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Abstract

Novel numerical methods are proposed in order to solve variable coefficient nonlinear

boundary value problems defined across one dimensional domains. Solutions for these

equations are constructed by decomposing nonlinear equations into sequences of linear dif-

ferential equations through the Homotopy Analysis Method (HAM). These linear equations

are then solved sequentially in terms of Gegenbauer polynomials, which are a larger class

of polynomials that includes the Chebyshev polynomials as a subset. A robust suite of

tools for exploring solutions are then developed around this technique, including several

approaches for numerical continuation. In composite, these techniques will be referred to

the Gegenbauer Homotopy Analysis Method (GHAM).

As the numerical system that result from implementing GHAM can be described in terms

of sparse matrix operators that are invariant with respect to the iteration number, this

technique exhibits O(n1.305 +mn1.05) scaling with time, where n is the number of points in

Gegenbauer space required to resolve the solution, and m is the number of iterations. The

numerical properties of this technique, including its computational cost and convergence

properties are presented and contrasted with other numerical schemes evaluated within

real, Chebychev and Gegenbauer spaces.

These tools are applied to several problems from fluid mechanics, with a specific focus on

equations relating to the evolution of atmospheric Rossby waves, which can be treated

as steady dispersive waves on the surface of a channel. Mathematically the dynamics of

these wave trains can be described by the forced Korteweg de Vries (fKdV) and the forced

Gardner equation subject to both local and compact topographic forcing, and it is these

equations that will serve as the primary application of the numerical techniques presented

within this thesis.
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Chapter 1

Introduction

Rossby waves are a large scale tropopause level disturbance to prevailing atmospheric flows

that are closely linked with the cyclic interplay of high and low pressure systems (Liebmann

and Hendon, 1990), as well as driving in the dynamics of the Gulf Stream currents (Osychny

and Cornillon, 2004); zonal winds (Malguzzi and Malanotte-Rizzoli, 1984); ENSO linked

climate variability (Ryoo et al., 2013) and broader equatorial waves (Pedlosky, 1979, Boyd,

1980a, Cushman-Roisin and Beckers, 2011). Understanding the factors that influence these

waves is a problem of particular importance within geophysical fluid dynamics, and as

such this work will focus upon developing the numerical tools necessary to study these

topographic effects.

In the most general sense, Rossby waves are seen in fluids upon a β-plane, where the

differential rotation rates give rise to shear, which then in turn drives the dynamics of

the flow. In the atmosphere, this is seen across the jet stream (Nakamura and Plumb,

1994), at the interface between the stratospheric polar vortices and the sub tropical at-

mosphere. Along this interface, repeating wave structures are created by the deflection of

fluid particles by the Coriolis force, creating the longitudinal advection of potential vorticity.

The dynamics of these planetary scale Rossby waves are not simply the product of shear—

they can also be excited in the troposphere, primarily through the effect of topography. In

fact, the highest frequency of breaking events is observed over Siberia and Baffin Island

(Woollings and Hoskins, 2008)—with both regions being characterised by sharp increases

in the gradient of the topography. Other sources of excitation include the latent release

of heat, the nonlinear evolution of tropospheric eddies (Scinocca and Haynes, 1998) and

9



even the evolution of the hole in the ozone layer in the southern hemisphere (Ndarana

et al., 2012). As a product of this excitation, the amplitudes can increase until a critical

condition is reached, which, in the atmosphere, is generally characterized by an irreversible

overturning process which deforms the material contours of the Rossby wave (McIntyre and

Palmer, 1983b).

As these waves break a surf zone is induced, within which high vorticity air mixes with the

ambient air (Juckes and McIntyre, 1987). Vorticity in the surf zone can then roll up into

coherent small scale vortices of high–vorticity air, which is then advected away from the

region contained within the Rossby wave. This in turn induces trace–gas mixing (Pelly and

Hoskins, 2003, Ndarana and Waugh, 2010) and creates cut off lows and blocking highs (Rex,

1950a,b). These are stationary high pressure cells exhibiting significant persistence (Austin,

1980), which is the phenomenological distinction from standard travelling troughs (Lejenas

and Okland, 1983). The resulting effects of the surf zone can broadly be considered as a

bifurcation in the oncoming flow, as the oncoming air currents are deflected around the

obstruction. Generally, wave breaking events occur in the equatorial direction, however,

in rare cases breaking events have been linked to intrusions of mid–latitudinal air into

the stratospheric polar vortex (Plumb et al., 1994). This asymmetry in the dynamics of

breaking events can also be seen in the behaviour of upper tropospheric waves (Wang and

Magnusdottir, 2011).

As a consequence of their scale, and their impact on the surrounding atmosphere, a single

Rossby wave breaking event can play a significant role in the climate dynamics of a large

geographic region (McIntyre and Palmer, 1983b,a, Juckes and McIntyre, 1987), acting as

a driver for extreme weather events (Petoukhov et al., 2013). A dramatic example of this

was seen in the Pakistani floods and Russian wildfires of 2010, where both events were

linked to a single Rossby wave breaking event (Lau and Kim, 2011). In Australia, extreme

heat waves can be attributes to overturning Rossby waves (Parker et al., 2014), in which

upper level anticyclonic potential vorticity anomalies trap heat, and act as the defining

feature of heat waves in the region. While these heat waves have health and agricultural

implications on a population level, the more notable risk is of severe fire conditions. The

end of heat waves are heralded by the passage of an extreme cold front, and in an Australian

context it has been shown that there is a strong link between these cold fronts and high

fire risk (Bureau of Meteorology, 1984, Reeder and Smith, 1987, Engel et al., 2013, Parker,
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2012, Reeder et al., 2015), with Petoukhov et al. (2013) speculating that the trapping

of free waves within the mid–latitude waveguides may well drive these dynamics. This

phenomenology has been linked to both the deadly Ash Wednesday and Black Saturday

bushfires that swept through south–eastern Australia in 1983 and 2009 respectively. As

such, understanding both the formation, evolution and eventual disruption of Rossby wave

breaking events has significant implications not just from a weather prediction standpoint,

but also when considering community health and well–being.

The study of these dynamics has occurred from both a larger scale meteorological perspec-

tive, and one which focusses more on the mathematical physics inherent in these dynamics.

This distinction is entirely an artifice, as both approaches are complimentary, but it allows

for distinguishing between the different approaches to the overall problem. The meteo-

rological approach has involved authors studying historical and observational data in the

context of large scale numerical simulations of climate models; whereas the mathematical

approach has generally been to understand the inherent dynamics by considering the key

equations, and often reducing the dimensionality of the problem in an attempt to develop

greater insights to the overall physics. It is this latter approach that will be focussed upon

from this point.

From a mathematical perspective, the study of wave dynamics can be divided further into

two main fronts. The first is known as the weakly–nonlinear approach, where perturbations

are limited to being only just large enough to give rise to nonlinear effects, which in this

context has been approached by Jiong and Liu (1998), Xun et al. (2000), Jiang and Lian-Gui

(2009) among others. The second is the finite–amplitude approach, and was pioneered

by Long (1953b,a, 1954, 1955, 1959, 1962, 1965, 1970), before being further advanced by

Benney (1979). This thesis will be primarily concerned with considering the construction

of solutions to weakly–nonlinear models for wave behaviour.

The study of waves has a long history, with a wealth of research that dates back to Isaac

Newton and G.G. Stokes in the 17th and 18th centuries. This early work was primarily

focussed upon water waves, although the observed dynamics have been shown to have

broader implications. Of this work, Stokes was the first to develop a definitive theory of

both linear and weakly–nonlinear waves in deep water, as documented by Craik (2004,

2005). While Stokes’ theories only applied to periodic, deep–water waves, observations by
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Russell (1844) showed that these waves can also exist in shallow water. Constructing a

mathematical argument to describe Russell’s observations motivated Boussinesq and then

later Lord Rayleigh (1876), who examined a steady stationary wave vanishing at infinity,

and was able to describe the spatial evolution of the wave through the equation(
∂η

∂x

)2

+
3

H2
η2 (η − η0) = 0, η = η(x) (1.1)

where x is the spatial position of a fluid particle, η is the free surface displacement, H is the

height of the water at its equilibrium state and η0 describes the amplitude of the wave. A

sketch of these conditions can be seen in Figure 1.1. This equation has an explicit, analytic

solution of the form

η(x) = η0 sech2

(√
3η0

4H3
x

)
. (1.2)

At the end of the 19th century, Korteweg and de Vries (1895) constructed a proof of existence

for translational waves that matched the observations of Russell, and resulted in the equation

∂η

∂t
=

3

2

√
gl
∂

∂x

(
1

2
η2 +

3

2
αη +

1

3
β
∂2η

∂x2

)
, (1.3)

where η(x, t) is the surface elevation above the equilibrium height, l is an arbitrary constant

related to the fluid velocity, g is the gravitational constant, α is a small constant based upon

the rate of uniform motion of the fluid and

β =
1

3
l3 − T l

ρg

is a dimensional parameter, dependent on the surface capillary tension T and liquid density

ρ. Changing variables to dimensionless distance and velocity, and applying a Galilean

transformation results in the canonical, dimensionless form of the Korteweg–de Vries (KdV)

equation

ηt + 6ηηx + ηxxx = 0. (1.4)

This is a nonlinear equation in terms of a single spatial and temporal variable, that takes a

very similar form to the work of Boussinesq (1872) (as translated by Vastano and Mungall

(1976)). The initial development of the KdV equation stemmed from the study of the

propagation of small amplitude, unidirectional, long wavelength waves in a channel with
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a flat bottom and free surface, and balances the effects of weak nonlinearity and weak

dispersion. One of the first formalisms of the KdV equation in a modern geophysical flows

setting stemmed from Benney (1966), who reached a form of the KdV equation from a

first–order expansion in amplitude and dispersion to study long nonlinear waves. This

approach has led to higher order extensions by Grimshaw (1997), and Helfrich (2007), the

latter of which modified the equations to allow for the presence of strong nonlinearities

in the case of weak dispersion. It can also be used to model two–layer flow potential

flows, where the flow is two–dimensional, incompressible and irrotational with a uniform

density (Baines, 1987, Batchelor, 2000). As such, it can be used to model free–surface

waves, marked by the bounding line between two distinct layers of water and air, and

can be modified to account for perturbations from both pressure and the channel topography.

These geophysical wave problems are not the limit of applicability for the KdV equation.

Beyond problems from geophysical fluid dynamics the KdV equation has also been found

to have applications in a number of other fields. Plasma physics is a particularly prominent

example of this, where the Gardner–Morikawa transformation (Gardner and Morikawa,

1960) maps the physics of solitary wave propagation in plasma to the KdV equation; the

Fermi–Pasta–Ulam problem for longitudinal waves propagating through nonlinear springs

coupled together through a lattice of masses (Zabusky and Kruskal, 1965); and acoustic

waves in crystaline lattices and other problems from quantum mechanics (Whitham, 1974,

Ablowitz and Segur, 1981, Ablowitz and Clarkson, 1991). While the KdV equation has been

repeatedly shown to have a range of useful applications, when it comes to geophysical fluid

dynamics, caution does have to be taken with regard to the types of problems approached

within this framework.

For two–layer flows where both layers had shallow depths, Koop and Butler (1981) showed

that the KDV equation was able to accurately model the system for a wide range of

amplitude configurations. However, later work by Grue et al. (1999) outlined that the KdV

equation deviated from the results from the Euler equations, and experimental data when

the wave amplitude increased above 0.4 in the presence of twin layers with moderate depth.

As such, caution must be taken when it comes to both modelling physical processes through

the KdV equation, as well as using conclusions from the KdV as a proxy for the results

from other equations. While caution does need to be applied, the breadth of applications

that this weakly–nonlinear equation can be applied towards is sufficient motivation to
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Figure 1.1: Schematic of channel flow subject to either a topographic disturbance.

develop a deeper understanding of the KdV equation and its variants. While these points

of caution do need to be accounted for, the advantage of such models is that their greatly

reduced dimensionality allows for insight to be gleaned that would otherwise be highly

difficult—either in terms of the dimensionality, or the computational complexity required

to be resolved—to yield when examining the Euler or Navier–Stokes equations.

From a mathematical perspective, the KdV equation is interesting in that it can take

an integrable form, is well posed, can be solved exactly—subject to restricted initial

conditions—by inverse-scattering theory Gardner et al. (1967, 1974) and the discovery

that solutions of the KdV equation can form what are known as Solitons (Zabusky and

Kruskal, 1965, Miura, 1968, Miura et al., 1968, Miura, 1976). These are solitary wave

solutions which, while highly nonlinear, exhibit behaviours that are similar to superposition

in that multiple solitons could pass through one another. Incorporating forcing to the KdV

equation—known as the forced Korteweg-de Vries equation (fKdV)—allows for the influence

of topographic and pressure effects to be incorporated within the model. This form of the

equation also exhibits an interesting range of dynamics ranging from undular bores and

solitary waves to locally steady flows as the Froude number—the ratio between the flow

velocity and the wave velocity—progresses from the transcritical to the supercritical regime
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(Grimshaw and Smyth, 1986).

When it comes to analysing wave behaviour, the KdV equation does not exist in isolation.

Instead, it can be considered to be the weakly–nonlinear limit of what is known as the

Gardner equation (Miura et al., 1968). A common derivation of the Gardner equation

stems from taking a higher order asymptotic expansion of a problem, relative to the order

employed to derive the KdV equation. Through this, the Gardner equation takes the form

of the KdV equation, but with the addition of a cubic nonlinearity. This modification to

the nonlinear component of the equation allows for saturation effects to be incorporated.

This in turn allows the Gardner equation to qualitatively describe the limiting amplitude of

internal, large amplitude solitary waves, in contrast to the conjugate flow description (Lamb

and Wan, 1998, Rusas and Grue, 2002) which has been used to yield more quantitative

results (Stastna and Peltier, 2005). Melville and Helfrich (1987) compared laboratory

experiments for a two–layer immiscible flow in the presence of topography to a form of the

forced KdV and forced Gardner equations, and found that in the presence of strong forcing

the KdV showed poor agreement between the solutions of the KdV equation and relevant

experimental results. However, when the experimental conditions were such that the effect

of the cubic nonlinearity in the Gardner equation became important, the degree of corre-

lation between the numerical solutions and experimental data was significantly improved.

Their work also documented the presence of upstream undular bores and monotonic bores

for transcritical Froude numbers, and steady solutions for supercritical flows. This work

was reinforced by Grue et al. (1999), who examined the previous results in comparison to

a fully nonlinear two–layer numerical solver. Helfrich and Melville (1986) also showed that

in the case of inviscid internal waves it was necessary to incorporate the effect of viscous

boundary layers into the derivation of the forced Gardner equation, as their contribution

to the results was as significant as the nonlinear and dispersive effects present (Kakutani

and Matsuuchi, 1975, Miles, 1976, Grimshaw, 1981).

Examining the Gardner equation from a finite–amplitude perspective was pioneered by

Benney (Benney, 1966, Benney and Ko, 1978, Benney, 1979), who was the first to link the

KdV and Gardner equations together as different limits of geophysical processes (Benney

and Ko, 1978). The finite–amplitude limit also connects the Gardner equation to the

Camassa–Choi (Choi and Camassa, 1999), Kawahara, Benny–Lin (Biagioni and Linares,

1997), Benney–Luke (Paumond, 2003), Boyd–Dodd (Dodd and Fordy, 1983, Boyd, 1986)
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and Kadomtsev-Petviashvili (Kadomtsev and Petviashvili, 1970, Minzoni and Smyth, 1996)

equations, and the work of Clarke and Johnson (1997a,b, 1999).

The KdV equation is also tied to the Grimshaw–Yi equation (Grimshaw and Yi, 1991, 1993),

which is an integro–differential equation which describes strongly nonlinear waves at near

resonance conditions, subject to weak uniform stratification. This equation can describe

large amplitude waves until the point of axial flow reversal, which in turn allows for the

prediction of wave breaking events. Hanazaki (1993), Rottman et al. (1996) have compared

the solution of the Grimshaw–Yi equation to solutions of the governing Navier–Stokes

equations, and demonstrated that the equation delivers quantitatively good approximations

for both the solutions themselves, and the resulting predictions with regard to the onset of

wave breaking. In the case where wave breaking does not occur—which occurs when the

flow is not near an exact linear resonance—then Grimshaw and Yi (1991) noted that the

solutions behave similarly to those of the fKdV equation, which reinforces the validity of

studying the fKdV equation as a proxy for the more complicated Grimshaw–Yi equation.

One advantage of examining the KdV equation numerically is that, due to its numerous

applications there are a wealth of results that demonstrate that the solitary wave solutions

are well posed, as well as others covering the existence and stability of solitary wave

solutions (see for example Miura (1976, 1968), Zhang (1992)). These results have generally

been derived for the initial value problem formulation of the KdV equation, however, for

the numerical work contained within this thesis, the focus will be upon investigating the

steady variant of the equation, formulated as a boundary value problem.

As a result of their potential impact, it is of crucial importance to understand the evolution

of breaking events. However, the very nature of these equations, in that they are nonlinear,

significantly complicates the process of understanding their solution and parameter spaces.

For the majority of nonlinear equations it is impossible to construct a closed–form, analytic

solution to the problem, so instead they must be approached through analytic approxima-

tions or numerical schemes.

Historically, perturbation based schemes have been one of the most common approaches

for constructing solutions to nonlinear equations that do not have an integrable solution.

These schemes generally rely upon the equation including small or large parameters known
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as the perturbation quantity, about which the perturbation can be constructed. Through

manipulating the original equation, the nonlinear problem can be transformed into an

infinite series of linear sub-problems, which when solved sequentially can potentially yield a

solution to the original nonlinear equation. However, convergence is not guaranteed, and the

success of these schemes is strongly dependent upon the size of the perturbation quantities.

Beyond this, there is no guarantee that the linear sub-problems will be solvable. As such

the applicability of perturbation schemes has generally been limited to weakly–nonlinear

problems, where the relative impact of the nonlinearity on the overall solution is small.

Analytic or semi-analytic solutions to some fully nonlinear problems can be constructed with

the artificial small–parameter method of Lyapunov (1892) being one of the most widely used

approaches (Andrianov et al., 2003, PalTsev, 1967). In Lyapunov’s method, a nonlinear

equation N [u(x, t)] = f(x, t) is decomposed into its strictly linear and strictly nonlinear

components, denoted by L0 and N0 respectively, so that

L0[u(x, t)] +N0[u(x, t)] = f(x, t). (1.5)

From here, the motivating nonlinear problem can be modified by the introduction of an

artificial small parameter q, resulting in an equation of the form

L0[u(x, t)] + qN0[u(x, t)] = f(x, t). (1.6)

This equation then shares the form of equation (1.5) when q = 1. By treating u as a power

series in terms of q, where

u(x, t; q) =
∞∑
m=0

um(x, t)qm (1.7)

then equation (1.6) can be recast as an infinite series of linear problems, where

L0[u0(x, t)] = f(x, t), L0[u1(x, t)] = −N0[u0(x, t)] . . . (1.8)

Lyapunov’s approach does not give any freedom in the choice of the operators L0 and N0

and as such, the series of equation (1.8) can easily surpass our capabilities to calculate

solutions. Furthermore, the power series expansion in equation (1.7) is not guaranteed to

converge.
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Beyond Lyapunov there have been several other approaches to constructing solutions to

nonlinear equations in terms of artificial small parameters, including the delta–expansion,

Adomian decomposition (Adomian, 1986, 1994) and Homotopy perturbation methods (He,

2003). However, these techniques all share similar limitations, namely that there is no (or

limited) flexibility in choosing the linear operator and the lack of ability to guarantee that

the approximation series converges, nor to control the rate of convergence.

When it comes to constructing numerical solutions to nonlinear differential equations, the

literature has a wealth of techniques for solving nonlinear differential equations, including

Newton iteration, AiTEM (Yang and Lakoba, 2007), nonlinear Conjugate Gradient (Dhai

and Yuan, 1999) and Multigrid based methods (Hemker, 1990), with Newton iteration

being the most commonly used. However, none of these approaches are guaranteed to find

extant solutions, and initial tests applying some of the more common approaches to the

wave problems explored within this work were unsuccessful. As such, we were motivated

to develop a new nonlinear solver that exhibited strong convergence control properties and

spectral accuracy.

These tools will be applied in order to study the properties of the KdV and Gardner

equations within a steady framework, subject to symmetric and asymmetric aperiodic

boundary conditions. In order to confirm the validity of this exploration, the analytic

properties and symmetries of these two equations will now be considered.

1.1 Properties of the Gardner equation

As the KdV equation is a specific case of the Gardner equation, it follows that the parameter

spaces of the two equations must be interlinked. Consider the forced generalised Gardner

equation for amplitude η = η(x, t) and topographic forcing g = g(x, t):

∂η

∂t
+ ∆

∂η

∂x
+ rη

∂η

∂x
+ qη2 ∂η

∂x
+ s

∂3η

∂x3
= −γgx, (1.9)

this can clearly be reduced to the form of the fKdV equation by setting q = 0. To develop

an understanding of the properties of this equation, hereafter we will focus on the case

where the forcing function g is independent of t, so that g = g0f(x/L). Here L is the

characteristic length scale, where 0 ≤ f ≤ 1 and f can be considered to be O(1).
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As this equation is symmetric in x, we can impose that s is strictly positive without loss

of generality. From this point, in order to convert the forced Gardner equation into its

normalised form, the problem can be rescaled in terms of the parameters

t = στ, η(x, t) = αA(χ, τ), x = βχ. (1.10)

Making this substitution, and letting that σ = β2/s results in the equation

∂A

∂τ
+

∆β2

s

∂A

∂χ
+
rαβ2

s
A
∂A

∂χ
+
qα2

β
A2∂A

∂χ
+

s

β3

∂3A

∂χ3
= −γg0

αβ
fχ. (1.11)

We can simplify this equation by making the substitutions c1 = ∆β2/s and f = f(χ/L̂),

where L̂ =
√

∆/c1sL. As s > 0, we can say that sgn(c1) = sgn(∆). Making these changes,

the forced Gardner equation is now

∂A

∂τ
+ c1

∂A

∂χ
+
rαc1

∆
A
∂A

∂χ
+
qα2c1

∆
A2∂A

∂χ
+

s

β3

∂3A

∂χ3
= −γg0c1

α∆
fχ. (1.12)

The Gardner equation can be considered as the bridge between the Korteweg–de Vries

and the modified Korteweg–de Vries (mKdV) equations, which respectively have either a

strictly quadratic or strictly cubic nonlinearity, corresponding to either q = 0 or r = 0 in

equation (1.9). As such, an additional parameter δ can be introduced, that will be a proxy

for the transition between the KdV and mKdV equations. By setting that

rαc1

2∆
= 3(1− δ), qα2c1

3∆
= 3c2δ, (1.13)

for some c2 where sgn(c2) = sgn(q) then it follows that

δ =
rαc1

6∆
.

Equating both parts of equation (1.13) and solving for α yields

δ = −φ±
√
φ2 + 2φ,

where φ = r2c1c2/(8∆q). Without loss of generality we can restrict ourself to the positive

branch, and then as long as φ > 0 then 0 ≤ δ ≤ 1. Thus equation (1.9) can be reduced to

the form

∂A

∂τ
+ c1

∂A

∂χ
+ 6(1− δ)A∂A

∂χ
+ 9δc2A

2∂A

∂χ
+
∂3A

∂χ3
= −γ̂fχ, (1.14)
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where

γ̂ =
γg0rc

2
1

6∆2δ
, δ = −φ+

√
φ2 + 2φ, φ =

r2c1c2

8∆q
L̂ =

√
∆

c1s
L.

As c2 is arbitrary, we are free to set that c2 = ±1, which lets us further simplify equa-

tion (1.14) to

∂A

∂τ
+ c1

∂A

∂χ
+ 6(1− δ)A∂A

∂χ
± 9δA2∂A

∂χ
+
∂3A

∂χ3
= −γ̂fχ. (1.15)

To confirm the validity of this substitution, we must confirm that δ and γ̂ remain finite. For

the instance where r → 0, through a Taylor series expansion it follows that

δ ≈
√

2φ = |r|
√

1

8

c1c2

∆q
(1.16)

and

γ̂ =
γg0rc

2
1

6∆2δ
≈ γg0rc

2
1

6∆2

√
4

∆q

c1c2

. (1.17)

Similarly, as q → 0,

δ ≈ 1− 1

2φ
= 1 +O(q)

and γ̂ ≈ −8

3

γg0c1q

∆rc2

.

 (1.18)

Thus, both δ and γ̂ remain finite as the solution transitions between the KdV and mKdV

equations. Finally, we can implement bounds upon δ by noting that δ = −φ+
√
φ2 + 2φ is

only real when δ ≥ 0. Furthermore, as

dδ

dφ
=

φ+ 1√
φ2 + 2φ

− 1

is both strictly positive and monotonically decreasing for all φ ≥ 0, then the maximum

of δ will occur as φ → ∞. This allows us then to say that δ must be bounded to exist

within [0, 1], where δ = 0 corresponds to the KdV equation and δ = 1 to the mKdV equation.

As the results contained here are focussed on the steady variant of the Gardner equation,

in that context the aforementioned equation will take the form
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c1A+ 3(1− δ)A2 ± 3δA3 +
d2A

dχ2
= −γ̂f, δ ∈ [0, 1], A = A(χ). (1.19)

Henceforth we will consider this equation as

∆A+ rA2 + qA3 +
d2A

dx2
= −γf, δ ∈ [0, 1], A = A(x),

r = 3(1− δ),

q = ±3δ.

 (1.20)

Where the changes from χ→ x and c1 → ∆ serve to simplify the notation.

1.2 Thesis outline

This thesis chronicles the development of a suite of tools for solving nonlinear boundary

value problems in one–dimension, with a particular focus upon the forced Gardner equa-

tion. The core solver is flexible and highly efficient, exhibiting spectral convergence and

quasi-linear scaling in computational cost with the grid size. This solver is built upon

repeatedly solving a modified linear system in terms of a sparse linear operator. Crucially

for the scheme’s numerical performance, all components involving a matrix inverse can

be cast to remain constant with the iteration number. Combining this new solver with a

wider suite of associated tools will allow us to explore problems from fluid mechanics, with

particular focus on equations involving large scale atmospheric waves. All the following

chapters contain new contributions to the fields of numerical analysis, wave dynamics and

scientific computing.

Chapter 2 is broadly a review of the current state of numerical analysis relevant to linear

and nonlinear boundary value problems. Spectrally accurate tools to solve these problems

will be introduced, with a particular focus upon numerical discretisations involving Cheby-

shev and Gegenbauer polynomials. By adding to the work of Olver and Townsend (2013),

this chapter will provide the core of the nonlinear solver that is central to numerical work

contained within this thesis.

To extend this work into nonlinear boundary value problems, Chapter 3 introduces the

Homotopy Analysis Method (HAM), which is an analytic technique developed by Liao

(1992). This technique provides an approach for solving nonlinear equations that is based
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upon generating a homotopy between a linear equation and the full nonlinear problem, in

a manner that allows the nonlinear problem to be solved in terms of a linear perturbation

scheme. Within this chapter a new, numerical form of HAM will be introduced, known as

the Gegenbauer Homotopy Analysis Method (GHAM). This technique avoids the pitfalls

of previously developed nonlinear solvers, in that it exhibits spectral convergence while

preserving a sparse, constant linear operator for variable coefficient problems. As the scope

of applicability of homotopy based methods has been limited by the lack of associated

methods of numerical continuation, several novel approaches for numerical continuation

are introduced to resolve this situation. The properties of this suite of new techniques

are explored analytically through the development of new convergence theorems; and

numerically by constructing solutions to several standard boundary layer equations.

Chapter 4 and Chapter 5 bring together the work of the preceding chapters to examine

solutions to the forced Korteweg–de Vries (fKdV) equation, from a symmetric and asym-

metric perspective. This equation is a one–dimensional, second–order boundary value

problem subject to a single quadratic nonlinearity with broad applications to geophysical

fluid dynamics and other fields. By employing GHAM, several new insights are developed

with regard to the influence of the topographic length scale upon symmetric solutions; and

the impact of the topographic drag upon asymmetric solutions.

Finally in Chapter 6 a systematic exploration of the parameter space of symmetric so-

lutions to the forced Gardner equation will be performed. The Gardner equation is a

one–dimensional nonlinear boundary value problem that incorporates a cubic polynomial

nonlinearity. As the parameter space of the Gardner equation includes both the fKdV

and the modified Korteweg–de Vries (mKdV) equations, understanding the development

of solutions within the parameter space of the Gardner equation has broad implications to

geophysical fluid dynamics.
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Chapter 2

Numerical Methods

It is uncommon for complex differential equations to exhibit analytical solutions that hold

for anything more than a small subset of conditions. This is particularly true for nonlinear

differential equations, and as such the only reliable option for solving such equations is

through numerical methods. These schemes involve discretising the equations involved over

some space, and then constructing an iterative method to refine a trial solution until the

point at which the solution accurately solves the original equations. In broad terms, the

numerical solutions to differential equations can be categorised into two main approaches:

local and global methods.

Local methods form the framework to the most commonly used numerical tools such as

finite difference and finite element methods, and involves the construction of solutions

in terms of basis functions that are only locally nonzero. That these basis functions are

broadly zero simplifies both the implementation and the solution process for local meth-

ods. Global methods, otherwise known as Spectral methods, are more complex to both

implement and solve, as they involve basis functions that are nonzero over the majority

of the numerical domain. While these methods are more complex, a consequence of the

global basis functions is that these methods exhibit exponential convergence, where any

increase in the numerical resolution results in a corresponding exponential decrease in the

observed error, subject to the restriction that solutions must not exhibit discontinuities.

This compares favourably to local methods, for which the error decreases in a polynomial

fashion with increases in the numerical resolution.
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While spectral methods are more complicated to implement, their enhanced convergence

properties make them a valuable tool for the numerical analysis of differential equations.

Henceforth this work will focus on the development of novel numerical methods for solving

nonlinear differential equations, with a particular focus upon enhancing the exhibited

computational performance relative to current techniques. To begin with, this chapter will

be devoted to outlining the current state of knowledge for spectral methods in the context

of linear and nonlinear differential equations, while also incorporating some novel results.

2.1 Spectral Methods

A common approach to constructing spectral methods is to take the Fourier transform

of a differential equation (Orszag, 1969). However, this approach is limited to problems

where the solution is periodic on the boundaries, or where the boundary conditions can be

approximated as being periodic. For aperiodic boundary value problems, a more appropriate

set of basis functions are the Chebyshev polynomials, which will serve as the core of the

numerical work contained within this thesis. Unlike the Fourier basis functions, Chebyshev

polynomials have fixed end points, and as such can be applied to problems subject to

aperiodic boundary conditions.

2.1.1 Chebyshev polynomials

These Chebyshev polynomials correspond to a family of orthogonal polynomials with nu-

merous important applications in numerical analysis and scientific computing, including in

numerical schemes; for polynomial interpolation; and within random matrices. The Cheby-

shev polynomials of the first kind—denoted by Tj—correspond to eigenfunctions of the

singular Sturm–Liouville problem

d

dx

(√
1− x2

dTj
dx

(x)

)
+

j√
1− x2

Tj(x) = 0, −1 ≤ x ≤ 1. (2.1)

These eigenfunctions have been well studied (Canuto et al., 1988, Mason and Handscomb,

2002) and admit solutions of the form

Tj(x) = cos(j cos−1 x) x ∈ [−1, 1], j = 0, 1, . . . (2.2)

A useful property of these Chebyshev polynomials is their orthogonality relative to a

weighted inner product, which manifests as
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∫ 1

−1

Ti(x)Tj(x)√
1− x2

dx =


π if i = j = 0,

π
2

if i = j ≥ 1,

0 if i 6= j.

