
Finding Best Paths

in Spatio-Textual Queries

Anasthasia Agnes Haryanto

A thesis submitted for the degree of Doctor of Philosophy at

Monash Univesity in 2019

Clayton School of Information Technology

Copyright Notice

c©Anasthasia Agnes Haryanto (2019)

I certify that I have made all reasonable efforts to secure copyright permissions for third-

party content included in this thesis and have not knowingly added copyright content to

my work without the owner’s permission.

ii

Declaration

This thesis contains no material which has been accepted for the award of any other

degree or diploma at any university or equivalent institution and that, to the best of my

knowledge and belief, this thesis contains no material previously published or written by

another person, except where due reference is made in the text of the thesis.

Signature:

Print Name: Anasthasia Agnes Haryanto

Date: February 25, 2019

iii

Publications during enrolment

Publications arising from this thesis include:

1. Anasthasia Agnes Haryanto, Md. Saiful Islam, David Taniar, Muhammad Aamir

Cheema. IG-Tree: an efficient spatial keyword index for planning best

path queries on road networks. In World Wide Web (WWW) Journal, 2018.

2. Anasthasia Agnes Haryanto, David Taniar, Md. Saiful Islam, Muhammad Aamir

Cheema. wBestPath: A Spatio-Textual Route Planning Query on Weighted

Regions. Submitted for publication in Journal of Ambient Intelligence and Human-

ized Computing (AIHC).

iv

Thesis including published works declaration

I hereby declare that this thesis contains no material which has been accepted for the award

of any other degree or diploma at any university or equivalent institution and that, to the

best of my knowledge and belief, this thesis contains no material previously published or

written by another person, except where due reference is made in the text of the thesis.

This thesis includes 1 original paper published in peer reviewed journal and 1 submitted

publication. The core theme of the thesis is spatio-textual route planning queries. The

ideas, development and writing up of all the papers in the thesis were the principal re-

sponsibility of myself, the student, working within the Faculty of Information Technology,

Monash University, under the supervision of Associate Professor David Taniar, Associate

Professor Muhammad Aamir Cheema, and Dr. Saiful Islam.

The inclusion of co-authors reflects the fact that the work came from active collaboration

between researchers and acknowledges input into team-based research.

In the case of Chapter 3 and Chapter 4 my contribution to the work involved the following:

v

I have renumbered sections of submitted or published papers in order to generate a con-

sistent presentation within the thesis.

Student signature: Date: February 25, 2019

The undersigned hereby certify that the above declaration correctly reflects the nature

and extent of the students and co-authors contributions to this work. In instances where

I am not the responsible author I have consulted with the responsible author to agree on

the respective contributions of the authors.

Main Supervisor signature: Date: February 25, 2019

vi

Acknowledgments

First and foremost, I would like to thank God for all His love, blessings, and guidance for

me in my life. If it was not because of Him, I would not even have pursued PhD study

and put this thesis together as a mark of completion of this course.

I am very grateful that He had placed me within the guidance of three of my supervisors

which I would like to heartfully express my gratitude for. They have helped me as great

mentors.

Associate Professor David Taniar, my main supervisor, has consistently guided me

with enormous patience and provided me with encouragement since my Honours year.

His works and wisdom motivated me to do PhD and pursue a career in this field of spatial

databases. He directed me with my PhD project since the first day until the submission

date of my thesis. He constantly gave constructive feedbacks for all my work and helped

me encounter exciting opportunities, such as attending and organising conferences as well

as teaching. I would not be able to experience all these without him.

Associate Professor Muhammad Aamir Cheema, my co-supervisor, who has directed

me especially at the beginning of my PhD to find the topic that I should be focusing on.

Throughout my PhD he has also been giving me helpful academic and moral support.

Dr. Saiful Islam, my external supervisor, who has provided me with valuable advices

for my works during my PhD candidature. Despite living in a different state, he willed to

spare some time for meetings whenever he comes to Melbourne and pushed me to strive

for the better.

I am also very grateful for my colleagues in the spatial databases research group:

Arif Hidayat, Ammar Sohail, Chaluka Salgado, Lingxiao Li, Nasser Allheeib, Tenindra

Abeywickrama, Utari Wijayanti, Xinyu Li and in particular Zhou Shao, who was my

classmate since Honours year and officemate for the course of my PhD. My PhD journey

would not be memorable without all of their jokes and support.

Also, a heartfelt thanks to the staff in the Faculty of Information Technology, especially

for Helen Cridland, Julie Holden, and Danette Deriane. Danette has always constantly

provided me with advices and assistance on my PhD candidature. Helen and Julie, who

always supported me with both academic and extra-curricular activities. All their kindness

and support for me have helped me throughout my PhD.

I would moreover like to thank Monash Graduate Research for supporting me finan-

cially through the Monash International Postgraduate Research Scholarship (MIPRS) and

Monash Graduate Scholarship (MGS) throughout the course of my PhD.

A special thank you to everyone in Catholics on Campus, especially to Barbara Shea,

Fr. Chris Dowd and Fr. Robert Krishna for their constant prayers and support. They

were always available in the Chaplains office whenever I need someone to talk to.

vii

Last but not least, I would like to thank my family who has been supporting, praying

and loving me unconditionally. They are always there for me in the midst of my difficulties,

ready to brighten my day, constantly motivate me in times of need, and taking care of me

in all aspects of my life. Words cannot express how thankful I am for having them in my

life.

Again, I would like to thank all the people that has been part of my life throughout

my PhD. I cannot list all of you one by one but each one of you has contributed in ways

that makes me who I am today.

Anasthasia Agnes Haryanto

Monash University

February 2019

viii

Finding Best Paths in Spatio-Textual Queries

Anasthasia Agnes Haryanto
aahar3@student.monash.edu

Monash University, 2019

Supervisor: Associate Professor David Taniar
david.taniar@monash.edu

Associate Professor Muhammad Aamir Cheema
aamir.cheema@monash.edu

Dr. Saiful Islam
mdsaiful.islam@griffith.edu.au

Abstract

Spatial Databases have captured the attention of today’s society. People nowadays rely

heavily on various applications that uses spatial data to help them on their daily activities,

such as navigation. Due to the popularity of Spatial Databases, many search engine

providers have started to expand their text searching capability to include geographical

information. This causes many new queries on spatial objects affiliated with textual

information, known as the Spatial Keyword Queries, to take significant research interest

in the past years. Unfortunately, most of existing works on Spatial Keyword Queries

only focus on objects retrieval. There is very limited work on route planning queries.

Therefore in this study, we propose the Best Path Query, which focuses on finding the

most optimal route from two different spatial locations that visits or avoids the objects

specified by the textual data given by the user.

Computation for finding the Best Path will differ depending on the type of the envi-

ronment. In this thesis, we will mainly focus on computing the Best Path on two different

types of environments: Road Networks and Weighted Regions. In the Road Networks

scenario, we show that the Best Path Query is an NP-Hard problem. We propose an

efficient indexing technique, namely IG-Tree, and three different algorithms with different

trade-offs to process the Best Path Queries on Road Networks. Our extensive experimen-

tal studies on real road network datasets demonstrate the efficiency and accuracy of our

proposed approaches.

Furthermore, a lot of research has been done on Spatial Keyword Queries on Euclidean

space and on road networks. However, the study on a more complex environment model

ix

like weighted regions has never been done yet. Therefore in our research, we conduct a

study on the Best Path query on Weighted Regions, which is called the wBestPath. Despite

the limitation of current works in Spatial Queries on Weighted Regions, we successfully

designed a new indexing scheme called the wIG-Tree that incorporates Weighted Regions

information together with spatio-textual objects. We also develop two algorithms with

different trade-offs to answer the wBestPath query while utilising the proposed index. At

the end, we report our experimental evaluation and show the efficiency of our proposed

solutions.

x

Contents

Acknowledgments . vii

Abstract . ix

List of Tables . xv

List of Figures . xix

1 Introduction . 1

1.1 Overview . 1

1.2 Motivation . 3

1.2.1 Best Path on Road Networks . 10

1.2.2 Best Path on Weighted Regions . 13

1.3 Research Objectives . 14

1.4 Contributions . 15

1.4.1 Best Path on Road Networks . 15

1.4.2 Best Path on Weighted Regions . 15

1.5 Thesis Organisation . 16

2 Literature Review . 17

2.1 Overview . 17

2.2 Spatial Only Queries . 17

2.2.1 Spatial Queries on Euclidean Space 18

2.2.2 Spatial Queries on Road Networks 22

2.3 Spatial Keywords Queries . 27

2.4 Route-Planning Queries . 32

2.5 Weighted Regions . 35

xi

2.5.1 Shortest Path on Weighted Regions 36

2.5.2 wNeighbor . 37

2.6 Summary of Existing Issues . 39

3 Best Path Queries on Road Networks . 41

3.1 Overview . 41

3.1.1 Challenges . 43

3.1.2 Contributions . 44

3.1.3 Organisation . 44

3.2 Preliminaries . 45

3.2.1 Road Network . 45

3.2.2 Data Model . 45

3.2.3 Query Model . 46

3.3 Complexity Analysis . 46

3.4 Data Index . 50

3.4.1 G-Tree . 50

3.4.2 IR2-Tree . 51

3.4.3 Proposed Data Index: IG-Tree . 52

3.5 Query Processing . 58

3.5.1 Baseline Algorithm . 58

3.5.2 Optimal Distance Approximation Search 60

3.5.3 Ancestor Priority Approximation Search 64

3.5.4 Euclidean-based Approximation Search 67

3.6 Experiment . 69

3.6.1 Settings . 69

3.6.2 Index Evaluation . 70

3.6.3 Performance Study . 71

3.7 Conclusion . 81

4 Best Path Queries on Weighted Regions 83

4.1 Overview . 83

4.1.1 Challenges . 87

4.1.2 Contributions . 88

xii

4.1.3 Organisation . 88

4.2 Problem Statement . 88

4.3 Basic Concepts . 90

4.3.1 IG-Tree . 90

4.3.2 wNeighbor . 92

4.4 Data Index . 93

4.4.1 wIG-Tree . 93

4.5 Negative Query Keywords . 98

4.6 Query Processing . 101

4.6.1 Baseline Algorithm . 101

4.6.2 Minimum Distance Approximation (MDA) Algorithm 103

4.6.3 Minimum Path Approximation (MPA) Algorithm 106

4.7 Experiment . 108

4.7.1 Settings . 108

4.7.2 Index Evaluation . 109

4.7.3 Performance Study . 110

4.8 Conclusion . 115

5 Final Remarks . 117

5.1 Overview . 117

5.2 Conclusion . 117

5.3 Limitations and Future Research . 119

References . 121

Appendix A Best Path on Road Networks 137

A.1 Sample Datasets . 137

A.1.1 Sample data for vertices . 137

A.1.2 Sample data for edges . 138

A.1.3 Sample data for keywords . 139

A.1.4 A snippet of IG-Tree data structure 141

A.2 Evaluation Data . 142

A.2.1 IG-Tree . 142

xiii

A.2.2 Query Performance with all positive query keywords 143

A.2.3 Approximation accuracy for all positive query keywords 144

A.2.4 Query performance with combination of positive and negative query

keywords . 145

A.2.5 Approximation accuracy for datasets with negative keywords 146

A.2.6 Query performance based on keyword density 147

A.2.7 Query performance when K is varied (keyword density=0.05) 148

A.2.8 Query performance based on keyword density with all negative key-

words . 149

A.2.9 Running time based on keyword ratio (positive:negative) 150

A.2.10 Effect of varying distance between sl and dl 151

Appendix B Best Path on Weighted Regions 153

B.1 Sample Datasets . 153

B.1.1 Sample data for vertices . 153

B.1.2 Sample data for edges . 154

B.1.3 Sample data for triangle faces . 155

B.1.4 Sample data for keywords . 156

B.1.5 Sample Data Generator . 158

B.1.6 A snippet of wIG-Tree data structure 159

B.2 Evaluation Data of Best Path on Weighted Regions 160

B.2.1 wIG-Tree . 160

B.2.2 Query Performance with all positive query keywords 160

B.2.3 Approximation accuracy for all positive query keywords 161

B.2.4 Query performance with combination of positive and negative query

keywords . 162

B.2.5 Approximation accuracy for datasets with negative keywords 162

B.2.6 Query performance based on keyword density 163

B.2.7 Query performance based on keyword density with all negative key-

words . 164

B.2.8 Effect of varying distance between sl and dl 165

xiv

List of Tables

3.1 List of notations used throughout the chapter 46

3.2 Distance Matrix for G0 . 53

3.3 Distance Matrix for G1 . 53

3.4 Distance Matrix for G2 . 53

3.5 Distance Matrix for G3 . 53

3.6 Distance Matrix for G4 . 53

3.7 Distance Matrix for G5 . 53

3.8 Distance Matrix for G6 . 53

3.9 Keyword index . 54

3.10 Keyword Distance Matrix for G0 . 54

3.11 Keyword Distance Matrix for G1 . 54

3.12 Keyword Distance Matrix for G2 . 54

3.13 Keyword Distance Matrix for G3 . 54

3.14 Keyword Distance Matrix for G4 . 54

3.15 Keyword Distance Matrix for G5 . 54

3.16 Keyword Distance Matrix for G6 . 54

3.17 Reconstructed Distance Matrix for G5 . 58

3.18 Reconstructed Distance Matrix for G2 . 58

3.19 Reconstructed Distance Matrix for G0 . 58

3.20 Reconstructed Distance Matrix for G3 . 58

3.21 Road Network Datasets . 69

4.1 List of notations used in the chapter . 90

4.2 Distance Matrix for G0 . 96

4.3 Distance Matrix for G1 . 96

xv

4.4 Distance Matrix for G2 . 96

4.5 Distance Matrix for G3 . 96

4.6 Distance Matrix for G4 . 96

4.7 Distance Matrix for G5 . 96

4.8 Distance Matrix for G6 . 96

4.9 Keyword index . 97

4.10 Keyword Distance Matrix of face WRv2 . 98

4.11 CFD Datasets . 108

A.1 Building Time (ms) . 142

A.2 Index Size (MB) . 142

A.3 Index Reconstruction Time (ms) . 142

A.4 Query performance (in µs) with all positive query keywords for CAL 143

A.5 Query performance (in µs) with all positive query keywords for NY 143

A.6 Query performance (in µs) with all positive query keywords for COL 143

A.7 Query performance (in µs) with all positive query keywords for FLA 143

A.8 Approximation accuracy for CAL . 144

A.9 Approximation accuracy for NY . 144

A.10 Approximation accuracy for COL . 144

A.11 Approximation accuracy for FLA . 144

A.12 Query performance (in µs) for CAL . 145

A.13 Query performance (in µs) for NY . 145

A.14 Query performance (in µs) for COL . 145

A.15 Query performance (in µs) for FLA . 145

A.16 Approximation accuracy for CAL . 146

A.17 Approximation accuracy for NY . 146

A.18 Approximation accuracy for COL . 146

A.19 Approximation accuracy for FLA . 146

A.20 Running time for CAL (µs) . 147

A.21 Running time for NY (µs) . 147

A.22 Running time for COL (µs) . 147

A.23 Running time for FLA (µs) . 147

xvi

A.24 Query performance (in µs) when K is varied for CAL 148

A.25 Query performance (in µs) when K is varied for NY 148

A.26 Query performance (in µs) when K is varied for COL 148

A.27 Query performance (in µs) when K is varied for FLA 148

A.28 Running time for CAL (µs) . 149

A.29 Running time for NY (µs) . 149

A.30 Running time for COL (µs) . 149

A.31 Running time for FLA (µs) . 150

A.32 Running time for CAL (µs) . 150

A.33 Running time for NY (µs) . 150

A.34 Running time for COL (µs) . 150

A.35 Running time for FLA (µs) . 151

A.36 Running time for CAL (µs) . 151

A.37 Running time for NY (µs) . 151

A.38 Running time for COL (µs) . 151

A.39 Running time for FLA (µs) . 152

B.1 Building Time (ms) . 160

B.2 Index Size (MB) . 160

B.3 Query performance (in µs) with all positive query keywords for CFD-1 . . . 160

B.4 Query performance (in µs) with all positive query keywords for CFD-2 . . . 160

B.5 Query performance (in µs) with all positive query keywords for CFD-3 . . . 160

B.6 Approximation accuracy for CFD-1 . 161

B.7 Approximation accuracy for CFD-2 . 161

B.8 Approximation accuracy for CFD-3 . 161

B.9 Query performance (in µs) for CFD-1 . 162

B.10 Query performance (in µs) for CFD-2 . 162

B.11 Query performance (in µs) for CFD-3 . 162

B.12 Approximation accuracy for CFD-1 . 162

B.13 Approximation accuracy for CFD-2 . 162

B.14 Approximation accuracy for CFD-3 . 163

B.15 Running time for CFD-1 (µs) . 163

xvii

B.16 Running time for CFD-2 (µs) . 163

B.17 Running time for CFD-3 (µs) . 163

B.18 Running time for CFD-1 (µs) . 164

B.19 Running time for CFD-2 (µs) . 164

B.20 Running time for CFD-3 (µs) . 165

B.21 Running time for CFD-1 (µs) . 165

B.22 Running time for CFD-2 (µs) . 165

B.23 Running time for CFD-3 (µs) . 165

xviii

List of Figures

1.1 Shortest Path from Woolworths QV to Melbourne’s GPO 4

1.2 Shortest Path from Woolworths QV to Melbourne’s GPO while dropping

by a cafe . 4

1.3 Travelling Salesman Problem (TSP) . 5

1.4 Sequenced route planning from Woolworths QV to a bookshop, then bank,

and then cinema . 6

1.5 Route planning from Woolworths QV to bookshop, bank, and cinema with-

out any sequence . 7

1.6 Shortest path from Woolworths QV to Melbourne’s GPO while avoiding a

road block . 7

1.7 Route planning from Woolworths QV to bookshop, bank, and cinema while

avoiding a road block . 8

1.8 Example of user query locations={source, destination} and keywords={gas

station, not highway} . 11

1.9 Supposedly for shortest path with locations={source, destination} and key-

word={gas station} . 11

1.10 Best Path for query locations={source, destination} and keywords={gas

station, not accident} . 12

1.11 Example of terrain map . 14

2.1 Range Query . 18

2.2 k-Nearest Neighbour (kNN) Query . 19

2.3 Collections of Spatial Objects inside MBR 20

2.4 R-Tree . 20

2.5 Nearest Neighborhood (NNH) Query . 22

xix

2.6 Example of a road network . 24

2.7 Colouring nodes . 24

2.8 Colour region . 25

2.9 Coloured Quadtree region . 25

2.10 Graph partition of Figure 2.6 . 25

2.11 Marking the borders of each nodes . 25

2.12 G-Tree of the graph partition in Figure 2.11 26

2.13 Example on Road Networks . 26

2.14 IR2 − Tree [1] . 30

2.15 Indexing architecture for road network [2] 31

3.1 Illustration of a road network with spatial keyword objects 42

3.2 Example of a road network . 45

3.3 Graph partitioning on road network given in Figure 3.2 51

3.4 IG-Tree . 53

3.5 Finding location of v10 and v7 . 61

3.6 Path from v10 to nearest node with keyword book 62

3.7 Path from v10 to v7 passing through keyword book 63

3.8 G1 as the common ancestor of v10 and v7 65

3.9 Path from v10 to v7 passing through keyword book 66

3.10 IG-Tree vs. G-Tree: index building time and size 70

3.11 Index reconstruction times for varied number of negative keywords in K . . 71

3.12 Query performance with all positive query keywords 72

3.13 Approximation accuracy for all positive query keywords 73

3.14 Query performance with combination of positive and negative query keywords 74

3.15 Approximation accuracy for datasets with negative keywords 75

3.16 Query performance based on keyword density 76

3.17 Query performance when K is varied (keyword density=0.05) 77

3.18 Query performance based on keyword density with all negative keywords . . 77

3.19 Running time based on keyword ratio (positive:negative) 79

3.20 Effect of varying distance between sl and dl 80

4.1 A map that incorporate various terrain [3] 85

xx

4.2 Illustration of route planning on weighted regions 86

4.3 Weighted regions space model . 89

4.4 IG-Tree . 91

4.5 Partition . 94

4.6 wIG-Tree . 95

4.7 Index building time and size on CFD datasets 110

4.8 Query performance with all positive query keywords 111

4.9 Approximation accuracy for all positive query keywords 111

4.10 Query performance with combination of positive and negative query keywords112

4.11 Approximation accuracy for datasets with negative keywords 112

4.12 Query performance based on keyword density 113

4.13 Query performance based on keyword density with all negative keywords . . 113

4.14 Effect of varying distance between sl and dl 114

A.1 A snippet of the indexed vertices and edges data to IG-Tree 141

B.1 Sample program to generate Delaunay Triangulation datasets 158

B.2 A snippet of the indexed vertices, edges, and faces data to wIG-Tree 159

xxi

xxii

Chapter 1

Introduction

1.1 Overview

In this modern day and age, people can share information in a blink of an eye. The

amount of information being shared these days are massive and it can be in various forms

like words, images, sounds, and even locations. With the advancement of technologies, all

this information or data can be easily shared and processed to help us in our daily routine.

