
State-dependent forces in
coldquantumgases

Christopher Billington

Submitted in total fulfilment of the requirements
of the degree of Doctor of Philosophy

Supervisory committee:
Prof Kristian Helmerson

Dr Lincoln Turner
Dr Russell Anderson

School of Physics and Astronomy
Monash University

June, 2018

i

© Christopher Billington 2018

I certify that I have made all reasonable efforts to secure copyright permissions for
third-party content included in this thesis and have not knowingly added copyright
content to my work without the owner’s permission.

Abstract

Studies in cold quantum gases enjoy a tight coupling between theory and experiment.
Many properties of Bose–Einstein condensates are well modelled by mean-field theory
and related methods, with which one may efficiently simulate a large number of Bose-
condensed atoms. The efficacy and tractability of such approximate models make them
powerful tools for guiding experiments in cold quantum gases for precisionmeasurement,
quantum computation, quantum simulation, and studies of superfluid turbulence.

Whilst, within its domain of validity, mean-field theory well describes the motional
state of atoms in a Bose–Einstein condensate, their internal states—the motion of their
electrons relative to the nucleus—are instead described by the Schrödinger equation.
With this equation—reduced to a small discrete basis for only the relevant electronic
states of a given problem—modelling the internal state of an atom is also tractable. Above
the critical temperature required for condensation, atoms are not condensed, and move
through space more like classical billiard balls—no longer described by mean-field theory.
If the atoms’ residual wavelike behaviour can be ignored—as it often can—their motion
can be modelled using classical mechanics even though their internal state is modelled
quantum-mechanically. This approach, called the ‘semiclassical’ method, has been used
with great success for theoretical studies of laser cooling and trapping en route to Bose–
Einstein condensation, from room-temperature atomic beams to polarisation-gradient
cooling of microkelvin clouds, and more.

However, the semiclassical models often deployed in atomic physics fail to model
many later stages of Bose–Einstein condensation experiments, particularly magnetic
trapping and evaporative cooling in the presence of a magnetic field zero. Perhaps most
revealingly, conventional semiclassical models cannot reproduce one of the bedrock
experiments of quantum mechanics—the Stern–Gerlach experiment. In this experiment,
the force on atoms depends on their internal state, such that atoms are measured to
have probabilistically taken any of a number of trajectories. These trajectories are still
individually classical, but cannot be reproduced collectively within the framework of
deterministic classical motion. This problem led to an unphysical heating of the atom
cloud in prior simulations of evaporative cooling, due to the sensitivity of Majorana
spin-flips on the details of state-dependent separation of atoms near the magnetic field
zero of the trap.

In this thesis I develop a method called the hidden-variable semiclassical method to
resolve this disconnect and allow semiclassical models to include state-dependent forces.
The method makes use of hidden variables—labels or other variables carried alongside
quantum states that declare in some sense what state the system is ‘really’ in, despite the
quantum description of the state being a superposition. These labels evolve according
to rules that ensure the probability of a particular state being declared is equal to its

iii

iv

probability as given by the quantum state. Hidden-variable theories were developed as
fundamental theories of physics in order to resolve philosophical objections to quantum
mechanics, but they invite objections of their own. Nonetheless, their ability to wrap a
layer of classical interpretation around a quantum state serves as exactly the tool we need
to reconcile the quantum and classical parts of a semiclassical model.

During preparation of this thesis I discovered that this core idea mirrors that of the
surface-hopping method used in quantum chemistry. In this thesis I make the connec-
tion between these methods and hidden variables, and present unique aspects of my
implementation. I solve a problem in existing surface-hopping methods whereby large
wavepackets—and hence low temperatures—lead to unphysically large decoherence rates.
This improves the applicability of these methods to cold atom physics.

State-dependent forces are central to cooling, trapping, and manipulating cold atoms.
In this thesis I present a numerical investigation of a new imaging method for observing
the motion of vortices in a Bose–Einstein condensate, which is based on inter-atomic
forces and how they vary for different species of atom. In this method, the inter-species
force between rubidium and potassium atoms is exploited such that atoms of one species
become trapped in the vortex cores of a turbulent Bose–Einstein condensate comprised of
the other. Imaging of the trapped ‘tracer’ atoms then reveals themotion of the vortices. To
see vortex motion over time necessitates cooling the tracer atoms to keep them trapped in
the vortex cores. I investigate both sympathetic cooling of tracer atoms by the condensate,
and present a new laser cooling scheme, capable of sub-Doppler cooling in amagnetic field
of 34G, the field strength at which a Feshbach resonance can be used to enhance the inter-
species force. This cooling scheme—which I model using a conventional semiclassical
method—relies on state-dependent optical forces for the Sisyphean effect that removes
kinetic energy from atoms. I also discuss another proposed scheme for cooling the tracer
atoms based on state-dependent forces that are difficult to model semiclassically, another
motivation for developing the hidden-variable semiclassical method.

The prevalence of time-dependent simulations in cold atom physics has led to the
adoption of a range of powerful numerical methods. In this thesis I give a pedagogical
introduction and detailed quantitative appraisal of a number of these methods, and
I present a modification of the fourth-order Runge–Kutta scheme for timestepping
differential equations, permitting larger timesteps to be used in simulations of certain
systems.

Modern experiments in quantum science demand flexible, autonomous control of
heterogeneous hardware. In this thesis I present the labscript suite, a powerful control
and analysis system for hardware-timed experiments. This open-source software project
imports design and development principles from the field of software engineering to allow
users to compose experiments as human-readable Python code, leveraging modularity,
revision control and re-use. A graphical program automates the construction of complex
parameter spaces over which an experiment is to be run, and user-provided analysis
routines are executed immediately after data acquisition to produce dynamic plots and to
enable on-line optimisation. The project is developed by a small but growing community,
accepts changes and takes direction from any interested parties to meet the needs of a
range of experiments, and has been adopted by a dozen groups at leading institutions
around the world.

Declaration

This thesis contains no material that has been accepted for the award of any other degree
or diploma at any university or other institution. To the best of my knowledge the thesis
contains nomaterial previously published or written by another person, except where due
reference is made in the text of the thesis. For parts of this thesis that are based on joint
research or publications, the relative contributions of the respective authors are detailed
appropriately.

Christopher Billington

30th June 2018

v

Acknowledgements

Over the past few years during my PhD, I’ve been able to learn fascinating things from
interesting people, play with fun technological toys, and contribute meaningfully to
scientific progress. I could not have done any of this without the support, friendship,
and mentorship of many people. The Science Advanced cohort—Rory, Shaun, Lisa,
Phil—have been much help getting through everything in my (our, mostly) decade-long
visit to Monash. My supervisors—Russ, Lincoln, and Kris—have taught me many things,
allowed me freedom to follow my curiosity, and provided endless help on endless matters,
including getting this thesis over the finishing line, for which Russ deserves special credit.
Thanks also to my sister Rosey for proof-reading on short notice, and to Ana for picking
up the slack and tolerating me while I neglected most things that were not thesis.

vii

To Grandma

Contents

Contents xi

1 Introduction 1
1.1 What’s new in this thesis . 3

2 Atomic physics: Experimental techniques and theory 5
2.1 Cooling, trapping, and manipulating atoms 5

2.1.1 Doppler cooling . 5
2.1.2 Magneto-optical and magnetic trapping 6
2.1.3 Optical dipole trapping . 6
2.1.4 Polarisation gradient cooling 7
2.1.5 Evaporative cooling . 7
2.1.6 Feshbach resonances . 8

2.2 Mean-field theory: The Gross–Pitaevskii equation and vortices 9
2.3 The 87RbD line . 10

2.3.1 Fine structure . 10
2.3.2 Hyperfine structure . 11
2.3.3 Zeeman sublevels . 14
2.3.4 Putting it all together: the { |F mF⟩} basis 16
2.3.5 Optical dipole transitions 19
2.3.6 Magnetic dipole transitions 25
2.3.7 Summary . 26

3 Quantummechanics on a computer 27
3.1 From the abstract to the concrete: neglect, discretisation and represen-

tation . 28
3.2 Solution to the Schrödinger equation by direct exponentiation 29

3.2.1 Matrix exponentiation by diagonalisation 30
3.2.2 The interaction picture . 31
3.2.3 Time-ordered exponentials and time-ordered products . . . 33
3.2.4 The operator product/split-step method 35

3.3 For everything else, there’s fourth-order Runge–Kutta 44
3.3.1 Complexity and parallelisability for the Schrödinger equation 46

3.4 Continuous degrees of freedom . 47
3.4.1 Spatial discretisation on a uniform grid: the Fourier basis . . 49
3.4.2 Finite differences . 58
3.4.3 Stability and the finite-element discrete-variable representation 62

xi

xii contents

3.4.4 Nonlinearity considerations 70
3.4.5 Conclusion . 71

3.5 Finding ground states . 72
3.5.1 Imaginary time evolution 72
3.5.2 Successive over-relaxation 74
3.5.3 Generalisation to excited states via Gram–Schmidt orthonor-

malisation . 76
3.6 Fourth-order Runge–Kutta in an instantaneous local interaction picture 76

3.6.1 Algorithm . 78
3.6.2 Domain of improvement over other methods 80
3.6.3 Results . 81
3.6.4 Discussion . 84

4 Software for experiment control and analysis 87
4.1 The labscript suite . 89

4.1.1 labscript . 89
4.1.2 runmanager . 90
4.1.3 runviewer . 91
4.1.4 BLACS . 92
4.1.5 lyse . 93

4.2 Design philosophy and advantages of approach 96
4.2.1 It’s code . 96
4.2.2 Modularity and the Unix philosophy 97
4.2.3 Off-the-shelf hardware . 98
4.2.4 Open-source, popular programming language and data format 98
4.2.5 Collateral benefits . 99

4.3 Recent and future developments . 100
4.3.1 Port to Qt . 100
4.3.2 Python 3 . 101
4.3.3 More devices, more features, general polish 101
4.3.4 Optimisation . 103
4.3.5 Just-in-time compilation 103
4.3.6 Fixed shot repetition interval 104
4.3.7 Remote device control . 104

4.4 labscript version 3 . 104
4.5 Other future developments . 105
4.6 Project history and attribution . 106
4.7 Conclusion . 108
4.8 Reproduced publication: A scripted control system for autonomous

hardware-timed experiments . 108

5 Particle velocimetry of vortices in Bose–Einstein condensates 119
5.1 Motivation: Turbulence . 120

5.1.1 Characterisation of turbulence as vortex dynamics 121
5.2 Overview of velocimetry scheme . 123
5.3 Relation to previous work . 124
5.4 Sympathetic cooling . 127

5.4.1 Model . 127
5.4.2 Results . 129

5.5 Sisyphus cooling in a 34Gmagnetic field 130
5.5.1 Description of cooling scheme 137
5.5.2 Methods . 138
5.5.3 Results . 140

contents xiii

5.5.4 Vortex-assisted Sisyphus cooling 141
5.6 Conclusion . 144

6 Hidden variables for semiclassical models with state-dependent forces 145
6.1 Semiclassical models . 147

6.1.1 Stern–Gerlach separation and evaporative cooling 148
6.2 Hidden-variable theories . 150
6.3 Overview of method . 154
6.4 Hidden variables: implementation details 156

6.4.1 Numerically evaluating Schrödinger theory 156
6.4.2 Time-dependent formulation of Tully’s fewest-switches algorithm 158
6.4.3 Velocity correction and classically disallowed transitions . . . 164

6.5 Decoherence . 165
6.5.1 Back-action of position measurement on internal state 166
6.5.2 Continuous projection . 168
6.5.3 The quantum Zeno effect 169
6.5.4 Approximate Markovian decoherence 171
6.5.5 Decoherence with mean auxiliary trajectories 174
6.5.6 What are we ‘following’ exactly? 177

6.6 Algorithms . 180
6.6.1 Markovian hidden-variable semiclassical method 180
6.6.2 Mean auxiliary trajectories hidden-variable semiclassical method 182

6.7 Results . 184
6.7.1 Gaussian projection results 187

6.8 Discussion and conclusion . 187

References 197

Chapter1
Introduction

The subject of study of this thesis is Bose–Einstein condensation, as well as
associated experimental and theoretical techniques and phenomena in cold atom
physics. The following chapters describe my work in a cold atom research group

over the past several years, pertaining to the design and modelling of new experimental
techniques, the development of modelling methods for more effectively simulating cold-
atom systems, and the design and development of laboratory software for control and
analysis of experiments on cold atoms. An overarching theme is state-dependent forces
on cold atoms. Selectively subjecting atoms to forces based on what state they are in
is at the core of many phenomena in cold atom physics. As I go into in the following
chapters, different types of state selectivity allow for cooling and imaging techniques
that would otherwise not be possible, and semiclassical models run into a problem when
state-selective forces cannot be disregarded in determining the classical force that atoms
modelled semiclassically ought to be subjected to.

Bose–Einstein condensates (becs) in dilute atomic gases are superfluids that can be
created in the lab at extremely low temperatures. This strange state ofmatterwas predicted
in 1925 by Einstein [1] based on the work of Bose [2], and first produced experimentally in
1995 [3] in a cloud of rubidium atoms, and has since been made out of many other atoms,
usually alkali metals [4–7]. In a bec, a macroscopic sample of bosonic atoms all occupy
the same quantum state, and many of the features of the single particle wavefunctions
are exhibited by the cloud as a whole. Bose–Einstein condensation and cold atoms and
ions more generally have rich applications in precision measurement [8, 9], quantum
computation [10, 11] and quantum simulation [12, 13].

Various experimental techniques are used to produce and study Bose–Einstein con-
densates,many ofwhich exploit or necessitate anunderstanding of the quantumbehaviour
of the atomic systems in question. I summarise some of these techniques and detail the
atomic physics principles underlying them in Chapter 2.

The fields of Bose–Einstein condensation and cold atomsmore generally enjoy a tight
coupling between theory and experiment, not least because of the enduring usefulness and
accuracy of mean-field theory and its extensions [14]. In mean-field theory, the quantum
matter field operator of the atoms comprising a Bose–Einstein condensate is replaced
with its expectation value at each point in space, allowing the entire multi-particle system
to be modelled with little more computational complexity than that required to model a
single-particle wavefunction.1 The resulting differential equation—the Gross–Pitaevskii 1Mean-field theory is accurate in

the low-temperature limit, in which
it has some remaining limitations—
it does not for example predict
the observed s-wave scattering
halos when two bec wavepackets
collide [15], but it is sufficient
for modelling a wide range of
experiments nonetheless.

equation—is nonlinear and using it to propagate a condensate wavefunction in time
generally requires numerical techniques rather than analytic ones.

Chapter 3 is a pedagogical presentation of how time-dependent quantum mechanics
is simulated on a computer. I lay out the path one takes from differential equations

1

2 chapter 1. introduction

containing abstract quantum-mechanical kets, to concrete arrays of numbers appropri-
ate for a computer to perform calculations on. I give a detailed quantitative appraisal
of a range of different techniques, their uses in cold atom physics and Bose–Einstein
condensation, and compare their relative efficacies. I present arguments that a fairly
sophisticated method of discretising partial differential equations—the finite-element
discrete-variable representation—may offer less computational efficiency than simpler
methods for computing solutions of comparable accuracy to the Gross–Pitaevskii and
Schrödinger wave equations. I also develop a variation on fourth-order Runge–Kutta
integration that improves on one of its deficiencies for simulating quantum systems.

In the other chapters of this thesis, I make use of some of the methods discussed
in Chapter 3, and make references to the relevant sections where appropriate. Much of
the content of Chapter 3 is not used elsewhere in this thesis however, and thus can be
skipped over unless the reader is interested in a general-purpose introduction to numerics
in cold atom physics, or in the analyses and appraisals I present, or in my improvements
to fourth order Runge–Kutta integration. The sections of Chapter 3 most relevant to
the work in this thesis, on the other hand, Section 3.2.2, which discusses interaction
pictures; Section 3.2.4, which discusses split-step methods; Section 3.5.1, which discusses
the imaginary time evolutionmethodof finding ground states. Other sections discusswell-
known methods also used in the thesis, such as fourth-order Runge–Kutta (Section 3.3)
and finite differences (Section 3.4.2), but these sections focus on issues of parallelisability
and other concerns, which were not pertinent to the (relatively small) simulations in the
results sections of Chapters 5 and 6.

Production, control, and measurement of cold atom systems require more than the
necessary optics and magnetic sources to be installed—these devices must be controllable
in a time-accurate way in order to execute the necessary cooling processes, manipulate the
system as desired, and observe the results. Production of a condensate takes on the order
of tens of seconds, requiring precisely-timed pulses of laser light at specific frequencies,
sweeps of magnetic field strengths, and frequency sweeps of radio and microwave radia-
tion. This cannot all be done by human experimenters alone, and so requires computer
automation of some kind. In Chapter 4 I a discuss a suite of software programs, the
labscript suite, designed and developed by myself and others in the Monash Quantum
Fluids group. The suite leverages modern software development techniques such as object
orientation, abstraction and isolation, as well as older principles—such as aspects of the
Unix philosophy—to produce a powerful, maintainable, extensible system for designing,
running and analysing shot-based experiments on commodity hardware. This chapter also
reproduces our publication on the labscript suite, A scripted control system for autonomous
hardware-timed experiments [16].

As superfluids, becs have zero viscosity and as such can support persistent flows.
In classical fluid dynamics the absence of viscosity means that a fluid cannot support
vorticity,2 and must be irrotational. However, fluid circulation can still occur around2This is because the motion of

vorticity is described by a diffusion
equation—with viscosity as the
diffusion constant. When the
diffusion constant is zero, there is
no way for vorticity to enter the
fluid from a boundary in the first
place!

points of zero fluid density, known as vortices. In becs this circulation is also quantised,
in units of h/m.

These quantised vortices are topological defects—the phase of the macroscopic wave-
function winds by a multiple of 2π around them, and is undefined at the centre of the
vortex core itself. Quantised vortices were observed in superfluid helium3 in the early

3In which 10% or so of the atoms
undergo Bose–Einstein condensa-
tion.

1960s [17], and in bec in a dilute atomic gas in 1999 [18]. The formation, dynamics and
decay of these vortices are believed to be important for the study of superfluid turbu-
lence [19].

In Chapter 5 I present simulations exploring the feasibility of imaging these vortices
in-situ using tracer particles. Atoms of one kind (87Rb)may become trapped in the cores of
quantised vortices in a condensate of another kind (41K), and if imaged in a time-resolved
way, reveal the motion of these vortices. A primary concern in any implementation of
such a scheme is keeping the tracer atoms cold enough that they remain trapped in the

1.1. what’s new in this thesis 3

vortex cores even as they scatter light for imaging. To that end, in Chapter 5 I present
modelling of imaging tracer atoms in a bec while they are cooled sympathetically via
collisions with condensed atoms. I also present a novel—if impractical—laser cooling
scheme for Sisyphus cooling of 87Rb atoms in a 34Gmagnetic field—a field strength at
which 87Rb and 41K repel each other strongly (leading to tighter trapping in the vortex
cores).

At high temperatures (higher than that at which atoms Bose-condense) atoms are
well described as classical particles. This is true in the sense that the wavelike nature
of the atoms can be disregarded—they move through space like classical billiard balls
obeying Newtonian mechanics. The internal state of the atoms, however—for example
the state of an outer shell electron—may not be well modelled by classical mechanics.
Even at room temperature, an electron is poorly described as a classical charged particle
orbiting a nucleus. When there is coupling then, between this internal state of an atom
and its motional state, the quantum-ness of the internal state can in some sense ‘leak’ into
its motional state even if the motion is otherwise modelled well classically. The classic
example of this is the Stern–Gerlach experiment [20], in which a beam of atoms splits
into two beams as it passes through a magnetic field gradient. A similar situation arises
for atoms in a magnetic trap—a common feature of cold atom experiments and often
used in the final stage of cooling to bec. To correctly model the losses of atoms from
these traps, one needs to model the internal state of the atoms quantum-mechanically,
but it is computationally expensive to also model their spatial motion using full quantum
wavefunctions. We would like a way to model the atoms’ motion classically, but in such a
way that it can reproduce Stern–Gerlach separation—with modelled atoms taking one
or the other trajectory probabilistically, with the probabilities consistent with those of
a fully quantum treatment. In Chapter 6 I present such a model, one that is based on a
hidden variable carried around with each atom being modelled, which selects one of the
atom’s internal eigenstates. The apparent definiteness of the hidden variable allows the
spatial motion part of the modelling to treat the atoms’ spin projection degree of freedom
as if it were in a definite state, allowing the modelling to take a single, definite trajectory.
The hidden variable itself is evolved using a stochastic hidden-variable theory that ensures
its probability of corresponding to any particular spin-projection state is consistent with
the underlying quantum evolution of the atom’s internal degrees of freedom.

Further background and introductory material is presented in the separate chapters
of this thesis.

1.1 What’s new in this thesis

The following two results comprise the primary scientific contributions of this thesis:
The use of hidden variables in semiclassical models of atomic dynamics wasmotivated

by simulating evaporative cooling in a quadrupole magnetic trap. During a collabora-
tion with Drs Turner and Anderson and Christopher Watkins on this topic, we had
the sobering realisation that a bedrock experiment of quantum mechanics—the Stern–
Gerlach experiment—was not simulable with oft-used semiclassical methods, despite
the superposed trajectories being otherwise classical (i.e. lacking wavelike behaviour).
I developed the hidden variable semiclassical method independently; only during the
preparation of this thesis did I discover that the core idea mirrors that of surface-hopping
in quantum chemistry [21]. This positioned me to identify these ‘hopping algorithms’
with hidden-variable theories [22], and elucidate unique aspects of my implementation.

The design and implementation of the labscript suite [16] advances the state of the
art of laboratory control and on-line data analysis by importing powerful principles
and techniques from the field of software engineering for use in not only the laboratory
control software, but the experiments themselves. The realisation that physics experiments

4 chapter 1. introduction

conceptually map well to computer programs, with modularity, re-use, input parameters
and return values, allowedus to apply solutions typical in software development tomanage
the complexity of a scientific experiment without limiting the power of the control system
to execute arbitrarily complex experiments. Driven by ideas advanced by Scott Owen
and David Hall [23] and discussion within the Monash Quantum Fluids group with
Drs Turner and Anderson, fellow PhD students Philip Starkey, Shaun Johnstone, and
others, I extended the idea of writing experiments as code to the powerful yet simple
to learn Python programming language, ideal for a physics laboratory in which new
students must learn to operate the experiment effectively. This ‘experiment compiler’,
called labscript, is the core of the software suite we now call the labscript suite, which
has been developed over the course of my PhD by myself, Philip Starkey and others, and
now includes a number of separate programs for setting input parameters, executing the
experiment on heterogeneous hardware, and running user-provided analysis routines on
the results, among other things. The software has been adopted for use by a number of
groups at leading institutions worldwide, and as an open-source project has attracted an
increasing number of third-party contributions that enhance its functionality or resolve
issues. This open-source model, with code not only being available to end users but
with development occurring in the open on the internet, has proved to be beneficial for
the long-term sustainability of the project, which is now seven years old and receives
continuous bugfixes and updates to ensure it continues to benefit the experimental physics
community.

Less significant but nevertheless noteworthy original contributions of this thesis
include:

Simulations of tracer particles of one atomic species trapped in vortices in a Bose–
Einstein condensate of another species, to asses the viability of the use of tracer particles
in a non-destructive vortex imaging scheme.

Numerical results of a new Sisyphus-like laser cooling scheme able to cool to sub-
Doppler temperatures in a 34Gmagnetic field, of interest due to a Feshbach resonance
between 87Rb and 41K at this field strength.

A modification to the fourth-order Runge–Kutta method for time evolving differen-
tial equations in the presence of large energy differences, in addition to original analyses
and appraisals of existing numerical methods contrasting their relative merits in the
context of Bose–Einstein condensation quantum mechanics more generally.

Chapter2
Atomic physics: Experimental

techniques and theory

Bose–Einstein condensates provide such a tantalising opportunity for study-
ing quantum phenomena not only because of their interesting properties, but also
because of the level of control they afford, with parameters able to be tuned and

manipulated in order to investigate various regimes. Many of the same techniques which
allow experimentalists such control over a bec are also employed in the production of
bec.

Themain experimental techniques used to create becs areDoppler cooling, magneto-
optical, magnetic, and dipole trapping, polarisation gradient (Sisyphus) cooling, and
evaporative cooling. Section 2.1 is a whirlwind summary of these and a few other ex-
perimental techniques. Then in Section 2.2, I’ll present some of the theory describing
superfluid flow and vortices in bec, which is central to the simulations of vortex tracking
presented in Chapter 5. The final section of this chapter, Section 2.3, will construct the
detailed theory for describing the internal state of a 87Rb atom in magnetic and optical
fields, considering only the first L = 0 to L = 1 excitation is accessible to rubidium’s sole
outer-shell electron. The resulting Hamiltonian describes 32 sublevels, and forms the
basis of any detailed calculations of laser cooling and trapping.

2.1 Cooling, trapping, andmanipulating atoms

2.1.1 Doppler cooling

Doppler cooling, demonstrated in 1978 [24], is a consequence of the simple observation
that atoms see the wavelength of incident light Doppler shifted depending on their
velocity. For example, the electric field of a linearly polarised optical plane wave is

E ∝ cos(k ⋅ r − ωt), (2.1)

which for an atom moving with constant velocity v can be written:

E ∝ cos(k ⋅ vt − ωt) (2.2)
= cos(−ωefft), (2.3)

where ωeff = ω − k ⋅ v is the effective angular frequency of the laser as seen by the atom.
This can be used to selectively transfer momentum to only fast-moving atoms, by

tuning an incident laser to a slightly lower frequency than that required for a resonant
absorption. If six lasers in counter-propagating pairs orthogonal to each other surround

5

6 chapter 2. atomic physics: experimental techniques and theory

a cloud of atoms, an idealised two-level atom theoretically will be cooled close to the
Doppler limit [25, p 58]

kBTD =
ℏΓ
2

(2.4)

where Γ is the linewidth of the atomic transition. For the effectively two-level cooling
transition used for Doppler cooling 87Rb1, this gives 146 μK, which is approximately a1TheD2 line, 5S1/2 → 5P3/2, approx-

imately 780 nm. factor of a thousand too high for Bose-condensation. These atoms are also not trapped.

2.1.2 Magneto-optical andmagnetic trapping

Magneto-optical trapping, first demonstrated in 1987 [26], comes from the realisation
that a magnetic field can be used to spatially vary the detuning from resonance that
the atoms in the above-mentioned arrangement of lasers see. This is possible due to
the Zeeman effect [27], in which the wavelengths of atomic transitions are shifted in a
magnetic field.

If a field profile can be found that causes the transition to come closer to resonance as
the atoms move away from a central point, then it forms a trap—atoms that stray too far
from the centre will absorb more strongly and be deflected back2.2The polarisations of the beams

are such that absorption from
the inward facing beam occurs,
rather than from the one that
would accelerate the atom further
outward!

The field configuration used is an anti-Helmholtz one: two coils opposite each other
carrying opposing currents. The resulting magnetic field profile has a zero in the middle
and increases in magnitude in all directions.

With the Doppler beams off, this magnetic field still provides a spatially-varying
potential, due to the magnetic dipole interaction:

V(r) = −μ ⋅ B, (2.5)

where μ is the atomic magnetic moment, and B the magnetic field. This only traps some
atomic spin states, and has losses due to spin-flips [28] near the field zero.

The optimal magnetic field gradient for forming a magneto-optical trap (mot) is
lower than that required to merely hold atoms against gravity, and thus there is little if
any magnetic trapping occurring in a mot—the trapping almost entirely results from
the position-dependent rate of photon absorption caused by the Zeeman shift due to the
magnetic field. To transfer atoms from a mot to a solely magnetic trap, the magnetic
field gradient must be increased substantially.

2.1.3 Optical dipole trapping

Optical dipole trapping on the other hand relies on the dipole force, in which off-resonant
light shifts the energy of the eigenstates of the combined atom-light system, the so called
dressed states. This energy shift, called the light shift, depends on the intensity of the light,
and so results in a potential that spatially varies as the intensity of the light. In the limit
of large detuning (compared to Rabi frequency), the resulting energy shift for an atom
in a ground state (the shift for an excited state is the same but with the opposite sign)
is [25, p 8]:

ΔE = ℏΩ2

4δ
(2.6)

where δ is the detuning from resonance and the Rabi frequency is

Ω = E0
ℏ ⟨e|e ̂r|g⟩ , (2.7)

2.1. cooling, trapping, and manipulating atoms 7

where E0 is the amplitude of the light’s electric field and ⟨e|e ̂r|g⟩ is the transition
dipole moment between the excited state |e⟩ and ground state |g⟩ of an effectively two-
level system. This transition dipole moment can be either for two specific sublevels
coupled by a laser, the calculation of which is detailed in Section 2.3.5, or an overall
effective transition dipole moment between two manifolds containing many sublevels, if
the detuning much larger compared to the spacing between the sublevels.

With the potential proportional to E2
0 , and thus the light’s intensity, the force the

atom experiences is proportional to the light’s intensity gradient. For this reason, the
dipole force is also called the gradient force. The name dipole force comes from the fact
that the force can be equivalently understood to arise from the polarisability of atoms in
a light field, in which an optically-induced dipole moment gives rise to a force that can
be used to trap polarisable materials in optical tweezers [29].

2.1.4 Polarisation gradient cooling

Polarisation gradient cooling, also called Sisyphus cooling, was proposed in 1989 [30, 31]
to explain experimentally measured cold atom cloud temperatures [32] which, at nist in
1988, were found to be well below the expected limit obtainable by the well understood
method of Doppler cooling3, one of the few examples of experiments turning out better 3As well as to explain other discrep-

ancies between experiments and
the theory of Doppler cooling, such
as the optimal detuning of light
being much greater than predicted.

than expected. A one-dimensional theory has been developed [30] which has found
remarkable agreement with three-dimensional experiments [33]

One common configuration for Sisyphus cooling comprises two counter-propagating
laser beams in each spatial dimension, both linearly polarised but with their polarisation
angles perpendicular to one another. The optical field resulting from the two beams’ su-
perposition has regions of linear polarisation and of both helicities of circular polarisation,
and varies between them on a length scale shorter than an optical wavelength.

The effect onmulti-level atoms as they move from regions of one circular polarisation
to another is that they are pumped alternately from one extreme of their spin-projection
state space to the other, alternately climbing and descending potential hills due to the
dipole forces from the regions of different polarisations4. And so, like the Greek legend 4If you consider only one polari-

sation of light, its intensity varies
sinusoidally in space, creating a
series of potential hills and wells via
the dipole force.

of Sisyphus5, who was doomed to push a rock uphill for eternity, the atoms are climbing

5Polarisation gradient cooling is
but one of a family of so called
‘Sisyphus cooling’ methods, all of
which involve atoms repeatedly
climbing potential hills.

hills repeatedly. Due to the state dependence of the strength of the dipole forces, the
atoms climb steeper hills than they descend, and are thus slowed and cooled.

This type of cooling does not work in a magnetic field; the splitting of transition
frequencies makes it impossible for an atom to traverse its spin manifold on one laser
frequency. For this reason the Sisyphus cooling stage is performed with magnetic fields
off, though a sufficiently short period is required such that the atoms can be recaptured
when the trapping field is restored.

2.1.5 Evaporative cooling

The final stage of cooling is forced rf evaporative cooling [3, 34], which decreases the
temperature of the cloud by systematically removing the hottest atoms. This is performed
in a magnetic trap, which as mentioned earlier, only traps certain spin states. Evaporation
proceeds by using an rf knife to induce spin flips in the atoms. The rf frequency is chosen
such that it is only resonant with atoms some distance away from the centre of the trap
(via the Zeeman shift). The furthest out atoms are the most energetic, possessing the
energy to climb the magnetic potential the furthest. By flipping their spins, these atoms
are ejected due to the magnetic field becoming anti-trapping for them.

The cloud is given some time to rethermalise and the knife6 is moved inward where 6So called because it cuts the tail
off the velocity distribution of the
atom cloud.

it removes slightly colder atoms. This is repeated until the desired compromise of lower
temperature/lower atomnumber is reached. Usually somemethod is employed to prevent
atoms near the centre of the trap from undergoing spin flips [28] as they move across the

8 chapter 2. atomic physics: experimental techniques and theory

Figure 2.1: When atoms approach each other with spins aligned, they are in the open
channel. In this channel they are unbound, but do not have enough energy to be free in
the other channel—the closed channel. In the close range however, the atoms may have
energy corresponding to a bound (molecular) state of the closed channel, a resonance
that causes a divergence in the scattering length. The energy difference between the two
channels can be tuned with a magnetic field and so these resonances can be induced in a
wide range of situations.

field zero. The method used in our lab is to use an optical dipole trap in combination
with the magnetic trap [35], such that the coldest atoms get trapped in the dipole trap
which is offset from the magnetic field zero.

2.1.6 Feshbach resonances

A Feshbach resonance [36] is an enhancement of the interparticle interaction strength
when a certain magnetic field strength is applied.7 This phenomenon was first studied in7Feshbach resonances can also be

induced optically and with rf but
magnetic resonances are the most
commonly used.

the context of ultracold atoms in 1993 [37], experimentally demonstrated in 1998 [38],
and is now a staple of cold atom experiments.

The interparticle interaction mentioned above is

g = 2πℏ2a
mr

(2.8)

wheremr is the reduced mass of a pair of the interacting particles, and is dependent on a
parameter a called the s-wave scattering length, which characterises low energy collisions
between atoms. It is sensitive not only to what species of atoms are colliding, but also to
their spin states. For each combination of spins, there is a different inter-atomic potential
(called a channel) which determines the collision dynamics (Figure 2.1).

The resulting scattering length is sensitive to any bound states of this inter-atomic
potential which are near the collision energy. If the channels of different spin states are
coupled via the hyperfine interaction8, then the scattering length is also sensitive to bound8Requiring that the atoms in ques-

tion have a nuclear magnetic
moment.

states in the channels other than the one the atoms are in when they are far from each
other. Due to the Zeeman effect, the energies between the different channels can be
shifted with a magnetic field, and so a bound state can be shifted close to the collision
energy, which causes the scattering length to diverge.

The end result is that at certain magnetic field strengths we find that atoms are much
more strongly attracted to or repelled from each other.

A particular Feshbach resonance of interest is shown in Figure 2.2, and can be used
to enhance the interspecies repulsion between 87Rb and 41K. The use of this resonance is
assumed for the simulations in Chapter 5 to trap tracer particles more strongly in vortex
cores of a bec.

2.2. mean-field theory: the gross–pitaevskii equation and vortices 9

Figure 2.2: Predicted interspecies scattering length [39] as a function of magnetic field
strength, for 41Kand 87Rbboth in their lowest energy hyperfine ground state. The≈ 34G
resonance is one of themain reasons for this pair of atoms being used in this project. It has
a particularly low field strength and large width compared to most Feshbach resonances.
Figure reproduced with permission [39], © American Physical Society 2008.

2.2 Mean-field theory: TheGross–Pitaevskii equation and vortices

Many features of Bose–Einstein condensates are described well by mean-field theory, in
which the many-body wavefunction is approximated by a product of identical single-
particle wavefunctions. Indeed, that the majority of the atoms are in the same quantum
state is one of the defining features of bec. As such,more accuratemodels that take into ac-
count quantum and thermal fluctuations, finite-temperature effects and interactions with
thermal atoms [14]—relevant to excitations such solitons and vortices, and to the onset of
condensation at the critical temperature—all feature such a ‘macroscopic wavefunction’
at their core. In mean-field theory, the effect of interparticle interactions is included as a
nonlinear term in the Schrödinger equation for the single particle wavefunctions, known
as the Gross–Pitaevskii equation:

iℏ 𝜕
𝜕t

Ψ(r, t) = 􏿰−
ℏ2
2m

∇2 + V(r) + g |Ψ(r, t)|2􏿳Ψ(r, t), (2.9)

where g characterises the strength of the interparticle interactions9, andΨ = √NΨsingle
9The nonlinear constant g is usually
positive—having the effect of
stabilising becs by self-repulsion.

is the single-particle wavefunction scaled by the square root of the number of particles.10

10Thus giving it the property that
|Ψ | 2 is the particle density.

In the hydrodynamic formulation of quantum mechanics [40], the flow velocity
of a spatial wavefunction can be defined by considering the probability current to be a
product of density and velocity. This allows us to define the superfluid velocity of a bec
as

v = ℏ
m

∇ϕ, (2.10)

where ϕ is the complex phase of the condensate wavefunctionΨ . Integrating this velocity
over any closed path γ gives us the circulation:

C = ℏ
m

∮
γ

∇ϕ ds (2.11)

= ℏ
m
2πn. n = 0, 1, 2… (2.12)

The fact that the circulation is quantised means that vorticity cannot exist in the conden-
sate except in one-dimensional lines, about which the wavefunction’s phase winds by a

10 chapter 2. atomic physics: experimental techniques and theory

multiple of 2π. These topological defects are the quantised vortices that are central to
the vortex tracking simulations in Chapter 5.

At a vortex core, the atom density of a bec must go to zero. This can be intuitively
understood to arise from centrifugal forces, but is also required in order for the wave-
function to be continuous and single-valued across the core. This drop in density in the
vicinity of a vortex core is exploited by the method simulated in Chapter 5 to trap atoms
within the cores.

2.3 The 87RbD line

We atomic physicists do our theory work at an intermediate level of abstraction, at which
many quantities and systems of interest can be computed and simulated with accurate
models using standard quantum mechanics, but with models that are not fully a priori.
Instead, the Hamiltonians we feed to the machinery of quantum mechanics encapsulate
some of the details we are not interested in or that are too hard to compute, with the link
between the underlying layers of reductionism and the higher layer usually provided by
experimentallymeasured values rather than calculations from fundamental physics. In this
way we can readily compute results about the atoms we are interested in by treating them
as simpler systems than they actually are, with some of the underlying details encapsulated
by terms in an effective Hamiltonian for the dynamics that we are interested in.

In this section Iwill summarisewhat the 87RbD line looks like from the perspective of
a cold atom physicist, building up aHamiltonian containing all 32 sublevels of the ground
and first excited state of 87Rb including fine structure, hyperfine structure, interaction
with a magnetic field, and optical transitions between states. This Hamiltonian is the
starting point for any calculations regarding cooling, trapping, and coherent control of
87Rb, and for other alkali metals is much the same.

Many of the details of this section are drawn from references [25, 41–44], but the
reader should be aware that there are considerable conventional and notational differences
between different literature sources. What is presented here is summarised and framed
in a way that I think is useful to an experimentalist looking to use the theory to make
concrete calculations about real systems.

2.3.1 Fine structure

The 87RbD line refers to the first excitation available to the sole outer electron of 87Rb.
Both the ground and excited state of this transition have the same principal quantum
number, but different orbital angular momentum quantum numbers. Upon closer inspec-
tion, it is not just one transition between a ground state and an excited state—there are
two excited states, and the two resulting transitions are called, in order of their transition
frequencies, the D1 and D2 lines. Thus the ground and first excited state of 87Rb are
actually a ground state plus two non-degenerate excited states, once we take into account
fine structure. The ground state is an S state (electronic orbital angular momentum quan-
tum number L = 0), called the S1/2 state, and the two excited states are P states (L = 1),
one with the electron spin anti-aligned with its orbital angular momentum (resulting
in total angular momentum quantum number J = 1/2) and one with the electron spin
aligned with its orbital angular momentum (J = 3/2), called the P1/2 and P3/2 states
respectively. In all of these states, 87Rb’s single outer-shell electron occupies an orbital
with principle quantum number n = 5, which for brevity we leave out of the notation.
The transition between S1/2 and P1/2 is called theD1 line, with experimentally measured
(angular) transition frequency ωD1

, and the transition between S1/2 and P3/2 is theD2
line with angular transition frequency ωD2

. These transition frequencies correspond to
optical wavelengths of λD1

≈ 795 nm and λD2
≈ 780 nm [41].

2.3. the 87rbD line 11

This fine structure is treated entirely empirically for our purposes, and so our base
Hamiltonian for the rubidiumD line, taking into account only fine structure, is simply a
statement of the experimentally measured energy differences between the states:

Ĥfs = ℏωD2
1̂P3/2 ⊕ ℏωD1

1̂P1/2 ⊕ 0̂S1/2 , (2.13)

where 1̂P3/2 , 1̂P1/2 , and 0̂S1/2 are identity and zero operators each acting on the subspace of
states within the P 3

2
, P 1

2
, and S 1

2
manifolds respectively, and⊕ is the direct sum.11 The 11Not to be confused with the

Kronecker sum, with which it
shares notation. The direct sum
concatenates matrices as blocks,
producing a larger, block-diagonal
matrix with dimension equal to
the sum of the dimensions of the
matrices being direct-summed,
whereas the Kronecker sum is
the regular sum of matrices after
each has been multiplied using the
Kronecker-product with identity
matrices with sizes of the other
matrices in the sum, producing
matrices with dimension equal to
the product of those being summed.

matrix representationHfs of Ĥfs in the basis in which it is diagonal (which we will call the
{ |LJ⟩} basis, since L and J are good quantum numbers12 for specifying one of the three

12A good quantum number is a num-
ber that can be used to label (not
necessarily uniquely) an energy
eigenstate, and on which the energy
eigenvalue of that state depends.
Saying J and L are good quantum
numbers is saying that the eigen-
states of the overall Hamiltonian
are also eigenstates of L̂2 and ̂J2,
since eigenstates of these two opera-
tors can be specified by stating their
quantum numbers L and J .

states, which we write with the spectroscopic notation letter—S or P—corresponding to
the value of L in place of its numerical value) is

Hfs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

􏿯
⋱
ℏωD2

⋱
􏿲

􏿯
⋱
ℏωD1

⋱
􏿲

􏿯
⋱

0
⋱ 􏿲

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.14)

which is a block-diagonal matrix with each block also being a diagonal matrix. We have
not yet specified the size of each submatrix—the size of each differs and depends on how
many hyperfine and Zeeman sublevels are in that state.

This base Hamiltonian is worth singling out since the energy differences between its
three states are orders of magnitude larger than any of the energy differences between
hyperfine and Zeeman sublevels within them. When doing any sort of calculations
or simulations then, this time-independent Hamiltonian can often be removed from
the equations using an interaction picture (see Section 3.2.2), as done in Section 5.5 in
simulating laser cooling.

2.3.2 Hyperfine structure

Within each of the S1/2, P1/2 and P3/2 states, the single outer-shell electron’s total angular
momentum ̂J has an interaction with 87Rb’s nuclear angular momentum ̂I . This results in
multiple discrete energy levels depending on the relative orientation of the two separate
angular momenta. The interaction Hamiltonian for this hyperfine structure is13 [41, 45]: 13Note that this expression differs

from those in the cited references
by a factor of 1/ℏ2—this is because I
define the ̂I and ̂J angular momen-
tum operators in SI units, rather
than in units of ℏ2.

Ĥhfs =
Ahfs
ℏ2

̂I ⋅ ̂J + Bhfs
ℏ2

3(̂I ⋅ ̂J)2 + 3
2
̂I ⋅ ̂J − I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1) , (2.15)

where J is the total angular momentum quantum number of the electron, equal to either
1
2 or 3

2 depending on which state in the D line we are considering, I = 3
2 is the total

angular momentum quantum number of the nucleus, andAhfs and Bhfs are empirically
determined coupling constants. Here we see the boundary between the quantities we
can calculate with the machinery of quantum mechanics and those that we determine
empirically—this expression applies so long as J and I are good quantum numbers,14 and 14J is a good quantum number if

the hyperfine splitting is small
compared to the spacing between
the three states of theD line, which
it is, and I is a good quantum
number if the hyperfine splitting
is small compared to the energy
difference between the ground state
and the first nuclear excited state,
which it most certainly is.

the two terms are the dipolar and quadrupolar interactions [45] between two angular
momenta, with the coupling constants determined empirically and encapsulating details
that are difficult to compute a priori, such as relativistic effects and the exact shape of the
electron orbitals given the presence of inner shell electrons. For the spherically-symmetric
S1/2 ground state, there is no quadrupolar interaction and so Bhfs is only non-zero for the
two P excited states.15 The values of Ahfs and Bhfs for each of the three LJ states of theD

15Even though Bhfs = 0 for the
S1/2 state, the quadrupolar term
should be explicitly excluded from
the numerical computation, as it
contains a division by zero.

line can be found in [41].

12 chapter 2. atomic physics: experimental techniques and theory

For a given state of the D line, we can construct the matrix representation
I×J
H hfs

of Ĥhfs in the I × J basis—which we define as the basis in which both the z vector

components ̂Iz and ̂Jz of ̂I and ̂J are diagonal—by constructing matrix representations
I×J
I

and
I×J
J of the operators ̂I and ̂J in that basis and then applying the expression (2.15). The

overset I × J on each of the matrices indicates that the matrix is a representation of its
respective operator in the I × J basis, so named because its basis vectors can be obtained
via a Cartesian product16 of the two sets of basis vectors from the I and J bases for the16The different types of products

available for matrices, vectors, op-
erators, spaces, and their sets of
basis vectors are rife with subfield-
specific conventions and over-
loaded notation, leading to much
ambiguity. Although ‘Cartesian
product’ connotes well what I
mean here, it is still ambiguous.
What I mean is that the I × J
basis is the set of basis vectors
{u ⊗ v | u ∈ I, v ∈ J}. The notation
u ⊗ v, which is also ambiguous,
denotes the Kronecker product
of two column vectors, producing
a column vector with number of
elements equal to the product of
the number of elements in each of
the two vectors—not the ‘outer’
or ‘tensor’ product, which would
produce a matrix.

two individual nuclear and electronic angular momentum degrees of freedom, in which
̂Iz and ̂Jz are respectively diagonal.

To construct matrix representations of angular momentum operators in the product

space basis I × J, we first need their matrix representations
I
I and

J
J in the bases of their

respective subspaces, which I will write as I and J for brevity. The two operators can then
be expanded into the product space by applying a Kronecker product with an appropriate
identity matrix to each:

I×J
I = I ⊗

J

I (2.16)
I×J
J =

I
I ⊗ J (2.17)

where
I
I is the matrix representation of the identity operator in the I basis of the nuclear

spin degree of freedom, equal to a (2I + 1) × (2I + 1) identity matrix, with
J

I defined
similarly for the electronic spin degree of freedom.

Each of the two matrices I and J is actually a vector of matrices, one for the angular
momentumprojection in each of the directions x, y and z. Theprocedure for constructing
such matrices for arbitrary total angular momentum quantum numbers follows.17 I will17This explicit procedure for con-

structing the matrix representa-
tions of these operators is useful
for entering into a programming
language to produce programs ca-
pable of performing atomic physics
calculations for arbitrary total angu-
lar momentum quantum number J ,
without having to explicitly enter
the angular momentum operators
for each value of J , which can be
tedious and prone to human error.

show the procedure for constructing Jx , Jy and Jz only for an arbitrary J , which is identical
to that for computing the vector components of I .

For a given total angular momentum quantum number J , the vector components of
J in the J basis (the basis in which Jz is diagonal) can be constructed using the raising
and lowering operators ̂J+ and ̂J−. Since the action of the raising and lowering operators
on an eigenstate of Jz with angular momentum projection quantum number mJ is to
produce an adjacent (mJ ± 1) eigenstate multiplied by a constant [46, p 192], this fact can
be used to compute the non-zero matrix elements of ̂J+ and ̂J− in the { |mJ⟩} basis (the
basis kets of which we identify with the standard basis vectors18 for a 2J + 1-dimensional

18I will hereafter use the terms ‘J ba-
sis’ and ‘{ |mJ⟩} basis’, and similarly
for other bases, interchangeably, in
the understanding that this identifi-
cation of standard unit vectors with
the basis kets is implied.

space in order to define the set of concrete basis vectors J):

⟨mJ + 1| ̂J+|mJ⟩ = ℏ􏽮J(J + 1) −mJ (mJ + 1), −J ≤ mJ < J, (2.18)

⟨mJ − 1| ̂J−|mJ⟩ = ℏ􏽮J(J + 1) −mJ (mJ − 1), −J < mJ ≤ J, (2.19)

and therefore compute explicit matrices for J+ and J− in the { |mJ⟩} basis:1919I’m using the standard conven-
tion of ordering the eigenkets
{ |mJ⟩} in descending order ofmJ .
This is at odds with the computer
programming convention of loop-
ing over most indices in ascending
order, and so care should be taken
when constructing these matrices in
a computer program.

J+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⟨J | ̂J+|J−1⟩ 0 …
… 0 ⟨J−1| ̂J+|J−2⟩ 0 …

⋱ ⋱ ⋱
… 0 ⟨−J+2| ̂J+|−J+1⟩ 0

… 0 ⟨−J+1| ̂J+|−J⟩
… 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.20)

J− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 …
⟨J−1| ̂J−|J⟩ 0 …

0 ⟨J−2| ̂J−|J−1⟩ 0 …
… 0 ⟨J−3| ̂J−|J−2⟩ 0 …

⋱ ⋱ ⋱
… 0 ⟨−J | ̂J−|−J+1⟩ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.21)

2.3. the 87rbD line 13

both of which have non-zero values along only one non-main diagonal adjacent to the
main diagonal, and which form a Hermitian conjugate pair (or indeed, a transpose pair,
since all elements are real). The matrix representations of ̂Jx and ̂Jy can then be computed
by rearranging the defining expressions for ̂J+ and J−;

̂J+ = ̂Jx + i ̂Jy, (2.22)
̂J− = ̂Jx − i ̂Jy, (2.23)

for ̂Jx and ̂Jy , and then applying the result to our matrix representations of ̂J+ and ̂J− to
obtain matrix representations Jx and Jy of ̂Jx and ̂Jy in the { |mJ⟩} basis:

Jx =
J+ + J−

2
, (2.24)

Jy =
J+ − J−
2i

. (2.25)

Finally, since { |mJ⟩} is the eigenbasis of Jz with eigenvalues {ℏmJ }, the matrix representa-
tion of Jz in the J basis is simply the diagonal matrix of eigenvalues:

Jz =

⎡
⎢⎢⎢⎢⎢⎢⎣

ℏJ
ℏ(J−1)

⋱
ℏ(−J+1)

−ℏJ

⎤
⎥⎥⎥⎥⎥⎥⎦ . (2.26)

We can also construct the matrix representation J2 of the total (squared) angular momen-
tum operator ̂J2 as

J2 = J2x + J2y + J2z , (2.27)

or equivalently:

J2 = J(J + 1)ℏ2
J

I, (2.28)

since everymJ state is an eigenstate of the J2 operator with eigenvalue J(J + 1)ℏ2.
The above prescription can be used to produce matrix representations of angular

momentum operators Jx , Jy , Jz and J2 for any integer or half-integer total angular momen-
tum quantum number J . The three components can be considered a vector of matrices, J ,
for the vector angular momentum operator ̂J . Below is a Python function that computes
these matrices as well as the corresponding eigenvectors:

1 import numpy as np

2 hbar = 1.054571628e-34

3
4 def angular_momentum_operators(J):

5 """Construct matrix representations of the angular momentum operators Jx,

6 Jy, Jz and J2 in the eigenbasis of Jz for given total angular momentum

7 quantum number J. Return them, as well as the number of angular momentum

8 projection states, a list of angular momentum projection quantum numbers

9 mJ, and a list of their corresponding eigenvectors, in the same order as

10 the matrix elements (in descending order of mJ)."""

11 n_mJ = int(round(2*J + 1))

12 mJlist = np.linspace(J, -J, n_mJ)

13 Jp = np.diag([hbar * np.sqrt(J*(J+1) - mJ*(mJ + 1)) for mJ in mJlist if mJ < J], 1)

14 Jm = np.diag([hbar * np.sqrt(J*(J+1) - mJ*(mJ - 1)) for mJ in mJlist if mJ > -J], -1)

15 Jx = (Jp + Jm) / 2

16 Jy = (Jp - Jm) / 2j

17 Jz = np.diag([hbar*mJ for mJ in mJlist])

18 J2 = Jx**2 + Jy**2 + Jz**2

19 basisvecs_mJ = [vec for vec in np.identity(n_mJ)]

20 return Jx, Jy, Jz, J2, n_mJ, mJlist, basisvecs_mJ

14 chapter 2. atomic physics: experimental techniques and theory

Using the above prescription to construct a matrix representation of the ̂J operator
with J = 1

2 for the S1/2 and P1/2 states, or J = 3
2 for the P3/2 state, and to construct a

matrix representation of the ̂I operator with I = 3
2 , we can explicitly construct a matrix

representation of the hyperfine interaction Hamiltonian for any state of the 87RbD line.
Remaining is to obtain the matrix representations of the two operators in the I × J
product space basis using (2.16) and (2.17), and then we can apply (2.15) to our matrices

to obtain the matrix representation
I×J
H hfs of Ĥhfs for a given J corresponding to one of

the three states on theD line:

I×J
H hfs =

Ahfs
ℏ2

I×J
I ⋅

I×J
J + Bhfs

ℏ2
3(

I×J
I ⋅

I×J
J)2 + 3

2

I×J
I ⋅

I×J
J − I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1) , (2.29)

where the products of vector components within the dot products are computed with
ordinary matrix multiplication. Alternatively, one can use the matrices in their individual
subspaces rather than their equivalents in the product space, so long as one interprets the
dot products as ‘Kronecker dot products’:

I×J
H hfs =

Ahfs
ℏ2 I ⊗⋅ J + Bhfs

ℏ2
3(I ⊗⋅ J)2 + 3

2 I
⊗⋅ J − I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1) , (2.30)

where ⊗⋅ is the Kronecker dot product:

I ⊗⋅ J ≡ Ix ⊗ Jx + Iy ⊗ Jy + Iz ⊗ Jz . (2.31)

In the above way one can construct an explicit matrix representation of Ĥhfs in the
I × J basis for the hyperfine interaction for a given LJ state of theD line.

Column vectors in the I × J basis

Because thematrix representations I and J of the electron andnuclear angularmomentum
operators were constructed in the { |mI⟩} and { |mI⟩} bases of their respective subspaces,
the matrices we have constructed are in the basis I × J with basis vectors:

I × J = 􏿺 |mI mJ⟩ 􏿖 |mI⟩ ∈ { |mI⟩}, |mJ⟩ ∈ { |mJ⟩}􏿽 , (2.32)

where |mI mJ⟩ = |mI⟩ ⊗ |mJ⟩. The vector representation ψ of a state vector |ψ⟩ in this
basis is

ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨mI=I mJ=J |ψ⟩
⟨mI=I mJ=J−1|ψ⟩

⋮
⟨mI=I mJ=−J |ψ⟩
⟨mI=I−1 mJ=J |ψ⟩
⟨mI=I−1 mJ=J−1|ψ⟩

⋮
⋮

⟨mI=−I mJ=−J |ψ⟩

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.33)

The hyperfine Hamiltonian is not diagonal in the { |mI mJ⟩} basis. The basis in which it
is diagonal—the { |F mF⟩} basis—will be discussed in Section 2.3.4.

2.3.3 Zeeman sublevels

The states differing only in their mF quantum numbers—called Zeeman sublevels—
are degenerate in energy with respect to the hyperfine Hamiltonian, but an external
magnetic field lifts this degeneracy. The Zeeman effect [27,41] results in an energy shift
proportional to the external magnetic field B and to a system’s magnetic moment μ:

V = −μ ⋅ B. (2.34)

2.3. the 87rbD line 15

Our atom is a composite particle, made of a nucleus with its own intrinsic magnetic
moment, an electron with its own intrinsic magnetic moment as well, and a contribution
from the orbital motion of the electron about the nucleus. Each magnetic moment is
proportional to the angular momentum of the subsystem in question, with the propor-
tionality constants, called Landé g-factors written as dimensionless multiples of −μB/ℏ,
where μB is the Bohr magneton.20 Since J is a good quantum number so long as energy 20We are using the sign convention

that defines the Landé g-factor gJ
for the electron as positive.

shifts are smaller than the (large) energy spacing between the three LJ states of the D
line, on the level we work we don’t consider the electron spin and orbital angular mo-
menta separately, rather we encapsulate themwith a single, empirically determined Landé
g-factor gJ [41] for the magnetic moment of the electron in each of the three LJ states.
Similarly we consider the nucleus as a single spin with an experimentally determined
gI [41], resulting in a Zeeman Hamiltonian:

ĤZ = −μ̂ ⋅ B (2.35)

= − 􏿴μ̂I + μ̂J􏿷 ⋅ B (2.36)

= 􏿵gIμBℏ
̂I +

gJμB
ℏ

̂J􏿸 ⋅ B. (2.37)

Separate gS and gL values are known and can be used in two terms instead of the one
containing ̂J above if J is not a good quantum number, but in the regime we work that
is not usually the case (and if it were, the fine and hyperfine structure Hamiltonians
above would also be inadequate since they assume that J is a good quantum number). If
J is a good quantum number then it is more accurate to use the above expression with
empirically measured gJ values, since they encapsulate QED effects and corrections due
to the multi-electron structure of 87Rb that are not captured by the simple Zeeman
Hamiltonian with separate Ŝ and L̂ terms [41].

If the energy shifts from the Zeeman effect are small compared to the hyperfine
spitting, then F (the total spin quantum number, defined in the next section) is a good
quantum number and a given hyperfine level can be treated as a single magnetic moment
subject to the Zeeman Hamiltonian:

ĤZ lin =
gFμB
ℏ F̂ ⋅ B, (2.38)

where [41]

gF = gJ
F(F + 1) − I(I + 1) + J(J + 1)

2F(F + 1) + gI
F(F + 1) + I(I + 1) − J(J + 1)

2F(F + 1) . (2.39)

The direction in which each Zeeman sublevel shifts in energy for small magnetic fields is
depicted in Figure 2.3. Experimentally, Zeeman shifts that depart from this linear regime
are not infrequently encountered, and so it is an approximation that cannot always be
made.

An explicit matrix representation
I×J
H Z of ĤZ in the { |mI mJ⟩} basis for each of the

three LJ states of theD line can be constructed by applying (2.37) to the matrix represen-
tations of ̂I and ̂J in that basis:

I×J
H Z = −

I×J
μ ⋅ B, (2.40)

where

I×J
μ = −gIμBℏ

I×J
I −

gJμB
ℏ

I×J
J (2.41)

= −gIμBℏ I ⊗
J

I −
gJμB
ℏ

I
I ⊗ J . (2.42)

16 chapter 2. atomic physics: experimental techniques and theory

2.3.4 Putting it all together: the { |F mF⟩} basis

So far we have described how to construct a matrix representation of the fine structure
Hamiltonian for the three LJ states of the 87RbD line, as well as matrix representations of
each state’s hyperfine and Zeeman Hamiltonians, these latter two in the same { |mI mJ⟩}
basis. In the subspaces of each of the three LJ states then, we can sum together the
hyperfine and Zeeman Hamiltonians to form (a matrix representation of) a Hamiltonian
that takes interactions into account:

I×J
H P3/2 =

I×J
H hfsP3/2 +

I×J
H ZP3/2 , (2.43)

I×J
H P1/2 =

I×J
H hfsP1/2 +

I×J
H ZP1/2 , (2.44)

I×J
H S1/2 =

I×J
H hfs S1/2 +

I×J
H Z S1/2 , (2.45)

where the subscripts P3/2, P1/2, and S1/2 on the terms on the right hand side indicate that
the expressions for the matrix elements of the hyperfine and Zeeman Hamiltonians are
to be evaluated using the specific values of J ,Ahfs, Bhfs, and gJ relevant to that state. The
total Hamiltonian for the D line including fine structure, hyperfine structure and the
Zeeman interaction is then

Ĥ = Ĥfs + 􏿴ĤP3/2 ⊕ ĤP1/2 ⊕ ĤS1/2􏿷 (2.46)

⇒ Ĥ = 􏿴ℏωD2
1̂P3/2 + ĤP3/2􏿷 ⊕ 􏿴ℏωD1

1̂P1/2 + ĤP1/2􏿷 ⊕ ĤS1/2 , (2.47)

the matrix representation of which in the { |L J mI mJ⟩} basis is the block diagonal matrix

I×J
HD 87Rb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

􏿮 ℏωD2+
I×J
H P3/2

􏿱
􏿮 ℏωD1+

I×J
H P1/2

􏿱
􏿮 I×JH S1/2

􏿱

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.48)

where addition of scalars with matrices implies the addition of a scalar multiple of the
appropriately sized identity matrix.

While
I×J
HD 87Rb is a block diagonal matrix, each of the three submatrices is not di-

agonal, sincemI andmJ are not good quantum numbers for the hyperfine interaction

(though they are good quantum numbers for the Zeeman interaction and hence
I×J
HD 87Rb

becomes approximately diagonal at high magnetic field). Once one has constructed
I×J
HD 87Rb or its submatrices, there are two other bases one might consider transforming
the submatrices into depending on the circumstances. One is the ΣF = { |F mF⟩} basis21,21The name ΣF refers to the fact

that this is the basis that lends
itself to the interpretation of the
total space being the direct sum
of subspaces, each of which has a
well defined F quantum number.
So if I × J is a basis for a product
space with (2I + 1) × (2J + 1)
dimensions, then ΣF is a basis
for a sum space with ∑i(2Fi + 1)
dimensions, where Fi ranges from
|I − J | to I + J in integer steps. The
product and sum bases have the
same dimensionality and span
the same space, so the difference
is only in the identification and
composition of their component
subspaces.

in which the matrix representation of the hyperfine interaction is diagonal. The matrix
representation of the ZeemanHamiltonian is also approximately diagonal in the { |F mF⟩}
basis, so long as one is in the linear Zeeman regime. Furthermore, the transition dipole
moments for optical transitions aremost easily calculated in the { |LJ F mF⟩} basis, as we’ll
see in the next subsection. For these reasons the { |F mF⟩} basis is the most commonly
used and referred to.

The { |F mF⟩} basis is defined as the simultaneous eigenbasis of the F̂2 and F̂z oper-
ators, which are the total (squared) and z component of the total angular momentum
operator F̂ = ̂I + ̂J , the matrix forms F2 and Fz of which in the |mI mJ⟩ basis can be

2.3. the 87rbD line 17

Figure 2.3: The 32 states of the 87RbD line, ordered vertically by energy (not to scale) in
a small magnetic field. At zero magnetic field, Zeeman sublevels sharing a common F
quantum number and within the same hyperfine level are degenerate. At small magnetic
fields this degeneracy is lifted, with state energies shifting in the directions depicted.
However, F is no longer a good quantum number at non-zero magnetic field, as most
of the non-degenerate sublevels are actually equal to linear combinations of two states
of different F quantum numbers. Nevertheless at low magnetic fields the states are
labelled using F anyway, since one F state dominates the linear combination, and at
higher magnetic fields the states are labelled using an index α, equal to the value of F of
the state that would dominate the superposition if the field were smoothly reduced to
zero. mF remains a good quantum number at non-zero magnetic field however, and so at
all fields a state can be specified by the numbers L, J , α (equal to F at small field) andmF .

constructed from the matrix forms of the individual angular momentum operators:

I×J
F =

I×J
I +

I×J
J

= I ⊗
J

I +
I
I ⊗ J ; (2.49)

I×J
Fz =

I×J
Iz +

I×J
Jz

= Iz ⊗
J

I +
I
I ⊗ Jz ; (2.50)

I×J

F2 =
I×J
F ⋅

I×J
F . (2.51)

The { |FmF⟩} basis allows the eigenstates of the hyperfine interaction to be labelled with
F andmF quantum numbers. For a state of the 87RbD line with electron total angular
momentum quantum number J , there are 1 + J + I − |(I − J)| hyperfine levels, with F
quantum numbers running from |I − J | to I + J . Within each hyperfine level there are
2F + 1 degenerate states with different mF quantum numbers ranging from −F to F.
This results in a total of 32 possible states for the rubidiumD line, a schematic of which is
shown in Figure 2.3.

To transform each submatrix between the { |mI mJ⟩} and { |F mF⟩} bases, we use a
unitary matrix whose elements are Clebsch–Gordan coefficients, each defined as the
inner product of a |F mF⟩ state with a |mI mJ⟩ state (written in full as |I mI J mJ⟩), and

18 chapter 2. atomic physics: experimental techniques and theory

calculable as [41]

⟨I mI J mJ |F mF⟩ = (−1)I−J+mF√2F + 1 􏿶
I J F
mI mJ −mF

􏿹 (2.52)

where the object in parentheses is aWigner 3-j symbol. TheClebsch–Gordan coefficients
are real: ⟨F mF |I mI J mJ⟩ = ⟨I mI J mJ |F mF⟩, and are zero unless mI + mJ = mF .
Given that the possible range of the F quantum number is from |I − J | to I + J , and the
possible range ofmF quantum numbers is from−F to F for each F (both in integer steps),
an explicit construction of the unitary matrixUCG of Clebsch–Gordan coefficients, in
the convention where the column vectors in the { |F mF⟩} basis have F running from its
highest value to lowest from top to bottom, andmF also running from highest to lowest
within each value of F, (omitting I and J for brevity) is

UCG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨mI=I mJ=J |F=I+J mF=F⟩ … ⟨mI=I mJ=J |F=I+J mF=−F⟩ … … ⟨mI=I mJ=J |F=|I−J | mF=−F⟩
⋮

⟨mI=−I mJ=J |F=I+J mF=F⟩ ⋱ ⋮
⋮
⋮

⟨mI=−I mJ=−J |F=I+J mF=F⟩ … ⟨mI=−I mJ=−J |F=|I−J | mF=−F⟩

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.53)

This the matrix that takes vectors from the { |F mF⟩} basis to the { |mI mJ⟩} basis, so its
Hermitian conjugateU†

CG is needed for the inverse transformation (which is equal to the
transpose since the matrix elements are real). Within the convention we’re using to order
the matrix elements, the vector representation ψ of a state vector |ψ⟩ in the { |F mF⟩}
basis of one of the LJ states is

ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨F=I+J mF=F|ψ⟩
⟨F=I+J mF=F−1|ψ⟩

⋮
⟨F=I+J mF=−F|ψ⟩
⟨F=I+J−1 mF=F|ψ⟩
⟨F=I+J−1 mF=F−1|ψ⟩

⋮
⋮

⟨mF=|I−J | mF=−F|ψ⟩

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.54)

Each submatrix of the total Hamiltonian for the D line can be transformed into
its { |F mF⟩} basis by using a unitary matrix of Clebsch–Gordan coefficients with the
appropriate value of J , yielding a totalHamiltonian for the 87RbD line in the { |LJ F mF⟩}
basis:

ΣF
HD 87Rb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

􏿮 ℏωD2+U
†
CG3/2

I×J
H P3/2UCG3/2 􏿱

􏿮 ℏωD1+U
†
CG1/2

I×J
H P1/2UCG1/2 􏿱

􏿮 U†CG1/2
I×J
H S1/2UCG1/2 􏿱

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.55)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

􏿮 ℏωD2+
ΣF
H P3/2

􏿱
􏿮 ℏωD1+

ΣF
H P1/2

􏿱
􏿮 ΣFH S1/2

􏿱

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.56)

where the additional subscripts on the unitary matrices indicates the value of J used in its
construction. Armed with the { |F,mF⟩} basis, we have little remaining reason to use the
{ |mI mJ⟩} basis any more.

Here is a recap of what we have taken into account with our model of the Rubidium
D line:

2.3. the 87rbD line 19

• Orbital angular momentum: the two lowest quantum numbers L = 0 and L = 1
of the electron’s orbital angular momentum: this yields the S ground state and P
excited state.

• Fine structure: the two possible orientations of the electron’s spin with respect
to its orbital angular momentum. This splits the P excited state into two states,
P1/2 and P3/2, and leaves the S ground state as the single state S1/2. The energies of
these three states are determined entirely empirically—without any modelling of
the fine structure.

• Hyperfine structure: The possible orientations of the electron’s total angular mo-
mentum with respect to the nuclear angular momentum. This splits each state
so far into 1 + J + I − |(I − J)| hyperfine states. The hyperfine interaction is
treated semi-empirically, using an analytic form of the hyperfine interaction but
with empirically determined coupling constants within each of the three LJ states
of theD line.

• Zeeman effect: the possible orientation of the angular momenta ̂I and ̂J—or at
low field their sum F̂—onto an external magnetic field. The Zeeman Hamiltonian
is modelled analytically, but with empirically determined Landé g factors for each
of the three LJ states of theD line.

The above considerations allow us to construct a Hamiltonian, as a concrete matrix
representation, for all 32 possible states of the rubidiumD line in a fixedmagnetic field, in
a basis in which it is diagonal for the case of zero magnetic field. In a non-zero magnetic
field, one can analytically diagonalise theS1/2 andP1/2blocks of thismatrix using theBreit–
Rabi formula [42, p. 347; 47], but analytic treatment of the P3/2 block is considerably
more involved and it is generally diagonalised numerically. At non-zero magnetic field, F
ceases to be a good quantum number, but states are nonetheless labelled using a variable
α, defined as the value of F a state would have if the magnetic field were reduced to zero.
mF remains a good quantum number however, and thus at non-zero magnetic field the
{ |α mF⟩} basis, is the one in which the Hamiltonian is diagonal, with the transformation
between it and the { |F mF⟩} basis requiring numerical diagonalisation.

If the magnetic field is static, then this Hamiltonian ĤD 87Rb is a time-independent
Hamiltonian, to which additional time-dependent Hamiltonians can be added to take
into account optical or rf transitions, detailed below. In a dynamic magnetic field, only
Ĥhfs is time-independent, in which case the Zeeman Hamiltonian will also be part of
the time-dependent part of the Hamiltonian. This has implications for the use of an
interaction picture (described in Section 3.2.2), in which the time-independent part of a
Hamiltonian can be analytically removed from the equations of motion, which can make
further computations more tractable both analytically and numerically.

2.3.5 Optical dipole transitions

Optical transitions due to laser fields appear as off-diagonal matrix elements in the
{ |F mF⟩} basis22. A given laser of a certain polarisation may give rise to non-zero tran- 22Thematrix elements can be

obtained in the { |α mF⟩} basis at
non-zero magnetic field via the
numerically computed transfor-
mation mentioned in the previous
subsection.

sition matrix elements between several different pairs of states, depending on selection
rules.

The potential the outer electron of rubidium is subject to in a classical electric field is
the electric dipole potential [25, 42]:

Ĥd = −d̂ ⋅ E, (2.57)

where E is the classical electric field and d̂ is the electric dipole operator:

d̂ = −e ̂r, (2.58)

20 chapter 2. atomic physics: experimental techniques and theory

which gives the electric dipole of the atom in terms of the electron’s charge −e and its
position operator (with respect to the nucleus) ̂r. A single matrix element of Ĥd for
coupling an initial state |LJ F mF⟩ to a final state |L′J′ F′ m′

F⟩ is therefore:

⟨L′J′ F′ m′
F |Ĥd|LJ F mF⟩ = ⟨L′J′ F′ m′

F |e ̂r ⋅ E|LJ F mF⟩ , (2.59)

which we will abbreviate as

⟨n′|Ĥd|n⟩ = ⟨n′|e ̂r ⋅ E|n⟩ , (2.60)

writing the initial state |LJ F mF⟩ = |n⟩ and final state |L′J′ F′ m′
F⟩ = |n′⟩, encapsulat-

ing the set of quantum numbers as a single index23 for the state.23The choice of the symbol n is
unrelated to the principal quantum
number, which does not vary
between the states of theD line. Plane waves

The electric field of a plane wave of amplitude E0, polarisation unit vector ε̂ and angular
frequency ω can be written:

E(r, t) = E0
2
􏿴ε̂ei(k⋅r−ωt) + ε̂∗e−i(k⋅r−ωt)􏿷 , (2.61)

where ∗ is complex conjugation, which in the case of a real valued polarisation unit
vector ε̂ does nothing, making the above equal to a cosine wave E0ε̂ cos(k ⋅ r − ωt) as
expected for a linearly polarised plane wave. However, (2.61) also allows for arbitrary
circular or elliptical polarisation, if ε̂ is allowed to have complex components. This
comes with the caveat, however, that the amplitude E0 is a misnomer in these cases
and no longer corresponds to any actual amplitude. For example, a circularly polarised
plane wave propagating in the z direction constructed using complex polarisation vector
ε̂ = ∓(x̂ ± iŷ)/√2) and ‘amplitude’ E0 actually has an electric field vector with constant
magnitude E0/√2. The ‘amplitude’ E0 in (2.61) is actually equal to √2Erms and thus
only equal to the peak electric field strength in the case of linear polarisation. Using the
intensity of the beam24 I = ε0cE2

rms instead, which is less ambiguous and more relatable24Not to be confused with the
nuclear spin I, distinguishable by
context.

to experimentalists [43], resolves this potential confusion:25

25One possible confusion of many
given the diverse notational and
conventional differences through-
out the literature.

E(r, t) = 1
2􏽰

2I
ε0c

􏿴ε̂ei(k⋅r−ωt) + ε̂∗e−i(k⋅r−ωt)􏿷 . (2.62)

The spherical basis

Consider one of the three polarisation unit vectors ε̂q for which the photon has a well
defined angular momentum projection in the z direction:

ε̂± = ∓(x̂ ± iŷ)/√2, (2.63)
ε̂0 = ̂z, (2.64)

where q = ±1 is denoted with the subscript ±. These are the basis vectors of the spherical
tensor basis [42], which is the basis in which it is easiest to compute matrix elements,
as well as the one in which it is easiest to think about which transitions a given laser
will drive. Light with polarisation vector ε̂± is called σ± polarised, and excites ground
states to excited states that differ in mF quantum number by ±1. A single beam with
this polarisation would have to be propagating in the z direction, with left or right hand
circular polarisation. Light with polarisation vector ε̂0 is called π polarised, and drives
transitions between states of equal mF quantum numbers. A single beam with this
polarisation would have to be propagating with a k vector in the x, y plane and be linearly
polarised in the z direction. However, lasers with propagation directions and polarisation

2.3. the 87rbD line 21

vectors different from these three configurations can be decomposed into the spherical
basis. For example, light with linear polarisation vector in the x, y plane drives both σ+
and σ− transitions.

The spherical basis is defined somewhat differently than how we are used to for
ordinary real-valued vectors. The componentsAq of a vectorA in the spherical basis are
defined as the coefficients of complex conjugates of the basis vectors:

A = ∑
q

Aqε̂∗q = ∑
q
(−1)qAqε̂−q, (2.65)

with the second equality resulting from the property of the basis vectors that

ε̂∗q = (−1)qε̂−q, (2.66)

and the dot product in terms of the spherical basis components of two vectors is

A ⋅ B = ∑
q
(−1)qAqB−q. (2.67)

The definition (2.65) has the counter-intuitive consequence that the unit vectors them-
selves, written in terms of their components ε̂q = 􏿴(εq)−, (εq)0, (εq)+􏿷 in the spherical
basis are

ε̂− = (0, 0, −1), (2.68)
ε̂0 = (0, 1, 0), (2.69)
ε̂+ = (−1, 0, 0), (2.70)

that is, the unit vector ε̂q has a component of (−1)q in the −q position, and zeros else-
where.

Considering a plane wave with polarisation vector equal to one of the spherical basis
vectors ε̂q, we have the electric field

Eq(r, t) =
1
2􏽰

2I
ε0c

􏿴ε̂qei(k⋅r−ωt) + ε̂∗qe−i(k⋅r−ωt)􏿷 , (2.71)

which, removing the complex conjugation using (2.66), can be written:

Eq(r, t) =
1
2􏽰

2I
ε0c

􏿴ε̂qei(k⋅r−ωt) + (−1)qε̂−qe−i(k⋅r−ωt)􏿷 . (2.72)

Thedipole approximation

Substituting (2.72) into (2.59) results in the matrix element of the dipole Hamiltonian
for a q polarised plane wave:

⟨n′|Ĥd(q, I)|n⟩ =
1
2􏽰

2I
ε0c

􏿴 ⟨n′|e ̂r ⋅ ε̂qei(k⋅r−ωt)|n⟩ + (−1)q ⟨n′|e ̂r ⋅ ε̂−qe−i(k⋅r−ωt)|n⟩􏿷 .

(2.73)

The dipole approximation is the approximation that the spatial extent of the electron’s
orbital is much smaller than the wavelength of the light, and thus that the factors of e±ik⋅r
are approximately constant over the integral and can be taken outside it, with r taken to
be the expectation value of the atom’s position.26 For optical wavelengths this is a good 26The resulting classical position r

of the atom should not be confused
with the electron’s position opera-
tor ̂r with respect to the nucleus.

22 chapter 2. atomic physics: experimental techniques and theory

approximation, yielding our matrix element in the dipole approximation:

⟨n′|Ĥd(q, I)|n⟩ =
1
2􏽰

2I
ε0c

􏿴 ⟨n′|e ̂r ⋅ ε̂q|n⟩ ei(k⋅r−ωt) + (−1)q ⟨n′|e ̂r ⋅ ε̂−q|n⟩ e−i(k⋅r−ωt)􏿷 .

(2.74)

Evaluating the dot products using (2.67), we get ̂r ⋅ ε̂q = ∑p(−1)
p ̂rp(εq)−p = ̂rq and

̂r⋅ε̂−q = ∑p(−1)
p ̂rp(ε−q)−p = ̂r−q, where ̂rq are the components of the positionoperator

̂r in the spherical basis, the position space representations of which are proportional to
the ℓ = 1 spherical harmonics and the radial coordinate r:

⟨r, θ,ϕ| ̂r±|r, θ,ϕ⟩ = ∓
r

√2
sin θe±iϕ, (2.75)

⟨r, θ,ϕ| ̂r0|r, θ,ϕ⟩ = r cos(θ). (2.76)

We now have our final expression for the matrix element ⟨n′|Ĥd(q, I)|n⟩ of the
dipole Hamiltonian for laser intensity I , angular frequency and wavenumber ω and k
respectively, and complex polarisation vector ε̂q, in the dipole approximation in terms of
matrix elements of e ̂rq, the calculation of which is detailed below:

⟨n′|Ĥd(q, I)|n⟩ =
1
2􏽰

2I
ε0c

􏿴 ⟨n′|e ̂rq|n⟩ ei(k⋅r−ωt) + (−1)q ⟨n′|e ̂r−q|n⟩ e−i(k⋅r−ωt)􏿷 .