(2.3)

A consequence of this is that the Chebyshev polynomials must satisfy the three–term re-

currence relationship

Tj+1(x) = 2xTj(x)− Tj−1(x), j ≥ 1, (2.4)

where T0(x) = 1 and T1(x) = x (Canuto et al., 1988). This property in turn can be

leveraged to serve as the basis of numerical schemes constructed in terms of the Chebyshev

polynomials. These numerical schemes typically involve transforms from functions in real

space to a form in terms of a weighted sum of Chebyshev polynomials, which will henceforth

be referred to as Chebyshev space. This allows a function u(x) to be expressed as

u(x) =
∞∑
j=0

ûjTj(x) (2.5)

subject to the restriction that x ∈ [−1, 1], and where ûj ∈ R are the Chebyshev coefficients

of u(x), and x is evaluated at the Chebyshev collocation points xk, the form of which will

be discussed within Subsection 2.1.2. However, for the purposes of numerical schemes it

is difficult to incorporate a numerical discretisation that involves infinitely many terms, as

such we will instead consider the Chebyshev sum truncated to order N

u(x) =
N∑
j=0

ûjTj(x), u = u(x), (2.6)

The transform between u(x) and û is equivalent to a weighted Discrete Fourier Transform,

and the converse operation can also be performed using the Inverse Discrete Fourier Trans-

form (Trefethen, 2013).

2.1.2 Chebyshev Quadrature Points

Typically these polynomials in Chebyshev space are represented in terms of collocation (or

quadrature) points, with the choice of the distribution of points having implications for

integration and differentiation operators. As compared to other orthogonal polynomials—

such as the Legendre polynomials—the position and weights of the Chebyshev polynomials
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can be analytically determined, and take three forms: Chebyshev–Gauss, Chebyshev–Gauss–

Radau and the Chebyshev–Gauss-Lobatto points.

For this work, the collocation points employed are the Chebyshev–Gauss points, which take

the form

xn = cos
(2n+ 1)π

2N
n = 0, . . . , N − 1, (2.7)

for any integer N ∈ Z+.

2.1.3 Spectral convergence of Chebyshev approximations

Of particular importance for numerical schemes is how the accuracy of Chebyshev approxi-

mations improves with respect to the number of grid points employed in the discretisation.

If f(x) is a m times differentiable function evaluated upon the Chebyshev–Gauss quadrature

points, and the m-th derivative exhibits bounded total variation then the L∞ norm of the

difference between f(x) and its Chebyshev approximation pN of the form of equation (2.6)

behaves as

||f(x)− pN(x)||∞ = O(N−m)

Furthermore, if f(x) is infinitely differentiable, then the convergence rate must be faster

than O(N−m), and as such the approximating function exhibits spectral accuracy.

2.1.4 Differentiation in Chebyshev space

For the purposes of constructing Chebyshev methods, it is important to consider the con-

struction of both differential and integral operators. By recasting equation (2.2)—the gen-

eral form of the Chebyshev polynomials—through the change of variables x = cos(θ), so

that

Tj(x) = cos(jθ),

then it is possible to describe the derivative of a Chebyshev polynomial as

dTj(x)

dx
= −n sin(jθ)

dθ

dx
=
j sin(j cos−1(x))√

1− x2
. (2.8)
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As a consequence of this, the derivatives of a function u(x) expressed in terms of Chebyshev

polynomials

u =
N∑
n=0

ûnTn(x), u = u(x), (2.9)

can be evaluated by taking

du

dx
=

N∑
n=0

ûn
dTn(x)

dx
=

∑N
n=0 ûnn sin(nθ)√

1− x2
. (2.10)

Higher order derivatives can be similarly constructed through this approach, by simply

applying successive first–order derivatives.

The dependence upon (1− x2)
−1/2

imposes that equation (2.10) must be singular at x = ±1.

In general these derivatives exist, however the relationship used to calculate them no longer

holds at these extrema of the domain. Instead derivatives can be evaluated at the boundaries

of the Chebyshev domain by evaluating

T ′j(±1) = (±1)j+1 j2 for j = 0, . . . , N.

This inherent singularity is also present in higher order derivatives, however in a similar

vein to the formulation above

T ′′j (±1) = (±1)j
(
j4 − j2

3

)
, (2.11)

and when generalised to n-th order derivatives becomes

dnTj
dxn

(±1) = (±1)j+n
n−1∏
k=0

j2 − k2

2k + 1
. (2.12)

Just as the Discrete Fourier Transform can be used to calculate Chebyshev coeffi-

cients it is similarly possible to use the Fast Fourier Transform to calculate the

derivatives of a function u(x) on Chebyshev–Gauss–Lobatto points. Expressing u(x)

as U = {u(x0), u(x1), . . . , u(xN), u(xN−1), . . . , u(x1)}, then the Chebyshev coefficients ûk

can be calculated by taking
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ûk =
π

N

2N∑
j=1

e−ikθjUj, for k = −N + 1, . . . , N

which is the equivalent of taking the Fast Fourier Transform of U . Differentiating this gives

that the first derivative, expressed in Chebyshev space, must be equivalent to

Ŵk = ikûk, with ŴN = 0.

Higher order derivatives can be calculated within Chebyshev space by repeatedly applying

this process. This derivative can then be transformed back to real space via an operation

that is equivalent to taking the Inverse Fast Fourier Transform, so that

Wj =
1

2π

N∑
k=−N+1

eikθjŴk, for j = 1, . . . , 2N.

Rescaling these parameters then returns the solution to physical space

wj = − Wj√
1− x2

j

, for j = 1, . . . , N − 1

w0 =
1

2π

N∑′

n=0

n2ûn,

wN =
1

2π

N∑′

n=0

(−1)n+1n2ûn.


(2.13)

Here wj is shorthand for du(xj)/dx. Employing the Fast Fourier Transform to evaluate

derivatives exhibits O(n log n) scaling, which is significantly faster than performing the

equivalent operations manually, or by calculating the derivatives through the use of equa-

tion (2.8).

2.1.5 Integration in Chebyshev space

Integrating over Chebyshev quadrature points presents more flexibility, as the integral can

be evaluated in terms of its representation in either real or Chebyshev space. In real space

the integral of u(x) over x ∈ [−1, 1] can be approximated by the quadrature
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∫ 1

−1

u(x)dx ≈
n−1∑
i=0

wi

√
1− x2

iu(xi), (2.14)

subject to the requirement that xi must be defined upon the Chebyshev–Gauss points of

Subsection 2.1.2. Here the associated quadrature weights are wi = π
N+1

(Abramowitz and

Stegun, 1972).

An alternate approach to evaluating the integral of u(x) is to consider the problem in

terms of its Chebyshev coefficients û. By doing so, the integral over x ∈ [−1, 1] can be

constructed using Fejér’s rule (Fejér, 1933, Dahlquist and Björck, 2008)—otherwise known

as the Clenshaw–Curtis quadrature (Clenshaw, 1972, Daubechies, 1992)—by exploiting the

fact that

µk =

∫ 1

−1

Tk(x)dx =

0 if k is odd,

2/(1− k2) if k is even.

It then follows that associated quadrature weights of

wi =


2

1− i2
if i is even,

0 if i is odd,
(2.15)

can then in turn be used to calculate

∫ 1

−1

u(x)dx =
n−1∑
i=0

wiûi. (2.16)

As the form of µk can be determined without introducing any approximations this quadra-

ture formula does not introduce any numerical error into the construction of the integral,

beyond any introduced through the transforms between Chebyshev and real space.

2.1.6 Multiplication in Chebyshev space

While addition operations in Chebyshev space can be constructed trivially, evaluating the

product of functions within this space is significantly more complicated. For numerical so-

lutions to variable coefficient boundary value problems, any product between the coefficient

terms and their corresponding differential operators must be realisable within a matrix

formulation. One approach for these products is to treat them as a convolution operation,
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however it is not possible to discretise such an operation in terms of matrix products, and

as such convolution based approaches are not a viable approach when considering variable

coefficient boundary value problems.

An alternate approach can be found by considering the product of two functions a(x) and

u(x), both of which are represented in Chebyshev space through

a(x) =
∞∑
j=0

ajTj(x) and u(x) =
∞∑
k=0

ukTk(x).

Truncating these two polynomials to degree N allows the product to be represented in terms

of the Cauchy product

a(x)u(x) =
N∑
j=0

N∑
k=0

ajukTj(x)Tk(x) =
2N∑
k=0

ckTk(x),

subject to finding some c = (c0, c1, . . .). Following Baszenski and Tasche (1997), for the

case of Chebyshev polynomials ck has the closed form

ck =


a0u0

2
+

2N∑
j=1

ajuj for k = 0,

1
2

∑k
j=0 ak−juj + 1

2

∑N−k
l=1 (ajuk+j + ak+juj) for k = 1, . . . , N − 1.

This then allows the matrix multiplication of the vectors a and u to be written as a matrix

in terms of a multiplied by the vector u. However, this process is ostensibly O (N2)—which

is to say that for a polynomial truncated to order N , then the multiplication will require

on the order of N2 operations—and as such, is relatively inefficient. However, we will show

in Subsection 2.2.2 that it is possible to exploit the Gegenbauer polynomials to construct

matrices to represent such operations in a simpler manner.

2.1.7 Gegenbauer polynomials

For all their advantageous numerical properties, Chebyshev polynomials have limited utility

for constructing matrix operators for variable coefficient linear boundary value problems, as

the resulting matrix operators rapidly become singular with increases in the grid resolution.

However, this tendency can be avoided by instead turning to the Gegenbauer (otherwise

known as Ultraspherical) polynomials
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C
(λ)
j for j ≥ 0

The Chebyshev and Legendre polynomials correspond to limiting cases of these Gegenbauer

polynomials, as

Tj(x) = lim
λ→0+

j

2λ
C

(λ)
j (x).

The Gegenbauer polynomials exhibit the previously introduced advantageous properties of

the Chebyshev polynomials, while also introducing an advantageous sparsity to the matrix

operators. These polynomials are orthogonal with respect to the weight

(1− x2)λ−
1
2 ,

and take the form

C
(λ)
k =

2k(λ+ k − 1)!

k!(λ− 1)!
xk +O(xk−1).

More specifically, the Gegenbauer polynomials can be constructed in terms of the recurrence

relationship

C
(λ)
j+1(x) =

2(j + λ)

j + 1
xC

(λ)
j (x)− j + 2λ− 1

j + 1
C

(λ)
j−1(x), j ≥ 1, (2.17)

subject to C
(λ)
0 = 1 and C

(λ)
1 = 2λx for all λ ∈ Z+. One notable advantage of constructing

a numerical scheme in terms of the Gegenenbauer polynomials is that differentiation in

Chebyshev space can be expressed as

dkTj
dxk

=

2k−1j(k − 1)!C
(k)
n−k for j ≥ k,

0 for 0 ≤ j ≤ k − 1.

Consequently Chebyshev differentiation operators of any order can be represented by a

sparse matrix in Gegenbauer space. This compares favourably to the traditional approach

of constructing collocation based Chebyshev differentiation matrix operators, which results

in dense matrix representations.
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2.2 Spectral Methods for differential equations

Having now established the basic tools required for representing functions in terms of

Chebyshev and Gegenbauer polynomials, we can turn to the application of these basis

functions for constructing spectrally accurate solutions to linear boundary value problems.

Two such approaches will be presented in the proceeding work, the first of which involves

discretising one–dimensional boundary value problems with Chebyshev collocation matrices,

which have been suggested to be the most efficient numerical approach for solving variable

coefficient problems (Boyd, 2001). However, such methods produce dense, numerically

difficult matrices, and generally struggle in the presence of singular points. This latter

problem is of particular concern for problems incorporating domain transformations from

infinite and semi–infinite spaces to x ∈ [−1, 1].

The second approach is based upon the work of Olver and Townsend (2013), and lever-

ages the properties of both Gegenbauer and Chebyshev polynomials for a scheme that

demonstrates super–algebraic convergence through the use of sparse, almost–banded and

well–conditioned matrix equations. This technique involves constructing solutions to linear

equations within Gegenbauer space, in a manner which is both fast and able to handle

highly oscillatory functions.

2.2.1 Chebyshev collocation matrices for BVPs

Chebyshev collocation matrices can be used to construct solutions to linear differential

equations defined in terms of the arbitrary linear operator L :

L[u(x)] = f(x) subject to u(−1) = 0, u(1) = 0,

by partitioning the unknown solution u in Chebyshev space in the manner of equation (2.6).

By then exploiting the differentiability of the Chebyshev polynomials—following Subsec-

tion 2.1.4—the m-th order derivative at the collocation points can be expressed as

dmu

dxm
(xj) =

N∑
k=0

Dm
jku (xk) , j = 0, . . . , N, (2.18)

where D is the Chebyshev spectral differentiation matrix
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Djk =

(
1

2

)
cj
ck

(−1)(j+k+1)

sin
(
π

2N
(j + k)

)
sin
(
π

2N
(k − j)

) , j 6= k,

Djj =

(
−1

2

)
xk

sin2
(
πk
N

) , j 6= 0, N,

D00 = −DNN =
2N2 + 1

6
.


(2.19)

Being able to render all derivative operators in L in terms of powers of D makes this

Chebyshev collocation approach relatively simple to implement, as the operator

L[u(x)] =
L∑
l=0

al(x)
dlu(x)

dxl
= φ(x)

can be discretised in terms of the matrix equation

AU = G,

the components of which take the form

A =
L∑
l=0

alD
l,

al = diag [al (x0) , al (x1) , . . . , al (xN)] ,

U = [u (x0) , u (x1) , . . . , u (xN)]T ,

G = [φ (x0) , φ (x1) , . . . , φ (xN)]T ,


(2.20)

and the evaluation points {x0, x1, . . . , xN} are the Chebyshev collocation points.

2.2.2 Gegenbauer polynomials for BVPs

An alternate approach for constructing spectrally accurate solutions to boundary value prob-

lems was recently introduced by Olver and Townsend (2013), based upon the Gegenbauer

polynomials. To understand the properties of this scheme, we again consider the linear

boundary value problem

Lu(x) = f(x) and Bu(x) = c

L = aN(x)
dN

dxN
+ · · ·+ a1(x)

d

dx
+ a0(x),

 (2.21)
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Here u(x) is the unknown solution, subject to K boundary conditions expressed by the

linear differential operator B and where all three of c ∈ CK , {ai(x)|i = 0, 1, . . . , N} and

f(x) are smooth, non-singular functions.

Olver and Townsend (2013) noted that if the differentiation operators are represented in

terms of the Gegenbauer polynomials C
(α)
n (x) then, unlike Chebyshev based techniques,

the resulting matrix discretisation will be sparse. This intriguing property is a direct

consequence of the inherent sparsity in the mapping between Chebyshev and Gegenbauer

spaces. The resulting numerical discretisation will be sparse and banded, even for variable

coefficient boundary value problems. As such, solving numerical problems upon a Gegen-

bauer basis has significant numerical implications, both in terms of the time required to

solve these systems, and the memory required to solve the matrix operators. The Olver

and Townsend method also has the additional advantage of allowing linear boundary con-

ditions to be imposed in a flexible manner through boundary bordering, which means that

Dirichlet, Robin, mixed and integral boundary conditions can all be simply incorporated

into the numerical scheme.

To explore the process of solving linear boundary value problems upon a Gegenbauer basis,

let us first consider the generalised first–order linear operator

L =
d

dx
+ a0(x) (2.22)

applied to an unknown function partitioned upon a Chebyshev basis in the manner of

equation (2.6). Through Subsection 2.1.7 the derivative of u in terms of the Gegenbauer

polynomials is

du

dx
(x) =

N∑
k=1

kûkC
(1)
k−1(x), (2.23)

which can naturally be partitioned to take the form of a matrix operator acting upon ûk

for all k ∈ [1, N ]. As such the first–order linear differential equation can be partitioned as

the product of D1C1û, where D1 and C1 are square matrix operators in RN×N that take the

form
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D1 =



0 1

2

3

4
. . .


(2.24)

and C1 = C
(1)
k−1. From this equation (2.22) can be discretised as

L := D1C1 +M[a0], (2.25)

whereM[a0] ∈ RN×N is a matrix operator that when multiplied by û is equal to the discrete

form of a0u(x) in Chebyshev space. The structure ofM[a0] can be elucidated by considering

the discretisation of a0(x) in Chebyshev space, which allows the product to be expressed as

a(x)u(x) =
N∑
j=0

N∑
k=0

âjûkTj(x)Tk(x)

This sum of sums can be simplified through the results of Subsection 2.1.6 to take the form

a(x)u(x) =
N∑
k=0

ckTk(x)

for some c = (c0, c1, . . .). Solving for c reveals that M0[a0] takes the form of the sum of a

Toeplitz matrix and a modified Hankel operator, so that

M0[a] =
1

2




2a0 a1 a2 · · ·

a1 2a0 a1
. . .

a2 a1 2a0
. . .

...
. . . . . . . . .

+


0 0 0 · · ·

a1 a2 a3
. . .

a2 a3 a4
. . .

...
. . . . . . . . .



 .
While the differential operator acts in Gegenbauer space, as it is entirely constructed in

terms of the Gegenbauer polynomials of the second kind C
(1)
k , the same does not hold for

the multiplication operator. As this operator is constructed as a product of the Chebyshev

polynomials of the first kind Tk, it must exists in Chebyshev space, rather than Gegenbauer

space. This suggests that equation (2.25) must be modified so that both of its terms exist

in Gegenbauer space.
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This modification can be constructed by introducing an additional operator that maps be-

tween Tk and C
(1)
k must be introduced. Through equation (2.17) the recurrence relationship

Tk =


1
2
(C

(1)
k − C

(1)
k−2) k ≥ 2,

1
2
C

(1)
1 k = 1,

C
(1)
0 k = 0,

can be derived, and any series in terms of Chebyshev polynomials of the first kind can

instead be represented as

∞∑
k=0

ukTk(x) = u0C
(1)
0 (x) +

1

2
u1C

(1)
1 (x) +

1

2

∞∑
k=2

uk(C
(1)
k (x)− C(1)

k−2(x))

= (u0 −
1

2
u2)C

(1)
0 (x) +

∞∑
k=1

1

2
(uk − uk+2)C

(1)
k (x).

(2.26)

Expressing this conversion process as the application of an operator S0 ∈ RN×N

S0 =


1 −1

2
1
2

−1
2

1
2

−1
2

. . . . . .

 (2.27)

acting on û allows the operator equation (2.22) to be discretised as

Lû = S0f ,

L : = D1 + S0M0[a].

}
(2.28)

The process for discretising linear operators can be generalised to equations involving higher

order derivatives following a modified version of the procedure outlined above. In terms of

the Gegenbauer polynomials C(λ), we can write the general form of the derivative as

dC
(λ)
k

dx
(x) =

2λC
(λ+1)
k−1 k ≥ 1,

0 k = 0.

Using the recurrence relationship
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C
(λ)
k =


λ

λ+k

(
C

(λ+1)
k − C(λ+1)

k−2

)
k ≥ 2,

λ
λ+1

C
(λ+1)
1 k = 1,

C
(λ+1)
0 k = 0,

(2.29)

which holds for λ ≥ 1, it can be deduced that

dλu

dxλ
(x) =

N∑
k=1

kûk
dλ−1C

(1)
k−1(x)

dxλ−1
= 2λ−1(λ− 1)!

N∑
k=λ

kûkC
(λ)
k−λ(x). (2.30)

and as such the λ–order differentiation operator must be

Dλ =



λ times︷ ︸︸ ︷
0 . . . 0 λ

λ+ 1

λ+ 2

λ+ 3
. . .


. (2.31)

As Dλ converts coefficients from a Chebyshev series to a C(λ) series, and a linear operator

might involve operators of the form Dλ,Dλ+1, . . ., there is also the need to construct a

generalised conversion operator to act upon C(λ), in order to express it in terms of a C(λ+1)

series. Through equation (2.29) this conversion operator is expressed as

Sλ =



1 − λ
λ+2

λ
λ+1

− λ
λ+3

λ
λ+2

− λ
λ+4

λ
λ+3

. . .
. . .


. (2.32)

Here Sλ converts from Chebyshev space to Gegenbauer space, and takes the form of a

sparse banded operator.

The final piece in constructing a linear operator involving arbitrary orders of differentia-

tion is the multiplication operators in terms of higher order C(λ) series. Again following

Subsection 2.1.6, the product of two equations discretised in terms of Gegenbauer series
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a(x) =
∞∑
j=0

ajC
(λ)
j (x) and u(x) =

∞∑
k=0

ûkC
(λ)
k (x),

must be able to be rendered as

a(x)u(x) =
∞∑
j=0

∞∑
k=0

ajûkC
(λ)
j (x)C

(λ)
k (x). (2.33)

To render this as single sum in terms of C
(λ)
j Olver and Townsend (2013) noted that, in a

manner that follows Carlitz (1961)

C
(λ)
j (x)C

(λ)
k (x) =

min(j,k)∑
s=0

cλs (j, k)C
(λ)
j+k−2s(x),

for which the coefficients of C
(λ)
j+k−2s(x) are

cλs (j, k) =
j + k + λ− 2s

j + k + λ− s
(λ)s(λ)(j−s)(λ)(k−s)

s!(j − s)!(k − s)!
(2λ)(j+k−s)

(λ)(j+k−s)

(j + k − 2s)!

(2λ)j+k−2s)

.

Within this (λ)k is shorthand for the Pochhammer symbol

(λ)k = (λ+ k − 1)!/(λ− 1)!

The above result in conjunction with equation (2.33) gives

a(x)u(x) =
∞∑
j=0

 ∞∑
k=0

k∑
s=max(0,k−j)

a2s+j−kc
λ
s (k, 2s+ j − k)uk

C
(λ)
j (x),

which then gives that the multiplication operator in terms of a C(λ) Gegenbauer series must

be

Mλ [a]j,k =
k∑

s=max(0,k−j)

a2s+j−kc
λ
s (k, 2s+ j − k), for j, k ≥ 0.

Focusing now on the discrete approximation

a(x) =
m∑
j=0

ajC
(λ)
j (x) and u(x) =

m∑
k=0

ûkC
(λ)
k (x)

then Mλ [a] can instead be expressed in terms through the recurrence relationship
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cλs+1(j, k + 2) = cλs (j, k)
j + k + λ− s

j + k + λ− s+ 1

λ+ s

s+ 1

j − s
λ+ j − s− 1

2λ+ j + k − s
λ+ j + k − s

k − s+ λ

k − s+ 1
,

(2.34)

where the starting point to this recurrence process can be found by evaluating

cλ0(j, k) =

j−1∏
t=0

λ+ t

1 + t
×

j−1∏
t=0

k + 1 + t

k + λ+ t
. (2.35)

Incorporating all of the above results allows the general discretised linear operator for equa-

tion (2.21) to be expressed in Gegenbauer space as

L :=MN [aN ]DN +
N−1∑
λ=1

SN−1 . . .SλMλ[a
λ]Dλ + SN−1 . . .S0M0[a0]. (2.36)

The solution to the linear system incorporating this operator can be found in O(N) time,

and gives the solution in Chebyshev space, which can then be converted to real space using

a discrete cosine transform. This technique is advantageous, as it allows for super–algebraic

convergence for variable coefficient linear differential equations of arbitrary order, while

only requiring the solution of an almost banded, sparse and well–conditioned linear system.

This is due to the product of all the operators being sparse and banded—with the exception

of the first n rows of an n-th order differential equation, which are allocated to the boundary

banding.

Furthermore, while deriving this technique we did not need to place any restrictions on the

form of the boundary operator B. In fact, for a boundary operator

Bu = c,

then B is free to be any K linear boundary conditions, subject to the restriction that c ∈ CK .

This means that we can implement a range of boundary conditions, from the standard mix

of Dirichlet and Neumann conditions, to more complicated conditions such as absorbing

boundary conditions; imposing that the solution integrates to a constant value or that it

evaluates to a fixed constant value over (−1, 1). These can be implemented by taking
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B =

(
T0(−1) T1(−1) T2(−1) T3(−1) · · ·
T0(1) T1(1) T2(1) T3(1) · · ·

)

=

(
1 −1 1 −1 · · ·
1 1 1 1 · · ·

)

which implements Dirichlet conditions. Neumann conditions can similarly be imposed by

B =

(
T ′0(−1) T ′1(−1) T ′2(−1) · · · T ′k(−1) · · ·
T ′0(1) T ′1(1) T ′2(1) · · · T ′k(1) · · ·

)

=

(
0 1 −4 · · · (−1)(k+1)k2 · · ·
0 1 4 · · · k2 · · ·

)

While Olver and Townsend (2013) mentions that the solution can be conditioned, using the

Clenshaw–Curtis quadrature as described in Subsection 2.1.5, to integrate to a constant,

we can in fact use the tools of the Gegenbauer method in order to condition the solution

so that a product of the solution integrates to a constant value. If d is a vector of the

Clenshaw–Curtis weights from equation (2.15), then∫ 1

−1

f(x)u(x)dx = dM0[f(x)]û, (2.37)

where dM0[f(x)] ∈ R1×n. This allows a broader range of conditions to be applied to any

linear equation (and in turn, any nonlinear equation solved using the Gegenbauer method

as a base). Combining these pieces together gives the matrix operator of the form

A


û0

û1

...

ûn−1

 =


c

Pn−KSn−1Sn−2 · · · S0f

 (2.38)

where
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A =

 BP
T
n

Pn−KL

 . (2.39)

Here L is the matrix created by equation (2.36), and Pj ∈ Rn×n is a projection operator

(Ij,0) constructed in terms of the identity matrix Ij, which has size Rj×j, and K is is the

number of boundary conditions being applied. The resultant matrix operators from this

system are sparse, almost–banded and can be solved in O(m2n) operations, and requiring

O(mn) storage, where n is the number of Chebyshev modes required to resolve the solution,

and m = 1 + (number of non-zero superdiagonals) + (number of non-zero subdiagonals).

The number of non–zero diagonals excludes the K dense rows corresponding to the bound-

ary conditions.

As an example of this, let us consider a linear, variable coefficient singular perturbation

problem for y(x) of the form

εyxx + (x2 − 0.52)y = 0,

y(−1) = 1,

y(1) = 2.

 (2.40)

The construction of a solution to this equation using standard perturbation schemes is not

viable, due to its lack of yx terms. However, WKB analysis does show that the solution

should exhibit two highly oscillatory regions. These regions should be contained within

x ∈ [−1,−0.5] and [0.5, 1] and oscillate with a frequency proportional to 1/
√
ε. To ex-

plore the behaviour of the Olver and Townsend (2013) solver, this equation was discretised

and then solved on a Gegenbauer basis, with the structure for ε = 10−6 shown in Figure 2.1a.

The solution presented herein accurately aligns with the dynamics predicted through WKB

analysis. While there is no known exact solution for this problem to analyse the accuracy of

this numerical solution, the convergence of the technique can still be assessed by examining

the Cauchy error, as seen in Figure 2.1b. This figure presents the L2 norm (denoted by

|| · ||2) of the difference between ŷm and ŷn, for m = d1.01ne. To make the comparison

between solutions at different resolutions, the comparison is made between the coefficients

in Gegenbauer space, denoted by ŷ, rather than real space, due to the difference in grid

point spacing as the spatial resolution increases. For n between 376 and 512 the error
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Figure 2.1: Numerical solution of equation (2.40) using the Gegenbauer method for ε = 10−6,
as well as its convergence behaviour with n, where m = d1.01ne.

decreases in a spectral manner, to the point where the Cauchy error confirms that the

solution has converged, up to machine precision, and is independent of the number of

coefficients for Gegenbauer polynomial expansions of order n ≥ 512. The sparsity of the

linear matrix operator for a solution constructed for n = 212 Gegenbauer coefficients can

be seen in Figure 2.2. The entire matrix system has been discretised using five diagonal

elements, as well as two rows at the top of the matrix that account for the effect of the

boundary conditions. For this discretisation, the number of nonzero elements corresponds

to a sparse matrix where only 0.17% of the matrix elements are filled. The banded nature

of this matrix, and the low fill–in density it exhibits has significant implications for the

computational efficiency of the scheme, due to the reduced interdependence of the equations

being solved.

2.3 Solving nonlinear differential equations

As useful as these solvers are, they are inherently limited in the types of problems they can

approach. To consider the broader set of nonlinear differential equations, many tools can

be considered, with Newton iteration being far and away the most commonly employed.
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Figure 2.2: Sparsity structure of the second–order linear differential Gegenbauer space op-
erator for equation (2.40), where the non-zero elements are coloured.

Newton iteration uses Taylor series expansion about the zeros of a function to construct an

iterative scheme. For a nonlinear problem of the form

f(x) = 0 (2.41)

then the tangent g(x) to the function f(x), at the point x = xn, must be

g (x) = f (xn) + J (xn) (x− xn) ,

which is expressed in terms of the Jacobian matrix J (xn). To aide in the search for a

solution that satisfies f(x) = 0, we will impose that g (x) is similarly equal to zero so that

0 = f (xn) + J (xn) (x− xn) .

While x, the solution to this equation, is not guaranteed to also solve equation (2.41), we

can still propose that the above equation is equivalent to

0 = f (xn) + J (xn) (xn+1 − xn)
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which in turn gives rise to the iterative scheme

xn+1 = xn − J (xn)−1 f (xn) . (2.42)

This approach can be discretised in terms of Gegenbauer technique of Subsection 2.2.2 by

considering the more general case of infinite–dimensional Newton iteration (Birkisson and

Driscoll, 2012, Driscoll et al., 2008). Following Olver and Townsend (2013), and considering

a nonlinear problem of the form

Lu+ g(u) = f

Bu = 0,

}
(2.43)

where L and g(u) are strictly linear and nonlinear functions respectively, then employing

infinite–dimensional Newton iteration results in the iterative scheme

uk+1 = uk +

(
B

L − g′(uk)

)−1(
0

Luk + g(uk − f)

)
. (2.44)

However, since the matrix being inverted is a function of the solution itself, the bandedness

of the Gegenbauer multiplication operator is not preserved through this process. As a result,

the computational cost for solving nonlinear equations using this technique does not display

the same advantages as the Gegenbauer method for linear differential equations, negating

the primary advantage of these basis functions. Furthermore, our initial testing encountered

significant convergence control issues when implementing infinite–dimensional Newton iter-

ation for nonlinear problems, further underscoring the need to consider alternate techniques.

The poor scaling of infinite–dimensional Newton iteration can be somewhat negated by

considering inexact Newton’s methods, which relax the requirement to exactly solve the

matrix equations in equation (2.42). In doing so, the speed of constructing an approximate

solution can be enhanced by replacing the matrix solver with an approximate method,

such as Conjugate Gradient (Concus et al., 1976), or Newton–Krylov iteration. By doing

so, the solution to the iterative step can be thought to be x̂n+1, where x̂n+1 ≈ xn+1.

Any inaccuracies in the calculation x̂n+1 are immaterial, as they will be resolved through

continuing the iterative process. Through this process nonlinear systems of differential

equations can be solved with a lower computational cost than would be required for solving
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the system exactly.

Another alternative to Newton’s method is nonlinear relaxation, which involves decompos-

ing the nonlinear equation into a series of smaller sub-problems. If each of these can be

solved independently in an iterative loop that employs the previous iterations results, then

a solution to the full nonlinear equation may be able to be found. Two commonly employed

relaxation based techniques are the Jacobi–Newton and Seidel–Newton algorithms (Ortega

and Rheinbolt, 1970).

For a nonlinear differential equation of the form f(x) = 0, Jacobi–Newton attempts to

construct a solution by solving

fi
(
xm1 , . . . , x

m
i−1, x

m+1
i , xmi+1, . . . , x

m
n

)
= 0

for xm+1
i . Here the subscript denotes the position in space and the superscript denotes the

iteration number. These equations are solved using Newton’s method. In a similar fashion,

Seidel–Newton iteration solves the nonlinear differential equation by seeking solutions to

fi
(
xm+1

1 , . . . , xm+1
i−1 , x

m+1
i , xmi+1, . . . , x

m
n

)
= 0

for xm+1
i using Newton’s method. The fundamental difference between these two methods

is that Seidel–Newton uses the (m + 1)-st iteration at each point if it has been previously

calculated, otherwise the m-th iteration is used.

Another approach for solving steady differential equations is to construct an analogous

unsteady differential equation, that should approach the solution in the long time limit.

The resulting unsteady nonlinear equations can then be solved using a number of iterative

methods, including Runge–Kutta and its variants (Canuto et al., 1988, Hairer and Wanner,

1996); split–step Fourier methods (Atabakan, 1974, Yoshida, 1990); exponential integra-

tor based techniques like Exponential Time Differencing methods (Cox and Matthews,

2002) and the Accelerated Imaginary–Time Evolution method (Yang and Lakoba, 2007).

