycle

state variable for time (year) t is denoted by St, and takes on either the value

of zero or one, depending on the underlying credit environment prevalent at

the time of default.2 The credit cycle states are normalized so that St = 0

corresponds to a low recovery period (a downturn, or ‘bad’ credit state), while

St = 1 corresponds to a high recovery period (an upturn, or ‘good’ credit state).

Transition to each credit cycle state at time t from a relevant state one period

2In this study, t = 1 corresponds to 1987, the first year of the available sample period.
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earlier, time t− 1, is governed by the probabilities

Pr(St = 0|St−1 = 0) = p

Pr(St = 1|St−1 = 0) = 1− p

Pr(St = 1|St−1 = 1) = q

Pr(St = 0|St−1 = 1) = 1− q.

(3.3)

According to the transition probabilities in (3.3), if the credit cycle at time

t − 1 is in a low recovery state (i.e St−1 = 0), then the chance of remaining in

this ‘bad’ state at time t equal to p, with 0 < p < 1, while the chance of moving

to the ‘good’ recovery state (i.e.with St = 1) is equal to 1 − p. On the other

hand, if St−1 = 1, then the chance of remaining in the ‘good’ recovery state at

time t is equal to q, with 0 < q < 1, and the chance of moving to the ‘bad’

recovery state at time t is given by 1− q.

Using the Markov switching device, two sets of regression coefficients are

obtained for the recovery determinants: β0 = (β0,0, β1,0, . . . , βK,0)′ relating to

the predictive scores in credit cycle downturns, and β1 = (β0,1, . . . , βK,1)′ appli-

cable during credit cycle upturns. To link the latent credit cycle states to the

available data, let ti denote the time associated with the default of loan i, so

that Sti indicates the relevant state of the credit cycle at the time of default of

loan i. The predictive regression coefficient vector β0 will apply for predicting

zi if Sti = 0, whereas the vector β1 will apply for predicting zi if Sti = 1. Hence,

by adding the Markov switching component, the regression coefficients in (3.2)

become state dependent, and the predictive regression for loan i becomes

zi = β0,Sti
+ β1,Sti

x1,i + · · ·+ βK,StixK,i + εi, (3.4)

where again εi
iid∼ N (0, 1), for i = 1, 2, . . . , n. Now that the regression coeffi-

cients in the predictive regression are state dependent, the estimated values of
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the vectors β1 and β0 will provide insight into the differentiated impact of RR

determinants in ‘good’ times and ‘bad’.

3.4.3 Bayesian inference

Like Altman and Kalotay (2014), we take a Bayesian approach when estimating

the proposed model, an approach that offers several advantages over the perhaps

more familiar frequentist strategy. The outcome of any Bayesian inferential

procedure is a full joint probability distribution for all unknowns, including both

parameters and latent variables. This outcome distribution, referred to the joint

posterior distribution, characterizes all that is known about the parameters, and

the credit states, prediction scores and Gaussian mixture allocations for each

loan. From this joint posterior, the corresponding marginal distribution for

any individual parameter or state variable (or indeed any subset of these) will

automatically and coherently account for uncertainty in the remaining unknown

variables. This is of particular importance when working with a hierarchical

model, such as the one we advocate here.

An added advantage of using a hierarchical model within a Bayesian frame-

work is that computation to produce the posterior can be undertaken efficiently

using MCMC techniques. Details of this computation is provided in Appendix

3.7. As a further advantage, Bayesian inference yields a finite sample analysis,

conditioning only on the available data, whereas a corresponding Frequentist

inferential method would typically require assumptions about the behavior of

estimators as the sample size increases without bound. This is important in em-

pirical applications, such as the one undertaken here, where the number of RR

observations are limited relative to the number of unknowns being estimated.

Prior distribution incorporating the Bayesian LASSO

We conservatively adopt a relatively non-informative prior distribution with a

priori independence assumed between µ = (µ1, µ2, . . . , µJ)′, σ2 = (σ2
1, σ

2
2, . . . , σ

2
J)′,
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c, β0,β1, p and q. Apart from the prior specified for the state-dependent predic-

tive regression coefficients, β0 and β1 discussed below, the prior components are

chosen from the appropriate conditionally conjugate family, thereby enabling

fast computation of the posterior distribution via MCMC.

For the predictive regression vectors, β0 and β1, we introduce the use of the

Bayesian LASSO prior of Park and Casella (2008). As is now widely recognized

the LASSO encourages a sparse regression model by down-weighting certain co-

variates when a large number of regression terms are used (Nazemi and Fabozzi

(2018)), as is the case here. Effectively, the LASSO will reduce the size of the

estimated regression coefficients to account for correlation

(multi-collinearity) or other dependence between the available recovery deter-

minants, favouring putting weight on regressors whose association with the

response variable (here the latent predictive scores z = (z1, z2, . . . , zn)) can be

estimated with relative certainty. In this way, predictive information shared

by different determinants is not ‘double counted’ when fitting the model. The

Bayesian LASSO achieves this reduction, or shrinkage, through the choice of

the prior distribution for β0 and β1. This prior distribution for each regression

vector in the dynamic credit cycle context relies critically on certain additional

so-called shrinkage parameters, denoted by λ2
0 and λ2

1, respectively, with a single

shrinkage parameter, denoted by λ2 used for the static latent regression model.

These shrinkage parameters are included as unknowns, and are also estimated

here within the Bayesian framework.

We note that many existing studies have considered the predictive perfor-

mance for RRs. For instance, Altman and Kalotay (2014) investigate the pre-

dictive performance of different models using a set of variables for debt seniority,

collateralization and industry classification. In the Bayesian paradigm, Barbieri

and Berger (2004) point out that a model with highest posterior probability is

not necessarily optimal for prediction, instead, optimal predictive models are

‘median probability models’.
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3.5 Empirical results

The results reported in this section are based on two implementations of the

model described in Section 3.4, namely the static version, corresponding to Sec-

tion 3.4.2 where the predictive regression coefficient variables are assumed to

be constant over the entire sample period, and the dynamic version described

in Section 3.4.3, where the latent time-varying credit cycle is included. The

LASSO priors are used in both cases. Note that the where the term estimate

is used it will generally refer to the posterior mean of the posterior distribution

for the relevant quantity. Uncertainty in such an estimate will be indicated by

a 95% so-called highest posterior density (HPD) interval taken as the short-

est single interval associated with 95% marginal posterior probability. These

Bayesian point and interval estimates are used to summarize the marginal pos-

terior distributions, and are obtained from the MCMC output based on 100,000

MCMC draws retained following a 5,000 burn-in period.

3.5.1 Recovery mixture components

As alluded to in Section 3.3.1, given RR observations are clustered at zero (zero

recovery) and one (full recovery), following Altman and Kalotay (2014), we ap-

ply a J = 4 Gaussian mixture model to transformed RRs. Table 3.2 provides

details of the features of the estimated Gaussian mixture components that re-

sult from each of the two models fitted to the dataset considered. For each case,

the estimated mean and standard deviation parameters for each Gaussian com-

ponent are provided, along with its corresponding mixture weight and median

RR. The estimated components labeled 1 and 4 effectively concentrate, with

the same relative proportions for both the dynamic and static specifications, on

point masses corresponding to RR values at zero and one, respectively. This

fact confirms that the mixture specification accommodates the corresponding

observed concentrations at the extremes found in the empirical RR distribution.
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However, the two interior mixture components (labeled 2 and 3) show differ-

ences across these attributes, notably in the third mixture component. As the

two models correspond to different latent predictive regression structures - one

static (i.e. without imposing the Markov switching credit states) and the other

dynamic - two separate estimation results are shown. The mean parameter for

the jth component, µj, and the corresponding standard deviation, σ2
j , is de-

termined by observed RRs with predictive regressions correspond to outcomes

that fall in mixture component j.

3.5.2 The latent credit cycle

The latent Markov switching states are introduced into the dynamic model to

characterize the time-series variation in the observed RRs. Estimates of q, the

probability of remaining in a good credit state, from one year to the next, and p,

the probability of the economy remaining in a bad credit state, are given in Table

3.3, with the corresponding estimated steady state (or long-run) probabilities

being 61% and 39% for the ‘good’ and ‘bad’ states, respectively, as indicated by

the final row of Table 3.3. A line graph of the estimated probabilities for being

in the good credit cycle state during each specific year during the given sample

period is overlaid on a plot of RR outcomes in Figure 3.3, with the shaded bars

shown in the figure indicating the sample proportion of fully recovered RRs

reported in each calendar year. Interestingly, the troughs that appear in the

estimated credit cycle reflect the well known economic downturns, namely, the

early stage of the 1997 Asia financial crisis, the burst of US dot-com bubble

in 2002 and global financial crisis (GFC) in 2008-2009. The indicated credit

downturn corresponding to 1994-1995 may bear some connection to the Mexican

peso crisis and its impact on the North American Free Trade Agreement.

To demonstrate the importance of allowing for temporal variation in eco-

nomic conditions, we contrast the inferential results from the dynamic and static
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Figure 3.3: RRs (·) plotted over the 1987-2015 period and
aligned by calender year, with the estimated probability of be-
ing in a ‘good’ credit state (dashed line), implied by the dynamic
model, given by the superimposed line graph. Shaded area repre-
sents the percentage of full recovery in each corresponding year.

Bayesian models. As discussed in Section 4, the models are developed using a

Bayesian LASSO to control for multi-collinearity arising from competing and

highly correlated RR determinants. Figures 3.4 and 3.5 illustrate the signifi-

cance of each of the variables after applying the Bayesian LASSO, with Figure

3.4 showing the significance of parameters in the static model, and Figure 3.5

showing those for the dynamic case, with the top panel of the latter figure

corresponding to significance for the bad’ credit state and the lower panel cor-

responding to the significance of determinants under the ‘good’ credit state.

In all cases, interval estimates for variables that cross the vertical axis at zero

indicate a lack of (marginal) significance for that variable in the relevant model.
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Pr(St|St−1)
St = 0 St = 1

St−1 = 0
0.53 0.47

(0.24,0.83) (0.17,0.76)

St−1 = 1
0.67 0.33

(0.40,0.88) (0.12,0.60)

Steady state: Pr(St = 1)
0.61

(0.38,0.83)

Table 3.3: Estimated posterior mean and 95% HDP (in paren-
thesis) for each possible transition probability associated with a
one period transition from credit state St−1, shown by row in the
first column, to a new credit state St, shown by corresponding
entry in columns 2 and 3. The final row provides the estimated
overall long-run probability of being in the ‘good’ credit state

Pr(St = 1) resulting from the dynamic model.
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Figure 3.4: Static model: Posterior mean estimates (◦)
of individual βk coefficients, for variable k = 1, 2, ...,K =
20, with corresponding 95% HPDs indicated by the vertical
bars. The variables are: (1) LOANSIZE, (2) LOANTYPE,
(3) LOANTYPE × FIRMSIZE, (4) ALLASSETCOLL, (5)
INVENTRECIVECOLL, (6) OTHERCOLL, (7) PREPACK,
(8) RESTRUCTURE, (9) OTHERDEFAULT, (10) TIMETOE-
MERGE, (11) TIMETOEMERGE2, (12) PREPACK × TIME-
TOEMERGE, (13) FIRMSIZE, (14) FIRMPPE, (15) FIRMCF,
(16) FIRMLEV, (17) EVERDEFAULTED, (18) INDUSTRESS,

(19) GDP, (20) AIS.
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Figure 3.5: Dynamic model: Posterior mean estimates (◦) of β0,k (top panel) and
β1,k (bottom panel), for variable k = 1, 2, ...,K = 20, along with corresponding 95%
credible intervals indicated by the vertical bars. The variables are: (1) LOANSIZE,
(2) LOANTYPE, (3) LOANTYPE × FIRMSIZE, (4) ALLASSETCOLL, (5) INVEN-
TRECIVECOLL, (6) OTHERCOLL, (7) PREPACK, (8) RESTRUCTURE, (9) OTH-
ERDEFAULT, (10) TIMETOEMERGE, (11) TIMETOEMERGE2, (12) PREPACK ×
TIMETOEMERGE, (13) FIRMSIZE, (14) FIRMPPE, (15) FIRMCF, (16) FIRMLEV,

(17) EVERDEFAULTED, (18) INDUSTRESS, (19) GDP, (20) AIS.
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3.5.3 The predictive regressions

In Table 3.4 we report an alternative summary of these predictive regression

estimation results, again for each of the static and dynamic models, in this case

showing the sign only of the significant coefficients along with those obtained

previously in Khieu, Mullineaux, and Yi (2012). In column two, we report

the signs of the significant RR determinants identified in column one under

our static model resulting from the Bayesian approach and corresponding to

data from 1987-2015. Columns three and four of Table 3.4 report the sign of

significant RR determinants under the Bayesian dynamic model, with β0 corre-

sponding to the bad credit state (i.e. when St = 0) and with β1 corresponding

to the good credit states (i.e. when St = 1). For comparative purposes, the sign

of the significant coefficients of these determinants corresponding to Frequen-

tist inference using OLS and QMLE methodologies, and relating to data from

1997-2007 (as reported in Khieu, Mullineaux, and Yi (2012)), are provided in

columns five and six. This is done to illustrate the contribution made by static

vs. dynamic versions, and the need to allow for variation in the impact of RR

determinants under different credit conditions. The reported models are more

parsimonious relative to the existing literature due to our use of a LASSO,

though both are consistent overall regarding the relevance of RR determinants.

While the numerical values of the estimated Frequentist and Bayesian coeffi-

cients themselves are not directly comparable, we can compare their statistical

significance and their sign.
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We note that only three loan characteristic determinants appear to be im-

portant for explaining RRs in bad times, whereas there is evidence that six are

relevant during good times. We note that, like the OLS and QMLE results of

Khieu, Mullineaux, and Yi (2012), the LOANSIZE determinant does not appear

significant in the Bayesian static model. However once the credit cycle is incor-

porated this determinant does appear to be important.3 In the case of recovery

process and borrower characteristics, we find that a lesser number of variables

are important in bad times and a greater number in good times. Also, and im-

portantly, the relationships for some variables change from negative to positive.

Finally, and consistent with Khieu, Mullineaux, and Yi (2012), the Bayesian

posterior distribution for the static model shows no relation between RR and

the PD measured by AIS. However, when we allow for different economic con-

ditions, a negative relationship is indeed found between PD and RR, but only

during bad times. This finding has clear implications for countercyclical capital

allocations in operational risk modelling.

We now examine these variables more closely using our dynamic model. Ta-

ble 3.5 reports fully detailed numerical summaries of the static and dynamic

model Bayesian posterior distributions. The results for each type of RR deter-

minant grouping are discussed in detail over the next several subsections.

In line with Dermine and De Carvalho (2006), we find loan size to be neg-

atively associated with RRs. Irrespective of being in a good or bad cycle,

from a bank’s perspective, the larger the loan amount, the less likely the bank

will be able to recover subsequent to default. Larger loans are generally orga-

nized around a syndicate banking arrangement; hence, as more providers are

involved, lower RRs are realized once they enter foreclosure. This finding is con-

trary to those of Acharya, Bharath, and Srinivasan (2007), as banks granting

3Although significant in both ‘good’ and ‘bad’ states, the magnitude of the estimated
marginal impact under the ‘good’ state is relatively small.
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larger loans are meant to have less asymmetric information and more bargain-

ing power during the bankruptcy process. However, it seems that as loan sizes

increase and default occurs during a downturn, banks are less likely to recover

their outstanding debts.

Loan type is not useful to explain RR levels in bad times, irrespective of

whether the credit granted is a term loan or a revolver. During an upturn,

however they can contribute to explaining RRs with respect to revolver loans.

Khieu, Mullineaux, and Yi (2012) find a similar significant relationship and

argue that since revolvers typically have a shorter duration and are therefore

reviewed more often, banks are able to reassess their clients’ credit profiles and

seek further collateral if necessary.

The literature emphasizes the importance of collateral with respect to higher

RRs emanating from secured loans where more secured loans imply higher RRs

(Altman and Kishore, 1996; Araten, Jacobs, and Varshney, 2004; and Castle

and Keisman, 1999). Our study contributes to the literature by showing that

during good times, we report similar results to those of Khieu, Mullineaux, and

Yi (2012), i.e., a significant positive relation between the RR and total assets

used as collateral. While during bad times this association is not significant,

our dynamic model also shows that assets such as inventory, receivables and

other more liquid assets do appear to be important for recovering a higher RR

across both credit cycle states, particularly during bad times.

Recovery process characteristics

The existence of pre-arranged recovery processes for bankruptcy and out-of-

court restructuring in the event of default-triggered failure is examined. Pre-

packaged processes do not have a significant relationship with RRs subsequent

to default in either good or bad times. Although this finding is in line with

those of Khieu, Mullineaux, and Yi (2012), we note that the literature finds

companies that pre-package appear to be more financially sound (Ryan (2008)).
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With respect to distressed exchanges, it transpires that firms undertaking pre-

packaging are normally more solvent at the time of re-organization than are

bankrupt firms (Franks and Torous (1994)).