(2.77)

A further approximation oftenused is to approximate the atomas stationary, replacing
the k ⋅ r from the exponents with a constant (usually zero if the exact phase of the optical
field is not of interest). Alternately, if the atom is moving at an approximately constant
velocity, the k ⋅ r term can be absorbed into ω resulting in an effective Doppler-shifted
angular frequency as in Section 2.1.1. We will leave the k ⋅ r terms where they are, but
note that they are often absent in most literature sources for the preceding reasons.

The rotating wave approximation

If the plane wave’s angular frequency ω is close to the resonant angular frequency ωD1
or ωD2

of the D1 or D2 line, then one of the two exponential terms is oscillating at a
frequency much further from resonance (approximately 2ω) than the other, and thus
does not contribute significantly to coupling between states. Discarding it is known
as the rotating wave approximation (rwa), so called because in an interaction picture
(section 3.2.2) where the evolution of the base Hamiltonian ĤD 87Rb is factored out—the
so called rotating frame—this fact is more readily apparent and a formal approximation
can be made showing that the off-resonant term averages to zero over time scales much
shorter than any other dynamics. Which term is discarded depends on whether the
transition being considered is from a ground state to excited state, or vice-versa. Our
matrix element ⟨n′|Ĥd(q, I)|n⟩ in the rwa becomes:

⟨n′|Ĥd(q, I)|n⟩
rwa≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2􏽯

2I
ε0c
⟨n′|e ̂rq|n⟩ ei(k⋅r−ωt), En′ > En

(−1)q
2 􏽯

2I
ε0c
⟨n′|e ̂r−q|n⟩ e−i(k⋅r−ωt), En′ < En

. (2.78)

The spherical basis components ̂rq of the position operator ̂r are not Hermitian
operators, instead obeying the following relation [42]:

̂r†q = (−1)q ̂r−q, (2.79)

⇒ ⟨n|e ̂rq|n′⟩∗ = (−1)q ⟨n′|e ̂r−q|n⟩ , (2.80)

2.3. the 87rbD line 23

allowing us to simplify (2.78) to:

⟨n′|Ĥd(q, I)|n⟩
rwa≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ℏ
2Ωn′n(q, I) ei(k⋅r−ωt), En′ > En

ℏ
2Ω

∗
nn′(q, I) e−i(k⋅r−ωt), En′ < En

, (2.81)

whereΩn′n(q, I) is the Rabi frequency of the n → n′ transition for polarisation q and
intensity (I),

Ωn′n(q, I) ≡ ℏ
􏽰

2I
ε0c

⟨n′|e ̂rq|n⟩ , (2.82)

with the symmetry thatΩn′n(q, I) = Ω∗
nn′(q, I). Because of this symmetry, the electric

dipole Hamiltonian for a plane wave in the rotating wave approximation is Hermitian,
and all its matrix elements can be computed considering only transitions from ground
state to excited state (with the Rabi frequencies for the reverse transitions being simply
the complex conjugates of those of the forward transitions).

The rotating wave approximation is accurate when ω − ω0 ≫ |ω + ω0| , which is the
case for transitions being driven close to resonance. When far off-resonant light is being
used however—for example to impart optical dipole forces as in optical traps—it may not
be a good approximation, and the full matrix elements (2.77) of the dipole Hamiltonian
may need to considered.

Dipole matrix elements

We now move on to how to compute the dipole matrix elements

⟨n′|e ̂rq|n⟩ ≡ ⟨L′J′ F′ m′
F |e ̂rq|LJ F mF⟩ . (2.83)

Using these matrix elements, one can compute Rabi frequencies for matrix elements of
the dipole Hamiltonian (2.81) in the rotating wave approximation, or to calculate the full
matrix elements (2.77) of the dipole Hamiltonian.

In the spherical basis we’ve beenworking in, most of the integrals required to compute
these matrix elements can be treated analytically, and there are a series of reductions that
can bemade to ultimately reduce thematrix elements down to a product of an analytically
computable coefficient depending only an angular momentum quantum numbers, and
an experimentally measurable ‘reduced’ dipole matrix element.

Following [41], the dependence on the photon angular momentum projection quan-
tum number q and atomic angular momentum projection quantum numbersmF andm′

F
can be encapsulated in a Clebsch–Gordan coefficient using the Wigner–Eckart theorem,
allowing us to write:

⟨L′J′ F′ m′
F |e ̂rq|LJ F mF⟩ = ⟨F′ m′

F |F 1mF q⟩ ⟨L′J′ F′||e ̂r||LJ F⟩ (2.84)

= (−1)F−1+m′F√2F′ + 1 􏿶
F 1 F′
mF q −m′

F
􏿹 ⟨L′J′ F′||e ̂r||LJ F⟩ , (2.85)

where the object in parentheses is a Wigner 3-j symbol, and ⟨L′J′ F′||e ̂r||LJ F⟩ is the
‘reduced’ matrix element for the transition from |LJ F⟩ to |L′J′ F′⟩ free of dependence
on angular momentum projection quantum numbers. Due to the fact that the Clebsch–
Gordan coefficient is zero unlessmF + q = mF , these matrix elements are zero unless the
final and initial states are being coupled by a laser of the correct polarisation to conserve
angular momentum projection in the z direction, one of the selection rules of optical
transitions.27 27Observe equation (2.77) however,

and note that for the case of σ±
light, both q = ±1 dipole matrix
elements are present, and thus σ±
light couples a ground state to both
m′

F = mF ± 1 excited states, with
one being far off resonance and
discarded by the rotating wave
approximation for the case of
near-resonant light.

24 chapter 2. atomic physics: experimental techniques and theory

The final reduction is to express this reduced matrix element as yet another analytic
coefficient multiplied by a reduced matrix element that doesn’t depend on the F quantum
numbers:

⟨L′J′ F′||e ̂r||LJ F⟩ = (−1)F+J
′+1+I√(2F + 1)(2J′ + 1) 􏿼

J′ J 1
F F′ I􏿿 ⟨L

′
J′ ||e ̂r||LJ⟩ ,

(2.86)

where I is the nuclear spin quantum number, the object in curly braces is a Wigner 6-j
symbol, and ⟨L′J′ ||e ̂r||LJ⟩ is a reducedmatrix element for the transition from |LJ⟩ to |L′J′⟩
free of dependence on F quantum numbers.

This final reduced matrix element can be linked to experimentally known numerical
values via the line widths ΓD1

and ΓD2
ofD1 andD2 lines [42, eq. 7.3.7.4]:

Γ = ω3
0

3πε0ℏc3
2Jg + 1
2Je + 1

| ⟨L′Jg ||e ̂r||LJe⟩|
2, (2.87)

where Γ and ω0 are the line width and resonant (angular) frequency respectively of
the transition, L′Jg is the ground state (S1/2) and LJe is the excited state (either P1/2 or
P3/2) of the transition. Thus the reduced matrix elements for transitions from excited
to ground states can be expressed in terms of known constants. For the reduced matrix
elements for transitions from ground to excited states instead, one cannot simply take
the complex conjugates of the excited-to-ground reduced matrix elements—the reduced
matrix elements are defined instead such that they have the following property [42,
eq. 7.3.5.1]:

⟨LJ ||e ̂r||L′J′⟩ = (−1)J−J
′

􏽰
2J′ + 1
2J + 1

⟨L′J′ ||e ̂r||LJ⟩
∗ . (2.88)

Putting these together gives the following reduced matrix elements for theD1 andD2
lines in both directions:

⟨S1/2||e ̂r||P1/2⟩ =
􏽱

3πε0ℏc3ΓD1

ω3
D1

(2.89)

⟨S1/2||e ̂r||P3/2⟩ =
􏽱

6πε0ℏc3ΓD2

ω3
D2

(2.90)

⟨P1/2||e ̂r||S1/2⟩ = ⟨S1/2||e ̂r||P1/2⟩∗ (2.91)

⟨P3/2||e ̂r||S1/2⟩ = −
1

√2
⟨S1/2||e ̂r||P3/2⟩∗ (2.92)

The first two of these, having only their absolute values related to the line widths and
frequencies via (2.87), have an undetermined phase factor which we have taken to be
equal to+1. Since only relative phases are important, if we limit ourselves to only one
of theD1 orD2 lines at a time, all dipole matrix elements, being proportional to these
reduced dipole matrix elements, will have the correct relative phases. However, we are
imposing a fixed phase on both the reduced dipole matrix elements for theD line. We can
verify that a relative phase factor of+1 between the two reduced dipole matrix elements
is the correct choice by decomposing [41] the reduced matrix elements into yet another
Wigner-6j symbol and a reduced dipole matrix element ⟨L′ = 1

2 ||e ̂r||L = 1⟩, common
to both fine structure lines:

⟨L′J′ ||e ̂r||LJ⟩ = (−1)J+L+S+1√(2J + 1)(2L′ + 1) 􏿼
L′ L 1
J J′ S􏿿 ⟨L

′||e ̂r||L⟩ , (2.93)

2.3. the 87rbD line 25

where S = 1/2 is the electron spin. This expression can be used to verify the ratio:

⟨S1/2||e ̂r||P3/2⟩
⟨S1/2||e ̂r||P1/2⟩

= √2, (2.94)

confirming that the choice of relative phase factor+1 between the two LJ reduced dipole
matrix elements is the correct one.

We have now arrived at the ground floor of reductionism for most experimental
atomic physicists when it comes to optical transitions, with the values of the transition
dipole matrix elements resting on the foundation of empirically measured reduced dipole
matrix elements, and calculable by traversing this section in reverse.

2.3.6 Magnetic dipole transitions

After all the complexity of optical dipole transitions, magnetic dipole transitions—for
either rf transitions between Zeeman sublevels, or microwave transitions between hy-
perfine states—are relatively simple. The matrix elements in the { |F mF⟩} basis for a
perturbing magnetic field B(t) are simply those of the Zeeman Hamiltonian (2.40):

⟨F′ m′
F |ĤZ|F mF⟩ = − ⟨F′ m′

F |μ̂ ⋅ B|F mF⟩ , (2.95)

which for a magnetic plane wave with linear polarisation i ∈ {x, y, z} and amplitude B0,
and in the dipole approximation, is

⟨F′ m′
F |ĤZ(i,B0)|F mF⟩ = − ⟨F′ m′

F |μ̂i|F mF⟩B0 cos(k ⋅ r − ωt). (2.96)

Themagnetic dipolematrix elements ⟨F′ m′
F |μ̂i|F mF⟩ can be computed using the known

matrix form (2.41) of the magnetic moment operator μi in the { |mI mJ⟩} basis, and
transforming it into the { |F mF⟩} basis using a unitary of Clebsch–Gordan coefficients
as in (2.52).

As with optical dipole transitions, the cosine can be written as a sum of exponentials,
revealing co-rotating and counter-rotating terms:

⟨F′ m′
F |ĤZ(i,B0)|F mF⟩ = −

B0
2
⟨F′ m′

F |μ̂i|F mF⟩ 􏿴ei(k⋅r−ωt) + e−i(k⋅r−ωt)􏿷 , (2.97)

allowing for a rotating wave approximation and definition of a Rabi frequency as with
optical dipole transitions:

⟨F′ m′
F |ĤZ(i,B0)|F mF⟩

rwa≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ℏ
2ΩF′ m′F F mF

(i,B0) ei(k⋅r−ωt), EF′ m′F > EF mF

ℏ
2Ω

∗
F mF F′ m′F

(i) e−i(k⋅r−ωt), EF′ m′F < EF mF

,

(2.98)

whereΩF′ m′F F mF
(i,B0) = −ℏB0 ⟨F′ m′

F |ĤZ(i,B0)|F mF⟩.
The required linear combinations of the above matrix elements can be used to com-

pute matrix elements for rf waves of different phases, or circular polarisations. It is also
often practical, when numerically modelling magnetic dipole transitions, particularly
between Zeeman sublevels, to simply include the magnetic field vector as a function as
time and evaluate the entire matrixHZ directly in whichever basis one is working, rather
than decomposing it into fixed frequency waves. This is particularly useful for frequency
sweeps and other complex magnetic field sequences, which may not be good candidates
for the rotating wave approximation, or may not be represented well as single-frequency
waves at all. This is most practical for transitions between Zeeman sublevels, since the

26 chapter 2. atomic physics: experimental techniques and theory

energy splittings can be on the order of MHz and therefore well sampled by numerics
with nanosecond to microsecond sized timesteps, which are feasible to numerically com-
pute. Microwave transitions, being 6.8GHz in 87Rb, would require sub-nanosecond
timesteps to simulate in this direct way, and so are more taxing but still within the range
of possibility, as opposed to optical transitions which are in the hundreds of THz and
impractical to simulate without rotating wave approximations and the assumption of
monochromatic waves as treated in the previous subsection.

2.3.7 Summary

We are now finally at the end of our assembly of the Hamiltonian for the 87RbD line
in the presence of magnetic fields and monochromatic plane waves. Armed with this
Hamiltonian and the ability to compute its coupling terms for various lasers, the atomic
physicist can predict and simulate much of what is needed for the basics of laser cooling,
trapping, and coherent control.

Chapter3
Quantummechanics on a computer

This chapter details many of the methods used by cold atom physicists to
compute numerical results pertaining to cold atom systems. Many a problem in
quantum mechanics is not analytically solvable, especially when the real world of

experimental physics rears its ugly head, violating theorists’ assumptions of simplicity left
and right. In particular, atomic physics experiments are time-dependent, with each run of
an experiment generally proceeding in stages. Lasers may turn on and off, magnetic fields
may vary in magnitude and direction, and rf pulses may be chirped to reliably induce
particular transitions [48]. Much of the numerical computation performed by researchers
in cold atom physics groups such as ours are accordingly of the time-dependent variety,
and are fairly literal simulations of specific experiments that may be carried out in the lab.

This chapter is primarily a pedagogical presentation of existing numerical techniques
relevant to computational studies of cold atom physics and quantum mechanics more
generally. I explain some fundamentals of representing quantum mechanical problems on
a computer and then present my favourite algorithms for propagating state vectors and
wavefunctions in time. To spoil the surprise: my favourite timestepping algorithms are
the fourth-order split-step method and (unoriginally) fourth-order Runge–Kutta, and
my favourite method of evaluating spatial derivatives is moderate-order (sixth-order or
so) finite differences. I describe the method of Fourier transforms for spatial derivatives,
including its limitations compared to finite differences, and I show that the finite-element
discrete-variable representation (fedvr) is, despite appearances, actually less computa-
tionally efficient than simple finite differences for producing equally accurate solutions
to the spatial Schrödinger equation. I also mention some methods of finding ground
states and other stationary states. Throughout I emphasise that the efficacy of a numerical
algorithm is strongly tied to its ability to be parallelised—such that a computation is
tackled in pieces, distributed over multiple computer cores or cluster nodes. With the
ubiquity of cluster computing and the end of rapid increases in single-core computer
speed, this criterion is the singlemost important factor in the practical use of an algorithm
in a large numerical simulation.

Section 3.6 presents a new numerical method (a modification of fourth-order Runge–
Kutta) for timestepping differential equations that allows for larger timesteps for certain
problems. This chapter also contains original analysis of existing techniques: the cal-
culation of the optimal submatrix size for splitting methods in Section 3.2.4 is new, as
are the arguments in Section 3.2.4 regarding the applicability of split-step methods to
nonlinear equations such as the Gross–Pitaevskii equations. The analysis in Section 3.4.3
comparing the finite-element discrete-variable representationmethod to finite differences
with respect to stability and accuracy is new. I also express opinions on the relative merits
of different algorithms; these are my own and are hopefully apparent from context.

27

28 chapter 3. quantum mechanics on a computer

3.1 From the abstract to the concrete: neglect, discretisation and
representation

To numerically simulate a quantum mechanical system, one must evolve a state vector in
time according to the Schrödinger equation:

iℏ d
dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ . (3.1)

To do this on a computer, one must first decide which degrees of freedom are to be
simulated. We necessarily neglect many degrees of freedom as a matter of course; which
ones can be neglected is warranted by the specific situation and we do it so often we barely
notice. For example, simulating a single component Bose–Einstein condensate entails
neglecting the internal degrees of freedom of the atoms—as well as reducing the atom-
light interaction to a simple potential such as an optical dipole trap or magnetic dipole
interaction (neglecting the quantum degrees of freedom in the electromagnetic field).
We may ignore one or more spatial degrees of freedom as well, say, if we are simulating
an experiment in which the condensate is confined to one or two dimensions [49–51]
by way of a tight trapping potential in one or more directions. Or, when simulating
laser cooling (See for example Section 5.5), we may care very much about the electronic
state of the atom, but treat its motional state classically. In these cases we are essentially
imposing the assumption that the system will only occupy one state with respect to those
degrees of freedom ignored (the condensate will remain in lowest excitation level in the
direction of the tight trap; the atoms will remain in one specific Zeeman sublevel), or we
are assuming those degrees of freedom can be treated classically (the electromagnetic field
is well described by classical electromagnetism; the atoms’ motional state is described
well by Newtonian mechanics). Which degrees of freedom can be neglected and which
cannot requires knowledge of the situation at hand, often informed by best-practices of
the research community in question and ultimately justified by experiment.11A classic example in the cold atom

community of neglected degrees
of freedom leading to disagreement
with experiment is the discovery of
polarisation gradient cooling (pgc),
the explanation for which requires
consideration of Zeeman sublevels
of the atoms. The experiment
that discovered pgc [52] was
designed to measure the effect
of Doppler cooling, which does
not involve Zeeman sublevels,
and it was not until afterwards
that theorists determined [30]
that transitions between Zeeman
sublevels cannot be neglected and
indeed are crucial in explaining the
lower than predicted temperatures
observed.

Once the degrees of freedom are known, one must decide on a basis in which to
represent them concretely. The basis often cannot be complete, since for many degrees of
freedom this would require an infinite number of basis states—for example the electronic
state of an atom contains a countably infinite number of states, and a spatial wavefunction
in free space has an uncountable number of states (one for each position inR3). For the
internal state of an atom, therefore, we restrict ourselves to only the states we expect can
become non-negligibly occupied, given the initial conditions and transitions involved.
For example, at low temperature we can expect atoms to be almost completely in their
electronic ground states, since energy gaps between ground and excited states are large
compared to the thermal energy scale kBT .2 We need only include the small number of

2TheD line of 87Rb has an energy
gap of 1.6 eV, requiring a tempera-
ture of ≈ 650K or higher in order

for the Boltzmann factor e−
ΔE
kBT de-

scribing the thermal occupation of
the excited state to exceed 1× 10−12.

excited states that might become occupied as a result of optical transitions present in
the situation being simulated. This can still be a large number of states if one is studying
Rydberg atoms [53,54] or using ultra-fast (and therefore broad-band) laser pulses [55–57],
but is otherwise fairly small. For example, theD1 andD2 lines of 87Rb—with all hyperfine
and Zeeman sublevels—together comprise 32 states (Section 2.3).

For spatial degrees of freedom, we usually limit ourselves firstly to a finite region of
space (we don’t expect the Bose–Einstein condensate to havemuch probability amplitude
on theMoon or anywhere else outside the vacuum system), and then we need to discretise
the region of space remaining. To do this one can either discretise space on a grid, or use
a set of orthogonal basis functions, and sometimes these can be equivalent, as we will
soon see.

Once the degrees of freedom and basis vectors have been chosen, the state vector is
then represented on a computer as an array of complex numbers, giving the coefficients
of each basis vector required to represent a particular state vector. Matrix elements of
the Hamiltonian in the same basis must be calculated, and the Schrödinger equation can

3.2. solution to the schrödinger equation by direct exponentiation29

then be written:

iℏ d
dt
⟨n|ψ(t)⟩ = ∑

m
⟨n|Ĥ(t)|m⟩ ⟨m|ψ(t)⟩ , (3.2)

or in standard matrix/vector notation (without Dirac notation):

iℏ d
dt

ψn(t) = ∑
m

Hnm(t)ψm(t) (3.3)

⟺ iℏ d
dt

ψ(t) = H(t)ψ(t), (3.4)

where ψn(t) = ⟨n|ψ(t)⟩,Hnm(t) = ⟨n|Ĥ(t)|m⟩ and ψ(t) andH(t) are the vector and
matrix with components and elements {ψn(t)} and {Hnm}, respectively. This is now
something very concrete that can be typed into a computer. Programming languages
generally don’t know about Dirac kets and operators, and so everything that is to be
computed must be translated into matrices and vectors in specific bases. This may seem
so obvious as to not be worth mentioning, but was nonetheless a stumbling block in
my own experience of getting to grips with quantum mechanics. Once realising that
every operator has a matrix representation in some basis, at least in principle (including
differential operators), and that every ket is just a list of vector components in some
basis (including ones representing spatial wavefunctions), similarly at least in principle,
expressions dense in bras and kets become much more concrete as the reader has a feel
for exactly how they would type it into a computer. Without a good feel for the mapping
between operator algebra and the actual lists of numbers that these objects imply, doing
quantum mechanics on paper can seem like an exercise in abstract mumbo-jumbo.

3.2 Solution to the Schrödinger equation by direct exponentiation

As an example of something seemingly abstract beingmore concrete thanfirst appearances,
it is sometimes said that the ‘formal’ solution to the Schrödinger equation (3.1) is

|ψ(t)⟩ = e
− i
ℏ ∫t

t0
Ĥ(t′) dt′ |ψ(t0)⟩ . (3.5)

Saying that this is the ‘formal’ solution rather than just ‘the solution’ is presumably in-
tended to emphasise that the arithmetic operations involved in (3.5) might not make
immediate sense for the types of mathematical objects they are operating on, and that we
have to be careful in defining the operations such that they produce a result that is not
only sensible, but also the solution to the Schrödinger equation. If both Ĥ(t) and |ψ(t)⟩
were single-valued functions of time rather than an operator-valued function of time (the
values at different times of which don’t necessarily commute) and a vector-valued function
of time, then we would have no problem. However, (3.5) as written with operators and
vectors is ambiguous, and we need to elaborate on it in order to ensure it is correct. I will
come back to this after considering a simpler case.

If the Hamiltonian is time-independent, then (3.5) reduces to

|ψ(t)⟩ = e−
i
ℏ ĤΔt |ψ(t0)⟩ , (3.6)

where Δt = t − t0. Given the matrix representationH of Ĥ and vector representation
ψ(t0) of |ψ(t0)⟩ in a particular basis, this can now be directly typed into a computer as
the matrix multiplication:

ψ(t) = U(t, t0)ψ(t0), (3.7)

30 chapter 3. quantum mechanics on a computer

where

U(t, t0) = e−
i
ℏHΔt (3.8)

is the (matrix representation of the) unitary evolution operator for time evolution from
the initial time t0 to time t, and is computed using a matrix exponential of − i

ℏHΔt.
Exponentiation of matrices is defined via the Taylor series of the exponential function:

eA =
∞

∑
n=0

An

n! , (3.9)

which reduces matrix exponentiation to the known operations of matrix multiplication
and addition. However, any linear algebra programming library worth the bytes it occu-
pies will have a matrix exponentiation function that should be used instead, as there are
other methods of computing matrix exponentials that are more computationally efficient
and numerically stable, such as the Padé approximant [58]. It should be noted that there
is no known ‘best’ matrix exponential algorithm, all make compromises and perform
poorly for certain types of matrices [59].

3.2.1 Matrix exponentiation by diagonalisation

Regardless of which method is used, matrix exponentiation is computationally expensive.
It can be sped up however if a diagonalisation ofH is known, since if

H = QDQ†, (3.10)

whereD is a diagonal matrix and Q is a unitary matrix3, then3Note that the diagonals ofD
are the eigenvalues ofH, and the
columns ofQ are its eigenvectors. e−

i
ℏHΔt = Qe−

i
ℏDΔtQ†. (3.11)

This is simple to evaluate because the exponentiation of a diagonal matrix can be per-
formed by exponentiating each diagonal matrix element individually.44The reason for this is clear from

the Taylor series definition of
matrix exponentiation, since matrix
multiplication and addition can
both be performed elementwise for
diagonal matrices.

Even if a diagonalisation ofH is not analytically known, numerically diagonalising
H (using a linear algebra library function or otherwise) can form the basis for writing
your own matrix exponentiation function, if needed. I found this necessary for efficiently
exponentiating an array of matrices in Python, since the scipy and numpy scientific and
numeric libraries at the present time lack matrix exponentiation functions that can act
on arrays of matrices. Writing a for loop in an interpreted language such as Python to
exponentiate the matrices individually in many cases is unacceptably slow, so for these
cases5 I use a function such as the one below:5Such as simulating the internal

state of a large number of atoms,
or evolving a spinor Bose–Einstein
condensate by exponentiating
the Zeeman Hamiltonian with a
spatially varying magnetic field.

1 import numpy as np

2 from numpy.linalg import eigh

3
4 def expiH(H):

5 """compute exp(i*H), where H, shape (..., N, N) is an array of N by N Hermitian

6 matrices, using the diagonalisation method, and where i is the imaginary unit. This

7 fucntion is useful because scipy's expm can't take an array of matrices as input, it

8 can only do one at a time."""

9
10 # Diagonalise the matrices:

11 evals, evecs = eigh(H)

12
13 # Now we compute exp(i*H) = Q exp(i*D) Q^\dagger where Q is the matrix of

14 # eigenvectors (as columns) and D is the diagonal matrix of eigenvalues:

15
16 Q = evecs

17 Q_dagger = Q.conj().swapaxes(-1, -2) # Only transpose the matrix dimensions

18 exp_iD_diags = np.exp(1j*evals)

19

3.2. soln. to the schrödinger eqn. by direct exponentiation 31

20 # Compute the 3-term matrix product Q*exp_iD_diags*Q_dagger using the

21 # einsum function in order to specify which array axes of each array to

22 # sum over:

23 return np.einsum('...ik,...k,...kj->...ij', Q, exp_iD_diags, Q_dagger)

Matrix diagonalisation (using singular value decomposition or qr decomposition)
has computational time complexity 𝒪(n3) , where n is the number of rows/columns in
the (square) matrix. Matrix multiplication is (in practice) 𝒪(n3) and exponentiating
a diagonal matrix is only 𝒪(n), so matrix exponentiation of a Hermitian matrix via
numerical diagonalisation has total cost 𝒪(n3). This compares to the Padé approximant,
which is also 𝒪(n3) [59]. So, the numerical diagonalisation method is not any worse in
terms of computational resources required.

On the other hand, if an analytic diagonalisation is already known, it would seem
that exponentiation is just as slow, since the computational cost of matrix multiplication
alone is the same order in n as that of numerical diagonalisation. This is true—so there are
only constant factors to be saved in computer time by using an analytic diagonalisation in
order to exponentiate a matrix using (3.11). However if one’s aim—as is often the case—is
to ultimately compute

ψ(t) = e−
i
ℏHΔtψ(t0), (3.12)

for a specific ψ(t0), then one needs only matrix–vector multiplications and not matrix-
matrix multiplications in order to evaluate

ψ(t) = Ue−
i
ℏDΔtU†ψ(t0), (3.13)

from right-to-left, reducing the computational cost to 𝒪(n2) compared to evaluating it
left-to-right.

Whilst matrix exponentiation is a way to efficiently evolve systems under the action
of time-independent Hamiltonians, if you only exponentiate a matrix once, you don’t
much care about the time complexity of doing so. It is mostly of interest because the real
power of these exponentiationmethods is as a building block for methods of approximate
solutions to the Schrödinger equation in the case of time-dependent Hamiltonians, as we
will see in Section 3.2.3.

3.2.2 The interaction picture

Although time-dependent Hamiltonians are much harder to deal with than constant
ones, often a Hamiltonian can be decomposed into the sum a time-independent and a
time-dependent part:

Ĥ(t) = Ĥ0 + Ĥ1(t), (3.14)

in this case, the Schrödinger equation can be transformed into a form that is often more
computationally tractable and analytically useful, by treating part of the evolution due
to the time-independent part analytically. This transformation is called an interaction
picture [60, p. 317], or sometimes, particularly in atomic physics, a rotating frame, due to
the fact that for a spin- 12 system in a constant magnetic field, time evolution due to Ĥ0
entails literal rotation of the spin vector in three-dimensional space.

To analytically remove the effect of time evolution due to Ĥ0, we write an ansatz for
the state vector |ψ(t)⟩ as an interaction-picture state vector |ψI(t)⟩ that has undergone
time evolution due to Ĥ0 for time t:

|ψ(t)⟩ = e−
i
ℏ Ĥ0t |ψI(t)⟩ (3.15)

32 chapter 3. quantum mechanics on a computer

Substituting this into the Schrödinger equation yields an equation of motion for the
interaction-picture state vector |ψI(t)⟩:

iℏ d
dt

e−
i
ℏ Ĥ0t |ψI(t)⟩ = 􏿮Ĥ0 + Ĥ1(t)􏿱 e−

i
ℏ Ĥ0t |ψI(t)⟩ (3.16)

⇒ iℏ d
dt
|ψI(t)⟩ = e

i
ℏ Ĥ0tĤ1(t)e−

i
ℏ Ĥ0t |ψI(t)⟩ (3.17)

⇒ iℏ d
dt
|ψI(t)⟩ = ĤI (t) |ψI(t)⟩ , (3.18)

where ĤI (t) = e
i
ℏ Ĥ0tĤ1(t)e−

i
ℏ Ĥ0t is an interaction picture Hamiltonian. Thus the inter-

action picture defines a time-dependent unitary transformation, with the operator for
transforming from the Schrödinger to interaction picture being

Û I (t) = e
i
ℏ Ĥ0t , (3.19)

(3.20)

and state vectors and operators transforming as

|ψI(t)⟩ = Û I |ψ(t)⟩ (3.21)

ÂI(t) = Û IÂÛ†
I , (3.22)

which creates time dependence for operators that did not have time dependence in the
Schrödinger picture.

Usually, calculations are performed in a basis in which Ĥ0 is diagonal, allowing the
unitary transformation to be applied using only scalar exponentials rather than matrix
exponentials:

Û(t) = ∑
n

e
i
ℏEnt |n⟩⟨n| (3.23)

⇒ ⟨n|ψI (t)⟩ = e
i
ℏEnt ⟨n|ψ(t)⟩ (3.24)

where { |n⟩} and {En} are the eigenkets and eigenvalues of Ĥ0.
Use of an interaction picture can remove short timescales from the evolution of a state

vector, with the original Schrödinger-picture state vectors recoverable via analytic transfor-
mations, though this is often not necessary since one often only cares about themagnitude
of a component ⟨n|ψ⟩ of |ψ⟩—which is preserved by the transformation (3.24)—and
not its phase.

In atomic physics calculations an interaction picture can be used to remove the large
energy scales (and hence small timescale) separating the three fine structure states of
theD2 line (Section 2.3.1), or it can be used to remove the entire hyperfine interaction
Hamiltonian, and even both the hyperfine and Zeeman Hamiltonians (Sections 2.3.2
and 2.3.3) if a time-independent magnetic field is being used. This removes the necessity
of small numerical timesteps needed by some numerical methods to resolve very fast
phase oscillations due to these time-independent Hamiltonians, as well as aiding human
interpretation of the results which would otherwise have more interesting or relevant
phase changes drowned out by fast phase oscillations from Ĥ0.

In Section 3.6 I present a method that exploits the use of an instantaneous interaction
picture, that is, an interaction picture whose time independent Hamiltonian is based
on a time dependent Hamiltonian evaluated at a specific moment in time. In this way,
the use of an interaction picture can be extended to aid calculations for a certain class of
time-dependent Hamiltonians as well.

3.2. soln. to the schrödinger eqn. by direct exponentiation 33

3.2.3 Time-ordered exponentials and time-ordered products

As hinted at earlier, the solution (3.5) is not the whole picture. It can only be taken
at face value if the Hamiltonian at each moment in time commutes with itself at all
other times (we will see shortly why this is). If it does—that is, if [Ĥ(t′1), Ĥ(t′2)] = 0
for all t′1, t′2 ∈ [t0, t], then (3.5) is the solution to the Schrödinger equation, and once
represented in a specific basis can be written

ψ(t) = U(t, t0)ψ(t0), (3.25)

with

U(t, t0) = e
− i
ℏ ∫t

t0
H(t′) dt′ , (3.26)

i.e. with an integral in the exponent rather than a simple multiplication by a time interval.
Since matrix addition can be performed elementwise, so can the integral in the exponent,
yielding a matrix which once exponentiated will give the evolution operatorU(t, t0) for
the solution to the Schrödinger equation. If the Hamiltonian at each moment in time
does not commute with itself at all other times, however, then the unitary evolution
operator for the solution to the Schrödinger equation is instead given by the following
time-ordered exponential [61, p. 193]:

U(t, t0) = T􏿼e
− i
ℏ ∫t

t0
H(t′) dt′

􏿿 . (3.27)

In this expression,T denotes the time-ordering operator. The time-ordering operator
reorders terms within products that contain a time parameter (for us, the time parameter
is the argument of the matrix-valued functionH), such that the value of the time param-
eter is smallest in the rightmost term, largest in the leftmost term, and monotonically
increasing right-to-left in between. For example:

T {H(4)H(1)H(2)H(5)H(3)} = H(5)H(4)H(3)H(2)H(1). (3.28)

We see now why the time-ordering can be neglected whenH(t) commutes with itself
at all times. When it does, all possible reorderings of a product of copiesH(t) are already
equal, and so a time-ordering operator leaves the actual value of the product unchanged.

Despite appearances, this time-ordered exponential is perfectly concretely defined via
the definitions of all the operations involved that we have described so far, and can—with
some effort—be typed into a computer and evaluated directly. Even though this is not
how I have evaluated time-ordered exponentials in my simulations of atomic systems, I
will quickly elaborate on this just to emphasise the concreteness of all these operations.

“What products isT reordering?” you might ask, as (3.27) doesn’t appear to contain
any products of H(t). On the contrary, it does, since exponentiation is defined by its
Taylor series, and so

U(t, t0) = 1 + T

⎧⎪⎪⎨
⎪⎪⎩

∞
∑
n=1

1
n!

⎡
⎢⎢⎢⎢⎣−

i
ℏ ∫

t

t0

H(t′) dt′
⎤
⎥⎥⎥⎥⎦

n⎫⎪⎪⎬
⎪⎪⎭

(3.29)

= 1 +
∞

∑
n=1

1
n! 􏿵−

i
ℏ􏿸

n
T

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎢⎢⎣∫

t

t0

H(t′) dt′
⎤
⎥⎥⎥⎥⎦

n⎫⎪⎪⎬
⎪⎪⎭
. (3.30)

Each term in this series contains the nth power (and hence a product) of an integral of
H(t). The time-ordering operator doesn’t allow us to evaluate each term by computing the
matrix integral once and then raising it to a power—to do so would violate time-ordering

34 chapter 3. quantum mechanics on a computer

since each integral involves evaluatingH(t) at all times. Instead we have to write each
product of integrals as the integral of a product:

U(t, t0) = 1 +
∞

∑
n=1

1
n! 􏿵−

i
ℏ􏿸

n
∫

t

t0

dt′1 ∫
t

t0

dt′2⋯∫
t

t0

dt′n⋯T 􏿺H(t′1)H(t′2)⋯H(t′n)􏿽 ,

(3.31)

from which we can see exactly which product of matrices the time-ordering operator is
acting on.

Now we are close to seeing one might evaluate U(t, t0) numerically by summing
each term in the Taylor series up to some order set by the required accuracy. For the nth
term, one needs to evaluate an n-dimensional integral over n time coordinates, with each
coordinate having the same limits of integration. This can be computed in the usual way
an integral is numerically computed,6 with theminor change that each time the integrand6By sampling the integrand on a

uniform grid, using a quadrature
method, or Monte-Carlo integra-
tion [62] which is widely used for
high-dimensional integrals such as
these.

is evaluated, the terms within it must be re-ordered to respect the required time-ordering.
Alternatively, the integration region can be restricted to the region in which the terms
are already time-ordered, and then the total integral inferred by symmetry, which gives:

U(t, t0) = 1 +
∞

∑
n=1

􏿵− i
ℏ􏿸

n
∫

t

t0

dt′n⋯∫
t′3

t0

dt′2 ∫
t′2

t0

dt′1 H(t′n)⋯H(t′2)H(t′1). (3.32)

This is now a perfectly concrete expression, with each term comprising an integral
over an n-simplex7 of a product of nmatrices.7A simplex is the generalisation of a

triangle to higher dimensions, i.e. a
3-simplex is a tetrahedron.

This expression for the unitary evolution operator is called the Dyson series [63].
It is not generally used for time-dependent simulations, though it is the basis for time-
dependent perturbation theory, and sees use in high energy physics [63,64] for computing
transition amplitudes between incoming and outgoing waves in scattering problems (in
which U is called the S-matrix). In these problems, H is an interaction Hamiltonian
containing terms for all particle interactions being considered. Accordingly, the integrand
for the nth term, being a product of n copies ofH evaluated at different times, contains
one term for each possible sequence of particle interactions. The integral itself can be
considered a sum of transition amplitudes over all possible times that each interaction
could have occurred. Indeed, each term in the Dyson series corresponds to a number of
Feynman diagrams with n nodes [64].

The Dyson series isn’t really suited to time-dependent simulations, though perturba-
tion theory is useful for approximate analytics. For one, the series must be truncated at
some point, and the result won’t be aU that is actually unitary.8 Also, we are typically8Although unitarity is not often

a strict requirement—we also
frequently solve (3.3) directly with
fourth-order Runge–Kutta, which
is also not unitary.

interested in the intermediate states, not just the final state of a system or an average
transition rate, as one might want to compute in a scattering problem.

In any case, usually when solving the Schrödinger equation by exponentiation we use
the following, alternate expression for a time-ordered exponential:

U(t, t0) = T􏿼e
− i
ℏ ∫t

t0
H(t′) dt′

􏿿 (3.33)

= lim
N→∞

0
∏

n=N−1
e−

i
ℏH(tn)Δt , (3.34)

where here Δt = (t − t0)/N and tn = t0 + nΔt. Note that the product limits are written
in the reverse of the usual order—this is important in order to produce terms with smaller
n on the right and larger n on the left of the resulting product. You can convince yourself
that (3.32) is equivalent to (3.34) this by replacing the integral in the exponent with a
sum—as per the Riemann definition of an integral—and expanding the exponential

3.2. soln. to the schrödinger eqn. by direct exponentiation 35

according to its Taylor series. Expanding each exponential in (3.34) as a Taylor Series and
collecting terms of equal powers ofH then reveals that the two Taylor series are identical.

In any case, (3.34) paints an intuitive picture of solving the Schrödinger equation: one
evolves the initial state vector in time by evolving it according to constant Hamiltonians
repeatedly over small time intervals9. This has the desirable property that all intermediate 9This is the usual definition of the

solution to a differential equation,
which is why I prefer to think of
the product formula (3.34) as the
definition of the solution to the
Schrödinger equation, and the
time-ordered exponential as merely
a shorthand notation for it.

state vectors are computed at the intermediate steps, meaning one can study the dynamics
of the system and not just obtain the final state. This is of course useful for comparison
with experiments, plenty of which involve time-dependent data acquisition and not just
post-mortem analysis of some evolution.

Numerically, we can’t actually take N → ∞, or equivalently Δt → 0, and so we
instead choose a Δt smaller than the timescale of any time-dependence ofH , and step
through time using

ψ(tn+1) = e−
i
ℏH(tn)Δtψ(tn) + 𝒪(Δt2) (3.35)

⇒ ψ(t) = 􏿶
0

∏
n=N−1

e−
i
ℏH(tn)Δt􏿹ψ(t0) + 𝒪(Δt). (3.36)

Thus the case of a time-dependent Hamiltonian reduces to repeated application of the
solution (3.7) for a time-independent Hamiltonian, and is (globally) accurate to order
Δt. Note that the entire expression can be evaluated right-to-left to propagate the initial
state vector in time without explicitly computing the overall unitary, which ensures the
computational complexity is 𝒪(n2) in the size of the system (when the exponentiation is
performed via an analytic or pre-computed diagonalisation) rather than 𝒪(n3).

3.2.4 The operator product/split-step method

Here I’ll review decompositions similar to (3.35), but which use variable timesteps to
achieve an accuracy to higher order inΔt. I’ll present them at the same time as addressing
another problem, which is that Hamiltonians are often not in a simple enough form
to be exponentiated efficiently at all, making (3.35) difficult to evaluate. Often Hamil-
tonians are a sum of non-commuting operators (such as kinetic and potential terms),
with time dependence such that any diagonalisation of the overall Hamiltonian at one
point in time will not diagonalise it at another point in time, with the system size large
enough for numerical diagonalisation to be prohibitively expensive. In these cases, we
can use methods called split-step or operator product methods, which allow one to ap-
proximately exponentiate the entire Hamiltonian based on having exact diagonalisations
of its component terms. In the case of time-dependent Hamiltonians, this allows us to
avoid rediagonalising at every timestep whenever the time-dependence can be expressed
as scalar coefficients multiplying time-independent operators:

Ĥ(t) = α(t)Ĥ1 + β(t)Ĥ2 +⋯ , (3.37)

since multiplication of a matrix by a scalar merely scales its eigenvalues, leaving its eigen-
basis unchanged.

There is little downside to having an only approximate exponentiation of the Hamil-
tonian when the timestepping is already only approximate, so long as we ensure that
neither source of error is much greater than the other. To this end I’ll show split-step
methods that have (global) error𝒪(Δt), 𝒪(Δt2) and 𝒪(Δt4). In Section 3.4, we’ll see how
this method applies to the case of a spatial wavefunction obeying the Gross–Pitaevskii
equation.

36 chapter 3. quantum mechanics on a computer

First order split-step

Say we have (the matrix representation of) a Hamiltonian that is the sum of two non-
commuting terms:1010From here on, component terms

of the Hamiltonian will be written
with general time dependence,
even though it is understood
that these methods are mostly
useful for the case where that time
dependence can be written as scalar
coefficients multiplying otherwise
time-independent matrices.

H(t) = H1(t) +H2(t). (3.38)

The unitary for the solution to the Schrödinger equation is as before:

U(t, t0) = T􏿼e
− i
ℏ ∫t

t0
H(t′) dt′

􏿿 , (3.39)

which, without loss of exactness, we can split intoN equal time intervals of size Δt and
write

U(t, t0) =
0

∏
n=N−1

U(tn+1, tn), (3.40)

where again tn = t0 + nΔt and Δt = (t − t0)/N , and where

U(tn+1, tn) = T􏿼e
− i
ℏ ∫tn+1

tn
H(t′) dt′

􏿿 . (3.41)

Evaluating the integral using a one-point rectangle rule gives

U(tn+1, tn) = e−
i
ℏH(tn)Δt+𝒪(Δt2), (3.42)

in which we were able to drop the time-ordering operator becauseH(t) is only evaluated
at a single time. Using the Taylor series definition of the exponential, we can take the
error term out of the exponent and write

U(tn+1, tn) = e−
i
ℏH(tn)Δt + 𝒪(Δt2). (3.43)

So far all we’ve done is justify (3.35). Now we’ll acknowledge thatH is a sum of two
terms and write:

U(tn+1, tn) = e−
i
ℏ (H1(tn)+H2(tn))Δt + 𝒪(Δt2). (3.44)

Using the Baker–Campbell–Hausdorff formula [61, p. 158], we can expand the exponen-
tial as

e−
i
ℏ (H1(tn)+H2(tn))Δt = e−

i
ℏH1(tn)Δte−

i
ℏH2(tn)Δte

1
2ℏ2

􏿮H1(tn),H2(tn)􏿱Δt2+𝒪(Δt3) (3.45)

⇒ U(tn+1, tn) = e−
i
ℏH1(tn)Δte−

i
ℏH2(tn)Δt + 𝒪(Δt2). (3.46)

So we see that the ‘commutation error’ in (3.46) caused by treating the two terms as if
they commute is of the same order in Δt as the ‘integration error’ in (3.43) caused by
treating the overall Hamiltonian as time-independent over one timestep, resulting in a
method with local error 𝒪(Δt2) and global error 𝒪(Δt); the first order split-step method:

U(t, t0) =
0

∏
n=N−1

U1(tn+1, tn) + 𝒪(Δt), (3.47)

where

U1(tn+1, tn) = e−
i
ℏH1(tn)Δte−

i
ℏH2(tn)Δt . (3.48)

3.2. soln. to the schrödinger eqn. by direct exponentiation 37

Using the diagonalisation method of matrix exponentiation discussed in Section 3.2.1,
this unitaryU1 can be used to step a state vector through time with only matrix–vector
multiplications and scalar exponentiation, where separate diagonalisations ofH1 andH2
are either analytically known or pre-computed, even though a diagonalisation of the total
HamiltonianH may not be feasible.

Crucially, ifH1 andH2 act on different subspaces of the overall Hilbert space, with
respective dimensionalities n1 and n2, that is,H1(t) = H̃1(t) ⊗ In2 andH2(t) = In1 ⊗
H̃2(t), where Im is them ×m identity matrix, then the matrix–vector products involved
in applyingU1 to a state vector can bemuch faster (𝒪(n21n2+n1n22) rather than 𝒪(n21n22))
than if the Hamiltonian weren’t split into two terms, even if an analytic diagonalisation
of the total Hamiltonian were available:

U1(tn+1, tn) = 􏿵e−
i
ℏ H̃1(tn)Δt ⊗ In2􏿸 􏿵In1 ⊗ e−

i
ℏ H̃2(tn)Δt􏿸 . (3.49)

By applying (3.46) recursively for the case where either H1 or H2 is itself the sum
of two further terms, (3.48) immediately generalises to the case whereH is a sum of an
arbitrary number of non-commuting terms:

U1(tn+1, tn) =
M

∏
m=1

e−
i
ℏHm(tn)Δt , (3.50)

whereH(t) = ∑M
m=1 Hm(t).

Second- and fourth-order split-step

By using a two-point trapezoid rule for the integral in (3.41), evaluating H(t) at the
beginning and end of the timestep, one can instead obtain an integration error of 𝒪(Δt3)
per step:

U(tn+1, tn) = e−
i
ℏ (H(tn)+H(tn+1))

Δt
2 + 𝒪(Δt3) (3.51)

= e−
i
ℏ (H1(tn)+H2(tn)+H1(tn+1)+H2(tn+1)) Δt2 + 𝒪(Δt3). (3.52)

Then, applying theBaker–Campbell–Hausdorff formula oncemore, and replacingH1(tn+1)
(and similarly forH2(tn+1)) wherever it appears in a commutator with the Taylor series
H1(tn)+Ḣ1(tn)Δt+𝒪(Δt2), one can show that if the individual exponentials are ordered
in the following way, then the remaining commutation error is also 𝒪(Δt3):

U(tn+1, tn) = e−
i
ℏH2(tn+1) Δt2 e−

i
ℏH1(tn+1) Δt2 e−

i
ℏH1(tn) Δt2 e−

i
ℏH2(tn) Δt2 + 𝒪(Δt3). (3.53)

This gives the second-order split-step method:

U(t, t0) =
0

∏
n=N−1

U2(tn+1, tn) + 𝒪(Δt2), (3.54)

where

U2(tn+1, tn) = e−
i
ℏH2(tn+1) Δt2 e−

i
ℏH1(tn+1) Δt2 e−

i
ℏH1(tn) Δt2 e−

i
ℏH2(tn) Δt2 , (3.55)

or, for an arbitrary number of terms in the Hamiltonian,

U2(tn+1, tn) = 􏿶
1

∏
m=M

e−
i
ℏHm(tn+1) Δt2 􏿹 􏿶

M
∏
m=1

e−
i
ℏHm(tn) Δt2 􏿹 . (3.56)

38 chapter 3. quantum mechanics on a computer

U2 can be concisely written in terms ofU1 as

U2(tn+1, tn) = U†
1 (tn + Δt

2 , tn+1)U1(tn + Δt
2 , tn), (3.57)

which is to say it is simply two applications ofU1, each of duration half a total timestep,
and with the multiplication order of the exponentials reversed in one compared to the
other. Two shortcuts are immediately apparent when computing U2 or its action on
a vector: firstly, if there is a time-independent term in the Hamiltonian, it should be
assigned to H1, so that the innermost two exponentials in (3.55) can be collapsed into
one; secondly, the final exponential of each timestep is identical to the first exponential
of the next timestep, and so these can also be collapsed together (being split apart only at
points in time when one wishes to sample the state vector).

The fourth-order split-step method is much more difficult to derive, with a large
number of commutators needing to cancel exactly to ensure the local error cancels out up
to fourth order in Δt. It can be stated in terms of the second-order split-step method as
[65, p. 7; 66,67]:

U(t, t0) =
0

∏
n=N−1

U4(tn+1, tn) + 𝒪(Δt4), (3.58)

where

U4(tn+1, tn) = U2(tn+1, tn+1 − pΔt)
× U2(tn+1 − pΔt, tn+1 − 2pΔt)
× U2(tn+1 − 2pΔt, tn + 2pΔt)
× U2(tn + 2pΔt, tn + pΔt)
× U2(tn + pΔt, tn), (3.59)

where p = 1/(4 − 41/3). U4 comprises five applications ofU2 with timesteps pΔt, pΔt,
(1−4p)Δt, pΔt, and pΔt respectively. The innermost timestep is backwards in time, since
(1 − 4p) < 0. But this is no problem, one simply evaluates the expression forU2 with
a negative timestep exactly as written, so long as one reads Δt when written within the
above expressions for U1(tf , ti) and U2(tf , ti) as referring to tf − ti, i.e. the difference
between the two arguments to the expression, not its absolute value, and not to the
timestep of the method in which it is embedded.

Parallelisability and other speedups for bandedmatrices

Expressions such as (3.55) don’t at first glance appear particularly easy to parallelise, that is,
to be evaluated in such a way as to leverage the computing power of multiple cpu cores,
gpu cores, or multiple computers. A series of Hamiltonian terms must be exponentiated
one by one and multiplied together. Whilst each exponential factor could be evaluated
independently, and then all of them multiplied together before being applied to a state
vector, this explicit construction ofU is very costly compared to merely computing its
action on a particular state vector, since the latter allows each term to act only in its
specific subspace of the overall Hilbert space, and avoids having to pay the 𝒪(n3) cost of
matrix-matrix multiplication.

When one or more terms in the Hamiltonian has a matrix representation that is
banded however (that is, all its entries further than a finite number of elements away from
the main diagonal are zero), then those terms may be written as a sum of block diagonal
matrices, for example:

3.2. soln. to the schrödinger eqn. by direct exponentiation 39

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c d e
b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d
a b c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ c/2 d/2 e
⋅ b/2 c/2 d e

a b c d e
a b c d e

a b c/2 d/2 ⋅
a b/2 c/2 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ c/2 d/2 e

⋅ b/2 c/2 d e
a b c d

a b c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c d e
b c d e
a b c d e
a b c d e
a b c/2 d/2 ⋅
a b/2 c/2 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ c/2 d/2 e

⋅ b/2 c/2 d e
a b c d e

a b c d e
a b c/2 d/2 ⋅
a b/2 c/2 ⋅ ⋅
⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= B + C, (3.60)

where zero-valued matrix elements outside the band are omitted, and those within the
band replaced with dots. In this example, we first take the original 16 × 16 matrix A,
and create four 4 × 4 non-overlapping submatrices whose diagonals lie alongA’s main
diagonal. These submatrices don’t quite cover all of A’s non-zero elements, however, so
we expand each submatrix (except the final one) from its bottom-right by two elements,
making it a 6 × 6 matrix. The submatrices are no longer non-overlapping, so we take
every second one and put it in a matrix B, every other one and put it in a matrix C such
that B and C are both block diagonal, divide the elements they have in common by two
so we don’t double count them, and then declare thatA = B+C. In the general case, the
amount of overlap between the submatrices required to encompass all of A is equal to
the bandwidth b of A (in this case b = 2 since A has two non-main diagonals on each
side of its main diagonal).

Having split a term in the Hamiltonian into two terms, we can simply apply the split
operator method as normal, with the same order accuracy in Δt as before. But now the
matrices that we wish to exponentiate and have act on a vector are block diagonal. This
means that the exponentiation of each block can be applied (using the diagonalisation
method) separately to the vector, independently of each other block. This enables the
application of the exponentials to be performed in parallel—each block submatrix modi-
fies different elements of the vector. So one might store different parts of the state vector
on different nodes on a cluster computer, and compute e−

i
ℏCΔtψ in parallel. Then some

data exchange between nodes would be necessary before applying e−
i
ℏBΔt to the result

(See Figure 3.1 for a schematic of how this works).
Whilst this specific banded matrixA is small for the sake of example, in general of

course onemight have amatrix of any size, allowing forB andC to containmore than two
submatrices each. The submatrices have aminimum size of twice the bandwidth b ofA, in
order to cover all elements ofAwhilst only sharing elements with their nearest neighbour
submatrices (any smaller and they would share elements with their next nearest neighbour
submatrices as well, complicating things somewhat). But the only maximum is the size of
A itself. So what is the optimal submatrix size? Although the split-step method is still
accurate to the same order inΔt nomatter howmany pieces we split a bandedmatrix into,

40 chapter 3. quantum mechanics on a computer

Figure 3.1: Schematic of data flow for parallel split-step method. Computation proceeds
right to left. To compute the action of e−

i
ℏBΔte−

i
ℏCΔt on a vector ψ , one can treat the

submatrices B1, B2, C1 and C2, of the block-diagonal matrices B and C separately. First,
the exponentiation of C can be applied to ψ by applying the exponentiations of C1 and
C2 to ψ. If diagonalisations C1 = QC1

DC1
Q†C1

and C2 = QC2
DC2

Q†C2
are known, then

the two operations can be applied as a series of matrix–vector multiplications and the
exponentiation of diagonal matrices. Because the two submatrices are non-overlapping,
they canbe applied to the vector completely independently in separate computer processes,
cpu or gpu threads, or cluster nodes. The exponentiation of B can then be applied to
the resulting intermediate vector ψ′, similarly via two independent operations acting on
non-overlapping elements of ψ′. However, because each submatrix of C overlaps each
submatrix of B by b = 2 elements on either side (b being the bandwidth of the original
matrix A = B + C), threads/processes must share these elements (here the ninth and
tenth elements), sending them to each other whenever they have been updated. For
simplicity this example has two compute threads and two submatrices in each term B and
C, but in general there can be any number of either. When a single thread must apply
the exponentiation of multiple submatrices to the state vector, it is advantageous for it
to first compute the result of any submatrix whose output is required by another thread,
then all submatrices that are independent of other threads, and finally any submatrix
which requires input from another thread. In this way, data required by other threads
can be sent as early as possible, and data needed from other threads called upon as late
as possible, minimising the time that threads are waiting for each other whilst there is
useful work to be done.

we clearly introduce additional ‘commutation error’ every time we splitA into additional
submatrices. So one might think that the number of pieces ought to be minimised, and
hence the submatrix size maximised. With regard to this, one might decide to split A
into 2nthreads submatrices (where nthreads is the number of independent computational
threads available), half of which will reside in B and half in C. This minimises the extra
commutation error subject to the constraint that all threads are put to use—splitting
A into yet smaller pieces within one computational thread will only yield unnecessary
additional error.

Is this the best option? No. Despite the extra commutation error, there is further
benefit to splittingA into more submatrices than required for parallelisation. Let s be the
‘nominal’ size of each submatrix, that is, the size of the corresponding non-overlapping
submatrices prior to expanding each one along the diagonal (creating overlap) by a number
of elements equal to the bandwidth b. The computational cost of the matrix–vector

3.2. soln. to the schrödinger eqn. by direct exponentiation 41

100 102

10−4

10−3

10−2

10−1

100

r
m

s
co

m
m

u
ta

to
r

m
a
tr

ix
el

em
en

t

b = 1

s−
1

2

random
∂2
x 2nd order fd

∂x 2nd order fd

100 102

b = 2

s−
1

2

random
∂2
x 4th order fd

∂x 4th order fd

100 102

b = 3

s−
1

2

random
∂2
x 6th order fd

∂x 6th order fd

submatrix size s

Figure 3.2: Numerical experiment to determine how the commutation error scales with
the submatrix size when splitting certain banded matrices into the sum of block-diagonal
matrices and using a split-operator method to exponentiate the sum. From left to right,
matrices with bandwidth b = 1, b = 2 and b = 3 are considered. For each bandwidth,
the matrices for the finite-difference schemes of the order resulting in that bandwidth
for first and second derivatives are considered, as well as random matrices of the given
bandwidth. The random matrices have real and imaginary parts of each element within
the band drawn from standard normal distributions. All matrices are 1024 × 1024.
Calculations with random matrices were performed on 20 independent random matrices,
and the mean and standard deviation (shaded) of the results plotted. The error metric is
the rms element of the commutator [B,C], where the original matrixA is split into the
sum of block-diagonal matrices B + C using a submatrix size of s (described in-text). The
rms error in a vector propagated with the split-operator method is proportional to this
error metric. The result in all cases is that the commutator error, and therefore the error
in the split-operator method, scales with the submatrix size as s−

1
2 .

multiplications for computing the action of e−
i
ℏBΔte−

i
ℏCΔt on a vector is then 𝒪((s+ b)2)

per submatrix, since s + b is the size of the submatrices in terms of their nominal size and
the bandwidth. The total number of submatrices required to coverA is ns−1, where n is
the size of A, and so the total cost of applying the exponentiations of all submatrices to a
vector is𝒪(ns−1(s+b)2). The cost per unit time of simulation is then𝒪(nΔt−1s−1(s+b)2).
Here we see that splitting into smaller submatrices is desirable from the point of view
of speed: because matrix–vector multiplication runs in quadratic time, a larger number
of smaller matrices can be multiplied by vectors faster than a smaller number of larger
matrices.

But the more submatrices, the more commutation error. Extra error can be made up
for by making the timestep smaller, which increases the cost per unit time once more.
So is it worth it? The extra commutation error from splitting upA into more and more
pieces in general depends on the form ofA. I performed a small numerical experiment to
see how the commutator [B,C] (which the commutation error is proportional to) scales
with s for random banded matrices, as well as those corresponding to second-, fourth-,
and sixth-order finite differences for first and second derivatives. The result in all cases
was that the commutator scaled as s−

1
2 (see Figure 3.2).

Back to our question—does decreasing the timestep size Δt to compensate for the
additional commutation error result in more, or less computational cost per unit time
than if we hadn’t split A into more pieces than required for parallelisation? Taking into
account the nominal submatrix size s and themethod’s error in terms ofΔt, the total error

42 chapter 3. quantum mechanics on a computer

of integrating using the split-step method (assuming the s−
1
2 commutator scaling holds)

is 𝒪(Δtas− 1
2), where a is the order in Δt of the accuracy of the specific split-step method

used (1, 2, or 4 for those I have discussed). Using these two pieces of information—the
total error, and the total cost per unit time—we can now answer the question “What
value of sminimises the computational cost per unit time, assuming constant error?”.

For constant error we set Δtas−
1
2 ∝ 1 and get that the computational cost per unit

time at constant error is 𝒪(ns− 1
2a−1(s + b)2). For a > 1

2 , this expression has a minimum
at s = b, which is the smallest possible submatrix size in any case. For our example banded
matrixA, decomposition into the smallest possible submatrices looks like this:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c d e
b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e
a b c d
a b c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c d e
b c d e
a b c/2 d/2 ⋅
a b/2 c/2 ⋅ ⋅
⋅ ⋅ c/2 d/2 e
⋅ b/2 c/2 d e

a b c/2 d/2 ⋅
a b/2 c/2 ⋅ ⋅
⋅ ⋅ c/2 d/2 e
⋅ b/2 c/2 d e

a b c/2 d/2 ⋅
a b/2 c/2 ⋅ ⋅
⋅ ⋅ c/2 d/2 e
⋅ b/2 c/2 d e

a b c d
a b c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ c/2 d/2 e
⋅ b/2 c/2 d e

a b c/2 d/2 ⋅
a b/2 c/2 ⋅ ⋅
⋅ ⋅ c/2 d/2 e
⋅ b/2 c/2 d e

a b c/2 d/2 ⋅
a b/2 c/2 ⋅ ⋅
⋅ ⋅ c/2 d/2 e
⋅ b/2 c/2 d e

a b c/2 d/2 ⋅
a b/2 c/2 ⋅ ⋅
⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.61)

So the conclusion is: use the smallest submatrices possible when decomposing a
banded matrix into a sum of two block-diagonal matrices. The decrease in computational
costs, even when the increased error is compensated for by a smaller timestep, is worth it.

Limitations and nonlinearity

The split-step method is quite powerful and general. It allows you to approximately
decompose the exponentiation of a Hamiltonian into exponentiations of its component
terms, in the subspaces that they act on, and avoids exponentiating large banded matrices;
saving on computing power immensely compared to exponentiating the full Hamiltonian.
It is unitary (when the Hamiltonian is actually Hermitian), and stable—that is, unlike
Runge–Kutta methods, the method’s truncation error does not grow without limit as the
simulation proceeds but is bounded (disregarding floating point rounding error, which
is much smaller than the truncation error of either method) [68]. This is extremely
appealing. And, whilst higher order split-step methods quickly become unwieldy [68],
fourth-order accuracy is quite acceptable for many problems.

Applying all the tricks described in the above sections results in 𝒪(Δt), 𝒪(Δt2) and
𝒪(Δt4) accurate timestepping methods for solving the Schrödinger equation with total
computational cost scaling as 𝒪(n∑i bi), where n = ∏i ni (for a product space of
subspaces with dimensionalities {ni}) is the dimensionality of the total Hilbert space, and
{bi} are the bandwidths of the matrix representations of each term in the Hamiltonian
in the chosen basis.11 Furthermore, the method is efficiently parallelisable, provided the11Now that we are here, we can

finally say something about the
best basis for simulating in: to
minimise computational costs, the
best basis is the one that minimises
precisely this sum of bandwidths.
The exception to this is when fast
Fourier transforms are involved,
which I discuss later.

3.2. soln. to the schrödinger eqn. by direct exponentiation 43

maximum size-to-bandwidth ratiomaxi(ni/bi) of the terms in the Hamiltonian is much
larger than the number of parallel computing threads available. Although the constant
factors that big-O notation neglects may not be optimal, this scaling would seem to be
the best one could hope for—for each of the n elements in the state vector one must
consider the ∑i bi elements (including itself) that the Hamiltonian couples it with, and
no more.12 12Assuming the banded matrices

are otherwise dense within their
band—further improvements
would be possible if some elements
within the band were always zero.

The main downside of this otherwise excellent method of exponentiating Hamil-
tonians is that the evolution modelled must actually be described by a linear system of
equations. One cannot add arbitrary terms and nonlinear operators to the Hamiltonian,
as the split-step method requires that one can evaluate each time-dependent term in the
Hamiltonian at specific times, including times at which the solution for the state vector
is not yet available. This would seem to limit the split-step method strictly to modelling
linear dynamics, that is, terms in the Hamiltonian must not depend explicitly on the state
vector they are operating on. Whilst nature might fundamentally be described by linear
dynamics, once approximations of various kinds are made in order to make problems
tractable, it’s common to end up with a nonlinear pseudopotential or nonlinear effective
Hamiltonian. Note that non-Hermitian, pseudo-Hamiltonians—leading to non-unitary
evolution—are fine. The split-step method has made no assumptions that rules them out,
it only assumes the differential equation can be expressed in the form

d
dt

ψ(t) = ∑
n

Hn(t)ψ(t), (3.62)

where {Hn} are a set of linear operators, Hermitian or not.
Fortunately, one specific formofnonlinearity that cold atomphysicists are particularly

interested in—the nonlinear term in theGross–Pitaevskii equation—can be incorporated
without much difficulty. As mentioned, the problem with nonlinearity is that all but the
first-order split-step methods require you to evaluate terms in the Hamiltonian at some
future time at which the state vector is not yet known, that is the algorithm contains
steps akin to ψ(tn+1) = U(tn+1, tn;ψ(tn+1))ψ(tn) for some nonlinear unitary matrix
U(tn+1, tn;ψ(tn+1))—U cannot be explicitly constructed because it both requires and is
required by ψ(tn+1).

For the Gross–Pitaevskii effective Hamiltonian, the second-order split-step method
(from which the fourth-order method is constructed) for a single step might be naïvely
written

ψ(tn+1) = e−
i
ℏK

Δt
2 e−

i
ℏ (gρ(tn+1)+V(tn+1))

Δt
2 e−

i
ℏ (gρ(tn)+V(tn))

Δt
2 e−

i
ℏK

Δt
2 ψ(tn), (3.63)

where ψ(t) is the state vector13 represented in a discrete position basis, g is the nonlinear 13Usually when modelling the GPE
the single-particle state vector
is normalised to the number of
particles, rather than unity, and
so strictly speaking it cannot be
called a state vector, though it
otherwise can be treated as one in
most respects.

interaction constant,V(t) and ρ(t) = ψ(t)ψ†(t) are diagonal matrices for the external
potential and the density matrix for ψ(t) in the same position basis, and K is a discrete
approximation to the kinetic energy operator in the position basis.

As written, this can’t be evaluated becauseψ(tn+1)—required to evaluate ρ(tn+1)—is
not yet known. The order we choose to exponentiate the terms in our Hamiltonian is
arbitrary, however (so long as we alternately reverse that order each half-step as required
by the second-order split-step method), and so swapping the order gives

ψ(tn+1) = e−
i
ℏ (gρ(tn+1)+V(tn+1))

Δt
2 e−

i
ℏKΔte−

i
ℏ (gρ(tn)+V(tn))

Δt
2 ψ(tn), (3.64)

which incidentally has the benefit that since K is (ordinarily) time independent, the
two adjacent exponentials containing it can be combined into one. Now ρ(tn+1) is
contained within the leftmost exponential, and so it is the last operator to be applied in
the timestep. Note that since gρ(t) is real and diagonal in the position basis (as isV(t)),
this leftmost unitary merely changes the phase of the state vector at each point in space,

44 chapter 3. quantum mechanics on a computer

having no effect on its density. This means that ρ(t) is, in fact, unaffected by this last
unitary evolution operator. Hence, ρ(tn+1) can be computed simply as the density matrix
of the intermediate state vector that this unitary was to act on:

ρ(tn+1) = ψ(tn+1)ψ†(tn+1) = ψ̃ψ̃†, (3.65)

where

ψ̃ = e−
i
ℏKΔte−

i
ℏ (gρ(tn)+V(tn))

Δt
2 ψ(tn). (3.66)

The inclusion ofV(t) with gρ(t) is optional, and ifV(t) was not real-valued, would
not be valid (since in that case the density would be affected by the evolution induced by
V(t)). In such a case the Hamiltonian would have to be split into three terms withV(t)
and gρ(t) treated separately.

So now we can put some conditions on what types of nonlinear operators can be
used within the second-order split-step method. The first condition is that at most
one nonlinear operator can be included, since it must be placed last in the sandwich of
exponentials (otherwise its value at the endof the timestep cannot be inferred immediately
prior to acting on the state vector). The second condition is that the nonlinear operator
must be invariant with respect to the evolution that it itself induces in the state vector.
Here we have an operator that depends only on the state vector’s absolute value, but for
which the corresponding unitary only evolves the state vector’s phase. Another example
might be an operator that depends only on the state vector’s phase gradients, but evolves
the state vector’s absolute value, and so forth.

Although I find this argument compelling for second-order split-step, it’s less obvious
that it should hold for fourth-order split-step as well, which, even though it is based on
multiple applications of second-order split-step, involves a substep that is backwards in
time. “Evaluate the nonlinear operator based on the state vector at this specific time”
becomes ambiguous when that moment in time is traversed in both directions by two
different sub-steps. However, [69] have verified using computer symbolic algebra that
indeed, up to even higher order split-step methods, putting the nonlinear density term
last in the splitting and always evaluating it using the value of the intermediate state vector
immediately prior results in themethod having the same order accuracy inΔt as for linear
operators only. Given this and my argument above, as well as the reasoning that the
second-order split-step method has no way of ‘knowing’ whether it is acting backward in
time or not when embedded in a higher-order split-stepmethod, I would expect the same
to hold for all nonlinear operators meeting the above two conditions, though I haven’t
shown this explicitly.

3.3 For everything else, there’s fourth-order Runge–Kutta

Fourth-order Runge–Kutta (rk4) is the enduring workhorse of numerical integration
methods. Of the Runge–Kutta methods, it offers a good balance of accuracy and com-
putational cost. When a problem does not have the properties that allow manifestly
unitary or error-bounded methods to be used, or when enough computing power can
be deployed so as to make these concerns irrelevant, and the programmer’s time more
important, fourth-order Runge–Kutta is a good choice. Its downsides are that it is not
manifestly unitary, and its error is not bounded. Nonetheless for many problems this is
not a concern in practice.

The advantages of fourth-order Runge–Kutta are compelling: it has global error
that is fourth-order in the integration timestep, involves four function evaluations per
timestep, requires only linear arithmetic operations outside of the function evaluations,

3.3. for everything else, there’s fourth-order runge–kutta 45

and can be applied any problem that can be written in the form

d
dt

x = f (x, t), (3.67)

for some (possibly nonlinear) function f , where x is a vector of dynamical variables, often
in our case the components of a state vector, or for classical dynamics the positions and
velocities of an ensemble of particles14. Note that this formulation allows for initial value 14For classical particle dynamics, of-

ten lower order symplectic methods
such as the leapfrog method [70]
can be preferable, but nonetheless
it is hard to overstate the usefulness
of a general purpose algorithm
such as rk4 that can be deployed
as a first attempt, or as a plan B
once the assumptions required by
another algorithm are violated

problems with coupled ordinary differential equations, discretised partial differential
equations, as well as second- or higher-order differential equations, since an equation of
the form

d2

dt2
x = f (x, t) (3.68)

can be rewritten

d
dt
(x, ẋ) = (ẋ, f (x, ẋ, t)) , (3.69)

treating the time derivative of each element of x as simply another coupled dynamical
variable.

Not unrelated to its ease of implementation, the method itself can be stated concisely.
Propagation of the dynamical variables for one timestep from time t to time t + Δt is
computed as follows:

k1 = f (x(t), t),
k2 = f (x(t) + 1

2k1Δt, t +
1
2Δt),

k3 = f (x(t) + 1
2k2Δt, t +

1
2Δt),

k4 = f (x(t) + k3Δt, t + Δt),
x(t + Δt) = x(t) + Δt

6 (k1 + 2k2 + 2k3 + k4). (3.70)

Each step is self-contained, that is, the algorithm does not contain any state from
previous steps. This is appealing as it means that f can change discontinuously between
timesteps without giving rise to Runge’s phenomenon [71] in the approximate solutions
x(t), as can be the case with multi-step methods that do retain some dependency on
previous steps. x(t) can also be modified discontinuously between steps without causing
problems, as is required byMonteCarlowavefunction or quantum jumpmethods [72,73],
or even in the imaginary time evolution method (see Section 3.5.1) which may require
normalisation of the state vector in between steps. Fourth-orderRunge–Kutta is therefore
quite compatible with stochastic processes and many other models that may not be
described by a differential equation alone.

One downside is that the timestep used must be much smaller than the timescale
on which x changes—even if x’s time variation is highly regular. If x’s time variation is
dominated by the simple accumulation of complex phase at some angular frequency—as is
often the case in quantum mechanics—the timesteps used for rk4 must be small enough
to resolve these circles about the complex plane. This is in contrast to the exponentiation
methods, for which an energy offset (and hence overall change in the angular frequency
at which the state vector’s elements accumulate phase) is largely irrelevant. Energy offsets
or use of an interaction picture can mitigate this problem but this requires some foresight,
and may not be possible if the required energy offsets change in time or are not known
analytically in advance. The method I develop in Section 3.6 is a partial remedy for this
specific problem, which in my opinion is the biggest weakness of fourth-order Runge–
Kutta as applied to quantum state evolution, when compared to the unitary methods.

46 chapter 3. quantum mechanics on a computer

3.3.1 Complexity and parallelisability for the Schrödinger equation

Excluding the evaluation of f , rk4 requires a number of arithmetic operations propor-
tional to the number of elements in x, and so contributes time-complexity 𝒪(n) to the
overall calculation, where n is the number of elements in x. Since f itself usually doesn’t
run in linear time, the computational time complexity of rk4 is therefore usually that
of evaluating f . Its parallelisability also comes down to that of f , since equations (3.70)
above treat each element of x completely independently, with any couplings computed
within f .

For the Schrödinger equation in a concrete basis, f is

f (ψ, t) = − i
ℏH(t)ψ, (3.71)

where ψ is the state vector in the given basis andH(t) is the matrix representation of the
Hamiltonian in that basis15. Fourth-order Runge–Kutta is therefore as computationally15For the Gross–Pitaevskii equation

this would be a nonlinearH(ψ, t),
and everything else in this section
still applies.

expensive and parallelisable as computing thematrix–vector productH(t)ψ . In the worst
case this multiplication is 𝒪(n2) in the size of the Hilbert space and barely parallelisable
at all, ifH is dense. But in the common case (as mentioned in Section 3.2.4), ofH being
a sum of terms which act on different subspaces, i.e.

H(t) =
N

∑
i=1

In1 ⊗⋯⊗ Ini−1 ⊗Hi(t) ⊗ Ini+1 ⊗⋯⊗ InN (3.72)

where ni is the dimensionality of the subspace acted on by the ith term and Im is the
m × m identity matrix, then things are much better. If each term is dense, then the
overall cost of evaluating the product H(t)ψ is 𝒪(n∑i ni), where n = ∏i ni is the
dimensionality of the total Hilbert space, which can be considerably less than the 𝒪(n2)
of evaluating the single matrix–vector product for the total Hamiltonian. And if each
term is a banded matrix with bandwidth bi, then the cost of applying a single term in
the Hamiltonian becomes 𝒪(nbi) instead of 𝒪(nni), and so the cost of evaluatingH(t)ψ
becomes 𝒪(n∑i bi). This is identical to the earlier result for the split-operator method
once the trick of splitting up banded matrices into block-diagonal matrices was applied
(section 3.2.4), but with much less work (in the sense of programmer effort rather than
computational complexity). RepresentingH(t) as a sum of terms over different subspaces
is no extra work—this is the form we are likely to be writing Hamiltonians in already, and
constructing the totalH(t) is often not required if one desires only to propagate a state
vector in time.16 No, we are already applying these operators to different subspaces of16Though constructing the matrix

form of say, p̂2x
2m + p̂2y

2m for some
finite-difference or pseudospectral
representations of p̂x and p̂y can
be useful if one wants to say, com-
pute the dispersion relation of a
particular system by diagonalising
it.

the Hilbert space and then summing the results without thinking twice about it, and so
the above analysis mostly serves as a reminder that what we are already doing most of the
time is in fact very efficient.

Parallelisation, provided one or more of the matrices are banded, is also straightfor-
ward, since ifA is banded with bandwidth b, then

(Aψ)i =
b

∑
j=−b

Ai,i+jψj, (3.73)

that is, calculation of an element ofAψ requires only the corresponding element ofψ and
its nearest b neighbours on each side. One can therefore divide up the state vector into
contiguous regions (in the subspace in whichA acts), and compute different elements
of the product on different compute threads, requiring an exchange of only b elements
at each boundary17 between neighbouring threads. An example of this is to split two-17A note about minimising the

effect of latency: at the start of
an rk4 substep, have each thread
send the required elements at the
edges of its region in each subspace
to its neighbouring threads first.
Then computeH(t)ψ on the interior
elements. If each thread has a
sufficiently large workload, then
by the time this is complete, the
data from neighbouring regions
will have arrived and threads will
not have spent any time waiting for
each other.

dimensional space into a number of pieces in each dimension (resulting in a 2d grid) so
as to compute the application of (finite-difference approximations to) the x and y second
derivative operators on a state vector in parallel.

3.4. continuous degrees of freedom 47

fss4 fss2 rk4fd6

Method

0

10

20

30

40

50
E

x
ec

u
ti

o
n

ti
m

e
p

er
st

ep
(m

s)

Figure 3.3: The average computation time per step of second- (fss2) and fourth-order
(fss4) Fourier split-step (see Section 3.4.1) and fourth-order Runge–Kutta using sixth-
order finite differences (rk4fd6, see Section 3.4.2) for the simulations detailed in Fig-
ure 3.4. It should be noted that the use of finite differences is not significant—as men-
tioned in Section 3.4.2, it is difficult to observe any difference between the speed of finite
differences and Fourier derivatives in practice on present computers. The difference in
speed is almost entirely due to the cost of computing exponentials, as can be seen by
comparing fss2 and fss4, which differ by a factor in five both in speed and in the number
of exponentials in their implementations. For fourth-order accuracy, rk4 is about three
times faster than Fourier split-step.

An additional benefit of parallelised rk4 when compared to split-operator is that the
same amount of data needs to be sent between threads regardless of the number of terms
in theHamiltonian. In split-stepmethods, each term in theHamiltonian is exponentiated
separately (multiple times for the higher order schemes), requiring an exchange of data
each time. The amount of data needing to be exchanged per step therefore scales with the
number of terms in the Hamiltonian being parallelised, whereas for rk4 it is constant.

The constant factors that big-O notation disregards also favour rk4 when compared
to split-operator methods. For one, addition and multiplication are much cheaper than
exponentiation, meaning that the exponentials in split-operator methods may add consid-
erable computational cost if the Hamiltonian itself is simple. Furthermore, parallelised
or not, each term in fourth-order split-operator adds 20matrix–vector products in the
space the term acts, whereas rk4 requires only one additional matrix–vector product per
term. In practice due to these properties, rk4 runs considerably faster (see Figure 3.3)
than split-operator methods, even for simple systems, and the gap widens as complexity
increases. This combined with the relatively minor improvement in accuracy or stabil-
ity (see Figure 3.4) between the methods make rk4 an enduring choice for cold atom
problems.

