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Abstract

The primary topic of this thesis is graph colouring, which is the study of pattern avoidance
in assignments of colours to vertices or edges of graphs. In this thesis, I introduce the study
of anagram-free colouring and formulate an axiomatic generalisation of colouring in which
results about many variants of colouring can be proven.

The study of anagram-free colouring was suggested by Alon et al. [Random Structures
& Algorithms, 2002], and was first studied by the author and Wood [The Electronic Journal
of Combinatorics, 2018] and independently by Kamčev, Łuczak and Sudakov [Combina-
torics, Probability and Computing, 2017]. An anagram is a word of the form WP , where
P is a permutation of W . An anagram-free colouring is a graph colouring in which the se-
quence of symbols along each path in the graph is not an anagram. Anagram-free colouring
is an extension of square-free colouring, which is a well studied variant of graph colouring.
I review square-free colouring, as it is a rich source of questions to ask about anagram-free
colouring.

Alon et al. asked whether the anagram-free chromatic number is bounded on graphs of
bounded maximum degree. I answer this question in the negative by constructing graphs
with maximum degree 3 and unbounded anagram-free chromatic number. Furthermore,
I investigate the behaviour of φ, and its generalisations, on various classes of graphs and
trees, with upper and lower bounds for trees of bounded radius. Most results about the
anagram-free chromatic number show that it is unbounded on many classes of graphs. This
motivates the search for a setting in which the anagram-free chromatic number is bounded.
To this end, I introduce the study of anagram-free colourings of graph subdivisions. Graph
subdivisions are studied in square-free colouring, with one result being that every graph
has a square-free 3-colourable subdivision [Andrzej and Michał, Electron. J. Combin,
2009]. Analogously, I show that every graph has an anagram-free 8-colourable subdivision.
For trees, I construct anagram-free 10-colourable subdivisions with many fewer division
vertices per edge than in the construction for general graphs.

Colour schemes are an axiomatic generalisation of graph colouring which is introduced
and developed in this thesis. Most variations of graph colouring found in the literature
can be formulated as colour schemes. The underlying axioms of colour schemes are used
to derive properties and prove general results that have applications across many areas of
graph colouring. These results include conditions for a variant of graph colouring to be
bounded on sufficiently subdivided graphs, and on graphs of bounded maximum degree.
Colour schemes are also used to construct new variants of graph colouring with novel
properties to demonstrate the diversity available within this set of natural axioms. One
example is a variant of colouring where every tree has a 4-colourable subdivision, but for
which no similar result holds for graphs.
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Chapter 1

Introduction

This thesis studies anagram-free colouring and proposes an axiomatic generalisation of
graph colouring, called a colour scheme. Anagram-free colouring is a newly studied area
of graph colouring that was proposed by Alon et al. [10] as an extension of square-free
colouring. This chapter begins with a review of square-free colouring and many of its
extensions, since square-free colouring provides context for anagram-free colouring. I then
introduce original results in anagram-free colouring, along with an overview of results
from the literature. Lastly, I introduce colour schemes as an axiomatic approach to graph
colouring, with the goal of generalising many types of graph colouring present in the
literature.

1.1 Graph colouring

Graph colouring is a well-known area within combinatorics that studies pattern avoidance
in assignments of colours to the vertices or edges of graphs. My focus is on finite, simple
graphs; see Diestel [48]. Chapters 2, 3 and 4 are concerned entirely with finite graphs. The
study of colour schemes in Chapters 5 and 6 applies to infinite graphs.

A graph is a pair, G = (V (G), E(G)), where V (G) is the set of vertices of G and E(G)
is the set of edges of G. The vertex set is any set. The edge set contains elements of the
form {u, v} where u, v ∈ V (G) and u 6= v. The edge, {u, v} ∈ E(G), is often written as
uv for brevity. An edge is incident to a vertex if it contains the vertex. Two vertices,
u, v ∈ V (G), are adjacent if uv ∈ E(G). Two edges are adjacent if they are incident to a
common vertex. The neighbourhood of a vertex v, denoted N(v), is the set of all vertices
adjacent to v. The closed neighbourhood , N [v], of a vertex v is N(v)∪{v}. The degree of v,
denoted deg(v), is the size of its neighbourhood. The maximum degree, ∆(G), of a graph
G is maxv∈V (G) deg(v). The order of a graph is |V (G)|, where |S| denotes the number of
elements in a set S.

A subgraph, H, of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G);
we say that G contains H. The induced subgraph of a set of vertices, X ⊆ V (G), is the
subgraph of G with vertex set X and edge set {xy : x, y ∈ X, xy ∈ E(G)}. The disjoint
union of two graphs, G and H, with V (G) ∩ V (H) = ∅, is the graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H).

A vertex colouring of a graph, G, is a function that assigns one colour to each vertex
of G. Similarly, an edge colouring is a function that assigns one colour to each edge of G.
These colourings are often denoted by functions f : V (G) → C or f : E(G) → C, where
C is a set of colours. For brevity, a colouring of a graph is either a vertex or an edge
colouring, depending on context. A colouring of a graph is proper if all adjacent coloured

1



CHAPTER 1. INTRODUCTION

elements, either vertices or edges, have distinct colours. A monochromatic edge in a vertex
colouring of a graph, G, is an edge, uv ∈ E(G), such that u and v have the same colour.

The chromatic number , χ(G), of a graph G, is the minimum number of colours in a
proper vertex colouring of G. The chromatic index , χ′(G), is the minimum number of
colours in a proper edge colouring of a graph G. The chromatic number is the central
parameter studied within graph colouring. This thesis studies particular variations and
extensions of the chromatic number.

Square-free colouring is defined in terms of paths. A path in a graph, G, is a finite
sequence, P := v1v2 . . . vn, of vertices, vi ∈ V (G), such that consecutive vertices in P are
adjacent in G and each vertex occurs at most once in P . A path, P , in a graph, G, is
said to contain uv ∈ E(G) if u and v are consecutive vertices in P . Paths can be written
as a finite sequence of consecutively adjacent edges, provided that care is taken to ensure
that no vertex is visited more than once. The order and length of a path is its number of
vertices and edges respectively. The path of order n, also known as the path of length n−1,
is the graph, denoted Pn, on n vertices and n − 1 edges which contains a path of order
n. The vertices at either end of a path are known as its endpoints . A path between two
vertices , u and v, is a path with u and v as endpoints. The distance between two vertices,
u and v, denoted dist(u, v), is the minimum length of a path between u and v, and it is
undefined if no such path exists. Define the distance between an edge, ab ∈ E(G), and a
vertex, v ∈ V (G), of a graph, G, to be the minimum of dist(a, v) and dist(b, v). A graph,
G, is connected if there is a path between every pair of vertices in V (G). A connected
component of a graph, G, is a maximal connected subgraph of G. A subpath of a graph,
G, is a subgraph of G which is isomorphic to Pn for some n > 1.

1.2 Square-free graph colouring
The study of square-free graph colouring was introduced in 2002 by Alon et al. [10] and
has since received much interest [7, 13–15, 27, 29–31, 49, 50, 64, 69, 70, 72, 73, 75, 79, 91,
94, 97, 110, 114, 135]. The area is a generalisation of the study of square-free words. Let
[k] := {1, 2, . . . , k}. A word is a sequence of symbols, W := w1w2 . . . wn, and a subword
of W is a contiguous subsequence, wiwi+1 . . . wj, of W , with i, j ∈ [n] and i 6 j. The
concatenation, AB, of two words, A and B, is the symbols of A followed by the symbols
of B. A square is a word of the form WW , where W is any non-empty word. A word is
square-free if it does not contain any square as a subword. A graph colouring is square-
free if the sequence of colours read along each of its paths is square-free. Note that this
definition can apply to both vertex colouring and edge colouring, and in fact, both forms
of colouring have been studied. See Figure 1.1 for an example of a graph with a square-free
vertex colouring.

The terms ‘square-free’ and ‘nonrepetitive’ are used interchangeably throughout the
literature. For consistency, I rephrase all results to use the terminology ‘square-free’ as it
is an easier term to generalise. The square-free chromatic number of a graph G, denoted
π(G), is the minimum number of colours in a square-free vertex colouring of G. Similarly,
the square-free chromatic index of a graph G, denoted π′(G), is the minimum number of
colours in a square-free edge colouring of G.

1.2.1 Background

Square-free colourings were originally studied as square-free words within the area of com-
binatorics on words. A foundational result in this area is the following theorem of Thue

2



1.2. SQUARE-FREE GRAPH COLOURING

Figure 1.1: A graph with a square-free vertex 4-colouring. The validity of the colouring
can be verified by checking that every path in the graph is not a square.

from 1906.

Theorem 1.1 (Thue [126]). There exist arbitrarily long square-free words on three symbols.

Thue’s proof of Theorem 1.1 explicitly constructs a square-free word of arbitrary length
with the following iterative process. Let {1, 2, 3} be the symbols of our word and let f
be the function f(1) := 12312, f(2) := 131232, f(3) := 1323132. It can be shown that if
the word w1w2 . . . wn is square-free, then f(w1)f(w2) . . . f(wn) is square-free. The theorem
follows by induction. In the context of square-free graph colouring, Theorem 1.1 states
that π(Pn) 6 3 and π′(Pn) 6 3, for all n ∈ Z+. It is easily observed that the longest
square-free words on 1 and 2 symbols have length 1 and 3 respectively. Therefore π is fully
characterized on paths.

Alon et al. [10] generalised the study of square-free words to the field of graph colouring
and proved that there is a constant c′ such that π′(G) 6 c′∆(G)2 for all graphs G. Most
subsequent work on square-free colouring focuses on vertex colouring rather than edge
colouring. The proof method used to show π′(G) 6 c′∆(G)2 is easily translated to show
π(G) 6 c∆(G)2, so in a sense there is little distinction between π′ and π when bounding
them on graphs of bounded maximum degree. The focus switched to vertex colouring
because every bound on π′ as a function of maximum degree is implied by a similar bound
on π(G) by applying a line-graph construction.

The line-graph, L(G), of a graph G is the graph with V (L(G)) := E(G), where
{e1, e2} ∈ E(L(G)) if and only if e1 and e2 are adjacent edges in G. It is well known
that χ′(G) = χ(L(G)) because two vertices, u, v ∈ V (L(G)), are adjacent in L(G) if and
only if the edges corresponding to u and v in E(G) are adjacent in G.

Line-graphs are used in square-free colouring to translate bounds from π to π′. To
do this, note that every path e1e2 . . . ei in G, written as a sequence of edges of G, has
a corresponding path in L(G) where e1e2 . . . ei is now a sequence of vertices of L(G).
Therefore every square-free vertex colouring of L(G) corresponds to a square-free edge
colouring of G. Let f be a function such that π is bounded by f(∆) on graphs on maximum
degree ∆. Let G be a graph and note that ∆(L(G)) 6 2(∆(G) − 1), with equality
attained by edges of G that are incident to two vertices of degree ∆(G). Since π(L(G)) 6
f(∆(L(G))), π′(G) 6 f(2(∆(G)− 1)).

1.2.2 Bounding by maximum degree

Optimizing the constant and lower order terms in π(G) 6 c∆(G)2 has received much
attention. Most of the following results use variants of the Lovász Local Lemma. The
Lovász Local Lemma is a probabilistic tool used to prove the existence of combinatorial
objects with features that depend on local structures, in this case square-free colourings.

3
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Recall that Alon et al. [10] initially proved π′(G) 6 c′∆(G)2 for some constant c′. In
fact, Alon et al. proved that c′ 6 2e16 and did not attempt to optimize c′. Grytczuk [70]
optimised this proof method, giving the bound π(G) 6 16∆(G)2. This bound was improved
by Harant and Jendro ’l [75] to π(G) 6 d12.92(∆(G)− 1)2e, for ∆(G) > 3. Kolipaka
et al. [89] created a stronger version of the Lovász Local Lemma and, as an application,
used it to prove π(G) 6 10.4∆(G)2. Most recently, Dujmović et al. [50] used entropy
compression to improve the bound to π(G) 6 (1 + o(1))∆(G)2. Entropy compression is
a method which can often be used to prove stronger results than those proven with the
Lovász Local Lemma. See Chapter 2 for a more detailed review of these optimizations, as
well as a review of the Lovász Local Lemma and entropy compression. The approach of
Dujmović et al. was later extended by Esperet and Parreau [60] to prove bounds for many
other types of graph colouring.

The upper bound π(G) 6 c∆(G)2 is known to be tight up to a logarithmic factor. Alon
et al. [10] prove that, for all ∆ ∈ Z+, there exists a graph, G, of maximum degree ∆, with
c∆2

log ∆
6 π(G). This bound is proven using a random graph construction.

1.2.3 k-power-free colouring

Squares have a natural extension to cubes and higher powers. A k-power is a word of the
form W k, meaning k repetitions of a non-empty word W . A word is k-power-free if it has
no k-powers as subwords. k-power-free words are also known as ‘k-nonrepetitive’ words
and are well studied in combinatorics of words [6, 40, 43, 127]. Similarly to squares, a
graph colouring is k-power-free if the sequence of symbols along each path in the graph is
not a k-power. The k-power-free chromatic number or k-power-free chromatic index of a
graph, G, denoted πk(G) or π′k(G), is the minimum number of colours in a k-power-free
vertex or edge colouring of G, respectively. Thue [127] proved that π3(Pn) 6 2, for all
n > 3, with a method of proof similar to their result that π(Pn) 6 3.

Two observations relate k-power-free colouring to square-free colouring. Firstly, every
k-power-free colouring is also (k + 1)-power-free, hence πk(G) > πk+1(G), and π′k(G) >
π′k+1(G), for every graph G. In particular, upper bounds on square-free chromatic numbers
apply more generally to k-power-free chromatic numbers. Secondly, for k > 3, a k-power-
free colouring is not necessarily proper.

Alon and Grytczuk [7] generalise the bounds on square-free colouring by showing
πk(G) 6

⌈
(6∆(G))k/(k−1)

⌉
, for all k > 2 and graphs G. This proof uses the Lovász Local

Lemma. Moreover, they use random graphs to show that there is a constant c such that
for all d there are infinitely many graphs, G, with ∆(G) 6 d and πk(G) > c∆(G)k/(k−1)

k(log ∆(G))1/(k−1) .

1.2.4 Cycles

Cycles have been thoroughly studied, both in square-free graph colouring and the study
of circular words. A cycle is a connected graph where all vertices have degree 2. There is
a unique cycle, denoted Cn, for each n for n > 3. Currie [41] show that π(Cn) = 3 for all
n > 3, with the exception of n = 5, 7, 9, 10, 14, 17, in which case π(Cn) = 4. Subsequently
Currie and Fitzpatrick [42] showed that π3(Cn) = 2 for all n > 3. This completes the
picture for cycles, since L(Cn) = Cn, there is no distinction between π and π′ in this
area. Combined with Thue’s results, everything is known about k-power-free colouring on
graphs of maximum degree 2.
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1.2.5 Choosability

Choosability, also known as list colouring, is a well known generalisation of graph colouring,
which has received interest within the study of square-free colouring [59]. A list assignment
of a graph, G, is a function, L, such that L(v) is a set of colours, called the admissible
colours , for each vertex v ∈ V (G). An L-colouring of a graph G is a colouring of G where
every vertex v receives a colour from L(v). A k-list-assignment is a list assignment where
each set of admissible colours has size at least k. A graph is k-choosable if it has a proper
L-colouring for every k-list-assignment L. Edge colouring can be extended similarly by
making L a function from edges to sets of admissible colours. The choosability , ch(G), of
a graph G is the minimum k such that G is k-choosable. Note that χ(G) 6 ch(G), for
every graph G, because graph colouring is a special case of L-colouring in which the set of
admissible colours is the same for each vertex.

All variants of square-free colouring can be further generalised to choosability in the
obvious way. A graph is square-free k-choosable if it has a square-free L-colouring for
every k-list-assignment L. The square-free choice number and square-free choice index
are denoted πch and π′ch, respectively. The k-power-free extensions of πch and π′ch are
denoted πk ch and π′k ch respectively. Grytczuk et al. [72] prove that πch(Pn) 6 4 using the
left-handed local lemma; Grytczuk et al. [73] later proved the same result using a simple
entropy compression argument. Furthermore, Dujmović et al. [50] observe that the known
results bounding π as a function of maximum degree trivially extend to πch, with near-
identical proofs. This widespread generalisation is due to the way in which the Lovász
Local Lemma was applied to prove the known results. In particular, the proofs using the
Lovász Local Lemma prove results about choosability because they only depend on the
size of the sets of admissible colours, instead of requiring that the sets be equal, as is the
case in standard graph colouring.

It is open whether πch(P ) 6 3 for all paths P . Zhao and Zhu [135] show that
π(2+ε) ch(Pn) 6 3, for all ε > 0, using the following extension of k-power-free colouring
to non-integer values of k. A word w1 . . . wn is a k-power for k > 1 if n = dkqe, for some
integer q, and wi = wi+q for all i 6 n − q. The intuition behind this definition is we are
still looking at k blocks of repetition, as in the case of integer k, but that the last block is
truncated when k is not an integer. Other aspects of square-free choosability are discussed
in later sections.

1.2.6 Subdivisions

A subdivision of a graph, G, is a graph obtained from G by replacing each edge, uv ∈
E(G), by a path with endpoints u and v. If an edge, uv ∈ E(G), is replaced by a path,
uw1w2 . . . wiv, of length i + 1, then we say that uv was subdivided i times and call the
vertices w1, . . . , wi its division vertices . The original vertices of a subdivision are the
vertices which were present in the non-subdivided graph. The length of an edge of G is
the length of its replacement path in S, which is one more than its number of division
vertices. The k-subdivision of a graph, G, is the subdivision in which every edge of G is
subdivided exactly k times. Similarly, a (6 k)-subdivision of a graph G is a subdivision in
which every edge of G is subdivided at most k times.

Highly subdivided graphs locally look like long paths or subdivisions of stars, which
have bounded π, so one would intuitively expect π to be low on highly subdivided graphs.
Let πsub(G) denote the minimum of π(H) over all subdivisions,H, of a graphG. Grytczuk [70]
note that Theorem 1.1 implies πsub(G) 6 5 for every graph G. To see this, let S be a sub-
division of G where every edge is subdived an odd and unique number of times. Colour
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G

d e f
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H

u1 v2v1

w3

w2
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y3

y2
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z1

Figure 1.2: A graph, G, and a (6 3)-subdivision, H, of G. The vertices a, b, c, d, e, f ∈
V (H) are original vertices, and the other vertices of H are division vertices. v1, v2 ∈ V (H)
are the division vertices of bc ∈ E(G).

every original vertex of S red and colour the centre vertex of each subdivided edge blue.
The remaining vertices induce a graph of disjoint paths, so we can square-free 3-colour
each disjoint path with the three remaining colours. Now we consider a path, P , in S and
show that it is not a square. If P contains no red or blue vertices then it is not a square
as it is within a square-free 3-coloured subpath of division vertices. Now note that every
path between two red or two blue vertices must contain a blue or red vertex respectively.
Therefore, if P contains at least one red or blue vertex then, to be a square, it must contain
at least two red vertices and two blue vertices. However, P cannot be a square because
the unique edge lengths of the subdivision result in unique spacings between consecutive
red and blue vertices in P , prohibiting a square.

Barát and Wood [15] improve the bound by proving πsub(G) 6 4, for every graph G,
via the palindrome lemma of Kündgen and Pelsmajer [94]; see Lemma 1.2. Marx and
Schaefer [97] give a different proof of πsub(S) 6 4 using a method similar to the above
method used by Grytczuk [70]. The concept of levels, as seen in the palindrome lemma,
is a reusable insight, so here is the outline of the proof by Barát and Wood [15]. The
levelling of a connected graph, G, rooted at a vertex r is the function, λ : V (G) → Z>0,
where λ(v) = dist(v, r). A level of a graph with a levelling, λ, is a set of vertices λ−1(x)
for, x > 0, such that λ−1(x) is non-empty.

Lemma 1.2 (Palindrome lemma [94]). For every levelling λ of a graph G, there is a vertex
4-colouring of G such that every square path v1, . . . , v2n in G satisfies λ(vi) = λ(vn+i) for
all i ∈ [n].

The palindrome lemma is so named because its 4-colouring derives from a word which is
both square-free and palindrome-free. A palindrome is a word that reads the same forwards
and backwards. Barát and Wood [15] show that every graph has a subdivision, S, with
a levelling that satisfies the following two properties. Firstly, every level of S contains
exactly one original vertex. Secondly, the two neighbours, u1, u2 ∈ V (S), of each division
vertex v ∈ V (S) satisfies λ(u1) < λ(v) < λ(u2). Note that the set of vertices of each level
of S is an independent set, that is, a set of mutually non-adjacent vertices. It follows that
S has a square-free 4-colouring because, by Lemma 1.2, each square path, v1, . . . , v2n, in
S must turn around twice in the same level, since λ(v1) = λ(vn+1). More precisely, there
exists a j ∈ [n] such that λ(vj−1) = λ(vj+1) = λ(vn+j−1) = λ(vn+j+1). However, paths are
only able to turn around at an original vertex and each level has only one original vertex.
Therefore S has a square-free 4-colouring.
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Pezarski and Zmarz [114] improve the bound by proving πsub(G) 6 3 for every graph
G, which is best possible since π(P4) = 3. Their approach is similar to the proof of
πsub(G) 6 5 but, instead of using additional colours, they use unique patterns in the
colouring around the original vertices and central division vertices. The maximum number
of division vertices per edge in their construction grows linearly in |E(G)| which motivates
the search for efficient subdivisions. Similarly Barát and Wood [15] show πsub(G) 6 4 using
subdivisions where the number of division vertices per edge grows linearly with |V (G)|.
Marx and Schaefer [97] also show a linear bound, with the distinction that their subdivision
can be further subdivided without affecting their upper bound on π, whereas the results
of Pezarski and Zmarz [114] and Barát and Wood [15] rely on using a particular number
of divisions per edge.

The bounds on πsub motivate the study of tradeoffs between the number of colours and
the maximum number of division vertices per edge. Nešetřil et al. [110] prove that there
is a constant, c, such that every graph G has a subdivision, H, with π(H) 6 17 and less
than c log |V (G)| subdivisions per edge. They show that, for constant π, this bound is
best possible, up to the value of c, by studying subdivisions of the complete graph. The
complete graph of order n, denoted Kn, is the graph on n vertices which are all pairwise
adjacent.

Theorem 1.3 (Nešetřil et al. [110]). For k > 2, the k-subdivision of Kn, denoted H,
satisfies (n

2

)1/(k+1)

6 π(H) 6 9
⌈
n1/(k+1)

⌉
.

For a constant c := π(H), Theorem 1.3 implies logc
n
2
6 k + 1. Nešetřil et al. [110]

also show there is a function f such that π(G) 6 f(π(H), k) for every (6 k)-subdivision
H of G. The lower bound in Theorem 1.3 shows π is unbounded on 1-subdivisions of Kn,
so π is not bounded on graphs of bounded average degree. Dujmović et al. [50] study
subdivisions in the context of square-free choosability. They prove the following using
entropy compression.

Theorem 1.4 (Dujmović et al. [50]). Let H be a subdivision of a graph G, such that every
edge vw ∈ E(G) is subdivided at least d105 log(deg(v) + 1)e + d105 log(deg(w) + 1)e + 2
times. Then πch(H) 6 5.

1.2.7 Trees

A tree is a connected graph which contains no cycles. A rooted tree is a tree with a vertex
labelled as the root. For a rooted tree, T , with root r, the depth of a vertex, v ∈ V (T ),
is the distance between v and r. A vertex, u, in a rooted tree, T , is a child of a vertex,
v ∈ V (T ), if u and v are adjacent and u is deeper than v. A leaf of a tree, T , is a vertex,
v ∈ V (T ), with deg(v) = 1, unless T is a rooted tree with root v. The height of a rooted
tree is the depth of its deepest vertex. A d-ary tree is a rooted tree with at most d children
per vertex. The complete d-ary tree of height h is the rooted tree such that every non-leaf
vertex has d children and every leaf has depth h. The complete 2-ary tree is called the
complete binary tree. Brešar et al. [30] studied square-free colourings of trees, showing
that, for every tree T , π(T ) 6 4, and that T has a subdivision, S, with π(S) 6 3.

The behaviour of πch on trees has received a lot of interest, sparked by Fiorenzi et al. [63]
proving that πch is unbounded on trees, which is in stark contrast to the bound of 4 for π
on trees. Kozik and Micek [91] prove that, for all ε > 0, there is a constant, c, such that
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πch(T ) 6 c∆(T )1+ε for all trees T , which is stronger than the bound of c∆2 on graphs of
maximum degree ∆. Gągol et al. [64] show that there is a function, f , such that every tree,
T , is square-free f(pw(T ))-choosable, where pw(T ) is the pathwidth of T , as defined in
Section 1.2.8. Moreover, they show that graphs of pathwidth 2 have unbounded square-free
choosability.

1.2.8 Pathwidth and treewidth

Let G be a graph. Pathwidth and treewidth are graph parameters denoted pw(G) and
tw(G) respectively. A tree-decomposition of G is a tree, T , with a function B : V (T ) →
P(V (G)), where P denotes the powerset, which satisfies the following two properties.
First, for every edge, e ∈ E(G), there is a u ∈ V (T ) such that e is an edge of the subgraph
of G induced by B(u). Second, for all v ∈ V (G), the set of vertices {u ∈ V (T ) : v ∈ B(u)}
induces a non-empty connected subgraph of T . The width of a tree-decomposition T is
the maximum of |B(w)| − 1 over all w ∈ V (T ). The treewidth of G is the minimum width
over all of its tree-decompositions. A path-decomposition is a tree-decomposition where
the underlying tree is a path. The pathwidth of G is the minimum width over all of its
path-decompositions.

Treewidth and Pathwidth were first defined by Robertson and Seymour [119] and have
been applied to many areas. The appeal of pathwidth and treewidth is that, in a sense,
they measure how similar a graph is to a path or a tree respectively. The parameters are
of interest in square-free colouring because π is bounded on paths and trees. Kündgen
and Pelsmajer [94] and Barát and Varjú [13] independently proved that π is bounded by a
function of treewidth. Kündgen and Pelsmajer [94] give the best known bound of π(G) 6
4tw(G). Albertson et al. [5] proved that there exists a graph G with π(G) >

(
tw(G)+2

2

)
. It is

open as to whether there is a polynomial upper bound. For pathwidth, Dujmović et al. [50]
prove the upper bound π(G) 6 2 pw(G)2 +6 pw(G)+1. It is open whether there is a linear
upper bound.

1.2.9 Walks and trails

Walks and trails are sequences of consecutively adjacent vertices of a graph, like paths,
but with fewer restrictions. A walk is a sequence of vertices, S, of a graph G such that
each pair of consecutive vertices in S are adjacent in G. A trail is a walk, S, of a graph
G such that each edge of G occurs at most once in S. Similarly to paths, walks and trails
can each be treated either as a sequence of vertices or edges, depending on convenience.
The only caveat is to ensure that, regardless of its representation, every edge occurs at
most once in a trail.

It is not immediately clear how to define a square walk-avoiding version of square-free
colouring, due to trivially square walks. For example, every vertex colouring of the walk
uvuv, where u and v are adjacent vertices, is a square. Some set of square walks must
be ignored if we are to have anything interesting to study. There have been two distinct
definitions which disagree on which walks, known as the admissible walks, are required to be
square-free in their respective colourings. An open walk is a walk with two distinct vertices
as endpoints. Brešar and Klavzar [29] define square-free walk colouring with open walks
as the admissible walks. To disambiguate the two definitions, I denote the corresponding
square-free open walk chromatic index by σ′open. They prove that σ′open(G) = π′(G) for all
trees and cycles G. Unfortunately, this definition is only useful for edge colouring, since
the walk uvuv, on adjacent vertices u and v, is square under every vertex colouring, so
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v1

v4

v3

v2

Figure 1.3: A square-free vertex colouring
of the star of order 4 which is not a square-
free walk vertex colouring. The admissible
walk v1v2v3v2v4v2v3v2 is a square. This ex-
ample can be extended to show that σ is
unbounded on stars.

v2

v3

v1

v4

Figure 1.4: A square-free open walk edge
colouring which is not a square-free walk
edge colouring. The walk v1v2v3v4v1 is a
square. Since each colours in a square oc-
curs an even number of times, a parity ar-
gument shows that all the square walks in
this colouring are not open.

σopen is not defined on graphs with at least one edge.
Barát and Varjú [13] define square-free walk colouring where a walk, v1, . . . , v2n, is

admissible if there exists i ∈ {1, . . . , n} such that vi 6= vi+n. This definition of admissible
is equivalent to requiring that the sequence of vertices of a walk not be a square. They
define σ to be the corresponding square-free walk chromatic number . Further work uses
σ, so I define a square-free walk colouring of a graph to be a colouring with no square
admissible walks of the form defined by Barát and Varjú [13]. For edge colouring, the
admissible walks are those where the sequence of edges is not a square. Let σ′ denote the
corresponding square-free walk chromatic index . See Figure 1.3 for an example of a square-
free colouring which is not a square-free walk colouring. See Figure 1.4 for a square-free
open walk colouring which is not a square-free walk colouring.

Since all paths are admissible walks, a square-free walk colouring of a graph is also
a square-free colouring. It follows that π(G) 6 σ(G) and π′(G) 6 σ′(G) for all graphs
G. This provides the study of σ with some lower bounds and motivates upper bounds, as
upper bounds on σ are upper bounds on π. Barát and Wood [15] bound σ by treewidth
and maximun degree, proving that σ(G) 6 10(tw(G) + 1)(7

2
∆(G)− 1)(∆(G)2 + 1) for all

graphs G.

1.2.10 Planar graphs

Planar graphs are a popular class of graphs in graph colouring, and determining whether
π is bounded on planar graphs is widely considered to be the most important problem
in square-free colouring. A graph is planar if it can be drawn in the plane with no edge
crossings. A face of an embedding of a planar graph is a contiguous region of the plane
enclosed by vertices and edges. Note that the faces of a planar graph depend on the way it
is drawn. An outerplanar graph is a planar graph with a face that contains all the vertices
in its boundary. A facial walk in a planar graph is a walk that traces the boundary of a
face.

Barát and Varjú [13] and Kündgen and Pelsmajer [94] independently prove that π(G) 6
12 for outerplanar graphs and conjecture that π is bounded on planar graphs. Barát
and Varjú [13] also show that there is an outerplanar graph, G, with π(G) > 7, and
construct planar graphs with π(G) > 10. Ochem (see [49]) improved the lower bound
for outerplanar graphs from 7 to 11. Dujmović et al. [49] prove that there is a constant

9



CHAPTER 1. INTRODUCTION

c such that π(G) 6 c log |V (G)| for all planar graphs G. Dujmović et al. [51] generalise
this bound to surfaces of higher genus, proving that each graph G with Euler genus g has
π(G) 6 8g + 12

(
1 + log3/2 |V (G)|

)
. The Euler genus of a graph is the minimum integer

g such that it can be embedded in an orientable surface of genus g/2 or a non-orientable
surface of genus g.

A graph, H, is a minor of a graph, G, if H is isomorphic to a graph obtained from
G by a sequence of edge contractions, edge deletions, and vertex deletions. An edge
contraction deletes both vertices of an edge uv and adds a new vertex adjacent to all
previous neighbours of u and v. Minors are well studied and, most famously, appear in the
graph minor theorem which states that graph classes closed under taking minors can be
characterised by avoiding a finite set of forbidden minors [120]. The study of square-free
colourings of planar graphs has lead to the study of square-free colouring on graphs that
exclude variants of minors. A graph, H, is a topological minor of a graph G if a subdivision
of H is a subgraph of G. Dujmović et al. [51] show that for every fixed graph, H, every
graph, G, without H as a topological minor has a square-free O(log |V (G)|)-colouring.
Wollan and Wood [133] study another variant of minors, called immersions, and show that
for every graph, H, there exists a k ∈ Z+ such that every graph, G, that does not contain
H as an immersion is square-free k-colourable.

Havet et al. [79] introduce a type of square-free colouring in which square facial walks
must be avoided. This type has received some interest, with results for both the vertex
colouring and edge colouring variants [12, 27]. The body of this thesis does not concern
planar graphs so I avoid going into further detail.

1.3 Anagram-free graph colouring

Anagram-free colouring was first suggested by Alon et al. [10] and introduced by Kamčev,
Łuczak, and Sudakov [83] as well as by myself and my supervisor, David Wood, in 2016
[131]. In fact, our arXiv papers appeared within days of each other [82, 130]. In this
section I present an overview of our results as well as the other results in the area. My
initial results, which are independent of the work of Kamčev et al. [83], are introduced
in Section 1.3.2 and presented in detail in Chapter 3. My later work on subdivisions,
which postdates the work of Kamčev et al., is introduced in Section 1.3.4 and presented in
detail in Chapter 4. Results in Chapter 3 and 4 are original contributions, unless indicated
otherwise.

1.3.1 Background

An anagram is a word of the form WP , where W is a non-empty word and P is a per-
mutation of W . A word is anagram-free if it contains no anagram as a subword. In the
literature, anagrams are also known as ‘abelian squares’ and anagram-free words are also
known as ‘abelian square-free words’ or ‘strongly non-repetitive sequences’.

Anagrams are studied within combinatorics on words, and the first thing to note is
their similarity to square-free words [38]. A square is also an anagram, which follows from
the observation that a square is a word Wσ(W ) where σ is the identity permutation.
A natural question to ask is whether there are arbitrarily long anagram-free words on a
constant number of symbols. Recall that the longest square-free words on 2 symbols has
length 3, and that Thue [126] proved that there are arbitrarily long square-free words
on three symbols. More than three symbols are required for arbitrarily long angram-free
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words, as the longest anagram-free words on three symbols have length at most 7, for
example abcbabc [39].

Pleasants [115] prove that there are anagram-free words of arbitrary length of five
symbols using a similar method of proof as Thue [126] (see Section 1.2.1). Pleasants
defines the function

f(1) := 213151314151412

f(2) := σ(f(1))

f(3) := σ2(f(1))

f(4) := σ3(f(1))

f(5) := σ4(f(1))

where σ is the cyclic shift σ(12345) := 23451. The proof that f(w1)f(w2) . . . f(wi) is
anagram-free if the word w1w2 . . . wi is anagram-free requires a lot of case analysis, which
I do not reproduce here. Instead, I note some structural properties of f and outline the
central idea of the proof. For brevity, f(W ) means f applied to each symbol of a word W .
Note that, for k ∈ {1, 2, 3, 4, 5}, f(k) contains seven occurrences of k, and two occurrences
of each other symbol. Therefore, for all words W , f(W ) contains 5x + 2|W | occurrences
of symbol k, where x is the number of occurrences of k in W . Since the two halves of an
anagram have the same number of occurrences of each symbol, f(W1W2) is an anagram if
and only if W1W2 is an anagram. It follows that, for all subwords, U , of, f(W ), the parts
of U that align with the blocks created by f do not contribute to U being an anagram. The
remainder of the proof is case analysis concerning the relatively small parts of U which do
not align with W .

Keränen [86, 87] proved that there are anagram-free words of arbitrary length on four
symbols, closing the gap with the lower bound. He used the same method of proof with

f(1) :=1231343234314342412131214212324232132343132

124121314323431342321323431343243414243231

and f(2), f(3) and f(4) defined by cyclic shifts of f(1). Notably, this replacement word,
which has length 85, is much longer than the one used by Pleasants and each symbol in
the word occurs a unique number of times.

Alon, Grytczuk, Hałuszczak, and Riordan [10] proposed anagram-free graph colouring
as a subject of study as a generalisation of square-free colouring and it is defined similarly
to square-free colouring. A graph colouring is anagram-free if the sequence of colours read
along each of its paths is not an anagram. See Figure 1.5 for an example of an anagram-
free colouring and Figure 1.6 for a square-free colouring which is not an anagram-free
colouring. This thesis studies both the vertex colouring and edge colouring variants of
anagram-free colouring. The anagram-free chromatic number of a graph, denoted φ(G),
is the minimum number of colours in a anagram-free vertex colouring of G. Similarly,
the anagram-free chromatic index of a graph, denoted φ′(G), is the minimum number
of colours in a anagram-free edge colouring of G. In the context of anagram-free graph
colouring, Keränen’s result is φ(P ) 6 4 for every path P . Throughout this thesis there are
many examples of significant differences in behaviour between φ and π. This is somewhat
surprising considering the similarity of Keränen’s and Thue’s results.

1.3.2 Bounds on graphs and trees

Anagram-free colouring is a generalisation of square-free colouring in the sense that π(G) 6
φ(G), for all graphs G, because every square is an anagram. It follows that all lower bounds
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Figure 1.5: An anagram-free graph colour-
ing.

Figure 1.6: A square-free colouring which
is not anagram-free. The highlighted path
is an anagram because blue, green, red is a
permutation of blue, red, green.

on π generalise to lower bounds on φ. This motivates the investigation of anagram-free
colourings of classes of graphs with bounded π, to determine which, if any, upper bounds
on π generalise to φ. As such, we begin by studying anagram-free colourings of trees and
graphs of bounded degree.

Bounding by maximum degree

Alon et al. [10] states as an open problem whether φ is bounded on graphs of bounded
degree. I answer this question, demonstrating the first significant difference in behaviour
between π and φ. More specifically, φ is unbounded on outerplanar graphs of maximum
degree 3, so many of the open problems about the behaviour of π on planar graphs do not
correspond to interesting questions in the case of φ.

Theorem 3.2 (§3.1.2). Outerplanar graphs of maximum degree 3 have unbounded anagram-
free chromatic number.

Theorem 3.2 complements the result of Richmond and Shallit [118] regarding enumera-
tion of anagrams. They counted anagrams with the aim of using the Lovász Local Lemma
to prove that φ is bounded on paths, and concluded that there are too many anagrams
for this method of proof to be feasible. As paths are a special case of graphs of bounded
maximum degree, this also suggests that the Lovász Local Lemma cannot be used to bound
φ on graphs of bounded degree, which makes sense in light of Theorem 3.2.

I investigate variations of anagram-free colouring that are analogous to variations of
square-free colouring, starting with edge colouring. Recall that an edge colouring of a
graph, G, is anagram-free if every path of G has an anagram-free colour sequence along its
edges, and that φ′(G) is the minimum number of colours in an anagram-free edge colouring
of G. The obvious bound, φ′(G) > ∆(G), follows from the observation that edges incident
to a common vertex receive distinct colours in an anagram-free edge colouring. I prove a
significant improvement on this bound with the following result.

Theorem 3.1 (§3.1.1). Trees of maximum degree 3 have unbounded anagram-free chro-
matic index.

Note that Theorems 3.2 and 3.1 already answer the question as to whether φ and φ′ are
bounded on outerplanar graphs. Furthermore, the constant of 3 in Theorems 3.1 and 3.2
is optimal because φ is bounded on graphs of maximum degree 2. Recall that φ(P ) 6 4
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for all paths P . It follows that φ(C) 6 5 for all cycles C, because we can colour a single
vertex of C with a unique colour and anagram-free 4-colour the remaining path. Every
graph, G, of maximum degree 2 is a disjoint union of paths and cycles, so φ(G) 6 5. The
same result and proof shows that φ′(G) 6 5 for all graphs of maximum degree 2. It is
open as to whether the constant of 5 can be reduced to 4.

Trees of bounded radius or pathwidth

The anagram-free chromatic number is unbounded on graphs of maximum degree 3, which
motivates the study of φ on trees. Recall π is bounded on trees, as Brešar et al. [30] proved
π(T ) 6 4 for every tree T . We answer the question as to whether φ is bounded on trees in
the negative.

Theorem 3.4 (§3.1.2). Trees have unbounded anagram-free chromatic number.

The proof of Theorem 3.4 is constructive, and uses a set of trees with unbounded
maximum degree. This raises the question of whether φ is bounded on trees of maximum
degree 3, answered by Kamčev et al. [83]. We also investigate bounding φ by parameters
other than maximum degree, and show that φ is bounded on trees of bounded pathwidth
and trees of bounded radius. The radius of a tree, T , is the minimum, taken over all
vertices u in T , of the maximum of dist(u, v), for all v ∈ V (T ). We obtain the following
tight bound on φ on trees of bounded radius.

Theorem 3.7 (§3.2). Every tree T of radius h has φ(T ) 6 h + 1. Moreover, for every
h > 0 there is a tree T of radius h such that φ(T ) > h.

The radius of a path, P , is roughly half its length, so the bound in Theorem 3.7 is
poor for paths. To address this, we bound φ on trees of bounded pathwidth. Pathwidth
is a well studied parameter within square-free colouring [50, 64] as well as more generally.
Recall that pw(T ), defined in Section 1.2.8, denotes the pathwidth of a tree T .

Theorem 3.10 (§3.2). For every tree T , φ(T ) 6 4 pw(T ) + 1. Moreover, for every p > 0
there is a tree T such that φ(T ) > p > pw(T ).

Note that since every tree, T , on n vertices, has pathwidth O(log n) [121], Theorem
3.10 implies that φ(T ) 6 O(log n). The graphs of pathwidth 1 are the caterpillars , which
are trees consisting of a path, P , with additional leaf vertices adjacent to P . It is open
whether φ(G) 6 4 for graphs of pathwidth 1.

k-anagram-free colouring

Recall that square-free colouring can be generalised to k-power-free colouring. Similarly, we
generalise anagram-free colouring to k-anagram-free colouring. For k > 2, a k-anagram is
a wordW1W2 . . .Wk where eachWi is a permutation of a non-empty wordW . k-anagrams
are an established object of study in combinatorics on words and also known as ‘abelian
k-powers’ or ‘strong k-repetitions’ [47]. A colouring of a graph, G, is k-anagram-free if
the sequence of colours on each of its paths is not a k-anagram. This definition applies to
both vertex and edge colourings. The corresponding k-anagram-free chromatic number is
denoted by φk(G) and the k-anagram-free chromatic index is denoted by φ′k(G).