While none of our static results support associations between any recov-

ery process RR characteristics, the dynamic model results do indicate that

TIMETOEMERGE, is negatively related to the ultimate RR, with banks less

likely to recover when they engage further in bankruptcy proceedings. Owing

to the magnitude of the estimated coefficient for this variable and that of its

squared value, TIMETOEMERGE2, it appears this relationship becomes more

relevant during bad times. Furthermore, the dynamic model also finds that the

constructed determinant given by PRE-PACK × TIMETOEMERGE, is also

important for explaining RR outcomes irrespective of the state of credit cycle.

However, the quadratic term for time to emerge, representing the nonlinear-

ity between TIMETOEMERGE and RR, has a significant impact on recovery

outcomes only in downturns. This finding is different from that observed in

bond studies such as Covitz, Han, and Wilson (2006).

Borrower characteristics

The literature is not definitive on whether firm size impacts RRs. Large firms

may signal higher bankruptcy costs, resulting in lower RRs. Conversely, larger

firms are expected to present less information asymmetry problems to credi-

tors, hence facilitating any restructuring process and improving recoveries from

lenders. As per Khieu, Mullineaux, and Yi (2012), we do not find a significant

relation between firm size and RRs with the static model. However, our dy-

namic model reveals a significant negative (positive) relation with RRs and firm

size during bad (good) times. During bad times, the larger the firm, the greater

the negative impact on RRs. In good times, this is reversed; larger firms are

associated with greater RRs. This could be a sign of loan mispricing: recover-

able assets are being over-valued prior to bankruptcy in bad times. Conversely,
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during good times, these asset values are more likely realizable and consistent

with higher RRs.

The level of a firm’s tangible assets, namely property, plant and equipment

(FIRMPPE), is thought to be positively related to the RR (Acharya, Bharath,

and Srinivasan, 2007), that is, banks are more likely to recover outstanding loans

when firms report tangible assets on their balance sheet. We find likewise, but

only relating to bad times. (We note that Acharya, Bharath, and Srinivasan

(2007) include bonds that are generally unsecured, in their sample.) We also

find that firm cash flow and leverage are not significantly related to RRs. Unlike

Khieu, Mullineaux, and Yi (2012), as our dataset excludes bonds and focuses

only on loans (which are likely to be secured by tangible assets), this contrast is

not surprising. Finally, consistent with the literature, we find that prior defaults

as indicated by the variable EVERDEFAULTED are significant and positively

related to RRs in both good and bad times.

Macroeconomic & Industry conditions

We find no significant relation between GDP and RRs, however this is due to

the fact that we control for the underlying economic conditions, which coincides

with the credit cycle (see Figure 3.3 and the discussion in Section 3.5.2). We

do, however, obtain a significant negative relation between industry distress

(measured by stock returns, via the INDDISTRESS variable) and RRs in bad

times.

Probability of default

The AIS is used to measure the PD, following Khieu, Mullineaux, and Yi (2012).

The literature suggests a negative relationship between the PD and the RR.

Both Hu and Perraudin (2002) and Altman et al. (2005) report a negative as-

sociation, although the former uses bond default data. Khieu, Mullineaux, and

Yi (2012) report no relationship between the PD and the RR. We find that PD
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is significantly negatively related to RR, but only in bad times, arguably consis-

tent with banks being less likely to recover under an increased PD during bad

times. This finding is partially consistent with Altman et al. (2005), although

the study does not distinguish between good and bad times.

3.6 Model evaluation and further investigations

We evaluate the performance of the proposed model against several benchmarks

using a formal Bayesian approach in this section. Specifically, we compare

the cumulative log-predictive Bayes factor (see, for example, Berger, 2013) for

the proposed model and the mixture model proposed by Altman and Kalotay

(2014). Let p(yt|yt−1,MA,θA) denote the parametric conditional density for

yt given the history yt−1 and prediction model MA as well as the modeling

parameters θA, where yt consists of all recovery data defaulted in year t. Then,

the marginal likelihood can be written as

p(yt|yt−1,MA) =

∫
p(yt|yt−1,MA,θA)p(θA|yt−1,MA)dθA

where p(θA|yt−1,MA) is the posterior density. Accordingly, the Bayes factor

for comparingMA against the alternative,MB, can be computed using all the

data by

BF =
p(y1:T |MA)

p(y1:T |MB)
.

However, given the hierarchical structure and the complexity of the model,

the marginal likelihood is not available in closed form. Since we have used

Gibbs-based MCMC method to evaluate the posterior densities for all modeling

parameters, the method described in Chib (1995) is suitable for computing the

marginal likelihood for the proposed model. An estimate of the marginal density
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can be obtained using the following decomposition, on the logarithm scale,

ln p̂(yt|yt−1) = ln p(yt|yt−1,θ
∗)− ln p(θ∗)− ln p̂(θ∗|yt−1) (3.5)

where we suppressed the explicit dependence on the model. We further decom-

pose the last term in (3.5) as

ln p̂(θ∗|yt−1) = ln p̂(λ∗0|yt−1) + ln p̂(λ∗1|yt−1) + ln p̂(β∗0 |λ∗0,yt−1) + ln p̂(β∗1 |λ∗1,yt−1)

+ ln p̂(c∗|β∗0 , λ∗0, β∗1 , λ∗1,yt−1) + ln p̂(p∗, q∗|yt−1) + ln p̂(σ2∗|yt−1)

+ ln p̂(µ∗|σ2∗,yt−1).

To obtain each of the estimates, the Gibbs sampler need to be run for multiple

times with some parameters fixed. We first estimate

p(β∗0 |λ∗0,yt−1) and p(β∗1 |λ∗1,yt−1)

as

G−1
∑

(p(β∗1 |λ∗1, τ
(j)
1 ,S(j), z(j), z∗(j), µ(j), σ2(j),yt−1))

and G−1
∑

(p(β∗0 |λ∗0, τ
(j)
0 ,S(j), z(j), z∗(j), µ(j), σ2(j),yt−1))

respectively, where {τ0, τ1, β0, β1, z, z
∗, µ, σ2,S} are obtained by continuing the

Gibbs sampler with fixing λ0 = λ∗0 and λ1 = λ∗1. Then, additional G iterations

are used in a similar strategy to obtain an estimate for each of p(c∗|β∗0 , λ∗0, β∗1 , λ∗1,yt−1),

p(p∗, q∗|yt−1), p(σ2∗|yt−1) and p(µ∗|σ2∗,yt−1).

We plot the cumulative log-predictive Bayes factors from 1987 to 2015 for

the dynamic mixture model by using the static model as the benchmark in

Figure 3.6. The line indicates the difference between the dynamic model and

the static model. At the end of the sample period, the calculated log marginal

likelihood values are −3376.27 and −3409.86 for the dynamic model and the
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static model respectively. The figure shows that the dynamic model gains in

predictive power over time compared to the benchmark mixture model because

it incorporates time dynamics, especially during the market downturn. For

instance, at the financial crisis in 2009, we observe a jump-up in the line at that

period indicating the value of regime switching in density forecasts.

0

10

20

30

40

1990 1995 2000 2005 2010 2015
year

Figure 3.6: Difference in cumulative log-predictive likelihoods
of the dynamic model against the static model.

3.7 Discussion and conclusion

Using US bank default loan data from Moody’s Ultimate Recovery Database

and covering the pre- and post-GFC period, this paper develops a dynamic

predictive model for bank loan RRs, accommodating the distinctive features

of the empirical RR distribution and incorporating a large number of possible

determinants. Furthermore, some of the factors that are analyzed and reported

in the literature have been overlooked as insignificant, due to the static model

approach, which does not control for the different states of the economy. Our

temporal conditioning in a hierarchical framework allows us to discriminate be-

tween good and bad states of the credit cycle. Thus, this paper contributes to

the literature in different ways. The methodological approach used is Bayesian

in nature and therefore is able to handle the hierarchical specification that is
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built to explain the complex relationship between PD, determinants and the em-

pirical distribution of RRs. It is the first paper to incorporate time-series vari-

ation into the probabilistic modelling of bank loan RRs, proposing a Bayesian

hierarchical framework that enables inference of a latent credit cycle. We also

introduce the use of a LASSO prior to encourage the most relevant RR deter-

minants to be found, despite potentially confounding evidence of correlation

between observed RR determinants.

We find that some loan characteristics such as those using specific types of

collateral hold different explanatory power in good times and bad. We find that

certain recovery process variables, such as the length of time between default

and resolution for loans with pre-packaged recoveries, differ in their importance

in relation to RRs, depending on the state of the credit cycle, in this case being

negatively related to RR in bad times while being positively related in good

times. Only a few borrower characteristics and industry conditions appear to

be relevant across the cycle. The defaulting firm’s size and asset tangibility

can imply different relationships with RRs depending on conditions. Finally,

by allowing for variation in the level of PD, on top of the latent dynamic cycle

states, we find a negative relationship with RR but one that is only significant

during credit downturns.

Our results illustrate the importance of utilizing dynamic models that allow

for time-varying conditions, as there is significant variation in the explanatory

power of the variables analyzed depending on these conditions, yielding new

insights previously unavailable from the established literature. Taking the case

of PD, no relation between RR and PD is reported, yet under our dynamic

model we find it is significantly and negatively related to RR during bad times.

This variation in significance in variables across good and bad times occurs in

several of our variables, supporting the need for a dynamic approach.

Our results also yield significant implications for the banking sector, no-

tably providing empirical support for the latest addition to the Basel framework
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concerning the importance of activating countercyclical capital buffers during

economic downturns. Applying such a buffer would not only enable banks to

absorb increased losses but would also assist in achieving the broad macro-

prudential goals of protecting the banking sector in periods of excess aggregate

credit growth, and from the build-up of system-wide risk.

The notion that RR is driven by a systemic risk component that becomes

more pronounced during bad times is evident from the results reported in our

dynamic model. Loan size and type are also critical features, especially during

bad times. Such features need to be priced within the cost of financing, as some

banks are less likely to recover when the economy is entering a downturn. These

important differential impacts, during bad and good times, suggests that RRs

have a large element of systemic risk that needs to be factored in during the

pricing of loan finance contracts. As RRs are an integral part of credit risk, this

aspect should attract an additional risk premium allowing for a differentiated

credit risk exposure. Under the new regime, banks are required to provide more

timely and forward-looking information. It is no longer necessary for a credit

event to have occurred before a credit loss is recognized. The paradigm shift

is in being cognizant of the credit cycle and to update the bank’s loan loss

provision in line with their recovery rate expectations.

In summary, we find several variables are important for explaining RRs, de-

pending on the state of the credit cycle. This has major implications for the

countercyclicality of regulatory capital and operational risk management. The

potential risk of not addressing such factors will result in either underestimat-

ing the relevant credit risk, or overestimating it. Both of these eventualities

could potentially result in negative consequences, such as more expensive loans.

This in turn would result in desirable customers leaving to access financing at

cheaper rates from alternative institutions more effective in correctly pricing

loans through the procyclical process.
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Appendix A: The definitions of the recovery rate

determinants

Table 3.6 details each of the twenty RR determinants considered in this paper,

with the name of the determinant given in the first columns and the corre-

sponding definition given in the second column. The determinants are clustered

according broad type (loan characteristics, recovery process characteristics, bor-

rower characteristics, macroeconomic and industry condition determinants and

the probability of default) and each given a unique determinant number (in

parentheses preceeding the name) that is used throughout the paper.
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Appendix B: Implementation details for Bayesian

analysis

The model detailed in Section 3.4 provides a characterization of the distribution

of the observed RRs via a predictive regression of the RR mixture component

on a large collection of RR determinants, with the regression coefficients in turn

dependent upon the current state of an underlying credit cycle state variable. In

the static regression setting, calculation of the posterior distribution via MCMC

follows the approach of Altman and Kalotay (2014), who in turn rely upon the

methodology details provided in Albert and Chib (1993). Our implementation

here is similar, including in the dynamic case where we include the additional

hierarchical layer containing the Markov switching variables, except for the

use of the alternative LASSO prior specification on the latent RR regression

parameter coefficient vector(s).

Appendix B1: Likelihood function

The relevant likelihood for Bayesian analysis is the joint probability density

function (pdf) of the complete set of measurements, denoted by y = (y1, y2, . . . , yn),

together with the latent Markov switching state variables, S = (S1, S2, . . . , ST ),

all conditional upon the collection of parameters, (µ,σ2,β0,β1). Unfortu-

nately, even if the sequence of latent credit state variables, S, were known,

calculation of the likelihood function is not available in closed form, and con-

sequently the Bayesian posterior is also not available. However, owing to the

relationship between the Gaussian mixture model for each yi, the cut-points c

and the latent predictive regression in (3.2), we can express the joint pdf of y
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and z conditional on S, given by the product of

p(y, z, z∗|S,ψ,x) ∝
n∏
i=1

J∏
j=1

1

σj
φ(
yi − µj
σj

)

× I(cj−1 < zi ≤ cj)× I(z∗i = j)

× φ(zi − x′i((1− Sti)β0 + Stiβ1)), (3.6)

where φ(· · · ) denotes the pdf of the standard normal distribution, I(·) is the

indicator function so that I(A) = 1 if event A is true and is equal to zero

otherwise, ψ = (µ,σ2,β0,β1, c), and the joint pdf of the Markov switching

states S, given by

p(S|ψ) = p(S1|p, q)
T∏
t=2

p(St|S1:t−1, p, q), (3.7)

where p(St|S1:t−1, p, q) is given in (3.3), and p(S1|p, q) arising from the long-run

marginal probability given by

S1|p, q ∼ Bernoulli((1− p)/(2− p− q)). (3.8)

The likelihood function is then the product of (3.6) and (3.7). Note that the

factors in these equations are expressed conditionally given the parameters

(ψ, p, q) and also given the regression covariates x = [x1,x2, . . . ,xK ], where

xk = (xk,1, xk,2, . . . , xk,n)′.

Appendix B2: Priors

To complete a fully Bayesian analysis, we must put a (joint) prior distribution

over the unknown parameters. We take these priors to be relatively diffuse, so

that the data will dominate the analysis. Specifically, the prior mean µj and

variance σ2
j for the jth mixture component of the RR distribution are taken as

independent normal (N) and inverse gamma (IG) distributions, with
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• µj
ind∼ N(µ̄j , V̄µ,j), where µ̄j = 0 and V̄µ,j = 100 for j = 1, · · · , J , and

• σ2
j
ind∼ IG(āj , b̄j), where āj = 3 and b̄j = 1 denote the scale and shape

parameters, respectively, for j = 1, · · · , J .

To avoid the well known label switching problems in the finite mixture model, we

impose the same identification restrictions, µ1 < · · · < µJ , as in Koop, Poirier,

and Tobias (2007).4 The joint prior distribution for the cut-point vector c is

completely diffuse, while the prior distributions for β0 and β1, corresponding

to the Bayesian LASSO for the coefficients of the RR determinants under the

‘bad’ and ‘good’ credit cycle states, respectively, are specified hierarchically

using independent scale mixture of normals for each. These are given by

• β0 | σ2
ε , τ0 ∼ N(0K , σ

2
εIKDτ0), with

Dτ0 = diag(τ0,1, τ0,2, . . . , τ0,K), and

• β1 | σ2
ε , τ1 ∼ N(0K , σ

2
εIKDτ1), with

Dτ1 = diag(τ1,1, τ1,2, . . . , τ1,K),

with IK denoting the K− dimensional identity matrix and the mixing variables

(also known as local shrinkage parameters) given by τ0 = (τ0,1, τ0,2, . . . , τ0,K)

and τ1 = (τ1,1, τ1,2, . . . , τ1,K) and with the variance σ2
ε = 1 held fixed as used

in the latent ordered probit regression. In addition, following Park and Casella

(2008), we use the following independent (hyper) priors

• τ0,1, τ0,2, . . . , τ0,K | λ2
0
ind∼ Exp(λ2

0/2), and

• τ1,1, τ1,2, . . . , τ1,K | λ1
ind∼ Exp(λ2

1/2),

where Exp(s) denotes the exponential distribution with mean value 1/s. Then,

the (hyper) prior for the two global LASSO parameters λ2
0 and λ2

1 is given by

independent distributions

4For a detailed discussion of alternative solutions to the label switching problem, see
Frühwirth-Schnatter (2006).
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• λ2
0 ∼ Gamma(r̄, δ̄), and

• λ2
1 ∼ Gamma(r̄, δ̄),

where r̄ = 3 and δ̄ = 1. Finally, we have priors for the Markov switching

probabilities, corresponding to the parameters in (3.3), given by

• p ∼ B(ū0,0, ū0,1) and q ∼ B(ū1,0, ū1,1),

with ū0,0, ū0,1, ū1,0 and ū1,1 all set equal to 0.5, as per the algorithm of Kim

and Nelson (2001). Collectively, the joint prior distribution is specified over the

entire collection of unknown parameters θ = (ψ, p, q, τ0, τ1, λ
2
0, λ

2
1) is given by

p(θ) = p(µ) p(σ2) p(c)

× p(β0 | τ0) p(β1 | τ1)

× p(τ0 | λ2
0) p(τ1 | λ2

1) p(p) p(q).