Even numerous organisations measure their success through their capability of obtaining

accurate and timely data of their operations, managing the data proficiently, and to use

the data for analysis and guidance purpose [4]. We can see that data is an asset in our life.

However, with the amount of data that is constantly being produced every day, it gets

even harder to process all the information without managing it. Data that is initially an

asset can become a distraction and a liability since the cost of obtaining and maintaining

the data can be excessive compared to the value derived from the data itself [4]. Thus

to tackle this problem, there have been attempts in managing the tremendous amount of

data through database systems.

Database itself is a vibrant discipline as data can come in different forms like words

or even geographical entities. One of the rapidly growing area in database systems is the

Spatial Databases, in which it mostly deals with geographical spaces. Güting et al. [5]

describe Spatial Databases as a database system that offers spatial objects in its data

model and query language, and it supports the implementation of spatial data, including

the indexing for spatial data and efficient algorithm for spatial join. The spatial objects

in this case are represented by points, lines and regions. For instance in Figure 1.1, the

1

2 CHAPTER 1. INTRODUCTION

points represent the location of facilities or places of interest, the lines represent the roads,

while the regions represent the extension of spatial objects, such as a large building, lake,

park, or even a country. As we can see here, geographical or spatial information can be

very complex and tremendous, in which it is also needed to be managed through database

systems in order to keep it as an asset.

There are a lot of applications of spatial databases, such as Geographic Information

System (GIS), Computer Aided Design (CAD), robotics, and even on biomedical research

area. The accessibility of these applications is also attainable not only on desktop com-

puters, but it also on mobile environments [6, 7, 8, 9, 10, 11, 12]. StatisticBrain shows that

about 81% of mobile users use their device for Maps and directions [13]. This expresses

how Spatial Databases have taken a big interest in today’s society and have been assisting

us in our daily activities.

With the popularity of Spatial Databases, the search engine providers, such as Google

and Yahoo, have also broadened their text searching capability to provide geographical

information [14, 15]. The GlobalWebIndex showed that Google Maps is the most used

app as it is used by 54% of the general smartphone users [16]. Thus many new queries

on spatial objects affiliated with textual information have been studied in the past years

[17]. We call this kind of query as Spatial Keywords Query (or Spatio-Textual Query) as

it combines both Spatial Databases and Information Retrieval (IR) System.

In the past, the conventional search engines can only process simple user queries, such

as finding a place of interest based on a certain keyword [18]. However the high demand in

spatial data compels the search engines to have the capability of processing more than such

simple queries. Users may also want to find the nearest objects in the surrounding or find

the direction of some locations through specific keywords. A number of researches have

been done in order to improve the geographical search engines. Yet there are still many

challenges appear in order to combine and process both the textual information and the

spatial data. Therefore in this research, we investigate how the two different information,

namely the textual and spatial information, can be processed together in order to produce

a useful information for the users to fulfill their daily tasks.

This chapter is organised as follow. Section 1.2 explains the motivation behind our

research. Section 1.3 describes the objectives of this research. We discuss our contributions

in Section 1.4. Then in Section 1.5, the organisation of this thesis is presented.

1.2. MOTIVATION 3

1.2 Motivation

Nowadays, each spatial object contains one or more meaningful keywords as to represent

the object’s entities [14, 1]. The keywords may contain country name, city name, address,

references to landmark, or even type of road [15]. Through the existence of spatial data

and keywords, the Spatial Keyword Queries become varied. Some of the commonly used

queries are the Top-k kNN Query, Boolean kNN Query, and Boolean Range Query [19].

All of these queries require the user to give a spatial location (normally the current user

location) and textual data in the form of keywords as the input. The output of these queries

are spatial objects that are nearest to the user’s location and contain the keywords given.

The principle parameter used to identify the nearest objects is based on the shortest path

distance. Thus we can see that path construction takes an important role in answering

these queries.

So in relation to path construction, a number of problems can be classified together

into a Taxonomy of Path Queries as follows.

1. Shortest Path. Shortest Path Problem has been widely studied for the past decade,

which is why most of the current Spatial Keyword Queries concentrate more on the tradi-

tional Shortest Path problem to determine the point-to-point solution. In Shortest Path

problem, given a source and destination locations, we try to establish a path with the

minimum sum of distance between these two locations. For instance, a user gives an input

to the search engine ”find the path to Melbourne’s GPO from Woolworths QV”. So the

search engine has to find the location of Woolworths QV and Melbourne’s GPO and then

return the most efficient path to the user. Figure 1.1 shows the result of the shortest path

between these two locations.

There are various solutions offered to find the shortest paths. From doing some

pre-computation indexes to direct query processing without any indexes. Using pre-

computation surely increases the query processing time in O(1) time. However the main

drawback is when the pre-computation is done, where it typically can occupy up to O(n2)

space. While for no pre-computation approaches, such as the Dijkstra algorithm, mostly

run in O(n log n) time.

While the existing solutions to the shortest path problems are useful, they are not

always sufficient for our needs. In real life scenario, we often want to plan our trip before

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Shortest Path from Woolworths QV to Melbourne’s GPO

Figure 1.2: Shortest Path from Woolworths QV to Melbourne’s GPO while dropping by
a cafe

going to a certain place. When we are heading to our destination, we also want to pass

through several other places. For example, we want to go from Woolworths QV to Mel-

bourne’s GPO but on our way we also want to visit a cafe (Figure 1.2). The solutions

that simple shortest path problem offers will not work since they only find a path with

1.2. MOTIVATION 5

the minimum total distance, there is a chance that it will not pass any cafe. This kind of

query is known as a route planning query.

2. Travelling Salesman Problem. One of the most famous route planning queries is

the Travelling Salesman Problem (TSP). In TSP, suppose that we have a list of cities and

a distance between every pair of the cities, the query is to find the most optimal path that

visits each city exactly once and returns to the original location at the end of the trip.

Despite its complexity to be an NP-hard problem, this query has been intensely studied

in computer science. A lot of algorithms have been developed to optimise this problem.

From offering exact algorithms to heuristic algorithms. Figure 1.3 shows an example of

TSP application.

Figure 1.3: Travelling Salesman Problem (TSP)

3. Sequenced Path Planning. Sometimes we want to plan our trip based on our

schedule. For example a user would like to go buy a book at 8 a.m. at the nearest

bookshop, and then withdraw some money at a bank at 9 a.m. before meeting his friend

to watch a movie at the cinema at 11 a.m.. Based on this situation, the route has to be

in sequence where we have to go to a bookshop first, then to a bank, and at the end we

should go to the cinema. Figure 1.4 shows a planned path in sequential order to answer

6 CHAPTER 1. INTRODUCTION

this particular query. This particular problem is called sequenced path planning because

there is an order in the route that we have to follow.

Figure 1.4: Sequenced route planning from Woolworths QV to a bookshop, then bank,
and then cinema

4. Non-sequential Path Planning. It is often that we plan our trip without any

order to where to go first. We, however, want to optimise our time or distance taken for

the whole trip. For instance suppose that a tourist who is currently at Woolworths QV

wants to visit a bookshop, a bank, and a cinema. Looking at Figure 1.5, it offers the most

optimum path to visit all of the places that the tourist specified. Even though there is a

bookshop that is closer to the user’s current location, it does not guarantee an optimal

total distance when being grouped together with the other criteria. We can see that the

query processing time will increase significantly when the number of objects increase. This

kind of query is in fact another NP-hard problem. It can be proven as NP problem by

reduction to TSP.

5. Shortest Path with Obstacle. In the previous path queries, the queries only

consider objects/keywords that they want to visit. In real life, there are times when we

actually have to evade certain situations like a road block. For instance, given a user query

”find the shortest path from Woolworths QV to Melbourne’s GPO and avoid any road

1.2. MOTIVATION 7

Figure 1.5: Route planning from Woolworths QV to bookshop, bank, and cinema without
any sequence

block”. Figure 1.6 shows the output of the query. Previously in Figure 1.1, the shortest

path is through the road where the road block is located. But since we want to avoid it,

then the path is changed. So the object/keyword that we want to avoid can be considered

as obstacle.

Figure 1.6: Shortest path from Woolworths QV to Melbourne’s GPO while avoiding a
road block

8 CHAPTER 1. INTRODUCTION

The time complexity of this kind of problem is actually the same as normal shortest

path, which is O(n log n) without any pre-computation. This is due to the fact that the

algorithm used in the normal shortest path will also work on this kind of query. When

Dijkstra algorithm is implemented to this case, the path where the obstacle lies will be

’blocked’. Subsequently, we can continue the Dijkstra expansion method until the path

is found. The only worst-case scenario when we have a lot of obstacles which may block

most of the paths.

6. Route Planning with Obstacle. In this last classification of path queries, the

query is a combination of route planning with obstacle. Supposed that we want to find

the path from Woolworths QV to a bookshop, bank, and cinema while avoiding a road

block. Based on this query, we know that when we construct the path, it has to pass

at least one bookshop, bank, and cinema. The obstacle here is the road block. Figure

1.7 shows the output of this particular query. If we compare to Figure 1.5, the path is

totally changed because of the obstacle. The final path becomes longer and the order of

the places we are going to visit changed. Hence this query’s complexity is also NP-hard

as we can reduce TSP to this query.

Figure 1.7: Route planning from Woolworths QV to bookshop, bank, and cinema while
avoiding a road block

1.2. MOTIVATION 9

To our knowledge, no one has done any work on this kind of query. Most of the

existing works are more focused on the first five classifications. This leaves a gap for us

to develop a solution to this kind of query. Thus this particular query is the main focus

of our research.

Best Path Query. In this study we introduce a new variant of Spatial Keywords Query,

which is the Best Path Query. Similar to the Taxonomy number 6, given a user with

his/her source location, this user wants to go to his/her destination while stopping by or

avoiding several facilities denoted by keywords. In this kind of query, we want to plan

an optimal trip that will visit each facility or avoiding them based on the keywords given

by the user before arriving to the destination. The solutions to the traditional shortest

path problem cannot work on Best Path Query as it only considers two spatial locations

and find the shortest paths between these two locations. The traditional shortest path

problem also does not take into consideration any trip planning or textual information

processing.

In Best Path Query, we are dealing with both spatial and textual data. The spatial

data will be the source and destination locations that are given by the user. The textual

data is the keywords which are attached to the facilities that we would like to pass on our

way to the destination. Each spatial object has one or more keywords attached. Keywords

can be the name of a suburb, road name, type of road, or name of attraction. Based on the

user input, the keyword itself can be considered in positive, negative, or neutral situations.

As in the example before, the user gave a negative keyword, which is not going to pass

highway. The positive keyword here is the facility/point that he wants to pass by. And

for the neutral keywords are the remainder keywords that are attached to the objects but

not chosen by the user. Therefore the definition of Best Path Query is as follow:

Definition 1. Given source location sl, destination location dl, and a set of keywords K =

{k1, k2, ..., kn}, kn can be positive (k+) or negative (k−). Find the Best Path BP (sl, dl,K)

from sl to dl that passes through all k+ and avoid k−.

The main challenge here is in the insufficiency of current solution to trip planning in

Spatial Keywords area. In fact, there is no solution to Best Path. Another challenge is

that current works do not take into consideration of negative keywords. Having negative

keywords might increase the complexity of the problem as we have to make sure that

10 CHAPTER 1. INTRODUCTION

we can avoid certain paths. There are definitely some cases where the results cannot

be retrieved. The common reason is the low textual relevancy at the surrounding area,

specifically the area between source and destination locations, which making us to have

to avoid all of the paths to the destination. Also depending on the environment, the

computation for finding the Best Path will differ. In this study we mainly focus on two

types of environment, (1) the Best Path on Road Networks and (2) the Best Path

on Weighted Regions.

In the following subsections, we are going to discuss the limitations of existing works

that motivates our study.

1.2.1 Best Path on Road Networks

In the previous studies, the focus is always on the shortest path. However, often in our life

we want to go to a certain place but while on our way to our destination we want to pass

through several places. A lot of times we want to find a route to our preferred destination

that passes certain objects of interest instead of going straight to the destination. And we

often would like to avoid some objects that can interfere our activities.

As an example, a user wants to go to his workplace from home but he wants to drop

by the gas station first and also wish to avoid any traffic accident around his way. In this

query, the user gives the source and destination locations and several keywords, which are

gas station and avoid accident. So we need to find the optimum path for the user that

satisfies his preferred keywords condition. Therefore we call this kind of query as the Best

Path Query.

Using the example mentioned before, supposed that user gives his source and destina-

tion location as can be seen in Figure 1.8 and the keywords={gas station, not accident}.

As we have a negative keyword here, which is the not accident, we have to avoid passing

through any of this point on the road. Thus, the result of this query will be as in Figure

1.10. It is indeed further than the shortest path but it is as what the user wishes to be.

The best path is different with the general shortest path. In the best path, we want

to find the path with objects of interest along our way to the destination. The objects of

interest are determined by the keywords. The best path itself might be longer than the

shortest path, but it can also be the same as the shortest path. Even though the best

1.2. MOTIVATION 11

Figure 1.8: Example of user query locations={source, destination} and keywords={gas
station, not highway}

Figure 1.9: Supposedly for shortest path with locations={source, destination} and key-
word={gas station}

path can be farther than the shortest path, the best path provides the object of interest

that user requested.

When we are working with road networks, the road networks are usually represented as

a graph. The edges typically represent the road segments while the vertices represent the

road intersections. So the path generation is always limited only to the edges to adjacent

vertices. This increases the complexity of our query computation when we are working

specifically in this environment. The complexity is also intensified with the types of the

12 CHAPTER 1. INTRODUCTION

Figure 1.10: Best Path for query locations={source, destination} and keywords={gas
station, not accident}

keywords we have. When the keywords are negative, a lot of the paths will be blocked as

we have to avoid them. We always have to make sure that we plan the route optimally

despite these complexities.

Limitations of Existing Works. There are a number of similar route planning queries

as Best Path. The most well known query is the On Trip Planning Route Queries (TPQ),

which retrieves the best trip from two different locations that passes at least one point

from each of the chosen categories [20]. Another popular route planning query is Optimal

Sequenced Route Queries (OSR), a spatial query that finds the minimum route distance

from a source location and passing through a set of sequenced categories [21]. However

these queries do not consider any keywords processing. Best Path Query focus on Spatio-

Textual field, which in this case it needs to process the textual part of the objects. Another

difference is that all of these existing works do not take into consideration any negative

situation. Everything in the chosen categories in TPQ and OSR must be visited, while in

Best Path there are some categories that we have to avoid.

In Spatio-Textual area itself, there is only one study on route planning, which is the

Keyword-aware Optimal Route Search (KOR) [22]. It is a query that finds an optimal

route that covers a set of user given keywords with a specific budget constraints and

objective score [22]. In conjunction to Best Path Query, KOR is different as the query

1.2. MOTIVATION 13

requires budget constraint for processing. KOR also does not take into consideration

negative keywords as what Best Path does.

Most of the route planning problems are regarded as a generalisation of Traveling

Salesman Problem (TSP) problem [23, 24]. They are NP -hard problems. The solutions

offered for these queries are in polynomial time approximation algorithms. Even so, the

solutions offered are generally involving no pre-processing. This causes more computation

particularly since the computation requires the processing of both spatial and textual

relevancy. So having on-the-go solution does not always guarantee performance efficiency,

especially on Spatio-Textual field. Therefore in this research we are attempting to provide

a better solution to this problem by offering a pre-processing index that incorporate both

Keywords and Spatial Road Networks.

1.2.2 Best Path on Weighted Regions

A lot of Spatial Databases works are concentrating on Euclidean space and Road Networks.

However in reality, the Euclidean distance-based approach is not always accurate [25, 26].

The earth’s surface is not constantly a flat concrete surface. Because of this, the Euclidean

distance does not offer an optimal solution in real life. The same thing also applies to

road networks. Real road networks only offer the distance of the most common passable

roads. Unfortunately the distance is being generalised without considering the impact of

the earth terrains. For example the amount of effort to pass a flat surface covered in grass

is different from a flat concrete surface. The effort of passing through a slope is totally

different from a flat surface. So not all roads are easily accessible. Figure 1.11 shows an

example of terrain map, in which the different types of road surface can be seen clearly.