Every (k + 1)-anagram contains a k-anagram, so a k-anagram-free graph colouring is
also (k + 1)-anagram-free. Thus, for every graph G,

φ(G) = φ2(G) > φ3(G) > φ4(G) > . . .

13
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with an analogous expression for φ′k. Therefore, for all k > 2, upper bounds on φ and
φ′ apply to φk and φ′k respectively. However, recall that our only upper bounds on φ are
for trees of bounded radius and trees of bounded pathwidth. This motivates the study of
lower bounds for φk and φ′k to determine whether the unbounded behaviour of φ and φ′

extends to φk and φ′k. We first show that Theorem 3.2, which says that φ is unbounded
on planar graphs of maximum degree 3, generalises to φk.

Theorem 3.12 (§3.3.1). For k > 2, the k-anagram-free chromatic number is unbounded
on planar graphs of maximum degree k + 1.

Note that Theorem 3.12 is not a full generalisation of Theorem 3.2 as the class of graphs
are not outerplanar for k > 3. Also, the bound in Theorem 3.12 depends on k, so it is
open whether there exists a d ∈ Z+ such that, for all k > 2, φk is unbounded on graphs of
maximum degree d.

Results about φ and φ′ do not always generalise to φk and φ′k, as shown by the following
contrasting result for trees.

Theorem 3.13 (§3.3.2). φk(T ) 6 4 and φ′k(T ) 6 4 for every tree T and k > 4.

This result is somewhat surprising given Theorems 3.2 and 3.4, which show that φ2

and φ′2 are unbounded on trees. Note that Theorem 3.13 leaves a gap at k = 3. Whether
φ3 and φ′3 are bounded on trees is an open problem. Since upper bounds on φ apply to φ3,
φ3 is bounded on trees of bounded radius and trees of bounded pathwidth, by Theorems
3.7 and 3.10. We show similar bounds for φ′3.

Theorem 3.14 (§3.3.2). For every tree T , φ′3(T ) 6 4 pw(T ).

The bounds on φk and φ′k in Theorem 3.13 can be improved for larger values of k. The
constant can be lowered to 3 for k > 6 and to 2 for k > 8. These improvements follow
from bounds, proven by Dekking [47], on the minimum number of symbols in arbitrarily
long 3-anagram-free and 4-anagram-free words, and the following theorem.

Theorem 3.15 (§3.3.2). For all z > 1 and k > 2z, if φz(P ) 6 y for all paths P , then
φk(T ) 6 y and φ′k(T ) 6 y for all trees T .

1.3.3 Results of Kamčev, Łuczak and Sudakov

Recall that Kamčev et al. [83] released an important paper on anagram-free colouring,
independent of the results in Section 1.3.2. Among other results, they answer my question
on the status of the binary tree. Here is a brief summary of their results.

Binary trees

Kamčev et al. [83] answer the question of whether φ is bounded on trees of maximum
degree 3 with the following result.

Theorem 1.5 (Kamčev et al. [83]). If Th is the complete binary tree of height h, then√
h

log2 h
6 φ(Th) 6 h+ 1.

The upper bound, φ(T ) 6 h + 1, holds for every tree, T , of height h, and is obtained
by colouring vertices by their depth. This upper bound is almost best possible, for general
trees, as Theorem 3.7 states that there is a tree, T , for every height h with φ(T ) > h. I
generalise Theorem 1.5 in Section 1.3.4 for use in my study of subdivisions.
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Excluded minors

Recall from Section 1.2.10 that a graph, H, is a minor of a graph, G, if H is isomorphic
to a graph obtained from G by a sequence of edge contractions, edge deletions and vertex
deletions. Kamčev et al. [83] prove the following.

Theorem 1.6 (Kamčev et al. [83]). For every graph G without H as a minor

φ(G) 6 10|V (H)|3/2|V (G)|1/2.

This is a notable improvement over the trivial bound φ(G) 6 |V (G)| obtained by
colouring each vertex with a unique colour, provided that the graph excludes a relatively
small minor.

Random graphs

A graph is d-regular if all of its vertices have degree d. Let Gn,d be the random regular
graph which is chosen uniformly at random from all d-regular graphs of order n. Note that
Gn,d only exists when nd is even because, by the handshaking lemma, the sum of degrees
in every graph is even.

Theorem 1.7 (Kamčev et al. [83]). There exists a constant C such that for sufficiently
large d the random regular graph Gn,d satisfies(

1− C log d

d

)
n 6 φ(Gn,d) 6

(
1− log d

d

)
n

with probability tending to 1 as n tends to infinity, when Gn,d exists.

Note that
(
1− C log d

d

)
tends to 1 as d tends to infinity, implying that nearly every

vertex requires a unique colour in most regular graphs of sufficiently high degree.

1.3.4 Results on subdivisions

The results so far distinguish φ from π by showing that φ is unbounded on many classes
of graphs for which π is bounded. This trend matches the intuition that, since there are
many more squares than anagrams, it is much harder to avoid anagrams than it is to
avoid squares. These results motivate the search for classes of graphs with bounded φ.
Since φ is unbounded on graphs of maximum degree 3, we look to a class of graphs with
low average degree, hence the study of highly subdivided graphs. Subdivisions are also
of interest because bounding π on sufficiently subdivided graphs is a well studied topic
within square-free colouring, see Section 1.2.6.

Subdivisions of trees

The results about π on highly subdivided trees generalise to similar results for φ. We first
construct anagram-free 8-colourable subdivisions of binary trees.

Theorem 4.2 (§4.1.1). Every binary tree, T , of height h, has a (6 3h−1 − 1)-subdivision,
S, with φ(S) 6 8.

We then construct anagram-free 10-colourable subdivisions of complete d-ary trees.
Theorem 4.4 implies that all trees have a subdivision with φ at most 10 because every tree
is a subtree of a d-ary tree, for some d.
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Theorem 4.4 (§4.1.1). Every d-ary tree, T , of height h, has a
(
6 2d(d+ 1)h−1

)
-subdivision,

S, with φ(S) 6 10.

The number of division vertices per edge in Theorems 4.2 and 4.4 grows exponentially
with the height of the original tree. This raises the question of whether constructions
with fewer division vertices exist. In particular, it is natural to ask whether every tree of
bounded degree has an anagram-free c-colourable subdivision with the number of division
vertices per edge growing slower than exponentially with height. This question is answered
in the negative by the following theorem.

Theorem 4.9 (§4.1.3). The k-subdivision, S, of the complete d-ary tree of height h satisfies√
h

logmin{d,(h(k+1))2}(h(k + 1))
6 φ(S) 6

10h

logd+1 (k/2d)
+ 14.

Theorem 4.9 implies that, for sufficiently large height h, the number of division vertices
per edge, k, in an anagram-free c-colourable subdivision of the complete d-ary tree is at
least

k >
dh/c

2

h
− 1,

which is exponential in h for fixed c. The upper bound in Theorem 4.9 is obtained by
applying Theorem 4.4 to independent subtrees of the complete d-ary tree. The lower bound
is a generalisation of Theorem 1.5 of Kamčev et al. [83], and the proof is an extension of
their method.

Subdivisions of General Graphs

We also show that φ is bounded on sufficiently subdivided graphs.

Theorem 4.11 (§4.2). Every graph G has a
(
6 6(2)2|E(G)|−1 − 1

)
-subdivision, S, with

φ(S) 6 14.

The bound on φ is improved in the following theorem, at the cost of a larger base in
the exponent for the number of division vertices per edge.

Theorem 4.13 (§4.2). Every graph G has a
(
6 90

(
75
9

+ 1
)2|E(G)|−1

)
-subdivision, S, with

φ(S) 6 8.

The bound φ(S) 6 8 in Theorem 4.13 is the best known bound for sufficiently sub-
divided graphs, and, notably, it is better than the bound for subdivisions of trees in
Theorem 4.4. The advantage of Theorem 4.4 is that it uses many fewer division vertices
per edge. Indeed, for the complete d-ary tree, T , the number of division vertices per edge
in Theorem 4.4 grows polynomially as a function of |E(T )|.

To investigate the optimality, in terms of division vertices per edge, of Theorems 4.11
and 4.13, we study lower bounds for φ for subdivisions of Kn, the complete graph on n

vertices. Recall that Nešetřil et al. [110] proved π(S) >
(
n
2

)1/(k+1) with Theorem 1.3.
Therefore, since φ(G) > π(G), k > logc (n/2) − 1 for every anagram-free c-colourable
k-subdivision of Kn. We prove the following improvement.
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Theorem 4.14 (§4.2.1). Let S be a (6 k)-subdivision of Kn. If S is anagram-free c-
colourable then

k >
(
c!
(n
c
− 1
))1/c

− c.

For fixed c, the bound in Theorem 4.14 is k > xn1/c, for some x, which is larger than
the logarithmic bound implied by Theorem 1.3. Still, this lower bound is much less than
the exponential upper bound implied by Theorem 4.11. We expect that both our upper
and lower bounds on k can be significantly improved.

1.3.5 Subsequent results from the literature

At the time of writing, two papers on anagram-free colouring have been published subse-
quent to the work in Sections 1.3.2 and 1.3.4.

Czap et al. [44] study facial anagram-free edge colourings of planar graphs in which
trails restricted to the boundary of a face must not be anagrams. This is similar to the
square-free colouring variant. They show that every planar graph has a facial anagram-free
edge colouring with at most 11 colours.

The results in Section 1.3.2 motivate the question of whether φ is bounded on graphs
of bounded pathwidth. This question was answered in the negative by Carmi et al. [35],
by showing that φ is unbounded on the family of graphs, G, known as the cross-ladders ,
where G := {P2 � Pi : i ∈ Z+}. The graph, G := H �H ′, is the strong product of H and
H ′, with vertex set, V (G) := V (H) × V (H ′), and an edge (u, u′)(v, v′) ∈ E(G), between
distinct vertices of V (G), if u ∈ N [v] and u′ ∈ N [v′]. See Figure 1.7 for an example of a
cross-ladder in G, and note that cross-ladders are planar. Carmi et al. [35] show that, for
all G ∈ G, log2 |V (G)| 6 φ(G).

Figure 1.7: The cross-ladder of order 8. Figure 1.8: The ladder of order 8.

Carmi et al. [35] generalise their result to graphs with larger pathwidth with the fol-
lowing theorem.

Theorem 1.8 (Carmi et al. [35]). For all integers n > 1 and k > 3, there exists a graph,
G, of order kn, pathwidth 2k−1, and maximum degree 3k−1 with φ(G) > (k−2) log2(n/2).

A remaining open problem is whether graphs of pathwidth 2 have bounded anagram-
free chromatic number. A key example is the family of graphs, H, known as the ladders ,
where H := {P2�Pi : i ∈ Z+}. The graph, G := H�H ′, is the Cartesian product of H and
H ′, with vertex set, V (G) := V (H) × V (H ′), and an edge (u, u′)(v, v′) ∈ E(G), if either
u = v and u′ ∈ N(v′), or u′ = v′ and u ∈ N(v). See Figure 1.8 for an example of a ladder.

1.4 Colour schemes
Many variants of graph colouring are studied within the area of graph colouring. Some
examples include acyclic colouring [9, 22–24, 60, 65, 66, 68, 84, 90, 134], star colouring
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[5, 15, 84, 134], parity colouring [26, 34], centred colouring [109], conflict-free colouring
[37], and pattern-free colouring [71]. Many types of colourings have common features or
properties, yet they are mostly studied independently of each other. Transferring relevant
insights between types of colouring tends to involve re-proving similar results, often with
an extension or reformulation of an existing proof from one type of colouring to another.
This requirement slows down exploration of the space of potential types of colouring, and
makes it difficult to prove relationships between existing types of colouring. Currently,
investigating a new variant of an established type of colouring involves rewriting many
proofs or constructing arguments as to why existing proofs apply to the new variant.

In response, Chapter 5 proposes an axiomatic approach which unifies many types of
graph colouring. In particular, I review many types of colouring, identify some shared prop-
erties, and propose a set of axioms to encompass these properties. A colour scheme is de-
fined to be a set of coloured graphs that obey these axioms. For example, the colour scheme
that corresponds to proper colouring is the set of coloured graphs with no monochromatic
edges. Care needs to be taken to define axioms which are neither too restrictive nor too
general. A set of axioms which is too restrictive has limited use, as it could only be used to
study a limited number of variants of graph colouring. Conversely, a set of axioms which
is too permissive would not have enough structure to guarantee standard graph colouring
operations, such as the ability to take subgraphs of graphs with a valid colouring. In
Chapter 5, the axioms are justified and used to establish many of the standard tools and
operations used in graph colouring.

Chapter 6 is concerned with the identification of general properties that determine the
behaviour of a colour scheme, with a focus on colour schemes which have their behaviour
determined by the colours along the paths in a graph. This is an interesting class of
colour schemes as it includes many types of colouring studied in the literature, including
anagram-free colouring. Furthermore, many of the colour schemes in this class can be
placed in a hierarchy, which motivates the generation and study of new types of colouring
which fill gaps in the hierarchy. The gaps around anagram-free colouring are of particular
interest, as φ is bounded on paths but not on many other classes of graphs.

1.4.1 Examples from the literature

The literature contains many types of graph colouring, some of which are reviewed in this
section. The reviews here focus on the definition and results for each type of colouring.
See Section 5.3 to see how each type relates to the study of colour schemes and a more
detailed comparison of their properties.

Distance colouring

For k ∈ Z+, a distance-k colouring of a graph, G, is a colouring such that vertices at
distance at most k receive distinct colours [92]. This is an extension of proper colouring,
as proper colouring is distance-1 colouring. The distance-k chromatic number , χk(G), of
a graph G is the minimum number of colours in a distance-k colouring of G. A distance-k
colouring of a graph G is equivalent to a proper colouring of Gk, called the kth power of G,
where Gk is the graph with vertices V (G) and an edge, uv ∈ E(Gk), if dist(u, v) 6 k in G.
It follows that χk(G) 6 ∆(G) (∆(G)− 1)k−1 + 1 for all graphs G. Distance-k colourings
are studied on many classes of graphs, for example, the distance-2 chromatic number of
planar graphs has received much interest [11, 104, 128]. Agnarsson and Halldórsson [2]
show that, for all k ∈ Z+, there exists c such that every planar graph, G, is distance-k(
c∆(G)bk/2c

)
-choosable and that this bound is tight.
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An exact distance-k colouring of a graph, G, is a colouring such that vertices at dis-
tance exactly k receive distinct colours [109]. Exact distance-k colouring has distinctive
behaviour compared to distance-k colouring. For example, the (non-exact) distance-k chro-
matic number is unbounded on stars, for k > 2, whereas, for odd `, the exact distance-`
chromatic number is bounded on planar graphs [110, 129].

Pattern-free colouring

Grytczuk [71] introduced p-free colouring, where p is a pattern, as a generalisation of
square-free colouring. A pattern is a finite word which encodes disallowed sequences of
blocks. A finite word W is said to match a pattern p = x1x2 . . . xn if W can be divided
into n non-empty blocks, denoted W = B1B2 . . . Bn, such that Bi = Bj if xi = xj, for
all i, j ∈ [n]. A coloured graph is p-free if the sequence of colours read along each of its
subpaths does not match p. The p-chromatic number of G is the minimum number of
colours in a p-free colouring of G.

Pattern-free colouring is an extension of square-free colouring and, more generally,
k-power-free colouring. Formulated as pattern-free colouring, k-power-free colouring is ak-
free colouring, where ak denotes the symbol a repeated k times. Pattern-free colouring and
square-free colouring also have similar inspirations, as they both originate in combinatorics
of words. A pattern p is said to be avoidable on graphs if its chromatic number is bounded
by a function of maximum degree. The study of avoidable patterns on paths was introduced
and characterized by Zimin [136] and Bean et al. [16] in the context of combinatorics on
words.

Grytczuk [71] proved that there is a constant, c, such that the p-free chromatic number
of a graph G is at most c∆(G)m/(m−1), where m is the number of occurrences of the least
occurring symbol in p. His proof uses the Lovász Local Lemma and has the same exponent
as the upper bound on k-power-free colouring [7].

Parity colouring

A parity path in a coloured graph, G, is a path, P in G, in which every colour in P occurs
an even number of times. A parity colouring of a graph, G, is a colouring of G such that G
has no parity paths. Parity colouring was introduced by Bunde et al. [34] in the context of
edge colouring. They also studied strong parity edge colouring , in which a graph colouring
of G is admissible if no open walk in G has every colour occur an even number of times.
Borowiecki et al. [26] study parity vertex colouring. I focus on the vertex version of parity
colouring because my study of colour schemes is focused on vertex colouring. I denote the
parity vertex chromatic number of a graph G by χI(G).

Parity colouring is stronger than anagram-free colouring, in the sense that every anagram-
free colouring is a parity colouring, because every symbol in an anagram occurs an even
number of times. Bunde et al. [34] prove that χI is unbounded on paths by show-
ing χI(Pn) = dlog2(n+ 1)e for all n. Borowiecki et al. [26] prove the upper bound
χ(G) 6 χI(G) 6 |V (G)| −α(G) + 1 where α(G) is the independence number of G; the size
of the largest set of pairwise non-adjacent vertices in G.

Centred and conflict-free colouring

A centred colouring of a graph, G, is a colouring in which every connected subgraph of G
has a colour which occurs exactly once [109]. I denote the centred chromatic number of a
graph G by χX [109]. Centred colouring can be used to define the tree-depth, td(G) of a
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graph G, as td(G) = χX(G). Centred colouring is also related to parity colouring, since
χI(Pn) = χX(Pn) = dlog2(n+ 1)e for all n [34, 109].

Conflict-free colouring was introduced by Even et al. [61] to study conflicts in mobile
phone networks. A colouring of a graph, G, is conflict-free if every path in G contains
a colour which occurs exactly once. I denote the conflict-free chromatic number of G
by χC(G). Conflict-free colouring can be seen as a weakening of centred colouring, as
centred colouring avoids strictly more ‘bad’ subgraphs than conflict-free colouring. As
such χC(G) 6 χX(G), with equality on, but not necessarily limited to, paths. In this
sense, conflict-free colouring is more closely related to parity colouring, since χI(G) 6
χC(G) 6 χX(G), for all graphs G. This bound follows from the observation that parity
paths contain no colours that occur once.

Acyclic colouring

An acyclic vertex colouring of a graph, G, is a proper colouring in which every pair of
colour classes induces a graph with no cycles [90]. See Figure 1.9 for an example of an
acyclic vertex colouring of a graph. An acyclic edge colouring of a graph, G, is a proper
edge colouring in which every subcycle of G contains at least three colours. The acyclic
chromatic number and index of a graph, G, are denoted χa(G) and χ′a(G), respectively.

Figure 1.9: A graph, G, on the left, with the subgraph of G induced by the red and blue
vertices on the right. This colouring of G is acyclic because every subgraph of G induced
a pair of colours is a forest.

The study of acyclic colourings was introduced by Grünbaum [68], with a focus on
planar graphs. Grünbaum [68] showed that χa(G) 6 9, for every planar graph G, and
found a graph, G, with χa(G) = 5. The upper bound was lowered to 8 by Mitchem [100],
and, subsequently, to 7 by Albertson and Berman [4]. Finally, Borodin [22] showed that
χa(G) 6 5 for every planar graph, G, proving a conjecture of Grünbaum [68]. Acyclic
colouring has been studied for more general graph classes. A graph, G, is 1-planar if it
can be drawn in the plane such that each edge of G crosses at most one other edge of
G. Borodin et al. [23] show that χa(G) 6 20, for every 1-planar graph, G. The list-
colouring variant of acyclic colouring has also been studied. Borodin et al. [24] show that
χa ch(G) 6 7, for every planar graph G, where χa ch(G) denotes the acyclic choice-number
of G.

Bounding χa and χ′a on graphs of bounded degree has received much interest. Variants
of the Lovász Local Lemma are often used to prove these bounds, with later results using
entropy compression. Alon et al. [9] prove χ′a(G) 6 64∆(G) and that, for some c, χa(G) 6
c∆(G)4/3, for all graphs G. Molloy and Reed [101] improve the bound on χ′a to χ′a(G) 6
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16∆(G). This is further improved to χ′a(G) 6 d9.62(∆(G)− 1)e by Ndreca et al. [108],
who also show χa(G) 6

⌈
6.59∆(G)4/3 + 3.3∆(G)

⌉
. Esperet and Parreau [60] improve the

bound to χ′a(G) 6 4∆(G)−4 using entropy compression. Also using entropy compression,
Giotis et al. [66] improve the bound to χ′a(G) 6 d3.75(∆(G)− 1)e+1. Gonçalves et al. [67]
use entropy compression to show that there is a constant, c, such that a(G) 6 3

2
∆(G)4/3 +

c∆(G). For lower bounds, χ′a(G) > ∆(G) because χ′(G) > ∆(G), and Alon et al. [9] prove
χa(G) > c ∆(G)4/3

(log ∆(G))1/3
, for some c and graph G.

Star colouring

A star colouring of a graph, G, is a proper colouring in which every pair of colour classes
induces a forest of stars [84]. A star is a tree with at most one vertex of degree exceeding
1 and a forest of stars is a disjoint union of stars.

Star colouring and acyclic colouring share a history as star colouring was introduced
by Grünbaum [68] in a paper on acyclic colourings of planar graphs. Let χs(G) denote
the star chromatic number of a graph G. Albertson et al. [5] show that every planar
graph, G, has χs(G) 6 20 and find a planar graph, G, with χs(G) > 10. Bu et al. [33]
study star colourings of sparse graphs and prove χs(G) 6 4 for every graph, G, with
maximum average degree less than 26

11
. The maximum average degree of a graph, G, is

the maximum of the average degree over all subgraphs of G. Fertin et al. [62] study star
colourings of many classes of planar graphs, including planar graphs, trees and graphs of
high girth. The girth of a graph, G, is the length of the shortest subcycle in G. Fertin
et al. [62] show that χs(G) 6 12 for every planar graph, G, with girth at least 7. Kündgen
and Timmons [95] improve this bound to χs(G) 6 7 and generalise the result to list star
colouring. Fertin et al. [62] also prove relationships on compositions of graphs, showing
that χs(G�H) 6 χs(G)χs(H), for all graphs G and H, where G�H is the Cartesian of G
and H, see Section 1.3.5.

Fertin et al. [62] note that χa(G) 6 χs(G), for all graphs G, because all 2-coloured
cycles contain either a monochromatic edge or a 2-coloured P4 as a subgraph. Furthermore,
Fertin et al. [62] prove that there exists a constant, c, such that, for all graphs G, χs(G) 6
c∆(G)3/2, and that this bound is tight up to a factor of (log ∆(G))1/2. This bound is
improved by Esperet and Parreau [60], who use entropy compression to show that χs(G) 6
2
√

2∆(G)3/2 + ∆(G) for all graphs G.

Frugal colouring

A k-frugal colouring of a graph, G, is a proper vertex colouring where, for all v ∈ V (G),
each colour occurs at most k times in N(v). Frugal colouring was introduced by Hind
et al. [80], in part, for its application to total colouring. A total colouring of a graph, G, is
a proper colouring of E(G) and V (G) with the additional requirement that every edge has
a distinct colour from each of its endpoints [81]. Let χGk

(G) denote the k-frugal chromatic
number of a graph G.

First note that a colouring of a graph is 1-frugal if and only if it is a distance-2 colour-
ing. Also, every k-frugal colouring is a (k + 1)-frugal colouring. A central question in the
field has been to determine, for which k, every graph of maximum degree ∆ has a k-frugal
(∆+1)-colouring. The question is asked for (∆+1)-colouring since χ(G) 6 ∆(G)+1, for all
graphs G. Initially, Hind et al. [80] show that every graph with maximum degree ∆ > e107

is (log8 ∆)-frugal (∆ + 1)-colourable. This bound was improved by Pemmaraju and Srini-
vasan [113], who show that there exists a constant, c, such that every graph with maximum
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degree ∆ is (c log2 ∆/ log log ∆)-frugal (∆ + 1)-colourable. This is further optimized by
Molloy and Reed [103], who show that every graph with sufficiently large maximum de-
gree, ∆, has a (50 log ∆/ log log ∆)-frugal (∆ + 1)-colouring. This bound is tight up to
a constant factor as Alon (see [80]) showed that there is a class of graphs which are not
(log ∆/ log log ∆)-frugal (∆+1)-colourable. The proofs of lower bounds use variants of the
Lovász Local Lemma. For upper bounds, Hind et al. [80] show that, for every graph, G,
of sufficiently large maximum degree, χGk

(G) 6 max{(k+ 1)∆(G),
⌈(
e3∆(G)(k+1)/k

)
/k
⌉
}.

Kang and Müller [84] improve upon this bound by showing that, for all k, there exists c
such that χGk

(G) 6 c
k
∆(G)(k+1)/k, for all graphs G.

1.4.2 Results

The primary result of my investigation of colour schemes is that many types of graph
colouring can be unified using five natural axioms. A colour scheme is a set of coloured
graphs that satisfy these axioms. For example, the colour scheme corresponding to proper
colouring, denoted P, is the set of coloured graphs with no monochromatic edges. It is
difficult to go into more detail without defining the axioms and delving into their impli-
cations, so instead, I outline two applications of colour schemes. The applications tend to
be generalisations of results from Chapters 3 and 4, and include theorems about general
properties, as well as the construction of new variants of graph colouring with novel prop-
erties. See Chapter 5 for the definition of colour schemes as well as an investigation of
the general properties that follow from this definition. See Chapter 6 for theorems about
general properties of colour schemes that apply to many types of graph colouring.

The first application regards subdivisions of graphs. The central result of Chapter 4 is
that φ is bounded on sufficiently subdivided graphs. This raises the question of whether
being bounded on subdivisions of trees implies that a colour scheme is bounded on suf-
ficiently subdivided graphs, as there are no known counter-examples. I investigate this
question in the context of colour schemes, and answer it in the negative. I construct a
colour scheme which is bounded on sufficiently subdivided trees but not on sufficiently
subdivided graphs. I also construct a colour scheme which is bounded on subdivisions of
stars, but not on sufficiently subdivided trees. Conversely, I generalise the results in Chap-
ter 4 by establishing some natural sufficient conditions for a colour scheme to be bounded
on sufficiently subdivided graphs.

The second application is to explore variants of graph colouring which are, in a sense,
‘close’ to anagram-free colouring. This sense of closeness places square-free colouring closer
to anagram-free colouring than anagram-free colouring is to proper colouring, since χ(G) 6
π(G) 6 φ(G), for all graphsG. Anagram-free colouring is bounded by square-free colouring
on one side and parity colouring on the other side. However, there are gaps between each
variant of colouring, which I investigate by constructing new variants of graph colouring.
These variants can have novel properties, for example, I construct a colour scheme which
is bounded on graphs of bounded maximum degree, like π, but which is unbounded on
trees, like φ. I also define ε-uniform-free colouring which is an extension of anagram-free
colouring. A word AB is ε-uniform if the number of every symbol, c, in A is within a
factor of ε of the number occurrences of c in B. I show that the ε-uniform-free chromatic
number is unbounded on paths, for all ε ∈ (0, 1) ⊆ R.
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1.4.3 Related concepts

The literature contains concepts and results with some similarity to colour schemes. Com-
parisons between types of graph colouring have been made within the study of graph
colouring, and there are some theorems and techniques that apply to multiple types of
graph colouring. Also, the formulation of colour schemes as sets of coloured graphs is
related to the formulation of graph properties.

A graph property is a set of graphs closed under isomorphism. The most interesting sets
of graphs correspond to established properties in graph theory, such as bipartite graphs
or graphs of maximum degree at most k [109, Chapter 3]. Many graph properties in
the literature share characteristics, such as being hereditary or additive [25]. A graph
property, G, is hereditary if, for all G ∈ G, every subgraph of G is in G. A graph property,
G, is additive if, for all H ⊆ G, the disjoint union of the graphs in H is in G. To take a
common example, let Sk be the graphs of maximum degree at most k. For each G ∈ Sk,
every subgraph of G has maximum degree at most k, and every disjoint union of graphs
of maximum degree at most k has maximum degree at most k, so Sk is additive and
hereditary. See [25] for a survey of graph properties. Chromatic numbers can be defined
as a property. For example, let Pk be the set of properly k-colourable graphs, and note
that Pk is additive and hereditary. Broere et al. [32] study a generalisation of chromatic
numbers based on arbitrary hereditary properties. There are two main differences between
colour schemes and graph properties. The first is that colour schemes are sets of coloured
graphs, whereas graph properties are sets of graphs. This is an important distinction, since
many useful operations can be explicitly applied to properly k-coloured graphs, with no
analogous operation for graphs of chromatic number k. The second distinction is that the
colour scheme axioms are designed to restrict colour schemes to the sets of coloured graphs
which correspond to commonly held notions of graph colouring.

Part of the motivation behind colour schemes is to make it easier to compare and
combine variants of graph colouring. Some comparisons and combinations of types of
graph colouring are present in the literature. We have already seen an example, that
χa(G) 6 χs(G), for all graphs G [62]. Another example is the generalisation of star,
acyclic, and distance-2 colouring, by Pór and Wood [116], to types of graph colouring
defined by avoiding subgraphs in the induced subgraphs of pairs of colour classes.

Kang and Müller [84] combine frugal, acyclic and star colouring by defining k-frugal
star colouring and k-frugal acyclic colouring to be k-frugal graph colourings which are also
star colourings or acyclic colourings, respectively. They denote the k-frugal, k-frugal star,
and k-frugal acyclic chromatic numbers χk, χks , and χka respectively. They note that, for
all graphs G,

∆(G)

k
6 χk(G) 6 χka(G) 6 χksF (G).

Cheilaris et al. [37] study conflict free colouring and note that its chromatic number,
χF, is bounded above and below by other chromatic numbers. They form the hierarchy

χ(G) 6 π(G) 6 χF(G) 6 χord(G)

which holds for all graphs G. The chromatic number, χord, corresponds to ordered colour-
ing. An ordered colouring of G is a colouring, by integers, such that, for each path in
G, the largest colour in the path occurs exactly once in the path. Chapter 6 presents an
extended hierarchy of colour schemes, which includes newly constructed colour schemes
placed in many of the gaps between colour schemes found in the literature.

23



CHAPTER 1. INTRODUCTION

The Lovász Local Lemma and entropy compression can be used to prove upper bounds
in many areas of graph colouring, which motivates the creation of tools which can be ap-
plied to many types of graph colouring. Esperet and Parreau [60] use entropy compression
to prove χ′a(G) 6 4∆(G)−4 in a way which is relatively easy to translate to other variants
of graph colouring. Colour schemes provides a framework for results of this nature and
make it easier to apply general results to multiple types of graph colouring. Theorem 6.21
generalises the bound on φ, for graphs of bounded degree, to types of graph colouring
which avoid sufficiently few patterns along paths.

24



Chapter 2

Lovász Local Lemma

The probabilistic method is a powerful tool used within combinatorics which is often
used to prove the existence of combinatorial objects [8, 102]. A typical application of
the probabilistic method involves setting up a probability space and using probabilistic
tools to show that a randomly selected object has a non-zero probability of satisfying a
desired property. It can then be concluded that some positive number of the objects have
the property. For example, consider a probabilistic proof that a graph G has a proper
k-colouring. We start with the space of all k-colourings of G. Then, using properties of G,
we show that a random k-colouring of G is proper with some positive probability. We then
conclude that G has at least one proper k-colouring, since the probability space is discrete.
Many of the tools in the probabilistic method give conditions on probability spaces that
ensure that an object with the desired properties can be found.

The Lovász Local Lemma, henceforth called the Local Lemma, is a well studied tool in
the probabilistic method with many extensions and variants. It was developed by Erdős
and Lovász [57] in 1975 for the purpose of hypergraph colouring. More generally, the
Local Lemma can be applied to find combinatorial objects with properties that depend
on avoiding a set of local ‘bad’ patterns. This makes the Local Lemma particularly well
suited to studying graph colouring, hence it is the focus of this chapter. To take our earlier
example, a k-colouring of a graph is proper if it contains no monochromatic edge. Here
we have expressed a global property, proper colouring, in terms of a set of local patterns
which we are required to avoid.

In general, all variants of the Local Lemma require a probability space with a set of
‘bad’ events. The bad events are designed to encompass all ways in which an object may
fail to satisfy the desired property. Given a set of bad events, the Local Lemma provides
sufficient conditions for there to be a positive probability that none of the bad events occur.
This condition depends on the probability of each bad event as well as the interdependence
structure of the events. There are many levels of generality of the Local Lemma, each suited
to particular situations. For example the Symmetric Local Lemma is most applicable to
problems with symmetries in the probability and interdependence structure of their bad
events. There are stronger versions, such as the General Local Lemma, which can be
used to prove a wider range of results, but are harder to apply. Stronger variants of the
Local Lemma tend to either use more details about the interdependency structure of the
bad events, such as the Clique and Improved Local Lemmas, or weaken the dependency
requirements of the events, such as the Lopsided Local Lemma.

The results presented in this chapter are non-original, with the exception of Theo-
rem 2.11, which is an original contribution published in [19].
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CHAPTER 2. LOVÁSZ LOCAL LEMMA

2.1 Formulations of the Local Lemma
All variants of the Local Lemma allow some dependence between the underlying bad
events. The level of dependence is encoded by a dependency graph, with the bad events
as vertices and an edge between two bad events if they are ‘dependent’. Let A be a set
of events in a probability space. A graph, G, is a dependency graph of A if V (G) = A
and each event A ∈ A is mutually independent of V (G) \N [A]. Recall that N [A] denotes
the closed neighbourhood of A, which is the set including A and the vertices adjacent to
A. Two events, A and B, are mutually independent if conditioning on one event does not
affect the other, that is, P(A|B) = P(A) and P(B|A) = P(B). An event, A, is mutually
independent of a set of events B, if A is mutually independent of each B ∈ B. The mutual
independence between bad events required by the Local Lemma is expressed in terms
of restrictions on the structure of their dependency graph. Lower mutual dependence is
better, so applications of the Local Lemma involve the construction of a sufficiently sparse
dependency graph.

2.1.1 Symmetric Local Lemma

The simplest variant of the Local Lemma is the Symmetric Local Lemma. This vari-
ant expresses the independence requirement as a bound on the maximum degree of the
dependency graph.

Lemma 2.1 (Symmetric Local Lemma [123]). Let A be a set of events with dependency
graph D and p be a number such that P(A) 6 p for all A ∈ A. If ep(∆(D) + 1) < 1 then

P

(⋂
A∈A

A

)
> 0.

Shearer [122] shows that the constant ‘e’ is tight. The Symmetric Local Lemma is
suited to applications where the bad events have uniform dependence and probability. As
an example, consider bounding the distance-k chromatic number on graphs of bounded
maximum degree. Recall that a distance-k colouring is a colouring in which vertices at
distance at most k receive distinct colours. Let χk(G) denote the distance-k chromatic
number of a graph G. Theorem 2.2 is a example of a bound that may be proven with the
Symmetric Local Lemma. The theorem is purely demonstrative, as there are better known
bounds for distance-k colouring.

Theorem 2.2. χk(G) 6
⌈
2e∆(G)k

⌉
for all graphs G and k > 1.

Proof. Let c :=
⌈
2e∆(G)k

⌉
be a number of colours. Let f : V (G) → [c] be a random

c-colouring of G with each f(u) ∈ f(V (G)) selected uniformly and independently. Define
the set of bad events, A, such that Au,v ∈ A is the event f(u) = f(v), for all u, v ∈ V (G)
with dist(u, v) 6 k.

Now construct a sufficiently sparse dependency graph, D, for the set of events A.
First set V (D) = A. To determine adjacency, note that Au,v is mutually independent of
f(V (G) \ {u, v}). Therefore, for D to be a dependency graph, it is sufficient for D to have
an edge between each pair of events which reference a common vertex of G. In particular,
{Ax,y, Au,v} ∈ E(D) if x = u, x = v, y = u or y = v. We now calculate ∆(D). First
observe that, for each vertex u ∈ V (G), there are at most ∆(G)k vertices, v ∈ V (G), such
that dist(u, v) 6 k. Therefore each vertex of G is referenced by at most ∆(G)k events in
A. Each event references two vertices so ∆(D) 6 2∆(G)k − 2.
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2.1. FORMULATIONS OF THE LOCAL LEMMA

Finally, we require a bound, p, on P(Au,v). For every u, v ∈ V (G), the probability that
f(v) = f(u) is 1/c since all colours are assigned independently. Therefore P(Au,v) = 1/c.
Now

ep(∆(D) + 1) <
e

c
(2∆(G)k − 1 + 1) =

2e∆(G)k

d2e∆(G)ke
6 1

so the theorem follows by Lemma 2.1.

2.1.2 General Local Lemma

Many extensions of the Local Lemma use variation between the probabilities and interde-
pendence of the bad events to obtain better bounds. One such extension is the General
Local Lemma which, loosely speaking, allows for an event to have higher than average
dependence as long as it has a lower than average probability.

Lemma 2.3 (General Local Lemma [8]). Let A1, . . . , An be events with dependency graph
D and suppose there are real numbers x1, . . . , xn such that xi ∈ [0, 1) ⊆ R and

P(Ai) 6 xi
∏

Aj∈N(Ai)

(1− xj)

for all i ∈ [n]. Then

P

(
n⋂
i=1

Ai

)
>

n∏
i=1

(1− xi) > 0.

The General Local Lemma allows for the events A1, . . . , An to have varying probabilities
and level of mutual independence. As such, the General Local Lemma can be used to prove
bounds on chromatic numbers that depend on avoiding arbitrarily large patterns of colours.
Two examples are square-free colouring and acyclic colouring. The former avoids squares
on arbitrarily long paths in a graph while the latter avoids all 2-coloured subcycles of a
graph. The dependency graph in Lemma 2.3 can be replaced with a dependency digraph
[8], however, as directed graphs are not used in this thesis, we do not go into any further
detail.

Recall that Grytczuk [70] prove π(G) 6 16∆(G)2. As an example, we use the General
Local Lemma to reproduce a similar result using their technique. Similarly to distance-
k colouring, the probability space is the k-colourings of a graph G and each bad event
corresponds to a path being a square. The central component of the proof is to count
the intersections between paths, since the intersecting paths correspond to adjacent bad
events in the dependency graph. The exponentially increasing number of intersections is
counterbalanced by the exponentially decreasing probability of a long path being a square.
An analogous insight is at the core of all applications of the Local Lemma in similar
situations.

Theorem 2.4. π(G) 6 64∆(G)2 for all graphs G.

Proof. Let k := (8∆)2, n := |V (G)|, and Q be the set of paths in G. Colour each vertex of
G independently and randomly with k colours. For each P ∈ Q, let AP be the event that
P is a square. Define the dependency graph, D, with vertex set V (D) := {AP : P ∈ Q}.
An edge {AP , AQ} is in E(D) if the paths P and Q share a vertex in G. Observe that two
events, AP and AQ, are mutually independent if P and Q have no common vertex, so D
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is a dependency graph. Partition V (D) by the sets Si := {AP : P is a path of order i} for
i ∈ [n].

Let ∆ := ∆(G). We now show that, for all i, j ∈ [n] and P ∈ Si, d(i, j) := ij∆j is
an upper bound on |N(AP ) ∩ Sj|. To do so we consider a vertex, v ∈ V (G), and bound
the number of paths of order j that contain v. Note that there are at most ∆a−1 paths
of order a in G which start at v. Therefore there are at most ∆b−1∆j−b paths in Sj with
v as the bth vertex. Since v can occur at any of j positions in a path of order j, there at
most j∆j paths of order j going through v. It follows that a path on i vertices intersects
at most ij∆j paths of order j, so |N(AP ) ∩ Sj| 6 ij∆j. Let xi = (3∆)−i, for all i ∈ [n],
and let xP := x|V (P )| be the parameter, required by Lemma 2.3, corresponding to AP , for
all paths P ∈ Q. By definition,

∏
AQ∈N(AP )

(1− xQ) >
n∏
j=1

(1− xj)d(|V (P )|,j) ,

for all P ∈ Q. For all i ∈ [n], (1− xi) > e−
5xi
4 because xi 6 3−1, so

xi

n∏
j=1

(1− xj)d(i,j) > (3∆)−i
n∏
j=1

e
−5
4
xjd(i,j)

= (3∆)−i
n∏
j=1

e
−5
4

(3∆)−jij∆j

> (3∆)−i exp

(
−5i

4

∞∑
j=1

(
j/3j

))
.

Let P ∈ Q and i = |V (P )|. Note that P(AP ) = k−i/2 because, if P is a square, the second
half of P is determined by the first half. The series

∑∞
j=1 j/3

j converges to 3/4 so

xP
∏

AQ∈N(AP )

(1− xQ) > xi

n∏
j=1

(1− xj)d(i,j) > (3∆)−ie−15i/16 > (8∆)−i = k−i/2 = P(AP ).

Therefore P
(⋂
QAP

)
> 0, by Lemma 2.3. It follows that G has a square-free k-colouring.

Recall that the factor of 64 in π(G) 6 64∆(G)2, has been the subject of much optimiza-
tion, see Section 1.2.2. The bound in Theorem 2.4 is unoptimized, both for simplicity and
to demonstrate some optimizations from the literature. The first optimization follows from
the observation that paths of odd order cannot be squares. Including paths of odd order
doubles |V (D)| and quadruples |E(D)|. Removing the events that corresponds to paths
of odd order results in the bound π(G) 6 16∆(G)2, which was obtained by Grytczuk [70].

