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Abstract

Researchers are increasingly using digital images to teach machines how to see and
understand our physical world. The advent of big data has provided a vast wealth
of images to enable these sophisticated learning algorithms. While conventional
wisdom states that a picture is worth a thousand words and seeing is believing,
it is now important to ask what a picture is really worth and how much trust we
can place in vision alone. Modern machine learning algorithms have shown signi-
ficant potential for automating complex tasks that have previously required human
workers. Unfortunately, our ability to develop and tune these algorithms for real-
world usage is constrained by the cost of processing large amounts of complex visual
data. My research has focused on reducing these inherent costs by understanding
and exploiting the intrinsic structures of high dimensional visual features that have
been extracted from raw image data. Specifically, this research has culminated in the
development of algorithms that achieve new levels of efficiency for retrieving and
comparing large numbers of visual features. These algorithms have subsequently
enabled the development of new machine learning techniques that extend our cur-
rent ability to automate complex visual tasks.



v

Acknowledgements
Completion of this thesis document has at times posed a comparable challenge to
that of the research contained within it. However, these challenges have remained
achievable due to a wide network of helpful individuals. I am very appreciative
of the support and guidance that has accompanied me throughout my candidature.
This includes working closely with my supervisor Tom Drummond and his ongoing
feedback and refinement of my research endeavours. I am particularly appreciative
of the initial opportunity to embark on blue-sky research that consequently had a
higher risk of getting going. Working in Tom’s lab has enabled many career and
personal development opportunities. Many of these opportunities are a direct re-
sult of the funding and knowledge pool produced from the launch of the Austra-
lian Centre for Robotic Vision. While my inclusion in the Centre has allowed me to
experience countless insightful presentations and conversations, I am particularly
grateful for the time and knowledge that my collaborators in Adelaide have shared
with me while I was visiting there and during our spate of video conferencing. Their
experience and commitment provided a considerable head start for my initial look
into deep learning methods. Similarly, the knowledge and expertise that has been
shared between the past and present members of our research group at Monash
has offered a dependable and thought provoking workplace. Additionally, the as-
tute thoughts of many members of the broader Monash community have helped to
shape and direct my research. In particular, I would like to highlight my discussions
with Kate Smith-Miles, David Boland, Peter Tischer, David Squire, Bill Corcoran,
Lindsay Kleeman and Zixiang Xiong. Administrative processes throughout my can-
didature have been considerably less onerous due to the very notable efforts of Ros
Rimington, Sandra Pedersen and Emily Simic. Their efficiency and punctuality has
afforded me more time and energy for stressing over research matters, rather than
the burdens of bureaucracy. These ongoing stresses have been considerably redu-
ced due to the rich and supportive social environments I have enjoyed at lunchtime
quizzes in the postgraduate lounge, during board game evenings held in our labora-
tory space, training with the on-campus Aikido club and attending potluck dinners
held at various dining tables throughout Melbourne’s suburbs. I also hold a great
deal of gratitude for family and friends who might not fall within these social circles,
but who have offered various distractions, which have then allowed me to resume
my studies with a renewed enthusiasm. Of special note is the contributions of my
father, who offered his time to proofread this document. Unequivocally, my deepest
appreciation is for the patience and support that has been endlessly provisioned by
Daveen Ma. Beyond her critical role in one particular debugging session, her ancil-
lary contributions have certainly influenced the entirety of this thesis. Lastly I would
like to acknowledge the fruitfulness of our vast capacity for procrastination; as with
high dimensionality it is both a blessing and a curse.



vi

Contents

Copyright Notice i

Prior Publications ii

Declaration of Authorship iii

Abstract iv

Acknowledgements v

Contents vi

List of Figures ix

List of Algorithms xi

List of Tables xii

List of Abbreviations xiii

List of Symbols xiv

1 Introduction 1
1.1 Experimental Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Datasets of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Computational Hardware . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Properties of High Dimensional Image Spaces 10
2.1 Distribution of High Dimensional Data . . . . . . . . . . . . . . . . . . 12

2.1.1 Hyperplane Boundaries . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Clusterings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 The Blessing of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Dimensionality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Hausdorff Dimensionality . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Computing Dimensionality on a GPU . . . . . . . . . . . . . . . 32
2.3.3 Estimating the Dimensionality of Fractals . . . . . . . . . . . . . 33



Contents vii

2.3.4 Estimating the Dimensionality of Visual Data . . . . . . . . . . . 35

3 ANN Search Techniques 38
3.1 Hashing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Vector Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Neighbourhood Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Fast Approximate Nearest Neighbour Graphs 53
4.1 The Occlusion Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Related Graph Structures . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Evaluating ANN Performance . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Searching FANNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Traversing Local Neighbourhoods . . . . . . . . . . . . . . . . . 68
4.3.2 Exhaustive Downhill Search . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Greedy Downhill Search . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 Random Restarts . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.5 Greedy Backtracking Search . . . . . . . . . . . . . . . . . . . . . 82

4.4 Constructing FANNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.1 Intrinsic Dimensionality and Vertex Degree . . . . . . . . . . . . 89
4.4.2 Variable Out-Degree . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2.1 Exact Nearest Neighbour Search . . . . . . . . . . . . . 93
4.4.2.2 Undirected Edges . . . . . . . . . . . . . . . . . . . . . 96
4.4.2.3 Truncated Edge Lists . . . . . . . . . . . . . . . . . . . 97

4.4.3 Approximate Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.3.1 Traverse-Add Graph Construction . . . . . . . . . . . 100
4.4.3.2 Self-Query Graph Construction . . . . . . . . . . . . . 103

4.5 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.1 Comparative Performance of k-Nearest Neighbour Graphs . . . 107
4.5.2 Comparative Performance at High Recall . . . . . . . . . . . . . 108
4.5.3 Comparative Performance on a GPU . . . . . . . . . . . . . . . . 109
4.5.4 Performance at Scale . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Indexing Binary Strings 112
5.1 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Dimensionality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Impact of Dataset Size . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.2 Impact of Vertex Degree . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.1 Comparative Performance on Various Binary Features . . . . . 124
5.3.2 Comparative Performance on a GPU . . . . . . . . . . . . . . . . 127
5.3.3 Performance at Scale . . . . . . . . . . . . . . . . . . . . . . . . . 128



Contents viii

6 Learning from Visual Data 129
6.1 Triplet Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1.1 The Vanishing Gradient Problem . . . . . . . . . . . . . . . . . . 134
6.1.2 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Smart Mining for Triplet Embeddings . . . . . . . . . . . . . . . . . . . 139
6.2.1 Implementing Smart Mining with FANNGs . . . . . . . . . . . 143

6.2.1.1 Nearest Neighbour Set Construction . . . . . . . . . . 145
6.2.1.2 Triplet and Batch Construction . . . . . . . . . . . . . . 146
6.2.1.3 Automatic Parameter Selection . . . . . . . . . . . . . 148

6.2.2 Runtime Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 Deep Learning with Gaussian Kernel Loss . . . . . . . . . . . . . . . . . 154

6.3.1 Approximate Computation of Gaussian Kernel Losses . . . . . 156
6.3.2 Indexing and Updating the Embedding Space . . . . . . . . . . 158

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.4.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Conclusions 170
7.1 Future Research Opportunities . . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography 173



ix

List of Figures

1.1 A diagrammatic overview of a GPU architecture . . . . . . . . . . . . . 6

2.1 Filling cubes of 1, 2, 3 and 4 dimensions . . . . . . . . . . . . . . . . . . 13
2.2 Sampling from 2 and 12 dimensional cubes . . . . . . . . . . . . . . . . 14
2.3 Relative likelihood of pairwise distances within a hypercube . . . . . . 15
2.4 Partitioning hypercubes with linear boundaries . . . . . . . . . . . . . . 17
2.5 Partitioning SIFT data with hyperplanes . . . . . . . . . . . . . . . . . . 18
2.6 Separated correspondences in random k-d trees . . . . . . . . . . . . . 20
2.7 Separated correspondences in SIFT k-d trees . . . . . . . . . . . . . . . 22
2.8 Volume contained by a hypersphere of increasing dimensionality . . . 24
2.9 Growth of the kissing number with increasing dimensionality . . . . . 25
2.10 Distributions of random samples on a disk . . . . . . . . . . . . . . . . 26
2.11 Cummulative variance in increasing dimensions of SIFT data . . . . . 29
2.12 Factal properties of the Australian coastline . . . . . . . . . . . . . . . . 30
2.13 A discrete sampling of the Serpinski triangle . . . . . . . . . . . . . . . 34
2.14 Hausdorff dimensionality of the Serpinski triangle . . . . . . . . . . . . 35
2.15 Estimating the Hausdorff dimensionality of real-world visual data . . 36

4.1 A simple example of the angular occlusion rule . . . . . . . . . . . . . . 56
4.2 A simple example of the distance occlusion rule . . . . . . . . . . . . . 58
4.3 Distribution of edge in occlusion rule graphs . . . . . . . . . . . . . . . 59
4.4 Local neighbourhood structures in low dimensions . . . . . . . . . . . 61
4.5 Fraction of distance computation using early bailout . . . . . . . . . . . 65
4.6 Distribution of edges relative to an external query . . . . . . . . . . . . 69
4.7 Exhaustive downhill search paths . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Greedy downhill search paths . . . . . . . . . . . . . . . . . . . . . . . . 78
4.9 Search efficiency with random restarts . . . . . . . . . . . . . . . . . . . 81
4.10 Search paths from random restarts . . . . . . . . . . . . . . . . . . . . . 81
4.11 Search efficiency of greedy backtracking search . . . . . . . . . . . . . . 84
4.12 Greedy backtracking search paths . . . . . . . . . . . . . . . . . . . . . 85
4.13 Hausdorff dimensionality of SIFT data . . . . . . . . . . . . . . . . . . . 89
4.14 Vertex degree and dimesionality of random floating point data . . . . . 90
4.15 A simple example of a variable sized occlusion region . . . . . . . . . . 92
4.16 A simple example of exact nearest neighbour regions . . . . . . . . . . 94
4.17 Search efficiency with edge list truncation . . . . . . . . . . . . . . . . . 98



List of Figures x

4.18 Search efficiency with traverse-add construction . . . . . . . . . . . . . 102
4.19 Search efficiency with self-query construction . . . . . . . . . . . . . . . 105
4.20 Comparative performance of k-nearest neighbour graphs . . . . . . . . 107
4.21 Comparative performance at high recall . . . . . . . . . . . . . . . . . . 108
4.22 Scalability for increasing dataset size . . . . . . . . . . . . . . . . . . . . 111
4.23 Scalability for increasing dataset dimensionality . . . . . . . . . . . . . 111

5.1 Binary vectors in 1, 2, 3 and 4 dimensions . . . . . . . . . . . . . . . . . 113
5.2 Binarising samples within a 32-cube . . . . . . . . . . . . . . . . . . . . 118
5.3 Relative likelihood of pairwise disances for binary data . . . . . . . . . 119
5.4 Hausforff dimensionality of random binary data . . . . . . . . . . . . . 119
5.5 Hausforff dimensionality of fixed size datasets . . . . . . . . . . . . . . 121
5.6 Average vertex degree of random binary data . . . . . . . . . . . . . . . 122
5.7 Comparative performance on various features . . . . . . . . . . . . . . 126
5.8 Scalability for binary datasets of increasing size . . . . . . . . . . . . . . 128

6.1 Structural overview of convolutional neural networks . . . . . . . . . . 129
6.2 Training pipeline for feature space learning . . . . . . . . . . . . . . . . 130
6.3 A single triplet of embedded samples . . . . . . . . . . . . . . . . . . . 132
6.4 An overview of the triplet network architecture . . . . . . . . . . . . . . 132
6.5 Constructing a useful triplet . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.6 An overview of the hard sample mining pipeline . . . . . . . . . . . . . 136
6.7 Smart mining in local neighbourhoods . . . . . . . . . . . . . . . . . . . 142
6.8 An overview of our smart sample mining pipeline . . . . . . . . . . . . 150
6.9 Training performance with automatic parameter selection . . . . . . . 151
6.10 An overview of our Gaussian kernel pipeline . . . . . . . . . . . . . . . 155
6.11 Influence of a single Gaussian kernel . . . . . . . . . . . . . . . . . . . . 155
6.12 Gaussian kernel classification error . . . . . . . . . . . . . . . . . . . . . 157
6.13 Visual inspection of mined triplets . . . . . . . . . . . . . . . . . . . . . 166
6.14 Visualisation of feature space clusterings . . . . . . . . . . . . . . . . . 169



xi

List of Algorithms

4.1 Exhaustive downhill search . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Greedy downhill search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Greedy backtracking search . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Naive graph construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Traverse-add edge selection . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Network Training and Testing . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2 Neighbourhood construction . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3 Triplet selection for smart mining . . . . . . . . . . . . . . . . . . . . . . 148



xii

List of Tables

1.1 Generated datasets of random vectors. . . . . . . . . . . . . . . . . . . . 3
1.2 Public datasets of floating point feature vectors. . . . . . . . . . . . . . 4
1.3 Generated datasets of binary feature vectors. . . . . . . . . . . . . . . . 4
1.4 Public datasets of transfer learning images. . . . . . . . . . . . . . . . . 5
1.5 Operating parameters of GPU hardware. . . . . . . . . . . . . . . . . . 6

4.1 Traversing FANNGs using exhaustive downhill search. . . . . . . . . . 73
4.2 Traversing FANNGs using greedy downhill search. . . . . . . . . . . . 76
4.3 Traversing FANNGs using random restarts. . . . . . . . . . . . . . . . . 80
4.4 Traversing graphs with increasingly strict occlusion rules. . . . . . . . 93
4.5 Search performance of variable degree graphs. . . . . . . . . . . . . . . 95
4.6 Search performance of graphs with undirected edges. . . . . . . . . . . 96
4.7 Edge list truncation for lower degree vertices. . . . . . . . . . . . . . . . 97
4.8 Approximate graphs from traverse-add construction. . . . . . . . . . . 102
4.9 Approximate graphs from self-query construction. . . . . . . . . . . . . 104
4.10 Comparative performance on a GPU. . . . . . . . . . . . . . . . . . . . 109

5.1 Comparative performance on a GPU. . . . . . . . . . . . . . . . . . . . 127

6.1 Triplet network performance on the CUB birds dataset. . . . . . . . . . 162
6.2 Triplet network performance on the Stanford cars dataset. . . . . . . . 162
6.3 Clustering performance on the CUB birds dataset. . . . . . . . . . . . . 163
6.4 Clustering performance on the Stanford cars dataset. . . . . . . . . . . 163



xiii

List of Abbreviations

CPU Central Processing Unit
GPU Graphics Processing Unit
GPGPU General Purpose computing on GPUs
FLOPS Floating Point Operations Per Second

PCA Principle Component Analysis
FAST Features from Accelerated Segment Test
SIFT Scale Invariant Feature Transform
GIST Gist of a scene
BRIEF Binary Robust Independent Elementary Features
ORB Oriented FAST and Rotated BRIEF
BRISK Binary Robust Invariant Scalable Keypoints
FREAK Fast RetinA Keypoint

ANN Approximate Nearest Neighbour
FANNG Fast ANN Graph
LSH Locality-Sensitive Hashing
MST Minimum Spanning Tree
RNG Relative Neighbourhood Graph
SNG Sparse Neighbourhood Graph
SAT Spatial Approximation Tree
FLANN Fast Library for ANNs
NSWG Navigable Small World Graph

CNN Convolusional Neural Network
ReLU Rectified Linear Units
NMI Normalised Mutual Information
t-SNE t-Distributed Stochastic Neighbour Embedding



xiv

List of Symbols

X a dataset of vectors
xi the ith vector in a dataset
xj the jth element of a vector
n the total number of vectors in a dataset
m the total number of elements in a vector
S a set of nearest neighbour correspondences
Si the nearest neighbours of xi

distE the Euclidean distance function
distH the Hamming distance function
r the radius of a sphere
θ the angle between two vectors
µ the centre of a Gaussian kernel
σ the standard deviation of a Gaussian kernel
k the number of elements in a set
dimH the Hausdorff dimensionality function
ρ the local density function
N the distance error function

G an indexing graph
V a set of vertices
vi the ith vertex in a graph
E a set of directed edges
ei the ith directed edge in an ordered edge list
E[i] the set of all edges from vi

Eavg the average out-degree of a graph
Emax the edges of a fully connected graph
dw the diameter of a weighted graph
Q a set of query vectors
q a query vector
U a set of visited vertices
Umax the maximum search size
U0 the starting vertex
Vq the target vertex
P a priority queue



List of Symbols xv

t the occlusion threshold
τ the exact nearest neighbour margin
τmax the largest nearest neighbour distance
T the maximum size of a truncated edge list
p the number of graph construction iteration

f a function mapping from image space to feature space
θf a set of learned network weights
T a set of labelled training images
w a vector of classifier weights
wi the classifier weight for the ith training sample
C the number of image classes
Cavg the average number of images per class
Cmax the maximum number of images in a class
Y a set of class labellings
yi the class label of the ith training image
L a loss function
ε the number of training epochs
B a set of training batches
bi the ith batch in a training epoch
Bε the number of batches per training epoch

xa an anchor image
xp a positive training image
xn a negative training image
xpNN the nearest positive training image to an anchor
dNN the distance between xa and xpNN

η the triplet loss margin
ν the number of mined triplets per anchor
εmin the first epoch of triplet mining
εmax the last epoch of triplet mining
κ the smart mining boundary scale
κ a set of recent boundary scales
δ a set of recent training errors
δt the target training error



1

Chapter 1

Introduction

The biological world has selected visual perception as a strong method for orga-

nisms to learn about and interact with their surrounding environment. In the digi-

tal world, the advent of compact, low cost, light weight and high resolution image

sensors has enabled computer vision to enter many facets of our everyday lives.

Supporting this, is the ongoing advancements in high performance and low energy

computing that provide a way to process large amounts of image data in a reasona-

ble amount of time. Together, these technologies are expanding the types of physical

entities that can utilise the power of visual perception. The ubiquity of such devices

has warranted the continued development of algorithms that implement the functi-

onality of biological vision though digital means. Perhaps unsurprisingly, reverse

engineering the results of around 40 million years of evolution remains as a substan-

tial challenge. However, a secondary by-product of this ubiquitous hardware is the

amount of image data being generated and stored from this multitude of sources.

In combination with the high performance computing hardware, large sets of image

data have enabled substantial breakthroughs in data driven machine learning. These

techniques allow for previously hand-engineered sections of computer vision pipeli-

nes to be replaced with sufficiently large non-linear models. Given enough training

data, model parameters can converge on a configuration that outperforms existing

benchmarks from both the digital and biological worlds.

In our preliminary research we evaluated the performance of state-of-the-art feature

based image matching techniques, with a focus on real-time performance in a con-

strained computing environment. The first step was to capture a series of images
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and then break them down into small and informative regions. These regions can

then be searched and compared in order to provide higher level information, such

as the relative positions of physical objects shown within the images. If we are using

this data to answer questions about a particular type of high level information, then

we would like to locate and extract only the relevant information from the available

image data. Furthermore, achieving real-time performance with limited computa-

tional resources requires an efficient implementation. As such, we would like to

represent and access the information in a way that is both fast and scalable. These

preliminary experiments highlighted the importance of finding and mitigating com-

putational bottlenecks and also raised the somewhat philosophical question of what

information is actually worth retaining.

My research has focused on reducing some of the inherent costs that are faced when

processing large quantities of visual data. To achieve this, I believe it is important to

understand and exploit the intrinsic structures of high dimensional visual features

that have been extracted from raw image data. A deeper understanding of the image

data itself can also lead to improvements in the way we extract information from

this data. Specifically, we have developed tools that can feasibly process the large

amounts of data that are required to reveal the detailed structure of high dimensio-

nal image spaces. This information was then applied to the nearest neighbour search

problem; a well-studied computational bottleneck that is found in many computer

vision pipelines. Our new search techniques were then utilised for the problem of

embedding learning with deep convolutional neural networks. When properly trai-

ned, these networks can model a non-linear dimension reduction that ultimately

distils an input image down into a compact vector of the key information found

within that image data.

1.1 Experimental Resources

The experiments reported throughout this thesis were carried out using a variety of

generated and publicly available computer vision datasets. Experiments were also

executed across several different specifications of computational hardware. Here
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we summarise the key properties of the datasets and hardware used throughout our

research.

1.1.1 Datasets of Interest

Table 1.1 details the properties of datasets that where generated for various experi-

ments throughout this thesis. Each dataset has been generated with a random uni-

form sampling of vectors from a particular high dimensional space. Firstly, the two

dimensional Serpinski fractal data is utilised in Section 2.3.3 to validate the accuracy

of particular intrinsic measurements. The floating point vectors from within a hy-

percube and the binary vectors from the corners of a hypercube are both used for

demonstrating properties of high dimensional data, as well as computing reference

values. These random vectors are a good representation of data that can fill a high

dimensional space in an unbiased way.

TABLE 1.1: Generated datasets of random vectors.

Vector type
Vector Test
length vectors

Serpinski triangle 2 10k
Hypercube volume 20 100k
Hypercube corners 192 100k

Feature vectors are a common format for representing key information that has been

extracted from visual data. In general, a feature vector is the output of function that

maps from a local or global image region to a compact vector. Each feature type has a

unique mapping function that defines exactly how an image region will be reduced

to its vector form. This function also defines a feature space, which contains the full

set of vectors that can be produced by that particular feature mapping. The infor-

mation that is retained by each feature vector will typically be invariant to a number

of different properties. These properties are application dependent, but commonly

include spatial and chromatic changes such as the orientation and illumination of

a local region, or the pose and colour variations expressed by a particular type of

object. Due to the removal of this unwanted data, feature extraction methods can

typically be viewed as a form of dimension reduction or lossy data compression.
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Tables 1.2 and 1.3 present the feature sets used throughout many of our experiments.

While the floating point features were publicly available in vector form, each set of

binary features has instead been constructed by processing a dataset of image regi-

ons. The extraction of each binary feature type was performed using the parameters

values recommended by their respective authors. A random sampling of image re-

gions were withheld from each of these datasets in order to form the query sets.

TABLE 1.2: Public datasets of floating point feature vectors.

Feature Vector Source Source Test Query
type length region images vectors vectors

SIFT [4] 128 16× 16
BIGANN [5] 1k, 10k 100

BIGANN 1B [6] 100k, 1M, 5M, 20M 10k

GIST [7] 960 32× 32 BIGANN [5] 1M 1k

TABLE 1.3: Generated datasets of binary feature vectors.

Feature Vector Source
Source images

Test Query
type length region vectors vectors

ORB [8] 256 31× 31 Photo Tourism [9][10] 1.5M 50k
BRISK [11] 512 32× 32 Photo Tourism [9][10] 1.5M 50k
FREAK [12] 512 60× 60 Photo Tourism [9][10] 1.5M 50k

Binboost [13] 256 32× 32
Photo Tourism [9][10] 1.5M 50k
80M Tiny Images [14] 75M 10k

For each predefined feature space, we assume that the mapping is correctly retaining

all relevant information. This means that the distance between two feature vectors

can be directly equated to how closely they correspond to each other. Using this

assumption, ground truth correspondences were computed for each query vector

using an exhaustive linear search over the associated test vectors. In the case of

duplicate test vectors or tied distances, all equidistant features were considered to

be equivalent. While duplicate vectors were present in most datasets, tied distances

between non-duplicate vectors were predominantly found in the 256 bit feature sets.

Lastly, Table 1.4 contains the details of datasets used for learning feature spaces. Rat-

her than assuming ideal performance from a feature mapping, here we use images

with known class labels to evaluate feature correspondences. Each dataset contains

a large number of classes, with a varying number of images per class label. Each in-

dividual class is a fine-grained category, such as a particular species of bird. During
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experiments, half of the image classes are processed in order to learn a new feature

space, while the other half of the classes are used to test performance. Ground truth

bounding boxes are available for the target object in each image, but this information

is not used in any of our experiments. However, we do note that these datasets have

been constructed from images with a single target object that is typically located

within the central region of each image.

TABLE 1.4: Public datasets of transfer learning images.

Image set
Total Total Training Test

images classes classes classes

CUB Birds [15] 11788 200 100 100
Stanford Cars [16] 16185 196 98 98

1.1.2 Computational Hardware

General purpose computing on graphics processing units (GPGPU) is a relatively

new and still expanding area of parallel computing. GPGPU provides a program-

ming interface to take advantage of the highly parallel architecture found in graphics

processing units (GPUs). While current computational processing units (CPUs) can

run tens of threads in parallel, GPUs are capable of executing thousands of parallel

threads. The GPU capabilities are possible in part due to a slower clock rate, but

also due to a hierarchical structure of process execution and memory access. Due to

this considerably different architecture, GPGPU programming only loosely reflects

the paradigms of traditional CPU programming. As such, fully utilising the paral-

lel capabilities that are offered by GPUs still remains a considerable challenge for

programmers.

As seen in Figure 1.1, the GPU architecture can be divided into three hierarchical

levels. The interface between the CPU and GPU is implemented at the global le-

vel. This level has access to the largest and slowest memory, which is also the only

memory that can be accessed from the CPU. In terms of processing, the global level

manages the scheduling of tasks on the other levels of the hierarchy. These tasks are

defined by kernels, which are modules of compiled code that have been launched

from the CPU. At the shared level of the hierarchy, everything is divided into blocks
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FIGURE 1.1: The internal architecture of a GPU contains three tiers of
increasing computational speed and decreasing memory capacity.

that receive and compute portions of kernels. Each block is limited to tens of kiloby-

tes of memory, however this memory can be accessed roughly ten times faster than

global memory. Blocks are designed to operate independently of each other, having

no direct means of communicating with each other and no guarantee of the order

in which they will be executed. Lastly, the local level divides blocks into individual

threads. Once again, threads have access to a considerably smaller amount of very

fast memory and generally operate independently of each other. However, there is

increasing support for functions that share information between a small number of

consecutive threads.

TABLE 1.5: Operating parameters of GPU hardware.

Total Core Processing Global Memory Memory
Model CUDA clock power memory clock bandwidth

cores (GHz) (TFLOPS) (GB) (GHz) (GB/s)

GTX Titan X 3072 1.00 6.1 12.2 3.51 336
Tesla P40 3840 1.30 12 22.9 3.62 346

Table 1.5 provides a number of key specifications from the GPUs used within our

research. In addition to the values shown, each GPU allows for a maximum of 1024

threads, 49, 152 bytes of shared memory and 65, 536 local registers per block. The
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major difference between the two models, is the additional global memory in the

Tesla P40. This memory allows for much larger datasets to be processed on a single

GPU, although techniques do exist for running a single process across many GPUs.

1.2 Summary of Contributions

The initial goals of this candidature were to identify common computational bott-

lenecks and to further understand the utility of information found in high dimen-

sional visual data. This knowledge then led to the development of algorithms that

improve upon existing computer vision systems. The key outcomes of our research

can be summarised as follows:

• Providing additional insight into the structure of high dimensional image spa-

ces with the development of an efficient Hausdorff dimensionality formulation

that is well-suited for parallelisation. This measure has then been utilised as

a tool that is capable of processing the large amounts of data required for this

type of analysis.

• The development of Fast Approximate Nearest Neighbour Graphs (FANNGs)

a state-of-the-art method for indexing and searching high dimensional visual

data. The FANNGs combine efficient algorithms for constructing indexing

graphs as well as rapid traversal of these graphs.

• Additional analysis of the approximate nearest neighbour (ANN) search pro-

blem in the context of binary data. We show that unlike existing ANN algo-

rithms, FANNGs are able to operate effectively across both real valued and

binary feature spaces.

• Integrating FANNGs into the embedding layer of deep convolutional neural

networks (CNNs) in order to accelerate and refine the learning of feature spa-

ces. The additional information provided by FANNG queries has enabled new

state-of-the-art results in the area of transfer learning.

• In utilising FANNGs to accelerate our deep learning architectures we also de-

monstrate that our graphs are resilient to changes in the indexed data. This
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allows for a graph constructed on a particular embedding space to be utilised

across many other spaces that have a similar structure.

1.3 Thesis Overview

In this chapter we have outlined the technological environment and real-world chal-

lenges that have motivated this research. We then introduced and discussed a num-

ber of datasets and hardware specifications that are used throughout our experi-

ments. Lastly, we have summarised the key contributions of knowledge that are

presented in this thesis.

Looking forwards, Chapter 2 introduces several fundamental properties of high di-

mensional data and contrasts them with the expectations that we have gained while

living in a three dimensional world. Each of these properties is discussed in terms of

the challenges they present for computer vision algorithms that are operating with

high dimensional image data. For the final property, Hausdorff dimensionality, we

present a novel formulation that has been designed for GPGPU acceleration. The

accuracy of this method is demonstrated with a synthetic dataset before it is applied

to non-synthetic data.

Chapter 3 explores the strengths and weaknesses of popular approaches to the ap-

proximate nearest neighbour search problem. These methods are broadly catego-

rised by the type of indexing structure that each of them use to divide up a high

dimensional space. As such, we only consider methods that are considered to be

suitable for indexing high dimensional visual data.

Chapter 4 builds upon the ideas presented in the previous two chapters and intro-

duces our FANNGs, a new traversable indexing graph for high dimensional visual

data. Numerous variations of the search and construction algorithms are presented

and evaluated. Our best performing algorithm is then contrasted with other compe-

titive methods.
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Chapter 5 continues to explore the performance capabilities of the FANNGs. In this

chapter we consider the unique challenges that are faced when indexing binary fea-

ture vectors instead of real valued data. Analysis and discussion is presented around

why most indexing schemes are unable to operate effectively across both of these

domains.

Chapter 6 looks at applying our FANNGs to the domain of machine learning. Here

we explore two related ways to utilise approximate nearest neighbour search in or-

der to accelerate training and refine performance when learning a feature space.

Firstly, we build upon the previous successes of triplet neural networks and close

the triplet selection loop in a more informed way. Secondly, we define a novel loss

function that can better utilise the information provided by our FANNGs in order

to surpass the performance of triplet networks. Computation of this loss function is

made tractable by the stability of the FANNGs even when working with outdated

data.

Lastly, in Chapter 7 we once again summarising the key contributions of knowledge

that this research has presented. Finally, we conclude by briefly exploring a number

of promising directions in which our research could expand in the future.
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Chapter 2

Properties of High Dimensional

Image Spaces

Over the past few decades as storage capacity and data transfer rates have increa-

sed, there have also been increases in the number of data sources and the types of

data being generated and collected. These factors have given rise to the term ’big

data’, which is used to describe data sets which are so large that they require new

tools in order to manage and process the information they contain. When there is

very little cost associated with collecting data, it is easiest to collect all of the data

available from as many sources as possible just in case it might be of some later use.

Additionally, increase in the quantity of data can offer benefits such as smoothing

out anomalies or providing more information on low frequency events. However

there is still a high cost associated with extracting information from data, and this

relates to both the complexity and the quantity of data. An increase in the quantity

of data will result in a linear increase in the processing time for computing indepen-

dent properties of samples in a dataset, or an exponential increase for identifying

correlations. Data of increasing complexity, sometimes called ’rich data’, will typi-

cally compound these processing costs with an additional exponential growth in the

cost of evaluating each independent property.

Visual data is inherently complex in nature. Modern digital images are likely to

have at least one million pixels, with each pixel showing one of 16 million colours,

and each colour can potentially be chosen independently of all other pixels. Writing

down the total number of images that can be represented in this way would require
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over seven million decimal digits. This presents an absurd potential for represen-

ting visual information. However, the majority of images that can be represented

in this way would be filled with coloured static. In contrast, the natural images

that we could capture with a typical digital camera contain a significant amounts of

continuous, smooth and repeating structures. Looking for structured relationships

and patterns between different combinations and thresholds of pixels gives rise to

the wealth of information that can be represented within an image. But both the

number of pixels and the depth of colour contribute to the cost of processing visual

data.