3.4 Continuous degrees of freedom

The single-particle, non-relativistic, scalar Schrödinger wave equation, as distinct from
the general Schrödinger equation (3.1), is

iℏ 𝜕
𝜕t

ψ(r, t) = 􏿰−
ℏ2
2m

∇2 + V(r)􏿳ψ(r, t). (3.74)

48 chapter 3. quantum mechanics on a computer

Schrödinger wave equation

10−12

10−9

10−6

∆t = τd/4

∆t = τd/2

∆t = τd

10−12

10−9

10−6 ∆t = τd/4

∆t = τd/2

∆t = τd

50 100 150

10−12

10−9

10−6 ∆t = τd/4

∆t = τd/2

∆t = τd

Gross–Pitaevskii equation

f
ss

2

∆t = τd/4

∆t = τd/2

∆t = τd

f
ss

4

∆t = τd/4

∆t = τd/2

∆t = τd

50 100 150

r
k

4
f
d

6

∆t = τd/4

∆t = τd/2

∆t = τd

0.2
0.4
0.6
0.8

g µ
ρ

t = 0 t = 20 ms t = 40 ms t = 0 t = 20 ms t = 40 ms

simulation time (ms)

p
er

-s
te

p
er

ro
r

Figure 3.4: A comparison of the rms per-step accuracy of second and fourth-order Fourier split-step (see Section 3.4.1) and
fourth-order Runge–Kutta using sixth order finite differences (see Section 3.4.2). In the left column, the linear Schrödinger
equation is solved for a 2d wavefunction and on the right the Gross–Pitaevskii equation for a 2d condensate wavefunction,
both for the case of 87Rb. The spatial grid is 256× 256 and represents a spatial region of 10 μm. The same initial conditions
are used for each, produced in the following way: first a Gross–Pitaevskii ground state (for the sake of comparison, even
though this is not a ground state of the Schrödinger equation) in a harmonic trap chosen to give a Thomas–Fermi radius of
7.5 μm is produced using successive over-relaxation (Section 3.5.2). Vortices are created by multiplying by a spatially varying
complex phase factor to produce the appropriate phase winding for a number of randomly chosen vortices, as described
in the example in Section 3.6. This is then relaxed using imaginary time evolution (Section 3.5.1) of the Gross–Pitaevskii
equation for a duration equal the chemical potential timescale τμ = 2πℏ

μ to produce a physically realistic initial condition.
This is then evolved in time using the three methods, with three different timesteps, expressed as multiples of the dispersion
timescale (described in Section 3.4.4) τd = mΔx2

πℏ where Δx is the grid spacing. Second-order Fourier split-step, although
unitary and thus having bounded error, reaches that bound for the smallest timestep. The two fourth-order methods have
comparable accuracy, with Fourier split-step being slightly more accurate and the error in rk4 tending to increase faster
with time (for the case of the Gross–Pitaevskii equation). Comparing with Figure 3.3, the difference is even more marginal if
we compare by equal computational cost per unit simulation time—which allows rk4 to take timesteps about three times
smaller before it consumes the same computational resources as Fourier split-step.

3.4. continuous degrees of freedom 49

Similarly, as mentioned in Section 2.2, the equation for the single-particle wavefunction
of an atom in a single-component Bose–Einstein condensate is the Gross–Pitaevskii
equation

iℏ 𝜕
𝜕t

ψ(r, t) = 􏿰−
ℏ2
2m

∇2 + V(r) + g |ψ(r, t)| 2􏿳ψ(r, t), (3.75)

where ψ(r, t) = √N ⟨r|ψ(t)⟩ is the single-particle wavefunction scaled by the square
root of the number of atomsN .

Both these equations are partial differential equations involving both spatial and
temporal derivatives. But in numerical quantum mechanics, all state vectors are mapped
to column vectors and all operators to matrices. Spatial wavefunctions are no exception
to the former and differential operators such as ∇2 are no exception to the latter–these
objects can be thought of as infinite-dimensional vectors and matrices. So the above two
equations are specific instances of the general Schrödinger equation (3.1), given specific
Hamiltonians, and represented in a concrete—albeit infinite-dimensional—basis. But
we can only perform a finite number of computations, so what do these vectors and
operators look like once we reduce them to something finite? That depends on whether
we choose to discretise space on a grid, or use a functional basis (and on which functional
basis we choose). As we’ll see, however, spatial discretisation can be a special case of a
functional basis, namely the Fourier basis, plus an additional approximation or two. The
resulting matrices are banded, justifying the previous two sections’ attention to dealing
with banded matrices efficiently.

3.4.1 Spatial discretisation on a uniform grid: the Fourier basis

Imagine a two-dimensional spatial regionwithinwhichwe are solving the single-component
Gross–Pitaevskii equation, evolving an initial condensate wavefunction in time. Having
specified which degrees of freedom we want to simulate (two continuous degrees of
freedom, one for each spatial dimension), the next step according to the method outlined
in Section 3.1 is to choose a basis in which to represent this state vector.

Let’s say we discretise space in an equally-spaced nx × ny = 7 × 7 rectangular grid,18 18For the sake of example—256 ×
256 is a more realistic minimum.with spacingsΔx andΔy, and only represent the wavefunction at those 49 points in space.

The state vector can then be represented by a list of 49 complex numbers, each taken to
be the wavefunction’s value at the spatial position corresponding to one gridpoint. This
49-vector is now a concrete representation of our state vector (Figure 3.5).

We can also evaluate the potential (and nonlinear term in the case of the Gross–
Pitaevskii equation) at each gridpoint and declare this a diagonal operator (Figure 3.6).
Finally, we could use finite differences to compute the Laplacian—equivalent to replacing
the Laplacian with a matrix

L = Lx ⊗ Iny + Inx ⊗ Ly (3.76)

where Lx and Ly are (banded) matrices for finite-difference approximations to second
derivatives in each direction. We might also use discrete Fourier transforms to evaluate
the Laplacian, since

∇2ψ(r) = F−1 􏿺−k2F{ψ(r)}(k)􏿽 , (3.77)

where k = |k| .
This is all well and good, and it works. But at what point did we choose a basis just

now—what are the basis vectors? This just looks like discretising space at a certain resolu-
tion, rather than the formal process of choosing a basis and projecting the state vector

50 chapter 3. quantum mechanics on a computer

1 2 3 4 5 6 7
ix

1

2

3

4

5

6

7

i y

1

7

14

21

28

35

42

49

i x
y

=
i x

+
n
x
i y

Figure 3.5: Discretising a function over two-dimensional space on a grid yields a list of
coefficients, one for each gridpoint. These can be arranged as a column vector, and in this
way a two -imensional wavefunction approximated by a finite-dimensional state vector.
Computationally we don’t normally treat this state vector as a column vector—it is more
convenient to leave it as a two-dimensional array. But conceptually it is a single vector
living in the product space of the discretised x and y spaces.

1 2 3 4 5 6 7
ix

1

2

3

4

5

6

7

i y

1 7 14 21 28 35 42 49
ixy = ix + nxiy

1

7

14

21

28

35

42

49

i x
y

=
i x

+
n
x
i y

Figure 3.6: A discretised potential energy operator can be formed by evaluating the
function for the potential at a set of gridpoints. The resulting matrix is diagonal and
square with nx × ny rows and columns. Since multiplying this operator by a state vector
entails multiplying each element of the state vector by one diagonal element of the
potential operator, both the state vector and the diagonals of the potential operator can
be stored in simulation code as 2d arrays and multiplied elementwise, hiding somewhat
the fact that the operation is still a matrix–vector product. This way of discretising a
potential operator is called the pseudospectral approximation, and is described later in
this section.

and operators onto each basis vector, as outlined in Section 3.1. Assuming what we’ve
done is equivalent to choosing a basis, that basis has a finite number (49) of basis vectors,
which means it cannot be complete, since state vectors we’re approximately representing
with it require an infinite number of complex numbers to be described exactly.19 So what19One for each position within

the two-dimensional space we’re
representing.

do the basis functions look like, and what state vectors have we implicitly excluded from
simulation by choosing a basis that is incomplete?

Prior to discretisation, the spatial wavefunction ψ(r, t) = ⟨r|ψ(t)⟩was already the

3.4. continuous degrees of freedom 51

representation of the abstract state vector |ψ⟩ in the ‘spatial basis’—a basis in which the
basis vectors { |r⟩} are Dirac deltas positioned at each point in space. The value of the
wavefunction ψ(r) for a specific r is then simply a coefficient saying how much of the
basis vector |r⟩ to include in the overall state vector. What we have not done is chosen a
subset of these Dirac delta basis functions as our basis. This would be very strange—our
representation of the wavefunction would allow it to be non-zero at the gridpoints, but
not in between, like a comb. Spatially separated Dirac deltas do not spatially overlap at
all; the matrix elements of the kinetic energy operator:

⟨ri|K̂ |rj⟩ = ∫ δ(r − ri) 􏿶−
ℏ2
2m

∇2􏿹 δ(r − rj) dr (3.78)

would all be zero for i ≠ j, disallowing any flow of amplitude from one point in space to
another by virtue of it not being able to pass through the intervening points.

Neither have we implicitly chosen a set of two-dimensional boxcar functions centred
on each gridpoint with width Δx and Δy in each direction respectively. These cover all
space in between gridpoints, but are not twice-differentiable everywhere, and hence the
kinetic energy operator’s matrix elements cannot be evaluated.20 No, neither of these 20Delta functions aren’t twice

differentiable either, so this itself
isn’t a fatal flaw–but even if one
defines the boxcar functions as
the limit of twice differentiable
functions becoming increasingly
square with some parameter, the
limit for the kinetic energy matrix
elements between adjacent boxcars
goes to infinity.

bases makes sense. To interpret our spatial grid as a basis, we need a set of functions ϕij(r)
(where i and j are the indices of the gridpoints in the x and y directions respectively)
that are orthonormal, are non-zero only at one gridpoint and are zero at all others, and
are twice differentiable everywhere in our spatial region. Infinite choices are available,
differing inwhich subspace of the originalHilbert space they cover. A sensible heuristic for
choosing one is that we want to be able to represent the state vectors whose wavefunctions
do not change much between adjacent gridpoints, and we are happy for the necessary
incompleteness of our basis to excludewavefunctionswith any sort of structure in between
gridpoints.

Thediscrete Fourier transform to the rescue

It turns out that discretising space in this way can indeed be equivalent to choosing a
sensible basis. This is made clearer by first discretising in Fourier space instead, and seeing
how this can imply a discretisation in real space.

One possible basis for representing all possible state vectors is the Fourier basis { |kij⟩}.
With it, any state vector (whose wavefunction is non-zero only within the 2d region) can
be represented as the sum of basis vectors whose wavefunctions are 2d plane waves, also
localised to the 2d region:

⟨r|kij⟩ =

⎧⎪⎪⎨
⎪⎪⎩

1
√A

eikij⋅r (r within 2d region)
0 (r not within 2d region),

(3.79)

whereA is the area of the 2d region and the wavevector of each plane wave is

kij = 􏿯 2πiLx
, 2πjLy 􏿲

T
, (3.80)

where i and j are (possibly negative) integers. Any state vector whose wavefunction is
localised to the 2d region can then be written as the infinite sum:

|ψ⟩ =
∞

∑
i=0

∞
∑
j=0

⟨ki,j|ψ⟩ |ki,j⟩ (3.81)

⇒ ψ(r) = ⟨r|ψ⟩ =

⎧⎪⎪⎨
⎪⎪⎩

∑∞
i=0 ∑∞

j=0 ⟨kij|ψ⟩
1
√A

eikij⋅r (r within 2d region)
0 (r not within 2d region).

(3.82)

52 chapter 3. quantum mechanics on a computer

So { ⟨kij|ψ⟩} are simply the coefficients of the 2d Fourier series of ψ(r).
What does this have to do with our discretised space? These basis functions { ⟨r|kij⟩}

don’t have the required properties for a spatial discrete basis. For one, there are an infinite
number of them, and we require 49 for our 7×7 example. Secondly, all of them are
non-zero everywhere within the 2d region, whereas we require each basis function to be
non-zero at exactly one of our 49 gridpoints.

We can solve the first problem by truncating the Fourier series. By only including
basis vectors |kij⟩ for which:

⎧⎪⎨
⎪⎩
i ∈ [− nx

2 ,
nx
2 − 1] (nx even)

i ∈ [− nx−1
2 , nx−12] (nx odd)

(3.83)

and
⎧⎪⎨
⎪⎩
j ∈ [− ny

2 ,
ny
2 − 1] (ny even)

j ∈ [− ny−1
2 , ny−12] (ny odd)

(3.84)

we include only the nx and ny longest wavelengths in each respective spatial dimension.
This is a sensible truncation with a physically meaningful interpretation. Bymaking it, we
are no longer able to represent state vectors with short wavelength components. Because
the kinetic energy operator, when represented in the Fourier basis, is

⟨kij|K̂ |ki′j′⟩ =
ℏ2k2
2m

δii′δjj′ , (3.85)

where k = |kij|, by excluding basis vectors with larger wavevectors, we are excluding state
vectors with large kinetic energy. Thus the truncation is a kinetic energy cutoff, and is
an accurate approximation whenever a simulation is such that the system is unlikely to
obtain kinetic energies above the cutoff.21 It also matches our earlier intuition that our21Because a square region in Fourier

space is being carved out, by
limiting each of kx and ky to
finite ranges rather than the to-

tal wavenumber k =
􏽯
k2x + k2y ,

there is no single kinetic energy
cutoff so to speak. Nonetheless
there is a maximum wavenum-
ber kmax = min({|kx |} ∪ {|ky |})
defining a kinetic energy cutoff
Kmax = ℏ2k2max/(2m) below which
kinetic energies definitely are repre-
sentable and above which they may
not be.

basis should represent wavefunctions that don’t vary much between gridpoints—here we
are discarding short wavelengths and hence limiting wavefunctions we can represent to
ones that vary slowly in space compared to the cutoff wavelength.

Now we have a set of basis vectors—a discrete Fourier basis—but their spatial wave-
functions still don’t have the property of being non-zero only at a single gridpoint each.
On the contrary, each plane wave has a constant amplitude everywhere in space. But
consider the following superposition of Fourier basis vectors:

|rij⟩ = ∑
i′

∑
j′

e−iki′j′ ⋅rij |ki′j′⟩ (3.86)

with rij = (iΔx, jΔy)T. The set of vectors { |ri,j⟩} are also an orthonormal basis,
related to the discrete Fourier basis by a unitary transformation with matrix elements:

Udft2,i′j′ij = ⟨ki′j′ |rij⟩ = e−iki′j′ ⋅rij . (3.87)

This unitary transformation is in fact a two-dimensional discrete Fourier transform
(hence the subscript), and the basis vectors { |rij⟩} have spatially localised wavefunctions
that are non-zero only at one of the spatial gridpoints. Vectors and matrices can be
transformed from their discrete Fourier space representation to their discrete real-space
representation and back using the unitaryUdft2:

ψreal = U†
dft2ψFourier (3.88)

ψFourier = Udft2ψreal (3.89)

Areal = U†
dft2AFourierUdft2 (3.90)

AFourier = Udft2ARealU†
dft2. (3.91)

3.4. continuous degrees of freedom 53

0

2

4

6

8

10

12

y

−1.0

−0.5

0.0

0.5

1.0

φ
3
2
(x
,y

)

1 2 3 4 5 6 7 8 9 10 11 12 13

x

0

1

φ
3
2
(x
,2

)

Figure 3.7: An example of the spatial representation of one of the basis vectors obtained
by transforming the discrete Fourier basis using the discrete Fourier transform. Since the
discrete Fourier transform is a unitary transformation, the set of these basis functions
forms an equivalent orthonormal basis for representing state vectors and operators.

where ψreal is the vector of coefficients ψreal,ij = ⟨rij|ψ⟩ for representing a state vector in
the discrete real space basis, ψFourier is the vector of coefficients ψFourier,ij = ⟨kij|ψ⟩ for
the state vector in the discrete Fourier basis, andAreal andAFourier are the representations
of some operator Â in the discrete real and Fourier bases respectively, withmatrix elements
Areal,iji′j′ = ⟨rij|Â|ri′j′⟩ andAFourier,iji′j′ = ⟨kij|Â|ki′j′⟩.

The spatial representation of the basis vectors { |rij⟩} can be computed using (3.79) as

ϕij(r) = ⟨r|rij⟩ = ∑
i′j′

e−iki′j′ ⋅rij ⟨r|ki′j′⟩ (3.92)

⇒ ϕij(r) =

⎧⎪⎪⎨
⎪⎪⎩

∑i′j′
1

􏽮LxLy
eiki′j′ ⋅(r−rij) (r within 2d region)

0 (r not within 2d region),
(3.93)

where Lx and Ly are the spatial extents of the x and y dimensions. An example of one of
these basis vectors in the spatial representation is plotted in Figure 3.7.

These functions are sometimes called periodic sinc functions, band-limited delta func-
tions, or the Dirichlet kernel [74, p. 619; 75]. Each of them is zero at all of the gridpoints
except one, and they form an orthonormal basis set. They satisfy all of our requirements
to be a basis corresponding to our gridded discretisation of space.

One thing to note is that these functions are periodic. By using the Fourier basis in the
way we have to restrict our basis to cover only a finite region of both Fourier space and real
space, we have necessarily imposed periodicity on the problem. This periodicity shows
itself when we compute matrix elements of operators in this basis. If we compute the
kinetic energy operator’s matrix elements for example, it will couple basis states across the
boundary of the region, resulting in spatial periodicity—a wavepacket moving rightward
through the right boundary will emerge moving rightward from the left boundary.

54 chapter 3. quantum mechanics on a computer

Less obviously, the basis is also periodic in Fourier space, and so a wavepacket moving
out of the region of Fourier space simulated will also wrap around to the opposite side
of Fourier space. In real space, this may appear as a wavepacket undergoing acceleration
only to suddenly reverse its velocity as if reflected off a barrier. This effect is unphysical2222With the possible exception of

the region of Fourier space being
simulated corresponding to the
first Brillouin zone of a lattice
potential, in which case these
velocity reversals would correspond
to Bloch oscillations.

and should be taken as a sign that the spatial grid is not fine enough for the dynamics
being simulated.

The discrete Fourier basis we’ve described is one example of a spectral basis, and a
numerical method that represented the state vector solely in this basis would be called a
spectral method. Other choices of basis functions, such as polynomials (see Section 3.4.3)
or spherical harmonics lead to other spectral methods.23 The discrete spatial basis dis-23Thewavefunctions of eigenstates

of the 3d harmonic oscillator are
products of radial polynomials
and spherical harmonics, the
combination of which is a good
spectral basis for many problems.

cussed above, despite being related to the Fourier basis by a unitary transformation, is
often called a pseudospectral basis, however, and a method representing the state vector in
this basis a pseudospectral method. Although it is ‘just another basis’, the fact that the basis
functions are zero at all spatial points bar one each leads to the possibility of a further
approximation when representing some operators, which makes bases with this property
especially useful. I describe this in the following section.

Vector andmatrix elements in the Fourier and pseudospectral bases

We now have a finite basis { |rij⟩} that matches our intuitions somewhat for representing
a wavefunction at a set of gridpoints. A state vector can be approximated as a linear sum
of these basis vectors, with the coefficient for each one being equal to the projection of
state vector’s wavefunction onto the basis vector’s wavefunction:

|ψ⟩ ≈ ∑
ij

ψij |rij⟩ , (3.94)

where

ψij = ∫ϕ∗ij(r)ψ(r) dr . (3.95)

In practice however this integral is rarely done. Instead, ψij is simply taken to be the value
of the exact wavefunction ψ(r) = ⟨r|ψ⟩ at the point r = rij:

ψij ≈ ψ(rij) (3.96)

To see why this is a good approximation, imagine that the approximation (3.94) were
exact, that is,ψ(r)were exactly equal to a linear sum of the functions {ϕij(r)}. Since all the
basis functions are zero at the point rij except for ϕij , the value of ψ(rij)must come solely
from the ψ(r)’s projection onto the basis function ϕij(r). Since approximating (3.94)
underlies the results of any simulation that discretises a state vector in this way, treating
it as exact for the initial projection onto the discrete basis is making an assumption no
worse than that already being relied upon.

With a basis and initial discrete state vector in hand, we can now proceed to calculate
matrix elements of the Hamiltonian, after which we can proceed to solve the differential
equation (3.3) to determine how the coefficients {ψij} evolve in time.

The specific properties of our Fourier/pseudospectral basis make it quite useful for a
range of common Hamiltonians. For example, let’s take the single particle Schrödinger
Hamiltonian:

ĤSchrö =
ℏ2k̂2
2m

+ V(̂r), (3.97)

where k̂ = |k̂|.

3.4. continuous degrees of freedom 55

The two terms, kinetic and potential, are each diagonal in different bases. The kinetic
term is diagonal in the Fourier basis:

⟨k′|
ℏ2k̂2
2m

|k⟩ =
ℏ2k2
2m

δ(k − k′), (3.98)

where k = |k|, and the potential term is diagonal in the spatial basis:

⟨r′|V(̂r)|r⟩ = V(r)δ(r − r′). (3.99)

The kinetic term is also diagonal in our discrete Fourier basis:

KFourier,i′j′ij = ⟨ki′j′ |
ℏ2k̂2
2m

|kij⟩ =
ℏ2k2ij
2m

δi′iδj′j, (3.100)

however—perhaps surprisingly—the potential term is not diagonal in the pseudospectral
basis, only approximately so:

Vreal,i′j′ij = ⟨ri′j′ |V(̂r)|rij⟩ ≈ V(rij)δi′iδj′j. (3.101)

Nonetheless, equation (3.101) is in practice treated as exact for the purpose of computing
matrix elements in the discrete basis of operators that are diagonal in the full spatial basis.
As above with projecting a state vector using simply the values of a wavefunction at the
gridpoints (rather than doing integrals), treating this approximation as exact is equivalent
to making the assumption that the potentialV(r) is already accurately representable in
the discrete basis as a diagonal operator:

V(r) ≈ ∑
ij

V(rij)ϕ∗ij(r)ϕij(r), (3.102)

and so similarly is going to be a good approximation whenever the discrete basis is well
able to represent the potential. So long as your discrete basis can accurately represent the
state vectors and spatially-diagonal operators you will be using, it makes little difference
whether you project those vectors and operators onto the basis using integrals or using
simply their values at the gridpoints.

This alternate method of projection has a name, it is called collocation [61, p. 227].
Using collocation instead of vector projection amounts to treating our basis vectors as a
scheme for interpolating state vectors and operators in between gridpoints, given their
values at the points, rather than as basis vectors to project upon. Another way to interpret
collocation is to say that we are evaluating the vector projections using integrals after
all; however, we’re numerically computing those integrals using a quadrature scheme,
only evaluating the integrand at the gridpoints and performing a discrete sum [61, p. 283].
Collocation is what puts the pseudo in pseudospectral—if we evaluated all these operators
using integrals instead, we would be treating the discrete spatial basis exactly the same as
any spectral basis.

Compared to a purely spectral method, pseudospectral methods are of comparable
accuracy [76]. This makes intuitive sense—discrete sums instead of integrals is how we
are going to do all inner products once we are in the discrete basis—so it can’t be much
worse to use the same method to approximate operators and initial state vectors. The
sole downside of pseudospectral methods, according to [76], is that the error can lead
to instability in the presence of certain nonlinearities. Specifically, if long wavelength
waves interact in a way that would produce wavelengths shorter than two grid spacings
(the Nyquist wavelength), pseudospectral methods will produce longer wavelength waves
instead, whereas in a purely spectral method the interaction would not occur, being due

56 chapter 3. quantum mechanics on a computer

to couplings to a Fourier mode outside the discrete Fourier basis. This aliasing can cause
instability, but can be circumvented with smoothing techniques [77]. This is no great
downside: if you want to simulate short length scales, you need to choose a grid spacing
small enough to represent them, whereas if short wavelengths are produced despite your
willingness to ignore them, you must smooth them away before they are aliased into long
wavelengths that you do care about.

Finally, armed with a kinetic energy operator in Fourier space and a pseudospectral
approximation to the potential operator in real space, we can write all the matrix elements
of ĤSchrö in a single basis, and thus our discretised, pseudospectral two-dimensional
Schrödinger wave equation:

iℏ d
dt

ψi′j′(t) = ∑
ij

Hi′j′,ij(t)ψij(t) (3.103)

⇒ iℏ d
dt

ψi′j′(t) = ∑
ij
􏿮U†

dft2KFourierUdft2 + Vreal(t)􏿱i′j′,ij ψij(t), (3.104)

wherewehave used the discrete Fourier transform to transform the kinetic energy operator
into the discrete real space basis, and allowed the potential operator to be possibly time-
dependent.

The right hand side of this expression can now simply be evaluated, yielding the time
derivative of each component ψij(t) of the discrete state vector ψ(t):

d
dt

ψ(t) = − i
ℏ 􏿮U

†
dft2KFourierUdft2ψ(t) + Vreal(t)ψ(t)􏿱 (3.105)

⇒ d
dt

ψ(t) = − i
ℏ 􏿰fft

−1
2 􏿼

ℏ2k̃⊙2
2m

⊙ fft2 {ψ(t)}􏿿 + V(̃r, t) ⊙ ψ(t)􏿳 , (3.106)

where fft2 is the two-dimensional fast Fourier transform, an efficient implementation
of the discrete Fourier transform (taking time 𝒪(n log n) in the size of each dimension);
̃r is a vector (of vectors) containing each discrete position vector (such that V(̃r, t) is

a vector (of scalars) containing the potential evaluated at each discrete position); k̃ is
a vector (of vectors) containing each discrete k-vector, such that k̃⊙2 is a vector (of
scalars) containing the squared magnitude of each discrete k-vector; and ⊙ represents
elementwise multiplication (or exponentiation) of vectors. Other than ψ , these vectors
are more akin to arrays used in programming languages than to members of a vector
space, hence the somewhat clunky notation in (3.106). Comparison with the continuous
version of equation (3.106) (i.e. the Schrödinger wave equation (3.74)), since elementwise
multiplication of functions is a more common operation in mathematics, might be
clarifying:

𝜕
𝜕t

ψ(r, t) = − i
ℏ 􏿰F

−1 􏿼
ℏ2k2
2m

F 􏿺ψ(r, t)􏿽 (k)􏿿 (r) + V(r, t)ψ(r, t)􏿳 , (3.107)

whereF is the continuous Fourier transform, and k as always is |k| . So we see that the
discretised Schrödinger equation for a single particle in a potential really is the same as
evaluating the continuous equation at a set of gridpoints, evaluating spatial derivatives in
Fourier space, and replacing the continuous Fourier transformwith its discrete equivalent.

Here is an example of how one might compute the rhs of (3.106) in Python code:

1 import numpy as np

2 from numpy.fft import fft2, ifft2, fftfreq

3
4 pi = np.pi

5 u = 1.660539e-27 # unified atomic mass unit

3.4. continuous degrees of freedom 57

6 m = 86.909180*u # 87Rb atomic mass

7 omega = 15 # Harmonic trap frequency

8 hbar = 1.054571726e-34 # Reduced Planck's constant

9
10 # Space:

11 nx = ny = 256

12 x_max = y_max = 100e-6

13
14 # Arrays of components of position vectors. The reshaping is to ensure that

15 # when used in arithmetic with each other, these arrays will be treated as if

16 # they are two dimensional with repeated values along the dimensions of size

17 # 1, up to the size of the other array (this is called broadcasting in numpy).

18 x = np.linspace(-x_max, x_max, nx, endpoint=False).reshape(1, nx)

19 y = np.linspace(-y_max, y_max, ny, endpoint=False).reshape(ny, 1)

20
21 # Grid spacing:

22 dx = x[0, 1] - x[0, 0]

23
24 # Arrays of components of k vectors.

25 kx = 2*pi*fftfreq(nx, d=dx).reshape(1, nx)

26 ky = 2*pi*fftfreq(nx, d=dx).reshape(ny, 1)

27
28 # The kinetic energy operator in Fourier space (shape ny, nx).

29 K_fourier = hbar**2 * (kx**2 + ky**2)/(2*m)

30
31 # The potential operator in real space (shape ny, nx)

32 V_real = 0.5 * m * omega**2 * (x**2 + y**2)

33
34 def dpsi_dt(t, psi):

35 """Return a 2D array for the time derivative of the 2D array psi

36 representing a discretised wavefucntion obeying the Schrodinger wave

37 equation"""

38 K_real_psi = ifft2(K_fourier * fft2(psi))

39 return -1j/hbar * (K_real_psi + V_real * psi)

Where the example is for a time-independent potential. If the potential were time-
dependent, V_real within the function dpsi_dt(t, psi) would need to be replaced
with a call to a function that returned an array for V_real at time t.

Starting with some initial discrete wavefunction, this could then be solved with a
forward differencing scheme like fourth-order Runge–Kutta (section 3.3):

1 def rk4(t, t_final, dt, psi, dpsi_dt):

2 """Evolve the initial array psi_initial forward in time from time t to

3 t_final according to the differential equation dpsi_dt using fourth order

4 Runge-Kutta with timestep dt"""

5 while t < t_final:

6 k1 = dpsi_dt(t, psi)

7 k2 = dpsi_dt(t + 0.5 * dt, psi + 0.5 * k1 * dt)

8 k3 = dpsi_dt(t + 0.5 * dt, psi + 0.5 * k2 * dt)

9 k4 = dpsi_dt(t + dt, psi + k3 * dt)

10
11 psi[:] += dt/6.0 * (k1 + 2 * k2 + 2 * k3 + k4)

12
13 t += dt

14
15 return psi

The discretised differential equation (3.105) can also be solved using a split-step
method (section 3.2.4), since theHamiltonianmatches the requirements of being written
as a sum of terms for which individually an eigenbasis is known (the discrete real space
basis for the potential term, and the Fourier basis for the kinetic term). For example, here
is how one might implement second or fourth-order split-step (only a single timestep
shown):

1 def split_step2(t, psi, dt):

2 """"Evolve psi in time from t to t + dt using a single step of the second

3 order Fourier split-step method with timestep dt"""

4

58 chapter 3. quantum mechanics on a computer

5 # First evolve using the potential term for half a timestep:

6 psi *= np.exp(-1j/hbar * V_real * 0.5 * dt)

7
8 # Then evolve using the kinetic term for a whole timestep, tranforming to

9 # and from Fourier space where the kinetic term is diagonal:

10 psi = ifft2(np.exp(-1j/hbar * K_fourier * dt) * fft2(psi))

11
12 # Then evolve with the potential term again for half a timestep:

13 psi *= np.exp(-1j/hbar * V_real * 0.5 * dt)

14
15 return psi

16
17 def split_step4(t, psi, dt):

18 """"Evolve psi in time from t to t + dt using a single step of the fourth

19 order Fourier split-step method with timestep dt"""

20 p = 1/(4 - 4**(1/3.0))

21
22 # Five applications of second-order split-step using timesteps

23 # of size p*dt, p*dt, (1 - 4*p)*dt, p*dt, p*dt

24 for subdt in [p*dt, p*dt, (1 - 4*p)*dt, p*dt, p*dt]:

25 psi = split_step2(t, psi, subdt)

26 t += subdt

27 return psi

In all the above code examples, a nonlinear term as in the case of the Gross-Pitaevskii
equation canbe included in thepotential simply by adding a termg * np.abs(psi)**2

to the potential V_realwherever it appears. As discussed in Section 3.2.4, the nonlin-
earity poses no problem for the split-step methods so long as the potential term of the
Hamiltonian is evaluated as the outermost sandwich of exponentials in the second-order
split-step method (which comprises the sub-steps of fourth-order split-step).

3.4.2 Finite differences

Fourier split-step, or using discrete Fourier transforms to evaluate the spatial derivatives
at each gridpoint in order to time-evolve using Runge–Kutta, are effective and versatile
numerical methods.

The use of discrete Fourier transforms in the previous section can be seen as replacing
the Laplacian operator in the Schrödinger wave equation (3.74) with the equivalent
operation in Fourier space:

∇2ψ(̃r) ≈ fft−12 􏿺−k̃⊙2 ⊙ fft2 􏿺ψ(̃r)􏿽􏿽 , (3.108)

where as before ̃r is a vector (of vectors) containing the discrete positions, k̃ is a vector
(of vectors) containing discrete k-vectors such that k̃⊙2 is a vector (of scalars) containing
the squared magnitudes of each k-vector, and⊙ represents elementwise multiplication or
exponentiation of vectors. More generally for any derivative,

𝜕
𝜕x

ψ(̃r) ≈ fft−12 􏿺ik̃x ⊙ fft2 􏿺ψ(̃r)􏿽􏿽 , (3.109)

where k̃x is a vector (of scalars) containing the discrete angular wavenumbers for the x
spatial dimension.

Equations (3.108) and (3.109) are exact for any wavefunctionψ(r) that is periodic and
band-limited to the discrete Fourier space (and thus exactly representable as a vector ψ of
its values at each gridpoint), which is why the Fourier method of computing derivatives
this way is sometimes said to be accurate to ‘infinite-order’ [78] in the grid spacings
Δx and Δy, in contrast to fixed-order approximations to derivatives, which are second-,
fourth-, sixth-order etc. In practice the Fourier method for derivatives is often used for
wavefunctions that are not intended to be periodic (the periodicity imposed by using
the method is unphysical), and so for these it has merely very high-order accuracy, not
actually infinite.

3.4. continuous degrees of freedom 59

k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3

Δx 􏿴δ(2)Δx􏿷i,i+k − 1
2 0 1

2

Δx 􏿴δ(4)Δx􏿷i,i+k
1
12 − 2

3 0 2
3 − 1

12

Δx 􏿴δ(6)Δx􏿷i,i+k − 1
60

3
20 − 3

4 0 3
4 − 3

20
1
60

Δx2 􏿴δ2(2)Δx 􏿷i,i+k 1 −2 1

Δx2 􏿴δ2(4)Δx 􏿷i,i+k − 1
12

4
3 − 5

2
4
3 − 1

12

Δx2 􏿴δ2(6)Δx 􏿷i,i+k
1
90 − 3

20
3
2 − 49

18
3
2 − 3

20
1
90

Table 3.1: Matrix elements [79] for some finite-differencing schemes for first (δ(n)Δx) and
second (δ2(n)Δx) derivatives using central finite differences of various orders n for uniform
grid spacing Δx. All finite-difference matrices are banded; each column here shows the
matrix elements of kth diagonal, which are all identical. Elements outside of each matrix’s
band are left blank. Each matrix element is shown multiplied by factors of Δx for clarity.

In any case, such high accuracy is not often necessary—if one is using only an 𝒪(Δt4)
accurate timestepping scheme, then the timestepping may be the limiting factor in overall
accuracy and it might be wise to decrease the accuracy of computing spatial derivatives if
there is otherwise a benefit to doing so.

To that end, the Fourier method of derivatives may be replaced with finite differences
instead. Although finite differences are usually derived as approximations to derivatives
directly from the definition of the derivative, without reference to discrete Fourier trans-
forms, they can be considered fixed-order approximations to the Fourier method [78].
Thus operators whose form in Fourier space corresponds to a derivative of some order
can be approximated with finite differences:

U†
dft2kxUdft2ψ(̃r) = −iδ

(n)
Δx ⊗ Inyψ(̃r) + 𝒪(Δxn) (3.110)

where kx is the diagonal matrix of the discrete angular wavenumbers for the x spatial
dimension and δ(n)Δx is the matrix representing nth order finite-difference approximation
to the first derivative using grid spacing Δx. The matrix elements of this and some other
central finite differences are shown in Table3.1.

The fact that the finite-differencematrices are banded allows them to be computed by
applying a ‘stencil’ to a discrete state vector, computing an approximation to some linear
sum of derivative operators at each point of discrete space by consideration of only that
point and a small number of surrounding points. For example, a 𝒪(Δx2) approximation
(assuming Δx = Δy) to the kinetic energy operator in two dimensions may be evaluated
at each point as

Krealψ(̃r) = U†
dft2

ℏ2(k2x + k2y)
2m

Udft2ψ(̃r) (3.111)

= − ℏ
2

2m 􏿯δ2(n)Δx ⊗ Iny + Inx ⊗ δ2(2)Δy 􏿲ψ(̃r) + 𝒪(Δx2) (3.112)

⇒ (Krealψ(̃r))ij = −
ℏ2
2m

􏿮−4ψ(xi, yj) + ψ(xi−1, yj) + ψ(xi+1, yj)

+ψ(xi, yj−1) + ψ(xi, yj+1)􏿱 + 𝒪(Δx2). (3.113)

60 chapter 3. quantum mechanics on a computer

Thus the kinetic energy operator, when approximated using finite differences, is
an example of an operator that can be written as a sum of banded operators acting on
different subspaces of the total Hilbert space—the identity matrices in (3.112) each leave
a part of the Hilbert space untouched. As mentioned in Section 3.2.4, this in principle
considerably reduces the computational cost of applying the approximate kinetic energy
operator to a discretised state vector. Fourier transforms, when computed with the fast
Fourier transform algorithm, are already less computationally expensive than a general
matrix–vector multiplication, that is, the fast Fourier transform allows one to multiply
the matrixUdft2 in (3.111) by a vector considerably faster than 𝒪(n2xn2y), which would
be the computational time-complexity for a general nxny × nxny matrix. Firstly, a
two-dimensional discrete Fourier transform can also be written as the sum of two one-
dimensional transformations operating on different subspaces:

Udft2 = Udft,x ⊗ Iny + Inx ⊗ Udft,y, (3.114)

where Udft,x and Udft,y are the unitaries for one-dimensional discrete Fourier trans-
forms in the x and y dimensions respectively. So even if Udft,x and Udft,y were arbi-
trary matrices, this already would reduce the cost of multiplying Udft2 by a vector to
𝒪(nyn2x + nxn2y) But they are not arbitrary matrices—each of these one-dimensional
Fourier transforms has computational cost 𝒪(n log n) using the fft algorithm [80,
p. 600], where n is the number of points in the relevant dimension, resulting in an
overall cost of 𝒪(nynx log nx + nxny log ny) for applying the two-dimensional Fourier
transform Udft2 to a vector. Finite differences improves on this further. As discussed
in Section 3.2.4, since our finite-differences approximation to the kinetic energy opera-
tor can be written as the sum of banded matrices operating on different subspaces, the
computational cost of applying it to a vector is 𝒪(bnxny), where b is the bandwidth
of the banded matrices, which depends on which order accuracy is used (for example,
for second-order finite differences b = 1). This is faster than the Fourier method of
computing the kinetic energy operator by a factor of 𝒪(log nx + log ny). Whilst this
seems considerable, the difference is hard to observe in practice. On ordinary computers
the number of points needs to be increased so much in order to measure any difference
in speed between the algorithms that the data no longer fits in cpu cache and copying
the data to and from main memory becomes the bottleneck. Although copying data
from memory is a linear-time process, the coefficient of that linear time is large enough
to make the asymptotic speed of finite differences vs. Fourier transforms not relevant for
ordinary computers at the present time.

No, the practical advantages of finite differences compared to Fourier transforms do
not come down to single-core speed. Rather, they are:

1. Being banded matrices, the finite-difference approximations to the kinetic energy
operator can be multiplied by a vector, or exponentiated and applied to a vector,
in parallel on a cluster computer or gpu using the techniques discussed in Sec-
tion 3.2.4, whereas the fast Fourier transform is less efficiently parallelisable [81].
The speed of finite differences can have very nice scaling with the number of cpu
cores or cluster nodes used, since only b points need to be exchanged between
cores at each step when applying or exponentiating the kinetic energy operator.
For large problems, ‘superscaling’ can even be observed, whereby the speedup
factor obtained bymoving tomultiple cpus or compute nodes on a cluster is larger
than the number of cpus/nodes used. This is counter-intuitive, but comes from
more effectively using cpu cache—by spreading the data over multiple cores, one
minimises the proportion of the state vector that needs to reside in main memory
instead of in (much faster) cpu cache at any one time.

2. One can intervene at the boundaries to impose boundary conditions other than
periodicity. Strictly speaking, as an approximation to the Fourier method of com-

3.4. continuous degrees of freedom 61

puting derivatives, the indices for the matrix elements as given in Table3.1 should
be read as wrapping around to the other side of the spatial region whenever they
would go out of bounds—that is, (δ2(n)Δx)i,i+k should be read as (δ2(n)Δx)i,(i+k) mod nx .
However, as mentioned, periodicity is often an undesired consequence of the
Fourier method of derivatives. Alternatively one can simply omit these matrix
elements that would couple spatial points across the boundary, which has the result
of imposing zero boundary conditions instead of periodic. Judicious deletion of
matrix elements at other points in space can also be used to impose zero bound-
ary conditions elsewhere, equivalent to an infinite potential barrier that would
otherwise be numerically troublesome if done with the potential energy term of
the Hamiltonian. Other interventions in the application of the kinetic energy
operator can be used to impose other boundary conditions such as constant-value,
constant-gradient, etc., whereas the Fourier method is less flexible in this regard.

3. Finite differences are compatible with non-uniform grids, whereas the Fourier
method is limited to uniform grids. Non-uniform grids imply different matrix
elements [79] for the finite-difference operators, but are otherwise treated exactly
the same. This allows more dense placement of gridpoints in regions where wave-
functions may have finer spatial structure, without having to waste computational
power on regions of space where the wavefunction is known to have only coarser
structure. An example is an electron in a Coulomb potential, an accurate simu-
lation of which would need to capture fine details at small radii but less detail at
larger radii. A transformation into spherical coordinates with a non-uniform grid
for the radial coordinate could be well treated with finite differences.

4. Finite differences are compatible with the use of split-step methods with some
operators that are diagonal in neither Fourier nor real space. For example, the real-
space representation of the operator for the z component of angular momentum is

Lz = −iℏ 􏿵x 𝜕
𝜕y − y 𝜕

𝜕x 􏿸. With diagonal matricesX andY being used for the x̂ and

ŷ operators in accordance with the pseudospectral method, and finite differences
being used to approximate the derivatives, the result is a banded matrix represen-
tation of Lz , compatible with the techniques from Section 3.2.4 for reducing the
problem to that of many small matrices instead of one large one. There is a little
more complexity; Lz cannot be represented as a sum of operators acting on the x
and y subspaces separately—instead, each term in Lz is a product of operators that
act on different subspaces. Consider the first term of a discretised version of Lz
using fourth-order finite differences. It can be diagonalised in the following way:

−iℏX ⊗ δ(4)Δy = −iℏ 􏿴InxXInx􏿷 ⊗ 􏿵Q
†
δy
DδyQδy􏿸 , (3.115)

whereQδy andDδy are the unitary and diagonal matrices that diagonalise δ(4)Δy (X is
already diagonal, and so is ‘diagonalised’ by the identity matrix for the x subspace).
Inx and X act on the x subspace, whereasQδy andDδy act on the y subspace, and
since matrices operating on different subspaces commute, this can be rearranged
to:

−iℏX ⊗ δ(4)Δy = 􏿵Inx ⊗ Q†δy􏿸 􏿵−iℏX ⊗ Dδy􏿸 􏿵Inx ⊗ Qδy􏿸 , (3.116)

yielding a diagonalisation of the original matrix that can be used to apply an expo-
nentiation of the original matrix to a vector with matrix–vector multiplications
only in the x any y subspaces and not the total Hilbert space. Here, the matrix–
vectormultiplication in the x subspace is the identity, butmore generally the above

62 chapter 3. quantum mechanics on a computer

idea can be used to exponentiate any operator that can be written as the product
of operators that act on different subspaces:

eA⊗B = 􏿴Q†A ⊗ Q†B􏿷 e(DA⊗DB) (QA ⊗ QB) . (3.117)

Since X is already diagonal, δ(4)Δy can be written as the sum of two block-diagonal
matrices as described in Section 3.2.4, allowing (3.116) to be evaluated as the sum
of two terms −iℏX ⊗ δ(4)Δy = −iℏ(X ⊗ δeven + X ⊗ δodd), one for each of the
block-diagonal matrices δeven and δodd. The diagonalisation of each term then has
matrix–vector products taking place in a space of the size of each block, that is, in
the expression

−iℏX ⊗ δeven = 􏿴Inx ⊗ Q†even􏿷 (−iℏX ⊗ Deven) 􏿴Inx ⊗ Qeven􏿷 , (3.118)

the unitary Qeven is also block-diagonal. This splitting allows for parallel appli-
cation of the exponentiation of Lz to a vector as well as speeding up single-core
computation on account of the smaller matrices.

However, if a matrix that were not diagonal were present instead of X, such as
another derivative operator, then if wewanted to split bothmatrices each into a sum
of two block-diagonal matrices, equation (3.117) would become four terms rather
than two, and the flow of data for a parallel computation would be somewhatmore
complicated. For a term in the Hamiltonian that is a product of n operators acting
on different subspaces, the number of terms obtained by splitting them all in this
way grows exponentially with n. But, when all but one operator in the product is
diagonal already, as is the case for angular momentum operators, then splitting
can be done as normal.

To conclude this section, there are clear advantages to using finite differences as
opposed to Fourier transforms when it comes to parallelisability, boundary conditions,
and non-uniform grids, but if these are not a concern then both Fourier transforms and
finite differences run at approximately equal speeds in practice, meaning one should use
whichever is easiest to implement.

Many of these advantages of finite differences over Fourier methods are also enjoyed
by the finite-element discrete-variable representation (fedvr) method, discussed in the
next section. Whilst it’s also claimed that fedvr has a number of advantages over finite
differences [66, 68], I’ll argue that most of the comparisons don’t stand up to scrutiny,
and that finite differences are often still the right choice for the contexts in which fedvr
is argued to be superior.

3.4.3 Stability and the finite-element discrete-variable representation

Another method of spatial discretisation is the finite-element discrete-variable repre-
sentation (fedvr). As the name suggests, it is a finite-element method, using a set of
basis functions within each of a number of spatially distributed elements, with adjacent
elements linked at their boundaries. Here I will not provide a self-contained description
of the fedvr method itself, more detail can be found in [61, p. 285] and specifically in
the context of Bose–Einstein condensation, [66, 68]. I’ll instead introduce the points
that are relevant to the conclusion that I drew regarding the method for the purposes of
time-evolving wavefunctions, which is that all practicalities considered, it is less useful
than simple central finite differences for these problems.

As a finite-element method, fedvr divides space into a number of ‘elements’, joined
to their neighbouring elements at their edges, within each of which the function being
solved for is represented as a linear sum of basis functions. Finite-element methods such

3.4. continuous degrees of freedom 63

as this are useful for problems with irregular boundary conditions, or requiring variable
grid sizes, as the elements need not have the same size (area/volume, etc.) as each other,
and parameters on which the accuracy of the numerical method depends can be varied
from element to element, such that precision is high where it is needed and low where
it is not. In addition, the basis functions used within the elements can be chosen so
that conserved properties of the differential equation are also inherently conserved by
the simulation resulting in a geometric integrator. The fedvr method though does not
make use of this possibility, although it can be used with split-step methods for time
propagation, which preserve the wavefunction’s norm.

Within each element in the fedvr method, the wavefunction is represented as a
linear sum of a set of polynomial basis functions, specially chosen to have some desirable
properties. The polynomials are not orthogonal, but at a set of gridpoints, all but one of
them is zero, meaning that as with the Fourier pseudospectral method, they can be used
as a pseudospectral basis—computing how much of each polynomial to include in the
representation of a wavefunction by using only the wavefunction’s value at the gridpoint
at which each polynomial is zero, and computing the matrix elements of operators using
approximate integration based on a discrete sum taking into account only those same
gridpoints.

So far (within each element at least)what I havedescribeddoes not sound toodifferent
to the Fourier pseudospectralmethod. But in the discrete-variable representation—which
is what the method used within each element of fedvr is called when used by itself—
the gridpoints are not equally spaced. Rather they are more densely packed toward
the edges of the element, and least densely packed in the middle of each element. The
locations of the gridpoints are chosen according to a quadrature rule, which is a method
of approximating the definite integral of a function as a weighted sum of the function’s
values at a specific set of points. There are many quadrature rules, each with a different
set of points and weights, but a common feature to them is that the points are more
closely spaced at the edges of the integration region. In the context of the pseudospectral
method, the chosen quadrature rule is what we are using when we are evaluating integrals
based only on the function’s values at discrete points. For equally spaced points, the
weights are all equal, but for unequally spaced points they are not (and vary depending
on the quadrature rule in use).

The use of unequally spaced points increases the accuracy of integrals evaluated this
way, to the extent that the result will be exact if the integrand is a polynomial of degree
less than a given degree that depends on the quadrature scheme. One would think that
equally spaced points would produce the most accurate approximate integrals, but this
is not true: approximating functions as polynomials equal to the value of the function
at a discrete set of points is vulnerable to Runge’s phenomenon—spurious oscillations
in the approximation near the edges of the region24. The oscillations are minimised, 24Note that although finite differ-

ences are also based on polynomial
interpolation, central finite differ-
ences are not vulnerable to Runge’s
phenomenon because the inter-
polated polynomials at the ‘edge’
of the region are never used for
anything: a different polynomial
is used for each point, with each
polynomial and its derivatives only
ever being evaluated at its central
interpolation point.

however, if the density of points increases near the edge, specifically if the density of
points approaches 1/√1 − x2 for the normalised integration region x ∈ [−1, 1] as the
number of points goes to infinity [82].

By choosing a quadrature scheme with two points located exactly on each edge of
the integration regions, such as Gauss–Lobatto quadrature [66], the elements of the
fedvr method can be joined together, with adjacent elements sharing these edge points
(see Figure 3.8). This allows one to represent a wavefunction as a list of coefficients for
how much of each basis polynomial in each element contributes to it, with the extra
condition that some of these coefficients—those corresponding to the edge points—must
be equal in order to ensure the wavefunction is continuous across the boundaries between
elements.

With some care taken in regard to the points shared between the elements, the fedvr
method provides onewith ameans of approximatingwavefunctions as a finite sumof basis

64 chapter 3. quantum mechanics on a computer

0 2 4 6 8 10 12 14 16 18

x

0

1

2

3

φ
i
(x

)

Figure 3.8: An example of the normalised, but non-orthogonal basis polynomials used
in the finite-element discrete-variable representation, shown here for ten-point Gauss–
Lobatto quadrature and two elements. Note that each basis polynomial is non-zero at
exactly one point and zero at all others, though it can be non-zero in between points.
Outside of its element, a given basis function is defined to be zero, except for the so-called
‘bridge functions’, which are non-zero in two adjacent elements but zero everywhere else,
and surprisingly have a discontinuous derivative at the boundary—necessitating some
care in evaluating matrix elements of differential operators.

functions, and of approximately calculating the matrix elements of operators in this basis.
After that, one can simply apply the operators to the state vectors in order to compute
time derivatives, and propagate in time using fourth-order Runge–Kutta (section 3.3)
or similar, or one can exponentiate the operators, all at once or one at a time, as part of
a split-step method (section 3.2.4). The fedvr method does not require anything in
particular about time propagation—like finite differences or the Fourier pseudospectral
method, it is only a way of spatially discretising the differential equation you are trying to
solve.

Now we arrive at what makes the fedvr method exciting for those who want to
massively parallelise their simulations. When one calculates the matrix representation of,
say, a one-dimensional differential operator in the fedvr basis, one gets matrices that
look like Figure 3.9, with an almost-block-diagonal form.

This is because when the state vector is acted upon by some operator, the result for
most points in the resulting vector depends only on the points in the input vector within
the same element. The exceptions are the points shared between elements—for which
the value in the output vector depends on the points in the input vector in both adjacent
elements, which is why the matrix is not perfectly block diagonal.

Why is this exciting? Well, it means that the operator can be written as a sum of
two block diagonal matrices, similar to the splitting of finite-difference matrices in Sec-
tion 3.2.4, and in the same way allows the matrix or its exponentiation to be efficiently
applied to a state vector in parallel. The difference between this and the case of finite
differences is the number of points of overlap between adjacent blocks, which corre-
sponds to the amount of data that must be transferred between parallel threads or cluster
nodes at each step during a parallel computation. In finite differences, the number of
points that must be exchanged at boundaries in each step or sub-step of whichever time
propagation method is used is equal to the bandwidth of the matrix. In fedvr, so long as
the boundaries of the regions of space assigned to each thread or cluster node align with
boundaries between elements, only one point need be exchanged. Increasing the number

3.4. continuous degrees of freedom 65

0 10 20 30 40

j

0

10

20

30

40

i

−4

−3

−2

−1

0

1

2

3

lo
g
(∆
x

2 a
v
|δ2 i
j
|)

Figure 3.9: The matrix form of the second derivative operator in fedvr, for five elements
each with ten dvr points. The colour scale is logarithmic, showing the log of the absolute
values of thematrix elements δ2ij scaled byΔx2av, whereΔxav is the average spacing between
the unequally spaced grid points. Zero matrix elements are shown as white. One can see
that the second derivative at each grid point is computed using only the points within
the same element, except for the points shared by adjacent elements, at which the second
derivative depends on points in both adjacent elements.

of points within each element—but reducing the number of elements so as to keep the
total number of points constant—decreases the discretisation error of the method, but
still, only one point needs to be exchanged at boundaries. This contrasts with finite
differences, for which increasing the order of the finite-difference scheme increases the
matrix bandwidth and hence increases the number of points required to be exchanged
at the boundaries. So it would seem that fedvr ought to scale much better in parallel
implementations, which is a large part of its appeal [66, 68].

However, I have noticed that when using both fedvr and finite differences to simu-
late Bose–Einstein condensates using theGross–Pitaevskii equation, smaller timesteps are
required when using the fedvr method in otherwise comparable setups. By this I mean
that, without damping, there is a timestep size at which the gpe simulated using rk4
(which is a conditionally stable algorithm) is unstable and diverges. Similarly in split-step
methods, although the error is bounded, there is a timestep size at which the error rapidly
grows to that bound and the wavefunction no longer approximately resembles the true
solution. Below this threshold timestep, the error scales as 𝒪(Δt4) for rk4, and 𝒪(Δt4),
𝒪(Δt2), 𝒪(Δt) for fourth-, second-, and first-order split-step respectively, as expected.
But in practice, all thesemethods are so accurate that one desires to use the largest timestep
one canwithout this blowup (or soft-blowup in the case of the unitary split-stepmethods)
occurring during the time interval one wants to simulate. My observation was that the
threshold timestep is always smaller for fedvr than for finite differences or the Fourier
method for determining spatial derivatives, necessitating smaller timesteps for stability
or, in the case of the unitary methods, reasonable accuracy.

So why is this? For rk4, what is the stability criterion and why might fedvr violate
it more easily than finite differences? And how might we understand the sudden decrease
in accuracy of the split-step methods at a similar threshold timestep size, despite them
being unconditionally stable?

The stability criterion for rk4 [83] when applied to a linear differential equation of

66 chapter 3. quantum mechanics on a computer

the form

dψ
dt

= Aψ, (3.119)

whereA is amatrixwith all imaginary eigenvalues (as is the case forHamiltonian evolution
whereA = − i

ℏH), is

Δt < 2√2
ρ(A) , (3.120)

where ρ(A) is the spectral radius of A, defined as the absolute value of the largest (by
absolute value) eigenvalue ofA.

The Gross–Pitaevskii equation is not linear, but we’ll put that to the side for the
moment—it will be relevant shortly. In the linear case of the Schrödinger wave equation,
an upper bound for the spectral radius ofA can be computed from the absolute eigenvalue
from the kinetic term, plus the maximum absolute eigenvalue from the potential term.
Using the Fourier method to compute spatial derivatives, the largest eigenvalue of the
kinetic part of the Hamiltonian is that of the Nyquist mode with kNyquist = π/Δx for
grid spacing Δx, leading to:

ρ(A) ≤ 􏵶−
i
ℏ
ℏ2kNyquist

2m 􏵶 + 􏿙−
i
ℏV(r)􏿙max

(3.121)

⇒ Δt < 2√2ℏ
ℏ2π2
2mΔx2 + |V(r)|max

. (3.122)

In the limit of small Δx, the kinetic term dominates and the stability criterion becomes:

Δt < 4√2mΔx2

π2ℏ , (3.123)

whereas in the limit of large potential:

Δt < 2√2ℏ
|V(r)|max

. (3.124)

These results match our intuition somewhat in terms of dynamical phase evolution—
eigenvalues of the Hamiltonian are energies and determine how quickly the elements of
the state vector accumulate dynamical phase. For each circle around the complex plane
that a dynamical phase of 2π entails, we expect to require at least a few timesteps to
resolve said circle, and the above shows that ‘a few’ means 2√2. When this dynamical
phase evolution is in Fourier space, an accumulated phase of 2π will appear in real space
as that component having propagated a distance of one wavelength, so the intuition here
is that several timepoints are required in the time interval during which the fastest wave
(also the Nyquist mode) propagates a distance of one wavelength at its phase velocity.

As a side note, if it is known which term of the Hamiltonian dominates the stability
criterion, that term can be removed by use of an interaction picture (discussed in Sec-
tion 3.6), essentially treating the dynamical phase evolution due to that term analytically.
And if the term is not constant, but is almost constant, one can still treat most of the
dynamical phase evolution analytically, transforming the differential equation onto one
withmuch smaller eigenvalues for that term, in both cases allowing one to take potentially
much larger timesteps due to the above reasoning. Fourth-order Runge–Kutta in the
interaction picture (rk4ip) [84] uses an interaction picture to treat the kinetic term
of the Schrödinger or Gross–Pitaevskii equation analytically, whereas my ‘fourth-order

3.4. continuous degrees of freedom 67

Runge–Kutta in an instantaneous, local interaction picture’ method presented in Sec-
tion 3.6 removes (most of) the potential term. Both methods allow larger timesteps to
be taken, but in different circumstances depending on which term is dominating the
Hamiltonian.

The problem with fedvr then, is that it requires smaller timesteps than finite differ-
ences because its kinetic energy operator has larger eigenvalues than an equally accurate
finite-difference method. How much larger?

In order to make a fair comparison, we need to know how many dvr basis functions
are required per element in order to compute equally accurate second derivatives as a given
finite-difference scheme. WithN points per element, fedvr represents the state vector
within each element in a spectral basis of polynomials up to degreeN − 1. Therefore a
polynomial of degreeN−1 or less can be represented exactly, any other function is subject
to truncation error25. If one varies the number of points per element, varying the number 25Note that this truncation error

is distinct from that of evaluating
integrals using the Gauss–Lobatto
quadrature rule, which is exact for
integrands that are polynomials of
degree 2N − 2 or less.

of elements in order to keep the total number of points constant, the truncation error in
representing an arbitrary function in this basis is therefore 𝒪(ΔxN), where Δx is either
the size of each element, or equivalently the average spacing between grid points (these
two differing only by a constant factor if the total number of points is held constant).

In fedvr the derivative operator, regardless of whether its matrix elements are com-
puted with integrals or the quadrature rule, is exact [66]. The relevant error in a derivative
of a wavefunction is therefore determined by this truncation error of representing it in
the spectral basis in the first place:

ψapprox(xi) = ψexact(xi) + 𝒪(ΔxN) (3.125)

⇒ ψ′′approx(xi) = ψ′′exact(xi) + 𝒪(ΔxN−2). (3.126)

Central finite-difference approximations to second derivatives on the other hand have
error 𝒪(ΔxN−1) where N is the total number of points used to compute the derivative at
each point (for example the three-point central finite-difference rule for secondderivatives
has error 𝒪(Δx2), the five-point rule is accurate to 𝒪(Δx4), etc.). With this knowledge
we can translate our question:

Which is less computationally intensive to simulate the gpe or Schrödinger
wave equation: mth-order accurate fedvr or mth-order accurate finite
differences?

to:

Which is less computationally intensive to simulate the gpe or Schrödinger
wave equation: m + 2 points-per-element fedvr orm + 1 point central
finite differences?

Theargument in favour of fedvr is that asm grows, finite differences require an increasing
number of points to be exchanged at the boundaries between cluster nodes/threads etc. in
a parallel implementation, whereas so long as each boundary between spatial regions
allocated to different cluster nodes aligns with the boundary between two elements, only
one point need be exchanged per timestep in fedvr, no matter how many points per
element there are. Therefore, in the limit of high accuracy, fedvr wins, it seems.

The problem with this argument is that it compares only the amount of work that
needs to be done per timestep. But, since the allowed timestep size required for stability
(at least for fourth-order Runge–Kutta, I will argue shortly why I think this generalises to
other timestepping schemes as well) depends on the spectral radius of the kinetic energy
operator, and the kinetic energy operator is not the same asm grows, more work is needed
to show which method is least computationally expensive per unit simulation time.

68 chapter 3. quantum mechanics on a computer

2 4 6 8 10
Order of accuracy in ∆xav

20

40

60

∆
x

2 a
v
×
ρ
(δ2

(n
)
)

fedvr
Finite differences
Fourier limit

Figure 3.10: Scaling of the spectral radius (maximum absolute eigenvalue) of the second
derivative operator with respect to the order of accuracy for finite differences and fedvr.
Results were numerically computed by constructing a 721 × 721matrix (chosen to allow
various combinations of number of dvr points per element whilst holding total number
of points constant) for each order of accuracy and numerically diagonalising. The spectral
radius for fedvr can be seen to scale quadratically with the order of accuracy, whereas
for finite differences the maximum eigenvalue approaches that of the Fourier method.

The spectral radius of the kinetic energy operator when approximated using central
finite differences does not grow without limit as the number of points used to compute
derivatives increases—indeed, its eigenspectrum converges to that of the Fourier method
(since the Fourier method can be considered the limit of ‘infinite-order’ finite differ-
ences [78]), with maximum eigenvalue equal to the kinetic energy of the Nyquist mode.
The kinetic energy operator approximated with fedvr on the other hand does not have a
bounded spectral radius as one increases the number of points per element whilst holding
the total number of gridpoints constant. Instead its spectral radius increases quadratically
with the number of points (equivalently with the order of accuracy of the derivatives), as
shown in Figure 3.10.

This result ought to be expected, at least qualitatively. The density of points in fedvr
is higher toward the edges of the elements than in their centres, and if one increases the
number of points per element whilst decreasing the number of elements so as to hold the
total number of points approximately constant, the smallest spacing between any two
adjacent points will be inversely proportional to the number of points per element. We
already know that in high-order finite differences or the Fourier method, the spectral
radius of the kinetic energy operator is simply the kinetic energy of the Nyquist mode,
and being themode described by a wave with half a wavelength spanning one grid spacing,
its kinetic energy is proportional to the square of the grid spacing. It is not therefore
surprising that in fedvr when the grid spacing is linearly smaller—albeit locally—that
the spectral radius of the kinetic energy operator is quadratically larger. The same result
as above could be obtained by asking: “what is the smallest grid spacing, and what is
the kinetic energy of the Nyquist mode corresponding to that grid spacing?”, and then
declaring the stability criterion to be that one must have at least a few points per period
of the frequency corresponding to that energy.

Since the spectral radius of fedvr operators grows faster with increasing order of
accuracy in derivative operators than finite differences, fedvr requires smaller timesteps
for stability when used with rk4. Even at low order accuracy, finite-difference operators
have smaller spectral radii, and so at all levels of accuracy rk4 is stable with finite differ-

3.4. continuous degrees of freedom 69

ences for larger timesteps than with fedvr. In the limit of high accuracy then, compared
to finite differences fedvr requires quadratically more timesteps to be taken for stability,
whereas it requires only linearly fewer points to be transferred at the boundaries between
threads or cluster nodes per timestep. The larger number of timesteps is therefore the
dominant effect, more than cancelling out the benefit of having to transfer fewer points
at boundaries per timestep than with finite differences. Indeed, even if transferring data
between nodes or threads is the bottleneck of a parallel simulation, more points are being
transferred all up with fedvr—they are just spread out over more timesteps.

That’s fourth-order Runge–Kutta. What about split-step methods? The split-step
methods discussed in Section 3.2.4 are unconditionally stable and have bounded error.
However, their error can still be large enough to make the results not useful. As shown
in (3.46), the leading error term in first-order split-step is 1/2ℏ2[V ,K]Δt2 where [V ,K]
is the commutator between the (discretised) kinetic and potential energy operators. The
leading term ofV is proportional to the discretised x̂ operator X, and the kinetic energy
operator is proportional to an nth order accurate discretised second derivative operator
δ2(n). Therefore the error per timestep scales with [X, δ2(n)]Δt2. Although this expression
is not bounded, the error in first-order split-step is nonetheless bounded because this
error appears as the argument of a complex exponential. When expanding the complex
exponential as its Taylor series, this error term is the leading term, but when it grows it
leads merely to a complex exponential with unbounded phase error, not to unbounded
absolute error. Nonetheless unbounded phase error still makes the results of a simulation
unlikely to be useful.

The largest (by absolute value) eigenvalue of this commutator sets the rate at which
erroneous dynamical phase is accumulated by some eigenstate of the commutator. When
this phase becomes comparable to 2π per timestep, the simulation has clearly lost any
semblance of accuracy, despite still being technically ‘stable’. Therefore as before, the
spectral radius of the matrix of this commutator can be used to define a pseudo-stability
criterion, such that when the spectral radius of [V ,K]Δt2/2ℏ2 becomes comparable to
unity, the error will dominate the simulation results. Although the value of the spectral
radius will depend on the details of the potential energy operator V for the particular
problem, we can still ask how it scales with increasing order of accuracy ofK given thatX
is the leading term ofV . This is done in Figure 3.11, comparing the spectral radius of the
commutator when using derivative operators of various orders in both finite differences
and fedvr approximations.

The result is that as with rk4, the pseudo-stability criterion allows at all orders of
accuracy for larger timesteps when using finite differences than when using fedvr, and
that the required timestep is bounded from below when increasing the order of accuracy
of finite differences, but can become arbitrarily small for increasing accuracy of fedvr.
However, the situation is not so dire for fedvr when used with split-step as it is with
rk4 timestepping. Because the error term in split-step is this commutator multiplied
by Δt2, the timestep required for pseudo-stability scales inversely with the square root of
the spectral radius of the commutator—not with the spectral radius itself as with rk4.
Furthermore, the spectral radius of the fedvr commutator increases only linearly with
increasing order of accuracy, not quadratically as with rk4. Therefore if transferring data
between nodes (with time cost proportional to the amount of data transferred) is the
bottleneck of one’s simulation, then with increasing accuracy, fedvr does win out. For
high enough order of accuracy n, a factor of√nmore timesteps are needed with fedvr
compared to finite differences, but a factor of n fewer points are sent per timestep. This
results in a factor of 1/√n fewer points being sent per unit simulation time with fedvr as
compared to finite differences. The question of which method is faster then comes down
to which is more costly: extra timesteps, or extra data transfer? Using fedvr will save
you a factor of√n in data transfer at a cost of a factor of√n in the number of timesteps.
Given InfiniBand interconnects on cluster computers with tens of gigabits per second

70 chapter 3. quantum mechanics on a computer

0 2 4 6 8 10
Order of accuracy n in ∆xav

0

2

4

6

8

∆
x

a
v
×
ρ
([X

,δ
2
(n

)
]) fedvr

Finite differences
Fourier limit

Figure 3.11: Scaling with order of accuracy of the spectral radius of the commutator of
position and second derivative operators in the pseudospectral finite-difference method
and fedvr. The spectral radius of the commutator grows linearly with increasing order
of accuracy for fedvr, whereas it is bounded for finite differences, approaching that of
the Fourier method.

of bandwidth, and latency that does not scale with the amount of data, I suspect that a
√n increase in cost of processing within nodes/threads is almost always the larger cost to
pay. Therefore I suspect the benefits of fevdr for parallel simulations of the Schrödinger
wave equation or Gross–Pitaevskii equation are limited.

3.4.4 Nonlinearity considerations

The above arguments about stability all disregarded the nonlinearity of the Gross–
Pitaevskii equation. Although the stability of a numerical method is very difficult to
analyse for nonlinear differential equations, there is a simple argument for heuristically
putting an upper bound on the timestep required in order to accurately model the effect
of the gpe’s nonlinear term. Essentially, density waves in the condensate propagate not
at the phase velocity of the condensate wavefunction, but at its group velocity. The group
velocity of the shortest possible wavelength in the system therefore sets an upper bound
for the propagation of information due to the nonlinear term. In order to correctly model
this term, timesteps must be short enough that one’s numerical method is evaluating the
nonlinear term frequently enough that fast moving density waves can’t ‘skip’ gridpoints
in between evaluations. If the smallest wavelength is that of the Nyquist mode, or for
non-uniform grids the mode whose wavelength is twice the smallest grid spacing, then
the maximum group velocity is

vg(kmax) =
𝜕EK(kmax)
𝜕p(kmax)

= ℏkmax
m

πℏ
mΔxmin

(3.127)

Asking how long it takes a wave to move a distance of Δxmin at this velocity then results
in what I am calling the dispersion timescale:

τd =
mΔx2min

πℏ . (3.128)

The numerical method being used is now fairly irrelevant: one must evaluate the
nonlinear term at least as often as every τd in order to be able to model it accurately,
otherwise density waves may move past each other faster than they can be resolved by the

3.4. continuous degrees of freedom 71

4 6 8

dvr points per element

10−10

10−8

10−6

10−4

10−2
F

ra
ct

io
n
a
l

er
ro

r
in
E

0

fedvr
fd2 equiv.
fd4 equiv.
fd6 equiv.
fd8 equiv.
fd10 equiv.

Figure 3.12: Comparison of accuracy of different discretisation methods in representing
the ground state of a harmonic oscillator V(x) = x2 in a spatial region −10 < x < 10.
For the fedvr results, 20 elements were used with a varying number of dvr points per
element, leading to decreasing error in the ground-state energy with increasing number
of points. For each number of dvr basis points, finite-difference operators are produced
using the same total number of points, but on a uniform grid. This is still not a fair
comparison however, because it is not equally computationally expensive to apply a
fedvr operator or a finite differences operator to a state vector. As mentioned in earlier
sections, the cost of applying operators is dependent on their bandwidth—related to how
many surrounding points are coupled to each point by the operator. This comparison is
made above by computing the average bandwidth of each fedvr operator (since it is not
the same for all points), and shading in the region between the two finite differencing
orders that have bandwidths either side of the result. The resulting shaded region shows
fedvr and finite differences are quite comparable when judged by accuracy at fixed cost
of applying operators, with the gap small enough to be closed by increasing the bandwidth
of a finite differencing scheme only by one.

timestepping, and their interference patterns will be aliased by the too-slow timestepping,
resulting in incorrect nonlinear dynamics.

Note that up to constant factors, this criterion for accurate modelling is the same as
the stability criterion (3.123) for rk4 when the kinetic term dominates the Hamiltonian.
Therefore although first-order split-step as argued above appears to be more forgiving
to fedvr than rk4 is, this is no longer the case when modelling the gpe as opposed to
the linear Schrödinger wave equation, and although I didn’t extend the argument in the
previous section to second or fourth-order split-step (figuring out which commutator is
the leading term is much more involved), they too are subject to the same requirement
to sample the nonlinear term this frequently, even if their linear pseudo-stability region
might be larger.

3.4.5 Conclusion

This leaves us with little remaining benefit to fedvr over finite differences for the
Schrödinger wave and Gross–Pitaevskii equations. The argument that fedvr scales
better for parallel computation is unconvincing as argued above. The fact that it allows
non-uniform grids is also not unique—central finite differences allow for non-uniform

72 chapter 3. quantum mechanics on a computer

grids as well [79]. Reference [68] compares the accuracy of finite differences to fedvr in
the context of computing the ground-state energy of a harmonic oscillator using imagi-
nary time evolution (see Section 3.5.1), but only uses second-order finite differences in
the comparison whereas higher-order fedvr schemes are used. If this restriction was in
order to hold the number of points transferred at boundaries between parallel computing
units constant (since second-order finite differences require, like fedvr, only one per
timestep), then this is not an equal comparison as the number of points transferred does
not limit computation time as I have shown—had the authors included comparisons
with higher order finite differencing schemes, they would have resulted in comparable ac-
curacy (see Figure 3.12) between fedvr and finite differences, but with finite differences
completing in less time owing to the larger timesteps allowed by the increased range of
stability of finite differences.

Perhaps for problems with certain unusual boundary conditions or strangely shaped
regions, or where one can construct a geometric integrator that conserves some quantities
of interest other than merely the wavefunction norm, fedvr may still make sense. But
unless there is a compelling reason, it seems that simple finite differences, as naïve as it
might seem at first, remain a practical choice for highly accurate and potentially massively
parallelised simulations of the gpe.

3.5 Finding ground states

For systems with continuous degrees of freedom, such as Bose–Einstein condensates,
finding ground states by directly diagonalising the Hamiltonian matrix is impractical due
to the size of said matrix, which we normally avoid even constructing for systems with
more than one dimension when simply propagating condensate wavefunctions in time.
The pseudo-Hamiltonian for the Gross-Pitaevskii equation is not even linear, implying
direct diagonalisation would not even return ground states unless one diagonalised
matrices repeatedly, each with an improved estimate of the ground state until a self-
consistent solution was found.

Below are two methods that are typically used instead to find ground states in these
cases, as well as a generalisation (which only applies to linear systems) for finding other
excited states of quantum systems.

3.5.1 Imaginary time evolution

Imaginary time evolution [85] is a robust, if somewhat inefficient method of finding
ground states of quantum systems, and can be generalised to finding excited states as well
(Section 3.5.3, below). The basis idea is to evolve the following differential equation:

ℏdψ
dt

= −Hψ (3.129)

in time instead of the time-dependent Schrödinger equation (3.3), for some wavefunction
or state vector ψ and matrix/linear operatorH . The name imaginary time evolution is
due to the fact that this differential equation can be obtained by making the substitution
t → −it in the time-dependent Schrödinger equation, and hence can be thought of
as propagating the Schrödinger equation in (negative) imaginary time. This method is
capable of evolving an initial guess for ψ into the ground state of the given Hamiltonian.
The reason behind this can be seen if we rewrite (3.129) in the eigenbasis of H with
eigenvalues {En} and eigenkets { |n⟩}:

ℏ d
dt
⟨n|ψ(t)⟩ = −En ⟨ϕn|ψ(t)⟩ , (3.130)

3.5. finding ground states 73

which has solutions:

⟨n|ψ(t)⟩ = exp 􏿯−
En
ℏ t􏿲 ⟨n|ψ(0)⟩ , (3.131)

that is, the coefficient of each eigenstate exponentially decays with a decay rate propor-
tional its energy. After enough time has elapsed (much larger than the difference in decay
timescales between the two lowest lying eigenstates), all coefficients ⟨n|ψ(t)⟩ will have
decayed, but the coefficient corresponding to the ground state will have decayed by far
the least, leading to any initial superposition evolving into one dominated by the ground
state.

This method is flexible and robust, and can be used to find ground states subject
to imposed conditions such as a phase winding about a point, resulting in a vortex
state. It can also be used to ‘smooth’ candidate wavefunctions, making a guessed initial
state of a condensate wavefunction more like a physically realistic one by lowering its
energy somewhat, but not propagating far enough to obtain the actual ground state.
This smoothing method is used in Section 3.6 to create an approximately correct density
profile for a condensate wavefunction after the phase patterns for randomly distributed
vortices are artificially imposed, resulting in physically realistic initial conditions for a
turbulent condensate.

For practical reasons, exponential decay cannot be carried out indefinitely, as even-
tually all numbers underflow to zero as they become too small to be represented on a
computer. In addition, the wavefunction/state vector obtained after exponential decay
will not be normalised. For these reasons, one often normalises the wavefunction/state
vector to unit norm in between each step of imaginary time evolution.

Normalisation must be paid attention particularly in the case of the Gross–Pitaevskii
equation, since it has a nonlinear pseudo-Hamiltonian. This pseudo-Hamiltonian must
always be evaluated with a normalised condensate wavefunction as input, otherwise the
imaginary time evolution may, depending on the numerical method employed, produce
a final condensate wavefunction that is the ground state not in the presence of the actual
nonlinear term, but in the presence of one that has had one timestep worth of exponential
decay applied to it. Since the magnitude of the wavefunction matters in the Gross–
Pitaevskii equation, one must normalise every time a nonlinearH is evaluated in order to
prevent this problem (which can also be mitigated by taking tiny timesteps to minimise
the amount of decay within each timestep, but this is wasteful when larger steps could
otherwise be used).

An exception to the above normalisationwarning is when a first order explicitmethod
such as the first-order split-stepmethod (Section 3.2.4) or the Eulermethod is used. Since
these methods only ever evaluate the nonlinear pseudo-Hamiltonian at the start of a
timestep, normalising the wavefunction once per timestep is sufficient, whereas when
using higher order methods that evaluate the pseudo-Hamiltonian at intermediate times
one will have to take care to normalise more often.

The imaginary time evolution method is a relaxation method, and as such only the
final wavefunction/state vector after a sufficient period of evolution is of interest, not the
intermediate states. As such, inaccurate but fast methods such as first order split-step or
the Eulermethodmay be readily employed, and usedwith the largest timesteps that do not
lead to numerical instability. Second-order Runge–Kutta (the explicit midpoint method)
can be a good balance due to being faster per-step than more accurate methods, whilst
allowing larger timesteps than the Euler method due to better stability characteristics.

A final note is that energies of quantum systems are arbitrary up to a global additive
constant, and so energies can be negative or positive or some mix of both in the same
system. In this case, imaginary time evolution can have some or all coefficients of energy
eigenstates exponentially growing rather than decaying. This does not modify the end
result at all, as the ground-state energy, if negative, will be more negative than any other

74 chapter 3. quantum mechanics on a computer

energy and hence its coefficient will exponentially grow faster than all others. If an
estimate of the ground-state energy is known ahead of time, it can be advantageous to
offset the systemHamiltonian with a constant energy such that the ground-state energy is
approximately zero, whichminimises the amount of exponential growth/decay and allows
for the largest timesteps within the stability range of the numerical method employed.
One can even dynamically compute an energy or chemical potential estimate26 to update26Note that the energy of a BEC

using the Gross–Pitaevskii pseudo-
Hamiltonian cannot be computed
simply as the expectation value
of the pseudo-Hamiltonian—this
double counts the nonlinear term,
which should be halved in such
energy calculations. The chemical
potential however can be computed
as this expectation value.

the energy offset as the computation proceeds. Imaginary time evolution can be slow
enough for non-trivial cases that these considerations can be relevant.