The latter of these involves manipulating the equation so that time occurs in the set of

imaginary numbers, and where the iteration is constructed using a preconditioning system

that enhances convergence. While all of these methods are able to construct solutions to

unsteady nonlinear systems, there is no guarantee that the initial conditions will converge
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upon a steady solution. Furthermore, the computational cost of the iterative scheme can

be significantly higher than directly solving the ODE, due to the amount of iterative steps

required to resolve the time invariant solutions.

The approaches outlined above—Newton methods, inexact Newton methods, nonlinear re-

laxation and time stepping techniques—represent the most commonly used approaches for

constructing numerical solutions of nonlinear differential equations. However, all of these

techniques share similar limitations, in that their representations in terms of dense matrices

results in systems that require time commitments that scale nonlinearly with respect to the

grid resolution employed for the scheme. This in turn introduces an unfavourable interplay

between numerical error and the computational time required to solve a system to within a

desired tolerance.

2.4 Numerical Continuation

Solutions to equations, especially nonlinear equations, often do not exist in isolation, but

rather families of solutions can exist, tied together within some parameter space. As such,

it is important to consider numerical tools for exploring these families of solutions. For

nonlinear problems, the approaches to explore parameter dependence broadly fall under the

categories of continuation, embedding and homotopy problems. In a most general sense,

these techniques construct continuous deformations between different systems of equations.

Continuation methods can be used to extend results obtained at one position in parameter

space—where the calculations may be relatively easy—to a position where the solution is

much harder to construct. Continuation methods can also be used to compute and contrast

solutions of equations where the boundary conditions change (Kawahara et al., 2012).

Mathematically, continuation techniques can be traced back to Poincare (1881), and in their

most general form involve a mapping F : Rn × R→ Rn described by the equation

F (x, λ) = 0 (2.45)

in terms of x ∈ Rn and a scalar λ ∈ R, which defines the continuation problem. Geomet-

rically, this equation defines a one–dimensional curve in Rn+1 subject to the properties

of the equation F, which, in this context, can be thought of as a mapping. Continuation

techniques then seek to follow the one–dimensional curve, by considering that if (x0, λ0)

is a regular solution of F(x, λ) = 0, then it follows that in the neighbourhood of x0
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there should be a family of solutions that can be parametrised by x(s)—where s is an

an arbitrary parameter—subject to x(0) = x0. If x(s) exists for s 6= 0, then a range of

solutions in parameter space should be able to be constructed. Continuation then is the

process of gradually deforming the solutions of the problems in parameter space, from

a straightforward problem to something more formidable by moving in small parameter

increments.

Numerical continuation is a family of numerical algorithms for generating the solution

curve, with natural continuation and psuedo-arclength continuation being popular exam-

ples from a group of methods known as predictor–corrector methods (Kuznetsov, 1998).

These techniques begin by predicting a new point on the solution curve, before iteratively

refining it until a solution to equation (2.45) is found, if it exists. While these techniques

are somewhat parellizable, they are fundamentally sequential techniques, with previously

calculated points required to predict the next solution point on the curve in parameter

space. These methods are heavily dependent upon adaptive routines for adjusting the step

size between known points on the solution curve and the next predicted point. Adaptive

step–sizing algorithms are often heuristics based upon the rate of convergence (or lack

thereof) of the technique at the previous prediction step and the amount of curvature in

the solution in parameter space (Allgower and Georg, 2003). When the solution fails to

converge, the step size is shortened and a new predictor step is constructed. This, however,

gives rise to one of the fundamental problems of numerical continuation: there will be

multiple steps where calculation time is wasted on solutions for which the step size is too

large for convergence. Beyond this, there is also an interplay between step size and the rate

of convergence, which is difficult (if not impossible) to optimise.

To further explore the idea of continuation, let us re-frame equation (2.45) as

F(z) = 0, where z = (x, λ) ∈ Rn+1, (2.46)

where we have concatenated the n-length vector x and the scalar λ that describes our

position in parameter space into a Rn+1 vector z, where λ will exist over some bounded

domain [λmin, λmax] ⊆ R. The above equation will have corresponding Jacobian derivatives,

which are matrices of the appropriate size that take the form

Fλ ≡
∂F

∂λ
∈ Rn+1, Fx ≡

∂F

∂x
∈ Rn×n, and Fz ≡

∂F

∂z
∈ Rn×(n+1). (2.47)
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Then, if we assume that we have a known solution x at λ = λmin, we will then search for a

vector x? at λ? = λmax that satisfies

F (x?, λ?) = 0,

by deforming from the solution at λ = λmin. The most basic form of continuation is that,

given a solution (x, λ) ∈ Rn+1 then a new point on the curve (x1, λ + h) can be found by

incrementing λ by a small, strictly positive h and then iteratively solving the n equations

for

F(x1, λ+ h) = 0

for the unknowns x1 ∈ Rn using any suitable nonlinear technique. This approach of

continuation is known as natural parameter continuation (Govaerts, 2000).

Natural parameter continuation is an effective tool for basic continuation techniques,

however it breaks down when there is a fold point—a point in which there is some degree

of inflection in the curve in Rn+1 parameter space. Physically this manifests itself as a

local or global maxima of λ, where the solutions are no longer one–to–one. Dickson et al.

(2007) and others have shown that this occurs when the Jacobian matrix Fx(x, λ) becomes

singular. In the neighbourhood of a fold point, any increasing perturbation of λ will yield

an inconsistent system of nonlinear equations that do not contain a solution, irrespective

of the magnitude of the step size perturbation h.

The psuedo-arclength continuation of Keller (1977) is one of the most common approaches

for traversing fold point singularities, which involves parametrising x and λ to be functions

of the length along the curve s. Psuedo-arclength continuation then uses the unit–length

tangent T ∈ Rn+1 to the curve for predicting the point at which the next solution may lie.

The tangent direction T can be calculated by finding the null vector of the Jacobian matrix

Fz. However, to this point the system is under–determined, and as such a closure must be

constructed in order to solve this system. This can be done by imposing that (x, λ) must

exist in the hyperplane orthogonal to the tangent direction T at a distance h from the

previously calculated solution.
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To expand upon this, if we have a solution (x0, λ0) of F(x, λ) = 0, and a direction vector

along the arc length curve (ẋ0, λ̇0), then we can search for new solutions

F(x1, λ1) = 0

(x1 − x0)∗ẋ0 + (λ1 − λ0)λ̇0 −∆s = 0

}
(2.48)

subject to the condition that ||ẋ1||2 + λ̇2
1 = 1 and a given step size ∆s. The pseudo–

arclength continuation equations are then typically solved by employing Newton iteration,

which involves solving the iterative matrix equation(
F(ν)

x1
F(ν)

x1

ẋ∗0 λ̇0

)(
∆x

(ν)
1

∆λ
(ν)
1

)
= −

(
F
(
x

(ν)
1 , λ

(ν)
1

)
(x

(ν)
1 − x0)∗ẋ0 + (λ

(ν)
1 − λx)λ̇0 −∆s

)
. (2.49)

The new direction vector is calculated through solving(
F1

x F1
λ

ẋ∗0 λ̇0

)(
ẋ1

λ̇1

)
=

(
0

1

)
(2.50)

subject to the condition that ||ẋ1||2 + λ̇2
1 = 1, which can be satisfied by rescaling (x1, λ1).

Following this approach it is impossible to disentangle the numerical continuation process

from the Newton iteration, and necessitates that each step of the continuation process

requires a significant amount of unique matrix inversions.

Another approach for continuation methods is to construct a homotopy between solutions

at two points in parameter space, with the intent to deform from one known solution onto

a new, unknown solution (Borisevich and Schullerus, 2012, Gunji et al., 2003). In order to

link a known solution F (u) at one position in parameter space, to an as yet undetermined

solution G(u) in the neighbourhood of F , then a homotopy H : Rn×R→ Rn can be defined

in terms of u = {x, λ} ∈ Rn+1 where

H(u, 1) = G(u), H(u, 0) = F (u).

Typically, homotopy continuation methods are defined by

H(u, q) = qG(u) + (1− q)F (u),

with methods attempting to trace a smooth curve from (u, q) = (u0, 0) to (u, 1), where

u0 is a known solution at a defined point in parameter space. This of course leads to the
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questions of: if the homotopy curve exists, is it finite and smooth, and how it can be found?

Allgower and Georg (2003) outlines that as a consequence of the implicit function theorem,

if the Jacobian matrix H ′(u) describing the matrix of partial derivatives of the homotopy

has maximal rank, then a smooth, finite curve can be constructed.

Annother approach for the arclength continuation is to consider a secant based method.

If we know some solution u0 = (x0, λ0) to the differential equation, then, we will assume

that our differential solver will converge upon a solution u1 = (x1, λ1) if it is given the

input u∗ = (x0, λ1) for some λ1 where |λ1 − λ0| is less than a small parameter ε. If such a

solution can be found, then we can construct a derivative u̇1 using finite differencing, which

can then be used to approximate the path along the arc, so that u2(s) = u1(s) + ∆su̇1.

This can be coupled with the condition that ||u̇n||2 = 1, as is the case for the traditional

psuedo–arclength continuation. More generally,

u̇n =
un − un−1

∆sn

||u̇n||2 = 1

u∗n+1 = un ±∆sn+1u̇n

 (2.51)

where u∗ = (x∗, λ∗) gives the approximate solution u∗ at the parameter space position λ∗.

From here a new solution along the branch in parameter space can be constructed as long

as x∗ is sufficiently close to the true solution at λ∗ for our nonlinear solver to solve N (x, λ∗)

given our initial predicted solution.

Of course, this leads to the question of how we can ensure that u∗ is close enough to our

true solution that the desired convergence will occur. This can be done by controlling

the step size ∆sn, and making it inversely proportional to the norm of the residual at the

previous step, and the gradient of the curve with respect to the parameter space variable λ.

To this point, the continuation has been considered in terms of (x, λ) ∈ Rn+1, where x is the

solution vector at a position λ in parameter space. However, continuation for a solutions

x ∈ Rn can be expressed in terms of a feature of x. Here the feature, g(x) can be a single

point of the vector, or the norm of the vector, or any other metric. This allows for the

continuation to be expressed in terms of a Rm+1 vector, where m � n—simplifying the

process of solving the system.
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2.5 Domain mappings

Both the linear and nonlinear solvers presented to this point share one fundamental limita-

tion, in that the numerical domain is limited to the region over which the basis functions

are defined. As both the Chebyshev and Gegenbauer basis functions are both defined upon

x ∈ [−1, 1], the range of problems that be directly approached using these techniques is

inherently limited.

Several methods have been developed in order to expand the range of applicability of

spectral methods. These can broadly be categorised as being part of one of two distinct

approaches: domain truncation and approximation using orthogonal systems (Boyd, 1982,

2001, Canuto et al., 2006, Shen and Wang, 2009). Orthogonal systems, which can include

the sets of Laguerre, Hermite and Jacobi polynomials, typically exist on unbounded

domains, and as such these polynomials can be used as the basis of a numerical method

for problems that exist on these domains (Boyd, 1980b, Christov, 1982, Guo et al., 2002).

While using orthogonal systems has its own unique advantages, the work contained within

this thesis will be focussed on domain truncation, as it is a more flexible approach that

can be leveraged for a large number of problem types, and can be flexibly integrated into

numerical schemes.

Domain truncation is a common and effective strategy for dealing with unbounded domains

and involves taking an unbounded domain and excising the component of the domain out-

side a defined, finite region. This truncated problem can then be solved either directly or

with augmented artificial or transparent boundary conditions to approximate the truncated

domain component.

In their most general form, a domain mapping can be expressed in the form

x = g(y; s) s > 0 and

y ∈ I := (−1, 1), x ∈ Λ := (a, b) for a, b ∈ [−∞,∞],

dx

dy
= g′(y; s) > 0 s > 0, y ∈ I,

g(−1; s) = a, g(1, s) = b, for Λ = (a, b).


(2.52)
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This imposes that the mapping g must be a one–to–one transform, subject to the positive

scaling factor s, which can be used to control the length of the resolved domain, and the

spacing of the collocation points. Furthermore, it must be true that the mapping is explicitly

invertible, where the inverse mapping is

y = g−1(x; s) := h(x, s), x ∈ Λ, y ∈ I, s > 0.

For the purposes of mapping from a domain, that has either been truncated to or exists for

x ∈ (a, b), the most commonly used mapping is the linear mapping

x = (b− a)
y + 1

2
+ a, y =

2x− b− a
b− a

.

For mappings on the semi-infinite line, where x ∈ Λ = (0,∞) to y ∈ I = (−1, 1), subject to

s > 0, the most common mappings are:

� Algebraic mapping, where:

x =
s(1 + y)

1− y
, y =

x− s
x+ s

.

� Logarithmic mapping:

x = s arctanh

(
y + 1

2

)
=
s

2
loge

3 + y

1− y
, y = −1 + 2 tanh

(x
s

)
.

� Exponential mapping:

x = sinh

(
s(1 + y)

2

)
, y =

2

s
loge

(
x+
√
x2 + 1

)
− 1,

where x exists in the truncated domain x ∈ (0, Ls) and Ls = sinh(s).

Similar mappings exist for the infinite line x ∈ Λ = (−∞,∞), where for s > 0 there exists:

� Algebraic mapping:

x =
sy√

1− y2
, y =

x√
x2 + s2

.

� Logarithmic mapping:

x = s arctanh(y) =
s

2
log

(
1 + y

1− y

)
, y = tanh

(x
s

)
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� Exponential mapping:

x = sinh(sy), y =
1

s
loge

(
x+
√
x2 + 1

)
,

where, once again, x exists in the truncated domain x ∈ (−Ls, Ls), where Ls = sinh(s).

The feature that distinguishes these mappings is that as y → ±1, x varies either al-

gebraically, logarithmically or exponentially for the corresponding mapping. Thus, by

carefully selecting the mapping, the distribution of collocation points can be changed to

increase the local point density within the centre or boundary regions of the domain.

Other options include constructing a mapping which redistributes the point distribution to

focus up regions exhibiting large local rates of change or oscillations, or to follow the same

distribution as the underlying collocation functions. This in turn can affect the performance

of the numerical scheme, as increasing the local point density of the collocation points

increases the local numerical resolution, which can affect both the numerical error of the

scheme, and confer the ability to resolve high frequency oscillations—such as those shown

in Figure 2.1a—without increasing the overall number of points across the domain. As

the Chebyshev–Gauss collocation points are distributed so that the frequency of points

increases as |x| → 1, it can be advantageous to employ a domain mapping to convert the

point distribution to one where points are evenly distributed across the domain, or are

concentrated about x = 0.

It must be noted that in all cases except linear mappings, introducing these transforms to

an ODE with constant coefficients will result in a variable coefficient equation subject to

potential boundary singularities. These singularities pose a significant numerical hurdle, due

to the difficulty of resolving the range of scales within the boundary region. Such problems

pose a particular challenge to techniques built upon Chebyshev collocation matrices, which

served as further motivation for the development of our novel numerical method in terms

of the Gegenbauer basis functions, as will be outlined in Chapter 3.

2.6 Discussion

Over the course of this chapter a review of the current state of knowledge for spectral

methods has been presented. Due to the motivating interest of solving nonlinear boundary

value problems, a particular focus has been placed upon problems defined in terms of both

the Chebyshev and Gegenbauer spaces. The latter of which is particularly interesting, as it
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encompasses both the Legendre and Chebyshev spaces, while also introducing some advan-

tageous properties. As the Gegenbauer polynomials are relatively unknown as a spectral

basis function, a particular focus was placed upon establishing the process for conducting

elementary operations within this space, including addition, subtraction, multiplication,

differentiation and integration. One of the novel results contained within this chapter

is the application of Clenshaw–Curtis quadratures to Gegenbauer methods, as shown in

Subsection 2.1.5 and Subsection 2.2.2.

These elementary operations were then extended in order to construct numerical discretisa-

tions for solving linear boundary value problems, using matrix methods defined in terms of

both the Chebyshev and Gegenbauer polynomials. While solving boundary value problems

in terms of these polynomials is intrinsically more complicated than the more common

approaches using local basis functions, spectral methods have uniquely advantageous

convergence properties. The most notable of these is that increases in the resolution of the

numerical discretisation result in exponential decreases in the error for spectral methods,

in contrast to the linear decrease in error for local methods.

While there is a wealth of literature considering the construction of numerical solutions

for boundary value problems in terms of the Chebyshev basis functions, all the employed

approaches share the same limitations, in that the resulting matrix equations are dense,

and have large conditions numbers that scale poorly with the resolution. As the condition

number grows, so too does the error that results from solving the resulting matrix equations,

eventually leading to the systems becoming ill-conditioned. Furthermore, as a consequence

of the density of the Chebyshev matrix operators, as the resolution of the numerical

discretisation increases so too does the computational cost of both storing the matrices in

memory, and for solving the resulting matrix equations.

These properties compare unfavourably to those exhibited by the Gegenbauer methods,

broadly based upon the work of Olver and Townsend (2013), which involve constructing

linear operators in terms of sparse matrix operators with low fill-in densities. This property

alone has significant implications to the computational cost of solving these systems, and

their ability to scale towards problems which require high grid resolutions. The sparsity of

these Gegenbauer matrices, and the convergence properties of this scheme with respect to

the resolution of the numerical discretisation were explored by considering the solution of a
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linear, variable coefficient singular perturbation problem in one–dimension. Within Chap-

ter 3 the properties of the Gegenbauer method will be further elucidated, in the context of

nonlinear problems, with a specific focus upon the techniques computational advantages.

As the ultimate aim of this work is to consider constructing solutions to nonlinear, variable

coefficient boundary value problems, a range of extensions of the aforementioned linear

solvers were introduced. These included a range of nonlinear solvers, alongside methods for

constructing domain mappings and performing numerical continuation. In aggregate, these

tools greatly expand the scope of problems that can be approached numerically within the

framework of spectral methods.

However, all the nonlinear solvers discussed within this chapter result in dense matrix

operators, that must be repeatedly solved in order to construct solutions for nonlinear

boundary value problems. As such, the techniques contained within this chapter will be

used as the basis for developing a new, spectrally accurate approach for solving nonlinear

boundary value problems in terms of sparse matrix operators, alongside solving innovative

approaches for approaching the associated continuation problems.
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Chapter 3

Homotopy Analysis Method

As a technique for solving nonlinear equations, the Homotopy Analysis Method (HAM) is

built around the idea of constructing a homotopy—an idea from differential geometry—that

defines a smooth, continuous deformation from one equation onto another. If this homotopy

can be found between the two functions, it follows that the same homotopy should also

hold for the solutions of the two equations, and thus allowing one known solution to an

equation to be deformed onto the unknown solution of another equation. This process was

first proposed by Liao (1992), and can be considered an extension of the Lyapunov and

Homotopy Perturbation methods.

The process of constructing this homotopy involves partitioning a nonlinear problem into an

infinite sequence of linear sub–problems, which can then be solved sequentially. One crucial

feature is that the technique introduces very few limitations upon the linear sub–problems

being employed in the solution process. Introducing an additional convergence control

parameter allows the technique to be applied to problems that have either been considered

intractable, or that have been limited to narrow regions of convergence. From a fluid

mechanics perspective these enhanced convergence control properties have been used to

further explore Blasius boundary layers (Liao and Campo, 2002), Magnetohydrodynamic

flow (Hayat and Sajid, 2007), steady-state resonant progressive waves (Xu et al., 2012) and

Von Karman swirling flow in the presence of viscosity (Yang and Liao, 2006).

Considering this technique in terms of the nonlinear differential operator N where

N [u(x)] = ψ(x), (3.1)
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the solution to this can be constructed by deforming from a solution of an arbitrary linear

differential equation L[u(x)] through the homotopy

H[φ(x); q] = (1− q)L[φ(x; q)− u0(x; q)]− q~H(x) (N [φ(x; q)]− ψ(x)) , (3.2)

A specific feature of the HAM is the introduction of the auxiliary convergence control param-

eters ~ and H(x), although the latter is almost uniformly set to 1 across all implementations.

The homotopy itself is controlled by the deformation parameter q ∈ [0, 1] and φ(x; q) is a

representation of the solution across q, corresponding to the deformation from a trial func-

tion u0(x; q) to u(x). The function φ(x; q) can be considered as a Maclaurin series in terms

of q

φ(x; q) = φ(x; 0) +
∞∑
m=1

1

m!

∂mφ(x; 0)

∂qm
qm (3.3)

= U0(x) +
∞∑
m=1

Um(x)qm, (3.4)

where

Um(x) =
1

m!

∂mφ(x; 0)

∂qm
.

By imposing, without loss of generality, that H = 0 then the behaviour of φ can be consid-

ered further in the context of the limits of q within equation (3.2). Therefore

H[φ(x; 0); 0] = L[φ(x; 0)− u0(x)], φ(x; 0) = u0(x),

H[φ(x; 1); 1] = N [φ(x; 1)]− ψ(x), φ(x; 1) = u(x).

}
(3.5)

This corresponds to deforming φ(x; q) from an initial guess of u0(x) onto the exact solution

u(x). This is contingent upon φ(x; q) being analytic at q = 0, and more broadly existing

over q ∈ [0, 1].

The existence and convergence of the scheme outlined in equation (3.2) is determined by

the choice of the two convergence control parameters ~ and H(x) and the auxiliary linear

operator L. The latter operator can be defined almost arbitrarily, although our testing has

indicated that the most efficient choice of L resembles the linearisation of N [u(x)]—an idea
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that will be explored later in this chapter.

Subject to the choice of L, the homotopy formulation of equation (3.2) can be employed

to solve an equation of the form equation (3.1) by substituting φ from equation (3.3) into

the homotopy equation equation (3.2), differentiating m-times with respect to q and then

setting q = 0. This in turn results in the sequence of serially dependent equations

L[Um(x)− χmUm−1(x)] = ~Rm,

Rm =
1

(m− 1)!

{
∂m−1

∂qm−1
N

[
m−1∑
n=0

Un(x)qn

]} ∣∣∣∣
q=0

− (1− χm)ψ(x),

χm =

0 if m ≤ 1,

1 if m ≥ 2.


(3.6)

The sum within Rm has been truncated to n ∈ [0,m − 1] as the terms of order qm and

higher will all vanish after setting q = 0, irrespective of the form of the nonlinearity. As

a consequence of this equation (3.6) must be strictly linear with respect to Um. This

result means that through careful choice of L, the system can be iteratively solved through

analytic, semi–analytic or numerical schemes.

As the homotopy parameter q maps the original equation at q = 0 to the motivating

nonlinear equation at q = 1, it follows that u(x) = φ(x; 1) in equation (3.3), i.e.

u(x) = U0 +
∞∑
m=1

Um(x). (3.7)

3.1 Convergence properties

While it is possible to construct u(x) of this form, it is not guaranteed to satisfy the

motivating nonlinear problem equation (3.1). As each Um is an implicit function of ~ and

L, then we can assume that equation (3.7) will converge to the solution of equation (3.1)

for some subset of these two parameters. Typically, implementations of the HAM treat

L as a constant, as changing it makes fundamental changes to the solution expression

of equation (3.6)—although such changes will be explored within Subsection 3.5.1. Subject

to a choice of L, the HAM implementations typically construct a family of solutions across

a range of ~ ∈ [−2, 0), which are then considered in terms of an additional, introduced
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convergence criteria. This criteria can be crafted in response to the problem at hand, but

common implementations include evaluating the function, or its derivatives, at a fixed

point along the domain; or considering the norm of the solution. This criteria should be

constant over a subset of ~ ∈ [−2, 0), and the solution set corresponding to this region

should satisfy equation (3.1).

A secondary approach, that is more typically suited to numerical implementations of the

HAM is to consider the Lp norm (or any other suitable norm) of the residual error. In the

case of the L2 norm this takes the form of

E(~) =

(∫
D
|N [û (x; ~)]− φ(x)|2 dx

)1/2

, (3.8)

where D is the problem domain. Since the integrand is a positive-definite function, then so

is the integral of the error, and as such there must be some ~opt for which

~opt = min
~
E(~). (3.9)

More formally, the convergence properties of the HAM can be explored through the following

theorems. The first three follow Liao (2013), and as such the proofs have been omitted from

this work, while the last is unique to this work.

Theorem 3.1. Suppose that T ⊂ R is a Banach space subject to a suitable norm || · ||, such

as || · ||∞, over which the sequence Um(x) is defined for some prescribed value of ~, and that

initial approximation U0 remains sufficiently close to the true solution u(x) of the original

equation. Taking r ∈ R6=0, then the following statements must hold:

(i) If ||Uk+1(x)|| ≤ r||Uk(x)|| for some ~ and an r over all k ∈ R+, then the series solution

ψ(t; q) converges uniformly at q = 1 to u(x) if and only if 0 < r < 1.

(ii) If ||Uk+1(x)|| ≥ r||Uk(x)|| for some ~ and an r over all k ∈ R+, then the series solution

ψ(t; q) diverges uniformly at q = 1 to u(x) if r > 1.

Theorem 3.2. If SN(x) is a convergent series at q = 1, then the series as N →∞ converges

exactly to the solution of the original nonlinear problem.

Theorem 3.3. If ||Uk+1(x)|| ≤ r||Uk(x)|| for some ~ and a r over all k ∈ R+, then the

error after M steps of the HAM process must be bounded by rM+1

1−r ||U0||.
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Theorem 3.4. Any sequence u(x) =
∑∞

M=0 UM(x) solved through equation (3.2) at H = 0

can only converge upon the solution of the motivating nonlinear problem if ~ ∈ [−2, 0).

Proof. To show this, let us consider a nonlinear equation formulated as

L[u] +N [u] = ψ, (3.10)

where L will also serve as the auxiliary linear operator, and N may contain linear compo-

nents. Decomposing this into an infinite sequence of equations through the HAM yields

Um − (χm + ~)Um−1 = ~L−1
[
Rm−1[Ûm−1]− (1− χm)ψ

]
and,

Rm−1 =
1

m− 1!

∂m−1

∂qm−1

(
N [

m−1∑
n=0

Unq
n]− (1− χm)ψ

)∣∣∣∣
q=0

,

 (3.11)

where Ûm−1 is the set of previously calculated solutions {U0, U1, . . . , Um−1}. It then follows

from Theorem 3.1 that a necessary and sufficient condition for convergence is that

||Um||
||Um−1||

≤ 1,

where || · || is a suitable norm in Banach space. Incorporating equation (3.11) into the ratio

of norms gives that

||Um||
||Um−1||

=
||(~ + 1)Um−1 + hL−1R[Ûm−1]||

||Um−1||
, (3.12)

where Ûj−1 is the set {U0, U1, . . . , Um−1}. Thus equation (3.12) must be bounded by

||(~ + 1)Um−1 + hL−1R[Ûm−1]||
||Um−1||

≤ |(~ + 1)|+ |h| ||L
−1R[Ûm−1]||
||Um−1||

. (3.13)

As convergence can only occur when ||Um||/||Um−1|| ≤ 1, it then must be that

||L−1R[Ûm−1]|| ≤ 1− |~ + 1|
|~|

||Um||. (3.14)

As || · || must be strictly positive, this identify can only be satisfied when

1 ≤ 1− |~ + 1|
|~|

, (3.15)
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which can only be satisfied for −2 ≤ ~ ≤ 0. In the case where ~ = 0 the iterative scheme

of equation (3.11) will produce a convergent infinite sequence, however, the scheme will

correspond to

U0 = L−1[φ],

U1 = ~U0 and

Um = (1 + ~)Um for m ≥ 2.

 (3.16)

As this iterative scheme is independent of N , it follows that the necessary, but not sufficient,

condition for any convergence to occur is that −2 ≤ ~ < 0.

3.2 Spectral Homotopy Analysis Method

While the original formulation of the HAM was built upon solving equation (3.6) alge-

braically, the scheme has since evolved to incorporate both computer algebra and numerical

discretisations. The latter approach, using spectral methods, falls under the aegis of

the Spectral Homotopy Analysis Method (SHAM). These semi–analytic and numerical

extensions were driven by one of the fundamental limitations of the HAM—in that the

auxiliary linear operator L must be chosen in such a way that the resulting equations

can be solved. Computer algebra approaches broaden the forms of L that can be solved

for, with the numerical framework increasing the set of admitted forms of L even further,

to the point where it is no longer a primary consideration when solving a nonlinear equation.

Motsa et al. (2010, 2012) were the first to consider strictly numerical analogues of the

HAM, using Chebyshev collocation matrices to develop what is now known as the SHAM.

Initial testing of this scheme demonstrated that the SHAM has the potential to significantly

outperform MATLAB’s inbuilt boundary value problem routine ‘BVP4C’ (Nik et al., 2013),

although a formal exploration of its numerical scaling has not been conducted.

The initial process for solving a differential equation using the SHAM follows that of the

HAM. Beginning with a nonlinear problem of the form

N [u] = ψ(x), (3.17)

this equation can be solved by constructing the homotopy
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(1− q)L[φ(x; q);u0(x)] = q~ (N [φ(x; q)]− ψ(x)) . (3.18)

Tthis homotopy equation can be solved by repeatedly differentiating with respect to q

and then normalising the resultant sequence of equations following the manner outlined

previously within this chapter. Rather than solving these equations in an analytic or semi–

analytic manner, the solutions can instead be constructed numerically in terms of the Cheby-

shev collocation matrices described within Subsection 2.2.1. This then yields the matrix

equation

Repeating the previously outlined process for solving these homotopy equations, we dif-

ferentiate with respect to q and then normalise the equations allows the iterative process

of equation (3.6) to be constructed numerically in terms of the Chebyshev collocation ma-

trices of Subsection 2.2.1 to yield the matrix equation

Um = χmUm−1 + ~A−1 [Nm] . (3.19)

Here A is the discretised matrix operators for the linear differential equation using the

Chebyshev collocation approach, and Nm is the matrix representation of Rm. Subject to a

choice of ~, the general numerical solution to the original nonlinear problem is then

U =
∞∑
m=0

Um. (3.20)

This approach to numerically discretise the linear differential equations that result from

using the HAM shares many of the same advantages and disadvantages of other collocation

based schema. While it does exhibit spectral accuracy in solving the resulting linear

problems, it does so at the cost of having to solve dense matrix systems. Beyond this, the

scheme is unable to handle variable coefficient differential equations, as the scheme under

these conditions has a condition number that grows rapidly with the grid resolution. This

final limitation is a particular problem when domain mappings from semi–infinite or infinite

domains are incorporated into the problem, in order to solve over the Chebyshev domain

x ∈ [−1, 1].
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3.3 Gegenbauer Homotopy Analysis Method

Motivated by the desire to exploit the advantageous convergence properties of the HAM

without being tied to the limitations of Chebyshev collocation matrices, the remainder

of this chapter will focus upon the development and testing of a new numerical scheme.

This will be built upon the Gegenbauer methods for linear boundary value problems—as

described in Subsection 2.2.2—to give a technique that we will call the Gegenbauer Homo-

topy Analysis Method (GHAM).

This method shares the Gegenbauer techniques advantageous properties of super-algebraic

convergence for smooth differential equations, as discussed in Chapter 2. However, in

contrast to other nonlinear solvers built upon the Gegenbauer method, the linear operator

does not change, and the sparsity of the matrix operator is preserved across the iterative

process. In aggregate these two effects have significant implications for the scheme’s

computational performance, which will be further explored within Section 3.5.

The nonlinear discretisation for the GHAM replicates the approach taken for the SHAM,

with the difference being in the application of the the boundary conditions. To understand

this, let us once again consider a nonlinear problem of the form

N [u(x)] = ψ(x), x ∈ (a, b)

B[u(a), u′(a), . . . , u(b), u′(b), . . .] = c.

}
(3.21)

Inhomogeneous boundary conditions have the potential to significantly complicate the iter-

ative process that will result from applying the HAM to this nonlinear problem. As such,

homogeneous boundary conditions can be imposed by solving the problem

L[u0(x)] = ψ(x),

B[u(x), u′(x), . . .] = c,

}
(3.22)

for an arbitrary auxiliary linear operator L, to construct a mapping for equation (3.21)

whereby

u(x) = v(x) + u0(x).
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An alternate approach is to arbitrarily construct a u0(x) that satisfies the inhomogeneous

boundary conditions, and applying that to the above mapping. In either case, this substi-

tution gives rise to the modified nonlinear equation

L1[v(x)] +N1[v(x)] = ψ1(x).

The process of decomposing u(x) into an equation with homogeneous boundary conditions

is not strictly necessary, however it does greatly simplify the process of enforcing the

boundary conditions for each of the steps of the homotopy process.