To further optimize Theorem 2.4 consider the parameter xi = (3∆)−i. Ideally, xi would
be as small as possible, as a tighter upper bound on xi allows us to reduce the exponent
in (1 − xi) > e−

5xi
4 . Theorem 2.4 uses xi 6 3−1, which can be improved to xi 6 9−1 by

considering graphs of maximum degree 3. This is among the optimizations employed by
Harant and Jendro ’l [75] for their bound π(G) 6 d12.92(∆(G)− 1)2e, where ∆(G) > 3.
Further improvements to this bound were obtained by extending the Local Lemma to take
more details of the dependency graph into account.
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2.1.3 Weighted Local Lemma

The Weighted Local Lemma strikes a balance between the generality of the General Local
Lemma and the approachability of the Symmetric Local Lemma. It applies naturally to
dependency graphs of bad events with exponentially increasing degree and exponentially
decreasing probability.

Lemma 2.5 (Weighted Local Lemma [102]). Let A1, . . . , An be events with dependency
graph D and suppose there are real numbers x1, . . . , xn such that xi > 1. If there is a
p ∈ [0, 1

4
] such that

P(Ai) 6 pxi and∑
Aj∈N(Ai)

(2p)xj 6
xi
2

for all i ∈ [n], then P
(⋂n

i=1Ai
)
> 0.

The Weighted Local Lemma allows for a shorter proof of Theorem 2.4. It uses the same
dependency graph, with the events corresponding to paths of order 1 removed. The proof
follows from Lemma 2.5, with p = 1/k and xP = |V (P )|/2, for |V (P )| > 2.

Proof outline of Theorem 2.4. Use the same setup as the previous proof of Theorem 2.4,
with the exception that Q excludes paths of order 1. Let P ∈ Q and i := |V (P )|. Recall
that P(AP ) = k−i/2 so let xP = i/2 and p = 1/k. The theorem follows by Lemma 2.5,
because ∑

AQ∈N(AP )

(2p)xQ 6
n∑
j=2

∆ij(2p)
xj

= i
n∑
j=2

j∆j

(
64∆2

2

)−j/2
= i

n∑
j=2

j
(√

32
)−j

<
i
(
2
√

32− 1
)(√

32− 1
)2√

32

<
i

4

=
xP
2

The Weighted Local Lemma is a special case of the General Local Lemma, reformulated
into a more readily applicable form.

2.1.4 Detailed features of dependency graphs

The General Local Lemma has been extended in many ways, often with the goal of ob-
taining stronger bounds or to widen the applicability of the Local Lemma. One approach
is to use an increasingly detailed view of the dependency graph. The effectiveness of this
approach can be seen in the extension from the Symmetric Local Lemma to the General
Local Lemma, as the former cannot be used to obtain bounds on π.
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Bissacot et al. [20] extend the General Local Lemma by replacing the restriction on the
degree of each event, Ai, with a restriction on the independent sets of the neighbourhood
of Ai. An independent set , S, of a graph, G, is a set of vertices such that uv /∈ E(G) for all
u, v ∈ S. The set of independent sets of a neighbourhood of a vertex, v, denoted IN(v), is
the set of independent sets in G which are subsets of N(v). The independent set extension
of the Local Lemma is formulated as follows.

Lemma 2.6 (Improved Local Lemma [20]). Let A1, . . . , An be events with dependency
graph G and suppose there are real numbers x1, . . . , xn such that xi > 0 and

xi > f(i)P(Ai)

where

f(i) :=
∑

S∈IN(Ai)

k∏
Aj∈S

xj

for all i ∈ [n]. Then

P

(
n⋂
i=1

Ai

)
>

n∏
i=1

(1− P(Ai))
f(i) > 0.

The intuition behind this improvement is that the General Local Lemma contains
a product which expands to a sum of all products of the weights of the events in the
neighbourhood of an event, A. The function, f , in the Improved Local Lemma is analogous
to this product, but it omits the terms with weights corresponding to adjacent events.
Other differences between the formulations are primarily due to the xi terms taking on a
slightly different role, for example they can exceed 1.

Other details of the dependency graph can be used, such as the approach taken by
Kolipaka et al. [89], who extend the Local Lemma to a variant which imposes conditions
on a decomposition of the dependency graph. A decomposition of a graph, G, is a set
of induced subgraphs of G, {G1, G2, . . . , Gk}, such that e ∈ E(Gi), for some i, for every
e ∈ E(G). They call their variant of the Local Lemma the Decomposition Theorem, which I
avoid stating here as it requires too much additional background. Instead, in Section 2.1.6,
I state a symmetric formulation of the Clique Local Lemma, which is a specialisation of
the Decomposition Theorem, and use it to prove an original result.

The Decomposition Theorem is an extension of the General Local Lemma in the sense
that the General Local Lemma is recovered by decomposing a dependency graph into
paths of order 2. Kolipaka et al. [89] use the Clique Local Lemma, a specialisation of
the Decomposition Theorem, to improve upon two previous applications of the Local
Lemma. In the first application they show that the acyclic chromatic index of a graph G
is at most 8.6∆(G). In the second application, Kolipaka et al. improve the bound on π
obtained by Harant and Jendro ’l [75] from π(G) 6 d12.92(∆(G)− 1)2e, for ∆(G) > 3, to
π(G) 6 10.4∆(G)2.

2.1.5 Lopsidependency

Another way to extend the General Local Lemma is to consider extensions of dependency
graphs with less restrictive adjacency requirements. In terms of the underlying probability
space, a weakened adjacency requirement is a narrowing of what it means for two events
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to be ‘local’. This type of extension allows sparser dependency graphs for the same set of
bad events, which makes the Local Lemma easier to apply. Some applications of the Local
Lemma, such as to spaces of random permutations, are dependent on a narrower notion of
dependency because every event may be dependent on every other, in the standard sense.
The prime example of this form of extension is lopsidependency graphs.

Erdős and Spencer [58] introduced the Lopsided Local Lemma as an extension of the
Symmetric Local Lemma. This extension essentially involved reproving the Symmetric
Local Lemma with a lopsidependency graph instead of a dependency graph. A graph, G,
with vertex set A, of bad events, is a lopsidependency graph if for all Ai ∈ A,

P
(
Ai

∣∣∣ ⋂
j∈S

Aj

)
6 P(Ai),

for every subset, S, of the complement of the closed neighbourhood of Ai in G. Intuitively,
a lopsidependency graph requires that the probability of an event does not increase when
conditioned on an arbitrary set of non-adjacent events not occurring. Since a dependency
graph is a graph that requires the probability of an event to remain constant when con-
ditioned on an arbitrary set of non-adjacent events not occurring, all dependency graphs
are lopsidependency graphs. Erdős and Spencer [58] prove the lopsidependence version of
the Symmetric Local Lemma.

Lemma 2.7 (Lopsided Lovász Local Lemma [58]). Let A be a set of events with lopside-
pendency graph G and p be such that P(A) 6 p for all A ∈ A. If 4p∆(G) < 1 then

P

(⋂
A∈A

A

)
> 0.

There is no important distinction between the two conditions 4p∆(G) < 1 and ep(∆(G)+
1) < 1, as both formulations of the Symmetric Local Lemma exist for dependency and
lopsidependency graphs. Most variants of the Local Lemma have an analogous extension
which uses a lopsidependency graph. As noted earlier, every dependency graph is a lop-
sidependency graph so such extensions are stronger than the original. Both extensions in
Section 2.1.4 have variants that use a lopsidependency graph. In fact, lopsidependency
was introduced long before the extensions of the previous section.

To illustrate lopsidependence, we briefly leave graph theory and look at Latin arrays.
A Latin array of size n is an n× n array of cells filled with m > n distinct symbols, such
that no row or column contains more than one copy of a symbol. For a Latin array L, the
symbol in cell (i, j) is denoted L(i, j). Given a Latin array, L, of size, n, a permutation
σ ∈ Sn is a transversal if all the symbols L(i, σ(i)), i ∈ {1, . . . , n} are distinct. See
Figure 2.1 for an example of a Latin array with a transversal. Erdős and Spencer [58]
introduced lopsidependence to prove the following result.

Theorem 2.8 (Erdős and Spencer [58]). Let n > 1 and k 6 n−1
16

. Every n×n Latin array
with no more than k occurrences of each symbol has a transversal.

The bound of k 6 n−1
16

was improved to k < 27
256
n by Bissacot et al. [20] with the

application of the lopsidependency extension of the Improved Local Lemma.
The proof of Theorem 2.8 uses the Lopsided Local Lemma on the space of permutations,

σ, on a fixed n×n Latin array, L. Each permutation corresponds to the cells L(i, σ(i)), for
all i ∈ [n], which is a potential transversal because each row and column has one cell. The
bad events correspond to pairs of cells which share a symbol, with a bad event occurring if
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1 2 3 4 5 6
3 7 6 1 2 5
2 3 7 8 4 1
4 1 5 2 7 8
6 4 1 7 3 2
7 6 2 5 1 4

Figure 2.1: A Latin array of order 6 on 8 symbols, with a transversal highlighted.

both cells are selected by σ. Two events are adjacent in the lopsidependency graph, D, if
any of their corresponding cells share a row or column. Note that D is not a dependency
graph because if we know that a set of cells are in σ, then it becomes more likely that
other valid cells are in σ. Erdős and Spencer [58] show that D is a lopsidependency graph
as follows.

Lemma 2.9 (Erdős and Spencer [58]). D is a lopsidependency graph.

Proof. Let A ∈ A. Without loss of generality, let cells (1, 1) and (2, 2) contain the same
symbol and A be the event that σ(1) = 1 and σ(2) = 2. We are required to show

P(A|
⋂
B∈S

B) 6 P(A), (2.1)

for all sets of events, S, which are not adjacent to A.
Fix a set, S ⊆ (V (D) \N [A]), and, for brevity, define the clause C :=

⋂
B∈S B. Define

sij to be the set of permutations with σ(1) = i and σ(2) = j that satisfy C. Also note
that P(A) = 1

n(n−1)
by simple counting. It follows that (2.1) can be extended to

|s12|∑
i 6=j |sij|

= P(A|C) 6 P(A) =
1

n(n− 1)
.

Therefore, we just have to prove

|s12|∑
i 6=j |sij|

6
1

n(n− 1)
. (2.2)

(2.2) is satisfied if |s12| 6 |sij| for all i, j because

|s12| 6 |sij| =⇒ |s12|∑
i 6=j |sij|

6
|s12|∑
i 6=j |s12|

=
|s12|

|s12|
∑

i 6=j 1
=

1

n(n− 1)
.

Therefore we just have to prove |s12| 6 |sij|. This will be achieved with an injective
function from s12 to sij.

Fix values for i and j. Let α ∈ s12 and let x and y be such that α(x) = i and α(y) = j.
Define f(α) := α∗ where α∗ is a copy of α with the modifications α∗(1) = i, α∗(x) = 1,
α∗(2) = j and α∗(y) = 2. Note that α∗ ∈ sij because α∗(1) = i, α∗(2) = j and α∗ satisfies
C. It satisfies C because the new cells, (1, i), (x, 1), (2, j) and (y, 2), contain 1 or 2 as a
row or column, so cannot cause α∗ to disagree with C. The other cells are from α, which
satisfies C by definition. So α∗ ∈ sij, which means that f : s12 → sij.

To show that f is injective, consider α∗ ∈ sij and run the definition of f backwards to
construct α such that f(α) = α∗. It is then clear that α is unique. It is irrelevant that α,
constructed by running f backwards, does not necessarily satisfy C. Since f is injective,
|s12| 6 |sij|.

32



2.1. FORMULATIONS OF THE LOCAL LEMMA

2.1.6 Lopsided Clique Local Lemma

I now present an original result which answers a similar question to that of Theorem 2.8.
Akbari and Alipour [3] ask for a characterisation of the pairs of integers, m and n, for which
all n × n Latin arrays with exactly m symbols have a transversal. This is a particularly
interesting question because increasing the number of symbols does not necessarily make
it easier to find a Latin array with a transversal. For example, every 5 × 5 Latin array
with 5 symbols has a transversal, but there is a 5 × 5 Latin array on 6 symbols with no
transversal. Akbari and Alipour [3] conjecture that every Latin array with n > 3 and at
least n2

2
symbols has a transversal. In fact, whether every n×n Latin array with (1− ε)n2

symbols has a transversal, for fixed ε > 0, was an open problem prior to Theorem 2.11.
The problem can be solved with an application of the lopsidependency extension of the
Clique Local Lemma, specialised to equal weights.

Lemma 2.10 (Lopsided Symmetric Clique Local Lemma [89]). Let A = {A1, . . . , An} be
a set of events with lopsidependency graph D. Let {K1, . . . , Km} be a set of cliques that
cover all edges in D and let κ = maxi |Ki|. Suppose that no event Ai is in more than µ of
the cliques K1, . . . , Km. If there exist x ∈ (0, 1/κ) such that

P(Ai) 6 x (1− κx)µ−1 (2.3)

for all i, then P
(⋂n

i=1 Ai
)
> 0.

Theorem 2.11 uses the same lopsidependency graph as Theorem 2.8. The main distinc-
tion between Theorem 2.8 and Theorem 2.11 is that a small number of symbols may occur
n times in L, while in Theorem 2.8 there is a limit to the occurrence of each symbol. This
difference allows for regions of high density in the corresponding lopsidependency graph,
hence the Symmetric Lopsided Local Lemma is unsuitable. To apply the Clique Local
Lemma we consider a set of 2n cliques that cover the lopsidependency graph, one for each
row or column.

Theorem 2.11. Every n×n Latin array with at least (229n2 + 27n)/256 distinct symbols
has a transversal.

Proof. Let L be a fixed n × n Latin array with n2 − cn2 − dn distinct symbols, with
c := 27/256 and d := −27/256. Let σ be a permutation picked uniformly at random
from Sn, the symmetric group on {1, 2, . . . , n}. We think of σ as choosing the set of cells
(i, σ(i)), for i ∈ [n], which might correspond to a transversal, as one cell is picked for each
row and column. Note that σ fails to be a transversal if at least two of its corresponding
cells contain the same symbol. Accordingly, the bad events are defined as

A := {(i, j, i′, j′) : i, i′ ∈ [n], i < i′, σ(i) = j, σ(i′) = j′, Lij = Li′j′}.

Keep in mind that L is fixed and it is σ that is randomly sampled. To prove that a
transversal exists we need to prove that, with positive probability, none of the bad events
occur.

The next task is to define the lopsidependency graph which will be used in applying
Lemma 2.10. Let D be a graph with vertex set A. An edge {(a, b, x, y), (a′, b′, x′, y′)} is in
D if and only if some of the cells (a, b), (x, y), (a′, b′) and (x′, y′) share a row or column.
This occurs only if at least one of x = x′, x = a′, a = x′, a = a′, y = y′, y = b′, b = y′, or
b = b′. D is a lopsidependency graph by Lemma 2.9. By this point we have a set of bad
events A with a lopsidependency graph D. The remaining ingredient is the set of cliques
which cover the edges of D.
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Let K := {K1, K2, . . . , K2n} be a set of cliques of D defined as follows. Each clique
corresponds to a row or column of L. An event (a, b, x, y) is in a clique Ki if (a, b) or (x, y)
is in the row or column corresponding to Ki. We know that Ki ∈ K is a clique because the
events in Ki share a row or column (the one corresponding to Ki) and so they are adjacent
in D. These cliques cover every edge of D because two events are adjacent only if they
share a row or column. It follows that both events are both in the clique corresponding to
their shared row or column.

Each event in A corresponds to two cells in distinct rows and columns, so each event
is within exactly four cliques. Thus we take µ = 4. To find the bound κ, we consider a
clique K ∈ K which, without loss of generality, corresponds to the first row. Each event
in K corresponds to two cells of L, one in the first row and one not in that row. Let C be
the set of cells outside the first row that are included in some event in K. Each cell in C
shares a symbol with exactly one cell in the first row. Hence |K| = |C| and the cells not
in C contain as many distinct symbols as L does. Hence n2 − |K| > n2 − cn2 − dn, which
means that we may take κ = cn2 + dn.

Taking x = 1/(4κ), we find that to apply Lemma 2.10 we need

1

n(n− 1)
= P(Ai) 6 x(1− κx)3 =

27

256κ
,

which is satisfied, because c = 27/256 and d = −27/256.

Subsequently, in the same paper as Theorem 2.11, a non-probabilistic approach is used
to show that every n × n Latin array with at least (2 −

√
2)n2 distinct symbols has a

transversal. Montgomery et al. [105] improve upon this result by showing that, for all
ε > 0 and sufficiently large n, every n × n Latin array with at least εn2 symbols has
a transversal. Keevash and Yepremyan [85] improve the exponent, by showing that, for
sufficiently large n, every Latin array with n399/200 symbols has a transversal.

2.2 Entropy compression
Until recently, a major limitation of the Local Lemma is that it only proved the existence
of an object, without providing any method by which to construct the object. Some
attempt has been made to de-randomise the Local Lemma to enable it to prove bounds on
the complexity of algorithms for generating certain objects [17, 101]. These attempts are
restricted to particular problems and rely on non-constructive proofs of the Local Lemma.
In 2009, Moser [106] overcame these limitations by introducing a technique known as
entropy compression, which he used to prove a constructive version of the Symmetric
Local Lemma. This breakthrough has initiated a lot of work on algorithmic versions of
the Local Lemma [36, 74, 76, 98, 112]. Moser and Tardos [107] apply entropy compression
to prove a constructive versions of the General Local Lemma, as well as variants of the
Lopsided Local Lemma. Since then, entropy compression has been used to prove results
as strong as those proved with the Local Lemma, but constructively and in a way which
yields randomised algorithms with known time complexity. Applications include square-
free sequences [73], square-free colouring [50], pattern avoidance [111], permutations [77]
and acyclic edge colourings [65].

The central idea behind entropy compression is to define a randomised, usually naive,
algorithm designed to explore the object space and find an instance with the desired
properties. It is useful to think of the algorithm as a deterministic algorithm initialised
with a large random string. Each time the algorithm would take a random sample, it
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instead consumes a part of the random string. Additionally, the algorithm outputs a
history that, along with a constant amount of information, is sufficient to reconstruct the
consumed portion of the random string. The algorithm is designed so that it finds an
object with the desired property, if it halts, but it is usually a greedy recursive algorithm
which does not obviously halt. The core insight of entropy compression is the method by
which the algorithm is shown to halt. Entropy compression uses the structure of the space
of objects to encode the history such that, eventually, the algorithm losslessly compresses
the random string. This is done by using the same sort of locality required by variants of
the Local Lemma. In many cases, the algorithm searches the object space by recursively
solving local problems. Solving a local problem can only introduce a limited set of new
problems, because distant problems are unaffected by the solution, so there are restrictions
on the walk that the algorithm can take through the object space. The trick to entropy
compression is to use the structure of the problem to show that there is less information in
a feasible walk than in the random string used to construct the walk. It follows that, if the
algorithm were to run long enough, it would losslessly compress a random string, which is
impossible, so the algorithm must halt before the constant amount of information required
to reconstruct the random string is outweighed by the history. Since the algorithm halts,
it must find an object, so an instance of the object exists. Furthermore, the algorithm can
be analysed to determine its running time and it provides a constructive proof that the
object exists.

Extensions and uses of entropy compression have become increasingly diverse. Here
are some examples. The Local Action Lemma [18] formulates entropy compression as a
semigroup which acts on an object to move around the object space and find one with
the desired properties. Harvey and Vondrák provide a general algorithm which uses a
re-sampling oracle [78] and allows for lopsidependency graphs. Achlioptas and Iliopoulos
model the entropy compression algorithm as a random walk on a graph with arbitrary
state transitions [1]. As seen in Chapter 1, many of the more recent results in square-free
colouring, and related variants of graph colouring, use entropy compression to attain better
bounds than previous results with the Local Lemma.

2.3 The Local Lemma and anagram-free colouring

Given the success of entropy compression and the Local Lemma in bounding π, it is natural
to consider their application to similar problems. Richmond and Shallit [118] investigate
whether the Local Lemma could be used to bound the number of symbols in an arbitrarily
long anagram-free word. They conclude that no variant of the Local Lemma could be
applied, and did so by counting anagrams.

In general, to apply the Local Lemma we require a set of bad events with sufficiently
low probability. Let P(square) and P(anagram) be the probability that a word of order
2n on k symbols is a square or anagram, respectively. The proof of Theorem 2.4 uses
P(square) = k−n, which follows from the observation that there are kn squares of order 2n
on k symbols. The exponential decline of P(square), with fixed k, is required to counteract
the exponentially increasing interdependence of bad events that correspond to long paths.

Let fk(n) be the number of anagrams of order 2n on k symbols. To count anagrams,
we count pairs of words, W1 and W2, where W1 is a permutation of W2. For all sequences
n1, . . . , nk, such that n1 + n2 + · · ·+ nk = n, there are n!/(n1!n2! . . . nk!) words of order n
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on k symbols in which symbol i occurs ni times. It follows that

fk(n) =
∑

n1+n2+···+nk=n

(
n!

n1!n2! . . . nk!

)2

. (2.4)

Richmond and Shallit use (2.4) to determine the asymptotics of fk(n).

Theorem 2.12 (Richmond and Shallit [118]). Let k be an integer and n > 2. Then, as
n→∞,

fk(n) ∼ k2n+2 (4πn)(1−k)/2 .

It follows from Theorem 2.12 that, the probability that a random word of order 2n on
k symbols is an anagram is

P(anagram) = fk(n)/k2n ∼ k2 (4πn)(1−k)/2 .

The qualitative difference between P(square) and P(anagram) is that, for fixed k, P(square)
decreases exponentially with n while P(anagram) only decreases polynomially with n. The
polynomial decrease of P(anagram) is insufficient to counteract the exponentially increasing
interdependence of bad events. Richmond and Shallit remark that the Local Lemma is
unlikely to yield bounds on the number of symbols in an arbitrarily long anagram-free
word. More generally, the same can be said of using the Local Lemma to prove bounds on
the anagram-free chromatic number on graphs of bounded degree.
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Chapter 3

Anagram-free colourings of graphs and
trees

This chapter contains original results regarding bounds on the anagram-free chromatic
number of graphs and trees. Recall that an anagram is a word of the form WP , where
W is a non-empty word and P is a permutation of W . A graph colouring is anagram-free
if the sequence of colours read along each of its paths is anagram-free. The anagram-free
chromatic number , φ(G), of a graph, G, is the minimum number of colours in an anagram-
free vertex colouring of G. Similarly, the anagram-free chromatic index , φ′(G), of a graph,
G, is the minimum number of colours in an anagram-free edge colouring of G.

The results in this chapter are based on the paper Anagram-Free Graph Colouring
[131]. At the time, anagrams had only been studied in the context of combinatorics of
words. Our foray into anagram-free graph colourings is in the context of two contrasting
results from the combinatorics of words. The first result is the bound φ(P ) 6 4, for all
paths P , by Keränen [86] which shows a similarity between anagram-free colouring and
square-free colouring (see Section 1.3.1). The second is the enumeration of anagrams by
Richmond and Shallit [118], which suggests that Lovász Local Lemma cannot be used to
obtain bounds on φ (see Section 2.3).

Alon et al. [10] ask whether φ is bounded on graphs of bounded maximum degree.
Theorem 3.2 answers this question in the negative. Furthermore, φ and φ′ are unbounded
on trees. The behaviour of φ on trees is studied in more detail, with upper and lower
bounds for φ given on trees of bounded radius or pathwidth. We also prove a non-trivial
lower bound on φ(T ), as a function of height, for the complete binary tree T . In Section 3.3,
we study the extension of k-anagram-free colouring to determine whether results on φ and
φ′ generalised to φk and φ′k.

3.1 Lower bounds

We begin by proving lower bounds for φ and φ′ on various classes of graphs. In these
proofs, we often fix an arbitrary k-colouring of a sufficiently large graph, G, from the class
of graphs in question, and then proceed to find an anagram. We often find anagrams in a
graph, G, by constructing a large set of paths, S, in G, such that G contains an anagram if
two paths in S have the same number of occurrences of each colour. To facilitate this, we
define a colour multiset of size n on c colours to be a multiset of size n with entries from [c].
For a coloured graph or path, G, let M(G) be the multiset of colours that occur in G and
call M(G) the colour multiset of G. Equivalent formulations of the colour multiset of a
word, W , have previously been called the signature of W or, more commonly in computer
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science, the Parikh vector of W [118].
LetMn,c be the set of colour multisets of size n on c colours. Note that |Mn,c| is the

number of ways to partition a set of n unlabelled objects into c labelled partitions, which
is well known to equal

(
n+c−1
c−1

)
; see [124, Section 1.9]. For convenience, we use the bound

|Mn,c| 6 (n+ 1)c, (3.1)

which is obtained by noting that the number of occurrences of each colour is at least zero
and at most n. This bound is sufficient for our purposes, as we only require that, for fixed
c, |Mn,c| is bounded above by a polynomial in n. Recall that a c-colouring of a graph,
G, is a colouring, of either the vertices or edges of G, which uses at most c colours. Note
that, if G has a vertex c-colouring, M(G) ∈ M|V (G)|,c, and, if G has an edge c-colouring,
M(G) ∈ M|E(G)|,c. The study of edge colouring and vertex colouring is kept sufficiently
separate for M(G) to be clear from context. For a set of colours C let MC(G) be M(G)
restricted to C. For a graph, G, and set of colours, C, let VC(G) and EC(G) be the vertices
or edges of G that are assigned a colour from C, respectively.

Anagram-free colouring can be defined in terms of colour multisets. For i > 1, a vertex
coloured path v1, . . . , v2i is an anagram if and only if

M(v1, . . . , vi) = M(vi+1, . . . , v2i).

Similarly, for i > 1, an edge coloured path v1, . . . , v2i+1 is an anagram if and only if

M(v1v2, . . . , vivi+1) = M(vi+1vi+2, . . . , v2iv2i+1).

The indices in these expressions highlight a distinction between φ and φ′. In a vertex
colouring only the paths of even order can be anagrams. However, in an edge colouring
only the paths of even length can be anagrams.

3.1.1 Edge colouring

A good introductory result is that φ′ is unbounded on trees of maximum degree 3. The
proof uses the fact that the number of leaves in a complete binary tree grows exponentially
with height while, for fixed c, |Mn,c| is bounded by a polynomial in n. The theorem follows
by using two root-to-leaf paths, with a common colour multiset, to construct an anagram,
where a root-to-leaf path is a path between the root and a leaf of a tree. Recall that a
binary tree is a rooted tree such that every vertex has at most two children. A complete
binary tree is a rooted tree such that every non-leaf vertex has two children and the leaves
have equal distance to the root.

Theorem 3.1. Trees of maximum degree 3 have unbounded anagram-free chromatic index.

Proof. Fix c > 1 and choose h ∈ Z+ so that 2h > (h+ 1)c. Let T be the rooted complete
binary tree of height h with root vertex r. Fix an arbitrary edge c-colouring of T . By our
choice of h and Equation (3.1)

|Mh,c| 6 (h+ 1)c < 2h = #leaves of T .

Since each root-to-leaf path in T has h edges, the number of leaves in T is greater than the
number of distinct colour multisets on root-to-leaf paths in T . Therefore, there are two
leaves, p and q, such that M(P ) = M(Q), where P is the rp-path and Q is the rq-path.
The anagram that can be found with p and q is illustrated in Figure 3.1.
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qp

Figure 3.1: The complete binary tree used in Theorem 3.1 with h = 4, an edge 3-colouring
and leaves p and q which lead to an anagram.

Let v be the least common ancestor of p and q. Split these paths into three disjoint
parts by defining R as the rv-path, P ′ as the vp-path and Q′ as the vq-path. Note that
E(R) is exactly the set of edges shared by P and Q. Therefore

M(P ) = M(P ′) ∪M(R) and M(Q) = M(Q′) ∪M(R).

Thus M(P ′) = M(Q′). Finally, note that P ′Q′ is a path in T , so T contains an anagram.

3.1.2 Vertex colouring

As a corollary of Theorem 3.1, φ is unbounded on graphs of maximum degree 4, by a line
graph construction. Recall, from Section 1.2.1, that line graphs are used in square-free
colouring to prove upper bounds on π from upper bounds on π′. Similarly, line graphs can
be used to translate bounds between φ and φ′. Upper bounds on φ′ can be derived from
upper bounds on φ and lower bounds on φ can be derived from lower bounds φ′.

For completeness, we use line graphs to show that φ is unbounded on graphs of maxi-
mum degree 4. Note that φ′(G) 6 φ(L(G)), since every path in G, written as a sequence of
edges, e1, e2, . . . , en, corresponds to a path in L(G) with vertex sequence e1, e2, . . . , en. By
Theorem 3.1, for every c ∈ Z+, there is a binary tree such that φ′(T ) > c. Note that L(T )
has maximum degree at most 4 and recall φ′(T ) 6 φ(L(T )). Therefore, φ is unbounded
on graphs of maximum degree 4, which raises the question of whether φ is bounded on
graphs of maximum degree 3.

Theorem 3.2 shows that φ is unbounded on graphs of maximum degree 3. Furthermore,
φ is unbounded on outerplanar graphs of maximum degree 3. The proof proceeds similarly
to the proof of Theorem 3.1, with the construction of a family of graphs which exhibit
some exponential growth. The exponential growth is exploited to find two paths which
share a colour multiset and can be concatenated to find an anagram.

Theorem 3.2. Outerplanar graphs of maximum degree 3 have unbounded anagram-free
chromatic number.

Proof. Let c > 1 and let h ∈ Z+ be odd such that 2(h+1)/2 > (h+ 2)c. Let T be the rooted
tree, with root r, such that:
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qp

Figure 3.2: The graph used in Theorem 3.2 with h = 5, a vertex 3-colouring and vertices
p and q which lead to an anagram.

• vertices of depth h are leaves,

• vertices of even depth have two children,

• non-leaf vertices of odd depth have one child.

Recall that the depth of a vertex is its distance from the root. Let G be the graph obtained
from T by adding an edge between every pair of vertices in T that share a parent, as
illustrated in Figure 3.2. Fix an arbitrary c-colouring of G. We now show that G contains
an anagram. By Equation (3.1) and our choice of h,

|Mh+1,c| 6 (h+ 2)c < 2(h+1)/2 = #leaves of T .

Since each root-to-leaf path in T has h + 1 vertices, the number of leaves in T is greater
than the number of distinct colour multisets on root-to-leaf paths in T . Therefore there
are two leaves of T , p and q, such that M(P ) = M(Q) where P and Q are the rp-path and
rq-path in T , respectively. Split the two paths into three vertex-disjoint paths R = P ∩Q,
P ′ = P − V (R) and Q′ = Q− V (R). Note that

M(P ) = M(P ′) ∪M(R) and M(Q) = M(Q′) ∪M(R).

Thus M(P ′) = M(Q′). By construction, the graph induced by V (P ′)∪V (Q′) is a subpath
of G. Therefore G is not anagram-free.

Theorem 3.2 only proves that φ is unbounded on graphs. In subsequent sections we
study φ on trees. A particularly interesting question is whether there is a result analogous
to Theorem 3.1: is φ bounded on trees of maximum degree 3? This motivates further
investigation of φ on trees.
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3.1.3 Vertex colouring trees

In light of the results from the previous two sections, the most pressing question is whether
φ is bounded on trees. We prove lower bounds on two classes of trees, both of which follow
from Theorem 3.3. The complete d-ary tree of height h is the rooted tree such that every
internal vertex has d children and all leaves are distance h from the root.

Theorem 3.3. The complete d-ary tree of height h does not have an anagram-free c-
colouring when dc 6 (d/c)h.

Proof. Let T be the complete d-ary tree of height h with root r. Let L be the set of leaves
of T , and fix an arbitrary c-colouring, ψ : V (T )→ [c], of T . For each v ∈ L let Sv be the
sequence of colours on the rv-path.

There are at most ch sequences of colours in root-to-leaf paths since each sequence has
length h + 1 and they all start with ψ(r). Since |L| = dh there is a set, C ⊆ L, of size at
least dh/ch such that Sv = Sw for all v, w ∈ C. Note that C is a large set of leaves with
the same colour sequence on their root-to-leaf paths, as illustrated in Figure 3.3. Let R be
the subtree of T induced by the set of all ancestors of leaves in C. The remainder of the
proof finds an anagram in R.

Define a level of R to be a maximal set of vertices of R that all have equal depth. R
is coloured by level, as ψ(u) = ψ(v) for every pair of vertices u, v ∈ V (R) with the same
depth. Let `0, `1, . . . , `h be the sets of vertices corresponding to levels of R, where `0 = {r}
and `h = C. A level, `i, is bad if every vertex v ∈ `i has exactly one child in R. A level
is good if it is not bad. Note that only level `h contains vertices with no children. Let g
be the number of good levels of R and b be the number of bad levels of R. By definition,
h + 1 = g + b. We now prove that there are at least c + 1 good levels and so at least two
good levels share a colour.

h

r

C

Figure 3.3: The complete d-ary tree of height h with a large set, C, of leaves which have
the same root-to-leaf path colour sequence.

We bound the number of bad levels by considering the number of good levels required to
attain |`h| > (d/c)h. If `i is bad, then |`i| = |`i+1|, and if `i is good, then |`i| < |`i+1| 6 d|`i|.
It follows that

|`k| 6 d#preceding good levels.

Since `h is the final good level, it is preceded by g − 1 good levels. Thus

(d/c)h 6 |`h| 6 dg−1
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so dh+1c−h 6 dg. Recall that dc+1 6 dh+1c−h, so c + 1 6 g. Therefore there are at least
two good levels with the same colour.

Let A and B be two good levels that have the same colour denoted such that vertices
in A are closer to r than vertices in B. Let a ∈ A be a vertex with at least two children.
All vertices in the levels between A and B have at least one child so there are two vertices
v, w ∈ B such that a is their least common ancestor.

Let p0, p1, . . . , pn be the va-path and q0, q1, . . . , qn be the wa-path. Since R is coloured
by level, ψ(qi) = ψ(pi), for all i ∈ {0, . . . , n}. Recall that ψ(p0) = ψ(pn) and that pn = qn.
It follows that p0p1 . . . p,qn−1 . . . q1 is a path in T and

M(p0, p1, . . . , pn−1) = M(qn, qn−1 . . . q1)

so ψ(p0, p1, . . . , pn, qn−1, . . . , q1) is an anagram.

Interestingly, Theorem 3.3 proves more than is required. Instead of just proving that
every c-colouring of the tree contains a general anagram, the proof finds a coloured path of
the form xWx

←−
W , where x is a symbol, W is a word and

←−
W is W written backwards. Let

xWx
←−
W -free colouring be a variant of graph colouring that avoids paths with words of the

form xWx
←−
W . The proof of Theorem 3.3 shows that xWx

←−
W -free colouring is unbounded

on trees. This observation is particularly interesting in light of the result that π(T ) 6 4

for all trees T [30]. Both square-free colouring and xWx
←−
W -free colouring avoid paths

with colour sequence Wσn(W ), each for a single σn, for each n > 1, so, in a sense, they
avoid the same number of paths. However, they have contrasting behaviour on trees. This
motivates a more general study of permutation-avoiding colouring, which we leave until
the study of colour schemes in Chapter 6. For now, note that Theorem 3.4 is a corollary
of Theorem 3.3.

Theorem 3.4. Trees have unbounded anagram-free chromatic number.

Furthermore, we can vary the height and maximum degree in Theorem 3.3 to prove
bounds on classes of graphs that represent each extreme. In particular, Theorem 3.3
implies the following two theorems.

Theorem 3.5. For every integer h > 2 the complete (h − 1)h-ary tree of height h has
φ(T ) > h.

Proof. Let c > 1, h := c + 1 and d := cc+1. The conditions of Theorem 3.3 are satisfied
because

dc = cc(c+1) =
(
cc(c+1)cc+1

)
c−(c+1) = dc+1c−(c+1) = (d/c)h.

Therefore the complete cc+1-ary tree of height c + 1 does not have an anagram-free c-
colouring.

Theorem 3.6. For every integer d′ > 1 there exists a tree T with maximum degree d′ such
that φ(T ) > d′ − 1.

Proof. Fix c and choose h so that

(c+ 1)c 6

(
1 +

1

c

)h
= ((c+ 1)/c)h.

It follows that the conditions of Theorem 3.3 are satisfied with d := c + 1. Therefore the
complete (c+ 1)-ary tree of height h does not have an anagram-free c-colouring. This tree
has maximum degree d′ = c+ 2 and so φ(T ) > c+ 1 = d′ − 1.
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Theorems 3.5 and 3.6 demonstrate a trade-off between height and maximum degree,
with the former result holding for trees of relatively large maximum degree and the latter
holding for trees of relatively large height.

3.2 Upper bounds for φ on trees
In this section, we complement the lower bounds of the previous section with upper bounds
for φ on trees. The first bound is derived from centred colouring. Recall that a vertex
colouring of a graph, G, is centred if every subtree, T of G, contains a vertex whose
colour appears exactly once in T . All centred colourings are anagram-free, since every
anagram contains an even number of occurrences of each colour and every path in a
centred colouring contains a colour that occurs exactly once. Therefore, for every graph
G, the centred chromatic number of G is an upper bound on φ(G). It is easily seen that
every tree, T , of radius h, has centred chromatic number at most h + 1, see [109, Section
6.5], thus φ(T ) 6 h + 1. This bound is achieved by colouring each vertex by its distance
from a centre of T . This colouring shows that the lower bound in Theorem 3.7 is tight.

Theorem 3.7. Every tree T of radius h has φ(T ) 6 h + 1. Moreover, for every h > 0,
there is a tree T of radius h such that φ(T ) > h.

Proof. The upper bound follows from centred colouring. The lower bound follows from
Theorem 3.5 for h > 2, and an inspection of the trees of radius 0 or 1, for h 6 1.

We now show that φ is bounded on trees of bounded pathwidth. See Section 1.2.8 for
a definition of pathwidth. The only non-trivial property of pathwidth that we require is
stated in the following lemma.

Lemma 3.8 (Suderman [125], Lemma 5). Every tree, T , with at least one edge contains
a path P such pw(T − V (P )) 6 pw(T )− 1.

We also require two trivial properties of pathwidth. The first is that edgeless graphs
have pathwidth 0, and the second is that the pathwidth of a disconnected graph equals
the maximum pathwidth of its components.

Theorem 3.9. Every tree of pathwidth m ∈ Z>0 has an anagram-free vertex (4m + 1)-
colouring.

Proof. Note that every tree, T , of pathwidth zero is edgeless and thus anagram-free 1-
colourable. We proceed by induction on m.

Let T be a tree of pathwidth m + 1. By Lemma 3.8, there exists a path P ⊆ T such
that every component H of T −V (P ) has pw(H) 6 m. By induction we may anagram-free
colour each component of T − V (P ) with a common set of 4m + 1 colours. To complete
the colouring of T , use four additional colours to anagram-free colour P , by [87].

We now show that this colouring is anagram-free. Let Q be a path in T . If Q is entirely
contained within a component of T − V (P ), then by induction, Q is not an anagram.
Otherwise, Q intersects P . The intersection of Q and P is an anagram-free subpath of P
and the colours in Q∩V (P ) occur nowhere else in Q. Therefore Q is not an anagram.

Theorem 3.5 shows that the upper bound in Theorem 3.9 is tight, up to a constant
factor.

Theorem 3.10. For every tree T , φ(T ) 6 4 pw(T ) + 1. Moreover, for every p > 0 there
is a tree T such that φ(T ) > p > pw(T ).
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Proof. The first part follows directly from Theorem 3.9. For the second part it is well
known, and easily proved, that the pathwidth of a tree is at most its radius. Therefore, by
Theorem 3.5, there exists a tree T with φ(T ) > p > pw(T ) for all p > 2. For the remaining
cases use the path of order 2 for p = 1 and the empty graph for p = 0.

Theorem 3.10 raises the question of whether φ is tied to pathwidth on trees, that
is, whether there exists a function f such that pw(T ) 6 f(φ(T )) for every tree T . We
answer this question in the negative with a result from Chapter 4. Theorem 4.3 shows
that every tree, T , has a subdivision, H, such that φ(H) 6 10, and it is well known that
pw(T ) = pw(H). Therefore, there exist trees of arbitrarily large pathwitdh with φ at most
10, so φ is not tied to pathwidth on trees.

A remaining question is whether φ is bounded for trees of maximum degree 3. The
complete binary tree of height h is the key example. Centred colourings provides a trivial
upper bound of h+1 (Theorem 3.7). We give the following non-trivial colouring of complete
binary trees, to demonstrate a case in which the bound attained by centred colouring is
not optimal.

Theorem 3.11. If T is the complete binary tree of height h, then

φ(T ) 6
h

2
+

1

2
log2(h+ 1) + 1. (3.2)

Proof. We proceed by induction on h. The base case is satisfied as follows:

φ(singleton vertex) = 1 6
0

2
+

1

2
log2(0 + 1) + 1 = 1.

Now assume the result holds up to h− 1. Let T be the complete binary tree of height
h with root r. Let t := 2

⌊
h+2

4

⌋
and Tt ⊆ T be the complete binary tree of height t with

root r. Tt is the top half of T , which we colour directly. Let b := h − t − 1, this is the
height of each subtree which will be coloured by induction. Colour Tt as follows:

• All vertices with even depth receive the same colour. Call this colour c.

• Each odd level is allocated distinct set of two colours. Vertices of odd depth are
coloured with one of the two colours allocated to their level, so that each vertex
receives a colour distinct from their sibling.

Note that the leaves of Tt have even depth so have colour c. This colouring is shown for
h = 8 in Figure 3.4.

Colour each remaining subtree of T by induction, avoiding colours that occur on their
ancestors in Tt.

Claim 1. This colouring of T is anagram-free.

Proof. Let P be a path in T with even order at least 2. Let u be the shallowest vertex in
P . If u /∈ V (Tt) then, by induction, P is not an anagram. Now consider the case where
u ∈ V (Tt). If u has odd depth then its colour is unique in P . Indeed, in Tt the colour
of u only occurs in the level of u and in T − V (Tt) the descendants of u avoid its colour.
Similarly, if u has even depth and u is an endpoint of P then the child of u in P is uniquely
coloured in P .