If we consider an image of m total pixels, we can then define this image as a vector

x ∈ Rm, where each xi is then the colour value of the ith pixel in the image. Here we

say that our image x hasm extrinsic dimensions, as it is defined in anm dimensional

space and is made up of m distinct values that may or may not be independent of

each other. While the rectangular grid of pixels does give images an inherent two

dimensional structure, the relationships shared between adjacent pixels are not al-

ways more important than the ones between non-adjacent pixels. Hence, it can be

useful to think of an image as a generalised high dimensional vector rather than a

two dimensional object. This is similar to how visual features, such as those descri-

bed in Section 1.1.1, represent local image regions as compact vectors with no more

than a few hundred or thousand extrinsic dimensions. Any set of feature vectors or

images X ⊂ Rm will only ever contain a discrete subsampling of the complete high

dimensional space Rm.

High dimensional spaces, including those occupied by interesting visual data, often

follow unintuitive rules when compared to the low dimensional structures we are

used to viewing.[17] A key challenge of processing high dimensional data is to be

aware of the relevant similarities and differences between low and high dimensi-

onal data.[18] Since we have defined our data vectors in Rm, we can compute the

Euclidean distance

distE(xi,xj) =

√√√√ m∑
k=1

(xi,k − xj,k)2 =
√
(xi − xj).(xi − xj) (2.1)
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between two vectors regardless of their extrinsic dimensionality. The Euclidean dis-

tance provides an intuitive way to form quantitative comparisons and can be directly

applied as a function for scoring correspondences between feature vectors. Compu-

ting correspondences in this way implies that the feature space has been constructed

such that the distance between true correspondences is typically smaller than the

distance between false correspondences. In other words, image regions that have

certain properties in common should produce features that are closer together when

compared to the features from image regions with differing properties. Identifying

these correspondences can then enable practical computer vision tasks such as seg-

mentation. At a basic level, the process of segmentation can be described as boun-

ding regions of a space so that similar data is grouped within each bounded region.

In a well structured feature space, these regions can be used to classify new data by

generalising with the currently available data. In this chapter we’ll continue to look

at useful properties of high dimensional visual data that help us to build a clearer

understanding of the structures that are formed by these spaces.

2.1 Distribution of High Dimensional Data

When considering the digital representations of images and feature vectors, each

extrinsic dimension is often bounded by a minimum and maximum value. An ex-

ample of this would be a pixel ranging from fully black, through all of the greys

until it is fully white. These limited domains act to contain the samples from an m

dimensional dataset to within an m-cube. Again assuming that each dimension is

independent, a dataset will uniformly fill the area of its bounding hypercube. This

behaviour is shown in Figure 2.1 for low numbers of dimensions. To achieve the

same density, the two dimensional square requires n2 samples compared with the n

random samples of the one dimensional line segment. We can achieve a reasonable

visual representation of three dimensional points in a cube with a sparser projection

of n2 samples onto what is ultimately a two dimensional diagram. Here, a third

dimension of information is represented by shading the points according to their

height from the bottom face of the cube. As the number of dimensions continues
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FIGURE 2.1: n-cubes of increasing extrinsic dimensionality filled uni-
formly with random data. a, b, c and d) 10, 100, 100 and 5 samples in

1, 2, 3 and 4 dimensions respectively.

to increase, visual representation becomes more difficult due to the increasing diffe-

rence between the two dimensions of the diagram and the higher extrinsic dimensi-

onality of the data. In four dimensions we can assign a unique shape to each sample

and show each dimension independently. However, it is now much more difficult

to visually assess useful properties such as the four dimensional Euclidean distance

between any two samples. Ultimately, high dimensional diagrams are unable to

convey an intuitive sense of the global relationships found within the data.

The lack of a natural way to view high dimensional structures results in many pro-

perties seeming unintuitive when they are first encountered. A two dimensional

square has fewer corners than a three dimensional cube, and intuitively, higher di-

mensional hypercubes will have an increasingly large number of corners. The num-

ber of corners grows exponentially, with an m-cube having 2m corners. This arises

from each new dimension having a positive and negative side, that when combined

with each corner in one fewer dimensions, will result in double the number of cor-

ners. This rapid growth in corners has a strange and unintuitive effect on the space

contained within the hypercubes. If we first consider the floor of a square room in

our natural three dimensional environment we can mentally partition the space into

a large central region surrounded by four small corner regions. Now if we rand-

omly select a number of locations on the two dimensional surface of the floor, then

Figure 2.2a confirms that we should expect most of these locations to fall into the

shaded central region of the room. However, as we begin to add additional rand-

omly distributed dimensions to our room there is a very high chance that all of the
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FIGURE 2.2: a) Uniform random data in a 2-cube will largely occupy
the central region. b) Distributing samples throughout a 12-cube pla-
ces over 99% of the samples at a distance within the shaded region

when considering the Euclidean distance from the origin.

locations will end up in the corner regions. Figure 2.2b illustrates that when another

ten dimensions are added to the same two dimension data, the distance from each

location to the centre of the hypercube will typically fall within the bounds of the

large shaded region. Comparing this range of distances with the two dimensional

projection of our room shows that the locations are not only likely to be outside of

a central hyperspherical region, but expected to fall entirely outside of the original

room.

We begin to explain this behaviour by considering the Euclidean distance between

the centre of a hypercube and each of its corners. For an m-cube with a side length

of 2, each corner will be
√
m distance from the centre. So as m increases, opposing

corners become further apart despite all of side lengths remaining constant. Additi-

onally, because the centre of each m-face will also remain at a distance of 1 from the

centre of the hypercube, the radius of our central region will stay at a constant value

of 1. Figure 2.3 further illustrates this property by considering all possible pairwise

distances within m-cubes with a side length of 2. The plotted curves represent the

relative likelihood that two randomly chosen locations from within an m-cube with

be exactly a certain distance apart. As the number of extrinsic dimensions increa-

ses, the mean of these distributions moves away from zero. As such, we expect that

higher dimensional hypercubes will largely contain locations that are further apart.
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FIGURE 2.3: Probability density functions for the Euclidean distance
between pairs of uniform random samples within a hypercube of in-

creasing dimensionality.

If we continue to examine the curves in Figure 2.3, we can see that as the number

of dimensions increases, the distributions increasingly spread out to cover the larger

range of possible pairwise distances. However, this spread does not keep up with

the rate at which the mean is moving away from zero. With the 8 dimensional data,

it is already more likely than not, that two random locations will have a distance

between them that is larger than the radius of our central region from Figure 2.2a.

We can see this trend continue, with pairwise distances in the sixteen dimensional

cube being, on average, larger than the diameter of the central region. In general,

we expect that even for locations that only deviate from the centre of the hypercube

by a small amount in each dimension, the sum of these deviations will continue

to increase along with the number of dimensions. It is inevitable that these total

distances will become large relative to the side length of our hypercubes.

When applying this understanding to computer vision, we can expect that all high

dimensional visual data will comprise mostly of samples that are spread throughout

the corner regions of a hypercube. For pairwise distances, such as those used for

calculating feature correspondences, we can always expect to see a larger average
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distance between higher dimensional feature vectors regardless of changes to the

total number of samples in our dataset. With these properties in mind, we will now

look at two common ways to segment high dimensional data. The primary aim

of these segmentations is to utilise the relative distances within a dataset to then

classify homogeneous regions of the data space. When looking for fewer segmented

regions than there are samples in the dataset, dividing up a space based on relative

distances can allow for efficient discovery of other relationships within the data. This

is especially true in situations where a hierarchical segmentation is used.

2.1.1 Hyperplane Boundaries

Hyperplanes are a computationally efficient way to linearly separate regions of a

hyperspace. We first consider that a one dimensional line can be used to partition

two regions of a plane and that a two dimensional plane can then partition two

regions of a three dimensional volume. In general we can define an m dimensional

hyperplane as an m − 1 dimensional Euclidean subspace that covers all samples of

the form

a.x = b (2.2)

where a is an m dimensional vector of constants with |a| 6= 0 and b is a scalar con-

stant. All samples from the hyperplane then form a connected region that separates

the other m dimension samples into the two sets defined by

a.x < b (2.3)

and

a.x ≥ b. (2.4)

Computing these sets is very efficient when a contains only one non-zero value. This

removes the need for the vector dot product in Equations 2.3 and 2.4, and only re-

quires accessing a single dimension xi when classifying a sample x. These efficiency

boosts are only possible due to the fact that hyperplanes of this form will always

divide a single extrinsic axis, while being parallel to all other axes. As such, these
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FIGURE 2.4: a) Uniform random data in a 2-cube is partitioned by a
straight line that preserves groups neighbouring samples. b) Distri-
buting the same data throughout a 12-cube, the linear partition ex-
tends through additional dimensions and now separates many sam-

ples from their closest neighbour.

axis-aligned planes are commonly used in low dimensional data structures such as

quad-trees and oct-trees, as well as k-d trees in higher dimensions.

We have previously mentioned how correspondences can be defined by applying the

Euclidean distance to pairs of vectors within a dataset. When using a hyperplane to

divide our data, we would like to achieve a partitioning that does not separate any

of the stronger correspondences. Figure 2.4a illustrates a set of closely correspon-

ding samples in a 2-cube. For this low dimensional data, we can successfully define

a hyperplane (in this case a line) that divides the data into two groups that do not

break any of the correspondence lines. Figure 2.4b projects this division through an

additional ten extrinsic dimensions and then considers the closest correspondences

of the now twelve dimensional data. The hyperplane now separates many samples

from their closest correspondence, each of which is illustrated by a broken corre-

spondence line. As previously seen, the dimensions that are not shown in this figure

are likely to account for a considerable portion of the total distances between the

samples.

Practical issues with these partitionings are explored using a small dataset of one

thousand SIFT feature vectors, each with 128 extrinsic dimensions. Figures 2.5a and
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FIGURE 2.5: The impact of hyperplane partitions on SIFT correspon-
dences. a) Best case correspondences with a partitioning of high vari-
ance axes. b) Worst case correspondences with the same partitions. c)
Best case correspondences with a partition along the first eigenvector.

d) Worst case correspondences with the eigenvector partition.

2.5b each partition the data using a computationally efficient hyperplane that divi-

des a single extrinsic axis. The real-world data has less uniformity than a synthetic

dataset and this results in some dimensions being easier to partition than others.

With this method of partitioning, it would be ideal for the data to be spread with

high variance along each extrinsic axis. In these plots we have computed the two

highest variance dimensions and then projected the feature vectors onto these two

extrinsic axes. In Figure 2.5a we plot the five hundred strongest correspondences,

which equates to the five hundred feature vectors with the shortest distance to the

next closest feature in the full 128 dimensional space. Figure 2.5b shows the same

projection of the feature vectors but uses the weakest one hundred correspondences,

which in this case is the one hundred feature vectors with the largest distance to the



Chapter 2. Properties of High Dimensional Image Spaces 19

next closest feature. For both plots, the data is firstly partitioned in half along the

highest variance axis and then each half is repartitioned along the second axis. Parti-

tioning the data in this way creates a natural hierarchical structure to the partitions,

which is utilised by k-d trees to separate the data with a roughly equal number of

samples on each side. In both the best and worst case scenarios, when using either

the strongest or weakest correspondences, we find that each of the hyperplanes se-

parate at least some of the corresponding feature vectors.

Figures 2.5c and 2.5d use a less restrictive partitioning that allows for more optimal

selection of the first hyperplane boundary. Applying principal component analysis

(PCA) to the dataset allows us to compute the direction of highest variance found

across all possible orientations of the data. To achieve this, we partition the data

using the mean value when projecting the data onto the first eigenvector of the PCA

analysis. We then plot these projected values against the average projected value

across the other 127 reorientate dimensions. This analysis reveals two easily sepa-

rable clumps of data that are inherent to the structure of the SIFT space (each re-

presenting an extrema in the Difference-of-Gaussians neighbourhoods). In Figure

2.5c we see that a single partition can be performed without separating any of the

five hundred strongest correspondences. However, this would no longer be the case

if we attempted a second partition along the next eigenvector. Figure 2.5d further

highlights the difficulty of partitioning high dimensional data, with a number of

the one hundred worst case correspondence lines being broken by this well selected

hyperplane.

Continuing to subdivide a dataset with hyperplanes that bisect high variance axes

will produce the branching structure used by k-d trees. Figure 2.6 provides further

analysis of the effects that these hyperplane divisions have on randomly sampled

data with varying dimensionality. In Figure 2.6a we show the fraction of samples

that have become separated from their closest corresponding sample when iterati-

vely increasing the depth of the trees. The low dimensional data is able to be divided

many times with minimal separation of correspondences. Then, at the deepest levels

of this tree the number of samples in each partition is very small and so separations
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FIGURE 2.6: The distribution of separated correspondences in k-d
trees built with uniform random data. a) The fraction of correspon-
dences that have become separated at each depth in the trees. b) The

cumulative sum of separated correspondences at each depth.
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become inevitable. Increasing the dimensionality to a moderate value of eight di-

mensions results in a levelling of the rate at which the correspondences become di-

vided. Continuing this trend, using higher dimensional data is seen to increase the

number of separations that occur in the shallowest branches of these trees. Figure

2.6b plots the same data as a cumulative distribution in order to show the expected

fraction of separated correspondences in at tree of a given dimensionality and depth.

Here we can clearly see that the separation of correspondences will largely occur in

the deepest layers of a low dimensional k-d tree and in the shallowest layers of a

high dimensional tree.

Figure 2.7 presents an evaluation of these same properties with a dataset of ten thou-

sand SIFT feature vectors. This analysis is performed on the extrinsic axes of the data

as well as with the eigenvectors produced by PCA. In Figure 2.7a we see that there

is little difference between the extrinsic axes and the rotated PCA axes. The most

notable difference, is that the first segmentation with the PCA axes is able to make

full use of the inherent structure that was seen in Figures 2.5c and 2.5d. Otherwise,

the occurrence of separated correspondences is largely uniform across the layers of

these trees. This is interesting considering that the SIFT data is represented across

128 dimension but the peaks that were seen with the random high dimensional data

are much less pronounced here. Additionally there is some indication of a second

peak of separations occurring at the lower levels of these trees as previously seen for

the low dimensional random data. Lastly, Figure 2.7b shows the cumulative distri-

butions for these datasets. Here we can see that the advantage gained by the first

PCA segmentation makes little difference to the full distribution.

Ultimately, partitioning a high dimensional space with hyperplanes can be a com-

putationally efficient way to categorise data into a hierarchical structure. However a

number of problems arise when the dimensionality is sufficiently large. In general,

we see that it is typically impossible to find a hyperplane that can linearly separate

high dimensional samples into two meaningful partitions without breaking a num-

ber of the strongest correspondences in the data. Furthermore, the computational ef-

ficiency of these partitions comes from taking information along a single axis when

deciding where to partition the data. This contributes to the undesirable separation
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trees built with SIFT data. a) The fraction of correspondences that
have become separated at each depth in the trees. b) The cumulative
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of samples that are in fact closely located when considering the full extrinsic space.

Lastly, because a hyperplane in m dimensions is itself an m − 1 dimensional space,

the boundary created by the hyperplane is far from local. In order to retaining infor-

mation about local correspondences, it follows that the segmentation method would

benefit from being restricted to within local regions.

2.1.2 Clusterings

In contrast to the unbounded divisions of hyperplane boundaries, clustering is spe-

cifically designed to form segments from local neighbourhoods. These segmentati-

ons are defined by local boundaries that exist between adjacent clusters. Distance

functions naturally give rise to clusters that are spherical in shape, since a pairwise

distance between two samples can be equated to the radius of a hypersphere centred

on one sample and with the other sample on its surface. We define an m-ball as an

m dimensional Euclidean subspace that covers all samples of the form

(x− c).(x− c) ≤ r2 (2.5)

where c is a vector to the centre of the ball and r is the desired radius. Similarly, we

can define the m− 1 dimensional hypersphere subspace that bounds the cluster as

(x− c).(x− c) = r2. (2.6)

When considering spherical regions in high dimensional space, we can firstly revi-

sit the central region in Figure 2.2a that became devoid of samples as the extrinsic

dimensionality was increased. Figure 2.8 plots the volume of a unit m-ball as well

as the area of its m − 1 dimensional surface. At two and three dimensions we can

see the familiar relationships that are observable for circles and 3-spheres. For these

low dimensional spaces, an increase in dimensionality results an increasing volume

and surface area. However, this trend does not continue for very long, with both

the volume and surface area quickly reaching a maximum value and then decaying

back towards zero. While this behaviour is very unintuitive, it can be understood by

carefully considering what the terms volume and area mean in this context. As the
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FIGURE 2.8: a) The volume of a unit m-ball reaches a maximum at
around five dimensions before converging back towards zero. b) The
same behaviour is seen for the unit m − 1 dimensional hypersphere
on the surface of the m-ball and with a corresponding maximum area

at around seven dimensions.

number of extrinsic dimensions increases the concept of volume (and area) increa-

ses with an exponential growth rate. With each successive dimension the amount

of extra volume being added to the entire space continues to grow. This cumulative

growth in volume quickly dwarfs the successive amounts of volume being added to

the m-ball. As such, we find that for increasing dimensionality a fixed-radius hyper-

sphere will eventually start to shrink relative to an enclosing m-cube. This concept

adds further justification for why corner regions are the most probable location for

random high dimensional samples to occur.

When segmenting a high dimensional space with spherical clusters, it is useful to

have an understanding of how many clusters are needed to fill the space. The kis-

sing number is one of many useful measures of how hyperspheres can fill or cover a

space. Specifically, in m dimensions the kissing number aims to maximise the num-

ber of non-overlapping m-balls of unit radius, while also positioning them such that

each of these balls touches the surface of another m-ball that is positioned at the

origin of the space and is also of unit radius. In terms of clustering data, the kis-

sing number problem provides an upper bound on the number of adjacent clusters

that can exist around any particular cluster in a given dimensionality. Figure 2.9

plots the current known bounds of the kissing number in up to 24 dimensions. We

see that the kissing number has roughly exponential growth for a linear increase in
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FIGURE 2.9: Current known bounds on the exponential growth of the
kissing number relative to the extrinsic dimensionality of the space

being filled. [19]

the number of extrinsic dimensions. This allows for a cluster to have thousands of

adjacent regions in as few as twelve dimensions. Because a huge amount of data

is necessary to fill a high dimensional structure, we expect that high dimensional

datasets are unlikely to form structures that are more complex than a lone central

cluster surrounded by a single layer of other clusters. Adding additional complex-

ity to this structure can require exponentially more clusters, which then results in

too few samples per cluster. Ultimately, high dimensional clustering will naturally

result in a large number of adjacent clusters. Because each adjacency represents a lo-

cal boundary, more adjacencies means a higher potential for corresponding samples

to become separated into different clusters.

Following our general aim for data segmentation, meaningful clusters should aim

to avoid the separation of strong correspondences within the high dimensional data

that they segment. The spherical clusters we are considering are well suited for

datasets that contain many small and dense regions. One such region is shown in

Figure 2.10a, and is the result of combining two uniform random variables r and θ
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in the form

x1 = r cos θ (2.7)

and

x2 = r sin θ. (2.8)

However, we are interested in levering the computational efficiency of working di-

rectly with the extrinsic dimensions of x rather than the parameters r and θ. In this

case, we arrive at the distribution shown in Figure 2.10b, which is achieved over a

disk by replacing r with
√
r in Equations 2.7 and 2.8. Clustering this data is now

more likely to separate closely corresponding samples, although this also indicates

that the data is fully utilising the capacity of the space.

When considering the mapping of image data into a feature space, it can be desirable

to enforce a structure that sacrifices some amount of capacity for feature represen-

tation in order to better distinguish between corresponding and non-corresponding

feature vectors. In terms of data clustering, one method for achieving many dense

and spherical regions is by sampling from a number of Gaussian distributions of the

form

Pr(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 . (2.9)

Here, µ is the centre of a particular region and σ governs the size of the region. This

distribution can be seen in Figure 2.10c, and was also present in the projected SIFT

a) b) c)

FIGURE 2.10: Random distributions within a circular region. a) A
uniform sampling of the intrinsic parameters of a disc. b) A uniform
sampling of the extrinsic parameters. c) Sampling from a Gaussian

distribution.
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data from Figure 2.5c. While the SIFT data does contain two large Gaussian regions,

this small number of clusters does not allow for meaningful segmentation of the

entire dataset. Local regions within each cluster will still appear as a relatively uni-

form distribution of samples. Again, we could consider this to be an unfavourable

property as both memory and computation will be wasted on at least one extrin-

sic dimension that is not being fully utilised. In general, the ability to utilise local

information when creating high dimensional clusterings is consistent with our aim

of retaining strong correspondences. However, datasets are typically distributed so

that at least some of the desirable correspondences will end up separated by the

boundaries between adjacent clusters.

2.2 The Blessing of Dimensionality

The ’curse of dimensionality’ has become a common expression for describing the

difficulties faced when working with high dimensional data. For instance, if we con-

sider searching for the optimal value of a single floating point variable by dividing

the domain of that variable into equal tenths, we can then test each of the ten values

in order to find the best assignment. This coarse discretisation may provide a reaso-

nable result, but a finer division could still be used to find a more accurate solution.

In this case, performing twice as many evaluations will double the resolution we

have for determining the optimum. Then if we start to expand our optimisation to

include additional independent variables, we quickly gain an appreciation for the

’curse’ label. That is, when considering multiple independent variables, we must

look at all possible combinations of those values. So when we increase the dimensi-

onality of our search, the number of evaluations grows exponentially. If we were to

attempt the coarse parameter sweep over just ten or twenty independent variables,

the number of evaluations quickly becomes infeasible.

Many real-world measurements are in fact taken from continuous domains such as

the frequency of a photon or the changing angle of a bird’s wing as it flies. Sets

of visual data are typically collected as a subsampling of these high dimensional
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continuous spaces, and then further mapped down as local image regions or vi-

sual features. However, the ’curse of dimensionality’ states that a linear growth in

the number of extrinsic dimensions will cause an exponential increase in the num-

ber of samples that can be represented in the full continuous space. By definition,

starting with a subsampling will always restrict us from using the full continuous

space. This property of real-world datasets has then given rise to the term ’blessing

of dimensionality’. The ’blessing’ indicates that when working with sufficiently high

dimensional data it will typically be impossible to have enough data to fill the space.

Additionally it has been observed that most real-world visual data is inherently low

dimensional [20], as there are very few systems complex enough to require many

independent variables for describing their behaviour within an acceptable margin

of error.

If we consider that most datasets are inherently governed by only a few independent

variables, then it is reasonable to expect that we can rearrange the data in a way that

lets us discard any unnecessary dimensions. To explore this idea we can use the PCA

data from Figure 2.5 to provide a measure of how much total variance would be lost

by discarding an extrinsic dimension of the SIFT dataset. Figure 2.11 first plots the

fraction of the total variance that can be retained when repeatedly removing the

extrinsic dimension with the lowest variance. This process was then repeated using

the eigenvectors from the PCA results. The extrinsic curve shows an almost linear

reduction in the total amount of variance lost with the removal of each dimension.

This indicates that each dimension does in fact account for a roughly even portion

of the total variance. However, the linear transformation into the eigenvector space

reveals that a more biased distribution can be achieved. With this rotation of the

axes, it is possible to discard slightly more than half of the dimensions, while still

retaining 90% of the total variance. Once the data has been reduced down to ten

dimensions, we find that about half of the total variance is still present. While these

values are better than those of the extrinsic dimensions, we might expect that data

generated from only a few independent variables can be reduced without any loss

of variance. To approach this kind of result, we would likely need a computationally

expensive non-linear method of dimension reduction. These methods aim to detect
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FIGURE 2.11: Retained cumulative variance when removing extrinsic
dimensions from SIFT data. More variance is retained when the axes

are rotated to align with PCA eigenvectors.

and parametrise lower dimensional structures that can only be fully represented in

a higher dimensional space. If we consider this in a more familiar space, we can

appreciate that it is impossible to take samples from a circle and then place them

along a single linear axis without either overlapping two non-adjacent samples or

separating two samples that were originally adjacent. This is because the surface of

an (m− 1) dimensional hypersphere can only be defined in at least m dimensions.

2.3 Dimensionality Analysis

For any dataset that measures a fixed number of independent values (the extrin-

sic dimensions), we can loosely define the intrinsic dimensionality as a measure of

how effectively this data fills the full extrinsic space. We would like to use such

a measure in order to explain our observations from Figures 2.6 and 2.7 where we

saw 128 dimensional SIFT features expressing properties of a random data with a

much lower dimensionality. To illustrate the concept of a non-integer dimensiona-

lity, we will briefly discuss the well studied coastline paradox. This paradox arises
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FIGURE 2.12: Natural coastlines exhibit fractal properties when their
length is measured at multiple scales. Viewing coastlines at a smaller
scale will unveil additional complexity that was not previously mea-

surable.

from the unintuitive observation that there is no well defined way to measure the

length of a geographical coastline. Lacking a well defined length is then closely re-

lated to all coastlines having an intrinsic dimensionality of between one dimension

(a straight line) and two dimensions (the surface of our planet). These properties

can be explained by the fractal structure that is observable in all coastlines [21]. On

the right-hand-side of Figure 2.12 we can see that viewing the same coastline across

different scales uncovers additional complexity that was not apparent at larger sca-

les. To arrive at a resolution for the paradox, we can first represent the coastline

as a series of one dimensional segments on a two dimensional surface. If we use a

large one dimensional ruler that can take a single measurement across the country,

then the dimensionality is 1, and our measured coast length is most likely an unde-

restimate. To get a more accurate measure we can use lots of measurements with

a smaller ruler. So the length of the coastline is then seen to be dependant on the

length of our ruler, with different rulers giving us difference coast lengths. Intrin-

sic dimensionality can then provide a single measurable quantity by observing the

relationship between the length of different rulers and the length of coast that each
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one measures. For instance, if we were to halve the length of our ruler we could

expect to double the number of times we can place that ruler along a straight section

of coastline. However, for most sections of coastline we will find that we can now

place the ruler more than double the number of times, indicating a dimensionality

that is larger than 1. Two such measurements are illustrated on the left-hand-side of

Figure 2.12, where the shorter ruler reveals more complexity than we can measure

at the larger scale.

There are in fact many different measures of intrinsic dimensionality, and we have

chosen to use the Hausdorff dimensionally within our research. This is because we

can formulate the Hausdorff dimensionality in terms of the pairwise distances bet-

ween all samples in a particular dataset. As such, our Hausdorff dimensionality cal-

culations are closely related to the data correspondences we have been discussing.

Additionally, computing dimensionality in this way can then leverage the same op-

timisations that we might apply when processing correspondences. In this section

we define Hausdorff dimensionality and show how it can be used for measuring the

space filling capacity of a dataset.

2.3.1 Hausdorff Dimensionality

For a given dataset X that contains a large number of vectors, each with m extrinsic

dimensions, the Hausdorff dimensionality is given by

dimH(X , r) = r
ρ(X, r)

N(X , r)
. (2.10)

Here r is the radius of many m-balls that are positioned to form a complete covering

of the data, ρ is the measured density of the covering and N is a sum of relevant

distances which we simply define as

N(X , r) =
∑

xi,j∈X

0 if dist(xi,xj)≥r
1 if dist(xi,xj)<r

. (2.11)

In order to eliminate the need for a direct density measurement, we can express the

Hausdorff dimensionality in terms of the change in density between two different
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radii with

dimH(X , r1, r2) =
log
(N(X ,r1)
N(X ,r2)

)
log
(
r1
r2

) . (2.12)

A similar concept was seen in Figure 2.12 with the coastline being measured using

two rulers of different lengths. We can further simplify our formulation setting r2 =

2 · r1 so that

dimH(X , r) = log2
N(X , 2r)
N(X , r)

. (2.13)

2.3.2 Computing Dimensionality on a GPU

For a dataset containing n samples with m extrinsic dimensions the computational

complexity of computing the Hausdorff dimensionality in Equation 2.13 is O(n2m).

This is due to the double summation around the distance functions in Equation 2.11.

Since the dimensionality calculation is dominated by the cost of computing the dis-

tances, this formulation presents a considerable opportunity for optimisation with

parallel computation of these distances. A naive implementation might iterate over

each pair of samples in the dataset and compute the distance between them. For the

SIFT dataset with n = 106 and m = 128, the number of floating point operations

required to compute all distances will be

2n.
n(n− 1)

2
≈ 1.3× 1015.

Modern GPUs can roughly achieve teraFLOPS and modern computing clusters are

reaching into the petaFLOPS, so these calculations should be achievable with current

hardware. However, we must also consider that same number of memory reads are

required in order to process all of the data. Due to limited amounts of fast memory,

this overhead could be detrimental to the runtime. If a reduced runtime is to be

achieved through parallelisation, then the implementation must also avoid the large

overheads caused by frequently accessing slow memory.

Firstly, our implementation minimises the memory overhead by making full use

of the intermediate memory that is shared within each GPU block. A single block is

assigned to calculate all distances between two contiguous subsets of the full dataset.

The size of these subsets is chosen as the maximum size that will allow for both
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subsets to fit within the shared memory of a single block. As such, computing a block

of distances involves two stages; the first is to have all available threads loading the

two required subsets from global memory into the shared memory, and the second

is to then allocate threads to compute the distances between pairs of data in the

shared memory. Because Equation 2.11 does not use any strict equalities, we can

utilise the monotonic property of squaring real values in order to avoid computing

the square-root in Equation 2.1.

In Equation 2.11, the computation of the distances is independent of the radius pa-

rameter r. As such, once a set of distance calculations has been performed it is ad-

vantageous to immediately compute multiple N values using each desired radius.

A reduce operation is then applied to collect and sum the partial N values that are

being calculated within each block. As each partial value is computed in parallel,

the results are combined into a single global value using atomic functions. The re-

duce operation for each different radius will only require a small amount of memory

relative to the representation of the data vectors. It is important to only use a small

number of different radius values so that the distance calculations can make full

use of the shared memory. By making full use of the parallel capabilities offered by

GPU computing, we are able to compute the Hausdorff dimensionality of datasets

containing up to hundreds of millions of high dimensional vectors.

2.3.3 Estimating the Dimensionality of Fractals

Many fractals are infinitely repeating self-similar structures that have a precise Haus-

dorff dimensionality. We can utilise the exact self-similarity of these fractals in order

to validate the accuracy of our formulation of the Hausdorff dimensionality with

dataset containing varying numbers of samples. Specifically, we are interested in

demonstrating an accurate measure of intrinsic dimensionality for datasets that are

a random subsampling of a particular space. The Serpinski triangle is a well-studied

fractal with exact self-similarity. Due to its triangular structure, scale changes in the

Serpinski triangle produce sets of three identical copies of the fractal. Because this

self-similar structure occurs each time the extrinsic measurements are doubled, it is

trivial to derive the exact Hausdorff dimensionality of log2 3 from Equation 2.13.
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FIGURE 2.13: A discrete sampling of the Serpinski triangle. a) The
complete set of random samples is shown at the largest scale. b) An
example of relevant pairwise distances when computing the Haus-

dorff dimensionality across two fine-grained scales.

In order to apply the discrete approximation given by Equation 2.11, we generated

a dataset of random samples from the surface of the fractal. This was achieved by

initially defining three corner samples at the largest scale. Subsequent samples can

then be drawn from increasingly smaller scales by computing the mid-point between

two existing samples, chosen uniformly at random. In order for each sample to re-

main on the Serpinski triangle, at least one of the two existing samples must always

be drawn from the initial three corners. Figure 2.13a plots these random samples

on a two dimensional plane. The expected intrinsic dimensionality of around 1.585

allows the data to partially fill the planar surface. Figure 2.13b illustrated the fine

scaled measurements of our intrinsic measure over a subset of the samples. Two

disks are shown as an example of radii that could be used in Equation 2.13. At each

radius, pairs of samples are shown connected together if they would contribute to

the summation in Equation 2.11.

Figure 2.14 plots the results of our intrinsic measure against the exact Hausdorff di-

mensionality of the Serpinski triangle. Each curve is constructed by applying Equa-

tion 2.13 across a wide range of radii. This process was repeated for increasingly

large sets of random samples. The results show that our intrinsic measure becomes

more accurate with the inclusion of these additional samples. This is particularly
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FIGURE 2.14: An approximation of Hausdorff dimensionality com-
puted across a wide range of scales for dataset of increasing size.
Having too few samples at a smaller scales is shown to impact the

accuracy of the measure.

pronounced at smaller scales, which is also where our estimate of true dimensio-

nality approaches the ground truth value. When the sampling is too coarse, there

is not enough information to observe the self-similar structure that is repeating at

increasingly smaller scales.