Within the framework of this modified nonlinear equation, a homotopy can be constructed

between the auxiliary linear operator L and the new nonlinear equation in the same manner

as described at the start of this chapter, resulting in the iterative scheme

L[vm − χmvm−1] = ~L1[vm−1] + ~Rm,

Rm =
1

(m− 1)!

∂m−1

∂qm−1
(N1 + (1− χm)ψ1)

∣∣∣∣
q=0

.

 (3.23)

This can then in turn be solved numerically using the framework developed within Subsec-

tion 2.2.2, which results in the numerical scheme

Vm = χmVm−1 + ~A−1 (A1Vm−1 + Nm) . (3.24)

Within this framework, Vm is the vector representation of vm, A and A1 are the constant

matrix operators corresponding to L and L1 respectively as represented through the Gegen-

bauer method, and Nm represents Rm. From this, the solution to the motivating nonlinear

equation equation (3.21) is then

U = U0 +
∞∑
m=0

Vm. (3.25)

The difference between this framework and that expressed by equation (3.19) within Sec-

tion 3.2, beyond the manner in which the matrices are discretised, stems from the mapping

to homogeneous boundary conditions.
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3.3.1 Evaluating Rm

One of the largest hurdles for implementing the HAM is calculating the form that the

nonlinear component of Rm will take. In analytic approaches, or approaches using symbolic

computer algebra packages, the chain rule process of evaluating

1

(m− 1)!

∂m−1N
∂qm−1

∣∣∣∣
q=0

is fairly trivial, however evaluating it within a numerical context introduces additional

hurdles. For polynomial nonlinearities, these derivatives can be described analytically by

expanding powers of
∑∞

i=0 Uiq
i and using Cauchy products so that

1

(m− 1)!

∂m−1N
∂qm−1

∣∣∣∣
q=0

=



∑m−1
i=0 UiUm−1−i for N = U2∑m−1
i=0 Um−1−i

∑i
j=0 UjUi−j for N = U3∑m−1

i=0 Um−1−i
∑i

j=0 Ui−j
∑j

k=0 Uj−kUj for N = U4

. . .

(3.26)

More broadly, polynomial nonlinearities involving varying derivatives of U can be expressed

in the same way. For example if N = UU ′U ′′U ′′′ (where primes denote successive orders of

differentiation), then the derivative of this function with respect to q will be

1

(m− 1)!

∂m−1N
∂qm−1

∣∣∣∣
q=0

=
m−1∑
i=0

Um−1−i

i∑
j=0

U ′i−j

j∑
k=0

U ′′j−kU
′′′
j .

However this approach is not extensible to non–polynomial nonlinearities, limiting the

potential applications of the numerical analogues of the HAM. One avenue to resolve

this is to simply take a power series expansion of N in terms of U , which would allow

any nonlinearity to be rendered as a sum of polynomial nonlinearities, the form of which

we have shown can be described in a closed form manner using Cauchy products. This

relies upon being able to calculate and analytically describe these expansions, which is not

always possible, and any ensuing truncation of the polynomial expansion would introduce

additional numerical error to the scheme.

An alternate approach for calculating these derivatives involves applying Faà di Bruno’s

formula evaluating derivatives involving the composition of two functions. Through this
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framework, the derivatives that result from methods based upon the HAM can be evaluated

as

1

(m− 1)!

∂m−1N
∂qm−1

∣∣∣∣
q=0

=
∑

k1+2k2+···+nkn=n

(
n

k1, k2, . . . , kn

)
G(r)(U0)

n∏
i=1

Uki
i .

Here (k1 + 2k2 + · · · + nkn = n) corresponds to the summation across the set of all non–

negative integer solutions {k1, k2, . . . , kn}—which amounts to count of each number in the

set of partitions of n; r = k1 + k2 + · · ·+ kn; and

G(r) =
d(r)N
dU (r)

.

The Faá di Bruno formula also admits a generalised form (Mishkov, 2000), which allows

derivatives to be constructed for nonlinearities involving u and varying orders of its spatial

derivatives by considering the chain rule for a vector argument. If we consider the vector

V = [U(q), U ′(q), U ′′(q), . . . , U (r)], then

1

(m− 1)!

dm−1N [V (q)]

dqm−1
=
∑

0

∑
1

∑
2

· · ·
∑
m−1

1∏m−1
i=1 (i!)ki

∏m−1
i=1

∏r
j=1 qij!

× ∂kN [U0, U
′
0, . . . U

(r)
0 ]

∂Up1∂(U ′)p2 . . . ∂(U (r))pr

×
m−1∏
i=1

U qi,1(U ′)qi,2 . . . (U (r))qi,r .

(3.27)

In this, the summation indices correspond to the full set of solutions to the non–negative

Diophantine equations
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∑
0

→ k1 + 2k2 + · · ·+ nkn = n,∑
1

→ q1,1 + q1,2 + · · ·+ q1,r = k1,∑
2

→ q2,1 + q2,2 + · · ·+ q2,r = k2,

...∑
m−1

→ qm−1,1 + qm−1,2 + · · ·+ qm−1,r = km−1.



(3.28)

The remaining indices pj and k are then

pj =
m−1∑
i=1

qi,j for j = 1, 2, . . . , r,

k =
r∑
i=1

pi =
m−1∑
j=1

kj.


(3.29)

This then allows any nonlinear operator to be decomposed into powers of its coefficients.

One interesting consequence of this formulation is that it is clear that the m-th derivative

will involve sums of products of the powers of {U,U ′, . . . , U (r)}, multiplied by derivatives

of the nonlinear operator solely evaluated at {U0, U
′
0, . . . U

(r)
0 }. Through this, we now have

the tools to construct the equations for the HAM without the need for symbolic algebra,

subject to the requirement that we are able to know and calculate the partial derivatives

∂kN [U0, U
′
0, . . . U

(r)
0 ]

∂Up1∂(U ′)p2 . . . ∂(U (r))pr
. (3.30)

Interestingly, while Faá di Bruno’s formula has been used in the context of the HAM by Ali

et al. (2010), the multivariate formulation has not.

3.3.2 Psuedo–code algorithm for evaluating problems with the

GHAM

To outline the process of solving a nonlinear problem using the GHAM, a psuedo–code

algorithm is outlined within Algorithm 1. This code can be invoked in several different

contexts. This algorithm can be called for a single ~, based either upon previous results

or through the process outlined within Section 3.6; or it can be used to approximate ~opt
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by calling the algorithm as part of a numerical optimisation process, based upon the error

after a small number of iterations.

Algorithm 1 Process for solving using the GHAM for a given ~, error tolerance et, and
maximum number of iterations nm

Define the auxiliary linear operator L
Define the nonlinear operator N
Discretise L upon the Gegenbauer basis
Establish the linear boundary conditions
Construct matrix operator A in the manner of Subsection 2.2.2
Precompute inverse, directly or through LU decomposition
Solve L(u0) = φ
Calculate R0

Solve L(u1) = ~N (u0)
Evaluate the error e
n = 2
while e > et and n < nm do

Evaluate Rn in the manner of Subsection 3.3.1
Solve L(un) = (~ + 1)L(un−1) + ~Rn

Evaluate the error e
n← n+ 1

end while

3.3.3 Solving the Falkner–Skan equation

In order to explore the numerical properties of the GHAM, in Cullen and Clarke (2017) we

considered the nonlinear Falkner-Skan equation, which models the high Reynolds number

flow past a flat plate inclined at an angle of attack by recasting the physical equations in

terms of the two-point boundary value problem

d3f

dη3
+ f

d2f

dη2
+ β

[
1−

(
df

dη

)2
]

= 0,

f(0) =
df

dη
(0) = 0,

df

dη
(η)→ 1 as η →∞.

 (3.31)

Here η and f are similarity variables representing the displacement and velocity respec-

tively, and the wedge angle of attack is πβ/2. A special case of this is the well known

Blasius equation for flow past a flat plate, which corresponds to the case where β = 0. The

Falkner-Skan equation is known to have a single solution for β ≥ 0, and two solutions known

as the normal and reverse flow solutions, based upon the sign of the second derivative on
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Figure 3.1: Normal flow solutions to the Falkner-Skan equation, and their first and second
derivatives, for a) β = 1 and b) β = −0.1

the boundary–for βmin ≤ β < 0, which was shown to by Fazio (2013) to be βmin ≈ −0.1988.

Implementing the GHAM in terms of a 512 point Chebyshev–Gauss discretisation, subject

to a linear mapping between the truncated domain x ∈ [0, 20] onto [−1, 1], equation (3.31)

was solved in MATLAB over 20 steps of the iterative process. This domain truncation was

justified by considering the rate in which ∂f
∂η

(η) approaches 1 as η increases, which reinforces

that the domain truncation is appropriate in the context of the original boundary condition

that ∂f
∂η

(η)→ 1 as η →∞.

Solutions to the Falkner-Skan equation using the GHAM were found over −0.198 < β < 5,

generating a range of solutions, with the solutions for the two indicative cases of β = −0.1

and 1 presented in Figure 3.1. A representative sample of these results, and comparison

results using the SHAM and MATLAB’s ‘BVP4C’ routine are presented in Table 3.1, where

it can be seen that with the exception of β = −0.195 there is strong agreement between

the solutions generated by all three techniques. Of particular note is the time required to

calculate these solutions—for a 512 Chebyshev grid at ~ = −1 for both the GHAM and the

SHAM, and a 50 point grid in ‘bvp4c’, it took an average of 0.039, 0.22 and 2.16 seconds

per calculation for the GHAM, the SHAM and ‘bvp4c’ respectively. It must be noted that

the disparity between the number of grid points between the homotopy based codes and

‘bvp4c’ is a product of the significantly slower computational performance of the latter.
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Figure 3.2: The relationship between β and f ′′(0). In blue are the solutions calculated using
the Homotopy based method, and in red are previously calculated solutions by Cebeci and
Keller (1971)

β

-0.195 0 0.2 0.6 1.0 1.2 2.0

GHAM 5.8× 10−7 4.8× 10−7 3.8× 10−7 3.6× 10−7 2.2× 10−7 3.1× 10−7 3.1× 10−7

‘bvp4c’ 2.3× 10−2 3.5× 10−6 9.4× 10−6 4.5× 10−6 2.8× 10−5 1.8× 10−5 2.2× 10−5

Table 3.1: Absolute error between calculated values of the skin friction coefficient f ′′(0)
and the reference case of the SHAM for both the GHAM and MATLAB’s ‘BVP4C’ routine,
presented for a range of β values.

A more comprehensive comparison of the relationship between β and the work of Ce-

beci and Keller (1971) is shown in Figure 3.2. With the exception of β = 0.6, the

solutions align to at least 3 significant figures. The disparity between the two appears

to be the result of a tabulation mistake in the original paper, as the presented result for

β = 0.6 aligns much more closely with β = 0.8 from the results calculated using the GHAM.

To assess the validity of this new technique, the rate of convergence of the L2 and L∞ norms

of the residual was considered for solutions constructed with the GHAM, shown in Fig-

ure 3.3 and Figure 3.4. The former figure is particularly noteworthy, as it demonstrates
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Figure 3.3: Error, evaluated as the L2 norm of the residual after 4 iterations, evaluated
against ~.

the convex nature of the error with respect to ~, and the clear computational advantage of

solving the problem at ~opt. In the case where β = 1, the solution at ~opt ≈ −0.9 took just

18 iterations for the residual to reach machine precision.

At this point it must be noted that the technique presented was unable to resolve the known

secondary solution within the region βmin ≤ β ≤ 0, as to this point there is no flexibility

within the scheme to admit multiple solutions. As such, we can now consider extensions to

the GHAM in order to consider problems which admit multiple solutions.

3.4 Solving problems with multiple solutions through

GHAM

Techniques based upon the HAM have previously considered such problems in terms of

boundary conditions modified to incorporate an additional free parameter. Multiple distinct

solutions can then be identified by varying the free boundary parameter until the problem

satisfies the original boundary conditions.
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Figure 3.4: Convergence of the residual at β = 1 and at the optimal ~. The L2 and L∞
norm of the residual in blue and red respectively.

An example of this can be found in Abbasbandy et al. (2009), who considers a nonlinear

boundary value problem that arises in the study of the kinetics of chemical reactions. This

problem is the one–dimensional reaction-diffusion model

d2u(x)

dx2
− φ2un(x) = 0

du(0)

dx
= 0, u(1) = 1,

 (3.32)

which describes a reaction in the presence of a porous catalyst (Sun et al., 2004). Here u is

the nondimensionalised reactant concentrate, x ∈ (0, 1) denotes the position transverse to

the catalyst, φ is the Thiele modulus and n ≥ −1 is the reaction order.

In order to solve this equation using the HAM, Abbasbandy et al. (2009) reconsidered the

motivating equation as the initial value problem

d2u(x)

dx2
− φ2un(x) = 0

u(0) = γ,
du(0)

dx
= 0.

 (3.33)
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Here γ is the auxiliary boundary parameter, that, in the manner of a shooting problem is

then iterated over until the equation satisfies the original boundary condition that u(1) = 1.

In the case when n = −1, this equation is rare in that it is a nonlinear boundary value

problem that admits a known, analytic solution (Magyari, 2008), which, in implicit form is

given by

x =
γ

iφ

√
π

2
Erf

[
i

√
ln

(
u

γ

)]
(3.34)

where i =
√
−1, and Erf is the error function. The inverse of this is

u = γ exp

−[InvErf

(√
2

π

i

γ
φx

)]2
 . (3.35)

Here InvErf is the inverse of the error function, which does not have a closed form description,

but can be calculated numerically. Substituting in the condition that u(1; γ) = 1, it follows

that the relationship between φ and γ is

γ

iφ

√
π

2
Erf

(
i

√
ln

(
1

γ

))
= 1. (3.36)

Reconsidering equation (3.32) through the GHAM requires recasting the problem as the

boundary value problem

d2u(x)

dx2
− φ2un(x) = 0

u(0) = γ, u(1) = 1.

 (3.37)

By then searching through the (~, γ) parameter space, the extra degree of freedom created

by the introduction of γ can be accounted for by searching for a solution that satisfies the

original boundary conditions from equation (3.32). An example of the results found for

φ = 0.6 can be seen in Figure 3.6. Two local minima can be seen at (~, γ) = (−1.89, 0.7789)

and (−0.8974, 0.1005), both of which correspond to the equivalent exact solutions given

by equation (3.36), and shown in Figure 3.5.

Figure 3.6 demonstrates the utility of varying γ for satisfying the original boundary condi-

tions of equation (3.32). As would be expected, the inherent nonlinearity of this problem

manifests in a strong sensitivity to the introduced boundary condition γ. More interestingly
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Figure 3.5: Relationship between γ and φ for equation (3.32), calculated both numerically
and through the implicit relationship equation (3.36).

is how the problem manifests its inherent sensitivity to the convergence control parameter

~. While the results are largely independent of ~ for the majority of ~ ∈ (−2, 0), both

exhibit distinct local minima within each band of distinct γ.

Repeating this process across φ ∈ [0, 0.8] perfectly recreates the solution profile of Fig-

ure 3.5. However, the computational cost for such an exploration is not trivial, due to the

requirement for high resolution sampling across the (~, γ) parameter space for each φ. This

cost can be somewhat mollified by constructing matrix operators for L that are independent

of φ, so the operators can be reused across all φ. However, the primary contributor to

the cost is simply the exploring the parameter space in terms of ~ and γ. The number of

sample points that need to be evaluated can be minimised by utilising a modified sampling

criteria—such a Latin hypercubes—or by utilising an optimisation technique to search

for the distinct local minima of the parameter space, however there is still, inherently, a

significant cost involved.
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Figure 3.6: Evaluating the boundary derivative du(0)
dx

of solutions of equation (3.37) for

φ = 0.6, and attempting to find solutions where du(0)
dx

= 0.

While the preceding technique is the standard method for approaching problems with multi-

ple solutions using variants of the HAM, the computational costs associated with it suggest

that there is significant scope for improvement. As such, several new tools will be introduced

to consider these problems within a numerical continuation framework.

3.4.1 Homotopy based hypersphere continuation

Numerical continuation regimes predominantly fall into two taxonomies—arc–length con-

tinuation and homotopy based continuation. While the techniques of Section 2.4 can be

adapted for nonlinear numerical methods, within this section two new numerical continua-

tion routines will be introduced, one which adapts the precepts of arc-length continuation

for solutions constructed using GHAM; and the second, discussed in Subsection 3.4.2, will

be a novel combination of both homotopy and arc–length continuation, in a manner that

exhibits some distinct advantages over standard techniques.

The first method involves taking a nonlinear problem of the form
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N [u(x), λ] = f(x), (3.38)

where λ defines the position in parameter space to be explored through the continuation

process. This formulation also applies to eigenvalue problems. If this equation was to be

solved using the GHAM for a fixed value of λ, u(x) would be decomposed into the Maclaurin

series in terms of q

u(x) = u0(x) +
∞∑
m=1

qmum(x)

∣∣∣∣
q=0

. (3.39)

For the purposes of considering the problem within a continuation framework, the parameter

λ can similarly be constructed in terms of the similar Maclaurin series

λ = λ0 +
∞∑
m=1

qmλm

∣∣∣∣
q=0

(3.40)

In the context of a continuation process, (u0(x), λ0) can be solutions calculated at a known

position in parameter space. The remaining values of λm can be solved concurrently with

the vj, following the method of equation (3.23). Of course, as a consequence of introducing

this extra set of unknown parameters, the system of equations will no longer be well posed.

In order to provide for a coherent progression from one known solution to a new unknown

solution at a different position in parameter space, the form of equation (2.48) can be

modified by introducing the closure(
dF (u(x))

ds

)2

+

(
dλ

ds

)2

= 1, (3.41)

where s is an imposed step length parameter, and F (u(x)) is some feature of the solution

space, as expressed in Chebyshev space. In this work we have considered several different

features, with the L2 norm || · ||2 in both the Chebyshev and real spaces, the mean value in

real space, the maximum value of the solution, and the value of the solution at x = 0. The

mean, and the value of the solution at x = 0 have been the most successful metrics tested.

In order to implement equation (3.41), a first order forward difference discretisation was

used for the derivatives, so that

(F (u(j)(x))− F (u(j−1)(x))2 + (λ(j) − λ(j−1))2 = ∆s2. (3.42)
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Here ∆s is an arbitrarily prescribed step size, that can be varied to control convergence,

and the superscript (·)(j) denotes the j-th solution in our continuation process (separate to

the solution in terms of our homotopy series), with (u(j−1), λ(j−1)) being a pairing of known

solutions, and (u(j), λ(j)) corresponding to the unknown set that is being solved for. When

expanded, this gives

− 2F
(
u(j−1) (x)

)
F
(
u(j) (x)

)
− 2λ(j−1)γ(j) +

(
F
(
u(j) (x)

))2
+
(
F
(
u(j) (x)

))2
+
(
λ(j)
)2

= ∆s2 −
(
F
(
u(j−1) (x)

))2 −
(
λ(j−1)

)2
. (3.43)

In this form, the first two terms are linear with respect to the unknown functions, the third

and fourth terms are nonlinear, and the right hand side is exclusively written in terms of

known solutions. As a result of this, we can simply implement this in terms of the GHAM

framework, and solve for λm concurrently with um at each stage of our iterative process.

The matrix used in the GHAM discretisation to describe the linear system can be modified

for the continuation process, with A able to be considered in the partitioned form

A =

(
B C

D E

)
. (3.44)

Here A is a matrix of size (n+ 1)× (n+ 1); (B,C) is the (n+ 1)× 1 vector corresponding

to equation (3.43); and E is the 1 × n size matrix that corresponds to the coefficients of

the term λ in the nonlinear equation. As the majority of the components of this matrix

are invariant with respect to the position in the condition process, the Sherman-Morrison

formula (Bartlett, 1951) can be leveraged in order to minimise the computational cost of

constructing new matrix inversions. It is also possible to use analogues of this scheme to

use the Sherman-Morrison formula to update LU decompositions of the matrix operator

(Quintana-Orti and Van De Geijn, 2008).

Computational Approach

In order to more easily differentiate between multiple solutions, the algorithm consid-

ers the starting point (u0, λ0) to be perturbations from previously calculated solutions at

(u(j−1), λ(j−1)), with multiple starting points constructed in the neighbourhood of the previ-

ously calculated solution. Each of these points is evaluated for a small number of iterative
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steps. The resultant (x̄, λ) combinations at each point are then classified into three groups,

following the rules:

1. If the calculated points lie upon the previously calculated curve, then these points are

discarded.

2. If the solutions converge up to the order of the iteration threshold but are not below

the error tolerance, they are placed into group 1.

3. If the calculated points converge and are below the specified error tolerance then they

are classified into group 2.

4. If the solutions upon the calculated points diverge, these points are discarded.

If groups 1 and 2 are empty, this suggests that either the solution has reached the end of its

branch, or that no solutions can be found at that step size. If so, the step size is decreased

and the problem is restarted. If these groups are non-empty, the sets can then be clustered

using an adaptive form of K-means clustering, based upon (Arthur and Vassilvitskii, 2007),

whereby the number of clusters is increased until there is no meaningful difference between

the clusters. For each cluster not in the neighbourhood of the previously calculated curve,

the lowest residual solution is selected, and, if it is not below the specified error tolerance is

iterated upon. Any distinct points that satisfy the hypersphere constraint equation (3.43)

and have a residual where the error is below the defined tolerance are considered to be

new points on the solution curve, which can then in turn be iterated upon, repeating this

process until either the solution curve rejoins itself, or the step size decreases below a

defined threshold, suggesting that the solution branch has no further solutions.

This routine can be parallelised at two points. The first is if the previously described

clustering identifies multiple solutions, then these points can be assessed independently. As

well as this the set of starting points (u0, λ0) about (u(j−1), λ(j−1)) can all be iterated upon

independently, giving rise for additional potential to parallelise the solution process.

3.4.2 Homotopic integrated arc–length continuation

While homotopy and arc-length based techniques have always been considered to be

distinct, separate forms of numerical continuation, it is in fact possible to construct an

arc-length continuation scheme based not upon the length between a known solution and
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a new solution in parameter space, but rather the length along the curve defining the

homotopy that connects these solutions using the Homotopy Analysis Method. This novel

method has the distinct advantage in that this path must exist if a solution can be con-

structed using the HAM, and if it exists then the path is guaranteed to be both smooth and

continuous, which means that any issues in navigating folds and bifurcations can be avoided.

To elaborate on this process, let us again consider a generalised nonlinear problem of the

form

N [(u(x), λ)] = ψ(x), (3.45)

which has a known solution at (u0(x), λ0). Within this framework one equation of the

vector N will correspond to the as yet unintroduced closure equation for the continuation.

The solution to this problem through the GHAM can be found by constructing a homotopy

between the auxiliary linear vector operator L[u(x)] and N [u(x), λ] where

H ≡ (1− q)L [(U,Λ)− (u0, λ0)] + q~ (N [(U,Λ)]− ψ(x)) .

In a similar manner to N , the operator L will include one equation that will be the starting

point of the homotopy deformation for the closure equation.

Defining both u(x) and λ as the Maclaurin series in terms of q

u(x) = U(x)

∣∣∣∣
q=1

= u0 +
∞∑
j=1

Ujq
j

∣∣∣∣
q=1

λ = Λ

∣∣∣∣
q=1

= Λ0 +
∞∑
j=1

Λjq
j

∣∣∣∣
q=1

 (3.46)

allows for the motivating nonlinear problem to once again be partitioned into a series of

linear equations. However, the introduction of the extra degree of freedom means that these

equations must be ill–posed. To resolve this, an arc–length constraint can be introduced

in order to close the system of equations. Rather than using the differential form of the

arc-length, the integral arc length

δs =

∫ 1

q=0

||u− u0||2 + |λ− λ0|2dq (3.47)
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can be introduced, where || · || is the L2 norm. This equation will form the component of

N corresponding to the closure.

As calculating this norm in real space would introduce significant computational hurdles,

this instead will consider the L2 norm in Chebyshev space. Substituting in the expansions

for u(x) and λ from equation (3.46) gives

|λ− λ0|2 =

(
∞∑
j=1

Λjq
j

)2

=

(
∞∑
j=0

cjq
j

)
− 2λ0

(
∞∑
j=0

Λjq
j

)
+ λ2

0, (3.48)

where cj =
∑j

k=0 ΛkΛj−k. From this, it follows that

∫ 1

q=0

|λ− λ0|2dq =

(
∞∑
j=0

cj − 2Λ0Λj

j + 1

)
+ Λ2

0. (3.49)

Similarly, we can say that

∫ 1

q=0

||u− u0||2dq =
N∑
n=0

((
∞∑
j=0

dj,n − 2u0,nUj,n
j + 1

)
+ u2

0,n

)
(3.50)

where the subscript n denotes the n-th Chebyshev mode of Uj, and similarly for cj we have

that

dj =

j∑
k=0

Uk,nUk−j,n. (3.51)

This means that the arc-length of the homotopy path is defined by

δs =
1

3
(
N∑
n=0

U2
1,n + Λ2

1) +
1

4
(
N∑
n=0

2U1,nU2,n + 2Λ1Λ2) +
1

5
(
N∑
n=0

2U1,nU3,n + U2
2,n + 2Λ1Λ3 + Λ2

2)

+
1

6
(
N∑
n=0

2U1,nU4,n + 2U2,nU3,n + 2Λ1Λ4 + Λ2Λ3) + . . .

(3.52)

This can then be partitioned so that
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1

3
(
N∑
n=0

U2
1,n + Λ2

1) = δs

N∑
n=0

2U1,nU2,n + 2Λ1Λ2 = 0

N∑
n=0

2U1,nU3,n + 2Λ1Λ3 = −
N∑
n=0

U2
2,n − Λ2

2

. . .


(3.53)

In the context of a perturbation scheme, the j-th line the left hand side involves (U1,Λ1)

and (Uj,Λj), and the right hand side involves the set of terms incorporating {Uk,Λk} for

1 < k < j. As such, each line can be considered to be a linear constraint upon (Uj,Λj),

which can be used to condition the solution (u, λ) so that it is of length δs from the pre-

viously known solution (u0, λ0). And, beautifully, because the coefficient of the unknowns

(Uj,Λj) are always 2U1 and 2Λ1 respectively, our matrix discretisation will remain constant

across all steps of the iterative process, which greatly simplifies the computational cost of

solving this nonlinear problem.

The only complication to this iterative process is the first line of equation (3.53), which,

crucially, is not a linear constraint upon (U1,Λ1). However, in the context of constructing a

solution using the GHAM, when we are solving for (U1,Λ1), our iterative scheme is solving

the equation

L[(U1,Λ1)] = ~ [N [(u0, λ0)]− ψ(x)] , (3.54)

which is a linear equation. This means that to solve for (U1,Λ1), we can think of

N2[(U1,Λ1)] ≡ 1

3
(
N∑
n=0

U2
1,n + Λ2

1)− δs = 0

as a nonlinear equation to be solved using the GHAM, where equation (3.54) is a linear

constraint. Thus if we introduce an auxiliary linear operator L2 so that

L2[U1,Λ1] =
N∑
n=0

U1,n + Λ1

then we can construct the homotopy between the linear solution and the nonlinear solution
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H ≡ (1− q)L2[V − V0, τ − τ0] + q~2N2[V, τ ], (3.55)

subject to the constraint equation (3.54). Here

U1 ≡ V

∣∣∣∣
q=1

= V0 +
∞∑
j=1

Vjq
j

∣∣∣∣
q=1

,

λ1 ≡ Λ1

∣∣∣∣
q=1

= τ0 +
∞∑
j=1

τjq
j

∣∣∣∣
q=1

,

 (3.56)

and (V0, τ0) correspond to the solution of L2[(V0, τ0)] = 0.

To this point we have yet to define the component of L that corresponds to the closure

equation. While this component shares the broader properties of L, in that it can be

defined almost arbitrarily, testing for this work has revealed that structuring it as

L̂ =
N∑
n=0

Um,n ± Λi (3.57)

allows for solutions moving up and down continuation branches to be explored by simply

changing the sign of equation (3.57).

The broader details of this continuation approach may appear on first appearance to be

almost identical to the continuation approach of Subsection 3.4.1—with the only difference

being that this approach using an integral arc-length, as compared to the differential form

of arc length in the earlier technique. This difference, while subtle, has profound differ-

ences in their respective explorations of the parameter space. Hypersphere continuation

approximates the arc-length as being the distance in physical space between the previously

calculated solution and the new solution in n–dimensional space; whereas the homotopy

arc–length continuation calculates the distance along the homotopy path between the

previously calculated solution and the new solution in Chebyshev space. Because the

latter’s parametrisation is in terms of the homotopy path, it is guaranteed to be smooth,

continuous and one–to–one between the two points, which allows the technique to easily

traverse folds and bifurcations. This is particularly advantageous in the case of folds,

which typically pose a significant difficulty to continuation schemes, which in turn imposes

that the step size of the continuation process must be lowered significantly—increasing the
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computational cost.

A secondary advantage of this homopotopy arc-length continuation scheme comes from how

the homotopy path is defined. While homotopy methods typically only consider the solu-

tions at the extrema of q—which for this problem correspond to the old and new positions

within the continuation process—φ(x; q) also encodes a family of solutions for q ∈ (0, 1),

that corresponds to different points along the homotopy curve. These points can be consid-

ered approximations to the true continuation path between the old and new solutions. As

such this approach provides additional information that relative to traditional continuation

schemes, which only provide the location of the old and new points along the parameter

space. This path of course must have a corresponding solution space, which can be used

as starting points for rapidly iterating upon the solution space along the true path through

the parameter space.

Testing

To explore the performance of this proposed technique, we again turn to the nonlinear

one–dimensional reaction–diffusion model of equation (3.32), as outlined in Section 3.4. Fig-

ure 3.7a presents the starting and end points of the continuation process (in black and

magenta), the true solution path (in blue), and the approximation to the solution path (in

red) for a single step of δs = 0.33 from the upper solution branch at (φ, γ) = (0.6, 0.7789)

towards the lower branch. This step length was chosen to demonstrate the length of the

traversal that is possible within this continuation framework, with the step length in this

case only being limited by the scope of the parameter space admitted by the original

problem.

In a surprising result, rather than the multiple small steps required of previous steps to

traverse folds—such as the one at φ ≈ 0.7—this new technique was able to accurately

traverse the jump from the upper branch of solutions to the lower branch in the parameter

space in a terms of a single step of the continuation process. Furthermore, while the

homotopy path—the red dashed line in Figure 3.7a—does not accurately match the true set

of solutions in parameter space, it is both indicative of the true curve, and can serve as the

starting point for accurately resolving the solutions along the curve. This can be performed

by iterating upon a solution for fixed φ, to refine the trial solution on the homotopy curve

through parameter space until they converge upon the true curve, without the need of any

additional continuation. This further heightens the efficiency advantage of this technique,
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Figure 3.7: Analytically determined parameter space (blue), starting point (black) and
end point of continuation (magenta), with the corresponding solutions for equation (3.32),
calculated using Homotopic integrated arc-length continuation with a step length of 0.33.
The continuation path is shown by the dashed red line.

as it can both accurately traverse large steps as part of the continuation process, but also

gives information about the solutions along the continuation path, which can be refined

without the more costly continuation process.

Lowering the step length to δs = 0.3 allowed traversals both up and down the parameter

space to be considered. Moving up the upper branch from the starting point in Figure 3.8

led to the parameter space position represented by the red diamond, while moving down

the branch lead to the solutions denoted by the red squares. The multiple lower branch

positions correspond to different convergent subsets of ~, and each exhibits its own distinct

homotopy curve within the parameter space.

3.5 Computational cost of the GHAM

As mentioned in Section 3.3, compared to other methods the GHAM exhibits superior

scaling, in terms of the computational time required to solve the resulting equations, due

to its sparse, constant matrix operators. This contrasts favourably with other techniques,
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Figure 3.8: Parameter space for equation (3.32) in blue, with the positions after using
Homotopic integrated arc–length continuation for a step length of 0.13 indicated by red
squares (for traversing down the branch) and diamonds (for traversing up the branch). The
starting point is given by the orange asterisk. The corresponding solutions of the solutions
constructed with the continuation method are included within Figure 3.8b.

as they generally require a dense discretisation, even when the techniques are expressed in

terms of the Gegenbauer basis functions.