The accessibility of roads is particularly crucial in concern of various types of vehicles or

even for wheelchair users who has to carry themselves through roads with different types

of surface and sloped angles. Due to these reasons, we conduct our study to investigate the

impact of the Best Path Query on Weighted Regions and propose the best solution

for trip planning on a complex environment like this.

Limitations of Existing Works. The main weakness of the existing works is on the

fact that they are limited to Euclidean or Road Network environment in which these two

space models do not always reflect the real resemblance of earth surfaces. In this study,

14 CHAPTER 1. INTRODUCTION

Figure 1.11: Example of terrain map

we are going to enhance the capability of spatial databases to be able to process queries

on varied surfaces through the Weighted Regions space model. Some works on finding

shortest path on varied surfaces have been significantly studied lately, which is known as

the weighted regions problem [27, 28]. So each surface will have its own weight that will

affect the effort to pass each of those regions. However the existing studies do not cover

any route planning, especially in the context of Spatio-Textual area. Thus this is a great

opportunity for us to propose a novel technique on this particular problem.

1.3 Research Objectives

The primary aim of this research is to propose efficient techniques to solve the Best Path

Query and issues related to finding the Best Path. In order to achieve our primary aim,

we propose two specific objectives as follow:

1. Objective 1: Propose efficient indexing and query processing techniques to solve

Spatio-Textual Queries on Road Networks, particularly the Best Path Query.

(a) Objective 1a: Formalise the Best Path Query on Road Networks.

(b) Objective 1b: Propose an efficient indexing technique that incorporate both

Spatio-Textual objects and Road Networks.

(c) Objective 1c: Investigate the complexity to solve the Best Path Query with

and without any pre-processing.

1.4. CONTRIBUTIONS 15

(d) Objective 1d: Propose an efficient query processing algorithm to solve the

Best Path Query while utilising the proposed index.

2. Objective 2: Propose efficient indexing and query processing techniques to solve

the Spatio-Textual Queries on Weighted Terrains, particularly the Best Path Query.

(a) Objective 2a: Formalise the Best Path problem on Weighted Terrains.

(b) Objective 2b: Propose an efficient indexing method that incorporate both

Spatio-Textual objects and Weighted Terrains.

(c) Objective 2c: Propose an efficient query processing algorithm to solve the

Best Path Query while utilising the proposed index.

1.4 Contributions

In this section, we briefly discuss our contributions in this thesis.

1.4.1 Best Path on Road Networks

We formally define Best Path problem on road networks and prove that this is an NP -

hard problem. We develop a novel indexing scheme, called IG-Tree, for planning Best Path

queries in road networks. We present three approximate algorithms with different trade-

offs for searching Best Paths on road networks. Those algorithms are the Optimal Distance

Approximation Search, Ancestor Priority Search, and the Euclidean-based Approximation

solution. We also demonstrate the effectiveness and efficiency of our algorithms through

comprehensive experiments on real datasets.

This work was published in World Wide Web (WWW) Journal 2018.

1.4.2 Best Path on Weighted Regions

We formalise the wBestPath, a study on route planning on weighted regions. To the

best of our knowledge, we are the first to attempt on this kind of problem. We propose

wIG-Tree, an indexing technique that incorporates spatio-textual attributes that can be

used to solve Best Path problem on weighted regions. We propose two approximation

algorithms with different trade-offs that utilise the wIG-Tree to process the wBestPath

queries, namely the Minimum Distance Approximation (MDA) Algorithm and Minimum

16 CHAPTER 1. INTRODUCTION

Path Approximation (MPA) Algorithm. We conduct a comprehensive set of experiments

to demonstrate the effectiveness and efficiency of our algorithms.

This work has been submitted for publication in Journal of Ambient Intelligence and

Humanized Computing (AIHC) and currently under review.

1.5 Thesis Organisation

The structure of this thesis is presented as following:

• Chapter 2 presents a review on the existing related works that motivate us to conduct

a research on Best Path Query. In this chapter, we explore varieties of spatial-only

queries, spatial keyword queries, and route planning queries on different environ-

ments like Euclidean space, Road Networks, and the Weighted Regions.

• Chapter 3 describes our work on Best Path on Road Networks, where we propose

a new indexing scheme for Spatial Keywords Queries on Road Networks and some

solutions to answer the Best Path problem on this particular space model.

• Chapter 4 presents our research on Best Path on Weighted Regions. This chapter

also describes our new indexing technique for Spatial Keywords Queries on Weighted

Regions and some solutions to solve the Best Path Query on Weighted Regions.

• Chapter 5 concludes our research and describes several possible directions for future

work.

Chapter 2

Literature Review

2.1 Overview

This chapter provides some background information on spatial queries and reviews various

related works to our study. In Section 2.2, we discuss some Spatial Queries that are

categorised based on the working space models and various techniques to solve these

queries. Section 2.3 presents an overview of different types of Spatial Keywords Queries

and current indexing techniques in this area. Section 2.4 explores several existing Route

Planning Queries and some variants to this particular type of query. We also review the

previous works on Weighted Regions in Section 2.5. In Section 2.6, we summarize and

provide some discussions on the existing works that we have reviewed in the previous

sections.

2.2 Spatial Only Queries

Various Spatial Queries have been explored in the past decade and many researches have

offered solutions to these queries. The study on spatial queries itself can be categorised

based on the space model used, as each space model can affect the way we solve a certain

spatial query. In this section, we discuss several different spatial queries based on the

space they operate, specifically on Euclidean space and Road Networks. Section 2.2.1

explores various spatial queries on Euclidean space that are commonly used and also several

indexing techniques that have been proposed to solve the queries in Euclidean space.

Meanwhile, Section 2.2.2 explores the other space model, which is the Road Networks.

17

18 CHAPTER 2. LITERATURE REVIEW

2.2.1 Spatial Queries on Euclidean Space

One of the space models that is used in spatial databases is the Euclidean space. In

Euclidean space, the distance between two objects in the space can be determined by the

length of a straight line between these two objects [29]. So given an object p1 with location

p1(x,y) and object p2 with location p2(x,y) in R2 space, the Euclidean distance between p1

and p2 can be defined as follow.

dist(p1, p2) =
√

(p1x − p2x)2 + (p1y − p2y)2

Most of the early works on spatial queries are based on the Euclidean space, in which

they utilise the distance metric calculation as shown above. Many different types of queries

are proposed. However, the most fundamental query in spatial databases is Range Query

[30, 31, 32, 33, 34, 35]. In this query, a range of search (usually within a certain radius)

will be specified based on a reference point of location. User will give a specific location

as the centre point for the range search and then the spatial range query will search for

objects within the specified radius [36]. Thus the input for Range Query is a range based

on a location point, whilst all the objects inside the radius are the output. Figure 2.1

shows an example of Range Query. Assume that our query location is identified by the

blue point q and the query is to find the nearest restaurants within 500 meters from q. In

this case, the input of the query consists of location of q and the range radius, which is

Figure 2.1: Range Query

2.2. SPATIAL ONLY QUERIES 19

500 meters. As can be seen in Figure 2.1, the restaurants inside the radius (denoted by

the blue circle) are the output to this query. Other restaurants that are outside the range

are not considered as the nearest restaurants from our location.

Another traditional spatial query is the Nearest Neighbour Query [37, 38, 39]. It

is a type of query where we are looking for a certain number of closest objects, that is

specified by k, from a given location point [37], which is also known as kNN. The Range

Query considers the objects within a certain radius as the nearest objects for the query

point, whilst the kNN collects k number of nearest objects measured by their road distance

[40, 41]. So instead of getting all objects within a region as what the Range Query does, we

specify how many objects that we want to retrieve in kNN without any distance constraint.

For example in Figure 2.2, the 3NN from point q are denoted by the blue arrows.

Figure 2.2: k-Nearest Neighbour (kNN) Query

A lot of techniques have been proposed in order to process the Range Queries and k-

Nearest Neighbour Queries in Euclidean space. The most common solution to solve these

problems is by using the R-Tree data structure. The idea of R-Tree is to group several

spatial objects based on their closeness [30, 42]. Figure 2.4 shows the R-tree built from the

collection of spatial objects that are grouped as block of rectangles by Minimum Bounding

Rectangle (MBR) in Figure 2.3. An MBR is a rectangular box that covers the area of

objects that are close to each other. One group of MBR can contain several objects. The

object inside the MBR can be in a form of a point, a rectangle, or even any irregular

20 CHAPTER 2. LITERATURE REVIEW

shaped object. In the example in Figure 2.3, we use rectangle as the object form. Each

object is grouped into one MBR and then each MBR is then grouped again with the

other MBR to create an even bigger collection that can be represented as R-Tree.

Figure 2.3: Collections of Spatial Objects inside MBR

Figure 2.4: R-Tree

The way the R-Tree data structure is used to solve the Range Query is by giving a

range scope that specifies the radius that the user wants and then check if each node in

the tree intersects with the query scope. The traversal starts from the root to the leaf

node, in which each object in the leaf node will be evaluated whether it overlaps with the

query scope. If the object overlaps, then it will be returned as the query result. Meanwhile

to answer the kNN Query with R-Tree, we can perform repetitive range searches in the

2.2. SPATIAL ONLY QUERIES 21

R-Tree. The way it works is by specifying a certain point that can be a potential nearest

neighbour, and then based on the distance between query point to this chosen point, we

can do a range search. If there are some points that have lesser distance than the chosen

point, then these points are stored inside a priority queue in which we may be able to get

the result of the kNN query. If no other points inside the range between the query point

and the chosen point and we need to retrieve more objects to satisfy the number of k,

then the range has to be expanded again in which the same method is repeated.

There are a number of existing works that proposed some variants to the R-Tree and

offer improvements to the existing R-Tree index, such as the R∗-Tree [43] that improves

the query processing performance of R-Tree despite its higher construction cost, the R+-

Tree [44] that ensure non-overlapping nodes in the tree which guarantees single path

traversal for a point search, the Hilbert R-tree [45] that does ordering based on spatial

objects instead of region hierarchy, and also the X-Tree [46] that is capable to index

high-dimensional data.

There are still many other spatial queries on Euclidean distance which are based on the

traditional queries, especially on the kNN query. Some of them are the Reverse Nearest

Neighbour (RNN) Query [47, 48, 49], Group-KNN [50, 51], and The Nearest Neighborhood

(NNH) Query [52]. Different from kNN, the RNN sees the relationship between query

objects and its neighbouring objects in an opposite point of view. Meaning that the RNN

query returns every neighbouring object that consider the query object as the k closest

object. The RNN query has been widely studied and the solutions are varied from point-

to-point solutions [53, 54, 55, 56] to region-based solutions [57, 58, 6, 59, 60, 61] that

usually based on the Voronoi diagram [62]. Another variant, which is the Group-KNN

query, handles multiple query objects instead of a single query like the traditional range

query and kNN query. In Group-KNN, given a set of query points, the query returns

a single target object that has the minimum distance to all of the query points. Some

solutions to this query are Group closest pairs method [40] and Minimum Bounding Box

Method (MBM) [50]. Another interesting variant of kNN query is the Nearest Neighborhood

Search (NNH). In the traditional kNN Query, the k objects may be located far from each

other. Most of the time, these objects are scattered everywhere around the space in which

is very inefficient if we have to visit each object. For example in Figure 2.2, the 3NN

includes Ma Long kitchen. If this particular restaurant is closed, then we have to find

22 CHAPTER 2. LITERATURE REVIEW

another restaurant in which the distance to go to the next restaurant might be further. So

the NNH Query tries to solve this problem by clustering the nearest set of query objects

that are close to each other, which is shown in Figure 2.5. In this case, Choi et al. [52]

proposed a solution of region-of-interest (ROI) instead of the traditional point-of-interest

(POI). The ROI itself contains multiple POI.

Figure 2.5: Nearest Neighborhood (NNH) Query

2.2.2 Spatial Queries on Road Networks

A popular space model in Spatial Databases area is the Road Networks. In the Euclidean

space, the distance between two objects is a straight line. However, this is not the case

for road networks. In road networks, the distance between two objects is restricted to a

pre-defined path as real road network contains complex road components like intersection,

curved road, connected and disconnected roads, etc. So the Euclidean space does not

always represent the real world situation.

In spatial databases, a road network is usually represented as a graph that consists

of edges and vertices. Each edge in a road network normally has a certain weight that

indicates the cost to pass the edge (e.g. distance or time). The spatial objects on road

networks can be placed at the vertices or edges. However, most studies simplify the object

location to be at the vertices. The distance between two objects in a road network is

calculated through the sum of weights of all the edges that connect these two objects.

2.2. SPATIAL ONLY QUERIES 23

A fundamental problem in road networks is the Shortest Path problem. In shortest

path, given a source point and a destination point, find the path with the least amount

of distance. This problem has been widely studied and a number of solutions have been

proposed, from having an exact solution to heuristic. A famous technique in finding

the shortest path is the Dijkstra algorithm [63]. Dijkstra algorithm is undeniably one

of the best methods to solve the shortest path problem. It is proven from how widely

this algorithm is used within the spatial databases community for decades and many

applications today are adopting Dijkstra algorithm, including the Google Maps [64, 65].

In Dijkstra algorithm, given a source and destination nodes, the algorithm progressively

exploring the graph from the source node to its neighbouring nodes while calculating the

amount of distance. Throughout the graph exploration, the algorithm also marks the

minimum distance from source node to each visited neighbouring nodes. At the end, the

expansion stops when the destination node is found. The worst-case complexity of Dijkstra

algorithm is O(|E|+ |V | log |V |), where |E| is the number of edges and |V | is the number

of vertices.

Another well-known path finding algorithm is the A* Algorithm [66, 65]. It is a heuris-

tic algorithm, where it estimates the lowest distance from start to target node in order

to create the path. The A* algorithm uses estimation in order to find the shortest path

between the start to target node. It applies the heuristic cost formula f(n) = g(n) +h(n),

where g(n) is the minimum cost of the path from start to n, and h(n) is the estimate cost

from n to the target node. In terms of running time, the A* algorithm can outperform

Dijkstra algorithm. The worst-case performance complexity of A* algorithm is O(|E|),

where |E| is the number of edges, while the worst-case complexity for space consumption

is O(|V |) for |V | as the number of vertices.

The Dijkstra algorithm and A* algorithm are the type of algorithm that does not

involve any pre-processing. Meaning that there is no index structure needed in order

to run these algorithms. However, with the higher demand and increasing data size for

road networks in spatial databases, the query performance for algorithm without any

pre-processing may become poor. Thus a lot of recent studies proposed some indexing

techniques that can speed up the query processing performance for spatial queries on road

networks. Some of them are Spatially Induced Linkage Cognizance (SILC) [67], G-Tree

[68, 69], Route Overlay and Association Directory (ROAD) [70].

24 CHAPTER 2. LITERATURE REVIEW

The SILC index [67] pre-computes the shortest paths from one of the vertices in the

graph to all other vertices, and then does the colouring operation based on the pre-

computed paths. Each vertex adjacent to the chosen vertex is assigned with a unique

colour. The vertices that are close to each other and have the same colour are stored

in a coloured region using the Quadtree index. The SILC framework takes advantage of

path coherence between vertices in a spatial network in order to determine the path and

distance information between all pairs of vertices. For example, given a road network

graph as in Figure 2.6 and we choose vertex A as our source vertex. So in this case, we

have to pre-compute the shortest paths from vertex A and then we can start the colouring

operation. In Figure 2.7, we start colouring the vertices adjacent to vertex A, which is B,

C, H, and J. Then the next nearest vertices are assigned the same colour as the vertices

adjacent to A. We keep colouring until all vertices have been assigned a unique colour.

After we have the colours for each vertex, we can see that our road network has contiguous

coloured regions (Figure 2.8). From these coloured regions, we then can store them in a

region Quadtree. The way SILC finds the shortest path between two vertices depends on

the colours of the vertices. The colour of the destination vertex determines the first next

path from source vertex. Using the example in Figure 2.9, assume that we want to find

the shortest path from A to D. D has the same colour as B, therefore the next path from

A is through B.

Figure 2.6: Example of a road network Figure 2.7: Colouring nodes

As SILC involves some pre-processed data to be stored, the space complexity of this

method is O(|V |1.5). Meanwhile, it takes O(|V |2 log |V |) for pre-processing time. In terms

of its runtime complexity, the shortest path can be calculated in O(|E| log |V |), which

performs faster than the traditional techniques without any pre-computational index.

Different from SILC, in G-Tree [68, 69], the road network is partitioned recursively

into sub-networks. The nodes in G-Tree correspond to a single sub-network, which in

2.2. SPATIAL ONLY QUERIES 25

Figure 2.8: Colour region Figure 2.9: Coloured Quadtree region

this case each node must contain 2 or more road network vertices. G-Tree does not store

the distance of every vertices but stores the set of borders and the distance matrix. The

usage of distance matrices in this type of index is proven to be very efficient in terms

of processing the kNN search on road networks [68, 69]. As an example using the road

network in Figure 2.6, we try to create the G-Tree. In this case we partition the graph into

smaller subgraphs. Figure 2.10 shows the graph partition for the example in Figure 2.6.

The graph is divided into equal-sized subgraph and each partition consists of two or more

vertices. Then after the partition process, we mark the borders of each node, which is

shown in Figure 2.11. The borders here are the vertices that connects their partition to the

other partitions. Each partition makes up one node in the G-Tree, and each node contains

one or more borders that connect the corresponding partition to other partition. The final

G-Tree of graph in Figure 2.11 is shown in Figure 2.12. G-tree itself is a height-balanced

tree with a space complexity of O(|V | log |V |).

Figure 2.10: Graph partition of Figure 2.6 Figure 2.11: Marking the borders of each
nodes

The problem in road networks environment is not just about the Shortest Path. Similar

to the Euclidean space, the most traditional spatial queries on Road Networks are also

the Range Query and the k-Nearest Neighbour Query [71, 72, 73, 25, 74, 75, 76].

The main difference between the Euclidean space and road networks for these queries are

26 CHAPTER 2. LITERATURE REVIEW

A J K H I G B C E D F

G1
A G

G3
A

G2
B C

G4
H G

G5
B C E

G6
D

G0

Figure 2.12: G-Tree of the graph partition in Figure 2.11

on the distance metric used. Looking at Figure 2.13, assume that our query location is

at the blue point q and we want to find the nearest Coles supermarket from q. In the

Euclidean space, the nearest Coles supermarket is the North Store. However, based on

the Road Network distance, the nearest one is actually the Centre Rd one. This shows

that we cannot always rely on the Euclidean distance in real life.