2.3.4 Estimating the Dimensionality of Visual Data

The SIFT datasets from Table 1.2 were selected for intrinsic dimensionality analysis

due to the widespread use of this feature type for the past few decades. With an

extrinsic dimensionality of 128, the SIFT feature space also offers a large potential

for complex high dimensional structures. Analysis was performed on increasingly

large subsets of the samples in order to gauge the requirements for adequately fil-

ling the feature space. Similar to the results for fractal data, we expect that a large

number of samples will be needed before fine-grained variations are visible in the

data. Importantly, we are unable to compute an exact Hausdorff dimensionality for

datasets of real-world feature vectors. While there is an upper bound on the number
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of SIFT feature vectors that can be represented, it is quite possible that not all of these

feature vectors can be generated from data found in natural images. Furthermore, a

practically sized dataset can only ever contain a small subset of all possible feature

vectors. Even with the optimisations we have implemented, we are still artificially

limiting the size of our datasets in order to keep the runtime feasible.
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FIGURE 2.15: Intrinsic dimensionality of the SIFT feature space is es-
timated with an increasingly large number of samples. The results
show that larger datasets result in additional fine-grained structures

that give rise to higher dimensionality.

Figure 2.15 plots the results of our intrinsic measurements for increasingly large da-

tasets of SIFT feature vectors. The key finding of these results is that the intrinsic

dimensionality of the SIFT space is considerably lower than the extrinsic dimensio-

nality that is used to represent the feature vectors. Specifically, we find that modera-

tely sized datasets of SIFT feature vectors appear to occupy an embedded manifold

of around ten dimensions within the 128 dimensional space that is available to them.

While this could indicate that over 90% of the data can be removed from each feature

vector without any loss of information, we are in fact observing non-linear dimensi-

ons that can only be fully represented in the complete higher dimensional space. The

large amount of utilised feature space is an essential by-product of representing the

complex correspondences between all pairs of samples within a dataset. Ultimately,
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we expect to see large gains in the efficiency of computer vision algorithms that can

operate on the small number of intrinsic dimensions of a dataset, rather than pro-

cessing the full extrinsic space. However, efficient usage of these lower dimensional

structures will also need to avoid the costly process of directly computing the full

parameters of this intrinsic space.
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Chapter 3

ANN Search Techniques

In the Chapter 2 we introduced the concept of high dimensional image spaces and

presented a number of inherent properties that contribute to the challenges of effi-

ciently processing datasets within these spaces. Despite these challenges, large da-

tasets of high dimensional feature vectors are a central component of a broad range

of computer vision tasks. This type of data is utilised in a variety of areas such as

object and scene recognition [22], pose estimation [23], [24], relocalisation and loop-

closing [25], 3D reconstruction [26] and machine learning [27]. Fundamental to each

of these applications is a reliance on associating visually similar data in order to

form correspondences between different images. Each correspondence amounts to

a small piece of information that when pooled together can give rise to the high level

information that is required for succeeding at these complex computer vision tasks.

Finding correspondences in large and high dimension datasets is computationally

demanding and can become infeasible when there is a requirement for real-time

responses, or when a large number of these matches are required. When a new

feature is presented to a computer vision system, the fundamental goal is to compare

this query vector q ∈ Rm against the set of sampled feature vectors X ∈ Rn×m that

are already know to the system and to identify a set S ⊆ X containing samples that

correspond strongly with the query. This problem is widely referred to as nearest

neighbour search, where the elements of S are considered to be the neighbours of q.

Strong correspondences are usually defined as either samples that are within a fixed
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distance r of q

S = rNN(q,X , r) = {s ∈ S ⊆ X | dist(q, s) < r} (3.1)

or as the k samples that are closest to the query

S = kNN(q,X , k) = {xi ∈ S ⊆ X , xj ∈ X \ S |

|S| = k ∧ dist(q,xi) ≤ dist(q,xj)}. (3.2)

In the first case, Equation 3.1 will produce nearest neighbour sets of varying size

based on the density of samples around a particular query. In contrast, Equation 3.2

will always produce the set of k-nearest neighbours that are bounded by a variable

radius from each query, which is again dependant on the local density of samples

around that query. From a practical standpoint, the k-nearest neighbour set is typi-

cally favoured as it accommodates for local variations in density that could result in

a fixed radius covering all or none of the samples in a dataset. Additionally, guaran-

teeing a fixed number of neighbours places a clear bound on the memory complexity

for storing the neighbourhoods even if this means that some of the stored neighbours

are weaker correspondences.

A naive solution for constructing nearest neighbour sets is to linearly search all sam-

ples in the known dataset and evaluate each one as a possible correspondence for

the query feature. Unfortunately this solution is suitable only for trivially small da-

tasets or for situations where response time is not important. In general, there is no

known algorithm that is guaranteed to find all relevant correspondences for high

dimensional data in a sublinear time. But for many real-world applications there

are no explicit requirements for having access to every single low level correspon-

dence. In fact, the contents of feature vectors and the formation of feature spaces

are already heuristic in nature. Hence, it can become common practice to perform

an approximate search that offers less accurate results but with a sublinear com-

putational complexity. To achieve a sublinear complexity, the approximate nearest

neighbour (ANN) search must be completed without the query being directly com-

pared to every sample in the dataset. As such, it is common for an indexing structure
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to be computed over the dataset as a means of predetermining how certain compa-

risons can be used to exclude the need for making other particular comparisons. For

the applications we consider, the construction of the index is an offline process on a

fixed dataset. Once the index is built it can be used to accelerate the search for ANN

sets of an arbitrary number of previously unseen queries.

The lack of a sublinear exhaustive search algorithm means that verifying the com-

pleteness of a nearest neighbour set will sacrifice the efficiency gains of an ANN

method. Instead, ANN searches are usually allocated a fixed amount of time or

compute. Once these resources have been expended, the resulting nearest neighbour

set is produced from the best comparisons that were made during the search. For

a particular index of a particular dataset, it is possible to compute the amount of

resources needed to achieve a particular average rate of recall. Here we define re-

call as the fraction of the nearest neighbour set that was correctly returned by an

ANN search. The remainder of this chapter looks at the strengths and weaknesses

of common ANN methodologies. These methods have been broadly divided into

four main categories based on their respective indexing schemes. The evaluations

we make are largely based on the characteristics of high dimensional data that we

discussed in Chapter 2 and how this understanding can be used to achieve a more

efficient ANN search.

3.1 Hashing Functions

Hash functions provide a computationally efficient many-to-one mapping that can

reduce high dimensional data to a lower dimensional hash of that data. As men-

tioned in Section 2.2, performing a large dimension reduction with a computatio-

nally efficient mapping is likely to result in loss of information. In the context of

the ANN search problem it is important that at least some information is retained

about the local neighbourhoods that exist in the unreduced data. Gionis et al. [28]

demonstrate that locality-sensitive hashing (LSH) is a suitable option for retaining

key information for performing ANN search on high dimensional image data. Un-

like cryptographic hashing methods, LSH has a high probability of mapping similar
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input vectors to the same location in the hash space. Gionis et al. found that nearest

neighbour recall is greatly improved when multiple independent hash tables are ap-

plied concurrently to the unreduced data. With more hash tables, it becomes more

likely that a query vector will have at least one hash that is close to a hash of its nea-

rest neighbour. Because the search is performed in a reduced space, an accurate list

of neighbours can be efficiently obtained by generating a short candidate list in the

hash space and then recomputing the distance to each candidate in the unreduced

vector space.

Due to the importance of selecting discriminative hash functions, Shakhnarovich

et al. [23] achieve further improvements to ANN performance by utilising a data-

driven search for effective hash functions. Since the goal of LSH is for the hashes of

similar objects to be coincident, the effectiveness of a hash function can be determi-

ned by its ability to generate these collisions. As with all data-driven ANN methods,

it is assumed that the dataset being indexed represents an unbiased distribution of

the query vectors that will be presented during the search phase. Shakhnarovich

et al. apply a distance threshold to classify pairs of vectors from a known dataset

as either neighbours or non-neighbours. Using these classifications, hash functi-

ons can then be constructed to maximise the number of collisions between neig-

hbouring pairs of vectors while minimising the number of collisions between non-

neighbouring pairs. For practical applications, the thresholds will be small enough

that only a few neighbours are considered for each sample. As such, the number of

neighbouring pairs is dwarfed by the number of non-neighbouring pairs. Ultimately

this means that the hash functions are trying to avoid mapping non-local regions to

the same location in the hash space and are unlikely to retain the local structures of

these regions from the unreduced vector space.

In general, LSH methods are best suited for a fixed-radius ANN search as described

by Equation 3.1. Andoni and Indyk [29] explore the relationship between pairwise

distances in the unreduced vector space and the probability of generating collisions

between these samples in a particular hash space. By increasing the sensitivity of a

hash function with longer hash codes, a steep gradient can be achieved such that a

small reduction in pairwise distance will correspond to a large increase in the chance
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of a collision. The distance at which this gradient occurs can then be considered as

a reliable radius for ANN search and is adjusted with the number of hash functions

being used. When this radius is too small many query vectors will have very few or

perhaps no neighbours within the predetermined global radius. In contrast, if the

radius is too large then the computational efficiency of the search will decrease as

the number of collisions increases. This loss of efficiency comes from a much larger

linear search in the unreduced vector space for determining the true ranking of the

proposed neighbours. In some cases, such as when global density of data is non-

uniform, bounds on the search radius will necessitate the use of an indexing method

that can return k-nearest neighbour results across the entire dataset to allow for a

more uniform re-ranking cost.

While more discriminative searches can be performed with higher dimensional hash

codes, the additional code space can lead to larger hash tables. When coupled with

the requirement to use many independent hash tables to achieve decent accuracy, re-

sulting in a larger memory footprint for storing the index. Lv et al. [30] address these

memory concerns by expanding upon the idea of hashing a query vector and then

additionally comparing it to nearby hash codes in each of the tables. The underlying

premise is that even if the hash of a query vector is not exactly coincident with that

of its nearest neighbour, the properties of LSH should produce hashes that differ by

only a small amount. For instance, using one hash function and matching all hashes

that differ in just a single dimension can produce a larger set of nearest neighbour

candidates than matching hashes exactly across many tables. In this way, Lv et al.

are able to reduce the number of hash tables while still retaining a high probability

of returning multiple neighbours for each query. As with other hashing methods,

each of these additional neighbours will increase the size of the linear search for

re-ranking neighbours in the unreduced vector space. Adjusting the threshold on

how far to explore beyond coincident hash matches gives rise to a convenient trade-

off between compute and recall. A tighter bound means less linear search and more

chance of missing a good neighbour, while a relaxed bound will yield a larger search

and should also provide better recall. Without searching further in each hash table,

LSH methods are better described as trading off memory for recall when additional



Chapter 3. ANN Search Techniques 43

tables are added to the index.

Many more recent hashing methods have been developed, each of which builds

upon the core idea of defining data-driven hash functions that perform a dimen-

sion reduction while attempting to keep local neighbourhoods separate from each

other. Improved function definitions have given rise to the incremental gains seen

in spectral hashing[31], kernelised LSH[32], semi-supervised hashing[33], optimi-

sed kernel hashing[34], complimentary hashing[35], uniform bin size[36], spherical

hashing[37], parallel Voronoi LSH[38] and optimal data-dependent hashing[39]. A

key strength across all of these methods is the underlying simplicity that allows for

thorough theoretical analysis of algorithmic complexities as well as guarantees on

the expected search performance. In practice these hashing methods are still outper-

formed by other indexing schemes in many sub-domains of ANN search. Ultima-

tely these hash functions are aiming to divide a high dimensional space into coarse

bins while often making use of computationally efficient hyperplane boundaries. As

discussed in Section 2.1.1 and 2.2 either the functions will be unable to accurately re-

present the pairwise relationships from the unreduced space, or the functions being

used are complex enough that the preprocessing of each query has a significant im-

pact on the search performance.

3.2 Decision Trees

Tree structures are a common way to partition a dataset into discrete regions at mul-

tiple scales. As such, early work such as Friedman et al. [40] and Bentley[41], [42]

applied k-d trees to the nearest neighbour search problem in a moderate number of

dimensions. Bentley showed that while this structure is effective at indexing low

dimensional data, the performance of trees reduces quickly as dimensionality incre-

ases. At each of its levels, a k-d tree creates a binary partition of the data assigned

to each node. The partition is achieved by computing the median value along an

extrinsic axis and then dividing the data along that dimension. As seen in Figure

2.5, better trees are constructed by selecting high variance axes in favour of low va-

riance ones. Regardless of the selection order, when higher dimensional hyperplane
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divisions intersect the median of an axis they will separate many nearest neighbour

pairs.

In general the propagation of a query from the top to the bottom of an indexing

tree is computationally efficient. However the average recall rates that are achieved

with a single propagation are very low. For this reason, backtracking algorithms are

used to increase the recall to a useful range. The need for large amounts of back-

tracking is an inherent property that is tied to the branching structure of the trees.

During the propagation of a query vector, each time a branch is taken the decision is

based on a local threshold which represents only a small part of the information in

full space. Whenever a query is close to a threshold value there is a significant pro-

bability that its nearest neighbour lies down a different branch than the one being

taken. To improve the performance of high dimensional k-d trees Beis and Lowe[43]

showed that a greedy search could improve search efficiency at the expense of ha-

ving lower accuracy than the backtracking branch-and-bound search that performs

well for low dimensional data. The greedy ANN search backtracks by maintaining

a priority queue of nodes with unexplored children and is sorted based on the dis-

tance between the parent and the query vector. Search accuracy and computational

cost are traded off by setting a maximum on the number of nodes that will be visi-

ted during a search. Furthermore, Silpa-Anan and Hartley[44] construct and search

multiple k-d trees in parallel using a single priority queue. Similar to the process of

principal component analysis (PCA), each tree is constructed with a different rota-

tion of the data. Building multiple independent kd-trees greatly improves the recall

rate for ANN search with high dimensional data, although there are diminishing

returns for each additional tree. This approach has many similarities to the use of

multiple independent hash tables for improving the accuracy of LSH methods.

In contrast to k-d trees that partition data along extrinsic axis, Sivic and Zisser-

man[45] cluster high dimensional visual data using intrinsic properties found with

k-means clustering. Then once the clusters are finalised, the data can be indexed

with an inverted file. This method was improved by Nister and Stewenius[24] with

the inclusion of a hierarchical tree structure. At each node of the tree, the parame-

ter k is both the number of clusters and the number of children. While there is a
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greater computational cost associated with computing intrinsic properties, Nister

and Stewenius show that effective clustering can be performed with a subset of the

data. The computational cost of propagating a query through a k-means tree re-

mains much higher than for k-d trees. For a k-means tree, each comparison involves

all of the extrinsic axes and since internal nodes are not sampled from the dataset

these comparisons are effectively wasted. In order to control the trade-off between

computational cost and search accuracy, Schindler et al. [46] showed that a greedy

search exploring n paths at each level of the tree is preferable to adjusting branching

factors. Although they note that the branching factor does impact the number of

vectors that end up close to the boundaries formed between two adjacent clusters.

In the context of ANN search a query is more likely to travel down a different branch

than its nearest neighbour whenever that neighbour is close to one of these bounda-

ries.

Many other tree structures have been defined around alternative ways to partition

a vector space or to cluster a dataset of vectors. The most notable of these are VP

trees[47], SR trees[48], spill trees[49] and NV trees[50]. A number of these methods

explore the use of spill regions as an alternative way to optimise a tree for ANN

search. Whenever a sample is found to be too close to the boundary between two

nodes the vector is allocated to both sides of the boundary. While spill regions have

the negative consequence of creating a larger index, they help compensate for non-

intrinsic boundaries and also yield better recall for greedy searches without a me-

chanism for backtracking up the tree. However, Lejsek et al. [51] find that searching

multiple trees in parallel is a more memory efficient way to achieve these benefits

when indexing very large datasets.

Recently Muja and Lowe[52] showed that for ANN searches on high dimensional

visual data, an optimised k-d tree or k-means tree will out perform an optimised

hashing method. Both of these implementations are included in the Fast Library for

Approximate Nearest Neighbours (FLANN)[53] as well as an efficient multi-index

LSH method. The inclusion of two different indexing trees is aimed at providing

good options for both fast index building or high recall searches. With both methods,

the early separation of correspondences that is seen in Figures 2.6 and 2.7 limit the
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efficiency of using indexing trees with high dimensional data. Each time a decision

is made to travel down a particular branch of the tree there is always a significant

probability that the nearest neighbour to that query does not exist down that branch.

This is true even when the decisions are being made optimally based on the local

information at each fork in the tree.

3.3 Vector Quantisation

As with hash functions, vector quantisation is a compact coding method that per-

forms a many-to-one mapping of high dimensional vectors onto a reduced code

space. When applied to ANN search, the code books defined in quantisation met-

hods are similar to hash tables in that they can be built to operate effectively within

a particular fixed-radius. Quantisation differs from hashing in that it aims to clus-

ter the data with a k-means approach. Rather than using the tree structure found in

k-means trees, Jégou et al. [54] continue to index the code using an inverted file. Wit-

hout the hierarchical structure of a tree, clustering large amounts of data can quickly

become infeasible due to the need for a large k. Too few clusters will lead to a non-

discriminative mapping, but using too many clusters increases the memory cost of

storing cluster centres and also reduces the robustness needed for assigning queries

to the same code as their neighbours.

To avoid the excessive memory costs of storing many cluster centres Jégou et al. [5],

[6] utilise product quantisation. In this method cluster centres are generated by con-

catenating a number of sub-quantisations that are each built on only a subset of the

extrinsic dimensions. The general principle is that large codebooks can be generated

from a smaller number of parameters. Additionally, since the centre locations are

already known, the data vectors can be compactly stored as a quantisation of the

residual between the vector and its assigned centre. The inclusion of the residual

quantisation also allows for a coarser quantisation to be used for the initial cluste-

ring.

Rather than directly addressing the robustness issue, Jégou et al. present an efficient

way to reduce the computational cost of re-ranking a proposed set of neighbours.
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While LSH codes aim to reduce collisions between non-neighbours, quantisation

is a clustering method which allows for better preservation of distance ratios from

in the unreduced space. Since the distance between cluster centres is larger than

the quantisation error between a data vector and its assigned centre, distances can

be efficiently approximated in the code space by ignoring some or all of this error.

As such, re-ranking with code space distances reduces the cost of comparing an

encoded query to all similar encodings found in the index. Comparing to more

samples in the code space should increase the overall recall, even when considering

the additional errors introduced by the distance approximations. For applications

that do not require high recall, the unreduced dataset is then no longer required so

an additional reduction of the memory cost can be achieved. This smaller index size

is particularly useful for indexing very large datasets on GPU hardware.

Ge et al. [55], [56] demonstrate further improvements to robustness, by finding an

optimal transformation between a dataset and the cluster regions from coarse quan-

tisation. When the dataset is rotated to place data vectors closer to their assigned

centres, it follows that quantisation error will be reduced across the dataset. Kalan-

tidis and Avrithis [57] show that this process can also be applied at the finer level

residual quantisation. These transformations follow on from the use of PCA for im-

proving recall when searching k-d trees.

A number of alternative methods have been proposed for defining codebooks and

accelerating re-ranking. Notable examples include Cartesian k-means[58], iterative

quantisation[59], composite quantisation[60], sparse composite quantisation[61], ad-

ditive quantisation[62] and supervised quantisation[63]. However, an additional

factor to consider is the applicability for each quantisation method to be optimised

for GPU acceleration. When including the time cost for re-ranking neighbours in

the unreduced vector space, product quantisation achieves search speeds that are

roughly two times faster than querying the tree structures used in FLANN. These

results can be achieved across a large range of recall values, though each value re-

quires additional parameter tuning and the construction of a new index.
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3.4 Neighbourhood Graphs

Each of the indexing methods that have been discussed so far fail to fully account

for the properties of high dimensional image data that are explored in Section 2.1.

When many low dimensional boundaries are used for high dimensional data, it is

almost guaranteed that a query and its closest neighbours will be assigned to dif-

ferent sides of at least one boundary. Every time a wrong assignment occurs, these

structures use computationally expensive methods to correct for the error. Hashing

and quantisation methods expend time on a linear search across some of the many

local boundaries. For tree structures, branches are evaluated down to the leaf nodes

before backtracking or restarts are used to explore adjacent leaves. Neighbourhood

graphs reduce these costs by using local information to navigate across boundaries

in a local neighbourhood. Jégou et al. [64] demonstrate this type of graph by impro-

ving the efficiency of their quantisation method. A graph is constructed from the

union of many trees and is then used to index the learned codebook. Ideally these

graphs are constructed so that the paths from higher up in a tree can be corrected

closer to the leaf nodes. Additionally, it is important that the trees share many of

their edges in order to avoid the computation and memory costs associated with ha-

ving a high branching factor. Wang et al. [65], [66] utilise similar hybrid methods by

combining both k-d trees and quantisation with a neighbourhood graph. Using the

additional structure provided by a graph, the search path of a query is used to avoid

the cost of a random restart.

Neighbourhood graphs for ANN search contain a vertex at each sample in the data-

set being indexed. Directed edges then define neighbourhood relationships between

these vertices. For any given vertex, the out-degree equates to the number of neig-

hbours for that vertex, while the in-degree is the number of vertices that consider

that vertex to be in their own neighbourhood. Once the edges of the graph have

been constructed, a search can be performed by comparing a query vector to verti-

ces in the graph. During the search, edges in the graph are usually traversed after

comparing the query to each neighbouring vertex and finding the edge that bring

us closest to the query. In order to avoid local minima, Navarro [67] uses Delau-

nay graphs which have the interesting property that nearest neighbours can always
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be reached using a greedy search. This property is not unique to Delaunay graphs

and can also be seen in a fully connected graph. For the nearest neighbour search

problem, Navarro suggests that lower vertex out-degree will correspond to a lower

average computational cost for these searches. However, as the extrinsic dimensio-

nality of the data increases, the Delaunay graphs quickly increase their out-degree

as they converge on becoming fully connected graphs. This increase is analogous

to the rapid growth of the kissing number seen in Figure 2.9. Analysing this un-

fortunate behaviour, Clarkson [68] concludes that neighbourhood graphs for high

dimensional data should aim to retain the useful properties of Delaunay graphs but

must do this using far fewer edges.

In order to bound the number of edges in a high dimensional indexing graph, Hajebi

et al. [69] apply the same greedy search algorithm but instead start from a random

vertex in a k-nearest neighbour graph. These graphs are able to maintain efficient

exploration costs by enforcing that the out-degree of each vertex in the graph is

equal to k. This restriction removes any guarantee that the greedy search will find

the nearest neighbour of each query. As such, this method addresses the goals of

ANN search by trading off some amount of recall for the increased computational

efficiency that comes with having a lower average vertex degree. Instead of using

the Delaunay neighbourhood, each vertex in a k-nearest neighbour graph defines

its neighbourhood as the k shortest edges that it can form to other vertices. While

a small k does lead to greater search efficiency and lower memory costs, k must be

large enough to ensure that the graph is connected. This requirement is equivalent to

saying that k must be large enough to include every edge from the minimum span-

ning tree (MST) [70] of the vertices. Even with this constraint, the degree of these

graphs can remain low even when indexing high dimensional data. While cluste-

ring [71] and nearest neighbour matching [72] can be achieved with just the MST,

Hajebi et al. show that their k-nearest neighbour index greatly out performs hashing

and tree based methods. The main drawback of this method is the difficulty of se-

lecting an appropriate value for k such that a target recall rate can be achieved with

the resulting index. Additionally, application areas that require frequent updates to

the dataset will be hampered by the larger computational complexity for the offline
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construction of the graphs.

To accelerate the construction of k-nearest neighbour graphs, Dong et al. [73] pro-

pose an algorithm for approximate construction. Since the results of the queries are

already being approximated, any reduction in performance due to approximating

the graph can be grouped with the existing performance deficiencies. The graph

construction algorithm proposed by Dong et al. is based on the concept that for

each vertex the neighbour of a direct neighbour is also likely to be a direct neig-

hbour. First, the graph can be initialised with random directed edges that are trea-

ted like bidirectional edges during the construction process. Once initialised, pairs

of vertices are repeatedly sampled for sharing their local neighbourhoods with each

other. As this information is shared, the destination vertices of each edge should

simultaneously converge towards their source vertex. This construction process is

then terminated once the frequency of changes drops below a threshold. While it

is unclear whether the low dimensional concept of "the neighbour of a neighbour

is also my neighbour" still applies in for high dimensional data, Dong et al. de-

monstrate that their approximate graphs still achieve strong results. The main draw

back of this construction method is the addition of two more tunable parameters,

with the sampling rate and the termination threshold both needing to be tuned for

particular applications. An alternative construction method is given by Wang et

al. [74] who approximate k-nearest neighbour graphs by combining many overlap-

ping subgraphs before propagating the local neighbourhoods. These subgraphs are

formed by recursively bisecting the vertex set using hyperplane divisions until each

subset is small enough for quickly building a k-nearest neighbour graph. As was

seen with LSH and k-d trees, this process can be repeated to generate a small num-

ber of different bisections. The union of the small subgraphs from each repeat then

provides a good initialisation for refining the edge lists. Most recently, Zhang et

al. [75] have defined a similar process that uses LSH to form uneven partitions of

the data. These approximate construction methods demonstrate the ability of neig-

hbourhood graphs to span divisions and boundaries that may have been imposed

on a dataset. And while these graphs should always contain the MST, the use of

k as a global vertex out-degree does place an artificial limit on the ability for these
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graphs to represent the intrinsic structure of the data. In particular, the density of

edges remains constant around each vertex, while the actual density of vertices may

vary considerably in different parts of the data space.

Another alternative to Delaunay graphs for high dimensional ANN searches are

the small world graphs considered by Lifshits and Zhang [76]. These graphs are

more similar to Delaunay graphs than k-nearest neighbour graphs in that the verti-

ces have both short and long range edges. However, the average vertex degree for

small world graphs can be much lower than Delaunay graphs as a random sampling

method is used to assign a tunable number of edges. As with k-nearest neighbour

graphs, the main requirement for the edges is to ensure connectivity between all

vertices. Malkov et al. [77], [78] achieve this connectivity by sequentially inserting

each vertex into the graph as a ANN query using a greedy search. The new vertex is

then connected with each other vertex that was visited on the path from the starting

vertex to its current nearest neighbour vertex. In addition to this, the new vertex

is connected to a tunable number of vertices that have been found to be current lo-

cal minima for greedy nearest neighbour searches. To improve the chance that an

already inserted vertex is connected to a later inserted neighbour, the entire graph

is undirected. However this does not guarantee that the MST will be a subgraph

due to the presence of vertices that are not part of a global nearest neighbour pair.

Malkov et al. claim that edges from the nearest neighbour searches form short range

edges that approximate the Delaunay graph, while the edges to local minima are

long range edges that provide the small world properties. Since Delaunay graphs

approach being full connected in high dimensions, it seems likely that both the short

and long range edges are contributing to the approximation of these graphs and all

play a critical role in defining its properties. The tunable parameter for limiting

edges to local minima, as well as the hand-engineered concept of combining the

two edge sets does not allow these graphs to fully depart from the artificial limits

on vertex degree that are used in k-nearest neighbour graphs. Overall, the com-

plete construction algorithm of small world graphs does offer a significant speed-up

for index construction when compared to k-nearest neighbour graphs. Even with
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the faster construction, the approximate small world graphs produced by this met-

hod are still competitive with k-nearest neighbour graphs when evaluated for ANN

recall and search efficiency. Additionally, by using a backtracking search for each

query, a single accurate index can be constructed and then used to achieve various

levels of recall by simply limiting the number of steps that the backtracking search

can make.
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Chapter 4

Fast Approximate Nearest

Neighbour Graphs

In Chapters 2 and 3 we discussed a number of challenges that limit the performance

of current approximate nearest neighbour (ANN) methodologies for high dimensi-

onal visual data. Due to the inherent nature of these spaces, methods that attempt

to cluster or divide the data are defining indexing structures that place clear limits

on the ANN performance. These limits arise partly from the lack of hierarchical

structure in the embeddings of hand engineered visual features such as SIFT. Furt-

hermore, the non-linear distributions found in high dimensional embeddings lead

to poor performance when using efficient linear segmentations of the space.

More promisingly, we have seen that traversable neighbourhood graphs can be used

to index a high dimensional dataset in a way that reduces the impact of segmenting

the data. When compared to the structure of low dimensional Delaunay graphs,

these high dimensional graph structures do not appear to fully utilise the complete

intrinsic structure of the data they are indexing. We believe that by not utilising all of

this structural information, these methods achieve a lower search performance than

what should be achievable with an indexing graph that fully represents the local

neighbourhoods found in the data. Following on from this analysis, we have deve-

loped a graph based indexing structure to exploit the low intrinsic dimensionality of

high dimensional visual data. In this chapter we introduce the core structure of our

graphs and then provide a detailed exploration of a number of alternative traversal

and construction strategies.
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4.1 The Occlusion Rule

The key innovation of our approach to ANN search is in utilising a local compari-

son that gives rise to desirable global structures. Specifically, we construct a list of

directed outgoing edges independently for each vertex in a graph. This involves a

process of evaluating each possible edge against the list of edges that have already

been included for that vertex. Our aim when evaluating edges is to only include an

edge if it forms part of the intrinsic structure of the data being indexed. The insight

that allows us to construct a graph with these properties is that for efficient traver-

sal, it is only necessary for each vertex to contain at least one edge that leads towards

(but not necessarily reaching) each other vertex. If this criteria holds then each lo-

cal neighbourhood of the graph can be traversed to reach any other neighbourhood,

even if the path arrives via intermediate neighbourhoods. In this way our graphs

can enable efficient global traversals that utilise an intrinsic dimensionality that is

lower than the extrinsic dimensionality of the data.

For each pair of vertices vi, vj ∈ V in an indexing graph G = (V,E) and with vi = xi

from a dataset X ⊂ Rm, we require there to be a directed edge e(vi, vk) ∈ E such

that vk (the vertex at the end of this edge) is closer to vj than the starting vertex

vi is. If this condition holds for all vertices in a graph, then we consider it to be

sufficiently connected for ANN searches. Every vertex in the graph will have at

least one edge that will provide a step towards every other vertex. Mathematically,

our initial criteria for edge selection requires that

∀{vi, vj ∈ V | i 6= j}, ∃ vk ∈ V such that

k 6= i ∧ e(vi, vk) ∈ E ∧ dist(vk, vj) < dist(vi, vj). (4.1)

This equation sets a lower bound on the number of edges in a graph, but also for

many different graphs that will satisfy it. If we consider the situation when k = j,

then the edge e(vi, vj) will be included in our graph. If we assign k = j for all pairs

of i and j, then we will end up with a fully connected graph. As such, this lower

bound is necessary but not sufficient for defining efficient traversable graphs.
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We would like to define an upper bound on the number of edges in our graph that

will also satisfy Equation 4.1. To achieve this, we postulate that it is undesirable

for any two outgoing edges to have an angle θ of less than π/3 between them (or

equivalently when cos θ > 1/2). As such we define an angular constraint where

∀{vi, vj , vk ∈ V | i 6= j 6= k}, e(vi, vk) /∈ E if

∃ e(vi, vj) ∈ E such that
(vj − vi).(vk − vi)
‖vj − vi‖ ‖vk − vi‖

>
1

2
. (4.2)

With this additional condition, an edge e(vi, vj) can not be included in our graph

if there is already an existing edge that also starts at vi and is pointing in what we

consider to be a similar direction. If there are fewer redundant edges leaving each

vertex, then we can expect a reduction in the total size of the graph.

In practice, Equation 4.2 can form different graphs depending on the order in which

edges are added to it. For the nearest neighbour search problem, we believe that

it is important for the minimum spanning tree (MST) to be present as a subgraph.