Appendix B3: MCMC Algorithm

The marginal posterior distribution is obtained using a basic Gibbs sampling

approach, where the parameters and latent variables are each drawn recursively

from the relevant (full) conditional posteriors. Given the prior distribution, the

gth iteration of the Gibbs sampler proceeds as follows:

We note that in Step 3 each shrinkage parameter, either λ2
0 and λ2

1 (or λ2

in the static case), is generated by first sampling an augmentation vector, τ
(g)
0

and τ
(g)
0 , respectively, from the corresponding distribution that conditions on the

relevant previous draw of the shrinkage parameter. This approach follows as per

Park and Casella (2008). The new draws of the shrinkage parameters are then

sampled from the full conditional distributions that utilize the augmentation

vectors, i.e. λ
2(g)
0 ∼ p(λ2

0 | τ
(g)
0 ,β

(g)
0 ) and λ

2(g)
1 ∼ p(λ2

1 | τ
(g)
1 ,β

(g)
1 ), respectively.

The values of the τ
(g)
0 and τ

(g)
1 are not required for any additional part of the

MCMC algorithm and may be discarded at the end of each iteration. We also
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Algorithm 9 Gibbs sampling algorithm for posterior simulation

1: Inputs: y,x: data observations; G: number of iterations; θ(0) =(
ψ(0), p(0), q(0), τ

(0)
0 , τ

(0)
1 , λ

(0)
0 , λ

(0)
1

)
: initial value; T N (cz∗

i
−1,cz∗

i
)(x
′
iβSti , 1),

N (DSti
dSti , Γ(¯̄r, ¯̄δ), U(lj, uj), B(ū0,0 + n0,0, ū0,1 + n0,1), B(ū1,1 + n1,1, ū1,0 +

n1,0), T N (µj−1,µj+1)(Dµjdµj , Dµj) : full conditional posterior distributions;
2: for i = 1→ G do
3: Generate the mixture indicators and the predictive scores

p(z∗i |y,µ′,σ2′ , c,β0,β1) ∝ p(z∗i |wi)p(wi|y,µ,σ2′ , c,β0,β1)

p(zi|c, β0, β1, z
∗
i ) ∼ T N (cz∗

i−1
,cz∗
i

)(x
′
iβSti , 1);

4: Generate the regression parameters

p(βSti |y, z,S, τ) ∼ N (DSti
dSti , DSti

);

5: Generate the shrinkage parameters (via augmentation)

p(λ2|τ 2) ∼ Γ(¯̄r, ¯̄δ);

6: Generate each of the J cut-points

p(cj|c/j, z, z∗) ∼ U(lj, uj);

7: Generate the latent Markov states using FFBS

S(g)|y, z(g),β
(g)
0 ,β

(g)
1 , p(g−1), q(g−1);

8: Generate the Markov transition probabilities

p|S ∼ B(ū0,0 + n0,0, ū0,1 + n0,1) and q|S ∼ B(ū1,1 + n1,1, ū1,0 + n1,0);

9: Generate the vector of mean parameters for the Gaussian mixture dis-
tribution, for j = 1, · · · , J ,

µj|y, z, σ2
j ∼ T N (µj−1,µj+1)(Dµjdµj , Dµj);

10: Generate the vector of variance parameters for the Gaussian mixture
distribution, for j = 1, · · · , J ,

p(σ2
j |y, z∗, µj) ∼ IG(¯̄aj,

¯̄bj);

11: Outputs: A sample of G draws of static parameter θ and latent variable
S0:T from p(θ, S0:T |y,x).
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note for Step 4 that c/j = {c0, c1, . . . , cj−1, cj+1, . . . , cJ}, denoting the vector c

but with the jth element excluded. Since the priors are conditionally conjugate

for all unknowns, the relevant conditional posterior distributions are all derived

analytically, ensuring a fast algorithm for sampling from the full joint posterior

distribution.

Mixture indicator vector z∗ and the latent predictive score

vector z

The mixture indicator variable components z∗1 , · · · , z∗N are conditionally inde-

pendent and hence are be sampled independently from multinomial distribu-

tions with probabilities

p(z∗i |y,µ′,σ2′ , c,β0,β1) ∝ p(z∗i |wi)p(wi|y,µ,σ2′ , c,β0,β1),

with diffuse priors on w, we get

wi,j =

[
Φ(x′iβSti − cj−1)− Φ(x′iβSti − cj)

]
φ(yi;µj, σ

2
j )∑J

j=1

[
Φ(x′iβSti − cj−1)− Φ(x′iβSti − cj)

]
φ(yi;µj, σ2

j )
,

for i = 1, · · · , n and j = 1, · · · , J , where Φ(·) denotes the cdf of a standard

normal random variable.

Conditional on the sampled mixture indicator variable z∗i (as well as on the

relevant latent credit state coefficient βSti corresponding to the latent credit

state at the time of default for RRi, the data y, other parameters), the la-

tent data for individual i, given by zi, is generated from a truncated normal

distribution

p(zi|c, β0, β1, z
∗
i ) ∼ T N (cz∗

i−1
,cz∗
i

)(x
′
iβSti , 1),

where cz∗i−1
and cz∗i are the lower bound and the upper bound parameters.
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State-dependent regression coefficients β0 and β1

The latent data z and recovery determinants x are divided into Z0, Z1 and

X0 = [x1,0,x2,0, · · · ,xk,0], X1 = [x1,1,x2,1, · · · ,xk,1] respectively, according

the latent

Markov state Sti . Given the data, y and z, Markov states, Sti , and the local

shrinkage parameter, τ 2
0 = (τ1,0, · · · , τk,0) and τ 2

1 = (τ1,1, · · · , τk,1), the condi-

tional posterior distribution for βSti = (β0, β1)′ is given by

p(βSti |y, z,S, τ) ∼ N (DSti
dSti , DSti

),

where

DSti
= (x′StixSti + diag(τ 2)−1)−1 and dSti = x′StiySti .

Shrinkage parameters τ 2 and λ2

For each credit state, the local shrinkage parameters τ 2
1 , · · · , τ 2

k are conditionally

independent, with

p(1/τ 2
j |βj, λ2) ∼ InvGaussian(¯̄µj, λ

2),

where InvGaussian denotes an Inverse Gaussian distribution and

¯̄µj =

√
λ2

β2
j

,

for j = 1, · · · , k. With a conjugate prior, the full conditional distribution of λ2

is given by

p(λ2|τ 2) ∼ Γ(¯̄r, ¯̄δ),

where Γ denotes a gamma distribution with shape parameter K + r̄ and rate

parameter
∑K

j=1 τ
2
j /2 + δ̄.
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Cut-points c

We follow Albert and Chib (1993) and use diffuse priors for all cut-points

c2, · · · , cJ−1. For identification purpose, we set c0 = −∞, c1 = 0 and cJ = ∞

as it is common in any other studies using an ordered probit model. The

joint conditional posterior for the cut-points j = 2, · · · , J − 1 (recall that

c0 = −∞, c1 = 0, and cJ =∞) is given by,

p(cj|c/j, z, z∗) ∼ U(lj, uj),

where U(lj, uj) denotes a uniform distribution with

lj = max {cj−1,max{zi : z∗i = j}},

uj = min {cj+1,min{zi : z∗i = j + 1}}.

The latent Markov states S

We use the efficient block sampling algorithm of Carter and Kohn (1994) and

Frühwirth-Schnatter (1994) to generate S, which is known as forward filtering,

backward sampling (FFBS). Hamilton (1989) provides the following filtering

algorithm to calculate the filtered probabilities for S. Let zt be vector contains

all zi observed in year t, the Hamilton filter consists of, for t = 1, · · · , T ,

• predict

Pr(St = 0|zt)

Pr(St = 1|zt)

 =

 p 1− q

1− p q


Pr(St = 0|zt−1)

Pr(St = 1|zt−1)

 ,

• update

Pr(St = 0|zt) ∝ p(zt|St = 0) Pr(St = 0|zt) and

Pr(St = 1|zt) ∝ p(zt|St = 1) Pr(St = 1|zt),
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where

p(zt|St = 0) =
nt∏
i=1

p(zit |St = 0) and

p(zt|St = 1) =
nt∏
i=1

p(zit |St = 1).

The latent Markov states are then simulated sequentially, for t = T, T −1, ..., 1.

Given St+1, the parameter in the Bernoulli distribution for each t is calculated

by

Pr(St = 1|z1:T )/(Pr(St = 0|z1:T ) + Pr(St = 1|z1:T )),

where

Pr(St = 0|z1:T ) ∝ Pr(St = 0|zt) Pr(St = 0|St+1) and

Pr(St = 1|z1:T ) ∝ Pr(St = 1|zt) Pr(St = 1|St+1).

The Markov transition probabilities p and q

Conditional on S, the transition probabilities, p and q are independent of the

data. Since we have assigned beta prior distributions to the transition proba-

bilities, the conditional posterior distributions are given by

p(p, q|S) ∝ p(p, q)p(S | p, q),

where p(S|p, q) describes the joint probabilities associated with the latent Markov-

switching states. Prior independence (of p and q) implies posterior independence

here, and hence p and q may be jointly sampled according to

p|S ∼ B(ū0,0 + n0,0, ū0,1 + n0,1) and

q|S ∼ B(ū1,1 + n1,1, ū1,0 + n1,0),
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where B(a, b) denotes the Beta distribution on (0, 1), having mean a
a+b

and

variance ab
(a+b)2(a+b+1)

, here with

n1,0 =
T∑
t=1

nt∑
i=1

Sti |St−1 = 0,

n1,1 =
T∑
t=1

nt∑
i=1

Sti |St−1 = 1,

and n0,0 = nSt=0 − n1,0 and n0,1 = nSt=1 − n1,1.

The Gaussian mixture means µ

Given the independent conjugate priors, the individual µj, for j = 1, · · · , J ,

may be sampled independently from

µj|y, z, σ2
j ∼ T N (µj−1,µj+1)(Dµjdµj , Dµj),

where

Dµj =

(
n∑
i=1

I(z∗i = j)/σ2
j + V̄ −1

µj

)−1

,

and

dµj =
n∑
i=1

I(z∗i = j)yi/σ
2
j + V̄µj µ̄j.

The Gaussian mixture variances σ2

The individual variance parameters σ2
j for mixture components j = 1, · · · , J ,

are sampled independently conditional on µj and z∗ given by

p(σ2
j |y, z∗, µj) ∼ IG(¯̄aj,

¯̄bj),

with

¯̄aj =

∑n
i=1 I(z∗i = j)

2
+ āj,
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and

¯̄bj = b̄−1
j +

1

2

n∑
i=1

I(z∗i = j)(yi − µj)2.
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Chapter 4

Monitoring Macroeconomic

Linkages with a semi-parametric

VAR Model

This chapter proposes an extension to the Vector AutoRegressive (VAR) model

for economic variables observed with mixed frequency. The modelling frame-

work employs the notion that certain variables observed only at low frequency

(e.g. quarterly) have latent (unobserved) high frequency (e.g. monthly) values

that are “missing”. Such variables are nevertheless related to several high fre-

quency observed variables through a regression framework. Bayesian analysis

of the model, which is specified in hierarchical form, is amenable to the use of

MCMC methods. We consider the case where the latent variable evolves nonlin-

early, with the non-linearity specified non-parametrically using a Gaussian Pro-

cess prior. The proposed modeling framework may be applied to progressively

“nowcast” the present state of a set of macroeconomic and financial variables

that are only reported at the end of each quarter. A Monte Carlo study is used

to demonstrate the effectiveness of the proposed MCMC sampler.
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4.1 Introduction

Investigating the relationships among economic variables is one of the most

important challenges to both practitioners and scholars. Modeling such mul-

tivariate time series, however, is more challenging since relevant measures of

variables are often sampled at different frequencies. In practice, high frequency

measures between two consecutive low frequency measures may be temporally

aggregated, averaged or even discarded. Economic analyses involve different

frequencies is then conducted based on a joint process sampled at a common

low frequency only. Such practice has consequences potentially mis-specifying

the co-movements among variables. See, for example, Andreou, Ghysels, and

Kourtellos (2010) and Ghysels (2016) for a theoretical exploration of the prob-

lem.

In tandem, the nonlinearities between macroeconomic variables are well-

documented in the literature. Kim, Osborn, and Sensier (2005) investigate the

apparent nonlinearities present in the monetary policy rule of the U.S. Federal

Reserve and provide significant evidence of nonlinearity for the period from

1960 to 1979. Surico (2007) finds a similar nonlinearity between Fed’s monetary

policy rule and U.S. inflation for the period from 1960 to 2003. Concerned with

real GDP and oil price, Hamilton (2003) characterizes the nonlinearity using a

flexible parametric framework and concludes oil price increases are much more

important than oil price decreases. However, the natural question that arises at

this point is: are these relationships intrinsically nonlinear, or as suggested by

Andreou, Ghysels, and Kourtellos (2010), are their conclusions consequence of

an inappropriate aggregation scheme? We provide a methodological approach

to answer this question.

We introduce an extension of the Vector Autoregressive (VAR) model (Sims,
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1980) which presents the following novel features (1) accommodating data sam-

pled at different frequencies and (2) enabling generic forms of nonlinearity be-

tween variables. Our approach delivers inference and ‘nowcasting’ as a by-

product for the ‘missing’ observations of low-frequency variables obtained via

an efficient and general MCMC algorithm developed for computing the rele-

vant marginal posterior distributions. Earlier literature on this topic includes

Harvey and Pierse (1984), Mariano and Murasawa (2003), Mariano and Mura-

sawa (2010), Eraker et al. (2014). However, notwithstanding the considerable

attentions received in the literature, none of these consider nonlinearities. The

proposed mixed frequency VAR model exploits a state space representation of

the VAR model, relying on nonlinear filtering and smoothing techniques to im-

pute state variable that is used to predict future dynamics. To enable efficient

inference, a simple yet intuitive filtering method for models involving nonpara-

metric functions is introduced. Unlike the filtering method proposed by Frigola

et al. (2013) in the context of Gaussian process state space models, the filter-

ing methodology developed here does not rely on particle MCMC and instead

it builds upon a modified version of the nonlinear but parametric method of

Stroud, Müller, and Polson (2003).

Given the mixed frequency nature of the current setting, it is worthwhile

to review the related MIxed-DAta Sampling (MIDAS) approach proposed by

Ghysels, Santa-Clara, and Valkanov (2004). Unlike the state space form used

here, and in its simplest form, the MIDAS approach involves a single equa-

tion in which the high frequency variable is regressed on the low frequency

one through a lag polynomial function. In particular, the lag polynomial func-

tion is parsimoniously parameterized by a small set of hyperparameters and

it projects the high frequency process into the low frequency one with a data

consistent weighting scheme. The MIDAS regression has been used in a vari-

ety of economic studies, see, for example, Ghysels, Santa-Clara, and Valkanov

(2005), Ghysels, Santa-Clara, and Valkanov (2006), Ghysels (2016), Pettenuzzo,
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Timmermann, and Valkanov (2016), among others. Notably, the relationship

between MIDAS regression and state space models and their relative benefits

and drawbacks are reviewed by Bai, Ghysels, and Wright (2013) and more re-

cently, Ghysels (2016) also considers a mixed frequency VAR model based on a

multivariate extension of the standard MIDAS regression model. Despite its re-

cent popularity, arguably owing to its simplicity, the potential to accommodate

either nonlinearities or nonparametrics, or both, remains unclear. Moreover,

MIDAS regressions are estimated by nonlinear least squares and inferences are

undertaken using frequentist approaches.

From a Bayesian perspective, our model contains nonparametric dynamics,

avoiding the negative consequences of mis-specified nonlinearity on the estima-

tion of co-movement. For instance, if the dynamics are mistakenly modeled

linearly or via a low-order polynomial, the conditional distribution of the re-

sponses and the joint distribution of the errors may appear to be non-Gaussian

even if the true error distribution is Gaussian. There is considerable work on

circumventing parametric assumptions under both Bayesian and Frequentist

framework, for instance, the partially linear model (Robinson, 1988), the gen-

eralized additive model (Hastie and Tibshirani, 1986; Smith and Kohn, 1996)

and the semi-parametric single index model (Manski, 1988; Ichimura, 1993). In

the current work, a Gaussian process, GP hereafter, prior is placed over the

nonlinear functions, resulting in a flexible model able to capture complex dy-

namic structure. In the GP latent variable model literature, inference on the

posterior distribution of the unknown functions often relies on posterior op-

timization approaches, e.g., variational methods (Lawrence, 2004; Titsias and

Lawrence, 2010 and Ko and Fox, 2011). However, in practice it is nearly im-

possible to know how their approaches perform without comparing the results

to a posterior simulation method. To our best knowledge, the only exact (up to

simulation error) Bayesian inferential methodology available for GP involving

latent variable is Frigola et al. (2013)’s method, which is based on a specially
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tailored particle MCMC sampling scheme. The filtering technique proposed

in this paper is more general in the sense that it can be calibrated to adapt

other Bayesian nonparametric methods with some simple modifications. The

performance of the proposed MCMC sampler is demonstrated in a Monte Carlo

simulation study, where two different forms of nonlinearities are considered in

a bi-variate VAR model, with monthly-quarterly type mixed frequency data.