Since imaginary time evolution comprises the evolution of a state vector in time, it
is amenable to all the parallel processing techniques we have outlined in this chapter
depending on the timestepping and spatial discretisation employed.

3.5.2 Successive over-relaxation

Successive over-relaxation (sor) [86] is a much faster method of finding ground states
than imaginary time evolution, but slightly less flexible. Strictly speaking (that is, before
any ad-hoc modifications), sor is a method for solving linear systems of the form:

Aψ = b, (3.132)

for some unknown vector (or discretised function) ψ given a vector (or discretised func-
tion) b for the right hand side and a matrix (or discretised linear operator)A for the left
hand side. The method is of most benefit whenA is diagonally dominant, lending sor
to use with finite-difference methods. As with imaginary time evolution, sor requires
an initial guess for ψ , which is repeatedly updated to produce an increasingly accurate
approximate solution to the given linear system.

Successive over-relaxation proceeds by updating each element ψi of ψ one at a time
to be more consistent with the linear system and all other estimated elements of ψ , by
solving the ith linear equation of (3.132) for ψi in terms of A, bi, and the other elements
of ψ:

ψi =
bi −∑j≠i Aijψj

Aii
. (3.133)

If one updates every element ψi of ψ in this manner, based on the other elements ψj≠i of
the estimate for ψ at the previous iteration, the method that results is called the Jacobi
method, with update rule:

ψ(k+1)i Jacobi =
bi −∑j≠i Aijψ

(k)
j

Aii
, (3.134)

where ψ(k) is the kth iterative estimate of ψ . If one allows use of already updated elements
of ψ when updating subsequent elements of ψ , one obtains the more efficient Gauss–
Seidel method:

ψ(k+1)iGS =
bi −∑j≠i Aijψ

(latest)
j

Aii
, (3.135)

where ψ(latest)j = ψ(k+1)j if ψ(k+1)j has been computed already, and ψ(k)j if not. Assuming
elements of ψ are updated in order of increasing j, one can split the sum into two for
these two cases and write:

ψ(k+1)iGS =
bi −∑j<i Aijψ

(k+1)
j −∑j>i Aijψ

(k)
j

Aii
, (3.136)

3.5. finding ground states 75

which is how the method is often presented; however, since one can update elements
in any order (or equivalently, the order of the basis vectors in ψ is arbitrary), I prefer
the form (3.135) as it leaves the iteration order undetermined. One reason to impose an
update order other than just that of increasing index in the array storing ψ in computer
memory is to minimise communication latency in parallel implementations: one may
choose to update points near one or more edges of the spatial region assigned to one cpu
core or cluster node first, in order that they become available to other cores/nodes sooner,
before updating the interior points that other cores/nodes do not depend on. In this
case of parallel processing there isn’t even a strict order since elements are being updated
independently by separate cores/nodes simultaneously. Gauss–Seidel and successive
over-relaxation still work well in this case, they just become a little more like the Jacobi
method the more independent updates are occurring on different parts of the vector ψ .

The final feature of successive over-relaxation is that elements of ψ are updated not
to the values given by the Gauss–Seidel method, but overshoot them by a factor α:

ψ(k+1)i sor = ψ(k)i + α

⎛
⎜⎜⎜⎜⎜⎝
bi −∑j≠i Aijψ

(latest)
j

Aii
− ψ(k)i

⎞
⎟⎟⎟⎟⎟⎠ . (3.137)

where α < 2 is the convergence criterion in the case of an infinite system.27 27With the deviation from strict
sor by using non-constant A and
bmentioned below, and parallel
updates as mentioned above, as
well as the fact that systems are
not infinite, α in the range of 1.6
to 1.8 is realistic to ensure stability
in Gross–Pitaevskii equation
simulations.

So what are A and b for quantum mechanics problems? One deviation from pure
sor used in cold atom physics is to allow bothA and b to have dependence on ψ , which
in practice does not prevent the method from finding solutions. For the ground state of
the Gross–Pitaevskii equation, we can write:

H(ψ)ψ = μψ, (3.138)

where μ is the chemical potential of the condensate in its ground state andH(ψ) is the
matrix for some discretisation of the Gross–Pitaevskii pseudo-Hamiltonian, 28 to which 28A subtle consequence of A and b

depending on ψ is that we cannot
simplify this to (H(ψ) − μ)ψ = 0,
as this would admit ψ = 0 as a
solution. As written, (3.138) also ad-
mits ψ = 0 as a solution, however,
A(k) = H(ψ(k)) and b(k) = μψ(k) are
treated as constants within a single
iteration of sor, preventing the
method from approaching zero as a
solution within each step compared
to if ψ was present only on the left
hand side.

we can then apply a single iteration of sor by updating all elements of ψ in some order
using (3.137) with A(k) = H(ψ(k)) and b(k) = μψ(k) to produce an improved estimate
ψ(k+1) of the ground state based on the previous estimate ψ(k):

ψ(k+1)i sor = ψ(k)i + α

⎛
⎜⎜⎜⎜⎜⎝
μψ(k)i −∑j≠i Hij(ψ(k))ψ

(latest)
j

Aii
− ψ(k)i

⎞
⎟⎟⎟⎟⎟⎠ . (3.139)

A(k+1) and b(k+1) can then be computed based on ψ(k+1) and the process repeated to
provide increasingly accurate approximate solutions.

A difference between successive over-relaxation and imaginary time evolution is that
sor finds the state with chemical potential μ (replaceable by the energy E for a linear
quantum system), as opposed to the ground state. In this way successive over-relaxation
doesn’t tell you what the ground-state energy is, it requires that as input. Typically to
find a Gross–Pitaevskii ground state I will analytically estimate the chemical potential
for a given number of atoms or peak density, or whatever my requirement is, using the
Thomas–Fermi approximation, and then find the state with that chemical potential using
sor. This results in minor differences compared to the peak density or atom number
originally targeted, but the requirement is not usually strict enough for this to be of
consequence. For the Gross–Pitaevskii equation, the ability of the atom number to vary
means a condensate wavefunction with the given chemical potential can always be found.

However, sometimes one desires the ground state of the Gross–Pitaevskii pseudo-
Hamiltonian given a certain atom number, or one may be solving the time-independent
linear Schrödinger equation and not know the eigenstate energies. In the former case

76 chapter 3. quantum mechanics on a computer

one can normalise ψ to the desired atom number at each step to impose fixed atom
number, but then sor will not converge to a stationary state/eigenstate unless one has by
chance guessed the correct chemical potential. sor will also not converge for the linear
Schrödinger equation29 unless the energy given corresponds to an actual eigenstate.29Because normalisation for the

linear Schrödinger equation is
arbitrary, one ought to either nor-
malise ψ at every step, or impose
a boundary condition at a single
point where ψ is non-zero (simply
not updating that point in each sor
step), and normalise once at the
end in order to prevent ψ growing
or shrinking without limit.

A strategy that works is to dynamically update the targeted μ (or E) as sor proceeds,
by computing the expectation value ofH using the current best estimate of ψ after each
sor step:

ψ(k+1)i sor = ψ(k)i + α

⎛
⎜⎜⎜⎜⎜⎝
μ(k)ψ(k)i −∑j≠i Hij(ψ(k))ψ

(latest)
j

Aii
− ψ(k)i

⎞
⎟⎟⎟⎟⎟⎠ , (3.140)

where

μ(k) = ψ∗(k) ⋅H(ψ(k))ψ(k)

ψ∗(k) ⋅ ψ(k)
(3.141)

This process of dynamically updating the targeted chemical potential or energy can find
stationary states and eigenstates, but not necessarily the ground state. Different initial
guesses for ψ may result in convergence to different stationary states/eigenstates, and
some attention and guidance from the programmer is required in order to craft initial
guesses that result in convergence to the desired states.

3.5.3 Generalisation to excited states via Gram–Schmidt
orthonormalisation

Directly diagonalising a Hamiltonian can be costly in a spatial basis. Another approach3030Realised independently by me,
but not original [87]. (for the linear Schrödinger equation) is to find the ground state using one of the above

techniques, and then repeat the process with a fresh initial guess, subtracting off the
wavefunction’s projection onto the already found ground state at every step. This yields
the lowest energy state that is orthogonal to the first—i.e. the first excited state. Repeating
the process, but subtracting at each step the projection onto both eigenstates found so
far, then yields the second excited state and so forth. This is simply the Gram–Schmidt
process for finding orthonormal vectors, with the additional step of relaxing each vector
to the lowest possible energy given the orthogonality requirement—this ensures the
eigenstates of the Hamiltonian are produced, rather than a different orthonormal basis.
Extra conditions can be imposed on the wavefunction at each relaxation step in order to
obtain particular solutions in the case of degenerate eigenstates. For example, a phase
winding canbe imposed in order to obtain a particular harmonic oscillator state, otherwise
this process produces an arbitrary superposition of basis states that have equal energy.

For the case of successive over-relaxation used with the linear Schrödinger equation,
as mentioned in Section 3.5.2, one often cannot predict which eigenstate results when
the targeted energy is not already known—the ground state is not necessarily the one
produced by sor. Nonetheless, relaxation to some eigenstate or other, subject to the
state vector being orthonormal to all eigenstates found so far, will produce an additional
orthonormal eigenstate each time, just not necessarily in order from lowest to highest
energy.

3.6 Fourth-order Runge–Kutta in an instantaneous local
interaction picture

Consider the differential equation for the components of a state vector |ψ(t)⟩ in a par-
ticular basis with basis vectors |n⟩. This might simply be the Schrödinger equation, or

3.6. rk4 in an instantaneous local interaction picture 77

perhaps some sort of nonlinear or other approximate, effective or phenomenological
equation not corresponding to pure Hamiltonian evolution. Though they may have
additional terms, such equations are generally of the form:

d
dt
⟨n|ψ(t)⟩ = −

i
ℏ ∑

m
⟨n|Ĥ(t)|m⟩ ⟨m|ψ(t)⟩ , (3.142)

where ⟨n|Ĥ(t)|m⟩ are the matrix elements in that basis of the Hamiltonian Ĥ(t), which
in general can be time-dependent, or even a function of |ψ(t)⟩, depending on the exact
type of equation in use. If Ĥ(t) is almost diagonal in the |n⟩ basis, then the solution
to (3.142) is dominated by simple dynamical phase evolution, that is:

|ψ(t)⟩ ≈ ∑
m

e−
i
ℏEmt |m⟩ , (3.143)

where Em is the energy eigenvalue corresponding to the eigenstate |m⟩.
A transformation into an interaction picture (ip) [60, p. 317] is commonly used to

treat this part of the evolution analytically, before solving the remaining dynamics with
further analytics or numerics. For numerical methods, integration in the interaction
picture allows one to use larger integration timesteps, as one does not need to resolve the
fast oscillations around the complex plane due to this dynamical phase.

Choosing an interactionpicture typically involves diagonalising the time-independent
part of a Hamiltonian, and then proceeding in the basis in which that time-independent
part is diagonal. However, often one has a good reason to perform computations in a dif-
ferent basis, in which the time independent part of theHamiltonian is only approximately
diagonal,31 and transforming between bases may be computationally expensive (involv- 31For example, a spatial basis

which allows for partitioning the
integration region over multiple
nodes on a cluster or cores on a
gpu.

ing large matrix–vector multiplications). Furthermore, the Hamiltonian may change
sufficiently during the time interval being simulated that the original time-independent
Hamiltonian no longer dominates the dynamics at later times. In both these cases it
would still be useful to factor out the time-local oscillatory dynamics in whichever basis
is being used, in order to avoid taking unreasonably small timesteps.

To that end, suppose we decompose Ĥ(t) into diagonal and non-diagonal (in the
|n⟩ basis) parts at each moment in time:

Ĥ(t) = Ĥdiag(t) + Ĥnondiag(t), (3.144)

and use the diagonal part at a specific time t = t′ to define a time-independent Hamilto-
nian:

Ĥt′
0 = Ĥdiag(t′), (3.145)

which is diagonal in the |n⟩ basis. We can then use then use Ĥt′
0 to define an interaction-

picture state vector:

|ψt′
I (t)⟩ = e

i
ℏ (t−t

′)Ĥt′
0 |ψ(t)⟩ , (3.146)

which obeys the differential equation:

d
dt
|ψt′

I (t)⟩ = e
i
ℏ (t−t

′)Ĥt′
0
d
dt
|ψ(t)⟩ +

i
ℏ Ĥ

t′
0 |ψt′

I (t)⟩ , (3.147)

where:

|ψ(t)⟩ = e−
i
ℏ (t−t

′)Ĥt′
0 |ψt′

I (t)⟩ (3.148)

is the original Schrödinger-picture (sp) state vector.

78 chapter 3. quantum mechanics on a computer

This transformation is exact; no approximations or assumptions have been made.
If indeed the dynamics of |ψ(t)⟩ in the given basis are dominated by fast oscillating
dynamical phases, that is, the diagonals of Ĥdiag(t) are much greater than all matrix
elements of Ĥnondiag(t) in the |n⟩ basis, then solving the differential equation (3.147) for
|ψt′

I (t)⟩ should allow one to use larger integration timesteps than solving (3.142) directly.
And if not, then it should do no harm other than the (small) computational costs of
computing some extra scalar exponentials.

Equation (3.146) defines an instantaneous interaction picture, in that it depends on
the dynamics at a specific time t = t′, and can be recomputed repeatedly throughout
a computation in order to factor out the fast dynamical phase evolution even as the
oscillation rates change over time. It is local in thatHt′

0 is diagonal in the |n⟩ basis, which
means that transformations between Schrödinger picture and interaction-picture state
vectors involves ordinary, elementwise exponentiation of vectors, rather than matrix
products. Thus (3.146), (3.147) and (3.148) can be written componentwise as

⟨n|ψt′
I (t)⟩ = ei(t−t′)ωt′

n ⟨n|ψ(t)⟩ , (3.149)

d
dt
⟨n|ψt′

I (t)⟩ = ei(t−t′)ωt′
n
d
dt
⟨n|ψ(t)⟩ + iωt′

n ⟨n|ψt′
I (t)⟩ , (3.150)

and

⟨n|ψ(t)⟩ = e−i(t−t′)ωt′
n ⟨n|ψt′

I (t)⟩ , (3.151)

where we have defined:

ωt′
n =

1
ℏ ⟨n|Ĥ

t′
0 |n⟩ (3.152)

This is in contrast to fourth-order Runge–Kutta in the interaction picture (rk4ip) [84],
in which the interaction picture uses the Fourier basis and thus transforming to and from
it involves fast Fourier transforms (ffts). rk4ipwas developed to augment computations
in which ffts were already in use for evaluating spatial derivatives, and so its use of ffts
imposes no additional cost. Nonetheless, an interaction picture based on the kinetic
term of the Schrödinger equation (which is the term of the Hamiltonian that rk4ip
takes as its time-independent part) may not be useful if that term does not dominate the
Hamiltonian, as in the case of a Bose–Einstein condensate in the Thomas–Fermi limit.
We compare the two methods below.

3.6.1 Algorithm

The fourth-order Runge–Kutta in an instantaneous local interaction picture rk4ilip algo-
rithm is nowobtained by using (3.146) to define a new interaction picture at the beginning
of each fourth-order Runge–Kutta (rk4) integration timestep. The differential equation
and initial conditions supplied to the algorithm are in the ordinary Schrödinger picture,
and the interaction picture is used only within a timestep, with the Schrödinger-picture
state vector returned at the end of each timestep. Thus differential equations need not be
modified compared to if ordinary rk4 were being used, and the only modification to
calling code required is for a function to compute and return ωt′

n .
Being based on fourth-order Runge–Kutta integration, this new method enjoys

all the benefits of a workhorse method that is time-proven, and—as evidenced by its
extremely widespread use—at a sweet-spot of ease of implementation, accuracy, and
required computing power [88].

3.6. rk4 in an instantaneous local interaction picture 79

Below is the resulting algorithm for performing one integration timestep. It takes as
input the time t0 at the start of the timestep, the timestep size Δt, an array ψ0 containing
the components { ⟨n|ψ(t0)⟩} of the state vector at time t0, a function F(t,ψ) which takes
a time and (the components of) a state vector and returns an array containing the time
derivative of each component, and a functionG(t,ψ) which takes the same inputs and
returns an array containing the interaction picture oscillation frequency ωn for each
component at that time.

For example, for the case of the Gross–Pitaevskii equation [89] in the spatial basis
ψ(r, t) = ⟨r|ψ(t)⟩, these would be:

F(t,ψ(r, t)) = − i
ℏ􏿰 −

ℏ2
2m

∇2
􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍
Ĥnondiag

+V(r, t) + g |ψ(r, t)|2􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
Ĥdiag

􏿳ψ(r, t), (3.153)

and

G(t,ψ(r, t)) = 1
ℏ􏿮V(r, t) + g |ψ(r, t)|2􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

Ĥdiag

􏿱. (3.154)

Note that each symbol in bold in the algorithm below denotes an array containing
one element for each basis vector |n⟩, subscripts denote the different stages of rk4, and
all arithmetic operations between arrays are elementwise32 The only opportunity for non- 32For example, the expression

a← e−iωΔtb indicates that for all n,
an ← e−iωnΔtbn, where an denotes
the nth element of a etc.

elementwise operations to occur is within F, which contains the details (via Ĥnondiag) of
any couplings between basis states for whatever system of equations is being solved, for
example, using ffts or finite differences to evaluate the Laplacian in (3.153).

Algorithm 1 rk4ilip
1: function RK4ILIP(t0, Δt, ψ0, F)

2: f1 ← F(t0,ψ0) ▷ First evaluation of Schrödinger picture DE

3: ω← G(t0,ψ0) ▷ Oscillation frequencies: ℏωn = ⟨n|Ĥdiag(t0)|n⟩

4: k1 ← f1 + iωψ0 ▷ Evaluate (3.150) with t − t′ = 0

5: ϕ1 ← ψ0 + k1 Δt
2 ▷ First RK4 estimate of IP state vector, at t = t0 + Δt

2

6: ψ1 ← e−iω
Δt
2 ϕ1 ▷ Convert first estimate back to SP with (3.151)

7: f2 ← F(t0 + Δt
2 ,ψ1) ▷ Second evaluation of Schrödinger picture DE

8: k2 ← eiω
Δt
2 f2 + iωϕ1 ▷ Evaluate (3.150) with t − t′ = Δt

2

9: ϕ2 ← ψ0 + k2 Δt
2 ▷ Second RK4 estimate of IP state vector, at t = t0 + Δt

2

10: ψ2 ← e−iω
Δt
2 ϕ2 ▷ Convert second estimate back to SP with (3.151)

11: f3 ← F(t0 + Δt
2 ,ψ2) ▷ Third evaluation of Schrödinger picture DE

12: k3 ← eiω
Δt
2 f3 + iωϕ2 ▷ Evaluate (3.150) with t − t′ = Δt

2

13: ϕ3 ← ψ0 + k3Δt ▷ Third RK4 estimate of IP state vector, at t = t0 + Δt

14: ψ3 ← e−iωΔtϕ3 ▷ Convert third estimate back to SP with (3.151)

15: f4 ← F(t0 + Δt,ψ3) ▷ Fourth evaluation of Schrödinger picture DE

16: k4 ← eiωΔt f4 + iωϕ3 ▷ Evaluate (3.150) with t − t′ = Δt

17: ϕ4 ← ψ0 + Δt
6 (k1 + 2k2 + 2k3 + k4) ▷ Fourth RK4 estimate, at t = t0 + Δt

18: ψ4 ← e−iωΔtϕ4 ▷ Convert fourth estimate back to SP with (3.151)

19: return ψ4 ▷ Return the computed SP state vector at t = t0 + Δt

20: end function

80 chapter 3. quantum mechanics on a computer

Note on imaginary time evolution

Whenrk4ilip is used for imaginary time evolution (ite) [90], the oscillation frequencies
ωmay have a large imaginary part. If the initial guess is different enough from the ground
state, then the exponentials in (3.149), (3.150) and (3.151)may result in numerical overflow.
To prevent this, one can define a clipped copy of ω,

ωclipped = Re(ω) + i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− logX
Δt Im(ω)Δt < − logX

Im(ω) − logX ≤ Im(ω)Δt ≤ logX
logX
Δt Im(ω)Δt > logX

, (3.155)

where X is very large but less than the largest representable floating-point number, and
use ωclipped in the exponents instead. In the below results I used rk4ilip with ite to
smooth initial states of a Bose–Einstein condensate after a phase printing, and performed
clipping with33 logX = 400.33400 being about half the largest

(base e) exponent representable in
double-precision floating point.

This clipped version of ω should be used in all exponents in the above algorithm, but
only in exponents—not in the second term of (3.150). If it is used everywhere then all
we have done is chosen a different (less useful) interaction picture, and the algorithm
will still overflow. By clipping only the exponents, we produce temporarily ‘incorrect’
evolution,34 limiting the change in magnitude of each component of the state vector to a34Of no concern since we are using

ite as a relaxation method, and
are not interested in intermedi-
ate states. Only the final state’s
correctness concerns us.

factor of X per step (remembering that X is very large). This continues for the few steps
that it takes ite to get all components of the state vector to within a factor of X of the
ground state, after which no clipping is necessary and convergence to the ground state
proceeds as normal, subject to the ordinary limitations on which timesteps may be used
with ite.

3.6.2 Domain of improvement over other methods

For simulations in the spatial basis, rk4ilip treats the spatially local part of the Hamilto-
nian analytically to first order, and hence can handle larger potentials than ordinary rk4.
However, since a global energy offset can be applied to any potential with no physically
meaningful change in the results, ordinary rk4 can also handle large potentials—if they
are large due to a large constant term that can simply be subtracted off.

So rk4ilip is only of benefit in the case of large spatial variations in the potential.
Only one constant can be subtracted off potentials without changing the physics—
subtracting a spatially varying potential would require modification of the differential
equation in the manner of a gauge transformation in order to leave the system physically
unchanged35.35Though a numerical solution

based on analytically gauging away
potentials at each timestep might
be equally as fruitful as rk4ilip.

However, that’s not quite all: large spatial variation in potentials often comes with
the prospect of the potential energy turning into kinetic energy, in which case rk4ilip is
also of little benefit, since in order to resolve the dynamical phase due to the large kinetic
term, it would require timesteps just as small as those which ordinary rk4 would need to
resolve the dynamical phase evolution from the large potential term.

This leaves rk4ilip with an advantage only in the case of large spatial variations in
the potential that do not lead to equally large kinetic energies. Hence, the examples I
show in the next section are ones in which the condensate is trapped in a steep potential
well—the trap walls are high and hence involve large potentials compared to the interior,
but do not lead to large kinetic energies because the condensate is trapped close to its
ground state.

The Fourier split-step (fss) method [91] (see Section 3.4.1) also models dynamical
phases due to the potential analytically to low order. As such it is also quite capable of
modelling large potentials. However, it requires that all operators be diagonal in either
the spatial basis or the Fourier basis [91]. Therefore becs in rotating frames, due to the

3.6. rk4 in an instantaneous local interaction picture 81

rk4 rk4ip rk4ilip fss

Error 𝒪(Δt4) 𝒪(Δt4) 𝒪(Δt4) 𝒪(Δt2)

ffts per step 4 4 4 2

Large ΔV No No Yes Yes

Large kinetic term No Yes No Yes

Arbitrary operators Yes Yes† Yes No

Locally parallelisable Yes No Yes No

Arbitrary boundary conditions Yes No Yes No

Table 3.2: Advantages and disadvantages of four timestepping methods for simulating
Bose–Einstein condensates. Large ΔV refers to whether the method can simulate po-
tentials that vary throughout space by an amount larger than the energy scale 2πℏ/Δt
associated with the simulation timestep Δt. Arbitrary operators refers to whether the
method permits operators that are not diagonal in either the spatial or Fourier basis,
such as angular momentum operators. Locally parallelisable means the method can be
formulated so as to use only spatially nearby points in evaluating operators, and thus is
amenable to parallelisation by splitting the simulation over multiple cores in the spatial
basis. † Whilst one can include arbitrary operators within the rk4ip method, only opera-
tors diagonal in Fourier space can be analytically treated the way rk4ip treats the kinetic
term, and so there is no advantage for these terms over ordinary rk4.

Hamiltonian containing an angular momentum operator, are not amenable to simulation
with fss.36 36Split-step with more than these

two bases is however possible in
other schemes such as the finite-
element discrete-variable represen-
tation [68]—each operator can be
diagonalised and exponentiated
locally in each element and ap-
plied as a (relatively small) matrix
multiplication rather than using
ffts.

This use of ffts in both the fss and rk4ip methods necessarily imposes periodic
boundary conditions on a simulation, whichmay not be desirable. By contrast, if different
boundary conditions are desired, finite differences instead of ffts can be used to evaluate
spatial derivatives in the rk4 and rk4ilip methods, so long as a sufficiently high-order
finite-difference scheme is used so as not to unacceptably impact accuracy.

Along with the ability to impose arbitrary boundary conditions, finite differences re-
quire only local data, that is, only points spatially close to the point being considered need
be known in order to evaluate derivatives there. This makes finite differences amenable
to simulation on cluster computers [92, p. 100], with only a small number of points
(depending on the order of the scheme) needing to be exchanged at node-boundaries
each step. By contrast, fft-based derivatives require data from the entire spatial region.
Whilst this can still be parallelised on a gpu, where all the data is available, it cannot
be done on a cluster without large amounts of data transfer between nodes [81]. Thus,
rk4 and rk4ilip, being implementable with finite-difference schemes, are considerably
friendlier to cluster computing.

Table3.2 summarises the capabilities of the four methods considered in the following
results section. rk4ilip is the only method capable of modelling a large spatial variation
in the potential termwhilst being locally parallelisable, and supporting arbitrary operators
and boundary conditions.

3.6.3 Results

Here I compare four numerical methods: Fourier split-step (fss), fourth-order Runge–
Kutta in the interaction picture (rk4ip), ordinary fourth-order Runge–Kutta (rk4),

82 chapter 3. quantum mechanics on a computer

10−3

10−6

10−9

10−12

10−15

rkip
rkilip

rk
fss

0.5

1.0

1.5

2.0 (
x
R

)4
g
µ
ρ̃0(x)

0.2
0.4
0.6
0.8
1.0

g µ
ρ

10−3

10−6

10−9

10−12

10−15

rkip
rkilip

rk
fss

0.5

1.0

1.5

2.0 (
x
R

)8
g
µ
ρ̃0(x)

0.2
0.4
0.6
0.8
1.0

g µ
ρ

10−3

10−6

10−9

10−12

10−15

rkip
rkilip

rk
fss

0.5

1.0

1.5

2.0 (
x
R

)12

g
µ
ρ̃0(x)

0.2
0.4
0.6
0.8
1.0

g µ
ρ

10−3

10−6

10−9

10−12

10−15

rkip
rkilip

rk
fss

0.5

1.0

1.5

2.0 (
x
R

)16

g
µ
ρ̃0(x)

0.2
0.4
0.6
0.8
1.0
1.2

g µ
ρ

10−3

10−6

10−9

10−12

10−15

rkilip rk

0.5

1.0

1.5

2.0 (
x
R

)4
g
µ
ρ̃0(x)

0.2
0.4
0.6
0.8
1.0
1.2

g µ
ρ

10−3

10−6

10−9

10−12

10−15

rkilip rk

0.5

1.0

1.5

2.0 (
x
R

)8
g
µ
ρ̃0(x)

0.2
0.4
0.6
0.8
1.0
1.2

g µ
ρ

10−3

10−6

10−9

10−12

10−15

rkilip rk

0.5

1.0

1.5

2.0 (
x
R

)12

g
µ
ρ̃0(x)

0.2
0.4
0.6
0.8
1.0
1.2

g µ
ρ

τd
τd

2
τd

4
τd

8
τd

16

10−3

10−6

10−9

10−12

10−15

rkilip rk

−R 0 R

0.5

1.0

1.5

2.0 (
x
R

)16

g
µ
ρ̃0(x)

0.2
0.4
0.6
0.8
1.0
1.2

g µ
ρ

integration timestep

m
a
x
im

u
m

st
ep

er
ro

r

x

t = 0 t = 20 ms t = 40 ms

Figure 3.13: Results of simulations to compare rk4ilip to other timestepping methods. Top four rows: Non-rotating frame
simulations with four different radial power-law potentials. Bottom four rows: Rotating frame simulations with same
four potentials. Left column: maximum per-step error ∫ |ψ − ψ̃| 2 dr/∫ |ψ̃| 2 dr of fourth-order Runge–Kutta (rk4), its
interaction picture variants (rk4ip and rk4ilip) and Fourier split-step (fss) as a function of timestep. Solutions were
checked every 100 timesteps against a comparison solution ψ̃ computed using half sized steps for rk4 methods, and quarter
sized steps for fss. Simulations encountering numerical overflow not plotted. Centre column: potential (black) and average
density ρ̃0 of the initial state (red) over a slice of width R/5 in the y direction. Right column: Density of solution at initial,
intermediate and final times for each configuration simulated (taken from rk4ilip results). rk4ilip is the only method
usable in rotating frames and not encountering overflow in the steeper traps for the timesteps considered.

3.6. rk4 in an instantaneous local interaction picture 83

and my new method—fourth-order Runge–Kutta in an instantaneous local interaction
picture (rk4ilip).

The example chosen is a 2d simulation of a turbulent Bose–Einstein condensate,
in both a rotating and non-rotating frame. For the non-rotating frame the differential
equation simulated was equation (3.153), and for the rotating frame the same equation
was with an additional two terms added to the Hamiltonian:

Ĥrot + Ĥcomp = −Ω ⋅ L̂ + 1
2
ℏm2Ω2r2 (3.156)

= iℏΩ 􏿶x
𝜕
𝜕y

− y
𝜕
𝜕x 􏿹

+ 1
2
ℏm2Ω2r2. (3.157)

The addition of the first term transforms the originalHamiltonian into a frame rotating at
angular frequencyΩ in the (x, y) plane, and is equivalent to the Coriolis and centrifugal
forces that appear in rotating frames in classical mechanics [93]. The second term is a
harmonic potential that exactly compensates for the centrifugal part of this force. In this
way the only potential in the rotating frame is the applied trapping potential, and the
only effect of the rotating frame is to add the Coriolis force.

Four trapping potentials were used, all radial power laws with different powers. These
examples were chosen to demonstrate the specific situation in which rk4ilip provides a
benefit over the other methods for spatial Schrödinger-like equations, as discussed above.

The results of 120 simulation runs are shown in Figure 3.13. Each simulation was of a
87Rb condensate in the |F = 2,mF = 2⟩ state, in which the two-body s-wave scattering
length is a = 98.98 Bohr radii [94]. The simulation region was 20 μm in the x and y
directions, and theThomas–Fermi radius of the condensate wasR = 9 μm. The chemical
potential was μ = 2πℏ × 1.91 kHz, which is equivalent to a maximum Thomas–Fermi
density ρmax = 2.5 × 1014 cm−3 and a healing length ξ = 1.1 μm. There were 256
simulation grid points in each spatial dimension, which is 14 points per healing length.

Four different potentials were used, all of the form V(r) = μ (r/R)α with α =
4, 8, 12, 16. For the rotating frame simulations, the rotation frequency was Ω = 2π ×
148Hz. This is 89% of the effective harmonic trap frequency, defined as the frequency of
a harmonic trap that would have the same Thomas–Fermi radius given the same chemical
potential.

All ground states were determined using successive over-relaxation (See Section 3.5.2)
with sixth-order finite differences for spatial derivatives. For the non-rotating simulations,
convergence was reached with Δμ/μ < 1 × 10−13, with:

Δμ =
􏽱

⟨ψ|(Ĥ − μ)2|ψ⟩
⟨ψ|ψ⟩

, (3.158)

where Ĥ is the nonlinear Hamiltonian and ⟨r|ψ⟩ is the condensate wavefunction, which
does not have unit norm. For the rotating frame simulations the ground states converged
toΔμ/μ ≈ 9×10−7, 2×10−6, 3×10−6 and 2×10−6 for α = 16, 12, 8, and 4 respectively.

After each ground state was found, it was multiplied by a spatially varying phase
factor corresponding to the phase pattern of a number of randomly positioned vortices:

ψvortices(x, y) = ψgroundstate(x, y)
N

∏
n=1

e±ni arctan2(y−yn,x−xn) (3.159)

where arctan2 is the two-argument arctan function,37 N = 30,±n is a randomly chosen 37Defined as the principle
value of the argument of the
complex number x + iy:
arctan2(y, x) = Arg(x + iy).

sign, and (xn, yn) are vortex positions randomly drawn from a Gaussian distribution
centred on (0, 0)with standard deviation equal to the Thomas–Fermi radius R. The same

84 chapter 3. quantum mechanics on a computer

seed was used for the pseudo-random number generator in each simulation run, and so
the vortex positions were identical in each simulation run.

After vortex phase imprinting, thewavefunctionswere evolved in imaginary time [90].
For the non-rotating frame simulations, imaginary time evolution was performed for a
time interval equal to the chemical potential timescale τμ = 2πℏ/μ, and for the rotating
frame simulations, for τμ/10. This was done to smooth out the condensate density in the
vicinity of vortices, producing the correct density profile for vortex cores. However, since
imaginary time evolution decreases the energy of the state indiscriminately, it also had the
side effect of causing vortices of opposite sign tomove closer together and annihilate. This
decreased the number of vortices, and is the reason the smoothing step in the rotating
frame simulations was cut short to τμ/10, as otherwise all vortices had time to annihilate
with one of the lattice vortices. A vortex pair in the process of annihilating is visible
in Figure 3.13 as a partially filled hole in the initial density profile near the top of the
condensate in the α = 4, 12, and 16 rotating frame simulations.3838The initial states for the four dif-

ferent potentials are not identical,
so by chance the corresponding
vortex in the α = 8 case was not
close enough to a lattice vortex to
annihilate.

The smoothed, vortex imprinted states were then evolved in time for 40ms. For each
simulation, five different timesteps were used: Δt = τd, τd/2, τd/4, τd/8, τd/16, where
τd = mΔx2/πℏ ≈ 2.68 μs is the dispersion timescale associated with the grid spacingΔx,
defined as the time taken to move one gridpoint at the group velocity of the Nyquist
mode.

For the non-rotating frame simulations, spatial derivatives for the rk4 and rk4ilip
methods were determined using the Fourier method (Section 3.4.1). This was to ensure a
fair comparison with the other two methods, which necessarily use Fourier transforms to
perform computations pertaining due to the kinetic term.

For the rotating frame simulations, sixth-order finite differences with zero boundary
conditions were used instead for the kinetic terms of the rk4 and rk4ilip methods,
which were the only two methods used for those simulations (due to the other methods
being incompatible with the angular momentum operator required for a rotating frame).
This choice was fairly arbitrary, but did allow the condensate to be closer to the boundary
than is otherwise possible with the periodic boundary conditions imposed by use of the
Fourier method for spatial derivatives. This is because the rotating frame Hamiltonian is
not periodic in space, and so its discontinuity at the boundary can be a problem if the
wavefunction is not sufficiently small there.

As shown in Figure 3.13, all methods tested generally worked well until they didn’t
work at all, with the per-step error of rk4-based methods being either small and broadly
the same as the other rk4-based methods, or growing rapidly to the point of numerical
overflow (shown asmissing datapoints). The break down of fss was less dramatic, though
it too had a clear jump in its per-step error for larger timesteps. Comparing methods
therefore came down to mostly whether or not a simulation experienced numerical
overflow during the time interval being simulated.

The main result was that rk4ilip and fss remained accurate over the widest range
of timesteps and trap steepnesses, with rk4 and rk4ip requiring ever smaller timesteps
in order to not overflow as the trap steepness increased.

For the rotating frame simulations, which were only amenable to the rk4 and
rk4ilip methods, the same pattern was observed, with rk4 only working at smaller
timesteps as the trap steepness was increased, and ultimately diverging for all timesteps
tested at the maximum trap steepness. By contrast, rk4ilip remained accurate over the
entire range of timesteps at the maximum trap steepness.

3.6.4 Discussion

As mentioned, rk4ilip is mostly useful for continuum quantum mechanics only when
there are large spatial differences in the potential, which cannot give rise to equally large
kinetic energies.39 Furthermore, the advantage that rk4ilip has over other methods39This is essentially due to such a

situation violating the condition
we laid out at the beginning of this
section—that the simulation basis
must be nearly an eigenbasis of the
total Hamiltonian.

3.6. rk4 in an instantaneous local interaction picture 85

with that same property is that it is does not require a particular form of Hamiltonian or
a particular method of evaluating spatial derivatives. The former means it is applicable in
rotating frames or to situations with unusual Hamiltonians, and the latter means is can
be used with finite differences or fedvr [68] and thus is amenable to parallelisation on a
cluster computer.

The ability to model large spatial variations in the potential provides only a narrow
domain of increased usefulness over other methods. If a large kinetic energy results from
the large potential, then the method requires just as small timesteps as any other. And if
the large potential is supposed to approximate an infinite well, then an actual infinite well
may be modelled using zero boundary conditions, negating the need for something like
rk4ilip. However, when potential wells are steep, but not infinitely steep, here rk4ilip
provides a benefit. The only other model that can handle these large potentials—Fourier
split-step—has the disadvantage that it cannot deal with arbitrary operators such as those
arising from a rotating frame, and is not parallelisable with local data. The benefits of
parallelisability are obvious, and the above results demonstrate rk4ilip’s advantage at
simulating becs in tight traps and rotating frames.

Note that whilst the Fourier split-step method can’t handle Hamiltonian terms such
as ̂r ⋅ p̂ that are not diagonal in either real space or Fourier space [61, p. 315], a split-step
method based on an approximation to the momentum operator as a banded matrix,
such as that obtained with finite differences, can. Using the techniques discussed in
Section 3.2.4, such a scheme is also parallelisable. The remaining limitations then, when
compared to fourth-order Runge–Kutta, are the restriction on the types of nonlinearity
that can be included, and the complexity of implementation.

For systemswith discrete degrees of freedom, rk4ilipmay be useful in the case where
an approximate diagonalisation of the Hamiltonian is analytically known, and when the
Hamiltonian’s eigenvalues vary considerably in time (making a single interaction picture
insufficient to factor out dynamical phases throughout the entire simulation). In this
situation an analytic transformation into the diagonal basis can be performed at each
timestep (or the differential equation analytically re-cast in that basis in the first place),
and rk4ilip can be used to factor out the time-varying dynamical phase evolution at
each timestep. An example may be an atom with a magnetic moment in a time-varying
magnetic field that varies over orders of magnitude. The transformation into the spin
basis in the direction of the magnetic field can be analytically performed, and if the
field varies by orders of magnitude, so do the eigenvalues of the Hamiltonian. Although
the eigenvalues in this case and other similar cases can be computed analytically too,
unless all time dependence of the Hamiltonian is known in advance of the simulation, it
would be difficult to incorporate this into a re-casting of the differential equation in a
time-dependent interaction picture. rk4ilip may be useful in these cases to automate
this process and evolve the system in the appropriate interaction picture at each timestep.

Chapter4
Software for experiment control and

analysis

Software underlies a huge part of physicists’ work, whether experimental or
theoretical. On the experimental side, increasingly complex and precise experi-
ments in atomic physics require increasingly sophisticated control of the lasers,

magnetic coils, frequency synthesisers, cameras, etc. that interact with the quantum sys-
tems being studied. Use of these devices necessitates some kind of interface between
the experimentalist and each device, and whilst interfaces of the past were more likely
to be knobs and dials on the front of the device, they are increasingly taking the form
of software. Software is needed to convert from a smooth ramp of voltages designed to
ramp up a magnetic field slowly into a finite list of voltages and times that a device can
output with precise timing to make it happen. Software is needed to transmit this data
to the device in question, using a communications protocol and data format compatible
with the device. Software is required to extract the images from cameras and voltage time
series from acquisition devices and store them in computer memory or on disk. And
finally, software is required to compute meaningful results from this raw data.

A significant fraction of my PhD was spent developing, maintaining and improving
the laboratory control system software suite that has emerged from the Quantum Fluids
group at Monash: the labscript suite. Originally envisioned as a Python [95] library for
generating instructions for programmable hardware via a LabVIEW [96] graphical inter-
face, the software suite grew to encompass most aspects of day-to-day control and analysis
in our labs. At present it comprises several separate programs/libraries—depending on
how one chooses to draw the borders between them—that control every aspect of a cold
atom physics experiment, from setting parameters to analysing results. An overview of
the process is shown in Figure 4.1.

The types of experiments the labscript suite addresses are ‘shot-based’—ones in which
precise timing is required over hardware during some interval while a sequence of instruc-
tions is executed (a ‘shot’), after which the hardware is idle until the next shot. Many
repetitions of similar shots are often performed to build up measurement statistics or
investigate the response of a system to a change in one or more parameters. This general
method of hardware control and data acquisition is common tomany experiments in cold
quantum gases and trapped ions [97, 98], quantum computation [99, 100], and quantum
simulation [101, 102].

In this chapter, I will first give a quick overview of each program and what it does.
Then I will outline the design and development approaches we undertook with the
labscript suite and comment on the effects these choices have had on the course of the
project in subsequent years. Then I will summarise developments since the publication

87

88 chapter 4. software for experiment control and analysis

Shot preparation

START

Define parameters

Shot creation

Parameters Hardware

Instructions

Data

Camera

Parameters
Images

Device interface Analysis

Image

acquisitions

Experiment logic

Shot execution Analysis and feedback

END

View graphs

Science!

Hardware

Instructions

Images

runmanager BLACS lyse

Figure 4.1: The labscript suite comprises a number of libraries and programs allowing
one to perform precisely timed experiments, each realisation of which we call a ‘shot’,
using commodity hardware such as devices from SpinCore, NovaTech, National Instru-
ments and others. Experiment logic is described by the user in the form Python code
using the labscript Python module, which produces from the user’s code a set of low-
level instructions appropriate for being programmed into the hardware. The program
runmanager provides a graphical interface for inputting parameters into this experiment
logic, and allows this process to be repeated to produce multiple sets of instructions for
repeated execution of the shot with different parameters. Not shown in this flowchart
is runviewer, a graphical program displaying plots of the instructions that have been
generated by labscript. Once the instructions have been generated, the program
BLACS (Better Lab Apparatus Control System) is responsible for communicating with
the hardware: programming in the generated instructions, beginning the experiment,
and saving any acquired data to file. An auxiliary LabVIEW program called BIAS (BEC
ImageAcquisition System) is used for communicationwith cameras inMonashQuantum
Fluids group laboratories, though other groups use a number of alternate programs in
its place, including a stripped-down derivative called unBIASed, as well as several other
Python-based ‘camera servers’. After BLACS is finished with a shot, the data is passed to
lyse, which executes user-written Python scripts on each shot to analyse the results, and
also executes scripts that operate on sets of data over multiple shots, producing dynami-
cally updating plots. In addition to providing a graphical interface for setting parameters,
runmanager provides a Python library for compiling shots programmatically, allowing
the flowchart to close into a loop and produce shots with parameters based on analysis
results. This can be used to optimise experiment outcomes with respect to a given figure
of merit. Figure reused with permission from Starkey et al. [16], © American Institute of
Physics 2013.

of our paper on the software, A scripted control system for autonomous hardware-timed
experiments [16], which is reproduced at the end of this chapter. I will also discuss our
development roadmap. Further details on the role of each program in the suite and the
design underlying it are available in the paper, and a more thorough presentation of the
software, its design principles, comparisons with other laboratory control software, and
recent and future developments are available in Philip Starkey’s thesis [103].

The labscript suite has been adopted by world-leading research groups at theNational
Institute of Standards and Technology, the University of Maryland, National Research
Laboratories, USArmyResearch Laboratory, StanfordUniversity, JILA, theUniversity of
Rochester, Dartmouth College, Universität Tübingen, Bates College, ICFO, Universität
Basel, and Technische Universität Darmstadt. It continues to grow as a collaborative
open-source software project benefiting the experimental physics community.

4.1. the labscript suite 89

4.1 The labscript suite

4.1.1 labscript

labscript is a library: that is, it is a set of classes, functions and methods that can
be called from user-written code. We call labscript a compiler, because the functions,
classes and methods within it generate tables of low-level instructions appropriate for
programming into devices to execute the experiment described by the user. Thus the
user writes a line of code such as MOT_beams.constant(t=3, 100, 'mW') and this
will add an entry to the table of instructions for whichever digital-to-analogue converter
(dac) is controlling the mot beams to output 100mW at t = 3 s after the beginning of
the experiment. This is a simple example, but has advantages over having a human write
the table directly.1 After one has told the labscript compiler with this line that the 1Most existing control systems in

our field are more-or-less in the
form of a large table with each
row corresponding to a particular
interval during the shot, with the
user editing values in the table
directly, or typing mathematical
expressions in the table describing
signal generation as a function of
time between one row of the table
and the next.

mot beams should have their control voltage2 set to a particular value, it knows that at

2In the example, the user provided
a power in units of milliwatts.
labscript device objects can in-
clude user-provided unit conversion
functions, allowing instructions to
be given in more physically mean-
ingful units for the common case
of an output voltage ultimately
controlling a laser power or some
other physical quantity via a known
conversion function.

all later times the same state should remain, until the user says otherwise. Thus the user
doesn’t need to also change all future rows of the table: it is enough to declare a change
once.

labscript automates much of the tedious, repetitive work of generating those lists
of voltages, frequencies, and digital values required to control an apparatus during a shot.
This tedium mostly comes from the fact that devices share a common timebase, trigger,
or clock. Synchronised output is achieved using a method called pseudoclocking, in which
timing pulses are produced by a ‘pseudoclock’ device whenever a state change is required
by one or more output devices. These pulses are received by several devices, necessitating
that all devices sharing a pseudoclock have an entry in their corresponding tables in order
to output the correct value (possibly the same as the previous value they were outputting)
at that time, lest they get too far ahead and output a value that was meant for a later time.
labscript takes high level descriptions of what voltages etc. are required at different
times, puts them on a common timing base and generates the correct tables of values. It
also collects any other instructions such as camera exposure durations, or the position
a translation stage should move to at the start of the experiment even though it is not
capable of moving quickly during the experiment. These instructions are processed by
labscript and saved to a file in the Hierarchical Data Format, version 5 [104] (hdf5).
hdf5 is a convenient, standardised, cross-platform, and self-documenting format with
widespread adoption across many disciplines, and compatibility with a wide range of
programming and analysis environments, providing a high degree of interoperability
between the data files produced by the labscript suite and other software tools.

An example of an experiment a user might write using labscript is shown below.
This code demonstrates a full (simple) experiment, setting up devices and their connec-
tions, and issuing a few commands for devices to take action at specific times. It also
demonstrates the use of a variable—bias_x_field_value—not defined in the code
itself. This value is inserted by runmanager, as discussed in the next section.

1 from labscript import *

2 from labscript_devices.PulseBlaster import PulseBlaster

3 from labscript_devices.NI_PCIe_6363 import NI_PCIe_6363

4
5 # Device definitions:

6 PulseBlaster(name='pulseblaster_0', board_number=0)

7 # Create a clock on one of the PulseBlaster's outputs:

8 ClockLine(

9 name='pulseblaster_pseudoclock',

10 pseudoclock=pulseblaster_0.pseudoclock,

11 connection='flag 1',

12)

13 NI_PCIe_6363(

14 name='ni_card_0',

15 parent_device=pulseblaster_pseudoclock,

16 MAX_name='ni_pcie_6363_0',

90 chapter 4. software for experiment control and analysis

17 clock_terminal='/ni_pcie_6363_0/PFI0',

18)

19
20 # Channel definitions:

21 Shutter(name='laser_shutter', parent_device=ni_card_0, connection='port0/line13')

22 AnalogOut(name='quadrupole_field', parent_device=ni_card_0, connection='ao0')

23 AnalogOut(name='bias_x_field', parent_device=ni_card_0, connection='ao1')

24
25 # Experiment logic:

26 start()

27 t = 0

28
29 # First laser pulse at t = 1 second:

30 t += 1

31 laser_shutter.open(t)

32 t += 0.5

33 laser_shutter.close(t)

34 t += 0.4

35
36 t += quadrupole_field.ramp(

37 t, duration=5, initial=0, final=3, samplerate=4

38) # samplerate in Hz

39
40 bias_x_field.ramp(t - 3, duration=1, initial=0, final=2.731, samplerate=8)

41 # t is now 6.9s, the end of the quadrupole field ramp

42
43 # Second laser pulse

44 t += 0.4

45 laser_shutter.open(t)

46 t += 1

47 bias_x_field.constant(t=0, value=0)

48 t += 0.5

49 laser_shutter.close(t)

50 t += 2

51
52 # Hold bias field at the value of bias_x_final_field for 2 seconds before ending the

53 # shot:

54 bias_x_field.constant(t, value=bias_x_field_value)

55 t += 2

56 stop(t)

4.1.2 runmanager

A thirty second or so experiment shot (a typical duration for a bec experiment, though
ion trapping experiments are often much shorter) is not the only timescale on which
experimentalists require automation. Commonly, the same brief experiment is repeated
over a range of input parameters spanning some (possibly multi-dimensional) parameter
space. In addition, there are many quantities involved in an experiment that do not
vary often, but nonetheless need to be managed. runmanager is a program providing a
graphical user interface (gui) for entering and managing such parameters and describing
the parameter spaces over which they vary. Users can enter simple numbers or expressions
(including expressions for non-numerical variables) into the interface, or lists of numbers
that can optionally be considered a description of a dimension of a parameter space. These
dimensions may be combined in an outer product resulting in a larger space, or equal
length dimensions may be looped over in tandem, if two or more variables are intended
to vary together rather than independently.

The gui of runmanager is shown in Figure 4.2. The user specifies in runmanager’s
interfacewhich Python file contains their experiment script, i.e. a Python script describing
the experiment logic using the labscript library. When the user clicks the ‘engage’
button, runmanager produces one hdf5 file—each containing a set of parameters—
for each point in the parameter space described by those parameters currently active in
the runmanager interface. For each hdf5 file runmanager initialises the labscript
library such that these values become global variables from the perspective of the user’s
experiment script, which then runs. For this reason we call the parameters ‘globals’. After
the user’s instructions are processed, the labscript library writes the resulting low-level

4.1. the labscript suite 91

Figure 4.2: The runmanager gui, showing the interface for entering ‘globals’, so called
because they appear to the user’s code as global variables. Boolean globals can be turned
on and off with a checkbox, and expressions resulting in an error are highlighted in red.
The ‘expansion’ column is where the user specifies whether a global should be considered
a list of values to loop over, re-running the experiment each time, and if so if that loop
should be combined with other such globals to loop over the resulting product space
(‘outer’) or whether the globals should be looped over together (‘zip’3). Zipped globals
can be grouped together by typing a name in the expansion column to identify which
‘zip group’ the global belongs to. Globals in the same zip group will loop together, and
multiple zip groups will form separate axes of a product space. Globals can be entered as
Python expressions, including expressions containing the names of other globals. The
evaluated result of an expression, or the error message if it could not be evaluated, is
displayed on mouse-over for each global.

hardware instructions to that same hdf5 file.
We refer to theprocess of passing thehdf5file to theuser’s code and running it as ‘com- 3The term for this operation—

called ‘convolution’ in computer
science—comes from the name
of the function in a number of
programming languages for con-
verting a tuple of sequences into
a sequence of tuples. The Python
zip() function is commonly used
with sequences such as numpy
arrays for this purpose.

pilation’, and the resulting hdf5 file containing both globals and hardware instructions
a ‘compiled shot file’. Compilation occurs in a separate process from the runmanager
graphical interface, allowing a clean separation between user code and runmanager, so
that even the most low-level crashes of the user’s code cannot crash runmanager and
only require a restart of its subprocess. This type of separation is a repeated theme in the
labscript suite and has been invaluable for making robust programs that can continue to
operate in the case of inevitable crashes of user code, or of bugs within labscript suite or
third-party code.

4.1.3 runviewer

runviewer is a program for viewing the results of labscript compilation in the formof
graphical plots of the voltages, digital values, frequencies etc. that comprise the hardware
instructions produced. This is useful for debugging experiment design and timing of
instructions, as well as verifying that a newly made labscript device class (the ‘driver’
code for each device that converts labscript’s intermediate description of hardware
instructions into the actual format required for a given device) is functioning as intended.
Thegui of runviewer is shown in Figure 4.3, illustrating the display of the output values
of a number of devices varying over the course of the shot.

92 chapter 4. software for experiment control and analysis

Figure 4.3: The interface of runviewer, showing the recently-added ‘nonlinear time’
feature, in which different intervals of the shot—as declared with labscript code—can
be meaningfully shown on the same time axis in equal proportion despite being of very
different duration.

4.1.4 BLACS

BLACS (Better Lab Apparatus Control System) is a graphical program responsible for
queueing experiment shots as compiled by labscript in tandem with runmanager,
and executing them one after the other on the hardware. As such, BLACS interacts with a
number of Python classes that serve asdrivers for eachdevice, containing code that uses the
required software libraries, hardware drivers or communicationprotocols to communicate
with each device. BLACS executes the code for communicating with each device in a
separate process in order to isolate them from each other, so that communication failures,
software bugs, or other failures that may occur in the interactions with one device will not
stopBLACS fromcontinuing to function inother respects. Errors are presented graphically
and each device process may be restarted with the click of a button if something goes
wrong, re-initialising communication with the offending device. This is useful both for
responding to an unexpected failure, and for debugging when developing a driver for a
new device (or new features for an existing device) to be integrated with the labscript
suite.

Upon receiving an hdf5 file from runmanager, BLACS adds it to the queue of shots
to be executed on the hardware. It then executes these shots in order, by programming
the instructions stored in the hdf5 file into each device, and then giving the top-level
device the command to begin the experiment. Devices are programmed in parallel in
their separate processes, saving time.4 Once the shot is complete, each device process is4Particularly since many delays

in programming the devices are
communication delays, during
which the process is simply idle.

given the command to write any data acquired to the hdf5 file.
BLACS can also repeat shots, by copying and then ‘cleaning’ an hdf5 file after it has

already run to produce a new shot file ready to be run on the hardware. It can repeat
either all the shots, or just the last one in the queue. This ability to always keep running by
repeating the last shot in the queue is crucial for experiments using alkali metal dispensers
(‘getters’) or ultraviolet light-induced atom desorption [105], as these processes must
run on an approximately fixed duty cycle to maintain a stable atomic vapour pressure,
otherwise experiments need to ‘warm up’ after being idle to reach a stable pressure.

4.1. the labscript suite 93

When processing of the shot queue is paused by the user or when the shot queue is
empty, BLACS remains in ‘manual mode’, in which the devices’ outputs may be controlled
in real-time by the user. The graphical interface of BLACS (shown in Figure 4.4) presents
controls for the outputs of all devices, with each device and output channel labelled with
its name as specified in a ‘connection table’ file containing labscript code describing
the connection hierarchy of all devices. BLACS automatically generates the graphical
interface for each device based a specification of its capabilities by its driver class, resulting
in a set of controls for digital, analogue, and frequency generator outputs labelled with
their names and using the same unit conversions set in labscript code for use inmanual
mode. Driver code may add to this interface arbitrarily to add a graphical interface for
other capabilities of the device. The BLACS queue can be paused, shots reordered or
deleted, and the currently running shot can be aborted. The queue can be put in one of
two repeat modes, such that either all queued shots, or only the final shot are repeated
indefinitely.

4.1.5 lyse

Once a shot has been executed, BLACS optionally passes the shot file on to the analysis
program lyse. lyse is essentially a scheduler for user-provided analysis routines. A
list of analysis routines (in the form of Python scripts), called single-shot routines are
executed in order whenever a new shot is received by lyse, with the shot file provided
as input to each script. The analysis routines may read raw data from the hdf5 file, or
read analysis results saved by previously-run analysis routines, and save their own results.
Analysis routines may also produce plots using the matplotlib library [106]—lyse

detects these and reuses the same window for subsequent plots so that repeated runs of
the analysis routines result in the plot updating in-place, rather than a proliferation of
plot windows. Any other plotting library can be used (for example pyqtgraph [107]),
though in this case the auto-updating behaviour is not provided automatically by lyse.

The shot globals and analysis results for all shots received by lyse are maintained in
a tabular data structure—a ‘dataframe’ provided by the pandas [108] Python package—
which is browsable in the lyse interface. This table of data is available to a further list
of analysis routines, called multi-shot routines. This list of analysis routines is also run in
sequence, but only once single-shot analysis has completed on all shots presently loaded
into lyse. These routines can be analyses of relations between input parameters and
analysis results of the shots, in order to say, measure a trend of the number of atoms in a
mot as the magnetic field gradient was varied. Both single-shot and multi-shot routines
can be run from within lyse, or externally by running Python manually. In this latter
case, the shot file on which to run single shot analysis can be provided as a command line
argument, and the dataframe analysed by multi-shot routines can be obtained from a
running instance of lyse over the network. This is no different to what happens when
multi-shot routines are run fromwithin lyse: they are simply run by lysewith no input,
and are expected to call a function lyse.data() to obtain the dataframe containing
multi-shot data. Because of the way this is implemented, one can also open an interac-
tive Python interpreter such as IPython [109] on any computer on the same network,
type import lyse; df = lyse.data(hostname) (where hostname is the network
name of the computer running lyse) and begin interactively exploring the data using
the pandas library, one of its great strengths.

94
ch

apter
4.

softw
are

for
experim

ent
control

and
analysis

Figure 4.4: The interface of BLACS, showing the experiment queue to the left and manual controls of devices within a tabbed interface to the right. When a hardware-timed
experiment is not in progress, outputs may be controlled manually using this interface. Presently the gui for four devices can be displayed simultaneously, though we plan
to allow BLACS tabs to occupy their own windows or even reside on different computers to allow a better use of screen space. Output widgets are labelled with the names of
the outputs they control and can be ‘locked’ to temporarily disallow modifications to their state. Most of the interface for each device is automatically generated from the
description of the device and its outputs given in labscript code, though the author of a device driver for the labscript suite is free to include any graphical elements in a
device tab. This screenshot was taken using the current device configuration of the Monash KRb lab.

4.2.
design

ph
ilosoph

y
and

advantages
of

approach
95

Figure 4.5: The interface of lyse. To the top left is the list of single-shot routines, and to the right of it the multi-shot routines presently loaded (empty in this example).
The list of shots is below them, showing some of the globals and analysis results of these shots. To the right is the output box where any textual output produced by analysis
routines is displayed. Overlaid is a plot produced by a single-shot analysis routine. This screenshot was taken using shot files and an analysis routine script from the Monash
KRb lab’s two-dimensional turbulence experiment [110]

96 chapter 4. software for experiment control and analysis

Figure 4.6: Sage advice from theMonash Spinor bec lab gremlin. When troubleshooting
a hyper-parametrised experiment, one often asks “What’s changed (since it last worked)?”
This can be answered with a textual diff of the user’s experiment script, or by a similar
‘diff ’ of the experiment parameters (globals) built into the runmanager gui, the latter
exposing those parameters that have changed, been removed, or added, with respect to
any prior shot.

4.2 Design philosophy and advantages of approach

4.2.1 It’s code

The design of the labscript suite brings the process of composing experiments closer to
that of software development, making it amenable to useful development precepts such as
version control, bug tracking, and textual ‘diffs’ highlighting changes between versions of
experiment logic. Both the experiment logic and the analysis routines comprise Python
code amenable to these practices. This can allow risky changes to experiment logic or
analysis code to be explored with the reassurance of being able to roll back to a known
working state should the changes not prove fruitful, or for changes to shared experiment
or analysis code to be forked into multiple versions using distributed version control
and merged back together again to combine improvements from multiple sources. One
exception to this ‘everything is code’ philosophy is the globals themselves, which are
stored in non-textual hdf5 files, though we do have a tool for ‘diffing’ them too, to
highlight what has changed between two globals files, or between the current set of values
configured in runmanager as compared to a particular shot file, which is crucial in the
experiment debugging process (Figure 4.6).

As in software development, experimental physics re-uses the same procedures time
and time again, and benefits from a way to manage the complexity of turning large parts
of functionality on and off, repeating them, or otherwise conditionally modifying their
behaviour. In a traditional atomic physics control system, disabling or repeating a part
of the experiment logic might involve tedious clicking to remove or duplicate each in-
struction involved. In Python, this can be a single if statement or for loop wrapping
a function call containing the complexity of the part of the experiment being disabled
or repeated. This ability of high level programming languages to manage complexity
via encapsulation and code re-use with functions, classes and modules carries well over
to experimental physics. Using an existing programming language saves us—as the de-
velopers of the control system—from having to re-invent (likely badly) the features of
a programming language within our control system. For example, the tedious clicking
required to disable part of an experiment in the aforementioned hypothetical ‘traditional’
control system could be avoided if the system implemented a feature for conditionals—
akin to if statements. However, more complex control akin to nested if statements—or
the equivalent of other control flow statements such as while loops or recursion—may

4.2. design philosophy and advantages of approach 97

be required for some applications. To support all the use cases that may arise, one would
ultimately be inventing and embedding a complete programming language within such a
control system. Use of an existing complete programming language obviates this need.

The use of an existing programming language for experiment control flow only
aids the labscript suite in the case of ‘compile-time’ conditionals and other control
statements—those that can be evaluated when the hardware instructions are produced
by labscript—as opposed to those at ‘run time’ when the shot is run on the hardware
(such as conditionally turning a laser on if a photon is detected on a photo-detector). Such
run-time control statements do require special treatment in labscript, and labscript
currently only has one type of functionality like this built-in. This is the ability to pause
the shot until a pulse is produced that resumes the ‘master’ pseudoclock. This allows the
common use case of synchronisation with the background 50 or 60Hzmagnetic noise
from mains electricity by pausing shot execution until a fixed point in the power line
cycle to ensure the magnetic field is close to identical from one shot to the next. Another
example is servoing of the mot load, by loading for a variable amount of time based on a
threshold fluorescence such that variations in mot loading efficiency from one shot to
the next do not result in variations in actual atom numbers.

Further run-time control flow tools such as conditional branches would not be too
difficult to incorporate into labscript in the future, but would require hardware ca-
pable of holding multiple alternative sets of instructions in memory and able to switch
between themon a digital edge or the state of a digital signal on some input. TheSpinCore
PulseBlaster—the device used by most users of the labscript suite to produce clocking
pulses—supports this, but most output devices labs use with the labscript suite do not.
However, custom field-programmable gate arrays (fpgas) implementing this function-
ality for digital or analogue output could be integrated with the labscript suite for this
purpose, as they have been for other purposes [111].

4.2.2 Modularity and the Unix philosophy

An aspect of the Unix philosophy [112] is that tools should ‘do one thing and do it
well’. The components of the labscript suite are not as minimal as they could be, but
are nonetheless discrete, encapsulating different concerns and communicating with each
other over network connections.5 Thus in principle one can remove a component and 5This is in violation of another

part of the Unix philosophy that
says programs should exchange
text streams: our programs mostly
exchange messages over network
sockets, containing filenames
pointing to hdf5 files on a network
drive.

replace it with another that plays a different role. For example, runmanager has been
re-purposed by Philip Starkey [103] to generate parameter space scans for numerical
simulations rather than for experiments. lyse is in use by Fred Jendrzejewski’s group at
Universität Heidelberg for on-line analysis of experiment results in the form of hdf5 files
produced by a different data acquisition system.

Eachofrunmanager,BLACS, andlyse is implemented as a number of sub-components
exchanging instructions over network sockets, even though the collection of processes
semantically comprise a single application. This architecture facilitates a fairly direct
extension (currently in development) in which different parts of the same program can
be run on different computers. One can then imagine having lyse analysis routines
run on a remote computer (perhaps a server with a powerful gpu or many cpu cores
for computationally intensive analyses), or having BLACS control devices that connected
to a remote computer. This latter configuration will allow device to be connected to
additional computers that are located close to the devices they control, which will reduce
the need for long signal cables that can contribute to ground loops. It will also allow
BLACS to simultaneously control devices that cannot be connected to the same computer;
for example, those which require different operating systems or have other conflicting
software or hardware configurations.6 6A pertinent example is the band-

width of a computer’s usb bus
being the limiting factor in the
speed at which one lab can run
experiments: using two comput-
ers to program two usb devices
could halve the programming time
between shots. This is a limiting
factor in the repetition rate of shots
in the Spielman group’s RbLi lab at
the Joint Quantum Institute.

Modularity also allows the user’s role in setting globals and commanding the experi-
ment graphically via runmanager to be replaced with algorithmic control of globals and

98 chapter 4. software for experiment control and analysis

shot compilation. This opens the door to closed-loop optimisation in which globals in
the next batch of shots are determined by the results of previous analysis routines run
on previous shots as part of an optimisation algorithm. In the past, the labscript suite
contained a program called mise, used for performing optimisation of the experiment.
mise would use a library of functions provided by runmanager (but not the graphi-
cal interface) to produce shots based on a genetic algorithm and the results of analysis
communicated to it by lyse analysis routines. This type of optimisation was powerful
but inflexible, and we no longer maintain mise. However a similar method is used in
the Spinor bec lab at Monash to integrate the mloop machine-learning optimisation
library [113] with the labscript suite for experiment optimisation.

The separation of components also aids in development of the labscript suite. Pro-
grams can be ported one-at-a-time to use updated versions of libraries, and tested sep-
arately, enabling a flexible model of development which has proved invaluable to the
open-source development process.

4.2.3 Off-the-shelf hardware

The labscript suite is the software part of an experiment control system, and does not
mandate any particular hardware. Whilst drivers for a range of off-the-shelf and in-house
devices are developed andmaintained bymyself and the other labscript suite developers, if
onewants to use different hardware, whether off-the-shelf or custom, one canwrite drivers
for it and use it with the labscript suite. This does mean that the software cannot make
hard assumptions about the hardware and has to deal with a wider range of possibilities,
which is a complicating factor inmaintaining the code, but I believe this approach is better,
compared to designing a limited range of hardware specifically for the labscript suite or
vice versa. It is difficult to anticipate what hardware capabilities experimentalists will
require for atomic physics experiments in the future, and science is by its nature pushing
the envelope such that converging on ‘standard’ hardware can be at odds with making
scientific progress. Therefore it is better to leave the software as agnostic as reasonably
possible when it comes to hardware.

The abstraction of devices as Python objects in labscript code allows interchange-
ability of devices with compatible feature sets, minimising the code changes required if a
device is replaced with one from another manufacturer should it break or be superseded
in some specification. Such a ‘drop-in’ replacement may only require one line of user
code to change, with all subsequent references in code to the device instance remaining
unchanged, and labscript thereafter generating instructions as required by the new
device. This agnosticism to and abstraction over hardware decreases the friction ofmaking
hardware changes to an experiment, allowing the experimenter more flexibility in making
such modifications.

Labscript suite developers and users have also made some hardware of their own, and
there exists a low-cost pseudoclock and digital output device based on a sub-US$100
microcontroller board (called the PineBlaster and BitBlaster, respectively). However
these have proved difficult to maintain in the face of changing software development kits
for the microcontrollers, and I suspect the use of fpgas instead of microcontrollers will
offer the same functionality at similar cost, but with greater longevity.7 Rory Speirs [114]7Longevity in the sense of the code

continuing to work unmodified
with future versions of the device
and the software development kit
required to program it.

has developed a low-cost fpga-based pseudoclock (to be released as an open-source
project) that may be an attractive alternative to the SpinCore PulseBlaster for use with
the labscript suite.

4.2.4 Open-source, popular programming language and data format

The open source nature of labscript suite—as well as that of the technologies used in its
implementation—has benefited the project considerably.

4.2. design philosophy and advantages of approach 99

The labscript suite itself being open source allows others to modify it to their needs,
expanding the range of experiments that it can be used with. If such modifications are
applicable to a wide enough range of users, they can be contributed back to the main
project. Not least importantly, bugs in the code that have been worked around or fixed by
a single end-user can be contributed back to themain project for the benefit of all. This has
led to a steady improvement in the usability and stability of the software as usability issues
and bugs have been noticed and fixed by people inside and outside the core development
team. Sometimes there is disagreement about what features belong in the labscript suite,
or more often, over how they should be implemented. The open-source nature of the
project allows end users to continue to use an implementation of functionality that there
may not be agreement about including in the main project, either permanently or until
another implementation is available. This is preferable to simply being at the mercy of
the core developers as to what features they will or will not implement (whether due to
differing opinions or to time constraints).8 8Although a commercial model

has the potential to work here too,
in which users pay for features
to be implemented. There is also
the ‘best of both worlds’ approach
of bug and feature ‘bounties’,
where users add a cash reward for
implementing certain features or
resolving bugs, adopted by some
open-source software projects.

The use of third-party open-source technologies in the labscript suite has also been
advantageous, aswhen the projectswe rely ondonot fully satisfy our needs, we canmodify
them accordingly. Furthermore, these modifications, if agreeable to the developers of
said libraries, can be included in the ‘upstream’ project to remove the requirement that
we maintain the patches ourselves. To this end I have had changes accepted into the
numpy [115], pandas [108], pyzmq [116] and h5py [117] projects which improve their
behaviour for the labscript suite’s purposes.

Python is a popular programming language with a gentle learning curve, allowing new
users with little programming experience to compose experiment logic quickly. Many
students and other physicists already use Python for data analysis and other tasks, and
knowledge of the language is increasingly widespread among physicists. This decreases
the barrier to entry for modifying the labscript suite or contributing to its development.

The use of the standardised hdf5 format, and of the popular zeromq [118] messaging
protocol for communication between components allows interoperability with a wide
range of other programming languages and technologies, such that software written in
other languages can interact with running labscript suite programs and read the data
files produced by them. The camera interface program BIAS is an example of this—it is
written in LabVIEW and yet reads and writes data to the same shot files as the rest of the
labscript suite using the hdf5 library, and communicates with components of the suite
over the network using the zeromq library.

4.2.5 Collateral benefits

Developing and maintaining the labscript suite has involved achieving several interme-
diate, instrumental goals in order to advance the ultimate goals of the project. Some of
these solutions have been packaged as separate software projects, or are available from
within the labscript suite, and may be used for other purposes.

For example, the modular nature of the suite (Section 4.2.2) and the multi-threaded
and multi-process implementation of its components necessitates that components com-
municate with each other by message passing (largely in line with the ‘actor model’ of
concurrent programming9). As such the codebase contains reusable pieces for launching 9Though I had no formal education

in the actor model before writing
code in this style—I attribute my
fondness for it to the computer
game SpaceChem [119], in which the
player constructs chemical ‘reactors’
comprising multiple threads of
execution exchanging atoms and
molecules.

processes and initiating message passing with them, of redirecting output of subprocesses
to some visible location rather than a terminal, or of starting and stopping ‘servers’ and
creating ‘clients’ to either pipe data continuously, or make discrete requests that necessi-
tate a response. Furthermore, these multiple threads and processes often require access to
the same files (the hdf5 files containing the data for each experiment run), and access to
these files needs to be serialised to prevent data corruption, including the case of multiple
computers attempting to access the file over the network. To address these problems
I developed zprocess [120], an open-source Python package officially separate from

100 chapter 4. software for experiment control and analysis

the labscript suite but very much developed to meet its needs for management of and
communication/synchronisation between multiple processes. This project is used not
just for the labscript suite, but for other laboratory automation tasks. It is also used in the
software implementation of an undergraduate experiment in the School of Physics and
Astronomy at Monash University, allowing students to remotely control the experiment
and collect data over the internet [121].

Multi-threaded graphical programs canpresent development problems as the software
library for the graphical interface generally must be accessed only from the one thread.
This is the case for the Qt toolkit [122] as used in the labscript suite, and so interacting
with the graphical interface from multiple threads necessitates message passing to request
that an operation be performed in the ‘main’ thread. We have similarly encapsulated
our solutions to this—as well as several other problems repeatedly encountered in using
the Qt toolkit, such as an icon set, automatic loading of graphical layouts from external
files, and others—into the qtutils project [123], which is used for other small graphical
utilities in our group, separately from the labscript suite. This library has also been used
in an undergraduate teaching context at Monash University to improve infrastructure
for digital logbooks used by undergraduate students.

We have also developed a number of debugging and profiling tools that are useful for
debugging numerical simulations, or other code unrelated to the labscript suite.

4.3 Recent and future developments

Since the publication of our paper in 2013 [16], the number of groups using our software
has increased considerably, from the two bec laboratories atMonash, to amodest number
of groups around the world.

During my PhD I was invited to visit the Joint Quantum Institute in the group of Ian
Spielman, with the aim of improving the labscript suite to make it more usable, and easier
for others to install. The primary goal was to port the graphical programs from the gtk
toolkit [124]—used to produce the graphical interfaces of the labscript suite—to the
Qt toolkit [122], and to write a program to automate the installation process, which was
previously somewhat tedious. These goals were achieved, and installing the labscript suite
is now a matter of installing an appropriate Python environment, and then downloading
and running our installation script.

The following subsections detail this and a number of other developments since the
publication of our paper, as well as planned and in-progress improvements to the suite.

4.3.1 Port to Qt

The port to Qt [122] was a crucial development. As discussed in the publication repro-
duced at the end of this chapter, we initially chose the gtk toolkit for its cross-platform
compatibility and good Python bindings [125]. This proved to be the wrong decision, as
the gtk project has rapidly developed and dropped support for older versions. The newer
versions were difficult to install or deploy on operating systems other than Linux, and the
changes were significant enough to impose a considerable ongoing development cost to
keeping code up to date with them. Although slated as a cross-platform toolkit, the gtk
project is developed by and primarily serves the needs of the gnome project [126], and
thus its development is driven by those needs. There is little incentive for Windows- or
Mac-specific bugs to be fixed, or for the installation process to be improved. Although
it’s an open-source project such that people other than the core developers could con-
tribute fixes to these issues, the Linux-centric nature of the project impedes these fixes
from being accepted for inclusion. Using the (also open-source) Qt toolkit is the chosen
solution for many cross-platform graphical software projects, and so we chose to adopt

4.3. recent and future developments 101

this toolkit in 2013, with most programs ported in 2014. The experience of both main-
taining and installing the labscript suite is much improved as a result. Being the standard
cross-platform gui toolkit, Qt is already available in the standard Anaconda Python
distribution [127]–the preferred Python distribution among scientists at the present time.
With our qtutils package, an icon set is available, obviating the need to install a separate
icon pack as was previously the case. Most importantly, the Qt software project exists to
serve the needs of graphical programs generally, and is used bymanymajor cross-platform
projects. Combined with the fact that Qt is open source, this is insurance against future
breaking changes in Qt or against the Qt Company going out of business—open source
projects can be forked and maintained by the community, and the more popular they
are the more likely this is to occur if they take an unpopular turn or are abandoned by
their present maintainers. We therefore have confidence that the Qt project’s direction is
aligned with the needs of the labscript suite, and that we can continue to rely on it in a
way we could not with the gtk project for our project’s longevity, without introducing
unnecessary technical debt.

4.3.2 Python 3

The labscript suite was initially written in version 2.7 of the Python programming lan-
guage, even though version 3 of Python had been released several years prior. The Python
community has in this time been in a decade-long transition from one version to the
next due to some non-trivial differences between the two versions. I believe we made the
right decision to initially use Python version 2.7, as many of the technologies the labscript
suite relies on did not have Python 3 compatibility for some time. However, the point of
inflection in the adoption curve for Python 3 has occurred in the last two years or so, and
now is the right time for Python 3 adoption. With the help of third party contributors
(primarily Jan Werkmann), the entirety of the labscript suite has now been ported to run
on both Python 2 and Python 3.

We do not expect such an extended issue as this to occur again; the Python core
developers consider this transition to be a one-off, and future porting efforts of labscript-
suite components will likely be no more work than usually required to keep up with
minor changes between language versions.

4.3.3 More devices, more features, general polish

There are more devices compatible with the labscript suite, and more models and features
of existing devices are now supported. The programs are easier to use, and many cases
where obscure errors were thrown have been replaced with friendlier error messages
explaining the situation in human-readable terms. Following is an incomplete list of
minor to modest usability improvements:

• BLACS has a plugin to delete shots that are repeated versions of previous shots.
This prevents unnecessary consumption of disk space when these shots are running
only to keep an experiment ‘warm’ (initially implemented by Ian Spielman, and
re-implemented by me as a plugin for BLACS).

• lysemore gracefully handles shot files that have been deleted off the disk: declin-
ing to run single-shot analysis on them, but keeping their data in the dataframe
available for multi-shot analysis until they are deleted from the lyse interface.
This aids in, for example, diagnosing a day-long drift in some performance char-
acteristic of the experiment even though most shot files are deleted due to the
aforementioned desire to save disk space (implemented by me).

102 chapter 4. software for experiment control and analysis

• lyse is more performant, only updating those values of the dataframe that have
changed, and minimising the number of times it opens a hdf5 file. This improves
performance for very large numbers of very short duration shots, as is common in
ion trapping (implemented by Jan Werkmann with changes by me).

• BLACS has had some bugs resolved that unnecessarily introduced delays on the
order of 0.5 s between running shots. These delays were not very noticeable for
the cold atom experiments of order 15–30 s, but again are important for the ion
trappers (implemented by me and Philip Starkey).

• BLACS tabs have a separate optional terminal output for each device subprocess,
allowing simpler debugging and development of devices (implemented by me).

• More flexible camera interface. There are now a number of camera ‘servers’ in use by
various groups playing the role that BIAS plays atMonash, including a fork of BIAS
named unBIASed by Ian Spielman (changes made to facilitate communication
with Python camera servers implemented by me)

• labscript can accept arbitrary function ramps using user-supplied functions,
not limited to the built-in list of functional forms. This has always been possible
with some effort, but now has a friendlier programming interface (implemented
by me).