The remainder of the proof is concerned with the case where u ∈ V (Tt), u has even
depth and neither endpoint of P is u. Let x1, x2 ∈ V (P ) be the endpoints of P and let
v1, v2 ∈ V (P ) be the children of u such that vi is an ancestor of xi for i ∈ [2]. If xi ∈ V (Tt)
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1

32

1111

54545454

1111111111111111

t = 4

b = 3

{3, 5, 6} {2, 4, 6}

Figure 3.4: Schematic of colouring the complete binary tree with h = 8. The set of colours
used in the subtrees of height b are shown below the trees.

then u2−i has a unique colour in P because the xivi-path does not contain the colour on
u2−i.

If both x1, x2 /∈ V (Tt) then the colour c occurs an odd number of times in P . Indeed,
u has colour c and each subpath of P to either side of u contain the same number of
occurrences of c.

To complete the proof we show that this colouring satisfies Equation (3.2). Our colour-
ing of Tt uses t + 1 colours as the even levels share a colour and there are t

2
odd levels

which each use 2 colours.
Let v be a child of a leaf of Tt and Tb be the subtree of T rooted at v. Recall that

colours on the vr-path do not occur in Tb. The number of distinct colours on the vr-path
is t

2
+ 1 because the path contains t + 1 vertices and t

2
+ 1 of them have even depth so

share colour c. Therefore the colouring of Tb can reuse t
2
of the colours used to colour Tt.

So our colouring of T requires φ(Tb)− t
2
colours in addition to those used to colour Tt. So

φ(T ) 6 t+ 1 +

(
φ(Tb)−

t

2

)
=
t

2
+ 1 + φ (Th−t−1) .

By induction, since Tb is a complete binary tree of height h− t− 1,

φ(T ) 6
t

2
+ 1 +

(
h− t− 1

2
+

1

2
log2 (h− t) + 1

)
=
h

2
+

1

2
+

1

2
log2 (h− t) + 1

=
h

2
+

1

2
+

1

2
log2

(
h− 2

⌊
h+ 2

4

⌋)
+ 1

6
h

2
+

1

2
+

1

2
log2

(
h− h− 1

2

)
+ 1

=
h

2
+

1

2
+

1

2
log2

(
h+ 1

2

)
+ 1

=
h

2
+

1

2
log2 (h+ 1) + 1.
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3.3 k-anagram-free colourings
A k-anagram is a word W1W2 . . .Wk where Wi is a permutation of Wj, for all i, j ∈ [k].
Equivalently, a word, W1W2 . . .Wk, is a k-anagram if and only if, for all i, j ∈ [k],

M(Wi) = M(Wj).

Recall that a graph colouring is k-anagram-free if the sequence of colours read along each
of its paths are not k-anagrams. The k-anagram-free chromatic number and index of a
graph G are denoted φk(G) and φ′k(G), respectively. Note that k-anagram-free colouring is
a generalisation of anagram-free colouring, as φ = φ2 and φ′ = φ′2. Since every k-anagram-
free word is (k + 1)-anagram-free,

φk+1(G) 6 φk(G),

φ′k+1(G) 6 φ′k(G),

for all k > 2 and graphs G. It follows that upper bounds on φ and φ′ apply to φk and φ′k.
However, we only have upper bounds for φ, and they are on trees of bounded pathwidth
or radius. In this section we show that φk is unbounded on graphs of maximum degree
k + 1 and that φ4 and φ′4 are bounded on trees. The first result is a generalisation of
Theorem 3.2, that φ is unbounded on graphs of maximum degree 3. The second result
contrasts with Theorems 3.1 and 3.4 because φk and φ′k are unbounded on trees for k = 2
and bounded on trees for k > 4.

3.3.1 Lower bounds

We first show that φk is unbounded on graphs of bounded degree. The method is similar
to that used in Theorem 3.2 to prove φ is not bounded by maximum degree. For each k
and c we construct a graph, G, such that every c-colouring of G contains a k-anagram.
The proof generalises most of Theorem 3.2 as, with the exception of outerplanarity, it is
implied by Theorem 3.12 for k = 2.

Theorem 3.12. For k > 2, the k-anagram-free chromatic number is unbounded on planar
graphs of maximum degree k + 1.

Proof. Let S(t) be the proposition that there exists a planar graph, G, with ∆(G) 6 k+1,
special vertices, u and v, such that deg(u) = deg(v) = 1, and, for every vertex colouring
of G, at least one of the following holds:

• G contains a k-anagram, or

• |D| >
(

k
k−1

)t, where D is the set of colour multisets on uv-paths of length 4t.

Claim 2. S(t) is true for all t > 1.

Proof. We first prove S(1). Let G be the disjoint union of the path, P , of order k, and
the four vertices a, b, u, v, with the addition of edges ua, vb, ap, and bp, for all p ∈ V (P ).
Note that G satisfies the degree requirements of S(1). Fix a colouring of G. If P is
monochromatic then it is a k-anagram. If P is not monochromatic, then there are two
paths u, a, p1, b, v and u, a, p2, b, v with distinct colour multisets. Therefore |D| > 2 > k

k−1

and so S(1) is true. This graph is shown in Figure 3.5 for k = 4.
We proceed by induction on t by taking S(t) to be true for some t > 1. Let G1, . . . , Gk

be copies of the graph guaranteed to exist by S(t). Denote the two special vertices of Gi

by ui and vi. Let H be the graph with V (G) = {u, v, a, b} and E(G) = {ua, vb}. Let G
be the disjoint union of H and G1, . . . , Gk, with the additional edges:
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u a b v

Figure 3.5: A graph satisfying S(1) for
k = 4.

u a b v

u1

u2

u3

u4

v1

v2

v3

v4

G1

G2

G3

G4

Figure 3.6: A graph satisfying S(t) for k =
4. G1, G2, G3 and G4 are graphs satisfying
S(t− 1).

(i) uia for all i ∈ [k].

(ii) vib for all i ∈ [k].

(iii) uiui+1 for all even i ∈ [k − 1].

(iv) vivi+1 for all odd i ∈ [k − 1].

This construction is shown in Figure 3.6 for k = 4.
First we show that G satisfies the degree requirements of S(t + 1). Clearly, deg(u) =

deg(v) = 1 and deg(a) = deg(b) = k + 1. For all i ∈ [k], ui has degree 1 in Gi, so
deg(ui) 6 3 6 k+ 1. Similarly, deg(vi) 6 3 6 k+ 1. Every remaining vertex, v ∈ V (G), is
in Gi, for some i ∈ [k], and v is only adjacent to vertices in Gi, so, by S(t), deg(v) 6 k+ 1.

Now fix a colouring of G. S(t+ 1) is satisfied if some Gi contains a k-anagram, so take
the case that Gi is k-anagram-free, for all i ∈ [k]. Let Di be the set of colour multisets on
paths of length 4t in Gi with endpoints ui and vi. By S(t), we have |Di| > (k/(k − 1))t

for all i ∈ [k]. We now split the proof into two cases.
In the first case, there exists a colour multiset T such that T ∈ Di, for all i ∈ [k]. This

means that, for all i ∈ [k], Gi contains a uivi-path, Pi, with M(Pi) = T . By the existence
of type (iii) and (iv) edges between special vertices of Gi and Gi+1, P1P2 . . . Pk is a path
in G. This path is a k-anagram and so the colouring of G satisfies S(t+ 1).

In the second case, there is no colour multiset that occurs in every Di. Define the
union of colour multisets to be U :=

⋃
i∈[k] Di. For a colour multiset T ∈ U , let f(T ) be

the number of sets from {D1, . . . , Dk} that contain T . Since no colour multiset occurs in
every Di, f(T ) 6 k − 1. Therefore

|U|(k − 1) >
∑
T∈U

f(T ) =
∑
i∈[k]

|Di| > k

(
k

k − 1

)t
,

so |U| >
(

k
k−1

)t+1. There is a bijection from U to D because every uv-path of length 4t+ 4
shares vertices a, b, u and v. Therefore |D| = |U| and so S(t+ 1) is satisfied.

Let c ∈ Z+ and let t ∈ Z+ be such that(
k

k − 1

)t
> (4t+ 2)c.

Let G be the graph guaranteed to exist by S(t) and fix an arbitrary c-colouring of G. Let
D be the set of colour multisets as defined previously. By (3.1) there are at most (4t+ 2)c
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colour multisets of size 4t+ 1. Therefore |D| 6 (4t+ 2)c <
(

k
k−1

)t, so, by S(t), G contains
a k-anagram.

Theorem 3.12 raises the question of whether there is a fixed integer d such that, for
all k > 2, φk is unbounded on graphs of maximum degree d. Additionally, the analogous
problem for edge colouring is open. For k > 3, we know of no family of graphs of bounded
degree for which φ′k is unbounded.

3.3.2 Upper bounds on trees

In this section we show that φk and φ′k are bounded on trees, for all k > 4. The proof
uses an anagram-free word on 4 symbols to colour trees by a levelling. This colouring is
k-anagram-free for k > 4 because at least half of every path, P , has the level of its vertices
monotonically increase or decrease in every levelling of a tree T .

Theorem 3.13. φk(T ) 6 4 and φ′k(T ) 6 4 for every tree T and k > 4.

Proof. The proofs for φk and φ′k are very similar. We carry them both out simultaneously
by defining X(G) := V (G) for the φk proof and X(G) := E(G) for the φ′k proof.

Root T at an arbitrary vertex r ∈ V (T ) and let h be the height of the resulting rooted
tree. Let C = co . . . ch be an anagram-free word on four symbols. Colour each x ∈ X(T )
by ci where i is the distance between x and r. Recall that the distance between an edge,
uv, and a vertex, r, is the minimum of dist(u, r) and dist(v, r).

Let P = P1 . . . Pk be a path in T such that |X(Pi)| = |X(Pj)| for all i, j ∈ [k]. Note
that |X(P )| is a multiple of k, and that this is the only type of path which can be a
k-anagram. Recall that P is a k-anagram if and only if M(Pi) = M(Pj) for all i, j ∈ [k].

Let v ∈ V (P ) be the unique vertex of P closest to the root, r, of T . If v ∈ V (Pi) for
i > 3, then the colour sequence along P1P2 appears in C, so M(P1) 6= M(P2). Otherwise,
v ∈ V (Pi) for i 6 2, so the colour sequence along P3P4 appears in C, implying M(P3) 6=
M(P4). In each case, P is not a k-anagram. Hence φk(T ) 6 4 and φ′k(T ) 6 4.

Theorem 3.13 demonstrates a qualitative change in behaviour as k increases. The case
of k = 3 is an open problem that sits between bounded and unbounded behaviour on trees.
For φ3 we have upper bounds on trees of bounded height and pathwidth due to Theorems
3.7 and 3.10. We prove a similar bound on pathwidth for φ′3 using Dekking’s [47] result,
φ3(P ) 6 3.

Theorem 3.14. For every tree T , φ′3(T ) 6 4 pw(T ).

Proof. Trees of pathwidth zero satisfy φ′3(T ) 6 4 pw(T ) because they are edgeless. We
proceed by induction on m.

Let T be a tree of pathwidth m + 1. By Lemma 3.8, there exists a path, P , in T
such that pw(T − V (P )) 6 m. Each component of T − V (P ) has pathwidth at most m,
so, by induction, each component of T − V (P ) can be 3-anagram-free edge-coloured with
a shared set of 4m colours. We now use four additional colours to colour the remaining
edges. Dekking [47] proves φ3(P ) = 3 so we can 3-anagram-free edge-colour P with three
colours. The fourth extra colour is used to colour the edges between P and T − V (P ).

We now show that this colouring is 3-anagram-free. Let Q be a path in T . If Q is
entirely contained within a component of T − V (P ) then, by induction, Q is not a 3-
anagram. Otherwise Q intersects P . The intersection of Q and P is a 3-anagram-free
subpath of P and the colours in Q ∩ P occur nowhere else in Q. Therefore Q is not a
3-anagram.
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Note that no similar bound exists for φ′2 because stars have pathwidth 1 and φ′2 is
unbounded on stars. A bound on φ′3(T ) as a function of radius follows from the relation
between pathwidth and radius in trees. Also, since φ3(P ) 6 3, the bound in Theorem 3.9
can be improved to φ3(T ) 6 3 pw(T ) + 1.

Dekking [47] also proves φ4(P ) = 2, and we use both results to improve upon Theo-
rem 3.13 for larger values of k.

Theorem 3.15. For all z > 1 and k > 2z, if φz(P ) 6 y for all paths P , then φk(T ) 6 y
and φ′k(T ) 6 y for all trees T .

Proof. As before, the proofs for φk and φ′k are very similar. We carry them both out
simultaneously by defining X(G) := V (G) for the φk proof and X(G) := E(G) for the φ′k
proof.

Let T be a tree with root r and height h. Let C = co . . . ch be a z-anagram-free word
on y symbols. Colour each vertex x ∈ X(T ) by ci where i is the distance between x and r.

Let P = P1 . . . Pk be a path in T such that |X(Pi)| = |X(Pj)| for all i, j ∈ [k]. Note that
|X(P )| is a multiple of k and that this is the only type of path which can be a k-anagram.
Recall that P is a k-anagram if and only if M(Pi) = M(Pj) for all i, j ∈ [k].

P contains a unique vertex v closest to r. If v ∈ V (Pi) with i > z then the colour
sequence along P1P2 . . . Pz appears in C. In the other case, v ∈ V (Pi) with i 6 z, so the
colour sequence along Pz+1Pz+2 . . . P2z appears in C. In each case there exist a, b such that
M(Pa) 6= M(Pb) because C is z-anagram-free. Therefore P is not a k-anagram. Hence
φk(T ) 6 y and φ′k(T ) 6 y.

Dekking [47] proves φ3(P ) = 3 and φ4(P ) = 2, so Theorem 3.15 implies φ6(T ) 6 3 and
φ8(T ) 6 2, for all trees T .
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Chapter 4

Anagram-free colourings of graph
subdivisions

There are very few classes of graphs which are known to have bounded anagram-free
chromatic number, with the examples in Chapter 3 consisting entirely of trees. Many
commonly studied classes, such as graphs of bounded degree and planar graphs, are known
to have unbounded φ. This further motivates the search for a class of graphs with bounded
φ. To this end, this chapter studies highly subdivided graphs. Subdivisions are of particular
interest because πsub(G) 6 3, for every graph G [114], which raises the question of whether
an analogous result holds for anagram-free colouring, as very few other results about π
correspond to similar results for φ. Conversely, every highly subdivided graph is, locally,
a subdivided star or long path, which suggests that φ may be bounded on sufficiently
subdivided graphs. The results in this chapter are based on the paper Anagram-free
colourings of graph subdivisions [132].

For a path P and set of colours C, define P restricted to C to be the word ωC(P ) :=
f(v1)f(v2) . . . f(vx), where v1, v2, . . . , vx are the vertices in VC(P ), in the order defined by
P , and f is the colouring of P . Similarly, for a word W = w1w2 . . . wn and set of symbols
C, define W restricted to C, denoted ωC(W ) := f(w1)f(w2) . . . f(wn), where f(w) = w if
w ∈ C and f(w) is the empty character otherwise. A path is even if it has even order.
Define a pair of paths, L and R, to be the split of an even path, P , if P = LR and
|V (L)| = |V (R)|. Note that a coloured path, P , with split, L and R, is an anagram if and
only if M(L) = M(R). Equivalently, P is not an anagram if MC(L) 6= MC(R) for some
set of colours C. We encapsulate this observation in the following lemma.

Lemma 4.1. A path, P , coloured by C, is an anagram if and only if, for all C ′ ⊆ C, P
restricted to C ′ is an anagram or the empty word.

Proof. We first prove the forward implication. Let C ′ ⊆ C be such that ωC′(P ) is
nonempty, since the empty case is trivial. Let L and R be the split of P . Note that
MC′(L) = M(ωC′(L)) and MC′(R) = M(ωC′(R)). Since P is an anagram,

M(ωC′(L)) = MC′(L) = MC′(R) = M(ωC′(R)).

Therefore ωC′(P ) is an anagram.
To prove the reverse implication take C ′ = C. Then P restricted to C ′, which is all of

P , is an anagram.
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4.1 Subdivisions of trees
In this section we show that φ is bounded by a constant on highly subdivided trees. For
every vertex, v, in a rooted tree T , define AT (v) to be the set of ancestors and descendants
of v in T . A branch vertex is a vertex of a rooted tree with at least two children. The
midedge of an even path P with split L and R is the edge of P not contained in L or R.

4.1.1 Upper bounds

We start with a result for binary trees.

Theorem 4.2. Every binary tree, T , of height h, has a (6 3h−1 − 1)-subdivision, S, with
φ(S) 6 8.

Proof. 2-colour the edges of T with {1, 2} such that for every branch vertex, v ∈ V (T ), with
children c1 and c2, the edge vci receives colour i. Colour the remaining edges arbitrarily
from {1, 2}. Let S be the subdivision of T such that edges at distance x from the root
are subdivided 3h−x−1 − 1 times. Note that edges incident to leaves of depth h are not
subdivided.

Let r be the root of S. Label the vertices of S according to the edge 2-colouring of T
as follows:

• Label division vertices with the colour of the corresponding edge in T .

• Label r with 1.

• Label the original non-root vertices with the label of their parent edge in T .

Let W = w1w2 . . . be an anagram-free word on {1, 2, 3, 4}. Define V`(S) to be the set
of vertices with label ` in S. Colour every vertex v ∈ V (S) by (`, wx) where ` is the label
of v and x is the number of vertices with label ` on the vr-path. We now show that this
8-colouring of S is anagram-free.

Let P be an even path in S. Consider the case where there is some ` ∈ {1, 2} such that
V`(P ) ⊆ AS(v) for all vertices v ∈ V`(P ). If V`(P ) = ∅, then P is not an anagram because,
by construction, S restricted to a label is anagram-free. So now consider V`(P ) 6= ∅ and let
C ′ = {`} × {1, 2, 3, 4}. Then ωC′(P ) = (`, wy)(`, wy+1) . . . (`, wy+|V`(P )|), for some integer
y, because the number of ` labelled vertices on the vr-path increments by 1 for all vertices
v ∈ V (P`) along P . Therefore ωC′(P ) is a subword of W so, by Lemma 4.1, P is not an
anagram.

Now consider the case where for every ` ∈ {1, 2} there exists a v ∈ V`(P ) such that
V`(P ) * AS(v). Let u be the minimum depth vertex in V (P ). Both labels have vertices
that are not mutual ancestors or descendants so u has two children in T , x, y ∈ V (T ), and,
x, y ∈ V (P ).

Partition V (P ) into X := (V (P ) ∩ AS(x)) \ {u} and Y := V (P ) ∩ AS(y). Let L and
R be the split of P such that, without loss of generality, u ∈ V (R). Also without loss of
generality, choose x and y such that Y ⊆ V (R). Note that Y ∩ V (L) = ∅ so

|X ∩ V (L)| = |V (L)| = |V (R)| = |X ∩ V (R)|+ |Y ∩ V (R)|.

Let z be the integer such that 3z + 1 is the order of the ux-path in S. We will prove an
upper bound on |X ∩V (R)| to show that the midedge of P is ‘close’ to u. Due to the case
under consideration, V (R)−u contains vertices of both labels and |V (P )| > 3. Therefore,
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y is not an endpoint of P , because y has the label of the division vertices of the uy-path.
It follows that

|Y ∩ V (R)| > 3z + 2

because the edge uy was subdivided 3z− 1 times. |X| is at most the length of a path from
u to a leaf so

|X ∩ V (L)| 6 3z + 3z−1 + · · ·+ 31 + 1− |X ∩ V (R)| = 3

2
3z − 1

2
− |X ∩ V (R)|.

Therefore

|X ∩ V (R)| = |X ∩ V (L)| − |Y ∩ V (R)| 6 3

2
3z − 1

2
− |X ∩ V (R)| − 3z − 2.

Thus

|X ∩ V (R)| 6 1

4
3z − 5

4
.

Without loss of generality, let x have label 1 and y have label 2. Indeed, the labels of x
and y are distinct because edges ux and uy have different colours in T . All vertices on the
ux-path (except possibly u) have label 1 so

|V1(L)| > 3z − |X ∩ V (R)| > 3

4
3z +

5

4
.

To put an upper bound on |V1(R)| assume the worse case, that u has label 1. Then

|V1(R)| 6 |X ∩ V1(R)|+ 1 + 3z−1 + 3z−2 + · · ·+ 31 + 1

6
1

4
3z − 5

4
+ 1 +

3

2
3z−1 − 1

2

=
3

4
3z − 3

4
.

It follows that |V1(R)| < |V1(L)|, so P is not an anagram.

The construction in Theorem 4.2 does not extend to a good bound on φ for subdivisions
of complete d-ary trees. The obvious extension, using d labels for the edge colouring, shows
that the complete d-ary tree has a 4d-colourable subdivision. This is improved upon by
the following result for complete d-ary trees.

Theorem 4.3. The complete d-ary tree, T , of height h, has a
(
6 2d(d+ 1)h−1

)
-subdivision,

S, with φ(S) 6 10.

Proof. Let r be the root of T . For all x ∈ [h] and y ∈ [d], let tx,y := y(d + 1)x−1. Define
the labelling ` : E(T ) → [d] such that edges incident to the same parent vertex receive
distinct labels. Let S be the subdivision of T such that every edge e ∈ E(T ) is subdivided
2th−z,`(e) times where z is the depth of e. Note that z ∈ {0, . . . , h− 1}.

Let `T : V (T )→ {black,white} be a proper vertex 2-colouring of T . Define the labelling
`S : V (S) → {black,white, red, green} as follows. If v ∈ V (S) is an original vertex, then
`S(v) := `T (v). Otherwise, let v′ ∈ V (S) be the closest original vertex to v and e ∈ E(T )
be the edge such that v is a division vertex of e. If v′ is the vertex of e closest to the
root, then `S(v) := red; otherwise `S(v) := green. Note that v′ is well defined because all

52
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Figure 4.1: S for the complete 3-ary tree of height 2. The edges represent a number of
division vertices denoted by their label.

edges of T have an even number of division vertices. See Figure 4.1 for an example of this
construction.

Define the red-depth of a vertex v ∈ V (S) to be the number of red vertices on the
vr-path in S and define green-depth analogously. Let W = w1w2 . . . be a long anagram-
free word on {1, 2, 3, 4}. Define the vertex colouring f as follows. If v ∈ V (S) is an
original vertex then colour v by `S(v). Otherwise, let i be the `S(v)-depth of v and define
f(v) := (wi, `S(v)). A vertex has label black or white if and only if it is an original vertex,
so f is a 10-colouring of S.

Let P be a path in S, and assume for the sake of contradiction that P is an anagram. P
contains at least one division vertex because the original vertices have a proper colouring
in T , and all edges not incident to leaves have at least one division vertex. Let u be the
vertex with minimum depth in P .

First consider the case where u is an endpoint of P . In this case V (P ) ⊆ AS(v) for all
vertices v ∈ V (P ). For subscripts of the functions V and ω, let red := {1, 2, 3, 4} × {red}
and green := {1, 2, 3, 4} × {green}. Without loss of generality, P contains a red division
vertex. Therefore the red-depth increments by one along the vertices in Vred(P ). It follows
that the sequence of colours along the red vertices of P is a subword of W , so ωred(P ) is
not an anagram. Therefore, by Lemma 4.1, P is not an anagram.

The remaining case is where u is not an endpoint of P . In this case, u is an original
vertex. For all e ∈ E(T ), let De be the division vertices of e. Say that P hits an edge
e ∈ E(T ) if De ∩ V (P ) 6= ∅, and that P contains e if De ⊆ V (P ). Let α be the largest
edge in T (the edge with most division vertices in S) hit by P , and β be the second largest
edge in T hit by P . Since tx,y > tx′,y′ , for all y, y′, and x > x′ the edges of T are larger
nearer the root, so both α and β are adjacent to u. Let vα and vβ be the endpoints of P
denoted such that the uvα-path hits Dα.

Let C ′ = {red, green} × {1, 2, 3, 4} and define WL, Wα, Wβ and WR so that the con-
catenation WLWαWβWR = ωC′(P ) and

• WL is the subword corresponding to the division vertices in V (uvα-path) \Dα,

• Wα is the subword corresponding to the vertices V (P ) ∩Dα,

• Wβ is the subword corresponding to the vertices V (P ) ∩Dβ, and

• WR is the subword corresponding to the remaining division vertices of P .

Note that each of WL and WR may be the empty word.
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Let xα, yα and yβ be such that |Dα| = 2txα,yα and |Dβ| = 2txα,yβ . Firstly,

|WL| 6 b := 2
xα−1∑
i=1

ti,d

because |WL| is at most the number of division vertices on the longest path from the child
of α to a leaf of S. Similarly |WR| 6 b. For all x ∈ [h],

tx,1 = 1 +
x−1∑
i=1

ti,d

because, by induction on x,

tx,1 = (d+ 1)tx−1,1 = (d+ 1)

(
1 +

x−2∑
i=1

ti,d

)
= (d+ 1) +

x−1∑
i=2

ti,d = 1 +
x−1∑
i=1

ti,d.

Therefore

|Dα| = 2txα,yα > 2txα,1 = 2 + 2
xα−1∑
i=1

ti,d > b.

Similarly |Dβ| > b. Also,

|Dα| = 2yαtxα,1 > 2yβtxα,1 + 2txα,1 = 2txα,yβ + 2 + 2
xα−1∑
i=1

ti,d > |Dβ|+ b.

Recall that the vertex colouring of T is a proper 2-colouring and that V (P ) contains an
original vertex. Let L and R be the split of P , with vα ∈ V (L). The shortest anagram in
a proper 2-colouring has four vertices. Therefore, by Lemma 4.1, both L and R contain
at least two original vertices so P contains at least three edges of T . This implies that at
least one of WL and WR is not the empty word. Thus, at least one of α and β is contained
in P .

Consider the case where α is not contained in P . Then |Wβ| = |Dβ| > b > |WR| so WR

is a subword of ωC′(R). This implies that L only contains one original vertex, which is a
contradiction, so P is not an anagram.

Now consider the case where α is contained in P . Then |Wα| = |Dα|. Since exactly
half the division vertices of each edge are labelled red,

|ωred(Wα)| = |ωgreen(Wα)| = |Wα|
2

,

|ωgreen(Wβ)| 6 |Wβ|
2

,

|ωred(WL)| 6 b

2
,

|ωgreen(WR)| 6 b

2
.

If all vertices corresponding to ωgreen(Wα) are in L, then

|ωgreen(L)| > |ωgreen(Wα)| > |Dβ|+ b

2
> |ωgreen(Wβ)|+ |ωgreen(WR)| > |ωgreen(R)|.
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Thus P is not an anagram. If some vertices corresponding to ωgreen(Wα) are not in L, then
all vertices corresponding to ωred(Wα) are in R, see Figure 4.1. Therefore,

|ωred(R)| > |ωred(Wα)| > b

2
> |ωred(WL)| > |ωred(L)|.

Thus P is not an anagram. This covers all cases since vα ∈ V (L).

Theorem 4.4 follows as a corollary of Theorem 4.3.

Theorem 4.4. Every d-ary tree, T , of height h, has a
(
6 2d(d+ 1)h−1

)
-subdivision, S,

with φ(S) 6 10.

Proof. Apply Theorem 4.3 to the complete d-ary tree of height h, and take the appropriate
subgraph of the resulting subdivision.

In Section 4.1.3 we show that the exponential upper bound on the number of division
vertices per edge in Theorem 4.4 is necessary. To achieve this, we first extend a result of
Kamčev et al. [83].

4.1.2 Extension of the lower bound for complete binary trees

This subsection extends Theorem 1.5, for complete binary trees, by Kamčev et al. [83].
We generalise their method of proof to obtain a result about subdivisions of high degree
trees. The following definitions are extensions of those found in their original paper.

Let T be a rooted tree with root r. The effective vertices of T are its leaves and branch
vertices. The effective root of T is the closest effective vertex to r, including r. The
effective height of T is the minimum, over the leaves of T , of the number of branch vertices
on each root to leaf path. Call T essentially i-monochromatic if all of its effective vertices
are coloured i. Call T essentially monochromatic if it is essentially i-monochromatic for
some i. For d > 2, a d-branch tree is a rooted tree such that every branch vertex has at
least d children.

Lemma 4.5. For all integers a1, . . . , ac > 0 and d > 2, every d-branch tree with vertices
coloured by [c] and effective height at least

∑c
i=1 ai, contains an essentially i-monochromatic

d-branch subtree of effective height at least ai for some i ∈ [c].

Proof. We proceed by induction on
∑c

i=1 ai. The base case, a1 = · · · = ac = 0, is satisfied
by taking a single vertex as the required d-branch subtree.

Let T be a d-branch tree of effective height a1 + · · · + ac > 1 with vertices coloured
by [c]. Without loss of generality, its effective root, v, has colour 1. Let v1, . . . , vd be
children of v. Let Tj be the subtree rooted at vj. Note that Tj has effective height at least
(a1 − 1) + a2 + · · · + ac. If, for some j ∈ [d] and i ∈ {2, . . . , c}, Tj contains an essentially
i-monochromatic subtree of effective height ai then we are done. Otherwise, by induction,
each Tj contains an essentially 1-monochromatic d-branch subtree of effective height a1−1.
These subtrees, together with v, are an essentially 1-monochromatic d-branch subtree of
T , as required.

We now prove a lower bound on φ by using an essentially monochromatic subtree to
find anagrams in sufficiently large trees.
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Theorem 4.6. Let T be a d-branch tree of effective height at least h′ and height at most
h. If h > max{2,

√
d}, then

φ(T ) > c :=

√
h′

logd h
.

Proof. If c 6 1, the theorem follows trivially, so assume c > 1. Let T be coloured with x
colours, where 1 6 x 6 c−1. Our goal is to show that T contains an anagram. For i ∈ [x],
define ai ∈ {bh′/xc, dh′/xe} such that

∑x
i=1 ai = h′. By Lemma 4.5, and without loss

of generality, T contains an essentially 1-monochromatic d-branch subtree, S, of effective
height at least bh′/xc.

Let r be the root of S. There are at least dbh′/xc paths from r to the leaves of S, and
the colouring of each path has a colour multiset of order at most h + 1. Since each path
shares the colour of r, there are at most hx distinct multisets that can occur on the paths.
Since x 6 c− 1,

#multisets 6 hx < h(c2/x)−2.

Since h >
√
d

h(c2/x)−2 6
1

d
h(c2/x).

Therefore

#multisets <
1

d
h(c2/x) =

1

d

(
h

1
logd h

)(h′/x)

= d(h′/x)−1 6 dbh
′/xc 6 #paths.

So there is a multiset that occurs on two different paths, P1 and P2, from r to the leaves
of S. Let v be the lowest common vertex of P1 and P2, and let `i be the leaf endpoint of
Pi. By definition, M(P1) = M(P2) so M(P1 − P2) = M(P2 − P1). Since S is essentially 1-
monochromatic, the vertices v, `1, and `2 have colour 1 so ((P1−P2)\{`1})((P2−P1)\{v})
is an anagram.

4.1.3 Optimality of the number of division vertices

To investigate the optimality, in terms of division vertices per edge, of the subdivision
in Theorem 4.3, we consider the c-colourable k-subdivisions of the complete d-ary tree of
height h. We start with an upper bound on φ for (6 k)-subdivisions.

Corollary 4.7. For every k > 0 and every complete d-ary tree of height h′, T , there exists
a (6 k)-subdivision, S, such that

φ(S) 6 c := 10

⌈
h′

logd+1(k/2d)

⌉
.

Proof. Let x := c/10 and let B ⊆ E(T ) be the set of edges with depths idh′/xe − 1 for
i ∈ {0, . . . , x−1}, recalling that the depth of an edge is the minimum depth of its endpoints.
Let F := T − B and note that F is a forest where each component is a complete d-ary
tree of height at most dh′/xe. Let C be the set of components of F . Root each component,
C ∈ C, at the vertex r ∈ V (C) with minimum depth in T . The depth of r is idh′/xe for
some i ∈ {0, . . . , x− 1}. Define the depth of C to be i.
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By the definition of c and x,

logd+1

(
k

2d

)
>
h′

x
.

This implies

k > 2d(d+ 1)
h′
x > 2d(d+ 1)

⌈
h′
x

⌉
−1
.

Therefore, by Theorem 4.3, for every C ∈ C, there exist a (6 k)-subdivision, SC , with
φ(SC) 6 10, because C has height at most dh′/xe. Anagram-free colour SC using colours
{10i + 1, . . . , 10(i + 1)} where i is the depth of C. Let S = B + ∪C∈CSC . Note that S is
a (6 k)-subdivision of T with a 10x colouring. We now show that this colouring of S is
anagram-free.

Let P be a subpath of S. Let j ∈ {0, . . . , x− 1} be the minimum depth of component
C ∈ C such that SC has non-empty intersection with P . By the construction of S, P
intersects exactly one C ′ ∈ C ′ of depth j. Therefore, P restricted to the colours of C ′
corresponds to a subpath of C ′ and, since C ′ is anagram-free, the restriction is not an
anagram. Therefore, by Lemma 4.1, P is not an anagram.

The following lemma generalises results for (6 k)-subdivisions to k-subdivisions. Note
that the k-subdivision a graph, G, is a subdivision of every (6 k)-subdivision of G.

Lemma 4.8. For every subdivision, S, of a graph G, φ(S) 6 φ(G) + 4.

Proof. Fix an anagram-free φ(G)-colouring of G and apply the colouring to the original
vertices of S. The graph induced by the division vertices of S is a forest of paths. Colour
all of these paths with an anagram-free colouring on four new colours. By Lemma 4.1, this
colouring of S is anagram free.

We combine the results of this section with those of Section 1.3.4 in the following upper
and lower bounds.

Theorem 4.9. The k-subdivision, S, of the complete d-ary tree of height h satisfies√
h

logmin{d,(h(k+1))2}(h(k + 1))
6 φ(S) 6

10h

logd+1 (k/2d)
+ 14.

Proof. We first show the lower bound. The effective height of S is h because division
vertices are not branch vertices. The height of S is h(k + 1) because there are h edges on
root-leaf paths of complete trees of height h, and each edge has hk division vertices. If√
d 6 h(k + 1), then the bound follows from Theorem 4.6. In the case

√
d > h(k + 1), we

use Theorem 4.6 on a subtree of S with maximum degree (h(k + 1))2.
The upper bound follows from Corollary 4.7 and Lemma 4.8.

Consider the bounds Theorem 4.9, restated in terms of k, for d 6 (h(k+1))2, as follows

h−1dh/φ(S)2 − 1 6 k 6 2d(d+ 1)10h/(φ(S)−14). (4.1)

For fixed d and φ(S), the upper and lower bounds on k are both dominated by exponentials
in h. This shows that the subdivision and colouring in Theorem 4.3 is close to optimal.
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4.2 Subdivisions of general graphs
In this section we construct subdivisions, of arbitrary graphs, with bounded anagram-free
chromatic number. Let t = t1, t2, . . . be a sequence of positive integers. A subdivision, S,
of a graph G, is a t-sequence-subdivision of G if there is a bijection, ` : V (G)→ [|V (G)|],
that satisfies the following two conditions. The first condition is that there is a proper
2-colouring of G, with colours white and black, such that `(u) > `(v) for every white vertex
u ∈ V (G) and black vertex v ∈ V (G). The second condition is as follows. For every edge,
e ∈ E(G), define w(e) to be the white vertex incident to e, and b(e) to be the black vertex
incident to e. Define the bijection, `′ : E(G) → [|E(G)|], that orders edges in E(G), first
by the label of their white endpoint and second by the label of their black endpoint. That
is, `′(x) > `′(y) for edges x, y ∈ E(G) if `(w(x)) > `(w(y)) or if `(w(x)) = `(w(y)) and
`(b(x)) > `(b(y)). Note that `′ is determined entirely by `. Now, the second condition on
` is that every edge, e ∈ E(G), has 3t`′(e) division vertices.

Let G be a graph, t be a sequence of positive integers, and S be a t-sequence-subdivision
of G with corresponding vertex and edge labellings ` and `′. Define functions X, Y , and
Z such that for every edge, e ∈ E(G), X(e), Y (e), and Z(e) are pairwise disjoint paths in
the division vertices of e with |V (X(e))| = |V (Y (e))| = |V (Z(e))| = t`′(e), X(e) adjacent
to the white end of e, and Z(e) adjacent to the black end of e. Define the sets of these
paths, X := X(E(G)), Y := Y (E(G)), and Z := Z(E(G)). A vertex colouring of S is
discriminating if the following conditions hold.

(1) The original vertices of S are coloured by the proper 2-colouring of G, determined
by `, and these two colours only occur on the original vertices.

(2) Every anagram in S contains at least one original vertex.

(3) For all Q ∈ {X, Y, Z} there exists a nonempty set of colours, C(Q), that occur only
on the vertices of paths in Q(E(G)).

(4) For all Q ∈ {X, Y, Z} and q ∈ E(G),∑
e∈E(G):`′(e)<`′(q)

|VC(Q)(Q(e))| < |VC(Q)(Q(q))|.

Note that whether S has a discriminating vertex colouring depends on the sequence t. For
example, the sequence ti = 1, for all i, causes Condition (4) to fail for sufficiently large G.

Theorem 4.10. Let S be a t-sequence-subdivision of a graph G with sequence t. Every
discriminating vertex colouring of S is anagram-free.

Proof. Let ` and `′ be the associated vertex and edge labellings of G. Let f be a discrim-
inating vertex colouring of S.

Let P be a path in S and assume for the sake of contradiction that P is an anagram. By
Condition (2), V (P ) contains at least one original vertex. Since G is properly 2-coloured,
all subpaths of G that are anagrams have order at least 4. The 2-colouring of G is applied
to the original vertices of S, so, by Lemma 4.1, P contains at least four original vertices.
Therefore P has at least one subpath from each of X , Y , and Z. Let x, y, z ∈ E(G)
be the edges maximizing `′ such that V (P ) ∩ V (X(x)) 6= ∅, V (P ) ∩ V (Y (y)) 6= ∅, and
V (P ) ∩ V (Z(z)) 6= ∅.

A path, P ′, partially intersects P if V (P ′) * V (P ) and V (P ′) ∩ V (P ) 6= ∅. There are
at most two paths in X , Y , and Z that partially intersect P since every division vertex has
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α w(q) w(z)

β γ b(q) b(z)

Q(αγ) Q(q)

A(αβ) A(q)

Figure 4.2: The path, P , in the case A = X and Q = Y . Correspondingly, αβ = x
and q = y. The coloured lines correspond to division vertices, with the vertices in P
highlighted in yellow. The contradiction is reached by noting that |A(αβ)| > |A(q)| and
|Q(q)| > |Q(αγ)|.

degree 2 in S. Therefore at least one of X(x), Y (y), and Z(z) is a subpath of P . Define
q ∈ {x, y, z} and Q ∈ {X, Y, Z} such that Q(q) ∈ {X(x), Y (y), Z(z)} is a subpath of P .
Since f is a discriminating colouring∑

e∈E(G):`′(e)<`′(q)

|VC(Q)(Q(e))| < |VC(Q)(Q(q))|.

Therefore, by the maximality of `′(q), there are more vertices in Q(q) coloured by C(Q)
than there are vertices coloured by C(Q) in the rest of P . Thus |VC(Q)(Q(q))| > 1

2
|VC(Q)(P )|.

Let L and R be the split of P . By Lemma 4.1, VC(Q)(L) = VC(Q)(R) = 1
2
|VC(Q)(P )| so

both L and R intersect Q(q). Therefore the midedge of P is an edge of Q(q). Since the
midedge of P is unique, exactly one of X(x), Y (y), and Z(z) is a subpath of P .

Since G is properly 2-coloured, every subpath of G that is an anagram has a white
endpoint and a black endpoint. Therefore one of the endmost original vertices of P is
white, call this vertex α. Since P partially intersects exactly two of X(x), Y (y), and
Z(z), there is a black vertex β ∈ NG(α) such that αβ ∈ {x, y, z}, where NG(α) is the
neighbourhood of α in G. Recall that both L and R contain at least two original vertices
and the midpoint of P is in Q(q). Therefore neither endpoint of q is an endmost original
vertex of P , so α 6= w(q). Also, there is a black vertex, γ ∈ NG(α), such that the division
vertices of αγ are all in P . Since αβ ∈ {x, y, z} and αβ 6= q, there is an A ∈ {X, Y, Z} such
A(αβ) ∈ {X(x), Y (y), Z(z)}, for some A 6= Q. See Figure 4.2 for a potential assignment
of q, Q, and A. Now, `′(αβ) > `′(q) because A(q) is a subpath of P and αβ maximises
`′(αβ) over edges, e, with a path, A(e), which intersect P . Therefore `(α) > `(w(q)), so
`′(αγ) > `′(q). This contradicts the maximality of `′(q) because Q(αγ) is a subpath of
P .

Theorem 4.11 follows from Theorem 4.10.

Theorem 4.11. Every graph G has a
(
6 6(2)2|E(G)|−1 − 1

)
-subdivision, S, with φ(S) 6 14.

Proof. Let G′ be the 1-subdivision of G, and note that G′ has a proper 2-colouring. Define
the sequence t by ti = 2i−1 for i > 1. Let S be a t-sequence-subdivision of G′. Note that
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G′ has 2|E(G)| edges, 3t2|E(G)| = 3(2)2|E(G)|−1, and each edge of G corresponds to a pair of
edges of G′. It follows that S satisfies the bound on division vertices per edge required by
the theorem. Let ` and `′ be the associated vertex and edge labellings of G′.

Let f be the vertex colouring of S defined as follows. Colour the original vertices of S
with the proper 2-colouring of G′ that corresponds to `. Assign a disjoint set of four colours
to each of X , Y and Z. Colour each of the paths in X , Y and Z with an anagram-free
4-colouring with their assigned set of four colours.