Figure 2.13: Example on Road Networks

2.3. SPATIAL KEYWORDS QUERIES 27

Some approaches for Range Query in Spatial Road Networks are Range Euclidean

Restriction (RER) and Range Network Expansion (RNE) [77]. The main idea behind

RER is in the usage of the Euclidean distance range diameter for upper boundary of the

search area. So all objects that are outside the upper bound limit will be pruned, while the

objects inside the boundary will be examined if they are within the road network range.

The RNE on the other hand consists of two basic steps, which are Qualifying Segment

and Index Tree Traversal. In the Qualifying Segment step, the paths are expanded from

the query point location to the specified range distance. So all objects that are visited in

this expansion are included to the result. Meanwhile for the Index Tree Traversal step,

using the R-Tree index, we check every node that we visit whether it intersects with the

Qualifying Segment’s objects.

Similar to Range Search, Spatial Road Network for kNN consists of two algorithms

of expansion and restriction, which are Incremental Euclidean Restriction (IER) and In-

cremental Network Expansion (INE) [78]. The IER adopts the Euclidean distance as the

upper bound range for finding objects of interest [30], while INE adopts Dijkstra like algo-

rithm that expands the query to find the chosen k objects [79, 63]. There is also another

solution using Voronoi Diagram. The famous voronoi approach in kNN is the Voronoi

Network-based Nearest Neighbour (VN3) [74]. This method uses Network Voronoi Dia-

grams (NVD) [72] and it requires a pre-computation shortest distance between each spa-

tial object both within the same Voronoi polygon and in different Voronoi polygons [78].

Another Voronoi-based kNN is the Progressive Incremental Network Expansion (PINE),

which is an improvement of VN3 [62]. This method only requires a pre-computed dis-

tance for objects within the same Voronoi polygon, while the distance between objects in

different Voronoi polygons can be calculated anytime [80].

2.3 Spatial Keywords Queries

With the growth of spatial databases applications these days, a lot of spatial queries

are not only considering just the spatial/geographical information, but the queries are

also involving other factors like textual information, which is known as Spatio-Textual

or Spatial Keyword Queries. The involvement of textual information is usually through

the keywords that users input when invoking a spatial query. This highlights the need of

28 CHAPTER 2. LITERATURE REVIEW

keyword search in the query processing stage. Due to this reason, the complexity escalates

for this kind of query as we have to combine techniques from Spatial Databases area and

also Information Retrieval (IR) area to process the keywords. Thus in this section, we

discuss the existing techniques and some variations to Spatial Keyword Queries.

Some of the basic queries in Spatial Keywords are the Boolean kNN Query and

Boolean Range Query [19, 81, 82]. In the Boolean Range Query, the query specifies a

range for searching and then retrieves all objects that match the query keywords within the

range. The Boolean kNN Query does a simple k nearest neighbour objects retrieval, which

the objects must match with the query keywords. The basic idea behind these queries

are similar to the spatial-only Range Query and kNN Query, but with the additional

feature of textual dependency from the objects that are affiliated with certain keywords.

As both queries are boolean based, the way the query is being processed in terms of the

keyword part is through exact matching. A common technique in answering these queries

is through creation of index structure, in which the index for Spatial Keyword Queries

usually combines spatial index structure together with textual index structure. Most of

the available Spatial Keywords index are based on R-Tree [83, 84, 81, 85, 1] and grid

[86, 87] for the spatial side, while for the textual side is based on inverted file [88].

Deriving from these simple queries, researchers start to develop more progressive Spa-

tial Keyword Queries that can handle more complex user demands. Most of the early works

on Spatial Keyword Queries focus on queries like Top-k Nearest Neighbor Queries

(TkNN) [1, 19, 2, 82, 89, 85, 90]. In TkNN queries, the goal is to rank objects, measure

the keywords similarity (between the object’s keyword and query) and the distance from

the specified query location, in order to retrieve k number of objects with the highest

ranking. This type of query mainly accepts user’s spatial location and keywords as input,

and produces spatial objects with matching keywords as the output.

A variation of Spatial Keywords Query is proposed by Wu et al. [91]. They proposed

joint top-k spatial keyword that processes multiple queries. Their indexing technique

is mainly using the IR-Tree. To process the multiple queries, they proposed a GROUP

algorithm which groups the queries in order to find their joint results. Another variation

is also done by Wu et al. [92], where they are the first to consider moving object on

Spatial Keywords Query. The authors proposed safe zones, which is when the query

is inside the zone, the top-k results will always be correct even though the query moves.

2.3. SPATIAL KEYWORDS QUERIES 29

So when the query is outside the safe zone, the top-k results need to be regenerated. They

adopt their technique based on the weighted Voronoi diagram, which they named it as

Multiplicatively Weighted Voronoi diagrams.

As most of the current techniques only retrieve an individual object in top-k manner,

the Collective Spatial Keyword Querying [93] introduced a technique to retrieve a

group of objects together. So for example when a tourist is looking for a hotel, a restaurant,

and a public attraction that are close to each other. So their technique is to find objects

that are spatially close and covers all the query keywords. They use the IR-Tree, which

is R-Tree with extension of inverted files. However, the technique proposed by Cao et

al. [93] has a weakness in its scalability. It does not guarantee the optimal solution for

the query. Thus, Long et al. [94] improved the scalability problem. They focus on the

distance and try to calculate the closest and farthest possible query distance.

Based on the queries we discussed previously, we can see that many new queries on

Spatial Keywords have been explored. But there are still a lot of other Spatial Keyword

Queries variants that have been studied. Many of those queries are mainly based on TkNN

queries, in which the works on these variants try to improve the TkNN queries to be

able to process moving objects [92], continuous objects [95], reverse top-k query [96, 97],

joint queries [91, 98], or interactive TkNN queries [99]. Besides the works on Spatial

Keyword Queries that focus on TkNN queries, some variants of Spatial Keyword Queries

have also been proposed, such as the collective Spatial Keyword querying [93, 94, 100],

diversified Spatial Keyword search [101], region-based query [102], scalable continual top-k

query [103], reverse spatial and textual k nearest neighbor query [104], spatio-textual data

clustering [105], fuzzy keyword search [106], and m-closest keyword queries [107].

As Spatial Keyword Queries become varied, a number of indexing techniques that are

able to process both spatial and textual data have been proposed in the past years. A lot

of the indexing technique on Euclidean space are utilizing the R-Tree in which they attach

additional textual information into the R-Tree to be capable of computing textual data.

Some of those R-Tree based indices are IR-Tree [84], bR*-Tree [17], and IR2-Tree [1].

A recent work is done by Zheng et al. [99], which highlights that most of the previous

works only consider exact matching for the keywords and no interaction between the user

and the application. In this paper they proposed interactive solution where the user can

give feedback to the results by setting the threshold. The indexing technique here is by

30 CHAPTER 2. LITERATURE REVIEW

using the IR2 − Tree in [1]. The IR2 − Tree itself is first introduced by Felipe et al.

[1]. It is a Hybrid Indexing approach that combines the R-Tree and information retrieval

signature files. The indexing technique is by attaching the inverted index to the R-Tree.

Every node in IR2 − Tree holds the information for both spatial location and keywords.

The leaf nodes contain the actual spatial data and keywords. The non-leaf nodes contain

the combination of several objects. The spatial information is based on the MBR, while

the inverted index of the keywords is calculated using logical OR [1]. The example of

IR2 − Tree can be seen in Figure 2.14. Felipe et al. [1] uses incremental algorithm that

uses the IR2 − Tree to solve the spatial keyword query. However the downside of current

solution is that the retrieval only considers exact matching. It does not consider the

synonyms or typos. For example when we are looking for sneakers in a shopping mall. In

this case, sneakers can also be considered as shoes. So we should consider shoes shops in

our retrieval process.

Figure 2.14: IR2 − Tree [1]

In the work of Alsubaiee et al. [106], a method to solve the inexact matching is

introduced. The fuzzy keyword search is proposed in order to find keywords without

exact spelling, especially for users that do not know the exact words that they are looking

for (e.g. unique name of a restaurant). Their method is by having gram based inverted

index attached in one level of R*-Tree. However in this technique, it can only solve the

inexact matching of similar words, not other keyword variations such as synonyms and

homonyms.

A work on spatial keyword query on road network is done by Zhang et al. [101]. On this

work, they focus on diversified query results in order to improve the quality. Diversified

result means that the distance of the retrieved objects is reasonably large so that the result

2.3. SPATIAL KEYWORDS QUERIES 31

offers more diverse selection. They proposed a method to always consider user relevancy

and the spatial diversity through some criteria. Another variation in spatial keyword

query on road networks is by Gao et al. [97]. As all of current approaches only solving the

top-k spatial keyword queries, [97] proposed a solution to Reverse Top-k Boolean Spatial

Keyword Queries. However in their pruning algorithm, they are using heuristic approach.

As the previous indexes are only based on Euclidean distance, Rocha-Junior et al. [2]

applies spatial keyword query on road networks. Their basic indexing architecture consists

of four components (Figure 2.15). The first component is spatial component which is using

the Network R-Tree. The second is adjacency component, which it uses adjacency B-Tree

to traverse the network. The third component is mapping component, which it uses Map

B-Tree to map the adjacency edges with MBR that encloses the edges. The last component

is the spatio-textual component, which it stores the spatial and textual properties of the

objects. While for the query processing, the authors adopt the Dijkstra’s algorithm.

Another work on road networks is also done by Luo et al. [108]. They introduced a

new indexing technique that is very different from Rocha-Junior et al. [2]. The proposed

index, which is the Node-Partition-Distance (NPD) index, keeps useful distances so that

the exact distance and the query keyword coverage can be computed independently.

Figure 2.15: Indexing architecture for road network [2]

As the previous queries are focusing more on object retrieval, Cao et al. [22] proposed

a route planning query for Spatial Keywords, which is the Keyword-aware Optimal

32 CHAPTER 2. LITERATURE REVIEW

Route Search (KOR). KOR is a query that finds an optimal route that covers a set

of user given keywords with a specific budget constraints and objective score [22]. It is

similar to TPQ but KOR is more expensive as it includes an additional constraint (the

budget constraint). They proposed three approximation algorithms in order to solve the

KOR query. The first one is OSScaling, where they scale the objective score of each edge

into integers utilizing a parameter ε in order to acquire a scaled graph. This method is

to reduce the cost of calculating the partial paths that are stored on each node when the

brute-force approach is established. The second algorithm is BucketBound, which it splits

the traversed partial routes into different ”buckets” based on the best objective scores.

This method is claimed to be more efficient than the OSScaling. The last algorithm is

a greedy technique. The processing starts from the starting location and then it keeps

selecting the next location greedily with consideration of all the three constraints in KOR

query. The algorithm will keep repeating the step until the target location is reached. In

conjunction to Best Path Query, KOR is different as the query requires budget constraint

for processing. KOR also does not take into consideration negative keywords as what Best

Path does.

Through the above discussion, researchers have been trying to create some indexing

techniques in order to process the query easily. But the technique proposed are still

treating the Spatial Data part and the IR part as two different entities. Current techniques

adopt hybrid indexing, which they always have separate index for the spatial data and the

textual data and then combines both indexes.

2.4 Route-Planning Queries

With the advancement in spatial databases area, there is an increasing demand to support

complex queries, including route planning queries. A well-known route planning query is

the On Trip Planning Route Queries (TPQ). TPQ is a spatial query that retrieves

the best trip from two different locations that passes at least one point from each of the

chosen categories [20]. So assume that there are a number of spatial objects that are

stored in a spatial database and each object belongs to one or more categories from a fix

set of categories C. A user provides a source point S, a destination point E, and a subset

of categories R (R ⊂ C), the query is to find the best route that starts from S to E that

2.4. ROUTE-PLANNING QUERIES 33

passes through at least one point from each category in R [20]. TPQ itself is regarded

as a generalisation of Traveling Salesman Problem (TSP) problem [23, 24], meaning that

it is also an NP -hard problem. The solutions proposed for TPQ are polynomial time

approximation algorithms. Li et al. [20] utilised R-Tree to index the objects and they

also proposed several approximation algorithms based on the triangle inequality. The

approximation ratios are depending on the total number of categories and the maximum

category cardinality.

In relation to Best Path Query, TPQ and Best Path are similar in finding the best

route that passes several specified objects. However there are some differences between

these two queries. Best Path Query focus on Spatio-Textual field, which in this case it

needs to process the textual part of the objects. TPQ itself is without keywords. Another

difference is that TPQ does not take into consideration any negative situation that can

obstruct the path.

As the TPQ only considers one single user, Hashem et al. [109] proposed Group Trip

Planning (GTP) Query in order to process multiple users trip. In GTP query, for a set

of n users, let S represents a set of source location S = {s1, s2, ..., sn} and D represents

a set of destination location D = {d1, d2, ..., dn}. If the group of users plans a trip of m

types of data points, the GTP query returns a set of data points {p1, p2, ..., pm}, pt ∈ Dt,

with minimum cost of route. The GTP query itself consists of two types of query, namely

the ordered GTP query and the flexible GTP query. The difference in these two types is in

the results returned, where the ordered GTP query returns a sequential data points based

on user request, whilst the flexible GTP query returns unordered data points. In previous

study, Hashem et al. [109] also worked on k group trip planning (kGTP) query, which

is a query that returns k sets of data points for a group trip. The algorithm proposed

for the GTP problem consists of Iterative approach and Hierarchical approach. In the

Iterative approach, the kGTP query implements the method of group nearest neighbor

(GNN) queries, where in this case the query returns the locations of k objects that have

the k lowest total travel distances for the group [109]. The Hierarchical approach on the

other hand, uses the R*-Tree for the hierarchical properties of the dataset and then uses

a modified best first search (BFS) on the R*-Tree to find the k sets of data points that

minimise the total travel distances for the group trip [109].

34 CHAPTER 2. LITERATURE REVIEW

Another popular route planning query is Optimal Sequenced Route Queries

(OSR) [21]. OSR is a spatial query that finds the minimum route distance from a source

location and passing through a set of sequenced categories. OSR is closely associated to

TSP problem [21]. However this query is different from TPQ as TPQ does not retrieve

its result in sequence. This query however is no longer an NP-Hard problem because of

the sequence constraint. There are several techniques that can be applied for this query,

which are the Dijkstra based solution, OSR in Vector Space: LORD - Light Optimal Route

Discoverer, R-LORD - R-Tree based LORD, and OSR in Metric Space [21]. The Dijkstra

based solution is a naive approach to process OSR in a weighted directed graph. However

this naive approach is impractical for a large graph, especially on real world problems.

Therefore Sharifzadeh et al. [21] proposed LORD, which employs several threshold values

in order to filter possible unimportant points that cannot be on the optimal route and

then establishes the optimal route in reverse sequence. Then they proposed the R-LORD,

which improved the LORD method by employing the R-Tree index structure for filtering.

Sharifzadeh et al. [21] also proposed PNE method that can solve OSR in metric spaces

(e.g., road networks).

In conjunction with the Best Path Query, OSR and Best Path both are trying to

establish a route that passes several categories of object in an optimal distance. However,

the main difference between OSR and Best Path is that OSR’s result is in sequence. OSR

does not perform textual relevancy checking like what Best Path does. The OSR also does

not take into consideration negative situation.

Route planning is very popular in which the study also expands to indoor environment

[110]. Shao et al. [110] was the first to study indoor trip planning query, which

they called iTPQ. They utilised VIP-Tree to index indoor spaces and objects. They also

proposed an exact algorithm called VIP-Tree neighbor expansion (VNE) that can do two

levels of pruning at both pre-processing phase and query processing phase. Even though

this study offers an exact solution, it is not compatible with Best Path as we are dealing

with a totally different space. The scope in indoor space is smaller than road networks

and weighted regions, thus it is possible to propose an exact solution despite the fact that

trip planning query is an NP-Hard problem.

Another route planning query variant in the area of Spatio-Textual is the Keyword-

aware Optimal Route Search (KOR) [22]. The goal in KOR is to find an optimal

2.5. WEIGHTED REGIONS 35

route that covers a set of user given keywords with a specific budget constraints and

objective score. This query has been discussed in the previous section (Section 2.3).

There are more variants to the route planning queries, such as Multi-Rule Partial Se-

quenced Route (MRPSR) query [111] that unified framework and classified both TPQ and

OSR, Keyword-Aware Skyline Routes (KSR) query [112] for indoor space which returns a

set of non-dominated routes (based on the route distance and the number of shops/stores

visited) instead of an optimal route, and Personalized and Sequenced Route (PSR) Query

[113] that considers multiple factors of a route and associates different weights with each

category for the route. Some recent studies on other factors that may influence route

planning have been done as well, such as a study on TPQ with Location Privacy [114]

in order to protect user’s location privacy, and also a new tourism personalised route

recommendation algorithm [115] that mines travel text data history to establish a more

personalised travel route that can increase user satisfaction. However, all of these studies

have different goals and settings to the Best Path Query.

The solutions offered for the existing queries on route planning are mostly in polynomial

time approximation algorithms. Even so, the solutions offered do not involve significant

pre-processing. This causes more computation, particularly since the computation requires

the processing of both spatial and textual relevancy. So having an on-the-go solution does

not always guarantee performance efficiency, especially on Spatio-Textual field. Therefore

in this research we attempt to provide a better solution to this problem by offering a pre-

processing index that incorporate both Keywords and spatial information. Our study also

takes into consideration of the existence of negative keywords, which to our knowledge has

not been considered in any previous works in Spatio-Textual area. Our work also involves

different space model like Road Networks and Weighted Regions.

2.5 Weighted Regions

Another space model other than the Euclidean space model and Road Networks model

is the Weighted Regions. The idea of weighted region space derives from the fact that

the surface of the earth comprises various geographical features (e.g. grasslands, deserts,

concretes, etc.) that can affect the travelling cost to pass through each type of surface [27].

The weighted regions model is commonly represented as a planar polygonal subdivision

36 CHAPTER 2. LITERATURE REVIEW

that consists of a set of edges, vertices, and faces. Each face is associated with a distinct

positive unit weight [1,+∞], which used to model the different geographical features.

In this section, we discuss some existing works on weighted regions, particularly on the

Shortest Path problem. We also discuss the wNeighbor, which is the only existing study

on spatial query in a weighted regions model.