• There is a unified interface for saving and retrieving configuration settings of devices
in labscript to hdf5 files, including JavaScript Object Notation serialisation
for complex data types that do not coincide with a hdf5 datatype. This replaces a
number of ad-hoc serialisation methods previously in use to store configuration
settings of devices (specification designed by Ian Spielman and core developers,
implementation by Ian Spielman and me).

• There is a unified labscript device driver for National Instruments DAQmx
devices, removing the code duplication and complexity of maintaining multi-
ple device classes for this range of devices. This class exists in the fork of the
labscript_devices repository in use by the Spielman group at the Joint Quan-
tum Institute, but will be merged into the mainline codebase soon—it is already in
use by groups who are not otherwise using the Spielman fork of the code, and so
has undergone some testing and bugfixes outside of the hardware in the Spielman
group. In time the model-specific code will likely be removed in favour of the
unified interface (implemented by Ian Spielman).

• labscript has functionality to mark certain points of time of the shot with a
named marker, visible in runviewer to visibly delineate different stages of the
experiment (implemented by Jan Werkmann).

• runviewer has a ‘nonlinear time’ mode, in which the time axis uses a different
scale for the different stages of the experiment as described by themarkers, allowing
short and long timescales to be visible on the same plots in. (implemented by Jan
Werkmann with changes by Shaun Johnstone).

• labscript has the ability to mark digital outputs as ‘inverted’, such that digital
low represents a device being on, semantically speaking. The buttons for these
outputs are represented with different colours in the BLACS interface to avoid
confusion (implemented by Jan Werkmann).

• Gated clocks: deviceswith vastly differentmemory capabilities can receive clocking
signals from the same clocking device such as a PulseBlaster, but on different digital

4.3. recent and future developments 103

channels such that the clock ticks intended for one device are not received by other
devices. There is still a single pseudoclock, but its outputs are ‘gated’—whilw the
clock is ticking for one device it is not ticking for another (implemented by Philip
Starkey).

• lyse plots can be copied to the clipboardwith a button click, reducing the number
of steps to include plots in a digital log book (implemented by me).

• runmanager, lyse, and runviewer have the ability to save and load configura-
tion settings, such that the same sets of globals files in the case of runmanager, or
the same sets of analysis routines in the case of lyse, and the same view settings in
the case of runviewer can be loaded at start-up of each application (implemented
by Philip Starkey for runmanager and Jan Werkmann for lyse and runviewer).

• runmanager allows finer control over parameter spaces, including randomising
the order of a parameter space scan on a per-axis basis, control over the nesting
order in which the axes are looped over, and a graphical representation of this
looping (implemented by Philip Starkey).

4.3.4 Optimisation

Theprogram mise, mentioned in the paper, has been deprecated. Nothing has replaced it,
though due to the modularity of the labscript suite, optimisation is still possible through
use of the runmanager library directly. This is a testament to the flexible design of the
labscript suite, but could nonetheless be improved.

I plan to improve this functionality in the future, and one of the near-term develop-
ment goals is to add a ‘remote’ application programming interface (api) for runmanager.
This will enable a program to control a running instance of runmanager to set the values
of globals and initiate shot compilation and submission to BLACS. This will be a much
simpler interface as well as being compatible with just-in-time compilation, discussed
below.

4.3.5 Just-in-time compilation

One feedback mechanism not previously anticipated—more accurately described as feed-
forward in this context—is the need to modify one or more parameters in the very next
shot to be run, whilst performing some parameter space scan or repetition. For example,
in the Spielman group’s atom chip lab, an environmental magnetic field drift on a several
hour timescale is corrected for by performing an error measurement each shot, to be
fed-forward to the next shot as a change in the applied field bias. Other than this, the
experiment is not performing any optimisation or feedback. In the atom chip lab, this
functionality is implemented by having BLACS use the existing runmanager api (not
the proposed ‘remote’ api) to re-compile the shot files just before running them, to be
sure to include the updated magnetic field bias estimate.

This is an example of functionality being implemented by users to serve an immediate
need. However I would like to move this ‘just-in-time’ compilation into runmanager,
so that the shot is compiled only once rather than being recompiled. Compilation by
BLACS is unappealing since it may be on a different computer with different versions of
the code being compiled, leading to the possibility of subtle errors, and more generally
violates the design philosophy of separation of concerns that has served us well thus far.

For this reason—aswell the applicability to optimisationmentioned above—I plan to
implement both a remote api for runmanager as well as a ‘compilation queue’ containing
shots yet to be compiled, whose variables can still be changed (possibly remotely) up until
the moment BLACS requests a new shot,10 triggering compilation to occur. 10Either because its queue is empty,

or nearly empty—by requesting a
shot before the queue is fully empty
one can prevent the experiment
being idle during compilation, at
the expense of the feed-forward
changes taking effect only some
number of shots in the future.

104 chapter 4. software for experiment control and analysis

4.3.6 Fixed shot repetition interval

Since BLACS takes a usually small—but variable—amount of time to program the hard-
ware in between shots, this contributes to a variation in the average proportion of time
an atom dispenser is receiving current or ultraviolet light-induced desorption is active,
leading to vapour pressure variations in experiments that operate in this manner. In the
Spielman fork of the BLACS repository, there is functionality—to be merged or reimple-
mented in the main codebase—for setting a fixed overall duration for the shot execution
plus programming time, such that after programming devices, BLACSwaits some addi-
tional amount of time in order that shots run at precisely equal intervals. This can be used
not only to compensate for variations in programming time, but also for variations caused
by changes of parameters that affect the shot duration, or by variable-length waits while
the experiment is paused, such as servoing a mot load as mentioned in Section 4.2.1.

4.3.7 Remote device control

A work in progress is to allow devices to be connected to any computer, not just the one
that BLACS is running on. Some devices—such as those communicating over Ethernet—
are inherently remote controllable, but others can only be programmed from the computer
to which they are directly connected. In addition to the benefits of remote control
outlined in Section 4.2.2, a distributed graphical interface would also allow one to make
better use of computer screen real estate, with interfaces for different devices controlled by
BLACS presented on separate computers, reducing the clutter in a single BLACS interface
with a large number of devices. One reason for making a separate camera control program
in the form of BIASwas to be able to view images immediately at all times without having
to ensure the correct tab in the BLACS interface is active. Being able to display these tabs
as separate windows on different screens and computers will obviate this need and allow
cameras to be once again treated the same as other devices.1111This was not the only reason

BIAS was made as a separate sys-
tem. Another reason was the
availability of software libraries
for interacting with certain cam-
eras, these were available for Lab-
VIEW at the time, but not Python.
Python wrappers, pyvisa [128]
and pynivision [129] for the
National Instruments VISA and
NI-Vision libraries have since
become available, removing the
need for LabVIEW to be used with
cameras or other devices requiring
these interfaces.

In discussion with developers and users, we have designed a specification for how the
desired layout of devices on a network will be described by users in labscript code,
and we have a partial implementation. Most of the work toward this has been in the
zprocess package, which I have been adapting to meet these needs, including the use
of encryption to ensure that the ability to start processes on remote computers is secure.
This feature in zprocess is nearly complete, after which we will modify BLACS to make
use of zprocess to launch remote processes for communicating with hardware and
displaying their graphical interfaces. These two features are planned to be separate, such
that BLACS, the graphical interface for a specific device, and the device itself can be on
the same computer, or two, or three, for maximum flexibility in the location of graphical
interfaces and hardware within the lab.

4.4 labscript version 3

The labscript compiler itself is the oldest part of our codebase, and has changed
significantly since its initial incarnation. We have become more skilled programmers
in the 7 years since it was first written, and some design decisions have proved to be
limiting. For example, many calculations performed by labscript during compilation
are destructive—that is, new data replaces old data as processing proceeds. Specifically,
timing transformations in labscript discard the original, untransformed timing data.
Thismakes it difficult to debugwhere timing problems have occurred, andmakes the code
fragile to the introduction of bugs in which timing transformations are accidentally taken
into account twice or not at all, as opposed to exactly once as required. Furthermore,
timing calculations are performed mostly using floating point arithmetic, necessitating
that all comparisons be performed with some tolerance or rounding. This is error-prone

4.5. other future developments 105

and unnatural given that the hardware devices generally have a quantised duration of
each instruction. Finally, when an exception occurs in labscript indicative of the user
requesting something not possible (such as two instructions closer together in time than
the hardware is capable of), labscript does not identify where in the user’s code the
instruction originated, making it difficult to provide the user with information that helps
them resolve the issue.

To address these three concerns, I have been restructuring the core instruction and
timing processing of labscript, such that: all processing is non-destructive, the points
in the user’s code where instructions are created are noted for later use in error messages,
and all timing calculations are performed using integer arithmetic after quantising tim-
ing details as early as possible, according to the time resolution of the pseudoclock of
each device. This project, called labscript_core, will eventually replace the part of
labscript responsible for timing calculations and instruction handling, improving
the code from the perspective of users and developers. If possible I will keep the timing
computations separate from the other higher level parts of labscript (globals, device
properties, hdf5 files) so that it can be independently tested and verified (ideally in the
context of an automated test suite) so that we can be confident in the output it produces,
and that regressions have not been introduced when changes are made.

4.5 Other future developments

An immediate concern is to unify themainline labscript suite codebase—thatmaintained
by myself and the other core developers—with the Spielman group’s fork of the code.
This will involve merging (or re-implementing in the mainline codebase) the remaining
features present in the Spielman fork as discussed in the previous sections, as well as others
not mentioned here.

There are a number of third party contributions (mostly authored by Jan Werkmann)
awaiting approval by a core maintainer such as myself or Philip Starkey. Some of these
are:

• Analogue input widgets for BLACS, which display a numerical value for the voltage
of each analogue input, or interactively updating plot of each voltage trace over
time (i.e. a virtual oscilloscope).

• Plugin tabs for BLACS to allow plugins for BLACS to insert tabs into its graphical
interface, allowing plugins to have rich interfaces of their own, separate from the
main interface of BLACS.

Other changes proposed but not implemented include:

• ‘Analysis globals’: like the globals set in runmanager, but set in lyse instead.
Presently, users are ‘abusing’ globals set in runmanager in order to configure how
analysis will run. For example, there are globals being set by users that tell analysis
code which pair of variables to plot against each other. As this may change after a
shot has run, an interface where ‘analysis globals’ can be set and used by analysis
routines would be preferable.

Finally, the entire project would benefit from more and better documentation. Docu-
mentation exists,12 though it could be far more thorough. More importantly, the develop- 12Primarily written by Philip

Starkey.ment process has not ensured that documentation is kept up to date with changes to the
code. Instead, new information is often hidden in code comments or in commit messages.
This as a flaw in the development process, rather than a lack of effort or consideration.
The Python community has a solution to this problem, which is to use libraries that turn
appropriately formatted text embedded within the code, called ‘docstrings’, into proper

106 chapter 4. software for experiment control and analysis

documentation. This creates incentives to write and update these docstrings to a higher
standard, knowing that they will be immediately visible in official documentation. This
expectation can be enforced during code reviews that occur when pull requests are made
for changes to be included in the mainline code repository. Such a change of process
would help maintain and improve documentation continuously over time, and is better
in my opinion than occasional bursts of effort and re-writes of the documentation.

An immediately available strategy to bring about better documentation is to put
the process in place to automatically render and publish the existing docstrings, despite
their present inadequacy, and begin to enforce the policy of updating the documentation
whenever the code changes. This way over time the documentation will improve, and
being code rather than a pdf or Microsoft Word document, will be amenable to pull
requests and bug reports in the same manner as the rest of the code, which—as we have
experienced—leads to inexorable improvement via an open process that accepts external
fixes from others.

There is also a substantial quantity of best-practices and lore known to users of the
labscript suite regarding hardware as well as software, including many tips and tricks that
are specific to certain setups. Whilst the labscript suite has a mailing list in which much
of this information is exchanged, it would benefit the project to have a user-editable wiki,
to decrease the barrier-to-entry for users to share domain-specific knowledge outside the
context of an email thread, even though it may not suit the official project documentation.

4.6 Project history and attribution

Here I acknowledge the contributions of authors to the different components of the
labscript suite, and provide a history of major developments. This is not comprehensive,
and many improvements have been provided by others; nonetheless the majority of the
design and programming effort behind the labscript suite is due to the authors responsible
for the initial creation and major developments of each subproject as outlined below. A
full history of the codebase is publicly available on our on-line repositories [120, 123, 130]
and can be used to credit any particular change or piece of code to the appropriate
author.13 Plots of present and historical authorship by number of lines of code are shown13With the exception of generic

usernames occasionally being
used from lab computers such that
authorship was not recorded.

in Figure 4.7.
The initial idea of having object-oriented Python code compiled to low-level instruc-

tions was inspired by a similar implementation by Scott Owen and David Hall [23] in
which experiment logic is described in C++ and programmed into the hardware using a
LabVIEW program with a state-machine architecture.

Toward this goal I developed an initial implementation of the labscript compiler
in Python in February 2011. Throughout the following year or so, the architecture of the
software suite, its components and how they would interact was developed bymembers of
the Monash Quantum Fluids group including Lincoln Turner, Russell Anderson, myself,
Philip Starkey, Shaun Johnsone, Martijn Jasperse, and others.

The initial implementation of programming labscript-generated instructions into
hardware was written in LabVIEW by to Russell Anderson in early 2011, followed by the
initial version of runmanager written by me in August 2011 and the initial version of
runviewer, also by me, in September 2011. Early in development I moved runviewer
to use the Qt toolkit in order to take advantage of the pyqtgraph [107] plotting library,
which was necessary for acceptable performance of runviewer.

Philip Starkey wrote the initial version of BLACS in October 2011, superseding the
LabVIEW control system. In November 2011 Philip Starkey and I re-architected BLACS
as a multi-process model and improved the state machine architecture it uses.

In February 2012 I wrote lyse. In April 2012, Philip Starkey re-wrote a substantial
portion of runmanager, making its user interface suitable for larger number of globals

4.6. project history and attribution 107

(a)

0 25000 50000 75000 100000 125000

Historical lines changed/added

Francisco Salces Carcoba
David Meyer

Mikhail Egorov
Daniel Barker
Ian Spielman

Shaun Johnstone
Russell Anderson

Jan Werkmann
Philip Starkey

Christopher Billington

blacs

labscript devices

labscript utils

runmanager

zprocess

lyse

labscript

runviewer

qtutils

installer

(b)

0 5000 10000 15000 20000

Current lines authored

Unknown
Mikhail Egorov

Daniel Barker
David Meyer
Ian Spielman

Shaun Johnstone
Russell Anderson

Jan Werkmann
Philip Starkey

Christopher Billington

blacs

labscript devices

labscript utils

runmanager

zprocess

lyse

labscript

runviewer

qtutils

installer

Figure 4.7: Authorship by lines of code of each component of the labscript suite, for
the top ten authors. (a) Authorship of line changes over the entire project history. (b)
Authorship of lines currently present in the most recent revision of each component. The
line counts for these plots were obtained using themercurial ‘churn’ extension and ‘blame’
command to analyse all Python, Cython and C source files in our code repositories. This
excludes documentation (most of which is in Microsoft Word format) as well as layout
files for the graphical interfaces of the programs. It also excludes BIAS, written byMartijn
Jasperse, which is written in LabVIEW and as such does not have a ‘line’ count. Although
these results are broadly representative of authors’ contributions to the components of
the labscript suite, they should be taken with a grain of salt. Authorship is difficult to
ascertain programmatically as refactoring counts the same as original authorship even
though usually less credit (though not zero) should be assigned to someone refactor-
ing code than the author writing it originally. As such my apparent contribution to
labscript_devices—the repository containing device drivers—is exaggerated due to
me being the one to migrate this code from another repository. Similarly Jan Werkmann’s
contributions to BLACS are exaggerated due to recent renaming of one particular large
source file. We both have made original contributions to both repositories as well, but
these are not distinguishable from refactoring in these plots.

108 chapter 4. software for experiment control and analysis

and improving other functionality.
In January 2013, Philip Starkey ported BLACS to use the Qt toolkit, and in May 2014,

he expanded the capabilities of the labscript compiler by implementing the ‘gated
clocks’ feature, allowing more devices to be controlled by a single pseudoclock device
such as a SpinCore PulseBlaster. Between August and November 2014 while visiting Ian
Spielman’s group, I ported runmanager and lyse to the Qt toolkit, wrote the labscript
suite installer script, and adopted the practice of tracking dependencies of the different
components on each other using semantic versioning [131].

Throughout this time device driver code was contributed, various features imple-
mented, and bugs fixed by many including Russell Anderson, Shaun Johnstone, Martijn
Jasperse and Ian Spielman. Documentation was written primarily by Philip Starkey. BIAS
was written and maintained by Martijn Jasperse from late 2011 onward.

When we started writing applications in Qt, I wrote the initial code for multithread-
ing in Qt that became the qtutils [123] package, with most of the later functionality in
the package added by Philip Starkey.

The zprocess package, encapsulating the network communication and multipro-
cessing code common to several components within the labscript suite, was written and
is maintained by me (as always with some bugfixes and features contributed by others).

4.7 Conclusion

The labscript suite is an increasingly mature software project for control of hardware-
timed experiments. It has an increasing number of users and contributors, and has evolved
to keep up with changing software environments. It is a living project accepting changes
from non-core developers, and is free for anybody to use under a permissive license. Due
to the modular design and open development process, the labscript suite has thus far
avoided some of the pitfalls that befall many laboratory control systems and software, such
as relegation to legacy software or hardware environments due to a lack of development
process capable of keeping them up to date, or fixes to bugs remaining unresolved formost
because a fix applied in one place has not been distributed to others, or because the source
code is only available to few. The labscript suite is hardware-agnostic, ensuring its use is not
restricted to officially sanctioned or in-house hardware. Finally, it is written in a popular
programming language with an abundance of on-line resources and a vibrant community
behind it, within both scientific and software engineering circles. Equally important
as the implementation details of the codebase itself, these decisions have resulted in a
thriving project beneficial to experimental physics research.

4.8 Reproduced publication: A scripted control system for
autonomous hardware-timed experiments

See over page for a reproduction of our 2013 paper,A scripted control system for autonomous
hardware-timed experiments, © American Institute of Physics 2013, reproduced with
permission.

REVIEW OF SCIENTIFIC INSTRUMENTS 84, 085111 (2013)

A scripted control system for autonomous hardware-timed experiments
P. T. Starkey,a),b) C. J. Billington,a) S. P. Johnstone, M. Jasperse, K. Helmerson,
L. D. Turner, and R. P. Anderson
School of Physics, Monash University, Victoria 3800, Australia

(Received 11 April 2013; accepted 17 July 2013; published online 8 August 2013)

We present the labscript suite, an open-source experiment control system for automating shot-
based experiments and their analysis. Experiments are composed as Python code, which is used
to produce low-level hardware instructions. They are queued up and executed on the hardware in
real time, synchronized by a pseudoclock. Experiment parameters are manipulated graphically, and
analysis routines are run as new data are acquired. With this system, we can easily automate ex-
ploration of parameter spaces, including closed-loop optimization. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4817213]

I. INTRODUCTION

Modern experiments in quantum science demand flexi-
ble, autonomous control of heterogeneous hardware. Many
such experiments are shot-based: a single experiment shot
comprises analog, digital, and radiofrequency (rf) outputs op-
erating under precise timing, as well as synchronized camera
exposures and voltage measurements. Bose–Einstein conden-
sation (BEC) experiments,1 for example, require a timing res-
olution down to a few hundred nanoseconds, and may last for
up to a minute. Output must, therefore, be hardware timed, re-
quiring devices be programmed with instructions in advance
of an experiment shot. Most measurements of interest require
numerous shots, to build up statistics, or to observe the re-
sponse of the system to varying parameters. Such repetition
is common to experiments employing cold quantum gases or
trapped ions for precision metrology,2 quantum computation,3

and quantum simulation.4

Individual shots are typically complex, requiring the co-
ordination of many devices. This coordination is the role of
a control system. A good control system should automate
the programming of devices based on a high-level descrip-
tion of the experiment logic.5 It should handle the repeti-
tion of shots and automated variation of experiment param-
eters, the increasingly complex demands of which cannot be
rapidly, robustly, and continuously met by human operators.
It should automate analysis, leading to the prospect of closed-
loop control: the results of analysis influencing subsequent
experiment shots. Applications of such closed-loop control
include autonomous algorithmic optimization of parameters,
and automatic recalibration in response to environmental
drifts.

Most existing control systems take one of the two ap-
proaches for providing a human interface to programming
hardware. One is text-based, in which experiments are written
using a general purpose programming language.6 In the other,
experiments are instead described graphically using a custom
user interface.7–11 The text-based approach natively offers the

a)P. T. Starkey and C. J. Billington contributed equally to this work.
b)Author to whom correspondence should be addressed. Electronic mail:

philip.starkey@monash.edu

advantages of a programming language, particularly control-
flow tools such as conditional statements, loops, and func-
tions. Its disadvantage is that frequently varied settings and
parameters may be hidden in hundreds of lines of code. Con-
versely, the graphical-user-interface (GUI) approach makes
experiment parameters more accessible to the user, but fea-
tures providing for complex experiment logic must be antici-
pated and implemented specifically.10, 11

The two approaches need not be mutually exclu-
sive: by separating experiment parameters from experiment
logic, parameters can be manipulated graphically and logic
textually.12, 13 We contend that by using a high-level program-
ming language with appropriate hardware abstraction, text-
based control can be more comprehensible to a newcomer
than an equivalent graphical representation of hardware in-
structions.

We present the labscript suite which utilizes a hybrid
text-and-GUI approach for control and builds on previous
work by addressing the need for autonomous control, anal-
ysis, and optimization. Hardware control is abstracted, pro-
viding an identical software interface to devices of a common
type. Graphical interfaces are dynamically generated based
on the current hardware set in use. Analysis is an integral part
of the control system, with user-written analysis routines run
automatically on new data. Finally, analysis results can mod-
ify subsequent experiment shots, closing the feedback loop on
analysis and control.

II. AN OVERVIEW OF THE LABSCRIPT SUITE

The labscript suite comprises several programs, each per-
forming one main function; the flow of data between pro-
grams is shown in Fig. 1. Each experiment shot is associ-
ated with a single file: each program writes to and reads from
this file as required before passing it on to the next program.
Programs may be run on separate computers, communicating
over the network using the ZeroMQ messaging library,14 ex-
changing references to the experiment file.

We use the Hierarchical Data Format (HDF version
5)15 which provides cross-platform storage of large scien-
tific datasets. Exploiting the extensibility of HDF, each file

0034-6748/2013/84(8)/085111/10/$30.00 © 2013 AIP Publishing LLC84, 085111-1

http://dx.doi.org/10.1063/1.4817213
http://dx.doi.org/10.1063/1.4817213
mailto: philip.starkey@monash.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4817213&domain=pdf&date_stamp=2013-08-08

085111-2 Starkey et al. Rev. Sci. Instrum. 84, 085111 (2013)

FIG. 1. Each experiment shot comprises three stages: preparation, execution, and analysis. Arrows indicate how the HDF file for an experiment shot passes
between software components of the labscript suite. Only the shot execution stage is coupled to hardware timing, allowing new shots to be created and queued
while others are running. Similarly, analysis can be performed on executed shots at any time.

is a complete description of the experiment shot. The HDF
file begins life containing only experiment parameters. As it
is passed between components of the labscript suite, the file
grows to contain the hardware instructions, acquired data, and
analysis results. Metadata is also stored including user-written
scripts and version control information. This maintains a com-
prehensive record of the experiment shot for post-hoc analy-
sis, reproducibility, and publication preparation.

Attempts to standardize laboratory device programming
have largely failed, with only a minority of devices con-
forming to standards such as SCPI (Standard Commands for
Programmable Instruments).16 This calls for abstraction to
shield the user from low-level interaction. We have created
a software library for Python,17, 18 labscript (Sec. IV),
which provides a common interface for commanding output
and measurements from devices. The user writes the exper-
iment logic in Python, and labscript generates the re-
quired hardware instructions, including a clocking signal for
timing (Sec. III).

The labscript suite separates experiment logic (written in
Python) from experiment parameters, which are manipulated
in a GUI. The GUI, runmanager (Sec. V), creates the HDF
file for the experiment shot and stores the parameters within.
If a parameter is a list of values, rather than a single value,
runmanager creates an HDF file (a prospective shot) for
each value. If lists are entered for more than one parameter,
runmanager creates a file for each point in the resulting
parameter space.

For each shot, labscript inserts the parameters from
the HDF file into the experiment logic, compiles hardware
instructions for each device, and writes them to the same
file. runmanager sends the compiled HDF files to BLACS
(Sec. VI) which places them in a queue. BLACS interfaces
with hardware devices either directly, or via secondary con-
trol programs such as BIAS (Sec. VII). BLACS programs the
hardware and triggers the experiment shot to begin. The ex-
periment then proceeds under hardware-timed control.

Once the experiment shot has finished, acquired data such
as voltage time-series and images are added to the HDF file.

BLACS then passes the file to a dedicated analysis system,
lyse (Sec. VIII). lyse coordinates the execution of anal-
ysis routines, which are Python scripts written by the user.
These scripts may analyze individual shots or a sequence of
shots as a whole. This facilitates autonomous analysis of re-
sults from parameter space scans, as experiment shots are
completed.

The labscript software library can be applied to au-
tomatically generate shots based on the results of analysis. We
have used this to implement a closed-loop optimization sys-
tem, mise (Sec. IX).

III. PSEUDOCLOCK

A typical BEC experiment requires precise timing over
a large range of time scales.1 There are periods during which
magnetic fields or laser intensities, for example, may change
with sub-microsecond resolution. Conversely, there are pe-
riods during which no devices change their output for sev-
eral seconds, e.g., loading a magneto-optical trap (MOT).
To ensure accurate output during the rapid changes, hard-
ware devices must be preloaded with a set of instructions that
can be stepped through by a clock once the experiment be-
gins. Stepping through instructions at a constant rate requires
repetitive instructions during the more inactive periods. As
many devices only support a limited number of instructions, a
constant-rate clock limits the maximum sample rate. A com-
mon solution8, 9, 11, 12 is a variable frequency master clock, or
pseudoclock, which steps through instructions only when a
clocked device needs to update an output (see Fig. 2). This
removes the need for redundant instructions.

All devices sharing a pseudoclock must have an instruc-
tion when any one of their outputs changes value. This can
lead to redundant instructions if only some of the devices are
changing at a given time. The instruction limitations of one
device may then limit another, e.g., some devices hold only a
few thousand instructions in their internal memory, whereas
others are limited only by the RAM of the host computer
refilling their buffers. To solve this problem, we employ

085111-3 Starkey et al. Rev. Sci. Instrum. 84, 085111 (2013)

FIG. 2. An example of digital and analog voltage outputs generated by the labscript code in Fig. 3. The pseudoclock (lower trace) ticks when a digi-
tal output must change, or at the requested sample rate for time-varying analog outputs (upper two traces). Dashed vertical lines indicate a change in the
pseudoclock frequency. When multiple analog outputs are varying at the same time (shaded region), the pseudoclock ticks at the highest of their sampling
rates.

multiple pseudoclocks, assigning devices of similar memory
limitations to the same clock. At the beginning of a shot,
the software starts one pseudoclock (the master clock), which
then triggers other clocks.

To be a useful pseudoclock, a device must be able to
deterministically generate arbitrary digital signals, be hard-
ware triggerable, and hold enough instructions for the re-
quired experiment. We currently use two pseudoclocks: the
Spin-Core PulseBlaster DDS-II-300-AWG, a commercial de-
vice based on a field-programmable gate array (FPGA); and
the PineBlaster, a device developed in house based on a mi-
crocontroller. Both devices are externally referenced to a sta-
ble 10 MHz source.

The PineBlaster is a low-cost device using commod-
ity hardware, based on the Arduino-like Digilent Chip-
KIT Max32 microcontroller prototyping board.19 The board
is flashed with a program that accepts clock instructions
over universal serial bus (USB) and executes them with
deterministic timing. It is capable of clocking at up to
10 MHz (100 ns between rising edges) with a resolution
of 25 ns. The PineBlaster needs one instruction for each
change in clock rate (see Fig. 2) and supports up to 15 000
instructions.

labscript provides support for adding new pseudo-
clocks. It uses an intermediate format for storing timing in-
structions; implementing a new pseudoclock entails translat-
ing them into the required format for the hardware.

Some experiments require the time between instructions
to be determined during a shot. This can be achieved by paus-
ing the pseudoclocks until some condition is met. A com-
mon example11–13 is waiting for a sufficient level of fluores-
cence from a loading MOT. Both the PulseBlaster and the
PineBlaster support wait instructions, which pause output un-
til resumed by a trigger. These instructions, when used in tan-
dem with devices such as voltage comparators, can command
the experiment to wait for events of interest.

IV. THE LABSCRIPT LIBRARY

We have created a Python software library, labscript,
for defining experiment logic. labscript provides hard-
ware abstraction, a common interface to control heteroge-
neous hardware. For example, the DigitalOut class pro-
vides go_high(t) and go_low(t) functions to set the
state of a digital output at time t. The user calls these func-
tions without regard to the underlying device, its method of
programming, or the state of other digital outputs connected
to the same device. Based on an experiment script contain-
ing such function calls, labscript automatically generates
instructions for output and measurement devices as well as
pseudoclocks. The automatic generation of pseudoclock in-
structions saves the user from dividing overlapping function
ramps into segments (Fig. 2), or manually interpolating output
values when a new time point is created on another channel.

An experiment script consists of two parts: a connection
table (Fig. 3(a)), and code defining the logic of the experi-
ment (Fig. 3(b)). The connection table provides a complete
description of devices that are required for the experiment and
how they are connected. labscript creates a set of Python
objects based on the connection table, each with associated
functions for commanding output or measurement from de-
vices. The logic of the experiment is then defined by calling
these functions with parameters such as time and output value.

As the experiment script is executable Python code, the
user has full access to standard Python control flow tools, as
well as standard and third party Python libraries. Using a high
level language such as Python spares the user from low-level
tasks such as memory management.5 User-created functions
can be stored in modules and imported into other experiment
scripts. This allows complex experiments to be constructed
from simple components, while maintaining comprehensibil-
ity, resulting in a gentler learning curve for new students. For
example, one might define a make_BEC() function which

085111-4 Starkey et al. Rev. Sci. Instrum. 84, 085111 (2013)

FIG. 3. An example labscript file. The connection table (a) defines a pseudoclock and a multifunction DAC object and configures three output channels.
This is followed by the experiment logic (b) which commands output from these channels by name at times specified by the variable t. The experiment logic
refers to the parameter bias_x_final_field which is set in runmanager (Sec. V).

contains the logic to form a Bose–Einstein condensate. While
students might not fully understand the experiment logic
to create a BEC, they can focus on subsequent experiment
logic after a BEC is made. We have found that text based
experiment scripts benefit not just from code re-use but also
version control, bug tracking, and comparison of incremental
changes (diffs).

When the experiment script is run and a timing sequence
created, the labscript functions take into account hard-
ware limitations and provide error messages if these are ex-
ceeded. If no errors are found, the hardware instruction set for
all devices in the connection table is written to the HDF file.

While a text-based definition of experiment logic gives a
broad overview of the timing sequence, it is not ideal for vi-
sualizing the device outputs to ensure the experiment logic is
as intended. The hardware instructions generated by running
experiment scripts are difficult to interpret (indeed, lab-
script was created to mitigate this very problem). Our pro-
gram (runviewer) produces plots (similar to Fig. 2) of the
hardware instructions generated by labscript, allowing
quick diagnosis of the timing sequence before reaching for
the oscilloscope.

V. SETTING PARAMETERS—RUNMANAGER

Repeating experiments while varying parameters is a fun-
damental part of the scientific method. Anyone who has per-
formed a quantum science experiment will be familiar with

tweaking parameters to find a resonance, calibrating a mea-
surement, or acquiring a large amount of scientific data prior
to publication. The logic of the experiment does not change
every time a parameter is adjusted, and it is cumbersome to
edit numbers in a text file for each modification.

To ameliorate this, labscript experiments can take a
series of parameters as input. The names and values of these
parameters are defined in the graphical interface of runman-
ager (Fig. 4). The values can be any valid Python expression
(such as 0.74, 1E−3, sin(pi/2), or True) and can
refer to each other. We call these parameters globals because
they are available as global variables in experiment scripts,
where they are simply referred to by name. For example, these
globals might be used to specify the duration of a π -pulse, the
delay between releasing atoms from a trap and imaging them,
or the field strengths of bias magnetic coils. This provides a
clean separation between code, which defines the nature of
the experiment (such as creating a BEC with a vortex or per-
forming a matter-wave mixing experiment), and parameters
that modify individual shots.

The user may enter a list of values for a global, such as
[1,2,3], or linspace(0,10,100). In this case run-
manager produces a corresponding list of experiment shots:
one for each value. If multiple globals are entered as lists,
runmanager performs a Cartesian product, creating one
shot for each point in the resulting parameter space. Two or
more lists can be zipped, in which case runmanager iterates
over these lists in lock-step when producing shots.

085111-5 Starkey et al. Rev. Sci. Instrum. 84, 085111 (2013)

FIG. 4. The runmanager interface for configuring experiment parameters. (a) The experiment logic is specified by the labscript file (here trap_atoms.py). HDF
files for experiment shots created by runmanager are saved in the output directory. (b) The value of experiment parameters (“globals”) are specified by Python
expressions and may have units. These can be single values (i.e., 350 or True), lists, or expressions creating lists (as shown for the globals pgc_detuning,
pgc_quad, and tof_drop_time). A tooltip shows the evaluation of the global. The “Expansion” column specifies how lists of values are combined to
construct a parameter space. (c) Globals can be separated into groups for convenience.

Specifying globals as lists makes it possible to explore
complicated parameter spaces containing hundreds or thou-
sands of shots. For example, one might investigate how the
temperature of laser cooled atoms varies with laser detun-
ing and magnetic field gradient. Taking the Cartesian product
of ten field strengths and ten detunings results in a parame-
ter space of one hundred points. Thermometry at each point
in this parameter space commonly requires multiple shots to
characterize the expansion rate of the atom cloud. A five-
shot temperature measurement brings the number of shots to
five hundred. Producing these shots amounts to entering three
lists in runmanager and clicking on the “Engage” button,
as shown in Fig. 4. runmanager then creates five hundred
HDF files containing the globals for each shot. The experi-
ment script is run for each shot, storing hardware instructions
in each file.20 The HDF files are then submitted to BLACS for
execution.

VI. EXPERIMENT EXECUTION—BLACS

BLACS coordinates input and output through hardware
devices. These devices can be local, and thus under the direct
control of BLACS, or connected to a different computer as
part of a secondary control program such as BIAS (Sec. VII).
BLACS provides both manual control of devices (through a
GUI) and buffered execution of experiment shots.

The GUI for manual control is dynamically generated
from a lab connection table that describes the current con-
figuration of all connected devices. Each device is allocated a
tab in the interface, containing controls for commanding out-
put when in manual control mode (Fig. 5).

Upon submission to BLACS, HDF files containing hard-
ware instructions are checked for validity and placed in a
queue. The queue can be reordered, paused, or put on repeat.
The validity check compares the connection table of each shot
to the lab connection table, rejecting those with incompatible

hardware. This prevents unintended device output that would
produce nonsensical results and possibly damage equipment.

BLACS takes the first experiment in the queue, coor-
dinates hardware programming, and sends a start trigger to
the master pseudoclock. The experiment then proceeds un-
der hardware timing. At the end of a shot, BLACS coor-
dinates saving data acquired by devices to the HDF file,
and returns to manual control mode. Each GUI control is
updated to the final values of the shot, maintaining output
continuity.

Laboratories are a hostile environment for hardware in-
terface libraries. Power cycling of devices and unplugging of
cables are common occurrences. A student tripping over a
USB cable (health and safety implications notwithstanding)
might be expected to cause an experiment to fail, however the
control system ought to recover gracefully when it is plugged
back in. Similarly, bugs in closed source drivers and libraries
are points of failure outside of a users control.

To make our system robust against such hardware and
software failures, BLACS implements a multiprocess archi-
tecture similar to the sandboxed tabs of the Google Chrome
web browser.21 For each device in BLACS, a worker process
is spawned, which communicates with the hardware device.
This makes BLACS robust against crashes: if one device has
a problem it will not affect others. If a hardware device be-
comes unresponsive, or the device driver encounters a serious
error, its isolation in a separate process prevents the GUI and
other devices from suffering the same fate.

Should a worker process crash, the user is presented with
the option of restarting the process, which will reload any de-
vice libraries it uses. It is worth noting that systems imple-
mented in LabVIEW cannot force libraries to reload, so er-
rors leading to an undefined state would only be remedied by
restarting the entire control system.

The initialization of hardware in preparation for a shot
is an important part of an experiment, and can significantly
contribute to the experiment cycle time. The multiprocess

085111-6 Starkey et al. Rev. Sci. Instrum. 84, 085111 (2013)

FIG. 5. The BLACS interface for controlling hardware. (a) The queue of shots submitted via runmanager. (b) The manual control interface. Each tab controls
one device. Controls for all outputs are automatically generated and are named based on the BLACS connection table.

architecture naturally provides for simultaneous program-
ming of hardware devices, resulting in an increased experi-
ment duty cycle. We have implemented a smart programming
feature on many of our devices, further decreasing program-
ming time, reprogramming them only if their instructions
have changed since the previous shot (on a per-instruction
basis when possible). Devices with large buffers and slow
communication (such as the Novatech DDS9m rf synthesizer)
benefit greatly from this technique.

VII. IMAGE ACQUISITION—BIAS

Using secondary control programs to communicate with
specific devices is desirable when software to do so exists and
has been debugged, particularly software written in another
programming language. BLACS integrates such programs into
the control flow by sending them HDF files containing hard-
ware instructions to program devices for execution upon a
hardware trigger. BLACS notifies secondary control programs
that the shot has completed, at which point they write any ac-
quired data to the HDF file.

Our camera control and image acquisition system, BIAS,
is one such program. BIAS is a LabVIEW application that op-
erates scientific cameras, captures image sequences, and per-
forms image processing tasks such as background subtraction,
saturation correction, optical depth calculation, and simple 2D
fitting.

Multiple instances of BIAS can be run simultaneously to
control multiple cameras in one experiment. BIAS can also
run as a stand-alone program for quick visualization of pre-
viously captured data or acquire images manually. Hardware
communication in BIAS is abstracted through LabVIEW’s
object hierarchy, allowing a camera class to be written for any
vendor library.

LabVIEW provides convenient components for creating
graphical interfaces, and BIAS displays raw and computed
images as they become available (Fig. 6). Fit results such as
atom cloud shape and atom number are prominently displayed
to detect and diagnose problems as they occur. The camera ac-
quisition area and regions of interest used to inform fits can be
interactively adjusted, without needing to interrupt or recreate
a currently running sequence of shots. Multiple regions of in-
terest can be selected and their coordinates saved to the HDF
file, enabling further analysis.

VIII. ANALYSIS—LYSE

Analysis is a critical part of an autonomous control
system. Automated analysis—performed immediately after
every shot—is often restricted to routines that change in-
frequently and are applied uniformly once per shot. Ideally
analysis should be flexible as well as autonomous; these can
be conflicting goals without a unifying analysis framework.

085111-7 Starkey et al. Rev. Sci. Instrum. 84, 085111 (2013)

FIG. 6. The BIAS interface displaying a laser cooled atom cloud. (a) Manual controls for loading and capturing images, selecting regions of interest and
zooming. (b) Computed optical depth (OD) image of the atoms, with a region of interest (white) selected for fitting. Multiple regions of interest may be selected
for multi-component atom clouds. (c) Atom number and cloud size are displayed for immediate feedback.

Our analysis system lyse accommodates collective analysis
of a group of shots and trivial re-analysis upon changing or
adding routines.

lyse is a scheduler for user-written analysis routines,
which are ordinary Python scripts. It provides functions for
extracting the experiment data and metadata from the HDF
files and saving analysis results to these files. Multiple analy-
sis routines added to lyse execute one after the other when
a new HDF file is received over the network, or on command
through the GUI. Plots produced by the user’s code are up-
dated following every shot as new data comes in from the
experiment.

There are two types of routine that lyse can run: single-
shot, which are run on every shot, and multi-shot, which an-
alyze a group of shots together. Analysis of the thermometry
example in Sec. V is shown in Fig. 7. A single-shot routine
computes the size of an atom cloud after a fixed expansion
time, and a multi-shot routine uses these results to determine
the expansion rate and thus the temperature. The multi-shot
routine then plots this temperature as a function of laser de-
tuning and magnetic field strength.

Splitting, sorting, plotting, and exploring large multidi-
mensional datasets are cumbersome when directly accessing a
set of files. In addition to direct access to the HDF files, lyse
provides a tabular data structure—a pandas22 DataFrame—
for multi-shot routines, containing all globals as set by run-
manager, and all single-shot analysis results. With pan-
das and the standard Python scientific stack of numpy,23

scipy,24 and matplotlib,25 lyse provides a powerful
environment for analysis.26

Analysis routines can be run independently of lyse if
desired. This allows the same framework and analysis code to
be used for publication preparation.

IX. OPTIMIZATION—MISE

Marrying powerful Python tools to shot-based analysis
permits extensibility of the control system, such as closed
loop optimization of measured quantities. One often performs
parameter space scans for optimization, requiring many shots.
This may be tuning a parameter of an apparatus to enhance
its performance, finding a resonance of some transition, or
some other feature of interest. The quantity being optimized
is often the result of some analysis, e.g., the temperature of
ultracold atoms (mentioned in Secs. V and VIII). We have
created mise, a program that performs automatic optimiza-
tion of analysis results using a genetic algorithm.27 A user
specifies one or more parameters to optimize against a prede-
fined figure of merit. Genetic algorithms are resistant to noise,
making them particularly useful for optimizing experimental
results.

The data flow of the optimization process follows Fig. 8,
modifying that shown in Fig. 1. The user specifies in run-
manager one or more parameters to optimize, with upper
and lower limits for each. An analysis routine in lyse re-
ports optimality to mise, which creates shots with modified
parameters and submits them to BLACS.

For each parameter being optimized the user also spec-
ifies a mutation rate. This determines how much the pa-
rameter is varied per generation of the genetic algorithm:

085111-8 Starkey et al. Rev. Sci. Instrum. 84, 085111 (2013)

FIG. 7. The lyse interface. (a) Routines can be selected to analyze single or multiple shots. (b) Terminal output from the analysis routines in (a). (c) Table of
shots; columns show globals and analysis results. A small subset of columns is displayed here. (d) A fit yielding the temperature of laser cooled atoms prepared
at a particular field gradient and detuning. (e) The results of the analysis in (d) repeated at each point in the parameter space.

the larger the mutation rate, the faster mise will move to-
wards the optimum. However, a large mutation rate lim-
its the precision to which the optimal parameters can be
determined.

With this specification of parameters, mise creates a
population of individuals. Each individual comprises values
from one point in the optimization parameter space, initially
chosen at random. An individual may be a single experi-
ment shot, or—when optimizing the result of a multi-shot
analysis—a sequence of shots. Once the shots comprising an
individual have executed, the user’s analysis routine computes
a fitness, which may be derived from any measured quantity.
mise uses the reported fitness in the genetic algorithm to op-
timize the specified parameters. The genetic algorithm used
by mise28 is a variation on pointed directed mutation,29 in

which mutations are biased in directions previously shown to
be successful.

The user can specify when to stop the optimization, either
by manual intervention or by a convergence condition written
into their analysis script. They may also “guide” the evolution
by adding and deleting individuals from the gene pool at any
time.

An example of automated optimization using mise is
shown in Fig. 9. By preferentially exploring the more inter-
esting regions of parameter space, autonomous optimization
allows optima to be found in fewer shots.

mise uses the labscript software library to create
HDF shot files and submit them to BLACS. Additional user-
written components could similarly submit shots to BLACS if
more complex programmatic generation of shots is required.

FIG. 8. The data flow for closed loop optimization. In contrast to Fig. 1, analysis results are used to determine future shots automatically. The optimizer mise
varies parameters, directly calling labscript to compile new experiment shots. Parameters to be optimized are selected by the user in runmanager. lyse
reports fitness to mise which is used to create the next generation of shots.

085111-9 Starkey et al. Rev. Sci. Instrum. 84, 085111 (2013)

FIG. 9. A proof-of-principle optimization using mise. mise scanned the
parameter space described in Sec. V, searching for the coldest point. Each
black point represents a temperature measurement at a specific field gradi-
ent and detuning, with the surrounding shading indicating the temperature.
Eighty points were taken, corresponding to 400 shots. The colder region of
parameter space is sampled more densely than the uniformly-sampled scan,
shown in Fig. 7(e), with 500 shots.

X. PORTABILITY AND EXTENSIBILITY

Our software runs on Windows, Linux, and OS X, al-
though BLACS and BIAS compatibility is subject to the
availability of appropriate hardware drivers. If particular de-
vices must be interfaced with a specific computer, operating
system, or programming language, a secondary control pro-
gram (such as BIAS, Sec. VII) can be used. The components
of the labscript suite communicate with each other via data
in HDF files, and over the network with ZeroMQ sockets.
The widespread support of these technologies across many
platforms30 ensures users are not bound to any one operat-
ing system or programming language. The modular nature of
our system allows users to replace or supplement any of our
programs in their choice of language.

The programs themselves are also written with extensi-
bility in mind. Adding new hardware support to the labscript
suite entails writing a new device class for labscript, and
a GUI tab for BLACS,31 or a camera class for BIAS. Adding
analysis routines to lyse amounts to writing a Python script
to process experiment data. Existing library functions and
base classes assist such development. The suite has already
proved useful in a setting distinct from quantum science ex-

periments, automating the prototyping of an objective lens, in
which the image of a pinhole was acquired and analyzed at
3600 points in a plane to determine the field of view.32

The labscript suite is open-source and freely available
online.33 We encourage readers to contact us if they are in-
terested in implementing the suite in their laboratory.

ACKNOWLEDGMENTS

The authors would like to thank the current users of our
system, who were not part of the development team, L. Ben-
nie, M. Egorov, and A. Wood for their input into making this
a better system. This work was supported by Australian Re-
search Council Grant Nos. DP1094399 and DP1096830.

1See, e.g., M. Weidemüller and C. Zimmermann, Cold Atoms and Molecules
(Wiley, 2009), and references within.

2See, e.g., N. Robins, P. Altin, J. Debs, and J. Close, “Atom lasers: Produc-
tion, properties and prospects for precision inertial measurement,” Phys.
Rep. 529, 265 (2013); A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard,
Rev. Mod. Phys. 81, 1051 (2009), and references within.

3See, e.g., A. Negretti, P. Treutlein, and T. Calarco, Quantum Inf. Process.
10, 721 (2011); T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C.
Monroe, and J. L. O’Brien, Nature (London) 464, 45 (2010), and references
within.

4See, e.g., I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267
(2012); R. Blatt and C. F. Roos, ibid. 8, 277 (2012), and references within.

5G. Varoquaux, Comput. Sci. Eng. 10, 55 (2008).
6P. E. Gaskell, J. J. Thorn, S. Alba, and D. A. Steck, Rev. Sci. Instrum. 80,
115103 (2009).

7R. P. Anderson, Ph.D. thesis, Swinburne University of Technology, 2010.
8M. Beeler, Ph.D. thesis, University of Maryland, 2011.
9P. A. Altin, Ph.D. thesis, Australian National University, 2012.

10T. Stöferle, Ph.D. thesis, Swiss Federal Institute of Technology,
2005.

11A. Keshet and W. Ketterle, Rev. Sci. Instrum. 84, 015105 (2013).
12S. F. Owen and D. S. Hall, Rev. Sci. Instrum. 75, 259 (2004).
13T. Meyrath and F. Schreck, “A laboratory control system for cold atom ex-

periments,” see http://www.strontiumbec.com/indexControl.html (2012).
14P. Hintjens, Code Connected Volume 1: Learning ZeroMQ (CreateSpace

Independent Publishing Platform, 2013); see also “ØMQ: the intelligent
transport layer,” http://www.zeromq.org/.

15The HDF Group. Hierarchical data format version 5, 2000-2010.
http://www.hdfgroup.org/HDF5.

16“IEEE Standard Codes, Formats, Protocols, and Common Commands for
Use With IEEE Std 488.1-1987, IEEE Standard Digital Interface for Pro-
grammable Instrumentation,” IEEE Std 488.2-1992.

17G. van Rossum et al., “Python programming language v2.7,” see
http://docs.python.org/2.7/ (2010).

18J. M. Hughes, Real World Instrumentation with Python: Automated Data
Acquisition and Control Systems (O’Reilly Media, Inc., 2010).

19The source code for turning a ChipKIT Max32 into a PineBlaster is avail-
able at http://hardware.labscriptsuite.org/.

20In our lab, a typical hardware set for running this experiment would be
a SpinCore PulseBlaster DDS-II-300-AWG as a pseudoclock, along with
a Novatech DDS9m, National Instruments PCIe6363 and PCI6733 boards
and a Photonfocus MV1-D1312(I) camera.

21A. Barth, C. Jackson, C. Reis, and The Google Chrome Team, “The se-
curity architecture of the chromium browser,” Technical Report, Stanford
Security Laboratory, 2008, available at http://seclab.stanford.edu/websec/
chromium. See http://youtu.be/29e0CtgXZSI for more information.

22W. McKinney, “pandas: a Python data analysis library,” see http://pandas.
pydata.org/.

23T. Oliphant, “NumPy: numerical Python,” see http://www.numpy.org/.
24E. Jones, T. Oliphant, P. Peterson et al., “SciPy: open source scientific tools

for Python,” see http://www.scipy.org/ (2001).
25J. Hunter, Comput. Sci. Eng. 9, 90 (2007); see also “matplotlib: Python

plotting,” http://matplotlib.org/.
26W. McKinney, Python for Data Analysis (O’Reilly Media, Inc., 2012).
27T. Bäck and H.-P. Schwefel, Evol. Comput. 1, 1–23 (1993).

http://dx.doi.org/10.1016/j.physrep.2013.03.006
http://dx.doi.org/10.1016/j.physrep.2013.03.006
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1007/s11128-011-0291-5
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1109/MCSE.2008.47
http://dx.doi.org/10.1063/1.3250825
http://dx.doi.org/10.1063/1.4773536
http://dx.doi.org/10.1063/1.1630833
http://www.strontiumbec.com/indexControl.html
http://www.zeromq.org/
http://www.hdfgroup.org/HDF5
http://docs.python.org/2.7/
http://hardware.labscriptsuite.org/
http://seclab.stanford.edu/websec/chromium
http://seclab.stanford.edu/websec/chromium
http://youtu.be/29e0CtgXZSI
http://pandas.pydata.org/
http://pandas.pydata.org/
http://www.numpy.org/
http://www.scipy.org/
http://dx.doi.org/10.1109/MCSE.2007.55
http://matplotlib.org/
http://dx.doi.org/10.1162/evco.1993.1.1.1

085111-10 Starkey et al. Rev. Sci. Instrum. 84, 085111 (2013)

28See supplementary material at http://dx.doi.org/10.1063/1.4817213 for im-
plementation details of the genetic algorithm used by mise.

29A. Berry and P. Vamplew, “PoD Can Mutate: A Simple Dynamic Directed
Mutation Approach for Genetic Algorithms,” in AISAT2004: International
Conference on Artificial Intelligence in Science and Technology, 21–25
November 2004, Hobart, Tasmania, Australia.

30HDF bindings include C/C++, MATLAB, Python, LabVIEW and Math-
ematica. ZeroMQ support includes C/C++, Python, LabVIEW, Java
and many more. See http://www.hdfgroup.org/products/hdf5_tools/ and
http://www.zeromq.org/bindings:_start/ for more complete lists.

31BLACS communicates with hardware devices through user-written inter-
face code. Devices communicating over standard buses (RS232, USB, Eth-
ernet) are easily interfaced using standard Python libraries for these buses.
Devices with proprietary interfaces can be programmed by calls to vendor-
supplied libraries through Python’s sophisticated foreign-function inter-
face.

32L. M. Bennie, P. T. Starkey, M. Jasperse, C. J. Billington, R. P. Anderson,
and L. D. Turner, Opt. Express 21, 9011 (2013).

33“The labscript suite: an open source experiment control and analysis sys-
tem,” see http://labscriptsuite.org/.

http://dx.doi.org/10.1063/1.4817213
http://www.hdfgroup.org/products/hdf5_tools/
http://www.zeromq.org/bindings:_start/
http://dx.doi.org/10.1364/OE.21.009011
http://labscriptsuite.org/

Chapter5
Particle velocimetry of vortices in

Bose–Einstein condensates

This chapter investigates, via numerical simulation, an imaging method for
the real time tracking of quantum vortices in a turbulent 41K condensate. The
method involves ultracold 87Rb tracer ‘particles’ (atoms) that become bound

to vortex lines in the condensate and are imaged continuously to track the vortex lines
as they move. The resulting images—either multiple images of the vortices at different
times, or a single exposure with vortex trajectories visible as traces—can be used to infer
the motion of the vortex cores. The imaging of tracer particles to track vortex motion has
previously proved successful in superfluid helium [132–134]. Imaging cold atoms without
excessive heating necessitates a cooling mechanism—the method of laser cooling and
imaging atoms in high resolution with the same laser light has also been successful in
cold atom systems [135]. This chapter presents the results of numerical simulations of the
method under a number of assumptions to establish its feasibility as an imaging method.
I present a new sub-Doppler laser cooling scheme designed for a 34G magnetic field.
This scheme could be used to cool tracer atoms at the magnetic field strength required
for a Feshbach resonance that enhances the interaction between the tracer atoms and the
bec. I also briefly discuss an additional cooling scheme, proposed by Prof. Helmerson,
that involves using the vortices themselves to provide a state-selective force that could be
used for cooling. The state-selective force—central to the proposed cooling effect—was
not possible to model semiclassically in the same way as other laser cooling schemes,
which was one of the motivations that led me to develop the hidden-variable semiclassical
method discussed in Chapter 6.

Thismethod has the potential to overcome several difficulties that imaging techniques
face when used to image vortices. In ordinary absorption imaging, atoms are imaged
via resonant absorption, and vortices—visible as density minima—generally can only
be seen when the vortex line is parallel to the illumination. If not viewed end-on in this
way, a vortex line represents only a minor decrease in column density and cannot be
distinguished from the rest of the condensate (Figure 5.1). One solution to this problem
is to slice the condensate into layers, and image them separately [136].

The use of tracer particles that are only present within vortex cores allows vortex
lines to be visible from any viewing angle. Furthermore, since the atoms being imaged
reside in the vortex cores themselves rather than the bulk of the condensate, this imaging
can potentially be repeatedly or continuously performed without destroying the conden-
sate. This may enable observation of the time evolution of Kelvin waves [137], vortex
reconnections [138], and vortex rings [136].

This in-situ imaging of vortex dynamics may allow more types of vortex motion to

119

120
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

Figure 5.1: Imaging of the condensate itself, whether by fluorescence (bottom) or absorp-
tion imaging makes it difficult to resolve vortices unless they are viewed end-on. The
vortex cores are usually smaller than the imaging wavelength, and are thus also difficult
to resolve unless the cloud is allowed to expand. Imaging tracer particles instead (top)
has the potential to resolve both problems.

be imaged. Dynamics of becs are typically studied using a shot-by-shot method, in
which repeated experiments with identical initial conditions are imaged destructively
after being allowed to evolve for different amounts of time. Whilst this works for many
types of dynamics, it fails for experiments that are sensitive to initial conditions and
noise (quantum or otherwise), such as turbulent flow. This includes phenomena which
cannot be created reliably in the same initial state, even though the evolution thereafter
would be consistent from one experimental run to the next. One such phenomenon is
the spontaneous generation of vortices after evaporative cooling [139].

In-situ imaging of vortex motion has been achieved previously [140], by ejecting a
fraction of the atoms from the condensate periodically and imaging them. This process is
limited by depletion of the condensate, and was also used only to image vortices end-on.
The fraction of the condensate being imaged was also allowed to freely expand before
being imaged, since vortex cores are otherwise unable to be resolved by the wavelength of
light used. Our proposed method would require neither free expansion or depletion of
the condensate.

5.1 Motivation: Turbulence

It is commonly said that turbulence is one of the greatest unsolved problems of classical
physics. But in what sense is it an unsolved problem? It is not a problem at all if your
aim is reductionism—the Navier–Stokes equation adequately describes the evolution
of a Newtonian fluid within its domain of validity, including rich turbulent phenom-
ena such as turbulent boundary layers, Rayleigh–Bénard convection [141], and energy
cascades [142].

and the process of deriving it from the underlying motion of classical particles is well
understood. It’s turtles all the way down [143, p 1]; what more could we ask for?

A demonstrative comparison might be with the field of statistical mechanics, as pre-
cisely the same statement can be made about the energy content and exchange between
systems of particles. Statistical mechanics has revealed that despite the chaotic motion of
individual particles in an ensemble, definite statements can still be made about the be-
haviour of the system as a whole, without having to consider the dynamics of the constituent
components in detail.

5.1. motivation: turbulence 121

This is the kind of solution people have in mind when they speak of ‘solving’ the
problem of turbulence. Laws describing the average properties of a fluidwithout reference
to its precise flow field would not simply be interesting because they describe turbulence
as an emergent phenomenon, but would aid practical computations, which for many
problems of interest are prohibitively computationally expensive. The flow of a turbulent
fluid contains detail on such a wide range of length scales that finite-element or finite-
difference analyses of a system such as an aeroplane wing requires a very high resolution
in order to be accurate. Following an estimate of computing power required to simulate a
turbulent system down to its smallest length scales, Stanley Corrsin quipped [144]:

The foregoing estimate is enough to suggest the use of analog instead of
digital computation; in particular, how about an analog consisting of a tank
of water?

The reliance of the aerospace industry on wind tunnels and practical tests shows that
there is some truth to the necessity of using nature as one’s computer when it comes to
turbulence. Whilst nature must always have the final say, it would be of great benefit
to be able to compute expected results more cheaply before setting up a wind-tunnel
experiment or constructing a prototype aircraft. Gaining predictive power through an
improved ability to reason about turbulence would help escape to evolutionary model of
testing and modifying prototypes of systems subject to turbulent flow.

But are we asking for too much? Perhaps the statistical properties of a turbulent fluid
fundamentally cannot be decoupled from the finer details. There is reason to believe that
this is not the case. There are several tantalising results that hint at universal properties
that all turbulent flows share, and there is the simple empirical observation that the
average flow of turbulent fluids at large scales is reproducible from one experimental run
to the next [145, pp 13, 86].

One of these universal results is Kolmogorov’s theory of the statistics of small ed-
dies [146, 147]. Another is the fact that the rate of energy dissipation via the action of
viscosity at small scales is independent of the viscosity itself [145, p 77]. Then there is the
Richardson energy cascade [148], in which energy is continually transferred from larger
scales to smaller scales. With dissipation at the smallest scales and energy injection at
larger scales, this allows for the existence of ‘steady state’ turbulence.

The above examples derive from ordinary, viscous fluids. Bose–Einstein condensates
on the other hand are superfluids. There are several interesting aspects of superfluid
turbulence that differ from classical turbulence. The defining difference is the absence of
viscosity; another major difference is the quantisation of circulation. On length scales
much larger than spacing between vortex lines, superfluid turbulence is expected to closely
resemble classical turbulence [149]. At smaller scales however the energy dissipation
mechanism is different, instead involving the production of sound waves via vortex
interactions [149, 150].

In certain 2d geometries, an inverse cascade [151, 152] is predicted to take place in
superfluids, whereby energy moves not from large scales to small, but from small to large,
clustering quantised vortices of the same circulation direction together. This phenomenon
has been studied theoretically and numerically in theMonashQuantumFluids group [153,
154] and recently experimentally observed in the Monash Dual-Species laboratory in
experiments performed by Shaun Johnstone [110], simultaneously with a group at the
University of Queensland [155].

5.1.1 Characterisation of turbulence as vortex dynamics

The following definition of turbulence, taken from [145, p 53], emphasises the role of
vortices in turbulence in general:

122
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

Figure 5.2: The simplest scheme for cooling and imaging the tracer particles with the same
light is polarisation gradient cooling: six red-detuned beams (red), with each counter-
propagating pair having opposite linear polarisations. Light scatters off the tracer atoms
and cools them to sub-Doppler temperatures. If the cooling is sufficient, atomsmove into
the vortex cores where their energy is lower, if they aren’t already there. Both the rubidium
tracers and the potassiumbec are trappedwith approximately the same trapping potential
by a strong, far off-resonant laser (orange), via the dipole force. Magnetic trapping cannot
be used, as polarisation gradient cooling does not work in the presence of a magnetic
field.

Incompressible hydrodynamic turbulence is a spatially complex distribution
of vorticity which advects itself in a chaotic manner in accordance with [the
vorticity equation1]. The vorticity field is random in both space and time,1The vorticity equation is a trans-

formation of the Navier–Stokes
equation for an incompressible
fluid into a form that describes the
vorticity field directly, rather than
the velocity field.

and exhibits a wide and continuous distribution of length and time scales.

When vorticity exists only in infinitesimally narrow lines, as it does in a superfluid,
the vorticity equation mentioned in the above definition reduces to a Biot–Savart-type
law which can be used to compute the motion of vortices without having to compute the
entire flow field. This is why we are interested in the study of the dynamics of quantised
vortices. Unlike in classical fluids, the vortices in superfluids have a definite position and
size; there either is a vortex line within a given spatial region or there is not. This may
make it simpler to describe the motion of vortices statistically.

So far experimental studies of superfluid turbulence have been primarily in the context
of liquid helium [156]. Bose–Einstein condensates offer a compelling alternative subject
of study for superfluid turbulence. The high degree of control afforded over systems of
cold atoms allows superfluid properties to be tweaked in several ways, such as modifying
their density, temperature, trapping potential, interaction strength, or even the effective
mass of fluid particles via the application of a periodic potential. This control creates a
larger parameter space in which to study turbulence than that afforded by liquid helium.

Vortices are the skeletons of turbulence—to study turbulence via the behaviour of
vortices, we need to track them.

5.2. overview of velocimetry scheme 123

5.2 Overview of velocimetry scheme

As mentioned, the core idea of our proposed imaging method is to use tracer particles
to track vortex cores in a bec. In this chapter I consider 87Rb atoms as tracer particles
in a bec made of 41K. This choice is due to the strong interspecies repulsion between
these atomic species, which gives rise to the trapping of atoms in the vortex cores. In the
limit of low densities and temperatures, such that three body collisions are suppressed
and s-wave scattering dominates the interspecies interactions [157, p 120], the rubidium
tracer atoms experience a potential due to the potassium:

V(r) = 2πℏ2as
mr

ρK(r), (5.1)

where ρK(r) is the spatially varying atom density of the potassium condensate, as is the
interspecies s-wave scattering length, and mr =

mKmRb
mK+mRb

is the reduced mass of the
scattering pair. Vortex cores thus create potential wells for other atoms, since they are
regions of low condensate density in a background of higher density.

The scheme is shown in Figure 5.2. Cold rubidium atoms are introduced (possibly via
magnetic transport from a cold–but not necessarily condensed—source) to a potassium
condensate, after which both species are optically trapped at the focus of a high power
1064nm laser, using the dipole force. Various methods may be used to create vortices in
the condensate. These include bluff-body flow, where a repulsive potential is dragged
through the condensate, or inducing a turbulent state by applying off-resonant laser
speckle. The rubidium atoms are then expected to become trapped in the low density
vortex cores.

The tracer atoms are imaged with resonant or near-resonant laser light, depending on
the exact scheme employed. The scattering of imaging photons heats the tracer atoms,
which, if sufficient to cause them to escape the vortex cores, presents a problem for
acquiring images of vortexmotion. In Section 5.4 I present the results of simulating tracer
atoms imaged with resonant light. This light does not provide any cooling, instead the
simulation includes the cooling effect of the condensate itself. These results show that
sympathetic cooling of the tracer atoms by the condensate may be sufficient to retain
tracer atoms in vortices whilst scattering imaging light.

The simplest scheme which attempts to laser-cool the rubidium atoms is ordinary
polarisation gradient cooling, in which the same light is used for imaging and cooling the
atoms (Figure 5.2). This was considered in my Honours thesis [158], the results of which I
summarise in the next section. This method precludes the use of a magnetic trap or large
bias field, since either would destroy the cooling effect.

The vortex potentials may be made deeper through the use of a Feshbach resonance
(Section 2.1.6), which increases the interspecies scattering length. However, since this
requires a magnetic field, it precludes the use of ordinary polarisation gradient cooling.
In section (see Section 5.5) I present an alternative polarisation gradient cooling scheme
designedwork in the presence of amagnetic field of the strength required for the Feshbach
resonance of interest.

Effective imaging of vortex motion would require approximately 105 photons per
second to scatter off each rubidium atom without it escaping its vortex core trap, and
without causing so much heating as to destroy the condensate on a reasonable experimen-
tal timescale. A high resolution, low aberration lens (numerical aperture≈ 0.5) would
also be required to focus the scattered light onto a fast capture, high quantum efficiency
camera to produce images of vortex motion.

124
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

Figure 5.3: Energy eigenstates of a rubidium atom in a potassium vortex core, for a
potassium bec with background density ≈ 1014 cm−3. There are a number of bound
states spanning three orbital quantum numbers. Plots of the bound states are of a cross
section through the centre of a vortex core, and the lower right plot shows just the energy
levels (for all orbital quantum numbers ℓ). Figure reproduced from [158].

5.3 Relation to previous work

This schemewas first investigated inmyHonours project [158]. In that work I investigated
the ability of vortex potentials to trap atoms, including consideration of the depth of
such traps when measured in units of the photon recoil energy. Considering the depth in
these units was a first attempt to estimate how easily atoms may escape vortex potentials
in the presence of imaging light. Figure 5.3 and Figure 5.4 show bound states of typical
vortex potentials at different condensate densities.

To minimise the recoil energy, rubidium is a better choice for tracer particle than
potassium due to its larger mass, enabling a rubidium atom to scatter more photons
before escaping a vortex potential compared to a potassium atom. Vortex potentials are
not very deep when measured in recoil energies, and their depth depends strongly on the
density of the bec. At typical condensate densities of 1014 cm−3, the vortex potentials
are expected to only be 1–2 recoil energies deep, making it unlikely that atoms could
scatter many photons whilst remaining trapped in them. At larger densities of 1015 cm−3,
the vortex potentials are closer to 20 recoil energies deep, making imaging of trapped
tracer atoms more plausible.

Themain simulation result ofmyHonours project considered a potassium condensate
with a peak density of 1015 cm−3 and rubidium tracer atoms being cooled using standard
polarisation-gradient cooling with parameters chosen to ensure each atom scattered on
the order of 105 photons per second. The result was that initially randomly distributed
rubidium atoms were able to become—and remain—trapped in the vortex cores whilst
being cooled (Figure 5.5).

However, the density assumed in this simulationwas rather high for a real experiment.

5.3. relation to previous work 125

Figure 5.4: As in Figure 5.3, but for a potassium bec with background density
≈ 1015 cm−3. There are bound states over six different orbital quantum numbers. This
vortex potential is much deeper than that in Figure 5.3, showing the effect of condensate
density on the depth of the vortex potentials . Figure reproduced from [158].

126
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

Figure 5.5: The result from [158] of a two-dimensional hybrid quantum-classical sim-
ulation for 1000 classically modelled rubidium atoms (right, depicted as fluorescence
assuming diffraction through anNA = 0.5 imaging system) and a turbulent potassium
bec (left) of peak density≈ 1015 cm−3. The rubidium atoms are subject to a classical ap-
proximation of the force due to polarisation gradient cooling as described in [158]. Most
rubidium atoms eventually either become bound to a vortex core or leave the condensate.
Figure reproduced from [158].

5.4. sympathetic cooling 127

Three-body losses tend to limit the lifetime of condensates at such a high density, and
so the work in this chapter investigates ways to make particle velocimetry work in a less
dense condensate through the use of a Feshbach resonance.

In Section 5.4 I consider a similar configuration, but with a more reasonable bec
density combined with an enhancement of the interspecies repulsion due to the Feshbach
resonance. I investigatewhether sympathetic cooling of the tracer atomsby the condensate
may be enough to keep them trapped in the presence of imaging light. Then, in Section 5.5
I present simulation results of a new laser cooling schemedesigned towork at themagnetic
field strength required for the Feshbach resonance.

5.4 Sympathetic cooling

The simulation performed in my Honours thesis considered only polarisation gradient
cooling counteracting the heating effect of the imaging light. In reality, collisions be-
tween tracer atoms and atoms in the condensate would also contribute to cooling of
the rubidium. This sympathetic cooling of the tracer atoms—which would also lead to
heating of the condensate—was disregarded in my Honours results.

Depending on the strength, sympathetic cooling may be sufficient to retain tracer
atoms in vortex cores in the absence of an additional cooling mechanism. If laser cooling
is not necessary to trap tracer atoms in vortices, then the Feshbach resonance may be used
to enhance the interspecies scattering length, further enhancing the ability of the vortices
to trap tracer atoms. In this section I consider a similar simulation to that in my Honours
thesis, except with no laser cooling simulated, and with a model of sympathetic cooling
taken into account, in order to examine this possibility.

5.4.1 Model

In this section I model sympathetic cooling as elastic two-body scattering between the
rubidium tracer atoms and the potassium atoms in the condensate. The model is two-
dimensional, appropriate for a pancake-shaped condensate. As with the simulation in my
Honours thesis, I model the bec with the damped Gross–Pitaevskii equation:

iℏ 𝜕
𝜕t

ΨK(r, t) = (1 − iγ) 􏿰−
ℏ2
2mK

∇2 + V(r) + gK|ΨK(r, t)|
2􏿳ΨK(r, t), (5.2)

with damping constant γ = 0.01 and all other symbols are as defined in Section 2.2, with
the added subscriptsK indicating quantities specific to 41K. The 41K s-wave scattering
length is aK = 121a0 [159], where a0 is the Bohr radius. The damped gpe [160, 161] is a
phenomenologicalmodification of the standardgpe that includes dissipation to gradually
remove higher energy excitations from the condensate wavefunction, approximating
behaviour at finite-temperature. The condensate wavefunction is normalised at each
timestep to compensate for the decay this model otherwise would cause. The potential
V(r) is a harmonic potentialV(r) = 1

2mKω2
Kr2.

The rubidium tracer atoms are modelled classically, evolving under the potential due
to interspecies repulsion, as well as the external potential2 V(r), resulting in the equation 2For simplicity I assume that

both species are subject to the
same external potential. Writing
the potential as a harmonic trap
for rubidium such that V(r) =
1
2mKω2

Kr2 = 1
2mRbω2

Rbr
2 gives

ωRb ≈ 0.7ωK.

of motion:

d2

dt2
r = − 1

mRb
∇ 􏿴gRb–K|ΨK(r, t)|

2 + V(r)􏿷 , (5.3)

where gRb–K is the 87Rb–41K non-linear interaction constant gRb–K =
2πℏ2aRb–K

mr
, with

mr the reduced mass of the 87Rb–41K scattering pair and aRb–K the s-wave interspecies
scattering length. aRb–K is equal to 640a0 at zero magnetic field [39], and assumed in

128
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

this section to be enhanced by a factor of five by means of the 34G Feshbach resonance
(see Section 2.1.6 and Figure 2.2). Since the Gross–Pitaevskii equation is solved on a grid
whereas the classical motion of the atoms is modelled using continuous position variables,
the condensate density is numerically differentiated and the results interpolated to the
positions of the tracer atoms using cubic splines in order to evaluate (5.3) for each tracer
atom.

The motion of the tracer atoms is punctuated by momentum jumps due to both the
scattering of imaging photons and two-body collisions with the condensate. Photon
scattering events are modelled as instantaneous momentum jumps of magnitude hc/λ
where λ = 780 nm is the wavelength of the imaging light. A random direction in 3d
space is chosen and a momentum jump in this direction with the given magnitude is
projected into the 2d plane of the simulation before being applied to the atom. These
jumps occur at random times at an average rate given by the target photon scattering
rate of 105 photons per second. Neglecting the exact details of the imaging light used, I
assume repumping is included such that the atom spends nearly all of its time in the |1, 1⟩
ground state—necessary for the scattering length enhancement—and that the target
scattering rate includes scattering from all lasers, repump or otherwise.

Collisions with the condensate are modelled as elastic collisions between a rubidium
atom with the given classical velocity, and a potassium atom of velocity equal to the
superfluid velocity vK of the condensate (discussed in Section 2.2) at the location of the
tracer atom, given by

vK(r, t) =
ℏ
mK

∇ϕK(r, t), (5.4)

where ϕK(r, t) is the complex phase of the potassium condensate wavefunction. The
s-wave scattering length a is defined as [162, p 589, eq. 12.101]

a = − lim
krel→0

tan (δ0(krel))
krel

, (5.5)

where krel = mrvrel/ℏ is the relative wavenumber of the colliding pair of atoms with
reducedmassmr and relative velocity vrel, and δ0(k) the collisional phase shift. Assuming
small krel and substituting this into the s-wave elastic scattering cross Section [162, p 584,
eq. 12.66]

σ = 4π
k2rel

sin2 (δ0(krel)) (5.6)

gives a low-velocity approximation to the scattering cross section for elastic collisions
between the rubidium and potassium atoms:

σRb–K ≈ 4π
a2Rb–K

1 + k2rela
2
Rb–K

. (5.7)

For rubidium atoms at 5 μK, krelaRb–K < 0.1, such that the zero-velocity scattering cross
section σ = 4πa2 would be accurate enough; nonetheless (5.7) is the expression used
in this section.3 From the scattering cross section we obtain the mean free path of a3For modestly larger Feshbach

enhancements of the scattering
length, the zero-velocity cross
section would not be accurate and
the velocity dependence of the
scattering cross section would
become important.

rubidium tracer particle within the potassium bec:

ℓ(r, t) = 􏿴σRb–K|ΨK(r, t)|
2􏿷
−1
, (5.8)

yielding the probability of a collision occurring in an infinitesimal time interval dt:

Pcollision(r; t, t + dt) = vrel(r, t)σRb–K|ΨK(r, t)|
2dt, (5.9)

5.4. sympathetic cooling 129

where vrel = |vK(r, t) − v| for a specific rubidium atom at position r and with velocity v.
At each timestep, a random number between zero and one is generated for each atom,

and if less than (5.9), a collision is taken to have occurred.4 In the case of a collision, the 4During thesis writing, an error
was discovered in the code that
produced the results in this section,
in which the computed collision
probability (5.9) was too small
by a factor of√2. As such, the
results shown in the next subsection
underestimate the sympathetic
cooling effect slightly. I do not
expect this error to change any of
my conclusions.

2d elastic scattering problem is solved and the rubidium atom’s velocity instantaneously
replaced with its post-collision value. The potassium condensate wavefunction is not
modified, and as such the model does not take into account the effect of sympathetic
heating on the condensate. However, the energy gained or lost by the potassium atom in
the elastic scattering event is recorded for later use in inferring how much heating the
condensate was subjected to.

5.4.2 Results

I simulated the equations described in the previous section in two dimensions, with the
gpe solved on a 256× 256 grid using fourth-order Runge–Kutta (Section 3.3) withΔt =
500 ns using fast Fourier transforms to evaluate the kinetic energy term (Section 3.4.1),
and the tracer atom Newtonian equations of motion propagated also using fourth-order
Runge–Kutta with the same timestep, for 103 tracer atoms. The first derivatives of
the condensate wavefunction required to compute its phase gradient were evaluated
using second-order finite differences, which I observed to be less susceptible to Gibbs’
phenomenon in the vicinity of vortex cores, which—when using Fourier transforms—
would produce a velocity field with unphysical radial motion close to a vortex core.5 5Interestingly, second derivatives—

as required for the kinetic energy
term of the gpe—do not appear to
suffer from this problem at similar
grid resolutions.

I repeated the simulation with two harmonic trapping frequencies in order to model
two condensate densities. In the higher density simulations I used ωK = 2π × 130Hz
and simulated a spatial region of 40 μm× 40 μm. In the lower density simulations I used
ωK = 2π × 65Hz and increased the size of the simulated region to 57 μm × 57 μm.

I computed the initial conditions for the condensate wavefunction using the imagi-
nary time evolution method (Section 3.5.1) subject to a fixed 2d normalisation constant
leading to a peak density of 5.1 × 1014 cm−3 for the higher density simulation and
2.5 × 1014 cm−3 for the lower density simulation. Once the ground state condensate
wavefunction was found, I then constructed a turbulent state by imposing a phase pattern
on the condensate on a 16 × 16 grid, with the phase in each region chosen randomly
from the interval (−π, π). I then applied the imaginary time evolution algorithm once
more for 600 μs to produce a physically realistic condensate wavefunction containing a
number of vortices randomly distributed.

The initial positions of the tracer atoms were uniformly distributed over the entire
spatial region, and velocities drawn from a Maxwell–Boltzmann distribution at 5 μK.

After producing the initial conditions, I then evolved the system in time for 32ms
with sympathetic cooling being modelled, but ‘dark’—with zero photon scattering. The
results of this are shown in Figure 5.7 for the higher density case and Figure 5.10 for the
lower density. During this evolution many of the tracer atoms either moved into vortex
cores or left the condensate (those that left mostly formed a ring at the Thomas–Fermi
radius where the external potential and interspecies potential resulted in a potential
minimum), showing that sympathetic cooling under the assumptions of this model is
sufficient to cause randomly-distributed tracer atoms to become bound to vortex cores.
During this evolution the vortices moved about the condensate, and due to the inclusion
of damping, reduced in number over time as they left the condensate, or annihilated with
each other.