We now show that f is discriminating. Conditions (1) and (3) are satisfied trivially.
Condition (2) is satisfied because each of the paths in X , Y and Z is anagram-free and they
use their own set of colours so every anagram in S contains an original vertex. Condition
(4) is satisfied because for all Q ∈ {X, Y, Z} and q ∈ E(G′), |VC(Q)(Q(q))| = |V (Q(q))|,
and ∑

e∈E(G′):`′(e)<`′(q)

|V (Q(e))| = 2`
′(q)−2 + · · ·+ 1 = 2`

′(q)−1 − 1 < 2`
′(q)−1 = |V (Q(q))|.

Therefore f is an anagram-free 14-colouring of S.

Theorem 4.11 can be extended to bound φ on subdivisions of graphs as a function of
division vertices per edge.

Theorem 4.12. For every graph G and k ∈ Z+ there exists a (6 6(4)d|E(G)|/ke)-subdivision,
S, of G with φ(S) 6 2 + 12k.

Proof. Let G1, . . . , Gk be subgraphs that partition the edges of G such that V (Gi) = V (G)
and |E(Gi)| 6 d|E(G)|/ke, for all i ∈ [k]. Let G′ be the 1-subdivision of G and fix the
proper 2-colouring of G′ which assigns the same colour to each division vertex of G′. Let
G′i be the 1-subdivision of Gi, for all i ∈ [k]. Apply the proof of Theorem 4.11 to obtain
a subdivision, Si, of each G′i, skipping the 1-subdivision and 2-colouring steps because
G′i is already a bipartite graph with a proper 2-colouring inherited from G′. Note that
V (G′i) ⊆ V (Si) and V (Si) ∩ V (Sj) = V (G′), ∀i, j ∈ [k]. Let S be the union of S1, . . . , Sk
and, since S is a subdivision of G′, we call V (G′) the original vertices of S. By this
construction, the 2-colouring of the original vertices of S is consistent across Si, . . . , Sk.
The anagram-free 14-colouring provided by the proof of Theorem 4.11 uses two colours
for the original vertices and 12 colours for the division vertices. It follows that we may
combine the colourings of S1, . . . , Sk to obtain a (2+12k)-colouring of S, where the division
vertices of each Si are coloured by a distinct set of 12 colours. We now show that this
colouring is anagram-free.

Let P be a path in S. First consider the case where P is entirely contained in Si, for
some i ∈ [k], or P contains fewer than four original vertices. By Theorem 4.11 P is not an
anagram, so we are done.

In the remaining case, and without loss of generality, P contains an entire subdivision
edge of S1 and contains division vertices of S2. Since the colouring of S1 is discriminating,
we have a partition of the division vertices of S1 into sets of paths, denoted X1, Y1, and Z1.
The same can be said of S2, and we denote its corresponding sets of paths X2, Y2, and Z2.
Because P contains a subdivision edge of S1, P intersects paths from each of X1, Y1, and
Z1. Also, P intersects at least one path fromW ∈ {X2,Y2,Z2}. Due to the structure of S,
P partially intersects at most two paths from X1 ∪ Y1 ∪ Z1 ∪W . It follows that there are
two sets of paths, A,B ∈ {X1,Y1,Z1,W}, which do not contain any paths that partially
intersect P . As shown in the proof ofTheorem 4.10, for P to be an anagram its midpoint
must be within a path in A. The same holds for B, and P has a unique midpoint, so P is
not an anagram.
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We now apply Theorem 4.10 with the goal of lowering the bound on φ for sufficiently
subdivided graphs.

Theorem 4.13. Every graph G has a
(
6 90

(
75
9

+ 1
)2|E(G)|−1

)
-subdivision, S, with φ(S) 6

8.

Proof. Let G′ be the 1-subdivision of G, and note that G′ has a proper 2-colouring. Define
the sequence t with t1 = 8 and

tn = 15 +

⌊
25

3

n−1∑
i=1

ti

⌋
. (4.2)

Let S be a t-sequence-subdivision ofG′. It is straightforward to verify that tn 6 15
(
1 + 75

9

)n−1

so S satisfies the limit on division vertices per edge required by the theorem. Let ` and `′
be the associated vertex and edge labellings of G′.

Define the colouring f : V (S) → {1, 2, 3, 4, 5, 6,white, black} as follows. Original
vertices are coloured white or black according to `. For every e ∈ E(G′), define Pe =
v1 . . . v3t`′(e)

to be the division vertices of e. Let W be an anagram-free word on {1, 2, 3, 4}
of length 3`′(e) and colour Pe as follows. For all vi ∈ V (Pe), if Wi ∈ {1, 2, 3} then
f(vi) := Wi. Otherwise, f(vi) := 4 if vi ∈ V (X(e)), f(vi) := 5 if vi ∈ V (Y (e)), and
f(vi) := 6 if vi ∈ V (Z(e)).

We now show that f is discriminating. Condition (1) is satisfied trivially. Condition (2)
is satisfied because Pe is coloured by an anagram-free word for all e ∈ E(G′). Condition (3)
is satisfied by C(X) = {4}, C(Y ) = {5}, and C(Z) = {6}. We now show that Condition
(4) is satisfied.

Let Q ∈ {X, Y, Z} and q ∈ E(G′). The same symbol cannot occur twice in a row so
|VC(Q)(Q(q))| 6 5

9
|V (Q(q))|, since |V (Q(q))| > 8. Therefore

∑
e∈E(G′):`′(e)<`′(q)

|VC(Q)(Q(e))| 6 5

9

∑
e∈E(G′):`′(e)<`′(q)

|V (Q(e))|.

Every anagram-free word of length 8 contains at least four distinct symbols. Therefore
|VC(Q)(Q(q))| > 1

15
|V (Q(q))|. By (4.2)

5

9

∑
e∈E(G′):`′(e)<`′(q)

|V (Q(e))| = 5

9

n−1∑
i=1

ti <
1

15

(
1 +

⌊
25

3

n−1∑
i=1

ti

⌋)
=

1

15
tn −

14

15
.

Therefore

∑
e∈E(G′):`′(e)<`′(q)

|VC(Q)(Q(e))| 6 5

9

n−1∑
i=1

ti <
1

15
tn =

1

15
|V (Q(e))| 6 |VC(Q)(Q(q))|.

Thus Condition (4) is satisfied so f is an anagram-free 8-colouring of S.

Theorem 4.13 uses simple bounds on the density of symbols in anagram-free words.
Better bounds on density would improve the base of the bound in Theorem 4.13.
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4.2.1 Subdivisions of complete graphs

Nešetřil et al. [110] study π on subdivisions of the complete graph, and prove Theorem 1.3,
which implies, k > logc (n/2)− 1 for every anagram-free c-colourable k-subdivision of Kn.
We improve upon this bound with Theorem 4.14. Recall that Mk,c is the set of colour
multisets on c symbols of size k, and thatM6k,c is the set of colour multisets of c symbols
of size at most k.

Theorem 4.14. Let S be a (6 k)-subdivision of Kn. If S is anagram-free c-colourable
then

k >
(
c!
(n
c
− 1
))1/c

− c.

Proof. Suppose for the sake of contradiction that

k <
(
c!
(n
c
− 1
))1/c

− c. (4.3)

Fix an anagram-free colouring of S. Colour each edge e ∈ E(Kn) with the colour multiset
of the subdivision vertices of e in S and colour each vertex of Kn with its colour in S.
Note that there are

|M6k,c| =
k∑
i=0

(
i+ c− 1

c− 1

)
=

(
k + c

c

)
6

(k + c)c

c!

possibilities for the colour of each edge. Let x := dn/ce, and letG be a vertex-monochromatic
Kx subgraph of Kn. Note that

|E(G)| = x

2
(x− 1) >

x

2

(n
c
− 1
)
.

Therefore, by (4.3),

|E(G)| > x

2

(n
c
− 1
)
>
x

2

(k + c)c

c!
>
x

2
|M6k,c| >

x

2
#colours.

So there is a set of more than x/2 edges that have the same colour. Therefore there is
a vertex, v ∈ V (G), that is incident to at least two edges, α, β ∈ E(G), with the same
colour. Let u be the other endpoint of α, Pα be the path induced by the division vertices of
α, and Pβ be the path induced by the division vertices of β. Then uPαvPβ is an anagram
in S.

For fixed c, the number of division vertices in Theorem 4.14 grows as the cth root in the
number of edges of Kn. This is an improvement on the logarithmic bound from square-free
colouring, however, the number of division vertices in the construction in Theorem 4.13
grows exponentially in the number of edges in Kn. The question of whether the number
of division vertices per edge in an anagram-free c-colourable subdivision of Kn grows
polynomially or exponentially is open.
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Chapter 5

Colour schemes

This chapter proposes an axiomatic approach to graph colouring, as a framework in which
to prove results that apply to many existing variants of graph colouring. The focus is
entirely on vertex colourings of simple graphs, but this system could be reformulated
for edge colouring, as well as other generalisations of graph colouring. We discuss many
variants of graph colouring as well as particular graph colourings. To avoid the confusion
that may arise from these similar phrases, we define a coloured graph to be a pair, (G,α),
consisting of a graph G and colouring α : V (G) → C, where C is a set of colours. A
k-coloured graph is a coloured graph where |C| 6 k. Keep in mind that a coloured graph
may have any assignment of colours to vertices, it is not necessarily a proper colouring.
Our focus is on finite graphs, however, we endeavour to define properties that retain their
usefulness when applied to infinite graphs.

The notion of ‘variant of graph colouring’ is formalised by defining a colour scheme
to be a set of coloured graphs which satisfies a few natural axioms, to be defined in
Section 5.1. Many types of graph colouring found in the literature have a corresponding
colour scheme. For example, the colour scheme corresponding to proper vertex colouring,
denoted P, contains a coloured graph (G,α) if and only if (G,α) has no monochromatic
edges. Every variant of graph colouring corresponds to a set, A, of coloured graphs which
are considered valid, and in many cases A satisfies the colour scheme axioms. Representing
a type of graph colouring as a set of coloured graphs has many advantages compared to
the more commonly used rule-satisfaction formulation. In the literature, many results
are stated in terms of chromatic numbers, which tend to be formulated as a rule that a
colouring must satisfy. For example, a graph, G, has χ(G) 6 k if there exists a k-colouring
of G with no monochromatic edge. This focus on chromatic numbers works within a
variant, but is not suited to making general statements about multiple variants of graph
colouring. With colour schemes, it is easier to compare multiple variants of graph colouring
since we are able to use the tools and notation of set theory. A similar idea is used in
the field of graph properties, which treats properties of graphs, such as being bipartite or
planar, as sets of graphs closed under isomorphism, see Section 1.4.3. The new idea central
to colour schemes is that every type of graph colouring can be formulated as a boolean
property of coloured graphs.

A major goal of colour schemes is to allow for proofs of general results that apply
to many variants of graph colouring. This is motivated by a concern that many results
in graph colouring are specific to a particular colour scheme and tend not to be easily
translatable to colour schemes with similar properties. Translating a proof between colour
schemes often requires delving into the proof, taking the core insight, and rewriting it
in terms of the new colour scheme. A more ideal situation would be to first identify the
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general properties that are required for the core insight and then to write the original proof
in terms of general properties. To apply a proof to a new colour scheme one would only
need to prove that the colour scheme satisfies the general properties required by the proof.

This chapter first defines and motivates the colour scheme axioms. We then derive
many of the standard tools and operations of graph colouring from these axioms. The
chapter ends by showing that many variants of graph colouring found in the literature
are colour schemes. Chapter 6 investigates particular types of colour schemes, with a
focus on extending the results about anagram-free colouring from Chapters 3 and 4. This
investigation involves proving results about colour schemes that satisfy general properties,
as well as the construction of new colour schemes with novel properties as answers to
questions raised by the comparison of anagram-free colouring to square-free colouring.

5.1 Colour scheme axioms
We first define colour schemes and prove that many tools used in graph colouring follow
from their axioms. A colour scheme is a set of coloured graphs, A, that is closed under
isomorphism and satisfies the following axioms.

Subgraphability : A is closed under taking coloured subgraphs. Formally, if (G,α) ∈
A and H is a subgraph of G then (H,α|H) ∈ A, where α|H := α|V (H).

Recolourability : A is closed under fracturing. A coloured graph, (G, β), is a
fracture of (G,α) if, for all vertices, u, v ∈ V (G), β(u) = β(v) implies α(u) = α(v).

Universality : Every graph G has a colouring α such that (G,α) ∈ A.

Additivity : A is closed under taking disjoint unions of coloured graphs.

Locality : Every coloured graph (G,α) /∈ A has a finite subgraph not in A.

These axioms intend to capture the notion of graph colouring in the sense of pat-
tern avoidance or conflict minimization. Furthermore, we require that the patterns to
be avoided are local and finite, in the sense that two vertices can only be in conflict if
the distance between them is finite. The greatest justification for these axioms is that
they work, as demonstrated by the results obtained in the following chapters and sections.
However, to communicate some intuition, we give an overview of the justification for each
axiom. In many cases this amounts to considering the degenerate behaviour that each
axiom prevents.

The intuition behind Subgraphability is that the removal of vertices or edges from
a graph with a valid colouring should not create the types of patterns that are avoidable by
our notion of graph colouring. The following example provides a more concrete justification
for Subgraphability. A rainbow colouring of G is a colouring, α, of G which assigns a
unique colour to each vertex of G. Let A be a set of coloured graphs such that (G,α) ∈ A
if |V (G)| is even or (G,α) contains a connected component with a rainbow colouring. A
satisfies all of the axioms besides Subgraphability. However, the behaviour of A, when
restricted to finite, connected graphs, is determined by whether a graph has an even or
odd number of vertices. This behaviour does not match our notion of graph colouring.

Recolourability has a role similar to that of Subgraphability. The intuition here
is that conflicts are always caused by sets of monochromatic vertices. It follows that we
can reassign colours in a validly coloured graph provided that no conflicts are created
between vertices which were previously not in conflict. Without this axiom, the set of
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coloured graphs, A, such that (G,α) ∈ A if each of its connected components is coloured
by at most x colours would be a colour scheme, for all x ∈ Z+. A is just counting the
number of colours in a graph, so does not satisfy our notion of local pattern avoidance.
Recolourability has many uses, including allowing us to take product colourings to
combine colour schemes.

Universality ensures that every colour scheme has a notion of a chromatic number
defined on every graph. The A-chromatic number , χA(G), of a graph, G, is the smallest
integer k such that there exists a colouring, α : V (G)→ [k], with (G,α) ∈ A. Additivity
and Locality enforce the notion that graph colouring is about avoiding conflicts on finite
sets of vertices which are all within a finite distance of each other. Without Additivity,
we could construct a colour scheme which essentially counts the number of connected
components of a graph. Without Locality, the set of coloured finite graphs would be a
colour scheme. In further support of Locality, de Bruijn and Erdős [46] prove that, for
an infinite graph G and k ∈ Z+, if every finite subgraph, H, of G satisfies χ(H) 6 k, then
χ(G) 6 k.

5.1.1 Subsets and subgraphs

The field of graph colouring has operations and tools that are used in many variants
of graph colouring. The axioms of colour schemes are designed to ensure these tools
are applicable to colour schemes. We first establish that chromatic numbers behave as
expected, with respect to taking subgraphs.

Lemma 5.1. Let G be a graph and A be a colour scheme. Then χA(H) 6 χA(G) for all
subgraphs H, of G.

Proof. Firstly, χA(G) = k implies that there exists α : V (G) → [k] with (G,α) ∈ A. By
Subgraphability, (H,α|H) ∈ A. When α is restricted to H it still has codomain [k], so
χA(H) 6 k.

The next lemma describes a notion that holds for many variants of graph colouring.

Lemma 5.2. Let G be a graph and A be a colour scheme. For all finite graphs G, if
χA(G) = k then there exists (G,α) ∈ A such that |α(V (G))| = x, for all x ∈ {k, k +
1, . . . , |V (G)|}.

Proof. Let (G,α) be a k-coloured graph where each of the k colours occurs at least once.
Let U ∈ V (G) be a maximal set of vertices such that every v ∈ U has a u /∈ U such that
α(u) = α(v), and note that |U | = |V (G)| − k. Let (G, β) be a recolouring of (G,α) such
that x − k of the vertices of U are given distinct new colours. By Recolourability,
(G, β) ∈ A, and (G, β) uses exactly x colours.

By Lemma 5.2 and Universality, every colour scheme contains all rainbow coloured
graphs. The rainbow colouring of a graph is unique up to relabelling colours, so we often
refer to ‘the rainbow colouring of G’.

Lemma 5.3. Let α be the rainbow colouring of G. For all colour schemes A, (G,α) ∈ A.

Additivity enforces the notion of local pattern avoidance, but only does so in one
direction. The reverse direction, that every connected component of a coloured graph in a
colour scheme is also in the colour scheme, is not part of Additivity because it is implied
by Subgraphability.
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Lemma 5.4. Let A be a colour scheme. Then (G,α) ∈ A if and only (H,α|H) ∈ A for
every connected connected component, H, of G.

Proof. Let (G,α) be a coloured graph such that (H,α|H) ∈ A for every connected compo-
nent, H, of G. Note that (G,α) is the disjoint union of each of its connected components.
Therefore, by Additivity, (G,α) ∈ A.

We now show that the conditions are necessary. Let (G,α) ∈ A and H be a connected
component of G. Note that H is a subgraph of G. Therefore, by Subgraphability,
(H,α|H) ∈ A.

Since colour schemes are sets, the standard subset, union, and intersection operations
apply to colour schemes in the usual way. If one colour scheme is a subset of another we
can infer a relationship between their chromatic numbers. For a set of coloured graphs,
A, and set of graphs, G, A restricted to G, is A|G := {(G,α) ∈ A : G ∈ G}. The following
lemma is written in terms of restrictions of colour schemes, but in many cases we set G to
be the set of all graphs.

Lemma 5.5. Let A and B be colour schemes, and let G be a set of graphs, with A|G ⊆ B|G.
Then χB(G) 6 χA(G) for all graphs G ∈ G.

Proof. Let G ∈ G and let k := χA(G). There exists α : V (G) → [k] with (G,α) ∈ A|G.
Thus χB(G) 6 k, because (G,α) ∈ B|G.

Lemma 5.5 demonstrates a subtle point about the expressiveness of statements about
colour schemes as compared to statements about chromatic numbers. The statement
‘A ⊆ B’ is stronger than ‘χB(G) 6 χA(G)’ because, in general, the backwards implication
of Lemma 5.5 does not hold. For example, take square-free colouring, denoted Q, and
exact-distance-2 colouring, denoted E. A coloured graph, (G,α), is in E if and only if the
endpoints of every path of length 2 in (G,α) have distinct colours. It is easy to verify that
χE(P1) = 1, χE(P2) = 1 and χE(Pn) = 2 for all n > 3. The corresponding bounds on χQ

are χQ(P1) = 1, χQ(Pn) = 2 for n ∈ {2, 3, 4}, and χQ(Pn) = 3 for all n > 5. It follows
that χE(Pn) 6 χQ(Pn) for all n. However, since the path with colour sequence 121 is in
Q and not in E, Q|P is not a subset of E|P , where P = {Pn : n > 1}.

Set notation provides a natural way to make statements about colour schemes that,
in many cases, retain more information than corresponding statements about chromatic
numbers. For example, take the following statement about star colouring and proper
colouring. Let P be the colour scheme of all coloured graphs without monochromatic
edges and S be the colour scheme that corresponds to star colouring. Recall that every
star colouring is a proper colouring. Without colour schemes, this observation is likely
to be expressed as χP(G) 6 χS(G), for all graphs G. With colour schemes, it is natural
to write the stronger result, which is S ⊆ P. The advantage of ‘S ⊆ P’ is that it is as
succinct as the statement about chromatic numbers and it contains more information. The
statement ‘χP(G) 6 χS(G)’ does not communicate the justification for the bound, that is,
that every star colouring is a proper colouring. This example is fairly trivial, but in more
complicated situations it is vital to have a natural way to keep track of stronger results.

5.1.2 Unions and intersections

By considering graph colouring in terms of sets of coloured graphs we are able to make
use of standard set operations. Relatively simple colour schemes can be used as atoms to
build more complex colour schemes. This approach is useful because many properties of
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the atoms are transferred to their progeny. We first show that new colour schemes can be
generated by taking intersections of known colour schemes.

Lemma 5.6. If A and B are colour schemes, then A ∩B is a colour scheme.

Proof. Let (G,α) ∈ A ∩ B and (H, β) be a subgraph or a fracture of (G,α). By Sub-
graphability and Recolourability, (H, β) ∈ A and (H, β) ∈ B so (H, β) ∈ A ∩B.
Therefore A ∩B satisfies Subgraphability and Recolourability.

Let (G,α) ∈ A∩B and (H, β) ∈ A∩B. By Additivity, the disjoint union of (G,α)
and (H, β) is in both A and B. Therefore A ∩B satisfies Additivity.

A ∩B satisfies Universality because both A and B contain the rainbow colouring
of every graph G.

Let (G,α) /∈ A ∩B. Without loss of generality (G,α) /∈ A. By Locality there is a
finite (Ga, αa) /∈ A which is a subgraph of (G,α). Since (Ga, αa) /∈ A∩B, A∩B satisfies
Locality.

The intersection of two colour schemes corresponds to ‘and’ in the rule-satisfaction
approach to defining variants of graph colouring. For example, S∩E contains the coloured
graphs which are both star-coloured and exact distance-two coloured.

A colour scheme, A, generated by intersections can have some of their properties in-
ferred from the properties of the colour schemes used to generate A. For example, the
products of colourings in A and B are in A ∩B.

Lemma 5.7. Let A and B be colour schemes with (G,α) ∈ A and (G, β) ∈ B. Then
(G,ψ) ∈ A ∩B, where ψ(v) := (α(v), β(v)) for all v ∈ V (G).

Proof. Recolour (G,α) to (G,ψ) with ψ defined such that ψ(v) := (α(v), β(v)) for all
v ∈ V (G). Then (G,ψ) is a fracture of (G,α) because, for all u, v ∈ V (G), ψ(u) = ψ(v)
implies (α(u), β(u)) = (α(v), β(v)) which implies α(u) = α(v). Therefore (G,ψ) ∈ A, by
Recolourability. Similarly, (G,ψ) is a fracture of (G, β), so (G,ψ) ∈ B. It follows
that (G,ψ) ∈ A ∩B.

Product colourings can be used to infer bounds on the chromatic number of a colour
scheme generated by taking intersections. For brevity, and to reduce the use of subscripts,
a colour scheme, A, is bounded on a class of graphs, G, if there exists a c ∈ Z+ such that
χA is bounded by c on G. A colour scheme, A, is unbounded on G if A is not bounded on
G.

Lemma 5.8. Let A and B be colour schemes and G be a set of graphs. Then A ∩ B is
bounded on G if and only if both A and B are bounded on G.

Proof. Let χA and χB be bounded on G by a and b respectively. Let G ∈ G. Let fa be a
(6 a)-colouring of G in A and fb be a (6 b)-colouring of G in B. By Lemma 5.7, there is
a (6 ab)-colouring of G that is in A ∩B. Therefore A ∩B is bounded on G.

Now to show that the conditions are necessary. Let χA∩B be bounded on G by c.
Let G ∈ G and let (G, fc) be a (6 c)-coloured graph such that (G, fc) ∈ A ∩ B. Since
(G, fc) ∈ A and (G, fc) ∈ B, both A and B are bounded on G.

Similar results can be obtained for unions, with the caveat that the union of two colour
schemes is not the standard set union. This is required because the standard union of two
colour schemes does not satisfy Additivity. As an example, take star colouring, denoted
S, and exact distance-two colouring, denoted E, and consider the coloured paths 121 and
11. Note that 121 ∈ S \ E and 121 ∈ E \ S so, by Subgraphability, the disjoint union
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of 121 and 11 is not in S or E. It follows that S ∪ E does not satisfy Additivity, since
121 ∈ S ∪ E and 11 ∈ S ∪ E.

To obtain colour schemes from unions of colour schemes we must add the coloured
graphs required to satisfy Additivity. The additive closure of a set of coloured graphs,
A, is the set of disjoint unions of coloured graphs in A. The closed union, A tB, of two
sets of coloured graphs A and B is the additive closure of A ∪B.

Lemma 5.9. If A and B are colour schemes, then A tB is a colour scheme.

Proof. Let (G,α) ∈ A t B and (H, β) be a subgraph of a fracture of (G,α). Without
loss of generality, let (G′, α) ∈ A be a connected component of (G,α). Let (H ′, β|H′)
be the subgraph of the fracture of (G′, α) with V (H ′) = V (G′) ∩ V (H) and E(H ′) =
E(G′)∩E(H). Note that (H ′, β|H′) ∈ A, by Subgraphability and Recolourability.
It follows that every connected component of (H, β) is in A or B. Therefore AtB satisfies
Subgraphability and Recolourability.

AtB satisfies Additivity because it is the additive closure of A∪B. AtB satisfies
Universality because A contains the rainbow colouring of every graph G.

Let (G,α) /∈ A t B. By Additivity, there is a connected component, (H,α|H), of
(G,α). It follows that (H,α|H) /∈ A ∪B. By Locality and Lemma 5.4, there exist two
finite connected graphs, (X,α|X) /∈ A and (Y, α|Y ) /∈ B, both of which are subgraphs of
(G,α). Let P be a uv-path in H with u ∈ V (X) and v ∈ V (Y ). Let Z be the graph with
V (Z) := V (X) ∪ V (Y ) ∪ V (P ) and E(Z) := E(X) ∪ E(Y ) ∪ E(P ). By this construction,
(Z, α|Z) is a finite connected subgraphs of H which, by Subgraphability, is not in A
or B. It follows that A tB satisfies Locality.

The closure requirement tends to be just a technicality since colour schemes model
variants of graph colouring for which all the interesting behaviour occurs on connected
graphs. This technicality may be avoided by restricting the definition of colour schemes to
connected graphs, however, doing so yields awkward phrasings or abuses of notation when
taking subgraphs that are not necessarily connected. When restricted to connected graphs,
the union of two colour schemes corresponds to ‘or’ in the rule-satisfaction formulation of
graph colouring. In general, every connected component of a graph in AtB is in A or B.

Lemma 5.10. Let A and B be colour schemes, G be a set of graphs, and c ∈ Z+. If χA

or χB is bounded by c on G, then χAtB is bounded by c on G.

Proof. Let G ∈ G. Without loss of generality we may assume χA is bounded on G by c.
There is a fixed c-colouring, α, such that, (G,α) ∈ A. It follows that (G,α) ∈ AtB.

We now show that the sufficient conditions in Lemma 5.10 are not necessary. That is,
we show that there exist colour schemes, A and B, such that A tB is bounded on a set
of graphs, G, with A and B unbounded on G. Recall that a subcycle of a graph, G, is a
subgraph of G which is isomorphic to a cycle. Let D be the set of coloured graphs (G,α)
such that every subcycle of (G,α) with odd order is rainbow coloured. Similarly, let V
be the set of coloured graphs (G,α) such that every subcycle of (G,α) with even order
is rainbow coloured. We first establish that D and V satisfy the colour scheme axioms.
Subgraphability and Additivity are satisfied because the subgraph and disjoint union
operations cannot introduce new subcycles in a graph. Recolourability is satisfied be-
cause rainbow subcycles are preserved by fracturing. Universality is satisfied because
the rainbow colouring of a graph has the rainbow colouring on each of its subcycles. Lo-
cality is satisfied because every non-admissible graph has a finite non-rainbow subcycle.
Both D and V are unbounded on S := {Cn : n > 3} because they require that Cn has the
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rainbow colouring, for n odd or even, respectively. However, χD(Cn) = 1 for even n and
χV(Cn) = 1 for odd n. It follows that χD∪V(Cn) = 1 for all n, so DtV is bounded on S.

As we have shown, in general, a bound on χAtB does not imply a bound on χA or χB.
However, we can prove the reverse implication of Lemma 5.10 for many commonly studied
classes of graphs. In particular, we obtain a result for self-dominating sets of graphs. A
sequence of graphs, G1, G2, . . . , is telescoping if Gi is a subgraph of Gi+1 for all i > 1.
A set of graphs, G, is dominated by a sequence of graphs G1, G2, . . . if, for every G ∈ G,
there exists j > 1 such that G is a subgraph of Gj. A set of graphs G is self-dominating
if it is dominated by a telescoping sequence of graphs G1, G2, . . . such that Gi ∈ G for all
i > 1. Note that self-dominating is not a particularly restrictive property because all sets
of graphs which are closed under disjoint union are self-dominating. This includes many
natural sets of graphs including the sets of forests, graphs of bounded maximum degree,
and planar graphs. The sets of stars, paths, trees, and trees of bounded maximum degree
are also self-dominating. The following lemma is stated in terms of telescoping sequences
instead of self-dominating sets in order to retain its full generality.

Lemma 5.11. Let A and B be colour schemes, c ∈ Z+, and G be a set of graphs dominated
by a telescoping sequence of connected graphs G1, G2, . . . . If χAtB is bounded by c on
G1, G2, . . . , then χA or χB is bounded by c on G.

Proof. We may assume that χB is not bounded by c on G. Note that χB is not bounded by
c on G1, G2, . . . , by Lemma 5.1, because G1, G2, . . . dominates G. Since Gi is connected,
for all i, there is a c-colouring of Gi in AtB because χAtB is bounded by c on G1, G2, . . . .
It follows that χA is bounded by c on G1, G2, . . . . Therefore there exists a c-colouring, αi,
with (Gi, αi) ∈ A, for all i > 1. Since G1, G2, . . . dominates G, χA is bounded by c on G,
by Lemma 5.1.

By Lemmas 5.6 and 5.9, the set of colour schemes is closed under intersection and
closed union. In fact, the set of colour schemes is a distributive lattice with respect to
these two operations. Lattices are well studied algebraic structures from the field of order
theory. The structure of the set of colour schemes is discussed further in Section 6.4.

5.2 G-dependence
In many variants of graph colouring, the validity of a coloured graph only depends on the
sequences of colours along the paths in the graph. Some notable examples are square-
free colouring, parity colouring, conflict-free colouring, and anagram-free colouring. When
analysing these colour schemes, it is often useful to think in terms of the patterns along
paths that they avoid. Also, we are able to define properties and prove theorems about
colour schemes in terms of sequences of colours along paths that they prohibit.

In general, colour schemes can be studied in terms of the sets of coloured subgraphs
which they avoid. For a set of graphs, G, let Col(G) be the set of colourings of graphs in
G. For a coloured graph (G,ψ), and a set of graphs, G, define its coloured G-subgraphs as

SubG(G,ψ) := {(H,ψ|H) : H is a subgraph of G} ∩ Col(G),

with equality in the intersection taken up to coloured graph isomorphism. In many cases,
we set G = P , where P is the set of all paths. See Figure 5.1 for an example of a coloured
graph and its set of coloured paths.

A set of coloured graphs, A, is G-dependent if there exists a set of coloured graphs,
B ⊆ Col(G), such that (G,α) ∈ A if and only if SubG(G,α) ∩ B = ∅, for all coloured
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(G,ψ)

SubP(G,ψ) = { , , , , ,
, , , ,

, , ,
, }

Figure 5.1: SubP(G,ψ) of the coloured graph (G,ψ), where P is the set of paths.

graphs (G,α). For all such B, we say that A is determined with respect to G by B and
that B is a determinant with respect to G of A. The set of bad graphs with respect to G,
denoted BA, of a G-dependent set of coloured graphs, A, is Col(G) \A. Similarly, the set
of good graphs with respect to G, denoted GA, of a G-dependent set of coloured graphs,
A, is Col(G) ∩A. The set of graphs, G, that B, BA, and GA are taken with respect to is
often clear from context, since we define G in the process of introducing a G-dependent set
of coloured graphs. In these cases, we implicitly take B, BA, and GA with respect to G,
unless indicated otherwise.

Lemma 5.12. Let A be a colour scheme and G be the set of finite connected graphs. Then
A is G-dependent.

Proof. Define the function f such that, for all (G, β) /∈ A, f(G, β) := (H, β|H) where
(H, β|H) is a finite, connected, subgraph of (G, β), and (H, β|H) /∈ A. Note that f(G, β)
exists for all (G, β) /∈ A by Locality and Additivity, and, by Subgraphability,
f(G, β) is not a subgraph of any coloured graph in A. Let B ⊆ Col(G) be a set of coloured
graphs such that f(G, β) ∈ B for all coloured graphs (G, β) /∈ A. It follows that B is a
determinant of A.

Throughout our study of colour schemes we show two main applications of G-dependence.
The first, due to the results of Section 5.2.2, is that it is often easier to show that a set
of coloured graphs is a colour scheme by first showing that it is G-dependent. The second
application is that many properties of G-dependent colour schemes can be formulated as
properties of sets of bad graphs, which are easier to study. Many results in Chapter 6 are
obtained by studying the paths avoided by path-dependent colour schemes.

5.2.1 Determinants and subsets

In this section we establish some relationships between colour schemes and their determi-
nants. Keep in mind that determinants and sets of bad graphs are implicitly taken with
respect to G for sets of coloured graphs which are explicitly stated to be G-dependent. We
first show that the set of bad graphs is the maximal determinant of a G-dependent set of
coloured graphs.

Lemma 5.13. Let A be a G-dependent set of coloured graphs. Then BA is a determinant
of A and B ⊆ BA, for all determinants B of A.

Proof. By the definition of BA, (G,α) ∈ BA if and only if (G,α) /∈ A, for all G ∈ G.
Let B be a determinant of A. It follows that B ⊆ BA since B ⊆ Col(G) and B ∩A = ∅.
BA is a determinant of A because BA ⊆ Col(G) and SubG(H, β) ∩ BA = ∅ if and only if
(H, β) ∈ A.
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Subset relationships between G-dependent sets of coloured graphs can be established
by comparing their determinants.

Lemma 5.14. Let A and B be G-dependent sets of coloured graphs with determinants A
and B respectively. If B ⊆ A then A ⊆ B.

Proof. Let (G,α) ∈ A be a coloured graph. Since A is G-dependent, SubG(G,α)∩A = ∅,
implying that SubG(G,α) ∩ B = ∅. Therefore (G,α) ∈ B.

Lemma 5.14 is useful because, for two G-dependent colour schemes A and B, we can
show A ⊆ B by comparing BA to a relatively small and easy to conceptualise determinant
of B. We now show that the subset relationship between determinants in Lemma 5.14 is
necessary and sufficient for maximal determinants.

Lemma 5.15. Let A and B be G-dependent sets of coloured graphs. Then A ⊆ B if and
only if BB ⊆ BA.

Proof. We first show that BB ⊆ BA is sufficient. Let (G,α) ∈ A and recall that SubG(G,α)∩
BA = ∅ by definition. It follows that SubG(G,α) ∩ BB = ∅. Thus (G,α) ∈ B so A ⊆ B.

Now to show that BB ⊆ BA is necessary. Take A ⊆ B and assume for the sake of
contradiction that BB * BA. Let (G,α) ∈ (BB \ BA). By definition, (G,α) ∈ A and
(G,α) /∈ B. This contradicts A ⊆ B.

Lemmas 5.14 and 5.15 show the utility of G-dependence, since they can be used to
more easily establish hierarchies of subset relationships between colour schemes.

5.2.2 G-dependence for axiom satisfaction

With the following lemmas, the easiest way to check whether a set of coloured graphs, A,
is a colour scheme is often to first show that A is G-dependent, and then to inspect the
properties of an appropriate determinant of A.

Lemma 5.16. Every G-dependent set of coloured graphs satisfies Subgraphability, for
every set of graphs G.

Proof. Let A be a G-dependent set of coloured graphs. Let (H,α|H) be a subgraph of
(G,α) ∈ A. It follows that (H,α|H) ∈ A, because SubG(H,α|H) ⊆ SubG(G,α) and
SubG(G,α) ∩ BA = ∅. Therefore A satisfies Subgraphability.

Additivity and Locality depend on properties of the set of graphs, G, for which a
set of coloured graphs is G-dependent.

Lemma 5.17. If every graph G ∈ G is connected, then every G-dependent set of coloured
graphs, A, satisfies Additivity.

Proof. Let (G,α) be the disjoint union of (S, α|S) ∈ A and (T, α|T ) ∈ A. By definition,
SubG(S, α|S) ∩ BA = ∅ and SubG(T, α|T ) ∩ BA = ∅. Every graph in G is connected so
SubG(G,α) = SubG(S, α|S) ∪ SubG(T, α|T ). Therefore SubG(G,α) ∈ A so A satisfies
Additivity.

Lemma 5.18. If every graph G ∈ G is finite, then every G-dependent set of coloured
graphs, A, satisfies Locality.
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Proof. Let (G,α) /∈ A. By definition, SubG(G,α) ∩ BA 6= ∅ so there is a (B,α|B) ∈
SubG(G,α)∩BA. Note that B is finite, (B,α|B) /∈ A and (B,α|B) is a subgraph of (G,α).
Therefore A satisfies Locality.

The conditions of Lemmas 5.16, 5.17 and 5.18 are inclusive enough to encompass all
reasonable choices of G for a potential G-dependent colour scheme.

To determine whether a G-dependent set of coloured graphs, A, satisfies Recoloura-
bility and Universality we must look at the properties of a determinant of A. Re-
colourability is satisfied by a G-dependent set of coloured graphs, A, if there is a
determinant, B, of A such that Col(G) \B is closed under fracturing. To state this prop-
erty more intuitively, we say that (G, β) is a meld of (G,α) if (G,α) is a fracture of (G, β).
Equivalently, (G, β) is a meld of (G,α) if, for all pairs of vertices, u, v ∈ V (G), α(u) = α(v)
implies β(u) = β(v).

Lemma 5.19. Let A be a G-dependent set of coloured graphs determined by a set of
coloured graphs B. If B is closed under melding then A satisfies Recolourability.

Proof. Let (G,α) ∈ A and let (G, β) be a fracture of (G,α). Let H be a subgraph of G
such that H is isomorphic to a graph in G. By definition, (H, β|H) is a meld of (H,α|H)
because (H, β|H) is a fracture of (H,α|H). Note that (H,α|H) /∈ B because (G,α) ∈ A. It
follows that (H, β|H) /∈ B because B is closed under melding. Therefore (G, β) ∈ A, so A
satisfies Recolourability.

Many sets, B, may determine the same G-dependent colour scheme and not all choices
of B are closed under melding. For example, the set of coloured paths, B, coloured by
words of the form WW , where W is not a square, is a determinant of the colour scheme
corresponding to square-free colouring, denoted Q. Clearly 1212 ∈ B, but its meld, 1111, is
not in B. In general, it is not trivial to find a determinant of a G-dependent set of coloured
graphs which is closed under melding. However, it is easy to find such a determinant
for a G-dependent colour schemes, A, since, by Recolourability, BA is closed under
melding.

Universality is easier to check, since it is sufficient for a determinant of A to not
include any rainbow colourings. In fact, this condition is necessary for all determinants of
colour schemes.

Lemma 5.20. Let A be a G-dependent set of coloured graphs determined by a set of
coloured graphs B. A satisfies Universality if every coloured graph (H,α) ∈ B is not a
rainbow colouring.

Proof. Let B be a determinant of A with no rainbow colourings and let (G,α) be a rainbow
colouring. Since every coloured graph in SubG(G,α) is a rainbow colouring, SubG(G,α) ∩
B = ∅. It follows that (G,α) ∈ A, so A satisfies Universality.

Lemma 5.21. Let A be a G-dependent colour scheme with determinant B. Then B does
not contain any rainbow colourings.

Proof. Let (G,α) ∈ A be a rainbow colouring. Since SubG(G,α) ∩ B = ∅, B does not
contain any rainbow colourings.
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5.2.3 Unions and intersections

We now show that many examples of G-dependent colour schemes can be generated by
taking unions and intersections of determinants.

Lemma 5.22. Let A and B be G-dependent sets of coloured graphs. Then A ∩ B is
G-dependent and BA∩B = BA ∪ BB.

Proof. Let (G,α) be a coloured graph. Take the case (G,α) ∈ A ∩ B. It follows that
SubG(G,α)∩BA = ∅ and SubG(G,α)∩BB = ∅. Therefore SubG(G,α)∩(BA ∪ BB) = ∅. Now
take the case (G,α) /∈ A∩B. It follows that SubG(G,α)∩BA 6= ∅ or SubG(G,α)∩BB 6= ∅.
Therefore SubG(G,α) ∩ (BA ∪ BB) 6= ∅.

We have shown that (G,α) ∈ A ∩ B if and only if SubG(G,α) ∩ (BA ∪ BB) = ∅,
so A ∩ B is a G-dependent set of coloured graphs determined by BA ∪ BB. Note that
BA ∪ BB = Col(G) \A ∪ Col(G) \B = Col(G) \ (A ∩B), so BA∩B = BA ∪ BB.

In particular, the set of G-dependent colour schemes is closed under intersection. The
following analogous lemma for the intersection of BA and BB is not as strong, since AtB
is not necessarily a G-dependent set of coloured graphs.

Lemma 5.23. Let G be a set of finite connected graphs and let A and B be G-dependent
colour schemes. BA∩BB determines the G-dependent colour scheme, S, with BS = BA∩BB
and A tB ⊆ S.

Proof. Let B = BA ∩ BB. Let S be the set of coloured graphs determined by B. S is G-
dependent so, by Lemma 5.16, S satisfies Subgraphability. S satisfies Locality and
Additivity, by Lemmas 5.17 and 5.18, because G is a set of finite connected graphs. BA
and BB do not contain rainbow colourings so, by Lemma 5.20, S satisfies Universality.
Furthermore, BA and BB are closed under melding so BA ∩ BB is closed under melding.
Therefore S satisfies Recolourability, by Lemma 5.19.