The reminder of the chapter is organized as follows. In Section ??, we

present the semi-parametric VAR model that accommodates mixed frequencies

and nonlinearities, along with the corresponding state space representation. In

Section 4.2, we discuss the Bayesian estimation method for the proposed model

and the corresponding MCMC simulation scheme. A Monte Carlo simulation

study is then used to evaluate the proposed MCMC scheme, along with a dis-

cussion of the simulation results, are presented in Section 4.3.

The VAR model contains equations for a set of J = J1 + J2 variables,

where we assume J1 are sampled at high frequency while J2 other variables are

sampled at a lower frequency. In particular, it is assumed that y1 is always

observed while y2 is only observed every m-th period. The dynamic structure

of y1 and y2 may be parametric or nonparametric, depending on whether it

is believed to be of some unknown form. In the case of containing a mixture

of parametric and nonparametric functions, the VAR system can be seen as

a multivariate extension of the partially linear time-series model. We refer to

Härdle, Liang, and Gao (2012) for a more detailed discussion of partially linear

models.

In detail, suppose that a macro-economy can be represented by the following

partially linear VAR(p) model:

y∗t = A+

p∑
l=1

((ιJ ι
′
J − Cl) ◦Bl) y

∗
t−l +

p∑
l=1

Cl ◦Gl

(
ιJ ⊗ y∗

′

t−l

)
ιJ + εt, (4.1)

εt ∼ N (0,Σ)
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where ⊗ denotes the Kronecker product, ◦ denotes the Hadamard (element-

wise) product and ιJ represents a J-sized column vector of ones. The vector of

disturbance, εt, is assumed to follow a multivariate Normal distribution with

mean zero and time-constant covariance matrix Σ. In particular, y∗t consists

of a J1-sized vector xt and a J2-sized vector z∗t of which xt is always observed

and zt is only observed every m-th period. The ‘missing values’ between two

consecutive observation of zt is augmented and we denote the augmented vector

by z∗t = {z1, z
∗
2 , · · · , z∗m, zm+1, · · · }, as such y∗t = (xt, zt)

′ = yt if zt is observed

and y∗t = (xt, z
∗
t )
′ otherwise. We further denote by A a vector of intercept, by Bl

a J × J coefficient matrix associated with the lagged dependent variables of y∗t

that represents linear relationships between y∗t and the lagged values of y∗t , and

by Cl a J ×J selector matrix in which the lagged variables that are nonlinearly

related to the dependent variable are selected. For instance, C1 may take the

form of

C1 =

0 1

1 0

 ,
a hollow matrix in a bi-variate VAR model, if the interest is to investigate the

functional forms of the evolving dynamics between xt and z∗t−1, as well as z∗t

and xt−1 in a bi-variate VAR(1) setting. Importantly, we denote by Gl a non-

specified generic matrix function which reflects nonlinear relationships between

y∗t and the lagged y∗t . For notional simplicity, the operator Gl(·) is a matrix of

functions defined in the following. For given a J × J matrix, for instance,

ιJy
′
t−l =


yt−l,1 · · · yt−l,J

...

yt−l,1 · · · yt−l,J

 ,
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Gl(ιJy
′
t−l) yields

Gl(ιJy
′
t−k) =


Gl,11(yt−l,1) · · · Gl,1J(yt−l,J)

...
. . .

...

Gl,J1(yt−l,1) · · · Gl,JJ(yt−l,J)

 .

In addition, the nonparametric functions are only identified up to a constant

term in the additive nonparametric structure. For instance, Gij(·) + Gih(·) =

G∗ij(·) + G∗ih(·) implies likelihood is unchanged if we define G∗ij(·) = Gij(·) + a

and G∗ih(·) = Gih(·)−a for some constant a. As a result, we restrict Gl,ij(0) = 0,

as such an identification restriction is imposed in the similar spirit of Shively,

Kohn, and Wood (1999), namely, A is used as the overall intercept of the

regression.

It is worth noting that the normality assumption in conjunction with non-

parametric functions is much more flexible than it may seem. A similar spec-

ification is used by Chib, Greenberg, and Jeliazkov (2009) in modeling data

in the presence of endogeneity and sample selection. In the context of macro-

economic policy evaluation, this way of modeling provides more insight into

the potential non-monotonic marginal effects, including the feedback effect of

a macro-economic shock to the system. In contrast to its alternative, modeling

error distribution flexibly but restrict the mean to be linear, the latter is less

favorable since the marginal effects of the lagged dependent variables are always

monotonic.

Finally, we illustrate the details regarding the specifications of the proposed

model using a simple bi-variate VAR(1) setup in the following. Now, consider

a simple partially linear VAR(1) model given by

y∗t = A+((ι2ι
′
2 − C) ◦B) y∗t−1 +C ◦G(ι2⊗ (y∗t−1)′)ι2 +εt, εt ∼ N (0,Σ), (4.2)
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which can be written asxt
z∗t

 =

α1

α2

+

(1− c11)β11 (1− c12)β12

(1− c21)β21 (1− c22)β22


xt−1

z∗t−1


+

c11G11(xt−1) + c12G12(z∗t−1)

c21G21(xt−1) + c22G22(z∗t−1)

+

ε1,t

ε2,t

 , εt ∼ N (0,Σ),

(4.3)

with

y∗t =

xt
z∗t

 , A =

α1

α2

 , B =

β11 β12

β21 β22

 , C =

c11 c12

c21 c22

 εt =

εx,t
εz,t

 ,

G =

G11(·) G12(·)

G21(·) G22(·)

 and Σ =

σ2
1 σ12

σ21 σ2
2

 . (4.4)

In the case of higher order VARs, it is straightforward to devise a similar rep-

resentation by exploiting the companion form of VAR and rewrite the VAR(p)

into a VAR(1).

4.1.1 The Likelihood Function

The development of the algorithm is initiated with a discussion of the likelihood

function of model (4.3). For the following, we define the notations for a bi-

variate VAR

y∗t = (xt, z
∗
t )
′ ,

Gj(yt) = (G1j(xt), G2j(z
∗
t ))
′ ,

G(yt) = (G11(xt), G12(z∗t ), G21(xt), G22(z∗t ))
′ .
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For simplicity of exposition, we assume T/m ∈ N, that is, T is a multiple of m.

Let 1t denote the indicator variable such that 1t = 1 indicates that zt is observed

and 1t = 0 indicates that zt is non-observed. We also set T1 = {t : 1t = 1} to be

the T/m observations when yt = (xt, zt) is fully observed and T2 = {t : 1t = 0}

to be observations when zt is non-observed. Finally, let θ to be the set of all

parameters.

The complete data likelihood function of the observed data and latent ob-

servations conditional on θ is given by

f(y∗|θ) =
T∏
t=1

f(y∗t |y∗t−1,θ)

=

[∏
t∈T1

f(yt|y∗t−1,θ)

][∏
t∈T2

f(y∗t |y∗t−1,θ)

]
,

(4.5)

where the second product comes from the fact that y∗t−1 = yt−1 if zt−1 is ob-

served. We have, for t ∈ T2,

f(y∗t |y∗t−1,θ) ∝ |Σ|−
1
2 exp

{
−1

2
ε∗
′

t Σ−1ε∗t

}
,

where ε∗t = y∗t −A− ((ι2ι
′
2 − C) ◦B) y∗t−1−C ◦G

(
ι′2 ⊗ y∗t−1

)
ι2, and for t ∈ T1,

f(yt|y∗t−1,θ) ∝ |Σ|−
1
2 exp

{
−1

2
ε′tΣ

−1εt

}
,

where εt = yt − A − ((ι2ι
′
2 − C) ◦B) y∗t−1 − C ◦ G

(
ι′2 ⊗ (y∗t−1)′

)
ι2. As is stan-

dard for latent variable models, the likelihood function f(yt|θ) is obtained by

integrating f(yt|z∗t ,θ) over the latent variables z∗t , which is difficult since z∗t is

inside the nonparametric function G whose uncertainty must also be accounted

for, and such integration involves nonlinear filtering and smoothing.

In order to exploit the existing literature, we introduce a state space rep-

resentation of the mixed frequency VAR(1) model. It consists of the state
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equation given by (4.2) and the measurement equation

yt = Dty
∗
t + (I2 − Dt)vt,

where

Dt =

1 0

0 1t

 and vt =

0

νt

 ,
and νt is a random draw from a distribution that does not depend on θ. There-

fore, our discussion on the algorithm for posterior simulation is based on

yt = Dty
∗
t + (I2 − Dt)vt

y∗t = A+ ((ι2ι
′
2 − C) ◦B) y∗t−1 + C ◦G

(
ι′2 ⊗ (y∗t−1)′

)
ι2 + εt.

4.1.2 Prior Distributions

The prior distribution for the parameters and nonparametric functions is spec-

ified in this section. To increase the tractability of posterior distributions, con-

jugate priors are considered in most cases. We assume that A and B jointly

follow a multivariate normal distribution with mean b0 and variance B0 and

that covariance Σ has a inverse Wishard distribution with hyper-parameters ν

and Q,

π(A,B,Σ) = N (A,B|b0,B0)IW(Σ|ν,Q),

where N (A,B|b0,B0) is the density for the multivariate normal distribution

and IW(Σ|ν,Q) is the density for inverse Wishard distribution.

We model each of the unknown functions through the GP priors. Gaussian

Processes (GPs) (Rasmussen and Williams, 2006; O’Hagan and Kingman, 1978)

are a flexible approach for modeling functions from data. From a Bayesian

perspective, the use of GPs enable a complete prior distribution to be defined

over the values of a function, which is an infinite dimensional object. This
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prior can then be updated in light of either a noisy or perfect observation of

the function over a (finite) set of locations. As its name suggests, a GP is the

extension of the Gaussian distribution to functions. In a GP all the function

evaluations (denoted by g) are jointly Gaussian given m, k and the data, i.e.,


g(x1)

...

g(xT−1)

 ∼ N


m(x1)

...

m(xT−1)

 ,

k(x1, x1) · · · k(x1, xT−1)

...
. . .

...

k(xT−1, x1) · · · k(xT−1, xT−1)


 ,

where x1, · · · , xT−1 are a set of input locations and k(·, ·) is the covariance func-

tion that takes two arguments, k(x1, x2), and returns the covariance between

their corresponding function values,

cov(g(x1), g(x2)) = k(x1, x2).

The shorthand notation of GP, g(X) ∼ N (m(X), K(X,X)), is mostly used in

what follows. GPs has received considerable attention and now has several vari-

ants and extensions, for instance, piecewise Gaussian processes (Kim, Mallick,

and Holmes, 2005), deep Gaussian processes (Damianou and Lawrence, 2013),

sparse Gaussian processes (Snelson and Ghahramani, 2006) and also a inter-

esting extension, nonlinear principle component analysis (Lawrence, 2005). We

note that other nonparametric modeling approaches could be pursued for the

unknown functions without modifying the way of accommodating mixed fre-

quencies in our setting. These include Markov process smoothness priors (Chib

and Greenberg, 2007; Chib, Greenberg, and Jeliazkov, 2009), regression splines

(Smith and Kohn, 1996) and b-spline priors (Silverman, 1985). See Denison

(2002) for a discussion of different nonparametric modeling approaches from

the Bayesian perspective.

GPs have the major advantage of producing tractable posterior distributions

for function values when Gaussian likelihood is assumed. This can be seen from
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the fact that the posterior distribution for the function evaluations is obtained

through prediction given the data

y

g

 ∼ N

m(X)

m(X)

 ,
K(X,X) + σ2

εIT−1 K(X,X)

K(X,X) K(X,X)


 , (4.6)

and the conditional linearity property of multivariate Gaussian distribution

yields

f(g|y, X) = N (m(X)+K
[
K + σ2

εIT−1

]−1
(y−m(X)), K−K

[
K + σ2

εIT−1

]−1
K),

(4.7)

where K = K(X,X). Similarly, the posterior distribution of function evalua-

tions for a set of test points, denoted X̄, is also Gaussian,

f(ḡ|y, X, X̄) = N (m, s),

where

m = m(X̄) + k(X̄,X)
[
K(X,X) + σ2

εIT−1

]−1
(y −m(X))

s = k(X̄, X̄)−K(X̄,X)
[
K(X,X) + σ2

εIT−1

]−1
K(X, X̄).

The covariance function, K, is central to the Gaussian processes, as it encodes

our assumptions about the function which we wish to estimate. We consider the

‘squared exponential’ covariance function, a stationary covariance function that

is invariant to translations in the input space. That is, the covariance between

two function evaluations only depends on the distance between two points they

are evaluated in the input space. This is a reasonable assumption since most

of the macroeconomic variables such as, GDP growth, interest rate, involved in

the VAR model are stationary. Specifically, the ‘squared exponential’ covariance
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function takes the form of

kSE(xi, xj) = σf exp

(
−(xi − xj)2

2`2

)
, (4.8)

where σf and ` are hyper-parameters. This covariance function is widely used in

Gaussian processes literature. Note that, the covariance function given in (4.8)

is infinitely differentiable w.r.t the inputs, which has an important implication

to the filtering method proposed. Later, we exploit the differentiability and

integrability of the GP posterior distribution to generate proposals of latent data

in a Metropolis–Hastings scheme. Finally, the price paid for these advantages

is in terms of computational time which is O(T 3), due to the matrix inversion,

[K(X,X) + σ2
εIT−1]

−1
, inside both the posterior mean and variance. Although

we note that this issue can be dealt with using existing pseudo marginal MCMC

(Andrieu and Roberts, 2009) in conjunction with the sparse Gaussian processes

technique (Snelson and Ghahramani, 2006), it is not the main concern of this

chapter and we leave it to future research.

4.2 Estimation

In Section 4.2.1, we outline a general Gibbs-based algorithm for posterior sim-

ulation. For simplicity of exposition, we present the MCMC algorithms by

assuming the selector matrix, as defined in (4.2), to be C = ι2ι
′
21 − I2. The

corresponding state space representation is then given by

xt
zt

 =

 xt

z∗t × 1t

+

 0

vt × (1− 1t)


xt
z∗t

 =

α1

α2

+

β11 0

0 β22


xt−1

z∗t−1

+

G1(z∗t−1)

G2(xt−1)

+

ε1,t

ε2,t

 ,
(4.9)
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where vt is a random draw from a distribution that does not depend on θ. Mar-

iano and Murasawa (2003) have used this specification in a maximum likelihood

setup to ensure the invertibility of the innovation covariance matrix used in the

Kalman filter. This specification is also valid in Bayesian inference, that is, the

likelihood function defined in (4.5) now becomes

f(y∗|θ)
∏
t∈T2

f(vt),

and the posterior distributions for all unknowns are equivalent up to scale

p(θ|y∗) =
p(θ)f(y∗|θ)

∏
t∈T1 f(vt)

p(y∗)

∝ p(θ)f(y∗|θ).

4.2.1 MCMC Algorithm for Posterior Simulation

We define θ = (A,B,Σ) and let θ/θi represent the elements of θ other than

θi for economy of notation. The posterior distribution for θ and z∗t for the

semi-parametric model of 4.3 is given by

π(θ,z∗, g1, g2|y)

∝

[∏
t∈T1

f(yt|y∗t−1,θ, g1, g2)

][∏
t∈T2

f(y∗t |y∗t−1,θ, g1, g2)

]
N (A,B|b0,B0)

×W(Σ|ν,Q)

[∏
i,j

GP(gi,j|σf , `)

]
,

(4.10)

where , g1 and g2 are function evaluations ofG1(·) andG2(·) for given input pints

z∗ and x∗. The posterior distribution can be simulated by MCMC methods.

We propose a hybrid Gibbs-based algorithm for posterior simulation, which

is summarized in Algorithm 10. We now turn to the details of the proposed

MCMC algorithm.
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Algorithm 10 A Blocking Algorithm with Metropolis-Hastings update

1: Inputs: y: data observations; G: number of iterations; θ(0) =(
A(0), B(0),Σ(0)

)
: initial value; N (b1,B1), IW(ν + T + 1,R), N (m1, s1):

full conditional posterior distributions;
2: for i = 1→ G do
3: Generate regression parameters

A,B|y, z∗t∈T2 ,θ/A,B, g1, g2 ∼ N (b1,B1);

4: Generate error covariance matrix

Σ|y, z∗t∈T2 ,θ/Σ, g1, g2 ∼ IW(ν + T + 1,R);

5: Generate nonparametric function evaluations

g1|y, z∗t∈T2 ,θ, g2;

6: Generate z∗t∈T2 and g1 in a block from z∗t∈T2 , g1|y,θ, g2 by first sample
z∗t∈T2 from z∗t∈T1|y,θ, g2 with a Metropolis-Hastings update based on an
auxiliary mixture model, then sample g1 from g1|y, z∗t∈T2 ,θ, g2;

7: Outputs: A sample of G draws of θ and g1 and g2 from p(θ, g1, g2|y).
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4.2.2 Sampling A,B

The posterior distribution for A,B|y, z∗t∈T1 ,θ/A,B, g1, g2 ∼ N (b1,B1), where

b1 = B

(
B−1

0 b0 +
T∑
t=1

diag(y∗t−1)′Σ−1
(
y∗t − C ◦G

(
ι2 ⊗ y∗

′

t−1

)
ι2

))

B1 =

(
B−1

0 +
T∑
t=1

diag(y∗t−1)′Σ−1diag(y∗t−1)

)−1

,

and

diag(y∗t−1) =

xt 0

0 z∗t

 ,
where C and G are defined in (4.4). This step proceeds with the imputed

‘missing’ data of low frequency variable and computes the conditional mean

and covariance of A and B at a joint high frequency.