These differences can be elaborated by considering the cost of solving the matrix equations

that result from these numerical schemes. Through the Coppersmith-Winograd algorithm,

the single matrix inversion required for methods based upon the HAM can be constructed

with O(n2.373) operation for a matrix system in Rn×n (Davie and Stothers, 2013, Le-Gall,

2014). From this point, each step of the matrix equation can then be solved with an

additional O(n2) operations for the requisite matrix–vector product at each step of the

homotopy iterative process. However, taking this approach results in a dense matrix

operator that corresponds to the inverse matrix, and as such the matrix–vector products

are in terms of dense systems—negating the fundamental advantages of considering a

Gegenbauer based approach. Furthermore, there is also a secondary cost corresponding to

the amount of memory required to store these dense matrices as n scales.
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Figure 3.9: Sparsity of a fourth–order variable coefficient boundary value problem, discre-
tised over 512 points using the GHAM.

An alternate approach for the GHAM involves considering the matrix inversion operations

in terms of LU decomposition (Horn and Johnson, 1985). This process factors a matrix

into a lower and upper triangular matrix, respectively known as the L and U matrices. By

doing so, the process of Gaussian elimination can essentially be encoded into the L and

U matrices, which reduces the complexity of solving the matrix systems at each step. In

essence, this involves recasting a matrix system

Ax = f (3.58)

as LUx = f and solving the equations

Lb = f

Ux = b.

}
(3.59)

Crucially, these two matrices are not necessarily dense matrices (as compared to the matrix

inversion), resulting in a decrease in the technique’s storage requirements.

To illustrate this, the sparsity of the matrix operator for a fourth–order boundary value

problem discretised using the Gegenbauer method over 512 points—shown in Figure 3.9—
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can be compared to its equivalent sparsity after LU decomposition in Figure 3.10. The

Gegenbauer discretisation clearly results in a sparse, diagonally dominated system for which

only 2.5% of the matrix components are non–zero. Across a range of test problems, the

total number of non–zero infill points for the LU decomposition was equivalent to between

1% and 46% of the amount of elements in a single equivalent dense Rn×n discretisation

matrix. While there is an inherent memory overhead incurred in the storing of sparse

matrices, as compared to their full equivalents, the decrease in the overall sparsity still

induces commensurate effects upon the memory footprint of storing these matrices

Beyond the implications of LU decomposition for the overall memory required to resolve

the matrix system, LU decomposition is desirable for its implications in terms of the time

required to solve these systems. For a dense matrix system, the cost of constructing the

original LU decomposition is O(n3) operations, with solutions of a matrix equation involv-

ing the LU decomposition able to be solved in O(n2) operations. For dense matrices these

scaling properties make LU decomposition a poor alternative to the Coppersmith-Winograd

algorithm, however in the case of sparse matrices the partial preservation of sparsity within

LU decomposition significantly improves the scaling of both the decomposition process,

and then of solving the resulting matrix equations. For systems where the number of

non–zero points is O(n), the theoretical lower bound on the number of operations for

both constructing the LU decomposition and evaluating the matrix–vector products is

O(n) +O(nnz) (Duff et al., 1986, Gilbert and Peierls, 1988). Numerical evidence of these

scaling properties will be discussed further within Subsection 3.5.1.

For the systems that result from using the GHAM, it was found that the most computation-

ally efficient and effective form of LU decomposition involves scaled pivoting—whereby the

relative magnitudes of points, rather than their absolute magnitudes, are taken into account

in the selection of the pivots. In brief, LU decomposition with scaled pivoting—known as

LUPQR decomposition—involves solving for the components R, P , Q, L and U for a matrix

A, for which

RPAQ = LU, so that

u = QU−1L−1PR−1f.

}
(3.60)

The specific details of how these auxiliary matrices can be constructed can be found in

Golub and Van Loan (1996). For the GHAM, the specific implementation of this process
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Figure 3.10: L and U matrices from a LU decomposition of a 29 × 29 grid, corresponding
to solutions of a nonlinear, variable coefficient viscous fluids problem , subject to the linear
operator L4 from equation (3.66).

was handled through MATLAB’s inbuilt sparse LU factoriser, which is in turn built upon

the Suitesparse UMFPACK package (Davis, 2006, 2011).

In the context of the GHAM, LUPQR decomposition was reliably faster than all other

tested methods for solving the system of linear equations. It would be expected that

the additional complexity of the scheme would result in further increases of the memory

footprint required, relative to a LU decomposition without the incorporation of scaled

pivoting. However, for the same fourth–order test problem used above for LU decom-

position, the LUPQR decomposition created the set of matrices Figure 3.11, which in

aggregate only filled 1% more of the equivalent dense-matrix structure as compared to LU

decomposition—a result that held as the size of the numerical discretisation was varied.

Thus, for a very minor increase in the memory footprint, incorporating LUPQR decom-

position results in noticeable differences to the speed of solving the resulting matrix systems.

Of course, solving the matrix systems is only one component of the overall computational

cost of solving a nonlinear equation (or system of equations) within the GHAM framework.

Other factors that influence the exhibited scaling include setting up the Gegenbauer
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Figure 3.11: L and U matrices from a LUPQR decomposition of a 29× 29 grid for the same
problem examined in Figure 3.10. The P , Q and R matrices all correspond to matrices with
29 nonzero elements located entirely upon the main diagonal.

matrix system; evaluating derivatives; the transform between Chebyshev and real space;

and evaluating the right hand side term Rm. The scaling of Rm is particularly important

to understand, due to its scaling with m, as evidenced by the results within Subsection 3.3.1.

While the computational complexity for evaluating Rm is heavily problem dependent, an

understanding of the scheme’s scaling can be obtained by examining the cases of strictly

quadratic and cubic nonlinearities. For a problem exhibiting a strictly quadratic nonlinearity

solved over M steps of the GHAM iterative process, evaluating each Rm for m ≤M involves⌊
m2

4

⌋
multiplication operations and

⌊
(m−2)2

4

⌋
addition operations, where b·c represents the

floor function. For a problem discretised over n quadrature points, the computational

complexity of evaluating all the Rm terms will scale with

O
(
nm2

)
. (3.61)

In the case of a strictly cubic nonlinearity, the number of multiplication operations required

is O
(
m+

⌊
3(m−1)2+1

4

⌋)
, and the number of addition operations is (m − 2)2, and as such

will scale in a similar manner to that of equation (3.61), for a strictly quadratic nonlinearity.
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If G(r)(U0) 6= 0 for all r, then evaluating each Rm using Faa di Bruno’s formula will involve

an additional h(m) products and p(m) sums, where p(m) is the number of partitions of m

and h(m) is the total number of parts in all partitions of m. While neither of these two

terms have an analytic description, they do respectively correspond to the A000041 and

A006128 sequences from Sloane (2018). Our testing shows that the quadratic component

of this appears to dominate, and that the scheme still broadly scales as O(nm2).

As such, the dominant factor for solving a system of equations using the GHAM is the cost

of solving the matrix equations, which, ignoring sparsity will behave as

O
(
nm2 + n3 +mn2

)
, (3.62)

where again m is the number of iterations and n is the number of grid points. Assuming

that m < n, then the dominant component of the above relationship becomes

O
(
n3 +mn2

)
. (3.63)

The cost of the O(n3) operations can also be considered to be amortised across the iterative

process, as it is only required once. Furthermore, if we instead impose that the number of

non–zero elements of the matrix equations is O(n) then as was described previously the LU

decomposition also scales with O(n), which leads to equation (3.62) reducing to

O(nm2). (3.64)

Of course these results are for calculations at a single value of ~, and any exploration of the

convergence properties across a range of the convergence control parameter will necessitate

an increase in the computational cost. However, the number of samples in ~ should be

small relative to n and m, and as such equation (3.64) will still hold.

Subject to the assumption that m is independent of n—a result that will be shown in

the following section—this process demonstrates quasi-linear O(n) scaling with respect to

the grid resolution. While spectral multigrid and Krylov methods are frequently touted

as being the most efficient of the currently extant numerical methods, a d−dimensional

problem discretised upon n points in each dimension is still limited to scaling with either

O(nd log2 n) operations per iteration for Chebyshev methods, and O(nd+1) operations for

Legendre methods (Lottes and Fischer, 2005, Canuto et al., 2006). Outside of spectral
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multigrid, other techniques scale at an absolute minimum with O(n2). Thus for the

one–dimensional problems being assessed here, the GHAM has the potential to significantly

outperform all other currently extant techniques. These theoretical results will now be

confirmed by considering the solutions of a fourth–order boundary value problem.

3.5.1 Two–dimensional viscous flow in a rectangular domain with

porous, moving boundaries

The two–dimensional flow of a laminar, viscous and incompressible fluid confined within a

rectangular domain bounded by moving porous walls can be recast as a nonlinear, variable

coefficient boundary value problem, which has applications to mixing processes, as well as

for boundary layer control systems. This example follows the work of Motsa (2014), Xu

et al. (2010), Rashidi et al. (2014), and considers the fourth–order boundary value problem

y(iv)(x) + α (xy′′′(x) + 3y′′(x)) +Re (y(x)y′′′(x)− y′(x)y′′(x)) = 0,

y(0) = 0, y′′(0) = 0,

y(1) = 1, y′(1) = 0.

 (3.65)

Here α is the non-dimensional wall dilation rate; Re is the permeation Reynolds number,

which is positive for fluid injection across the boundary, and negative in the presence of

suction on the boundaries; and y(x) is a dimensionless function describing the mass flow as

a function of the wall normal direction.

As was discussed previously, the solution to a nonlinear differential equation using Homotopy

based techniques can be constructed in terms of a range of auxiliary linear operators, which

will serve as the basis of the iterative scheme. To explore the implications of this freedom,

a range of auxiliary linear operators can be constructed and compared, which replicate the

original nonlinear differential equation to varying degrees. For this problem the following

operators will be used

L1[y] = y(iv),

L2[y] = y(iv) + α (xy′′′ + 3y′′) ,

L3[y] = y(iv) + α (xy′′′ + 3y′′) +Re (y′′′ − y′′) ,

L4[y] = y(iv) + α (xy′′′ + 3y′′) +Re (ŷ0y
′′′ − ŷ′0y′′) .


(3.66)
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Figure 3.12: Solution and error of equation (3.65) calculated at α = 1 and Re = 10 using
L4 from equation (3.66).

Here ŷ0 is the solution to the linear boundary value problem

ŷ
(iv)
0 (x) = 0,

ŷ0(0) = 0, ŷ′′0(0) = 0,

ŷ0(1) = 1, ŷ′0(1) = 0.

 (3.67)

To solve equation (3.65) using these operators, the equations must be mapped to the Cheby-

shev basis. This can be done by simply using the algebraic mapping x = w+1
2

, so that

L1[y] = y(iv),

L2[y] = y(iv) + α

(
w + 1

4
y′′′ +

3

4
y′′
)
,

L3[y] = y(iv) + α

(
w + 1

4
y′′′ +

3

4
y′′
)

+Re

(
1

2
y′′′ − 1

4
y′′
)
,

L4[y] = y(iv) + α

(
w + 1

4
y′′′ +

3

4
y′′
)

+
1

2
Re (ŷ0y

′′′ − ŷ′0y′′) .


(3.68)

All four choices of linear operator can be used to construct a solution that satisfies this

problem, an example of which can be seen in Figure 3.12a, where each operator will

exhibit different convergence properties. The primary differences between the techniques
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Figure 3.13: Error against ~ for solutions of equation (3.65), as calculated using the SHAM
(solid lines) and the GHAM (dotted lines). The blue lines correspond to L1, the red to L2,
the green to L3 and the magenta line corresponds to L4, with all operations truncated after
25 iterations.

are two fold: firstly the difficulty in constructing solutions numerically and second, their

convergence properties. Figure 3.13 allows us to explore the relationship between the choice

of ~ and the error that results for each of the linear operators, where the error is defined as

the integral over the residual, i.e.
∫ 1

0
R(x)dx. As was discussed in Section 3.1, the optimal

value of ~ can be considered to be the value of ~ where the error is minimised, for a given

number of iterations. However, in this example we see that as the number of iterations

increases, the error hits a threshold value, below which the solution from the SHAM will

not improve. For solutions of equation (3.65), both the SHAM and the GHAM show that

the schemes share the same convergence properties for each linear operator, with the only

point of difference being that the implementation of the SHAM used to calculate these

results is unable to calculate solutions with greater accuracy than O(10−10). As might

be expected, as the operator L is modified to take a closer form to the full nonlinear

equation, the observed convergent region at 25 iterations widens, and, generally, yields

higher accuracy solutions. The exception to this is that while L2 has a smaller convergent

region, at its optimal ~—approximately 0.75—the calculated error is markedly lower than
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that calculated using L3 at its ~opt. Based upon examining the results from other nonlinear

equations, this pattern generally holds—that as long as the auxiliary linear operator L
reflects, in some basic sense, the original dynamics of the nonlinear equation being solved,

then the scheme will be convergent. However by more closely replicating the full nonlinear

equation greater convergence properties can be observed—which will have ensuing implica-

tions for the computational cost of constructing a solution to the nonlinear problem at hand.

A notable property of the error, as exhibited within Figure 3.13, is that it is broadly convex

with respect to ~, a result that has been confirmed through other testing. This convexity

is advantageous, as it significantly simplifies the process of searching for ~opt. This search

can be performed at low iterations, with the solution at ~opt then being iterated upon until

a desired error tolerance is satisfied. While there are noticeable regions within Figure 3.13

exhibiting local minima, and as such any optimization technique cannot assume convexity,

and be rigorous enough to avoid such small minima.

Figure 3.14 presents an analysis of the error, as driven by both the convergence of the

nonlinear problem, and from the linear sub-problems. As the grid resolution increases

beyond a threshold value of n = 24, the error of the solution becomes nominally independent

of resolution in the manner of Figure 2.1b. This results from the resolution passing the

threshold for the spectral convergence of the Gegenbauer method for the linear problem,

so that beyond this point changes in the error are driven by the process of solving the

nonlinear problem. This can be seen in the change of the convergence of the solution as the

number of iterations increases. As long as the threshold resolution has been reached, the

primary driver of the convergence of the solution is the number of iterations, up until the

point where the numerical solution has converged, within machine precision, to the true

solution. While the different auxiliary linear operators of equation (3.68) exhibit different

rates of convergence, as will be shown further in Figure 3.16b, the spectral convergence

behaviour are still shared across all choices of L.

To explore how the dynamics of the GHAM differ from those exhibited by the SHAM,

the results from Figure 3.14 were recreated using the SHAM in Figure 3.15, where the

linear matrix equations are discretised using Chebyshev-collocation matrices. While the

convergence results of the SHAM and the GHAM largely seem comparable, there are some

fundamental differences between the performances of the two techniques. Given sufficient
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Figure 3.14: Calculated error at ~opt for equation (3.65) using the GHAM, as a function
of the number of iterations and spatial resolution n. For these calculations Ha = 1 and
Re = 10.
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Figure 3.15: Calculated error at ~opt for equation (3.65) using the SHAM, as a function
of the number of iterations and spatial resolution n. For these calculations Ha = 1 and
Re = 10. Note the changed vertical scale, as compared to Figure 3.14.
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iterations, the results from the SHAM converge for any spatial resolution, as compared to

the GHAM which requires a threshold number of grid points in order to resolve a solution.

As the grid resolution increases the accuracy of the GHAM increases, while, somewhat

counter intuitively, the accuracy of the SHAM actually decreases. This can be attributed

to the Chebyshev collocation matrices that underpin the SHAM becoming singular as the

grid resolution increases, which in turn increases the inherent errors in attempting to solve

these systems numerically. The factors underpinning this phenomena have been discussed

by Trefethen and Trummer (1989), Rothman (1991), Breuer and Everson (1992), Bayliss

et al. (1995), Belfert (1997), Peyret (2002), with the main cause being the accumulation

of roundoff errors in the calculation of the differentiation matrices, and the effect of the

decreased spacing between grid points, especially as |x| → 1. This also explains why the

SHAM is unable to match the accuracy exhibited by the GHAM—the latter of which

converges to machine precision.

To this point, the convergence of the GHAM and the SHAM has been considered in the

context of their accuracy, and the convergence of the residuals of the calculated solutions

as a function of the grid resolution and the number of iterations employed. However, the

primary advantage of the sparse matrix formulation of the GHAM is its low theoretical

scaling of computational time with respect to the grid resolution. Figure 3.16 considers

the performance of both the GHAM and the SHAM at ~opt for solving equation (3.65),

subject to a selection of linear operators.

For the GHAM solver, the solution in terms of L4 significantly outperforms all other

schemes, converging to machine precision in only 20 iterations. While its pre–eminence

is unsurprising, given how closely L4 approximates the full nonlinear problem, the degree

to which it outperforms the other choices of L is surprising. In contrast to this, the

remaining choices for L all take approximately three times as many iterations in order

to converge—however all three still clearly exhibit spectral convergence. Interestingly, L2

slightly outperforms L1 and L3, even though L3 can be considered to be a more accurate

linear representation of the nonlinear problem. These differences are maintained when

considering the computational time required for all the solutions.

The relative performance of each of the linear operators was maintained within the SHAM.

However, there is a marked difference in the minimum error exhibited by the GHAM, as
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compared to the SHAM. While the GHAM is able to converge to machine precision, the

SHAM cannot resolve solutions beyond a threshold error, and that threshold is not constant

as the resolution is changed.

To explore the relative numerical performance of these schemes, two other numerical

approaches were taken to solve the motivating equation. The first was Newton Iteration

based upon a Gegenbauer discretisation (as described by Olver & Townsend Olver and

Townsend (2013)), in order to separate our the contribution to the numerical efficiency

from the nonlinear approach, and then the linear solver that both approach is built upon.

The second comparison was to MATLAB’s ‘BVP4C’ routine. The latter comparison should

theoretically be unfavourable towards GHAM, as BVP4C is a highly optimised routine

written in compiled C, as compared to the GHAM codebase which is in terms of uncompiled

MATLAB code. However, with both approaches, as shown in Figure 3.17, GHAM for

the optimal choice of L and ~ is multiple orders of magnitude faster than the comparison

approaches. Even the dense matrices of SHAM outperform Newton iteration across all

tested resolutions, due to Newton iteration necessitating the construction of a new dense

matrix operator at each step.

As the resolution of the grid discretisation is doubled, the time required to solve using both

the SHAM and Newton–Iteration increases by almost an order of magnitude, whereas there

is only an approximate doubling in the computational time required when the calculations

are performed with the GHAM. This result has been replicated across other resolutions,

and stems from the rate of growth of the number of elements in the sparse matrix operators

used within the GHAM, as compared to all the other tested techniques.

The relative difference between the numerical performance of these schemes is maintained

across varying resolutions for the grid discretisation, with the GHAM significantly outper-

forming the SHAM at nearly all resolutions tested within Figure 3.18. For small resolutions,

the cost of establishing the matrix system dominates, which results in the SHAM exhibiting

a relatively lower computational time. However, as n increases, the cost of solving the

system begins to dominate, leading to the GHAM starting to significantly outperforming

the SHAM. An additional consideration of note is that unlike the GHAM, the SHAM could

not be considered for grid discretisations larger than 29 points, as the matrices beyond this

point become singular. More broadly, as n increases, the condition number of the SHAM

98



Iterations
0 20 40 60

E
rr

or

10-20

10-15

10-10

10-5

100

105

(a) 28 points

Iterations
0 20 40 60

E
rr

or

10-20

10-15

10-10

10-5

100

105

(b) 29 points

Figure 3.16: Impact of the number of iterative steps upon the numerical error when solv-
ing equation (3.65) for varying choices of the auxiliary linear operator L. Solid lines cor-
respond to the SHAM, dashed denote the GHAM, and the blue dots are Newton Iteration
upon a Gegenbauer discretisation. Of the solid lines, blue represents L1, Red is L2, Green
is L3 and Magenta is L4. All solutions were calculated at the optimal ~ for each choice of
L.

and GHAM matrices both increase quadratically, but for our test problems the SHAM

condition number was consistently larger than those seen by the GHAM discretisation by

a factor of between 103 and 104. The differences between the condition numbers exhibited

by these two schemes broadly explains the growth in the error shown within Figure 3.18b.

To delve into the factors that drive the computational cost for the GHAM, the process of

solving equation (3.65) can be separated out into its constituent parts. The process first

involves discretising the system using Gegenbauer polynomials, followed by solving the

matrix system at each iteration, converting between Chebyshev space and real space and

evaluating the derivatives {y(1), y(2), y(3), y(4)}.

To verify the previously outlined theoretical results for how the GHAM scales with the

number of iterations, a regression to the form of t = CIS was conducted, where I is the

number of iterations and C and S are proportionality constants. This regression was

based upon the computational time to calculate a solution between 40 and 80 iterations,

99



Time (s)
10-2 10-1 100

E
rr

or

10-20

10-15

10-10

10-5

100

(a) 28 points

Time (s)
10-2 10-1 100

E
rr

or

10-20

10-15

10-10

10-5

100

(b) 29 points

Figure 3.17: Computational cost and the error of solving equation (3.65) for varying numbers
of iterations, following Figure 3.16 with the inclusion of the computational cost and error
using MATLAB’s ‘BVP4C’ routine, as represented by the red circle.
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Figure 3.18: Scaling of computational time for solutions of equation (3.65) calculated by
taking 75 iterations of the SHAM (solid lines) and the GHAM (dotted lines). Results for
the GHAM are presented for n ∈ [26, 214], whereas the SHAM was only calculated over
n ∈ [26, 29], as the Chebyshev collocation matrices within the SHAM become singular after
this point.
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Figure 3.19: Scaling coefficients for the GHAM, assuming that the computational cost
scales as T = CIS. One again, blue, red, green and magenta represent L1, L2, L3 and L4

respectively.

in order to isolate the effect of the iterative process from the cost of evaluating the first

step of the scheme, and to examine the scaling properties of the cost of constructing the

inhomogeneous component of the matrix equations. This latter point is important to

understand, as it should, theoretically, become more costly as m, the iteration number,

increases. For each linear operator C scales with n, which reflects the cost of solving the

matrix operations after LU decomposition, and how that grows with the number of grid

points in the discretisation. However, S is approximately 1 for all linear operators, across

all grid resolutions, reflecting that the cost of the scheme is entirely driven by the LU

matrix operations, rather than any other components of the iterative process.

Clearly the dominant component of the computational cost stems from the grid resolution,

rather than the number of iterations required to solve the problem. To further explore the

scaling of computational cost, the results for the GHAM in Figure 3.18a can be decomposed

into its constituent parts, the results for which are presented in Figure 3.20. It must be

emphasised in this image that the scaling of the purple line, corresponding to solving the

matrix inverse directly, has been presented for the purposes of comparison, and is not

required for constructing solutions with the GHAM. The dominant contributors to solving
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this numerical problem are the cost of performing the LUPQR decomposition; solving the

matrix system after the LU -decomposition has been employed; evaluating the first four

spatial derivatives; and the transform between real and Chebyshev space and visa-versa.

While the cost of performing the LUPQR decomposition would appears to be unfavourably

high with respect to the direct cost of solving the matrix systems, as shown in Figure 3.20,

it must be stressed that directly solving the matrix would be required at every step of

the iterative process, whereas the LUPQR decomposition only has to be performed once,

requiring O(n1.305) time at the beginning of the iterative process.

The other components of Figure 3.20 do need to be performed at each step of the itera-

tive process, and it is their cost that influences how the scheme scales with the number

of iterations—behaving in aggregate as an O(n1.05) process. This quasi–linear scaling is

entirely a product of the low fill–in density of the matrix operators that make up the GHAM.

Based upon the results from equation (3.65) it can be said that—at least for the tested

fourth–order systems—the scheme scales with O (n1.305 +mn1.05), where n is the spatial

resolution and m is the total number of iterative steps required to both find ~opt, and

then to refine the solution to a prescribed error tolerance. This compares favourably to

the SHAM, as solving dense matrix systems is limited by the theoretical scaling O(n2.373).

Interestingly, while it was predicted in the preceding section that there would be nonlinear

scaling with the number of iterations, stemming from the O(m2n) multiplication operations,

in practice this term is dominated by the costs involved in solving the matrix system, which

scale linearly with iterations. This result has been tested up to 150 iterations, at which

point the system still appears to scale linearly with m.

3.6 A priori estimation of ~
To this point, both the HAM and its numerical variants have been framed as optimisation

problems in ~, for which the error, defined by equation (3.8), must be minimised. The

corresponding value of the convergence control parameter for this optimisation process is

~opt, which is the value of ~ which converges the fastest.

Alternate approaches have previously been proposed, which consider other metrics to serve

as proxies for the convergence of the error, however irrespective of the approach taken there
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Figure 3.20: Scaling of computational cost of constructing solutions for equation (3.65)
with n. Blue: set up cost for establishing the matrix problem in the context of the GHAM.
Red, dashed: LUPQR decomposition, which only needs to occur once at the beginning of
the iterative process. Yellow: solving the matrix system using the LUPQR decomposition.
Green: transform between real and Chebyshev space. Light blue: calculating derivatives up
to fourth–order. Purple, dotted: solving the matrix system using a direct matrix inverse,
which is not used within the algorithm.

must be some degree of consideration of the influence of ~. While Theorem 3.4 presents

novel results demonstrating why ~ must be bounded within [−2, 0), the iterative process to

construct solutions to a nonlinear equation still necessitates repeatedly solving for varying ~.

This process creates an impost for the HAM and, more significantly its numerical analogues.

To try to further limit the bounds of the convergence control parameter for a particular

problem, the implications for the choice of ~ can be considered with respect to its influ-

ence upon the rate of convergence of the sequence Sm =
∑m

i=0 Ui. As was discussed in

Theorem 3.1, a necessary condition for convergence of this sequence was that for all m the

inequality

||Um|| ≤ r||Um−1||
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must hold for some r bounded between 0 and 1, subject to some suitable norm || · ||. The

parameter r can then be determined by evaluating

r = max

(
||U1||
||U0||

,
||U2||
||U1||

, . . . ,
||Um||
||Um−1||

, . . .

)
. (3.69)

This parameter can also be tied to the convergence properties of methods based upon the

HAM through Theorem 3.3, as the error εm of the partial sum Sm =
∑m

i=0 ui must behave

as

εm = ||Sm − u|| ≤
r(m+1)

1− r
||U0||.

Thus, it follows that ~opt should correspond to the minima of r̂ = r(m+1)/(1− r), which will

occur at the minima of r. As such it follows that

~opt ≈ ~̂ = min
~∈(−2,0)

r. (3.70)

However, searching for the minima of r̂ displays the same inherent problems as minimising

the error, as Um is a nonlinear function that incorporates {~, U0, U1, . . . , Um−1}, and as such,

we have simply replaced a minimisation problem with a functionally equivalent maximisa-

tion. To circumvent this, let us for the moment consider equation (3.69) in terms of the

triplet {U0, U1, U2}, so that

r ≈ max

(
||U1||
||U0||

,
||U2||
||U1||

)
. (3.71)

In the context of a problem formulated as

N [u] = φ (3.72)

then the decomposition of this problem to the infinite set of linear sub-problems for the

HAM, subject to an auxiliary linear operator L gives

U0 = L−1φ

U1 = ~N0

U2 = U1 + ~L−1[N1]

...

Um = Um−1 + ~L−1[Nm−1].


(3.73)
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In the interests of brevity, the notational shorthand

Nm =
1

m!

dmN [u]

dqm
,

has been introduced. Through this, equation (3.71) will take the form

r = max

(
||~L−1[N0]||
||U0||

,
||U1 + ~L−1[N1]||
||~L−1[N0]||

)
. (3.74)

This relationship does not give any particular insight into the relationship between r and

~. However, by virtue of its construction (U1/~) must be invariant of ~, and following a

similar logic N1 must also be linear with respect to ~, so that

N1 = U1N̂1 = ~
(
U1

~

)
N̂1.

The crucial observation here is that N1 must be strictly a function of U0. As such, equa-

tion (3.74) can be re-expressed in terms of these invariants, so that

r = max

(
||~L−1[N0]||
||U0||

,
||
(
U1

~

)
+ ~L−1[

(
U1

~

)
N̂1]||

||
(
U1

~

)
||

)
. (3.75)

From our testing almost all choices of L yield ||U1||/||U0|| � ||U2||/||U1||, which allows equa-

tion (3.71) to be reduced to

r ≈
||
(
U1

~

)
+ ~L−1[

(
U1

~

)
N̂1]||

||
(
U1

~

)
||

. (3.76)

As all of these terms are invariant with respect to ~ the minima of r can be found based

upon solving for U1 at a single choice of ~. As the only contribution with respect to the

convergence control parameter is from ~L−1[
(
U1

~

)
N̂1], which is linear with respect to ~, and

as such this approximation to r will also be strictly linear.

This minima of r corresponds to the location of ~̂, which approximates ~opt. Further-

more, this value of r allows the upper bound of εm to be calculated, under the assumption

that equation (3.69) is broadly determined by equation (3.71).

3.6.1 Validation

To explore the validity of the algorithm outlined within the previous section, we can return

to the problem of a two–dimensional viscous flow within a rectangular domain subject to
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porous, moving boundaries—as presented in Subsection 3.5.1. This specific comparison will

be considered by constructing solutions with the GHAM in terms of the L1 and L4 operators.

Both of these test problems showed a strong alignment between the convergence of

the error as a function of ~, across a range of iterations, and the predicted location of

~opt. Figure 3.21a shows the specific results for the L1 case of equation (3.68), with

the predicted relationship between r and ~ shown in blue, and with the demarcation

line for convergence at r = 1 shown with the dashed red line. Using these results, ~̂
was found to be approximately −0.5327. Finding the minima of r, and thus ~̂ was, as

was expected, a trivial process, as the relationship between these two variables was linear

with respect to ~. More broadly, the convergent region of r < 1 was found for ~ ∈ [−1.05, 0].

These results were then validated in Figure 3.21b by superimposing the location of ~̂—in

black—and the bounds of the convergent region of r—in green—upon the error of the L1

solutions, as constructed at 2, 10, 50 and 100 iterations. While ~̂ is an approximation that

only considers the triptych of {U0, U1, U2}, the approximation ~̂ is strongly correlated with

the location of ~opt for all iterations, with the difference between the two being minuscule

down to the point where the profiles are dominated by machine precision error—the point

at which the profiles within Figure 3.21b become saturated.
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Figure 3.21: Figure 3.21a shows r against ~ for the L1 operator of Subsection 3.5.1 in blue,
with the red line indicating the demarcation point for the region where r > 1. Figure 3.21b
shows the L1 norm of error at {2, 10, 50, 100} iterations over a grid of n = 28 points. The
black dashed line indicates the location of ~̂, and the green dashed line is marks the point
in ~ that corresponds to r = 1.

In the case of the L4 operator, Figure 3.22a shows that r is strictly bounded to lie within

[0, 1] for all ~, suggesting that the GHAM solutions constructed with this linear operator

should be convergent across all ~. This conclusion is borne out by the results within Fig-

ure 3.22b. As the number of iterations increases, there is a small but visible difference

between ~opt and ~̂, however the difference between the errors at these two values of ~ is

still negligible.
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Figure 3.22: (a) shows r against ~ for the L4 operator of Subsection 3.5.1 in blue, with the
red line indicating the demarcation point for the region where r > 1, and (b) shows the L1

norm of error at {2, 10, 50, 100} iterations over a grid of n = 28 points. The black dashed
line indicates the location of ~̂.

The degree of agreement between ~̂ and ~opt is remarkable, given that ~̂ is constructed in

terms of calculations of U0, U1 and U2 conducted at a single ~. That ~opt can be accurately

approximated has significant implications for numerical techniques based upon the HAM,

as there is no longer the need to consider solutions across all ~ ∈ [−2, 0), greatly reducing

the amount of calculations required.

This result was the product of realising that it is possible to consider Um in terms of

invariants of ~, an idea that will now be explored further.

3.7 Invariants with respect to ~
Up until this point, we have only considered constructing up to U2 in terms of quantities

that are invariant with respect to ~. To extend this further, we can consider U3:
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U3 = U2 + ~L−1[N2]

= ~
(
U1

~

)
+ ~2L−1[

(
U1

~

)
N̂1] + L−1[N2]

= ~U (1)
2 + ~2U

(2)
2 + L−1[N2].

Here we have introduced the notational shorthand U
(1)
2 and U

(2)
2 to denote the components

of U2 that depend upon ~ and ~2 respectively.