Let (G,α) ∈ A ∪ B. Then Sub(G,α) ∩ BA = ∅ or Sub(G,α) ∩ BB = ∅. Therefore
Sub(G,α) ∩ BA ∩ BB = ∅. It follows that (G,α) ∈ S, implying A ∪ B ⊆ S. Since S is a
colour scheme it is its own additive closure, so A tB ⊆ S. Furthermore,

BS = Col(G) \ S ⊆ Col(G) \ (A ∪B) = (Col(G) \A) ∩ (Col(G) \B) = BA ∩ BB = B,

so B = BS, by the maximality of BS.

Lemma 5.23 can be strengthened to A tB = S when G is the set of finite, connected,
graphs.

Lemma 5.24. Let G be the set of all finite connected graphs and let A and B be G-
dependent colour schemes. Then BAtB = BA ∩ BB.

Proof. Let BS = BA∩BB and S be the colour scheme determined by BS. By Lemma 5.23,
A tB ⊆ S, so we only need to show S ⊆ A tB.

Let (G,α) ∈ S. Let (H,α|H) be a connected component of (G,α). Assume for the
sake of contradiction that (H,α|H) /∈ A t B. By Locality, there is a finite subgraph
of (H,α|H), (J, α|J), which is not in A t B. It follows that (J, α|J) ∈ BA ∩ BB, which
is a contradiction, because BS does not contain any finite connected subgraphs of (G,α).
Therefore every connected component of (G,α) is in A tB.

By Additivity, (G,α) ∈ A tB. It follows that S = A tB.
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(S4, ψ)

SubP(S4, ψ) = { , , , ,
, }

Figure 5.2: A colouring of the star of order 4, denoted (S4, ψ), and SubP(S4, ψ), where P
is the set of paths.

Lemma 5.23 cannot be strengthened to A t B = S in general. D and V provides a
simple counter-example. Recall that D avoids non-rainbow odd cycles and V avoids non-
rainbow even cycles. D and V are cycle-dependent, where BD is the set of non-rainbow
odd cycles, and BV is the set of non-rainbow even cycles. Note that BD ∩BV = ∅, but the
1-colouring of K4 is not in D tV. Therefore D tV is not determined by BD ∩ BV.

While D and V provide a simple counter-example, the set of cycles is not a typical
choice for G among colour schemes found in the literature. We present another counter-
example, this time where G is the set of paths. Consider the colour schemes E2, the colour
scheme of exact distance-2 colouring, and P, the colour scheme of proper colouring. Let
(S4, ψ) be the colouring of the star of order 4 with two leaves coloured red and the remaining
vertices coloured blue, see Figure 5.2. Note that the two red vertices are at distance 2 and
the two blue vertices are adjacent, so (S4, ψ) /∈ E2∪P. The only coloured path of order at
most three in BE2 ∩ BP is 111, up to relabelling, so Sub(S4, ψ) ∩ BE2 ∩ BP = ∅. It follows
that (S4, ψ) is in the colour scheme determined by BE2 ∩ BP, so this colour scheme is not
E2 tP.

We have shown that unions and intersections of sets of bad graphs determine colour
schemes. Arbitrary determinants of colour schemes can also be combined to generate
new colour schemes, with a caveat in the case of Recolourability. Let the closed
intersection, denoted X uY , of two sets of coloured graphs, X and Y , be the set of melds
of X ∩ Y .

Lemma 5.25. Let G be a set of finite connected graphs and let A and B be G-dependent
colour schemes with determinants X and Y. Then X uY determines a G-dependent colour
scheme.

Proof. Let B = X u Y . Let S be the set of coloured graphs determined by B. S is G-
dependent so, by Lemma 5.16, S satisfies Subgraphability. S satisfies Locality and
Additivity, by Lemmas 5.17 and 5.18, because G is a set of finite connected graphs. X
does not contain rainbow colourings so, by Lemma 5.20, S satisfies Universality. By
definition, X u Y is closed under melding, so S satisfies Recolourability.

No closures are required for unions of arbitrary determinants to determine colour
schemes.

Lemma 5.26. Let G be a set of finite connected graphs and let A and B be G-dependent
colour schemes with determinants X and Y. Then X ∪Y determines a G-dependent colour
scheme.
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Proof. Let B = X ∪ Y . Let S be the set of coloured graphs determined by B. S is G-
dependent so, by Lemma 5.16, S satisfies Subgraphability. S satisfies Locality and
Additivity, by Lemmas 5.17 and 5.18, because G is a set of finite connected graphs. X
and Y do not contain rainbow colourings so, by Lemma 5.20, S satisfies Universality.

Let (G,α) /∈ S and (G, β) be a meld of (G,α). Note that (G,α) is a fracture of (G, β), so
for S to satisfy Recolourability we need to show (G, β) /∈ S. Since S is determined by
X ∪Y , (G,α) has a subgraph (H,α|H) which, without loss of generality, is in X . It follows
that (H,α|H) /∈ A and so, by Recolourability, (H, β|H) /∈ A. Therefore (H, β|H) has
a subgraph, (I, β|I) ∈ X . Now, (I, β|I) is a subgraph of (G, β), so (G, β) /∈ S.

5.2.4 Path-dependence

Many results in Chapter 6 extend theorems from Chapters 3 and 4 to the set of path-
dependent colour schemes. A set of coloured graphs, A, is path-dependent if it is P-
dependent, where P is the set of finite paths, and BA is called the set of bad paths . A
colour scheme, A, is path-bounded if A is bounded on paths. Define Sub := SubP , where
P is the set of finite paths. For brevity, we often denote a coloured path by P instead of
(P, α) and in some cases treat P like a word.

An important feature of path-dependent colour schemes is that they have a unique
smallest determinant. This is shown by the following lemma.

Lemma 5.27. Let A be a path-dependent set of coloured graphs with determinants A and
B. Then A ∩ B is a determinant of A.

Proof. Let (G,α) ∈ A. Sub(G,α)∩A = ∅ and Sub(G,α)∩B = ∅. Therefore Sub(G,α)∩
A ∩ B = ∅.

Let (G,α) /∈ A. Sub(G,α)∩A 6= ∅ and Sub(G,α)∩B 6= ∅. It follows that Sub(G,α)∩
(A ∪ B) 6= ∅. Pick a path, P ∈ Sub(G,α) ∩ (A ∪ B), that minimizes |V (P )|. Note that
P /∈ A because at least one of P ∈ A or P ∈ B. It follows that Sub(P, α|P ) ∩ A 6= ∅
and Sub(P, α|P ) ∩ B 6= ∅. By the minimality of |V (P )|, P ∈ A and P ∈ B. Therefore
Sub(G,α) ∩ A ∩ B 6= ∅.

Let MA denote the unique smallest determinant of a path-dependent colour scheme
A. We call MA the set of minimally bad paths of A, which is justified by the following
lemma.

Lemma 5.28. Let A be a path-dependent set of coloured graphs. Then every P ∈ MA

does not have any Q ∈MA as a strict subpath.

Proof. Assume for the sake of contradiction that there are two distinct coloured paths,
P,Q ∈ MA, such that P is a subpath of Q. Let (G,α) be a coloured graph such that
Q ∈ Sub(G,α) ∩ BA. It follows that P ∈ Sub(G,α) ∩ BA. Therefore Q is redundant, so
MA \ {Q} is a determinant of A. This contradicts the minimality ofMA.

For path-dependent colour schemes, we summarize Lemmas 5.16–5.20 with the follow-
ing lemma.

Lemma 5.29. Let A be a path-dependent set of coloured graphs determined by the set of
coloured paths B. If B is closed under melding and does not contain any rainbow colourings,
then A is a colour scheme.
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5.3 Colour scheme zoo

Having armed ourselves with the tools of Sections 5.1 and 5.2, it is time to establish that
many types of graph colouring found in the literature are colour schemes. The primary
goal of this section is to show the types of colouring reviewed in Section 1.4.1 are colour
schemes, and to compare some of their bounds, as shown in Table 5.1. See Section 1.4.1
for a more detailed review of the literature. The colour schemes listed in Table 5.1 are
defined in this section or Chapter 6.

The rightmost two columns of Table 5.1 say whether there exists a c such that every
tree or graph has a subdivision with an admissible c-colouring, which is a formalisation of
the concept of being ‘bounded on sufficiently subdivided graphs’. For a colour scheme, A,
c ∈ Z+, and set of graphs, G, we say A is bounded by c on choice-subdivisions of G if, for
all G ∈ G, there exists a subdivision, H, of G such that (H,α) ∈ A for some c-colouring α.
Often we only care that there is a bound, so say that A is bounded on choice-subdivisions
of G when there exists c ∈ Z+ such that A is bounded by c on choice-subdivisions of G.

5.3.1 Distance and exact-distance colouring

A colouring of a graph G is a distance-k colouring if vertices at distance at most k receive
distinct colours [92]. Let Pk denote the colour scheme that corresponds to distance-k
colouring. By definition, for vertices, u and v, at distance n there is a path of length n
with u and v as endpoints. It follows that Pk is path-dependent with determinant, B, such
that P ∈ B if the endpoints of P have the same colour and |V (P )| 6 k+ 1. The endpoints
of P ∈ B share a colour, so B does not contain any rainbow colourings. Clearly B is closed
under melding. Therefore Pk is a path-dependent colour scheme, by Lemma 5.29. Recall
that χPk(G) 6 ∆(G) (∆(G)− 1)k−1 + 1, for all graphs G, because distance-k colouring is
equivalent to proper colouring Gk. For the bound on trees in Table 5.1, Agnarsson and
Halldórsson [2] show that, for all k ∈ Z+, there exists c such that every planar graph, G,
is distance-k

(
c∆(G)bk/2c

)
-choosable and that this bound is tight.

A colouring of a graph G is an exact distance-k colouring if vertices at distance exactly
k receive distinct colours [109]. Let Ek denote the colour scheme that corresponds to
distance-k colouring. There are at most ∆k vertices at distance exactly k from a vertex in
a graph of maximum degree ∆, so χEk(G) 6 1 + ∆(G)k for all graphs G [129]. Bousquet
et al. [28] show that χEk(T ) 6 ∆(T ) + k + 1, for all trees T . E2 is unbounded on choice-
subdivisions of trees because exact-distance-2 colourings of stars require a distinct colour
on each leaf. For odd k, Ek is bounded on many classes of graphs, including planar graphs
[110, 129].

5.3.2 Pattern-free colouring

A word, W , matches a pattern p = x1x2 . . . xn if W can be divided into n non-empty
blocks, denoted W = B1B2 . . . Bn, such that Bi = Bj if xi = xj, for all i, j ∈ [n]. A p-free
colouring of a graph G is a colouring such that the sequence of colours along paths in G
do not match the pattern p. Let Wp be the set of coloured graphs corresponding to p-free
colouring. The definition of p-free colouring is in terms of avoiding a set of bad paths, so
p-free colouring is path-dependent. Observe that the set of coloured paths that match p
is closed under melding, and if a symbol in p occurs at least twice, no rainbow colouring
is matched by p. It follows that, by Lemma 5.29, Wp is a colour scheme provided that p
contains a symbol that occurs at least twice.
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Bounds on:

paths trees of
maximum
degree ∆

graphs of
maximum
degree ∆

choice-
subdivisions
of trees

choice-
subdivisions
of graphs

Q Square-free 3 4 c∆2 3 3
Qk (k > 3)-power-free 2 4 c∆k/(k−1) 3 3

N Anagram-free 4 ∞ ∞ 8 8

N3 3-anagram-free 3 ? ∞ 8 8

Nk (k > 4)-anagram-free 2 4 ∞ 8 8

P Proper 2 2 ∆ + 1 2 2
Pk Distance-(k > 2) k + 1 c∆bk/2c c∆k ∞ ∞
E Exact-distance-2 2 c∆ c∆2 ∞ ∞
S Star 3 3 c∆3/2 3 3

L Acyclic 2 2 c∆4/3 2 3

Gk (k > 2)-frugal 3 c∆(k+1)/k c∆(k+1)/k ∞ ∞
I Parity ∞ ∞ ∞ ∞ ∞
X Centred ∞ ∞ ∞ ∞ ∞
C Conflict-free ∞ ∞ ∞ ∞ ∞

D Odd-cycle 1 1 ∞ 1 1

V Even-cycle 1 1 ∞ 1 ∞
F Conflict-two 3 c∆ c∆2 ∞ ∞
T Parity-two 3 c∆ c∆2 ∞ ∞
Y Min-parity-two 3 c∆ c∆2 ∞ ∞
U Updown 3 ? ? 4 ∞
R xWx

←−
W -free 3 c∆2 c∆2 8 8

Mε ε-uniform-free ∞ ∞ ∞ ∞ ∞
Ik k-parity ∞ ∞ ∞ ∞ ∞

Table 5.1: A list of colour schemes mentioned in this thesis, with some bounds on their
chromatic numbers. The top two sections contain colour schemes and results from the
literature or, in the case of anagram-free colouring, from other chapters. References for
these bounds are provided in this section. The bottom section contains colour schemes
introduced in this chapter. The bounds in terms of maximum degree, ∆, are not exact and
are only intended to show the first order term. An ‘∞’ indicates that the colour scheme
is known to be unbounded. A ‘?’ indicates it is not known whether the colour scheme
is absolutely bounded on the class of graphs, and that it is also not known whether it is
bounded by a function of maximum degree.
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5.3.3 Square-free and k-power-free colouring

k-power-free colouring is pattern-free colouring for the pattern xk, so it is a path-dependent
colour scheme for k > 2. Square-free colouring is denoted Q and k-power-free colouring is
denoted Qk. See Section 1.2 for a review of the bounds on Qk.

5.3.4 Anagram-free and k-anagram-free colouring

Anagram-free colouring is denoted N and k-anagram-free colouring is denoted Nk. Clearly
Nk is path-dependent because it is defined in terms of avoiding bad paths. The set of
anagrams is closed under melding and a k-anagram contains at least k occurrence of each
of its colours so, by Lemma 5.29, Nk is a colour scheme for k > 2. See Chapters 3 and 4
for bounds on anagram-free colouring.

5.3.5 Parity colouring

A colouring of a graph G is a parity colouring if every path in G contains a colour that oc-
curs an odd number of times. The set of coloured graphs corresponding to parity colouring
is denoted I. Since I is defined in terms of avoiding bad paths it is path-dependent. The
set of paths in which every colour occurs an even number of times is closed under melding,
and a bad path contains at least two occurrences of each colour so, by Lemma 5.29, I is a
colour scheme. Bunde et al. [34] show that I is unbounded on paths.

5.3.6 Centred colouring

A colouring of a graph G is centred if every connected subpgraph of G contains a unique
colour. A unique colour of a coloured graph, (G,α), is a colour, c, such that α(v) = c
for exactly one v ∈ V (G). The set of centred coloured graphs is denoted X, and the first
thing to note is that X is not path-dependent. This is shown in Figures 5.3 and 5.4 as
they have the same set of coloured paths, but only 5.4 is in X.

Figure 5.3: The coloured graph (G1, α1) /∈
X.

Figure 5.4: The coloured graph (G2, α2) ∈
X and with Sub(G1, α1) = Sub(G2, α2).

A tree-dependent colour scheme is T -dependent, where T is the set of finite trees. Every
connected graph has a spanning tree, so centred colouring is tree-dependent. Since X is
tree-dependent, we can apply Lemmas 5.16–5.20 to establish that it is a colour scheme. All
tree-dependent colour schemes satisfy Subgraphability, Additivity, and Locality
because T is a set of connected finite graphs. Let B be the set of coloured trees that contain
no unique colours and note that B determines X. Clearly B is closed under melding and
does not contain any rainbow colourings, so X is a colour scheme. Centred colouring is
unbounded on paths [109].
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5.3.7 Conflict-free colouring

A colouring of a graph G is conflict-free if every path in G contains a unique colour [61].
Let C denote the colour scheme corresponding to conflict-free colouring. First note that
C is path-dependent because it is defined in terms of bad paths. The relationship between
conflict-free colouring and centred colouring is interesting because, conflict-free colouring is
centred colouring with its bad graphs restricted to paths. Formally, BC = BX|P , where P
is the set of path. Since path-dependence implies tree-dependence, it follows that X ⊆ C,
by Lemma 5.15.

The relationship between BC and BX allows for a quick proof that C is a colour scheme.
Since X is a colour scheme, BX is closed under melding and does not contain any rainbow
colourings. BC = BX|P , so BC is closed under melding and does not contain any rainbow
colourings. It follows, by Lemma 5.29, that C is a colour scheme. Since C|P = X|P ,
conflict-free colouring is unbounded on paths.

5.3.8 Star colouring

A colouring of a graph G is a star colouring if every pair of colour classes induces a forest of
stars [84]. The corresponding set of coloured graphs is denoted S. An equivalent definition
is that a star colouring is a proper colouring in which every path of order 4 contains three
colours. This is the case because to induce a non-star requires a 2-coloured path of order
4. It follows that S is path-dependent, but, more precisely, S is {P2, P4}-dependent. Also
note that BS = BQ|{P2,P4} so Q ⊆ S by Lemma 5.15. Similarly to the case of conflict-free
colouring, it follows that S is a colour scheme.

For the bounds in Table 5.1, Esperet and Parreau [60] show that χS(G) 6 2
√

2∆(G)3/2+
∆(G) for all graphs G. For every tree, T , with root r, the 3-colouring of T such that each
v ∈ V (T ) with dist(v, r) ≡ x mod 3 receives colour x, for x ∈ {1, 2, 3}, is a star 3-colouring
of T . For the bound on choice-subdivisions, let S be the 3-subdivision of a graph, G, and
colour each vertex v ∈ V (S) by its distance to the closest original vertex to v in S. This
colouring of S is a star 3-colouring.

5.3.9 Acyclic colouring

A colouring of a graph G is acyclic if every pair of colour classes induces a graph with no
cycles [90]. Denote the corresponding set of coloured graphs by L. Acyclic colouring is not
path-dependent, as shown by Figures 5.5 and 5.6.

Figure 5.5: The coloured graph (G1, α1) /∈
L.

Figure 5.6: The coloured graph (G2, α2) ∈
L and with Sub(G1, α1) = Sub(G2, α2).

Acyclic colouring is defined in terms of avoiding monochromatic edges and 2-coloured
cycles so L is S-dependent where S := {Cn : n > 3}∪{P2}. In particular, L is determined
by the set of coloured graphs, B, which consists of 2-coloured cycles and monochromatic
paths of order 2. It is now straightforward to show that L is a colour scheme. The graphs
in S are connected and finite, so Lemmas 5.17 and 5.18 apply. Every meld of (G,ψ) ∈ B
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is in B so Lemma 5.19 applies. None of the coloured graphs in B are rainbow colourings
so Lemma 5.20 applies. Therefore L is a colour scheme.

For the bounds in Table 5.1, recall that Alon et al. [9] prove that χL(G) = O(∆(G)4/3)
and that Gonçalves et al. [67] optimise this result to χL(G) 6 3

2
∆(G)4/3 + c∆(G), for

all graphs G. Since paths and trees contain no subcycles, the bounds on these classes
of graphs follow from bounds on proper colouring. The bound on choice-subdivision of
graphs follows because χL(G) 6 χS(G), for all graphs G [62].

5.3.10 Frugal colouring

A proper colouring of a graph G is k-frugal if, for all v ∈ V (G), each colour occurs at most
k times in N(v). Let Gk be the set of k-frugal coloured graphs. First note that Gk is
S-dependent, where S is the set of stars, because k-frugal colouring is expressed in terms
of the neighbourhood of each vertex of a graph. In particular, Gk is determined by the set
of coloured stars, B, with G ∈ B if G has a monochromatic edge or at least k leaves of G
have the same colour. We now show that Gk is a colour scheme. Stars are connected finite
graphs, so Lemmas 5.17 and 5.18 show that Gk satisfies Locality and Additivity.
Fracturing cannot create new monochromatic edges or increase the multiplicity of a colour
on the leaves, so Gk satisfies Recolourability. Clearly rainbow colourings are in Gk,
so Gk satisfies Universality. Therefore Gk is a star-dependent colour scheme. As
previously noted, G1 = P2 and Gk ⊆ Gk+1, for all k > 1. Hind et al. [80] introduced k-
frugal colouring and show that every graph with maximum degree ∆ > e107 is log8 ∆-frugal
(∆ + 1)-colourable. For the bound in Table 5.1, Kang and Müller [84] show that there
exists a c such that χGk

(G) 6 c
k
∆(G)(k+1)/k for all graphs G. Frugal colouring does not

feature in the following sections, as we primarily focus on path-dependent colour schemes,
but it serves as a notable example of a star-dependent colour scheme from the literature.
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Chapter 6

Path-dependent colour schemes

Many types of graph colouring from the literature are colour schemes, and furthermore,
many of these colour schemes are path-dependent. In this chapter, we apply the tools of
Chapter 5 to study path-dependent colour schemes. This takes the form of general results
about path-dependent colour schemes, as well as the construction of new path-dependent
colour schemes, with novel properties.

Section 6.1 studies bounds for path-dependent colour schemes on choice-subdivisions
of graphs. This investigation generalises analogous results in Chapter 4, and answers
some questions raised by the similarity of φ and π on highly subdivided graphs. We
find sufficient conditions for a colour scheme to be bounded on subdivisions of stars, as
well as sufficient conditions for a colour scheme to be bounded on choice-subdivisions of
graphs. Every path-dependent colour scheme, that we have identified in the literature,
which is bounded on choice-subdivisions of trees is also bounded on choice-subdivisions of
graphs. We ask whether this is true in general, and answer in the negative by constructing
a counter-example. In Section 6.2 we study path-dependent colour schemes which are
defined in terms of avoiding some set of permutations on paths. We find a sufficient
condition for path-dependent colour schemes to be unbounded on trees. Conversely, we
show that every path-dependent colour scheme with a sufficiently small set of minimally
bad paths is bounded on graphs of bounded maximum degree. In Section 6.3 we study
colour schemes which are subsets of Nk, which is the colour scheme corresponding to k-
anagram-free colouring. We define the families of colour schemes, Ik, Mε, and Nk, which
have various interesting properties. Chapter 6 finishes with a summary of the relationships
between colour schemes, and a discussion of the potential extensions and limitations of
colour schemes.

6.1 Bounds on subdivisions

Given a path-bounded colour scheme, A, it is natural to ask whether χA is bounded on
sufficiently subdivided graphs. This question received much interest for square-free colour-
ing, see Section 1.2.6, and Chapter 4 answers the question for anagram-free colouring.
The results from square-free colouring and anagram-free colouring motivate the question
of whether every colour scheme that is bounded on subdivided stars is bounded on suffi-
ciently subdivided graphs, since no counter-examples exist in the available literature. The
intuition here is that every highly subdivided graph is, locally, a subdivision of a star or a
path, and that this local behaviour may extend to all sufficiently subdivided graphs. This
section explores this question and constructs novel colour schemes which answer it in the
negative. Additionally, we give sufficient conditions for a colour scheme to be bounded on
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sufficiently subdivided graphs.
Recall that D and V are the colour schemes which avoid non-rainbow odd and even

cycles, respectively. Both are bounded on subdivisions of trees, in fact, χD(T ) = 1 and
χV(T ) = 1, for all trees T , because T has no subcycle. The 1-subdivision, H, of every
graph G, has χD(H) = 1 because H has no subcycles of odd order. No analogous result
holds for V, since, for every n, there is a N such that every edge 2-colouring ofKN contains
a monochromatic graph isomorphic to Kn, by Ramsey’s Theorem [117]. It follows that
every subdivision of KN contains a subgraph, S, isomorphic to a subdivision of Kn, with
all edges subdivided either an even or odd number of times. S contains an even cycle of
order at least n−1, so V is unbounded on choice-subdivisions of graphs. V is bounded on
choice-subdivisions of trees, so it is a counter-example to the preceding question, however,
V may be considered a trivial counter-example since it is not path-dependent. With this
in mind, we restrict the questions in this section to path-dependent colour schemes.

6.1.1 Choice-subdivisions

Recall that, for class of graphs G, a colour scheme, A, is bounded on choice-subdivisions of
G if there exists c ∈ Z+ such that, for all G ∈ G, there is a subdivision, H, of G such that
(H,α) ∈ A for some c-colouring, α, of H. The ‘choice-subdivisions of G’ does not refer to
a class of graphs, so our lemmas inferring bounds on colour schemes that are restricted to
classes of graphs do not apply. However, some similar results hold.

Lemma 6.1. Let G be a set of graphs and A be a colour scheme such that A is bounded by
c on choice-subdivisions of G. Then every colour scheme, B, such that A ⊆ B is bounded
by c on choice-subdivisions of G.

Proof. Let G ∈ G and H be a subdivision of G such that (H,α) ∈ A for a c-colouring α.
It follows that (H,α) ∈ B, so B is bounded by c on choice-subdivisions of G.

It follows from Lemma 6.1 that if A is bounded on choice-subdivisions of a set of
graphs G, then A tB is bounded on choice-subdivisions of G, for every colour scheme B.
However, many results on classes of graphs do not transfer to choice-subdivisions of classes
of graphs because being bounded on choice-subdivisions may require a particular number
of subdivisions per edge. Recall Lemma 5.8, which says that A ∩ B is bounded on G if
and only if A and B is bounded on G. We now show that there is no analogous lemma for
choice-subdivisions.

Theorem 6.2. If C is the set of cycle graphs, then D and V are both bounded on choice-
subdivisions of C but D ∩V is not bounded on choice-subdivisions of C.

Proof. Both D and V are bounded by 1 on choice-subdivisions of C because every G ∈ C
can be subdivided to an even or odd cycle, respectively. Note that D ∩ V is the cycle-
dependent colour scheme which requires every cycle to have the rainbow colouring. It
follows that D ∩V is not bounded on choice-subdivisions of C.

A result analogous to Lemma 5.8 may exist for specific classes of graphs and colour
schemes. We could also prove a stronger result with a stronger property than being
bounded on choice-subdivisions. For example, a colour scheme A is contiguously bounded
by c on choice-subdivisions of G if, for all G ∈ G, there exists a k such that, for every
(> k)-subdivision, H, of G, (H,α) ∈ A for some c-colouring α, of H. This strengthening
of choice-subdivisions may be useful for future work, but has some potentially problematic
properties. For example, D and V are not contiguously bounded on choice-subdivisions
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of K3. This is an unusual property, as we intuitively expect all notions of ‘bounded’ to be
satisfied on all finite sets of graphs.

6.1.2 Subdivisions of stars

This section studies the question of which colour schemes are bounded on subdivisions of
stars. The following results are also good examples of the types of properties that can be
stated in terms of bad and minimally bad paths. Recall that BA andMA denote the bad
and minimally bad paths of a path-dependent colour scheme A, respectively.

A path-dependent colour scheme, A, is tame if for every P ∈MA and every v ∈ V (P ),
there exists P ′ /∈ BA obtained by recolouring v. We call this property ‘tame’ because it
disallows minimally bad paths with wildcard characters.

Lemma 6.3. A path-dependent colour scheme, A, is tame if and only if every P ∈ MA

has no unique colours.

Proof. Let A be a tame path-dependent colour scheme. Assume for the sake of contra-
diction that P ∈ MA has a unique colour on v ∈ V (P ). The path, P ′, obtained by
recolouring v with a new colour, is good, by the tameness of A. Note that P ′ is a fracture
of P so, by Recolourability, P ∈ A. This contradicts P ∈MA.

Now for the backwards implication. Let A be a path-dependent colour scheme such
that every P ∈ MA contains no unique colour. Let P ∈ MA and v ∈ V (P ). Recolour v
with a colour not in P to obtain P ′. Since P ′ contains a unique colour, P ′ /∈MA. Assume
for the sake of contradiction that P ′ ∈ BA. By definition, P ′ contains a strict subpath
Q ∈MA. Now consider whether v is in Q. It cannot be that v ∈ V (Q) because Q contains
at least two occurrences of each of its colours. It also cannot be that v /∈ V (Q) because
then Q would be a strict subpath of P , contradicting P ∈ MA. In both cases we have a
contradiction, so A is tame.

Furthermore, tameness is equivalent to requiring that every bad path contains a mini-
mally bad subpath with no unique colours.

Lemma 6.4. Let A be a path-dependent colour scheme. Every P ∈ MA has no unique
colours if and only if every Q ∈ BA has a subpath R ∈MA with no unique colour.

Proof. Let A be a path-dependent colour scheme such that every P ∈MA has no unique
colour. Every Q ∈ BA has a minimally bad subpath, R ∈ MA, and R ∈ MA contains no
unique colour.

Let A be a path-dependent colour scheme such that every every Q ∈ BA has a subpath
R ∈ MA with no unique colour. By minimality, P ∈ MA only has itself as a minimally
bad subpath so P does not have a unique colour.

Lemma 6.3 implies that there is a set of coloured paths T such that MA ∩ T = ∅
is equivalent to a path-dependent colour scheme, A, being tame. Many properties can
be stated in terms of MA avoiding some set of coloured paths. Let C be the set of
coloured paths, up to a permutation of colours. We can factor out permutations due
to the Recolourability axiom of colour schemes. Let Cn ⊆ C be the set of coloured
paths of order n. To demonstrate, we list the first five entries of Cn, up to reversing and
relabelling, with the entries that cannot occur in the bad paths of a tame colour scheme
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highlighted.

C1 = {1}
C2 = {11, 12}
C3 = {111, 112, 121, 123}
C4 = {1111, 1112, 1121, 1122, 1123, 1212, 1213, 1221, 1223, 1231, 1234}
C5 = {11111, 11112, 11121, 11122, 11123, 11211, 11212, 11213, 11221, 11223,

11231, 11232, 11233, 11234, 12112, 12113, 12121, 12123, 12131, 12132,

12134, 12213, 12221, 12223, 12231, 12234, 12312, 12314, 12321, 12341,

12345}

By inspecting Cn we can see that every tame path-dependent colour scheme is bounded on
stars.

Theorem 6.5. Let A be a tame path-dependent colour scheme. Then every star, S, has
a 2-colouring, α, with (S, α) ∈ A.

Proof. Let (G,α) be a coloured star with a unique colour on its root. By inspection,
121 /∈ BA. Therefore (G,α) ∈ A.

Many known path-dependent colour schemes are tame. An exception is distance-k
colouring, denoted Pk, for k > 2. The distance-2 chromatic number is not bounded on
stars because 121 ∈ BP2 . As a corollary, χP2 is unbounded on subdivisions of Kn. Note
that P2 is path-bounded because (123)n ∈ P2 for all n > 1. We now show that tameness is
sufficient for path-bounded path-dependent colour schemes to be bounded on subdivisions
of stars.

Theorem 6.6. Every path-bounded and tame path-dependent colour scheme, A, is bounded
on subdivisions of stars.

Proof. Let H be a subdivision of a star G. Let c be the constant bound for χA for paths.
Let α be the colouring of H defined as follows. Let r be the root of H. Colour the forest
of paths H − {r} with a c-colouring such that (H − {r}, α|H−{r}) ∈ A, and colour r
with a unique colour. By Lemma 6.3, every path, P , with r ∈ V (P ) is not in MA. By
construction, all paths, Q, in H which do not contain r are in GA, so H does not have any
bad subpaths. Therefore (H,α) ∈ A.

Theorem 6.6 raises the question of whether tameness and path-boundedness are neces-
sary for a colour scheme to be bounded on subdivisions of stars. This question is answered
in the negative by Ek, the colour scheme corresponding to exact distance-k colouring, for
odd k. Clearly Ek is not tame since (Pk+1, α) ∈MEk where α is a colouring such that the
endpoints of Pk+1 share a colour. Ek is bounded on planar graphs, which includes subdi-
visions of stars [129]. Perhaps a necessary condition for a path-dependent colour scheme
to be bounded on subdivisions of stars could be obtained by a variant of tameness which
disregards the minimally bad paths of even order, as we note that MEk only contains
paths of order k + 1.

We now construct three new colour schemes from C, I, and P2 to demonstrate the
behaviour of colour schemes on subdivisions of stars. Recall that C is determined by the
set of coloured paths that contain at least two occurrences of each colour, and that I is
determined by the set of paths in which every colour occurs an even number of times.
Define the colour schemes F, T and Y such that F is determined by BP2 ∩ BC, T is
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determined by BP2 ∩ BI, and Y is determined by BP2 uMI. These colour schemes are
related by C ⊆ F ⊆ T ⊆ Y becauseMI ⊆ BI ⊆ BC. Also, note that P2 ⊆ F. The path
coloured 1121 is in MT, so T is not tame. Since C is bounded on stars, T and F are
bounded on stars, which contrasts the behaviour of P2. However, T and F are unbounded
on subdivisions of stars.

Theorem 6.7. T and F are unbounded on subdivisions of stars.

Proof. Fix a number of colours, c, and let (S, α) be a c-colouring of the (2c)-subdivision of
the star of order c+2. The root of S has degree c+1 so there exists a path Q := v1rv2 ∈ S
with α(v1) = α(v2), so Q ∈ BP2 . Let P be the v1`-path, where ` is the descendent of
v2 furthest from the root of S. P ∈ BP2 , because Q is a subpath of P , and P ∈ BI,
because |V (P )| = 2c + 3 and χI(Pn) = dlog2(n+ 1)e for all n [34]. Therefore P ∈ BP2 ∩BI
and since, BI ⊆ BC, we have P ∈ BP2 ∩ BC. It follows that T and F are unbounded on
subdivisions of stars.

Perhaps the most interesting thing about these colour schemes is that Y is bounded
on subdivisions of stars, even though it is defined in terms of colour schemes which are
unbounded on subdivisions of stars.

Theorem 6.8. Y is bounded on subdivisions of stars.

Proof. A path is in BI if and only if it contains a parity path. It follows that every colour
that occurs in Q ∈MI occurs an even number of times, by the minimality of Q.

Let P ∈ BY be a path with a unique colour. Since BP2 ∩MI is a determinant of Y,
and P /∈ MI, there is a strict subpath, Q, of P with Q ∈ BP2 ∩ MI. It follows that
P /∈MY, so, by Lemma 6.3, Y is tame. Y is path-bounded because P2 is path-bounded,
so, by Theorem 6.6, Y is bounded on subdivisions of stars.

Another feature of Y is that Y has arbitrarily long minimally bad paths on 4 colours,
which is not true of P2 or I. For example, 323(123)n4(123)n42 ∈ MY, for all n > 1,
because 323(123)n4(123)n4 ∈ GY and 23(123)n4(123)n42 ∈ GY.

6.1.3 Distinguishing subdivisions of trees and stars

Recall that N is the colour scheme corresponding to anagram-free colouring. Part of
the intuition for Chapter 4 was that, since N is bounded on subdivisions of stars, it is
potentially bounded on choice-subdivisions of graphs. This raises the question of whether
all path-dependent colour schemes which are bounded on subdivisions of stars are bounded
on choice-subdivisions of graphs. This question is answered in the negative, using the colour
scheme Y, defined in Section 6.1.2.

Theorem 6.9. Every subdivision, H, of the complete (c2c + 1)-ary tree of height c, T , has
χY(H) > c+ 1.

Proof. We proceed by induction on c. For the base case, all subdivisions, H, of the 3-ary
tree of height 1 have χY(H) > 2 because monochromatic edges are bad.

Let T be the complete (c2c + 1)-ary tree of height c, with root r, and H be a subdi-
vision of T . By induction and Subgraphability, χY(H) > c. Assume for the sake of
contradiction that χY(H) = c. Let (H,α) ∈ Y be a c-coloured graph and, without loss of
generality, let r be coloured red. Since there are c2c + 1 vertices adjacent to r, there is a
monochromatic set of vertices, A, adjacent to r, of size at least 2c + 1.
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Let (S, α|S) be the subgraph of (H,α) obtained by deleting all vertices which do not
have an ancestor or descendent in A. Let P be a path in (S, α|S) that contains r as an
interior vertex. Every vertex adjacent to r in (S, α|S) has the same colour, so P ∈ BP2 .
Since Y is determined by BP2 ∩MI, we know P /∈ BP2 ∩MI, so P /∈ MI. Therefore, P
contains a colour that occurs an odd number of times.

Every rooted subtree, Tv, of every vertex in v ∈ A contains at least one occurrence of
each colour, because, by induction, every subdivision, H ′, of the complete (c2c + 1)-ary
tree of height c − 1 has χY(H ′) > c. In particular, for every v ∈ A, Tv contains a red
vertex, tv ∈ V (Tv). Let R ⊆ Sub(S, α|S) be the set of rtv-paths in S, for all v ∈ A. Each
path in P ∈ R has an associated binary string of length c, where a 1 in position i indicates
that the ith colour occurs an odd number of times in P . There are 2c such binary strings
and |R| > 2c + 1, so there are two paths, P and Q, which have the same associated string.
Let P ′ be the subpath of P with both endpoints deleted. One endpoint of P is r and both
endpoints are red, so P ′, still has the same associated string as Q. The colours that occur
an odd number of times in P ′ are the same colours that occur an odd number of times in
Q. It follows that all colours occur an even number of times in P ′Q, so P ′Q ∈ MI. Also,
P ′Q contain r as an interior vertex, so P ′Q ∈ BP2 . It follows that P ′Q ∈ BR2 ∩MI ⊆ BY,
which is a contradiction, so χY(H) > c+ 1.

Y is of particular interest because no colour schemes found in the literature are bounded
on subdivisions of stars and unbounded on choice-subdivisions of trees.

6.1.4 Distinguishing subdivisions of graphs and trees

Thus far, the only colour scheme which is bounded on choice-subdivisions of trees but not
on choice-subdivisions of graphs is V. It is unsurprising that there is a cycle-dependent
colour scheme with this property, as trees are characterized by their lack of cycles. In this
section we present a more surprising result, that there is a path-dependent colour scheme,
U, which is bounded on choice-subdivisions of trees but not on choice-subdivisions of
graphs.

We define U in terms of a determinant, which requires the following definitions. Recall
that a coloured graph, (G, β), is a meld of (G,α) if, for all u, v ∈ V (G), α(u) = α(v) implies
β(u) = β(v). A c-meld of (G,α) is a meld, (G, β), of (G,α), such that (G, β) is coloured
with at most c colours. For a coloured path P and set C, recall that VC(P ) is the set of
vertices in P assigned a colour in C. Then the C-components of P are the components
of the forest induced by VC(P ), and the C-component sequence of P is the sequence of
orders of the C-components of P , listed in order of their occurrence in P . For example,
the {1, 2}-components of P := 12321321221323 is the forest of paths 12, 21, 21221, and 2,
and the {1, 2}-component sequence of P is 2, 2, 5, 1. A sequence, x1, . . . , xn, is up-down if
there exists i ∈ [n− 1] such that x1, . . . , xi is strictly increasing and xi+1, . . . , xn is strictly
decreasing.

Let U be the path-determined set of coloured graphs determined by B, where a path,
P , is in B if every 4-meld of P has a subpath, Q, which violates one of the following
properties.

(1) Q is distance-1 coloured (properly coloured).

(2) Q is distance-2 coloured, Q contains at least four colours, or |V (Q)| 6 5.

(3) For all sets of three colours, C, that maximize |VC(Q)|, the C-component sequence
of Q is up-down.
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We first check that U is a colour scheme. Every 4-meld of a meld of a path, P , is a 4-meld
of P , so B is closed under melding. Now note that every path, P , with the distance-2 3-
colouring 123123 . . . , satisfies conditions (1), (2), and (3) because P is distance-2 coloured
and its {1, 2, 3}-component sequence has length 1, and so is trivially up-down. A path of
the form 123123 . . . is a 4-meld of every rainbow path, so B does not contain any rainbow
paths. Therefore, by Lemma 5.29, U is a colour scheme.

The definition of U is somewhat artificial. Keep in mind that U is of interest because
it satisfies the same natural axioms as many other types of graph colouring and has the
surprising property of being bounded on choice-subdivisions of trees but not on choice-
subdivisions of graphs.

Theorem 6.10. χU is bounded by 4 on choice-subdivisions of trees.

Proof. Let T be a tree, rooted at an arbitrary vertex. Let ` : E(T ) → [|E(T )|] be a
bijective labelling of E(T ) where edges are ordered by their distance from the root such
that closer edges have larger label. Note that this labelling is up-down on each path in T .

Let S be the subdivision of T such that every edge, e, has 6 + 3`(e) division vertices.
Let Xe be the path of division vertices of edge e, oriented such that the first vertex of
Xe is adjacent to the parent vertex of e. Define the colouring ψ of S as follows. For all
edges e, colour Xe with 123123 . . . 123 if e has even distance to the root and colour Xe

with 321321 . . . 321 otherwise. Note that the neighbourhood of every original vertex is
monochromatic and recall that edges adjacent to the root are at distance 0. Colour every
original vertex with 4.

Let P be a path in (S, ψ), we now show that the identity 4-meld, that is, the meld of
P that leaves P unaffected, satisfies Conditions (1), (2), and (3). Since (S, ψ) is properly
coloured, P satisfies Condition (1). Now consider Condition (2). Since the division vertices
of S are distance-2 coloured, Condition (2) is satisfied if P does not contain any original
vertices. Every path in (S, ψ) around an original vertex is of the form 1234321 or 3214123,
so, if P contains an original vertex, |V (P )| > 6 implies P contains 4 colours. Therefore P
satisfies Condition (2).

Finally, consider Condition (3). The C-component sequence of a path with 3 colours
or with a unique colour has length at most 2, so is trivially up-down. Therefore P satisfies
Condition (3) if it contains at most one original vertex. Now consider the case where P
contains at least two original vertices. Since every edge, e ∈ E(T ), has at least three
occurrences of colours 1, 2, and 3, C = {1, 2, 3} is the unique set of three colours that
maximises |VC(P )|. Let X = x1, . . . , xn be the {1, 2, 3}-component sequence of P . Note
that n := |X| is the number of edges of T that have division vertices in P . Let Q = e1 . . . en
be the path in T such that Xei ∩ V (P ) 6= ∅ for all i ∈ [n]. Note that Xei is a subset of
V (P ) for i ∈ {2, . . . , n − 1}. Therefore xi = `(ei), for i ∈ {2, n − 1}, and xi 6 `(ei)
otherwise. It follows that X is up-down, since every reduction of the start and end terms
of an up-down sequence is up-down, so Condition (3) is satisfied. We have found a 4-meld
of P that satisfies all three conditions, contradicting P ∈MU, so (S, ψ) ∈ U.