4.2.3 Sampling Σ

The posterior distribution for error covariance matrix, Σ|y, z∗t∈T0 ,θ/Σ, g1, g2 ∼

IW , is given by

π
(
Σ|y, z∗t∈T0 ,θ/Σ, g1, g2

)
∝ |Σ|−(ν+T+1)/2 exp

[
1

2
tr(Σ−1R)

]
,

where R = Q+
∑T

t=2 ε
′
tεt, and εt is defined in (4.2). The sampling can proceed

by exploiting the conjugate nature of prior distribution to derive a closed-form

solution for the full conditional posterior distribution of Σ, conditional on the

latent data.

4.2.4 Sampling the Nonparametric Functions

The nonparametric functions are simulated one at a time, conditional on all

remaining functions, parameters and latent data. Based on the discussion of the

Gaussian process in the previous section, the posterior distribution for function



Chapter 4. Monitoring Macroeconomic Linkages with a semi-parametric VAR

Model
118

evaluations is obtained through a Gaussian prediction. In general, for the i-th

equation in the VAR, we first isolate the j-th function by defining

ξi,j,t ≡ y∗i,t − αi −
J∑
l=1

(1− ci,l)βi,ly∗i,t−1 −
J∑

l=1,l 6=j

ci,lGi,l(y
∗
l,t−1)−E(εi,t|ε\i) (4.11)

and the posterior distribution of function evaluations is gi,j|y, z∗t∈T1 ,θ/gi,j ∼

N (m1, s1), where

m1 = m(y∗i ) +K(y∗i ,y
∗
i )
[
K(y∗i ,y

∗
i ) + E(σ2

i |ε\i)IT−1

]−1
(ξi,j −m(y∗i ))

s1 = K(y∗i ,y
∗
i )−K(y∗i ,y

∗
i )
[
K(y∗i ,y

∗
i ) + E(σ2

i |ε\i)IT−1

]−1
K(y∗i ,y

∗
i ).

The idea of data-argumentation has led to tractable posterior distribution for

each of A, B, Σ and {gi} and now we turn to the sampling scheme for the latent

data zt∈T1 .

4.2.5 Sampling the Latent Data

Conditional on θ, in particular {gi}, the efficient block sampling algorithm

known as forward filtering backward sampling (FFBS) can be used to impute

z∗|y,θ, g1, g2. Specifically, the FFBS algorithm generates a vector of z∗ from

the smoothed distribution

p(z∗|y,θ, g1, g2) ∝ p(y1)
T∏
t=2

p(yt|y∗t ,1t)p
(
y∗t |y∗t−1,θ, g1, g2

)
. (4.12)

A drawback of directly sampling z∗|y,θ, g1, g2 from its full conditional posterior

is that the produced Markov chain could be persistent and subject to slow

convergence to the invariant distribution. We introduce a efficient blocking

scheme which simulates the latent data z∗ and g1 in a block in the following

section.
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4.2.6 An Efficient Blocking Algorithm for Sampling the

Latent Data

The main idea of the proposed approach is to approximate the equation con-

taining G1(z∗t ) by an auxiliary mixture model. The mixture model components,

denoted by pa(y∗t |y∗t−1,θ, g2, ut−1), are each assumed to be linear and Gaussian

given the state-dependent mixture indicator, ut. Since only G1(z∗t−1) involves

latent inputs, the construction of auxiliary mixture model is focused on approx-

imating G1(·) conditional on data, other static parameters and, in particular,

g2 throughout the remainder.

An Auxiliary Mixture Model for GP

Following Stroud, Müller, and Polson (2003), hereafter denoted as SMP, let

u = (u1, · · · , uT−1) be a vector of mixture indicators that takes integer values,

i.e., ut ∈ (1, · · · , K). The auxiliary model is defined as

pa(y∗t |y∗t−1,θ, g2) =
K∑
k=1

pa(y∗t |y∗t−1,θ, g2, ut−1 = k)πk(z
∗
t−1), (4.13)

where πk(z
∗
t−1) = pa(ut−1 = k|z∗t−1) are state-dependent weights. Conditional

the mixture indicator, the SMP method defines an auxiliary mixture model

that is linear and has state-dependent variance. In the VAR context, it can be

expressed as

pa(y∗t |y∗t−1,θ, g2, ut−1 = k) = N (Ak +Bky
∗
t−1,Σ), (4.14)

where

Ak = A+

 ak

g2,t−1

 and Bk = B +

0 bk

0 0

 .
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The mixture weights are chosen to be standardized Gaussian kernels,

pa(ut−1 = k|z∗t−1) =
φ(z∗t−1; µ̄k, s̄k)∑K
l=1 φ(z∗t−1; µ̄l, s̄l)

, (4.15)

where φ(x; µ̄, s̄) denotes a normal density with mean µ̄ and variance s̄2. The

regression parameters ak and bk defined in (4.14) are obtained from the first

order Taylor series approximation of the nonlinear function at µ̄k. That is,

conditional on θ, ak and bk are given by

bk(θ) =
∂G1(µ̄k)

∂z∗t−1

and ak(θ) = G1(µ̄k)− bk(θ)µ̄k. (4.16)

We suppress the explicit dependence on θ hereafter for simplicity of notation.

The above first order Taylor series expansion permits a linear approximation

of the nonlinear function G1 locally at µ̄k. In conjunction with the choice of

Gaussian kernels in (4.15), efficient sampling schemes such as FFBS, are readily

at disposal to generate a proposal of the latent states in a block which is then

used in a Metropolis-Hastingsss update.

Such an approach obviously requires calculation of ak, the derivative bk

in (4.16) and the state-dependent variance τ 2
k . In the context of Gaussian

process models, however, the random function are not directly observable, they

are only seen through the function evaluations at a given set of grid points.

Although biased estimators of the gradient bk, such as estimators based on

finite-differencing techniques, are possible, the approximation errors due to the

bias may accumulate rapidly in a block sampling scheme, resulting in an MCMC

chain that moves slowly with highly correlated draws which gives imprecise

estimators of integrals over the posterior distribution.
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We propose an unbiased gradient estimator of ak and bk that marginalizes

over the random function evaluation at µ̄k,

Egµ̄k|θ,µ̄k
(
ak + bk(µ̄k − z∗t−1)

)
= Egµ̄k|θ,µ̄k

(
gµ̄k +

∂G1(µ̄k)

∂z∗t−1

z∗t−1

)
.

Then, write the expectation as an integral yields

Egµ̄k|θ,µ̄k

(
gµ̄k +

∂G1(µ̄k)

∂z∗t−1

z∗t−1

)
=

∫
gµ̄kp(gµ̄k |θ, µ̄k)dgµ̄k +

∫
∂G1(µ̄k)

∂z∗t−1

z∗t−1p(gµ̄k |θ, µ̄k)dgµ̄k

where the first integral
∫
gµ̄kp(gµ̄k |θ, µ̄k)dgµ̄k can be recognized as the posterior

mean for G1(µ̄k). Since the posterior distribution of p(gµ̄k |θ, µ̄k) is known in

closed form, we can write the posterior mean which is given by

ḡµ̄k = m(µ̄k) +K(µ̄k, z
∗)
[
K(z∗, z∗) + E(σ2

1|ε\1)IT−1

]−1
(ξ1,2 −m(z∗)).

Furthermore, if G1(·) is smooth enough to allow the exchange of differentiation

and integration operators, the second integral reduces to

∫
∂G1(µ̄k)

∂z∗t−1

z∗t−1p(gµ̄k |θ, µ̄k)dgµ̄k = z∗t−1

∂

∂z∗t−1

∫
gµ̄kp(gµ̄k |θ, µ̄k)dgµ̄k

= z∗t−1

∂

∂z∗t−1

ḡµ̄k ,

that is, z∗t−1 multiplied by the first derivative of the posterior mean for gµ̄k .

hence in our auxiliary mixture model, we used regression parameters ãk and b̃k

which are given by

b̃k(θ) =
∂

∂z∗t−1

ḡµ̄k and ãk(θ) = ḡµ̄k − b̃k(θ)µ̄k.
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For GP models with squared exponential kernel, the first derivative of the kernel

between µ̄ = (µ̄1, · · · , µ̄K)′ and z∗t ∈ z∗ = (z∗1 , · · · , z∗T )′ is given by

∂k(µ̄, z∗t )

∂µ̄
=

∂

∂µ̄

{
σf exp

(
− 1

2`2
(µ̄− z∗t )′(µ̄− z∗t )

)}
=

∂

∂µ̄

{
exp

(
− 1

2`2
(µ̄− z∗t )′(µ̄− z∗t )

)}
k(µ̄, z∗t )

= −`−2(µ̄− z∗t )k(µ̄, z∗t )

which is a K × 1 vector. The derivative for each of z∗t need to be concatenated

to compute the derivative of the posterior mean. Let ˜̄µ = (µ̄− z∗1 , · · · , µ̄− z∗T ),

we have that

∂ḡµ̄
∂µ̄

=
∂k(µ̄, z∗)

∂µ̄
(K(z∗, z∗) + σ2IT−1)−1ξ1,2

= −`−2 ˜̄µ
′ (
k(µ̄, z∗)′ ◦ (K(z∗, z∗) + σ2IT−1)−1ξ1,2

)
,

a K × 1 vector, where ξ1,2 is defined in (4.11).

Simulating From the Smoothing Distribution

Having constructed the auxiliary mixture model, the latent data z∗ is then

simulated using a three steps procedure, with each iteration comprises steps

summarized as followings: (1) generate the vector of latent mixture indicators

u based on the currently imputed latent variable z∗, (2) propose new values for

the latent data z∗ from the constructed conditional linear Gaussian model by

exploiting a tailored version of FFBS and (3) accept the candidate draw z̃∗ with

an appropriate Metropolis-Hastingsss acceptance probability. In what follows,

we outline each of the three steps in detail.
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1. Generating mixture indicators u = (u1, · · · , uT−1)′. Given z∗, y, g2 and θ,

the full conditional posterior distribution of the mixture indicators is given by

pa(u|z∗,y,θ, g2) ∝
T∏
t=2

pa
(
y∗t |y∗t−1,θ, g2, ut−1

)
pa(ut−1|z∗t−1).

The indicator variables u1, · · · , uT−1 are conditionally independent and hence

can be sampled independently from multinomial distributions with probabilities

of the form pa(ut−1|xt−1, z
∗
t−1, y

∗
t ,θ, g2) ∝ pa

(
y∗t |y∗t−1,θ, g2, ut−1

)
pa(ut−1|z∗t−1).

2. Generating a proposal draw of z̃∗ from the auxiliary mixture model, where

the full conditional posterior distribution pa(z∗|y,u,θ, g2) can be written as

pa(z∗|y,u,θ, g2) ∝ p(y1)
T∏
t=2

p(yt|y∗t ,1t)pa
(
y∗t |y∗t−1,θ, g2, ut−1

)
pa(ut−1|z∗t−1).

Following SMP, this conditional posterior distribution is decomposed into two

components. The first term includes all necessary components that are linear in

the latent states with Gaussian disturbances, which allows us to devise an effi-

cient proposal distribution. The second term is used in the acceptance probabil-

ity in a Metropolis-Hastings step. The conditional distribution pa(z∗|y,u,θ, g2)

can be written as

pa(z∗|y,u,θ, g2)

∝ p(y1)
T∏
t=2

p(yt|y∗t ,1t)pa
(
y∗t |y∗t−1,θ, g2, ut−1

)
φ(z∗t−1; µ̄ut−1 , s̄ut−1)︸ ︷︷ ︸

q(z∗|y,u,θ,g2)

× 1

c(z∗t−1)

where c(z∗t−1) =
∑K

l=1 φ(z∗t−1; µ̄l, s̄l) is the denominator in (4.15). The first term

q(z∗|y,u,θ, g2) is proportional to the smoothing joint distribution of a linear,

Gaussian state space model.
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By combining the linearized state equation (4.14) with the Gaussian weight-

ing kernel (4.15), the following state space model has a smoothed joint distri-

bution given by q(z∗|y,u,θ, g2):

ỹt = Dty
∗
t + D̃tvt vt ∼ N (0, H)

y∗t = Aut−1 +But−1y
∗
t−1 + εt εt ∼ N (0,Σ),

where

ỹ∗t =


xt

zt

µ̄ut

 , y∗t =

xt
z∗t

 , Dt =


1 0

0 1t

0 1

 , D̃t =


1 0

0 1− 1t

0 1

 , H =


0 0 0

0 σ2
ν 0

0 0 s̄2
ut



Aut−1 =

 α1 + aut−1

α2 +G2(xt−1)

 , But−1 =

β11 but−1

0 β22

 , and Σ =

σ2
1 σ12

σ21 σ2
2

 .
Algorithm 11 Forward Filtering

1: Inputs: u: mixture indicator; Dt: missing observation indicator; θ: static
parameters; pa(y∗t |y∗t−1,θ, g2, ut−1): auxiliary model; T − 1: number of iter-
ations; ỹ∗1: initial state;

2: for t = 1→ T − 1 do
3: Predict:

State mean: Et|t−1(y∗t |ỹt−1) = Aut−1 +But−1Et−1|t−1(y∗t−1|ỹt−1)
State variance: Vt|t−1(y∗t |ỹt−1) = But−1Vt−1|t−1(y∗t−1|ỹt−1)B′ut−1

+ Σ;

4: Update:
vt = ỹt −DtEt|t−1(y∗t |ỹt−1)
Ft = DtVt|t−1(y∗t |ỹt−1)D′t +DtH
Mt = Vt|t−1(y∗t |ỹt−1)D′t;

5: Revise:
Filtered mean: Et|t(y∗t |ỹt) = Et|t−1(y∗t |ỹt−1) +MtF

−1
t vt

Filtered variance: Vt|t(y
∗
t |ỹt) = Vt|t−1(y∗t |ỹt−1)−MtF

−1M ′
t ;

6: Outputs: Filtering distribution N
(
Et|t(y∗t |ỹt),Vt|t(y

∗
t |ỹt)

)
for t =

1, 2, · · · , T .

Finally, we can provide a brief exposition of the tailored FFBS algorithm,

which efficiently generates candidate values of z̃∗ from the joint posterior dis-

tribution of of the latent state. The Kalman filtering algorithm is summarized
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in Algorithm 11. Note that it yields the filtered distribution, at each time t,

for each of components of the state vectors y∗ =
(
x′, z∗

′)
, however, the distri-

bution is degenerate at observed values whenever the observation is available.

Furthermore, the importance of augmenting our model with vt now becomes

clear. It ensures that the innovation covariance matrix Ft used in the Kalman

gain is always invertible. Algorithm 12 then simulates y∗ from the smoothing

distribution in a block, bringing efficiency to the sampling scheme. The above

algorithm generates the observed values as its realizations for yt when it is ob-

served and imputes the unobserved ones from the smoothing distribution under

the auxiliary linear, Gaussian model. The imputed values for z∗, called z̃∗, is

then used as a proposal in the following step.

Algorithm 12 Backward Sampling

1: Inputs: u: mixture indicator; Dt: missing observation indicator; θ: static
parameters; pa(y∗t |y∗t−1,θ, g2, ut−1): auxiliary model; T − 1: number of iter-
ations; N

(
Et|t(y∗t |yt),Vt|t(ỹ

∗
t |ỹt)

)
: filtering distribution;

2: for t = 1→ T − 1 do
3: Calculate:

v∗t = y∗t+1 − Aut −ButEt|t(y∗t |ỹt)
F ∗t = ButVt|t(y

∗
t |ỹt)B′ut + Σ

M∗
t = Vt|t(y

∗
t |ỹt)B′ut ;

4: Update:
Et|T (y∗t |ỹT ) = Et|t(y∗t |ỹt) +M∗

t F
∗−1
t v∗t

Vt|T (y∗t |ỹT ) = Vt|t(y
∗
t |ỹt) +M∗

t F
∗−1
t M∗′

t ;

5: Generate:

y∗t ∼ N
(
Et|T (y∗t |ỹT ),Vt|T (y∗t |ỹT )

)
;

6: Outputs: A draw from the joint posterior distribution of y∗ ∼
q(y∗|y,u,θ, g2).