Since N2 is no longer guaranteed to be linear with respect to U2 or U1, we cannot simply

partition these terms out as was done for U2. However, by considering N2 in the form

N2 = f

(
U0, ~

(
U1

~

)
, ~U (1)

2 + ~2U
(2)
2

)
,

then it follows that N2 should be able to be decomposed into terms proportional to ~ and

~2, which in turn means that U3 can be decomposed into

U3 = ~U (1)
3 + ~2U

(2)
3 + ~3U

(3)
3 , (3.77)

and more generally that

Um =
m∑
i=1

~iU (i)
m . (3.78)

While each Um must still be constructed sequentially, they can all be constructed in terms of

a sequence of invariant terms. While numerical implementations of this formulation involve

a significantly larger memory footprint to store all the invariant terms—from O(mn) terms

in memory to solve up to Um on a grid involving n points to O(m2n)—it does allow for

the solution space across all ~ to be explored based upon only the calculations at a single

chosen ~. To this point a numerical implementation of this approach has not been finalised

to the point where the results warrant inclusion within this work, however initial testing has

verified that this technique of constructing solutions in terms of invariant terms is a practical

and realistic way of exploring the solution space as a function of ~, without necessitating

the computational cost of calculating solutions at a range of values for ~.
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3.8 Discussion

Across the spectrum of available techniques for solving nonlinear equations, the Homotopy

Analysis Method is a recently developed technique that has some uniquely advantageous

properties, which were outlined within this chapter. These include a large degree of inherent

flexibility for the manner in which the equations are solved, which, in concert with its

strong convergence control properties make for a particularly powerful tool for solving

nonlinear problems. In its original form as a semi–analytic technique the HAM involves

partitioning a nonlinear equation into an infinite series of dependent linear equations.

Taking this approach has allowed the technique to successfully solve a range of highly

nonlinear problems from fluid mechanics, and has been able to resolve solutions outside the

range of traditional techniques.

One of the primary limitations of the HAM is that the linear partitions must be able to

be solved algebraically, or through symbolic computer algebra packages. However, this

limitation can be avoided by considering the HAM within a numerical framework, where

the linear partitions are discretised in terms of spectral matrix operators. Solving the linear

equations numerically greatly expands the scope of problems that can be considered within

the HAM framework, as the technique is no longer limited to equations that can be solved

analytically, or through semi–analytic approaches.

To date, all numerical implementations of the HAM have been in terms of Chebyshev

collocation matrices, which are both dense and often become singular, especially when

considering variable coefficient boundary value problems. However, by extending the HAM

in terms of the Gegenbauer polynomials, we have been able to create a novel numerical

technique that involves solving a sequential sequence of linear boundary value problems,

discretised in terms of sparse, spectrally accurate matrix operators. When tested on a

range of second, third and fourth–order boundary value problems from fluid mechanics,

the GHAM was able to accurately and rapidly resolve solutions, while maintaining the

flexibility and convergence control properties of the HAM.

Over the course of developing the GHAM, a number of interesting properties of the

technique were explored, which have broader applicability within the oeuvre of homotopy

based methods. The first of these was what appears to be the first presented result to

detail why the convergence control parameter ~ must be bounded between (−2, 0). While
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this is a fundamental bound for the HAM and its numerical analogues, there has to

this point not been a full justification for why this bound exists. A second result with

significant ramifications is the demonstration within Section 3.6 that the optimal value

of ~—for which the HAM based solutions converge the fastest—can be estimated based

upon calculations conducted at a single, arbitrary choice of ~, due to reformulating the

HAM in terms of invariants with respect to the convergence control parameter. This latter

result is particularly interesting, as it allows the HAM and its extensions to be re-framed

from being optimisation problems in terms of ~ to a single iterative process conducted at ~opt.

However, the most striking result presented within this chapter relates to how the perfor-

mance of the GHAM scales with respect to the number of iterations, and the resolution of

the numerical discretisation. From a theoretical perspective, solving a nonlinear problem

with the GHAM scales with O(n) operations, for a problem defined upon a Chebyshev grid

of n points. The performance of the HAM is a product of being able to define all the matrix

equations in terms of a single, constant matrix operator, which is inverted repeatedly across

the process of solving the motivating nonlinear equation. This in turn allows the cost of

solving the matrix equation to be amortised within the overall cost of the iterative scheme,

by incorporating techniques such as LU decomposition. That the matrix operator is able

to remain constant, while still rapidly iterating towards a spectrally accurate solution is

unique within the field of numerical analysis.

These theoretical results were broadly confirmed by comparing the scaling properties of

the GHAM for both the Falkner–Skan equation and a second, fourth–order boundary value

problem with solutions constructed via the SHAM, Newton–iteration upon a Gegenbauer

discretisation and MATLAB’s inbuilt ‘BVP4C’ routine. The GHAM significantly outper-

formed all the other tested methods, exhibiting a computational complexity which scaled

with O (n1.305 +mn1.05), where m is the number of iterations required. Additional testing

of a second–order boundary value problem—not contained within this work—exhibited

O(n1.105) scaling, reinforcing the results contained within this chapter.

In contrast to other numerical techniques for solving nonlinear equations, employing the

HAM as a the framework for a numerical technique allows for the motivating problem to

be solved by iterating upon a single, constant matrix operator. As such, the computational

cost inherent in solving the matrix equation can be amortised across the overall cost of the

111



iterative scheme by incorporating techniques like LU decomposition.

To our knowledge, the quasi–linear scaling of the GHAM is unheralded among solvers for

nonlinear differential equations. Other schemes typically have a lower bound on scaling

of O(n2.373), as they require solving a dense Rn×n matrix system multiple times across an

iterative process, as compared to the GHAM which, through careful construction, only

requires a sparse matrix system to be solved for once.

The utility of the GHAM was augmented through the introduction of a suite of novel

numerical continuation approaches, which can also be applied to eigenvalues problems.

Based upon the initial tests presented within this chapter, Homotopic integrated arc–length

continuation appeared to be the most promising. This technique unifies homotopy continu-

ation methods and arc–length based methodologies by smooth paths within the bifurcation

diagram that approximate the true path. The most striking feature of Homotopic integrated

arc–length continuation was its ability to take significantly larger steps than other schemes,

even in the presence of folds. This in turn means that far fewer steps are required to fully

traverse the parameter space of any tested problem.

While the scheme was able to traverse folds, further testing will be required to explore the

schemes properties in the presence of bifurcations. Another open question is the relative

cost of the numerical continuation schemes presented within this chapter, as compared

to more standard methods. Such comparisons are difficult due to inherent sensitivity to

the choice of step length, and to the incorporation of any adaptive step sizing. While

such comparisons have been attempted, they have been omitted due to the difficulty of

comparing the computational cost of continuation regimes.

Having now developed the GHAM sufficiently as a suite of numerical tools, and having

established its validity as a numerical technique for solving a range of boundary value

problems from fluid dynamics, we can now turn to considering its application to the forced

Korteweg–de Vries and Gardner equations.
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Chapter 4

Weakly nonlinear waves: solutions of

the forced Korteweg–de Vries

Equation

The applicability of the numerical techniques introduced within Chapter 3 will now be as-

sessed by turning to the steady, symmetric variant of the fKdV equation, as was introduced

in Chapter 1. As this equation has been well studied, it is a particularly suitable problem

for considering the validity of the GHAM for solving boundary value problems within the

field of geophysical wave problems. This is not to say that there are no open problems for

this particular equation, and as such this chapter will test the applicability of a widely held

assumption regarding the influence of the topographic length scale upon the solution space

admitted by the fKdV equation.

To begin with, we can consider solutions A(x, t) of the fKdV equation of the form

At + ∆Ax + 2rAAx + Axxx = −γfx(x),

A(±∞) = 0.

}
(4.1)

Specifically, the steady variant of the fKdV equation—where At = 0—will be considered,

and thus by integrating equation (4.1) A(x) can be determined by solving

∆A+ rA2 + Axx = −γf(x)

A(±∞) = 0,

}
(4.2)
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which has been the subject of rigorous study by (Ee and Clarke, 2007, 2008, Wade, 2015),

amongst others, making it a perfect candidate for both validating the GHAM and as the

basis for further exploration of the behaviour of the fKdV equation. When examined in

terms of the fundamental non-dimensional variables of this problem, ∆ can be related to

the Froude number, which represents the balance between the freestream velocity and the

linear wave speed. The most commonly used variant is the depth based Froude number

F =
U√
gH

in which the wave speed is calculated in terms of the gravity g and unperturbed channel

depth H. When the Froude number is less than 1, the flow is considered subcritical; when

it is equal to 1 then it is transcritical; and the case where F is greater than unity falls under

what is known as the supercritical regime. Linear theory predicts that for supercritical

flows the equation will only admit symmetric solutions (Stoker, 1957), and as such for our

study we will begin by restricting ourselves to this regime. For simplicity’s sake the fKdV

equation will be interpreted in terms of ∆, which can be related to its equivalent Froude

number through the mapping ∆ = −6(F − 1).

This specific flow regime of symmetric supercritical solutions of the fKdV equation has been

approached using Boundary-Integral methods to solve for perturbations to the uniform

freestream flow induced by a bump (Forbes and Schwartz, 1982, Vanden-Broeck, 1987);

a triangular obstruction (Dias and Vanden-Broeck, 1989); and for flows past trenches of

arbitrary geometry (Shen, 1991) among others. Our approach presented herein considers

constructing numerical solutions for the fKdV equation, and using these solutions, through

the use of numerical continuation, to explore the parameter space of soluions, as well as

the degree of qualitatively different solutions that can be admitted.

However, before beginning to approach this problem numerically, a qualitative understand-

ing of the solution dynamics can be developed by considering its homogeneous case, the

KdV equation. As this equation is integrable, the equation can be considered in context of

the reduced form

A2
x = −∆A2 − 2

3
rA3 + C. (4.3)
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Figure 4.1: Phase portrait of the Korteweg–de Vries equation for ∆ < 0, with the +’s
corresponding to the locations of the stationary points.

The fundamental dynamics of equation (4.2) can be understood by examining the phase

portrait of the homogeneous form, as shown in Figure 4.1. This portrait contains two criti-

cal points at (A,Ax) = (0, 0) and (−∆/r, 0). If ∆ < 0 then these are a saddle and a stable

centre respectively, or a centre and a saddle if ∆ > 0. As was discussed in Section 1.1, the

symmetries inherent within the fKdV equation allows the parameter space to be reduced,

and as such ∆ < 0 can be imposed without any loss of generality.

While the fKdV equation can admit asymmetric and periodic solutions, we will begin by

considering the case of aperiodic symmetric solitary wave solutions to equation (4.2), for

which the phase portrait only admits the boundary conditions

A(±∞) = Ax(±∞) = 0.
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4.1 Topographic forcing with local support

One approach to deriving the fKdV equation in the presence of topographic forcing is to scale

the equation by the height and the length scale of the topographic obstruction. Assuming

that the length scale of the height is small relative to the horizontal scaling, then the forcing

function f(x) can be reduced to the Dirac delta function δ(x) centred about x = 0, which

we will define as being subject to local support. As a result of this, it can be imposed that

f(x) = 0 for all x except x = 0, and from this the fKdV equation can be integrated over

the region where x < 0 and x > 0, to give solutions of the form

A(x) = −3∆

2r
sech2

√
−∆

4
(x− L+), x ≥ 0,

A(x) = −3∆

2r
sech2

√
−∆

4
(x− L−), x < 0.

 (4.4)

Given that solutions to the fKdV equation must be continuous, it must be that

lim
x→0+

A(x) = lim
x→0−

A(x),

and so in turn it follows that the offset parameter L must take the form

L+ = ±L−.

While delta function forcing does not introduce any discontinuities to A(x), the discon-

tinuous derivatives for such forcing give rise to the jump condition A′(0+) − A′(0−) = γ.

In order to satisfy this condition, it must be that solutions of equation (4.2) of the form

of equation (4.4) must be subject to

A(0)

(
tanh(

√
−∆4s

L−
)− tanh(

√
−∆4s

L+

)

)
= − γ

2
√
−∆

. (4.5)

The above equation can only be satisfied for non-zero γ if L+ = −L− = L0. This in turn

allows equation (4.5) to be written as

f 3 − f = c (4.6)

where
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f = tanh(

√
−∆

4
L0) and

c = − γr
3∆

1√
−∆

.

 (4.7)

Solving this equation for L0 gives rise to a range of solutions of equation (4.4). If L0 > 0

then this solution denotes a cusped solitary wave where the cusp is concave up, and if L0 < 0

then the cusp is concave down. The number of real, distinct solutions for L0 is an implicit

function of f , and as such as equation (4.6) is a cubic equation in terms of f there are at

most three distinct solutions for L0. In the case where |c| < 2
3
√

3
then there will be two

distinct roots for f within (−1, 1); if |c| > 2
3
√

3
then there will be only one distinct root for

f within (−1, 1); and when |c| = 2
3
√

3
then there will be a double-root for f within (−1, 1).

These values of c will correspond to what can be labelled as the critical values for γ, as the

transition of |c| from being less than 2
3
√

3
to greater than this value will produce a critical

change in the the calculated solutions. In fact, these values will correspond to the location

of turning points in the bifurcation diagram. These critical values will occur at

∆C =

(
−3r2γ2

4

) 1
3

(4.8)

which can be expressed in terms of γ to give that

γC = ±2∆
√
−∆

r
√

3
(4.9)

These results suggest that any bifurcation diagram generated in terms of γ should exhibit

self–similarity with respect to linear variations in ∆.

However, these solutions only admit A(0) > 0 for all |γ| < γC , and yet previous numerical

work by Wade (2015) has shown that it is possible to find solutions which are strictly

negative across all x. This in turn suggests that there is a solution to the fKdV equation,

subject to δ(x) forcing which admits a strictly negative solution. It has been previously

shown that cosech2 solutions exist for the fKdV equation, and using these we can show that

the fKdV equation also admits soliton solutions of the form
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A(x) =
3∆

2r
cosech2

√
−∆

4
(x− L+), x ≥ 0,

A(x) =
3∆

2r
cosech2

√
−∆

4
(x− L−), x < 0.

 (4.10)

To solve for L we proceed in a similar manner to the sech2 solutions, so that by continuity

we have that L+ = ±L−. By then applying the jump condition we find that

−2

√
−∆

4

(
coth

(
−
√
−∆

4
L+

)
− coth

(
−
√
−∆

4
L−

))
A(0) = −γ.

Once again this only admits solutions when L+ = −L− = L0, which in turn gives that

6
∆

r

√
−∆

4
cosh

(√
−λ
4
L0

)
= −γ sinh3

(√
−∆

4
L0

)
.

Solving this allows for an analytic description of all the possible solutions for the fKdV

equation with local support to be found. For the remainder of the chapter, all the solutions

presented will be for the specific supercritical case of A(x) where

Axx − 1.7454A+
9

2
A2 = −γf(x) (4.11)

This choice of parameter space can be more broadly generalised through the results con-

tained within Section 1.1. Changing the sign of ∆, so that ∆→ −∆′ provokes a change in η

to η′ −∆/r, thus rescaling the solution space, changing the nature of the stationary points

of the system. More broadly, making the change from ∆ to c∆′ requires the rescalings

r → cr′, x→
√
cx′ and γ → γ′/c. As such, the phase diagram in terms of (γ,A(0)) for any

∆ can be rescaled to another by simply rescaling γ. Performing the same sign inversion on

r by introducing the transform r → −r′, necessitates changing η → −η′ and γ → −γ′, so

that the (γ,A(0)) phase diagram is reflected about the γ axis.

The solutions of the fKdV equation, subject to a single topographic obstruction with

local support– be that a trough or a rise—can be broadly categorised into five different

classes of solutions based upon their respective patterns of traversal around Figure 4.2.

The first two types exist for γ > 0, and have been well documented by Miles (1986),

Wade (2015). The Type I solutions are perturbations from the uniform stream solution
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Figure 4.2: Parameter space for solutions of equation (4.11) with local support where f(x) =
δ(x).

which, in phase space correspond to starting at the saddle point at (A,Ax) = (0, 0) and

traversing the homoclinic orbit in a clockwise direction in the upper half of the phase

plane. As was discussed earlier, the forcing function introduces a discontinuous jump in the

derivative of the solution at x = 0, as a consequence of the discontinuity in the derivative

of the delta function. This introduces a distinct downwards jump in the phase plane at

the point in the solution path corresponding to x = 0, which in turn manifests itself as

the discontinuous gradients observed in the calculated solutions in Figure 4.3 and Figure 4.4.

The Type II solutions space broadly replicates the form seen in the Type I solutions, with

the difference in form a product of the larger amplitude solutions being perturbations from

the solitary wave solution, rather than from the trivial solution. In the phase plane, the

distinction between the Type I and Type II solutions is that in the former, the jump occurs

to the left of the centre in the phase plane at (A,Ax) = (−2∆/9, 0), whereas the Type II

solutions are confined to the right of the centre. The transition from the Type I to Type II
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Figure 4.3: Type I and Type II (in blue and red respectively in Figure (a)) solutions to
the fKdV equation with local support when γ = 0.5 in part (a), with the corresponding
locations in the phase space diagram indicated in red in part (b).

solutions occurs occurs at the largest positive value of γ.

The Type III, IV and V solutions correspond to different components of the solutions where

γ < 0. In the case of the Type III and Type IV solutions, both begin by traversing the

homoclinic orbit in the same manner as the Type I and II solutions – beginning at the

saddle and traversing the orbit in a clockwise direction. However, unlike the previously

described solutions, the discontinuous jump is only imposed after the solutions have already

traversed the orbit past (A,Ax) = (−2∆/9, 0), before jumping back up to the region of

the homoclinic orbit where Ax > 0 again. The solutions then traverse the homoclinic

clockwise a second time, until returning the saddle. These solutions transition to the Type

III solutions at the solitary wave located at γ = 0. In the case of the Type III solutions, the

jump occurs prior to passing the centre for the second time, while the Type IV solutions

pass the centre twice before jumping to the upper half of Ax. These solutions are then,

respectively, perturbations to a single solitary wave and a system of two solitary waves.

The Type IV solutions exist in the left most branch of Figure 4.2, for A(0) greater than 0

and γ between 0 and its lowest value for positive A(0).

120



x
-10 -5 0 5 10

A
(x

)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

γ

-1.5 -1 -0.5 0 0.5

A
(0

)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b)

Figure 4.4: Type III, Type IV, and Type V (in blue, red, and yellow respectively in Figure
(a)) solutions to the fKdV equation with local support when γ = −0.5 in part (a), with the
corresponding locations in the phase space diagram indicated in red in part (b).

The final distinct case involves the Type V solutions, which exist only for γ < 0 and

A(0) < 0, and unlike the rest of the solution types, can be described using cosech2 func-

tions, rather than the sech2 solution forms seen in Types I-IV. These solutions correspond

to a path that begins at the saddle, and progressing to the left along the negative Ax

unbounded trajectory in phase-space, before jumping up to the unbounded trajectory that

exists for Ax > 0 and returning to the saddle point, in a manner that corresponds to a

perturbation from the uniform stream.

While these results only apply for the case of forcing with compact support, Baines (1995),

Shen (1995), Dias and Vanden-Broeck (2004), Binder et al. (2005) have proposed that these

results can be extended to solutions with compact support (hereafter in the interests of

brevity this will be referred to as the Baines (1995) assumption). These authors have shown

that under certain conditions the governing flow equations can be reduced so that the effect

of any topographic forcing function with compact support—that f(x) 6= 0 for x in some

[x−, x+] can be approximated by a combination of Dirac delta functions. This result is a

product of long wavelength asymptotics, whereby if L is the horizontal length scale and D

is the constant depth as x→ −∞, where (D
L

)2 � 1, and all forcing is contained in a region
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with local support centred around points x = 0, then the topographic forcing function γf(x)

can be approximated by

γf(x) ≈ τδ(x), where

∫ ∞
−∞

γf(x) = τ. (4.12)

As a result, equation (4.2) can be solved using the approximation of local support, with

∆A+ rA2 + sAxx = 0

Ax(x
+
i )− Ax(x−i ) = −τ.

}
(4.13)

4.2 Topographic forcing with compact support

In order to extend the applicability of these results, we shall now consider the case when

the topographic forcing can no longer be considered local. This occurs when the relative

length scale of the topography can no longer be considered insignificant relative to that

of the overall length scale, then it is no longer appropriate to approximate the effect of

the topographic forcing through the use of a Dirac delta function. Numerous analytic and

numerical studies have been conducted for solutions for the fKdV equation with a single

topographic disturbance (Shen et al., 1989, Choi et al., 2008, 2010), although the majority

of this work has been focussed on varying the linear phase speed ∆ and keeping the forcing

amplitude constant.

In order to solve for topographic forcing with compact support, several semi-analytic ap-

proaches have been developed to solve for L0. We shall briefly outline one of the more

common techniques, as presented by Shen (1993). For the fKdV equation subject to a forc-

ing function defined with compact support over some region x ∈ [x−, x+], then in a similar

manner to the locally forced fKdV equation it can be said that

A(x) = −3∆

2r
sech2

(√
−∆

2
(x− L0)

)
, x ≤ x−

where again, L0 corresponds to a phase shift imparted by the forcing function f(x). This

phase shift can be solved for by introducing the parameter B∆, where
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B∆(L0) =

∫ x+

x−
f(x)Ax(x)dx

=
s

2
(A′(x+))2 + (

∆

2
+
r

3
A(x+))A2(x+)

(4.14)

Multiplying the fKdV equation by Ax(x) and integrating from x− to x̂ > x+, it can be

shown that

1

2
(A′(x̂))2 + (

∆

2
+
r

3
A(x̂))A2(x̂) = B∆(L0), x̂ ≥ x+

For this equation to satisfy the solitary wave boundary condition A(∞) = 0, then it must

be that B∆(L0) = 0. In this way, it follows that L0 must be an implicit function of ∆, and

that L0 is not necessarily unique.

To solve for this, B∆(L0) = 0, a trial value of L0 is chosen, which then gives rise to the

initial value problem

Axx + ∆A+ rA2 = 0, x > x−,

A(x−) = −3∆

2r
sech2(

√
−λ
4

(x− − L0)),

Ax(x
−) = −

√
−∆A(x−) tanh(

√
−∆

4
(x− − L0)).


(4.15)

Solving this boundary value problem over x ∈ (x−, x+) allows the integral B∆(L0) =∫ x+
x−

f(x)Ax(x) to be computed. From here, a thorough search of space of B∆ as a function

of L0 can be used to find the zeros of this function, which will in turn give the viable values

of the phase shift L0.

It should be clear that this matching process requires a significant degree of computation-

ally intensive iteration, and makes computing the solution to the fKdV equation subject

to topographic forcing with compact support both difficult and computationally taxing.

As such, with the aim of testing the Baines (1995) assumption, the numerical solution

to equation (4.2) will be constructed using the GHAM with the hypersphere continuation

of Subsection 3.4.1. Here the spheres will be constructed in terms of the amplitude of the
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solution at x = 0, and the amplitude of the forcing, γ.

To explore the applicability of the Baines (1995) assumption, and following Section 4.1, the

parameter space of the fKdV equation will be considered by varying the forcing amplitude

γ of the single, symmetrical topographic bump, defined by

f(x) =


(

4
3L

)
cos4

(
π
2
x
L

)
, for |x| ≤ L

0, for |x| > L,
(4.16)

will be examined. The choice of this specific forcing function was driven by two specific

factors. The first is that the scaling factor—
(

4
3L

)
—rescales f(x) so that the area under f(x)

is equivalent to δ(x) for all L, which gives the condition∫ ∞
−∞

f(x) =

∫ ∞
−∞

δ(x) = 1.

This means that all solutions of the fKdV equation, subject to this forcing, should be

directly comparable to the local support case. Secondly, in the limit as L → 0 the forcing

function deforms onto δ(x), and as such varying L can be thought of as varying the distance

between the cases of local and compact support, in order to test the extent to which the

Baines (1995) assumption will hold.

To construct numerical solutions for the fKdV equation on a Chebyshev basis, solutions

that exist on x ∈ (−∞,∞), the problem domain will be truncated onto x ∈ (−B,B), prior

to being transformed onto the numerical domain (−1, 1) through a Logarithmic mapping.

Absorbing boundary conditions will be implemented to account for the effect of the region

within B < |x| <∞ on the overall solution. These boundary conditions can be constructed

based upon the knowledge that the observed solutions will begin at the saddle located at

(A,Ax) = (0, 0) and traverse the phase plane before returning to the saddle, which means

that in the far field A(x) will decrease as x→ ±∞, and as such it follows that A(x)2 � A(x)

in this region. Under the assumption that the forcing f(x) has compact support, we can

also state that f(x) = 0 as x→ ±∞—which means that the fKdV equation can be reduced

to

∆A+ Axx = 0. (4.17)

If ∆ < 0, then it follows that
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A(x) = c1 exp
√
|∆|x +c2 exp−

√
|∆|x . (4.18)

As it has been assumed that A(x) → 0 as x → ±∞, it follows that c1 = 0 as x → ∞ and

c2 = 0 for x→ −∞. As a consequence of these solutions, the fKdV equation can be recast

as

∆A+ rA2 + Axx = −γf, x ∈ (−B,B)

Ax(B) = −
√
|∆|A(B),

Ax(−B) =
√
|∆|A(−B),

 (4.19)

where the last two conditions are the absorbing boundary conditions, which can be imple-

mented within the GHAM through boundary bordering.

As detailed in Section 2.5, after applying the Logarithmic mapping the fKdV equation

subject to Absorbing boundary conditions becomes

∆̂A+ r̂A2 + k̂Ay + Ayy = −γ̂f, y ∈ (−1, 1)

Ay(1) =
−
√
|∆|√

sinh2(B) + 1
A(1),

Ay(−1) =

√
|∆|√

sinh2(B) + 1
A(−1), .


(4.20)

where

∆̂ = B2
(
sinh2(By) + 1

)
∆

r̂ = B2
(
sinh2(By) + 1

)
r

γ̂ = B2
(
sinh2(By) + 1

)
γ

k̂ = − sinh(By)√
sinh2(By) + 1

.


(4.21)

This form of the fKdV equation can now be solved using the GHAM, in order to explore

the progression of the solution space, and its corresponding parameter space as γ is varied.
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To construct a continuation regime for exploring the parameter space of the fKdV, the

solution at γ will be partitioned into a component stemming from the perturbation in γ,

and the component resulting from a previously calculated γ0, expressed as

A(x, γ) = β(x, γ) + φ(x, γ0).

This is then substituted into equation (4.19) to give

(∆̂ + 2rφ)β + r̂β2 + k̂βy + βyy = −γ̂f − ∆̂φ− r̂φ2 − k̂φy − φyy,

βy(1) +

√
|∆|√

sinh2(B) + 1
β(1) =

−
√
|∆|√

sinh2(B) + 1
φ(1)− φy(1),

βy(−1) +
−
√
|∆|√

sinh2(B) + 1
β(−1) =

√
|∆|√

sinh2(B) + 1
φ(−1)− φy(−1),

y ∈ (−1, 1).


(4.22)

This form of the fKdV equation is now suitable for solving through the GHAM, in the

manner described in Section 3.3. The inherent freedom in the choice of L in

(1− q)L[β(y; q)− β0(y; q)] = q~{N [β(y; q)]}

gives rise to several different options for parametrising this problem. The first would be to

set that

L[β] = (∆̂ + 2rφ)β + r̂β2 + k̂βy + βyy

N [β] = (∆̂ + 2rφ)β + r̂β2 + k̂βy + βyy + γ̂f + ∆̂φ+ r̂φ2 + k̂φy + φyy

β = β(y; q).

 (4.23)

This scheme involves a single LUPQR decomposition at each step of the exploration of

parameter space. The alternate parametrisation involves modifying L so that it instead

takes the form

L[β] = ∆̂β + r̂β2 + k̂βy + βyy. (4.24)

Once again this is a variable coefficient boundary value problem as ∆̂, r̂ and k̂ are all

functions of y as a result of the domain mapping. However, by omitting the 2rφβ term from

the equation, the linear operator L is invariant, and as such the LUPQR decomposition only
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Figure 4.5: Parameter space for solutions of the fKdV in the form of equation (4.11), subject
to the forcing stipulated by equation (4.16) for varying L.

needs to be performed a single time to traverse the entire parameter space, as compared

to creating a new decomposition for each new position in parameter space. As was shown

in Subsection 3.5.1, the LUPQR decomposition is the dominant component of the compu-

tational cost of this scheme, so converting the scheme to only requiring one decomposition

for the entire parameter space has obvious implications for the computational efficiency of

this scheme.

To explore the applicability of the Baines (1995) assumption Figure 4.5 presents the

parameter space (in terms of (γ,A(0))) for the case where f(x) is of compact support. In

the limit as L approaches 0, the observed solutions subject to compact collapse down upon

to those for local support, as shown in Figure 4.2. Even at L = 0.05, the solutions subject

to local and compact support are indistinguishable.
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As L increases, corresponding to increasing the width of the region of compact support, the

correlation of the solutions calculated using compact support and those with local support

decreases, to the point where when L = O(1) the δ(x) function solution can no longer

be considered to be a reasonable approximation to the dynamics of the compact forcing

case, which emphasises the limits to the Baines (1995) assumption. This decoupling in

the behaviour of the solutions is particularly pronounced in the γ < 0 region, wherein the

solitary wave solution decomposes into two separate solitary wave profiles. These solitary

waves then become more distinct as L increases, to the point where the stationary so-

lution is effectively two separate standing solitary waves, centred symmetrically about x = 0.

As was discussed previously, the solutions of the fKdV equation can be broadly categorised

into five different classes of solutions, as was documented for δ(x) forcing in Section 4.1. The

Type I and II solutions shown in Figure 4.6, correspondto perturbations from the uniform

stream and solitary wave solutions respectively, and are similar to their δ(x) function

forcing analogues with a similar jump in the phase plane. However, the deformation is

not a sharp jump, but rather a smooth transition from the positive Ax component of the

homoclinic orbit to the negative. This results in a smooth profile to the wave across x = 0.

In contrast to the δ(x) solutions is the behaviour of the Type II solutions around γ = 0.

For δ(x) function forcing, the transition from Type II to Type III solutions occurs around

the upper solitary wave solution at γ = 0. In contrast, the Type II to III transition occurs

at the peak of the phase portrait which occurs, in this case, at around γ ≈ −0.5 for L = 1.

This delayed transition, as a function of L, can be clearly seen in Figure 4.5, where as

L increases the peak of the profile shifts further to the negative, denoting the delayed

transition to Type III as the characteristic width of the topography increases.

Once again, the Type III, IV, and V solutions of Figure 4.7 are similar to their equivalent

forms for δ(x) function forcing, with each solution corresponding to perturbations from

either a single solitary wave, pair of solitary waves, and a strictly negative perturbation

from the uniform freestream respectively. Similar to the Type I and II solutions, the Type

III–V solutions all demonstrate smooth and continuous deformations across all x.

128



x
-5 0 5

A

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

γ

-1 -0.5 0 0.5 1

A
(0

)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 4.6: Type I, and Type II (in blue and red respectively in Figure (a)) solutions to the
fKdV equation with compact support when γ = 0.5 and L = 1.
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Figure 4.7: Type III, Type IV, and Type V (in blue, red, and yellow respectively in Figure
(a)) solutions to the fKdV equation with compact support when γ = −0.5 and L = 1.
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4.3 Discussion

Examining these results, and the general correlation between the analytic solution of the

locally forced case, and the numerical solution of the forcing with compact support, it is

clear that the results conform with previously published results, and that the numerical

continuation schemes proposed in the prior chapter is accurate and applicable to finding

solutions to the fKdV equation. At this point, we now have enough information to return

to the initial hypothesis—that solutions with compact support can be substituted by

the equivalent equations with local support. Returning to Figure 4.5, it is clear that as

the length scale of the topography changes, so too does the accuracy of the local forcing

approximation. This should not necessarily be surprising, as the difference, in terms of

both height and width, between the two forcing functions is a function of L. What is

surprising, however, is just how sensitive the assumption is. When L = 1, there are already

marked differences in how the solution space evolves, particularly with regard to the points

of transition between the Type II and III solutions, and the proportion of Type III and

IV solutions in the solution space, as the part of the diagram where these solutions exists

becomes more prominent as L increases. This is more striking given that the chosen forcing

function outlined within equation (4.16) closely resembles the form of the δ(x) forcing

function. For forcing topographies that do not share these topological similarities, it must

be surmised that the local forcing hypothesis is unlikely to be satisfied.