This will guarantee that each vertex is connected to its closest neighbour in the most

direct way possible. To achieve this, we only allow shorter edges to remove longer

ones. From the perspective of the starting vertex, we say that the longer edge is

occluded by the shorter one. With this additional constraint, we define our angular

occlusion rule as

∀{vi, vj , vk ∈ V | i 6= j 6= k}, e(vi, vj) occludes e(vi, vk) if

dist(vi, vj) < dist(vi, vk) ∧
(vj − vi).(vk − vi)
‖vj − vi‖ ‖vk − vi‖

>
1

2
. (4.3)

Figure 4.1 provides a simple illustration of the angular occlusion rule. In Figure 4.1a

the edge e(vi, vj) is added to the graph because there are no shorter edges within

a 60°range. This is also equivalent to saying that there are not vertices within the

shaded region that is formed by a hyperspherical cone that is cut from a hypersphere

centred on vi and with a radius equal to dist(vi, vj). Figure 4.1b demonstrates an

occlusion of the longer edge e(vi, vk) which will not be added to the graph as it falls

within the 60°exclusion area around e(vi, vj). Lastly, we can see that all vertices



Chapter 4. Fast Approximate Nearest Neighbour Graphs 56

a)

b)

FIGURE 4.1: A simple illustrative example of the angular occlusion
rule given in Equation 4.3. a) An unoccluded edge from vi to vj is
added to the graph. b) The occluded edge from vi to vk is not added.
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within the shaded outer region of the conical volume will also produce edges that

are occluded by e(vi, vj).

We observe that a very similar occlusion rule can be formulated to make use of dis-

tance relationships rather than angular ones. If we consider the situation where three

vertices form a perfect equilateral triangle, then as with the angular occlusion rule,

these vertices should form a fully connected subgraph. By adjusting the vertices to

form an internal angle of less than π/3 we must correspondingly shorten the oppo-

site edge of the triangle (relative to at least one of the other two edges). Since we are

only allowing for shorter edges to occluded longer ones, we can consider an occlu-

sion rule where edges are occluded if they are the longest edge of a triangle formed

with an already included edge. This allows us to define our distance occlusion rule

as

∀{vi, vj , vk ∈ V | i 6= j 6= k}, e(vi, vj) occludes e(vi, vk) if

dist(vi, vj) < dist(vi, vk) ∧ dist(vj , vk) < dist(vi, vk). (4.4)

The distance occlusion rule is illustrated in Figure 4.2 in the same way that we in-

troduced angular occlusion. Figure 4.2a shows that for the distance rule, the shaded

empty region that is needed for an edge to remain unoccluded is a lens formed by

the intersection of two hyperspheres. These spheres are centred on the two ends of

the edge being considered and both have a radius equal to the length of that edge.

In Figure 4.2b we see that each edge added to the graph will occlude all edges with

the same starting vertex that attempt to cross through the hyperplane bisecting that

edge. As we have discussed in Chapter 2, it is often unfavourable to divide high

dimensional spaces with hyperplane boundaries. In this case however, the minimal

criteria we have specified in Equation 4.1 ensures that whenever we do cross a hy-

perplane, we are guaranteed that the neighbourhood we arrive in will have at least

one way to get back towards where we came from.

In comparison to the angular occlusion rule, the distance rule requires a larger empty

volume of space before it will form an edge in the graph. Equivalently, this rule

forms a larger occlusion region and so some edges will be occluded despite the fact
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a)

b)

FIGURE 4.2: A simple illustrative example of the distance occlusion
rule given by Equation 4.4. a) An unoccluded edge from vi to vj is
added to the graph. b) The occluded edge from vi to vk is not added.
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that they form an angle of more than π/3 with the occluding edge. Ultimately, while

both occlusion rules will greatly reduce the number of edges in the graphs they

define, the distance rule will almost always result in graphs with fewer total ed-

ges. Figure 4.3 plots this relationship with the distribution of vertex degree for both

occlusion rules. There values are produced from indexing ten thousand SIFT vec-

tors in a 128 dimensional feature space. The relative position of the centroid of each

distribution demonstrates the higher degree vertices that are produced by the angu-

lar occlusion rule. Specifically, the angular occlusion graph has an average vertex

degree of 49.9, while the distance occlusion graph has a much lower average degree

of 15.3. Lastly, we note that there are no strong correlations between the out-degree

and in-degree of the vertices in either type of graph.

FIGURE 4.3: The out-degree and in-degree of each vertex contained
in graphs constructed with either Equation 4.2 or 4.3. Each graph con-
tains ten thousand SIFT vectors in a 128 dimensional feature space.



Chapter 4. Fast Approximate Nearest Neighbour Graphs 60

4.1.1 Related Graph Structures

We note a number of structures that are defined in a similar way to Equation 4.4

and have the common aim of creating sparse global edges based on simple and local

rules. Firstly, we look at two graph structures that have a number of major diffe-

rences from the graphs we have proposed. Most notably, these other structures are

intended to be used in two dimensions, they are undirected graphs, and to our kno-

wledge, they have not yet been applied to the ANN search problem. Here we briefly

describe these graphs and in Section 4.4.2.2 we evaluate their ANN performance

against our proposed structures. We then discuss a number of prior uses of Equa-

tion 4.4 that have arisen independently due to its close relationship with the triangle

inequality.

As previously discussed in Section 3.4, the edges in Delaunay graphs define a useful

set of local edges for low dimensional data. Due to this, they have also had some

influence on the design of high dimensional indexing graphs. At a more practical

number of dimensions, Delaunay graphs have inspired the formulation of a num-

ber of low dimensional graphs. Each of these low dimensional graphs are both a

spanning subgraph of the Delaunay graph, as well as a supergraph of the MST. Tou-

ssaint [79] defines relative neighbourhood graphs (RNGs) by connecting all pairs of

vertices only when there are no other samples that are closer to either member of a

pair than the distance between that pair. This rule defines an exclusion zone like the

shaded lens seen in Figure 4.2a. However, it is important to note that RNGs allow

a vertex to prevent the inclusion of an edge, while our graphs only allow for edges

to occlude each other. Urquhart [80] defines a structure similar to RNGs by starting

with a full Delaunay graph and then removing every edge that is the longest side

of a triangle. While the definition of RNGs can be trivially extended to higher di-

mensions, it is unclear how many edges should be removed from the simplices of

higher dimensional Delaunay graphs, in order to produce an Urquhart graph. It is

also likely that the rapid growth in vertex degree for higher dimensional Delaunay

graphs will ultimately make Urquart graphs unsuitable to construct in these spaces.

Figure 4.4 illustrates four different graphs, each of which are built on the same set
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FIGURE 4.4: Neighbourhood graphs constructed on random two di-
mensional data. Solid lines represent undirected edges and dotted
lines are directed edges. Coloured lines show the inclusion of additi-

onal edges when compared to a previous structure.

of random two dimensional vertices. The edges of the RNG are differentiated as

black edges that form part of the MST and coloured edges that are only found in the

Delaunay graph. In the context of ANN search, these additional edges form short

connections that can reduce the amount of backtracking needed for exploring the

MST. The Urquhart graph is almost identical to the RNG except for the inclusion of

one additional edge from the Delaunay graph. This indicates that the edge is not the

longest side a triangle in the Delaunay graph, but there is at least one other vertex

within the occlusion lens defined by this edge. The last graph is defined by our

distance occlusion rule from Equation 4.4. Here, the four solid coloured edges are

found the the Delaunay graph but not in the RNG. This occurs because a vertex is
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excluding the edge in the RNG, but that same vertex has not formed an edge in our

graph (due to occlusion from a shorter edge) and so there is no occlusion here. The

dotted edges in our graph represent additional edges that are unoccluded in only

one direction. Since a number of these directed edges form crossing paths, this set

must include some edges that are not found in the Delaunay graph.

Due to their close relationship with Delaunay graphs, naive construction of a RNG

can be computationally expensive. Jaromczyk and Kowaluk [81] proposed an alter-

native construction method that begins by constructing a supergraph of the RNG.

This intermediate graph utilises the properties of the triangle inequality and allows

shorter edges to occlude longer ones in a similar way to Equation 4.4. However, the

ultimate goal of constructing a RNG only requires the use of undirected edges. As

such, this intermediate result will not contain any of the undirected edges found in

our graphs.

Arya and Mount [82] built upon this intermediate graph for the purpose of ANN se-

arch with sixteen dimensional speech data. Their initial theoretical analysis looks at

defining a global vector space that can be translated onto each vertex in a graph. This

vector space then defines a set of non-overlapping convex cones that independently

determine the inclusion of edges that would fall within them. However, the per-

formance of this theoretical graph is stated to be uncompetitive, and so the authors

define a practical alternative by incorporating concepts from RNGs. The resulting

structure is a sparse neighbourhood graph (SNG), which used the occlusion method

that was previously defined for constructing RNGs. Because the SNG is a directed

graph, the edge selection method is now identical to Equation 4.4.

Navarro [67] independently applied the same edge selection method hierarchically,

in order to produce an indexing tree for the exact nearest neighbour search pro-

blem. Construction of this spatial approximation tree (SAT) begins by computing

all directed edges from a randomly chosen starting vertex. All remaining vertices

are then assigned to a leaf node of the tree, so that the edge selection can then be

repeated from each neighbour of the starting vertex. A tree structure is maintained

with each leaf node only considering edges to the vertices that have been assigned

to it. Additional layers of the tree are constructed by repeating this process until all
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vertices are included in the index. The SATs are then evaluated on natural language

data in up to twenty dimensions.

The distance occlusion rule that we have defined in Equation 4.4 has been repeatedly

shown to produce desirable structures for indexing datasets of between two and

twenty extrinsic dimensions. The equation represents a fundamental application of

the triangle inequality and can be applied in an arbitrary number of dimensions. Ir-

respective of a datasets dimensionality, the three vertices that are considered by the

occlusion rule can always be placed on a single two dimensional plane. After inde-

pendently arriving at this equation, our research introduces additional experiments

that explore many new and novel alternatives for constructing and searching this

type of index. As a final point of distinction, our research is focussed on the domain

of high dimensional visual data. The dataset we use in our experiments have a con-

siderably larger extrinsic dimensionality, and also contain many more samples than

the datasets used in existing works.

4.2 Evaluating ANN Performance

When evaluating the performance of an ANN index we are primarily interested in

achieving fast and accurate searches. This can generally be achieved by fixing either

the search time or and target accuracy and then measuring the free variable. For high

dimensional image data, the search time is dominated by the computational cost of

calculating pairwise distances. From Equation 2.1 we can see that each distance re-

quires a least three arithmetic operations per dimension, so this cost becomes more

dominant as the extrinsic dimensionality increases. The cost of the square root can

be easily avoided for comparisons as its inverse is a monotonic function. As such, a

theoretical search time can be measured by counting the number of distance compu-

tations during the search, rather than the practical measure of recording the elapsed

wall clock time. This measure has the major benefit of evaluating the cost of an

algorithm in a way that is independent of the hardware being used. Measuring se-

arch accuracy then involves allocating an allowable number of distance calculations

(bounded by the size of the dataset) and processing a set of queries before comparing
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their resulting neighbour sets to a precomputed ground truth. Similarly, because the

hardware is being abstracted out of the cost calculation we are not accounting for

other important factors such as cache coherency and thread divergence, which can

only be effectively measured with wall clock time. As such, we also report wall clock

times for our best performing implementation.

A more thorough theoretical evaluation method is to run each query until either the

full dataset has been compared to or until no additional progress is being made.

During these searches we can keep a record of the order in which each comparison

was made. This allows us to produce a full trade-off curve of cost against recall

by comparing the ground truth to increasingly large sections of the search records

and counting the fraction of completed queries after each number of distance calcu-

lations. It is conventional to plot these curves on a log-linear scale with speed-up

over linear search against recall. In order to improve the readability of performance

at high recall, we instead use a log-log plot to show speed-up over linear search

against the error rate. This format provides a clear comparison of the drop-off in

performance as the error approaches zero. Here, the speed-up is computed as the

size of the dataset divided by the number of distance calculations used and the er-

ror rate is fraction of queries that did not achieve the ground truth result. As such,

these plots are showing a speed-up relative to a naive linear search and are ignoring

possible optimisations in order to aid analysis of the theoretical performance of each

method.

One such optimisation that can impact the performance of both the linear search

and our own methods is the use of early bailout. When searching a dataset for the

nearest neighbour to a particular query, it can be beneficial to partially compute dis-

tances until it is guaranteed that a sample can not be the nearest neighbour. During

a linear search of a dataset, we expect that finding samples nearer to our query will

on average allow for increasingly less computation to be performed for each compa-

rison. Figure 4.5 plots the expected savings when applying this technique to data of

varying dimensionality. For randomly sampled data, both the binary and continu-

ous sampling show a similar trend of receiving the most benefit when the dimensi-

onality is in the range of ten to twenty extrinsic dimensions. Outside of this range,
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FIGURE 4.5: The expected fraction of each distance calculation that is
required when finding a nearest neighbour when using early bailout

with data of increasing dimensionality.

we see that early bailout will still provide a diminishing reduction in computation

as dimensionality increases. In contrast, the SIFT dataset that has been incremen-

tally truncated shows a consistently large gain in efficiency. As such, it is advisable

to include early bailout in any practical implementations where the fully computed

distances will not be required for subsequent calculations.

There are a number of additional choices we need to make when evaluating an ANN

index. The query set that is used for evaluation should be representative of the

type of queries that are expected to be seen in the target area of application. In

general, this means using previously unseen queries that are sampled from the same

distribution as the dataset, as is the case for the dataset we have outlined in Table 1.2.

Additionally, we find that evaluating the search performance with known vectors

does also provide useful information about the structure of the index. Based on

their inclusion in the indexed dataset, we refer to unseen queries as external queries

and the known vectors from our test set as internal queries. Additionally, the size of

the datasets we are indexing in our experiments have been chosen predominantly

to allow for feasible run times. However, there is still an open question as to how
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much data is actually required for adequate parameter tuning.

It is also useful to apply empirical analysis for gauging the costs and benefits of tar-

geting particular hardware. For this purpose, it is easiest to measure the search time

of a query using either wall-clock time or the total number of clock cycles used by

the process. In the case of wall-clock time, large gains can be achieved through paral-

lelisation that allows multiple queries to be processed simultaneously. This measure

also provides an easy way to compare the bookkeeping and memory access over-

heads for particular implementations of an ANN algorithm. Other measurements

that are often of interest for the practical use of an ANN index are the memory

requirements for running queries on the index and the memory and time cost of

constructing the index. Together, these can determine the feasibility of indexing a

particular dataset on a particular hardware platform.

4.3 Searching FANNGs

When performing an ANN search on a traversable graph we are interested in finding

samples from a previously indexed dataset X , that are in the same local neighbour-

hood as a particular query vector q from the query set Q. The dataset is indexed

with a graph G = (V,E) where V ⊆ X are the vertices of the graph and E is a set of

directed edges. For each query, the graph allows us evaluate the distance between a

current vertex and q and then traverse a previously unexplored edge to consider a

new vertex. In general, we aim to find the local neighbourhood of q while evaluating

distances from as few vertices as possible.

Due to the long history of research that explores graph structures, the question of

how best to travel through an ANN indexing graph during a search has also been

explored in detail. However, many algorithms have been shown to perform well

and for each of these there are often many possible implementation decisions. It is

not immediately clear what search strategy will work the best for the structures we

have defined. As such, we aim to build upon and broaden the search strategies that

are introduced for the indexing methods we discussed in Chapter 3. In this section
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we look at implementing a number of promising search strategies and compare their

results when applied to our graphs.

A number of small but advantageous implementation decisions have been used

across all of the search strategies we present. Firstly, since our graphs do not change

during or in-between queries we implement our search algorithms so that batches

of many queries can be run in parallel on the same graph. Due to the nature of high

dimensional graphs, memory access for a single query is highly random and so we

do not expect to pay a penalty for running concurrent searches. While this optimi-

sation does improve wall-clock time for processing each batch, it does not affect the

counting of distance calculations for each of the queries in the batch.

In regards to representation in memory, we load the dataset X from a single file that

contains a concatenation of the vectors that form our graph vertices V . The edges

of the indexing graph are also loaded as a block of concatenated vectors, each of

which represents a list of edges e ∈ E. The graph data contains a list of integers

for each vertex v ∈ V , where each entry represents an edge from v and stores the

integer index of the end vertex. In situations where these edge lists contain a varying

number of edges, we enforce uniform lengths by padding all of the edge lists to

the length of the longest edge list. The padding is implemented using a reserved

value that indicates the end of the list (such as -1 or UINT_MAX). Because of this,

iterating to the end of an edge list is achieved either when the reserved value is seen

or when we have reached the maximum edge list length for that particular graph.

Once loaded, we store both the vertex data and the edge data as a vector of vectors.

As each edge is loaded we compute the square of the edge length and then store

pairs of destination index and squared distance.

In situations where the indexed dataset contains duplicate entries, we detect these

duplicates during index construction and then only include the first of each dupli-

cate set as a vertex in the graph. We achieve this by ensuring that the removed vertex

maintain an empty edge list, and that any edge that would point to a removed vertex

is instead directed towards the first vertex in its duplicate set. Since we don’t allow

self-loops in the graph, duplicates can be easily detected by checking that each new

edge has a non-zero length. Additionally we store a list of duplicate pairs that each
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associate a non-vertex sample with the vertex it is coincident with. This allows us to

ignore the issue while executing a query and then if the need arises, we can check to

see if any of the query results are present in the duplicate list and return each of the

samples in those duplicate sets.

Lastly, it is possible to save some number of unnecessary distance calculations by

keeping track of previously visited vertices. In this way, if a search attempts to tra-

verse an edge back to an already visited vertex, then we can detect that a distance

has already been computed between that vertex and the query vector. Perhaps more

importantly for a graph containing cycles, this lets us guarantee that the search will

not become stuck traversing the same cycle within the graph. In situations where

memory is not constrained, we can allocate a single bit per vertex to flag when that

vertex has been visited. When running multiple parallel queries, each query requi-

res its own set of flags. Ultimately, an interesting dataset will contain a large number

of data vectors, and because our goal for each query is to only evaluate distances to

a small fraction of these, it is usually faster to maintain a set of flagging indices that

need to be reset at the end of each search than it is to reset every flag in-between

searches. In situations where constrained memory makes using these flags impossi-

ble, it is sufficient to just maintain U ⊆ V the set of indices that have been visited.

If each search only visits a small number of vertices, then linearly searching this set

before each edge traversal will remain relatively quick. If the set grows too large it

becomes preferable to use a data structure (such as a hash table or binary tree) that

can offer a more efficient lookup. In all cases, the set U can play the additional role

of tracking the best k vertices that have been seen so far. This can be implemented

by maintaining U as a (possibly truncated) sorted list that is ordered by ascending

distance to the query.

4.3.1 Traversing Local Neighbourhoods

The graphs defined by Equations 4.3 and 4.4 are formed from edge lists than can be

constructed independently at each vertex by applying the same simple rules. Due to

this, we expect that the structure of these graphs will be mostly uniform. Although

we should also expect to see some structural variation to reflect local differences
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in the dataset being indexed. The inherent structure of the dataset will ultimately

determine the effectiveness of indexing methods and search algorithms. Here we

look at properties of the local graph neighbourhoods and how they can inform an

efficient search for a query vector.

Figure 4.6 contains four different mappings of ten thousand SIFT vectors relative to

a prototypical query vector. The data we show here uses an external query and a

graph built with the distance occlusion rule, however we describe any important

changes that arise from using an internal query or the angular occlusion rule. Figure

4.6a looks at the length of a vector from each vertex to the query and plots it against

a) b)

c) d)

FIGURE 4.6: Distributions of edges from vertices of a graph con-
structed on ten thousand SIFT vectors using Equation 4.3. a) Number
of edges pointing towards the query. b) Fraction of each edge list
pointing towards the query. c) Number of edges ending closer to the

query. d) Fraction of each edge list ending closer to the query.
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the number of edges which start from that vertex and produce a positive dot pro-

duct with the vector. In other words, we are interested in knowing how proximity

to a query will affect the number of edges pointing in the direction of that query. As

is expected for a uniform structure, we find that there is noticeable change between

the distribution of edges at different distances from the query. The only exception

to this is a small amount of bimodal structure due to the two Gaussian clouds that

are present in SIFT data. The spread in the number of edges at any particular dis-

tance can be accounted for by changes in the local density of the data vectors. If we

consider the furthest side of the furthest Gaussian cloud from the query, then we see

an overall decrease in the number of edges when comparing to the distribution of

the denser central region of the cloud. This is favourable for our graph structures,

as edge lists that reflect the changes in local density are an important property for

exploiting the low intrinsic dimensionality of the data.

In Figure 4.6b we see the same comparison from the previous plot, however now the

number of edges are given as a fraction of the out-degree for each vertex. Since this

controls for the effects of edge list sizes, the disappearance of the bimodal structure is

further evidence of a relationship between vertex degree and local density. Perhaps

it is surprising that around 80% of all vertices have their entire edge list producing

a positive dot product. However, this validates a number of properties that were

discussed in Chapter 2. Firstly, since this 80% must cover the majority of vertices

in both Gaussian clouds we see that a single parameter from along this linear axis

has very little impact on the full global structure. This indicates that much like the

data, the graph has a uniformity that lacks a hierarchical structure. Across the entire

dataset there is no small set of vertices that have a special or unique vantage on the

query. This also ties into the concept that the entire dataset is bound between two

large hyperspheres that are both centred on the mean of the data. And since every

vertex is essentially sitting on the surface of a lower dimensional manifold, edges

will connect with local neighbours while still have some component in the direction

of most of the other vertices.

While most edges point in the direct of a query, the plots in Figure 4.6c and 4.6d

count only the edges with an end point that is closer to the query than the starting
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vertex is. These remaining edges are the ones that can be traversed during an ANN

search in order to make progress towards the local neighbourhood of the query. In

contrast to the previous two plots, we now see a significant overall decrease in the

number of edges being counted. There is also a clear relationship that shows as the

distance to the query reduces, there is also a consistent reduction in the counts. If

we consider a hypersphere centred on the query and with a particular vertex on its

surface, then we have seen that for most vertices all of their edges are directed into

the hypersphere. Now we see that when the vertex and query are closer together,

the hypersphere is smaller meaning that more of the edges will continue through

the hypersphere and terminate out the other side. This is easier to achieve in high

dimensional spaces, as vectors are more likely to be nearly perpendicular to each

other. In the context of ANN search, Figure 4.6d shows us that as the search progres-

ses, each edge list will have increasingly fewer edges that can continue the progress

towards the query. The leftmost vertex on the x-axis is the nearest neighbour to the

query, however there are also a number of other points with no edges being coun-

ted. Each of these other vertices are local minima that can prematurely halt a greedy

search. For an internal query, the structure of our graphs provide a guarantee that

the query vector will be the only vertex with no edges being counted.

4.3.2 Exhaustive Downhill Search

The most common way to use decision trees and indexing graphs for finding the

nearest neighbour of an arbitrary query vector is start at some vertex, test each out-

going edge from that vertex and then follow the edge that terminates closest to the

query. Testing each edge and following one of them is repeated until all outgoing

edges terminate at vertices that are further away from the query. This process, which

is given in Algorithm 4.1, is often referred to as greedy search, however here we re-

fer to it as an exhaustive downhill search due to evaluation of every outgoing edge

before moving to the next vertex. The computational complexity of this algorithm is

dominated by the distance calculation inside the two loops. For a graph of n vertices

each with m extrinsic dimensions and with an average vertex degree given by Eavg,

it seems that the worst case complexity will be O(nEavgm) if every vertex is visited
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during a search. However, because the distance to the query always decreases at

each step, and a decreasing distance bounds the number of remaining steps to be

no more than the number of vertices within a shrinking hypersphere, then there is a

much lower limit on the expected number of loop executions. Regardless of where a

search starts and ends, the number of vertices along the search path will always be

bounded by the diameter of the graph. At each vertex along this path, there can only

be as many distance calculations as there are outbound edges. As such, each search

has an equal cost to traversing a path through a weighted graph, where at each ver-

tex all outbound edges have a weight equal to the degree of that vertex. For these

graphs, the weighted diameter dw is the maximum number of distance calculations

for an exhaustive downhill search. Hence, the worst case complexity for this search

can be expressed as O(dwm).

Algorithm 4.1: Exhaustive downhill search
Input: graph vertices V

graph edge lists E
starting vertex U0

query vector q
Output: nearest neighbour best

1 U ← empty set of visited vertex indices
2 prev ← null
3 best← {U0, dist(U0,q)}
4 U.add(U0)
5 while prev 6= best and |U | < |V | do
6 prev ← best
7 foreach e ∈ E[best.index()] do
8 if e.to() /∈ U then
9 newDist← dist(V [e.to()],q)

10 if newDist < best.dist() then
11 best← {e.to(), newDist}

12 U.add(e.to())

13 return best

In Table 4.1 we evaluate the 1-nearest neighbour recall (written as R@1) and the as-

sociated average query costs for exhaustive downhill searches using our graphs. We

compare the graphs generated by each of the occlusion rules on both internal and

external queries, and for a range of different starting locations. The random start

simply begins each search by uniformly choosing a start vertex from the graph, the
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TABLE 4.1: Traversing FANNGs using exhaustive downhill search.

Angular occlusion Distance occlusion

Start location
Internal External Internal External

R@1 Cost R@1 Cost R@1 Cost R@1 Cost

Random 1.00 239.8 0.68 240.3 1.00 110.6 0.57 106.8
Medoid 1.00 264.9 0.70 274.0 1.00 121.6 0.54 112.7
Surface 1.00 200.9 0.72 205.7 1.00 105.1 0.56 97.2

surface start always begins from the vertex that is furthest from the centroid of the

dataset and similarly, the medoid start always begins from the vertex that is closest

to this centroid. The graphs are constructed on a dataset of ten thousand SIFT vectors

and the results are all averaged across a fixed set of 100 unique queries. The data pre-

sented in the table empirically verifies a number of properties that have previously

been discussed. As a direct result of the occlusion rules, both graphs maintain per-

fect recall across all of the internal queries. The angular occlusion graph consistently

has a much higher search cost than the distance occlusion graph due to the higher

average vertex degree from the less discriminative angular occlusions. However, it

is important to note that the additional edges also enabled a higher recall for external

queries on the angular occlusion graph than was seen from the distance occlusion

graph. Lastly, there was very little difference in the results from the different starting

locations, which reinforces the concept of uniformity throughout the graph and the

data space.

Lastly, Figure 4.7 presents a visualisation of the search paths for an internal and ex-

ternal query using the mapping from Figure 4.6d. Just as before, we achieve this by

using the distance occlusion rule to index a set of one thousand SIFT vectors and

then analysing the index. Figure 4.7a shows the path from a random starting vertex

to another randomly selected query vertex. Because we are using a downhill search,

each step in the path must move towards the left of the graph and bring the search

closer to the query. Since this is an internal query we can guarantee that the search

will eventually reach the query vector. In Figure 4.7b we show the same search, but

display all of the explored edges regardless of if they are traversed. Each edge is

coloured to correspond with the associated step in the previous plot. Throughout

the search most of the comparisons are evaluating vertices that are further from the
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a) b)

c) d)

FIGURE 4.7: Exhaustive downhill search paths projected onto a two
dimensional parametrisation of ten thousand SIFT vertices. a) Search
path towards an internal query. b) All evaluated edges for the internal
query. c) Search path towards an external query. b) All evaluated

edges for the external query.

query than the current vertex. This is most noticeable towards the end of the search

when the vertices have a much smaller fraction of their edge list leading closer to

the query. The plots in Figure 4.7c and 4.7d illustrate the search path and compari-

sons for an external query. The downhill search algorithm continues to ensure that

progress is made with each step, however there is no longer a guarantee that the glo-

bal minimum will be reached. For the query shown, the search path reaches a local

minimum and terminates without reaching the global optimum. Ideally we would

like to reduce the number of unused comparisons and also include a mechanism for

escaping local minima.
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4.3.3 Greedy Downhill Search

Due to our use of an ordered edge list at each vertex as well as the specific structure

of our graphs, we define a downhill search that is greedier than the exhaustive do-

wnhill search that is commonly used with other indexing structures. Algorithm 4.2

provides an overview of the greedy downhill search, which looks almost identical

to the exhaustive search in Algorithm 4.1. The key difference between the two algo-

rithms is the addition of line 12 to Algorithm 4.2. This additional statement instructs

the search to break out of the inner loop as soon as any edge can bring it closer to

the query. By exiting the loop early, the search is able to move to a closer vertex

before all of its outbound edges have been checked. While this does mean that some

search steps will not progress the maximum possible distance towards the query,

every step will still make some amount of progress towards it. For internal queries,

the occlusion rules still guarantee the existence of at least one edge that leads closer

to every other vertex in the graph. As such, regardless of which vertex we end up

at when following edges during an exhaustive search, the new neighbourhood will

always contain an edge that allows the search to progress.

Algorithm 4.2: Greedy downhill search
Input: graph vertices V

graph edge lists E
starting vertex U0

query vector q
Output: nearest neighbour best

1 U ← empty set of visited vertex indices
2 prev ← null
3 best← {U0, dist(U0,q)}
4 U.add(U0)
5 while prev 6= best and |U | < |V | do
6 prev ← best
7 foreach e ∈ E[best.index()] do
8 if e.to() /∈ U then
9 newDist← dist(V [e.to()],q)

10 if newDist < best.dist() then
11 best← {e.to(), newDist}
12 break

13 U.add(e.to())

14 return best



Chapter 4. Fast Approximate Nearest Neighbour Graphs 76

The key goal of the greedy downhill search is to reduce the number of unused dis-

tance calculations at each vertex along a search path. In Figure 4.6c we saw that

nearly all of the vertices have multiple edges leading closer to a particular query.

With a higher fraction of these edges in an edge list, it becomes far more likely that

at least one such edge will occur early in the list. This presents an optimisation pro-

blem, where for the edge list of every vertex we would like to find an ordering that

will minimise the average cost of including that vertex in the search path of a query.

This indicates that for our greedy downhill search, unlike the exhaustive search, the

search cost will be dependent on the iterating order at line 7 in Algorithm 4.2. Based

on this dependency, we can again express the worst case complexity of the search as

O(dwm). However, in this case the weighted diameter dw is measured on a graph

where at each vertex, the outbound edges have a cost equal to their edge list index.

In Table 4.2 we evaluate the greedy downhill search with four different edge list or-

derings that can be independently computed at each vertex. We compare the graphs

generated by each of the occlusion rules on both internal and external queries, and

with each different edge list ordering. The shortest length ordering compares the

length of each edge in an edge list, and then arranges them in ascending order. Be-

cause both of the occlusion rules specify that only shorter edges can occlude longer

edges, the shortest length ordering is the natural order when adding edges to an

edge list. In contrast, the longest length ordering is simply the reverse of a shor-

test length ordering. As such, all of the edge lists are sorted in descending order of

edge length. Both the largest angle and smallest angle orderings begin by selecting

the shortest edge and placing it at the start of the edge list. Subsequent edges are

then selected by comparing all of the unselected edges against the current pool of

TABLE 4.2: Traversing FANNGs using greedy downhill search.

Angular occlusion Distance occlusion

Edge ordering
Internal External Internal External

R@1 Cost R@1 Cost R@1 Cost R@1 Cost

Shortest length 1.00 121.2 0.63 126.7 1.00 64.4 0.48 60.2
Longest length 1.00 160.2 0.64 177.4 1.00 78.2 0.51 73.8
Largest angle 1.00 97.3 0.69 116.8 1.00 53.1 0.50 47.3
Smallest angle 1.00 164.7 0.64 157.7 1.00 73.2 0.52 64.5
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selected edge and adding the one based on a greedy criterion. For the largest angle

ordering, an edge is selected if the minimum angle between it and any of the selected

edges is the largest. Similarly, the smallest angle ordering selects the smallest max-

imum angle for the set. Overall, the most notable results come from comparing the

different edge list orderings. The impact of the different occlusion rules and query

types remains similar to what was seen for the exhaustive downhill search. Results

for the internal queries clearly demonstrate a significant reduction in search cost

when using the greedy downhill search. At their best, the early loop terminations

have halved the average search. This result also indicates that the diameter of the

weighted graph has been significantly reduced by the new weighting of the edges.