The proof of Theorem 6.10 demonstrates the purpose of each of the three conditions in
the determinant of U. Condition (1) forces paths to contain at least 3 colours. Condition
(2) allows for the creation of ‘gadgets’ that make the colouring valid around original ver-
tices, without impacting too heavily on the colouring of the division vertices. Condition (3)
essentially requires that the graph be subdivided according to an up-down edge labelling,
which is possible for trees but not for general graphs. As we will see, Condition (3) does
the most work in making U unbounded on choice-subdivisions of graphs.
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Theorem 6.11. χU is unbounded on choice-subdivisions of graphs.

Proof. Assume for the sake of contradiction that χU is bounded by c on choice-subdivisions
of graphs. Fix an integer n such that 5 (4c) 6 n−1

3c(c−1)
− 7

3
. Let N be sufficiently large to

guarantee a monochromatic clique of order n in every edge 2-colouring ofKN , the existence
of which follows from Ramsey’s Theorem [117]. Let (H, ρ) ∈ U be a c-coloured subdivision
of KN . Since n > c and monochromatic edges are in BU, H does not have a subgraph
isomorphic to Kn. Therefore H has a (> 1)-subdivision of Kn, G, as a subgraph. Let
ψ := ρ|G. The remainder of the proof concerns the c-coloured (> 1)-subdivision of Kn,
(G,ψ), which is in U, by Subgraphability.

For all original vertices, v ∈ V (G), let D(v) be the set of uv-paths, for all u ∈ V (G)
such that dist(u, v) = 2. Let Sv be the graph union, in G, of the paths D(v). Note that
Sv is isomorphic to a 1-subdivision of the star of order n. Let the v-signature, sv(`), of a
leaf ` ∈ V (Sv) be the pair (x, y) where y is the colour of the parent of ` and x is the colour
of `. Let Tv be a maximal complete subtree of Sv such that all leaves share a v-signature.
Let the signature of Tv be the v-signature shared by all of its leaves. There are c(c − 1)
signatures, since monochromatic edges are in BU, so Tv has at least n−1

c(c−1)
leaves. Let V be

a maximal set of vertices such that, without loss of generality, Tv has signature (1, 2) for
every v ∈ V . There is a tree, Tv, for every v ∈ V (Kn) and there are c(c− 1) signatures, so
|V| > n

c(c−1)
.

A signature path of G is a path, P , in G with |V (P )| = 5 and V (P ) ⊆ V (Tv), for some
v ∈ V . We now show that G has a cycle which contains many signature paths.

Claim 6.12. There is a subgraph, S, of G such that S is a cycle and contains at least
p :=

⌊
n−1

3c(c−1)
− 4

3

⌋
signature paths.

Proof. The claim follows by appending the appropriate paths in G to find a cycle with
the required properties. A signature halfpath of G is a root-to-leaf path of a tree in Tv
for some v ∈ V . A signature endpath of G is a path in G, with endpoints in V , such that
its first three and last three vertices are signature halfpaths. We will show that, for all
k ∈ {0, . . . , p}, there exists a set of paths Pk = {P1, . . . , Pk} that satisfy the following
properties.

(1) The last vertex of Pi is the first vertex of Pi+1, for all i ∈ [k − 1].

(2) No pairs paths in Pk intersect, excepting intersections required by Property (1).

(3) Pi is a signature endpath, for all i ∈ [k].

(4) Pi contains at most four original vertices, for all i ∈ [k].

Since P0 is the empty set, it satisfies all conditions vacuously. We proceed by induction
on k. Recall that G is a subdivision of H. For a path, P , in H, the P -subdivision-path is
the path, Q, in G, such that Q is the subdivision of P in G. The extension of a signature
halfpath, rv1v2, with r ∈ V , is the rv-subdivision-path of G, where rv is the edge of G with
v1 as a division vertex. Note that v1 is a division vertex because G is a (> 1)-subdivision
of H. For r ∈ V , let Er be the set of extensions of signature subpaths of Tr, and note that,
except for their shared endpoint, r, the paths in Er are disjoint.

Let Ok be the set of original vertices that are in a path in Pk. Let v ∈ V \Ok. Let u be
the last vertex of Pk, in the case that k > 1, and let u ∈ V \ {v} otherwise. Every path in
Pk starts and ends at original vertices because they are signature endpaths. It follows that
every path, Pi ∈ Pk, contributes an additional three original vertices, for i ∈ {2, . . . , k},
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and that P1 contributes four original vertices, so |Ok| 6 3k + 1. Furthermore, there are
at least |Eu| − |Ok| extensions of signature paths of Tu that do not contain any vertices in
Ok \ {u}. Recall k 6 p :=

⌊
n−1

3c(c−1)
− 4

3

⌋
. It follows that

|Eu| − |Ok| >
n− 1

c(c− 1)
− 3k − 1 >

n− 1

c(c− 1)
−
(

n− 1

c(c− 1)
− 4

)
− 1 > 3.

Therefore there is a u′ /∈ Ok such that the uu′-subdivision-path is in Eu. Similarly, there is a
v′ /∈ Ok such that the vv′-subdivision-path is in Ev. Because |Ev|−|Ok| > 3, we can choose
u′, v and v′ to be distinct vertices. Since G is a subdivision of a Kn, the u′v′-subdivision-
path is in G. Let Pk+1 be the uu′v′v-subdivision-path in G and Pk+1 = Pk ∪ {Pk+1}.

We now show that Pk+1 satisfies the required conditions. Firstly, Pi ∈ Pk+1, for all
i ∈ [k], satisfies the required conditions, by induction. By our construction, the start of
Pk+1 is the end of Pk, Pk+1 does not intersect any other paths in Pk+1, Pk+1 is a signature
endpath, and Pk+1 contains at most four original vertices. Therefore Pi exists for all
i ∈ {0, . . . , p}.

Let P be the concatenation of the paths in Pp. Let x and y be the endpoints of P . We
construct S by finding a xy-path which does not intersect P . As before,

|Ex| − |Op| >
n− 1

c(c− 1)
− 3p− 1 >

n− 1

c(c− 1)
−
(

n− 1

c(c− 1)
− 4

)
− 1 > 3.

Similarly, |Ey| − |Op| > 3. Therefore there are distinct vertices x′, y′ /∈ Op such that the
xx′-subdivision-path is in Ex and the yy′-subdivision-path is in Ey. Let P ′ be xx′y′y-
subdivision-path in G. We have shown that P ′ and P share endpoints and do not share
any other vertices. P is a signature endpath containing at least p signature paths and P ′
is a signature endpath. Therefore the union of P and P ′ in G is a subcycle of G containing
at least p signature paths.

By Claim 6.12, there exists a subcycle, S, of G containing at least n−1
3c(c−1)

− 7
3
signature

paths. Let N := V (S) ∩ V be the set of centre vertices of signature paths in S. Fix
an orientation on S so we can use the words ‘clockwise’ and ‘counter-clockwise’. For all
v ∈ N , let L(v) be the set containing v and the three vertices clockwise of v, and L+(v)
be L(v) with the addition of the two vertices counter-clockwise of v.

We now show that, for all vertices v ∈ N , paths P in S, and 4-melds, s, of P , L+(v) ⊆
V (P ) implies s(L(v)) has four colours, provided that s(P ) satisfies Condition (2). Recall
that v ∈ N is the middle vertex of a signature path in S. It follows that the path induced
by L+(v) in S has colour sequence Wv = 12ψ(v)21ψ(xv), where xv is the vertex three
vertices clockwise of v. Note that the colour sequence 123213 violates Condition (2) since
it is not distance-2 coloured, contains three colours and has length six. It follows that
s(ψ(v)) 6= s(ψ(xv)) in every 4-meld, s, of P that satisfies Condition (2).

Also, since 123211 violates Condition (1), L+(u)∩L+(v) = ∅, for all distinct u, v ∈ N ,
so dist(u, v) > 6, for all distinct u, v ∈ N . This simplifies the remainder of the proof as
we can make statements about paths without worrying about degenerate overlaps.

For all v ∈ N , let Pv be the xy-path of order |V (S)|, oriented clockwise in S, where x
is one vertex clockwise of v and y is one vertex clockwise of x. Let Q be the set of paths
with Pv ∈ Q, for every v ∈ N . Since (G,ψ) ∈ U, every path Pv ∈ Q has at least one
4-meld satisfying Conditions (1), (2) and (3). Since there at most 4c distinct 4-melds of a
c-coloured graph, and n was defined to satisfy

5 (4c) 6
n− 1

3c(c− 1)
− 7

3
6 |Q|,
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PβA
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b1
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β
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α

v1
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Figure 6.1: S with a 4-meld, s, such that, for all v ∈ U , s(Pv) satisfies Conditions (1), (2)
and (3). The vertices α, β, u1, u2, and u3 are in U . The eight large vertices are in N . Each
vertex, v ∈ N , is shown along with the vertices in L+(v). For every vertex, v ∈ N , the set
containing v and the three vertices clockwise of v is L(v), which is known to contain all
four colours in (S, s(ψ|S)). The paths of order 5 with blue endpoints are signature paths
in G. Note that the sets of green and blue vertices have the same colour in (G,ψ), whereas
the sets of red and yellow vertices may only have the same colour in (G, s(ψ)). The figure
shows the case in which C := {blue, green, yellow} maximises |VC(S, s(ψ|S))| over sets of
three colours. The numbers a1, a2, b1, and b2 indicate the sizes of four C-components
shared by Pα and Pβ. In general, the vertices of U are not necessarily arranged as shown
here, and there may be more vertices from N . The important property is, in all cases, A
and B each contain at least five vertices from N . This ensures that s(A) and s(B) each
have two C-components which are shared by s(Pα) and s(Pβ).
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there are five times as many paths in Q as there are distinct 4-melds of paths in Q.
Therefore, there exists a 4-meld, s : [c] → [4], and a set of at least five vertices, U ⊆ N ,
such that s(Pv) satisfies Conditions (1), (2) and (3), for all v ∈ U . Since |N | > 8, U ⊆ N
and |U| > 5, there exists two vertices, α, β ∈ U , such that both αβ-paths in S contain
at least five vertices of N . Let A and B be the two αβ-paths in S. Break the symmetry
between A and B by having A be the αβ-path that contains the vertex immediately
clockwise of α. Figure 6.1 shows the structure of Pα, Pβ, A, and B in S.

Let C be a set of three colours that maximizes |VC(Pα)|, over all sets of three colours.
Recall that V (Pα) = V (Pβ), so C also maximizes |VC(Pβ)|. Let CA, CB, Cα and Cβ be
the C-component sequences of s(A), s(B), s(Pα) and s(Pβ) respectively. For a path, P ,
in S, let o(P ) := |X| where X ⊆ N is the largest set of vertices such that L+(v′) ⊆ V (P )
for all v′ ∈ X. Note that o(A) > 3 and o(B) > 3 because both paths contain at least
five vertices in N . It follows that |CA| > 4 and |CB| > 4. Therefore at least two adjacent
terms, a1 and a2, of CA occur as adjacent terms in both Cα and Cβ. Similarly, at least two
adjacent terms, b1 and b2, of CB occur as adjacent terms in both Cα and Cβ. To further
break symmetries, let a1 and b1 be the terms corresponding to C-components of A and
B which are closer to α in A and B, respectively. It follows that these terms occur in
the order a1, a2, b2, b1 in Cα and b2, b1, a1, a2 in Cβ. Note that Cα and Cβ are up-down, by
Condition (3). Since Cα is up-down either a1 < a2 or b1 < b2, as only the two largest terms
of an up-down sequence can be equal. Without loss of generality, take a1 < a2. Therefore,
since Cβ is up-down, we know that b2 < b1 < a1 < a2. This implies a1 < a2, a2 > b2 and
b2 < b1, which is a contradiction of Cα being up-down. Therefore χU is not bounded by c
on choice-subdivisions of graphs.

6.1.5 Sufficient conditions

The previous section demonstrates that, for path-dependent colour schemes, being bounded
on choice-subdivisions of trees is not the same as being bounded on choice-subdivisions of
graphs. This further motivates the search for non-trivial properties which are sufficient for
a path-dependent colour scheme to be bounded on choice-subdivisions of graphs, a pair of
which are presented in this section.

Let F be a determinant of a path-dependent colour scheme A. A path, P , is F-
adequate with respect to A if there exists a subpath, Q ∈ GA, of P such that, for all
subpaths R ∈ F of P , Q is not a subpath of R. Since F is a determinant of A, every good
path of A is F -adequate and every minimally bad path of A is not F -adequate. The more
interesting F -adequate paths are the ones in BA. As an example, consider N, the colour
scheme corresponding to anagram-free colouring. Recall that the split of a path P of even
order is the pair of paths, L and R, such that, LR = P and |V (L)| = |V (R)|. Also recall
that the colour multiset function, M , counts the occurrences of colours on a path. Let W
be the determinant of N such that P ∈ W if M(L) = M(R) for the split, L and R, of
P . The coloured path, P := 212132123, is bad, but also W-adequate, because the good
subpath, Q := 213212, of P is not a subpath of any subpath, R ∈ W , of P .

Recall that P restricted to C is the word f(v1)f(v2) . . . f(vx), where v1, v2, . . . , vx are
the vertices in VC(P ), in the order defined by P , and f is the colouring of P . The de-merge
of a path, P , by a set of colours, C, is the path coloured by the word P restricted to C.
For example, the de-merge of 1214312343 by {1, 3} is 113133. A path-dependent colour
scheme, A, is F-fixable if F is a determinant of A and, for all paths P ∈MA and sets of
colours C, the de-merge of P by C is not an F -adequate path of A. This definition can
be rephrased as follows.
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Lemma 6.13. A path-dependent colour scheme, A, with determinant F , is F-fixable if
and only if for all coloured paths P , the existence of a set of colours, C, such that the
de-merge of P by C is F-adequate, implies P /∈MA.

Proof. The proof follows by logical manipulation of the definition of F -fixable.

With Lemma 6.13, we can show that a path P is not minimally bad with respect
to a F -fixable path-dependent colour scheme by finding a F -adequate de-merge of P .
The intuition behind the name ‘fixable’ is that we can ‘fix’ the minimal badness of a
path, P , by merging P with a F -adequate path, Q, on a distinct set of colours. A
merge, R, of two coloured paths P = p1 . . . pi and Q = q1 . . . qj is a path graph with
V (R) = V (P )∪ V (Q) which retains the order and colours of the vertices in P and Q. For
example v1v2vav3vbvcvdv4vev5 is a merge of v1v2v3v4v5 and vavbvcvdve.

Lemma 6.14. Let A be an F-fixable colour scheme. Let P ∈MA and Q be a F-adequate
path such that P and Q have no colours in common. Every merge of P and Q is not
minimally bad.

Proof. Let R be a merge of P and Q. Let C be the set of colours that appear in Q. The
de-merge of R by C is Q, and Q is F -adequate, so R /∈MA.

F -fixable is a stronger property than tame, which is encouraging if we are to prove
that F -fixability is part of a pair of conditions which are sufficient for a path-dependent
colour scheme to be bounded on choice-subdivisions of graphs.

Lemma 6.15. Every path inMA contains at least two occurrences of each of its colours
for every F-fixable colour scheme A.

Proof. Assume for the sake of contradiction that P ∈ MA contains a unique colour. Let
Q be the de-merge of P by its unique colour. Note that |V (Q)| = 1, so Q ∈ GA. Therefore
Q is F -adequate, which contradicts the F -fixability of A.

F -fixability is one of the two conditions required by Theorem 6.18, which gives sufficient
conditions for a colour scheme to be bounded on choice-subdivisions of graphs. This result
extends Chapter 4, so we show that anagram-free colouring is W-fixable.

Lemma 6.16. N is W-fixable, where W is the determinant of N such that P ∈ W if
M(L) = M(R) for the split, L and R, of P .

Proof. Every minimally bad path of N is an anagram. Let PQ ∈ MN with |V (P )| =
|V (Q)| and C be a set of colours. Let RS be the de-merge of PQ by C with |V (R)| =
|V (S)|. If RS is the empty path, then RS is notW-adequate, so take the case |V (RS)| > 1.
Since M(P ) = M(Q), M(R) = M(S), so RS ∈ W . Since, every good subpath of RS is a
subpath of RS ∈ W , RS is not W-adequate.

For the second condition of Theorem 6.18 we define a type of coloured path that bestows
F -adequacy on sufficiently small paths that contain it as a subpath. A path, P ∈ GA, is
(F , ε)-great with respect to a path-dependent colour scheme, A, if every path Q, such that
P is a subpath of Q and ε|V (Q)| 6 |V (P )|, is F -adequate. To take an example, using W
as defined in Lemma 6.16, the path, P := 1234, is (W , 4

7
)-great with respect to N because

P is not a subpath of any path inW of order at most 7. A path-dependent colour scheme,
A, is (F , ε, c)-great if there are arbitrarily long (F , ε)-great paths on c colours with respect
to A. Anagram-free colouring is (W , 32

33
, 5)-great.
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Lemma 6.17. N is (W , 32
33
, 5)-great, where W is the determinant of N such that P ∈ W

if M(L) = M(R) for the split, L and R, of P .

Proof. Let n > 15 be an integer and ε := 32
33
. Let P ′ ∈ N be an anagram-free path of

order 2n coloured by {1, 2, 3, 4}. Let P be the fracture of P ′ such that vertices with colour
4 in the first half of P ′ are coloured red in P . Let L and R be the split of P . Let Q be a
coloured path with P as a subpath and ε|V (Q)| 6 |V (P )|.

We now show that there is no subpath, S ∈ W , of Q with P as a subpath. Since P
is good, this is all that is required to show that Q is W-adequate. Let L′R′, with split L′
and R′, be a subpath of Q such that P is a subpath of L′R′. Since |V (L′R′)| > |V (LR)|,
it follows that L is a subpath of L′ or R is a subpath of R′. Without loss of generality,
let L be a subpath of L′. Recall that every anagram-free word on length 8 has at least
four characters [39]. Therefore L, and thus L′, contains at least n/15 red vertices. Note
that V (R′) ∩ V (L) = ∅ and that R contains no red vertices. Since |V (Q)| − |V (P )| 6
2n
(

1
ε
− 1
)
6 n

16
< n

15
, R′ has fewer than n/15 red vertices. It follows thatM(L′) 6= M(R′),

so L′R′ /∈ W .

(F , c, ε)-great is the second sufficient condition, along with F -fixable, for a path-
dependent colour scheme to be bounded on choice-subdivisions of graphs. Since N is
W-fixable and (W , 32

33
, 5)-great, the following theorem generalises Theorem 4.10, except

for the value of the bound attained.

Theorem 6.18. Let A be a path-bounded, F-fixable and (F , ε, c)-great path-dependent
colour scheme for some determinant, F , of A, ε ∈ (0, 1), and c ∈ Z+. Every graph, G,
has a subdivision H such that χA(H) 6 3c+ 1.

Proof. Denote the edges of G by E(G) = {e1, . . . , em}. Let H be a subdivision of G such
that, for all i ∈ [m], there is a (F , ε)-great path on c colours of order |ei|/3 and

ε
i∑

j=1

|ej| 6 |ei|,

where |ei| is the number of division vertices of ei. For every i ∈ [m], let Xi, Yi and Zi
be paths in H such that XiYiZi is the path on the division vertices of ei and |V (Xi)| =
|V (Yi)| = |V (Zi)| = |ei|/3. Let X , Y and Z be the sets containing Xi, Yi and Zi for all
i ∈ [m], respectively.

We define the (3c + 1)-colouring, ψ, of H as follows. Assign disjoint sets of c colours,
denoted Cx, Cy and Cz, to each of X , Y and Z. For all i ∈ [m], colour the paths Xi ∈ X ,
Yi ∈ Y , and Zi ∈ Z with a (F , ε)-great colouring with colours from Cx, Cy, and Cz,
respectively. Fix a colour, c′ /∈ Cx ∪ Cy ∪ Cz, and colour all the original vertex of H with
c′. Having defined (H,ψ), we now show that every coloured path, P , in (H,ψ) is good.
Let P ∈ Sub(H,ψ), it is sufficient to show that P is not minimally bad.

The proof is split into three cases, depending on how many original vertices are in P .
Consider the case where P contains no original vertices. Without loss of generality, P
intersects Xi for some i. All subpaths of Xi are good and colours from Cx occur nowhere
else in P , so the de-merge of P by Cx is a subpath of Xi. All subpaths of Xi are F -adequate
because Xi is good, so, since A is F -fixable, P is not minimally bad. Now consider the
case where P contains exactly one original vertex. The original vertex has a unique colour
in P so, by Lemma 6.15, P is not minimally bad.

In the remaining case, P contains at least two original vertices. Since P contains all
of the division vertices of an edge of G, at least one path from each of X , Y , and Z is a
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subpath of P . Every vertex in every path in X ∪ Y ∪ Z has degree 2 in S, so P partially
intersects at most two paths from X ∪ Y ∪ Z. Therefore, without loss of generality, P
entirely contains at least one path in X and does not partially intersect any paths in X .
Let Xk be the longest path of X that is a subpath of P and note that |V (Xk)| = |ek|/3.
Let Q be the de-merge of P by Cx, and note that Xk is a subpath of Q. Since Xk is
(F , ε)-great and

ε|V (Q)| 6 ε

3

k∑
j=1

|ej| 6
|ek|
3

= |V (Xk)|,

Q is F -adequate. Therefore, since A is F -fixable, P is not minimally bad.

Theorem 6.18 gives a bound of 16 for χN on choice-subdivisions of graphs, while The-
orem 4.13 gives a bound of 8. This is to be expected as the latter result uses more details
about anagram-free colouring. An interesting feature of Theorem 6.18 is that it makes no
reference to paths of the form Wσ(W ), even though all our examples of path-dependent
colour schemes which are bounded on choice-subdivisions of graphs are permutation-
avoiding colour schemes. Furthermore, since all our examples of path-dependent colour
schemes which are bounded on choice-subdivisions of graphs are supersets of N, it is open
as to whether the two conditions of Theorem 6.18 are necessary as well as sufficient.

6.2 Permutation-avoiding colouring
Square-free colouring and anagram-free colouring have similar definitions and distinctive
behaviour, which motivates the study of further variations on their definitions. In this
section we show that anagram-free colouring is unbounded on trees due to its avoidance of
a small set of permutations, but that it is unbounded on graphs of bounded degree because
it avoids a large set of permutations.

Previously we observed that square-free colouring and anagram-free colouring can both
be defined as avoiding a set of words, WσW , for σ ∈ F , where F is a set of permutations.
With colour scheme notation, we now define this observation more precisely. For k > 2, a
path-dependent set of coloured graphs is k-permutation-avoiding for a set of permutations,
S, if it is determined by a set of coloured paths, B, such that P ∈ B if P has colour sequence
W1W2 . . .Wk where, for all i ∈ [k − 1], Wi+1 = σ(Wi) for some σ ∈ S. All k-permutation-
avoiding sets of coloured graphs are colour schemes.

Lemma 6.19. Every k-permutation-avoiding set of coloured graphs is a colour scheme.

Proof. Let A be a k-permutation-avoiding path-dependent set of coloured graphs for a set
of permutations S. Using Lemma 5.29, we only need to show that B does not contain
rainbow colourings and is closed under melding. B does not contain rainbow colourings
because every colour on P ∈ B occurs k times. Let P ∈ B be a path with colour sequence
W1W2 . . .Wk. Let Q be a meld of P , and denote the colour sequence of Q byW ′

1W
′
2 . . .W

′
k.

For all i ∈ [k − 1], Wi+1 = σi(Wi) for σi ∈ S, so W ′
i+1 = σi(W

′
i ). Therefore Q ∈ B so B is

closed under melding.

A colour scheme is permutation-avoiding if it is k-permutation avoiding for some k >
2. The colour scheme corresponding to anagram-free colouring, N, is 2-permutation-
avoiding for the set of all permutations. The colour scheme corresponding to square-free
colouring, Q, is 2-permutation-avoiding for the set of identity permutations. Anagram-free
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colouring, N, is a notable permutation-avoiding colour scheme because every permutation-
avoiding colour scheme, A, satisfies N ⊆ A. We can isolate properties of N by studying
permutation-avoiding colour schemes determined by subsets of determinants of N.

In this section we prove general results about path-dependent colour schemes and apply
them to a new permutation-avoiding colour scheme, R. We construct R to show that two
properties studied throughout this thesis, being bounded on trees and bounded on graphs
of bounded maximum degree, are not correlated on permutation-avoiding colour schemes.
Recall that Q is bounded on both classes of graphs and N is bounded on neither class. As
shown in Section 3.3, N4 is bounded on trees but not bounded on graphs of bounded degree.
Our new example, R, completes the set as it is bounded on graphs of bounded maximum
degree and not bounded on trees. In terms of N, Theorem 6.20 shows that N is unbounded
on trees because it avoids a particular small set of permutations, whereas Theorem 6.21
shows that there is no small set of permutations that cause a permutation-avoiding colour
scheme to be unbounded on graphs of bounded maximum degree.

6.2.1 Bounds on trees

Recall that Theorem 3.3 shows that χN is unbounded on trees. Recall that the proof of
Theorem 3.3 is stronger than required, as it showed that every coloured tree has a path of
the form xWx

←−
W , where x is a character, W is a word, and

←−
W is W written backwards. As

such, every colour scheme that avoids words of the form xWx
←−
W is unbounded on trees.

To make this notion precise, we say that a path-dependent colour scheme, A, is reversible
if, for all n > 1, there exists a good path, P , with |V (P )| > n, that has colour sequence
xWx

←−
Wx, for some word W and character x. Let R be the permutation-avoiding colour

scheme which avoids the set of permutations, R, with σn ∈ R for σn : [n] → [n] defined
by σn(1) := 1 and σn(i) := n + 2 − i for i ∈ {2, . . . , n}. Let xWx

←−
W -free colouring be

the variant of colouring that corresponds to R, and note that R is not reversible. We
generalise Theorem 3.3 with the following theorem.

Theorem 6.20. Every path-dependent colour scheme, A, which is not reversible is un-
bounded on trees.

Proof. A, is not reversible so there exists n > 1 such that all coloured paths of order at
least n and colour sequence of the form xWx

←−
Wx are bad. Fix an integer c and let d and

h be positive integers such that dn(c+1) 6 dh+1c−h. Let T be the complete d-ary tree of
height h with root r. Let L be the set of leaves of T , and fix an arbitrary c-colouring,
ψ : V (T )→ [c], of T .

There are at most ch sequences of colours in root-to-leaf paths since each sequence has
length h + 1 and they all start with ψ(r). Since |L| = dh there is a set, C ⊆ L, of size at
least dh/ch such that Sv = Sw for all v, w ∈ C. We have found a large set of leaves with
the same colour sequence on their root-to-leaf paths, as illustrated in Figure 6.2. Let R be
the subtree of T induced by the set of all ancestors of leaves in C.

Define a level of R to be a maximal set of vertices of R that all have equal depth. R
is coloured by level, as ψ(u) = ψ(v) for every pair of vertices u, v ∈ V (R) with the same
depth. Let `0, `1, . . . , `h be the sets of vertices corresponding to levels of R, where `0 = {r}
and `h = C. A level, `i, is bad if every vertex v ∈ `i has exactly one child in R. A level
is good if it is not bad. Note that only level `h contains vertices with no children. Let g
be the number of good levels of R and b be the number of bad levels of R. By definition,
h+ 1 = g + b. We now prove that there are at least n(c+ 1) good levels.
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h

r

C

Figure 6.2: The complete d-ary tree of height h with a large set C of leaves which have
the same root-to-leaf path colour sequence.

We bound the number of bad levels by considering the number of good levels required to
attain |`h| > (d/c)h. If `i is bad, then |`i| = |`i+1|, and if `i is good, then |`i| < |`i+1| 6 d|`i|.
It follows that

|`i| 6 d#preceding good levels.

Since `h is the final good level, it is preceded by g − 1 good levels. Thus

(d/c)h 6 |`h| 6 dg−1

so dh+1c−h 6 dg. Recall that dn(c+1) 6 dh+1c−h, so n(c+1) 6 g. There are at least n(c+1)
good levels, so there are integers, a, b ∈ {0, . . . , h} such that good levels `a and `b have
the same colour and a + k = b for some k > n. Let t ∈ `a be a vertex with at least two
descendants in `b. Let u, v ∈ C be two distinct leaves of `b which are descendants of t.
Note that dist(u, t) = k and dist(v, t) = k. Let p0, p1, . . . , pk be the ut-path, q0, q1, . . . , qk
be the vt-path, and P be the uv-path. Since R is coloured by level, ψ(qi) = ψ(pi), for all
i ∈ {0, . . . , k}. Also, ψ(p0) = ψ(q0). It follows that

ψ (p0p1 . . . , pk−1) =
←−−−−−−−−−−−−−
ψ (qk−1qk−2 . . . , q0)

so the colour sequence of P is xWx
←−
Wx for W := ψ (p0p1 . . . , pk−1) and x := ψ(pn). Since

k > n we know |V (P )| > 2n+ 1. Therefore, P ∈ BA, so T has no c-colouring in A.

R is bounded by 8 on choice-subdivisions of graphs, by Lemma 6.1, because N ⊆ R.
Also, R is bounded by 3 on paths because the sequence (123)k avoids words of the form
xWx

←−
W , for all k.

6.2.2 Bounding by maximum degree

The bounds on the square-free chromatic number on graphs of bounded maximum degree
are proved using variants of the Local Lemma and entropy compression. A notable feature
of these proofs is that they use very few properties of square-free colouring. The main
property they use is that, for fixed n and c, there are relatively few squares of order n on
c colours. In terms of colour schemes, the required property is that Q has a determinant,
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B, which contains no more than c2n c-coloured paths of order n. This property is sufficient
to prove that Q is bounded on graphs of bounded degree. This observation leads to the
following generalisation of Theorem 2.4.

Theorem 6.21. Let A be a path-dependent colour scheme with determinant B and let
Pn,k be the set of k-coloured paths of order n in B. If there exists ε ∈ (0, 1) such that
|Pn,k| 6 kn(1−ε), for all n > 1 and k > 1, then χA(G) 6 (8∆(G))1/ε, for every graph G.

Proof. Let k := (8∆)1/ε, n := |V (G)| and Q be the set of paths in G. Colour each vertex
of G independently and randomly with k colours. For each P ∈ Q, let AP be the event
that P ∈ B. Define the dependency graph, D, with vertex set V (D) := {AP : P ∈ Q}.
An edge {AP , AQ} is in E(D) if the paths P and Q share a vertex in G. Observe that two
events, AP and AQ, are mutually independent if P and Q have no common vertex, so D
is a dependency graph. Partition V (D) by the sets Si := {AP : P is a path of order i} for
i ∈ [n].

Let ∆ := ∆(G). We now show that, for all i, j ∈ [n] and P ∈ Si, d(i, j) := ij∆j is
an upper bound on |N(AP ) ∩ Sj|. To do so we consider a vertex, v ∈ V (G), and bound
the number of paths of order j that contain v. Note that there are at most ∆a−1 paths
of order a in G which start at v. Therefore there are at most ∆b−1∆j−b paths in Sj with
v as the bth vertex. Since v can occur at any of j positions in a path of order j, there at
most j∆j paths of order j going through v. It follows that a path on i vertices intersects
at most ij∆j paths of order j, so |N(AP ) ∩ Sj| 6 ij∆j. Let xi = (3∆)−i, for all i ∈ [n],
and let xP := x|V (P )| be the parameter, required by Lemma 2.3, corresponding to AP for
all P ∈ Q. By definition, ∏

AQ∈N(AP )

(1− xQ) >
n∏
j=1

(1− xj)d(|V (P )|,j)

for all P ∈ Q. For all i ∈ [n], (1− xi) > e−
5xi
4 because xi 6 3−1, so

xi

n∏
j=1

(1− xj)d(i,j) > (3∆)−i
n∏
j=1

e
−5
4
xjd(i,j)

= (3∆)−i
n∏
j=1

e
−5
4

(3∆)−jij∆j

> (3∆)−i exp

(
−5i

4

∞∑
j=1

(
j/3j

))
.

Let P ∈ Q and i = |V (P )|. Note that

P(AP ) =
|P|P |,k|
k|P |

6
k|V (P )|(1−ε)

k|P |
= k−|P |ε.

The series
∑∞

j=1 j/3
j converges to 3/4 so

xP
∏

AQ∈N(AP )

(1− xQ) > xi

n∏
j=1

(1− xj)d(i,j) > (3∆)−ie−15i/16 > (8∆)−i = k−|V (P )|ε = P(AP ).

Therefore P
(⋂

P∈QAP
)
> 0, by Lemma 2.3. It follows that G has k-colouring, ψ, such

that (G,ψ) ∈ A.
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Recall from the previous section that R has a determinant with at most cn/2 paths of
order n on c colours. Therefore, by Theorem 6.21 with ε = 1/2, χR 6 64∆(G)2, for all
graphs G. R has properties not found in the literature: it is a colour scheme which is
unbounded on trees, bounded on choice-subdivisions of graphs, and bounded on graphs of
maximum degree. Furthermore, Theorem 6.21 does not just apply to colour schemes which
avoid a single permutation of each order. Every permutation-avoiding colour scheme is
bounded on graphs of bounded maximum degree provided that it avoids sufficiently few
permutations of each order.

Let R′ be the permutation-avoiding colouring which avoids permutations WW and
xWx

←−
W . Since R′ is determined by BR ∪ BQ, R′ = Q ∩ R, by Lemma 5.22. R′ is

interesting because N ⊆ R′ ⊆ Q and it is close to a maximal example of a colour scheme
that both satisfies this relationship and is unbounded on trees. R′ is also bounded on
graphs of bounded maximum degree, by Theorem 6.21.

6.3 Extensions of anagram-free colouring

In the previous section we studied anagram-free colouring by investigating a class of path-
dependent colour schemes which are all supersets of N. In this section we take the opposite
approach by constructing path-dependent colour schemes which are subsets of N. The mo-
tivation is to find path-bounded colour schemes which are non-trivial subsets of N. While
this goal is not achieved, the investigation still results in colour schemes with interesting
properties which are closely related to N.

6.3.1 ε-uniform-free colouring

Recall that N has a determinant, B, such that PQ ∈ B if M(P ) = M(Q), where M is
the colour multiset function. Our first relaxation of N comes from weakening the equality
M(P ) = M(Q) by allowing P and Q to have almost the same number of occurrences of
each colour.

Define the density of a colour c in a coloured path P to be

dc(P ) :=
|V{c}(P )|
|V (P )|

.

For the duration of this subsection, let Bε be the set of coloured paths such that PQ ∈ Bε
if |V (P )| = |V (Q)| and, for every colour c, either

dc(P ) = dc(Q) = 0 (6.1)

or

dc(P ) > 0, dc(Q) > 0,
dc(P )

dc(Q)
∈
(

1− ε, 1

1− ε

)
. (6.2)

For ε ∈ (0, 1) ⊂ R, let Mε be the path-dependent set of coloured graphs determined by
Bε. Call the corresponding type of graph colouring ε-uniform colouring . We first show
that Mε is a colour scheme.

Theorem 6.22. For all ε ∈ (0, 1), Mε is a path-dependent colour scheme.
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Proof. We first show that Bε is closed under melding. Let PQ ∈ Bε, a and b be two
colours, and P ′Q′ be the meld of PQ that identifies a and b to a new colour c. Take
the case da(P ) > 0, da(Q) > 0, db(P ) > 0, db(Q) > 0, because the other cases all follow
trivially. Note that dc(P ′) = (da(P ) + db(P )) and dc(Q′) = (da(Q) + db(Q)), and

da(Q)(1− ε) 6 da(P ) 6 da(Q)/(1− ε),
db(Q)(1− ε) 6 db(P ) 6 db(Q)/(1− ε).

It follows that dc(Q′)(1− ε) 6 dc(P
′) 6 dc(Q

′)/(1− ε), so P ′Q′ ∈ Bε.
Clearly Bε does not contain any rainbow colourings, as dk(P ) = 0 or dk(Q) = 0 for

every colour, k, in PQ that occurs at most once. Therefore, by Lemma 5.29, Mε is a
path-dependent colour scheme.

We are interested in ε-uniform colouring because it sits between anagram-free colouring
and conflict-free colouring in the hierarchy of colour schemes. We establish these relations
in the following lemma.

Lemma 6.23. C ⊆Mε ⊆ N for all ε ∈ (0, 1).

Proof. We first show Mε ⊆ N. By Lemma 5.14, it suffices to show MN ⊆ Bε. Let
PQ ∈ MN with |V (P )| = |V (Q)| and let c be a colour in PQ. Clearly dc(P ) = dc(Q),
since PQ is an anagram. Therefore PQ ∈ Bε.

Now consider C ⊆ Mε. By Lemma 5.14, it suffices to show Bε ⊆ BC. Let PQ ∈ Bε
such that |V (P )| = |V (Q)|. By definition, for all colours, c, either dc(P ) = dc(Q) = 0 or
both dc(P ) and dc(Q) are positive. In the latter case P and Q each contain one occurrence
of c. It follows that every c that occurs in PQ occurs at least twice in PQ. Therefore
PQ ∈ BC.

We investigate more closely where Mε sits in the hierarchy of colour schemes by deter-
mining whether it behaves like N or C. By Lemma 5.5, we know that Mε is not bounded
on trees since Mε ⊆ N. On the other side, C is not bounded on paths. We now show that
Mε is not bounded on paths.

The following proof uses the space [0, 1]k ⊆ Rk with distance metric

dist((x1, . . . , xk), (y1, . . . , yk)) := max{|x1 − y1|, . . . |xk − yk|}.

Let ε > 0. A point x ∈ [0, 1]k is ε-permitted by S ⊆ [0, 1]k if there exist a, b ∈
(
[0, 1]k \ S

)
such that dist(a, b) > ε and x is the average of a and b, that is, xi = (ai + bi) /2 for
all i ∈ [k]. A point x ∈ [0, 1]k is ε-blocked by S ⊆ [0, 1]k if it is not ε-permitted by S.
Equivalently, a point x ∈ [0, 1]k is ε-blocked by S ⊆ [0, 1]k if for all a, b ∈ [0, 1]k at least
one of the following hold:

(1) a ∈ S or b ∈ S,

(2) dist(a, b) < ε,

(3) x is not the average of a and b.

Let S ⊆ [0, 1]k. An ε-extension of S is a set, T ⊆ [0, 1]k, such that all t ∈ T are
ε-blocked by S. An ε-extension sequence is a finite sequence S0, S1, . . . , Sn such that Si is
an ε-extension of Si−1 for all i ∈ [n].

Lemma 6.24. For all ε > 0 and k ∈ Z+, there is an ε-extension sequence S0, . . . , Sn with
S0 = ∅ and Sn = [0, 1]k.
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Proof. We first show that the lemma holds for the case k = 1. Let n =
⌊

2
ε

⌋
+ 1 and

Si =
[
0, εi

2

)
∩ [0, 1] for all i ∈ {0, . . . , n}, taking [0, 0) := ∅. Note that

Sn =

[
0,
ε

2

(⌊
2

ε

⌋
+ 1

))
∩ [0, 1] = [0, 1].

To prove that, for all i ∈ [n], Si is an ε-extension of Si−1, we show that every point in Si
is ε-blocked by Si−1. Let x ∈ Si and a, b ∈ [0, 1], we show that x, a and b satisfy at least
one of the three ε-blockage conditions. Condition (3) is satisfied if x is not the average
a and b, so take the case that x is the average of a and b. Without loss of generality let
a 6 x and b > x. Condition (2) is satisfied if dist(a, b) < ε, so take the case dist(a, b) > ε.
We now use the observation that x < εi

2
, which follows from x ∈ Si. If i = 1 there is no

a and b satisfying dist(a, b) > ε, so S1 is an ε-extension of S0. In the case i > 2, we have
a 6 x − ε

2
= ε(i−1)

2
implying a ∈ Si−1, satisfying Condition (1). Therefore x is ε-blocked

by Si−1 so Si is an ε-extension of Si−1.
We proceed by induction on k. Let S0, . . . , Sn be an ε-extension sequence in [0, 1]k−1

with S0 = ∅ and Sn = [0, 1]k−1. We use S0, . . . , Sn to construct a sequence of sets denoted

T = T0,0, . . . , T0,n, T1,0, . . . , T1,n, T2,0 . . . , Th−1,n, Th,0 . . . , Th,n

where h =
⌈

2n

ε

⌉
. The intuition behind this construction is that the kth dimension of [0, 1]k

can be filled with h+ 1 layering of S0 . . . , Sn, each offset by εi
2n
. For each term of T ,

Ti,j :=

((
Sj ×

[
εi

2n
,
εi

2n
+

ε

2j

))
∪
(

[0, 1]k−1 ×
[
0,
εi

2n

)))
∩ [0, 1]k

for i ∈ {0, . . . , h} and j ∈ {0, . . . , n}, taking [0, 0) := ∅. We now show that T is an
ε-extension sequence. First note that

Ti,0 =

(
[0, 1]k−1 ×

[
0,
εi

2n

))
∩ [0, 1]k

Ti,n =

(
[0, 1]k−1 ×

[
0,
ε(i+ 1)

2n

))
∩ [0, 1]k

for all i ∈ {0, . . . , h}, because S0 = ∅ and Sn = [0, 1]k−1. It follows that Ti−1,n = Ti,0 for all
i ∈ [h]. Furthermore, Ti,0 is an extension of itself because x ∈ Ti,0 if and only if xk < εi

2n
.