2.5.1 Shortest Path on Weighted Regions

The shortest path problem on weighted region model has been widely studied in the past

decade. The problem defines as follow, given a triangulation DT (P) and each face f in

DT (P) is associated with a weight [1,+∞], find a path from point s to point t in DT (P)

that gives the minimum cost among all other possible paths. A number of solutions have

been proposed to solve this particular problem [116, 117, 118, 119, 27, 120]. However,

most of the studies are on finding approximation solution as computing the exact shortest

path on weighted region is very costly [117].

A notable solution to the shortest path problem on weighted region is offered by

Mitchell et al. [116] where they proposed the first shortest path algorithm on weighted

regions that runs in O(n8 log nNµ
ε) time. The n in this case is the number of vertices, N

determines the maximum integer coordinate of any vertex as all the vertices have integer

coordinates in [0, N], while µ indicates the ratio of the maximum region weight to the

minimum region weight. Their algorithm fundamentally establishes a shortest path map

for the source point s by applying continuous Dijkstra wavefront in DT (P) and exploits

the Snells Laws of Refraction on the shortest path implementation.

Another notable approximation solution is proposed by Sun et al. [27], where they

proposed BUSHWHACK algorithm. The idea behind their algorithm is to dynamically

maintain Steiner points in which these points are located in the edges of a region that

can be used to approximate the weighted shortest path from s to t. This algorithm

runs in O(nε log n
ε log 1

ε). Subsequently, Aleksandrov et al. successfully proposed another

algorithm in which its running time has a lower dependence on n and ε. The algorithm

runs in O(n√
ε

log n
ε log 1

ε) time.

Despite the prominent findings on the solutions for shortest path problem on weighted

regions, the study on spatial queries on this particular space model is very limited. Li

et al. [121] was the first one to do a study on finding k Nearest Neighbour on weighted

2.5. WEIGHTED REGIONS 37

regions (WkNN). They introduced Weighted Indexing Map (WIM) to index the weighted

regions space and proposed wNeighbors to answer the WkNN problem. A more detailed

discussion of wNeighbors is provided in the following section.

2.5.2 wNeighbor

The first work to investigate the k Nearest Neighbour on weighted regions (WkNN) was

done by Li et al. [121]. In the traditional kNN, given a set of objects in space, find the k

nearest objects from a given source location. The nearest objects are usually measured by

the distance from the source location, which means that we have to calculate the shortest

path from the source location to the objects. However, the space model in WkNN is more

complex than the traditional kNN queries, which elevates the computation to solve this

problem.

The WkNN query is defined as follow. Given a finite triangulation in the space, edge’s

weight we, face’s weight wf , a query point s, a destination point set D, and a value k

for the number of objects to be retrieved. WkNN query finds a result set R of the top k

nearest neighbours of point s in a destination point set D, that satisfies

{d(x, q) < d(x′, q)|x ∈ R, x′ ∈ D −R, |R| = k}

where d(·) indicates the weighted distance between two points.

As we have to calculate the shortest path before identifying the nearest neighbours, Li

et al. [121] did some investigations on the characteristics of Shortest Paths in weighted

regions. In their observations, some shortest paths between two points are usually along

the edges of the faces, in particular if the faces between these two points are not adjacent

to each other. There are also times when the shortest path to a destination point is

through one of the vertices of a face where the destination point is located. They also

indicate the relationship between Euclidean space and weighted regions space that can

help in finding the shortest paths. Deriving from these observations, for a given triangle

face f with weight wf , a source and destination points s and t on different edges (s at the

edge e1 and t at the edge e2) of face f , β as the intersection angle between e1 and e2, and

v as the intersecting point of e1 and e2, the characters of the shortest path are as follow.

38 CHAPTER 2. LITERATURE REVIEW

• If cosβ < 1 − 2/m2, then the shortest path between s and t must be through the

edges of f . The angle β for this case is called the block angle as it can block the

shortest path that try to cross the adjacent edges of β. If a face contains three block

angles, then it is a block face.

• If cosβ < 1− 2/m2 is not satisfied, then there is a possibility that the shortest path

between s and t is a direct line. When angle β is not a block angle, it is considered

as combination angle the shortest path can pass through the adjacent edges of β.

In this work, Li et al. [121] introduced the concept of Combination Region (CR). It is

a combination of region faces that share the same indexing data. A weighted regions plane

basically consists of several CRs. CR itself can be identified by an area that contains one

block face or faces that are connected by combination angles. In terms of shortest path,

given a CR R, if the source point s and destination point s are not located inside R or

the neighbouring CR of R, then the shortest path will never cross R. So if a point s in Rs

and point d in Rd and Rs 6= Rd, then the shortest path between them must go through at

least one vertex v1 in Rs and another vertex v2 in Rd, which means that the path between

v1 and v2 are along the edges instead of crossing any regions.

With all of the above characterisations of shortest path in weighted regions, a new data

structure called Weighted Indexing Map (WIM) is proposed by Li et al. [121]. The WIM

stores crList, a list of CRs, and also pList, an altered R*-Tree that stores the location of

vertices and destination points. The WIM is constructed through a three-step algorithm

that involves weighted regions plane split (to identify the CRs), calculation of shortest

distance from each destination point to the vertices of its CR, and then indexing all the

data points (vertices and destination points) into WIM.

Utilising the WIM, wNeighbor algorithm is proposed to answer the WkNN query.

wNeighbor adopts both Dijkstra’s algorithm [63] and Mitchell’s algorithm [116] in its

query processing phase. Based on the characterisation of shortest path, if given a query

point s in Rs and a destination point d in Rd, Rs is disconnected from Rd, then the

shortest path utilises Dijkstra’s algorithm. But if Rs and Rd are adjacent to each other,

then the shortest path is calculated using Mitchell’s algorithm. Based on the shortest

paths between the query point to the destination points, we can easily identify the WkNN

result.

2.6. SUMMARY OF EXISTING ISSUES 39

Looking at the studies on weighted regions, there is no study yet on Spatio-Textual

area and route planning. Most of the studies are on finding the best solution to the shortest

path problem and only one work on WkNN query. These solutions are not applicable to

the Best Path Query as the Best Path deals with spatio-textual objects, weighted regions,

and answering route planning queries.

2.6 Summary of Existing Issues

Based on the above discussion of the existing works in Spatial Keyword Queries, there are

several limitations that need to be taken into account:

• L1: The existing route planning solutions are mainly focused on spatial-only queries.

There are very limited solutions towards route planning in Spatial Keywords area,

especially the solution to spatio-textual route planning query without any budget

constraints.

• L2: Current works do not take into consideration of negative keywords that can be

obstacle in finding paths.

• L3: The existing indexing techniques consider both the spatial information part and

textual information part as two different entities.

• L4: Current works are only centred on Euclidean and Road Networks space model.

There is no work yet on Spatial Keywords Queries on a more complex environment

like the Weighted Regions.

Therefore in this study, we attempt to develop some solutions that can handle the

limitations of the existing works as mentioned above.

40 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Best Path Queries on Road

Networks

3.1 Overview

Nowadays, each spatial object contains one or more meaningful keywords as to represent

the object’s entities [14, 1]. The keywords may contain country name, city name, address,

references to landmark, or even type of road [15]. For example in Figure 3.1, the points

denote spatial objects and each object is affiliated with one or more keywords. Through the

existence of this kind of spatial keywords information, the Spatial Keyword Queries become

varied. Some of the commonly used queries are the Top-k kNN Query, Boolean kNN Query,

and Boolean Range Query [19]. All of these queries require the user to give a spatial

location (normally the current user location) and textual data in the form of keywords as

the input. While the output of these queries is spatial objects that are nearest to the user’s

location and contain the keywords given. The principle parameter used to identify the

nearest objects is based on the shortest path distance, which is basically computing the

minimum distance between two location points. Although the existing shortest path-based

solutions are useful, they are not always sufficient for our needs. In real life, we often want

to plan our trip with the most efficient cost (e.g. time, distance) taken. We may need

to stop by several locations in our trip before arriving to the designated destination and

there are also times when we would like to avoid some spatial objects that can interfere our

activities. Planning a trip is eminently more complex than a simple source-to-destination

type of query. Unfortunately, the existing studies on trip planning query in Spatio-Textual

41

42 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

area are not flexible enough to answer this kind of query. Furthermore, often at times

researchers only consider users to give keywords just to find POIs. But in reality, this is

not always the case. Some query keywords may have negative connotations, such as traffic

jams, which means that not all user given keywords can be considered as POI.

Figure 3.1: Illustration of a road network with spatial keyword objects

In this study, we propose a new variant of spatial keywords query. Given a user with

his/her location, this user wants to go to his/her destination while stopping by or avoiding

several locations denoted by certain keywords. For instance a user wants to go to his

workplace from his house, but before arriving to the workplace he wants to stop by a gas

station to refill his car fuel, a bakery to get some breakfast, and also wish to avoid any

highway along his trip (see Figure 3.1). In this query, the user specifies the source and

destination locations and several other keywords. The keywords specified are gas station,

bakery, and avoid highway. So we need to find the most optimum path for the user that

satisfies his preferred keywords condition. Using the illustration in Figure 3.1, assume

that sl is the user’s house (source location) and dl is his workplace (destination location).

There are a number of spatial objects that contain the keyword of gas station and bakery,

such as s2, s3, s5, s10, and s11, hence there are many possibilities of path combination to

be established from sl to dl passing through at least one of each keyword. Looking at

the road network, the path with the shortest distance is from sl to s2 to stop by a gas

station, then s3 to stop by a bakery, and then dl. However this path passes through a

highway. One of the keywords specified by the user to avoid is highway, which means that

the path does not satisfy all the criteria given by the user. Therefore the best path that

3.1. OVERVIEW 43

offers the least sum of distance and meets the criteria is from sl to s11 for bakery, then s10

to stop by the gas station, then finally the destination dl (obviously this path also avoids

any highway). We call this kind of query as the Best Path Query (BP).

In Best Path Query, we are dealing with both spatial and textual data. Hence the

user given query has two main parts: the spatial data part that consists of the source and

destination locations that are given by the user, and the textual data part that consists

of the keywords that the user would like to pass or avoid throughout his/her trip to the

destination. Based on the user input, the query keyword itself can be classified into positive

or negative situations. As in previous example, the user gave a negative keyword, which is

to avoid highway. The positive keyword here is the POI that he wants to pass by, which

are the gas station and bakery. The formal definition of Best Path Query is given as follow:

Definition 2. (Best Path Query) Given a source location sl, a destination location dl,

and a set of keywords K = {k1, k2, ..., kn}, where each ki for 1 ≤ i ≤ n can be positive

(denoted by k+) or negative (denoted by k−), find the Best Path from sl to dl, denoted by

BP (sl, dl,K), that passes through all k+ and avoid all k− with optimum cost.

3.1.1 Challenges

The main challenge in this research is in the insufficiency of current solutions to trip

planning in spatial keywords area, especially on Best Path Query. Existing studies do not

take into consideration negative keywords. Having negative keywords actually increase

the complexity of the problem as we have to make sure that we can avoid certain paths.

There are definitely some cases where the result cannot be retrieved as we have to avoid

all of the paths in between the source and destination locations.

The road networks are usually represented as a graph. The edges typically represent the

road segments while the vertices represent the road intersections. So the path generation is

always limited only to the edges to adjacent vertices. This increases the complexity of our

query computation when we are working specifically in this environment. The complexity

is also intensified with the types of query keywords given by the user. When the query

keywords are negative, a lot of the paths will be blocked as we have to avoid them. We

always have to make sure that we plan the route optimally despite these complexities.

Another challenge is that most of the route planning problems are regarded as a gen-

eralization of Traveling Salesman Problem (TSP) problem [23, 24]. They are NP -hard

44 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

problems. The solutions offered for these queries are in polynomial time approximation

algorithms. Even so, the solutions offered generally involve no pre-processing. This causes

more computation particularly since the computation requires the processing of both spa-

tial and textual relevancy. So having an on-the-go solution does not always guarantee per-

formance efficiency. There are also very limited indexing techniques in the Spatio-Textual

area, especially on road networks. In this research we attempt to provide a solution to

this problem by offering a novel index that incorporate both keywords and spatial road

networks information based on G-Tree [68, 69] and IR2-Tree[1].

3.1.2 Contributions

Our main contributions in this chapter are as follows:

• We formally define Best Path problem on road networks and prove that this is an

NP -hard problem.

• We develop a novel indexing scheme, called IG-Tree, for planning Best Path queries

in road networks.

• We present three approximate algorithms with different trade-offs for searching Best

Paths on road networks.

• We also demonstrate the effectiveness and efficiency of our algorithms through com-

prehensive experiments on real datasets.

3.1.3 Organisation

The rest of the chapter is organised as follows. Section 3.2 presents the preliminaries

and the query model for Best Path problem on road networks. Section 3.3 discusses the

computational complexities of the Best Path problem on road networks. We introduce

the IG-Tree in Section 3.4 and discuss our algorithms to solve the Best Path problem

in Section 3.5. Section 3.6 presents the experimental evaluations of all the algorithms

proposed. Finally, Section 3.7 concludes the chapter.

3.2. PRELIMINARIES 45

3.2 Preliminaries

This section presents the necessary background information, and the data and query model

for Best Path problem on road networks.

3.2.1 Road Network

We consider road network as an undirected weighted graph G = (V,E), where V is a set

of vertices and E is a set of edges. Each edge (u, v) ∈ E connects two adjacent vertices

u, v ∈ V and is associated with a non-negative weight w(u, v) > 0 that represents distance

or travel time.

A path P (v1, vn) = {v1, v2, ..., vn} is a sequence of vertices such that vi is adjacent to

vi+1, i.e., (vi, vi+1) ∈ E, for 1 ≤ i < n. The cost of a path P , denoted by cost(P), is the

sum of weights of the edges of P . Given vertices u and v, we use δ(u, v) to denote the

shortest path from u to v while we use dist(u, v) to denote the cost of δ(u, v). Figure 3.2

shows an example of a road network. If given a source vertex v1 and destination vertex v4,

then δ(v1, v4) = {v1, v2, v5, v4} is the shortest path between v1 and v4 and dist(v1, v4) = 6.

Figure 3.2: Example of a road network

3.2.2 Data Model

A spatio-textual object o is an object with a spatial location from S = {s1, s2, ..., sm}

that contains a set of keywords from T = {t1, t2, ..., tx}. We assume that spatio-textual

objects are located at vertices in V . The weight of an edge (u, v) ∈ E is the travel time

or road network distance of two spatially-adjacent objects o1 and o2 representing u and v,

respectively. We use vertex v or spatio-textual object o interchangeably in this chapter.

46 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

3.2.3 Query Model

Given a road network G, the user queries consist of a source location sl, a destination

location dl, and preferred set of keywords K = {k1, k2, ..., kn}, where each ki, 1 ≤ i ≤ n,

can be positive (k+) or negative (k−). A positive keyword k+ means that the keyword

satisfies what the user wants, while a negative keyword k− means that part of the keyword

expresses negative connotation which the user wants to avoid. We assume K ⊆ T . Having

all this information, we want to find the Best Path BP (sl, dl,K) that establishes a shortest

path from sl to dl, and that passes through all k+ and avoids all k− keyword matching

vertices in G.

Table 3.1 presents the list of mathematical notations used in this chapter.

Table 3.1: List of notations used throughout the chapter

Notation Definition

G Road network

δ(u, v) Shortest path between u and v

dist(u, v) Distance between u and v

sl, dl Source location, destination location

K Query keywords given by user

k+, k− Positive keyword, negative keyword

BP (sl, dl,K) The Best Path from sl to dl that passes through all k+ and avoids k−

3.3 Complexity Analysis

The Best Path problem is different from the general Shortest Path problem. In Best

Path problem, we want to find the path with objects of interest along our way to the

destination. The objects of interest are determined by the keywords. The result of Best

Path itself often is longer in distance than the Shortest Path, but there are also cases

where it can have the same result as the Shortest Path. When the user does not specify

any keywords at all in the query, then the Best Path is basically the Shortest Path since

there are only source and destination locations provided. The Shortest Path problem is

solvable in polynomial time. Therefore we can implement the commonly used algorithms

for Shortest Path, such as Dijkstra algorithm, for this particular case.

Lemma 1. Given sl, dl, and K = {}, BP (sl, dl,K) = δ(sl, dl).

Proof. Base Case: If |P | = 1 and K = {}, then P = {sl} and cost(P) = 0 = dist(sl, sl).

Hence, δ(sl, sl) = BP (sl, sl,K).

3.3. COMPLEXITY ANALYSIS 47

Inductive hypothesis: Let u be the last vertex added to P , P ′ = P ∪ {u}. In this case

our Inductive Hypothesis is

for each y ∈ P ′, cost(P ′(sl, y)) = cost(δ(sl, y))

Inductive step: Suppose that there is a shortest path Q from sl to u and

cost(Q) < cost(P ′(sl, u))

Since Q is a shortest path, then cost(Q) = dist(sl, u).

Assume that the shortest path Q begins at P ′ and then leaves P ′ before arriving to the

destination u. (y, z) is the first edge in Q that leaves P ′, and Qy is a shortest path from

sl to y, so

cost(Qy) + w(y, z) ≤ cost(Q)

Since according to the Inductive Hypothesis cost(P ′(sl, y)) is also the cost of δ(sl, y), then

cost(P ′(sl, y)) ≤ cost(Qy). So it gives us

cost(P ′(sl, y)) + w(y, z) ≤ cost(Qz)

As y and z are adjacent vertices, then

cost(P ′(sl, z)) ≤ cost(P ′(sl, y)) + w(y, z)

Since u is part of Q, so

cost(P ′(sl, u)) ≤ cost(P ′(sl, z))

Therefore shortest path Q does not exist, so cost(P ′(sl, u)) = δ(sl, u) = BP (sl, u,K).

However, this is not the same when we have a keyword specified by the user. Depending

on the positive or negative value, the path may or may not be retrieved. If the query

contains only one positive keyword, doing the shortest path search from source to the

48 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

nearest vertex that has matching keyword then doing another shortest path search from

the nearest vertex with matching keyword to the destination is incorrect. As an example

using the road network in Figure 3.1, assume that the source sl is v5, destination dl is v10,

and then the preferred keyword given by the user is located at v1 and v3. If we choose

the nearest keyword match vertex from v5, v3 is the nearest since dist(v5, v3) is 3, while

dist(v5, v1) is 6. However if we calculate the total distance from v5 to v3 to v10, the total

is 18. On the contrary, the total distance from v5 to v1 to v10 is 9, which is a lot shorter

than having v3 as the chosen keyword match vertex. Hence, choosing the nearest vertex

with matching keyword will cause local minimum problem.