Metropolis-Hastings Rejection Step

The currently imputed proposal z̃∗ is retained and replaces z∗ with MH accep-

tance probability

a(z∗, z̃∗) = 1 ∨

(
T∏
t=2

p(ỹ∗t |xt−1, z̃
∗
t−1,θ, g2)

c(z̃∗t−1)pa(ỹ∗t |xt−1, z̃∗t−1,θ, g2)

c(z∗t−1)pa(y∗t |xt−1, z
∗
t−1,θ, g2)

p(y∗t |xt−1, z∗t−1,θ, g2)

)
,
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otherwise, the proposal z̃∗ is discarded and z∗ is left unchanged. In particu-

lar, note that pa(y∗t |xt−1, z
∗
t−1,θ, g2) is an approximation to the state transition

density p(y∗t |xt−1, z
∗
t−1,θ, g2) implied by the auxiliary mixture model, that is,

c(z∗t−1)pa(y∗t |xt−1, z
∗
t−1,θ, g2) =

∑K
k=1 φ(z∗t−1; µ̄k, s̄k)p

a(y∗t |y∗t−1,θ, g2, ut−1 = k).

The marginal likelihood p(y∗t |xt−1, z
∗
t−1,θ, g2) can be computed by integrating

out the function evaluations, g1,

p(y∗t |xt−1, z
∗
t−1,θ, g2) =

∫
p(y∗t |xt−1, z

∗
t−1,θ, g1, g2)p(g1|xt−1, z

∗
t−1,θ, g2)dg1,

which is Gaussian by recognizing the joint distribution of the data and function

evaluations from the marginal likelihood given by (4.6).

As such, the above Metropolis-Hastings acceptance probability ensures an

ergodic Markov chain converge to the invariant distribution p(z∗,u|y,θ, g2).

Note that it can be seen that

p(z∗|y,u,θ, g2) ∝p(z∗|y,θ, g2)pa(u|z∗,y,θ, g2)

∝p(y1)
T∏
t=2

p(yt|y∗t ,1t)p(y∗t |y∗t−1,θ, g2)

×
pa(y∗t |y∗t−1, ut−1,θ, g2)φ(z∗t−1; µ̄ut−1 , s̄ut−1)∑K
l=1 p

a(y∗t |y∗t−1, ut−1 = l,θ, g2)φ(z∗t−1; µ̄ul , s̄ul)
,

and in tandem,

q(z∗|y,u,θ, g2) = p(y1)
T∏
t=2

p(yt|y∗t ,1t)pa
(
y∗t |y∗t−1,θ, g2, ut−1

)
φ(z∗t−1; µ̄ut−1 , s̄ut−1),

implying the previously stated form of the MH acceptance probability.

4.3 A Monte Carlo Simulation Study

We conduct a simulation study to evaluate the effectiveness of the proposed

sampler in estimating static parameters and nonparametric functions. The
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model considered is the bi-variate VAR(1) in (4.9): each equation contains an

intercept, a slope coefficient and a non-parametric function. We graph the

non-parametric functions in Figure 4.1. The respective functions are sigmoidal,

G2(zt−1) = 2Φ(µ) − 1 where Φ(·) is the standard normal cdf; and quadratic,

G1(xt−1) = 0.5µ2. The static parameters are set to be α1 = −0.2, α2 = −0.2,

β1 = 0.2, β2 = 0.2, σ2
1 = 1, σ2

2 = 1 and σ12 = 0.2, which implies stationarity of

both x and z as well as non-zero means and median correlation of 0.2 between

the errors in the individual equations.

We assume xt is observed for all t, while zt is only observed every third

period with sample size T = 200, 400, 800 respectively. Each function is then

evaluated at nine equally spaced points about zero. The performance of sampler

is expected to improve, in terms of decreased estimation bias and variances, as

the sample size is increased. The prior distributions for the equations are:

(A′, B′)′ ∼ N (0, 100× I), Σ ∼ IW(J + 2, 2× I) and the length scale parameter

in GP prior is set to be ` = 2. Due to the randomness in obtaining simulated

dataset, we analyses the posterior distributions based on a typical realization.

Here, the typical sample refers to the one that has the median value of the

sample mean of z among 100 simulations.

For an illustrative purpose, the true and estimated functions for sample size

T = 200, 400, 800 are plotted in Figure 4.2, 4.6 and 4.10 respectively. As is well

known in the literature, non-parametric estimations are subject to worse biased

near the boundaries then interiors and bias correction method may be used

to improve estimation at boundaries. In the simulation study, the estimated

functions are biased towards zero, the prior mean, at all sample sizes due to

lack of observations at boundaries. The plots for function estimates show that

the method recovers the true functions well, especially when sample size is large.
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Figure 4.1: Functions used in the simulation study.
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Figure 4.2: Posterior mean estimates of G1 and G2 (T = 200),
along with 90% credible intervals. The red dot line represents
the function used to generate the data, blue solid line represents
the posterior mean and the black shaded area represents the

corresponding 90% creditable interval.
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Figure 4.3: Trace plot (left penal) and kernel density es-
timation (right penal) of Bayesian posterior distributions for
α1, α2, β1 and β2 (T = 200) based on 20,000 retained MCMC

draws (with 5,000 burn-in).
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Figure 4.4: Trace plot (left penal) and kernel density es-
timation (right penal) of Bayesian posterior distributions for
σ2

1, σ12, σ
2
2 and z100 (T = 200) based on 20,000 retained MCMC

draws (with 5,000 burn-in).
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Figure 4.5: Autocorrelation plot for z100 (T = 200) based on
20,000 retained MCMC draws (with 5,000 burn-in).
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Figure 4.6: Posterior mean estimates of G1 and G2 (T = 400),
along with 90% credible intervals. The red dot line represents
the function used to generate the data, blue solid line represents
the posterior mean and the black shaded area represents the

corresponding 90% creditable interval.



Chapter 4. Monitoring Macroeconomic Linkages with a semi-parametric VAR

Model
133

0 5000 10000 15000 20000

−
0.

3
0.

0
0.

2

Iterations

Trace of A1

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
2

4

Density of A1

N = 20000   Bandwidth = 0.0114

0 5000 10000 15000 20000

−
0.

4
0.

0

Iterations

Trace of A2

−0.4 −0.2 0.0 0.2

0
1

2
3

4
Density of A2

N = 20000   Bandwidth = 0.01449

0 5000 10000 15000 20000

0.
1

0.
3

Iterations

Trace of B1

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8

Density of B1

N = 20000   Bandwidth = 0.007116

0 5000 10000 15000 20000

−
0.

4
0.

0
0.

4

Iterations

Trace of B2

−0.4 −0.2 0.0 0.2 0.4

0.
0

1.
5

3.
0

Density of B2

N = 20000   Bandwidth = 0.01717

Figure 4.7: Trace plot (left penal) and kernel density es-
timation (right penal) of Bayesian posterior distributions for
α1, α2, β1 and β2 (T = 400) based on 20,000 retained MCMC

draws (with 5,000 burn-in).
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Figure 4.8: Trace plot (left penal) and kernel density es-
timation (right penal) of Bayesian posterior distributions for
σ2

1, σ12, σ
2
2 and z100 (T = 400) based on 20,000 retained MCMC

draws (with 5,000 burn-in).
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Figure 4.9: Autocorrelation plot for z100 (T = 400) based on
5,000 retained MCMC draws (with 2,000 burn-in).
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Figure 4.10: Posterior mean estimates of G1 and G2 (T =
800), along with 90% credible intervals. The red dot line rep-
resents the function used to generate the data, blue solid line
represents the posterior mean and the black shaded area repre-

sents the corresponding 90% creditable interval.
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Figure 4.11: Trace plot (left penal) and kernel density es-
timation (right penal) of Bayesian posterior distributions for
α1, α2, β1 and β2 (T = 800) based on 20,000 retained MCMC

draws (with 5,000 burn-in).
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Figure 4.12: Trace plot (left penal) and kernel density es-
timation (right penal) of Bayesian posterior distributions for
σ2

1, σ12, σ
2
2 and z100 (T = 800) based on 20,000 retained MCMC

draws (with 5,000 burn-in).
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Figure 4.13: Autocorrelation plot for z100 (T = 800) based on
20,000 retained MCMC draws (with 5,000 burn-in).
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We graph the trace plot and the kernel density estimation for static pa-

rameters based on retained MCMC draws. The trace plot exhibits increasing

persistence in Markov chains as sample size increases, most notably, for β2, σ12,

σ2
2 and z∗100. The parameters related to the second equation is estimated less ef-

ficient than the other parameters due to the MH acceptance ratio of z∗ decreases

as the dimension of the state vector increase, resulting in slow convergence of

the chain of parameters involved in the equation of z∗. As one important feature

of the model, larger sample size implies larger amounts of latent variables z∗ to

impute, consequently slowing down the convergence of the Markov chain. The

kernel density estimation of the posterior distributions of the static parameters

exhibits decreasing variances around true parameter values for larger samples.

Although the estimated posterior mean is inaccurate for smaller samples, the

true parameter value still well lies within the 90% creditable interval.

Parameters T = 200 T = 400 T = 800

α1 4.84 8.99 10.80
α2 4.54 7.01 9.47
β1 5.05 7.92 8.07
β2 17.26 26.92 27.34
σ2

1 7.14 6.51 10.70
σ12 10.14 20.18 21.63
σ2

2 9.07 12.32 21.07
z∗100 8.74 9.88 26.04
ᾱ 41.49% 33.31% 14.59%

Table 4.1: Inefficiency factors for all static parameter and z100.
Last row reports the percentage of accepted MH draws (ᾱ) from

20,000 MCMC iterations.

The performance of an MCMC algorithm is often gauged by the inefficiency

factors (IFs) associated with the unknown quantities. An IF for a given pa-

rameter α, say, is calculated by IF (α) = 1 + 2
∑L

l=1 ρ(l), where ρ(l) is the l-th

order sample autocorrelation associated with the MCMC draws of α. To ac-

commodate a high degree of autocorrelation in consecutive parameter draws,
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we set L = 50. The resulting IFs for a collection of unknows for the semi-

parametric VAR example are summarized in Table 4.1, suggesting several con-

clusions. First, although the inefficient factor for z∗100 increases fast as the

sample size increase, it still lies in the range of 5% − 95% suggested by the

rule of thumb. Second, the inefficient factors for β2 are the largest and hence

may require longer Markov chain to obtain more accurate estimation of β2. Fi-

nally, Table 4.1 reveals that the inefficiency factors rises with larger T , partially

related to the decreased HM acceptance ratio. To achieve reasonable MH ac-

ceptance ratio, we recommend to partition the state vector into sub-blocks to

control accumulated approximation errors within the MH scheme.

4.4 Conclusion

This chapter introduces an efficient approach to analyzing data sampled at dif-

ferent frequencies with a semi-parametric VAR model. The model includes both

linear and nonparametric components, where low frequency variables may enter

the equation of high-frequency response variables non-parametrically. As such,

the semi-parametric VAR model may be used to investigate nonlinear relation-

ship between variables and perform multivariate forecasting simultaneously.

For the proposed semi-parametric VAR model, a MCMC algorithm is de-

veloped by exploiting the idea of SMP method. An important feature of this

algorithms is that the filtering distribution is approximated by a mixture of

Gaussian components. In particular, conditional on the mixture indicators, the

nonlinear model reduces to a linear Gaussian state space model. The “missing”

observations are then imputed using the efficient FFBS algorithm and accepted

with an appropriate MH acceptance probability. The proposed MCMC sampler

can be modified to accommodate standard nonlinear state space models with

latent variable enters a non-parametric function. The proposed semi-parametric

MFVAR model is useful in macroeconomic studies such as investigating central
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bank response function to GDP and inflation. Finally, a Monte Carlo simula-

tion study shows that the proposed MCMC sampler performs well in terms of

estimating both static parameters and nonparametric functions.
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Chapter 5

Portfolio Selection via Targeted

Regularization

Recent developments in high-dimensional statistics and machine learning have

led to significant improvements in classical mean-variance portfolio selection

techniques. In this chapter, we adopt methods popular in machine learning to

propose a novel approach to portfolio selection. Our method takes advantage

of both subset resampling (Shen and Wang, 2017) and parameter regulariza-

tion (Fan, Zhang, and Yu, 2012) within a unified framework. By exploiting a

hierarchical clustering algorithm, we randomly sample subsets of assets with

controlled maximum correlation. These subsets are used as regularization tar-

gets in constructing subportfolios which are then averaged to stabilize the fi-

nal portfolio weight estimates. We show that the resulting portfolio strategy

compares favorably with state-of-the-art strategies across a range of portfolio

performance evaluation criteria.
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5.1 Introduction

Portfolio selection lies at the heart of optimal investment decisions made by

individual investors and financial institutions. Recent developments in machine

learning and high-dimensional statistics have led to major considerable advances

in empirical portfolio selection methods. Investors typically evaluate portfolios

according to a range of criteria according to their own investment goals, in-

cluding the Sharpe ratio, volatility, turnover rate and so on. Of the recently

introduced methods for optimal portfolio selection, none has emerged a clear

winner across all performance evaluation criteria.

Markowitz’s mean-variance framework laid the foundations of modern port-

folio theory (Markowitz, 1952). For a given desired return, the framework pre-

scribes that investors minimize portfolio risk, as measured by return variance.

This framework is among the most comprehensively studied. It has spurred an

expansive theoretical literature, including the celebrated capital asset pricing

model (CAPM). Yet its empirical results have been disappointing, and a large

literature documents its shortcomings. See for instance Brandt (2009).

In empirical finance, the mean-variance framework requires estimation of

input parameters (i.e. mean and variance of asset return) to determine optimal

portfolio weights. As portfolio size (and hence the data dimension) increases,

estimates of input parameters becomes less and less reliable. This renders es-

timated optimal weights sub-optimal, and results in poor out-of-sample perfor-

mance. This problem is exacerbated by the unstable nature of the underlying

model and parameters. In practice, training sample period must remain rela-

tively short.

Many authors have attempted to address the problems associated with poor

finite-sample performance of mean-variance based portfolio weights. Two popu-

lar ’schools of thought’ include subset resampling and regularization. Shen and

Wang (2017) provide one example of a resampling approach, in turn inspired by
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Michaud (1989). The authors devise a subset resampling method for portfolio

choice based on ensemble learning methods popular in machining leaning. They

estimate the optimal mean-variance portfolio weights for many small subsets of

risky assets drawn at random from the portfolio, to control for the error caused

by high-dimensionality. The subportfolio weights are then averaged to estimate

overall portfolio weights. This method is in line with ensemble methods like

random subspace methods and random forests, in that the resulting portfolio

is constructed by averaging over many random subspaces of the feature space.

The size of the subsets is a hyperparameter that plays a crucial role in this

approach.

The second school of thought imposes regularization constraints on portfo-

lio weights. This approach reflects the trade-off between bias and variance. In

portfolio choice with large-scale portfolios, the shift in bias induced by imposing

(possibly incorrect) constraints on portfolio weights is rather small, whereas the

associated reduction in estimation error is substantial. Jagannathan and Ma

(2003) show that the no-short-sale constraint in the Markowitz mean-variance

portfolio can be considered as a form of regularization. Fan, Zhang, and Yu

(2012) generalize the no-short-sale constraint to gross exposure by relaxing the

no-short-sale constraint to no-extreme-short-sale-or-long-position, since the no-

short-sale constraint leads to portfolios that are not diversified enough in prac-

tice. More recently, Shen, Wang, and Ma (2014) expand Fan, Zhang, and

Yu (2012) by employing double regularization for portfolio choice, obtaining a

portfolio that consists of a limited set of assets and controls changes in asset po-

sitions. However, these approaches become less reliable with strongly correlated

assets.

Standing on the success of these two separate schools of thought, we propose

a novel ’target-based’ regularization method for portfolio choice. We proceed

in two steps. First, we divide the assets into correlated clusters and construct

subsets by randomly drawing one element from each cluster. This procedure
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follows the approach of Bühlmann et al. (2013) and is determined by the min-

max of the canonical correlation between clusters. Optimal portfolio weights

are computed for each subset (called ’targets’). Next, we impose regularization

constraints determined by the target portfolio weights. Results for each of the

subsets are averaged to achieve our final estimated optimal portfolio weights.

The resulting portfolio strategy combines the advantages of both approaches,

within a unified framework. In fact, this strategy nests the subset resampling of

Shen and Wang (2017) as well as the gross exposure constraints in Fan, Zhang,

and Yu (2012).

Our approach also addresses the drawbacks of both methods, while simul-

taneously offering additional benefits. On regularization, because the targets

are given by subset elements drawn from different clusters and are therefore less

correlated, we achieve much more robust estimates of optimal portfolio weights.

On subset resampling, we offer a data-driven means of selecting the size and

composition of each subset by making use of the correlation structure between

assets rather than selecting arbitrarily-sized subsets at random. Empirically,

this is a useful technique because in many large-scale portfolios the risky assets

can be divided into just two or three highly correlated clusters.