Comparing the different edge list orderings, the largest angle ordering consistently

performs the best and the shortest length ordering is second best. While long edges

should have the potential to make a large amount of progress towards a query, in

practice it is more efficient to favour the shorter edges. Despite this apparent bias,

all of the longer edges are still an essential component in guaranteeing that there are

no local minima for searches using internal queries. The significant cost reduction

from using the largest angle ordering shows an even stronger bias. As edges are

being evaluated and found to be leading further away from the query, it is a good

strategy to then look in the opposite direction to where the previous edges have been

directed.

In Figure 4.8 we visualise the search path of the same internal query that was used

for the exhaustive downhill search in Figure 4.7a and 4.7b. Contrasting this to Figure

4.8a shows that applying the greedy downhill search has resulted in more vertices

along the search path. Despite traversing across these additional vertices, the total

search cost has been reduced by about one third. In Figure 4.8b we can see each

vertex that was evaluated throughout the search. When compared to the exhaustive

downhill search, many of these intermediate vertices have performed relatively few

checks before an edge has allowed the search to progress. The plots in Figure 4.8c

and 4.8d provide an additional view of this search. Both plots show the search pro-

gress from left to right, and are divided into coloured bands that each correspond

to a particular vertex from the search path. Figure 4.8c shows the distance between
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FIGURE 4.8: A greedy downhill search path projected onto a two di-
mensional parametrisation of ten thousand SIFT vertices. a) Search
path towards an internal query. b) All evaluated edges for the inter-
nal query. c) Search progress after each evaluated edge. b) Edge list

index of each evaluated edge.
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the query vector and each of the vertices that were evaluated during the search. A

significant portion of the search is spent making frequent incremental progress until

later when three large improvements are found. Finally, the global minima is rea-

ched at iteration 48 and a large number of comparisons are used to exhaust all of the

outbound edges and guarantee that it is a true minima. This larger set of evaluations

is typical for the cost of exploring each vertex during an exhaustive downhill search.

Figure 4.8d plots the corresponding edge list index for each of the distance calculati-

ons shown in the previous plot. Typically the search does not need to evaluate many

edges before a better vertex is found and a new edge list is evaluated. Occasionally,

such as iteration 18, an edge list contains a vertex that has already been evaluated

and so that index is skipped. Overall, the greedy downhill search is able to move

quickly though the indexing graph by making only a few comparisons at each ver-

tex. Visiting more vertices along the search path ends up being more efficient than

paying a large search cost at fewer vertices. In other words, despite having a longer

average path length the weighted path length of a search will be shorter on average

for a greedy downhill search that it is for an exhaustive downhill search.

4.3.4 Random Restarts

The graphs we have defined will always contain enough edges to ensure that a do-

wnhill search can reach an internal query from any other vertex. However, external

queries are samples from the data space that were not considered during the edge

selection process. For these queries, we have seen that a downhill nearest neighbour

search can become stuck in local minima with no edges directed towards the global

optimum. Since these local minima place a limit on the maximum recall that we can

achieve with our graph, we would instead prefer to use additional computations

to escape the minima and boost the recall. Random restarts are a commonly used

strategy for escaping local minima when searching both graph and tree structures.

For a greedy downhill search with random restarts we would like to begin the se-

arch from a variable number of vertices throughout the graph. If we sequentially

run r repeats of the search then the worst case complexity will be O(rdwm). We
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start each repeat from a random vertex in the graph that has not been checked du-

ring a previous search iteration. Similarly, since subsequent repeats can avoid all

previously checked vertices, the weighted diameter dw is expected to decrease as

r increases. An updated diameter can be measured by building a weighted graph

with only the unchecked vertices and the edges that connect between pairs of these

remaining vertices. For the greedy downhill search, each edge in the updated graph

can potentially have a lower cost if earlier edges have been removed from the edge

list. It is possible for a large number of repeats to essentially partition the vertices

into multiple disconnected subgraphs. This will simply result in search paths that

terminate at whatever local minima is reachable within their partition, and so dw is

then the largest diameter across all subgraphs.

Table 4.3 contains the results of greedy downhill searches run with an increasing

number of random restarts and on a dataset of ten thousand SIFT vectors using only

external queries. These experiments were executed on graphs that are constructed

with each of the occlusion rules and using both the largest angle edge list ordering

and the shortest length ordering. The results show that additional restarts are able

to considerably increase the recall for each of the different graphs. However, the

additional restarts also result in a growing computational cost. As expected, the

average cost of each additional restart does decrease slightly as more vertices have

already been checked. Figure 4.9 presents a logarithmic plot of the same perfor-

mance numbers, but plotted as speed-up over linear search against error rate. This

configuration allows for the trade-off between cost and recall be more clearly seen.

As the number of random restarts is increased, the computational gain over a linear

search goes down and the error rate drops towards the right-hand side of the plot.

TABLE 4.3: Traversing FANNGs using random restarts.

Angular occlusion Distance occlusion

Restarts
Angle order Length order Angle order Length order
R@1 Cost R@1 Cost R@1 Cost R@1 Cost

1 0.69 116.8 0.63 126.7 0.50 47.3 0.48 60.2
2 0.84 230.4 0.82 250.8 0.66 95.1 0.62 116.4
3 0.91 344.2 0.86 373.2 0.72 138.1 0.68 170.7
5 0.97 534.3 0.94 597.8 0.83 229.3 0.81 279.3

10 0.99 960.0 0.99 1108.1 0.94 429.6 0.91 528.1
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FIGURE 4.9: Search performance trade-off for a variable number of
random restarts. Results from between 1 and 10 restarts are shown
for each graph type, with additional restarts offering a lower error at

the cost of computing more distances.

FIGURE 4.10: Exhaustive downhill search paths from random restarts
are projected onto a two dimensional parametrisation of ten thousand
SIFT vertices. Restarts can escape local minima at the expense of lo-

sing considerable search progress.
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Each of the curves shows diminishing returns as the number of restarts is increased.

For instance, as the speed-up is reduced by one third from 100 to around 30 there

is a 40% reduction in error, however, reducing the speed-up by another third from

30 to 10 only yields a 9% reduction in error. Comparing the different graphs types

shows that the edge ordering does have a small influence over the trade-off between

cost and recall, while the choice of occlusion rule does not.

Lastly, in Figure 4.10 we visualise a search path of the same external query that

failed to find the global minimum with the exhaustive downhill search in Figure

4.7c and 4.7d. Four consecutive restarts are shown as overlaid paths on the same

plot. Because edges to previously checked vertices are ignored, it is possible for

later search paths to terminate above the x-axis as new local minima are created.

With each new search path, there is a high probability that the search will begin

significantly further from the query than the local minima that prompted the most

recent restart. As such, random restarts neglect to take full advantage of progress

that has already been made towards finding the local neighbourhood of a query.

Additionally, since there is no way of verifying when a global minima is found, any

remaining repeats will still be executed and add to the overall search cost.

4.3.5 Greedy Backtracking Search

A less naive approach for escaping local minima during a nearest neighbour search

is to backtrack along the previously explored search path. Backtracking searches

have already been shown to be an effective way to achieve higher recall when ex-

ploring indexing trees and graphs. Commonly a priority queue is used to maintain

a sorted list of each vertex that has previously been seen during the search. The

queue is sorted by ascending distance between each vertex and the query vector.

With this configuration, each search iteration involves removing the first member of

the queue, evaluating each of its neighbours and then adding the newly evaluated

vertices to the queue. While this approach to backtracking search is building upon

the exhaustive downhill search, we would rather make use of our more efficient

greedy downhill search. Algorithm 4.3 describes our greedy backtracking search in

full. The priority queue P at line 1 stores each vertex as the next unchecked edge list
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entry. Newly checked vertices are added to the priority queue with the first edge in

their edge list. And then after a vertex is removed from the head of the queue it will

be added back with the next edge in its edge list, or if the edge list is exhausted then

the vertex can be discarded.

Algorithm 4.3: Greedy backtracking search
Input: graph vertices V

graph edge lists E
starting vertex U0

query vector q
maximum vertices to visit Umax

Output: index of nearest neighbour vertex best
1 P ← empty priority queue
2 U ← empty set of visited vertex indices
3 best← {U0, dist(U0,q)}
4 P.enqueue(E[start].head(), best.dist())
5 U.add(U0)
6 while |P | > 0 and |U | < Umax do
7 e, sourceDist← P.dequeue()
8 if e.to() /∈ U then
9 newDist← dist(V [e.to()],q)

10 if newDist < best.dist() then
11 best← {e.to(), newDist}
12 P.enqueue(E[e.to()].head(), newDist)
13 U.add(e.to())

14 if E[e.from()].next() 6= null then
15 P.enqueue(E[e.from()].next(), sourceDist)

16 return best

Whenever a local minima is found by the greedy backtracking algorithm, the search

will continue to explore from the closest unexplored vertex that is still in the priority

queue. If that minima is in fact the global minima, then the k-nearest neighbours

for that query will be approximated as the local neighbourhood is expanded. In

order to bound the search time, a maximum limit Umax is placed on the number

of distances that will be computed during a search. Once all of this computation

has been exhausted, the search is immediately terminated and the closest observed

vertex is returned. Controlling the search cost via Umax allows for management of

the trade-off between recall and computational cost. Because Umax places an upper

bound on the number of distance calculations during a search and is also bounded

by the number of vertices n, the worst case computational complexity for the greedy
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backtracking search is simply O(nm). For the average case, Section 4.5.4 examines

the relationship between Umax and n.

Figure 4.11 shows the trade-off as greedy backtracking searches are run on a dataset

of ten thousand SIFT vectors over a range of different search costs and using exter-

nal queries. Results were collected for each of the occlusion rules and using both the

largest angle edge list ordering and the shortest length ordering. The best results

from the greedy downhill search are also shown for comparative purposes. Compa-

red to the previous search strategies, the greedy backtracking search demonstrates

a consistently higher speed-up across a wide range of error rates. In contrast to the

greedy downhill search results in Figure 4.8, it is now the occlusion rule rather than

the edge list ordering that has the most impact on the search performance. Additi-

onally, because the distance occlusion graph is now found to be outperforming the

angular occlusion graph, it is likely that the greedy backtracking search is able to

take advantage of the lower average vertex degree in the distance occlusion graphs.

This concept is explored further in Section 4.4.2.
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FIGURE 4.11: Search performance trade-off for greedy backtracking
search with various graph structures. Almost all results exceed the

best performance achieved with greedy downhill search.



Chapter 4. Fast Approximate Nearest Neighbour Graphs 85

a) b)

c)

20 40 60 80 100 120 140

Search iteration

0

1

2

3

S
q

u
ar

ed
 d

is
ta

n
ce

 f
ro

m
 v

er
te

x
 t

o
 q

u
er

y

×10
5

d)

20 40 60 80 100 120 140

Search iteration

0

3

6

9

12

15

18

C
u

rr
en

t 
ed

g
e 

li
st

 i
n

d
ex

FIGURE 4.12: A greedy backtracking search path projected onto a two
dimensional parametrisation of ten thousand SIFT vertices. a) Search
path towards an external query. b) Backtracking steps to escape local
minima. c) Search progress after each evaluated edge. b) Edge list

index of each evaluated edge
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In Figure 4.12 we visualise the progress of a greedy backtracking search starting from

a random vertex and finishing when it reaches a difficult external query. In this case,

the search is not considered to be a path or even a walk because the backtracking

steps are able to instantaneously return the search to a previously checked vertex.

Figure 4.12b shows an enlargement of the search progress from around iteration 40

until completion. Unlike the random restarts seen in Figure 4.10, the backtracking

search is able to remain a short distance from the query while it expands out from

previously seen vertices. Considering the additional information presented in the

plots of Figure 4.12c and 4.12d, we can see that at iterations 60, 83 and 95 an edge

list has been exhausted without a closer vertex being found and so the search con-

tinues from the neighbour that was found closest to the query. Then when an edge

list is exhausted at iteration 108 the search instead resumes from a previously visited

vertex that still has some unexplored neighbours. Because this step does not corre-

spond to following an edge of the graph, it is represented in Figure 4.12b as a dashed

line. Iterating through the edge list of the previously visited vertex is resumed from

where it had stopped at iteration 67. Once the edge list of the revisited vertex is also

exhausted, its neighbour from iteration 62 becomes the closest vertex in the priority

queue. From here there is now a path to the nearest neighbour of the query that will

avoid all local minima and could be followed using just a greedy downhill search.

4.4 Constructing FANNGs

The occlusion rules from Equations 4.2 and 4.4 give rise to interesting graph struc-

tures that are the topic this chapter. These graphs are formed by defining a list of

outbound edges to represent a local neighbourhood around each vertex. A naive

approach for constructing the edge list E[i] of a given vertex vi is to first build a

complete list of edges Emax, from vi to each other vertex. The edges in Emax are

stored in ascending order of edge length so that the shorter edges are considered

before the longer ones. Once constructed, iteratively comparing each edge in Emax

to each edge in E[i] will determine which edges from Emax are occluded and which

can be added toE[i]. Initially the listE[i] will be empty, so the first edge inEmax will
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always be unoccluded. On subsistent iterations as more edges are added to E[i], the

longer edges in Emax become increasingly more likely to be occluded by at least one

of the shorter edges in E[i]. A full overview of the naive graph construction is given

in Algorithm 4.4.

Algorithm 4.4: Naive graph construction
Input: graph vertices V
Output: graph edge lists E

1 foreach vi ∈ V
∣∣ 1 ≤ i ≤ |V | do

2 Emax ← empty edge list
3 foreach vj ∈ V

∣∣ 1 ≤ j ≤ |V | ∧ i 6= j do
4 Emax.insert(edge(j, dist(vi, vj)))

5 E[i]← empty edge list
6 foreach e1 ∈ Emax do
7 occluded← false
8 foreach e2 ∈ E[i] do
9 if e2 occludes e1 then

10 occluded← true
11 break

12 if not occluded then
13 E[i].append(e1)

14 E[i].sort()

15 return E

For a graph of n vertices, Algorithm 4.4 must perform n iterations of the outer loop

at line 1. Each iteration involves building a sorted list of n − 1 elements, iterating

through the list and comparing each element to a growing set of unoccluded edges

and then lastly performing an optional reordering of the edges at line 14. By default

the final edge lists will be sorted in ascending edge length order. The computational

complexity of building the sorted list is O(n log n) and because the list is sorted by

distance, there is an additional cost from the dimensionality m for each insertion. If

none of the edges are found to be occluding each other, then a total of 1/2(n−1)n uni-

que comparisons will be needed and each requires a distance calculation. This gives

a complexity of O(n2m) which in practice will only apply for the degenerate case

where the vertices are the n corners of an (n− 1)-simplex. In all cases, each possible

edge will undergo a number of comparisons equal to the final degree of the vertex.

As such, a tighter bound on the occlusion complexity is O(nEavgm) with Eavg being

the average vertex degree across the entire graph. Similarly, the reordering of the
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unoccluded edges will have a cost of at most O(E2
avgm). Assuming Eavg ≥ log n, the

naive graph construction is dominated by the occlusion checks with an overall com-

plexity of O(n2Eavgm). In practice, graph construction time can also be reduced by

parallelising the work load. Construction is embarrassingly parallel as each iteration

of the outer loop can be computed independently. For each independent thread, the

space complexity is O(n) for storing the distance from vi to each other vertex and

the indices that form the sorted list C. When completed, the space complexity for

storing the entire graph is O(n(Eavg +m)) due to the cost of both the edges and the

vertices.

We are interested in using fast implementations of the occlusion rules, as the checks

at line 9 of Algorithm 4.4 are a significant component of the graph construction ti-

mes. For the distance occlusion rule in Algorithm 4.4, each comparison can be op-

timised simply by comparing squared Euclidean distances in order to avoid com-

puting square roots. If sufficient memory is available then construction can also

be accelerated by pre-computing all pairwise distances. While this optimisation re-

sults in a space complexity of O(n2), it also reduces the computational complexity

to O
(
n2(Eavg +m)

)
. For the angular occlusion rule in Equation 4.2 it is difficult to

avoid the cost of computing the dot products, however the comparison can still be

rearranged and then squared to give

(vj − vi).(vk − vi) >
1

2
‖vj − vi‖ ‖vk − vi‖ (4.5)

(vj − vi).(vk − vi)
∣∣(vj − vi).(vk − vi)∣∣ > 1

4
‖vj − vi‖2 ‖vk − vi‖2. (4.6)

This configuration avoids the cost of inverting the distances and also removes the

need to square root them so that precomputed squared distances can still be used.

When squaring each side of the equation it is important to preserve the sign on the

left-hand side so that the relationship still holds.
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4.4.1 Intrinsic Dimensionality and Vertex Degree

In Section 4.1 we saw that using our occlusion rules with a graph construction met-

hod such as Algorithm 4.4 has the favourable property of creating graphs with re-

latively low average vertex degree. For a small dataset of SIFT data, the average

vertex degree has remained in the range of 10 to 50 neighbours despite these verti-

ces sitting in a 128 dimensional space. In contrast, the k-nearest neighbour graphs

discussed in Section 3.4 require neighbourhoods with hundreds or even thousands

of edges in order to operate effectively. Shown again in Figure 4.13, the analysis

we presented in Section 2.3.4 demonstrates that the intrinsic dimensionality of SIFT

data is much lower than the number of extrinsic dimensions needed to represent the

data. As such, we are interested in the relationship between the low vertex degree of

our graph structures and the low intrinsic dimensionality of the data. It is possible

that occluded outbound edges are pruned so that the remaining edges approximate

a span of the local intrinsic neighbourhood around a vertex.

To observe the impact of intrinsic dimensionality on the average vertex degree of our

graphs, several datasets of random vectors were generated with increasing extrinsic
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FIGURE 4.13: Hausdorff dimensionality of one million SIFT vectors.
The peak dimensionality is measured to be approximately 11.
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FIGURE 4.14: Relationships between the average out-degree of index-
ing graph vertices and the dimensionality of synthetic datasets. Each
dataset contains samples generated uniformly at random from within

an m-cube.
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dimensionality by sampling uniformly from within an m-cube. These datasets were

then indexed using the distance occlusion rule given in Equation 4.4. Figure 4.14a

plots the roughly linear relationship between the length of the random vectors and

the average degree of vertices in the index. Since we are attempting to fill these vec-

tor spaces with random samples, we expect that the intrinsic dimensionality should

roughly follow the full dimensionality of the space. However, we have previously

seen that the number of samples in a dataset can impact the intrinsic dimensionality

of the data. So, as the number of extrinsic dimensions increases it will become har-

der for random samples to fill the space. We observe this property in Figure 4.14b

with the peak Hausdorff dimensionality measured for each dataset. Constant incre-

ases in the number of extrinsic dimensions results in diminishing increases for the

intrinsic dimensionality. This bias is then also seen in Figure 4.14c where we plot the

average vertex degree against the measured intrinsic dimensionality. However, this

relationship should still provide a rough guide for the expected degree of graphs

constructed on non-synthetic datasets. Unlike random vectors, actual feature map-

pings will place a bound on the intrinsic dimensionality of their feature spaces. This

should then correspond to a bound on the average degree of vertices in our index-

ing graph. We see that Figure 4.14c suggests an intrinsic dimensionality of around 11

produces an average vertex degree of about 24, which is within the expected range

that we have seen for our graphs.

4.4.2 Variable Out-Degree

Average vertex degree has had a significant influence on the maximum recall for

downhill searches as well as the computational cost of backtracking searches. Ex-

tending our initial edge selection rules to allow for a variable vertex degree will

provide a means of tuning these search properties. The angular occlusion rule in

Equation 4.2 produced graphs with a higher average vertex degree than those from

the distance occlusion rule. To lower the average degree, we can modify the angular

rule so that each edge covers a larger occlusion region. One possible formulation of
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this is to exclude edges when

(vj − vi).(vk − vi)
‖vj − vi‖ ‖vk − vi‖

> cos(π/3 + t). (4.7)

Instead of just excluding edges within an angle of π/3 of a shorter edge, a variable

angle of t is used to extend the occlusion region. An example of this stronger rule

can be seen in Figure 4.15. In contrast to the edges seen in Figure 4.1, e(vi, vn) now

prevents the inclusion of e(vi, vj). As such, e(vi, vk) is then unoccluded and will form

part of the final graph. Overall, we expect that larger occlusion regions will result in

a lower average vertex degree.

FIGURE 4.15: A simple example of the variable sized occlusion region
defined by Equation 4.7. Larger occlusion regions will typically result

in fewer total edges.

Table 4.4 presents a summary of ANN search results from graphs constructed with

increasingly large values of t. Each graph is constructed on a dataset of ten thousand

SIFT vectors and the edge lists all retained the natural ordering of ascending edge

lengths. As expected, the additional parameter t is effective at tuning the number of

edges included in a graph. As t increases the average vertex degree rapidly drops

towards that of the distance occlusion rule and then slows as it approaches zero. The

greedy downhill searches for internal queries show that when t > 0, the removal

of edges that would be selected by Equation 4.2 will also remove the guarantee of

avoiding local minima during a downhill search. For both the internal and external

queries, larger values of t result in shorter downhill searches as the increasingly
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TABLE 4.4: Traversing graphs with increasingly strict occlusion rules.

Occlusion Average Greedy Downhill Search Greedy Backtrack Search
threshold degree Internal External Internal External

(t) (Emax) R@1 Cost R@1 Cost R@1 Cost R@1 Cost

0 49.9 1.00 121.2 0.63 126.7 0.87 120 0.61 120
5 22.9 0.86 74.0 0.48 73.1 0.96 120 0.75 120
10 11.8 0.50 42.0 0.36 44.1 0.91 120 0.73 120
15 6.8 0.15 24.9 0.20 26.5 0.73 120 0.70 120
20 4.3 0.10 17.3 0.03 17.1 0.65 120 0.60 120
25 3.0 0.01 9.5 0.01 9.9 0.42 120 0.50 120

abundant local minima are found faster. Decreasing recall is also seen due to the

additional local minima, while lower search costs are a combination of shorter search

paths and fewer edges towards each local minima. The variable t is providing a

trade-off between recall and search cost, and as such, the performance of the greedy

backtracking search can be compared using a fixed number of search iterations. As

was previously seen, the backtracking search is able to use additional computations

to escape local minima and achieve higher recall results than a downhill search.

Again we see that a lower average vertex degree can facilitate a more efficient search,

however this benefit appears to have a limit. At t = 5, the backtracking search

reaches a maximum recall performance that outperforms both the higher and lower

degree graphs.

4.4.2.1 Exact Nearest Neighbour Search

The distance occlusion rule in Equation 4.4 can be used to build ANN graphs for

an arbitrary query vector, however a downhill search is only guaranteed to find

the nearest neighbour when using internal queries. We have also seen that both

modifying the occlusion rule or using a backtracking search will provide a trade-off

between recall and search cost. While Equation 4.7 reduces the number of edges

in a graph, here we formulate a modified distance occlusion rule that increases the

number of edges in order to guarantee that external queries will avoid local minima

when using a downhill search.

For the fixed radius nearest neighbour problem from Equation 3.1, let us assume that
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FIGURE 4.16: A simple example of exact nearest neighbour regions.
All queries that fall within the shaded regions need to find their nea-

rest neighbours with a downhill greedy search.

true neighbours will have a pairwise distance that is less than some limit τ . As such,

we would like to give a guarantee of 100% recall when using a downhill search on

a query that is within τ distance of its nearest neighbour. Figure 4.16 illustrates this

for a value of τ such that the hyperplane bisecting edge e(vi, vj) is tangential to the

hyperspherical region around vk. In this configuration, any query vector within τ

distance of vk must be nearer to vj than vi and so the edge e(vi, vk) is unnecessary

for a downhill search. If we then consider a case where vk is moved slightly closer to

vi, part of the nearest neighbour region around vk would then be closer to vi than it is

to vj . Now a downhill search for a query in this part of the region will not follow the

edge e(vi, vj) and if the edge e(vi, vk) is not present, then vi will be a local minimum.

This indicates that vk sits at the limit of where the occlusion boundary between vi

and vj should be moved in order to prevent local minima from prematurely halting

these searches.

Guaranteeing that a downhill search will find nearest neighbours within a distance

of τ from any vertex requires moving each occlusion boundary by a distance of τ . As

can be seen in Figure 4.16, using Euclidean distance and the Pythagorean theorem

then gives

dist(vi, vk)
2 =

(1
2
dist(vi, vj) + τ

)2
+ L2 (4.8)
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and

dist(vj , vk)
2 =

(1
2
dist(vi, vj)− τ

)2
+ L2 (4.9)

which through subtraction yields

dist(vi, vk)
2 − dist(vj , vk)2 = 2τdist(vi, vj). (4.10)

Rearrangement then provides an inequality for the updated occlusion boundaries,

and so the modified criteria for occluding edges can we written as

dist(vj , vk)
2 < dist(vi, vk)

2 − 2τdist(vi, vj). (4.11)

This now ensures that an edge e(vi, vj) will only occlude an edge e(vi, vk) if it is gua-

ranteed that there are no queries where dist(q, vk) < τ and dist(q, vi) < dist(q, vj).

Table 4.5 summarises the results of greedy downhill searches on graphs of 100 thou-

sand SIFT vectors that are built using the modified occlusion rule in Equation 4.11

and with various values of τ . Each τ is chosen to be a fraction of τmax, which has

been calculated as the largest distance between any two nearest neighbours in the

indexed dataset. This value of τmax is based on the assumption that the nearest neig-

hbour distances in the dataset are representative of the distances between queries

and their closest neighbours. The recall results verify that the less restrictive occlu-

sion rule is capable of removing local minima and enabling downhill searches that

achieve perfect recall on sets of external queries. We also see that building graphs in

this way has significantly increased the average vertex degree. Higher degree verti-

ces will result in an increased space complexity for storing a graph and an increased

search time from additional edges at each step along a search path.

TABLE 4.5: Search performance of variable degree graphs.

τ/τmax

Average
Recall

Average
degree query cost

0.00 24.3 0.710 110.5
0.38 127.5 0.998 360.0
0.50 232.0 0.999 547.8
0.75 753.5 1.000 1315.5
1.00 2182.9 1.000 3123.2
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4.4.2.2 Undirected Edges

Section 4.1.1 introduced the undirected graph structure called Relative Neighbour-

hood Graphs (RNGs). Despite being designed for low dimensional data, RNGs can

still be constructed in higher dimensions due to an edge selection rule that has simi-

larities to our occlusion rules. We are interested in exploring whether these simila-

rities will also give RNGs a structure that is effective at indexing high dimensional

data for ANN searches. Additionally, we use two alternative methods to produce an

undirected graph from our own directed structures. Our first method is to convert

each directed edge into an undirected edge by adding an additional edge in the op-

posite direction to each existing edge. These edges only need to be added if there is

not already an edge in both directions between two vertices. Our second method is

to remove any edge that does not already have a corresponding edge that travels in

the opposite direction.

In Table 4.6 we evaluate the performance of each of the undirected graphs and com-

pare them to a directed graph that is constructed using the distance occlusion rule.

Each of the graphs is constructed on a dataset of ten thousand SIFT feature vectors

and the edges are ordered by ascending edge length. As should be expected for our

two undirected graphs, the method that is adding edges results in a higher average

vertex degree and removing edges causes a lower average. The RNG has the lo-

west average vertex degree and this can be explained by the more restrictive edge

selection rule for constructing this graph. Looking at the ANN search performance,

the edges in the RNG are not sufficient for avoiding local minima during a downhill

search. The effect of local minima can also be seen in our graph that has had some

of its edges removed. While the guarantee of finding internal queries is maintained

TABLE 4.6: Search performance of graphs with undirected edges.

Avg. Greedy Downhill Search Greedy Backtrack Search

Edges
degree Internal External Internal External
(Eavg) R@1 Cost R@1 Cost R@1 Cost R@1 Cost

Directed 15.3 1.00 86.1 0.43 79.5 1.00 53.3 1.00 99.9
Edges added 19.6 1.00 88.7 0.51 85.0 1.00 49.3 1.00 94.3
Edges removed 6.9 0.26 39.5 0.14 36.1 1.00 74.1 1.00 96.0
RNG 4.9 0.12 25.5 0.05 23.8 1.00 89.5 1.00 117.5
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for the undirected graph with additional edges, the higher average vertex degree

results in a larger computational cost when compared to the directed graph.

4.4.2.3 Truncated Edge Lists

Sections 4.4.2 and 4.4.2.1 have both demonstrated that vertex degree has a significant

influence on the query cost of ANN searches. If the average vertex degree Eavg

is too high, then exploring the larger neighbourhood at each visited vertex results

in a higher overall search cost. Lower degree graphs generally offer better search

performance, however if Eavg is too low then additional backtracking can greatly

increase the number of vertices visited during each search. A simple method for

reducing the average vertex degree of a graph is to truncate the edge list of each

vertex to a limit of T edges. Previously, Figure 4.3 illustrated that despite having an

average vertex degree of around 50, the maximum vertex degree of the full angular

occlusion graph is over 200. Truncating to a lower maximum vertex degree should

allow for a reduction in the average query cost of greedy backtracking searches, with

minimal impact on the recall rate.

Table 4.7 details the reduction in Eavg that occurs with increasing levels of edge list

truncation. These values are computed for a dataset of ten thousand SIFT feature

vectors, with the truncation being applied to the edge lists of a distance occlusion

graph. While the reduced average vertex degree does result in lower search costs,

the removal of edges is also seen to introduce local minima into the graphs. For the

internal query vectors, even a small reduction in Eavg results in a significantly lower

TABLE 4.7: Edge list truncation for lower degree vertices.

Maximum Average Greedy Downhill Search
degree degree Internal External

(T ) (Eavg) R@1 Cost R@1 Cost

24 14.0 0.85 53.2 0.10 38.7
20 13.6 0.74 47.7 0.10 35.7
16 12.7 0.56 38.5 0.08 30.0
12 10.9 0.38 28.5 0.03 21.4
8 7.9 0.18 18.8 0.01 13.4
4 4.0 0.02 8.5 0.00 6.7



Chapter 4. Fast Approximate Nearest Neighbour Graphs 98

recall. Additionally, the greedy downhill search is no longer adequate for ANN

searches with unseen feature vectors.

Figure 4.17 plots the search performance of the increasingly truncated graphs using

greedy backtracking searches with external queries. Because this search algorithm is

capable of escaping local minima, this method achieves a significantly higher recall

at a given cost when compared to the downhill search. In fact, halving the maximum

vertex degree from 24 down to 12 now results in a very small drop in recall. For the

greedy downhill search, this same increase in truncation reduced the recall by more

than half. Eventually, the backtracking search is unable to efficiently compensate for

the increasing number of local minima that are associated with a larger amount of

truncation. With just eight edges per vertex, the performance results are moderately

impacted, and with only four edges in each edge list the graph has only twice the

efficiency of an exhaustive search.
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FIGURE 4.17: Search performance trade-off for greedy backtracking
search using external queries and with increasing levels of edge list

truncation.

Edge list truncation can be applied either during the offline graph construction or

dynamically at search time by passing T as an additional parameter to one of the

search algorithms from Section 4.3. The major advantage of truncating during graph

construction is the reduction in computational and memory costs that are associated



Chapter 4. Fast Approximate Nearest Neighbour Graphs 99

withEavg. Truncating when searching is also beneficial as it allows for a single graph

to be adjusted to target various levels of recall. This can be achieved by adding an

additional comparison to line 14 of Algorithm 4.3 so that an edge list is not enqueued

when e is the T th edge in E[e.from()].

4.4.3 Approximate Graphs

While we are primarily interested in maximising the speed and recall of ANN se-

arches, it can also be beneficial to reduce the complexity of the offline construction

of our graphs. This is particularly important for constructing graphs with a larger

number of vertices, as the n2 term can become prohibitively costly. In this section we

provide algorithms and analysis for two alternative methods of graph construction.

Instead of constructing the exact graphs that are defined by our occlusion rules, each

approximate method takes advantage of the stochastic nature of an ANN search. Be-

cause each search already includes a trade-off between search cost and recall any dif-

ferences in the approximate graphs will simply adjust the trade-off curve. Relaxing

the need for an exact graph allows us to make use of dynamic programming techni-

ques, since already computed distance information can be shared locally instead

of globally. However, we also expect that a larger approximation of the full graph

structure will result in a larger degradation of search performance.