The dynamics of these Type I-V solutions is broadly similar between solutions with local

and compact support, with the distinction that the Type III and IV solutions become

predominant as L becomes larger, as can be seen with the significant displacement of the

turning point in the upper-left quadrant with L, where γ < 0 and A(0) > 0. This also

manifests as increasing the radius of curvature in this region, which in turn increases the

complexity of traversing the corner using branch following, as more iterations are required

to traverse the corner. A further by-product of this is that as L approaches approximately

2 (from below), the Type IV branch begins to transition from taking a convex shape as

γ → 0− and A(0)→ 0+, to having an inversion point and becoming concave as L increases.

The solutions after the inversion point—as can be seen at around γ = −0.5 in Figure 4.5

do not change type, rather this inversion simply reflects the predominance of solutions in

the region where A(0) ≈> 0.35, and the increased sensitivity to changes in γ when γ is

approximately smaller than −0.5. As L increases beyond 2.5, the magnitude of the concave

region becomes more marked, which in turn has an affect upon the radius of curvature at
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the Type III to Type IV transition point. This decrease in the radius of curvature, and the

nonlinear growth in the magnitude of the location (in terms of γ) for the Type III to Type

IV transition point has meant that we have been unable to traverse the Type IV branch

for L much larger than 2.5. In light of the difficulty of traversing this branch, and the

shift from the profile being locally convex to concave indicates that the solution at L = 2.5

may in fact correspond to a transition regime from a flow configuration where the Type

IV solutions exist, to one where they do not. While some preliminary asymptotic work

has been conducted, which suggests that the Type IV branch does exist as L → ∞, there

are still some remaining questions about the validity of the approach taken to derive these

results, and as such they have been omitted from this work.

Overall, the dynamics of these Type I-V solutions are broadly similar between solutions

with local and compact support, with the primary differences between solutions being the

smoothness across x = 0. However, while previous authors have used local forcing as an

approximation for the dynamics of solutions with compact support, this work clearly shows

that any conclusions based upon this should be limited to bell–shaped forcing topography

with small length scales, and that particular caution should be made in the region of the

transition from the Type II to Type III solutions. However, the broad agreement between

the solutions with local and compact support; as well as between the solutions with compact

support and previously published works further validates the applicability of the GHAM

and its associated continuation methods for exploring the parameter space of nonlinear

boundary value problems. As such, the technique should be well suited for exploring the

forced Gardner equation.

These results also broadly resemble solutions to the fully nonlinear problem, which has been

solved using Boundary Integral methods by Tam et al. (2015). Unlike the weakly nonlinear

case, the fully nonlinear solutions are not strictly positive or strictly negative, and extra

branches of solutions occur, corresponding to the appearance of trapped secondary waves

within main waveform. More specifically, the Type I and V, strictly negative solutions

exhibit strong agreement between the two types of solutions. However as the forcing

amplitude increases the fully nonlinear solutions do not transition into Type II solutions.

Instead, the central amplitude of the Type I fully nonlinear solutions continues to grow

as the height of the topographic forcing is increased. Of most interest are the Type IV

solutions, which in the fully nonlinear case still exist as γ decreases below zero, with the
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the centre of the cusping crossing the horizontal axis and becoming negative.

Having now validated the use of the GHAM to solve nonlinear wave problems, and con-

firming that it shares the advantageous computational properties outlined in Chapter 3, we

can now turn to less understood problems from wave dynamics—specifically the asymmetric

solutions of the fKdV equation, and symmetric solutions of the forced Gardner equation.
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Chapter 5

Asymmetric steady solutions of the

forced Korteweg–de Vries equation

The solution space of the fKdV equation is not just limited to the symmetric solutions

discussed to this point. Rather, a multitude of solutions exist, including symmetry breaking

solutions that exist on an orbit connecting the unforced problem’s two critical points.

These solutions are topographically controlled (Killworth, 1992), and involve a transition

from a subcritical upstream flow to a supercritical downstream solution, or a subcritical

downstream condition to a supercritical upstream, in a form of solution known as a

hydraulic fall. From this point we will solely consider the case where the saddle is the

downstream limit, as the contrasting case is unstable.

In contrast to the solution space of the symmetric fKdV equation, which correspond to

traversing the homoclinic orbit from the saddle at (A,Ax) = (0, 0) to itself, the asymmetric

solution space of the steady forced KdV equation

Axx + ∆A+ 3A2 = −γf(x), (5.1)

for ∆ > 0 involves traversing the phase plane from the upstream critical point

(A,Ax) = (0, 0) to the downstream critical point at (A,Ax) = (−∆/3, 0). The case

where ∆ < 0 reverses the order of the critical points, however, the change in order can be

reverted through the addition of a mean level, and as such it can be assumed that ∆ > 0

without loss of generality. The existence and behaviour of these asymmetric solutions has

been well documented by Grimshaw and Smyth (1986), Belward and Forbes (1993), Dias

133



and Vanden-Broeck (2002), Shen et al. (2002) and Donahue and Shen (2010), among others.

The parameter space of these asymmetric hydraulically controlled solutions was mapped in

terms of (γ,∆) by Ee and Clarke (2007, 2008), for a bell–shaped topographic forcing of the

form f(x) = sech2(x). Their exploration of this space was built upon a consideration of the

Hamiltonian

H(A,Ax) = γfA+
1

2
∆A2 + A3 +

1

2
A2
x, (5.2)

which, when evaluated at the upstream critical points is Hc1 = H(0, 0) = 0, and at the down-

stream limit Hc2 = H(−∆/3, 0) = ∆3/54. The downstream limit of any extant hydraulically

controlled solution will lie at the maxima of H, for which the downstream amplitude will

lie within, and ideally on, the homoclinic orbit in the phase plane. By stipulating that

H(H −Hc2) ≤ 0

− ∆

3
≤ A ≤ ∆

6

 (5.3)

the downstream solution can be restricted to lie within the homoclinic orbit. This in

turn corresponds to imposing that the Hamiltonian must lie between its local minima and

maxima, located at Hc1 and Hc2 respectively.

With the aim of constructing a parametric representation of the relationship between

γ and ∆ Ee and Clarke (2007) implemented a branch following routine to search for

the maximum of H, for which |H − Hc2| ≤ ε for some small ε, and conditioned upon

satisfying equation (5.3). Through this process, the authors were able to construct the

relationship shown in Figure 5.1.

This parameter space can be confirmed through their agreement with an asymptotic analysis

of the problem conducted by Grimshaw and Smyth (1986), which stipulated that as γ → 0±(
∆

3

)3

= (Kγ)2 . (5.4)

Here K is the integral of the forcing
∫∞
−∞ fdx (Shen, 1991). A separate asymptotic limit

corresponding to large, positive values of γ can also be found, predicated upon the assump-
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Figure 5.1: Plot of ∆ against γ, as produced by Ee and Clarke (2007) for the parameter
space for asymmetric solutions of equation (5.1).

tion that in this limit the dispersive term is negligible. Then in this limit equation (5.1)

will only exhibit solutions when

∆ =
√

12γ. (5.5)

As solutions where ∆ < 0 are the equivalent to those with ∆ > 0 with the addition

of a rescaling of the mean height, all solutions can be restricted to ∆ ≥ 0. All three of

these asymptotic approaches accurately match the numerical results of Ee and Clarke (2007).

The basic form of the parameter space can be inferred by examining the point where the

hydraulic solutions collapse onto symmetric solitary waves, which occurs when ∆ = 0.

Camassa and Wu (1991) showed that by imposing that f(x) = sech2(x), the general solution

for solitary waves solutions to the fKdV equation can be expressed as

A = a sech2 (x) , (5.6)

in terms of a wave amplitude a. Imposing this form of solution expression within equa-

tion (5.1) yields
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Figure 5.2: The locations of dA
dx

= 0 at x = 0 for ∆ = 0 are presented in (a) for−160 ≤ γ ≤ 0,
and the corresponding locations in log scale in (b), with all solutions constructed based
upon equation (5.1).

(3a2 − 6a) sech4(x) + (4a+ γ) sech2(x) = 0, (5.7)

which can be satisfied either by setting that (γ, a) = (0, 0), or (−8, 2). These align with

the zeros of ∆ in Figure 5.1, although, curiously, this figure also includes a third solitary

wave at γ ≈ −24. This gives rise to questions about its form, as it is clearly not that of

a sech2(x) wave. A shooting approach was implemented in order to explore this solution,

and to test the hypothesis that other solitary wave solutions may exist beyond the solution

at γ ≈ −24. This was done by shooting from the downstream condition to the centre of

the domain at x = 0, and selecting solutions for which dA/dx is zero at x = 0—a sufficient

and necessary condition for solitary wave solutions.

In fact Figure 5.2a suggests that there is an infinite set of solitary wave solutions of the fKdV

equation for ∆ = 0, although the spacing between these solutions grows exponentially. This

in turn suggests that the parametric curves in Figure 5.1 extends into γ < −25, however

there may be issues with regard to numerical stability as γ decreases further.
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Figure 5.3: Figure (a) contains the a subset of the corresponding solitary wave solutions
to Figure 5.2 for equation (5.1). The presented solutions correspond to the zeros of Fig-
ure 5.2a for −103 ≤ γ ≤ 0. The γ = −8 solitary wave is shown in red, with increasing
magnitudes of γ corresponding to increased wave amplitudes. Figure (b) shows these same
solutions rescaled so that their maximum amplitude is 1.

The qualitative differences between the sech2(x) solitary wave profile at γ = −8 and the

broader range of solitary wave solutions admitted by the fKdV equation are explored

in Figure 5.3 by considering both the wave profiles and their normalised forms. Unsurpris-

ingly, as γ increases so too does the amplitude of these waves, but with this also comes

notable structural changes to the solutions, with a broadening of the wave profile with x,

especially in the region where A→ 0. Furthermore, the waves often show a small inflection

point at approximately 75% of the wave height—a feature best seen in the γ = −24.2

(purple) and γ = −159.5 (light blue) solutions from Figure 5.2a, and the peaks alternate

between flat, low radius of curvature regions (seen in the yellow, green and burgundy plots

of Figure 5.3a), and more tightly cusped, higher radius of curvature profiles (seen in purple,

light blue and dark blue of Figure 5.3a).

Returning to the parametric relationship between ∆ and γ, while the approach of Ee and

Clarke (2007) was able to traverse the parameter space for γ ≥ −24, the calculations

amounted to a search routine over a large domain conducted with only minimal constraints,
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which was computationally taxing. To resolve this, inspired by the physics of the flow it

was hypothesised that the topographic drag exerted should become constant in the case of

steady solutions. This approach may provide a suitable manner to constrain the solution

space, and allow the replication of the work of Ee and Clarke (2007, 2008) without the

reliance upon their search heuristic.

Returning to the Hamiltonian equation (5.2), a conservative form of the fKdV equation

can be constructed by considering

∂H

∂Ax
= Ax

∂H

∂A
= ∆A+ 3A2 + γf

∂H

∂x
= γfxA.


(5.8)

As a consequence of this, the net change in the Hamiltonian between x = ±∞, which is

equivalent to traversing from the upstream condition to the downstream critical point will

be

δH = H(∞)−H(−∞) =

∫ ∞
−∞

dH

dx
dx =

∫ ∞
−∞

γfxAdx. (5.9)

That the net change in the Hamiltonian δH is in terms of this integral is interesting as the

term

Cw = −
∫ ∞
−∞

γfxAdx. (5.10)

has previously been identified as the wave–resistance coefficient (Wu, 1987, Camassa and

Wu, 1991), which is a metric for the transference from the forcing to the energy of the

system. Thus Cw is functionally equivalent to the drag D exerted by the topography, so

that

δH = H(∞)−H(−∞) = D. (5.11)

The form of H(±∞) can be considered by partitioning H so that

H(A,Ax) = V (A) +
1

2
A2
x,
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Evaluating the potential V (A) and its derivatives at the the critical points A = 0 and −∆/3

V (0) = 0 V (−∆/3) =
∆3

54

V ′(0) = 0 V ′(−∆/3) = 0

V ′′(0) = ∆ V ′′(−∆/3) = 0.

 (5.12)

Thus for ∆ > 0 the saddle at A = −∆/3 corresponds to a local minima of the orbits

contained within or on the manifold, and the centre at A = 0 will correspond to a local

minima over the same region. This in turn means that in the case of hydraulic solutions—for

which Ax(±∞) = 0—it must be that asymmetric solutions must correspond to a minima of

D, where ∫ ∞
−∞

γfxAdx =
∆3

54
. (5.13)

To validate this derivation, and to further explore the ramifications of this result, we can

returning to the unsteady fKdV equation as introduced in Chapter 4

At + ∆Ax + 6AAx + Axxx = −γfx. (5.14)

The fKdV equation admits a conservation form, which can be constructed by multiplying

with A(x) and integrating with respect to x to give

dP

dt
+

1

2
∆A2

∣∣∣∣∞
−∞

+ 2A3

∣∣∣∣∞
−∞

+

(
AAxx −

1

2
A2
x

) ∣∣∣∣∞
−∞

= −
∫ ∞
−∞

γfxAdx. (5.15)

Here P =
∫∞
−∞(1/2)A2dx is the wave momentum (Camassa and Wu, 1991). In the context

of the fKdV equation, it must be true that this equation must become homogeneous as

|x| exceeds the region of support for the topographic forcing function. Thus, considering

the case of aperiodic solutions for which ∆ > 0, then then any asymmetric solution should

traverse from the saddle at (A,Ax) = (−∆/3, 0) to the centre at (A,Ax) = (0, 0), or the

centre to the saddle. We are free to impose that A(−∞) = 0 and A(∞) = −∆/3, so that

the solutions will be travelling from the centre to the saddle.

In the far field, the solutions to the steady KdV equation can take two forms—either

exponentially decaying solutions, or periodic oscillations on the boundary. When x→ −∞,

the pattern of approach to the saddle imposes that (A,Ax) → (−∆/3, 0), which in turn
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gives that Axx → 0, with numerical experiments confirming that these conditions are

always satisfied, and that the solution does decay exponentially. In the region where

x → ∞ it must be that A → 0, similar to approaching the saddle, however, we can not

similarly assume that (Ax, Axx) also trend towards zero. As such, the downstream condition

can either correspond to exponentially decaying solutions or periodic oscillations on the

boundary. As we are searching for hydraulic solutions, where A(x) exhibits exponential

decay towards the imposed boundary conditions at the saddle and centre, the uncertainty

about the upstream behaviour must be accounted for within the derivation.

Using the above results equation (5.15) can be reduced to

dP

dt
+

1

2
A2
x(∞) =

∆3

54
−
∫ ∞
−∞

γfxAdx. (5.16)

In the context of steady solutions, where dP
dt

= 0, and as A2
x(∞) must be strictly positive

then ∫ ∞
−∞

γfxAdx ≤
∆3

54
, (5.17)

and that as
∫∞
−∞ γfxAdx approaches ∆3/(6r2), Ax(∞) must in turn approach zero. As such,

hydraulic solutions can be found by searching for∫ ∞
−∞

γfxAdx =
∆3

54
, (5.18)

thus confirming the previously derived result.

While we refer to the process of solving for these hydraulic solutions as minimising the drag,

the question may be asked as to why this needs to be a mimisation process at all, given

that equation (5.13) gives an integral condition on the solution that should be able to be

satisfied—however, there are two issues with this approach. The first is that equation (5.13)

is obviously a nonlinear equation in terms of ∆, A and γ, where A is inherently a nonlinear

function of ∆, due to its influence on both the fKdV equation itself, and on the boundary

conditions of the asymmetric problem. Thus incorporating this condition into a solver

presents particular hurdles.
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The second issue is potentially even more problematic, and it stems from the potential

presence of downstream wavetrains in solutions that are approaching the hydraulic limit.

By truncating the numerical domain, and imposing linear boundary conditions, nonlinear

wave are introduced in the downstream limit. In order to resolve a waveless, hydraulic fall

solution downstream, L must be chosen from a range on the order of the wavelength of the

nonlinear waves so that the drag is minimised.

As such, the problem must be considered in the context of an optimisation problem in

terms of both the domain length L and ∆, in order to satisfy equation (5.13). This is the

equivalent to searching for

min
L≥0,∆≥0

∫ ∞
−∞
−γfxAdx, (5.19)

for a given γ, and for x defined over [−L,L].

5.1 Solution space for hydraulic solutions of the fKdV

equation

The minimisation criteria for the drag can be solved for using a Genetic Algorithms (GA),

which is a technique inspired by a classical view of mathematical selection, and employs a

fitness criteria (Fisher, 1958) to search for the minima of equation (5.19) in terms of ∆ and

L. The GAs are a derivative free optimisation heuristic that, by minimising the number

of required function evaluations significantly reduces the computational cost of finding a

solution, relative to that of multivariate iteration (Holland, 1995).

For each γ, the GA will propose trial doublets of (∆, L) that are passed to the fKdV

equation solver developed within the GHAM, which considers the problem subject to

Dirchlet boundary conditions subject to a logarithmic domain mapping. Due to the relative

computational cost of solving the fKdV equation, the ability of GAs to minimise the

number of evaluations is of significant importance. To enhance the convergence properties

of the scheme, a simplified form of hypersphere continuation inspired by natural parameter

continuation is employed to deform a previously calculated solution at γ0 onto the solution

at the new choice of γ. Attempting to increase the performance of the scheme by employing

a more considered and complex continuation scheme was found to be an impractical
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Figure 5.4: Parametric relationship between ∆ and γ for −10 ≤ γ ≤ 5, subject to f(x) =
sech2(x).

solution, as changing L within the GA resulted in a change to the domain length, which

in turn created difficulties in interpolating the previously calculated solution over some

truncated domain, to the domain corresponding to the new guess of L. The utility of this

simplified continuation approach, and its resulting solutions will be tested by considering

the results of Ee and Clarke (2007)—shown in Figure 5.1—as a validation case.

Employing the GHAM and a GA subject to equation (5.19) allowed the parametric

relationship in (∆, γ) to be constructed, as shown in Figure 5.4. A snapshot of the

corresponding solution space is also outlined in Figure 5.5. Both of these perspectives

on the case of hydraulic solutions of the fKdV equation align closely with Ee and Clarke

(2007) and Figure 5.1. For the region in γ ≥ −8 the solutions and parametric relationship

align exactly, however the proposed methodology did struggle to resolve solutions in the

region where γ ≤ −8. Outside of this divergent region, the calculations exhibited rapid

convergence to machine precision accuracy, and produced results that closely replicated the

asymptotic results, as outlined within the previous section.
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However, progressing to the region wherein γ < −8, the step size in γ required for the

continuation process rapidly diminished to the point where traversing the domain became

an intractable problem. Theoretically, the solutions contained within this region are

resonant solutions, which consist primarily of a forced symmetric solitary wave subject

to a topographic perturbation coupled with a weak downstream shelf. By examining the

eigenvalues of these solutions, Ee and Clarke (2007) found this form of solution to be

unstable, which may explain the difficulties in constructing solutions within the simplified

continuation regime. This result is especially true in the neighbourhood of γ = −8, which

may explain the difficulty of resolving solutions within this region.

The numerical instability is not the only contributing factor to the difficulty in resolving

these solutions, as around γ = −8, the corresponding value of ∆ for the hydraulic solution

will be small, and thus close to ∆ = 0. It is known that there are a large range of

numerically stable solutions on ∆ = 0 for all γ (Keeler et al., 2017), and all of these

∆ = 0 solutions will also satisfy the drag relationship. This means that the solver may be

struggling to distinguish the desired hydraulic asymmetric solutions from the symmetric

solutions on ∆ = 0. This problem may be alleviated as γ becomes more negative, as

the expected values of ∆ along the parametric line become more distinct from zero as γ

decreases further. Attempts were made to rectify this problem by more careful parameter

selection within the GA, and adaptively refining bounds of the search region in ∆ to reflect

the last calculated solution. However the solutions have not been presented within this

work as there are some uncertainties about if the agreement between the results and the

work of Ee and Clarke (2007) is a product of already having domain knowledge gained

through a consideration of the previously constructed work.

Turning now from the parametric relationship between ∆ and γ to the corresponding

solution space. First, focussing on the region wherein γ is positive the solutions all

correspond to unperturbed hydraulic falls centred about x = 0, where the fall starts at

A = 0 upstream, and drops to −∆/3 within the downstream region. As γ becomes larger,

the effect of dispersion upon the overall solution is minimised, and in the solutions this

manifests as the region where Ax is non–zero becoming restricted to the domain of the

topographic perturbation. As ∆ monotonically increases with γ within this region, the

magnitude of both the jump, and the slope must also increase monotonically. This is borne

out by the results in Figure 5.6, where the jump between the upstream and downstream
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Figure 5.5: Hydraulic, asymmetric solutions of equation (5.1) for γ =
{−8.5,−7.5,−5,−2, 0.5, 5, 10, 25}, ordered from left to right.

shelves becomes both larger, due to the increasing magnitude of the downstream boundary

condition as γ increases, and the jump becomes more distinct and confined to within the

region of support for the the topographic forcing function.

In the region where γ < 0, the solutions can broadly be considered as perturbations from

the solitary wave at γ = −8, with the perturbation taking the form of a downstream shelf.

A representative sample of these solutions are shown in Figure 5.7. Unlike γ > 0, in this

region the effect of dispersion is always present, and as such the solutions are not confined

to the region of support for the topographic forcing.

While every value of ∆ within the region −8 ≤ γ ≤ 0 has either one or two corresponding

values of γ, each γ still corresponds to a unique solution. If we focus on two solutions for

∆ = −2.56—detailed in Figure 5.8—it is apparent that the hydraulic fall component of the

solution remains constant, as it is broadly determined by the upstream and downstream

boundary conditions. However, the height and width of the superimposed solitary wave

increases with the magnitude of γ. These characteristics appear to continue for γ < −8,

however the conclusions that can be made about the solution space in this region are
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Figure 5.7: Solutions of equation (5.1) for γ = {−8.5,−7.5,−5,−2} in blue, red, yellow and
purple respectively.
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Figure 5.8: (γ,∆) = (−2.0285,−2.56) in blue and (γ,∆) = (−4.1360,−2.56) in red.

limited due to the lack of a comprehensive exploration of this region of γ. At some point

there must be a transition back towards the solitary wave solution as γ approaches the

solitary wave located at γ ≈ −24.5, so this trend of increasing the amplitude and width of

the wave component cannot continue unabated.

5.2 Constrained drag minimisation

While the results presented above for asymmetric solutions of the fKdV equation require

solving an optimisation problem in terms of ∆ and the domain length, it may in fact be

able to remove the influence of L. As a consequence of this, the problem would be able to

be reduced from a multidimensional optimisation problem to an ODE with an additional

free parameter ∆, subject to the closure equation (5.13).

The influence of the domain length can be removed if the numerical domain is restricted

to only considering the region of support of the topographic forcing function. This can

be attempted by considering the fKdV equation in its conservative form, integrated across

x ∈ (x̂,∞)
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∫ ∞
x̂

Axx + ∆AAx + 3A2Axdx =

∫ ∞
x̂

−γfAxdx. (5.20)

By imposing that f(x) must have compact support over x ∈ [x−, x+], then outside the

region of the forcing it follows that

1

2
A2
x +

∆

2
A2 +

r

3
A3 =

 0 for x ≤ x−,

−∆3

6r2
for x ≥ x+.

(5.21)

Both of these equations are now integrable, the solutions of which are

A = −∆

r
+

1

2
∆ sech2

(√
|∆|
2

(x− L+)

)
for x ≤ x−,

A =
1

2
∆ sech2

(√
|∆|
2

(x− L+)

)
for x ≥ x+.

 (5.22)

To reduce the problem from solving over x ∈ (−∞,∞) to x ∈ [x−, x+] we could introduce

the two equations above, evaluated at x+ and x−. In doing so, two new free parameters L+

and L− are introduced, for which there is no viable closure. Instead, the problem can be

considered as a series of coupled nonlinear equations

Axx + ∆A+ rA2 = −γf, for A = A(x) and f = f(x),∫ ∞
−∞

γfxAdx−
∆3

6r2
= 0,

1

2
A2
x(x+) +

∆

2
A2(x+) +

r

3
A3(x+) = −∆3

6r2
,

1

2
A2
x(x−) +

∆

2
A2(x−) +

r

3
A3(x−) = 0,


(5.23)

where the first equation is solved over x− < x < x+. Similarly, the integral can be reduced

to ∫ x+

x−

γfxAdx

as x ∈ [x−, x+] is the region of support of the topographic forcing function f(x), and as

such the integrand will be zero outside this region.
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As a result of equation (5.23), the fKdV equation in the case where ∆ is a free parameter

can now be considered to be well posed, subject to implementing the nonlinear boundary

conditions. The integral equation for the drag can be evaluated within the GHAM through

the use of the Gegenbauer Clenshaw-Curtis quadrature from Subsection 2.1.5 and equa-

tion (2.37).

An as of yet unresolved problem using this approach stems from the structure of fx. As

any even forcing function will result in fx being odd, then any symmetric solution for A

will satisfy the drag if ∆ = 0. As was discussed previously, for γ < 0 there are an infinite

set of symmetric solutions that exist for ∆ = 0, that appear to be more stable than their

corresponding asymmetric solutions. As such, approaching the problem with the preceding

methodology converges to the symmetric solutions where ∆ = 0, rather than the desired

asymmetric solutions. It is possible that this problem can be alleviated through careful

choice of the auxiliary linear operators used for the GHAM, and as such this technique

warrants further exploration, even if it has not produced viable results to this point.

5.3 Discussion

While the parametric relationship for the fKdV equation in terms of (γ,∆) has previously

been elucidated by Ee and Clarke (2007), their process required solving a numerically

complicated optimisation process without a clear objective function. In contrast to this, the

work contained within this chapter considered the parametric relationship in the context

of the drag induced by the topography. In doing so, we were able to produce an integral

condition upon u that greatly reduces the complexity of resolving the parametric curve

between γ and ∆.

Through this technique we were able to replicate the results of Ee and Clarke (2007) for

γ > −8, confirming the validity of the previously published results. However, the presented

technique did display some difficulties in resolving the region where γ < −8, with the step

size of the numerical continuation regime rapidly decreasing to the point where further

explorations of the domain became impractical.

The solutions in the region where γ < −8 have previously been shown to be, at best, only

marginally stable; and the parametric curve in this region is close to ∆ = 0, at which point

the integral constraint equation (5.13) is satisfied by any symmetric solution. These two
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factors likely drive the difficulties in resolving the solutions over this component of the

parameter space.

Resolving the issue of solutions within the region where γ < −8 will be a particular focus of

future work, as through an examination of the properties of the asymmetric fKdV we were

able to find that the parametric relationship of Ee and Clarke (2007) will likely continue

for γ less than the lower limit presented in the original work, which only found solutions

within the region of γ > −24.

There are several potential avenues to modify the technique in a manner that would allow

the region for γ < −8 to be reliably resolved. The first potential methodological change

would be to update the continuation approach used for this problem, as the solutions cal-

culated within this chapter were based upon a simplified parameter deformation approach

using adaptive step length. This amounted to using a previously calculated solution in the

neighbourhood of γ as the starting point of the homotopy deformation process within the

GHAM. This approach was chosen as the Genetic Algorithm optimisation requires changing

the length scale L of the numerical domain, which introduces significant complications to

the implementation of more complex, and more rigorous numerical continuation algorithms.

A secondary approach would be to change the manner in which the domain was explored.

Currently the algorithm to trace out the parametric curve started at γ = 0, and then

progressed across the domain in the positive and negative directions. However, over the

course of this experimentation it was found that the solver was far more stable in the

region of −8 ≤ γ ≤ 0 when the starting point was taken as the solitary wave solution at

γ = −8 rather than at 0. While there is no analytic description of the solution at γ ≈ −24,

in Figure 5.3 it was shown that the solution at this point (and at all other points where

∆ = 0) has a simple numerical description. This could then be used as the starting point

for attempting to traverse the region where −24 ≤ γ ≤ 0.

Finally, while initial testing of the approach from Section 5.2 proved unsuccessful, if the

technique can be modified so that it does not admit solutions where ∆ = 0 then there is no

reason that it should not prove successful. This technique is particularly promising in that

it removes the dependence upon the domain length by reducing the solution to one over

the region of topographic support. This in turn would mean that the problem could be
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removed from falling under the aegis of optimisation problems, which would both simplify

the solution process and open up more options for the numerical continuation approach

employed to explore the parametric relationship between γ and ∆.

The very fact that the presence of hydraulic solutions must correspond to minimas of the

drag, and that this drag must converge to a fixed value is also an important result. Prior to

deriving this result it had been assumed that in the long time limit unsteady, asymmetric

solutions of the fKdV equation would exhibit nonlinear wavetrains that moved towards

the boundary, and that these wave trains would never fully cease to exist. However, the

constraints upon the drag suggest that the amplitudes of these nonlinear wavetrains will

likely decay as time becomes large.

While the work on resolving the full parametric relationship between ∆ and γ remains

ongoing, the overall contribution of this chapter to the broader understanding of hydraulic

solutions to the fKdV equation is that the dynamics are significantly controlled by the drag

upon the perturbation to the uniform flow. In light of the success of employing the GHAM

for exploring the parameter and solution spaces of the fKdV equation, the more general

case of the symmetric forced Gardner equation can now be considered.
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Chapter 6

Symmetric solutions of the forced

Gardner equation

As was discussed in Chapter 1, the fKdV equation can be considered as the limit of the more

general forced Gardner equation. Rather than just incorporating a quadratic nonlinearity,

the forced Gardner equation involves a balance between dispersion and both quadratic and

cubic nonlinearities, and takes the form

Axx + ∆A+ rA2 + qA3 = −γf(x). (6.1)

The addition of the cubic nonlinearity significantly enhances the scope of potential applica-

tions of this equation, relative to that of the fKdV equation, and increases the breadth of

expression of the solution and parameter spaces. As was mentioned in Section 1.1 the forced

Gardner equation can be expressed in terms of the introduced parameter δ ∈ [0, 1], which

represents the relative balance between the quadratic and cubic nonlinearities contained

within the equation. The limit where δ → 0 involves the equation approaching the fKdV

equation, while the case where δ → 1 approaches the modified Korteweg–de Vries (mKdV)

equation.

The incorporation of the additional nonlinearity necessitates an extension of the parameter

space from that of the fKdV equation. As such, the parameter space of the forced Gardner

equation exists as a three–dimensional manifold the equivalent spaces (∆, γ, A(0), δ) or

(L, γ,A(0), δ). This contrasts to the two–dimensional manifold in (L, γ,A(0)) of the fKdV
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equation.

To explore this parameter space, the specific case of fixed L will be considered, and the

triptych of free variables (γ,A(0), δ) will be explored in terms of a series of slices across

δ. In doing so, the three–dimensional manifold is reduced to covering two–dimensions, a

choice that was taken to both enhance the clarity of the presented parameter spaces, and to

aide in the comparison between the parameter spaces of the fKdV equation and the forced

Gardner equation.

In contrast to the fKdV equation, the forced Gardner equation does not admit any direct

symmetries, except in the cases where δ = 0 and δ = 1, which again correspond to the fKdV

and mKdV equations respectively. As the symmetries of the fKdV equation were already

discussed within Chapter 4, we turn to the case of the mKdV equation. This equation

admits the symmetry that as A→ −A′, then γ → −γ′. In terms of the (A(0), γ) parameter

space, this symmetry corresponds to a rotation around both axis. While the forced Gardner

equation may not admit any similar symmetries across all possible values of the doublet

(r, q), in the case where the forced Gardner equation approaches the fKdV and mKdV

limits, then the parameter space will approach the respective symmetries of these equations.

6.1 Unforced solutions

Due to the similarities between these two equations, it follows that the basic features of

the forced Gardner equation, of the form equation (6.1), and its parameter space can be

elucidated in a similar manner to that of the fKdV equation by examining its unforced

case.