Meanwhile if the query keyword does not exist in T , then BP (sl, dl,K) is also δ(sl, dl).

Lemma 2. Given sl, dl, and K = {k1}, k1 /∈ T . Thus BP (sl, dl,K) = δ(sl, dl).

Proof. If k1 /∈ T , then K = {}; which is already proven in Lemma 1.

If the user query contains a negative keyword, then the vertices that have this particular

keyword need to be avoided/blocked. When we do the query processing to find the Best

Path, these vertices can be pruned/disconnected from the graph as they are no longer

considered as POI. This may also cause a dead-end in the graph since a potential path can

be ceased with the disappearance of a vertex. So when an edge of a vertex with negative

keyword is a bridge, we will not be able to retrieve any Best Path. Lemma 3 and 4 prove

the non-existence of Best Path for this particular case.

Lemma 3. If there exists a bridge (u, v) in G, and G consists of subgraph H and I that

are connected by (u, v). Given sl ∈ H and dl ∈ I, then (u, v) ⊆ BP (sl, dl,K).

Proof. Assume that (u, v) is a bridge in G and BP (sl, dl,K) on G does not contain (u, v).

Since BP (sl, dl,K) is a path that every vertex in it has to be connected with each other,

and BP (sl, dl,K) ⊆ G \ {(u, v)} which G \ {(u, v)} is a disconnected graph, then it must

be disconnected.

Definition 3. A critical path cp(vi, vj), i 6= j, is a path that consists of one or more graph

bridges between vi and vj.

Lemma 4. Given sl, dl, K = {k−}, and BP (sl, dl,K) = cp(sl, dl). Then BP (sl, dl,K)

does not exist.

3.3. COMPLEXITY ANALYSIS 49

Proof. Suppose that there exists a bridge (u, v) in BP (sl, dl,K) and k− ∈ (u, v). Since we

have to avoid negative keywords, then (u, v) has to be pruned from BP (sl, dl,K). Hence,

the graph is now disconnected as proved in Lemma 3.

Even though negative keywords can cause path blockage, it does not mean that we

cannot retrieve any Best Path at all. The path blockage might cause us to re-route to

another path even though it may cause a longer path.

Lemma 5. Given dl, sl, and K = {k−}, if BP (sl, dl,K) 6= cp(sl, dl), then there exists

BP (sl, dl,K).

Proof. We can establish a path since the graph is still connected even though there is

k−.

In the case where the user gave a set of positive keywords as the query input and

there is no negative keyword at all, then the Best Path’s result will be similar to the

state-of-the-art Trip Planning Route Queries (TPQ)’s result [20].

Lemma 6. Given dl, sl, and K = {k+1 , k
+
2 , ..., k

+
n }, BP (sl, dl,K) = TPQ.

Proof. When all keywords are positive, then by definition, Best Path is the same as TPQ

where we have to find the best trip/route from sl, passing through one point from each

category and then ending the trip at dl.

Looking at Lemma 6, it means that Best Path also can be considered as NP -hard

problem. Thus in the following Lemma we try to reduce Best Path problem to Traveling

Salesman Problem (TSP), to which TSP is a well-known NP -hard problem.

Lemma 7. BP (sl, dl,K) is NP -hard.

Proof. Assume a road network G of a set of spatio-textual objects with spatial locations

S = {s1, s2, ..., sm} and each object has a distinct keyword from the keyword set T .

Moreover, the user queries consist of a source location sl, destination location dl, and

preferred keywords K = {k1, k2, ..., kn}. Again, assume that for K, we need to visit every

vertex in G. Now, we reduce the Best Path Problem to TSP. Let G′ = (V ′, E′) as the

instance of TSP, where V ′ = V and E′ = (u, v) for any u, v ∈ V ′. Then for road network

G, we complete the graph by connecting all vertices. The cost function between G and G′

is as follow:

50 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

cost(u, v) =

0, if edge(u, v) ∈ E

1, if edge(u, v) /∈ E
Suppose that Best Path BP (sl, dl,K) exists in G and has cost ≤ 0 in G′, hence there

exists a solution to TSP in G′ with cost ≤ 0.

3.4 Data Index

This section presents the IG-Tree, an indexing technique for planning Best Path Queries

on Road Networks. Before presenting the IG-Tree, we first provide a brief background on

G-Tree [68, 69] and IR2-Tree[1], which are the indexing techniques that inspired us to

develop the IG-Tree for processing BP (sl, dl,K) queries efficiently.

3.4.1 G-Tree

One of the most efficient indexing techniques on Road Networks is the G-Tree [68, 69]. In

G-Tree, the road network is partitioned recursively into sub-networks. The nodes in G-

Tree correspond to a single sub-network and each node contains two or more road network

vertices. The graph partition process is performed by using the multi-level partitioning

algorithm [122], which guarantees that each subgraph will be of almost the same size.

Figure 3.3 shows an example of graph partitioning of the road network given Figure 3.2.

Here, the original graph is partitioned into two subgraphs, which are shown by G1 and

G2. In the next level, G1 is partitioned again into two equal-sized subgraphs G3 and G4.

Similarly, G2 is partitioned again into subgraphs G5 and G6.

The vertices that connect two sub-networks together are marked as borders and they

are stored in the G-Tree nodes. Figure 3.3 shows the example where vertex v1 is the

border of G3 since it connects partition G3 with other partitions G4 and G5. The border

in partition G4 consists of v8 and v7, the border in partition G5 consists of v2 and v3, and

the border in partition G6 is v4. In the partition G1, the borders are v1 and v7 as both

connects G1 with G2. While the borders in G2 are v2 and v3.

G-Tree does not store the distance of every vertex but stores the set of borders and the

shortest path distance between borders that is kept in the distance matrix. For example

for partition G3, the border is v1, so the distance matrix will contain the shortest path

from v1 to all other vertices in the subgraph partition {v1, v10, v11}. The distance matrix

3.4. DATA INDEX 51

itself is proven to be very efficient in terms of processing the kNN search on road networks

[68, 69].

Though G-Tree is very efficient in indexing and processing nearest neighbor (NN),

k nearest neighbor (kNN) and keyword-based kNN queries on road networks, it is not

applicable for processing Best Path queries.

ν1

ν22

ν3

ν4ν5 ν6

ν7

ν8

ν9

ν10
ν11

4
2

1

3

5

7

3

3

32

G0
G1

G2

food

supermarket,
book

book

food

cinema
G3

G4
G5

G6

Figure 3.3: Graph partitioning on road network given in Figure 3.2

3.4.2 IR2-Tree

There are a number of indexing techniques proposed for processing Spatial Keywords

Queries, one of them is the IR2-Tree. The IR2-Tree is first introduced by Felipe et al. [1].

It is a hybrid indexing approach that combines the R-Tree [123] and information retrieval

signature files. However, this indexing technique is only applicable for spatial data objects

in Euclidean space.

The indexing in IR2-Tree is performed by attaching the inverted index to the R-

Tree, i.e., every tree node in IR2-Tree holds the information for both spatial location and

keywords. The leaf nodes contain the actual spatial data and keywords. For example,

assume that an object o1 that contains keyword book is located in leaf node N1 with

spatial location of
[
38, 4

][
93, 9

]
(upper right and bottom left coordinate of the minimum

bounding rectangle (MBR)), while an object o2 with keyword supermarket is located in

leaf node N2 with spatial location of
[
8, 15

][
41, 32

]
. Suppose that the inverted index for

keyword book is 10 and the inverted index for keyword supermarket is 01. Thus the leaf

node N1 contains the information of spatial location
[
38, 4

][
93, 9

]
and keyword index 10,

while leaf node N2 contains the information of spatial location
[
8, 15

][
41, 32

]
and keyword

index 01.

52 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

As the leaf node in IR2-Tree stores the spatial data and keyword index, the non-leaf

node contains the combination of several objects. The spatial information is based on the

MBR, while the inverted index of the keywords is calculated using logical OR [1]. For

example, the leaf nodes N1 and N2 from the previous example have the same parent node

N0. So in this case, N0 contains keyword information of 11 as this node consists of both

keywords from N1 and N2.

3.4.3 Proposed Data Index: IG-Tree

As previously discussed, the IR2-Tree [1] is used for indexing Spatial Keywords Queries

in Euclidean space, while the G-Tree [68, 69] is used for indexing Road Networks. As Best

Path is a type of Spatial Keywords Query on Road Network, each one of these indexing

techniques has its own benefit to Best Path Query. Thus, we adopt these two indexing

techniques to develop a new indexing scheme that can improve the processing of Best Path

query: IG-Tree, a hybrid between IR2-Tree and G-Tree.

Using the road network in Figure 3.2, we attempt to create the IG-Tree. So following

the graph partition technique used in G-Tree, we partition the graph into smaller sub-

graphs. Figure 3.3 shows the graph partitioning of the example road network given in

Figure 3.2. The graph is divided into equal-sized subgraphs using the multi-level parti-

tioning algorithm [122] and each partition consists of two or more vertices. At the leaf level

of the tree, the subgraph G3 consists of vertices v1, v10 and v11; subgraph G4 consists of

vertices v7, v8 and v9; subgraph G5 consists of vertices v2, v3 and v5; and finally, subgraph

G6 consists of vertices v4 and v6. Each partition makes up one node in the IG-Tree, as

presented in Figure 3.4.

After the graph partition, we mark the borders of each partition. Borders are the

vertices in one partition that are connecting the road network to another partition. For

example the border for partition G3 is v1 since v1 connects the subgraph to partition G4

and partition G5. So the borders of G4 are v7 and v8; the borders of G5 are v2, v3 and v5;

while the border of G6 is v4. Based on these borders, we create the distance matrices. So

the shortest path distances for every border in every node are pre-computed and stored in

the matrices. Table 3.2 - Table 3.8 show the distance matrices for each node in IG-Tree.

Another aspect of the graph in Figure 3.3 is the keywords. Some vertices contain one

or more keywords, thus we also need to index these keywords. The keywords can be turned

3.4. DATA INDEX 53

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G0
1111

G1
v1 v7 1011

G3
v1 0010

G2
v2 v3 1110

G4
v8 v7 1001

G5
v2v3v5 1010

G6
v4 0100

Figure 3.4: IG-Tree

Table 3.2: Distance Ma-
trix for G0

G0 v1 v7 v2 v3
v1 0 7 2 9

v7 7 0 9 5

v2 2 9 0 7

v3 9 5 7 0

Table 3.3: Distance
Matrix for G1

G1 v1 v8 v7
v1 0 3 7

v8 3 0 10

v7 7 10 0

Table 3.4: Distance
Matrix for G2

G2 v2 v3 v5 v4
v2 0 7 4 6

v3 7 0 3 5

v5 4 3 0 2

v4 6 5 2 0

Table 3.5: Distance Ma-
trix for G3

G3 v1 v10 v11
v1 0 3 5

Table 3.6: Distance
Matrix for G4

G4 v8 v9 v7
v8 0 3 10

v9 3 0 13

v7 10 13 0

Table 3.7: Distance
Matrix for G5

G5 v2 v3 v5
v2 0 7 4

v3 7 0 3

v5 4 3 0

Table 3.8: Dis-
tance Matrix for
G6

G6 v4 v6
v4 0 1

into inverted list. So the first step is to sort all of the keywords in the graph. Then for

each keyword, we assign a binary value based on its existence in each node. For instance

vertex v2 contains only keyword book, thus the inverted list for v2 is 1000. For node v8,

it contains both keyword book and supermarket, so its inverted list is 1001. The inverted

index for all the vertices of the graph in Figure 3.3 is presented in Table 3.9.

Based on the above inverted index list, we attach each inverted index to its corre-

sponding vertices at the leaf nodes. For each parent node, its inverted index is calculated

using logical OR of its child nodes. For instance G3’s inverted index is the result of logical

OR of the inverted index of v1, v10, v11. The result of 0000 or 0000 or 0010 is 0010, thus

54 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Table 3.9: Keyword index

Keyword Book Cinema Food Supermarket
v1 0 0 0 0
v2 1 0 0 0
v3 0 0 1 0
v4 0 0 0 0
v5 0 0 0 0
v6 0 1 0 0
v7 0 0 0 0
v8 1 0 0 1
v9 0 0 0 0
v10 0 0 0 0
v11 0 0 1 0

Table 3.10: Keyword Dis-
tance Matrix for G0

G0 1000 0100 0010 0001

v1 2 9 5 3

v7 9 11 5 10

v2 0 7 7 5

v3 7 6 0 11

Table 3.11: Keyword Dis-
tance Matrix for G1

G1 1000 0100 0010 0001

v1 2 Ø 5 3

v8 0 Ø 8 0

v7 10 Ø 12 10

Table 3.12: Keyword Dis-
tance Matrix for G2

G2 1000 0100 0010 0001

v2 0 7 7 Ø

v3 7 6 0 Ø

v5 4 3 3 Ø

v4 6 1 5 Ø

Table 3.13: Keyword Dis-
tance Matrix for G3

G3 1000 0100 0010 0001

v1 Ø Ø 5 Ø

Table 3.14: Keyword Dis-
tance Matrix for G4

G4 1000 0100 0010 0001

v8 0 Ø Ø 0

v9 3 Ø Ø 3

v7 10 Ø Ø 10

Table 3.15: Keyword Dis-
tance Matrix for G5

G5 1000 0100 0010 0001

v2 0 Ø 7 Ø

v3 7 Ø 0 Ø

v5 4 Ø 3 Ø

Table 3.16: Keyword Dis-
tance Matrix for G6

G6 1000 0100 0010 0001

v4 Ø 1 Ø Ø

G3’s inverted index is 0010. The same calculation is applied for every non-leaf node. The

root node will normally have all 1s for the index.

Even though we have indexed all of the available keywords and assign them to each

node in the tree, having these indexes are not adequate. The inverted index only identifies

that a certain keyword exists on a node but do not exactly identify the location until we

go to the leaf node. Therefore we propose a Keyword Distance Matrix for each node. This

Keyword Distance Matrix contains the distance of the nearest keyword matching vertex

from each border. By having this matrix, the keyword search computation is sped up

as we do not need to compute the keyword distance in processing time. The Keyword

Distance Matrices for the IG-Tree in Figure 3.4 are shown at Table 3.10 - Table 3.16.

Based on the above discussion, there are several important components to build an

IG-Tree. For every non-leaf node in IG-Tree contains the partition name, the border of

3.4. DATA INDEX 55

each partition, and the inverted index (using the logical OR of its child node). Each non-

leaf node also contains two types of matrices, which are the Distance Matrix and Keyword

Distance Matrix. For every leaf node, it contains the road network’s vertex and inverted

list of the corresponding vertex. We also keep the geographic coordinate location of each

vertex in the leaf node.

Space Complexity of the IG-Tree

Height. The height of IG-Tree is similar to G-Tree[68, 69] which is H = logf
|V |
τ

+ 1,

where f is the number of partitions for each graph/subgraph, |V | is the number of vertices

in the given (road network) graph G, and τ is the number of maximum vertices on leaf

node’s subgraph.

Number of Nodes. Like G-Tree, IG-Tree has only one node in level 0, which is

the root. In an arbitrary level i of the tree, there are f i internal nodes as the number of

partitions for each graph (at level 0)/subgraph (at level > 0) is s. As τ is the maximum

number of vertices on leaf node’s subgraph, there are |V |τ leaf nodes. As a result, the

number of nodes in IG-Tree is O(f
f−1 ·

|V |
τ) = O(|V |τ) which is again similar to that of

G-Tree.

Number of Inverted Lists. A node in IG-Tree contains an inverted list representing

the keywords covered in that node. As the number of nodes in an IG-Tree is O(|V |τ), the

number of inverted lists is O(|V |τ +|V |). Thus, the space complexity of maintaining inverted

lists in IG-Tree becomes O(|V |τ ·|T |+|V |·|T |), where |T | is the number of keywords covered

in the whole road network G and |V | · |T | is the space complexity of the inverted lists for

all vertices in V .

Number of Borders. If we assume the road network to be modeled as a planar

graph, the number of borders on average in a node of level i is O(log2f ·
√
|V |
f i+1) as per the

calculation conducted in [68, 69]. As there are f i nodes in a level i, the number of border

nodes in an arbitrary level i is O(log2f ·
√
|V |
f i−1). If we sum this measure from level 1 to

height of the tree logf
|V |
τ

+ 1, the total number of borders in an IG-Tree is O(log2f√
τ
|V |),

which is again similar to the G-Tree under the planar graph assumption.

Distance Matrices. The total distance matrix size of all leaf nodes is O(
√
τ |V | ·

log2f) and the total distance-matrix of non-leaf nodes is O(|V | · log22f · logf
|V |
τ) as per the

calculation conducted in [69, 68].

56 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Keyword Distance Matrices. The average number of borders in a leaf node of

IG-Tree is O(log2f ·
√
τ)[68, 69] and the total number of keywords in G is |T |. Thus

the keyword distance matrix size in a leaf node is O(log2f ·
√
τ · |T |). The total keyword

distance matrix size of all leaf nodes becomes O(|V |τ · log2f ·
√
τ · |T |). Each internal

node on level i generates O(log2f ·
√
|V |
f i+1) borders on average [69, 68]. Therefore, the

keyword distance matrix size of each node at level i is O(log2f ·
√
|V |
f i+1 · |T |). In IG-

Tree, there are f i nodes at level i, therefore keyword distance matrix size at level i is

O(f i · log2f ·
√
|V |
f i+1 · |T |)=O(log2f ·

√
|V |f i−1 · |T |). Thus the total keyword distance

matrix size of non-leaf nodes is O(
∑

0≤i<H log2f ·
√
|V |f i−1 · |T |).

Index Reconstruction for Tree Node with Negative Query Keywords.

In the Best Path Query, the user is allowed to give keywords as input of the query and

the query keywords can be positive and negative. The positive keywords denote the

spatio-textual objects that the user wants to visit, while the negative keywords denote

the spatio-textual objects that the user wants to avoid along his/her trip. Even though

IG-Tree contains textual information of spatial objects, we still have to check the textual

relevancy between the spatial object with the query keywords given by the user in order

to consider an object to be visited or avoided. For the objects that contain positive

keywords, the IG-Tree can compute the path well with the help of the Distance Matrices.