I then continued this simulation, but with the inclusion of photon scattering as
described in the previous section. For both the lower and higher density simulations, I
used two timepoints in the dark simulations as initial conditions: 16ms and 32ms. This
was in order to examine whether the decay in vortex number over time improved the
visibility of vortices in the resulting images, since there are fewer vortices at later times.
Imaging was simulated for 10ms, and the location of each photon emission recorded in

130
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

0 2 4 6 8 10

t− t0 (ms)

0

10

20

30

∆
E

K
/
1
0

6
k

B
(n

K
)

Higher ρK, t0 = 16 ms
Lower ρK, t0 = 16 ms
Higher ρK, t0 = 32 ms
Lower ρK, t0 = 32 ms

Figure 5.6: Energy absorbed by the potassium bec via elastic collisions with tracer atoms
over the 10ms imaging interval, plotted for each of the four simulation runs, in units of
kB × 106 nK. This choice of units shows the energy absorbed per atom in temperature
units, assuming a condensate of 106 potassium atoms. For a fixed heat capacity corre-
sponding to that of an ideal Bose gas at T = Tc/2, an amount of energy absorbed per
atom of kB × 30 nK corresponds to a temperature increase of 44 nK. As this is likely
to be smaller than the critical temperature, this result shows that the condensate is not
destroyed by the imaging of tracer particles.

order to accumulate a simulated image of the tracer particle locations over time. From this
idealised image—which does not include sub-unity collection efficiency or diffraction—
I derived a more realistic image assuming 4.2% collection efficiency, and diffraction
modelled as a displacement in the location of each detected photon by a random distance
drawn from aGaussian distribution with a standard deviation of 0.32 μm. This collection
efficiency and spot size are appropriate for aNA = 0.5 imaging system, assuming unit
quantum efficiency of the camera sensor and a Gaussian approximation to the diffraction
spot shape. No effort was made to include photons based on their emission direction.

The results are encouraging—vortex motion is clearly visible in the idealised images,
and still quite visible in the more realistic images taking into account imperfect imaging.
Contrary to expectations, at lower densities vortex traces are slightly more visible in
the simulated images due to the slower motion of the vortices. Even though vortex
potentials are only a fewphoton recoil energies in depth at the lower density, the simulated
sympathetic cooling is effective at keeping the tracer atoms trapped within vortex cores.
The modelled interaction between the tracer particles and the condensate causes the
tracer particles to follow the local superfluid flow, including orbiting vortex cores prior
to falling into them, and moving in circles within vortex cores once trapped.

Throughout each simulation, I tracked how much energy was absorbed by the con-
densate from collisions with the tracer atoms. These results are shown in Figure 5.6, and
show that sympathetic heating of the condensate is modest, such that a sufficiently large
condensate can likely remain condensed after this period of imaging.

5.5 Sisyphus cooling in a 34Gmagnetic field

Asmentioned, one of the limitations of the usual method of polarisation gradient cooling
is that it doesn’t work in a magnetic field larger than Γ/γ, where Γ is the transition line
width and γ the gyromagnetic ratio. Fields larger than this cause some of the required

5.5.
sisyph

us
cooling

in
a
34G

m
agnetic

field
131

−15

−5

5

15

−15 −5 5 15

−15

−5

5

15

−15 −5 5 15 −15 −5 5 15 −15 −5 5 15

1

2

3

4

ρ
K
/
1
0

1
4

cm
−

3

−15 −5 5 15
−π

−π2

0

π
2

φ
K

t = 0 ms t = 8 ms t = 16 ms t = 24 ms t = 32 ms

y
(µ

m
)

x (µm)

Figure 5.7: Higher density simulation of the evolution of the potassium condensate and 103 rubidium tracer particles interacting via sympathetic cooling, beginning from a turbulent
condensate with randomly distributed tracer particles. Top row: condensate density (false colour) and tracer particle positions (white dots). Bottom row: condensate phase showing
the location of vortices as points about which the phase winds by 2π. The initially randomly distributed tracer particles either leave the condensate or become trapped in vortex cores.
When vortices annihilate, any tracer particles previously held remain in the condensate, this is an ongoing source of tracer particles in the bulk of the condensate that are not bound to
vortex cores. Although not visible in these plots, in a video of these results the tracer particles can be seen to move in circles within vortex cores in the same direction of the superfluid
flow.

132 chapter 5. particle velocimetry of vortices in bose–einstein condensates

1

2

3

4

ρ
K
/
1
0

1
4

cm
−

3

−π2

0

π
2

π

φ
K

−15 −5 5 15
0

20

40

60

80

100

co
u
n
ts

−15 −5 5 15
0

1

2

3

4

5

co
u
n
ts

x (µm)

Figure 5.8: Final state of the higher density simulation of imaging of tracer particles in the bec for 10ms starting from the
state of the ‘dark’ simulation at 16ms (i.e. the central pair of Figure 5.7). Top left: The condensate density (false colour) and
tracer particle positions (white dots). Tracer atoms that in the dark simulation formed a ring at the Thomas–Fermi radius
are highly excited in the harmonic trap due to photon scattering, and leave the frame. Top right: condensate phase, showing
the position of vortices as points about which phase winds by 2π. Bottom left: idealised image of tracer particle photon
emissions over the imaging period. Photon emission locations are binned into a 256 × 256 grid. Complex vortex motion is
clearly visible. Bottom right: modelled image taking into account non-unity collection efficiency and diffraction. Photon
counts are low, but more than half the vortices are usefully tracked.

5.5. sisyphus cooling in a 34Gmagnetic field 133

1

2

3

4

ρ
K
/
1
0

1
4

cm
−

3

−π2

0

π
2

π

φ
K

−15 −5 5 15
0

10

20

30

40

50

co
u
n
ts

−15 −5 5 15
0

1

2

3

4

5

co
u
n
ts

x (µm)

Figure 5.9: Final state of the higher density simulation of imaging of tracer particles in the bec for 10ms starting from
the state of the ‘dark’ simulation at 32ms (i.e. the rightmost pair of Figure 5.7). Top left: The condensate density (false
colour) and tracer particle positions (white dots). Top right: condensate phase, showing the position of vortices as points
about which phase winds by 2π. Bottom left: idealised image of tracer particle photon emissions over the imaging period.
Photon emission locations are binned into a 256 × 256 grid. Vortex motion is visible, with slightly better contrast than in
Figure 5.8, owing to fewer vortex annihilations taking place in this time interval, though the difference is minor. Bottom
right: modelled image taking into account non-unity collection efficiency and diffraction. Photon counts are low, but vortex
motion is still visible. Here the increased clarity of the vortex motion over Figure 5.8 is more apparent.

134
ch

apter
5.

particle
velocim

etry
of

vortices
in

bose–einstein
condensates

−20

−10

0

10

20

−20 −10 0 10 20

−20

−10

0

10

20

−20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20

0.5

1.0

1.5

2.0

ρ
K
/
1
0

1
4

cm
−

3

−20 −10 0 10 20
−π

−π2

0

π
2

φ
K

t = 0 ms t = 8 ms t = 16 ms t = 24 ms t = 32 ms

y
(µ

m
)

x (µm)

Figure 5.10: Lower density simulation of the evolution over time of the potassium condensate and 103 rubidium tracer particles interacting via sympathetic cooling, beginning from a
turbulent condensate with randomly distributed tracer particles. Top row: condensate density (false colour) and tracer particle positions (white dots). Bottom row: condensate
phase showing the location of vortices as points about which the phase winds by 2π. The initially randomly distributed tracer particles either leave the condensate or become trapped
in vortex cores.

5.5. sisyphus cooling in a 34Gmagnetic field 135

0.5

1.0

1.5

2.0

ρ
K
/
1
0

1
4

cm
−

3

−π2

0

π
2

π

φ
K

−20 −10 0 10 20
0

25

50

75

100

125

150

175

co
u
n
ts

−20 −10 0 10 20
0

1

2

3

4

5

co
u
n
ts

x (µm)

Figure 5.11: Final state of the lower density simulation of imaging of tracer particles in the bec for 10ms starting from the
state of the ‘dark’ simulation at 16ms (i.e. the central pair of Figure 5.10). Top left: The condensate density (false colour)
and tracer particle positions (white dots). Top right: condensate phase, showing the position of vortices as points about
which phase winds by 2π. Bottom left: idealised image of tracer particle photon emissions over the imaging period. Photon
emission locations are binned into a 256 × 256 grid. Vortex tracks appear shorter than in the higher density simulations,
owing to the slower vortex velocity at lower density. Tracer particles are clearly still able to remain trapped despite the
shallower vortex potentials, and the slower vortex velocity improves contrast as more photons are emitted per unit distance
of vortexmotion. Bottom right: modelled image taking into account non-unity collection efficiency and diffraction. Photon
counts are low, but vortex motion is still visible. The increased clarity of vortex tracks due to their slower motion is still
apparent with the lower photon counts. As the lower condensate is larger, diffraction is slightly less apparent than in the
higher density simulations.

136 chapter 5. particle velocimetry of vortices in bose–einstein condensates

0.5

1.0

1.5

2.0

ρ
K
/
1
0

1
4

cm
−

3

−π2

0

π
2

π

φ
K

−20 −10 0 10 20
0

20

40

60

80

100

120

140

co
u
n
ts

−20 −10 0 10 20
0

1

2

3

4

5

co
u
n
ts

x (µm)

Figure 5.12: Final state of the lower density simulation of imaging of tracer particles in the bec for 10ms starting from the
state of the ‘dark’ simulation at 32ms (i.e. the rightmost pair of Figure 5.10). Top left: The condensate density and tracer
particle positions (white dots). Top right: condensate phase, showing the position of vortices as points about which phase
winds by 2π (phase only plotted where density is> 5% of maximum density). Bottom left: idealised image of tracer particle
photon emissions over the imaging period. Photon emission locations are binned into a 256 × 256 grid. Vortex tracks are
shorter than in the higher density simulations due to slower vortex motion, and there are fewer of them owing to more
vortex annihilation occurring before the imaging light was turned on. Bottom right: modelled image taking into account
non-unity collection efficiency and diffraction. This is perhaps the clearest image of vortex motion out of the four imaging
simulations, with vortex trails most clearly visible and separated owing to their lower number and slower velocity.

5.5. sisyphus cooling in a 34Gmagnetic field 137

transitions to shift out of resonance which destroys the cooling effect. Usually this is
not an issue for the cooling stage used en-route to bec; the magnetic field is simply
temporarily switched off. Our imagingmethod would benefit from a cooling scheme that
does work in a magnetic field, since the repulsive interactions between 87Rb and 41K can
be greatly enhanced via a Feshbach resonance at 34G [39]. This wouldmake the potential
wells that the rubidium atoms see deeper, trapping them more strongly. However if the
magnetic field destroys the coolingmechanism then the atoms won’t stay trapped for long.
Even if sympathetic cooling is sufficient to image tracer particles trapped in vortices, the
addition of a cooling scheme would increase the lifetime of the condensate on account of
decreased sympathetic heating, and may allow a larger scattering rate of photons before
the tracer atoms cease to be trapped.

The Feshbach resonance only occurs if both species are in their |S1/2, F = 1,mF = 1⟩
states,6 so a cooling mechanism in which the rubidium atoms spend a significant fraction 6F is not a good quantum number

in a non-zero magnetic field, so
what we mean writing this is the
state that one would get if starting
in an F state and adiabatically
turning on the magnetic field.

of their time in this state is desirable.
In this section I present a sub-Doppler cooling scheme that is designed to cool 87Rb

in a 34G magnetic field. The basic Sisyphus mechanism—of atoms moving alternately
between spin states which see different potentials—is possible to find in many multi-level
systems of sufficient complexity;7 my cooling scheme uses a Sisyphus mechanism with

7And indeed, many other Sisy-
phus cooling mechanisms exists
other than polarisation gradient
cooling [25, p 116].

four lasers to cool and repump 87Rb atoms in a 34G field, with the atoms spending
approximately half their time in the |S1/2, 1, 1⟩ state.

In Section 5.5.4, I briefly describe another cooling scheme suggested by Prof. Helmer-
son, which uses the vortex cores themselves as the potential hills in a Sisyphus mechanism.
I have not simulated this scheme to asses its viability; I mention it here because it is
illustrative of the type of problem that is difficult to model semiclassically, and was one of
the factors that led me to consider the use of hidden variables in semiclassical models, as
discussed in Chapter 6.

5.5.1 Description of cooling scheme

The scheme involves four lasers, two for cooling and two for repumping. For simplicity I
will first focus on the cooling lasers only, depicted in Figure 5.13. Consider a rubidium
atom at z = 0 and in the |S1/2, 1, 1⟩ hyperfine ground state. At this position the atom
sees no light, as the intensity of the cooling laser labelled ω1 is zero, and it is in the wrong
state to be pumped by the ω2 laser (which is not resonant with any transitions from the
|S1/2, 1, 1⟩ ground state).

As the atommoves rightward however, it will have to climb the repulsive potential hill
formed by theω1 laser. As it does so, its |P1/2, 1, 1⟩ excited state probability will increase,
and along with it, the probability of spontaneous emission. Spontaneous emission will
be most likely to occur near the top of the potential hill where the laser intensity—and
hence the excited state probability—is greatest.

The most likely ground state for the atoms to decay to from the |P1/2, 1, 1⟩ excited
state is the |S1/2, 2, 2⟩ ground state, and this is most likely to occur near z = λ

4 . If this
occurs, we now have an atom in the |S1/2, 2, 2⟩ ground state at z = λ

4 , a situation similar
to that in which it started. Again, out atom now sees no light, but which laser has zero
intensity and which targets the wrong transition are swapped.

As our atom continues rightward, it now has to contend with the potential hill
formed by the ω2 laser, and is most likely to undergo spontaneous emission from the
|P1/2, 2, 2⟩ excited state near the top of the potential hill. This time emission is most
likely to put the atom into the |S1/2, 1, 1⟩ ground state.

This process repeats, with atoms repeatedly climbing potential hills and being cooled.
They spend approximately half their time in the |S1/2, 1, 1⟩ ground state, allowing us

138
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

Figure 5.13: An idealised depiction of the cooling scheme, with repump lasers and un-
desired states not shown. Two lasers on theD1 line are used for cooling, both linearly
polarised, with the relative phases of all beams fixed so as to form two interleaved stand-
ing waves, with the nodes of one standing wave coinciding with the anti-nodes of the
other. Both are blue detuned from the transitions they target, and they differ by about
6.8GHz. This difference means that the alignment of the two standing waves can only
be maintained over a distance of about a centimetre.

to take advantage of the strong interspecies repulsion that this state entails for our two
atomic species.

Of course, as is always the case, things aren’t that simple. Whilst the two spontaneous
decays mentioned above are the most likely, they are by no means the only possibilities.
Some spontaneous decays will put the atoms back into the ground state from which they
came, with no harm done except a little extra heating from the photon recoil. Other
decays however will put our atom into states that are not involved in the cooling scheme,
where they will remain with no further cooling unless we do something about it. For this
we need repump lasers (Figure 5.14).

There are three states that the atom might end up in as a result of decay from the two
excited states involved in the cooling process, and two repump lasers are used to excite
them to three P3/2 states,8 from where they can spontaneously decay back to states in the8I chose the P3/2 manifold as the

target of the repump transitions so
that they would not interfere with
the cooling cycle—repump beams
that addressed the same P1/2 states
as the cooling beams would cause
coherent population transfer into
the undesired states.

cooling cycle. Two of these transitions are similar enough that they can be addressed with
the same laser.

5.5.2 Methods

The cooling scheme was simulated for the case of a single atom, with the internal state of
the atom modelled with the Schrödinger equation in the eigenbasis of the hyperfine and
Zeeman Hamiltonians (described in Section 2.3), comprising 32 states. The dipole transi-
tion matrix elements coupling each pair of states were each computed as the appropriate
linear sum of the dipole matrix elements at zero field, using the dipole approximation and
the rotating wave approximation, as described in Section 2.3.5. Since the corresponding
Rabi frequencies depend on the laser intensity as well as the dipole matrix elements, they
are functions of space, to be computed at each integration timestep as the atom moves
through different intensities of the cooling beams. Following [25, p 4], this produced a

5.5. sisyphus cooling in a 34Gmagnetic field 139

Figure 5.14: The full cooling scheme, including repump lasers (yellow), cooling lasers
(blue and green), and all possible decay paths (red). The repump beam which is drawn in
between two ground and excited states has a frequency equal to the average of those two
transitions.

set of 32 coupled differential equations for the amplitudes of each state, of the form :

iℏ d
dt

ce(t) = −
1
2
e∑
g , n

En⟨g |qn|e⟩cg (t)e−iδnget , (5.10)

and
iℏ d
dt

cg (t) = −
1
2
e∑

e, n
En⟨g |qn|e⟩ce(t)eiδnget , (5.11)

where each c(t) is the complex amplitude of one state; the e indices are over the excited
states and the g indices over the ground states; the n indices are over the lasers, with
En being the nth laser’s electric field, δnge the detuning of the nth laser from the g → e
transition, and ⟨g |qn|e⟩ the dipolemoment between the g th ground and eth excited states
for the polarisation qn of the nth laser.

The external motion of the atom was modelled classically, with the atom having a
definite position and velocity in one dimension. The force on the atom was computed
from the dipole forces that the two ground states involved in the cooling cycle experience
due to the standing waves formed by the cooling beams. An expectation value of the
dipole force was computed as

⟨F⟩ = | ⟨S1/2, 1, 1|Ψ⟩| 2F|S1/2,1,1⟩ + | ⟨S1/2, 2, 2|Ψ⟩|
2F|S1/2,2,2⟩, (5.12)

where F|S1/2,1,1⟩ and F|S1/2,2,2⟩ are the dipole forces on the two ground states, calculated
using [25, eqn 3.16, p 33] with one standing wave offset from the other by a quarter
wavelength. The forces on other ground states are neglected since the repump beams do
not have intensity gradients, and since the cooling beams are much further away from
resonance for ground states other than the two in the cooling cycle. Forces on excited
states are also neglected. The forces on the two excited states in the cooling cycle are
not smaller than those on the corresponding ground states, however the excited state
populations are small since the cooling beams are several line widths away from resonance.

140
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

Type Transition(s) Detuning Intensity
(per beam)

Polarisation

Cooling
(standing wave)

|S1/2, 2, 2⟩ → |P1/2, 2, 2⟩ + 66.6MHz 5.0mWcm−2 π

Cooling
(standing wave)

|S1/2, 1, 1⟩ → |P1/2, 1, 1⟩ + 31.9MHz 5.0mWcm−2 π

Repump
(single beam)

|S1/2, 2, 1⟩ → |P3/2, 2, 2⟩ ,
|S1/2, 2, 0⟩ → |P3/2, 2, 1⟩

Midway
between

50.0mWcm−2 σ+

Repump
(single beam)

|S1/2, 1, 0⟩ → |P3/2, 1, 1⟩ Resonant 10.0mWcm−2 σ+

Table 5.1: The parameters used in the laser cooling simulations. There are four lasers, each
with a specified polarisation, intensity, and detuning from the transition it targets.

This expectation value of the dipole force was used to model the classical motion
of the atom. Although the components of an atom in superposition would in reality
spatially separate under the influence of a force that is different for different internal states
of the atom, as in the Stern–Gerlach experiment, our atom only transitions between the
two states subject to different forces via spontaneous emission, after which it is in an
eigenstate. Accordingly, the expectation value calculation is always dominated by one of
the two ground states and the potential for Stern–Gerlach separation does not arise.

Spontaneous emission was simulated stochastically at each integration timestep, with
probability of decay per unit time equal to the sum of populations in all excited states,
multiplied by their decay rates (equal to the natural line widths of each of the two fine-
structure lines). Multiplying by the duration of one timestep, and comparing with a
random number then determined whether a decay was to occur.

In the event of a decay, one excited state was randomly chosen with probability
proportional to its population, and then one ground state, weighted by the transition
strengths from the excited state. All population was then put into that ground state and
the simulation continued, with one photon of momentum in a random 1d direction
added to the atom’s momentum to account for photon recoil.

The equations of motion were solved using fourth-order Runge–Kutta integration
(Section 3.3).

5.5.3 Results

The laser parameters used in the simulation are shown in Table 5.1. The magnetic field
strength used was 34G. The detunings of the cooling beams were chosen based on an
approximate calculation in order to produce a scattering rate of 2 × 105 photons per
second in the simulation.

The simulation was run for 7.2 × 106 integration timesteps of size Δt = 20 ps,99Corresponding to approximately
ten timesteps per oscillation of
the fastest oscillating terms, which
oscillate at a rate close to half the
6.8GHz hyperfine splitting of the
rubidium ground states.

for a total of 14.3 milliseconds of simulation time. This took 14 days of computer time.
In that time, the atom moved a maximum distance of 26 μm from its starting position,
and its final position was 790 nm from its starting position. The atom’s initial velocity
was 195mm s−1, and during the simulation it reversed the direction of its velocity 2226
times; 4103 photons were emitted, for an average scattering rate of 2.87 × 105 photons
per second—slightly higher than the target rate.

5.5. sisyphus cooling in a 34Gmagnetic field 141

I computed the time-averaged kinetic energy of the atom over the whole simulation
as

⟨EK⟩ =
1
2
mRb⟨v2⟩. (5.13)

Assuming the single atom ergodically sampled a sufficient fraction of the possible state
space, one can compute from this the 1d temperature that a cloud of atoms subject to
this cooling would have, after being allowed to come to equilibrium using

1
2
kBT1D = ⟨EK⟩ . (5.14)

This gave T1D = 16.2 μK, well below the Doppler temperature TD = 146 μK [41]. A
histogram showing the time the atoms spent at different velocities is shown in Figure 5.15.
This one-dimensional temperature corresponds to ≈ 30Er where Er is the rubidium
recoil energy. Given that the potassium vortex potentials are at about 15Er deep without
a Feshbach resonance at a density of 1 × 1015 cm−3 and only ≈ 2.0Er at the more
realistic density of 1 × 1014 cm−3, and that the atom only spends about half its time
in the state subject to the Feshbach resonance, this cooling would only be sufficient to
keep rubidium atoms trapped in vortex cores if the Feshbach resonance enhances the
interspecies scattering length by a factor of≈ 2 for a 1×1015 cm−3 condensate or a factor
of≈ 30 for a 1 × 1014 cm−3 condensate. While a factor of 2 is easily achievable, a factor
of 30 is not, indicating that the minimum density compatible with tracer particles at this
temperature being trapped is between 1 × 1014 cm−3 and 1 × 1015 cm−3.

This simulation has not, however, been optimised—the results presented here rep-
resent the only extended simulation of the scheme, and no attempt has been made to
scan over parameter space to see if the temperature can be made lower. As mentioned the
simulation was computationally expensive, and so optimisation would be impractical if
performed using the same code. However, a significant speed up would be possible by
correcting some inefficiencies. Firstly, one could exclude from the simulation the atomic
states that were shown in the first run never to become occupied—the states with no
arrows leading to them in Figure 5.14. This will eliminate approximately two thirds of the
states, and since the simulation is quadratic in the number of states, this should provide
an approximately 10× increase in simulation speed. More importantly, lasers that are
detuned with respect to a given transition by approximately the hyperfine splitting of
6.8GHz should be discarded in the coupling term for that transition. The inclusion of
these fast rotating terms—which are so far detuned as to cause negligible population
transfer—was the limiting factor in the simulation timestep size, which would otherwise
be determined by the next fastest rotating terms on the order of tens of MHz instead of
GHz. This would lead to a likely dramatic speedup as well, making repeated runs of the
simulation feasible.

5.5.4 Vortex-assisted Sisyphus cooling

Another idea for a cooling scheme is to use the vortex potential itself as a spatial dis-
criminator for transferring atoms between states. Similar to how a mot traps atoms by
bringing them into resonance with optical pumping only when they are some distance
from the trap centre, one might use the shape of the vortex potential to bring an rf or
microwave transition into resonance only when trapped tracer particles are some distance
away from the centre of a vortex core. This method was proposed by Prof. Helmerson
whilst considering different possibilities for cooling atoms in vortex cores, and I consid-
ered which states might be appropriate to implement the scheme in. I have not simulated
this scheme, but present it here because the reason it is difficult to simulate is an example
of the type of problem that led me to develop the hidden variable semiclassical method
presented in Chapter 6.

142
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

−150 −100 −50 0 50 100 150 200

velocity (mm s−1)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

v
el

o
ci

ty
p

ro
b

a
b

il
it

y
d

en
si

ty
(1
/
m

m
s−

1
)

Maxwell–Boltzmann
(T = 16.2µK)

Simulation

Figure 5.15: Histogram in orange of atom velocity, normalised as a probability density.
The symmetry about zero velocity and low level of noise on the histogram is good evidence
that the atom ergodically sampled the range of possible velocities such that the histogram
can be interpreted as a probability distribution. The long tail visible to the right is the
atom’s initial slowdown from its starting velocity. A Maxwell–Boltzmann distribution
with the same mean kinetic energy is shown as the blue line. It is no surprise that it does
not agree with the histogram—there is no thermalisation happening since there is only
one atom and no collisions—but this represents the distribution that a cloud of atoms
with the same per-particle mean kinetic energy as our atom would thermalise to in the
presence of collisions.

The basic idea of the vortex-assisted cooling scheme is outlined in Figure 5.16. In the
presence of the Feshbach resonance, atoms in the |S1/2, 1, 1⟩ state scatter some tens of
photons, using whichever transition is most likely to have them decay to the same ground
state with minimal repumping (the |P3/2, 0, 0⟩ excited state on theD2 line looks to be
the best choice). As the atom scatters photons, it climbs the side of the vortex potential,
converting the kinetic energy obtained from photon recoil into potential energy.

Due to the state-dependence of the interspecies scattering length, the vortex potentials
for different states have different depths, especially when one is enhanced by a Feshbach
resonance. Thismeans that the rf ormicrowave frequency required to transition between
the different hyperfine states and Zeeman sublevels varies as a function of space, and can
be tuned so as to only be resonant with atoms which have nearly escaped the vortex core.

When the atom enters the region resonant with said rf or microwave radiation, it is
then transferred into a different hyperfine or Zeeman state, for example the |S1/2, 2, 2⟩
ground state, and the hope is that it then lacks the kinetic energy to escape the (shallower)
vortex potential it then finds itself in. Rather, it oscillates back and forth in the well until
a weak laser pumps it back into the |S1/2, 1, 1⟩ ground state via spontaneous emission
from some excited state (again chosen to maximise the decay probability to |S1/2, 1, 1⟩;
the |P3/2, 2, 2⟩ excited state looks to be a good choice.)

5.5. sisyphus cooling in a 34Gmagnetic field 143

Figure 5.16: A basic description of the vortex-assisted cooling scheme. 1. The rubidium
atom in its |S1/2, 1, 1⟩ ground state repeatedly scatters photons from the laser marked
with the blue arrow, climbing the vortex potential as it does so. The optical transition’s
line width is large enough that the energy shift due to the vortex potential does not move
it off resonance (and this allows us to ignore the vortex potentials experienced by the
excited state, not shown). 2. An rf or microwave transition however, has an extremely
narrow line width; its effective line width is dependent only on the rf/microwave power.
A microwave transition (grey arrow) comes into resonance only when the atom moves
sufficiently far from the vortex core’s centre, and coherently transfers population into
the |S1/2, 2, 2⟩ ground state. 3. The atom oscillates back and forth in the much shallower
vortex potential that its |S1/2, 2, 2⟩ ground state experiences. It is pumped weakly by the
laser marked with the green arrow, and after a random time delay (and hence at a random
position) spontaneously decays back to the |S1/2, 1, 1⟩ ground state.

After completing this cycle, statistically the atom will be closer to the centre of the
|S1/2, 1, 1⟩ vortex potential than when it left the |S1/2, 1, 1⟩ state. Provided the corre-
sponding drop in potential energy makes up for the photon scattering (which provides
fluorescence imaging), then it comprises a cooling and imaging scheme capable of keeping
the atoms trapped in the vortex cores. It is yet another Sisyphus effect, with the atom
climbing steep vortex potential hills and descending shallower ones.

However, this scheme cannot be simulated in the same manner as the laser cooling
scheme presented in Section 5.5. The reason is that the rf or microwave transition
depicted as the grey arrow in Figure 5.16 is coherent, and as such leads to state vectors
that are superpositions of the two hyperfine or Zeeman sublevels, with no one state
dominating the superposition.10 Since (crucially for the cooling scheme), the two states 10This is in contrast to the cooling

scheme presented in Section 5.5,
in which population was primarily
in one of two ground states, and
switched between them only via
spontaneous emission.

are subject to different potentials, an atom in such a superposition would undergo Stern–
Gerlach separation. Unlike the laser cooling scheme from the previous section, since no
one state dominates the superposition at a given time, the expectation value of the two
forces does not accurately describe the motion of the atom. To accurately simulate this
cooling scheme, a semiclassical method able to reproduce this Stern–Gerlach separation
would likely be necessary. This realisation, along with similar difficulties in simulations
of Majorana losses in evaporative cooling during collaboration with Drs. Turner and

144
chapter 5. particle velocimetry of vortices in bose–einstein

condensates

Anderson and Christopher Watkins led me to develop the hidden-variable semiclassical
method, discussed in Chapter 6.

5.6 Conclusion

The sympathetic cooling results shown in Section 5.4 are promising, indicating that it is
likely possible to observe vortex motion in becs of realistic density via tracer particles
using a Feshbach resonance and no additional cooling. A limitation of these results is
their neglect of the corresponding sympathetic heating of the condensate, which could
limit the duration over which vortices can be imaged. Furthermore, the assumption
of solely elastic collisions becomes increasingly inaccurate as larger Feshbach-induced
scattering enhancements are used due to an enhancement of inelastic collisions [163]. A
final limitation is that in three dimensions, the halo of atoms that have left the condensate
but are still trapped would also be in front of the condensate from the perspective of
the imaging system, which would obscure the view of the tracer particles within the
condensate somewhat.

The new laser cooling method presented in Section 5.5 appears—in simulation–to
be able to provide sub-Doppler cooling at the magnetic field strength required for the
41K–87Rb Feshbach resonance. It is however an admittedly cumbersomemethod from an
experimental perspective. It requires four lasers, driving transitions on bothD lines from
both hyperfine ground states. It requires relative phase control over the two cooling beams
such that their standing waves are correctly aligned with the intensity troughs of one at
the peaks of the other. These two beams are detuned from each other by the 6.8GHz
hyperfine splitting of the ground state, and so their wavelengths are different enough that
this alignment can only be maintained over a distance on the order of 1 cm. Although
the simulation was only in one spatial dimension, a similar arrangement of interlocking
standing waves is possible in 2d to provide cooling in the two directions orthogonal to the
magnetic field. However, since it is not possible for a beam with propagation direction
parallel to the magnetic field to provide π−polarised light, one could not use the scheme
in 3d for cooling in all three directions. Finally, although the cooling scheme did not
appear to provide sufficient cooling for trapping in vortex cores, as mentioned it has not
been optimised, and so may be capable of cooling to lower temperatures.

Chapter6
Hidden variables for semiclassical

models with state-dependent forces

Semiclassical models are approximatemodels of quantum systems, usedwhen it
is reasonable to approximate some degrees of freedom as classical, yet other degrees
of freedom need to be modelled quantum mechanically. Often the internal state

of an atom is modelled quantum mechanically, and its motion through space classically.
Laser cooling is often modelled in this way [164–168] (and see also Section 5.5), as atoms
are at high enough temperatures for their motional state to be well described by classical
mechanics, and yet the evolutionof the electronic state is undeniably quantummechanical.
This saves a great deal of computational cost compared to modelling a complete quantum
system when a quantum model of the atomic motion adds nothing of interest not already
captured by classical mechanics.

The classical part of a semiclassical model comprises Newton’s second law—requiring
a known force. In some circumstances—such as the Stern–Gerlach experiment [20]—an
atom is subject to a force that depends on its electronic state, which presents a problem for
semiclassical models. Which force should be used? The lack of an answer to this question
prevented me from simulating the proposed vortex-assisted cooling scheme discussed in
Section 5.5.4, and an inadequate answer to it (namely, to use the expectation value of the
force) produced unphysical results in simulations of evaporative cooling performed by
Chris Watkins in the Monash Quantum Fluids group.

Hidden-variable theories [22, 169] are interpretations of quantum mechanics that
posit definite states underlying quantum state vectors, such that quantum indetermi-
nacy is an illusion—an emergent phenomenon rather than a fundamental fact. Bell’s
theorem [170] posits that any such theory must be non-local in order to explain all
the predictions of quantum mechanics, and perhaps in light of this, most physicists
surveyed [171] do not believe that hidden variables underlie physical reality.

However, by framing quantum systems in classical terms, hidden-variable theories
can provide an excellent computational tool for semiclassical models, and can resolve
the aforementioned issue of state-dependent forces. Just as hidden-variable theories have
framed the quantum world in terms that are agreeable to the classical view of the world
in the minds of some interpreters of quantum mechanics, so can they bridge the gap
between a simulated quantum world and a simulated classical world coexisting in the
same computer simulation.

In this chapter I describewhat I call the ‘hidden-variable semiclassical’ (hvsc)method:
a method of combining quantum simulations with classical simulations, with hidden
variables bridging the gap between the classical and quantum degrees of freedom. In
this introduction I describe existing semiclassical methods, the manner in which their

145

146
chapter 6. hidden variables for semiclassical models with

state-dependent forces

quantum and classical parts are typically coupled based on expectation values, and in
which regimes this can be inaccurate—namely the Stern–Gerlach experiment and similar
situations in which considerable entanglement between motional and internal degrees of
freedom of atoms can develop.

In Section 6.1 I give an overview of what a semiclassical method is, their most com-
mon implementation and in what situations this is insufficiently accurate, motivating
the need for an improved method. In Section 6.2 I give the technical definition of a
hidden-variable theory, and motivate the use of such a theory for coupling quantum and
classical degrees of freedom in such a way that the a semiclassical model can be made
to agree more closely than the Ehrenfest method with the underlying fully quantum
model it is approximating, and ultimately, with experiment. In Section 6.3 I then discuss
the implications of welcoming a hidden variable into a semiclassical model, including
additional required assumptions and approximations, and in Sections 6.4 and 6.5 I derive
the equations of motion for the model and present some algorithmic and computational
details. Finally in Section 6.6, having provided all the background arguments and details,
I present the complete algorithm(s), before showing simulation results in Section 6.7 that
compare the model to the underlying exact Schrödinger wave equation, and concluding
in Section 6.8 with further discussion of the method’s benefits and limitations.

While writing this thesis, I discovered that the core idea underpinning this method is
not original, and that the ‘surface-hopping’ method enjoys widespread use and continued
development in the field of computational chemical physics [21, 172–181]. An earlier
version of my model [182] bears a striking resemblance to that presented in a 1991 paper
by Tully [21], the pioneer of surface-hopping methods. However, this technique has
not previously been applied in cold atom physics. Direct simulation of evaporative and
laser cooling are becoming increasingly feasible due to increased computational power
and efficient molecular dynamics techniques such as Direct Simulation Monte Carlo
(dsmc) [183]. In light of this, the convergent evolution of numerical techniques is perhaps
not surprising.

I did not encounter the surface-hopping literature earlier as I considered my ap-
proach to be under the same umbrella as methods such as the Monte Carlo wavefunction
method [184] and quantum trajectories more generally [185, 186], which do not overlap
with surface-hopping in the literature. Throughout this chapter I make comparisons
between my own methods and those in the existing surface-hopping literature.

Three long-standing limitations of my method may be resolved in light of the surface-
hopping literature. One is that my model was previously limited to one dimension only,
as I did not know in what direction atoms should gain or lose momentum upon making
a transition. This is a known result in the surface-hopping literature, and discussed in
Section 6.4.3, resolving this issue completely. The second limitation is that my model is
limited to time-independent Hamiltonians. This is because time-dependent potentials
can exchange energywith an atom,whereas part ofmymodel relied on an energy conserva-
tion argument to compute the velocity of an atom after a transition. The surface-hopping
literature uses an identical argument, and therefore suffers from the same problem—that
energy conservation cannot be assumed for a time-dependent Hamiltonian. However,
the hidden-variable theory primarily used for surface-hopping—Tully’s fewest-switches
algorithm (Section 6.4.2)—can be formulated in a way that distinguishes between transi-
tions caused by spatial variation of theHamiltonian and those caused by its time variation.
I present a way of computing these two sets of transition probabilities, and propose that
the energy conservation only be imposed in the case of transitions ‘caused’ by the spatial
variation of the Hamiltonian. However, this is untested, and does not feature in the rest
of the presentation of my model. Finally, the fewest-switches algorithm is computation-
ally cheaper than the hidden-variable theory I have been using—Schrödinger theory,
discussed in Section 6.2—resolving my concern over its computational expense.

On the other hand, I havemade contributions that are new. The identification of what

6.1. semiclassical models 147

the surface-hopping literature calls ‘hopping algorithms’ with hidden-variable theories
(the latter of which is usually discussed in the context of quantum foundations, philoso-
phy and metaphysics rather than applied computational chemistry) has not previously
been made. Furthermore, the computationally expensive Schrödinger theory—which
is not new, though its use in surface-hopping models is—is more capable in certain cir-
cumstances: it can compute transition probabilities for arbitrarily long time intervals,
given the unitary describing the corresponding quantum evolution over the time interval.
Tully’s fewest-switches, on the other hand, is valid for infinitesimal time-intervals only,
and the probabilities need to be integrated over time to obtain transition probabilities
over large intervals. It may be the case that in some scenarios Schrödinger theory is
computationally cheaper than this integral. Finally, the more sophisticated of my two
methods of computing decoherence, discussed in Sections 6.5.5 and 6.5.6, provides excel-
lent agreement with the underlying Schrödinger wave equation it approximates, and is an
improvement over similar methods in the surface-hopping literature, which I will discuss
at the end of this chapter (Section6.8).

6.1 Semiclassical models

A semiclassical model is one in which some degrees of freedom are treated quantum
mechanically, and others classically. The most common combination is that of treating an
atom’s internal electronic state quantummechanically and its motional degree of freedom
classically. This is useful whenever the quantum effects of the atom’s motion are not of
interest, for example if temperatures are high and thus atomic wavelengths are short—
such that quantum effects simply aren’t visible in the motion of the particles and so they
can accurately be modelled as classical billiard balls. The energy gaps between different
electronic states of atoms are so large however, that only at very high temperatures (at
which atoms ionise anyway) do they start to appear as a continuum compared to thermal
energy scales, and the interaction of different spin states of the atomwith different optical
andmagnetic fields does notmake themappear as classical continua either. Thus, quantum
effects can be ignored for the centre of mass motion of the (relatively heavy) atom, but
not for the relative motion of its (much lighter) electrons with respect to the nucleus, or
for the nuclear and electronic spin degrees of freedom [21].

In this regime, atoms are often modelled semiclassically, with these internal degrees
of freedom modelled using a state vector |χ⟩ evolving according to a Hamiltonian Ĥ via
the Schrödinger equation, and the centre of mass motion modelled as a position r and
velocity v evolving according to Newton’s second law (Figure 6.1).

Once one has defined an external potential functionV(r) and a Hamiltonian (also
possibly varying with space) Ĥ(r) for the internal state of the atom, and other possible
additions,1 ones job is done and the rest can be left to numerical differential equation 1Such as using a Monte-Carlo

wavefunction method [184, 187]
to model the effect of spontaneous
emission on |χ⟩, and modifying
v instantaneously by a random-
direction recoil velocity upon each
photon emission.

solvers to evolve some concrete vector representation χ of |χ⟩ as well as the state variables
r and v for motional degree of freedom in time according to the coupled differential
equations

d
dt
|χ⟩ = −

i
ℏ Ĥ(r) |χ⟩ , (6.1)

d
dt

v = − 1
m

∇V(r), (6.2)

d
dt

r = v. (6.3)

This formulation has been widely successful in simulations of cooling, trapping, and
manipulating cold atoms [164–168]. In the next subsection I explain why it’s not always
that simple.

148
chapter 6. hidden variables for semiclassical models with

state-dependent forces

Figure 6.1: Artist’s depiction of a semiclassical atom. Semiclassical models partition the
atomic degrees of freedom into those to be modelled quantum mechanically with the
Schrödinger equation (the electronic degrees of freedom), and those to be modelled
with Newtonian mechanics (the motional degrees of freedom). This splits the system
into subsystems, which may or may not interact. For some interactions, such as the
state-dependent forces of the Stern–Gerlach experiment, it is not obvious how they can
be incorporated into such a model given the fundamentally different nature of the two
subsystems. Hidden variables can bridge this gap.

6.1.1 Stern–Gerlach separation and evaporative cooling

In the Stern–Gerlach experiment [20], atoms—with quantum spin and a magnetic
moment—were fired as a beam through a region of space with a magnetic field gradient.
The well-known result was that two clusters of positions were observed once the beam
emerges, rather than a continuous smear of positions, indicating that angular momentum
projection—like many quantities in quantum mechanics—is quantised.

This is the case even if one spin-polarises the particles before they are passed through
the magnetic field gradient, say putting them in an eigenstate of the F̂x operator. Then,
if the magnetic field is along the z direction, and the gradient is also in the z direction,
two clusters of positions are also observed, even though all particles were in the same
state when they entered the region in which there was a magnetic field gradient. This is a
display of the indeterminacy of quantum mechanics: even though all particles had the
same initial state, there were nonetheless different outcomes for each particle.

The outcome of the Stern–Gerlach experiment is a consequence of quantum mechan-
ics, to be sure, but it has little to do with the wave nature of the atoms themselves. If we
introduced some double slits for the atoms to pass through in addition to the magnetic
field gradient, then we would be seeing the wave nature of the atoms as interference
patterns at the detection screen at the end of the experiment. But if we do not, and if
the particles have short de Broglie wavelengths, then quantum mechanics is not appar-
ent in the motion of the particles through space—except via the influence of spin on
seemingly choosing one trajectory or the other. The effect is well understood quantum
mechanically, but is difficult to model semiclassically because even if we are happy to
approximate wavepackets as small, the wavepackets do not take a single trajectory. Rather
they split into two wavepackets, with the part of the superposition corresponding to one
spin projection state (along the direction of the local magnetic field) moving one way,
and the part of the superposition with the other spin projection going the other way. The
trajectories can still be quite classical, it’s just that there are two of them.

A similar situation exists in rf evaporative cooling (Section 2.1.5) of cold atoms
en-route to bec. A common configuration is a magnetic quadrupole trap, with atoms
spin-polarised so as to be fully spin-down (for 87Rb this is the trapped state) with respect
to the localmagnetic field at the position of each atom. Themagnetic field direction—and
magnitude—vary in space, and so the spin vectors of different atoms point in different

6.1. semiclassical models 149

directions in space, but they are all spin-downwith respect to the quantisation axis of their
local magnetic field. As the atoms move through space, they move in orbits—punctuated
by collisions—about the magnetic field zero at the centre of the trap, since they feel a
force F ∝ −∇|B| due to the gradient of the Zeeman potential. Provided they are moving
slowly (specifically, provided their Larmor frequency is large compared to the rate of
rotation of the magnetic field vector as seen by the atom), the atoms’ spins adiabatically
follow the local field and remain spin-down, even as the field as seen by each atom fully
reverses its direction every half orbital period.

Near the centre of the trap where the atoms are moving faster and the fields are small,
and therefore have large fractional derivatives and long Larmor periods, adiabaticity no
longer holds and the atomsmaymake spin transitions with respect to their local magnetic
field. Once an atom passing close to the field zero has evolved into a superposition of spin-
projection states with respect to the local field, it is in a situation identical to the initial
condition of the Stern–Gerlach experiment, causing the spin-projection components to
spatially separate in the magnetic field gradient. The spin-up component is anti-trapped
and repelled from the centre of the trap, and the zero spin-projection component (since
the ground state of 87Rb is spin-1) feels no force and moves in a straight line. The spin-
down component continues on an orbit about the field zero that is just as tight as before,
unaffected by the close approach to the field zero other than being reduced in amplitude.
Eventually a collision occurs, either with other atoms or with the walls of the vacuum
system and the wavefunction collapses to choose one of these options, leading to atoms
probabilistically leaving the trap (called Majorana losses [188, 189]) or remaining trapped.
Again, the trajectories can still be quite classical, it’s just that there are three of them, and
which trajectory is taken is probabilistic.

How can we model these effects semiclassically? Equations (6.1) to (6.3) are not
sufficient, because there exists no single classical potential V(r) that can describe the
motion of the atoms. Rather, the atoms feel a different force depending on which spin
state they are in. Just as the Hamiltonian can be a function of space, so can the potential
be a function of the internal state of the atom: V = V(r, |χ⟩). Ehrenfest’s theorem [190]
states that

m
d2

dt2
⟨ ̂r⟩ = − ⟨∇V̂⟩ , (6.4)

where the expectation values are over all degrees of freedom, not just motional. If we
approximate a small wavepacket centred at the position r such that ⟨ ̂r⟩ = r in order to
ignore the wave nature of the atoms, this becomes:

m
d2

dt2
r = −∇ ⟨χ|V̂(r)|χ⟩ , (6.5)

where the operator V̂(r) now only acts on the subspace of the internal state of the atom,
since we have already taken an expectation value over (a small region of) space. Provided
all potentials the atom is subjected to are included in the Hamiltonian for its internal
state (including any energy offsets that do not depend explicitly on the internal state),
this is nothing but

m
d2

dt2
r = −∇ ⟨χ|Ĥ(r)|χ⟩ , (6.6)

where Ĥ is the Hamiltonian describing the evolution of the atom’s internal state. We now
can construct the Ehrenfest semiclassical method describing how the expectation value of a
well localised atom’s position evolves with time:

150
chapter 6. hidden variables for semiclassical models with

state-dependent forces

d
dt
|χ⟩ = −

i
ℏ Ĥ(r) |χ⟩ , (6.7)

d
dt

v = − 1
m

∇ ⟨χ|Ĥ(r)|χ⟩ , (6.8)

d
dt

r = v. (6.9)

TheEhrenfest semiclassicalmethod is the same as the simple semiclassicalmethod (6.1)
to (6.3), except that it has an answer to the question “What should we use forV(r) when
the atom is in a superposition of states that feel different potentials?”, which is “use the
expectation value”.

This is all well and good if the expectation value of position is a good approximation
to the situation being modelled. But in the Stern–Gerlach experiment or a Majorana spin
flip in a magnetic trap, the expectation value of position is a poor match to reality. In the
Stern–Gerlach experiment beginning with spin-polarised atoms, a trajectory subject to
the mean force or potential (which are both zero for a 50 ∶ 50 superposition) would land
in a single blob in themiddle of the screen, rather than twoblobs displaced from the centre.
In the case of an atom approaching the field zero in a magnetic trap, use of the mean
force would result in the atom broadening its orbit somewhat, rather than splitting into
multiple possible trajectories (Figure 6.2). Semiclassical simulations of evaporative cooling
performed by Christopher Watkins (unpublished) displayed an unphysical heating of
the atom cloud that I believe is due to the Ehrenfest method’s inability to model Stern–
Gerlach separation. In a real magnetic trap during evaporative cooling to Bose–Einstein
condensation, the mean free path is large enough that the part of the wavepackets that
are no longer trapped will usually leave the trap without colliding with any other atoms.
This means that the energy the untrapped and anti-trapped components have gained
(relative to the trapped component) moving away from the field zero is not usually shared
with other atoms upon collision—the extra energy leaves with the atoms. However, if a
close approach to the magnetic field zero merely means a broadening of the atoms orbit,
then the extra energy does not leave as fast, if at all, and can be shared with other atoms
via collisions, turning what would have been an atom loss effect into an overall gradual
heating of the cloud.22This is distinct from the real

heating that occurs due to relatively
lower energy atoms being more
susceptible to Majorana spin flips
and thus more likely to be lost,
increasing the average energy
of atoms remaining—a form of
‘evaporative heating’.

So how can we modify a semiclassical method to choose only one trajectory? Firstly,
since each trajectory corresponds to one of the internal states (though some might be
degenerate), our model must choose an internal state and use the classical trajectory
corresponding to that internal state only. Secondly, since all atoms begin in identical
states and yet some take one trajectory and some another, this choicemust be probabilistic.
Finally, the probabilities must be consistent with those from quantum mechanics, i.e. the
Born rule [191]: the probability of an atom taking each trajectory must be proportional
to the squared amplitude of the internal state of the atom, projected onto the eigenstate
corresponding to that trajectory.

There exists a category of theories dealing with precisely this question of how to
choose a specific state of a quantum system in a stochastic way, such that the probability
of having chosen a state is equal to that given by quantum mechanics. Such theories are
called hidden-variable theories, and any parameter, variable or label specifying which
state has been chosen is a hidden variable.

6.2 Hidden-variable theories

In his paper Quantum computing and dynamical quantum models, Aaronson defines a
dynamical quantum model [192]:

6.2. hidden-variable theories 151

Figure 6.2: When atoms pass near to the field zero in a magnetic trap, their wavepackets
diverge in space as multiple trajectories, each corresponding to one local spin projection
state. For example, if a spin- 12 atom undergoes a partial spin-flip such that it has a ten
percent probability of being spin-up, the end result will be two approximate trajectories.
One trajectory describes the motion of a wavepacket that is fully spin-up, and one fully
spin-down, with the spin-down wavepacket’s squared amplitude equal to 0.1. The Ehren-
fest semiclassical method however can only model a single trajectory, and the end result
when using this method is a single trajectory being approximately the mean of the two
actual trajectories, and retaining a 90 ∶ 10 ratio of spin-down:spin-up state populations.

A dynamical quantum model assigns an eigenstate to a specified observable
even when no measurement is made, and gives a stochastic evolution rule
for that eigenstate. Such a model yields a distribution of classical histories
of a quantum state.

In a later paper,Quantum computing and hidden variables, superseding the first, Aaronson
renames dynamical quantum models to hidden-variable theories and refines the defini-
tion [22]:

For us, a hidden-variable theory is simply a way to convert a unitary matrix
that maps one quantum state to another, into a stochastic matrix that maps
the initial probability distribution to the final one in some fixed basis.

I adopt this definition of a hidden-variable theory for the purposes of this thesis.
The language of the first definition is more tangible for us—we wish to assign an

eigenstate to our atoms (choose one of the internal states in order to decide which tra-
jectory to follow), and have a stochastic evolution rule for which eigenstate is chosen at
any one time (allow the atom to begin taking a different trajectory if it makes transitions
between states), probabilistically depending on the change in quantum populations of
the states. But the second definition is more specific: the stochastic evolution rule is in
the form of a stochastic matrix, with elements equal to transition probabilities for some
time interval. And the rule should be in some way based on the unitary evolution that
the quantum system evolves according to in the same interval of time, such that the initial

152
chapter 6. hidden variables for semiclassical models with

state-dependent forces

and final probabilities of the stochastic matrix and unitary evolution agree. That is, if a
quantum state |χ⟩ evolves in a certain basis { |χi⟩}according to a unitary Û(t′, t):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1(t′)
c2(t′)
c3(t′)
⋮

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U11(t′, t)U12(t′, t)U13(t′, t) …
U21(t′, t)U22(t′, t)U23(t′, t) …
U31(t′, t)U32(t′, t)U33(t′, t) …

⋮ ⋮ ⋮ ⋱

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1(t)
c2(t)
c3(t)
⋮

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.10)

where ci = ⟨χi|χ⟩ and Uij(t′, t) = ⟨χi|Û(t′, t)|χj⟩, then a hidden-variable theory is
a matrix-valued function S(U(t′, t), χ(t))), where χ(t) and U(t′, t) are the vector and
matrix representations of the state vector |χ(t)⟩ and unitary Û(t′, t) in the { |χi⟩} basis,
that satisfies33In order to more clearly compare

to quantum evolution, we are using
left stochastic matrices, which multi-
ply column vectors of probabilities
from the left, contrary to the most
common convention for stochastic
matrices, which is to multiply row
matrices from the right. Thus S
has unit column sums, whereas
the corresponding right stochastic
matrix (its transpose) would have
unit row sums.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|c1(t′)|
2

|c2(t′)|
2

|c3(t′)|
2

⋮

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11(t′, t) S12(t′, t) S13(t′, t) …
S21(t′, t) S22(t′, t) S23(t′, t) …
S31(t′, t) S32(t′, t) S33(t′, t) …

⋮ ⋮ ⋮ ⋱

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|c1(t)|
2

|c2(t)|
2

|c2(t)|
2

⋮

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.11)

In essence, if quantum unitary evolution maps complex state amplitudes to complex
state amplitudes, a hidden-variable theory maps probabilities to probabilities. Thus the
elements of S can be used as conditional probabilities—or transition probabilities—for a
hidden variable η(t): a piecewise-constant function of time with values equal to a state
index, label, or quantum number that uniquely identifies one eigenstate at each moment
in time. η(t) evolves stochastically, with the elements of S giving the chance that the state
|χη⟩ ∈ { |χi⟩} assigned by the hidden variable will change from one to another in a given
time interval:

Pr(η(t′)=i|η(t)=j) = Sij(U(t′, t), χ(t)). (6.12)

We are interested in such hidden variable theories because they can wrap a layer of
classical interpretation around quantum evolution. In a semiclassical model, the internal
state of an atom is modelled quantum mechanically, such that χ(t) and U(t′, t) are
known at every timestep. A stochastic hidden-variable theory can take these quantities—
a description of the quantum evolution at each timestep—and give us back transition
probabilities that allow us to evolve a hidden variable η(t). This hidden variable’s value
at any moment in time will be equal to the label, index or quantum number of one
state in the chosen basis, with probability equal to that state’s population. Since each
eigenstate of the Hamiltonian is subject to a well-defined adiabatic potential, the hidden
variable can be used to connect the quantum evolution of the atom’s internal state to the
requirement that the classical motion use a single, well-defined force at each moment—in
a way consistent with the quantum probabilities of the internal state.

There are many ways to define functions S that satisfy the condition (6.12). The
simplest is to ignore the unitary completely and set Sij = |ci(t′)|

2, which yields:

Pr(η(t′)=i|η(t)=j) = |ci(t′)|
2, (6.13)

that is that the hidden variable η is equally likely to transition to a given value regardless
of its previous value, and regardless of the unitary, and that the conditional transition
probability from all input states is just the squared amplitude of the final state. This
theory represents a hidden variable that jumps between states randomly based on their
population, with no regard for its history or whether there were actually amplitude flows
between the states between which it is transitioning. Nonetheless, this theory, called
product theory [22], matches the definition of a hidden-variable theory—S is a stochastic
matrix, and the hidden variable on average will spend an amount of time in each state
consistent with the Born rule.

6.2. hidden-variable theories 153

In order to further classify hidden-variable theories with respect to whether they
have this or other kinds of strange behaviour, Aaronson outlines some additional ax-
ioms [22] that hidden variables ought to satisfy—in addition to reproducing the Born
rule—including reasonable statements about symmetries, and insensitivity to small per-
turbations. He goes on to prove that the axioms cannot all be satisfied simultaneously—all
hidden-variable theories have some undesirable property or another—but he shows some
theories satisfy more axioms than others.

It is convenient to introduce the matrix P of absolute (unconditional) transition
probabilities.4 Summing (6.12) over all possible initial values of the hidden variable yields 4By unconditional probabilities,

I mean the probabilities of the
hidden variable transitioning
between pairs of states, given no
knowledge of which state was
selected prior to transitioning.

the probability of it having a particular final value after the given time interval:

Pr(η(t′)=i) = ∑
j
Pr(η(t′)=i|η(t)=j)Pr(η(t)=j), (6.14)

which, recognising that the final and initial probabilities must be the final and initial
squared amplitudes of the state vector, can be rewritten:

|ci(t′)|
2 = ∑

j
Sij(U(t′, t), χ(t))|cj(t)|

2. (6.15)

We now define the matrix of absolute transition probabilities P:

Pij = Sij(U(t′, t), χ(t))|cj(t)|
2, (6.16)

such that:

|ci(t′)|
2 = ∑

j
Pij. (6.17)

So we have that P has row sums equal to the final squared amplitudes. And, because
Pij = Sij|cj(t)|

2 and S is a stochastic matrix with column sums equal to one, we have that
P must have row sums equal to the initial squared amplitudes.

Now that we have introduced P and shown what its row and column sums must
be, we come to a particularly simply defined hidden-variable theory called Schrödinger
theory,5 discussed in Aaronson’s hidden variables paper [22]. The idea is to form P by 5Not to be confused with the

wave mechanics governed by the
Schrödinger wave equation, the
arbiter of success for the models
presented in this chapter.

starting with the matrix of absolute values ofU , and simply scaling its rows and columns
to have the correct values:6

6One might expect that the abso-
lute value squared might be a better
choice, since this matches Fermi’s
golden rule. Aaronson discusses in
his paper, when presenting his own
hidden-variable theory Flow theory,
how absolute values of elements of
the unitary have some appealing
properties.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1b1|U11(t′, t)| a1b2|U12(t′, t)| a1b3|U13(t′, t)| …
a2b1|U21(t′, t)| a2b2|U22(t′, t)| a2b3|U23(t′, t)| …
a3b1|U31(t′, t)| a3b2|U32(t′, t)| a3b3|U33(t′, t)| …

⋮ ⋮ ⋮ ⋱

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.18)

that is,

Pij = aibj|Uij(t′, t)| , (6.19)

where the row scalings {ai} and column scalings {bj} satisfy:

∑
j
aibj|Uij(t′, t)| = |ci(t′)|

2, (6.20)

∑
i
aibj|Uij(t′, t)| = |cj(t)|

2, (6.21)

which can be solved numerically, and then the Schrödinger theory stochastic matrix then
able to be extracted by inverting (6.16):

Sij(U(t′, t), χ(t)) = aibj
|Uij(t′, t)|
|cj(t)|

2 . (6.22)

154
chapter 6. hidden variables for semiclassical models with

state-dependent forces

Schrödinger theory is the hidden-variable theory I have used in the simulations in the
results section of this chapter (Section 6.7). In Section 6.4.1 I detail my efforts to most
efficiently find the row and column scalings in order to actually compute the Schrödinger
theory Smatrix.

The choice to use Schrödinger theory for the simulations was made prior to my learn-
ing of Tully’s fewest-switches algorithm in the surface-hopping literature [21, 173, 178]
(also detailed in Section 6.4.2), and fewest-switches has a number of properties that
make it more appealing than Schrödinger theory for use in a hidden-variable semiclassi-
cal/surface-hopping simulation. Tully’s fewest-switches has three main advantages. The
first is its low computational cost, whereas (as detailed in Section 6.4.1) Schrödinger
theory is considerably more computationally expensive to evaluate (except in the case
of a two-state system). The second, which is only relevant for time-dependent Hamil-
tonians, is that fewest-switches can be formulated in a way that allows a distinction to
be drawn between motion of a particle through an inhomogeneous field as the cause
of non-adiabatic transitions, versus non-adiabatic transitions being caused by explicitly
time-dependent fields. I conjecture on the usefulness of this distinction in Sections 6.4.2
and 6.4.3. The final advantage is in the name: fewest-switches makes the fewest number
of switches consistent with the quantum probabilities in each infinitesimal time interval,
whereas Schrödinger theory makes more switches. That is, the transition probabilities in
fewest-switches are smaller than those in Schrödinger theory, causing the hidden variable
to make fewer transitions in the former than the latter. More switches means larger
statistical variation in the outcomes: even though the expectation value of the number of
atoms in each state are consistent with the Born rule, the variance is higher, and a larger
ensemble will be required to see agreement with the Born rule within some tolerance.
More switches also implies larger statistical variation in the classical trajectories, as it
increases the chance that atoms have followed multiple classical trajectories in a region
of non-adiabatic coupling than followed just one. As mentioned in the introduction to
this chapter, Schrödinger theory has one advantage over fewest-switches: it allows one to
compute transition probabilities corresponding to quantum evolution over an arbitrary
time interval, so long as one has the unitary that describes that evolution. Fewest-switches,
on the other hand, produces differential probabilities that must be integrated over time
to obtain transition probabilities over intervals that are long compared to the dynamical
timescales of the problem. This is usually not a problem since one typically evolves the
state vector using timesteps shorter than dynamical timescales of the problem. However
Schrödinger theory could still be useful for problemswhere the quantum evolution can be
performed analytically, andwhere computing transition probabilities at repeated intervals
is the limiting factor in the size of simulation timesteps.

6.3 Overview of method

Tomotivate themethod andhighlight somenecessary properties of a sensible semiclassical
model capable of simulating Stern–Gerlach separation, consider, as an example, a spin- 12
particle undergoing separation in a magnetic field gradient. The two spin components
accelerate away from each other, with the relative acceleration vector pointing in the same
direction as the gradient in field strength. We can ask the question: “What spin-state
populations would I see, if I followed the spin-down wavepacket only?” The meaning
of ‘follow’ will be made more precise in Section 6.5, but for now we will simply look at
the spin populations in the vicinity of the region of space occupied by the spin-down
wavepacket.

As shown in Figure 6.3, one sees the spin-up population decreasing over time until
only spin-down population remains. The rate at which spin-up population ‘leaves’ the
region of space we are watching depends on how quickly the wavepackets are accelerating

6.3. overview of method 155

z

t

t0

t1

t2

t3

t4

t5

tt0 t1 t2 t3 t4 t5

1

0.5

0

aligned with B
anti-aligned with B

sp
in

 p
o

p
u

la
ti

o
n

Figure 6.3: Schematic of the method. At t0 an atom is in a 50:50 superposition of spin-
up:spin-down population, and the two spin components accelerate apart in the magnetic
field gradient. If the hidden variable dictates that we follow the spin-down component
(the initial trajectory given by the dotted line), then we see a reduced spin-up population
at times t1 and t2. At t3 the field changes direction suddenly, and partly flips the spins (in
the local basis with quantisation axis given by the direction of the magnetic field). The
stochastic hidden variable transitions to instead select the spin-up component, which we
follow thereafter. Following the spin-up component we then see the a reduced spin-down
population at t5 due to the wavepackets separating once more.

away from each other, as well as the shape of the wavepackets. Likewise, if one follows
the spin-up component instead, one sees the spin-down population decrease to zero.

Motivated by this observation, the hidden-variable semiclassical method is a phe-
nomenological model comprised of the following:

• One internal state of the atom is chosen at any moment in time, stored along
with the state vector as a stochastic hidden variable that can make a transition at
each timestep, according to a hidden-variable theory. The hidden-variable theory
takes as input the state vector, and the Hamiltonian or unitary evolution matrix
describing the evolution of the internal state of the atom at each timestep. By
evolving according to a hidden-variable theory, the probability of the hidden
variable selecting a particular internal state is equal to that state’s population at
each moment in time.

• The internal state of the atom evolves according to the Schrödinger equation, but
with the addition of back-action caused by the continuous projection of the atomic
wavefunction onto a specific ‘classical’ motional state under assumptions about
the form and evolution of all motional states. This is a vexed matter to which I
devote several sections later in this chapter.

• Upon a change in the state selected by the hidden variable, the velocity of the atom
is modified instantaneously as required by energy conservation, or, if this would
result in a negative kinetic energy, the transition is disallowed.

Written in the sameway as in Section 6.1, themodel amounts to the following coupled

156
chapter 6. hidden variables for semiclassical models with

state-dependent forces

differential equations and stochastic transition rule:

d
dt
| ̃χ⟩ = −

i
ℏ Ĥ(r, t) | ̃χ⟩ − Γ̂η(r, t) | ̃χ⟩ , (6.23)

d
dt

v = − 1
m

∇Vη(r, t), (6.24)

d
dt

r = v (6.25)

Pr(η(t′)=i|η(t)=j) = Sij(Ueff(t′, t), χ(t)), (6.26)

where | ̃χ⟩ is the internal state vector including the effect of back-action (neglecting
normalisation), Γ̂η(r, t) is a non-Hermitian operator that implements this back-action
by decaying the amplitude of states not being followed (there are many ways to do this,
all approximate, discussed in Section 6.5), η is the hidden variable, Vη is the adiabatic
potential experienced by the eigenstate selected by the hidden variable, χ is the vector
representation of the (normalised) state vector in the local eigenbasis, andUeff(t′, t) is
the unitarymatrix describing the evolution of the state vector from time t to t′ in the local
eigenbasis under the action of the effectiveHamiltonian Ĥeff, defined in Section 6.4.2. In
addition to these evolution rules, the state vector must be normalised at each timestep of
simulation,7 and the velocity of the atom modified instantaneously whenever a transition7It would be relatively simple to

include a term in the differential
equation to preserve normalisa-
tion, but the non-normalisation-
preserving differential equation
is simpler to write, compute, and
understand.

is made in order to conserve energy. This latter requirement is detailed in Section 6.4.3.

6.4 Hidden variables: implementation details

In this section I go into the gritty details of numerically evaluating hidden-variable theo-
ries, conserving energy when a transition occurs, and some other concerns.

6.4.1 Numerically evaluating Schrödinger theory

Despite the high computational cost of Schrödinger theory relative to Tully’s fewest-
switches, here I present the results of my investigation into how to minimise said cost.
There are many ways to numerically solve for the row and column scalings {ai} and {bi}
required to compute the Smatrix of Schrödinger theory (6.22), but there is one unique
solution for the resulting scaled matrix S.8 The simplest method is to simply alternate8The values of {ai} and {bj} are

only determined up to an overall
multiplication of each {ai} by a
constant and division of each
{bj} by the same constant, since
only products aibj appear in the
resulting scaled matrix.

between scaling the rows to get the right row sums, then scaling the columns to get the
right column sums, and repeating, that is, alternating between solving (6.20) for all ai,
and solving (6.21) for all bi , until the result converges. This is called the Sinkhorn–Knopp
method of r-c (row-column) scaling [193], but is computationally intensive, with slow
convergence [194]. An alternative is the method by Linial et al. [194] which converges
much faster. Both are iterative methods, and so in practice one can save the resulting row
and column scalings at each integration step of a simulation and use them as the initial
guesses for the same computation at the next integration step,9 providing a considerable9With the caveat that since the

row and column scalings are only
determined up to an overall mul-
tiplication/division, occasional
multiplication of all {ai} and divi-
sion of all {bi} by a constant may
be necessary to prevent the val-
ues numerically overflowing or
underflowing in the middle of a
simulation.

speedup.

For the case of a two-state system, the row and column scalings can be found analyti-

6.4. hidden variables: implementation details 157

cally, with the result

a1 = 1 (6.27)

a2 ∶ a22 + 􏿵
1
AB

− A
B
|c1(t)|

2 − B
A
|c2(t)|

2􏿸 a2 +
|c2(t′)|

2

|c1(t′)|
2 = 0; a2 > 0 (6.28)

b1 =
|c1(t′)|

2

A + Ba2
(6.29)

b2 =
|c2(t′)|

2

B + Aa2
, (6.30)

where A = |U11| = |U22| and B = |U12| = |U21| . This result only holds in the
case of Schrödinger theory for a state vector with two components subject to unitary
evolution—not for row-column scaling in general—since it makes use of symmetries of
unitary matrices and the fact that the initial and final probabilities given by the squared
amplitudes of the state vector components must sum to unity.

Some further notes on numerics: the above expressions for Schrödinger theory and
its analytic expression for a two-state system involve dividing by elements of the unitary,
and by state populations, both of which may be zero or very close to zero. Whilst the
relevant limits may exist, we cannot easily compute them numerically, and so I have
taken to simply replacing small values of |Uij| , |ci(t′)|

2 and |cj(t)|
2 with a tiny non-zero

constant (I use ε = 10−100), ensuring that the convergence criterion (which represents
a tolerance for the sum squared error in the column sums) I pass to Linial’s method is
larger than the square of this by some margin, so as to allow convergence even though
modifying the matrix elements may make the matrix no longer row-column scalable to
higher precisions. I use a convergence criterion of 10−16 for Linial’s algorithm, implying
the root sum squared error in column sums will be at most 10−8, which is small compared
to unity—the sum of all column sums for a perfectly scaled matrix given that the column
sums are probabilities that must add to unity. Smaller tolerances imply more iterations
before convergence, so tolerances should be as large as is acceptable for the problem if
computational cost is a limiting factor.

Potentially faster algorithms exist for row-column scaling of matrices,10 for example, 10In my simulations for realistic
3 × 3 unitaries corresponding to
evolution over small time intervals,
Linial’s method converges to the
aforementioned tolerance in about
100 − 200 iterations, taking about
20 − 40 μs per matrix on a 2.9GHz
7th generation Intel core i7 CPU.
This is when transitions are actually
occurring; before and after periods
of non-adiabatic evolution the
algorithm converges in zero or
one step when the unitary is the
identity and the state vector is in a
single eigenstate.

approaches that treat the problem as one of root-finding or optimisation aimed at solving
the simultaneous equations (6.20) and (6.21) or minimising their sum squared error [195].
When prototyping with small (3× 3) random unitary matrices and random state vectors,
I found Newton’s method to be effective at quickly solving this set of equations (after
fixing a1 = 1 to make them fully determined), requiring considerably fewer iterations
that Linial’s method. However, the unitaries and state vectors in quantum mechanics are
not random, and the fact that most elements of the unitary and state vector are zero when
there is no evolution and the atom is in an eigenstate resulted in numerical difficulties
with Newton’s method that Linial’s method does not seem to encounter. Similar to
many of the methods in reference [195], one could construct a hybrid method that takes
a Newton step, and then checks the row sum and column sum residuals, and if they
increased compared to the previous step, ignores that step and takes a step of Linial’s
method instead. I have not attempted this, and for the moment use Linial’s method.

A final note is that my hidden-variable semiclassical method is not only agnostic
to which matrix scaling algorithm is used, but that it is also not married to any par-
ticular hidden-variable theory. An early version of the method [182] was limited to
two-component systems, and the probability of transition was computed as

Pr(η(t′)=2|η(t)=1) = max 􏿴0, |c2(t′)|
2 − |c2(t)|

2􏿷 , (6.31)

Pr(η(t′)=1|η(t)=2) = max 􏿴0, |c1(t′)|
2 − |c1(t)|

2􏿷 , (6.32)

158
chapter 6. hidden variables for semiclassical models with

state-dependent forces

that is, I simply inspected the populations each step and declared any positive change in
population of a state as a probability of transition from the other state. Since there were
only two states, the originating state of the transition was unambiguous, but the method
did not generalise to systemswith three ormore states.11 However, it resulted in simulated11This was before I coincidentally

came across the definition of a
stochastic hidden-variable theory
in Aaronson’s book Quantum
computing since Democritus [196] and
realised that what I had made was
a hidden-variable theory, allowing
me to choose a more general one
from his paper (and before later
still, finding Tully’s fewest-switches
algorithm).

final populations that on average agreed with the underlying Schrödinger wave equation,
leadingme to suspect that the exact hidden-variable theory used is not crucial, so long as it
satisfies themost obvious of Aaronson’s axioms so as not to behave like the product theory
mentioned in Section 6.2. I chose Schrödinger theory fairly arbitrarily, it being the one
that seemed most easily computable out of the two presented in Aaronson’s paper [22],
but one might try using Aaronson’s flow theory, or inventing another altogether. The
surface-hopping literature uses Tully’s fewest-switches algorithm with much success, as
well as approximations to it [197] that are even cheaper, computationally speaking.

Interestingly, the main conclusion of Aaronson’s paper [22] is that if we could know
the entire history of a hidden variable, we could use it to make a computer more powerful
than a quantum computer. It is therefore perhaps not surprising that hidden-variable
theories ought to be computationally expensive to simulate on a classical computer. Prior
to discovering Tully’s fewest-switches algorithm, I was therefore somewhat resigned
to the fact that any hidden-variable theory would likely be computationally expensive
to compute. In light of this it was pleasantly surprising to discover that Tully’s fewest-
switches (discussed in the next subsection) is computationally cheap. The seeming conflict
could be reconciled however if the computational power of hidden variables is crucially
dependent on some feature we are not interested in and which fewest-switches does
not capture, such as agreement with arbitrary unitaries rather than only those due to
evolution over small time intervals, as is assumed by fewest-switches.

6.4.2 Time-dependent formulation of Tully’s fewest-switches algorithm

In this subsection I derive Tully’s fewest-switches algorithm [21, 173] with the extension
that the Hamiltonian may have arbitrary time-dependence. As such, the non-adiabatic
transitions that can occur can be due to either the spatial variation of the Hamiltonian,
or its time variation. It is important identify which of the two non-adiabatic effects is
responsible for a given transition of the hidden variable, as energy conservation only
applies to transitions due to spatial variation, whereby the atom is paying/receiving the
energy cost of a transition using its kinetic energy. However for a transition due to
temporal variation of the Hamiltonian, energy can be added and removed from the atom
by the driving field without conserving its total energy. I propose that velocity corrections
therefore ought to only be performed following transition of the hidden variable if that
transition was due to spatial variation in the Hamiltonian, and not temporal variation.1212One cannot simply compute the

(partial) time derivative of the
Hamiltonian’s eigenvalues and
multiply by Δt to infer the energy
change over one timestep, as the
actual transition takes place over
many timesteps, despite the hidden
variable transitioning during a
single timestep. This disconnect is
the fundamental source of difficulty
in correctly conserving energy in
these models.

This proposed extension to fewest-switches is speculative and untested—in Sec-
tion 6.7 I present results of the model for the case of time-independent fields only. It is
clear that the extension would yield the correct behaviour in both the limit of a time-
independent inhomogeneous field (energy is always conserved via velocity jumps) and
a time-dependent homogeneous field (energy is never required to be conserved and
there are no velocity jumps), though its suitability in the intermediate regime is less clear
without comparing simulation results to the Schrödinger wave equation.

This subsection also serves to present Tully’s fewest-switches algorithm and the con-
cepts and notation related to it that I refer to in later sections.

We begin with the time-dependent Schrödinger equation for the internal state |χ(t)⟩
of an atom at position r:

iℏ d
dt
|χ(t)⟩ = Ĥ(r, t) |χ(t)⟩ (6.33)

6.4. hidden variables: implementation details 159

Now we take the unitary ÛH (r, t) that transforms state vectors into the eigenbasis of Ĥ
such that

Ĥ(r, t) = Û†
H (r, t)V̂(r, t)ÛH (r, t), (6.34)

where V̂(r, t) is a diagonal operator with diagonals equal to the adiabatic potentials that
each eigenstate of Ĥ is subject to in the adiabatic approximation. We can therefore define
the state vector in the adiabatic picture for Ĥ as13 13This is very similar to an inter-

action picture state vector (Sec-
tion 3.2.2), but as I have previously
used the definition of an interac-
tion picture as the transformation
that diagonalises a time-independent
Hamiltonian, this potentially time-
dependent Hamiltonian does not
satisfy the definition.

|χH (t)⟩ = ÛH (r, t) |χ(t)⟩ (6.35)

⇒ |χ(t)⟩ = Û†
H (r, t) |χH (t)⟩ . (6.36)

Substituting (6.35) into (6.33) and premultiplying by ÛH (r, t) yields

iℏÛH (r, t)
d
dt

Û†
H (r, t) |χH (t)⟩ = ÛH (r, t)Ĥ(r, t)Û†

H (r, t) |χH (t)⟩ , (6.37)

which via the product rule and our definition of V̂(r, t) simplifies to the differential
equation obeyed by the transformed state vector |χH (t)⟩:

iℏ d
dt
|χH (t)⟩ = 􏿰V̂(r, t) − iℏÛH (r, t)

d
dt

U†
H (r, t)􏿳 |χH (t)⟩ (6.38)

≡ Ĥeff |χH (t)⟩ . (6.39)

This equation has the same form as the Schrödinger equation, with the contents of the
brackets comprising an effective Hamiltonian dictating the dynamics of the state vector
in the adiabatic basis (the basis in which Ĥ is diagonal). Like a non-inertial reference
frame in classical mechanics, use of this transformed basis has resulted in the appearance
of an extra term in the Hamiltonian, the non-adiabatic coupling term depending on the
time derivative of the transformation Û†

H .
Here we differ from Tully by proceeding without assuming that ÛH has no explicit

time dependence. The total time derivative of Û†
H includes both its direct time depen-

dence and the effect of motion through space; the latter obtainable via the chain rule:

d
dt

Û†
H (r, t) =

𝜕
𝜕t

Û†
H (r, t) + v ⋅∇Û†

H (r, t), (6.40)

where v = dr
dt . Thus (6.38) becomes:

iℏ d
dt
|χH (t)⟩ = 􏿰V̂(r, t) − iℏÛH (r, t)

𝜕
𝜕t

Û†
H (r, t) − iℏv ⋅ ÛH (r, t)∇Û†

H (r, t)􏿳 |χH (t)⟩ .

(6.41)

The final term is identical to the non-adiabatic coupling term in the equation of motion
as usually written in the surface-hopping literature [173] being a matrix with elements (in
the eigenbasis):

􏿴−iℏv ⋅ UH (r, t)∇U†
H (r, t)􏿷ij = −iℏv ⋅ ⟨χi(r, t)|∇|χj(r, t)⟩ , (6.42)

whereUH (r, t) is the matrix representation of ÛH in any basis that does not vary spatially
(i.e. not the eigenbasis), |χi(r, t)⟩ is the ith eigenvector of Ĥ(r, t), and ⟨χi(r, t)|∇|χj(r, t)⟩
is the non-adiabatic coupling vector between the ith and jth states referred to in the litera-
ture [173]. The second to last term in brackets in (6.41) is the additional contribution

160
chapter 6. hidden variables for semiclassical models with

state-dependent forces

due to the time-dependence of the Hamiltonian (more specifically, the time-dependence
of its eigenbasis).

We now proceed identically to Tully, computing the rate of change of an eigenstate’s
population |ci(t)|

2 as

d
dt
|ci(t)|

2 = ci(t)
d
dt

c∗i (t) + c∗i (t)
d
dt

ci(t), (6.43)

where via (6.41) we have:

d
dt

ci(t) = −
i
ℏ ∑

j
(Heff(r, t))ij cj(t) (6.44)

⇒ d
dt

ci(t) = −
i
ℏ ∑

j
􏿮Vij(r, t) − iℏ ⟨χi(r, t)|(𝜕t + v ⋅∇)|χj(r, t)⟩􏿱 cj(t). (6.45)

This yields the time rate of change of the population |ci(t)|
2:

d
dt
|ci(t)|

2 =
⎡
⎢⎢⎢⎢⎣−

i
ℏ ∑

j
c∗i (t) (Heff(r, t))ij cj(t)

⎤
⎥⎥⎥⎥⎦ + c.c. (6.46)

= −2ℏ ∑
j
Im 􏿵c∗i (t) (Heff(r, t))ij cj(t)􏿸 (6.47)

= −2ℏ ∑
j
Im 􏿴c∗i (t) 􏿮Vij(r, t) − iℏ ⟨χi(r, t)|(𝜕t + v ⋅∇)|χj(r, t)⟩􏿱 cj(t)􏿷 .