In addition, we promote better diversification and cushion the effects of in-

duced biases in two ways. First, because subsets are composed of elements

drawn from clusters of highly correlated assets, each element will be somewhat

representative of its respective cluster. The bias induced by focusing on a small

subset is reduced. Second, diversification is further improved as the regular-

ization will not entirely reduce the portfolio to any particular subset. Rather,

some of the weights will survive in each case. As such, there is a distinct im-

provement in diversification compared to simply taking the optimal weights for

the subset itself.

We conduct simulation studies to show how the correlation structure could

affect the finite sample performance of various portfolio strategies. Our analysis
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compares our strategy with a range of alternatives using Fama and French,

Russel 200, and the S&P 500 dataset.

5.2 Relevant Literature

The need to mitigate estimation risk arising from parameter uncertainty has

long been a focus of the machine learning community. Ensemble methods

(Zhou, 2012) have gained recognition in a variety of disciplines, mainly due

to their ability to improve the prediction performance of weak learners. As

in portfolio selection, the accuracy of an ensemble of models is characterized

by the diversity of its generation mechanism (Rokach, 2010). Diverse ensem-

bles of learners often exhibit less correlated predictions, which in turn improves

prediction accuracy (Hu, 2001). One class of ensemble methods, random sub-

space methods (Ho, 1998), is particularly appealing for improving diversity in

ensembles by training weak learners with data comprising by various feature

subsets (Polikar, 2006). Consequently, methods based on random subspaces

have recently drawn much attention. For example, Breiman (1996) proposes a

innovative variant of random space method based on decision trees called ran-

dom forest. Another recent example is the Bag of Little Bootstraps (BLB) of

Kleiner et al. (2014), which assess the quality of estimators when dealing with

very large datasets. More recently, Shen and Wang (2017) consider subset re-

sampling for portfolio selection. The subset resampling method is concurrently

and independently developed by Elliott, Gargano, and Timmermann (2013) in

econometrics for economic forecasting.

Meanwhile, regularization methods have been particularly effective for con-

trolling the accumulation of estimation error in the optimization procedures

DeMiguel et al. (2009) and Fan, Zhang, and Yu (2012). Chief among them is

`1 norm regularization, which achieves structured sparsity (Huang, Zhang, and



Chapter 5. Portfolio Selection via Targeted Regularization 146

Metaxas, 2011). For example, Shen, Wang, and Ma (2014) apply `1 norm reg-

ularization to allocate invested wealth sparsely across assets. Building on this,

Fan, Zhang, and Yu (2012) propose portfolio selection by imposing the gross

exposure constraint and Shen, Wang, and Ma (2014) take into account both

sparse selection and portfolio turnover by forming a doubly regularized formu-

lation. In addition, Meinshausen and Bühlmann (2010) demonstrate the use of

randomized regularization methods for stable feature selection in the presence of

high correlation. Statistically speaking, the idea behind norm regularization is

to shrink an unbiased estimator towards a lower variance target, which is in line

with the notion that bias toward simplicity can improve learning generalizations

in machine learning (Mitchell, 1980). However, it is also well-known that norm

regularization is sensitive to the choice of the regularization parameter, which

in turn needs to account for the correlation structure of features (Dalalyan,

Hebiri, and Lederer, 2017). Therefore, to construct a portfolio that performs

well out-of-sample with a small training sample size, we resort to exploiting the

aforementioned advantages of both ensemble and regularization methods.

5.3 Methodology

This section introduces the Markowitz portfolio selection model and discusses

the properties and characteristics of our proposed portfolio strategy.

Suppose we have n risky assets with their respective returns {R1, R2, ..., Rn}

and for each asset we have τ observations, where τ is the time block consid-

ered for the optimal portfolio construction. Due to the probable presence of

time varying behaviors of the underlying models and parameters, τ is set to be

slightly larger than the number of risky assets. The return vector of the n risky

assets at time t is denoted as Rt. Its mean (E(Rt)) and variance-covariance ma-

trix (E(RtR
′
t)), within the time block τ , are denoted as µ and Σ respectively.
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The quantity of primary interest is ω, the portfolio allocation vector satisfying

ω′ι = 1 where ι is an n-sized vector of ones.

5.3.1 Mean-variance optimization and its variants

Under the Markowitz mean-variance theory, taking returns on assets as random

variables, the portfolio choice problem boils down to selecting an optimal set of

weights for the available assets. The Markowitz mean-variance criterion can be

formulated as

min
ω
ω′Σ̂ω s.t ω′ι = 1 and ω′µ ≥ R̄ (5.1)

where Σ̂ is the estimated variance-covariance matrix of risky assets and R̄ is a

target return.

In what follows, the focus is on risk minimization as in (5.2) since it is

well-documented that expected return µ is hard to estimate accurately and

therefore, in empirical finance, the primary focus is shifted to variance only,

treating the target return condition as given (Merton, 1980; Rapach and Zhou,

2013).

min
ω
ω′Σ̂ω s.t. ω′ι = 1 (5.2)

The optimization in (5.2) can be easily computed using a relatively simple

quadratic programming method.

Nevertheless, the solution to (5.2) is disappointing at best, the primary

culprit for which being the accumulation of estimation errors amplified by the

presence of a large number of assets. Consequently, variance estimation errors

could be unbounded unless their accumulation is controlled in some way. One

way to do this is by imposing constraints, i.e.

min
ω

[ω′Σ̂ω + Pλ(ω)] s.t. ω′ι = 1, (5.3)
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where Pλ(ω) is a penalty function.

Most regularization methods can be characterized as variants of (5.3). For

instance, for gross exposure constraints in Fan, Zhang, and Yu, 2012, Pλ(ω) =

λ‖ω‖1, where ‖ · ‖p is the `p norm corresponding to ‖ω‖1 ≤ c, where c is the

gross exposure parameter. For double regularization in Shen, Wang, and Ma

(2014), Pλ(ω) = λ1‖ω‖1 + λ2‖ω − ω−‖2
2 where ω− = (ω−1 ◦ R)/R′ω−1 is

the re-normalized portfolio weight vector before rebalancing and ◦ denotes the

Hadamard product. The no-short-sale constraint in Jagannathan and Ma (2003)

is considered as a form of a regularization such that ‖ω‖1 = 1 as explained in

Brandt (2009).

Another approach to controlling the accumulation of estimation errors, along

the lines of ensemble methods, could be formulated as

min
ω
ω′SjΣ̂SjωSj s.t. ω′Sjι = 1, (5.4)

where Sj, j = 1, ..., J is a subset of the assets chosen by random draws from the

uniform distribution once the size of the subset is determined. From each subset

j = 1, ..., J , ω̂j is obtained. Then, the subset resampling optimal portfolio

weights becomes ω̂ = 1/J
∑J

j=1 ω̂j.

5.3.2 Target-based Regularized Portfolio

The Target-based Regularized Portfolio (TRP) is the average of J sets of esti-

mated weights ω̂j for j = 1, ..., J . Each set of weights is obtained by solving,

with respect to ω,

ω̂j = arg minω′Σ̂ω + λj||ω′Sj||1 s.t. ω′ι = 1, (5.5)

where Sj is a selection matrix and λj denotes the corresponding regularization

coefficient. Sj is constructed using subsets Sj as below. We refer to the assets
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chosen in each subset Sj as the targeted assets.

An important feature of the TRP comes down to the formulation of the Sj

matrix, which is an n × n diagonal matrix with ones in cells corresponding to

targeted assets and 1/α for the rest where α ∈ (0, 1] imposes a perturbation on

the regularization weights, expediting shrinkage towards the targeted assets as

λ increases. Note that this formulation is connected to the existing literature

for particular choices of λ and α. For example, when α = 1, the TRP reduces

to the gross exposure constrained portfolio proposed by Fan, Zhang, and Yu

(2012), while small λ and infinitesimal α leads to a formulation of Shen and

Wang (2017).

Before performing the optimization, the targeted assets must first be cho-

sen. We employ the data-driven hierarchical clustering algorithm proposed by

Bühlmann et al. (2013), which effectively determines the target set using canon-

ical correlation (Anderson, 1958). The algorithm allocates assets into clusters

such that the maximum canonical correlations between clusters are minimized.

It proceeds by searching for such a partition G of q disjoint clusters {G1, ..., Gq}

that satisfies this property. More precisely, we construct Ĝ based on the follow-

ing criterion: for q = 1, ..., n,

Ĝ(q̂) = Partition Ĝ consisting of (Ĝ1, · · · , Ĝq̂), with

q̂ = arg min
q

ρmax(Ĝ(q)) such that

ρmax(Ĝ(q)) = max{ρ̂can(Gl, Gk); l, k ∈ {1, · · · , q}, l 6= k}

where ρ̂can(Gl, Gk) represents the empirical canonical correlation between assets

from the l-th and k-th clusters respectively. The procedure is summarized in

Algorithm 13.

After the partition Ĝ is obtained via Algorithm 13, to ensure the maximum

correlation between assets in a target set is controlled, a target set can be

formed by choosing a subset indexed by Sj = {s1, · · · , sq̂} such that Rsi ∈ Gi
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Algorithm 13 Hierarchical Clustering

1: Inputs: {Rt}τt=1: historical returns data;

2: Ĝn = single asset as q = n clusters
3: for q = (n− 1)→ 1 do
4: Ĝq = a partition with q clusters by merging Gq+1

l and Gq+1
k for

ρ̂can(Gq+1
l , Gq+1

k ) = ρ̂max(Ĝq+1);

5: Ĝ = Ĝ q̂, where q̂ = arg min ρ̂max(Ĝ(q))
6: Outputs: A partition Ĝ of assets.

for i = 1, · · · , q̂, where q̂ = ‖Sj‖0, taking one asset from each cluster. Therefore,

q is the number of clusters and at the same time, the size of each subset. Once

a target portfolio is determined, a more diversified portfolio can be constructed

based on the portfolio weights obtained by solving (5.5).

Algorithm 14 Target-based Regularized Portfolio

1: Inputs: τ : number of period for estimation; {Rt}τt=1: historical returns;

Rτ+1: out-of-sample returns; n: number of assets; Ĝ = {G1, · · · , Gq̂}: a
partition of assets; J : number of sampled target portfolios;

2: for j = 1→ J do
3: Sample an index set Sj = {sj1, · · · , s

j
q̂} uniformly at random such that

RSji ∈ Gi and construct Sj;

4: Compute the optimal portfolio weight vector, ωjτ , by solving (5.5);

5: Aggregate the preliminary portfolio weights based on J samples ω̂τ =
J−1

∑J
j=1 ω̂

j
τ ;

6: Compute the out-of-sample portfolio net return r̂τ+1 = R′τ+1ω̂τ ;
7: Outputs: A vector of portfolio weights ω̂τ and the corresponding portfolio

net return r̂τ+1.

If applied with only one target set, the target-based regularization is not

particularly useful even if the target portfolio is well-constructed. However,

by applying the target-based regularization many times with randomly sam-

pled target sets and taking the average, we obtain a very stable final portfolio

estimate. The procedure is summarized in Algorithm 14.

5.3.3 Discussion

TRP differs from existing strategies in two main aspects: (1) the subset selec-

tion technique and (2) regularization towards targeted assets. There are some
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chapters on portfolio selection based on pre-determined targets, such as Ledoit

and Wolf (2003) and Ledoit and Wolf (2004), however the choice of targets has a

significant impact on performance and in practice it is difficult to select targets

a priori. Instead of relying on targets based on some prior assumptions, we use

hierarchical clustering for the TRP to control correlation between elements in

each subset and that the size of subsets is determined in a data-driven way as

the size of subsets is always equal to the number of clusters.

The benefits of the TRP in this respect are twofold. The proposed strat-

egy is robust due to the low level of correlation between targeted assets when

constructing an optimal portfolio via regularization. In addition, the TRP pro-

motes diversification in line with portfolio selection theory in two distinct ways.

First, the number of nonzero elements of ω̂j from the TRP is greater than or

equal to the number of nonzero elements of ω̂Sj , where ω̂Sj is obtained using

the subset of assets Sj without regularization. Second, the TRP precludes the

possibility that assets are chosen from the same cluster, and therefore the cov-

erage of the TRP target will be at least equal to any randomly chosen subset,

if not larger.

The TRP depends on the hyperparameter α, which is loosely related to

the randomized lasso Meinshausen and Bühlmann (2010) and weak greedy al-

gorithms Temlyakov (2000), in which it is referred to as ‘weakness’. In our

simulations and empirical studies, the choice of α does not particularly affect

the performance of the TRP. Figure 1 illustrates the performance of the TRP

for different α values.

In a simulation study, the log `1 norm of the differences in weight vectors

(top row) and the log differences in actual risk (bottom row) between the TRP

estimate and the true weights, along with the 10th and 90th percentiles, based

on different perturbation parameter values α = (0.01, 0.2, 0.4, 0.6, 0.8, 1) across

different correlation structures are plotted in Figure 5.1 to Figure 5.4. Asset

returns are assumed to follow a multivariate normal distribution with mean
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µsim = 0 and covariance matrix Σsim with τ = 120 and n = 100, where we

assume Σsim has a block-diagonal structure (10 blocks) with equi-correlation

within blocks (10 assets within each block) Bühlmann et al. (2013) and the cor-

relations are 0.9 within each block and the between-block correlation parameter

ρ takes value from each of the vector (0, 0.5, 0.75, 0.8).

Two theoretical metrics are used to evaluate the performance of the TRP

as compared to the true optimal weights: (i) the `1 distance, i.e., ||ω̂−ω||1 and

(ii) the difference in actual risk, i.e. ω̂′Σsimω̂−ω′Σsimω. These two metrics are

calculated based on the theoretical quantities ω and Σsim. These parameters

are unknown in practice, but in simulations can effectively characterize the es-

timation error of the weight vector and the associated portfolio risk. Notably,

with an appropriately chosen α, there are promising improvements over the

gross exposure constrained portfolios, namely, the case when α = 1. Further-

more, our simulation study indicates that a smaller α is more favorable when

ρ is small, while the performances become indifferent for α ∈ (0, 1) when ρ is

large. In particular, Meinshausen and Bühlmann (2010) illuminates that there

is an intrinsic trade-off between a well-posted design matrix (large α) and better

chance for sparse recovery (small α).

As pointed out by Shen, Wang, and Ma (2014), the optimization problem

in (5.5) is not straightforward to solve due to the sum-to-one constraint. For

given λ, the problem can be solved using an efficient first-order algorithm such as

the Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011).

However in general, to the best of our knowledge, a solution path algorithm for

this type of constrained formulation has only been recently studied by Gaines,

Kim, and Zhou (2018) in the context of regression. The optimization problem

in (5.5) can be recast as an `1 norm regularized least-square problem:
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Figure 5.1: log `1 error in weight vector and log difference in
actual risk for α = (0.01, 0.2, 0.4, 0.6, 0.8, 1) and ρ = 0.
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Figure 5.2: log `1 error in weight vector and log difference in
actual risk for α = (0.01, 0.2, 0.4, 0.6, 0.8, 1) and ρ = 0.5.
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Figure 5.3: log `1 error in weight vector and log difference in
actual risk for α = (0.01, 0.2, 0.4, 0.6, 0.8, 1) and ρ = 0.75.
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Figure 5.4: log `1 error in weight vector and log difference in
actual risk for α = (0.01, 0.2, 0.4, 0.6, 0.8, 1) and ρ = 0.8.



Chapter 5. Portfolio Selection via Targeted Regularization 157

minE(ω′Σω) + λ||ω′S||1 s.t. ω′ι = 1

= minE(X ′β)2 + λ||β||1 s.t. βS−1ι = 1, (5.6)

where X = S−1R and β = ω′S. A solution path algorithm can efficiently solve

for ω(λ) along the path of λ ∈ [0,∞). Another approximation method has been

proposed by Fan, Zhang, and Yu (2012), but its performance and theoretical

soundness have not yet been fully vindicated. Similar problems, without the

sum-to-one constraint, have been studied by Efron et al. (2004) resulting in

what they call the LARS algorithm. In our empirical experiments, we use the

ADMM method with a given λ for simplicity.

Moreover, the constrained optimization problem (5.6) for each subportfolio

can be written into a Lagrangian, whose solution is obtained by minimizing

βS−1Σ̂S−1β′/2 + λ1(||β||1 − c) + λ2(1− βS−1ι), (5.7)

where c is the constraint parameter that corresponds to λ in the Lagrangian

dual problem of (5.6). Let g be the subgradient vector of the function ||β||1,

whose elements are in [−1, 1]. The Karush-Kuhn-Tucker conditions for the

constrained optimization are

S−1Σ̂S−1β′ + λ1g − λ2S
−1ι = 0, (5.8)

λ1(c− ||β||1) = 0, λ1 ≥ 0, (5.9)

in addition to the constraints βS−1ι = 1 and ||β||1 ≤ c, whose corresponding

solution is denoted by β̃.
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Theorem 1 The constrained optimization problem (5.5) is equivalent to the

mean variance optimization

minω′Σ̃Sω s.t. ω′ι = 1 (5.10)

with the regularized covariance matrix

Σ̃S = Σ̂ + λ1(Sjg̃ι
′ + ιg̃′Sj),

where g̃ is the subgradient evaluated at ω̃ and λ1 is the Lagrange multiplier

defined in (5.8) and (5.9).