For example if we want to compute the path from v5 to the nearest book, we can directly

refer to the Keyword Distance Matrix in Table 3.15 to save up some time. But this is

different when negative keywords exist. Even though IG-Tree is designed to improve path

computation on finding the Best Path, it still has a weakness when there is a negative

keyword found in the query given by the user. As previously mentioned in Section 3.3,

a vertex that holds one or more negative query keywords must be pruned from the road

network graph. This is due to the fact that this particular vertex holds a query that the

user wants to avoid/block. Currently IG-Tree consists of Distance Matrices that store the

shortest paths between borders. So when a vertex is pruned from the graph, the shortest

path may also change. The existing index has to be modified considering a vertex is gone

and the Distance Matrices are no longer storing accurate distances. The new Distance

Matrices will replace the existing matrices during the query processing time of the query

3.4. DATA INDEX 57

with the corresponding negative keywords. The modification however depends on the

location of the vertex in the IG-Tree:

• Case-C1. If vertex v that contains k− is the border and no other border exists

for a node that we must visit, then no path can be established. In this case, v is

considered as a bridge. This situation is already proved through Lemmas 3 and 4 in

Section 3.3.

• Case-C2. If vertex v that contains k− is the border and there is/are other border(s),

then path reconstruction is needed. The path reconstruction will involve the whole

tree node where v is located and also the borders on other nodes that are adjacent to

v. For example if v3 in Figure 3.3 contains k−, then the path reconstruction occurs

on the whole G5 tree node and its adjacent borders. The adjacent borders in this

case can be identified through parent nodes of G5, whether the parent nodes have

v3 as one of their borders. G2 and G0 are indeed sharing v3 as their border, so the

path reconstruction will involve these two tree nodes as well. As v3 is pruned from

the graph, v3 is then omitted from the Distance Matrices of G5, G2 and G0. The

border-to-border distances of these matrices are also affected because of the omission

of v3, thus the entire matrices have to be recalculated because of the changes in the

shortest path between these borders. The path reconstruction itself can be obtained

using Dijkstra algorithm. Table 3.17 - Table 3.19 shows the Distance Matrices after

path reconstruction.

• Case-C3. If vertex v that contains k− is in the leaf node (not the border), then

distance has to be recalculated. The index recalculation for this case does not affect

the whole tree, but only on the tree node where the vertex with negative keyword

lies. Similar to the previous case, the path reconstruction can be obtained using

Dijkstra algorithm. When v is in the leaf node, we can focus on its own subgraph

partition as it does not affect the other partitions like in the previous case. For

instance, assume that v10 in Figure 3.3 contains k−. v10 is a leaf node as it does not

connect any sub-networks. v10 is located in partition G3, thus only this partition

will need to be reconstructed which is shown in Table 3.20.

58 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Table 3.17: Reconstructed Distance Ma-
trix for G5

G5 v2 v5
v2 0 4
v5 4 0

Table 3.18: Reconstructed Distance Ma-
trix for G2

G2 v2 v5 v4
v2 0 4 6
v5 4 0 2
v4 6 2 0

Table 3.19: Reconstructed Distance Ma-
trix for G0

G0 v1 v7 v2
v1 0 7 2
v7 7 0 9
v2 2 9 0

Table 3.20: Reconstructed Distance Ma-
trix for G3

G3 v1 v11
v1 0 Ø

3.5 Query Processing

We propose three Best Path query processing algorithms that can be applied on IG-Tree,

namely the Optimal Distance Approximation Search, Ancestry Priority Search, and the

Euclidean-based Approximation. A baseline algorithm is also provided in this section.

The baseline algorithm offers precise solution, while the other three proposed algorithms

offer approximation solution with different trade-offs. In each subsection, we discuss on

how each algorithm works and their trade-offs.

3.5.1 Baseline Algorithm

In this section, we discuss on the baseline algorithm that can be used on IG-Tree to find the

Best Path. This algorithm is able to compute the result of Best Path query accurately.

The key/main idea is to find the permutation of all possible combinations of positive

keywords and then compare them in order to find the one that has the most efficient cost

(least distance).

As an example, assume that we want to find the best path from v1 to v4 while passing

through cinema and book. In this case, sl = v1, dl = v4, and keywords = {cinema, book}.

The first step here is to turn the preferred keywords into inverted index so that we can check

its relevancy with the inverted index in IG-Tree. The preferred keywords are cinema and

book, therefore the inverted list is 1100 (K = 1100). Then we have to find the partition

that contains the source and destination in the IG-Tree, where v1 is located under the

partition G3 and v4 is located under the partition G6. After the source and destination

3.5. QUERY PROCESSING 59

Algorithm 1 Shortest Path Search δ(sl, dl) on IG-Tree

Input:IG− Tree, sl, dl, inverted file Kif in
Output:δ(sl, dl) out
1: Find partition Gsl that contains sl on IG− Tree
2: Find partition Gdl

that contains dl on IG− Tree
3: Current source node vsl = sl
4: Current source node vdl

= dl
5: while Gsl != Gdl

do
6: Find nearest border bsl from vsl
7: if bsl contains k− then
8: if There is other border then
9: Path reconstruction for partition Gsl

10: else
11: return -1
12: end if
13: end if
14: dist(dl, bsl)+ = dist(vsl , bsl)
15: vsl = bsl
16: Find nearest border bdl

from vdl

17: if bdl
contains k− then

18: if There is other border then
19: Path reconstruction for partition Gdl

20: else
21: return -1
22: end if
23: end if
24: dist(dl, bdl

)+ = dist(vdl
, bdl

)
25: vdl

= bdl

26: Gsl = parent node of vsl
27: Gdl

= parent node of vdl

28: end while
29: if Gsl == Gdl

then
30: Check Distance Matrix to get the shortest path dist(vsl , vdl

) from vsl to vdl

31: dist(sl, dl) = dist(sl, bsl) + dist(dl, bdl
) + dist(vsl , vdl

)
32: return δ(sl, dl)
33: end if

locations are found, then we can start finding the best path BP (v1, v4, 1100) that visits

the chosen keywords.

Scanning through every single vertex in the leaf node that holds inverted index of 1100.

The inverted index of 1000 can be found at v2 and v8, while the inverted index of 0100 can

be found at v6. Knowing the exact locations of the keywords, we can do cartesian product

between each set of keywords. In this case, the cartesian product will be between {v2, v6}

and {v8, v6}. Then based on the cartesian product, we have to get the permutation to

help computing the path with the least distance. The permutations for this case consist

of {v2, v6}, {v6, v2}, {v8, v6}, and {v6, v8}. Based on these permutations, we can find the

shortest path from sl to each permutation, and then from the permutation to dl. In this

case, we will have four possible paths: v1 → v2 → v6 → v4 = 10, v1 → v6 → v2 → v4 = 22,

60 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Algorithm 2 The Baseline

Input:IG− Tree, sl, dl, K in
Output:BP (sl, dl,K) out
1: Index K to inverted file Kif

2: Find sl on IG− Tree
3: Find dl on IG− Tree
4: Scan through the leaf nodes to find vertices Vk with keywords that match to k+ in Kif .
5: Find Cartesian Product cart product(Vk)
6: for each cart product(Vk) result cp do

7: Find possible permutations of cp Permutation(cp)
8: for each permutation perm of Permutation(cp) do

9: vstart ← 0
10: for each vetex v in perm do

11: if vstart = 0 then
12: Find δ(sl, v);
13: else
14: Find δ(vstart, v);
15: end if
16: vstart = v
17: end for
18: Find δ(vstart, dl);
19: if current path is the shortest then
20: Best Path BP (sl, dl,K)
21: end if
22: end for
23: end for
24: return BP (sl, dl,K);

v1 → v8 → v6 → v4 = 16, v1 → v6 → v8 → v4 = 32. Algorithm 1 shows the pseudocode

for shortest path search in IG-Tree. While calculating the shortest paths, we also need to

keep track of the path with the least sum of distance. At the end, we will obtain the Best

Path with the most accurate solution. For this example, the Best Path BP (v1, v4, 1100) =

v1 → v2 → v6 → v4 with the least total distance of 10.

This algorithm guarantees the accuracy of finding the Best Path on road networks.

However since the Best Path query is an NP -Hard problem, this algorithm definitely runs

in non-polynomial time especially on a large datasets. In our experiment, it can spend

up to 17 hours merely to find the Best Path with 5 query keywords even in a very small

datasets with only 100 vertices. This is certainly impossible to be applied for our daily

use. The pseudo-code of the baseline algorithm is given in Algorithm 2.

3.5.2 Optimal Distance Approximation Search

Because of the non-polynomial time complexity of the baseline algorithm, we propose an

approximation algorithm to compromise the runtime. This algorithm is a lot faster than

the baseline one but its result is not 100% accurate.

3.5. QUERY PROCESSING 61

When multiple keywords are involved in the query, the complexity rises as we have to

know all possible combinations of the keywords in order to get the most optimal solution

(distance-wise). However when there is only one keyword involved in the query, the query

can be retrieved in polynomial time. Thus in this approximation algorithm we utilize this

situation in order to retrieve the multiple keywords query. The way this algorithm works

is that for each query keyword given by the user, we find the best path between the source

location to the query keyword and then to the destination. By getting the best path for

each keyword, we can locate the best possible location of each keyword that will give the

shortest distance of source-keyword-destination. Then after we have the best candidate of

each keyword, we find the path from source location to its nearest candidate, then from

the nearest candidate to its next nearest candidate. We keep doing this until all keywords

are covered, then finishing the path to the destination location.

For example a user wants to find the best path from v10 to v7 while passing through a

bookstore and a cinema. In this case, sl = v10, dl = v7, and K = {book, cinema}. In order

to find the best path, we have to transform the query keywords given by the user into

inverted list. Since the keywords are {book, cinema}, thus the inverted list is Kif = 1100.

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G0
1111

G1
v1 v7 1011

G3
v1 0010

G2
v2 v3 1110

G4
v8 v7 1001

G5
v2v3v5 1010

G6
v4 0100

Figure 3.5: Finding location of v10 and v7

In this algorithm, we have to firstly find the locations of sl and dl. Looking at the

IG-Tree, sl is located within partition G3, while dl is located within partition G4 as shown

62 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

in Figure 3.5. Now for each keyword kn in Kif , we have to find the best path from

sl − kn − dl. Assume that the first keyword that we want to find its best path is book to

which its inverted index is 1000. In the road network, there are actually several vertices

that contain the keyword book. So we have to calculate the total shortest path distance

for each keyword location and then finding the one that has the least amount of distance.

A naive solution here is to find the shortest path between sl to kn and then add up the

shortest path between dl to kn. Since our current keyword index is 1000, v8 and v2 have

the same index. Hence we have to establish the shortest path δ(v10, v8)+δ(v8, v7) and also

δ(v10, v2) + δ(v8, v2). The way the shortest path works is similar to the previous section.

The best path distance for visiting v8 is dist(v10, v8) + dist(v8, v7) = 6 + 10 = 16, while

the best path distance for visiting v2 is dist(v10, v2) + dist(v2, v7) = 5 + 9 = 14. Based

on these calculations, v2 has the best path from v10 to v7 as depicted in Figure 3.6 and

Figure 3.7. Thus, we can store v2 to a candidate queue Qk as the candidate vertex to find

the multiple keywords best path query. The same process also goes for keyword cinema.

The inverted index of keyword cinema is 0100. There is only one vertex in the road

network that contains 0100, which is v6. Therefore the best path is going to be based on

δ(v10, v6)+δ(v8, v6). Hence, v6 can be stored to a candidate queue Qk as another candidate

vertex for finding the multiple keywords best path query, specifically for keyword cinema.

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G0
1111

G1
v1 v7 1011

G3
v1 0010

G2
v2 v3 1110

G4
v8 v7 1001

G5
v2v3v5 1010

G6
v4 0100

Figure 3.6: Path from v10 to nearest node with keyword book

3.5. QUERY PROCESSING 63

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G0
1111

G1
v1 v7 1011

G3
v1 0010

G2
v2 v3 1110

G4
v8 v7 1001

G5
v2v3v5 1010

G6
v4 0100

Figure 3.7: Path from v10 to v7 passing through keyword book

As we have found the candidates for each keyword specified by the user, we can do best

path search from sl to the candidates, then to dl. Qk consists of v2 and v6. So what we have

to do is to find which vertex in the candidate queue Qk is the nearest from sl (v10). In this

case, v2 is the nearest so we have to find the shortest path δ(v10, v2) = {v10, v1, v2} with

total distance dist(v10, v2) = 5. Next, we have to find the nearest next candidate from v2,

which is v6. Then we establish another shortest path δ(v2, v6) = {v2, v5, v4, v6} with total

distance dist(v2, v6) = 7. Since there is no more candidate in the queue, then it means that

we have found all the keywords specified by the user in our path. Thus we can establish the

final path from the last candidate to the destination dl (δ(v6, v7) = {v6, v4, v5, v3, v7} with

total distance dist(v6, v7) = 11). The result of the best path BP (v10, v7, {book, cinema}) =

{v10, v1, v2, v5, v4, v6, v4, v5, v3, v7}.

Based on our experiment, this algorithm runs faster than the baseline algorithm even

though the approximation is not 100% accurate. However the approximation result is close

to the baseline result even when the algorithm runs with a large dataset. The pseudo-code

of this algorithm is given in Algorithm 3.

64 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Algorithm 3 Optimal Distance Approximation Search

Input:IG− Tree, sl, dl, K in
Output:BP (sl, dl,K) out
1: Index K to inverted file Kif

2: Find sl on IG− Tree
3: Find dl on IG− Tree
4: for each inverted keyword kn in Kif do
5: if kn+ then
6: Find shortest path δ(sl, kn)
7: Find shortest path δ(kn, dl)
8: dist(sl, dl) = dist(sl, kn) + dist(kn, dl)
9: end if

10: if current path is the shortest then
11: Store (kn) location to queue Qk

12: end if
13: end for
14: for Qk is not empty do
15: if current path is 0 then
16: Find 1NN (sl, Qk)
17: else
18: Find 1NN (Qkn− 1, Qk)
19: end if
20: Find shortest path δ(sl, Qkn)
21: Remove Qkn from queue Qk

22: end for
23: Find shortest path δ(Qkn, dl)

3.5.3 Ancestor Priority Approximation Search

In this study, we propose another approximation algorithm. This algorithm utilizes the

common ancestor between the source and destination locations with the purpose of mini-

mizing the tree traversal time. Sometimes when we are trying to find one or more keywords

in the IG-Tree, we have to travel through most of the tree nodes even though the source

and destination locations are on the same partition node. However in this algorithm,

the idea is to traverse only on the branch of an ancestor node. This is basically to do

early pruning through the common ancestor between source and destination locations in

IG-Tree.

As an example, a user invokes a query with source location in vertex v10, destination

location in vertex v7, and the preferred keyword is book. The query keyword inverted index

in this case is 1000 for keyword book. Looking at the IG-Tree in Figure 3.8, the common

ancestor between v10 and v7 is G1. Thus in this algorithm we are going to only focus on

the branch under G1, especially if the user given keyword is available in this branch. As

the query inverted index is 1000 and the inverted index attached in G1 is 1011, we can see

3.5. QUERY PROCESSING 65

that the query keyword exists in G1, so we can definitely focus on this node to find the

best path from v10 to v7 while passing by a keyword book.

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G0
1111

G1
v1 v7 1011

G3
v1 0010

G2
v2 v3 1110

G4
v8 v7 1001

G5
v2v3v5 1010

G6
v4 0100

Figure 3.8: G1 as the common ancestor of v10 and v7

The way the Ancestor Priority Search algorithm works is similar to the Optimal Dis-

tance Approximation algorithm once we know which branch we need to work on. Firstly

we have to compute the best path of each keyword, then recording the candidate vertices

into a queue Qk in order to find the final multiple keywords best path query. Continuing

from the previous example, the focus now is only on the branch of G1. So we do not

need to travel to other branches outside partition G1. In this case, we have to find the

best path for each query keyword first. But since there is only one keyword, then we

can find the Best Path directly. The way we find each keyword is through the inverted

index attached in the IG-Tree and traverse down until we found which vertex has the

keyword. We know that G1 has 1000 so we have to check its immediate children. G3

does not have 1000, while G4 has 1000, thus we need to traverse down the partition of

G4 in order to find the keyword. The children of G4 are v8, v9, and v7. Only v8 has 1000,

therefore we have to find the best path from sl to v8 and then to v7 as depicted in Figure

3.9 . Similar to the previous algorithm, we have to find the shortest path δ(v10, v8) and

δ(v8, v7) to help finding the best path. The shortest path δ(v10, v8) = {v10, v1, v8}, while

66 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G0
1111

G1
v1 v7 1011

G3
v1 0010

G2
v2 v3 1110

G4
v8 v7 1001

G5
v2v3v5 1010

G6
v4 0100

Figure 3.9: Path from v10 to v7 passing through keyword book

the shortest path δ(v8, v7) = {v8, v1, v7}. As there is only one keyword, therefore the Best

Path BP (v10, v7, {book}) = {v10, v1, v8, v1, v7}.

The previous case however does not always happen because if the keyword does not

exist in the current ancestor node, we have to go to its parent node and check whether the

query keyword is available in the parent node. If it does not, then we have to keep going

to the upper node until we can find the query keyword. Once the query keyword is found

in the node, then we can continue the best path search. For example assume that a user

wants to find the best path from v10 to v7 while passing through a cinema. The inverted

index for cinema is 0100, while the common ancestor of v10 and v7 is G1. The partition

G1 does not have cinema in it since its inverted index is 1011, thus we have to find out

whether cinema is available in G1’s parent node. The parent node of G1 is G0 and its

inverted index is 1111, which means that cinema exists in this partition. Therefore the

best path search will cover the whole tree branches under G0.

The main advantage of this algorithm is in the early pruning. There is no need to

explore the whole tree as we only need to focus on one branch through the common

ancestor between the source and destination. However the disadvantage of this algorithm

is that it has even lower accuracy compared to the Optimal Distance Approximation

Search algorithm. Traversing under one branch does not guarantee the shortest path

3.5. QUERY PROCESSING 67

Algorithm 4 Ancestor-Priority Search

Input:IG− Tree, sl, dl, K in
Output:BP (sl, dl,K) out
1: Index K to inverted file Kif

2: Find sl on IG− Tree
3: Find dl on IG− Tree
4: Find common ancestor A of sl and dl
5: Check if A contains all keywords in Kif

6: while A⊕Kif is 1 do
7: A = A’s parent node
8: end while
9: for each inverted keyword kn in Kif do

10: if kn+ then
11: Find shortest path (sl, kn)
12: Find shortest path (kn, dl)
13: end if
14: if current path is the shortest then
15: Store (kn) location to queue Qk

16: end if
17: end for
18: for Qk is not empty do
19: if current path is 0 then
20: Find 1NN (sl, Qk)
21: else
22: Find 1NN (Qkn− 1, Qk)
23: end if
24: Find shortest path (sl, Qkn)
25: Remove Qkn from queue Qk

26: end for
27: Find shortest path (Qkn, dl)

distance for best path since some keywords with closer distances might be located in other

partitions. But this algorithm tries to compromise this with lesser tree traversal cost. The

pseudo-code of this algorithm is given in Algorithm 4.