(6.48)

Since V(r, t) is diagonal14 and real, c∗i (t)Vij(r, t)cj(t) is zero when i ≠ j, and has no14This is not always assumed in the
surface-hopping literature, since
additional couplings are sometimes
included in V which have not been
removed by diagonalisation.

imaginary part when i = j, leaving us with

d
dt
|ci(t)|

2 = 2∑
j
Re 􏿴c∗i (t) ⟨χi(r, t)|(𝜕t + v ⋅∇)|χj(r, t)⟩ cj(t)􏿷 . (6.49)

The change in |ci(t)|
2 in a small interval dt is then:

|ci(t + dt)| 2 − |ci(t)|
2 = 2dt ∑

j
Re 􏿴c∗i (t) ⟨χi(r, t)|(𝜕t + v ⋅∇)|χj(r, t)⟩ cj(t)􏿷 .

(6.50)

This is the change in the probability of the atom being in the ith state during that time
interval. Tully identifies each term in the sum as a probability flow between a pair of
states, and if non-negative, equates each term with the (unconditional) probability of
a transition from the jth state to the ith state. We do the same, except that we identify
two transition probabilities for each originating state, one due to the spatial variation
in the eigenbasis, and one due to the temporal variation. To ensure we don’t violate the
criterion that on a two-state basis only the minimum number of hops consistent with the
total probability flow occur, we clip each probability from above to the probability of
any transition occurring at all. This gives us transition probability matrix elements

Pspace
ij = min 􏿺qtotalij , qspaceij 􏿽 , (6.51)

Ptime
ij = min 􏿺qtotalij , qtime

ij 􏿽 , (6.52)

where

qspaceij = 2dt Re 􏿴c∗i (t) ⟨χi(r, t)|v ⋅∇|χj(r, t)⟩ cj(t)􏿷 , (6.53)

qtime
ij = 2dt Re 􏿴c∗i (t) ⟨χi(r, t)|𝜕t |χj(r, t)⟩ , cj(t)􏿷 , (6.54)

qtotalij = max 􏿺0, (qspaceij + qtime
ij)􏿽 , (6.55)

6.4. hidden variables: implementation details 161

for transitions of the hidden variable from the jth to the ith eigenstate of Ĥ(r, t) during
the time interval dt due to non-adiabatic spatial and temporal variations in Ĥ(r, t) re-
spectively. These expressions can also be numerically integrated with respect to time to
obtain transition probabilities over finite time intervals; numerically integrating over a
short time interval Δt using a midpoint or higher order method can produce transition
probabilities more accurate than 𝒪(Δt), which would be the accuracy if Δt were simply
used in place of dt in the above expressions.

These matrices have zeros along their diagonals, since the above derivation takes into
account only probability changes, and does not count probability remaining in the same
state as a transition.15 To be able to construct properly stochastic matrices, we can take 15One can see that the i = j term

in (6.50) is zero since |χi⟩ is a
unit vector, implying its temporal
and spatial derivatives must be
orthogonal to |χi⟩ itself, resulting
in a zero inner product.

into account the probability mass that remains in the same state simply by imposing
conservation of overall probability, defining a diagonal matrix Pstay for the unconditional
probabilities of remaining in a state:

Pstay
ii = |ci(t)|

2 −∑
j≠i

􏿴Pspace
ij + Ptime

ij 􏿷 . (6.56)

The sum of all three of these matrices now satisfies the row sum and column sum re-
quirements in order to be the unconditional transition probabilities for a hidden-variable
theory in the eigenbasis of Ĥ:

P = Pspace + Ptime + Pstay, (6.57)

⇒ ∑
j
Pij = |ci(t)|

2, (6.58)

∑
i
Pij = |cj(t + dt)| 2. (6.59)

The corresponding conditional probabilities of a transition to the ith state occurring—
given that the hidden variable was already in the jth state—can be obtained via (6.16)
as

Sspaceij = 1
|cj(t)|

2 P
space
ij , (6.60)

Stime
ij = 1

|cj(t)|
2 P

time
ij (6.61)

Sstayij = 1
|cj(t)|

2 P
stay
ij , (6.62)

and the sumof these threematrices of conditional probabilities is the overall (left) stochas-
tic matrix for the fewest-switches hidden-variable theory:

S = Sspace + Stime + Sstay. (6.63)

When using a time-dependent Hamiltonian, under my proposal one would not use this
stochastic matrix to make transitions.16 Rather one would use the individual matrices 16Though it is instructive to know

that the sum of the other con-
ditional probability matrices is
indeed a stochastic matrix, such
that Tully’s fewest-switches does
satisfy this requirement of being a
hidden-variable theory as defined
by Aaronson.

Sspace, Stime, and Sstay in order to distinguish between the different types of transitions,
and make the energy conservation part of the surface-hopping algorithm conditional on
the transition being attributed in this way to the spatial variation of the Hamiltonian
rather than its temporal variation.

During a simulation, to choose whether a transition occurs due to spatial or temporal
variations in the Hamiltonian, one should not make independent random choices based
on the three above matrices of conditional probabilities. Rather one should assemble the
probabilities of possible events—transitions from the current state to all others via both

162
chapter 6. hidden variables for semiclassical models with

state-dependent forces

Figure 6.4: Probabilistically choosing a transition. Top: Probability flows between states
in a time interval according to the three matrices of unconditional probabilities Pstay,
Pspace, and Ptime in such a way that one total unit of probability is routed from states
at the initial time to states at the final time consistent with the populations resulting
from quantum mechanical evolution in that timestep. Centre: The hidden variable
transitions according to the corresponding conditional probabilities, which are elements
of the matrices Sstay, Sspace, and Stime. Here the hidden variable is in state 1 and we are
choosing whether it will remain in that state or if it will transition to state 2 or 3, and
whether it transitions via a spatial or temporal non-adiabatic transition. Bottom: All the
probabilities for what may happen to the hidden variable in a timestep sum to one, so an
array of the cumulative probabilities can be constructed, and a random number drawn
from the range [0, 1]. The index of the smallest element of the array of cumulative sums
that the random number is smaller than corresponds to the event to occur. In the above
diagrammatic example, the result of the random draw is that the hidden variable is to
transition to state 2 via a spatially induced non-adiabatic transition.

spatial and temporal non-adiabatic transitions—into a single list of probabilities, and
then take the cumulative sum, resulting in a list of numbers between zero and one. A
randomly generated number between zero and one can then be used to determine which
event occurs, with the correct probability (Figure 6.4).

6.4. hidden variables: implementation details 163

Framing fewest-switches as a hidden-variable theory

Tully’s fewest-switches algorithm allows one to compute transition probabilities for a
hidden variable given the Hamiltonian, the state amplitudes, and a small interval of time.
Does this satisfy Aaronson’s definition of a hidden-variable theory (Section 6.2)? As
written, not quite, since it requires theHamiltonian rather than the unitary that describes
state vector evolution over a particular time interval. However, it is simple to reconcile the
two sets of requirements. Given that the interval of time is small, the unitary describing
evolution in the local basis can be linked to the effective Hamiltonian in (6.39) via

Û(t + dt, t) = e−
i
ℏ Ĥeff(r,t) dt , (6.64)

where

Ĥeff = V̂(r, t) − iℏÛH (r, t)
d
dt

U†
H (r, t) (6.65)

is the effective Hamiltonian in the adiabatic picture for Ĥ , the matrix representation of
which can be extracted from the matrix representation of Û(t + dt, t) as

Heff(r, t) dt = iℏ LogU(t + dt, t) (6.66)
≈ iℏ (I − U(t + dt, t)) (6.67)

where Log is the principal value of the complex matrix logarithm.
Since only the matrix Heff(r, t) dt is required to compute transition probabilities

according to (6.47), and not its component terms,17 specifying the initial state vector 17Though we do need its compo-
nent terms if we wish to distinguish
between spatially vs. temporally
induced transitions as in Sec-
tion 6.4.2.

and unitary for an interval of time evolution (both in the local basis) is a sufficient input
to be able to compute transition probabilities using Tully’s fewest-switches algorithm.
Writing the resulting matrix of probabilities in terms ofU gives:

Pij =

⎧⎪⎪⎨
⎪⎪⎩
max 􏿺0, 2 Re 􏿴c∗i (t)Uij(t + dt, t)cj(t)􏿷􏿽 i ≠ j
|ci(t)|

2 −∑j≠i Pij i = j
. (6.68)

The corresponding stochastic matrix S can then be obtained by scaling the columns of
P by the state populations as in (6.16). Tully’s fewest-switches algorithm thus satisfies
Aaronson’s definition of a hidden-variable theory provided that the time interval is small.
The low computational complexity of computing probabilities via fewest-switches is
somewhat remarkable. There is no matrix scaling, no matrix permanents, or any other
large computational expense.

Expressed in Python, Tully’s fewest-switches can be computed very simply as shown
below, though this calculation is only first-order accurate in the time interval correspond-
ing to the unitaries.

1 import numpy as np

2
3 def S_matrix_fewest_switches(psi, U):

4 """Compute the fewest-switches S matrix for an array psi, shape (M, N),

5 containing N state vectors for an system with M states, and the array of

6 corresponding unitaries unitaries U, shape (M, M, N), describing the evolution

7 of the state vectors over a short time interval."""

8 P = 2 * np.einsum('in,ijn,jn->ijn', psi.conj(), U, psi).real

9 P[P < 0] = 0

10 S = P / np.abs(psi**2)

11 S_diags = np.einsum('iin->in', S)

12 S_diags[...] = 0

13 S_diags[...] = 1 - np.sum(S, axis=0)

14 return S

164
chapter 6. hidden variables for semiclassical models with

state-dependent forces

It is not clear how many of Aaronson’s axioms are satisfied by fewest-switches, but the
dependence of its probabilities on the actual coupling strengths between states via the
non-adiabatic Hamiltonian (and vanishing probabilities when those coupling strengths
are zero) is encouraging, and ensures that its behaviour is free of the pathology of the
product theory. Furthermore, the form of fewest-switches when framed in terms of
the unitary for the given time interval is quite similar to that of Schrödinger theory. In
Schrödinger theory one takes the absolute value of elements ofU and then applies row
and column scalings. In fewest-switches one applies row and column scalings (explicitly
given as c∗i (t) and cj(t), along with a factor of 2), then takes the real part of the result
and clips it to zero from below. The two methods are not identical, but the similarity is
striking.

6.4.3 Velocity correction and classically disallowed transitions

When a transition of the hidden variable occurs due to a spatial non-adiabatic transition,
the kinetic energy of the atom must be adjusted to conserve overall energy. The force
on an atom during a transition from the jth state to the ith state due to the spatial non-
adiabatic coupling term in the effective Hamiltonian is in the direction of the non-
adiabatic coupling vector [173]

dij(r, t) = ⟨χi(r, t)|∇|χj(r, t)⟩ (6.69)

= 􏿴UH (r, t)∇U†
H (r, t)􏿷ij (6.70)

whereUH (r, t) is the matrix representation, in any (spatially and temporally fixed) basis,
of the unitary that takes state vectors into the basis in which Ĥ(r, t) is diagonal, defined
by (6.34). To conserve energy, the squared component of an atom’s velocity in this
direction must change by an amount:

Δv2ij =
2
m
􏿴Vj(r, t) − Vi(r, t)􏿷 , (6.71)

whereVi(r, t) is the adiabatic potential comprising the ith spatially and/or temporally
varying eigenvalue of Ĥ(r, t). However, it is possible that a change of this size can leave
an atom with a negative kinetic energy. Whilst this is quantum-mechanically permissible,
it is forbidden classically, and so we simply disallow such transitions, defining a modified
matrix of unconditional transition probabilities P̃space that sets the probability of the
disallowed transitions to zero:

P̃space
ij =

⎧⎪⎪⎨
⎪⎪⎩
Pspace
ij Δv2ij + |v ⋅ d̂ij|

2 ≥ 0
0 Δv2ij + |v ⋅ d̂ij|

2 < 0
(6.72)

where d̂ij = d̂ij(r, t) is the unit vector in the direction of dij(r, t).1818The surface-hopping literature
calls these classically disallowed
transitions frustrated transitions.
Prior to encountering the surface-
hopping literature, my method
of conserving energy was identi-
cal to this (for the case of time-
independent potentials), with the
exception that I did not know what
direction the velocity kick ought to
be in, limiting my method to one
spatial dimension only. There is
much interest in alternate methods
of energy conservation in chemical
physics, however so far this has
been outside of my interest in these
methods for simulating cold atoms.

The diagonal matrix for the probabilities of remaining in each state must be adjusted
similarly to absorb the probability discarded this way:

P̃stay
ii = |ci(t)|

2 −∑
j≠i

􏿴P̃space
ij + Ptime

ij 􏿷 (6.73)

The corresponding matrices of conditional probabilities for the hidden variable transi-
tioning, given that it is already in the jth state, are

S̃spaceij = 1
|cj(t)|

2 P̃
space
ij , (6.74)

S̃stayij = 1
|cj(t)|

2 P̃
stay
ij , (6.75)

6.5. decoherence 165

Of course, when making probabilistic transitions of the hidden variable, the originating
state is known and so only one column of any of the above matrices is used at a time,
so the full matrices P̃space, P̃time, S̃space, and S̃time do not need to be computed at each
timestep.

In the case that a transition of the hidden variable does occur to the ith from the
jth state due to a spatial non-adiabatic coupling, the velocity kick to be applied to the
classical velocity vector in order to conserve energy is

Δvij =
⎡
⎢⎢⎢⎣sgn(v ⋅ d̂ij)􏽰

(v ⋅ d̂ij)2 +
2
m
􏿴Vi(r, t) − Vj(r, t)􏿷 − (v ⋅ d̂ij).

⎤
⎥⎥⎥⎦ d̂ij (6.76)

6.5 Decoherence

In the context of the hidden-variable semiclassical/surface-hopping method, decoherence
refers to the fact that, due to positional separation of different internal states of the atom,
those internal states transition from being a coherent superposition into a statistical
mixture. For example, in the Stern–Gerlach experiment, a spinmay be initially a coherent
superposition of spin-up and spin-down, but by the time the two components separate, the
superposition is no longer a coherent one. The spin is either up (and the atom off to one
side of the screen) or down (and the atom over the other side of the screen). At this point,
no interference between the two internal states is observable, as they are not co-located in
space. Themotional degree of freedom has played the role of an environment, and, having
become entangled with the spin of the atom, decohered the spin state. Recoherence can
occur if the two wavepackets are brought back together again to have well overlapping
positions and velocities, but this is difficult to achieve even intentionally,19 let alone by 19The problem of getting the

wavepackets back together again
has been coined the ‘Humpty-
Dumpty problem’ [21, 198] and
has made magnetic separation
impractical for large-momentum
atom interferometry [199], and
methods such as the use of Bragg
pulses [200, 201] are needed to
create large momentum differences
between wavepackets without hav-
ing themmore slowly traverse the
intermediate regions of momentum
space where they might accumulate
coherence-destroying phase noise.

accident,
Decoherence was not part of Tully’s original surface-hopping model [21], such that if

used to simulate the Stern–Gerlach experiment, two spots would result on the screen,
but both spots would comprise a coherent 50 ∶ 50 superposition of spin-up and spin-
down, rather than one being up and one being down. Some decoherence is necessary
to include in a hidden-variable semiclassical/surface-hopping model in order to avoid
this unphysical outcome, and furthermore, to obtain correct transition probabilities in
the case that the atom undergoes multiple periods of local spin transitions (as being in a
50 ∶ 50 superposition represents entirely different initial conditions for a Majorana spin
flip than being in a single spin state).

Our approach to modelling decoherence requires some assumptions about the mo-
tional states of the atom and how they evolve in time. We therefore construct wavepackets
that are as classical as we can make them, being as localised in position and velocity space
as they can be. For this we use Gaussian wavepackets of width equal to the thermal
de Broglie wavelength σ = λth = h/√2πmkBT , evolving without dispersion, with
their centre-of-mass position and velocity evolving classically according to the adiabatic
potential experienced by the eigenstate to which each motional state corresponds.

In Section 6.5.1 I show the general mechanism by which the divergence of trajectories
decoheres internal states of an atom, and specifically how thismanifests as a decrease in the
amplitude of every other state when one imposes the adiabatic trajectory corresponding
to a specific internal state. I then show in Sections 6.5.3 and 6.5.2 why naïvely projecting
the wavefunction onto a single trajectory at all times yields nonsensical results, and
then in Subsections 6.5.4 and 6.5.5 I present two remedies for approximately including
decoherence in spite of this.

Thedevelopment of the secondof these remedies brought to light a possibility I hadn’t
considered before, regarding the form of the ‘classical’ state that the total wavefunction
is projected onto at each timestep. Namely, that it makes some sense for this to be a

166
chapter 6. hidden variables for semiclassical models with

state-dependent forces

Dirac delta instead of a Gaussian wavepacket. In light of this, in Section 6.5.6 I present
an alternative view of what it means to ‘follow’ a wavepacket, and expressions for the
decoherence rates of the two methods under this alternate assumption. I argue why
this is appealing and why it resolves some issues that are present when projecting onto a
Gaussian wavepacket.

6.5.1 Back-action of positionmeasurement on internal state

Consider an atom in a state |Ψ(t)⟩, which is an arbitrary superposition of internal basis
states |χi⟩ and motional basis states |r⟩:

|Ψ(t)⟩ = ∫ ∑
i
ψi(r, t) |χi⟩ ⊗ |r⟩ dr, (6.77)

where normalisation requires that

∫ ∑
i
|ψi(r, t)|

2dr = 1. (6.78)

Recognisingψi(r, t) as the ith component of a multi-component wavefunction, we define
(up to an arbitrary phase factor) a normalised wavefunction ϕi(r, t) and corresponding
motional state vector |ϕi(t)⟩ and its coefficient ci(t) for each internal state:

ci(t)ϕi(r, t) ≡ ψi(r, t) (6.79)

|ϕi(t)⟩ ≡ ∫ϕi(r, t) |r⟩ dr (6.80)

such that ∫ |ϕi(r, t)|
2dr = 1. This allows us to write our arbitrary state vector as a sum

over the internal basis only:

|Ψ(t)⟩ = ∑
i
ci(t) |χi⟩ ⊗ |ϕi(t)⟩ , (6.81)

where the spatial state vectors { |ϕi(t)⟩} are not necessarily orthogonal. To see that spatial
separationof the different components leads to decoherence of the internal states, consider
the pure density operator corresponding to |Ψ(t)⟩:

ρ̂(t) = |Ψ(t)⟩⟨Ψ(t)| = ∑
ij

ci(t)c∗j (t) |χi(t)⟩⟨χj(t)| ⊗ |ϕi(t)⟩⟨ϕj(t)| , (6.82)

which we can write in the { |χi⟩ ⊗ |r⟩} ≡ { |χi r⟩} basis, resulting in matrix elements

ρij(t, r, r′) = ⟨χi r|ρ(t)|χj r′⟩ , (6.83)

= ψi(r, t)ψ∗j (r′, t), (6.84)

= ci(t)c∗j (t)ϕi(r, t)ϕ∗j (r′, t). (6.85)

A partial trace [202] over the motional degree of freedom results in a reduced density
operator describing the measurement statistics of the internal degree of freedom only:

ρ̂red(t) = ∫ ⟨r|ρ̂(t) ̂r|r⟩ dr (6.86)

⇒ ρredij (t) = ∫ ρij(t, r, r′)δ(r − r′)dr (6.87)

= ci(t)c∗j (t)∫ϕi(r, t)ϕ∗j (r, t)dr (6.88)

= ci(t)c∗j (t) ⟨ϕj(t)|ϕi(t)⟩ . (6.89)

6.5. decoherence 167

The off diagonals of the density matrix ρredij (t), representing the coherences of the internal
states, are reduced by a factor ⟨ϕj(t)|ϕi(t)⟩, which will be unity only for pairs of motional
state vectors that are identical. We therefore see that spatial separation of the wavefunc-
tions corresponding to different internal states leads to decoherence of the internal states,
and we define the decoherence factor

Rij(t) = ⟨ϕi(t)|ϕj(t)⟩ , (6.90)

such that (6.89) reads

ρredij (t) = ci(t)c∗j (t)R∗ij(t)
= ci(t)c∗j (t)Rji(t). (6.91)

This same decoherence factor appears when—instead of integrating over all positions—
we project the total state vector onto a single motional state corresponding to a classical
trajectory, which is how we impose classicality on the motional degree of freedom in
our model. The effect of decoherence when ‘following’ a specific motional state through
space in this way is to reduce the amplitudes of all other states not being followed, by the
decoherence factor between that state and the one being followed, as shown schematically
in Figure 6.3.

To obtain an explicit form for the decoherence factor, we need to impose an ansatz
for the motional states { |ϕi(t)⟩}. We take each motional state |ϕi(t)⟩ to be a Gaussian
wavepacket propagating—without dispersion—with centre-of-mass motion evolving
classically according to the adiabatic potentialVi(r, t) experienced by the local eigenstate
|χi⟩. Thus the wavefunctions of these motional states are

⟨r|ϕi(t)⟩ = ϕi(r, t) = A exp 􏿰−
|r − ri(t)|

2

4σ2
+ i

m
ℏ vi(t) ⋅ (r − ri(t))􏿳 , (6.92)

Where rij(t) = ri(t) − rj(t) and kij(t) = m
ℏ 􏿴vi(t) − vj(t)􏿷 are the mean displacement

and relative wavevector of the pair of wavepackets,A is a real normalisation constant,20 20The overall phase is determined
by the offset r − ri(t) in the second
term in the exponent, and is chosen
such that ϕi(r, t) is real at r = ri,
which ensures that ⟨ϕi(t)|ϕj(t)⟩
has a phase depending only on
the mean displacement of the two
wavepackets rather than their
distance from some arbitrary
origin. This prevents an additional
arbitrary phase at each timestep of
the model, which would not affect
the dynamics but is unappealing.

and where the centre-of-mass position and velocity of each wavepacket evolve classically
according to

d
dt

ri(t) = vi(t) (6.93)

d
dt

vi(t) = −
1
m

∇Vi(ri, t). (6.94)

This yields the decoherence factor:

Rij(t) = exp 􏿰− 􏿶
1
8σ2

|rij| 2 +
i
2
rij(t) ⋅ kij(t) +

σ2

2
|kij(t)|

2􏿹􏿳 . (6.95)

As expected, Rij(t) is equal to unity when the two wavepackets have identical positions
and velocities, and decays to zero for increasing relative position and velocity.

If the two motional states being considered are identical at t = 0 and have constant
relative acceleration aij , then we have

rij(t) =
1
2
aijt2; (6.96)

kij(t) =
m
ℏ aijt, (6.97)

168
chapter 6. hidden variables for semiclassical models with

state-dependent forces

and (6.95) reduces to

Rij(t) = exp
⎡
⎢⎢⎢⎣−
|aij| 2

2 􏿶
1

16σ2
t4 + i

m
2ℏ t

3 + m2σ2

ℏ2 t2􏿹
⎤
⎥⎥⎥⎦ . (6.98)

We will use this expression in Sections 6.5.4 in order to derive approximate decoherence
rates under the assumption of uniform relative acceleration.

We are now placed to precisely define what we mean by ‘following’ a trajectory.
Returning to our arbitrary state vector (6.79), we define (ignoring normalisation) the
projected state vector

|Ψ̃(t)⟩ = R̂(t) |Ψ(t)⟩ , (6.99)

where R̂(t) = 1̂ ⊗ |ϕη(t)⟩⟨ϕη(t)|, that results from the projection of |Ψ(t)⟩ onto the
specific motional state |ϕη(t)⟩ corresponding to the hidden variable η(t). This gives
(neglecting normalisation) the state vector one would observe conditional on the particle
being in that specific motional state at that specific time:

|Ψ̃(t)⟩ = R̂(t) |Ψ(t)⟩ (6.100)

= ∑
i
⟨ϕη(t)|ϕi(t)⟩ ci(t) |χi⟩ ⊗ |ϕη(t)⟩ (6.101)

= ∑
i

̃ci(t) |χi⟩ ⊗ |ϕη(t)⟩ (6.102)

= | ̃χ(t)⟩ ⊗ |ϕη(t)⟩ , (6.103)

where we have defined ̃ci(t) = ⟨ϕη(t)|ϕi(t)⟩ ci(t) and | ̃χ(t)⟩ = ∑i ̃ci(t) |χi⟩. We recog-
nise ⟨ϕη(t)|ϕi(t)⟩ as the decoherence factorRηi(t) defined in (6.90), and can immediately
see that the effect of such projection is to reduce the amplitude of all other states (i ≠ η)
by this factor.

6.5.2 Continuous projection

We now consider the following protocol: project the state vector at time t as per (6.99),
evolve the resulting state vector to t + dt under the action of a projected Hamiltonian,
and repeat. In Section 6.5.3 I show that this continuous projection yields unphysical
decoherence rates, such that the following derivation will need to be modified in order
to usefully model decoherence. Nonetheless this establishes the form of the back-action
caused by projections in terms of a decoherence rate, and connects this rate to the decoher-
ence factor (6.90). The result is salvageable, and in Sections 6.5.4 and 6.5.5 I present two
methods of computing physically meaningful decoherence rates for use in the resulting
equation of motion for the projected state vector.

The state vector evolved to time t + dt and re-projected with R̂(t + dt) is

|Ψ̃(t + dt)⟩ = R̂(t + dt)∑
i

⎡
⎢⎢⎢⎢⎣ ̃ci(t) −

i
ℏ ∑

j
Hij(t) ̃cj(t)dt

⎤
⎥⎥⎥⎥⎦ |χi⟩ ⊗ |ϕi(t + dt)⟩ ,

(6.104)

where Hij(t) = ⟨χi|Ĥη(t)|χj⟩ = ⟨χi ϕη(t)|Ĥ(t)|χj ϕη(t)⟩ are the matrix elements of
the projected Hamiltonian Ĥη(t) dictating the dynamics of the internal state, given
the imposed motional state |ϕη⟩ and the total Hamiltonian Ĥ(t) of the system. Note
that because of the previous projection already performed, all motional states |ϕi(t)⟩
were ‘reset’ to be equal to |ϕη(t)⟩ at time t, and therefore the evolved motional state
|ϕi(t + dt)⟩ represents the evolution of the motional state corresponding to the ith

6.5. decoherence 169

internal state over an interval dt, starting with the initial condition |ϕη(t)⟩. Accordingly,
both motional states will still be approximately equal after this short evolution, allowing
us to write

⟨ϕη(t + dt)|ϕi(t + dt)⟩ = ⟨ϕη(t)|ϕi(t)⟩ +
d
dt
⟨ϕη(t)|ϕi(t)⟩ dt (6.105)

= 1 +
dRηi(t)
dt

. (6.106)

Using this fact in applying the projection in (6.104) yields a product state once more:

|Ψ̃(t + dt)⟩ = ∑
i
􏿶1 +

drηi(t)
dt 􏿹

⎡
⎢⎢⎢⎢⎣ ̃ci(t) −

i
ℏ ∑

j
Hij(t) ̃cj(t)dt

⎤
⎥⎥⎥⎥⎦ |χi⟩ ⊗ |ϕη(t + dt)⟩

(6.107)

⇒ | ̃χ(t + dt)⟩ = ∑
i
􏿶1 +

drηi(t)
dt 􏿹

⎡
⎢⎢⎢⎢⎣ ̃ci(t) −

i
ℏ ∑

j
Hij(t) ̃cj(t)dt

⎤
⎥⎥⎥⎥⎦ |χi⟩ (6.108)

which we can solve for 1
dt 􏿴 | ̃χ(t + dt)⟩ − | ̃χ(t)⟩􏿷 to obtain a differential equation for

| ̃χ(t)⟩:

d
dt
| ̃χ(t)⟩ = 􏿯−

i
ℏ Ĥη(t) − Γ̂η(t)􏿲 | ̃χ(t)⟩ , (6.109)

where Γ̂η(t) is a diagonal operator in the { |χi⟩} basis with elements

(Γη(t))ii = γηi(t) = −
dRηi(t)
dt

= − d
dt
⟨ϕη(t)|ϕi(t)⟩ , (6.110)

where we have defined γij(t) = −
dRij(t)
dt . The diagonals of Γ̂η(t) in the adiabatic basis are

decoherence rates, and cause exponential damping of all internal states other than the |χη⟩
state. The damping rates increase with the rate at which the given internal state diverges
from |ϕη(t)⟩.

6.5.3 The quantumZeno effect

But now we arrive at a problem. Because all the motional states are reset to be equal to
|ϕη(t)⟩ at each timestep as in (6.104), the relative position and wavevector of the two
wavepackets are zero at all times, and so our decoherence rates are:

γij = − 􏿰
dRij(t)
dt 􏿳

vij=0
kij=0

(6.111)

= − 􏿰
𝜕Rij(t)
𝜕rij

⋅
drij(t)
dt

+
𝜕Rij(t)
𝜕kij

⋅
dkij(t)
dt 􏿳

vij=0
kij=0

(6.112)

= 􏿰􏿵
rij
4σ2

+ i
2
kij􏿸Rij(t) ⋅

drij(t)
dt

+ 􏿵σ2kij +
i
2
rij􏿸Rij(t) ⋅

dkij(t)
dt 􏿳

vij=0
kij=0

(6.113)

= 0. (6.114)

Every decoherence rate is zero. What is going on? The answer is the quantum Zeno
effect [203, 204], which is the name given to the fact that, in the limit of infinitely
frequent measurements of whether quantum evolution has occurred, the back-action of

170
chapter 6. hidden variables for semiclassical models with

state-dependent forces

the measurement has the effect of preventing the evolution from occurring at all. In our
case, the fact that we are constantly projecting onto the followed motional state causes
the amplitude flows to the other motional states to be exactly zero. A sufficiently closely
watched quantum pot never boils, and a sufficiently closely watched Schrödinger’s cat
never may never be poisoned [204]:

In view of the Zeno’s paradox formulated above, should we conclude that
the particle will never decay? Will the cat escape the cruel death awaiting
it, against which it has no defense, provided its vital signs are constantly
watched with loving care?

The appearance of the quantum Zeno effect ought to be a reminder that the assumption
of infinitely frequent projective measurements is unphysical. In our case it certainly
is—we have merely imagined a hypothetical measurement device collapsing our position
states because we don’t want to simulate them, not because any such measurement device
actually exists. Nonetheless the internal states of the atom do decohere even in the absence
of measurement (and there is eventual measurement when the atoms collide with other
atoms or otherwise interact with anything in a position-dependent way), and we wish to
model the approximate effect of this, if possible with a differential equation that does not
require us to simulate all the quantum details of the motional degree of freedom.

Note that if the decoherence factor had the form of exponential decay:

RMarkov
ij (t) = e−γijt , (6.115)

then the decoherence rate would be the constant γij, and not zero. This is the case for
Markovian decoherence [202], which is when the environment has no memory of its
past interaction with the system. The memory in our case is due to the wavepackets
accelerating away from each other, starting from zero relative position and velocity at each
timestep—the relative position and velocity comprise a memory of the past interaction,
which we are erasing each time we reproject.

The lack of an environmental memory is only ever approximately true, and no deco-
herence factors in nature have the form of a decaying exponential at all times. At small
enough times the overlap between two states can onlymove away fromunity quadratically
owing to unitary evolution on account of the Schrödinger equation, guaranteeing an
initial time derivative of zero for all physical decoherence factors. However, in many
systems of interest, the specifics of the interaction with the system are quickly forgot-
ten by the environmental states, and the decoherence factor does approach a decaying
exponential [205]. This is the case, for example, for spontaneous photon emission by
atoms, which one can consider a measurement effect in which the electromagnetic field is
being regularly measured by the environment in the photon number basis [184, 185, 187].
In the various quantum trajectories methods used to simulate atoms in the presence of
spontaneous emission, if one assumes that the measurements are projective, one must
simply assume that the frequent measurements take place at large enough timescales that
the decoherence factor is in the exponential decay regime, provided that this is much
smaller than other dynamical timescales, which is true for spontaneous emission [187].
The measurement interval assumed “should be large enough to allow the photons to get
away from the atom” [186]. This can be recast as a continuous weak measurement, rather
than infrequent projective measurements [187, 206], which is more physically realistic
than the assumption of projective measurements at somewhat arbitrarily chosen intervals,
but results in the same differential equations.

A decoherence factor that has the form of a decaying exponential implies that any
chosen measurement interval results in the same fractional reduction in state amplitudes,
since the differential equation d ̃ci(t)

dt = −γ ̃ci(t) has the solution ̃c(t) = e−γt ̃c(0), that is,

6.5. decoherence 171

repeated consideration of only the first part of the decoherence factor ends up tracing
out the whole decoherence curve over time.

How can we replicate something like this for our separating wavepackets? Here I
present two approaches. The first, described in Section 6.5.4, is to gloss over asmany of the
details of the wavepacket separation as possible and replace the decoherence factor with
an exponential one, describing the wavepackets separating on approximately the correct
timescale. This is crude, but better than no decoherence at all. The second, described in
Section 6.5.5, is to introduce a minimal memory of the separation of wavepackets. In this
approach, one (but only one) trajectory is simulated for the motional state corresponding
to each internal state. Whenever there is population transfer from the main trajectory to
another state, the trajectory corresponding to the other state is replaced with a weighted
average of its existing position and velocity with the position and (adjusted for energy
conservation) velocity of the main trajectory. These auxiliary trajectories are used to
compute a dynamic decoherence rate that traces out a more correct decoherence curve as
the wavepackets separate.

6.5.4 ApproximateMarkovian decoherence

A crude way to include decoherence is just to approximate Rηi(t)—for the case of con-
stant acceleration in (6.98)—as a decaying exponential with roughly the right decay
constant. This is crude because Rηi(t) does not look much like a decaying exponential
(see Figure 6.5). In the limit of large t, its functional form is e−t4 , not the exponential
decay required to treat the decoherence as Markovian at any timescale.

To nonetheless find an approximate Markovian decoherence rate, we first construct a
‘time ignorant’ version R̃ij(t) of the decoherence factor Rij(t) given in (6.98) that answers
the question “What is the expected value of Rij(t) at all times t > 0 if I don’t know how
long before t = 0 the two wavepackets began separating?”

We can then take the derivative of this time-ignorant decoherence factor at t = 0 to
use as an approximate Markovian decoherence rate γMarkov

ij . Whilst extremely approx-
imate, this method of including decoherence is nonetheless an improvement over the
Ehrenfest method (which has no decoherence), and over Tully’s original fewest-hops
surface-hoppingmethod [21], which also lacked any decoherence. Others [207–209] have
since developed various methods to induce approximate damping of states to achieve a
similar outcome, including the approximation of an exponential decoherence factor [207],
though my development of this method was independent.

Proceeding, we define the time-ignorant decoherence factor R̃ij(t) as the average of
all decoherence factors one would obtain if the twowavepackets began separating at some
point in time before t = 0:

R̃ij(t) = A∫
0

−∞
⟨ϕi(t − t′)|ϕj(t − t′)⟩ dt′ (6.116)

= A∫
0

−∞
Rij(t − t′) dt′. (6.117)

Here,A is a normalisation constant such that R̃ij(0) = 1, andwherewe take that |ϕi(0)⟩ =
|ϕj(0)⟩ with each thereafter evolving according to the classical motion of their centre of
mass with constant relative acceleration as in (6.93) and (6.94) such that the Rij(t) above
has the form of (6.98).

Our time-ignorant decoherence rate is then the (negative of the) derivative of R̃ij(t)

172
chapter 6. hidden variables for semiclassical models with

state-dependent forces

0 20 40 60 80 100

t (µs)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
exact (real)

exact (imag)

unknown start time (real)

unknown start time (imag)

Markovian (real)

Markovian (imag)

Figure 6.5: Example decoherence factor (6.98) as a function of time for an experimentally
realistic parameters. Plotted in black is the exact decoherence factorRij(t) given by (6.98)
between two adjacent (ΔmF = ±1) Zeeman sublevels of the F = 1 ground state of 87Rb,
assuming constant relative acceleration due to a magnetic field gradient of 250G cm−1

and a Gaussian wavepacket width σ = λth = 2.6 μm, corresponding to the thermal
wavelength λth = h/√2πmkBT at T = 53 μK. Shown in blue is the ‘time-ignorant’
decoherence factor described in text. In green is the Markovian approximation to the
exact decoherence factor, obtained by extracting a decay constant from the gradient
of the time-ignorant decoherence factor at t = 0. As can be seen, whilst no decaying
exponential is a particularly good fit to the exact decoherence factor, our Markovian
approximation is as good as can be expected, decaying to zero over approximately the
correct timescale.

at t = 0:

γMarkov
ij = − 􏿰

dR̃ij(t)
dt 􏿳

t=0
= −

􏿮 ddt ∫0
−∞

Rij(t − t′) dt′􏿱
t=0

􏿮∫0
−∞

Rij(t − t′) dt′􏿱
t=0

. (6.118)

Moving the derivative inside the integral, noting that
dRij(t−t′)

dt = dRij(t−t′)
d(t−t′) and setting

6.5. decoherence 173

t = 0, we get:

γMarkov
ij = −

∫0
−∞

R′ij(−t′) dt′

∫0
−∞

Rij(−t′) dt′
(6.119)

= −
∫∞
0

R′ij(t′) dt′

∫∞
0

Rij(t′) dt′
(6.120)

whereR′ij is the derivative ofRij with respect to its argument. By the fundamental theorem
of calculus the numerator is −1, since Rij(t) decreases from unity at t = 0 to zero as t
goes to infinity, leaving us with:

1
γMarkov
ij

= ∫
∞

0
Rij(t′) dt′ (6.121)

= ∫
∞

0
exp 􏿰− 􏿶

1
8σ2

|rij| 2 +
i
2
rij(t′) ⋅ kij(t′) +

σ2

2
|kij(t′)|

2􏿹􏿳 dt′ (6.122)

The expression (6.98) requires a relative acceleration, for which we use the relative ac-
celeration between the pair of adiabatic potentials at the current moment in time and
current position of the atom during a simulation:

aij(r, t) ≈ −
1
m
􏿴∇Vi(r, t) −∇Vj(r, t)􏿷 . (6.123)

This now gives a decoherence factor depending on position and time:

1
γMarkov
ij (r, t)

= ∫
∞

0
exp

⎡
⎢⎢⎢⎢⎣−
|aij(r, t)|

2

2 􏿶
1

16σ2
t′4 + i

m
2ℏ t

′3 + m2σ2

ℏ2 t′2􏿹

⎤
⎥⎥⎥⎥⎦ dt

′

(6.124)

In order to obtain an approximate analytic expression for this integral, we consider two
limiting cases and then stitch them together in the intermediate regime. In the limit of
small wavepackets, σ is small and thus the first term in the exponent in (6.121) is largest,
and the third term is smallest. In this regime, which describes when positional separation
(as opposed to separation in velocity space) dominates the decoherence, we’ll neglect the
third term in the exponent and treat the second term as small relative to the first. This
gives us:

1
γMarkov
ij (pos) (r, t)

≈ ∫
∞

0
exp

⎡
⎢⎢⎢⎢⎣−
|aij(r, t)|

2

2
􏿵 1
16σ2

t′4 + i
m
2ℏ t

′3􏿸
⎤
⎥⎥⎥⎥⎦ dt

′ (6.125)

≈ ∫
∞

0
exp

⎡
⎢⎢⎢⎢⎣−
|aij(r, t)|

2

32σ2
t′4
⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝1 − i

m|aij(r, t)|
2

4ℏ t′3
⎞
⎟⎟⎟⎟⎠ dt

′ (6.126)

= 2
5
4 Γ(54)

􏽰

σ
|aij(r, t)|

− 2i
mσ2

ℏ , (6.127)

where we used a first-order Taylor expansion of an exponential in (6.126). We similarly
use a first-order expansion (x + ε)−1 ≈ x−1 − εx−2 to take the reciprocal of (6.127) (since
the second term is much smaller than the first21), and arrive at 21This isn’t necessary in order to

obtain a simple expression for
γij (pos)—the reciprocal without this
approximation is equally simple—
but it leaves us with power laws
for the real and imaginary parts of
γij (pos), which are easier to stitch
together with those from the large
σ regime. It also ensures we don’t
divide by zero when aij(r, t) is zero.

γMarkov
ij (pos) (r, t) ≈

1
2 5
4 Γ(54)􏽰

|aij(r, t)|
σ

+ i
2 3
2 Γ(54)2

mσ |aij(r, t)|
ℏ . (6.128)

174
chapter 6. hidden variables for semiclassical models with

state-dependent forces

Similarly for the large σ regime, we neglect the first term in the exponent of (6.121) and
consider the second term small relative to the third. This is the regime in which the
decrease in overlap of the two wavepackets is dominated by their separation in velocity
space. Following the same process as above gives:

1
γMarkov
ij (vel) (r, t)

≈ ∫
∞

0
exp

⎡
⎢⎢⎢⎢⎣−
|aij(r, t)|

2

2 􏿶i
m
2ℏ t

′3 + m2σ2

ℏ2 t′2􏿹

⎤
⎥⎥⎥⎥⎦ dt

′ (6.129)

≈ ∫
∞

0

⎛
⎜⎜⎜⎜⎝1 − i

m|aij(r, t)|
2

4ℏ t′3
⎞
⎟⎟⎟⎟⎠ exp

⎡
⎢⎢⎢⎢⎣−

m2σ2|aij(r, t)|
2

2ℏ2 t′2
⎤
⎥⎥⎥⎥⎦ dt

(6.130)

=
􏽰

π
2

ℏ
mσ |aij(r, t)|

− i
ℏ3

2m3σ4|aij(r, t)|
2 (6.131)

⇒ γMarkov
ij (vel) (r, t) ≈ 􏽰

2
π
mσ |aij(r, t)|

ℏ + i
ℏ

πmσ2
(6.132)

Equations (6.128) and (6.132) are our final expressions for the Markovian decoherence
rate in the limit of small and large wavepackets respectively. Adding their real parts in
quadrature and adding the reciprocals of their imaginary parts then provides a reasonable
approximation for γMarkov

ij (r, t) over all wavepacket sizes:

γMarkov
ij (r, t) ≈ 􏿮Re(γMarkov

ij (pos) (r, t))
2 + Re(γMarkov

ij (vel) (r, t))
2􏿱

1
2

+ i 􏿮Im(γMarkov
ij (pos) (r, t))

−1 + Im(γMarkov
ij (vel) (r, t))

−1􏿱
−1
. (6.133)

We now have an approximate analytic expression for a Markovian decoherence rate
between two Gaussian wavepackets that is computationally inexpensive to evaluate for
each semiclassical atom in an ensemble at every timestep of a differential equation. An
example showing the accuracy of (6.133), compared to the exact expression (6.124) for
γMarkov
ij over a range of wavepacket sizes is shown in Figure 6.6.

6.5.5 Decoherence with mean auxiliary trajectories

A more accurate approach is to compute a decoherence factor at each timestep of the
simulation by modelling the wavepackets as they accelerate away from each other, re-
taining in the model the position and velocity of each wavepacket. This inclusion of
additional positions and velocities in the model comprises a minimal memory of the past
interaction between the system and environment—that is, the internal and motional
degrees of freedom of the atom.

In quantum mechanics there is not, in general, a single Gaussian wavepacket for
each state, and even if the wavefunction corresponding to the originating state is a Gaus-
sian wavepacket, transitions to other states at different times can produce an arbitrary
superposition of Gaussian wavepackets in each other state. If we were to simulate this
arbitrary superposition for all components of the multi-component wavefunction, we
would not be saving any computational power at all, as we would have reverted to a fully
quantum description of the motional degree of freedom, the antithesis of our intention.
Therefore we draw the line at modelling a single trajectory for each state, in order to
maintain simplicity whilst including at least some dynamics of the system–environment
interaction.

Below I will talk about how to convert a decoherence factor at each point in time into
a decoherence rate at each point in time, that can be included in a differential equation for
the state vector of the atom’s internal state. Then I will introduce the averaging scheme I

6.5. decoherence 175

10−11 10−10 10−9 10−8 10−7 10−6 10−5

Wavepacket size σ (m)

100

101

102

103

104

105

106

107

108

D
ec

o
h
er

en
ce

ra
te

(s
−

1
)

exact numeric (real)

exact numeric (imag)

approx analytic (real)

approx analytic (imag)

large σ analytic (real)

large σ analytic (imag)

small σ analytic (real)

small σ analytic (imag)

Figure 6.6: Comparison of approximate analytic Markovian decoherence rate (6.133)
and exact Markovian decoherence rate (6.124) between adjacent (ΔmF = ±1) Zeeman
sublevels of the F = 1 ground state of a 87Rb atom in a 250G cm−1 magnetic field
gradient. Shown are the real (solid) and imaginary (dashed) parts of the small wavepacket
limit (red) given by (6.128) and large wavepacket limit (green) given by (6.132), their
stitching together in the intermediate wavepacket regime (blue) given by (6.133) and the
exact expression they approximate (black, not easily visible due to being similar to the
blue curves) given by (6.124). There is good agreement over all wavepacket sizes.

am using in order to turn what would be many trajectories for each state into one average
trajectory.

Use of ‘auxiliary trajectories’ for computing decoherence rates is common in the
surface-hopping literature. There is a range of methods called ‘multiple spawning’ meth-
ods, in which additional auxiliary trajectories regularly branch off the main trajectory
(the one corresponding to the hidden variable), and are all considered in order to com-
pute the overlap with the main wavepacket and hence the decoherence factor [210–212].
These methods generally contain a parameter controlling the likelihood of new trajecto-
ries branching off, and trajectories can be discarded once they recede far enough from
the main trajectory. If the parameter is tuned far enough, there can be so many auxil-
iary trajectories that an extremely accurate decoherence rate can be computed, though
the computational cost in this case approaches that of a fully quantum simulation. A
method by Shenvi et al. [175], like mine, tracks only one auxiliary trajectory per internal
atomic state, probabilistically replacing them with newly spawned trajectories rather
than simulating multiple auxiliary trajectories per state. However, the trajectories are

176
chapter 6. hidden variables for semiclassical models with

state-dependent forces

spawned at specific moments—when the non-adiabatic coupling strength reaches a local
maximum—leading to different behaviour in different locations in space. For example,
if an atom were orbiting a magnetic field zero in a magnetic trap, this method would
only spawn new trajectories at the orbit’s point of closest approach, and decoherence
rates would be inaccurate at other points in the orbit, even if the non-adiabatic coupling
were still high throughout the orbit. My method has the potential to improve upon this
due to the fact that it is in a sense spawning new trajectories all the time—rather than
only at specific points in space as the method by Shenvi et al.—and avoids the problem
of an exponential proliferation of trajectories by only retaining a single, more-or-less
representative trajectory for each state rather than many.

Decoherence rate in the absence of projective measurement

Here we generalise our conception of the decoherence rate by removing the assumption
that motional states are ‘reset’ at each timestep. This resetting, which we assumed in
Section 6.5.2, set each motional state to be equal to |ϕη(t)⟩ at each timestep, and this
led to all decoherence rates being zero due to the quantum Zeno effect (Section 6.5.3).
What is the reduction in the state amplitudes at each timestep if the wavepackets are not
reset, but are left as arbitrary states? We know that if we were to perform a projective
measurement at time t, the ith state amplitude would be reduced by a factor of Rηi(t)
compared to the original state amplitude ci(t) as in (6.99). If motional states are not reset
at each timestep, then Rηi(t) is not necessarily close to unity, as the wavepackets may be
non-negligibly separated. In the absence of Hamiltonian evolution such that dci(t)

dt = 0,
the rate of change in ̃ci(t) due to the changing decoherence factor is

d ̃ci(t)
dt

=
dRηi(t)
dt

ci(t) (6.134)

= 1
Rηi(t)

dRηi(t)
dt

̃ci(t). (6.135)

and so we see that a decoherence rate that does not reset the environment states is the
(negative of the) logarithmic derivative of the decoherence factor at any time, rather than
just its derivative at t = 0. This case encompasses the earlier case in which Rηi(t) = 1
at all times, in which case the logarithmic and ordinary derivatives are the same. Thus,
given the decoherence factor between two states, along with its time derivative, we can
compute a decoherence rate

γmmij (t) = − 1
Rij(t)

dRij(t)
dt

, (6.136)

such that in the absence of Hamiltonian evolution
d ̃ci(t)
dt

= −γmmηi (t) ̃ci(t), (6.137)

where ‘mm’ stands for ‘minimal-memory’.
The (negative) logarithmic derivative of the decoherence factor (6.95) for the fixed-

width Gaussian wavepackets gives the minimal-memory decoherence rates

γmmij (t) = 􏿵
rij
4σ2

+ i
2
kij􏿸 ⋅

drij(t)
dt

+ 􏿵σ2kij +
i
2
rij􏿸 ⋅

dkij(t)
dt

, (6.138)

which for a given relative acceleration aij between the states, and written in terms of
relative velocity instead of wavenumber, is

γmmij (t) = 1
4σ2

rij(t) ⋅ vij(t) +
σ2m2

ℏ2 vij(t) ⋅ aij(t) + i
m
2ℏ 􏿴|vij(t)|

2 + rij(t) ⋅ aij(t)􏿷 ,
(6.139)

6.5. decoherence 177

where rij(t) = ri(t)− rj(t) and vij(t) = vi(t)−vj(t) are the relative position and velocity
of the two states, and aij(t) is their relative acceleration:

aij(t) = −
1
m
􏿴∇Vi(ri, t) −∇Vj(rj, t)􏿷 . (6.140)

Note this is slightly different to the relative acceleration used in the Markovian decoher-
ence calculation in Section 6.5.4. Here, we actually have (approximate) positions ri(t) and
rj(t) for both states’ wavepackets, and so we can evaluate the potential gradient separately
at the two positions rather than having to use the position of the state currently selected
by the hidden variable for both.

Equation (6.5.5) is our minimal-memory decoherence rate, and requires as input the
centre-of-mass position and velocity of each Gaussian wavepacket as input. Let’s now
move on to how these trajectories are computed.

Frommany trajectories, one

As mentioned, this method tracks only one trajectory per state. However, it continuously
considers the spawning of new trajectories, and rather than actually tracking multiple
trajectories per state or probabilistically replacing the existing trajectories with the new
ones, it simply averages the trajectories together, weighted by their quantum probabilities.
At the end of each timestep, positions and velocities (other than those of the main
trajectory) are updated according to a weighted sum of their present values and those of
the main trajectory:

ri≠η(t′) ← Qiη(t′, t) rη(t′) + 􏿴1 − Qiη(t′, t)􏿷 ri(t′), (6.141)

vi≠η(t′) ← Qtime
iη (t′, t)vη(t′) + Q̃space

iη (t′, t)(vη(t′) + Δviη(t′))

+ 􏿴1 − Qtime
iη (t′, t) − Q̃space

iη (t′, t)􏿷 vi(t′), (6.142)

whereQiη(t′, t) = Piη(t′, t)/|ci(t′)|
2 is the fraction of the population22 of state i at time 22Note that |ci(t′)|

2 is the ith pop-
ulation at time t′ due to unitary
evolution only over the time inter-
val, without taking into account
decoherence, since all population
flows are computed from unitary
evolution only and decoherence is
treated separately.

t′ that flowed to it from state η in the interval t to t′, withQtime
iη (t′, t) and Q̃space

iη (t′, t)
defined similarly in terms of Ptime

iη and P̃time
iη as defined in Section 6.4.3, and where

Δviη(t′) is the required velocity correction for a transition from state η to state i at time
t′, as discussed in Section 6.4.3:

Δviη(r, t′) =
⎡
⎢⎢⎢⎣sgn(v ⋅ d̂iη)􏽰

(v ⋅ d̂iη)2 +
2
m
􏿴Vi(r, t′) − Vη(r, t′)􏿷 − (v ⋅ d̂iη),

⎤
⎥⎥⎥⎦ d̂iη,

(6.143)

where r = rη(t′) and v = vη(t′) are the position and velocity of the main trajectory at
time t′, and the non-adiabatic coupling unit vector d̂iη = d̂iη(rη(t′)) is evaluated at the
position along the main trajectory at time t′.

The above scheme is constructed to track a mean trajectory for each state, where
‘mean’ is defined as a weighted sum of positions and velocities with those of the main
trajectory whenever transitions from the latter occur, taking into account velocity jumps
and frustrated transitions, with the energy conservation calculation for the velocity jumps
based on the potentials at the location of the main trajectory.

6.5.6 What are we ‘following’ exactly?

Now that we’ve worked out a way to approximate the result of projecting the multi-
component wavefunction onto a specific motional state (a Gaussian wavepacket) without
resetting all motional states (also Gaussian wavepackets) to be equal to the one we are

178
chapter 6. hidden variables for semiclassical models with

state-dependent forces

projecting onto, why not take the process further? We can use the same method to
project onto any wavefunction we like, in order to inspect what the multi-component
wavefunction looks like projected onto the wavefunction in question. This does not have
to imply anything about the form of the motional states, which remain Gaussians at all
times. It just defines what we ‘see’ at each timestep of our simulation.

For example, if we projected onto a Dirac delta, that would tell us what the multi-
component wavefunction looks like at a specific point in space, say, the centre-of-mass
position of the wavepacket corresponding to the hidden variable.

This is appealing for several reasons. Firstly, consider the projected Hamiltonian
Ĥη(t) first introduced in Section 6.5.2. Since we do not want to have to actually con-
struct Gaussian wavepackets in order to compute the integral that defines the projected
Hamiltonian, our only recourse is to approximate the projected Hamiltonian as the value
of the full Hamiltonian at the centre-of-mass position of the main trajectory’s Gaussian
wavepacket:

⟨χi|Ĥη(t)|χj⟩ = ⟨χi ϕη(t)|Ĥ(t)|χj ϕη(t)⟩ (6.144)

≈ ⟨χi rη(t)|Ĥ(t)|χj rη(t)⟩ (6.145)

≡ Hij(rη, t), (6.146)

which can be considered a small-wavepacket approximation, as mentioned in Section 6.1
in the context of the Ehrenfest semiclassical model. If an arbitrary position is used in
place of rη, this results in an operator valued function of space Ĥ(r, t), which operates
only on the internal degrees of freedom of the atom.

This is the operator we actually use in the algorithm, and with it, there are no longer
any Gaussian wavepackets to compute integrals over or anything else—all details of the
wavepackets are encapsulated and parametrised by the approximations and analytics in
this and the preceding sections, leaving us to focus on the classical dynamics of the atoms’
centre-of-mass motion and the quantum evolution of their internal states according to
Ĥ(r, t) evaluated at the classical positions (representing the centre-of-mass position of
the wavepackets) of the atoms.

Although this can be considered a small wavepacket approximation, we cannot use
arbitrarily small wavepacket sizes in our decoherence calculations, as the decoherence
rates (under both the Markovian and auxiliary trajectories approaches) do not converge
to a constant as the wavepacket sizes decrease—rather they become arbitrarily large. Very
high spin decoherence rates have the potential to prevent spin flips altogether, also a result
of the quantum Zeno effect, since high decoherence rates imply strong measurement,
and strong measurement of an observable prevents evolution of that variable.23 So there23I have sometimes wondered

if there is a way to harness this
to prevent Majorana losses in
evaporation to bec, by measuring
very strongly whether they have
occurred.

is a possible inconsistency here: can we make the wavepackets small or not?
In the other direction, note in Figure 6.6 the trend in theMarkovian decoherence rate

as wavepackets become large: the decoherence rate becomes large as well. The expression
for the minimal-memory non-Markovian decoherence rate (6.139) also yields a large
decoherence rate for largewavepackets. In both cases this is decoherence due to separation
in velocity space. While this is the correct result given our assumptions, it causes problems
when combined with the above method of approximating the projected Hamiltonian.
Essentially, rapid velocity-induced decoherence occurs when the wavepackets are large
because spatially large Gaussians are small in velocity space, and hence do not need to
accelerate much to be no longer overlapping in velocity space. But do we really expect our
wavepackets to be minimal uncertainty wavepackets? Certainly not when they are large
compared to the structure of a spatially-varying Hamiltonian. A real wavepacket, whilst
undergoing a transition to another state, does not do so everywhere in space the same
way, as in a single-mode approximation, but our formulation so far assumes it does. In the
limit of a very large spin- 12 wavepacket undergoing a complete Majorana spin flip due to a
magnetic field zero would, for example, appear, as its centre-of-mass passed over the zero,

6.5. decoherence 179

as approximately two half-Gaussians, one in each state. It is doubtful that such spatially
complex wavepackets have narrow enough velocity distributions to lead to decoherence
rates as high as the expressions we’ve derived so far suggest. Narrow velocity distributions
are therefore inconsistent with the other assumptions of our model and any consequences
of rapid velocity separation in the model should be viewed with scepticism.

Another argument is that, if two wavepackets are co-located in space but not in
velocity space, the amplitude of one of them as seen from the centre-of-mass position of
the other is not zero. It’s the fact that their relative phase varies so much over the extent
of the wavepackets that causes their projection onto each other to be small when their
velocities are very different.24 So it’s only after this averaging process—integrating over 24Some call this ‘dephasing’ to

distinguish from other forms of
decoherence.

all space—that the wavepackets look like they are small from each other’s perspective.
One of the common themes of this method as a whole is that we are often happy with
representative results rather than average ones, drawing results from approximately correct
statistical distributions, and only observing the complete distribution when we analyse a
large sample of results. Continuing in this vein, why not consider the value of the multi-
component wavefunction along a specific trajectory in space, rather than its projection
onto a Gaussian? The projection of a multi-component wavefunction onto a Gaussian
isn’t any more useful or intuitive a quantity than tracing a curve through spacetime and
asking “what is the wavefunction here?” This way, instead of a simulation telling us “there
was, on average, no population transfer to such-and-such state”, it would give a (more
likely to be useful in my opinion) answer “there was a lot of population transfer to this
state, but the phase is essentially random”.

The final argument is empirical: attempts to implement the model with the Gaussian
projections do not work well unless wavepackets are small. The decoherence rates are too
high, presumably for the speculative reasons discussed above. This damps the population
of states other than that selectedby thehidden variable tooquickly, such that the simulated
population of a state is zero even though according to the Schrödinger wave equation
it should not be (it merely has an inhomogeneous phase). Simply deleting the terms
caused by velocity separation from the decoherence rate expressions improves the results
somewhat. But if projecting onto a Dirac delta instead, there are no velocity-separation
terms to argue for the deletion of, and one obtain modestly better results in any case (as
shown in Section 6.7).

Shenvi et al. [175] also seem to find the velocity-separation term of their decoherence
factor troublesome, and opt to remove it by gauge transforming the wavepackets to have
the same velocity. They argue that because at least a small initial velocity difference
between wavepackets is required by energy conservation (i.e. the velocity jumps from
Section 6.4.3), that it is ‘unfair’ to have an initial sudden drop in coherence because of
this. I agree that an immediate drop in coherence upon a transition is strange, but this
is small compared to the decoherence that large Gaussian wavepackets undergo upon
further acceleration away from each other, which also seems unphysically large and needs
to be addressed as well. But velocity jumps or not, these are the actual decoherence factors
between pairs of Gaussians, and if we don’t like the answer, perhaps the projection of
the total wavefunction onto a Gaussian isn’t the question we meant to ask. Perhaps we
should be asking simply what value a multi-component wavefunction has at a specific
point in space. Shenvi et al. gauge transform away the entire velocity difference between
the wavepackets, not only the part of it mandated by energy conservation, leading me
to suspect that some of the same concerns I outlined above occurred to them too, or
that they simply observed, like me, that the velocity separation was responsible for what
appeared to be unphysically large decoherence rates in their results.

In light of all this, I now redefine ‘follow’ to mean “look at the wavefunction’s value
at the centre-of-mass position of the classical trajectory corresponding to the state being
followed”, the result of which can be computed by projecting the total wavefunction onto

180
chapter 6. hidden variables for semiclassical models with

state-dependent forces

a Dirac delta, resulting in a decoherence factor

Rdd
ij (t) = ⟨ri(t)|ϕj(t)⟩ (6.147)

where |ϕj(t)⟩ is one of our usual Gaussian motional states and dd stands for ‘Dirac
delta’. Following identical arguments to the previous two sections, we obtain Dirac-delta
decoherence rates for the Markovian case as

γMarkovdd
ij (r, t) ≈ 1

2Γ(54)􏽰
|aij(r, t)|

σ
+ i

1
2Γ(54)2

mσ |aij(r, t)|
ℏ , (6.148)

which is identical to the position-only approximation (6.128) up to a factor of 2
1
4 , and

for minimal-memory non-Markovian case as

γmmddij (t) = 1
2σ2

rij(t) ⋅ vij(t) − i
m
ℏ rij(t) ⋅ aij(t), (6.149)

with all symbols as defined in Section 6.5.4 and Section 6.5.5, respectively.
Now that we are projecting onto a Dirac delta instead of a Gaussian, calculation of

the projected Hamiltonian as simply the value of the full Hamiltonian at a specific point
in space is no longer a contradiction, as it is exactly what we would get if we projected
the full Hamiltonian onto a Dirac delta instead of a Gaussian.

6.6 Algorithms

Now we have presented all the pieces from which the two versions of the hidden-variable
semiclassical method are constructed. In this section I present step-by-step instructions
for implementing the two versions of the method—one using Dirac-delta Markovian
decoherence, and the other using auxiliary trajectories withDirac-delta minimal-memory
decoherence.

6.6.1 Markovian hidden-variable semiclassical method

This is the simplest version of my method, using crude Markovian decoherence as dis-
cussed in Section 6.5.4, and simulating only one trajectory corresponding to the centre-
of-mass motion of the state corresponding to the hidden variable at each moment in
time.

State variables

The Markovian variant of the hidden-variable semiclassical method has the following
state variables describing the state of each simulated atom at each moment of time:

• The internal state vector of the atom | ̃χ(t)⟩, in any chosen basis (though the local
eigenbasis is likely to be computationally simplest to perform calculations in).

• The position r(t) and velocity v(t) of the atom.

• The hidden variable η(t), equal to an integer index specifying one of the eigenstates
|χη(r, t)⟩ of the Hamiltonian Ĥ(r, t) atom in the local energy eigenbasis.

6.6. algorithms 181

Initial conditions

Strictly, the hidden-variable semiclassical method is intended to simulate the classical
centre-of-mass motion of thermal wavelength-sized Gaussian wavepackets. Therefore the
initial conditions for the positions and velocities of the atoms in an ensemble are arbitrary,
classical initial conditions, and so one might draw them, along with the internal states,
randomly from a Boltzmann distribution for a given confining potential and temperature,
such that the initial internal state of each atom is an eigenstate |χi(r, t = 0)⟩. In this case
the initial value η(t = 0) of the hidden variable for each atom should correspond to its
chosen eigenstate.

However, one might want to convert an initial wavefunction into an ensemble of
positions and velocities, in which case one can draw positions and momenta from the
quantum probability distributions ⟨ψ(t = 0)| ̂r|ψ(t = 0)⟩ and ⟨ψ(t = 0)|p̂|ψ(t = 0)⟩
for an initial motional state vector |ψ⟩. Similarly, one can set the initial internal state
vector of each atom to an arbitrary desired internal state vector appropriate for the
problem at hand, in which case the initial values of the hidden variable for each atom in
an ensemble being simulated should be chosen randomly with probability equal to the
internal state populations | ⟨χi(r, t = 0)| ̃χ(r, t = 0)⟩| 2 in the local basis at the position of
each atom. More complex initial conditions are possible; there is no reason why one can’t
draw positions, velocities and internal states from arbitrary joint probability distributions,
or use hand-crafted initial states, provided that the hidden variables are chosen randomly
at the end with probabilities equal to the internal state populations in the local basis of
each atom so as to be consistent with the Born rule.

Evolution

Evolving the Markovian hidden-variable semiclassical method involves three coupled
differential equations, a stochastic evolution rule, and some additional steps to be per-
formed in between numerical integration steps. Because the modifications in between
steps can be discontinuous, multi-step integration schemes that retain information from
previous integration steps should be avoided. One step of the Markovian hidden-variable
semiclassical method comprises the following steps to evolve the state variables from time
t to t′ = t + Δt, where Δt is small compared to dynamical timescales of the problem.

1. Evolve the internal state vector and motional state variables of each atom from
time t to t′ according to the following coupled differential equations, using one or
more steps of your favourite non-multi-step numerical integration method:

d
dt
| ̃χ(t)⟩ = −

i
ℏ Ĥ(r, t) | ̃χ(t)⟩ − Γ̂Markovdd

η (r, t) | ̃χ(t)⟩ , (6.150)

d
dt

v(t) = − 1
m

∇Vη(r, t), (6.151)

d
dt

r(t) = v(t), (6.152)

whereVη(r, t) is the (space- and/or time-dependent) eigenvalue of Ĥ(r, t) corre-
sponding to the eigenstate |χη(r, t)⟩, and the Markovian decoherence operator
is

Γ̂Markovdd
η (r, t) = ∑

i
|χi(r, t)⟩⟨χi(r, t)| γMarkovdd

ηi (r, t), (6.153)

where γMarkovdd
ij (r, t) are the approximate Markovian decoherence rates given

by (6.148). The integration of the internal state can be performed in the local
eigenbasis using the transformed Hamiltonian defined in (6.38), in which case the
decoherence operator is diagonal with the ith diagonal equal to γMarkovdd

ηi (r, t).

182
chapter 6. hidden variables for semiclassical models with

state-dependent forces

2. Normalise the internal state vector to unit norm:

| ̃χ(t′)⟩ ← | ̃χ(t′)⟩
√ ⟨ ̃χ(t′)| ̃χ(t′)⟩

(6.154)

3. Evaluate the Stime, Sspace and Sstay matrices over this time interval for Tully’s
minimal-switches algorithm as described in Section 6.4.2, equations (6.60–6.62).
This may require numerical differentiation of the basis vectors of the Hamilto-
nian with respect to space and time, and possibly numerical diagonalisation of
the Hamiltonian to obtain the basis vectors as functions of space and time, if
analytic expressions are not known. If Δt is not small enough to be considered
infinitesimal for the purposes of evaluating (6.53) and (6.54), and one numerically
integrates them for a more accurate result, note that these expressions require
the state populations {ci(t)} in the local basis in the absence of decoherence; one
therefore cannot do this integral in tandem with integrating the above differential
equation for the internal state.25 Alternately, compute the overall Smatrix of your25Though with split-operator meth-

ods and some care, the decoherence
term can be treated separately such
that the two integrals can be evalu-
ated without repeating calculations
unnecessarily.

favourite hidden-variable theory for evolution over the given time interval in the
local eigenbasis (similarly keeping in mind that the effective unitary given to the
hidden-variable theory must be due to the evolution of Ĥeff(t) only, and not the
decoherence term). If it saves computational power to do so, only compute column
η of S, since only transitions from state η to other states need be considered.

4. Compute P̃space (6.72) and hence S̃space (6.74) to set the probability of classically
disallowed transitions to zero as described in Section 6.4.3.

5. Modify the hidden variable with probability

Pr􏿵η
space
→ i􏿸 = S̃spaceiη (6.155)

that it transitions to the state (i ≠ η) via a spatially induced transition, and
probability

Pr􏿵η
time
→ i􏿸 = Stime

iη (6.156)

that it transitions to a state (i ≠ η) via a temporally induced probability, and
probability

Pr(η→ η) = 1 −∑
i
􏿴S̃spaceiη + Stime

iη 􏿷 (6.157)

that it keeps its current value. These choices can be randomly chosen between with
the correct probabilities as described in Figure 6.4.

6. If the hidden variable did transition to a different state i ≠ η, and if it was a spatially
induced transition, instantaneously adjust the atom’s velocity as required by energy
conservation:

v(t′) ← v(t′) + Δvηi(r, t), (6.158)

where Δvηi(r, t) is given by (6.76).

This completes the Markovian hidden-variable semiclassical method.

6.6.2 Mean auxiliary trajectories hidden-variable semiclassical method

This is the more complex version of my method. Additional classical trajectories are
propagated—one for each internal state of each atom—but other than classically evolving
these additional trajectories, the increase in computational cost is minimal.

6.6. algorithms 183

State variables

The non-Markovian/Mean auxiliary trajectories variant of the hidden-variable semiclassi-
cal method has the following state variables describing the state of each simulated atom
at each moment of time:

• The internal state vector of the atom | ̃χ(t)⟩, in any chosen basis (though the local
eigenbasis is likely to be computationally simplest to perform calculations in).

• A set of positions {ri(t)} and velocities {vi(t)}, one position and velocity for each
internal state of the atom.

• The hidden variable η(t), equal to an integer index specifying one of the eigenstates
|χη(rη, t)⟩ of the Hamiltonian Ĥ(rη, t) atom in the local energy eigenbasis at the
location rη of the main trajectory.

Initial conditions

The manner of generating initial conditions of the mean auxiliary trajectories variant of
the hidden-variable semiclassical method is identical to that of the Markovian variant,
with the exception thatmultiple initial positions and velocities are required instead of just
one. The initial positions and velocities of all auxiliary trajectories can however simply be
set equal to those of the main trajectory for each atom.

Evolution

The evolution of the state variables for each atom from time t to t′ = t + Δt in the non-
Markovian hidden-variable semiclassical method proceeds similarly to the Markovian
variant.

1. Evolve the internal state vector and set of motional state variables of each atom
from time t to t′ according to the following coupled differential equations, using
one or more steps of your favourite non-multi-step numerical integration method:

d
dt
| ̃χ(t)⟩ = −

i
ℏ Ĥ(rη, t) | ̃χ(t)⟩ − Γ̂mmddη (t) | ̃χ(t)⟩ , (6.159)

d
dt

vi(t) = −
1
m

∇Vi(ri, t), (6.160)

d
dt

ri(t) = vi(t), (6.161)

whereVi(ri, t) is the (space- and/or time-dependent) eigenvalue of Ĥ(ri, t) cor-
responding to the eigenstate |χi(ri, t)⟩ at the position of the ith trajectory, which
may be themain (i = η) or an auxiliary (i ≠ η) trajectory; and the non-Markovian
decoherence operator is

Γ̂mmddη (t) = ∑
i
|χi(rη, t)⟩⟨χi(rη, t)| γmmddηi (t), (6.162)

where γmmddij (t) are the minimal-memory non-Markovian decoherence rates given
by (6.149); γmmddηj (t) comprising the diagonals of Γ̂mmddη (t) if working in the local
eigenbasis along the main trajectory. When computing γmmddη (t), clip its real part
from below to zero. Although such recoherence can in principle be physically
meaningful, it can arise out of tiny amplitudes of states with auxiliary trajectories
far from the main trajectory, and is hence subject to large floating-point error.26 I 26Large error in positive (real parts

of) decoherence rates in the same
context is not a problem, as the
state amplitudes are already very
close to zero, so the accuracy of
the rate at which they more closely
approach zero is of no consequence.

have not observed this problem with the Dirac delta based decoherence rates, but
it does seem to appear if the Gaussian-projection based decoherence rates are used.

184
chapter 6. hidden variables for semiclassical models with

state-dependent forces

2. Normalise the internal state vector to unit norm:

| ̃χ(t′)⟩ ← | ̃χ(t′)⟩
√ ⟨ ̃χ(t′)| ̃χ(t′)⟩

(6.163)

3. Evaluate the Stime, Sspace and Sstay matrices as in Step 3 for the Markovian case

4. Compute S̃space as in Step 4 for the Markovian case. We treat transitions to have
occurred at the location of the originating trajectory, therefore for the purposes
of computing S̃space, the expressions for Δv2ij(r, t) (6.71) and d̂ij(r, t) (6.69) must
be evaluated using r = ri(t′), and the conditional in P̃space (6.72) evaluated with
v = vi(t′). Since only transitions from the current state specified by the hidden
variable to other states need to be considered, one only needs to compute column
η of S̃space, in which case only rη and vη are necessary. This is then identical to the
non-Markovian case, in which the main trajectory is the only trajectory simulated.

5. Compute the energy-conservationmandated velocity differenceΔvηi givenby (6.76)
for all i ≠ η. As with Step 4, since we treat transitions to have occurred at the loca-
tion of the main trajectory, the velocity difference expression should be evaluated
using the position and velocity of the main trajectory, as emphasised in (6.143).

6. Instantaneously modify the positions and velocities of all auxiliary trajectories
(i ≠ η) according to (6.141) and (6.142). This in essence spawns new auxiliary
trajectories at the location of the main trajectory, but does not keep them: the
averaging expressions replace each auxiliary trajectory with a weighted sum of its
previous position and velocity and the position and velocity of the new trajectory.
If the population of the state corresponding to a given auxiliary trajectory falls
below some threshold (I use |ci≠η(t)|

2 < 10−8), then discard the trajectory and
replace it with the position and velocity of the main trajectory.

7. Probabilistically make a transition of the hidden variable as in Step 5 for theMarko-
vian case.

8. In the case that the hidden variable transitioned, replace the trajectory of the new
state with the position and velocity of the previous main trajectory. In the case
that it was a spatially-induced non-adiabatic transition, adjust the velocity of the
new state’s trajectory with the previously computed Δvηξ , where η is the previous
value of the hidden variable and ξ is the new value.

This completes the mean auxiliary trajectories hidden-variable semiclassical method.

6.7 Results

Here I demonstrate the two variants of the method, each for two different spatially
dependent Hamiltonians in one dimension, and compare them to the numerical result
from the full Schrödinger wave equation. All simulations are for 87Rb atoms in the F = 1
ground state subject to the Zeeman Hamiltonian for a given magnetic field profile. In
scenario I, atoms in the trapped state (for 87Rb, the locally spin-down sate is magnetically
trappable) pass over a field minimum, which induces Majorana transitions, allowing
the spin-flipped atoms to escape. In scenario II, the magnetic field profile is modified
to create two closely spaced field minima. This scenario demonstrates the importance
of accurate decoherence in surface-hopping/hidden-variable semiclassical methods, as
the two regions of non-adiabatic coupling are encountered in a time comparable to the
decoherence timescale where the exact form of the decoherence model can strongly

6.7. results 185

influence the outcome of transitions. I use Schrödinger theory for the hidden-variable
theory throughout. Since the Hamiltonians are time-independent, as mentioned these
results do not test my proposed method of conditionally applying velocity jumps to
transitioned atoms—velocity jumps are always applied.

I simulated both scenarios first using the Schrödinger wave equation, as the gold-
standard against which to benchmark the other methods. Numerically I solved for
the three-component wavefunction using fourth-order Runge–Kutta (Section 3.3) and
the Fourier method of evaluating spatial derivatives (Section 3.4.1). I added imaginary
potentials near the boundaries of the region I wished to simulate to absorb untrapped
wavepackets rather than have them reflect or wrap around due to periodic boundary
conditions inherent in the Fourier method of derivatives. The initial condition was a
Gaussian wavepacket in the locally spin-down eigenstate,mF = −1, though I simulated
in the fixed eigenbasis of F̂z , transforming as necessary to create the initial conditions,
and later to compare state populations in the local eigenbasis.

I then simulated both scenarios with 104 semiclassical atoms using the Ehrenfest
semiclassical method (Section 6.1.1), theMarkovian hidden-variable semiclassical method
(Section 6.6.1), and the mean auxiliary trajectories hidden-variable semiclassical method
(Section 6.6.2). The initial conditions were set by drawing positions and velocities ran-
domly for each semiclassical particle from the position and velocity probability distribu-
tions implied by the Gaussian wavepacket.

For both semiclassical methods I used simple first-order split-step evolution (Sec-
tion 3.2.4) for the quantum evolution in the local eigenbasis, and evolved the classical
trajectories analytically using constant acceleration over each timestep:

| ̃χH (t′)⟩ ≈ e−Γ̂η(t)ΔtÛH (z′, t′) Û†
H (z, t) e−

i
ℏ V̂(z,t)Δt | ̃χH (t)⟩ , (6.164)

z′ ≈ z − Δt2

2m
∇Vη(z) (6.165)

v′ ≈ v − Δt
m

∇Vη(z), (6.166)

where z, v and t are the position, velocity and time at the start of a timestep, z′, v′ and t′
at the end of the timestep, andΔt = t′− t, is the timestep, which wasΔt = 500 ns. These
methods are not particularly accurate, but were sufficient for these demonstrations and
allowed the implementation to be simple. In particular, the ordering of the individual
operators for evolving the state vector over a timestep was chosen to allow everything to
the right of the decoherence factor be the unitary part of the evolution for the timestep,
which could be input to Schrödinger theory as the unitary describing evolution in the
local basis for that timestep.

A summary of all the simulation results presented in this section is given in Table 6.1.

Scenario I

In this scenario, a 87Rb atom begins as an initially stationary Gaussian wavepacket of
width 600 nm (equal to the thermal de Broglie wavelength at T = 0.2 μK) centred at
z0 = −20 μm in the Zeeman potential experienced by the F = 1 ground-state manifold
(Section 2.3.3) with the following magnetic field profile:

Btrap(z) = (Bx,By,Bz) = 􏿴B⟂, 0,B′zz􏿷 (6.167)

where the transverse magnetic field is B⟂ = 162.5mG and the z-gradient is B′z =
250G cm−1. This potential provides a region close to z = 0 where the magnetic field
rapidly reverses direction too quickly for the atom’s spin to adiabatically follow, inducing
Majorana transitions. The atom accelerates under the initial potential gradient toward

186
chapter 6. hidden variables for semiclassical models with

state-dependent forces

this region. The adiabatic potentials resulting from the Zeeman Hamiltonian with this
magnetic field are shown in Figure 6.7. Results are shown in Figure 6.9 for the Markovian
model and Figure 6.10 for the auxiliary trajectories model.