Subject to the condition that ∆ < 0, the Gardner admits the bright solitons (Kamchatnov

et al., 2012)

A =
−3∆

2

µ+ 1

r

1

µ+ (1− µ) cosh2(1
2

√
|∆|x)

, (6.2)

where the equivalent solitons for ∆ > 0 can be constructed through the mapping

Â = A+
r ±

√
r2 − 4∆q

2q
. (6.3)
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Figure 6.1: The form of the two solitary waves of the Gardner equation (in blue and red)
and the trivial solution (yellow) for ∆ = −1.92, r = 3

2
and q = 3

2
.

Within equation (6.2) the soliton parameter µ is any extant root of the equation

(1 + µ)

(
µ2 + 2

(
1− 4r2

9q∆

)
µ+ 1

)
= 0. (6.4)

As this is a cubic equation in terms of µ, there must be at most three distinct values of µ,

and in turn three corresponding solutions, for which one must always be a trivial solution,

with the form of all three demonstrated within Figure 6.1. The introduced parameter µ

must also be restricted to lie within (−∞, 1) due to the emergence of a pole for µ ≥ 1

(Kakutani and Yamasaki, 1978, Miles, 1979). This equation admits three distinct solutions

for µ when r2/(q∆) < 0 or r2/(q∆) > 9/2; two distinct solutions when r2/(q∆) = 0 or 9/2,

and only admits the trivial solution for A when 0 < r2/(q∆) < 9/2.

Further insight into the form of the solution space of the Gardner equation can be gleamed

from its phase portrait. Subject to q 6= 0, the Gardner equation admits the three fixed

points
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(A,Ax) = (0, 0) and

(A,Ax) =

(
− r

2q
±
√
r2 − 4∆q

2q
, 0

)
.

 (6.5)

The stability of these stationary points can be considered in terms of the Hamiltonian of

the forced Gardner equation—

H(A,Ax) = V (A) +
1

2
A2
x where

V (A) =
1

2
∆A2 +

r

3
A3 +

q

4
A4.

 (6.6)

By considering the derivatives of V (A)

V ′(A) = ∆A+ rA2 + qA3

V ′′(A) = ∆ + 2rA+ 3qA2

}
(6.7)

at the first critical point—where (A,Ax) = (0, 0)—then V ′′(0) = ∆ will be strictly positive

if ∆ > 0, and thus this critical point will correspond to a centre in this case. Alternatively, if

∆ < 0 then so too will be V ′′(0), and as such this critical point will be a saddle—behaviour

that mimics that seen within the KdV equation.

For the second and third stationary points at

(A,Ax) =

(
− r

2q
+

√
r2 − 4∆q

2q
, 0

)
the positive branch stationary point will correspond to V ′′ > 0, and thus the critical point

will be a stable centre when

α(2r − 3qα) < ∆ where α =
qr

2
−
√
r2 − 4∆q

2q
.

The alternate case is where V ′′ will be strictly negative, and thus a saddle for

α(2r − 3qα) > ∆.

Similarly, the negative branch stationary point will be a stable centre for
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Figure 6.2: Phase portrait of the Gardner equation for ∆ < 0 and r = q = 3/2, with the c+

and c− denoting the location—in A—of the critical points at (A,Ax) =
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.

β(2r − 3qβ) < ∆ where β =
qr

2
+

√
r2 − 4∆q

2q

The phase portrait admitted by these stationary points can be seen in Figure 6.2.

The two solitons from equation (6.2) can be extended to incorporate forcing with local

support in the same manner as Section 4.1, where the fKdV equation was solved subject to

a δ(x) forcing function. Beginning by assuming the solitons under the local forcing regime

can be described by

A(x) =


−3∆

2

µ+ 1

r

1

µ+ (1− µ) cosh2(1
2

√
|∆|x− L+)

for x ≥ 0,

−3∆

2

µ+ 1

r

1

µ+ (1− µ) cosh2(1
2

√
|∆|x− L−)

for x < 0,
(6.8)

then by incorporating the continuity and jump conditions from the δ(x) forcing
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A(0+) = A(0−) ≡ A(0) and

A′(0+)− A′(0−) = −γ,

}
(6.9)

it follows that L+ = ±L−. The jump condition then imposes that

sinh(L+) cosh(L+)

(µ+ (1− µ) cosh2(L+))2
− sinh(L−) cosh(L−)

(µ+ (1− µ) cosh2(L−))2
=

−γr
3(1 + µ)(1− µ)

|∆|−3/2. (6.10)

This can only be satisfied if γ = 0, or if L+ 6= L−, and as such setting L+ = −L− ≡ L0

gives rise to the nonlinear equation in L0

sinh(L0) cosh(L0)

(µ+ (1− µ) cosh2(L0))2
=

−γr
6(1 + µ)(1− µ)

|∆|−3/2. (6.11)

While there is no closed form analytic solution to L0, it should be clear that there can

be at most two solutions of L0 for every µ 6= −1. This in turn suggests a change in the

manifestation of the bifurcation diagram of the forced Gardner equation, relative to that

of the fKdV equation. Within the context of the fKdV equation, that there was only one

solitary wave, that existed for A(0) > 0, meant that there was no possibility for a second

zero crossing at γ = 0, thus restricting the overall potential structure of the bifurcation

diagram. In contrast, that there is one solitary wave for each of A(0) positive and negative

for the Gardner equation suggests that there may be some degree of symmetry, with respect

to the form of the solutions within the upper and lower halves of the Gardner equation

bifurcation diagram. Of course, the upper and lower halves of the bifurcation diagram

cannot be identical, as the respective absolute value of A(0) for both solitary waves differs.

This concept of symmetry was confirmed by exploring the bifurcation diagram in the case

of local support. However, as was the case of the fKdV equation, the solutions for local

support match the solutions for compact support, and as such rather than presenting this

limiting case we shall now turn to examining the set of solutions subject to a topographic

forcing function with compact support.

6.2 Positive cubic nonlinearity

For q > 0, the solution space for positive cubic nonlinearities of
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∆A+ 3(1− δ)A2 + 3δA3 + Axx = −γf(x) (6.12)

will be explored for the supercritical case where ∆ = −1.92 and subject to the bell–shaped

topographic forcing function of the form

f(x) =

cos4
(
π
2
x
)
, for x ∈ [−1, 1]

0, for |x| > 1.
(6.13)

The position in parameter space ∆ = −1.92 was chosen based upon previously pub-

lished work on the Gardner equation, although it must be reiterated that the results

from Section 1.1 show that this position in parameter space can freely be mapped to others

positions. For ease of comparison the forcing function employed for the forced Gardner

equation is—with the exception of the scaling term, which has been omitted— identical to

that used for the fKdV equation in Section 4.2.

The numerical solution will be constructed upon the truncated domain x ∈ [−25, 25] subject

to a Logarithmic mapping to the Chebyshev domain [−1, 1], The auxiliary linear operator

L for the GHAM was simply

L[A] = Axx + ∆A,

as this choice of linear operator was able to resolve the broader parameter space.

Solving across (γ,A(0)) for varying δ in Figure 6.3 demonstrates the evolution of the

parameter space from the fKdV equation—shown with the blue dotted line–to a range of

relative balances between the quadratic and cubic coefficients. As δ increases the topology

of the parameter space changes rapidly, from a transitional regime that bears some expected

similarities to the parameter space of the fKdV equation, to a heretofore unseen phase

space that resembles a figure eight. This transition between these two systems occurs at

δ ≈ 0.3725.

One point of curiosity is the terminal end of the lower branch solutions for δ < 0.3725. The

turn towards positive γ—shown in more detail in Figure 6.4—must occur as the Gardner

equation must exhibit a second unforced solitary wave, but the question remains with

regard to why the tail terminates within this transitional regime. The step size required to
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Figure 6.3: Solution space to equation (6.12) subject to the forcing equation (6.13) for
varying δ. Dashed lines correspond to δ = {0, 0.1, 0.2, 0.3} for the blue, red, yellow and
purple lines respectively. Solid lines corresponding to δ = {0.4, 0.6, 0.8, 1} for the same
colour progression.

resolve the numerical continuation along the lower branch of Figure 6.4 decreases rapidly

as the terminal end is approached, which suggests a decline in the numerical stability of

the solutions within this region, or of the applicability of the continuation regime. It is

also true that all the nonzero δ figure–eight shaped curves in parameter space have a finite

length, in contrast to the infinite width Type V tails of the fKdV equation. As such, there

must be some point in δ at which the manifestation of the parameter space to the forced

Gardner equation transitions from an infinite length path through parameter space, to a

finite length path.

This question can be resolved by considering the asymptotic limit of this problem. In the

limit where γ → 0 it can be assumed that γf(x) ≈ γδ(x), and as such as long as a solution

exists it can be constructed analytically. By considering γ = ±ε within equation (6.8)

and equation (6.10) for some ε � 1, the location of A(0) can be considered for varying δ.

In this limit there are four extant solutions for each of γ = ±ε, and as such the terminal
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Figure 6.4: Two perspectives on the solution space to elucidate the structure of equa-
tion (6.12) for varying δ. Dashed lines correspond to δ = {0, 0.1, 0.2, 0.3} for the blue, red,
yellow and purple lines respectively. Solid lines corresponding to δ = {0.4, 0.6, 0.8, 1} for
the same colour progression.

ends should, in fact, turn back towards (γ,A(0)) = (0, 0). That the parameter spaces

presented above do not behave in this manner is most likely an artefact of the simplified

arc–length continuation technique used for this problem. The simple stepping regime may

be struggling to resolve regions with high radius of curvature. As such, it may be possible

to find the final branch of solutions for small δ by changing to one of the more numerically

rigorous continuation regimes developed within Chapter 3.

Furthermore, this asymptotic approach also indicates that the gap between the lower

branch and (γ,A(0)) = (0, 0)—as is visible in Figure 6.4a—should be filled, and that the

solution branches should all converge upon the origin. That they do not in turn suggests

that there are as yet unresolved issues with the solutions in this region, stemming from

either the numerical stability of the problem or the stability of the solutions themselves.

While it may not be possible to resolve the latter issue, the former may be addressed by

more carefully selecting the auxiliary linear operation L and the homotopy parameter ~.
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Under the assumption that the solution branch in the fourth quadrant of the (γ,A(0)

domain exists and should progress towards the origin, we considered the possibility of self–

similarity between the solutions across the domain. While there is a degree of self–similarity

in both the region above and below A(0) = 0, there is no scaling that ties together the

entirety of the parameter space, and the corresponding solution space.

As the solution space exhibits topological similarity across δ, with the primary differences

within the solution space driven by the differential scaling of the amplitudes, the form of

the solutions exhibited by the forced Gardner equation can be considered in terms of a

single δ. As such, we will focus upon the case of δ = 0.6, which involves an approximate

balance between the quadratic and the cubic nonlinearities.

In a similar manner to the fKdV equation, the variance in the topological manifestation

of the solution space correspond to distinct regions of the parameter space. As such, to

explore the solution space Figure 6.5 is partitioned into four regions of varying colours.

Within the blue region—characterised by A(0) > 0 and γc < γ for γc ≈ 0.1—two distinct

forms of solutions can be identified in Figure 6.6. Labelling the first form of solutions as

Type I, these correspond to perturbations from the unperturbed freestream solution, the

characteristics of which present as small amplitude bell–shaped solitons. The Type II solu-

tions exhibit broadly similar characteristics, although they are instead perturbations from

the positive A(0) solitary wave solution of the Gardner equation. Both of these categories

of solution involve smoothly varying solitary waves. In the context of the phase plane for

the forced Gardner equation, the Type I and II solutions involve traversing the homoclinic

orbit for A > 0 from the saddle in a clockwise direction, with a jump corresponding to

the topographic forcing prior to passing the centre for a Type I solution, and after for the

corresponding Type II.

The next subset of Figure 6.5 is the red region, which contains the Type III and Type IV

solutions. Type III solutions contain minor cusping, with the dual peaks varying in both

their position and height with γ. The Type IV solutions, while broadly similar, involve

sharper cusping. While these solutions similarly exhibit variance in the location of the

dual peaks, and with the depth of the cusped region with γ, the magnitude of the dual

peaks remains constant throughout the Type IV solutions, differentiating them from the

Type III solutions. In terms of their manifestation in the phase plane, both solutions
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Figure 6.5: Parameter space for the forced Gardner equation in the form equation (6.12)
subject to the forcing function equation (6.13) for δ = 0.6, divided into different colours to
cover regions of distinct solution phenomenology.

begin at the saddle at (A,Ax) = (0, 0) before traversing clockwise around the homoclinic

orbit from the saddle past the point of zero crossing in Ax. As the solution reaches the

region of support for the forcing function, there is a jump from the lower half of the

homoclinic orbit back onto the upper half again, before again traversing the homoclinic

orbit in the clockwise direction until the orbit returns to the saddle. The Type III and

IV solutions can be distinguished by the location of the jump—occurring before the pass-

ing the centre for a second time in the Type III solutions, and after in the Type IV solutions.

Type V and VI solutions can be found in the yellow region of Figure 6.5, and broadly

share the same characteristics as the Type I and II solution. The Type V solutions are

perturbations from the uniform freestream flow, but exist with A(x) ≤ 0 for all x. Similarly
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Figure 6.6: Type I (Blue, Red) and II (Yellow, Purple) solutions of equation (6.12) for
δ = 0.6. These solutions correspond to the blue region of Figure 6.5, subject to the forcing
function equation (6.13).

to the Type II solutions, the Type VI solutions are perturbations for the negative solitary

wave of the forced Gardner equation, and correspond to the first region of the solution

space of the forced Gardner equation that does not have a corresponding form within the

solutions of the fKdV equation. The existence of this solution should be of no surprise,

as it is only logical that the addition of an extra solitary wave solution would engender

solutions that are perturbations of that soliton. In terms of the phase plane, the Type

V and VI solutions mirror the form seen in the Type I and Type II solutions, with the

exception that the latter solutions correspond to traversing around the homoclinic orbit in

a counter-clockwise direction through the region where A < 0.

The difference between the Type I and II solutions and their corresponding Type V and

Type VI solutions, in terms of both their solution spaces and their manifestation in the

parameter space of Figure 6.5 can almost entirely be described in terms of the phase plane.

As the centres of the phase plane have an asymmetric distribution—with the two centres
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Figure 6.7: Type III and IV solutions of equation (6.12) for δ = 0.6. These solutions
correspond to the red region of Figure 6.5, subject to the forcing function equation (6.13).

located at (A,Ax) = (−r/2q ±
√
r2 − 4δq/2q)—then the orbits that traverse from the

saddle and around these centres must have a corresponding change in the manifestation of

their amplitudes.

The final region of the solution space to be explored corresponds to the purple region

of Figure 6.5, which covers the Type VII and Type VIII solutions. Like the Type V and

VII solutions mirroring the first two forms of observed solutions, the Type VII and VIII

solutions are effectively mirrors the evolution of the Type III and Type IV solutions. As

was the case with the Type V and Type VI solutions, the change in the manifestation of

the Type VII and Type VIII relative to those of the Type III and Type IV is a product of

the asymmetry of the phase space and the ensuing homoclinic orbits.

While the above results are presented in the case where δ = 0.6—which corresponds to a

state where the contribution of the cubic and quadratic nonlinearities is roughly even—the

results contained within are reflected for all δ ∈ (0, 1]. The case corresponding to the fKdV
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Figure 6.8: Type V and VI solutions of equation (6.12) for δ = 0.6. These solutions
correspond to the yellow region of Figure 6.5, subject to the forcing function equation (6.13).

equation where δ = 0 is, of course, an exception, although it does share similarities in the

observed characteristics of the Type I–IV solutions.

6.3 Negative cubic nonlinearity

Unlike the fKdV equation, the forced Gardner equation does not contain any inherent

symmetries that can be used to restrict the parameter space that needs to be explored. As

such, to explore the parameter space of the forced Gardner equation we also need to consider

the case where the coefficients of the cubic and quadratic coefficients are of opposite signs,

i.e.
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Figure 6.9: Type VII and VIII solutions of equation (6.12) for δ = 0.6. These solutions
correspond to the purple region of Figure 6.5, subject to the forcing function equation (6.13).

∆A+ rA2 + qA3 + sAxx = −γf(x),

r(δ) = 3(1− δ),

q(δ) = −3δ,

δ ∈ [0, 1].


(6.14)

Exploring this equation in the context of solutions with local forcing—where the forcing is

determined by a δ(x) function—suggests that the parameter space of the forced Gardner

equation for q < 0 can be partitioned into two distinct phenomenological regions with

respect to δ, with the demarcation defined by existence of a solitary wave solution. For

∆ = −1.92, one solitary waves exist for δ ∈ [0, 1 − 6
√

86−36
25

); whereas in the region where

δ ∈ [1 − 6
√

86−36
25

, 1] the solitary wave vanishes and the entire solution space exists as

perturbations of the zero flow solution.
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This transition can also be explained in the context of the eigenvalues of the unforced system.

When ∆ = 3(δ2−2δ+1)/4δ there is a bifurcation marking the transition of one of the roots

from a saddle to a centre, and when ∆ = −3(δ2−2δ+1)/4δ the second root experiences the

same bifurcation. However for a given ∆ only one of these transitions will exist for δ ∈ R.

For the the chosen ∆, and restricting δ to lie within [0, 1] this transition occurs at δ ≈ 0.231.

Another explanation of the transition can be derived by reconsidering the Hamiltonian equa-

tion (6.6) in the context of equation (6.14), so that

H(A,Ax) = V (A) +
1

2
A2
x where

V (A) =
1

2
∆A2 + (1− δ)A3 − 3

4
δA4.

 (6.15)

Considering the forced Gardner equation in terms of its Hamiltonian potential V (A) allows

for some insights to be gained into the form of extant solutions. As the number of zeros

of V (A) changes, so too must the form of the waves admitted by the solutions. When the

term

9/4(1− δ)2 + 27/8∆δ

is negative, V (A) does not contain any roots. However, when it is zero there will be one

extant root, and when it is positive there will be two distinct roots. For ∆ = −1.92, this

transition point occurs at

δ =
61− 6

√
86

25

or δ = δc ≈ 0.2143. This suggests that δ > δc should correspond to a distinct phenomeno-

logical region, with the transition occurring at δc.

Prior to the transition taking place, the phase portrait of the Gardner equation subject to

a negative cubic nonlinearity, Figure 6.10, broadly resembles that of the KdV equations

phase portrait—shown in Figure 4.1— with the only difference being that as δ increases

the size of the homoclinic orbit in the region where A > 0 decreases. Further increasing δ

heralds a completely new form of the phase portrait, which is radically different to what

was observed for both the KdV equation and the equivalent case for q > 0. As there is only

one critical point outside the transition region, shown in Figure 6.10 there are no closed
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Figure 6.10: Phase portrait of the Gardner equation for ∆ < 0 and r = −q = 3/2 outside
the transition region, with a single critical point at (A,Ax) = (0, 0).

loops within the phase plane, so the solution space of this equation should, theoretically,

only admit perturbations to the zero flow case with unbounded amplitudes.

To explore the ramifications of these transitions, the numerically determined solution and

parameter spaces subject to the topographic forcing function equation (6.13) is explored

in Figure 6.11. Beginning by considering the case where δ = 0.1, at which point quadratic

nonlinearity dominates the solution, relative to that of the cubic nonlinearity, the parameter

space broadly mimics the progression seen within the fKdV equation. This similarity is

reflected in the solution set shown in Figure 6.12a as well. As δ increases to 0.213 the

shape of the parameter space broadly resembles that of fKdV equation, with the only

difference being the vertical scale of the region where A(0) > 0. In this region the Type

II and III solutions—to return to the classification from the fKdV equation—become a

more predominant component of the parameter space. In terms of the solution space, this

manifests in a wider range of maximum amplitudes for the Type II and III solutions, as

evidenced in Figure 6.12b. There also appears to be a slight flattening of some of the

large amplitude solutions in the neighbourhood of x = 0, however this is more likely to be
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Figure 6.11: Parameter space for the forced Gardner equation (6.14) subject to the forc-
ing function equation (6.13). Figure 6.11a presents solutions within the vicinity of the
origin, and Figure 6.11b shows the evolution of a subset of those solutions. Of the
solid lines, blue, red, yellow, purple and green are δ = {1, 0.7, 0.5, 0.3, 0.216095} respec-
tively. Of the dotted lines, yellow, red, blue, burgundy and light blue correspond to
δ = {0.21609, 0.215, 0.214, 0.213, 0.1}. Thus the dotted light blue solution is close to the
fKdV equation, and the dark blue solid line corresponds to the mKdV equation where there
is only a cubic nonlinearity.

evidence of having selected a solution just after the transition from Type II (which exhibit

a single solitary wave) to Type III solutions (typified by two interfering solitons with a

small cusping between them), rather than an effect of saturation.

At δ = 0.213 the phase portrait begins to transition away the form of the phase portrait

admitted by the fKdV equation, with the first signs of the upper loop unfolding being

visible as (γ,A(0) approaches (0, 0) from the upper left side. As δ increases beyond this

point there is a clear bifurcation in the dynamics of the parameter space, corresponding

to a transition from the region where the positive A(0) unforced solitary wave is extant,

to where it is not. The location of this bifurcation point closely aligns with the analytic

predictions outlined earlier in this section, which suggested that the transition would occur

when δ was in the neighbourhood of 0.214 and 0.231. Solutions for δ larger than 0.213 show
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a rapid progression from a transitional scheme that resembles an unfolding of the upper

region of the fKdV equations phase portrait to the strictly s-shaped profiles of Figure 6.11b.

The sensitivity of the phase portrait to δ in this region is evidenced by the rapid change as

δ progresses from 0.21609 to 0.216095. The profiles corresponding to two points in δ space

are practically indistinguishable in Figure 6.11a up until the point where A(0) ≈ 2.25, at

which point the δ = 0.21609 solutions terminate, whereas the solutions corresponding to

0.216095 exhibit an inflection point and continue off for γ →∞.

This phenomenological difference is, of course, reflected in the solution space for these

two values of δ. Figure 6.12d presents solutions that are perturbations from the zero flow

solutions (in both the positive and negative direction), and from the standard solitary wave:

solutions that are analogous to the Type I, Type V and Type II solutions from the fKdV

equation. The solutions at δ = 0.216095 present a far more unique point of the solution

space, and take a form seen in Figure 6.13a that only vaguely corresponds to the preceding

work.

For the case of the solutions corresponding to a negative forcing amplitude, the solutions are

all perturbations from the zero flow solution, and present in a similar manner to the Type

V solutions from the fKdV equation, although their growth—shown in Figure 6.11—does

progress at a different rate. What is more interesting is the positive amplitude solutions,

which progress from the unforced solution up until the point where the amplitude ap-

proaches one, at which point the solutions begin to grow faster in width than they do in

height, and in doing so show the first signs of saturation with the solution space of the

forced Gardner equation. In the context of Figure 6.11a, this saturation process begins

at the point where the parameter space begins to fold back on itself. Interestingly, the

difference between the values of δ at 0.21609 and 0.216095 are incredibly small at this

point, yet they are enough to warrant this marked shift in the topology of the solution space.

As the amplitude increases further, the saturated shelf–like solutions begin to exhibit an

inflection point around x = ±1, which presents as a secondary wave structure superimposed

upon the central region of the shelf. With increases in A(0) it is this secondary wave

structure that drives the change in the solution space, as the shelf–like region retains an

almost constant width and height, with only minor changes in both, relative to the growth
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of the secondary wave.

These solutions, and in fact all of the solutions in Figure 6.13, solely represent perturbations

to the zero flow solutions, rather than from the solitary wave—even if they do share a strong

resemblance to the solitary wave solutions. The difference between the solutions being

perturbations from the solitary wave, to being perturbations from the unforced solution is

more readily apparent when considering the symmetry of the presented solutions. In the

case of the fKdV equation, the form of a solution around the solitary wave with a wave

amplitude of a, would be markedly different to the corresponding wave with an amplitude

of −a, with the positive amplitude solution being broader across all amplitudes. Whereas

in Figure 6.12, the solutions at a and −a are reflections of each other. This is not to say

that these results are a product of symmetries in the equation, but rather that both the

positive and negative branches are the product of the same perturbations away from the

unforced flow solution. The exception to this is the case where δ = 1, which does have an

inherent symmetry within its parameter space.

6.4 Discussion

Here we have generated the first rigorous exploration of the parameter space of symmetric

solutions to the forced Gardner equations, as it transitions from the pure quadratic non-

linearity of the fKdV equation to the purely cubic mKdV equation. In the case where the

coefficients of the cubic and quadratic nonlinearities are of the same sign, the discoveries

regarding the behaviour for positive A(0) are broadly similar to those seen within the fKdV

equation. However, the presence of the second distinct solitary wave solution within the

forced Gardner equation perturbs the evolution of the negative region of A(0), which then

broadly mirrors the positive A(0) region. The exceptions to this come from the solutions

wherein the effects of the cubic coefficient are small, relative to that of the quadratic

coefficient.

For negative A(0), these solutions progressed from (γ,A(0)) = (0, 0) down to the corre-

sponding negative amplitude solitary wave solution, however, unlike the solutions where the

coefficients were of the same order, or when the cubic term dominates, they did not exhibit a

return to (γ,A(0)) = (0, 0). By considering the asymptotic case of small γ, it was able to be

determined that these solutions likely do exist, however the small radius of curvature within
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Figure 6.12: A representative sample of the solution set for δ = {0.1, 0.213, 0.215, 0.21609},
corresponding to Figure 6.11a.
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Figure 6.13: A representative sample of the solution set for δ = {0.216095, 0.3, 0.5, 1.0},
corresponding to Figure 6.11b. With the exception of the case where δ = 0.216095,
the blue, red, yellow, purple green and teal plots correspond to solutions at A(0) =
{1, 5, 10,−1,−5,−10} respectively. Due to the unique taxonomy of solutions in the
δ = 0.216095 a broader range of solutions for −10 ≤ A(0) ≤ 15 has been presented.
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fold point marking the transition region makes resolving this branch difficult. It is hoped

that these folds will be able to be traversed by incorporating the new numerical continua-

tion regimes presented in this work, however to this point this still remains an open problem.

In contrast to this, the region of parameter space wherein the cubic and quadratic co-

efficients are of mixed sign appears to be fully explored. This parameter space presents

some very interesting phenomenological behaviour, with marked changes in the regions

where each of the nonlinearities dominates. When the quadratic coefficient dominates, the

problem exhibits one positive solitary wave solutions, and the solution space exists in terms

of perturbations from the zero flow solution and from the solitary wave. The solitary wave

perturbations give rise to cusped solutions, of the like seen within the solution space for

the fKdV equation.

As was shown analytically the existence of the second solitary wave does not persist as

the balance between the two coefficients shifts toward the cubic coefficient, and this drives

a marked change from a parameter space that replicates the fKdV equation, to hitherto

unseen S–shaped profile. Within the transition between these two different presentations

of the parameter space, the Gardner equation admits the most interesting parameter

space, with a broad proportion of the solution space being dominated with saturated waves

presenting with quasi–tabletop forms. Outside the transition region of δ, the solution space

exclusively take the form of bell–shaped waves, where the magnitude of amplitude increases

with the magnitude of γ.
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Chapter 7

Conclusion

This project was motivated by the study of the effects of topography upon Rossby wave

breaking events, with a particular eye to the work of Benney (1979). Within the Benney

framework, our initial approach resulted in a sequence of nonlinear integrodifferential

equations, which initially appeared to be computationally intractable. This problem served

as the genesis for developing the GHAM, as it was clear that there was a need for a

numerically efficient variable coefficient solver for nonlinear boundary value problems,

which also both flexibility and strong convergence control properties .

The utility of this solver was preserved as the motivation for this work transitioned from

the Benney framework to considering Rossby waves under the aegis of the forced Gardner

equation and its variants. As such, this thesis has focussed upon the mathematical advances

that lead to the development of the GHAM and its associated tools; testing and analysing

the properties of GHAM in the context of boundary layer flows; and considering solutions

finite amplitude nonlinear wave problems, specifically the fKdV and forced Gardner equa-

tions.

Chapter 2 outlined the numerical advances within the field of spectral methods, that in

turn formed the basis of the techniques developed within this thesis. This was presented

with a particular focus on Chebyshev and Gegenbauer methods for solving linear boundary

value problems. In Chapter 3 we then extended these techniques to nonlinear boundary

value problems by incorporating a numerical analogue of the Homotopy Analysis Method.

This chapter also introduced a number of novel results regarding the convergence prop-

erties of the HAM, and introduced new tools for significantly enhancing the behaviour of
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homotopy based methods. Of particular importance was Section 3.6, as it allows numerical

analogues of the Homotopy Analysis Method to approximate ~opt, and in doing so avoid

the optimisation problem on the residual that, to date, has been intrinsic to these techniques.

One of the most important discoveries with the GHAM framework was that every step

of the iterative process could be expressed in terms of the inversion operation of a sparse

matrix, that is invariant with respect to the iteration number. As a direct consequence

of this, we were able to show that the GHAM could exhibit a quasi–linear scaling of the

computational cost with respect to the number of points used within the Gegenbauer

discretisation, while also minimising the memory required to store the resulting matrix

equations. In doing so, we were able to significantly outperform other techniques for solving

steady, nonlinear boundary value problems.

After having established the properties of the GHAM, we sought to apply it to weakly

nonlinear wave problems, specifically the fKdV equation and the forced Gardner equa-

tions. Chapter 4 served to both validate the performance of the GHAM and its associated

continuation techniques for this form of wave problem, and to test the hypothesis that a

rescaled δ(x) forcing function can accurately approximate any topographic forcing function

with compact support. This hypothesis was tested by considering the parameter space

of the fKdV equation for both forcing cases in terms of ∆, which relates to the Froude

number of the system, and γ, the forcing amplitude. While the local forcing hypothesis has

a well established place within the published literature regarding the fkdV equation, how-

ever when it was tested it failed to hold for even the most trivial of topographic length scales.

Extending the solver for the fKdV equation onto the case of asymmetric, hydraulically

controlled solutions, we were able to investigate the parametric relationship between ∆ and

γ again, which lead to both numerical results and physical insights. The specific approach

taken was built upon the hypothesis that in the case of a steady, hydraulic solution the

topographic drag acting upon the perturbation to the uniform flow must reach either a

minimum or a maximum. By consideration of both the Hamiltonian, and the conservative

form of the fKdV equation we were able to verify that the drag must indeed reach a global

minima in the case of hydraulically controlled solutions. This in turn allowed the drag

condition to be used as an optimisation criteria to elucidate the structure of the parametric

relationship between ∆ and γ. The very fact that asymmetric solutions are conditioned
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upon the drag, and that this drag has a finite, nonzero value also has implications for

understanding the evolution of the nonlinear downstream wavetrains that exist within

unsteady solutions of the asymmetric fKdV equation.

The final numerical result of this thesis was to consider the forced Gardner equation,

which is a generalised nonlinear equation subject to both cubic and quadratic polynomials.

In a similar manner to the fKdV equation, the parameter space of the forced Gardner

equation was explored in terms of ∆ and γ, but to account for the extra degree of freedom

within the Gardner equation we introduced an additional parameter that described the

relative balance between the quadratic and cubic nonlinearities. The additional complexity

inherent in the forced Gardner equation manifested itself in some interesting modifications

to the parameter and solution spaces previously seen for the fKdV equation. This was

particularly true for the case of mixed nonlinearities, wherein a bifurcation in the parameter

space was able to be identified, and it was within the transition region of this bifurca-

tion that we were able to uncover a solution space that included significant saturation effects.

While this thesis contains a number of novel results, it has also introduced a number of open

questions and challenges that will continue to be pursued. On the numerical side of this,

work the GHAM and its associated continuation techniques will be consolidated to form a

single package for solving variable coefficient boundary value problems. Many opportunities

exist to potentially generalise these tools to encompass a broader array of problems. Of

particular focus will be considering solving problems in higher dimensions through GHAM;

assessing the performance of Homotopic integrated arc–length continuation for problems

that exhibit more complex bifurcations; and testing and extending the viability of the ideas

regarding estimating ~opt espoused within Section 3.6 and Section 3.7.

With regards to wave dynamics, the numerical results in both the asymmetric fKdV equation

and the symmetric Gardner equations has led to additional questions about the existence

of solutions in certain limits of the parameter space. Beyond this, additional work must

be conducted to relate the numerical results to original motivation of assessing the physics

of Rossby wave breaking events. As such, there are multiple exciting prospects for future

research relating to the work contained within this thesis, both with regards to the numerical

tools that have been developed, and for interpreting solutions generated by these tools within

a geophysical fluid dynamics context.
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