It follows that every a, b ∈ [0, 1]k that average to x ∈ T0,n satisfy at least one of a ∈ Ti,0
and b ∈ Ti,0. Therefore Ti,0 is an extension of Ti−1,n for all i ∈ [h].

We now show that Ti,j is an ε-extension of Ti,j−1 for all i ∈ {0, . . . , h} and j ∈ [n].
Assume for the sake of contradiction that there exist a, b ∈ ([0, 1]k \ Ti,j−1) such that
dist(a, b) > ε and x ∈ Ti,j is the average of a and b. Now consider the bounds on ak and
bk. Without loss of generality let ak 6 xk and bk > xk. We know that ak > εi

2n
because

[0, 1]k−1 ×
[
0, εi

2n

)
⊆ Ti,j−1. We also know that xk < εi

2n
+ ε

2j
because x ∈ Ti,j. Therefore,

bk <
εi
2n

+ ε
2j−1 , because xk is the average of ak and bk.

So far we have shown ak ∈
[
εi
2n
, εi

2n
+ ε

2j−1

)
and bk ∈

[
εi
2n
, εi

2n
+ ε

2j−1

)
, which is all we

require for the remainder of the proof. Firstly, (x1, . . . , xk−1) ∈ Sj, (a1, . . . , ak−1) /∈ Sj−1

and (b1, . . . , bk−1) /∈ Sj−1 because, by definition,(
Sj−1 ×

[
εi

2n
,
εi

2n
+

ε

2j−1

))
∩ [0, 1]k =

(
Ti,j−1 ∩

(
[0, 1]k−1 ×

[
εi

2n
,
εi

2n
+

ε

2j−1

)))
∩ [0, 1]k .

Secondly, dist((a1, . . . , ak−1), ((a1, . . . , bk−1)) > ε because |ak − bk| < ε and dist(a, b) > ε.
Therefore (x1, . . . , xk−1) is ε-permitted by Sj−1, which is a contradiction of Sj being an
ε-extension of Sj−1.
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We now prove that Mε is unbounded on paths, using Lemma 6.24 and a connection
between Mε and ε-blocking sets. The idea behind the proof is to treat the vector of colour
densities of a k-coloured path, P , as a point d(P ) ∈ [0, 1]k. For two paths, P and Q, if d(P )
and d(Q) are sufficiently close in [0, 1]k, then PQ ∈ BMε , provided that |V (P )| = |V (Q)|.
This observation is analogous to taking ε-extensions, and is used in the following theorem.

Theorem 6.25. Mε is unbounded on paths for all ε > (0, 1).

Proof. Assume for the sake of contradiction that k is the smallest integer such that
χMε(P ) 6 k for all paths P . Let ` be the maximum integer such that χMε(P`) < k.
It follows that every path, P , of order greater than ` has dc(P ) > 1

2`
for all c ∈ [k].

Therefore, every k-coloured path, AB ∈Mε with |V (A)| = |V (B)| and order at least 2`,
satisfies

dc(B) +
ε

2`
< dc(B) + εdc(A) < dc(A) or

dc(A) +
ε

2`
< dc(A) + εdc(B) < dc(B)

for some c ∈ [k]. Equivalently, dist(d(A), d(B)) > δ, with δ := ε/(2`). By Lemma 6.24, let
S0, . . . , Sn be a δ-extension sequence with S0 = ∅ and Sn = [0, 1]k.

Let Qi ∈ Mε be a k-coloured path with |V (Qi)| = `2i, for i ∈ {0, . . . , n}. We now
show that d(Qi) /∈ Si for all i ∈ {0, . . . , n}. Clearly Q0 /∈ S0 = ∅. We proceed by
induction on i. Since each x ∈ Si is δ-blocked by Si−1 we just need to show that d(Qi) is
δ-permitted by Si−1. Let AB = Qi such that |V (A)| = |V (B)|. By induction, d(A) /∈ Si−1

and d(B) /∈ Si−1. Note that d(Qi) is the average of d(A) and d(B). Finally, recall that,
dist(A,B) > δ. Therefore d(Qi) is δ-permitted by Si−1 so d(Qi) /∈ Si.

It follows that d(Qn) /∈ [0, 1]k, which is a contradiction.

Note thatMε can be further relaxed by removing the requirement that |V (P )| = |V (Q)|
in Bε. For ε ∈ (0, 1), letM′

ε be the path-dependent set of coloured graphs with determinant,
B, such that PQ ∈ B if, for every colour c, either

dc(P ) = dc(Q) = 0 (6.3)

or

dc(P ) > 0, dc(Q) > 0,
dc(P )

dc(Q)
∈
(

1− ε, 1

1− ε

)
. (6.4)

Clearly Bε ⊆ B soM′
ε ⊆ Mε. Also, C ⊆ M′

ε, which is easily shown with a modification
to the proof of Lemma 6.23.

6.3.2 k-parity colouring

Recall that parity colouring, denoted I, is the path-dependent colour scheme with deter-
minant, B, such that P ∈ B if every colour in P occurs an even number of times. Also,
I ⊆ N because each colour in an anagram occurs an even number of times, soMN ⊆ B.
Throughout this subsection, let Bk be the set of coloured paths such that P ∈ Bk if each
colour in P occurs 0 mod k times. We extend I to the path-dependent set of coloured
graphs, Ik, with determinant Bk. Clearly I = I2. In general, Ik is a colour scheme.

Theorem 6.26. For all integers k > 2, Ik is a path-dependent colour scheme.
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Proof. Let P ∈ Bk, a and b be two colours, and P ′ be the meld of P that identifies a
and b. By definition, a ≡ 0 mod k and b ≡ 0 mod k, so a + b ≡ 0 mod k. Therefore
P ′ ∈ Bk. Clearly Bk does not contain any rainbow colourings as 1 6≡ 0 mod k. Therefore,
by Lemma 5.29, Ik is a path-dependent colour scheme.

In general, Ik is not a subset of N, but it does satisfy other subset relations. Firstly, the
relation I ⊆ N extends to Ik ⊆ Nk because every colour in a k-anagram occurs a multiple
of k times, implyingMNk

⊆ Bk. Also, Ik ⊆ Ikn, for all integers k > 2 and n > 1, because
every colour in a path P ∈ Ba occurs 0 mod kn times, so P ∈ Bkn. We show that Ik is
unbounded on paths. This generalises the result by Bunde et al. [34], that I is unbounded
on paths.

Theorem 6.27. For all integers k > 2, Ik is unbounded on paths.

Proof. Let W := w1w2 . . . wn be a word of length n := kc + 1 on c symbols. Let Wi

be the prefix W of length i, noting that W0 is the empty word and Wn = W . For
i ∈ {0, . . . , n}, let si := (si,1, si,2, . . . , si,c) where si,j is the number of occurrences of j in
Wi, |Wi|j, modulo k. There are kc vectors of length c on {0, 1, . . . , k−1} so there exist two
integers, a, b ∈ {0, . . . , n}, such that sa = sb. Without loss of generality, let a < b. Let B
be the word such that Wb = WaB. Let j ∈ [c]. Note that |Wb|j ≡ |Wa|j + |B|j mod k and
|Wb|j ≡ |Wa|j mod k, so |B|j ≡ 0 mod k. Therefore every symbol in B occurs 0 mod k
times. It follows that every c-colouring of the path of order kc + 1 is not in Ik.

For k > 3, the monochromatic path of order 2 is not in BIk , so Ik is not a subset of N.
Also note that, BIk ⊆ BC so C ⊆ Ik.

6.3.3 Powers of colour schemes

We now introduce a unary operation for generating colour schemes which is inspired by
the relationship between distance-k colouring and Gk, the kth power of a graph G. Recall
that Gk is the graph with vertex set V (G), where there is an edge between every pair
of vertices u, v ∈ V (G) with dist(u, v) 6 k in G. We can define Pk, the colour scheme
corresponding to distance-k colouring, by saying that a coloured graph, (G,ψ), is in Pk if
and only if (Gk, ψ) ∈ P. We use this observation to generate extensions of anagram-free
colouring that are particularly relevant to the results of Carmi et al. [35] from Section 1.3.5.
However, we first define powers of colour schemes in full generality.

The relationship between P and Pk can be generalised to an operation for all sets of
coloured graphs. For a set of coloured graphs, A, let Ak be the set of coloured graphs
with (G,α) ∈ Ak if and only if (Gk, α) ∈ A. Call Ak the kth power of A. We now show
that this operation yields a colour scheme.

Lemma 6.28. For all colour schemes A and k ∈ Z+, Ak is a colour scheme.

Proof. Let (G,α) ∈ Ak and H be a subgraph of G. (Gk, α) ∈ A and Hk is a subgraph
of Gk so, by Subgraphability, (Hk, α|H) ∈ A. It follows that (H,α|H) ∈ Ak, so Ak

satisfies Subgraphability.
Let (G,α) ∈ Ak, and let (G, β) be a fracture of (G,α). By definition, (Gk, α) ∈ A

and so, by Recolourability, (Gk, β) ∈ A. It follows that (G, β) ∈ Ak, so Ak satisfies
Recolourability.

Let G be a graph. By Universality, (Gk, α) ∈ A for some α. It follows that
(G,α) ∈ Ak, so Ak satisfies Universality.
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Let (G,α) ∈ Ak and (H, β) ∈ Ak. By definition, (Gk, α) ∈ A and (Hk, β) ∈ A. By
Additivity, the disjoint union of (Gk, α) and (Hk, β) is in A. It follows that Ak satisfies
Additivity.

Let (G,α) /∈ Ak. It follows that (Gk, α) /∈ A and, by Locality, Gk has a finite
subgraph, H, with (H,α|H) /∈ A. There is a finite graph, I, with V (H) ⊆ V (I) such that
H is a subgraph of Ik, and Ik is a subgraph of Gk. By Subgraphability, (Ik, α|I) /∈
A. Therefore (I, α|I) is a finite subgraph of (G,α) which is not in Ak, so Ak satisfies
Locality.

Powers of the square-free colour scheme, Q, form a descending chain of subsets which
are all bounded on graphs of bounded maximum degree. Recall that Q is bounded on
graphs of bounded maximum degree. Let G be a set of graphs of bounded maximum
degree and Gk = {Gk : G ∈ G}. Note that, for fixed k, Gk has bounded maximum degree.
It follows that Qk is bounded on Gk, and, more generally, that Qk is bounded on graphs of
bounded maximum degree. However, Q2 is not bounded on stars because S2 is a complete
graph, for every star S.

Conversely, high powers of N are not bounded on paths. For k ∈ Z+, let Pk be the set
{P k : P ∈ P}. Carmi et al. [35] show that N is unbounded on a family of graphs, G, such
that every graph G ∈ G is a subgraph of a H ∈ P3. It follows that N3 is unbounded on
paths. Whether N2 is bounded on paths is an open problem.

6.4 Hierarchies of colour schemes

Throughout this chapter, we have defined many new colour schemes as generalisations or
combinations of existing colour schemes from the literature. We have also shown that many
properties of a colour scheme can be determined by looking at how it relates to other colour
schemes. For example, A ∩B is bounded on trees if and only if A and B are bounded on
trees, see Lemma 5.8. In this section we present a diagram of the relationships between
many of these colour schemes, see Figure 6.3, and highlight some interesting properties of
the structure of colour schemes.

A lattice is an algebraic structure consisting of a set, S, with two commutative and
associative binary operations, ∧ and ∨, that satisfy the following absorption laws

x ∨ (x ∧ y) = x,

x ∧ (x ∨ y) = x

for all x, y ∈ S. A distributive lattice is a lattice, (S,∨,∧), which also satisfies

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all x, y, z ∈ S. Let S denote the set of colour schemes.

Theorem 6.29. (S,t,∩) is a distributive lattice.

Proof. Let A, B, and S be colour schemes. A t (A ∩B) = A because A is the additive
closure of A. A∩(AtB) = A because A ⊆ AtB. It remains to show that S∩(AtB) =
(S tA) ∩ (S tB).

Let (G,α) ∈ S∩ (AtB). Let (H,α|H) be a connected component of (G,α). Note that
(H,α|H) ∈ S∩ (A∪B), which implies (H,α|H) ∈ (S∪A)∩ (S∪B). It follows that every
connected component of (G,α) is in (S ∪A) ∩ (S ∪B), so (G,α) ∈ (S tA) ∩ (S tB).
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Let (G′, α) ∈ (S tA) ∩ (S tB). Let (H ′, α|H′) be a connected component of (G′, α).
Note that (H ′, α|H′) ∈ (S∪A)∩ (S∪B), which implies (H ′, α|H′) ∈ S∩ (A∪B). It follows
that every connected component of (G′, α) is in S∩ (A∪B), so (G′, α) ∈ S∩ (AtB).

A lattice is distributive if and only if it is isomorphic to (T,∪,∩) for some set of sets T
[45, Chapter 6]. Because every colour scheme has a determinant with respect to the set of
finite connected graphs, G, (S,t,∩) is isomorphic to (S′,∪,∩) with S′ := {A|G : A ∈ S}.

Lattice theory can serve as a guide towards proving some structural properties about
colour schemes. For example, a lattice, (S,∨,∧), is bounded if ∨ and ∧ both have identity
elements [45, Chapter 5]. The identity of ∨ is called the minimum of (S,∨,∧), and the
identity of ∧ is called the maximum of (S,∨,∧). We note that (S,t,∩) is a bounded
lattice, and find its minimum and maximum. Let S1 be the set of all coloured graphs.
S1 satisfies the first four axioms trivially and satisfies locality vacuously, so S1 is a colour
scheme. Clearly A ⊆ S1 for all A ∈ S so S1 is the maximum of (S,t,∩). Let S0 be the set
of disjoint unions of rainbow coloured graphs.

Lemma 6.30. S0 is a path-dependent colour scheme and S0 ⊆ A, for all A ∈ S.

Proof. A coloured graph, (G,α), is not in S0 if there are two vertices u, v ∈ V (G) in the
same connected component of G with α(u) = α(v). Recall that a graph, H, is connected
if there is a path between all pairs of vertices, u, v ∈ V (H), and that all paths are finite.
It follows that S0 is the path-dependent set of coloured graphs determined by B, where
P ∈ B if P is not rainbow coloured. B is closed under melding and does not contain
rainbow colourings so, by Lemma 5.29, S0 is a path-dependent colour scheme.

Let A be a colour scheme. By Universality and Recolourability, A contains
every rainbow coloured graph. By Additivity, A contains all disjoint unions of rainbow
coloured graphs. Therefore S0 ⊆ A.

For every set of finite connected graphs, G, the G-dependent colour schemes also cor-
responds to a lattice. Let DG ⊆ S be the set of G-dependent colour schemes. By Lemmas
5.22 and 5.23 , DG is closed under taking intersections and unions of sets of bad graphs.
For two G-dependent colour schemes, A and B, let A ∩G B be the G-dependent colour
scheme determined by BA ∪ BB. Similarly, let A ∪G B be the G-dependent colour scheme
determined by BA ∩ BB. Note that ∩G = ∩, by Lemma 5.22. When G is the set of finite
connected graphs ∪G = t, by Lemma 5.24, but, as demonstrated in Section 5.2.3, this
does not hold in general. Now we can state that (DG,∩G,∪G) is a distributive lattice, as
its binary operations correspond to intersections and unions of the underlying sets of bad
graphs. We now show that (DG,∩G,∪G) is bounded, and find its maximum and minimum.
Since S1 is determined by the empty set of bad graphs, S1 is G-dependent and the mini-
mum of (DG,∩G,∪G). Note that, due to the symmetry broken by the distributive law, S1

is the maximum of (S,t,∩) and the minimum of (DG,∩G,∪G). To find the maximum of
(DG,∩G,∪G), let ZG be the G-dependent set of coloured graphs determined by Col(G) \R,
where R is the set of rainbow colourings in Col(G). Since ZG is closed under melding and
does not contain any rainbow colourings, ZG is a colour scheme, by Lemmas 5.16–5.20, and
so it is the maximum of (DG,∩G,∪G). Since S0 is path-dependent, S0 = ZP , so the lattice
of path-dependent colour schemes has the same maximum and minimum as the lattice of
colour schemes, except that the maximum and minimum are swapped. Note that MS0
contains paths of all orders n > 2, so the lattice of path-dependent colour schemes is the
unique smallest lattice with this property.

Figure 6.3 is a section of the lattice of colour schemes that contains many of the colour
schemes studied or mentioned throughout this thesis. Note that many elements of (S,t,∩)
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Graphs of bounded degree
Trees
Choice-subdivisions of trees
Subdivisions of stars
Paths
Stars

I5

I4
I3

I2

Q6

Q5

Q4

Q3

Q2

N6

N5

N4

N3

N2

R′

R

S

L

P

U

E

P2

P3

T

Y

C

X

F

Mε

M′
ε

Figure 6.3: A representation of subset relationships between colour schemes, with B ⊆ A
if there is a line descending from A to B. If a colour scheme, A, is above a dashed line
then A is bounded on the class of graphs corresponding to the line. If A is below a line it is
not bounded on the corresponding class of graphs. In the case where the bounds on A are
unknown, it is placed on the line. The dashed lines correspond to many of the classes of
graphs studied throughout this thesis. The line for being bounded on choice-subdivisions
of graphs is omitted, as, except for diverting around U, it would be identical to the line
for being bounded on choice-subdivisions of trees. Colour schemes which are above at
least one of the top two lines are bounded on trees of bounded degree. The relationships
between Mε and M′

ε hold for fixed ε ∈ (0, 1). The relationships amongst Ik are barely
shown in this representation, as recall that C ⊆ Ik ⊆ Ikn, for all integers k > 2 and n > 1.
All the colour schemes shown here, except L and X, are path-dependent.
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are omitted and that, for example, the representation does not intend to imply that N3

is the union of I3 and N2. While the lattice of colour schemes includes all unions and
intersections of colour schemes, many of them are not shown in Figure 6.3. However,
Figure 6.3 does encode the fact that I3 tN2 ⊆ N3 simply because I3 ⊆ N3 and N2 ⊆ N3.
Figure 6.3 also omits S1 and S0, which would sit at the top and the bottom of the diagram,
respectively.

The dashed lines that run through Figure 6.3 correspond to some of the classes of
graphs studied throughout this thesis. If a colour scheme, A, is above a dotted line, then
it is bounded on the corresponding class of graph, if A is below the line then it is not
bounded, and if A is on the line then it is unknown whether A is bounded. These lines
have additional properties that hold for the entire lattice, not just the section shown here.
A chain in a lattice is a set of totally ordered elements. Every line in Figure 6.3 cuts across
(S,t,∩) in the sense that every chain in (S,t,∩) is crossed by each line at most once. This
follows from the subset bounds on chromatic numbers from Lemmas 5.5 and 6.1. Trees,
paths, stars, graphs of bounded degree, and subdivisions of stars are self-dominating sets
of graphs so, by Lemmas 5.8, 5.10 and 5.11, their corresponding lines cut straight through
the substructures of the lattice, in the sense that A t B is above a line if and only if at
least one of A and B are above the line, and A∩B is below a line if and only if at least one
of A and B are below the line. Also, lines that correspond to sets of graphs that dominate
the sets of graphs of other lines cannot cross. For example, every subdivision of a star
is a tree so the line corresponding to trees never crosses below the line corresponding to
subdivisions of stars.

The following colour schemes in Figure 6.3 are from the literature. Qk and Pk corre-
spond to k-power-free and distance-k colouring, respectively. S, L, E and P correspond
to star, acyclic, exact distance-2, and proper colouring. The relationship S ⊆ L holds
because all proper 2-monochromatic cycles contain a 2-monochromatic path of order 4. X
and C are centred and conflict-free colouring. Two of the colour schemes, namely X and
L, are not path-dependent. A section of the lattice of path-dependent colour schemes can
be obtained by removing X and L from Figure 6.3.

Many colour schemes in Figure 6.3 are defined in this thesis. Nk and Ik correspond
to k-anagram-free and k-parity colouring respectively. The relationships among Ik are
established in Section 6.3. The colour schemes Mε and M′

ε are relaxations of anagram-
free colouring defined in Section 6.3. U, Y, T, and F, are colour schemes that feature
in Section 6.1 and correspond to up-down, min-parity-two, parity-two, and conflict-two,
respectively. The colour schemes R and R′ correspond to xWx

←−
W -avoiding colouring and

{WW,xWx
←−
W}-avoiding colouring.

We now establish the relations in Figure 6.3 which are not shown in previous sections.
R ⊆ S because S is determined by {11, 1212}, up to relabelling, and both bad paths
are of the form xWx

←−
W . The unintended relationship, Y ⊆ R, can be demonstrated by

inspecting sets of bad paths, since both colour schemes are path-dependent. Every path
inMR has the form xWx

←−
W which means that all paths of order at least four inMR have

the form xWyxy
←−
W . Recall that Y is determined byMI2 u BP2 . Clearly, every colour in

xWyxy
←−
W occurs an even number of times and contains two vertices at distance 2 with

the same colour. ThereforeMR ⊆MI2 u BP2 ⊆ BY so Y ⊆ R. No similar relation holds
for R′ becauseMR′ contains words of the form WW , which are not necessarily in BY.

To verify the accuracy of Figure 6.3 we must also check that all the relationships
between colour schemes are included in Figure 6.3. The transitivity of the subset relation
significantly reduces the work required. Even so, we do not present an exhaustive analysis
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of all potential relations between colour schemes. Many relations, such as T 6⊆ R′, follow
from the observation that (12 . . . i)k ∈ Pi−1 and (12 . . . i)k /∈ Ik, for all integers i > 1 and
k > 2. We focus on E and U as they are particularly isolated colour schemes and serve as
examples of the techniques involved.

Let (C4, ψ) be the proper 2-colouring of the cycle of order 4. There is no relation
between E and U because 11 ∈ E, (C4, ψ) /∈ E, 11 /∈ U, and (C4, ψ) ∈ U. To show that
there are no additional relations for E in Figure 6.3 we use the fact that every remaining
colour scheme is a superset ofX and a subset of eitherP orQk. First note that 121 /∈ E and
121 ∈ C, so no other colour scheme in Figure 6.3 is a subset of E. No other colour scheme
is a superset of E because 11 ∈ E and 11 /∈ P, and (12 . . . i)k ∈ Pi−1 and (12 . . . i)k /∈ Qk,
for all integers i > 1 and k > 2.

Now consider U. First note that U ⊆ P because 11 ∈ BU. Firstly, U is unrelated to all
colour schemes between L and X because (C4, ψ) /∈ L and (C4, ψ) ∈ U, and 1213121 ∈ X
and 1213121 /∈ U. There are no relations between U and the colour schemes on the left
because (123)k ∈ U and (123)k /∈ Qk. There are no relations betweenU and colour schemes
on the right because (12 . . . i)k ∈ Pi−1 and, for sufficiently large k, the C-component
sequence of every 4-meld of (12 . . . i)k is periodic, except for some finite number, dependent
on i, of terms.

The answers to many questions raised in this chapter are visible in Figure 6.3. For
example, the crossing of the lines corresponding to graphs of bounded degree and trees
shows that colour schemes may have one property but not the other. As another example,
there is a colour scheme between every pair of lines that crosses the chain S −R −Y −
T − F − P2, which shows that none of the properties corresponding to these lines are
equivalent. The diagram also highlights questions. For example, N4 is bounded on trees
while I4 is unbounded on paths, which raises the question of whether there are any colour
schemes with intermediate properties that lie between N4 and I4.

6.5 Extensions and exceptions
The formulation of colour schemes presented in Chapter 5 does not include every notion
of graph colouring. Some variants, such as hypergraph colouring, choosability, and edge
colouring, were excluded because I felt that, for the introduction of colour schemes, it is
better to focus on one formulation rather than spread the work over multiple generalisa-
tions. Vertex colouring was selected because it is the richest source of variants of graph
colouring. I expect that colour schemes can be extended to include these variants, and
that there are many similar tools and results. Line graph constructions can be used to
translate some results from vertex colourings to edge colourings.

Some variants of vertex colouring are not colour schemes because they violate the notion
of graph colouring as local conflict avoidance. More specifically, these cases tend to violate
Subgraphability or Additivity. Two notable examples are equitable colouring and
harmonious colouring. An equitable colouring is a proper colouring in which the number of
vertices in any two colour classes differs by at most one [88, 99]. A harmonious colouring
is a proper colouring in which every pair of colours occur on at most one pair of adjacent
vertices [52–56, 96]. In both of these cases, there is a non-admissible coloured graph which
is the disjoint union of two admissible coloured graphs.

Other variants are excluded because they depend on relationships, other than equality,
between their colours, which is a violation of Recolourability. Such variants are often
types of graph colouring which require graphs to be coloured by integers which satisfy
particular relationships. We have already seen an example, ordered colouring, which is
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a colouring of the vertices of a graph, G, by integers, such that each path in G contains
its largest colour exactly once [37]. Two more examples are rank colouring and radio
colouring. A rank colouring is a colouring such that every path between two vertices that
share a colour, i ∈ Z, contains a vertex with colour greater than i [93]. A radio colouring
is a colouring, by integers, such that the colours on vertices at distance x differ by at least
3−x, for x ∈ {1, 2}. These colourings are not closed under a permutation of their colours.

Colour schemes are potentially generalisable to include colourings which depend on
relationships between their colours, at the cost of additional complication. For example,
we may require graphs to be coloured by elements of some algebraic structure and restrict
the properties of the structure which can be used to evaluate whether the colours of two
vertices are in conflict. To see the depth of the complication, note that Recolourability
would need to be extended to not introduce new conflicts under any extended notion of
conflict.
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Chapter 7

Open problems and generalisations

Many open problems are raised throughout this thesis, and the study of anagram-free
colouring and colour schemes can be extended in a multitude of ways. This chapter sum-
marises many of these open problems, and highlights some potential extensions and gen-
eralisations.

7.1 Anagram-free colouring

To start with narrow questions, we ask whether φ is bounded by 4 or 5 on cycles, as
this would complete the characterization of φ on graphs of bounded degree. The answer
is either 4 or 5 because φ is bounded by 4 on paths. Recall that Currie [41] answered
a similar question for π, by proving π(Cn) = 3, for all n > 3 with the exception of
n = 5, 7, 9, 10, 14, 17. I conjecture the analogous result, that φ(Cn) = 4, for all n > 3 with
only finitely many exceptions. This conjecture is supported by the results of Chapter 4, in
which it is shown that φ is bounded on sufficiently subdivided graphs. Since φ is unbounded
on graphs of maximum degree 3, determining φ(C), for all cycles C, answers all remaining
questions about φ on graphs of bounded degree.

The relationship between φ and pathwidth is interesting because there are contrasting
results on trees and graphs. Carmi et al. [35] show that φ is unbounded on planar graphs of
pathwidth 3 and maximum degree 5. In contrast, Theorem 3.10 shows that φ is bounded
by 4p + 1 on trees of pathwidth at most p, and that there exists a tree, T , with φ(T ) >
p > pw(T ). Furthermore, Theorem 4.10 shows that, for all p, there is a graph, G, with
pw(G) > p and φ(G) 6 8. I conjecture that φ is not bounded on graphs of pathwidth 2,
and furthermore, that φ is not bounded on ladders.

Results from Chapter 3 and the literature motivate the study of upper bounds on
φ(G) as a function of |V (G)|. Kamčev et al. [83] prove the polynomial bound φ(G) 6
10|V (H)|3/2|V (G)|1/2 for graphs, G, without H as a minor. Many of the lower bounds for
φ are polynomials of log |V (G)|. Planar graphs are a particularly interesting case, since
Carmi et al. [35] and Theorem 3.2 provide two families of planar graphs for which φ(G)
grows logarithmically in |V (G)|. This raises the question of whether φ(G) 6 c(log |V (G)|)k,
for some c and k, for all planar graphs, G. We also ask a related question for treewidth;
does there exist a function, f , such that φ(G) 6 f(k) (log |V (G)|)f(k), for all graphs, G, of
treewidth k?

Anagram-free colouring is primarily focused on 2-anagram-free vertex colourings, both
in this thesis and the literature. As such, many questions about the edge colouring and
k-anagram variants of anagram-free colouring are open. By Theorem 3.1, φ′ is unbounded
on trees of maximum degree 3, however, for k > 3, the only known lower bound on φ′k is on
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trees of bounded pathwidth, see Theorem 3.14. By Theorem 3.13, φk and φ′k are bounded
on trees, for k > 4, which motivations the question of whether φ3 or φ′3 are bounded on
trees. By Theorem 3.12, φk is unbounded on graphs of maximum degree k + 1, but it is
open as to whether there a fixed ∆ such that, for all k > 2, φk is unbounded on graphs of
maximum degree ∆. Regarding φk on outerplanar graphs, I conjecture that φk is bounded
on outerplanar graphs, for k > 4. The support for this conjecture is Theorem 3.13, that
φ4(T ) 6 4, for all trees T , and that outerplanar graphs have bounded treewidth [21]. More
generally, I conjecture that φk and φ′k are bounded on graphs of bounded treewidth, for
k > 4.

Two notable open problems arise from Chapter 4, since Theorem 4.13 shows that φ is
bounded by 8 on choice-subdivisions of graphs. The first open problem is to determine the
smallest c such that every graph has an anagram-free c-colourable subdivision. Since π is
bounded by 3 on sufficiently subdivided graphs [114], I conjecture that every graph, G,
has a subdivision, H, with φ(H) 6 4. The second open problem is to optimize the number
of division vertices per edge required to colour a subdivision with a constant number of
colours. In the case of trees, Theorem 4.9 shows that the number of division vertices per
edge is close to optimal. Theorem 4.14 shows that significant improvements can be made
to bounds on the number of division vertices in c-colourable subdivisions of general graphs.
The improvements are likely to take the form of better constructions, to reduce the upper
bound, as well as stronger results on complete graphs, for better lower bounds. These
questions can also be extended to φk. Using the results of Dekking [47], it is likely that
the construction in Theorem 4.10 can be extended to prove a bound of 7 and 6 for φk on
choice-subdivisions of graphs, for k = 3 and k = 4, respectively. Furthermore, I conjecture
the stronger results, that φ3(S) 6 3 and φ4(S) 6 2 for every sufficiently subdivided graph,
S. The edge colouring variant of Chapter 4 is completely open, except for the caveat that
φ′ is unbounded on stars. However, φ′k is bounded on stars for k > 3, so there is the
potential for analogous results.

Going further afield, there are extensions of anagram-free colouring which are barely
touched on in this thesis. One such extension is anagram-free choice numbers. All the
questions asked in this thesis can be extended to choosability in the same way that square-
free colouring is extended to square-free choosability. In particular, we ask whether the
anagram-free choice number is bounded on paths. Recall that Zhao and Zhu [135] define an
extension of k-power-free colouring to non-integer values of k and show that π(2+ε) ch(Pn) 6
3 for all ε > 0. The same extension can be studied for anagram-free colouring, in particular,
is φ(2+ε) ch(Pn) 6 4 for all n? Another extension from the square-free colouring is anagram-
free walks and trails. Given that φ is unbounded on many classes of graphs, it seems
unlikely that further relaxing the requirements of anagram-free colouring would result in
reasonable behaviour. However, the questions can still be asked. The closest work to this
area is that of Czap et al. [44], who study anagram-free trails in the faces of planar graphs.

7.2 Colour schemes
The study of colour schemes can be improved upon and expanded in many ways. The tools
of Chapter 5 and results in Chapter 6 are promising, and suggest that the colour scheme
axioms are a good set of axioms to use in future work. One direction is to extend the colour
scheme axioms to encompass a wider notion of graph colouring, such as edge colouring and
choosability. Another direction is investigate currently studied colour schemes, determine
some shared properties, and to prove general theorems about colour schemes in terms of
these properties. Many of the results in Chapter 6 raise further questions and are likely
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able to be improved.
As mentioned in Section 6.1.1, our formulation of choice-subdivisions may have subtle

problems. While this is the notion used in Chapter 4, as well as in the literature on square-
free colouring, a stronger notion may be more useful for colour schemes in general. We
could, instead, study subdivisions by requiring that the chromatic number in question be
bounded on all (> k)-subdivisions of a graph G, with k chosen independently for each G.
This is a stronger notion than the one studied in Section 6.1, so it may allow us to prove
stronger results in this area.

Theorem 6.18 gives sufficient conditions for a path-dependent colour scheme to be
bounded on choice-subdivisions of graphs or on subdivisions of stars. The natural question
is whether these conditions are necessary. The resulting open problem is whether there
is a counter-example or, whether it can be shown that the conditions are necessary. A
related question is whether the results of Section 6.1 can be extended to include colour
schemes which are not path-dependent. Also, given U is bounded on choice-subdivisions
of trees and not on choice-subdivisions of graphs, there is the additional open problem of
characterizing which path-dependent colour schemes are bounded on choice-subdivisions
of trees.

The somewhat artificial definition of U raises the question of whether colour schemes
with unusual properties can, or should, be excluded from the main study of colour schemes.
Similar to the concept of ‘Hausdorff space’ in topology, defining U out of the set of ‘nice’
colour schemes could, potentially, reveal a more useful subset of colour schemes. The
4-subcolouring used at the start of the definition of U is particularly egregious, as the
4-subcolouring essentially circumvents restrictions put in place by Recolourability.
Of course, there may be a much more natural colour scheme which fulfils the same role
as U. This motivates the search for more colour schemes which are bounded on choice-
subdivisions of trees and not on choice-subdivision of graphs. The questions of whether U
is bounded on trees or on graphs of bounded degree are also open.

There are many questions to ask about extensions of anagram-free colouring. Carmi
et al. [35] show that the cube of anagram-free colouring, N3, defined in Section 6.3.3, is
unbounded on paths and, conversely, N is bounded on paths. We conjecture that N2 is
not bounded on paths. More generally, it is open whether there is any colour scheme, A,
with A ⊆ N, which is bounded on paths and non-trivially distinct from N. Similarly, it is
open whether there are any colour schemes between Ik and Nk with distinctive properties
since, for k > 4, Nk is bounded on trees and Ik is unbounded on paths.

More widely, there are general questions to ask regarding bounds on colour schemes.
Theorem 6.20 and 6.21 give sufficient conditions for a path-dependent colour scheme to be
bounded on trees or bounded on graphs of bounded maximum degree. These results can be
improved, with the eventual goal of finding necessary and sufficient conditions for a colour
scheme to be bounded on trees or graphs of bounded degree. Many graph parameters exist,
such as pathwidth, radius, and treewidth, which can be studied in the context of colour
schemes. I conjecture that every path-dependent colour scheme which is bounded on trees
is bounded on graphs of bounded treewidth. Theorem 6.21 demonstrates that variants of
the Lovász Local Lemma can be used to prove upper bounds on path-dependent colour
schemes which avoid sufficiently few patterns. We expect there to be similar results for
colour schemes which are not necessarily path-dependent, and that entropy compression
can be used to obtain better bounds. There are many more interesting questions in this
area. A particularly daunting task is to find conditions which are necessary and sufficient
for a colour scheme to be bounded on planar graphs.

The algebraic structure of colour schemes is another potential area of study. The
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union of two path-dependent colour schemes is not necessarily path-dependent, but, by
Lemma 5.12, it must be G-dependent for some set of connected finite graphs G. Are there
any further restrictions on G? In general, what is the smallest set of graphs, G, such that
the union of two H-dependent colour schemes is G-dependent? Which path-dependent
colour schemes are the union of two path-dependent colour schemes? A sublattice of a
lattice is a subset of its elements that are closed under the binary operations of the original
lattice. Are there any sets of graphs, G, such that the G-dependent colour schemes induce
a non-trivial sublattice? The families of colour schemes Qk, Nk, Ik, Mε, and Pk imply the
existence of chains of unbounded length. Is there a categorization of such chains?

Finally, we would like to see an expansion of the colour scheme zoo. Kang and
Müller [84] combines k-frugal colouring with star and acyclic colouring, which corresponds
to taking the intersection of Gk with S and L. Pór and Wood [116] study types of graph
colourings defined by avoiding subgraphs in the induced subgraphs of pairs of colour classes.
Results such as these extend the colour scheme zoo and can be represented in a diagram
similar to Figure 6.3. An increased number of examples of colour schemes increases our
ability to intuit general properties and generate novel examples. We are also motivated
to find more operations on colour schemes, as currently we only have the three binary op-
erations of intersection, union and bad graph intersection, as well as the unary operation
of raising colour schemes to the power of k. Additional operations allow for the genera-
tion of more examples and a better understanding of the structure of the lattice of colour
schemes.
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(6 k)-subdivision, 5
(F , ε)-great, 92
(F , ε, c)-great, 92
1-planar, 20
C-component sequence of P , 86
C-components of P , 86
L-colouring, 5
P restricted to C, 50, 91
W restricted to C, 50
A restricted to G, 66
A-chromatic number, 65
F -adequate, 91
F -fixable, 91
G-dependent, 69
ε-blocked, 99
ε-extension of S, 99
ε-extension sequence, 99
ε-permitted, 99
ε-uniform colouring, 98
c-colouring, 38
c-meld, 86
d-ary tree, 7
d-branch tree, 55
d-regular, 15
k-anagram, 13
k-anagram-free, 13
k-anagram-free chromatic index, 13
k-anagram-free chromatic number, 13
k-choosable, 5
k-coloured graph, 63
k-frugal, 80
k-frugal acyclic colouring, 23
k-frugal colouring, 21
k-frugal star colouring, 23
k-list-assignment, 5
k-permutation-avoiding, 94
k-power, 4
k-power-free, 4
k-power-free chromatic index, 4
k-power-free chromatic number, 4
k-subdivision, 5
kth power, 18

kth power of A, 102
p-chromatic number, 19
p-free, 19
p-free colouring, 76
t-sequence-subdivision of G, 58

acyclic, 79
acyclic edge colouring, 20
acyclic vertex colouring, 20
additive, 23
additive closure, 68
adjacent, 1
admissible, 8
admissible colours, 5
anagram, 10, 37
anagram-free, 10–12, 37
anagram-free chromatic index, 11, 37
anagram-free chromatic number, 11, 37
avoidable on graphs, 19

binary tree, 38
bounded, 67, 104
bounded by c on choice-subdivisions, 76
bounded on choice-subdivisions, 76, 82
branch vertex, 51

Cartesian product, 17
caterpillars, 13
centred, 43, 78
centred colouring, 19
chain, 106
choosability, 5
chromatic index, 2
chromatic number, 2
closed intersection, 74
closed neighbourhood, 1
closed union, 68
colour multiset, 37
colour scheme, 18, 63, 64
coloured G-subgraphs, 69
coloured graph, 63
colouring, 1
complete, 38
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complete d-ary tree of height h, 7, 41
complete binary tree, 7
complete graph of order n, 7
concatenation, 2
conflict-free, 20, 79
conflict-free chromatic number, 20
connected, 2
connected component, 2
contain, 2
contains, 1
contiguously bounded on choice-subdivisions,

82
cross-ladders, 17
cycle, 4

de-merge, 91
decomposition, 30
degree, 1
density, 98
dependency graph, 26
depth, 7, 40
determinant with respect to G, 70
determined with respect to G, 70
discriminating, 58
disjoint union, 1
distance, 2
distance-k chromatic number, 18
distance-k colouring, 18, 76
distributive lattice, 103
division vertices, 5
dominated, 69

edge colouring, 1
edge contraction, 10
edges, 1
effective height, 55
effective root, 55
effective vertices, 55
endpoints, 2
equitable colouring, 107
essentially i-monochromatic, 55
essentially monochromatic, 55
Euler genus, 10
even, 50
exact distance-k colouring, 19, 76

face, 9
facial walk, 9
facial walks, 10
forest of stars, 21

fracture, 64

girth, 21
graph, 1
graph property, 23

harmonious colouring, 107
height, 7
hereditary, 23

incident, 1
independence number, 19
independent set, 30
induced subgraph, 1

ladders, 17
Latin array, 31
lattice, 103
leaf, 7
length, 2, 5
level, 6
levelling, 6
line-graph, 3
list assignment, 5
lopsidependency graph, 31

match, 19
maximum, 104
maximum average degree, 21
maximum degree, 1
meld, 72
merge, 92
midedge, 51
minimum, 104
minor, 10, 15
monochromatic edge, 2
mutually independent, 26

neighbourhood, 1

open walk, 8
order, 1, 2
ordered colouring, 23
original vertices, 5
outerplanar, 9

palindrome, 6
Parikh vector, 38
parity colouring, 19, 78
parity path, 19
path, 2
path between two vertices, 2
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path of length n− 1, 2
path of order n, 2
path-bounded, 75
path-decomposition, 8
path-dependent, 75
pathwidth, 8
pattern, 19
permutation-avoiding, 94
planar, 9
proper, 1

radio colouring, 108
radius, 13
rainbow colouring of G, 64
random regular graph, 15
rank colouring, 108
reversible, 95
root-to-leaf path, 38
rooted tree, 7

self-dominating, 69
set of bad graphs with respect to G, 70
set of bad paths, 75
set of good graphs with respect to G, 70
set of minimally bad paths, 75
signature, 37
split, 50
square, 2
square-free, 2
square-free k-choosable, 5
square-free choice index, 5
square-free choice number, 5
square-free chromatic index, 2
square-free chromatic number, 2
square-free open walk chromatic index, 8
square-free walk chromatic index, 9
square-free walk chromatic number, 9
square-free walk colouring, 9
star, 21
star colouring, 21, 79
strong parity edge colouring, 19
strong product, 17
subcycle, 68
subdivided i times, 5
subdivision, 5
subgraph, 1
sublattice, 112
subpath, 2
subword, 2

tame, 83

telescoping, 69
topological minor, 10
total colouring, 21
trail, 8
transversal, 31
tree, 7
tree-decomposition, 8
tree-dependent, 78
treewidth, 8

unbounded, 67
unique colour, 78
up-down, 86

vertex colouring, 1
vertices, 1

walk, 8
width, 8
word, 2
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