Due to the slower spread of information when constructing approximate graphs,

it becomes harder to detect duplicate vectors in the dataset. As these graphs are

constructed, surrounding vertices will connect to only one vertex in a duplicate set

and each of the duplicates will likely have a different edge list. In order to robustly

handle the presence of duplicate vectors, we look for coincident vertices every time

a new pairwise distance is computed. Whenever a distance of zero is found, all but

one of the duplicates is removed from the graph. For consistency and ease of imple-

mentations, we always retain the vertex that appears first in the dataset. Removing

a vertex from the graph then requires that the edge list at each vertex is searched

for possible edges that need redirecting from the removed vertex to the remaining

duplicate vertex. In practice, it is faster to maintain a lookup table of duplicates.

Initially each vertex points to itself in the lookup table, however when a duplicate is
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found the removed vertex can be directed to the remaining one. This table is then

used every time the destination of an edge is needed. Instead of simply using the

destination vertex stored in an edge list, the lookup table is used to redirect the edge

if needed. At the end of the graph construction process, any redirected edges can

be stored using their correct destination. As such, the lookup table is not required

for traversing a graph during an ANN search, however we still retain the dupli-

cate information so that full duplicate sets can be included in the neighbourhoods of

queries.

4.4.3.1 Traverse-Add Graph Construction

Our first method for approximate graph construction initialises a graph of verti-

ces with empty edge lists and then stochastically adds edges that satisfy our local

neighbourhood criteria from Equation 4.3. In order to find an edge that will enable

efficient traversal of the graph, we first traverse the graph with a greedy downhill

search from a random vertex and towards a random internal query. If a local mini-

mum is found during the search, then Algorithm 4.2 will return a vertex that has no

edges leading closer to the query. We then insert an edge to the query into the edge

list of the vertex that the search terminated at. This new edge will remove the local

minima and allow that same downhill search to reach the query. Every time a query

vertex is reached by a search there is no need to add an additional edge to the graph.

As more edges are added to a graph it becomes more likely that a random downhill

search will not encounter a local minima and so changes become less frequent. In

order to fully satisfy our neighbourhood criteria it is also necessary to restrict each

downhill search to vertices that are within the exclusion region between the current

best vertex and the query vertex. This is achieved by adding an additional angle

or distance test to line 10 in Algorithm 4.2 so that each visited vertex will be in the

shaded regions seen in Figures 4.1a and 4.2a.

Algorithm 4.5 provides an overview of how edges are selected and added to a graph.

Graph construction is achieved by repeatedly running the algorithm with different

starting and query vertices. We construct the graph for a variable number of itera-

tions p, where each iteration uses each vertex as a starting vertex and query vertex



Chapter 4. Fast Approximate Nearest Neighbour Graphs 101

exactly once. This is implemented with each iteration generating a random permu-

tation of the vertices in order to provide a query vertex for each starting vertex. Each

time the edge selection algorithm inserts an edge into to an edge list, the occlusion

rule is applied to all longer edges that were already in that edge list. Occluded ed-

ges are removed from the graph so that a low average vertex degree Eavg can be

maintained. In some cases the removal of an edge can reintroduce local minima for

a previously successful downhill search. These local minima can be addressed in

subsequent iterations of construction, although it is expected that at least some lo-

cal minima will be present in the finalised approximate graph. Due to the tunable

number of construction iterations p and the use of a greedy downhill search, the

computational complexity of this method is O(pn(dw+Eavg)m) where dw is the dia-

meter of a weighted graph. These weights are assigned by edge length in ascending

order, but other edge orderings can be applied once the graph is finalised.

Algorithm 4.5: Traverse-add edge selection
Input: graph vertices V

graph edge lists E
starting vertex U0

target vertex Vq
Output: directed graph edges E

1 best, dbest ← GreedyDownhillSearch(V,E,U0, Vq)
2 if best = q then
3 return E

4 enew ← edge(q, dbest)
5 E[best].insert(enew)
6 foreach e ∈ E[best] | e.length() > enew.length() do
7 if enew occludes e then
8 E[best].remove(e)

9 return E

Table 4.8 demonstrates the refinement of an approximate graph for increasing values

of p. With a dataset of ten thousand SIFT feature vectors, these approximations of a

distance occlusion graph include progressively more edges as the number of iterati-

ons is increased. Similarly, the same increase is seen in the percent complete column,

which indicates the percentage of downhill searches that reached their query vertex

during the most recent construction iteration. We see that the increase in average
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TABLE 4.8: Approximate graphs from traverse-add construction.

Build Average Greedy Downhill Search
iterations degree Percent Internal External

(p) (Eavg) complete R@1 Cost R@1 Cost

25 7.6 15.4 0.17 29.9 0.17 27.2
50 10.6 63.8 0.65 43.0 0.28 39.6
75 11.9 83.5 0.89 52.3 0.47 45.9
100 12.6 90.7 0.91 54.2 0.42 47.5
125 13.0 93.9 0.94 55.0 0.40 48.8
150 13.2 96.1 0.96 55.8 0.42 48.0

vertex degree slows considerably once a large fraction of the searches are comple-

ting and new edges have become harder to find. Evaluating the approximate graphs

on greedy downhill searches demonstrates once again that the cost of internal do-

wnhill searches will increase as the average vertex degree increases.

Figure 4.18 shows the search performance of increasingly refined approximate graphs

using greedy backtracking searches with external queries. During the earlier itera-

tion of the graph construction, many new edges are added to remove local minima.

The backtracking search is able to compensate for these local minima, and is still
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FIGURE 4.18: Search performance trade-off for greedy back-
tracking search with approximate graphs constructed using increa-

sing traverse-add iterations.
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able to achieve high recall results with an incomplete graph. However, the cost of

this additional backtracking results in a higher overall search cost. As local minima

are removed from the graph, the same recall values can be reached with progressi-

vely fewer search iterations. Then, when around 90% of the traverse-add iterations

are completing, the advantages of the greedy backtracking search begin to diminish

in comparison to the additional cost of higher degree vertices.

By monitoring the percentage of completed searches on each iteration of the con-

struction, it is possible to terminate the building process early once a target percen-

tage has been reached. Experimentally we find that 90% completion will generally

provide a good balance between the computational cost of construction and the ul-

timate search performance of the graph. Lastly, additional gains in efficiency can

be achieved by using two simple heuristics when choosing starting and query ver-

tices for the downhill searches. The first is an additional search to ensure that local

minima are also avoided in the opposite direction of each edge that is added to the

graph. Since the edges are directed, whenever an edge is inserted at line 5 of Algo-

rithm 4.5 an additional search can be run from the query vertex back towards the

local minima that was found. The second and the most effective heuristic is an addi-

tional search designed to reduce the impact of removing occluded edges. Whenever

an edge is removed at line 8 of Algorithm 4.5 an additional search can be executed to

ensure that the vertices that where joined by the removed edge can still be reached

with a downhill search. Because the additional searches could result in further ad-

ditional searches, we implement this optimisation with a work list which maintains

a set of start and query vertex pairs that are still to be tested.

4.4.3.2 Self-Query Graph Construction

The second method for approximate graph construction begins with a connected

graph as an initial starting condition. This pre-built graph is then traversed in or-

der to rebuild a more complete edge list at each vertex. The new edge lists ap-

proximate the edge lists of the full graph, and while this method can be applied

to any connected graph, closer approximations are produced from graphs that con-

tain edges between local neighbours. As such, several iterations of the traverse-add
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graph construction will produce a good starting graph. The edge list for each ver-

tex vi is then rebuilt by replacing the full candidate list from line 2 of Algorithm

4.4 with an approximate edge list that can be generated with a function call of

GreedyBacktrackingSearch(V,E, vi, vi, k). The goal of the backtracking search is

to expand the local neighbourhood around vi and return a small candidate set of p

approximate nearest neighbours. Once a candidate set has been found, the final edge

list can be generated by applying an occlusion rule to remove additional edges. Ig-

noring the construction of the starting graph this method reduces the computational

complexity of Algorithm 4.4 from O(n2Eavgm) to O(npEavgm).

TABLE 4.9: Approximate graphs from self-query construction.

Search Average Greedy Downhill Search
iterations degree Internal External

(p) (Eavg) R@1 Cost R@1 Cost

0 7.6 0.17 29.9 0.17 27.2
100 9.2 0.41 39.2 0.23 31.2
200 10.8 0.54 43.6 0.32 38.6
300 11.8 0.62 50.2 0.35 42.3
400 12.5 0.74 54.6 0.37 45.0
500 13.0 0.78 58.1 0.41 47.3
600 13.5 0.83 59.6 0.48 48.7

Table 4.9 presents the details of approximate graphs constructed from increasingly

large self-queries on each vertex. The initial connected graph was built to index ten

thousand SIFT vectors using 25 iterations of the traverse-add construction method.

The distance occlusion rule from Equation 4.4 was then applied to all of the candi-

date edge lists. We can see from these results, that the approximate graphs retain

progressively more edges as the number of search iterations is increased. However,

unlike the traverse-add method, the increase in average vertex degree continues to

grow fairly steadily as the construction cost increases. This is due to the stochastic

nature of the traverse-add algorithm, where the frequent addition of shorter edges

can remove significant numbers of longer edges. In contrast, the self-query method

performs a single occlusion pass, and so longer edges that would occur in a complete

graph do not need to be continually rediscovered. Evaluating these approximate

graphs on greedy downhill searches offers lower recall and increased costs when
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compared to approximate graphs with the same average vertex degree, but produ-

ced using the traverse-add method. Again this is likely due to the type of edges that

are being found by each construction method.

Figure 4.19 shows the search performance of approximate graphs constructed with

increasingly large self-queries, and using greedy backtracking searches on external

queries. Using only a small number of search iterations for the graph construction

can already provide many of the local edges that help to avoid local minima. Increa-

sing the search size allows for the discovery of longer unoccluded edges that results

in denser graphs. While there is some advantage to be gained from these additional

edges, the greedy backtracking search quickly becomes hampered by the additional

cost of the higher average vertex degree.
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FIGURE 4.19: Search performance trade-off for greedy backtracking
search with approximate graphs constructed using increasing self-

query search iterations.

Compared to the traverse-add construction method, the self-query construction will

produce considerably different approximations of a full graph. While the traverse-

add algorithm is designed specifically to find edges that remove local minima, a

self-query edge list is likely to contain a dense subset of the corresponding complete

edge list. Ultimately, the self-query edge lists are a better candidate for applying the
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truncation methods discussed in Section 4.4.2.3. Additionally the numerous searches

that are required for the self-query construction can produce their candidate edge

lists in parallel without modifying the underlying graph structure. As such, these

independent searches are well suited for GPU acceleration.

4.5 Quantitative Results

This chapter has explored many variations of our novel approach for ANN search

with high dimensional visual data. We utilise an edge occlusion rule to construct

sparse indexing graphs that enable efficient traversal of the data they index. Sparse

edges allow the search paths to exploit the local intrinsic structures of a dataset, but

without needing to directly compute the lower dimensional manifold that contains

the embedded samples. Using a graph structure also minimises the impact of hy-

perplane boundaries that contribute to the large backtracking costs when exploring

indexing trees. Our ordered edge lists and greedy backtracking algorithm further

reduce the average search cost by allowing for very few outgoing edges to be evalu-

ated before the search can progress towards a query. Our implementation is able to

directly trade-off the computational cost and the expected recall of a search by set-

ting a limit on the number of distance comparisons allocated to finding a particular

query.

In this section we evaluate the performance of our graphs, which are constructed

using the distance occlusion rule from Equation 4.4 and contain truncated edge lists

that are sorted in ascending order of edge length. For larger datasets we construct

an approximate graph by repeatedly applying the traverse-add edge selection in Al-

gorithm 4.5 until at least 90% of each iteration provides no additional improvement

to the graph. We then finalise our approximate graphs with a single call to the self-

query construction method, in order to find a candidate set of the thousand closest

neighbours to each vertex. These candidate lists are then reduced using the distance

occlusion rule before a final truncation.
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4.5.1 Comparative Performance of k-Nearest Neighbour Graphs

Figure 4.20 presents the performance of our full graph and a truncation with T = 25.

Truncating our graph provides a small gain in search performance, while also redu-

cing the memory footprint. To illustrate the advantages of a sparse edge list we com-

pare our graphs against two k-nearest neighbour graphs. All four of the graphs are

constructed on 100k SIFT vectors and are evaluated using our greedy backtracking

search algorithm. While the vertices in the truncated graph and the 25-nearest neig-

hbour graph have equal out-degree, the truncated graph is able to include longer

edges in the place of shorter occluded edges. As the figure shows, using just the

twenty-five nearest neighbours of each vertex lowers the computational efficiency

substantially. Even with k = 250, the graph is consistently less efficient than our

method. The larger k-nearest neighbour graph also highlights the difference in space

complexity, with the better performing k-nearest neighbour graph using ten times

more memory than our best graph.
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FIGURE 4.20: Comparative performance of k-nearest neighbour
graphs and both our full and truncated graphs from the distance

occlusion rule.

In contrast to the results in Section 4.4.2.3, we find the efficiency of our queries can

increase when truncating graphs that index larger datasets. Specifically, for larger
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datasets of SIFT features a maximum degree of between 25 and 32 will result in fas-

ter searches at a fixed recall rate. In practise the optimal truncation level does appear

to depend on the recall rate begin targeted. Higher recall rates are typically more ef-

ficient with slightly higher vertex degrees, while lower recall rates are more efficient

with additional truncation. Ultimately, the benefits of truncation amount to only

a small percentage difference, and a single truncation value is typically sufficient

across a large range of recall values.

4.5.2 Comparative Performance at High Recall

Here we compare our graphs with two state-of-the-art ANN methods that perform

well at high levels of recall. With those methods being navigable small world graphs

(NSWG) [83] are the k-means trees from FLANN [52]. Results are presented using k-

nearest neighbour overlap, which provides the average fraction of the top k ground

truth nearest neighbours that are returned in the top k results of each ANN search.

This measure requires the ANN methods to efficiently locate multiple samples from

the local neighbourhood of each query. Figure 4.21 compares our self-query graph
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FIGURE 4.21: Comparison of ANN methods using 10-nearest neig-
hbour overlap on a dataset of five million SIFT vectors.
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and greedy backtracking method to both FLANN and NSW graphs using 10-nearest

neighbour overlap on a dataset of five million SIFT vectors. The performance of our

method is seen to surpass the other graphs structures with more efficient queries

across a wide range of recall values. The local edge structures that are produced

by our graphs are designed to efficiently arrive in the neighbourhood of a query.

Our greedy backtracking search is then able to expand this local neighbourhood

and return an accurate set of nearest neighbours.

4.5.3 Comparative Performance on a GPU

We evaluate our GPU implementations for both our greedy backtracking search and

for an exhaustive linear search. Due to the trade-offs that are present in the GPGPU

instruction set, the maximum efficiency of our implementations is limited to specific

length features that align with the number of threads in a warp. Additionally, the

priority queue at line 1 of Algorithm 4.3 is truncated in order to accelerate the search

speed, but at a cost of limiting the maximum achievable recall. This is also due to

the merger of this priority queue with the set of visited vertices. As such, we assume

that the tests on lines 6 and 8 will only need to see the best set of visited vertices as

the queue fills with the final set of neighbours.

For both search methods, we evaluate performance using a GTX Titan X GPU and

with a dataset of one million SIFT vectors. Each result in Table 4.10 is generated by

batching ten thousand query vectors into a single kernel call and then return timings

that are averaged over these queries. These timing results include all overhead costs,

such as the cost of maintaining a priority queue. Even with these additional costs,

TABLE 4.10: Comparative performance on a GPU.

Dataset
Method Recall

Average query
size time (µs)

1M
Linear search 1.00 473.7

FANNG
0.95 1.3
0.90 0.8

5M
Linear search 1.00 2433.0
FANNG 0.90 1.7
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our method is approximately 600 times faster than the linear search when operating

with a 90% recall rate on one million dataset samples and approximately 1400 times

faster on a dataset of five million samples. For the one million sample dataset, tar-

geting a nearest neighbour recall of 95% results in search time that is approximately

350 times faster than the linear search.

4.5.4 Performance at Scale

We further evaluate the search performance of our graphs with datasets of increa-

sing size and with varying dimensionality. Figure 4.22 plots the number of distance

calculations needed to consistently achieve particular recall rates as the size of a da-

taset increases. Each set of feature vectors contains between 100k and 20M SIFT

vectors. From the results, we observe that each of the curves are approximately li-

near on the log-log plot. Additionally, a very similar slope is also seen at each of the

evaluated recall levels. As such, we conclude that our method scales with a power

law complexity that is determined by this slope. We find that the cost complexity,

and hence the time complexity, of our method is given by O(n0.2).

Figure 4.23 compares the performance of our graphs on two different types of high

dimensional visual data. For this comparison we use datasets of one million SIFT

vectors and one million GIST vectors. The GIST vectors, which can summarise en-

tire images, have 7.5 times the number of extrinsic dimension found in SIFT vectors,

which summarise local image regions. As such, we find that both the intrinsic di-

mensionality and the average vertex degree are larger for the GIST dataset. The

resulting plots indicate that searching this high complexity index is consistently less

efficient. The computational cost of the ANN queries remains consistent across a

wide range of recall values, with the SIFT index remaining around three times more

efficient than searches on the GIST index.
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FIGURE 4.22: The growing number of distance calculations required
to maintaining a fixed recall across datasets of increasing size.
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FIGURE 4.23: The consistent performance of our indexing graphs
when applied to datasets with widely differing dimensionality.
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Chapter 5

Indexing Binary Strings

In Chapter 4 we introduced a novel approach for indexing high dimensional visual

data. We now consider the applicability of these indexing graphs for performing

efficient nearest neighbour searches with binary data. Many approximate nearest

neighbour (ANN) search algorithms are defined for general metric spaces, however

this does not mean that they will have equivalent speed and efficiency across all

metrics. Binary vectors are a good example of this, because they are often used as

information dense visual features, but typically they require specialised indexing

schemes. Unlike existing methods, our approach attempts to utilise the intrinsic

structure of high dimensional binary data in order to build a traversable graph that

allows for efficient queries in the Hamming space. We evaluate the performance of

our graphs across multiple types of binary feature vectors and various dataset sizes.

When real valued data is represented on a digital computer, many individual bits

of information are used to form independent integer or floating point values. Each

of these values could define the measurement of a continuous property that repre-

sents a particular extrinsic dimension of a feature vector. In contrast to this, each

bit of information in a binary feature vector is assumed to be independent. As such,

all binary feature vectors must ultimately be constructed through a series of simple

questions that each only have two possible outcomes. Figure 5.1 illustrates this con-

cept in one, two, three and four dimensions. Each additional dimension is adding a

new question that can be answered with either a 0 or a 1. Concatenating the answers

to m different questions will yield a binary feature that corresponds to a particular

corner of a unit hypercube in Rm. Compared with real valued data, it is a severe
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FIGURE 5.1: Compared to real valued data, binary vectors exist only
at the corners of an n-cube. a, b, c, d) The full set of binary vectors in

1, 2, 3 and 4 dimensions respectively.

restriction to no longer be able to produce feature vectors throughout the interior

of these hypercubes. On the other hand, binary representations do in general use

fewer total bits per feature and can also enable more efficient usage of the digital

hardware found in modern computers. Maximising this efficiency requires the use

of a distance function that can fully utilise the fast mathematical operations that are

available on modern hardware.

Previously in Section 4.1 the construction of our traversable indexing graphs made

use of a distance function dist : Rm × Rm → R that was required for evaluating

the occlusion rules. For binary feature vectors, we propose the use of the Hamming

distance distH : Bm × Bm → Z∗. This distance not only acts on the restricted re-

presentation of the binary feature vectors with Bm ⊂ Rm, but also maps onto the

smaller domain of non-negative integers Z∗ ⊂ R. Even so, the Hamming distance

function

distH(xi,xj) =
m∑
k=1

(xi,k − xj,k)
2 = popcount(xi ⊕ xj). (5.1)

is still a sufficient metric for the construction and traversal of FANNGs. For binary

vectors xi,xj ∈ Bm the Hamming distance computes the sum of absolute differen-

ces between each extrinsic dimension. This is equivalent to counting the minimum

number of edges in Figure 5.1 that would need to be traversed in order to travel

between the coordinates of the two vectors. In practice, it is far more efficient to

compute the absolute differences using the exclusive-or operator in Bm, and then

summing the results with a population count. Due to its widespread applicability,
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the population count function is available as a native operation in many modern

CPU and GPU instruction sets.

While the Hamming distance is sufficient for applying the occlusion rule defined

in 4.4, it is not immediately obvious how this new metric will affect the efficiency

of querying a FANNG. As was discussed in Section 4.1, there are many possible

ways to construct functional sets of edge lists but not all of them will be equally

efficient for performing ANN searches. Most notably we can observe that when the

Hamming distance function in Equation 5.1 is applied to an m dimensional dataset,

it will in fact map distH : Bm×Bm → {0, . . . ,m}. This then means that there are only

a total of m+ 1 possible distances that can exist between any two feature vectors in

that dataset. As such, it is far more likely for graph vertices or graph queries to have

equidistant nearest neighbours. This will most likely result in less efficient edge lists

and less effective results from the priority queue used by the greedy backtrack search

in Algorithm 4.3.

5.1 Related Publications

Binary feature vectors have a number of benefits over real valued features, which

describe an image region using a vector of either integer or floating point values.

Trzcinski et al. [84], [85] illustrate how the construction of binary feature vectors

can be more computationally efficient, use considerably less memory for storing the

computed features and also compute distances using an efficient Hamming distance

implementation. However, due to the limited model capacity of binary feature vec-

tors, each dimension does need to be constructed for maximum information density.

Otherwise, it will become increasingly common that matching feature vectors do not

represent matching visual data.

Well constructed binary features such as ORB [8], BinBoost [13], BRISK [11] and

FREAK [12] have been used in a wide range of computer vision application areas

from simultaneous localisation and mapping [86] to object classification [87]. The

visual features used in these systems behave as a form of data compression, by sum-

marising the information dense regions of an image with a collection of compact
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binary vectors. In many applications this process will shift the computational bott-

leneck from the processing of large amounts of raw image data to the matching of

large sets of feature vectors.

Binary feature vectors are relatively small (typically with tens, hundreds or thou-

sands of bits) in comparison to the image data that they are constructed from (hund-

reds, thousands or tens of thousands of pixels). However, the extrinsic dimensiona-

lity of these binary features is still too large for any known algorithm to guarantee

exact matching from a large dataset with sub-linear time complexity. As such, it is

currently infeasible to compute exact matches on large datasets when real-time per-

formance is required. Hence, it is common practice to make use of an approximate

search strategy for situations where an exhaustive linear search is deemed to be too

costly. Once again, the goal of using an ANN search is to sacrifice a small degree of

accuracy for a large gain in search speed.

Many of the best performing ANN algorithms have an inherent dependence on in-

dexing vectors of real valued data. This means that these methods are unable to

construct an index for a dataset of binary vectors. Efficient decision tree algorithms

including the k-d trees and k-means trees proposed by Muja and Lowe [52] contain

this dependency. k-d trees make use of repeatedly partition a dataset by applying a

threshold to an extrinsic dimension. This become a less meaningful parameter when

there are only two possible values per dimension. Similarly, k-means trees and ot-

her clustering techniques rely on computing the arithmetic mean for each extrinsic

dimension. This again proves ineffective in a binary domain, although in some ca-

ses it may be possible to use an alternative function, such as the mode. Andre et

al. [88] show that an inability to define effective clusters can also impact product

quantisation techniques is a similar way. Here, the compact nature of binary fea-

ture vectors leaves little or no room for dimension reductions that will not have a

detrimental effect on the search quality. This property extends to many other ANN

techniques [89]–[91] that once again are aiming to directly reduce larger feature vec-

tors into a compact binary representation.

Hashing techniques such as locality sensitive hashing (LSH) [29], multi-index hashing [92]

and spherical hashing [93] use many specialised hashing functions that map feature



Chapter 5. Indexing Binary Strings 116

vectors to a hash space where similar hashes are likely to correspond to closely lo-

cated samples. As such, these techniques are able to perform better on binary data

where the feature vectors have only a fewer bits difference from their nearest neig-

hbours. This property does not tend to be the case for most visual features that are

generated from natural images. Instead many hashing algorithms are able to trade

off memory footprint for recall accuracy simply by increasing the number of hash

tables that are constructed and then used for queries. With additional hash tables it

becomes more likely that one of the hashes will end up closer to a near neighbour.

Conversely, additional candidate matches can increase the amount of linear sear-

ching that needs to be performed in the original feature space in order to select the

best of the candidates.

Tree techniques, most notably hierarchical clustering [94], provide a traversable se-

arch tree that contains a constrained number of edges between nodes to reduce the

number of unnecessary distance calculations that are needed during a query. Each

node in the tree represents an actual sample from the given dataset which helps to

avoid many of the issues that other search trees have with binary data. However

the intrinsic hierarchical structure of the trees comes at an additional cost similar to

the effects of a poor hash. Each time a decision is made to travel down a particular

branch of the tree there is a significant probability that the nearest neighbour to the

current query does not exist down that branch despite it taking the search in partially

the correct direction. The backtracking cost of taking an incorrect branch decreases

the further down the tree the search is, but high costs exist for early missteps. Much

like use of additional hash tables, the need for backtracking can be reduced by buil-

ding and then simultaneously searching multiple different trees. As the number of

trees increases, so does the minimum search cost due to the simultaneous nature of

the traversal.

5.2 Dimensionality Analysis

Binary feature vectors that are represented in Bm will only be located at the corners

of a unit hypercube when viewed in Rm. Because an m dimensional hypercube will
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have exactly 2m corners, there is an absolute limit of 2m unique feature vectors that

can be represented in such a space. As such, binary feature spaces with too few ex-

trinsic dimensions will not be able to represent enough unique samples for certain

feature matching applications. We are interested in knowing if a particular extrinsic

dimensionality is sufficient for handling non-trivial feature matching problems. Ad-

ditionally, we would like to investigate whether a suitably sized binary space will

contain the same intrinsic structures that we have utilised for ANN searches with

real valued datasets.

For this preliminary investigation, we constructed the random binary dataset descri-

bed in Table 1.3. In order to understand the intrinsic structures of this data, we once

again applied the Hausdorff dimensionality method described in Section 2.3.1. As

with the real valued data, our first step is to compute all pairwise distances between

the feature vectors in our dataset. When computing these distances for our binary

data, it is important to compute the Euclidean distance in Rm. This is equivalent to

computing the square root of the Hamming distance with

distE(xi,xj) =

√√√√ m∑
k=1

(xi,k − xj,k)2 =
√
distH(xi,xj). (5.2)

Using the Euclidean distance for the dimensionality of the binary data allows us to

evaluate how well this data is able to fill the full Euclidean space. In particular, we

can directly compare these results with our previous analysis of real valued feature

vectors.

In Section 2.1, we initially looked at the distribution of feature vectors in high di-

mensional Euclidean spaces. As seen in Figure 5.2a, randomly sampling the interior

volume of a unit 32-cube will result in an sparsely populated central region with the

shaded annulus depicting the probable range of distances between the sampled lo-

cations and the centre of the cube. This largely empty central region arises because

the majority of a hypercube’s volume is contained within its many corner regions.

Additionally, there are slightly over four billion unique corners in the 32-cube, so

the probability that multiple locations are sampled from a single corner region is

extremely low (assuming that the dimensionality is sufficiently large for the dataset
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FIGURE 5.2: a) Uniform random data in a unit 32-cube will largely
occupy the shaded region when considering Euclidean distance from
the centre of the cube. b) Moving each sample to the nearest corner

results in a binarised representation of the data.

size). Figure 5.2b provides a corresponding diagram with each vector mapped to the

corner that it was closest to. This mapping moves all of the data as far as possible

from the centre of the hypercube, and results in a uniform set of distances. The data

is no longer bounded within two hyperspheres, but is instead located entirely on

the surface of a single hypersphere that intersects each of the hypercubes corners. If

we consider the information that is represented by the pairwise distances between

each of the sampled vectors, it is possible that the now binarised data will have lost

a critical portion of this information.

Figure 5.3 plots the probability distribution of pairwise distances for data sampled

from both the interior volume and the corners of a unit hypercube. Again we can see

that for this 32-dimensional data, it is extremely unlikely that any two real valued

or binary vectors will be located within the same corner (with a pairwise distance

less than one). Scaling the real valued data to have the same mean value as the

binary data highlights the identical shape of these distributions. While the binarised

data does result in a discrete number of possible distances, the information about

pairwise relationships has been summarised rather than discarded. Additionally,

the left tail of the binarised distribution will still allow for local neighbourhoods to

be represented within the data. This is an important requirement for indexing binary
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binary data measured at varying distance scales.
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vectors with a FANNG.

Figure 5.4 plots the Hausdorff dimensionality of one million random binary vectors,

each with 32 extrinsic dimensions. The plotted curve is seen to exhibit the same cha-

racteristic shape as the dimensionality plots for vectors of real valued data. In this

case, we find that the peak intrinsic dimensionality is slightly above half the num-

ber of extrinsic dimensions. This peak is in fact higher than the peak dimensionality

that was seen for the 128 dimensional SIFT data in Section 2.3.4. Unlike the scale

change that was used to adjust the mean of the distribution in Figure 5.3, Hausdorff

dimensionality is computed from a ratio of distances, so the peak dimensionality

will remain invariant to scale changes. Considering that each vector in the random

binary data is restricted to one of the corners on a 32-cube, it is unintuitive to expect

this potential for filling continuous space. However, the results imply that we can

sufficiently approximate a continuous manifold by simply sampling the corners of a

high dimensional cube.

5.2.1 Impact of Dataset Size

We can utilise the symmetrical structure of binary data to gain a better understan-

ding of how the size of a dataset influences our measure of intrinsic dimensionality.

While we have seen that feature representations do not entirely fill the space they are

embedded in, each dataset is only a subsampling of the full representation. If this

sampling is too coarse, then we expect to measure a lower intrinsic dimensionality

than the feature can offer.

Sincem dimensional binary data is limited to onlym+1 possible pairwise distances,

we can count the exact fraction of pairwise distances that could exist for each pos-

sible distance value. By comparing cumulative sums of these fractions we can then

compute the maximum achievable Hausdorff dimensionality for that particular ex-

trinsic dimensionality m. Plotting the peak Hausdorff dimensionality for increasing

values of m gives rise to the dashed line seen in Figure 5.5. This line represents an
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FIGURE 5.5: Peak Hausdorff dimensionality of random binary data is
limited when the datasets have a fixed size at one million samples.

upper bound for the intrinsic dimensionality that can be represented in a binary fe-

ature space. In order for a dataset to approach this limit, the data would need to be

an extremely fine sampling of a feature that can fill the entire extrinsic space.

The random binary vectors we have been using are an example of a dataset that does

have the potential to fill the entire extrinsic space. As such, we generated sets of one

million random vectors in Bm for increasing values of m. By using a fixed number

of vectors across each of the datasets, we can observe how effectively a sampling of

that size can fill different sized feature spaces. The peak Hausdorff dimensionality

for each of these datasets is shown as a solid line in Figure 5.5. We can see that

for dataset with around 100 or more extrinsic dimensions, the space filling capacity

becomes increasingly limited by the fixed size of these datasets. Prior to this point,

the dimensionality of the datasets is instead limited by the binary representation of

the data.

As previously discussed in Section 2.2, high dimensional feature spaces quickly be-

come infeasible to fill with sampled data. Once the ’blessing of dimensionality’ takes

over, the intrinsic structure will always be limited by the dataset size. Beyond this
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point, advancements to hardware and algorithms should be focussed on efficiently

handling larger datasets, rather than ones of higher dimensionality. Using a feature

representation with a higher dimensionality could allow for a more natural repre-

sentation of intrinsic structures. However, going too far beyond this point would be

wasteful due to the computational costs of computing higher dimensional distances.

5.2.2 Impact of Vertex Degree

The edge selection criteria discussed in Section 4.1 has been shown to enable efficient

ANN queries when using real valued data. In Section 4.4.1 we have also seen that

the average vertex degree of a FANNG is somewhat correlated with the intrinsic

dimensionality of the data being indexed. Our analysis of random binary data has

shown that, perhaps unintuitive, the intrinsic structure of high dimensional binary

vectors should also be suitable for our edge selection algorithms. However, since

the binary data has been measured to have a higher intrinsic dimensionality than

the real valued data, we expect a corresponding increase in the number of retained

edges when indexing binary data.