Proof. The solution to the problem (5.10) is given by

ωopt = Σ̃−1
S ι/ι′Σ̃−1

S ι.

By using β̃S−1ι = 1 and g̃′β̃ = ||β̃||1, we have

S−1Σ̃SS
−1β̃′ = S−1Σ̂S−1β̃′ + λ1g̃ + λ1||β||1S−1ι

= λ2S
−1ι+ λ1cS

−1ι.

Thus, β̃′ = (λ2 + λ1c)SΣ̃−1
S ι and S−1β̃′ = ω̃ = (λ2 + λ1c)Σ̃

−1
S ι. Note that

ωopt and ω̃ are equivalent up to a constant, i.e., ωopt = κω̃, where κ is some

constant. Then, since κ = 1, they must be equal. This completes the proof.

Therefore, each subportfolio is also equivalent to the optimal portfolio con-

structed using a regularized covariance matrix. This result is of the same spirit

of Jagannathan and Ma (2003), DeMiguel et al. (2009) and Fan, Zhang, and

Yu (2012).

Note that the perturbation parameter α in the formulation of (5.5) would

shrink all the assets except for the targeted ones more by factor 1/α as λ

increase. While in gross exposure constrained portfolio of Fan, Zhang, and Yu,
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2012, the portfolio weight vector is shrunk towards to that of the no-short-sell

portfolio. To see this, without loss of generality, let the first element ω1 be

non-negative. The other cases where ωj; j = 2, ..., n are analogous. Then,

||ω||1 = ω1 +
n∑
j=2

|ωj| (5.11)

= 1 +
n∑
j=2

(|ωj| − ωj)

= 1 +
n∑
j=2

2 |ωj| 1 {ωj < 0} .

Given the penalty function, the preceding penalty shrinks the negative weights

toward zero even more by factor 2 than in the regular lasso estimation with the

same λ, resulting in the no-short-sell portfolio for sufficiently large λ.

5.4 Experiment

In this section we will demonstrate the usefulness of the TRP by an extensive

empirical experiment on several real-world benchmark datasets.

5.4.1 Data and Settings

Data: In our experiments, we intentionally choose high-dimensional datasets

with a large n and a relatively small τ to fairly validate the proposed approach.

For the evaluation of performance of various strategies, we consider returns over

the past 20 years for out-of-sample evaluation.

Table 5.1: Summary of testing datasets

# Dataset Frequency τ n Sample Period

1 FF48 Monthly 60 48 04/01/1993 - 29/06/2018
2 FF100 Daily 252 100 02/01/1998 - 29/03/2018
3 EQ141 Daily 504 141 02/01/1998 - 03/08/2018
4 SP352 Daily 504 352 02/01/1998 - 03/08/2018
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Two types of datasets are considered in our experiments: (1) Fama-French

Portfolios and (2) large U.S. stock market benchmarks.

Fama-French Portfolios: The Fama and French datasets have enjoyed a

surge of popularity since their initial use by Fama and French (1992). Briefly

speaking, the benchmarks consist of portfolios formed for representing differ-

ent financial exposures. For example, FF100 consists of daily returns of 100

portfolios formed by the two-way sort of stocks according to market equity and

the ratio of book equity to market equity with 10 categories in each factor.

Meanwhile, FF48 contains monthly returns from 48 different industrial sectors.

U.S. stock market benchmarks: The two large U.S. stock market bench-

mark datasets considered in our experiments are the Russell Top 200 and the

S&P 500. The Russell Top 200 index contains the 200 largest stocks based on

the market capitalizations of the Russell 3000. In contrast, the S&P 500 con-

sists of a more comprehensive range of 500 large common stocks listed on the

NYSE or NASDAQ. After eliminating stocks with missing historical data, we

obtain a total of 141 and 352 assets for the Russell Top 200 (EQ141) and S&P

500 (SP352) respectively.

Table 5.1 outlines the aforementioned benchmark datasets. Note that in

order to gauge the performance of each strategy in the long-run and to under-

stand the performance of each strategy under different market conditions, the

out-of-sample evaluation periods are spanned over 20 years to cover the early

2000s recession and the more recent 2007 Global Financial Crisis (GFC). Also,

to avoid having an estimation window that spans over a long time period, which

will adversely affect the parameter estimation due to the time-varying behav-

ior of stock returns, we employ daily data for datasets involving large-scale

portfolios (FF100, EQ141 and SP352).

Competing strategies: Table 5.2 summarizes five types of portfolio strate-

gies from the extant literature compared against in our experiments. Essentially,

all the portfolio strategies considered can be viewed as shrinkage portfolios with
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different shrinkage targets and amounts except for MV, TZ, PAMR and CORN.

In particular, JM is the well-known optimal no-short-sale portfolio, where the

`1 norm of the weight vector is constrained to be one. EW and VW can be

viewed as two specific types of no-short-sale portfolio, which are also the stan-

dard benchmarks widely used in the market. FZY aims to improve no-short-sale

portfolios by considering a wider range of exposure coefficients. Somewhat sim-

ilarly, LW is the result of shrinking the covariance matrix towards the identity

matrix instead of shrinking the portfolio-weight vector as in JM. On the other

hand, SW employs subsets of data, resulting in shrinkages depending on the

full covariance matrix with the degree of shrinkage determined by the pair of

(n, q). In addition, two innovative on-line machine learning algorithms are also

compared: the on-line passive aggressive mean reversion portfolio, which uses

the mean reversion behavior of asset returns, and the correlation-driven non-

parametric portfolio, which exploits the correlation structure of assets.

5.4.2 Performance Metrics

To mitigate the non-stationarity of modeling parameters, we perform estima-

tion based on rolling windows resulting in a high-dimensional setup where the

number of assets is close to the sample size of the data. For s ∈ {τ, · · · , T − 1},

we first determine portfolio weights ω̂t using return data {Rt}st=s−τ+1. The

out-of-sample net return r̂s+1 is computed based on the realized gross returns,

i.e., r̂s+1 = ω′s+1Rs+1 − 1. Accordingly, the resulting allocation is held until

the next rebalancing. For each subsequent s between two consecutive rebal-

ances, we simply set ω̂s = ω̂s− . In our experiments, the rebalancing frequency

is assumed to be monthly, that is, the portfolios are held for one month and

rebalanced at the beginning of the next month. We compare out-of-sample em-

pirical performance across the 10 portfolios using five performance metrics as

follows.
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(i) Sharpe Ratio (SR): SR has gained considerable popularity since the

seminal chapter of Sharpe (1964). It summarizes the mean and variance with

a simple measure of risk-adjusted return, also known as “reward-to-variability

ratio”. For out-of-sample evaluation, SR is calculated by SR = r̄/σ̄, where r̄

denotes the mean of realized net returns and σ̄ denotes the mean of realized

standard deviations:

r̄ =
1

T − τ

T∑
t=τ+1

r̂t, σ̄ =

√√√√ 1

T − τ

T∑
t=τ+1

(r̄ − r̂t)2. (5.12)

The annualized Sharpe ratio,
√
HSR, is reported, wherein H is 252 since the

datasets used have daily frequency.

(ii) Volatility (VO): VO measures the risk associated with mean-variance

portfolios for given expected return. For strategies implementing the minimum-

variance portfolio, VO is the only measure that underlines the effectiveness of

risk minimization. In line with SR, we report the annualized volatility,
√
Hσ̄.

(iii) Turnover Rate (TO): TO indicates the volume of portfolio rebalanc-

ing. It is an important performance metric as a high TO inevitably leads to

high transition costs. Given the renormalized weight vector before rebalancing,

TO is calculated by

TO =
1

T − τ − 1

T−1∑
t=τ+1

||ω̂t − ω̂t− ||1, (5.13)

that is, the average `1 norm of the difference in the weight vector across trading

periods.

(iv) Maximum Drawdown (MDD): MDD is the maximum cumulative loss

from a peak to a following trough Magdon-Ismail and Atiya (2004), representing

the persistence of investment loss. During market downturn, large drawdown

often leads to panic selling and subsequent fund redemption. Denoting the
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cumulative wealth at time j as Wj, MDD is computed by

MDD = max
t∈[τ,T ]

(Mt −Wt),

with

Mt = max
j∈[τ,t]

Wj and Wj =

j∏
l=τ+1

(1 + r̂l).

(v) Gross Exposure (GE): GE measures the total investment amount at

risk in both the long position and the short position. Specifically, GE is com-

puted as the average `1 norm of the portfolio weight vector across a tested time

period:

GE =
1

T − τ − 1

T−1∑
t=τ+1

||ω̂t||1, (5.14)

In practice, although the preference of GE depends on investor’s risk profile,

allowing short positions is a powerful tool to mitigate risk and produce returns

when the allocation of positions is appropriately chosen.

5.4.3 Results

Table 5.3 summarizes the performance of the compared portfolio strategies

across the tested benchmark datasets. We denote the best performing strat-

egy under each metric, except for GE, in bold. The proposed TRP strategy has

produced the highest SR in every dataset amongst all 11 impugned portfolio

selection strategies. In particular, the TRP outperforms the two passively man-

aged benchmarks, EW and VW, with higher SRs, lower VO and lower MDD.

The TRP achieves very stable performance compared to other actively managed

strategies across the four datasets, illuminating its robustness when construct-

ing portfolios using assets with different empirical characteristics. The TRP

also has moderate GE and low MDD, which are indicative of its efficient risk

minimization in market downturn.
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Compared other norm regularized methods, FZY and LW, and their corre-

sponding regularization targets, EW and JM, we see that the TRP typically

has higher SR and lower VO, TO and MDD. The improvement over other norm

regularized methods is attributed to the idea of averaging over a number of

regularization targets, as it is unlikely to be the case that the no-short-sale

portfolio or the equally weighted portfolio is the theoretical optimal portfolio

over a long investment horizon. Our simulation study shows that averaging over

a number of plausible targets often leads to more stabilized portfolio weights

and improved risks.

Notably, the other ensemble based method, SSR, often achieves similar VO

to the TRP but has substantially lower TO. In practice, low TO often leads to

low transaction cost and hence is more indicative of before-cost returns. How-

ever, as illuminated by Grinblatt, Titman, and Wermers (1995), “momentum

investors” who actively buys assets that were past winners have realized signifi-

cantly better performance than others, mainly due to the time-varying behavior

of asset returns and the decreased trading costs. 1 In particular, the TRP has

higher SR which in turn implies higher cumulative wealth as the corresponding

volatilities are similar. Accordingly, this observation highlights the difference

between the formulation of subportfolios between the TRP and SSR: individual

assets with strong historical performances can be selected repeatedly in TRP

while only being selected at most a fixed proportion for a given size of the

subsets in SSR.

5.5 Conclusion

In this chapter we propose a target-based regularization method for portfolio

selection by combining ensemble methods with regularization. The proposed

strategy addresses the stability concerns of regularization methods by targeting

1Since the termination of fixed commissions in May 1975.
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subsets of less correlated assets without the sacrifice of diversification benefits

common to ensemble methods while retaining the advantages each approach

offers. We conduct extensive experiments on various widely used datasets and

provide comparison studies to demonstrate the robust and strong performance

of the proposed strategy compared to related extant strategies. Our future

research involves exploring different types of clustering such as classification

methods using factor-based clustering as well as finding a data-driven way to

choose the perturbation parameter α.
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Chapter 6

Conclusions

6.1 Conclusions of the thesis

The rapid growth of data accessibility in economics and finance urges the im-

plementation of state-of-the-art analytics tools. With this in mind, the thesis

aims to investigate three important topics, namely, the determinants of loan

recovery rates, uncertainties about the functional forms of evolving dynamics

in macroeconomic forecasting and portfolio selection with risk minimization.

While exploring these critical empirically motivated problems, the thesis also

contributes to methodologies for modeling and inference when dealing with

mixed frequency data or data which consists of a large set of covariates.

Following an introductory chapter, Chapter 2 reviews the fundamentals of

Bayesian econometrics, including the role of the prior distribution to produce

posterior inference. Technical aspects such as simulation-based MCMC tech-

niques required to undertake in non-standard setting are covered, with a par-

ticular focus given to filtering-based methods that are suitable for state space

models. In particular, a detailed discussion regarding MCMC sampling methods

for Gaussian mixture and Markov switching models are provided, along with a

discussion of modern priors such as the Bayesian LASSO and Gaussian process

priors. These techniques are all employed in the thesis as various empirical

problems are explored.
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The first main contribution of the thesis is made in Chapter 3. A Gaussian

mixture model is proposed to accommodate the observed clustering behavior

found in bank loan recovery rates. A latent ordered probit structure is used to

connect the mixture component to a large set of potential recovery determinants

discussed in the reference, e.g., Khieu, Mullineaux, and Yi (2012). Owing to

the apparent time-varying behavior of recovery rates thereof to vary according

different states of the economy, a Markov switching mechanism is introduced to

index the latent ordered probit regression coefficients to differentiate between

“good” time and “bad”. In addition, the so-called Bayesian LASSO prior is

used to help selecting an appropriate subset of determinants from the large uni-

verse of available, but often correlated predictors. We use the proposed method

and the developed Bayesian methodology to investigate recovery determinants

for defaulted large U.S. bank loans using a dataset extracted from Moody’s Ul-

timate Recovery Database. It is found that the behavior of some recovery rate

determinants show very different relevance to recovery outcomes depending on

whether the market is in a downward or in a more expansionary state. The

result of the empirical study highlights the importance of accounting for coun-

tercyclical expected recovery rates when determining required capital buffers,

especially when the risk of a market downturn is non-negligible.

A second main contribution of the thesis is contained in Chapter 4, where

a new Bayesian method for estimating a VAR model in the presence mixed-

frequency data is proposed. In this setting, certain variables are observed only

at low frequency (e.g. quarterly) and are modeled as having corresponding have

higher frequency (e.g. monthly) values that are “missing” from the observation

set. The model is cast into a state-space representation and is then augmented

with the “missing” observations. Importantly, a non-linear dependence struc-

ture for the latent observation is proposed, through the use of a Gaussian pro-

cess prior. Exploiting the existing literature on nonlinear filtering techniques for

state-space models, a filtering scheme for the proposed VAR model is developed.
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Simulation study illustrates the usefulness of the proposed MCMC scheme in

terms of characterizing both the uncertainties associated with the nonlinear

function and the “missing” variables associated with the low-frequency data.

The third main contribution of the thesis is presented in Chapter 5. Here a

novel ensemble-based approach for portfolio selection under the mean-variance

framework is proposed, aiming to provide stable out-of-sample performance in

the presence of estimation error. More precisely, we first construct regularization

targets using subsets of assets with controlled maximum correlation by exploit-

ing a hierarchical clustering algorithm. These subsets are used as regularization

targets in the construction of subportfolios which are themselves averaged to

stabilize the final portfolio weight. In a Monte Carlo simulation setup, it is

shown that the proposed approach delivers promising improvements over the

gross exposure constrained portfolios proposed by Fan, Zhang, and Yu (2012).

Using four benchmark datasets, we show that the resulting portfolio selection

strategy compares favorably against competing state-of-the-art strategies when

evaluated using a range of portfolio performance evaluation criteria.

6.2 Future work

A number of future research directions are apparent following the research de-

tailed in the thesis.

First, it is of interest to extend the finite mixture model employed in Chapter

3 to an infinite mixture model so that the assumption on the number of mixture

components can be relaxed. Due to the clustering behavior of recovery rates

and the presence of a large set of recovery determinants, a clustering-based

nonparametric model along with a single index structure would be desirable

to retain flexibility in capturing the complex distributional shape while at the

same time mitigating the curse of dimensionality.
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Another direction of research is to incorporate the sparse Gaussian process

of Snelson and Ghahramani (2006) to improve on the computationally efficiency

of the MCMC algorithm proposed in Chapter 4. The current Gaussian process

involves O(n3) operations, where n is the number of observations, with the

complexity driven mainly due to the inversion of the covariance matrix required

to calculate the Gaussian process posterior distribution inside each MCMC

iteration. Since the posterior distribution is evaluated repeatedly within the

MCMC scheme, the approach will become infeasible when the number of time

periods becomes large. A plausible solution would be to use the sparse Gaussian

process as a proposal within a pseudo-marginal MCMC framework, ultimately

corrected via an additional MH step.

Finally, the theoretical ground of the proposed method in Chapter 5 could

be further investigated. For instance, the associated predictive squared error

loss of the proposed method could be analytically studied in relation to the

correlations of the covariates. In light of the theory developed in Meinshausen

and Bühlmann (2010) for variable selection with strongly correlated covariates,

it would be of interest to investigate the prediction performance of the proposed

approach, as it can be viewed as a type of randomized LASSO. Finally, the

current methodology is computationally expensive since the tuning parameter

λ has to be determined repeatedly for each and every subportfolio. It would be

desirable to have a theoretically justified rule for choosing an universal λ to be

used for all subportfolios, along with a data-driven method for tuning α.
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