−20 −10 0 10 20

z (µm)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

V
m
F

(z
)/
V
−

1
(z

0
)

mF = 1
mF = 0
mF = −1

Figure 6.7: Adiabatic potentials for scenario I with a single region of coupling. The initial
probability distribution of the atoms is depicted (in arbitrary units), offset for clarity by
the adiabatic potential of the initial state.

−20 −10 0 10 20

z (µm)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

V
m
F

(z
)/
V
−

1
(z

0
)

mF = 1
mF = 0
mF = −1

Figure 6.8: Adiabatic potentials for scenario II, with two closely spaced coupling regions.
The initial probability distribution of the atoms is depicted (in arbitrary units), offset for
clarity by the adiabatic potential of the initial state.

Scenario II

Scenario II is identical to scenario I, except that the magnetic field profile is instead2727This magnetic field profile is
unphysical—though similar Hamil-
tonians can be constructed by
means of dressed potentials using
fast-rotating fields—it serves as
a good test that highlights the
improvement of the mean auxil-
iary trajectories method over the
Markovian method.

Btrap(z) = (Bx,By,Bz) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

􏿴B⟂, 0,B′z(z + zfieldmin)􏿷 z < 0

􏿴B⟂, 0, −B′z(z + zfieldmin)􏿷 z >= 0
(6.168)

where zfieldmin = 2.5 μm is the distance of each field minimum to the origin, such that
the two minima are separated by 5 μm, and with the other variables having the same

6.8. discussion and conclusion 187

values as in scenario I. The adiabatic potentials resulting from the Zeeman Hamiltonian
with this magnetic field are shown in Figure 6.8. Results are shown in Figure 6.11 for the
Markovian model and Figure6.12 for the auxiliary trajectories model.

6.7.1 Gaussian projection results

Here I demonstrate the difference between the above results, which use the Dirac delta
based decoherence rates (Section 6.5.6), with what one obtains if projecting onto a
Gaussian instead as originally proposed in Sections 6.5.4 and 6.5.5. Here I only use the
mean-auxiliary-trajectories method; though as argued in Section 6.5.6, the Markovian
decoherence rate has its problems too when derived assuming Gaussian projections.

For these results I simulated scenario II, inwhich there are two closely spacedmagnetic
field minima, using two different decoherence rates. In the first, I take the decoherence
rate γmmij (t) given by (6.139) at face value, velocity-space separation included. This leads
to poor results as the decoherence is clearly too fast, as shown in Figure 6.13.

In the second, I make a similar change to that of Shenvi et al. [175], setting kij =
0 for the relative wavenumber of the two Gaussian wavepackets in the decoherence
factor (6.95), and otherwise proceed as normal per Section 6.5.5. This gives a minimal-
memory decoherence rate

γmmij |kij=0(t) =
1
4σ2

rij(t) ⋅ vij(t). (6.169)

This leads to much better results, shown in Figure 6.14 but still not as good as the Dirac
delta based decoherence rate, shown in Figure 6.12.

6.8 Discussion and conclusion

The methods presented in this chapter give acceptable results in different scenarios. The
Markovian decoherence model (Section 6.5.4 and modifications in Section 6.5.6) is
able to obtain accurate trajectories and state populations for semiclassical atoms in the
case of non-adiabatic coupling regions that are encountered at intervals that are large
compared to the decoherence time (Figure 6.9), but produces inaccurate populations if
multiple coupling regions are encountered at smaller time intervals (Figure 6.11). The
mean auxiliary trajectories method (Section 6.5.5 and modifications in Section 6.5.6)
solves this problem by more accurately modelling dynamic decoherence curves, and is
therefore able to obtain accurate trajectories and state populations even in the presence
of multiple regions of coupling encountered at intervals comparable to the decoherence
timescale (Figure 6.12). Both methods are improvements over the Ehrenfest semiclassical
method, which has no decoherence and no separation of trajectories, and over Tully’s
original model, which had separation of trajectories but no decoherence.

As a semiclassical method, the hidden-variable semiclassical method is far less com-
putationally expensive than the Schrödinger wave equation. In the simulation results
presented in this chapter, the Schrödinger wave equation took three minutes to solve on
an Intel 7th generation core i7 cpu. For the same scenario and simulated interval, the
hidden-variable semiclassical method took fourteenminutes, but simulated 104 atoms, av-
eraging to 800ms per atom. Whilst in our case this large number of atoms was necessary
to compare the statistics of the method to the Schrödinger wave equation, in applications
of this method, only one semiclassical atom would be simulated per real atom, and so the
method represents a speedup of 2500×. This is only a modest speedup as semiclassical
methods go, owing to the computational expense of Schrödinger theory—much larger
speedups are to be had using Tully’s fewest-switches.

The problem of velocity separation of wavepackets causing unexpected and undesired
additional decoherence is resolved by instead modelling a projected state vector that is

188
ch

apter
6.

h
idden

variables
for

sem
iclassical

m
odels

w
ith

state-dependent
forces

Scenario Decoherence Projection Ignore Δv? Correct populations Summary

Total Local

Figure 6.9 I Markovian Dirac delta No 33 7 For a single region of non-adiabatic coupling, Markovian de-
coherence gives correct total populations despite inaccurate
local populations.

Figure 6.10 I Aux. trajectories Dirac delta No 33 33 In addition to accurate total populations, the auxiliary trajecto-
ries method gives accurate local populations for a single region
of non-adiabatic coupling.

Figure 6.11 II Markovian Dirac delta No 7 7 Scenario II exposes that Markovian decoherence gives inac-
curate total populations for two closely spaced non-adiabatic
coupling regions.

Figure 6.12 II Aux. trajectories Dirac delta No 33 33 Auxiliary-trajectories decoherence is accurate even for the case
of two closely spaced non-adiabatic coupling regions.

Figure 6.13 II Aux. trajectories Gaussian No 7 7 Separation in velocity space gives unphysically large decoher-
ence rates when using Gaussian projections.

Figure 6.14 II Aux. trajectories Gaussian Yes 3 3 Ignoring the velocity difference between the wavepackets, but
otherwise using Gaussian projection yields better results than
including velocity separation, but not as accurate as when using
Dirac delta based projection.

Table 6.1: Summary of the following six figures, specifying the simulated scenario and methods used for each, and a qualitative indication of the accuracy of the results,
when compared to the Schrödinger wave equation. The level of agreement with both the total populations (subfigures (a)) and local populations along specific classical
trajectories (subfigures (b)) is indicated as excellent (33), fair (3), or poor (7). Abbreviated conclusions from each simulation are provided. Figures 6.13 and 6.14 are both
based on Gaussian projections, with the latter ignoring the contribution of velocity separation to decoherence similarly to Shenvi et al. [175]. Both are less accurate than my
method of computing decoherence rates by projecting onto Dirac deltas, which does not suffer from the velocity-separation problem.

6.8. discussion and conclusion 189

(a)

0.0 0.5 1.0 1.5 2.0 2.5

t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
NS+

NS0

NS−

NE+

NE0

NE−

NH+

NH0

NH−

(b)

0.6 0.8 1.0

0.0

0.5

1.0

ÑH+

ÑH0

ÑH−

ÑS+

ÑS0

ÑS−
0.6 0.8 1.0

0.0

0.5

1.0

0.6 0.8 1.0

t (ms)

0.0

0.5

1.0

(c)

−20 0 20

z (µm)

0.0

0.5

1.0

1.5

2.0

2.5
t

(m
s)

ρH+ = 0.7 mm−1

ρH0 = 3.8 mm−1

ρH− = 11.5 mm−1

ρE = 11.5 mm−1

0.00

0.02

0.04

0.06

ρ
S
+

(µ
m
−

1
)

0.0

0.1

0.2

0.3

ρ
S
0

(µ
m
−

1
)

0.00

0.25

0.50

0.75

1.00

ρ
S
−

(µ
m
−

1
)15 20

z (µm)

0.0

0.5

1.0

ρ
(µ

m
−

1
)

ρS+

ρS0

ρS−
ρH+

ρH0

ρH−
ρE

t = 1 ms

Figure 6.9: Scenario I results for the approximate Markovian decoherence hidden-variable semiclassical method (Sec-
tion 6.6.1), compared to the Schrödinger wave equation and Ehrenfest semiclassical method. (a) The populationsN in each
spin projection state (denotedN±,N0 formF = ±1 andmF = 0 respectively) over time, obtained for the Schrödinger wave
equation (NS) by integration in the local basis over all space, for the Ehrenfest semiclassical model (NE) as an expectation
value over all semiclassical atoms’ internal state vectors, and for the hidden-variable semiclassical method (NH) as the
proportion of atoms with the hidden variable specifying each state at each moment of time. The lines ending just after 1ms
is due to atoms/amplitude leaving the integration region. There is good agreement between all methods during the first
approach of the field minimum, though the Ehrenfest trajectories do not make a second approach within the simulated
interval. The remaining deviations between the Schrödinger and hidden-variable curves are within the random variation
of the stochastic method. (b) The local state populations along specific trajectories corresponding to classical motion in
mF = −1 (top) for all time, switching tomF = 0 at the first field minimum (middle), and tomF = 1 (bottom). These were
obtained by interpolation and normalisation of the Schrödinger wave equation results, and by selecting the semiclassical
atoms making the chosen hidden-variable transitions closest to the field minimum (black lines). One trajectory resulting
from the Ehrenfest model was chosen for comparison, its trajectory is close to those of the other two models until the
field minimum, after which it diverges. This plot shows the shape of the decoherence curves and how our exponential
approximation—while a poor fit—does have the correct timescale, and is better than the Ehrenfest method’s absence
of any decoherence. (c) Probability density of trajectories. Schrödinger wave equation results (shaded), and Ehrenfest
and hidden-variable semiclassical results shown with a single contour line for a chosen density. Inset: The probability
distributions at 1ms. There is good agreement between the hidden-variable semiclassical and Schrödinger wave equation
results.

190 chapter 6. hidden variables for semiclassical models with state-dependent forces

(a)

0.0 0.5 1.0 1.5 2.0 2.5

t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
NS+

NS0

NS−

NH+

NH0

NH−

(b)

0.6 0.8 1.0

0.0

0.5

1.0

ÑH+

ÑH0

ÑH−

ÑS+

ÑS0

ÑS−
0.6 0.8 1.0

0.0

0.5

1.0

0.6 0.8 1.0

t (ms)

0.0

0.5

1.0

(c)

−20 0 20

z (µm)

0.0

0.5

1.0

1.5

2.0

2.5
t

(m
s)

ρH+ = 0.7 mm−1

ρH0 = 3.8 mm−1

ρH− = 11.5 mm−1

0.00

0.02

0.04

0.06

ρ
S
+

(µ
m
−

1
)

0.0

0.1

0.2

0.3

ρ
S
0

(µ
m
−

1
)

0.00

0.25

0.50

0.75

1.00

ρ
S
−

(µ
m
−

1
)15 20
z (µm)

0.0

0.5

1.0

ρ
(µ

m
−

1
)

ρS+

ρS0

ρS−
ρH+

ρH0

ρH−

t = 1 ms

Figure 6.10: Scenario I results for the mean-auxiliary-trajectories hidden-variable semiclassical method (Section 6.6.2)
compared to the Schrödinger wave equation (Ehrenfest results excluded from this and subsequent results plots for clarity).
(a) As per Figure 6.9. Once again, there is good agreement between all methods during the first approach of the field
minimum, and good agreement between the hidden-variable semiclassical method during the second approach, though the
Ehrenfest trajectories do not approach a second time. Again, the remaining deviation is within the range expected given
the stochastic algorithm and could be reduced by increasing the sample size. (b) Populations after projecting onto specific
classical trajectories, as and comparing with semiclassical atoms closest to those trajectories, as per Figure 6.9. Here we see
that the decoherence curves traced out by the auxiliary-trajectories method are in much closer agreement with the results
of the Schrödinger wave equation than those of the Markovian model. Again, the discrepancies are within the statistical
variation of the model; shown in each subplot is the atom that was closest to the given trajectory. (c). Probability density of
trajectories of the two methods, as described in Figure 6.9. Once again there is excellent agreement between the Schrödinger
wave equation and hidden-variable semiclassical methods, with the Ehrenfest trajectories showing the expected unphysical
behaviour.

6.8. discussion and conclusion 191

(a)

0.0 0.5 1.0 1.5 2.0 2.5

t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
NS+

NS0

NS−

NH+

NH0

NH−

(b)

0.6 0.8 1.0

0.0

0.5

1.0

ÑH+

ÑH0

ÑH−

ÑS+

ÑS0

ÑS−
0.6 0.8 1.0

0.0

0.5

1.0

0.6 0.8 1.0

t (ms)

0.0

0.5

1.0

(c)

−20 0 20

z (µm)

0.0

0.5

1.0

1.5

2.0

2.5
t

(m
s)

ρH+ = 4.4 mm−1

ρH0 = 4.1 mm−1

ρH− = 7.3 mm−1

0.0

0.1

0.2

0.3

ρ
S
+

(µ
m
−

1
)

0.0

0.1

0.2

0.3

ρ
S
0

(µ
m
−

1
)

0.0

0.2

0.4

0.6

ρ
S
−

(µ
m
−

1
)15 20

z (µm)

0.0

0.5

1.0

ρ
(µ

m
−

1
)

ρS+

ρS0

ρS−
ρH+

ρH0

ρH−

t = 1 ms

Figure 6.11: Scenario II results for the approximate Markovian decoherence hidden-variable semiclassical method (Sec-
tion 6.6.1) compared to the Schrödinger wave equation. All subfigures as described in Figure 6.9. There are two minima
in the magnetic field, closely spaced near z = 0. Here we see the breakdown of the Markovian model in the presence of a
second region of non-adiabatic coupling that the atoms encounter before they have fully decohered after the first. (a) The
inaccurate modelling of decoherence has resulted in the wrong relative populations and phases between the states when
the atom encounters the second region of coupling, leading to completely different populations after it emerges from the
second field minimum. (b) Local populations along specific classical trajectories. Incorrect decoherence transients were
inconsequential when there were no closely spaced field minima, but here the wrong decoherence results in the wrong initial
conditions as the atom enter the region of non-adiabatic coupling near the second field minimum. If the minima were
farther apart, the exponential decoherence would decay the system back to a single eigenstate, which would be correct. At
shorter times, it matters whether the decoherence curves actually have the right shape. The semiclassical atoms near the
centre of the wavepacket have very small population inmF = 0 andmF = −1 states after the second region of coupling, as
such there were no simulated atoms whose hidden variable remained in these two states after the first region of coupling.
Plotted instead are results from atoms that made additional spin flips, but quickly transitioned back to the desired state.
This can be seen as groups of multiple black lines indicating a number of closely spaced spin flips. As mentioned earlier, this
is one disadvantage of Schrödinger theory: it often makes multiple transitions in a region of coupling in cases where Tully’s
fewest-switches algorithm would make only one, making it harder to pick out which atoms made certain transitions of
interest. (c) Probability density of trajectories. The trajectories themselves are in excellent agreement with the Schrödinger
wave equation—but there are the wrong proportion of atoms in each cluster of trajectories.

192 chapter 6. hidden variables for semiclassical models with state-dependent forces

(a)

0.0 0.5 1.0 1.5 2.0 2.5

t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
NS+

NS0

NS−

NH+

NH0

NH−

(b)

0.6 0.8 1.0

0.0

0.5

1.0

ÑH+

ÑH0

ÑH−

ÑS+

ÑS0

ÑS−
0.6 0.8 1.0

0.0

0.5

1.0

0.6 0.8 1.0

t (ms)

0.0

0.5

1.0

(c)

−20 0 20

z (µm)

0.0

0.5

1.0

1.5

2.0

2.5

t
(m

s)

ρH+ = 4.4 mm−1

ρH0 = 4.1 mm−1

ρH− = 7.3 mm−1

0.0

0.1

0.2

0.3

ρ
S
+

(µ
m
−

1
)

0.0

0.1

0.2

0.3

ρ
S
0

(µ
m
−

1
)

0.0

0.2

0.4

0.6

ρ
S
−

(µ
m
−

1
)15 20

z (µm)

0.0

0.5

1.0

ρ
(µ

m
−

1
)

ρS+

ρS0

ρS−
ρH+

ρH0

ρH−

t = 1 ms

Figure 6.12: Scenario II results for the mean-auxiliary-trajectories hidden-variable semiclassical method (Section 6.6.2)
compared to the Schrödinger wave equation. All subfigures as described in Figure 6.9. (a) Here we see that the auxiliary-
trajectories method of modelling decoherence leads to correct populations (again, within statistical error), even when
there are two field minima closely spaced. (b) Here we see why: the decoherence curves match those of the Schrödinger
wave equation in between the two field minima (identifiable by the two large vertical drops in themF = −1 population),
providing the correct initial conditions as the atoms approach the second fieldminimum. (c)The trajectories and probability
density functions agree well.

6.8. discussion and conclusion 193

(a)

0.0 0.5 1.0 1.5 2.0 2.5

t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
NS+

NS0

NS−

NH+

NH0

NH−

(b)

0.6 0.8 1.0

0.0

0.5

1.0

ÑH+

ÑH0

ÑH−

ÑS+

ÑS0

ÑS−
0.6 0.8 1.0

0.0

0.5

1.0

0.6 0.8 1.0

t (ms)

0.0

0.5

1.0

(c)

−20 0 20

z (µm)

0.0

0.5

1.0

1.5

2.0

2.5

t
(m

s)

ρH+ = 4.4 mm−1

ρH0 = 4.1 mm−1

ρH− = 7.3 mm−1

0.0

0.1

0.2

0.3

ρ
S
+

(µ
m
−

1
)

0.0

0.1

0.2

0.3

ρ
S
0

(µ
m
−

1
)

0.0

0.2

0.4

0.6

ρ
S
−

(µ
m
−

1
)15 20

z (µm)

0.0

0.5

1.0

ρ
(µ

m
−

1
)

ρS+

ρS0

ρS−
ρH+

ρH0

ρH−

t = 1 ms

Figure 6.13: Scenario II results with the mean-auxiliary-trajectories hidden-variable semiclassical model (Section 6.6.2),
modified to use Gaussian-projection based decoherence rates, compared to the Schrödinger wave equation. All subplots
as described in Figure 6.9. (a) Populations after the first region of coupling are correct, but are clearly not correct after
the second region of coupling. (b) We see that the cause of this is decoherence that is much too fast decoherence, with
population of states other than that selected by the hidden variable decaying away at a rate as fast or faster than that at which
it appears, leading to symmetrical profiles in population around the coupling regions. Of course, since this plot is comparing
the state vector’s local populations to those of the exact wavefunction along specific trajectories, and the decoherence model
for this simulation is one based on projecting onto Gaussians rather than Dirac deltas centred exactly on the trajectory, we
should not expect them to exactly agree (for that we would need to compare to projections of the exact wavefunctions onto
Gaussians). However the disagreement is stark enough to make our point despite this. (c) As with the other results with
poor modelling of decoherence, the trajectories are correct but the populations are not.

194 chapter 6. hidden variables for semiclassical models with state-dependent forces

(a)

0.0 0.5 1.0 1.5 2.0 2.5

t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
NS+

NS0

NS−

NH+

NH0

NH−

(b)

0.6 0.8 1.0

0.0

0.5

1.0

ÑH+

ÑH0

ÑH−

ÑS+

ÑS0

ÑS−
0.6 0.8 1.0

0.0

0.5

1.0

0.6 0.8 1.0

t (ms)

0.0

0.5

1.0

(c)

−20 0 20

z (µm)

0.0

0.5

1.0

1.5

2.0

2.5
t

(m
s)

ρH+ = 4.4 mm−1

ρH0 = 4.1 mm−1

ρH− = 7.3 mm−1

0.0

0.1

0.2

0.3

ρ
S
+

(µ
m
−

1
)

0.0

0.1

0.2

0.3

ρ
S
0

(µ
m
−

1
)

0.0

0.2

0.4

0.6

ρ
S
−

(µ
m
−

1
)15 20

z (µm)

0.0

0.5

1.0

ρ
(µ

m
−

1
)

ρS+

ρS0

ρS−
ρH+

ρH0

ρH−

t = 1 ms

Figure 6.14: Scenario II results with Gaussian-projection based decoherence under the assumption of zero relative wavenum-
ber between the Gaussians being projected onto each other when computing the decoherence rate. This decoherence rate
γmmij |kij=0(t) is used with the mean-auxiliary-trajectories hidden-variable semiclassical model (Section 6.6.2), and the results
compared to the Schrödinger wave equation. All subplots as described in Figure 6.9. (a) State populations are in much closer
agreement with the Schrödinger wave equation results than when we did not set the relative wavenumber of the Gaussians
to zero (Figure 6.13). However, they are still not as accurate as our Dirac delta based decoherence model (Figure 6.12).
(b) As with Figure 6.13, we should not expect the local Schrödinger wave equation populations along the trajectories of
the semiclassical atoms to agree with the state populations. However, for the three semiclassical atoms plotted (chosen as
their trajectories were closest to the centre of the Gaussians and their transitions closest to the centre of the first region
of coupling), they appear to agree quite well, including immediately after the second region of coupling. This may be a
coincidence, or perhaps population transfers for atoms near the centre of the Gaussian are computed accurately with this
decoherence model, but less accurately for atoms on other trajectories. (c). As usual, the trajectories are correct. We can see
the minor error in populations in the inset, and it does not appear that the populations are more accurate in the centre as we
just speculated. So any region of high accuracy in population transfer must be small enough to be hidden within the bins of
the histogram, and is therefore not particularly of interest.

6.8. discussion and conclusion 195

a projection of the multi-component wavefunction onto a Dirac delta—rather than a
Gaussian wavepacket—equivalent to evaluating the wavefunction at a specific point in
space following a classical trajectory over time (Section 6.5.6). The total multi-component
wavefunction is still modelled as a collection of Gaussian wavepackets following classical
trajectories. This is a more natural way to obtain state vectors that are statistically repre-
sentative of the underlying multi-component wavefunctions we are approximating. As
this is not based on wavepacket overlaps integrals, population in a state with a different
phase gradient is not treated as having vanished merely because it has an inhomogeneous
phase—instead we obtain some population, and some (perhaps rapidly varying) phase.

The above solution to the velocity separation problem, along with my method of
averaging auxiliary trajectories in order to model only one trajectory per internal state
of the atom, are modest improvements over similar methods such as that by Shenvi et
al. [175]. The decoherence rate that results when Shenvi et al. remove velocity separation
from their decoherence calculation are still based on the overlap of two Gaussians, and is
therefore still a kind of average over the entire wavepacket. The real part of the resulting
decoherence rate is different from that presented here, based onDirac deltas, by a factor of
two, and lacks an imaginary part (velocity separation inmymodel still causes a phase shift).
As I have argued, using the value at the centre of the wavepacket is more natural than
averaging, as this gives you something closer to a value the wavefunction actually has at
some point in space, and this is borne out by the simulation results in the previous section.
This improvement is particularly relevant to cold-atom physics, as the velocity-separation
problem only rears its head for large wavepackets, and thus low temperatures.

Schrödinger theory has not been applied to surface-hopping prior to this work, and I
have shown in the results section of this chapter that it gives good results. However, as
discussed in Section 6.4.1, it is considerably expensive to compute transition probabilities
from, though it can take as input arbitrary unitaries, allowing one to compute transition
probabilities consistent with quantum evolution over arbitrary time intervals, rather than
integrating infinitesimal transition probabilities over a finite time interval as with Tully’s
fewest-switches.

The fact that Tully’s fewest-switches algorithm gives smaller transition probabilities
than Schrödinger theory (even though both are consistent with the quantum probabili-
ties) makes it more desirable for use in a surface-hopping/hidden-variable semiclassical
model. This is because every transition the hidden variable of a semiclassical atom makes
is an opportunity for the atom to spend some time subject to a different potential. Even
if the probability of the atom ending up in the right state is correct, the more potential
surfaces it visits on its way there, the larger the variance in the integrated force it experi-
enced will be, and hence the larger the variance in its final trajectory. A larger number of
transitions also implies a larger variance in the number of atoms in each state (as given by
their hidden variable), even though the expectation value might agree with the quantum
populations. A ‘fewest-switches’ algorithm is therefore likely to be the most accurate
in this sense of reduced statistical variation. One final advantage of fewest hops in the
context of my mean-auxiliary-trajectories method is that it means the algorithm will not
discard as many auxiliary trajectories upon switching to them, resulting in possibly more
accurate decoherence.

Although the core idea of using a stochastically evolving variable to choose which
classical force to subject a semiclassical atom to wasn’t original, in rediscovering it I have
identified that hidden-variable theories and hopping algorithms are in fact the same thing.
With the ideas from the surface-hopping literature that my method previously lacked,
and with my own improvements, the method has applications to a range of problems in
cold atom physics, in simulating evaporative cooling, laser cooling, and other phenomena
in cold atom physics whenever thermal atoms are subject to state-dependent forces.

References

[1] A. Einstein. Quantentheorie des einatomigen idealen Gases. Sitzungsberichte der
Preussischen Akademie der Wissenschaften 3 (1925). [p 1]

[2] S. N. Bose. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik A
Hadrons and Nuclei 26, 178 (1924). doi: 10.1007/BF01327326. [p 1]

[3] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell.
Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor. Science 269,
198 (1995). doi: 10.1126/science.269.5221.198. [pp 1 and 7]

[4] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. Bose–Einstein Condensation in a Gas of Sodium Atoms.
Physical Review Letters 75, 3969 (1995). doi: 10.1103/PhysRevLett.75.3969.
[p 1]

[5] G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio.
Bose–Einstein Condensation of Potassium Atoms by Sympathetic Cooling. Science
294, 1320 (2001). doi: 10.1126/science.1066687. [p 1]

[6] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose–Einstein Condensation of
Lithium: Observation of Limited Condensate Number. Physical Review Letters 78,
985 (1997). doi: 10.1103/PhysRevLett.78.985. [p 1]

[7] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm. Bose–Einstein
Condensation of Cesium. Science 299, 232 (2003). doi: 10.1126/science.1079699.
[p 1]

[8] N. P. Robins, P. A. Altin, J. E. Debs, and J. D. Close. Atom lasers: Production,
properties and prospects for precision inertial measurement. Physics Reports 529,
265 (2013). doi: 10.1016/j.physrep.2013.03.006. [p 1]

[9] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard. Optics and interferometry
with atoms and molecules. Rev. Mod. Phys. 81, 1051 (2009).
doi: 10.1103/RevModPhys.81.1051. [p 1]

[10] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien.
Quantum computers. Nature 464, 45 (2010). doi: 10.1038/nature08812. [p 1]

[11] A. Negretti, P. Treutlein, and T. Calarco. Quantum computing implementations
with neutral particles. Quantum Information Processing 10, 721 (2011).
doi: 10.1007/s11128-011-0291-5. [p 1]

197

http://dx.doi.org/10.1007/BF01327326
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1126/science.1066687
http://dx.doi.org/10.1103/PhysRevLett.78.985
http://dx.doi.org/10.1126/science.1079699
http://dx.doi.org/10.1016/j.physrep.2013.03.006
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1007/s11128-011-0291-5

198 references

[12] I. Bloch, J. Dalibard, and S. Nascimbène. Quantum simulations with ultracold
quantum gases. Nature Physics 8, 267 (2012). doi: 10.1038/nphys2259. [p 1]

[13] R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nature Physics 8,
277 (2012). doi: 10.1038/nphys2252. [p 1]

[14] N. P. Proukakis. Beyond Gross-Pitaevskii Mean-Field Theory. In P. G. Kevrekidis,
D. J. Frantzeskakis, and R. Carretero-González (editors), Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment, Atomic,
Optical, and Plasma Physics, pages 353–373. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008). doi: 10.1007/978-3-540-73591-5_18. [pp 1 and 9]

[15] A. A. Norrie, R. J. Ballagh, and C. W. Gardiner. Quantum turbulence and
correlations in Bose-Einstein condensate collisions. Physical Review A 73, 043617
(2006). doi: 10.1103/PhysRevA.73.043617. [p 1]

[16] P. T. Starkey, C. J. Billington, S. P. Johnstone, M. Jasperse, K. Helmerson, L. D.
Turner, and R. P. Anderson. A scripted control system for autonomous
hardware-timed experiments. Review of Scientific Instruments 84, 085111 (2013).
doi: 10.1063/1.4817213. [pp 2, 3, 88, and 100]

[17] W. F. Vinen. The Detection of Single Quanta of Circulation in Liquid Helium II.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences 260, 218 (1961). doi: 10.1098/rspa.1961.0029. [p 2]

[18] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and
E. A. Cornell. Vortices in a Bose–Einstein Condensate. Physical Review Letters 83,
2498 (1999). doi: 10.1103/PhysRevLett.83.2498. [p 2]

[19] C. F. Barenghi, R. J. Donnelly, and W. F. Vinen. Quantized Vortex Dynamics and
Superfluid Turbulence. Springer (2001). [p 2]

[20] W. Gerlach and O. Stern. Der experimentelle Nachweis der Richtungsquantelung
im Magnetfeld. Zeitschrift für Physik 9, 349 (1922). doi: 10.1007/BF01326983.
[pp 3, 145, and 148]

[21] J. C. Tully. Molecular dynamics with electronic transitions. The Journal of
Chemical Physics 93, 1061 (1990). doi: 10.1063/1.459170. [pp 3, 146, 147, 154,
158, 165, and 171]

[22] S. Aaronson. Quantum computing and hidden variables. Phys. Rev. A 71, 032325
(2005). doi: 10.1103/PhysRevA.71.032325. [pp 3, 145, 151, 152, 153, and 158]

[23] S. F. Owen and D. S. Hall. Fast line-based experiment timing system for LabVIEW.
Review of Scientific Instruments 75, 259 (2003). doi: 10.1063/1.1630833. [pp 4
and 106]

[24] D. J. Wineland, R. E. Drullinger, and F. L. Walls. Radiation-Pressure Cooling of
Bound Resonant Absorbers. Physical Review Letters 40, 1639 (1978).
doi: 10.1103/PhysRevLett.40.1639. [p 5]

[25] H. J. Metcalf and P. V. der Straten. Laser Cooling and Trapping. Springer (1999).
[pp 6, 10, 19, 137, 138, and 139]

[26] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard. Trapping of
Neutral Sodium Atoms with Radiation Pressure. Physical Review Letters 59, 2631
(1987). doi: 10.1103/PhysRevLett.59.2631. [p 6]

http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1007/978-3-540-73591-5_18
http://dx.doi.org/10.1103/PhysRevA.73.043617
http://dx.doi.org/10.1063/1.4817213
http://dx.doi.org/10.1098/rspa.1961.0029
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1007/BF01326983
http://dx.doi.org/10.1063/1.459170
http://dx.doi.org/10.1103/PhysRevA.71.032325
http://dx.doi.org/10.1063/1.1630833
http://dx.doi.org/10.1103/PhysRevLett.40.1639
http://dx.doi.org/10.1103/PhysRevLett.59.2631

references 199

[27] P. Zeeman. On the influence of magnetism on the nature of the light emitted by a
substance. Philosophical Magazine Series 5 43, 226 (1897). [pp 6 and 14]

[28] D. M. Brink and C. V. Sukumar. Majorana spin-flip transitions in a magnetic trap.
Physical Review A 74, 035401 (2006). doi: 10.1103/PhysRevA.74.035401. [pp 6
and 7]

[29] A. Ashkin. Acceleration and Trapping of Particles by Radiation Pressure. Physical
Review Letters 24, 156 (1970). doi: 10.1103/PhysRevLett.24.156. [p 7]

[30] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by
polarization gradients: Simple theoretical models. JOSA B 6, 2023 (1989).
doi: 10.1364/JOSAB.6.002023. [pp 7 and 28]

[31] P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu. Optical molasses and multilevel atoms:
Theory. Journal of the Optical Society of America B 6, 2058 (1989).
doi: 10.1364/JOSAB.6.002058. [p 7]

[32] P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I.
Westbrook. Optical molasses. Journal of the Optical Society of America B 6, 2084
(1989). doi: 10.1364/JOSAB.6.002084. [p 7]

[33] C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati. Laser
Cooling of Cesium Atoms Below 3 μK. Europhysics Letters (EPL) 12, 683 (1990).
doi: 10.1209/0295-5075/12/8/003. [p 7]

[34] H. F. Hess. Evaporative cooling of magnetically trapped and compressed
spin-polarized hydrogen. Physical Review B 34, 3476 (1986).
doi: 10.1103/PhysRevB.34.3476. [p 7]

[35] Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto. Rapid
production of 87Rb Bose–Einstein condensates in a combined magnetic and optical
potential. Physical Review A 79, 063631 (2009).
doi: 10.1103/PhysRevA.79.063631. [p 8]

[36] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga. Feshbach resonances in ultracold
gases. Reviews of Modern Physics 82, 1225 (2010).
doi: 10.1103/RevModPhys.82.1225. [p 8]

[37] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof. Threshold and resonance phenomena
in ultracold ground-state collisions. Physical Review A 47, 4114 (1993).
doi: 10.1103/PhysRevA.47.4114. [p 8]

[38] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W.
Ketterle. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature
392, 151 (1998). doi: 10.1038/32354. [p 8]

[39] G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, and M. Inguscio.
Double Species Bose–Einstein Condensate with Tunable Interspecies Interactions.
Physical Review Letters 100, 210402 (2008).
doi: 10.1103/PhysRevLett.100.210402. [pp 9, 127, and 137]

[40] E. Madelung. Quantentheorie in hydrodynamischer Form. Zeitschrift für Physik A
Hadrons and Nuclei 40, 322 (1927). doi: 10.1007/BF01400372. [p 9]

[41] D. A. Steck. Rubidium 87 D Line Data, (2015). (revision 2.1.4)
http://steck.us/alkalidata. [pp 10, 11, 14, 15, 18, 23, 24, and 141]

http://dx.doi.org/10.1103/PhysRevA.74.035401
http://dx.doi.org/10.1103/PhysRevLett.24.156
http://dx.doi.org/10.1364/JOSAB.6.002023
http://dx.doi.org/10.1364/JOSAB.6.002058
http://dx.doi.org/10.1364/JOSAB.6.002084
http://dx.doi.org/10.1209/0295-5075/12/8/003
http://dx.doi.org/10.1103/PhysRevB.34.3476
http://dx.doi.org/10.1103/PhysRevA.79.063631
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevA.47.4114
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://dx.doi.org/10.1007/BF01400372
http://steck.us/alkalidata

200 references

[42] D. A. Steck. Quantum and Atom Optics, (2017). (revision 0.12.0)
http://steck.us/teaching. [pp 10, 19, 20, 22, and 24]

[43] B. E. King. Angular Momentum Coupling and Rabi Frequencies for Simple Atomic
Transitions. arXiv:0804.4528 [physics] (2008). arXiv: 0804.4528. [pp 10
and 20]

[44] P. M. Farrell and W. R. MacGillivray. On the consistency of Rabi frequency
calculations. Journal of Physics A: Mathematical and General 28, 209 (1995).
doi: 10.1088/0305-4470/28/1/023. [p 10]

[45] E. Arimondo, M. Inguscio, and P. Violino. Experimental determinations of the
hyperfine structure in the alkali atoms. Rev. Mod. Phys. 49, 31 (1977).
doi: 10.1103/RevModPhys.49.31. [p 11]

[46] J. J. Sakurai. Modern Quantum Mechanics. Pearson (1994). [p 12]

[47] G. Breit and I. I. Rabi. Measurement of Nuclear Spin. Physical Review 38, 2082
(1931). doi: 10.1103/PhysRev.38.2082.2. [p 19]

[48] L. M. Bennie, P. B. Wigley, S. S. Szigeti, M. Jasperse, J. J. Hope, L. D. Turner, and
R. P. Anderson. Precise wavefunction engineering with magnetic resonance.
arXiv:1412.6854 (2014). arXiv: 1412.6854. [p 27]

[49] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R.
Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle.
Realization of Bose-Einstein Condensates in Lower Dimensions. Physical Review
Letters 87, 130402 (2001). doi: 10.1103/PhysRevLett.87.130402. [p 28]

[50] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer.
Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449,
324 (2007). doi: 10.1038/nature06149. [p 28]

[51] B. Rauer, P. Grišins, I. E. Mazets, T. Schweigler, W. Rohringer, R. Geiger, T.
Langen, and J. Schmiedmayer. Cooling of a one-dimensional Bose gas. Physical
Review Letters 116, 030402 (2016). doi: 10.1103/PhysRevLett.116.030402.
[p 28]

[52] P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J.
Metcalf. Observation of Atoms Laser Cooled below the Doppler Limit. Physical
Review Letters 61, 169 (1988). doi: 10.1103/PhysRevLett.61.169. [p 28]

[53] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with Rydberg
atoms. Reviews of Modern Physics 82, 2313 (2010).
doi: 10.1103/RevModPhys.82.2313. [p 28]

[54] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and
M. Saffman. Observation of Rydberg blockade between two atoms. Nature Physics 5,
110 (2009). doi: 10.1038/nphys1178. [p 28]

[55] B. B. Blinov, J. R. N. Kohn, M. J. Madsen, P. Maunz, D. L. Moehring, and C.
Monroe. Broadband laser cooling of trapped atoms with ultrafast pulses. JOSA B
23, 1170 (2006). doi: 10.1364/JOSAB.23.001170. [p 28]

[56] A. J. McCulloch, D. V. Sheludko, M. Junker, and R. E. Scholten. High-coherence
picosecond electron bunches from cold atoms. Nature Communications 4, 1692
(2013). doi: 10.1038/ncomms2699. [p 28]

http://steck.us/teaching
http://arxiv.org/abs/0804.4528
http://dx.doi.org/10.1088/0305-4470/28/1/023
http://dx.doi.org/10.1103/RevModPhys.49.31
http://dx.doi.org/10.1103/PhysRev.38.2082.2
http://arxiv.org/abs/1412.6854
http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1103/PhysRevLett.116.030402
http://dx.doi.org/10.1103/PhysRevLett.61.169
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1038/nphys1178
http://dx.doi.org/10.1364/JOSAB.23.001170
http://dx.doi.org/10.1038/ncomms2699

references 201

[57] T. Brabec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics.
Reviews of Modern Physics 72, 545 (2000). doi: 10.1103/RevModPhys.72.545.
[p 28]

[58] C. Brezinski. Extrapolation algorithms and Padé approximations: A historical
survey. Applied Numerical Mathematics 20, 299 (1996).
doi: 10.1016/0168-9274(95)00110-7. [p 30]

[59] C. Moler and C. Van Loan. Nineteen Dubious Ways to Compute the Exponential of
a Matrix, Twenty-Five Years Later. SIAM Review 45, 3 (2003).
doi: 10.1137/S00361445024180. [pp 30 and 31]

[60] J. J. Sakurai. Modern quantum mechanics. Addison-Wesley Pub. Co, Reading,
Mass (1994). [pp 31 and 77]

[61] D. J. Tannor. Introduction to Quantum Mechanics: A Time-Dependent Perspective.
University Science Books (2007). [pp 33, 36, 55, 62, and 85]

[62] S. Weinzierl. Introduction to Monte Carlo methods. arXiv:hep-ph/0006269
(2000). arXiv: hep-ph/0006269. [p 34]

[63] F. J. Dyson. The S Matrix in Quantum Electrodynamics. Physical Review 75, 1736
(1949). doi: 10.1103/PhysRev.75.1736. [p 34]

[64] V. Kaplunovsky. On Perturbation Theory, Dyson Series, and Feynman Diagrams,
(2016). Online lecture notes
http://bolvan.ph.utexas.edu/~vadim/Classes/2016f/dyson.pdf.
[p 34]

[65] M. Suzuki. Quantum Monte Carlo Methods in Condensed Matter Physics. World
Scientific (1993). [p 38]

[66] B. I. Schneider and L. A. Collins. The discrete variable method for the solution of
the time-dependent Schrödinger equation. Journal of Non-Crystalline Solids 351,
1551 (2005). doi: 10.1016/j.jnoncrysol.2005.03.028. [pp 38, 62, 63, 65, and 67]

[67] M. Suzuki. General Decomposition Theory of Ordered Exponentials. Proceedings
of the Japan Academy, Series B 69, 161 (1993). doi: 10.2183/pjab.69.161. [p 38]

[68] B. I. Schneider, L. A. Collins, and S. X. Hu. Parallel solver for the time-dependent
linear and nonlinear Schrödinger equation. Physical Review E 73, 036708 (2006).
doi: 10.1103/PhysRevE.73.036708. [pp 42, 62, 65, 72, 81, and 85]

[69] J. Javanainen and J. Ruostekoski. Symbolic calculation in development of
algorithms: Split-step methods for the Gross–Pitaevskii equation. Journal of Physics
A: Mathematical and General 39, L179 (2006).
doi: 10.1088/0305-4470/39/12/L02. [p 44]

[70] R. D. Skeel, G. Zhang, and T. Schlick. A family of symplectic integrators: stability,
accuracy, and molecular dynamics applications. SIAM J. Sci. Comput 18, 203
(1997). [p 45]

[71] G. Dahlquist and Å. Björck. Numerical Methods. Dover Books on Mathematics.
Dover Publications (2003). LCCB: 2002072867. [p 45]

[72] K. Mølmer and Y. Castin. Monte carlo wavefunctions in quantum optics.
Quantum and Semiclassical Optics: Journal of the European Optical Society Part
B 8, 49 (1996). [p 45]

http://dx.doi.org/10.1103/RevModPhys.72.545
http://dx.doi.org/10.1016/0168-9274(95)00110-7
http://dx.doi.org/10.1137/S00361445024180
http://arxiv.org/abs/hep-ph/0006269
http://dx.doi.org/10.1103/PhysRev.75.1736
http://bolvan.ph.utexas.edu/~vadim/Classes/2016f/dyson.pdf
http://dx.doi.org/10.1016/j.jnoncrysol.2005.03.028
http://dx.doi.org/10.2183/pjab.69.161
http://dx.doi.org/10.1103/PhysRevE.73.036708
http://dx.doi.org/10.1088/0305-4470/39/12/L02

202 references

[73] M. B. Plenio and P. L. Knight. The quantum-jump approach to dissipative
dynamics in quantum optics. Rev. Mod. Phys. 70, 101 (1998).
doi: 10.1103/RevModPhys.70.101. [p 45]

[74] A. Bruckner, J. Bruckner, and B. Thomson. Real Analysis. Prentice-Hall (1997).
LCCB: 96022123. [p 53]

[75] H. Levi. A geometric construction of the Dirichlet kernel applications. Transactions
of the New York Academy of Sciences 36, 640 (1974).
doi: 10.1111/j.2164-0947.1974.tb03023.x. [p 53]

[76] S. A. Orszag. Comparison of pseudospectral and spectral approximation. Studies in
Applied Mathematics 51, 253 (1972). doi: 10.1002/sapm1972513253. [p 55]

[77] N. Phillips. An example of non-linear computational instability. In The Atmosphere
and the Sea in Motion, pages 501–504. Rockefeller Univ. Press (1959). [p 56]

[78] B. Fornberg. The pseudospectral method: Comparisons with finite differences for the
elastic wave equation. GEOPHYSICS 52, 483 (1987). doi: 10.1190/1.1442319.
[pp 58, 59, and 68]

[79] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids.
Mathematics of Computation 51, 699 (1988).
doi: 10.1090/S0025-5718-1988-0935077-0. [pp 59, 61, and 72]

[80] W. Press. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Press (2007). LCCB: 89015841. [p 60]

[81] A. Gupta and V. Kumar. The scalability of fft on parallel computers. IEEE
Transactions on Parallel and Distributed Systems 4, 922 (1993). [pp 60 and 81]

[82] J.-P. Berrut and L. N. Trefethen. Barycentric lagrange interpolation. SIAM Review
46, 501 (2004). doi: 10.1137/S0036144502417715. [p 63]

[83] R. M. Caplan and R. Carretero-González. Numerical stability of explicit
runge-kutta finite difference schemes for the nonlinear schrödinger equation. CoRR
abs/1107.4810 (2011). [p 65]

[84] B. M. C. Davies. Vortex dynamics in Bose–Einstein condensates. PhD thesis,
University of Otago, Dunedin, New Zealand (2000). [pp 66 and 78]

[85] L. Lehtovaara, J. Toivanen, and J. Eloranta. Solution of time-independent
Schrödinger equation by the imaginary time propagation method. J. Comput. Phys.
221, 148 (2007). doi: http://dx.doi.org/10.1016/j.jcp.2006.06.006. [p 72]

[86] D. M. Young. Iterative Methods for Solving Partial Difference Equations of
Elliptical Type. PhD thesis, Harvard University (1950). [p 74]

[87] D. Ahn and S. L. Chuang. Variational calculations of subbands in a quantum well
with uniform electric field: Gram–Schmidt orthogonalization approach. Applied
Physics Letters 49, 1450 (1986). doi: 10.1063/1.97299. [p 76]

[88] W. Press. The art of scientific computing. Cambridge University Press (1992).
[p 78]

[89] C. Pethick and H. Smith. Bose–Einstein condensation in dilute gases. Cambridge
University Press (2002). [p 79]

http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1111/j.2164-0947.1974.tb03023.x
http://dx.doi.org/10.1002/sapm1972513253
http://dx.doi.org/10.1190/1.1442319
http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0
http://dx.doi.org/10.1137/S0036144502417715
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2006.06.006
http://dx.doi.org/10.1063/1.97299

references 203

[90] M. L. Chiofalo, S. Succi, and M. P. Tosi. Ground state of trapped interacting
Bose–Einstein condensates by an explicit imaginary-time algorithm. Phys. Rev. E
62, 7438 (2000). doi: 10.1103/PhysRevE.62.7438. [pp 80 and 84]

[91] G. M. Muslu and H. A. Erbay. Higher-order split-step Fourier schemes for the
generalized nonlinear Schrödinger equation. Mathematics and Computers in
Simulation 7, 581 (2005). doi: 10.1016/j.matcom.2004.08.002. [p 80]

[92] M. Heroux, P. Raghavan, and H. Simon. Parallel processing for scientific computing.
Society for Industrial and Applied Mathematics, Philadelphia, PA (2006). [p 81]

[93] P. Gulshani and D. J. Rowe. Quantum mechanics in rotating frames. I. The
impossibility of rigid flow. Canadian Journal of Physics 56, 468 (1978).
doi: 10.1139/p78-060. [p 83]

[94] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J. Verhaar.
Interisotope determination of ultracold rubidium interactions from three
high-precision experiments. Phys. Rev. Lett. 88, 093201 (2002).
doi: 10.1103/PhysRevLett.88.093201. [p 83]

[95] Python Software Foundation. Python language reference, version 3.7, (2018).
http://www.python.org. [p 87]

[96] National Instruments. Laboratory Virtual Instrument Engineering Workbench
(LabVIEW), (2018). http://www.ni.com/labview. [p 87]

[97] N. P. Robins, P. A. Altin, J. E. Debs, and J. D. Close. Atom lasers: Production,
properties and prospects for precision inertial measurement. Physics Reports 529,
265 (2013). doi: 10.1016/j.physrep.2013.03.006. [p 87]

[98] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard. Optics and interferometry
with atoms and molecules. Reviews of Modern Physics 81, 1051 (2009).
doi: 10.1103/RevModPhys.81.1051. [p 87]

[99] A. Negretti, P. Treutlein, and T. Calarco. Quantum computing implementations
with neutral particles. Quantum Information Processing 10, 721 (2011).
doi: 10.1007/s11128-011-0291-5. [p 87]

[100] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien.
Quantum computers. Nature 464, 45 (2010). doi: 10.1038/nature08812. [p 87]

[101] I. Bloch, J. Dalibard, and S. Nascimbène. Quantum simulations with ultracold
quantum gases. Nature Physics 8, 267 (2012). doi: 10.1038/nphys2259. [p 87]

[102] R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nature Physics 8,
277 (2012). doi: 10.1038/nphys2252. [p 87]

[103] P. Starkey. A software framework for control and automation of precisely timed
experiments. PhD thesis, Monash University (2018). (in preparation). [pp 88
and 97]

[104] The HDF Group. Hierarchical Data Format, version 5, (1997–2018).
http://www.hdfgroup.org/HDF5/. [p 89]

[105] C. Klempt, T. van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arlt.
Ultraviolet light-induced atom desorption for large rubidium and potassium
magneto-optical traps. Physical Review A 73, 013410 (2006).
doi: 10.1103/PhysRevA.73.013410. [p 92]

http://dx.doi.org/10.1103/PhysRevE.62.7438
http://dx.doi.org/10.1016/j.matcom.2004.08.002
http://dx.doi.org/10.1139/p78-060
http://dx.doi.org/10.1103/PhysRevLett.88.093201
http://www.python.org
http://www.ni.com/labview
http://dx.doi.org/10.1016/j.physrep.2013.03.006
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1007/s11128-011-0291-5
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2252
 http://www.hdfgroup.org/HDF5/
http://dx.doi.org/10.1103/PhysRevA.73.013410

204 references

[106] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science &
Engineering 9, 90 (2007). doi: 10.1109/MCSE.2007.55. [p 93]

[107] L. Campagnola. Pyqtgraph, version 0.10.0, (2016).
http://www.pyqtgraph.org. [pp 93 and 106]

[108] W. McKinney. Data Structures for Statistical Computing in Python. In S. van der
Walt and J. Millman (editors), Proceedings of the 9th Python in Science Conference,
pages 51–56 (2010). [pp 93 and 99]

[109] F. Perez and B. E. Granger. IPython: A System for Interactive Scientific Computing.
Computing in Science Engineering 9, 21 (2007). doi: 10.1109/MCSE.2007.53.
[p 93]

[110] S. P. Johnstone, A. J. Groszek, P. T. Starkey, C. J. Billington, T. P. Simula, and K.
Helmerson. Order from chaos: Observation of large-scale flow from turbulence in a
two-dimensional superfluid. arXiv:1801.06952 [cond-mat, physics:physics] (2018).
arXiv: 1801.06952. [pp 95 and 121]

[111] P. Gill and P. Baird. An Optical Lattice Clock with Neutral Strontium. PhD thesis,
University of Oxford (2016). [p 97]

[112] M. Gancarz. The UNIX Philosophy. Digital Press, Newton, MA, USA (1995).
[p 97]

[113] P. B. Wigley, P. J. Everitt, A. van den Hengel, J. W. Bastian, M. A. Sooriyabandara,
G. D. McDonald, K. S. Hardman, C. D. Quinlivan, P. Manju, C. C. N. Kuhn,
I. R. Petersen, A. N. Luiten, J. J. Hope, N. P. Robins, and M. R. Hush. Fast
machine-learning online optimization of ultra-cold-atom experiments. Scientific
Reports 6, 25890 (2016). doi: 10.1038/srep25890. [p 98]

[114] R. Speirs, (2018). Private Communication. [p 98]

[115] T. E. Oliphant. Guide to NumPy. CreateSpace Independent Publishing Platform,
USA, 2nd edition (2015). [p 99]

[116] Brian E. Granger and contributors. Pyzmq, version 17.1.0, (2018).
http://pyzmq.readthedocs.io. [p 99]

[117] Andrew Collette and contributors. H5py, version 2.8.0, (2018).
http://www.h5py.org. [p 99]

[118] P. Hintjens. ZeroMQ: The Guide, (2010). http://zguide.zeromq.org.
[p 99]

[119] Zachtronics Industries. SpaceChem, (2011).
http://www.zachtronics.com/spacechem. [p 99]

[120] C. J. Billington. Zprocess, version 2.4.12, (2018).
http://bitbucket.org/cbillington/zprocess. [pp 99 and 106]

[121] Monash University School of Physics and Astronomy. Measurement of β-ray
spectra, (2016). Undergraduate laboratory materials. [p 100]

[122] The Qt Company. Qt, version 5.11, (2018). http://www.qt.io. [p 100]

[123] P. T. Starkey and C. J. Billington. Qtutils, version 2.1.0, (2018).
http://bitbucket.org/philipstarkey/qtutils. [pp 100, 106, and 108]

http://dx.doi.org/10.1109/MCSE.2007.55
http://www.pyqtgraph.org
http://dx.doi.org/10.1109/MCSE.2007.53
http://arxiv.org/abs/1801.06952
http://dx.doi.org/10.1038/srep25890
http://pyzmq.readthedocs.io
http://www.h5py.org
http://zguide.zeromq.org
http://www.zachtronics.com/spacechem
http://bitbucket.org/cbillington/zprocess
http://www.qt.io
http://bitbucket.org/philipstarkey/qtutils

references 205

[124] The GNOME Project. GTK+, version 3, (2018). http://gtk.org. [p 100]

[125] Riverbank Computing. PyQt, version 5.10.1, (2018).
http://riverbankcomputing.com. [p 100]

[126] The GNOME Project. GNOME 3.28.2, (2018). http://gnome.org. [p 100]

[127] Continuum Analytics. Anaconda Distribution, version 5.1, (2018).
http://anaconda.org. [p 101]

[128] Torsten Bronger, Gregor Thalhammer, Florian Bauer, and Hernan E. Grecco.
Pyvisa, version 1.9.0, (2018). http://pyvisa.readthedocs.io. [p 104]

[129] Peter Johnson, FRC Team 294. Pynivision, version 2015.0.0, (2015).
https://github.com/robotpy/pynivision. [p 104]

[130] Monash Univeristy. The labscript suite, (2018). http://labscriptsuite.org.
[p 106]

[131] Tom Preston-Werner. Semantic Versioning, version 2.0.0, (2018).
http://semver.org. [p 108]

[132] G. P. Bewley. The generation of particles to observe quantized vortex dynamics in
superfluid helium. Cryogenics 49, 549 (2009).
doi: 10.1016/j.cryogenics.2008.10.018. [p 119]

[133] G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan. Superfluid Helium:
Visualization of quantized vortices. Nature 441, 588 (2006).
doi: 10.1038/441588a. [p 119]

[134] R. E. Packard. Vortex photography in liquid helium. Physica B+C 109–110, 1474
(1982). doi: 10.1016/0378-4363(82)90171-1. [p 119]

[135] W. S. Bakr, J. I. Gillen, A. Peng, S. F|[ouml]|lling, and M. Greiner. A quantum gas
microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature
462, 74 (2009). doi: 10.1038/nature08482. [p 119]

[136] B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W. Clark,
and E. A. Cornell. Watching Dark Solitons Decay into Vortex Rings in a
Bose-Einstein Condensate. Physical Review Letters 86, 2926 (2001).
doi: 10.1103/PhysRevLett.86.2926. [p 119]

[137] V. Bretin, P. Rosenbusch, F. Chevy, G. V. Shlyapnikov, and J. Dalibard.
Quadrupole Oscillation of a Single-Vortex Bose-Einstein Condensate: Evidence for
Kelvin Modes. Physical Review Letters 90, 100403 (2003).
doi: 10.1103/PhysRevLett.90.100403. [p 119]

[138] M. Leadbeater, T. Winiecki, D. C. Samuels, C. F. Barenghi, and C. S. Adams.
Sound Emission due to Superfluid Vortex Reconnections. Physical Review Letters
86, 1410 (2001). doi: 10.1103/PhysRevLett.86.1410. [p 119]

[139] C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P.
Anderson. Spontaneous vortices in the formation of Bose-Einstein condensates.
Nature 455, 948 (2008). doi: 10.1038/nature07334. [p 120]

[140] D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin, and D. S. Hall.
Real-Time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose-Einstein
Condensate. Science 329, 1182 (2010). doi: 10.1126/science.1191224. [p 120]

http://gtk.org
http://riverbankcomputing.com
http://gnome.org
http://anaconda.org
http://pyvisa.readthedocs.io
https://github.com/robotpy/pynivision
http://labscriptsuite.org
http://semver.org
http://dx.doi.org/10.1016/j.cryogenics.2008.10.018
http://dx.doi.org/10.1038/441588a
http://dx.doi.org/10.1016/0378-4363(82)90171-1
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1103/PhysRevLett.86.2926
http://dx.doi.org/10.1103/PhysRevLett.90.100403
http://dx.doi.org/10.1103/PhysRevLett.86.1410
http://dx.doi.org/10.1038/nature07334
http://dx.doi.org/10.1126/science.1191224

206 references

[141] G. Ahlers. Trend: Turbulent convection. Physics 2 (2009). [p 120]

[142] C. Foias, O. Manley, R. Rosa, and R. Temam. Navier-Stokes Equations and
Turbulence. Cambridge University Press (2001). [p 120]

[143] S. W. Hawking. A Brief History of Time: From the Big Bang to Black Holes.
Bantam Books (1988). [p 120]

[144] S. Corrsin. Turbulent Flow. American Scientist 49, 300 (1961). [p 121]

[145] P. A. Davidson. Turbulence: An Introduction for Scientists and Engineers. Oxford
University Press (2004). [p 121]

[146] A. Kolmogorov. The Local Structure of Turbulence in Incompressible Viscous Fluid
for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady 30, 301 (1941).
[p 121]

[147] D. B. Spalding. Kolmogorov’s Two-Equation Model of Turbulence. Proceedings of
the Royal Society of London. Series A: Mathematical and Physical Sciences 434,
211 (1991). doi: 10.1098/rspa.1991.0089. [p 121]

[148] L. F. Richardson. Weather Prediction by Numerical Process. Cambridge University
Press (2007). (First published 1922). [p 121]

[149] M. Tsubota and M. Kobayashi. Energy Spectra of Quantum Turbulence. In
Progress in Low Temperature Physics: Quantum Turbulence, volume 16, pages 1–43.
Elsevier (2009). [p 121]

[150] W. F. Vinen. How is turbulent energy dissipated in a superfluid? Journal of Physics:
Condensed Matter 17, S3231 (2005). doi: 10.1088/0953-8984/17/45/006.
[p 121]

[151] L. Onsager. Statistical hydrodynamics. Il Nuovo Cimento (1943-1954) 6, 279
(1949). doi: 10.1007/BF02780991. [p 121]

[152] R. H. Kraichnan. Inertial Ranges in Two-Dimensional Turbulence. Physics of
Fluids 10, 1417 (1967). doi: doi:10.1063/1.1762301. [p 121]

[153] T. Simula, M. J. Davis, and K. Helmerson. Emergence of Order from Turbulence in
an Isolated Planar Superfluid. Physical Review Letters 113, 165302 (2014).
doi: 10.1103/PhysRevLett.113.165302. [p 121]

[154] A. J. Groszek, M. J. Davis, D. M. Paganin, K. Helmerson, and T. P. Simula. Vortex
Thermometry for Turbulent Two-Dimensional Fluids. Physical Review Letters 120,
034504 (2018). doi: 10.1103/PhysRevLett.120.034504. [p 121]

[155] G. Gauthier, M. T. Reeves, X. Yu, A. S. Bradley, M. Baker, T. A. Bell, H.
Rubinsztein-Dunlop, M. J. Davis, and T. W. Neely. Negative-Temperature Onsager
Vortex Clusters in a Quantum Fluid. arXiv:1801.06951 [cond-mat, physics:physics]
(2018). arXiv: 1801.06951. [p 121]

[156] A. J. Leggett. Superfluidity. Reviews of Modern Physics 71, S318 (1999).
doi: 10.1103/RevModPhys.71.S318. [p 122]

[157] A. J. Leggett. Quantum Liquids: Bose Condensation and Cooper Pairing in
Condensed-Matter Systems. Oxford University Press (2006). [p 123]

[158] C. J. Billington. Particle Velocimetry of Vortices in Bose-Einstein Condensates.
Honours thesis, Monash University (2010). [pp 123, 124, 125, and 126]

http://dx.doi.org/10.1098/rspa.1991.0089
http://dx.doi.org/10.1088/0953-8984/17/45/006
http://dx.doi.org/10.1007/BF02780991
http://dx.doi.org/doi:10.1063/1.1762301
http://dx.doi.org/10.1103/PhysRevLett.113.165302
http://dx.doi.org/10.1103/PhysRevLett.120.034504
http://arxiv.org/abs/1801.06951
http://dx.doi.org/10.1103/RevModPhys.71.S318

references 207

[159] R. Côté, A. Dalgarno, H. Wang, and W. C. Stwalley. Potassium scattering lengths
and prospects for Bose-Einstein condensation and sympathetic cooling. Physical
Review A 57, R4118 (1998). doi: 10.1103/PhysRevA.57.R4118. [p 127]

[160] M. Tsubota, K. Kasamatsu, and M. Ueda. Vortex lattice formation in a rotating
Bose-Einstein condensate. Physical Review A 65, 023603 (2002).
doi: 10.1103/PhysRevA.65.023603. [p 127]

[161] E. J. M. Madarassy and C. F. Barenghi. Vortex Dynamics in Trapped Bose-Einstein
Condensate. Journal of Low Temperature Physics 152, 122 (2008).
doi: 10.1007/s10909-008-9811-9. [p 127]

[162] B. H. Bransden, C. J. Joachain, and T. J. Plivier. Physics of Atoms and Molecules.
Prentice Hall (2003). [p 128]

[163] J. Stenger, S. Inouye, M. R. Andrews, H.-J. Miesner, D. M. Stamper-Kurn, and W.
Ketterle. Strongly Enhanced Inelastic Collisions in a Bose-Einstein Condensate near
Feshbach Resonances. Physical Review Letters 82, 2422 (1999).
doi: 10.1103/PhysRevLett.82.2422. [p 144]

[164] J. J. McClelland. Atom-optical properties of a standing-wave light field. JOSA B 12,
1761 (1995). doi: 10.1364/JOSAB.12.001761. [pp 145 and 147]

[165] H. Wallis. Quantum theory of atomic motion in laser light. Physics Reports 255,
203 (1995). doi: 10.1016/0370-1573(94)00090-P. [pp 145 and 147]

[166] C. S. Adams and E. Riis. Laser cooling and trapping of neutral atoms. Progress in
Quantum Electronics 21, 1 (1997). doi: 10.1016/S0079-6727(96)00006-7.
[pp 145 and 147]

[167] S. Stenholm. The semiclassical theory of laser cooling. Reviews of Modern Physics
58, 699 (1986). doi: 10.1103/RevModPhys.58.699. [pp 145 and 147]

[168] V. G. Minogin and V. S. Letokhov. Laser Light Pressure on Atoms. CRC Press
(1987). [pp 145 and 147]

[169] M. Genovese. Research on hidden variable theories: A review of recent progresses.
Physics Reports 413, 319 (2005). doi: 10.1016/j.physrep.2005.03.003. [p 145]

[170] J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1, 195
(1964). doi: 10.1103/PhysicsPhysiqueFizika.1.195. [p 145]

[171] M. Schlosshauer, J. Kofler, and A. Zeilinger. A Snapshot of Foundational Attitudes
Toward Quantum Mechanics. Studies in History and Philosophy of Science Part
B: Studies in History and Philosophy of Modern Physics 44, 222 (2013).
arXiv: 1301.1069, doi: 10.1016/j.shpsb.2013.04.004. [p 145]

[172] J. C. Tully. Mixed quantum-classical dynamics. Faraday Discuss. 110, 407 (1998).
doi: 10.1039/A801824C. [p 146]

[173] J. E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang, and N. Bellonzi.
Understanding the Surface Hopping View of Electronic Transitions and Decoherence.
Annual Review of Physical Chemistry 67, 387 (2016).
doi: 10.1146/annurev-physchem-040215-112245. [pp 146, 154, 158, 159, and 164]

[174] J. C. Tully and R. K. Preston. Trajectory Surface Hopping Approach to
Nonadiabatic Molecular Collisions: The Reaction of H+ with D2. The Journal of
Chemical Physics 55, 562 (1971). doi: 10.1063/1.1675788. [p 146]

http://dx.doi.org/10.1103/PhysRevA.57.R4118
http://dx.doi.org/10.1103/PhysRevA.65.023603
http://dx.doi.org/10.1007/s10909-008-9811-9
http://dx.doi.org/10.1103/PhysRevLett.82.2422
http://dx.doi.org/10.1364/JOSAB.12.001761
http://dx.doi.org/10.1016/0370-1573(94)00090-P
http://dx.doi.org/10.1016/S0079-6727(96)00006-7
http://dx.doi.org/10.1103/RevModPhys.58.699
http://dx.doi.org/10.1016/j.physrep.2005.03.003
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://arxiv.org/abs/1301.1069
http://dx.doi.org/10.1016/j.shpsb.2013.04.004
http://dx.doi.org/10.1039/A801824C
http://dx.doi.org/10.1146/annurev-physchem-040215-112245
http://dx.doi.org/10.1063/1.1675788

208 references

[175] N. Shenvi, J. E. Subotnik, and W. Yang. Simultaneous-trajectory surface hopping:
A parameter-free algorithm for implementing decoherence in nonadiabatic dynamics.
The Journal of Chemical Physics 134, 144102 (2011). doi: 10.1063/1.3575588.
[pp 146, 175, 179, 187, 188, and 195]

[176] M. F. Herman. Nonadiabatic semiclassical scattering. I. Analysis of generalized
surface hopping procedures. The Journal of Chemical Physics 81, 754 (1984).
doi: 10.1063/1.447708. [p 146]

[177] G. Granucci, M. Persico, and A. Zoccante. Including quantum decoherence in
surface hopping. The Journal of Chemical Physics 133, 134111 (2010).
doi: 10.1063/1.3489004. [p 146]

[178] G. Granucci and M. Persico. Critical appraisal of the fewest switches algorithm for
surface hopping. The Journal of Chemical Physics 126, 134114 (2007).
doi: 10.1063/1.2715585. [pp 146 and 154]

[179] A. White, S. Tretiak, and D. Mozyrsky. Coupled wave-packets for non-adiabatic
molecular dynamics: A generalization of Gaussian wave-packet dynamics to
multiple potential energy surfaces. Chem. Sci. 7, 4905 (2016).
doi: 10.1039/C6SC01319H. [p 146]

[180] J.-Y. Fang and S. Hammes-Schiffer. Comparison of surface hopping and mean field
approaches for model proton transfer reactions. The Journal of Chemical Physics
110, 11166 (1999). doi: 10.1063/1.479058. [p 146]

[181] J. E. Subotnik, W. Ouyang, and B. R. Landry. Can we derive Tully’s
surface-hopping algorithm from the semiclassical quantum Liouville equation?
Almost, but only with decoherence. The Journal of Chemical Physics 139, 214107
(2013). doi: 10.1063/1.4829856. [p 146]

[182] C. J. Billington, C. J. Watkins, R. P. Anderson, and L. D. Turner. A Monte Carlo
wavefunction method for semiclassical simulations of spin-position entanglement.
arXiv:1502.06674 [physics, physics:quant-ph] (2015). arXiv: 1502.06674.
[pp 146 and 157]

[183] S. Dietrich and I. D. Boyd. Scalar and Parallel Optimized Implementation of the
Direct Simulation Monte Carlo Method. Journal of Computational Physics 126,
328 (1996). doi: 10.1006/jcph.1996.0141. [p 146]

[184] K. Mølmer, Y. Castin, and J. Dalibard. Monte Carlo wave-function method in
quantum optics. J. Opt. Soc. Am. B 10, 524 (1993).
doi: 10.1364/JOSAB.10.000524. [pp 146, 147, and 170]

[185] H. M. Wiseman. Quantum trajectories and quantum measurement theory.
Quantum and Semiclassical Optics: Journal of the European Optical Society Part
B 8, 205 (1996). [pp 146 and 170]

[186] G. C. Hegerfeldt. The Quantum Jump Approach and Quantum Trajectories. In F.
Benatti and R. Floreanini (editors), Irreversible Quantum Dynamics, volume 622
of Lecture Notes in Physics, Berlin Springer Verlag, pages 233–242 (2003). [pp 146
and 170]

[187] M. B. Plenio and P. L. Knight. The quantum-jump approach to dissipative
dynamics in quantum optics. Rev. Mod. Phys. 70, 101 (1998).
doi: 10.1103/RevModPhys.70.101. [pp 147 and 170]

http://dx.doi.org/10.1063/1.3575588
http://dx.doi.org/10.1063/1.447708
http://dx.doi.org/10.1063/1.3489004
http://dx.doi.org/10.1063/1.2715585
http://dx.doi.org/10.1039/C6SC01319H
http://dx.doi.org/10.1063/1.479058
http://dx.doi.org/10.1063/1.4829856
http://arxiv.org/abs/1502.06674
http://dx.doi.org/10.1006/jcph.1996.0141
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1103/RevModPhys.70.101

references 209

[188] E. Majorana. Atomi orientati in campo magnetico variabile. Il Nuovo Cimento
(1924-1942) 9, 43 (1932). doi: 10.1007/BF02960953. [p 149]

[189] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell. Stable, Tightly
Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms. Phys. Rev. Lett.
74, 3352 (1995). doi: 10.1103/PhysRevLett.74.3352. [p 149]

[190] P. Ehrenfest. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik
innerhalb der Quantenmechanik. Zeitschrift für Physik 45, 455 (1927).
doi: 10.1007/BF01329203. [p 149]

[191] M. Born. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 37, 863
(1926). doi: 10.1007/BF01397477. [p 150]

[192] S. Aaronson. Quantum Computing and Dynamical Quantum Models.
arXiv:quant-ph/0205059 (2002). arXiv: quant-ph/0205059. [p 150]

[193] P. Knight. The Sinkhorn–Knopp Algorithm: Convergence and Applications. SIAM
Journal on Matrix Analysis and Applications 30, 261 (2008).
doi: 10.1137/060659624. [p 156]

[194] N. Linial, A. Samorodnitsky, and A. Wigderson. A Deterministic Strongly
Polynomial Algorithm for Matrix Scaling and Approximate Permanents.
Combinatorica 20, 545 (2000). doi: 10.1007/s004930070007. [p 156]

[195] P. A. Knight and D. Ruiz. A fast algorithm for matrix balancing. IMA Journal of
Numerical Analysis 33, 1029 (2013). doi: 10.1093/imanum/drs019. [p 157]

[196] S. Aaronson. Quantum Computing Since Democritus. Cambridge University
Press, New York, NY, USA (2013). [p 158]

[197] E. Fabiano, G. Groenhof, and W. Thiel. Approximate switching algorithms for
trajectory surface hopping. Chemical Physics 351, 111 (2008).
doi: 10.1016/j.chemphys.2008.04.003. [p 158]

[198] J. Schwinger, M. O. Scully, and B. G. Englert. Is spin coherence like
Humpty-Dumpty? Zeitschrift für Physik D Atoms, Molecules and Clusters 10,
135 (1988). doi: 10.1007/BF01384847. [p 165]

[199] S. Machluf, Y. Japha, and R. Folman. Coherent Stern–Gerlach momentum splitting
on an atom chip. Nature Communications 4, 2424 (2013).
doi: 10.1038/ncomms3424. [p 165]

[200] D. W. Keith, C. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard. An
interferometer for atoms. Phys. Rev. Lett. 66, 2693 (1991).
doi: 10.1103/PhysRevLett.66.2693. [p 165]

[201] E. M. Rasel, M. K. Oberthaler, H. Batelaan, J. Schmiedmayer, and A. Zeilinger.
Atom Wave Interferometry with Diffraction Gratings of Light. Phys. Rev. Lett. 75,
2633 (1995). doi: 10.1103/PhysRevLett.75.2633. [p 165]

[202] M. A. Schlosshauer. Decoherence: And the Quantum-To-Classical Transition. The
Frontiers Collection. Springer-Verlag, Berlin Heidelberg (2007). [pp 166
and 170]

[203] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland. Quantum Zeno
effect. Phys. Rev. A 41, 2295 (1990). doi: 10.1103/PhysRevA.41.2295. [p 169]

http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1103/PhysRevLett.74.3352
http://dx.doi.org/10.1007/BF01329203
http://dx.doi.org/10.1007/BF01397477
http://arxiv.org/abs/quant-ph/0205059
http://dx.doi.org/10.1137/060659624
http://dx.doi.org/10.1007/s004930070007
http://dx.doi.org/10.1093/imanum/drs019
http://dx.doi.org/10.1016/j.chemphys.2008.04.003
http://dx.doi.org/10.1007/BF01384847
http://dx.doi.org/10.1038/ncomms3424
http://dx.doi.org/10.1103/PhysRevLett.66.2693
http://dx.doi.org/10.1103/PhysRevLett.75.2633
http://dx.doi.org/10.1103/PhysRevA.41.2295

210 references

[204] B. Misra and E. C. G. Sudarshan. The Zeno’s paradox in quantum theory. Journal
of Mathematical Physics 18, 756 (1977). doi: 10.1063/1.523304. [pp 169 and 170]

[205] L. Fonda, G. C. Ghirardi, and A. Rimini. Decay theory of unstable quantum
systems. Reports on Progress in Physics 41, 587 (1978). [p 170]

[206] K. Jacobs and D. A. Steck. A straightforward introduction to continuous quantum
measurement. Contemporary Physics 47, 279 (2006).
doi: 10.1080/00107510601101934. [p 170]

[207] B. R. Landry and J. E. Subotnik. How to recover Marcus theory with fewest switches
surface hopping: Add just a touch of decoherence. The Journal of Chemical Physics
137, 22A513 (2012). doi: 10.1063/1.4733675. [p 171]

[208] K. F. Wong and P. J. Rossky. Solvent-induced electronic decoherence: Configuration
dependent dissipative evolution for solvated electron systems. The Journal of
Chemical Physics 116, 8429 (2002). doi: 10.1063/1.1468887. [p 171]

[209] E. R. Bittner and P. J. Rossky. Quantum decoherence in mixed quantum-classical
systems: Nonadiabatic processes. The Journal of Chemical Physics 103, 8130 (1995).
doi: 10.1063/1.470177. [p 171]

[210] M. Ben-Nun, J. Quenneville, and T. J. Martínez. Ab Initio Multiple Spawning:
Photochemistry from First Principles Quantum Molecular Dynamics. The Journal
of Physical Chemistry A 104, 5161 (2000). doi: 10.1021/jp994174i. [p 175]

[211] M. Ben-Nun and T. J. Martıńez. Nonadiabatic molecular dynamics: Validation of
the multiple spawning method for a multidimensional problem. The Journal of
Chemical Physics 108, 7244 (1998). doi: 10.1063/1.476142. [p 175]

[212] S. Yang, J. D. Coe, B. Kaduk, and T. J. Martínez. An “optimal” spawning algorithm
for adaptive basis set expansion in nonadiabatic dynamics. The Journal of Chemical
Physics 130, 134113 (2009). doi: 10.1063/1.3103930. [p 175]

http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1080/00107510601101934
http://dx.doi.org/10.1063/1.4733675
http://dx.doi.org/10.1063/1.1468887
http://dx.doi.org/10.1063/1.470177
http://dx.doi.org/10.1021/jp994174i
http://dx.doi.org/10.1063/1.476142
http://dx.doi.org/10.1063/1.3103930

	Contents
	Introduction
	What's new in this thesis

	Atomic physics: Experimental techniques and theory
	Cooling, trapping, and manipulating atoms
	Doppler cooling
	Magneto-optical and magnetic trapping
	Optical dipole trapping
	Polarisation gradient cooling
	Evaporative cooling
	Feshbach resonances

	Mean-field theory: The Gross–Pitaevskii equation and vortices
	The 87Rb D line
	Fine structure
	Hyperfine structure
	Zeeman sublevels
	Putting it all together: the {*F mF} basis
	Optical dipole transitions
	Magnetic dipole transitions
	Summary

	Quantum mechanics on a computer
	From the abstract to the concrete: neglect, discretisation and representation
	Solution to the Schrödinger equation by direct exponentiation
	Matrix exponentiation by diagonalisation
	The interaction picture
	Time-ordered exponentials and time-ordered products
	The operator product/split-step method

	For everything else, there's fourth-order Runge–Kutta
	Complexity and parallelisability for the Schrödinger equation

	Continuous degrees of freedom
	Spatial discretisation on a uniform grid: the Fourier basis
	Finite differences
	Stability and the finite-element discrete-variable representation
	Nonlinearity considerations
	Conclusion

	Finding ground states
	Imaginary time evolution
	Successive over-relaxation
	Generalisation to excited states via GramSchmidt orthonormalisation

	Fourth-order Runge–Kutta in an instantaneous local interaction picture
	Algorithm
	Domain of improvement over other methods
	Results
	Discussion

	Software for experiment control and analysis
	The labscript suite
	labscript
	runmanager
	runviewer
	BLACS
	lyse

	Design philosophy and advantages of approach
	It's code
	Modularity and the Unix philosophy
	Off-the-shelf hardware
	Open-source, popular programming language and data format
	Collateral benefits

	Recent and future developments
	Port to Qt
	Python 3
	More devices, more features, general polish
	Optimisation
	Just-in-time compilation
	Fixed shot repetition interval
	Remote device control

	labscript version 3
	Other future developments
	Project history and attribution
	Conclusion
	Reproduced publication: A scripted control system for autonomous hardware-timed experiments

	Particle velocimetry of vortices in BoseEinstein condensates
	Motivation: Turbulence
	Characterisation of turbulence as vortex dynamics

	Overview of velocimetry scheme
	Relation to previous work
	Sympathetic cooling
	Model
	Results

	Sisyphus cooling in a 34G magnetic field
	Description of cooling scheme
	Methods
	Results
	Vortex-assisted Sisyphus cooling

	Conclusion

	Hidden variables for semiclassical models with state-dependent forces
	Semiclassical models
	Stern–Gerlach separation and evaporative cooling

	Hidden-variable theories
	Overview of method
	Hidden variables: implementation details
	Numerically evaluating Schrödinger theory
	Time-dependent formulation of Tully's fewest-switches algorithm
	Velocity correction and classically disallowed transitions

	Decoherence
	Back-action of position measurement on internal state
	Continuous projection
	The quantum Zeno effect
	Approximate Markovian decoherence
	Decoherence with mean auxiliary trajectories
	What are we `following' exactly?

	Algorithms
	Markovian hidden-variable semiclassical method
	Mean auxiliary trajectories hidden-variable semiclassical method

	Results
	Gaussian projection results

	Discussion and conclusion

	References