Figure 5.6 plots the results of applying the distance occlusion rule from Equation

4.4 to each dataset of one million random binary vectors. Because these datasets

have an increasing number of intrinsic and extrinsic dimensions, we can use these
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FIGURE 5.6: Relationships between the average out-degree of index-
ing graph vertices and the dimensionality of synthetic datasets. Each
datasets contains samples generated uniformly at random on the cor-

ners of an m-cube.
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constructed graphs to observe the relationship between dimensionality and average

vertex degree. As was seen for real valued data, the results in Figure 5.6a show

a linear growth in the number of edges as the extrinsic dimensionality increases.

Figure 5.6b then combines this information with Figure 5.5 to show the relationship

between average vertex degree and Hausdorff dimensionality. The linear region of

this curve should provide a rough indication of the average vertex degree that is

expected for a dataset with the corresponding intrinsic dimensionality.

5.3 Quantitative Results

In this chapter we have offered some analysis of the structure and characteristics

of high dimensional binary data. Binary representations are often favourable due to

their compact nature, although specially tailored algorithms are typically required in

order to fully exploit this property. We believe that both real valued and binary data

contain the same intrinsic structures that are utilised by our FANNGs. As such, our

construction and search algorithms from Chapter 4 should be applicable for index-

ing binary data. Here we present experimental results to evaluate the performance

of FANNGs on commonly used types of binary features. Details of these datasets are

given in Table 1.3. Performance is evaluated across multiple feature types, as well as

a wide range of dataset sizes.

We compare our method with two widely used ANN algorithms by computing the

trade-off between search accuracy and the computational cost of each approach.

Again we report these results in terms of error rate and speed-up over a linear search

on a log-log plot, as this allows for clearer comparisons across a wide range of recall

values. Additionally, we explore the scaling complexity for FANNGs constructed

on binary datasets that contain an increasing number of feature vectors. Lastly, we

consider the overhead costs of our method by report query times obtained with a

GPU accelerated implementation of our ANN search algorithm.
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5.3.1 Comparative Performance on Various Binary Features

We compare the performance of FANNGs against each FLANN [94] method that

the authors have described as being the most suitable for indexing binary data. The

library contains an indexing tree method called hierarchical clustering, as well as

an optimised implementation of locality-sensitive hashing (LSH). Performance re-

sults for the hierarchical clustering and LSH were obtained from the best results of

a parameter sweep that was run for each dataset. All of the FANNG results were

collected by tuning a single parameter to specify the desired recall rate. The edge

lists of each FANNG were truncated to the initial average edge list length for that

particular graph.

Figure 5.7 plots the nearest neighbour error rate across all algorithms and datasets.

All speedup measurements are given as a ratio of the number of extrinsic distance

calculations used per query between the ANN algorithm and an exhaustive linear

search. The FANNG results give a clear indication of good performance at all er-

ror rates and across all four datasets. This behaviour supports our hypothesis that

high dimensional binary and real valued data do contain similar structures that can

be exploited by our edge selection criteria. The performance gains of FANNG over

the hierarchical clustering and LSH algorithms comes at the cost of a longer off-

line building phase and a greater memory footprint. This places FANNG as the

most favourable binary indexing scheme for applications without significant me-

mory constraints and with either sufficient time for pre-building the indexing graph

or a sufficiently large number of queries so that the build time becomes negligible.

Comparing the performance of each search algorithm across the different feature

types, we see very little impact from choosing one representation over another. The

most notable difference is for the 512 bit datasets, where LSH performs poorly at

higher error rates, while both the FANNG and hierarchical clustering methods are

slightly more efficient at lower error rates. These results indicate that on average

there is a larger number of differing bits between a query vector and the ground truth

nearest neighbour for a BRISK or FREAK feature vector, when compared to the other

feature types. Since there is little difference between the ANN performance of each
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FIGURE 5.7: Comparative performance of ANN search methods ap-
plied to binary datasets. a,b,c,d) 1.5M ORB, BinBoost, BRISK and

FREAK feature vectors respectively.
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binary feature, selecting a feature type should instead be based on the capacity for

each feature representation to preserve local distance relationships when mapping

feature vectors from an image patch to the Hamming space. For our experiments,

we have assumed these relationships have been successfully represented within our

datasets. This concept of accurate feature representation will be explored in-depth

throughout Chapter 6.

5.3.2 Comparative Performance on a GPU

Table 5.1 presents wall clock timings from our accelerated GPU implementations of

our ANN search and an exhaustive linear search. These timings include all overhead

search costs, such as maintaining a truncated priority queue of the vertices currently

being explored. As with the truncation of the FANNG edge lists, aggressively trun-

cating the priority queue can limit the possibility of reaching higher recall values.

For a dataset of one million BinBoost feature vectors, we found that a maximum

queue length of 128 was sufficient for achieving recall rates of up to 99.9%.

Search times were computed with batches of ten thousand query vectors using a

GTX Titan X GPU. While operating with a 90% recall rate, our method was able to

perform each query at about 150 times the speed of the linear search. This amounts

to a quarter of the performance difference that was observed for the real valued

data in Section 4.5.3. However, the Hamming distances computed for the binary

data are considerably faster than the squared Euclidean distance calculations for

the real valued vectors, so any overhead costs will be more pronounced. While the

binary vectors can be successfully indexed using our approach designed for real

TABLE 5.1: Comparative performance on a GPU.

Method Recall@1
Average query

time (µs)

Linear search 1.000 179.6

FANNG

0.999 10.9
0.990 3.9
0.950 1.6
0.900 1.1
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valued data, larger average vertex degrees when indexing the binary data results in

significant additional search costs.

5.3.3 Performance at Scale

Figure 5.8 plots the number of distance calculations needed to maintain a fixed rate

of recall as the size of a dataset increases. These results were collected by con-

structing FANNGs on increasingly larger portions of a dataset with 50M BinBoost

feature vectors. For each dataset size, ground truth nearest neighbours were identi-

fied using an exhaustive linear search for each of the query vectors.
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FIGURE 5.8: The growing number of distance calculations required
to maintaining a fixed recall across binary datasets of increasing size.

From the plotted curves, we see that the 99% recall plot and significant portions of

the other plots are all approximately linear on a log-log plot. As such, the results

for binary feature vectors are consistent with the results seen in Section 4.5.4 for

real valued feature vectors, having a power law relationship between the search

performance and the dataset size. Since distance calculations represent the majority

of both the runtime and the computational cost, we can say that for a dataset of n

feature vectors, the cost complexity and the time complexity are roughly between

O(n0.15) and O(n0.25).
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Chapter 6

Learning from Visual Data

Concurrent advancements in computer hardware and large scale data collection

are the current driving force behind substantial advancements in machine learning

techniques. Artificial neural networks were originally formulated in the 1980s, ho-

wever their applicability to challenging real world computer vision tasks only arose

in the 2000s. LeCun et al [95] first demonstrated the potential for convolutional neu-

ral networks (CNNs) to compete with human experts in vision related tasks. Figure

6.1 illustrates the fundamental structure of LeNet and its predecessors. Informa-

tion is extracted locally from image data and then combined at multiple scales to

allow for output layers that can consider both local and global features. Krizhev-

sky et al [96] adapted this architecture for large scale image learning with AlexNet.

FIGURE 6.1: CNNs extract visual information using layers of functi-
ons that combine, threshold and downsample the data.
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Training a network of this size was achievable in part due to the incorporation of

rectified linear units (ReLU)[97] as a computationally efficient non-linear function.

Simonyan and Zisserman [98] achieved a further significant reduction in error with

their VGGNet architecture by utilising softmax classification and smaller filters that

allow for additional network layers. Similar benefits were seen by Szegedy el al [99]

with GoogLeNet and He el al [100] with ResNet. Both architectures allow for small

sub-networks and increase the depth of the network. Deeper networks typically

require more training data and longer training times, however they are capable of

reaching higher levels of performance on a range of vision tasks.

These networks represent a powerful data driven approach to learning a complex

and configurable non-linear function f . In the context of computer vision, these

functions have the capacity to replace entire pipelines such as the mapping of vi-

sual data from an image space to a feature space. Learning these complex functions

currently requires an enormous amount of training data and occurs during an off-

line training phase. Training involves optimisation with a known objective function

using stochastic gradient descent. Here, batches of known images X are presented

FIGURE 6.2: Large datasets of images can configure a CNN to pro-
duce a well structured feature space.
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to the network and the current network weights θ determine a mapping to the fea-

ture space f(X , θ). The objective function can then be used to determine the quality

of the resulting feature vectors and will provide feedback for adjusting the network

weights. Once trained, the CNN model can be applied to previously unseen data

using the finalised network weights. Figure 6.2 illustrates the training pipeline with

an objective function that is aiming to produce clusters of different image classes in

the feature space.

In this chapter we explore two different methodologies for learning robust feature

spaces that utilise the information offered by nearest neighbour correspondences.

Our first method is built upon the triplet network architecture, where an anchor

sample from a particular image class acts as a reference point for two other sam-

ples in the feature space. While many triplets of images can be formed, only a small

fraction of them are useful for refining the structure of a feature space by adjusting

θ in a way that will improve the mapping of correspondences into the feature space.

By constructing a FANNG over the embedded data, we can consider all possible

triplets and select those that will progress the learning process. Following this, our

second learning method replaces the concept of a triplet, by evaluating the entire

neighbourhood around the anchor samples. Here, our optimisation function en-

courages the formation of class specific Gaussian clusters around each anchor. Once

again we construct a FANNG over the embedded data, this time as a means of ap-

proximating the computationally expensive Gaussian distances. Lastly, both of our

methodologies are evaluated on transfer learning tasks. This determines how ef-

fectively each of the learned feature spaces are able to represent correspondences

between previously unseen images.

6.1 Triplet Networks

In order to produce robust feature embeddings, current methodologies will com-

monly use a triplet model to minimise the relative distance between samples from

the same class and to maximise the relative distance between samples from diffe-

rent classes. As illustrated in Figure 6.3, class clusters will naturally form in the
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FIGURE 6.3: The relative position of three embedded samples informs
the formation of a more robust feature space.

FIGURE 6.4: Conceptually the triplet model uses three CNNs to map
a triplet of images into the feature space. In practice, their shared

network parameters allows for a single CNN to be used.
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embedding space when samples of the same class are pulled together and samples

of different classes are pushed away.

As shown in Figure 6.4, triplet networks consist of three CNNs that are trained to-

gether using triplets of samples. Each triplet is constructed to contain an anchor

sample, a positive sample of the same class as the anchor, and a negative sample

of a different class. These networks utilise a loss function that penalises large rela-

tive distances between the anchor and positive samples and small relative distances

between the anchor and negative samples. Since all samples are selected from the

same dataset and will be mapped to the same feature space, the three networks are

typically constrained to share a single set of parameters.

In order to describe the triplet architecture, we first define T a training set of n ima-

ges in C classes where T = {(xi, yi)} ∀i ∈ {1, ..., n}. Here the image xi ∈ Ru×v is

pre-labelled as a member of class yi ∈ {1, ..., C}. We then denote the m dimensional

feature embedding of sample xi by f(xi, θ), where f : Ru×v × Rk → Rm and θ ∈ Rk

represents the k parameters shared by the three CNNs. These parameters include

values such as weight matrices, bias vectors and normalisation parameters. Each

CNN contains the same l layers and is defined by

f(x, θ) = tout ◦ rl ◦ hl ◦ tl ◦ rl−1 ◦ hl−1 ◦ tl−1 ◦ ... ◦ r1 ◦ h1 ◦ t1(x). (6.1)

On the ith network layer ti(.) denotes a linear transformation, hi(.) represents a nor-

malisation function and ri(.) is a non-linear activation function such as a ReLU.

Furthermore, the linear transform ti = [ti,1, ..., ti,ji ] is an array of ji pre-activation

functions.

For the triplet loss function, we first define a triplet as an anchor sample xa = xi

(from class yi), a second sample from the same class xp = xj (with i 6= j and yi = yj),

and a sample from a different class xn = xk (with yi 6= yk). The loss function for each

triplet is then defined by

L(xa,xp,xn, θ) = max

(
0, 1− dist (f(xa, θ), f(xn, θ))

dist (f(xa, θ), f(xp, θ)) + η

)
. (6.2)

Here the distance function is Euclidean distance, and η is the desired distance margin



Chapter 6. Learning from Visual Data 134

between class embeddings. The loss function itself is a hinge loss applied to the

relative distances between the anchor and the other two samples.

6.1.1 The Vanishing Gradient Problem

The vanishing gradient problem is a well known issue that impedes the training of

triplet networks. In order for learning to continue it is important that the training re-

gime continually provides the network with triplets that will teach new information

or reinforce prior information. Learning progresses due to computed loss values that

are propagated back through the network and cause changes to the network parame-

ters. Importantly, the loss function in Equation 6.2 will always have zero magnitude

when the negative sample is at least the margin distance further from the anchor

than the positive sample. We refer to these triplets as being ’well ordered’ due to

the desirable structure of having the positive sample closer to the anchor and nega-

tive sample further from the anchor. The vanishing gradient problem occurs when

a network is provided with too many well ordered triplets, and so the training halts

prematurely due to the lack of a strong training signal.

Producing well ordered triplets is in fact the primary goal of the training. So it is

natural to find that as the training progresses and class clusters begin to form, the

vast majority of triplets will quickly become well ordered. This idea is illustrated

in Figure 6.5a, where the large regions of easy positive samples and easy negative

samples are shown relative to a particular anchor. In general, the region of easy

positive samples can be represented as the interior of a hypersphere centred on an

anchor and with a radius that just excludes the closest negative sample. Similarly,

the easy negative samples can be bounded on the outside of a hypersphere centred

on the anchor and with a radius that just contains the furthest positive sample.

Figure 6.5b provides an example of a triplet with no easy samples. In this case the

positive sample is further away from the anchor than the negative sample. As such,

this triplet will result in a non-zero loss that can be used for training the network.

If we consider the cases where the two hyperspherical boundaries that separate the



Chapter 6. Learning from Visual Data 135

a)

b)

FIGURE 6.5: Useful triplets must contain samples from poorly defi-
ned regions of the embedding space. a) Well ordered triplets contain
at least one easy sample and will not progress the training. b) Tri-
plets that contain both hard positive and negative samples can help

to shape the embedding space.
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easy and hard samples are more than the margin distance apart, then for any cho-

sen anchor, a triplet will always be well ordered as long as at least one of the other

two samples is an easy sample. When we consider just the hard samples, it is still

possible to construct triplets that will not advance the training. However, we can

guarantee that all of the desirable triplets that produce non-zero losses will also ex-

clusively contain hard samples.

To mitigate the vanishing gradient problem and ensure that more triplets contain

hard samples, it has become common practice to mine the feature space for desirable

samples. Figure 6.6 illustrates for a particular anchor, how the current feature space

embeddings can be used in the selection of the other two samples. However, there

are two major challenges when mining for hard samples. Firstly, every step of the

stochastic gradient descent will likely result in at least some changes to the feature

space. These frequent changes will modify the embedding location for many of

the previously mined samples and could also invalidate the results of that previous

FIGURE 6.6: Hard sample mining is able to utilise information from
current feature correspondences in order to construct triplets that will

continue to refine the feature space.
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mining. The second major challenge is that for a training set with n samples, the

upper bound on the number of possible triplets is n3. While deep CNN training is

typically improved with larger training sets, naively evaluating each possible triplet

is currently infeasible even for datasets of moderate size. Despite these challenges,

current triplet mining heuristics can still achieve considerably better results than

using randomly selected triplets.

Triplet networks have been found to perform favourably in domains where a re-

latively small amount of training data is available across a relatively large number

of classes. This training scenario creates a large imbalance in the difficulty of mi-

ning hard negative samples compared to mining hard positive samples. With few

training samples per class it is easy to evaluate all positive samples for a particular

anchor, but the large number of other classes will all contribute to a multitude of ne-

gative samples. With just a small amount of training, it is reasonable to expect that

vast majority of negative samples will already be easy. As such, it is advantageous

for mining to only focus on identifying hard negative samples.

6.1.2 Related Publications

The development of deep metric learning models for the formation of robust feature

spaces is a core component of many computer vision systems. The main advantage

of these models is their ability to leverage information from large datasets of labelled

images in order to learn feature spaces, where samples from similar classes tend to

be close together, while samples from different classes are more likely to be far away

from each other. This approach has proven to be effective in scenarios where there

is an extremely large number of classes and a low number of samples per class.

Under these conditions, the implementation of traditional classifiers becomes far

more challenging.

A popular approach to learning feature embeddings is to utilise a deep learning mo-

del that is based on a triplet network [101], [102], which is an extension of the earlier

Siamese network [103]. However, the impact of the vanishing gradient problem has

necessitated the development of importance sampling techniques that stochastically
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under sample the set of all possible triplets. The success of these techniques relies on

generating enough samples so that a certain fraction of the hard positive and nega-

tive samples are statistically likely to be used for training. Because of the high com-

putational complexity of finding hard positive and negative samples, an alternative

approach is to instead incorporate additional loss functions that take into account

the global structure of the embedding space.

Shrivastava et al. [104] formulate hard sample mining as a relabelling of the boot-

strapping problem [105], where the idea is to initially train the feature model with

triplets from input data that is well separated, and then gradually introduce more

challenging positive and negative samples as training progresses. One of the major

challenges of this approach is the myriad of possible ways in which this training

regime could be formulated. Such a regime is required to efficiently sample the trai-

ning set in a way that allows for the selection of effective training samples. However,

the definition of what constitutes an effective or challenging sample is ill-defined.

To this end, Wang et al. [102] described a method for building triplets based on a

manual annotation of sample relevance. Importance sampling can then be used to

construct the final triplets. This method is ultimately limited by its reliance on the

manual annotations.

A more recent method from Simo-Serra et al. [106] utilises image class labels in or-

der to determine and then gradually introduce the hardest sample pairs to a siamese

network. This is achieved by randomly sampling the training set for pairs of sam-

ples, and then sorting them based on their feature space distance. Anchor-positive

pairs are sorted in descending order, while anchor-negative pairs are sorted in as-

cending order. As such, training pairs can then be formed from the head of each list.

Han et al. [107] introduce a similar reservoir sampling method for selecting positive

and negative samples, however this methods does not use any form of importance

sampling.

The FaceNet architecture from Schroff et al. [108] introduces a triplet training ap-

proach, where batches of training samples are initially selected at random. Pairs of

anchor and positive samples are then chosen from within each batch, and the har-

dest negative samples are used to complete each triplet. These negative samples are
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referred to as semi-hard samples, since they are only guaranteed to be the hardest

negative samples within their random batches. Additionally, the semi-hard negative

sampling is able to improve the robustness of training by avoiding the possibility of

over-fitting to outliers in the training set. These outliers can derail mining methods

that perform global searches for the hardest samples. Song et al. [109] achieve a simi-

lar result by efficiently computing the full pairwise distance matrix over a random

subset of the training data. This full matrix then allows for a specialised loss function

that utilises all positive and negative sample distances to form a lifted structured

embedding for each training batch.

In order to avoid the computational cost of sample mining, Kumar et al. [110] have

proposed a global loss function that uses first and second order statistics to en-

courage the separation of class clusters in the feature space. However, this method

does still rely on stochastic sampling of positive and negative samples. Similarly,

Ustinova and Lempitsky [111] propose a loss function that minimises the integral of

the product between a distribution of negative similarities and a cumulative density

function of positive similarities. Finally, Song et al. [112] introduce a loss function

that optimises using normalised mutual information (NMI) as a global cluster qua-

lity metric.

6.2 Smart Mining for Triplet Embeddings

To increase the efficiency and effectiveness of finding hard triplets, we first observe

that hard sample mining can be framed as an instance of the ANN search problem.

When mining for hard samples we are primarily interested in avoiding the computa-

tional cost of exhaustively searching through the entire training set. Using FANNGs

we can efficiently consider samples across the entire training while only needing

to evaluate a small fraction of these training samples. In Chapter 4 we saw that

FANNGs are able to trade-off a small decrease in nearest neighbour recall for a large

gain in computational efficiency. They are particularly efficient when applied to

high dimensional feature vectors and when a very high recall rate is desired. Ad-

ditionally, FANNGs are built in the full embedding space which allows for a triplet
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selection process to reuse the exact distances that have been computed during the

ANN search.

As discussed in Section 6.1.2, hard mining has shown to be an effective method for

training triplet networks when they would otherwise be impeded by the vanishing

gradient problem. Naively, this can be achieved by selecting triplets that provide

the greatest violation of the triplet constraint. For instance, given an anchor xa with

class label ya, the hardest positive is defined as

xp = argmax
(xi,yi)∈T

xi 6=xa, yi=y
a

dist
(
f(xa, θ), f(xi, θ)

)
, (6.3)

and the hardest negative as

xn = argmin
(xi,yi)∈T

xi 6=xa, yi 6=ya

dist
(
f(xa, θ), f(xi, θ)

)
. (6.4)

Semi-hard mining can avoid the costly argmax over the entire training set by instead

considering randomly selected subsets of the training data. The major disadvantage

of using random subsets is that the majority of samples are not being considered in

each subset. This means that the hard samples needed to produce non-zero gradients

can still be completely missed.

Instead of building triplets from random subsets of samples it is easier to find hard

triplets using nearest neighbour sets around each anchor. A small set of nearest

neighbours in the current feature embedding is guaranteed to contain samples that

will produce desirable triplets. If we consider an anchor xa = xi from a class with an

average number of samples Cavg, then we only need to consider the set Si ⊂ T that

contains theCavg nearest neighbours of xa. The local embedding is very well formed

if the entire neighbour set is found to be positive samples (with the closest neighbour

being the anchor itself). In this case there are no hard samples, so all triplets will be

well ordered when using that particular anchor. In non-degenerate cases there will

be at least one negative sample in the nearest neighbour set. Each of these negative

samples is guaranteed to be a hard negative and will also indicate the existence of

a hard positive sample that is not in the nearest neighbour set. Any combination of
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these hard positives and negatives will result in a triplet that produces a non-zero

gradient.

One key additional advantage of mining with randomly chosen subsets is the inhe-

rent low probability for repeated attempts at learning from outliers. These outliers

are often erroneously labelled samples that will form hard triplets but will not im-

prove from repeated attempts at learning. Using nearest neighbour sets will easily

find the hardest possible triplets in the dataset, so an additional heuristic is needed

to avoid potential outliers. For an anchor xa = xi, we define a smart negative as any

negative sample in the nearest neighbour set xn ∈ Si such that

dist
(
f(xa, θ), f(xn, θ)

)
> κ · dist

(
f(xa, θ), f(xpNN, θ)

)
. (6.5)

Here κ is a real valued global tuning variable with κ > 1 and xpNN is defined as the

nearest positive sample to xa. Typically we require that xpNN should be a member of

Si. Together κ and xpNN parametrise an exclusion boundary that contains samples

that are considered to be too hard for current triplets.

The relationship between the neighbourhood of samples around an anchor and the

exclusion boundary is explored in Figure 6.7. The distance dNN is used to denote the

distance between the embedding of an anchor and the nearest positive sample, so

the distance κdNN is equivalent to the right-hand side of Equation 6.5. Illustrated is

the projection of the hyperspheres centred on an anchor and with a radius of κdNN.

The anchor in Figure 6.7a is in a poorly structured margin between class clusters.

As such, the negative samples within the large exclusion boundary are considered

too hard for current triplet mining. A larger concentric hypersphere is shown con-

taining a few positive samples that are closer to the anchor than the nearest smart

negative. When a class cluster is well formed around an anchor, as in Figure 6.7b,

most positive samples will be labelled as being too easy because they would always

form well ordered triplets. Well formed clusters are more likely to contain anchors

with positive samples very nearby, so tighter exclusion boundaries allows for har-

der negatives to continue progressing the training. As such, training with harder

negatives will happen naturally as classes continue to form their own clusters.
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a)

b)

FIGURE 6.7: A simplified projection of the neighbours and mining
boundaries around triplet anchors. a) An anchor in a poorly struc-
tured margin between class clusters has an exclusion boundary con-
taining negatives samples that are deemed too hard for training. b)
A tighter class clustering yields a small exclusion boundary for hard
negatives. Easy positive samples are avoided outside the exclusion
boundary so that all mined triplets will violate the triplet constraint.
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The global variable κ provides a direct means of controlling the rate at which the ex-

clusion boundaries are shrinking. While the distance between the embedding of an

anchor and the nearest positive sample provides local information for relative sizing

of exclusion boundaries, κ is used to determine the global scale. While training is

progressing and adjustments are being made to the embedding structure, the forma-

tion of clusters will also be adjusting the size of exclusion boundaries. This complex

interaction will very likely change the number of smart negatives that are available

at any one time. The nature of the vanishing gradient problem suggests that the

overall trend will be a decrease in the number of mined negative samples. In order

to counteract this, we would like to decrease κ at a rate that keeps the global num-

ber of smart negatives roughly constant. This allows for a bootstrapping behaviour,

where previously excluded negative samples can be considered later during training

either because nearby positive samples have formed a tighter cluster or because the

global constant has been sufficiently reduced.

6.2.1 Implementing Smart Mining with FANNGs

Current state-of-the-art training regimes for deep CNNs utilise stochastic gradient

descent to direct convergence towards a more optimum network configuration. Sto-

chastic gradient descent relies on partitioning each training epoch into smaller random

batches of training samples. Sequential processing of each batch involves a forward

pass to determine the current embedding of samples within the batch, followed by

a backwards propagation of the gradients determined by the loss function. As such,

the global structure of the embedding space is expected to change with each consecu-

tive batch. Triplet mining methods are in fact aiming to mine the current embedding

of samples in this changing space. In order for the smart mining method to remain

practical we must balance between the speed of offline mining and the accuracy of

online mining.

At one extreme, fully online mining would aim to maintain an up-to-date represen-

tation of the embedding space with a forward propagation of the entire training set

after each batch has been processed. In contrast, a fully offline method might eva-

luate the sample embeddings once at the start of training and then use those initial
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values throughout the training. While it is possible that a single batch could result in

large global changes to the embedding space, this is likely to be a catastrophic beha-

viour for most training scenarios. Instead we expect that changes to the embedding

space are gradual enough that previous embeddings can be used for some period

before they become too outdated. For this purpose, we perform offline mining once

at the beginning of each training epoch. Here we define an epoch as processingO(n)

triplets, or enough batches to allow for each training samples to be the anchor of a

small number of triplets. Algorithm 6.1 provides an overview of this training pro-

cess. The function at line 7 introduces an additional cost of forward propagating

all training samples, building a FANNG on the sample embeddings and then con-

structing a neighbourhood set for each sample. Then the function at line 9 completes

the mining process by producing each of the triplets that will be used throughout an

epoch.

Algorithm 6.1: Network Training and Testing
Input: image set X

class labels Y
pre-trained weights θ

Output: network configuration θ
1 Xtrain ← training partition of X
2 Xval ← validation partition of X
3 error ← 100%
4 prev ← 100%
5 while error ≤ prev do
6 prev ← error
7 S ← ConstructNeighbours(Xtrain, θ)
8 κ← UpdateKappa(error)
9 B ← ConstructBatches(Xtrain, S, Y, κ)

10 foreach b ∈ B do
11 f(b, θ)← forward pass
12 θ ← backward pass

13 error ← Evaluate(Xval, Y, θ)

14 Xtest ← test partition of X
15 print Evaluate(Xtest, Y, θ)
16 return θ
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6.2.1.1 Nearest Neighbour Set Construction

At the beginning of each training epoch we perform a full forward pass of the en-

tire training set to generate an up-to-date feature vector for each of training sam-

ple. A FANNG can then be efficiently constructed on these vectors by using the

traverse-add edge selection method given previously in Algorithm 4.5. As discussed

in Chapter 4, the traverse-add algorithm can be repeatedly applied until a specified

percentage success rate is reached. Experimentally we found that a success rates of

95% or higher is a broadly suitable target with no noticeable advantage to be gai-

ned from fine tuning this parameter. Once the target build percentage is achieved,

our approach diverges from the approximate graph construction method that was

previously described.

In the context of triplet mining, each indexing graph will enable computationally ef-

ficient collection of nearest neighbour sets that closely approximate S. This mining

will occur once at the start of an epoch and then a new graph is constructed on the

next epoch. As such, it is inefficient to dedicate additional computational resour-

ces to refining the graph. Rather than applying the self query graph construction

method from Section 4.4.3.2, we instead use the greedy backtrack search from Algo-

rithm 4.3 to immediately generate a nearest neighbour set for each training sample.

As with the first stage of the self query graph construction, we obtain Si by passing

the vertex f(xi, θ) to Algorithm 4.3 as both the query vector and the starting vertex.

The algorithm is again modified to maintain and return a sorted list of the nearest

vertices that are visited during the search.

Algorithm 6.2 provides an outline of the approximate construction of S. This function

adds a tuning parameter target for the index construction and another parameter

cost for the ANN search quality. When mining only once per epoch, we have alre-

ady accepted a reduction in the maximum possible accuracy of the entire pipeline.

In particular, the neighbourhoods produced by this mining are only guaranteed to

remain exactly the same for the first batch of the stochastic gradient descent. As

such, both target and Umax are only required to be large enough that they do not
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degrade the neighbourhood sets more than the training process itself. The final pa-

rameter Cmax is determined by the training set and is selected such that each neig-

hbour set Si is guaranteed to contain at least one positive and negative sample. Each

of the iterative loops can be accelerated with a parallel implementation. This is very

straightforward implementation for the second loop, since the collection of the neig-

hbourhood sets does not modify the indexing graph.

Algorithm 6.2: Neighbourhood construction
Input: training set T

pre-trained weights θ
target build percentage target
maximum vertices to visit Umax
neighbourhood size Cmax

Output: nearest neighbours S
1 f(T, θ)← full forward pass
2 E ← empty set of graph edges
3 success← 0%
4 while success < target do
5 count← 0
6 foreach x ∈ T do
7 Enew ← TraverseAdd(T,E,x, rand(x ∈ X))
8 if Enew = E then
9 count← count+ 1

10 else
11 E ← Enew

12 success← 100 · count/|X|
13 S ← empty set of nearest neighbours
14 foreach xi ∈ T do
15 Si ←

GreedyBacktrackSearch(T,E,xi,xi, Umax, Cmax)

16 return S

6.2.1.2 Triplet and Batch Construction

Each nearest neighbour set Si is stored as a sorted array in ascending order by

distance from the anchor sample xi. Each entry in the array holds the index of a

neighbouring sample and the embedding space distance between that sample and

f(xi, θ). Once a nearest neighbour set Si has been computed, class label informa-

tion is used to separate the neighbours into lists of positive and negative samples.
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We perform a single iterative pass over the list of neighbours, while ignoring all ne-

gative samples until the first positive sample has been found. The distance to the

closest positive neighbour is then multiplied by the global parameter κ to define the

local exclusion boundary. Then any future negative samples that satisfy Equation

6.5 are added to the list of valid negatives. The list of positive samples does not

exclude any of positive neighbours, however each positive samples is added to this

list along with the current number of valid negatives. This additional information

allows us to track how many smart negatives can be used with each positive sample

to produce hard triplets. This process is achieved without performing any distance

calculations, since the required distances have already been computed during the

construction of the neighbourhood set.

In order to construct enough triplets for the current epoch, we need to assign ν pairs

of samples to each anchor. For each anchor we use the first ν negative samples from

the list of valid negatives. And for each negative sample we complete the triplet

by using the first positive sample that can be used by the chosen negative sample.

In the rare cases where there are fewer than ν negative samples available, random

triplets are constructed instead. Additionally, if there are no valid positive samples

associated with a chosen negative sample, then a positive sample is uniformly se-

lected at random from the set T \Si. Each negative sample is used no more than

once with any given anchor during each epoch, however positive samples can be

used multiple times with the same anchor. The unique pairings of anchors and ne-

gative samples ensures that no triplets are repeated during an epoch. Algorithm 6.3

details the complete triplet selection process. Finally, in order to satisfy the require-

ments of the stochastic gradient descent, we randomly shuffle the set of triplets to

distribute the anchors throughout each training batch.
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Algorithm 6.3: Triplet selection for smart mining
Input: training set T

nearest neighbours S
class labels Y
boundary scale κ
triplets per anchor ν

Output: Triplet batches B
1 B ← empty set of triplets
2 foreach xi ∈ T do
3 P ← empty list of positive samples
4 N ← empty list of smart negatives
5 bound←max
6 foreach {xj , dist} ∈ Si : i 6= j do
7 if yi = yj then
8 P.append({xj , |N |})
9 if bound = max then

10 bound← κ · dist

11 else if dist > bound then
12 N.append(xj)

13 for t = {1, . . . , ν} do
14 if t ≤ |N | then
15 xp ← rand(xj ∈ T\P : yi = yj ∧ i 6= j)
16 xn ← N [t]
17 for {xj , range} ∈ P do
18 if t ≤ range then
19 xp ← xj
20 break

21 else
22 xp ← rand(xj ∈ X : yi = yj ∧ i 6= j)
23 xn ← rand(xj ∈ X : yi 6= yj)

24 B.add({xi, xp, xn})

25 shuffle(B)
26 return B

6.2.1.3 Automatic Parameter Selection

The global tuning parameter κ is used to adjust the scale of the exclusion bounda-

ries that are centred on each triplet anchor. At the beginning of training we would

like large boundaries that exclude most of the harder negative samples. As training

progresses, κ should be reduced to allow for increasingly harder negative samples

to be mined. As a naive way to achieve this, we use the following linear equation to
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control the rate at which κ decreases

κ =
κmax − κmin
εmax − εmin

(εmax − ε) + κmin. (6.6)

This linear equation parametrises κ in terms of the current epoch ε. This also requires

the hand tuning of the four constants defining each of the initial value scale for the

exclusion boundaries κmax, the final scale of the exclusion boundaries κmin, the first

epoch that will use mined triplets εmin and an estimate of the final training epoch

εmax. With the selection of appropriate values, the triplet mining converges on a

model that outperforms random triplets. This relative reduction in test set error

validates that our mining methodology is able to address the vanishing gradient

problem.

A more robust solution for scaling the exclusion boundaries is to automatically es-

timate a value of κ that will produce triplets of a suitable difficulty for the current

epoch. One possible goal of this estimate would be to ensure that the training set

error remains consistent with the current validation set error. A divergence between

these two values indicates that either the network is over-fitting when the training

error is lower than the validation error or that the mined triplets are becoming too

hard when the training error is higher than the validation error. Again the naive ap-

proach is to use a linear model, but now we will automatically adjust the following

model at the beginning of each epoch

κ = αδ + β. (6.7)

The model parameters α and β are estimated by computing the least-squares solu-

tion for a vector of recent training errors δ and their associated κ. Once we have

solved for the current values of the model parameters, we can estimate κ as follows

κ = αδt + β. (6.8)

This equation assigns a value of κ for the current training epoch using the solved

model parameters and a target training error δt. For our example goal of reducing

divergence between the training set error and the validation set error, δt is assigned
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FIGURE 6.8: Our proposed model introduces a smart mining proce-
dure that is capable of quickly searching the set of feature vectors to
select effective samples. The hyper-parameter κ is estimated by the

adaptive controller based on the training error δ.

as the validation error of the previous training epoch. Figure 6.8 illustrates how this

adaptive tuning of κ fits into the triplet network pipeline. We can see that the triplet

selection loop is typically closed by feature space mining, but now the adaptive con-

troller is utilising the training errors as additional information for the loop closure.

Typically, as training progresses and the embedding improves, it is expected that

both the training and validation error will steadily decrease. While this is desirable

for the validation error, a low training error indicates that most of the epoch has

been spent processing triplets that did not make an impact on the training. Hard

mining does marginally address this issue and will usually result in a training error

that is higher than the validation error. However, hard triplets are usually restricted

to around 1% of each training batch to avoid over-fitting with hard outliers. Semi-

hard mining does allow for more mined triplets to be included in each batch, but

the training can quickly and catastrophically diverge if this is pushed too far. Using

our adaptive control of κ we can deliberately separate the training and validation

errors so that the training error is maintained around a particular target, while the
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validation error continues to decrease. This is achieved by assigning δt in Equation

6.8 to be the fixed training error that we would like to target. Experimentally we

found that a target of between 50% and 75% training error will still provide stable

convergence, while also having the additional benefits of producing more accurate

embeddings in far fewer epochs. We also found that in order to maintain these high

training errors, it is best to use batches that comprise of between 50% and 100%

mined triplets. However, the inclusion of as little as 2% mined triplets in each batch

is enough to provide some control over the training error.

Figure 6.9 provides a comparison between hand-tuned and adaptive selection of κ.

Both models are initialised at the beginning of the third training epoch with prede-

fined values. Triplet mining then occurs on each subsequent epoch and the training

results from the previous five epochs are used to update the adaptive model. The

training errors seen in this figure indicate the fraction of triplets from each training

batch that are producing a non-zero gradient. The validation error is produced by

evaluating the current embedding with random triplets from an unseen set of sam-

ples. As such, the training error gives a measure of how much work is being done

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Epoch

Tr
ip

le
tE

rr
or Linear Training

Linear Validation
Adaptive Training
Adaptive Validation

FIGURE 6.9: A comparison of training performance using hand-tuned
and adaptive selection of κ. Training and validation error is shown for

the first 20 epochs while training on the CUB birds dataset.
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to improve the embedding and the validation error provides an inverse measure of

the embedding quality. In this figure, we see that the adaptive method results in a

higher quality embedding than the one produced by mining with the hand-tuned

linear model. Additionally, the higher training error and the steeper descent of the

validation error demonstrate that the improved results of the adaptive model can

be achieved while also using fewer training epochs. These results validate that the

adaptive method is able to select harder triplets, while also avoiding triplets that are

so hard that the training diverges.

6.2.2 Runtime Complexity

The computational cost of triplet mining is dominated by the pairwise distance cal-

culations that are used to determine if each triplet is well ordered. As such, a naive

hard mining algorithm that selects O(n) triplets from a training set of n samples will

have a worst case computational complexity of O(n3) on any given epoch. If these

samples are equally distributed between C classes, then for each anchor evaluating

all positive and all negatives samples has complexity of O(n/C) and O(n − n/C) re-

spectively. Given that there are O(n) anchors, the total complexity per epoch can

instead be expressed as O
(
n(n− n/C)n/C

)
. Now we consider a dataset that contains

many classes, each with very few samples. This scenario can be expresses with limit

C → n, so then n/C → 1, and the overall complexity reduces to a best case of O(n2).

The smart mining algorithm adds an additional cost of constructing a nearest neig-

hbour index at the beginning of each epoch. We find that even for feature embed-

dings with thousands of extrinsic dimensions, the average degree of the graph ver-

tices remains low (fewer than one hundred edges). Typically, exhaustive index con-

struction has a computational complexity of O(n3 log n) due to the sorting of all n2

pairwise distances. However, we can instead guarantee a worst case complexity of

O(n2) by building an approximation of the index. This is achieved by performing

at most O(n) construction iterations, with each training sample being used as the

starting vertex for the traverse-add edge selection O(1) times per iteration. With the

nearest neighbour index, we can construct each of the n neighbourhood sets with

far fewer than O(n) steps in each of the greedy backtracking searches. The final step
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of constructing the triplets for each anchor can also be performed with worst case

complexity O(n) regardless of class distribution. Since each stage of the smart mi-

ning process has a worst case complexity of O(n2), and given that this is the best

case complexity for the naive hard mining approach above, we can conclude that

our method is more computationally efficient.

Semi-hard mining methods are able to achieve a lower algorithmic complexity by

limiting brute force mining of negative samples to within each training batch. If

we consider an epoch that is divided into Bε batches, then each batch will contain

O(n/Bε) anchors. Additionally, for each anchor there will be an O(n/Bε) cost for the

argmax used to select the negative sample. Hence, the a total computational com-

plexity for an epoch is then O
(
Bε(n/Bε)2

)
, which simplifies to O(n2/Bε). Although

O(n2/Bε) < O(n2), we note that larger batches (i.e. smaller Bε) can reduce training

error up until performance is limited by the naive use of argmax. Overlooking this

limitation, we can take the limit as Bε → 1. As the semi-hard mining complexity

approaches O(n2), the number of triplets considered by the semi-hard mining ap-

proaches that of both the naive and smart mining.

Lastly, it is important to consider the number of epochs to train these triplet networks

until convergence. In practice, when using GPU accelerated code and the datasets

considered in Section 6.4, our triplet selection accounts for less than 1% of the total

epoch runtime. Instead, the majority of this time is spent on the forward and bac-

kward propagation of the triplets. This represents a significant advantage for our

adaptive controller, which is able to considerably reduce the number of epochs nee-

ded to reach convergence. When comparing to other mining methods with a similar

complexity per epoch, producing a high quality embedding in comparatively fewer

epochs will greatly reduce the overall training time. Indexing the entire training set

could result in a higher upfront cost for our method, but by utilising the additional

information that is provided by the index we are able to learn the embedding at a

much faster rate and hence with fewer computations overall.
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6.3 Deep Learning with Gaussian Kernel Loss

Triplet loss enables effective feature learning by shaping an embedding space with

the pushing and pulling of labelled samples. Additionally, our smart mining method

has shown that a relatively small nearest neighbour set around each sample will

contain the key information needed for progressing the training. As such, we would

like to take full advantage of the information being provided by the ANN index. Our

smart mining heuristic is focused only on triplets that will advance the formation of

the embedding space. This overlooks the fact that other nearby triplets could be well

ordered on one epoch and then unordered on the next. Rather than revisiting these

triplets, a more direct approach is to use a training loss that considers the presence

of all nearby samples, not just the ones that currently need reordering.

We use the weighted sum of Gaussian distances between a particular sample and all

other samples in the training set to express a Gaussian kernel loss. For the labelled

training sample (xi, yi) ∈ T , we compute the current probability distribution over

the class labels by summing the influence of samples from each given class and then

normalising the result. As such, the probability that xi is in class y is given as

Pr(yi = y) =

∑
(xj ,yj)∈T

xj 6=xi, yj=y

wj ·G
(
f(xi, θ), f(xj , θ)

)
∑

(xk,yk)∈T
xk 6=xi

wk ·G
(
f(xi, θ), f(xk, θ)

) . (6.9)

For training CNNs, this equation is implemented in a classification layer that follows

from the embedding layer. The classification layer is then followed by a Gaussian

kernel loss function that is defined as the negative logarithm of the ground truth

probability with

L(xi) = − ln
(
Pr(yi = y)

)
. (6.10)

Using this loss function during training will produce an embedding space that max-

imises the probability of the ground truth labels. Additionally, this allows for Equa-

tion 6.9 to be used as a classifier for unseen samples. An overview of our training

pipeline can be seen in Figure 6.10.
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FIGURE 6.10: Gaussian kernel loss is able to utilise information from
the full set of current feature correspondences in order to directly re-

fine the feature space.

FIGURE 6.11: Level sets of embedded samples are influenced by the
Gaussian kernel centred at µ.
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In Equation 6.9 the distance function G represents a Gaussian kernel centred at the

embedding of each sample in the training set. We use the Euclidean distance bet-

ween a sample embedding f(x, θ) and a Gaussian centre µ to compute the kernel

function as

G(f(x, θ),µ) = exp

(
−dist

(
f(x, θ),µ

)
2σ2

)
. (6.11)

Here σ is a global standard deviation value that controls the decay rate for the in-

fluence of the kernels. Figure 6.11 illustrates the influence of a particular Gaussian

kernel on a local neighbourhood of samples. The influence of each kernel is also

adjusted individually in Equation 6.9 where wi is a learned weight for the Gaussian

kernel centred at f(xi, θ).

Importantly, the additional classifier weights w can be learnt end-to-end along with

the other network weights θ. This is due to the differentiability of the classification

layer, which allows the network to remain fully differentiable for the backward pro-

pagation of gradients. Additionally, for the datasets considered in Section 6.4, the

additional memory requirement of an extra weight per sample does not impact our

ability to train the network on a single GPU. If this did become an issue, then ad-

ditional memory could be freed at the expense of model capacity by reducing the

dimensionality of the fully connected embedding space layer.

6.3.1 Approximate Computation of Gaussian Kernel Losses

Computing a ground truth probability for the Gaussian kernel loss requires the two

summations seen in Equation 6.9. Since the Gaussian kernels are centred on each of

the training samples, these summations are computed across the entire training set.

This results in the loss function having a computational complexity that is roughly

equivalent to the intractable hard negative mining discussed in Section 6.2.2. Howe-

ver, we can utilise the fact that the value returned from the Gaussian kernel function

in Equation 6.11 approaches zero as the distance between the embedded sample

and the kernel centre increases. As was the case for the hard negative mining, we

are much more interested in samples that are embedded closer to the sample being

evaluated. In this case, closer samples will often represent a kernel function with
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a significant influence over the result of the summations, while distant samples are

likely contribute very little.

Utilising the same approach described in Section 6.2.1.1, we can construct an index-

ing graph over the embedding space and then efficiently approximate a set of nearest

neighbours Si for each embedded sample f(xi, θ). This then allows us to rewrite the

classification function as

Pr(yi = y) ≈

∑
(xj ,yj)∈Si

xj 6=xi, yj=y

wj ·G
(
f(xi, θ), f(xj , θ)

)
∑

(xk,yk)∈Si
xk 6=xi

wk ·G
(
f(xi, θ), f(xk, θ)

) . (6.12)

Figure 6.12 plots trade-offs between the size of Si and the error in Equation 6.12 at

various times throughout the training phase. In all cases, we find that increasing

the size of the nearest neighbour sets will offer diminishing returns for the classifi-

cation accuracy. This is because each Si is constructed with a greedy backtracking

search that expands outward from the associated f(xi, θ). As such, the probability
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searches results in a reduced classification error when computing

Gaussian kernel losses.
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of finding nearby neighbours will decrease throughout the search. Additionally, as

training progresses and strong class clusters begin to form, we find that the average

classification error reduces with respect to a fixed size nearest neighbour set. In-

tuitively, this indicates that when the network becomes better at classifying training

samples it also becomes easier to estimate the classification distributions. Ultimately,

the size of these search neighbourhoods must be small enough to remain computati-

onally tractable, but large enough to give a good approximation of the classification

function throughout the network training.

6.3.2 Indexing and Updating the Embedding Space

In Section 6.2.1 we discussed the trade-off that needs to be made between online and

offline construction of the ANN indexing graph. In the case of triplet networks, sto-

chastic gradient descent requires the usage of training batches that will cause regular

changes to the embedding space throughout each epoch. However, computing the

triplet losses within each batch does not require any additional information about

the structure of the embedding space. As such, it was acceptable to pre-compute

triplets as an offline process at the start of each epoch. Unfortunately, this is not the

case for the Gaussian kernel loss. The approximate classification function that we

have proposed for the Gaussian kernel loss requires access to a local neighbourhood

of samples as well as the up-to-date embeddings of these samples. These require-

ments push the Gaussian kernel loss towards using an online method for the ANN

index construction.

In order to compute the training losses we must produce a nearest neighbour set Si

for each training sample xi in each batch of an epoch. However, to keep the training

tractable we cannot rebuild the nearest neighbour index as frequently as once per

batch. The main issue with using less frequent graph construction is that changes in

the distances between sample embeddings will invalidate some of the information

that was used to construct an efficient index. Ultimately, this will either result in

lower efficiency for the ANN searches or a less accurate approximation of the ne-

arest neighbour sets. In fact, the nature of ANN search is already such that we are

evaluating this same trade-off when choosing to approximate the summations in the
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classification function. As such, we can simply continue to assign the number of se-

arch iterations such that the classifications remain accurate enough to be useful. In

general, we would prefer to search a larger neighbourhood at a slightly higher com-

putational cost. Using a smaller neighbourhood means that we could miss samples

that are close enough to still impact the overall accuracy of a classification.

We find that the changes in the embedding space are gradual enough that a modera-

tely sized neighbourhood allows for previous graphs to be used for several epochs

before they require rebuilding. Specifically for the datasets considered in Section 6.4

we achieve competitive results when rebuilding the graph every 5-10 epochs and se-

arching for neighbourhoods of between 100 and 500 indexed samples. These values

allow for significant overlap between the neighbourhood sets that would be produ-

ced across any batch prior to rebuilding the graph. Each time that the graph is recon-

structed, the previous edge lists can be used as a starting point for the traverse-add

edge selection algorithm. Again, this utilises the gradual rate at which the embed-

ding space changes and allows for the graph to retain any edges that will still be

useful in the updated index.

Having access to a nearest neighbour set Si is only useful when we also have up-to-

date locations for the associated Gaussian kernels that are centred at each f(xj , θ) ∈

Si. Again we find that the training becomes intractable if we forward propagate

hundreds or thousands of additional samples along with each training batch. We

instead rely on the robust nature of our training method and accept the usage of

outdated sample embeddings for at least some of the loss calculations. While these

values will not be exact, gradual changes to the embedding space allow for previous

embeddings to be used for some period before they impede the classification. We

update an array of the Gaussian kernel centres after the full forward pass that is

required for the index construction. These entries can also be updated throughout

the training for each sample that is contained within the forward pass of a particular

batch. In general, we find that it is not necessary for the Gaussian kernel centres to

remain up-to-date at all times in order for the training to converge.
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6.4 Experimental Results

Here we explore the performance of both the smart mining method applied to triplet

loss, and the Gaussian kernel loss. Through experimental results and discussion, we

have evaluated the applicability of these methods for the task of transfer learning.

Quantitative comparisons are provided in order to rank existing approaches that

have demonstrated success in this area. The learned feature spaces are compared

with a number of transfer learning metrics that score the embedding quality using

previously unseen test classes. Qualitative results are also presented as a means of

visually inspecting the functionality of our proposed methods.

The datasets used throughout this section are described in Table 1.4. Each sample

image is scaled to a size of 256 × 256 pixels for input in the CNNs. We train and

evaluate using the full images rather than cropping with the tight bounding boxes

that are provided as this presents a more challenging task of focusing on the fore-

ground class with a larger number of background pixels. Half of the classes are

used with their ground-truth labels for training the networks, while the other half of

the classes are withheld for the testing phase. The basic network architecture used

throughout our experiments is the GoogLeNet model [99] from Szegedy et al. We

initialize the network using pre-trained weights from Szegedy et al. that were pro-

duced for softmax classification by training with the ImageNet [113] dataset. The

classifier is replaced with one of our training losses and the weights within the fully

connected embedding space layer are then randomly initialized. Overall, this expe-

rimental set-up is consistent with a number of earlier publications in this area, which

allows for simple and fair comparisons with these existing results.

For our smart mining method, we allow the training phase to run for a maximum

of 20 epochs or until an earlier convergence is indicated by a repeated decrease in

the validation score. Triplet mining is completely disabled during the first two trai-

ning epochs, so each batch is formed entirely from random triplets. Following from

previous triplet mining methods, we assign the intraclass distance margin m to a

value of 0.2. The learning rate for the network is initially set to 0.1 and then halved

every three epochs, while a constant weight decay of 0.0005 is also used. For the
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randomly initialized fully connected layer, the learning rate is multiplied by 10 in

order to accelerate convergence. Lastly, we use a 64 dimensional embedding space,

since higher dimensional features produced by triplet networks have not shown an

improvement over more compact features.

Both the smart mining and the Gaussian kernel loss computations use a FANNG

to approximate a set of 100 nearest neighbours around each training sample. The

indexing graphs are constructed until at least 98% of a traverse-add iteration is not

finding additional edges. For tractability of training the Gaussian kernel network,

the graph construction is only performed once every 10 epochs. Additionally, the

network is trained for up to 50 epochs, with a learning rate of 0.00001 and weight

decay of 0.0002. For embedding learning tasks, we initialise all of the Gaussian

kernel weights to a value of 1 and select a standard deviation σ that is appropriate

for the embedding dimensionality. The standard deviation is set to a value of 10 for

a 64 dimensional embedding space, and then increased towards a value of 30 when

the dimensionality is increased towards 1024 dimensions.

6.4.1 Quantitative Results

To compare the quality of the learned feature spaces we use two different measures

that both evaluate performance with a transfer learning task. Firstly, each sample

from the previously unseen test classes is passed through a trained model in order

to produce a full set of feature vectors f(X, θ). The first evaluation method we use is

a single valued measure called Normalised Mutual Information (NMI). NMI is cal-

culated as the reduction in class label entropy when information is provided about

local clusters. We compute these clusters on the embeddings of the test samples

using a standard k-means clustering algorithm and with k equal to the number of

test classes. NMI can then be computed with

NMI
(
f(X, θ), Y

)
=

2
(
H(Y )−H

(
Y |f(X, θ)

))
H(Y ) +H

(
f(X, θ)

) . (6.13)
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Here H(Y ) is the entropy of the class labels and H
(
Y |f(X, θ)

)
is the entropy once

the clustering is taken into account. In the context of transfer learning, NMI pro-

vides a measure of how well the test samples have formed class clusters within a

learned embedding space. The second metric we use is recall@r, which is often used

to evaluate ANN search performance when approximate distances are being used.

Here we compute recall@r as the percentage of embedded test samples that have

another sample of the same class within their r nearest neighbours. This is similar

to a nearest neighbour classifier, however correct classification only requires that the

true class label is given a non-zero probability.

Tables 6.1 and 6.2 present the NMI and recall values for our smart mining method

and for a number of other published results that have proven to be successful ap-

proaches to feature learning. Each of these other methods utilises a triplet network

in addition to using either semi-hard mining [108], lifted structured feature embed-

dings [109], N-pair loss [114] or global loss [110]. The smart mining results are shown

for both the linear and the automated parameter selection. The adaptive controller

TABLE 6.1: Triplet network performance on the CUB birds dataset.

Method NMI R@1 R@2 R@4 R@8

Semi-hard [108] 55.38 42.59 55.03 66.44 77.23
Lifted structure [109] 56.50 43.57 56.55 68.59 79.63
N-pair loss [114] 57.24 45.37 58.41 69.51 79.49
Smart mining +

58.10 45.90 57.65 69.63 79.83
Linear control

Global loss [110] 58.61 49.04 60.97 72.33 81.85
Smart mining +

59.57 47.32 59.30 71.47 81.60
Adaptive control

TABLE 6.2: Triplet network performance on the Stanford cars dataset.

Method NMI R@1 R@2 R@4 R@8

Semi-hard [108] 53.35 51.54 63.78 73.52 82.41
Lifted structure [109] 56.88 52.98 65.70 76.01 84.27
N-pair loss [114] 57.79 53.90 66.76 77.75 86.35
Smart mining +

58.24 56.11 68.34 77.99 85.92
Linear control

Global loss [110] 58.20 61.41 72.51 81.75 88.39
Smart mining +

62.23 67.20 77.99 85.92 91.40
Adaptive control
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provides a significant boost to both the NMI and the recall scores, which indicates

that a robust embedding space has been created. This is also achieved in conside-

rably fewer epochs than are needed for the linear controller. Compared to the exis-

ting triplet methods, smart mining provides the best performance in terms of NMI

score. However, for recall within a small neighbour set the addition of global loss

does improve the results on one of the dataset. Since the smart mining method re-

mains competitive in terms on NMI and for larger recall neighbourhoods, this could

indicate that the exclusion boundaries did not shrink enough before convergence.

Tighter exclusion boundaries would allow for mining with negative samples that

are very close to the anchor sample, and likely to be within a small set of nearest

neighbours. While this mining would occur the training classes, rather than the test

classes, the learning of fine grained structures in the embedding space could still be

transferable. Alternatively, it is also possible to combine the global loss with a triplet

that is utilising the smart mining method.

Tables 6.3 and 6.4 contain the experimental results for learning methods that fully

utilise local neighbourhoods, as opposed to the three samples used in the triplet

loss. We compare our Gaussian kernel loss with the existing facility location clus-

tering [112] method. These approaches are able to successful convert the additional

information they have access to into a more robust embedding space than those pro-

duced by the triplet networks. We find that despite existing triplet methods and

TABLE 6.3: Clustering performance on the CUB birds dataset.

Method
Embedding

NMI R@1 R@2 R@4 R@8
Dimensions

Facility location clustering [112] 64 59.23 48.18 61.44 71.83 81.92

Gaussian kernel loss
64 61.26 51.15 64.64 75.57 84.72

1024 63.95 57.22 68.75 79.12 87.14

TABLE 6.4: Clustering performance on the Stanford cars dataset.

Method
Embedding

NMI R@1 R@2 R@4 R@8
Dimensions

Facility location clustering [112] 64 59.04 58.11 70.64 80.27 87.81

Gaussian kernel loss
64 62.15 71.05 80.74 88.06 92.79

1024 65.30 79.65 87.33 92.36 95.65
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facility location clustering both receiving no additional benefits from using a higher

dimensional embedding space, our Gaussian kernel method can make use of this

additional model capacity. Even without the increased dimensionality, the Gaussian

kernel loss consistently produces higher scores on our two evaluation metrics. This

highlights that even for these datasets with a relatively small number of classes, and

the small number of samples per class, a good loss function and training regime can

still utilise additional model capacity without over-fitting to the data.

6.4.2 Qualitative Results

Visual inspection is a useful tool for quickly absorbing large amounts of informa-

tion and is well suited for datasets of images. Here we present two collections of

samples in order to assist in understanding the functionality of our proposed met-

hods. Firstly, we observe the adaptability of our smart mining methodology using

sets of mined triplets, which have each been collected from across a number of trai-

ning epochs. Secondly, we inspect the feature space clusterings that are produced

by our Gaussian kernel method. We present two dimensional projections of the fe-

ature space that have been produced using the t-Distributed Stochastic Neighbour

Embedding (t-SNE) [115] method.

Figure 6.13 illustrates the behaviour of the smart mining algorithm with a collection

of mined triplets. At the top of each set of seven images is an anchor sample that

has been randomly sampled from across the entire training set. Each associated row

then contains the positive and negative samples that complete each triplet. Both of

these mined samples have been deemed to be of a suitable difficulty for the specified

epoch. As such, the smart mining algorithm guarantees that the embedding of each

negative sample is closer to the anchor than the associated positive sample. Additi-

onally, each of the positive samples is as close to the anchor as possible, while still

maintaining this distance relationship. Lastly, because there is no direct relationship

between the selection of particular positive and negative samples, there are no gua-

rantees over their degree of visual similarity. It is just as likely that these samples are

embedded in opposing directions from the anchor, as it is that they are found in the

same direction.
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FIGURE 6.13: Triplets mined by our smart mining methodology after
increasing amounts of training. a, b) Triplets of samples from the CUB

birds and Stanford cars datasets respectively.
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In Figure 6.13a we see that the negative samples tend to become more similar in

appearance to the anchors. Additionally, this also allows the anchors to share more

fine-grained characteristics with their positive samples. Likewise, on earlier epochs

the selection of negative samples from outside a larger exclusion boundary requires

that the positive samples are more dissimilar. This can be seen with differences in

very coarse characteristics such an large variations in colour or pose. Contrasting

these results with the triplets seen in Figure 6.13b highlights some key differences

between the two datasets. We see far more repetition of the positive samples in Fi-

gure 6.13b, which indicates that very few positive samples are embedded at a greater

distance than the mined negative samples. The consistent differences in coarse cha-

racteristics between the anchor and positive samples also indicates either that most

of the harder negatives have already been successfully mined, or that the network

has learned that colour and pose are poor indicators for these classes. Overall, the

smart mining method is able to adapt to changing feature spaces and present triplets

at a suitable difficulty for the current embedding structure.

Figure 6.14 demonstrates the clusters that are formed when training with our Gaus-

sian kernel loss. Each sample from the unseen test sets has been mapped to a learned

feature space and then projected down into two dimensions with t-SNE. A unique

colour has been assigned to each test class at random and then used to depict the re-

lative embedding locations and as a border for corresponding sample images. These

regions of sample images have been chosen to highlight visually interesting regions

of the embedding space. While the t-SNE projection does attempt to retain all fea-

ture space structures, it is impossible to fully represent the complexity of these high

dimensional spaces in this way. Even so, most regions of the projected space do still

contain homogeneous sets of images. Within these regions it is also possible to see

gradual changes in coarse features such as colour and pose.
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b)

FIGURE 6.14: Visualisation using t-SNE dimension reduction. a, b)
Feature space clusters from applying our Gaussian kernel method to

CUB birds and Stanford cars images respectively.
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Chapter 7

Conclusions

Consistent and sustained growth in the size and complexity of raw datasets has

kept pace with the concurrent advancements in computational hardware. As such,

the processing of large and high dimensional datasets still remains a significant bott-

leneck in many computational pipelines. Throughout this thesis we have analysed,

explored and exploited the intrinsic structures of high dimensional image data. This

has informed the development of efficient algorithms that achieved new state-of-

the-art results in processing and summarising visual data.

In Chapter 2, we introduced several fundamental properties of high dimensional

data. The development of an efficient Hausdorff dimensionality formulation then

allowed for further analysis of the structures found in real world computer vision

datasets. Analysis of large datasets was made feasible by our GPU accelerated im-

plementation of this measure. In Chapter 5 these analysis techniques were then

reapplied in order to contrast the feature spaces that are created by binary vectors.

Due to the prevalent use of feature correspondences in many vision related tasks,

nearest neighbour search represents a significant bottleneck for a wide variety of ap-

plications. We have introduced this problem in Chapter 3 and discussed the trade-

offs associated with various indexing techniques. Then in Chapter 4 we evaluated

a number of simple occlusion rules that are capable of producing novel indexing

graphs for the approximate nearest neighbour search problem. The edges of our

graphs reflect the desirable structures of low dimensional manifolds while they in-

dex higher dimensional spaces. The simplicity of these occlusion rules has allowed

us to formulate computationally efficient algorithms for constructing and searching
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these graphs. Thorough exploration of many feasible indexing schemes has then cul-

minated in the development of our Fast Approximate Nearest Neighbour Graphs

(FANNGs). Chapter 5 further demonstrated the versatility of these graphs by de-

monstrating favourable performance when indexing binary feature spaces.

Chapter 6 applied FANNGs to the task of learning robust feature mappings. Here,

the additional information provided by FANNG queries has enabled new state-of-

the-art results in the area of transfer learning. Our first learning framework utili-

sed local feature correspondences in order to accelerate and refine the training of

triplet networks. Our smart mining procedure is able to efficiently produce chal-

lenging training samples, while our adaptive controller can automatically regulate

their difficulty. Our second approach to feature learning is designed to utilise all of

the correspondences found in local neighbourhoods of a learned feature space. Our

approximation of a Gaussian kernel loss is able to efficiently construct a robust fea-

ture space that is suitable for transfer learning and classification tasks. Additionally,

we have demonstrated the robustness of our indexing graphs with their ability to

operate effectively after changes have been made to the indexed data.

7.1 Future Research Opportunities

My research has focused on alleviating common computational bottlenecks as well

as understand the utility of information found in high dimensional visual data. Fol-

lowing these goals has led to the development of algorithms that improve upon

existing computer vision systems. Continuing to re-evaluating the building blocks

of these systems can lead to improvements that provide ongoing benefits in many

areas. In relation to this, I believe that compelling future research opportunities can

be found in the following areas:

• Further acceleration of our Hausdorff dimensionality formulation by utilising

an approximate nearest neighbour method for finding relevant neighbours at

each radius.
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• Improving the construction of FANNGs by also allowing for the insertion and

removal of individual vertices.

• Enabling the efficient indexing of larger datasets by combining the compact

and memory efficient feature representations produced by quantisation met-

hods with the reduced backtracking costs of indexing graphs.

• Applying the vast analytical power of machine learning to the selection of ro-

bust and efficient edges in approximate nearest neighbour indexing graphs.

• Leveraging the information provided by the indexing of neural network em-

bedding spaces in order to refine the training of other machine learning frame-

works.

• Transferring our methodology from applying FANNGs to feature learning into

other fruitful areas that currently use correspondences or distance matrices

and could benefit from the efficiency of an approximate method.

• Lastly, visual data is just one of the many high dimensional data sources that

could potentially benefit for the analysis techniques and algorithms we have

discussed.
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