3.5.4 Euclidean-based Approximation Search

We propose another approximation algorithm in this study. The idea behind this particular

algorithm is to make use of the coordinate of each vertex and then find the best path

through Euclidean distance before applying it into road network. This approximation

algorithm is very fast compared to the previous algorithms since it is using Euclidean

distance computation. However because of the usage of Euclidean distance on a road

network data, the performance of this algorithm is quite low in terms of its accuracy.

The Euclidean-based Approximation has two main components, namely the Euclidean

approximation (Algorithm 5 row 1-10) and the best road network path (Algorithm 5

row 11-20). In the Euclidean approximation part, we firstly need to find the Euclidean

68 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Algorithm 5 Euclidean-based Approximation Search

Input:IG− Tree, sl, dl, K in
Output:BP (sl, dl,K) out
1: Index K to inverted file Kif

2: Find sl’s Euclidean location on IG− Tree
3: Find dl’s Euclidean location on IG− Tree
4: for each inverted keyword kn in Kif do
5: if kn+ then
6: Find Euclidean shortest path (sl, kn)
7: Find Euclidean shortest path (kn, dl)
8: end if
9: Store (kn) location to queue Qk

10: end for
11: for Qk is not empty do
12: if current path is 0 then
13: Find 1NN (sl, Qk)
14: else
15: Find 1NN (Qkn− 1, Qk)
16: end if
17: Find Road Network shortest path (sl, Qkn)
18: Remove Qkn from queue Qk

19: end for
20: Find Road Network shortest path (Qkn, dl)

locations of both the source location sl and the destination location dl. Based on these

two Euclidean locations, we calculate the best path in Euclidean distance for each keyword

kn in Kif . The way we find the best path for each keyword kn is similar to the Optimal

Distance Approximation algorithm, where we have to get the optimum shortest path of

δ(sl, kn) + δ(kn, dl) in Euclidean distance and then store kn into a candidate queue Qk to

help establishing the final best path. Once we have found the best path of each keyword

kn, we move to the second part, which is the road network path.

In the road network path component of Euclidean-based Approximation algorithm, the

best path search is done in a similar fashion as the previous algorithms where we have to

find the nearest candidate Qk1 from sl then establish the shortest path δ(sl, Qk1) between

sl and the candidate Qk1 in road network distance instead of the Euclidean distance. After

the shortest path δ(sl, Qk1) is established, we need to find the next nearest candidate Qkn

from the Qk1 and establish the shortest path δ(Qk1, Qkn). We repeat the same step until

every single candidate in the queue Qk has been visited. Then we can find the shortest

path δ(Qkn, dl) to end the trip.

The Euclidean distance is merely to help deciding which vertices to be visited based on

the keywords chosen by the user. But at the end the best path’s result is in road network

distance. The approximation in this algorithm is very low as it can over-approximate the

3.6. EXPERIMENT 69

result up to 300% based on our experiment. However the running time of this algorithm

is a lot faster compare to the other algorithms.

3.6 Experiment

In this section, we compare the efficiency and accuracy of the four Best Path query pro-

cessing algorithms from Section 3.5: Baseline Algorithm (BruteForce), Optimal Distance

Approximation Search (OptDist), Ancestor Priority Approximation Search (AncestorPri-

ority), and Euclidean-based Approximation Search (Euclidean).

3.6.1 Settings

Environment

We perform our experiments on 2.5 GHz Intel Core i7-4870 CPU and 12 GB RAM running

64-bit Ubuntu. All of the algorithms were written in single-threaded C++.

Datasets

We use real datasets from 9th DIMACS Implementation Challenge - Shortest Paths [124]

and [125] for the road network datasets. We select four datasets: California, New York

City, Colorado, and Florida. Table 3.21 provides the details of the size of the real-world

road network datasets.

Table 3.21: Road Network Datasets

Dataset Description # Vertices # Edges

CAL California 21,048 43,386

NY New York City 264,346 733,846

COL Colorado 435,666 1,057,066

FLA Florida 1,070,376 2,712,798

Meanwhile for the textual information we utilize keyword sets based on [125] and assign

them into the vertices in the road network datasets. As the textual part needs to be able

to detect whether the user gives one or more negative keywords, a number of negative

sentiment analysis based words from [126, 127] are used in order to accommodate the

negative keyword(s) in the user query.

70 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Queries

In our experiments, we generate the keyword set K for the test queries with a random

distribution from a keyword pool. The size of the keyword set in the test queries varies

from 1 to 15 while the object density 1 of these keyword set varies from 1% to 30% of the

whole road network datasets. We also evaluate the impact of varying the distance between

sl and dl pairs, which are varied from 2% to 64% of the maximum distance between two

vertices in the space.

3.6.2 Index Evaluation

This section evaluates the proposed IG-Tree index for planning Best Path queries on road

networks in terms of index building time and space consumption, and index reconstruction

time(s) for negative keywords in the tested queries. Figure 3.10 shows the index building

times and space consumption of the proposed IG-Tree and the G-Tree indices for New

York City dataset. We see that index building time of IG-Tree is comparable to that of

G-Tree though IG-Tree combines IR2-Tree with G-Tree. The index size of IG-Tree is

slightly larger than that of G-Tree as inverted lists and Keyword Distance Matrices are

maintained in IG-Tree in addition to Distance Matrices.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

CAL NY COL FLA

In
d

e
x

in
g

 t
im

e
 (

m
s

)

G-Tree
IG-Tree

(a) Building time

 0

 200

 400

 600

 800

 1000

 1200

 1400

CAL NY COL FLA

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

G-Tree
IG-Tree

(b) Index size

Figure 3.10: IG-Tree vs. G-Tree: index building time and size

Finally, the times required to reconstruct the IG-Tree index for negative keywords in

the Best Path queries are quite durable as we observe from Figure 3.11. The IG-Tree

takes only ∼ 0.8 secs to reconstruct the index for up to 10 (negative) keywords. However,

we observe only a few keywords in K including negative keywords in route planning

1object density: the quantity of keyword matched objects for each query keyword compared to the
number of vertices in the road network.

3.6. EXPERIMENT 71

queries, which is around 5-6 keywords, in our usual life. Therefore, we believe that the

index reconstruction time IG-Tree for few negative keywords would be pretty durable in

practical applications of Best Path queries.

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
d

e
x

in
g

 t
im

e
 (

m
s

)

Number of negative keywords

Index Reconstruction

Figure 3.11: Index reconstruction times for varied number of negative keywords in K

3.6.3 Performance Study

We evaluate our query processing algorithms on two metrics, specifically on the running

time and approximation accuracy. The approximation accuracy shows the percentage of

the result accuracy produced by each algorithm compared to the expected correct result

obtained by running the baseline algorithm.

Effect of k+

The positive keywords (k+) given by the users take a very important role in Best Path

Query. Each k+ must be visited at least once, therefore the more k+ to be visited, it is

expected that the running time also increases for every algorithm. Figure 3.12 shows the

query performance as the number of k+ increases. In these experiments, we specified the

query keywords K to be all positive, without any negative keywords. The experiments

show that the running times for the approximation algorithms (OptDist, AncestorPriority,

Euclidean) run a lot better compared to the baseline algorithm. The baseline algorithm

has the worst running time among all as the time increases exponentially. According to

our experiments, the average running time for baseline algorithm for |K| = 1 is 0.48 ms

but it increases up to 21507.41 ms when |K| = 5. Even though baseline algorithm offers a

precise solution, the amount of time taken to get the result is not suitable for daily usage.

72 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Imagine when we want to plan a trip to a new country and it takes 17 hours for us to get

the best path with |K| = 10. This is definitely impossible to be used in everyday life.

 0

 200

 400

 600

 800

 1000

 1200

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

 0

 500

 1000

 1500

 2000

 2500

 3000

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

 0

 500

 1000

 1500

 2000

 2500

 3000

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 3.12: Query performance with all positive query keywords

As we proposed three approximation algorithms, we also evaluate the approximation

accuracy for each algorithm. Figure 3.13 shows the percentage of accuracy of each approx-

imation algorithm compared to the baseline algorithm. When K is only 1, all the three

approximation algorithms have high accuracy. However when K increases, the accuracy

decreases. The OptDist has the best approximation compared to the other two algorithms.

Even though its approximation is not 100% accurate, the percentage of accuracy is still

above 75%. It is very different from the Euclidean-based algorithm to which its approx-

imation is very poor compared to others as the accuracy is only 6.83% when K = 15.

The trend for Euclidean approximation algorithm is definitely the worst as the inaccuracy

keeps escalating drastically.

Based on this experiment, we can see that OptDist performs better than the other

three algorithms in terms of the running time. It also performs better than the other two

approximation algorithms in terms of the approximation accuracy. So we can conclude

3.6. EXPERIMENT 73

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

OptDist

1
0

0

9
0

.9
7

1
7

.8
4

2
2

.4
4

AncestorPriority1
0

0

8
9

.0
8

1
1

.3
5

1
5

.9
5

Euclidean

1
0

0

8
9

.0
8

1
1

.3
5

1
5

.9
5

(a) Approximation accuracy for CAL

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

OptDist

1
0

0

8
3

.6
5

9
2

.1
5

6
8

.3
3

AncestorPriority1
0

0

7
2

.6
9

7
2

.3
3

4
3

.5
7

Euclidean9
8

.2
7

1
3

.2
6

4
.8

3

0

(b) Approximation accuracy for NY

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

OptDist

1
0

0

8
9

.9
6

7
9

.0
0

5
3

.7
2

AncestorPriority1
0

0

8
9

.9
6

5
1

.2
0

4
6

.0
8

Euclidean

9
2

.8
9

8
9

.2
3

2
6

.6
2

1
6

.0
2

(c) Approximation accuracy for COL

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

OptDist

1
0

0

7
4

.7
4

2
8

.9
3

2
8

.9
3

AncestorPriority1
0

0

5
1

.3
0

2
.3

2

3
.9

5

Euclidean

4
4

.5
8

9
.0

7

0 0

(d) Approximation accuracy for FLA

Figure 3.13: Approximation accuracy for all positive query keywords

that OptDist is the best choice when we want to invoke Best Path Query with various

numbers of K.

Effect of k−

The k− has a great impact to the Best Path Query. As previously discussed in Section

3.4, there are several cases on what would happen to the IG-Tree when we found a k−.

A lot of times when k− is located on the border, the path cannot be retrieved at all. So

the distribution of k− is always kept to be lesser than k+ in this particular experiment to

ensure that we can retrieve some results. For this experiment, we set the query keywords

K to have both positive and negative keywords.

According to our experiment result in Figure 3.14, the Euclidean-based algorithm

always has a faster running time compared to the other three algorithms. The OptDist

and AncestorPriority are actually almost the same in terms of their running time even

though the AncestorPriority still seems to be a bit faster than OptDist. Meanwhile the

baseline algorithm has the worst running time as expected. Having a negative keyword k−

definitely affects the running time of some queries as there might be path reconstruction

74 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

 0

 2x10
6

 4x10
6

 6x10
6

 8x10
6

 1x10
7

 1.2x10
7

 1.4x10
7

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

 0

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 3.14: Query performance with combination of positive and negative query keywords

happening throughout the query processing. This also explains the difference between the

time in Figure 3.12 and Figure 3.14, where the running time in Figure 3.12 with all positive

keywords does not require any path reconstruction so it is faster than the experiment result

in Figure 3.14.

Another metric that we test is the accuracy of the approximation algorithms. Figure

3.15 shows the result of the approximation accuracy of each algorithm towards the result of

baseline algorithm. The trend in Figure 3.15 is almost similar to the trend in Figure 3.13,

which might indicate that the path reconstructions happening in these queries because of

k− does not truly have impact towards the accuracy. We can also see that the accuracy

percentage of OptDist and AncestorPriority are the same for this case and both have better

accuracy than the Euclidean-based algorithm. The Euclidean approximation is still the

worst among the other algorithms with very low accuracy even though the running time

is a bit faster than the others.

3.6. EXPERIMENT 75

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

OptDist

1
0

0

8
9

.0
8

6
.4

9

6
.4

9

AncestorPriority1
0

0

8
9

.0
8

6
.4

9

6
.4

9

Euclidean

1
0

0

8
9

.0
8

4
.8

6

7
.3

0

(a) Approximation accuracy for CAL

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

OptDist

1
0

0

8
3

.6
5

8
6

.1
4

6
8

.3
3

AncestorPriority1
0

0

8
3

.6
5

8
6

.1
4

6
8

.3
3

Euclidean9
8

.2
7

1
3

.2
6

2
1

.8
2

0

(b) Approximation accuracy for NY

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

OptDist

1
0

0

3
3

.9
5

3
0

.3
1

5
5

.1
5

AncestorPriority1
0

0

3
3

.9
5

3
0

.3
1

5
5

.1
5

Euclidean

9
2

.8
9

3
0

.6
1

1
0

.1
2

1
4

.1
9

(c) Approximation accuracy for COL

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

OptDist

1
0

0

7
7

.1
8

2
8

.9
3

2
8

.1
7

AncestorPriority1
0

0

7
7

.1
8

2
8

.9
3

2
8

.1
7

Euclidean

4
4

.5
8

1
2

.7
9

2
2

.0
8

0

(d) Approximation accuracy for FLA

Figure 3.15: Approximation accuracy for datasets with negative keywords

Effect of Keyword Densities

In this experiment evaluation, we want to observe the query performance when we increase

the keyword densities. Figure 3.16 shows the running time for query within the density of

0.01 to 0.30. The running time of the baseline algorithm increases drastically compared to

the rest. Even in the lower density case, specifically on 0.01 density, the baseline algorithm

takes about 17x more time than the OptDist algorithm. The Euclidean-based algorithm

however performs in a constant manner even though the density increases. The OptDist

and AncestorPriority on the other hand have similar running time.

We also run an experiment on the running time when K is varied from 1 to 15 while

the density for each keyword is 0.05. Figure 3.17 shows the result of this specific experi-

ment where it interestingly shows that the constant running time for Euclidean algorithm.

The trend indicates that Euclidean-based algorithm has the most constant running time

especially for denser datasets. This is totally different from the other three algorithms,

which keep increasing with the increase in density. Even though Figure 3.12 and Figure

76 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

e
ry

 t
im

e
 (

µ
s

)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

e
ry

 t
im

e
 (

µ
s

)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

e
ry

 t
im

e
 (

µ
s

)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

e
ry

 t
im

e
 (

µ
s

)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 3.16: Query performance based on keyword density

3.14 run similar experiments, the results are different. In Figure 3.12 and Figure 3.14, the

keyword density is randomized and usually below 0.05.

We conducted another experiment to test the running time of query with all nega-

tive keywords while increasing the density of the keywords from 0.01 to 0.055. We only

increase until 0.055 by the reason of having higher density of negative keywords will re-

turn no path/no result at all. Figure 3.18 shows the result of this particular experiment.

Surprisingly, the running time of Euclidean algorithm drastically increases almost in the

same trend as the baseline algorithm. Meanwhile, the OptDist and AncestorPriority are

running in constant time manner when the keywords are all negative.

3.6. EXPERIMENT 77

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

10
2

10
3

10
4

10
5

10
6

10
7

10
8

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 3.17: Query performance when K is varied (keyword density=0.05)

10
0

10
1

10
2

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Q
u

e
ry

 t
im

e
 (

µ
s

)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Q
u

e
ry

 t
im

e
 (

µ
s

)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Q
u

e
ry

 t
im

e
 (

µ
s

)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Q
u

e
ry

 t
im

e
 (

µ
s

)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 3.18: Query performance based on keyword density with all negative keywords

78 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Effect of Positive and Negative Keywords Ratio

Figure 3.19 shows the running time on the positive and negative keywords ratio. The

ratio is based on 0.01 density. In this experiment, we limit the ratio of the keywords

(positive:negative) into 1:0, 0:1, 1:1, 5:0, 0:5, and 5:1. We exclude the ratio with negative

keywords higher than the positive keywords as there is no path retrieved most of the time

with this kind of query.

In Figure 3.19, we can see that the running time of OptDist algorithm increases if the

number of query keywords increase (both positive and negative). The AncestorPriority

has similar trend with OptDist with the increase of time towards the more keywords

involved. The increase in trend also happens to the baseline algorithm but it increases

exponentially as what we have expected from the previous experiments. Nevertheless,

the increasing trend does not happen to the Euclidean algorithm as it is comparatively

constant in running time even with more positive keywords added into the query.

Effect of Distance Between sl and dl

We also evaluate the effect of varying the distance between sl and dl pairs. The distance

between sl and dl are varied from 2%, 4%, 8%, 16%, 32%, up to 64% of the maximum

distance between two points in the road network datasets. We set |K| = 15 by default and

contain both positive and negative keywords. Figure 3.20 shows the experimental results

of the source-destination distance. We do not include the baseline in Figure 3.20 since

the runtime for 2% in NY dataset already reaches above 10,000 ms, which made a huge

difference with the other three algorithms.

From the experimental result, we can see that the three algorithms are running in

constant time even though the source-destination distance increases. Both OptDist and

AncestorPriority have a similar trend, while Euclidean has better running time most of

the time than the rest.

Summary

Based on our experimental study, each algorithm has its own strength. The baseline

algorithm certainly offers accurate result, but it has the worst running time as it increases

3.6. EXPERIMENT 79

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

1:0 0:1 1:1 5:0 0:5 5:1

Q
u

e
ry

 t
im

e
 (

µ
s
)

K

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

1:0 0:1 1:1 5:0 0:5 5:1

Q
u

e
ry

 t
im

e
 (

µ
s
)

K

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

10
0

10
2

10
4

10
6

10
8

10
10

1:0 0:1 1:1 5:0 0:5 5:1

Q
u

e
ry

 t
im

e
 (

µ
s

)

K

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

10
0

10
2

10
4

10
6

10
8

10
10

1:0 0:1 1:1 5:0 0:5 5:1

Q
u

e
ry

 t
im

e
 (

µ
s
)

K

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 3.19: Running time based on keyword ratio (positive:negative)

80 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

10
0

10
1

10
2

10
3

10
4

10
5

2 4 8 16 32 64

C
o

s
t

(µ
s

)

Source-Destination Distance (%)

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

2 4 8 16 32 64

C
o

s
t

(µ
s

)

Source-Destination Distance (%)

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

10
0

10
2

10
4

10
6

10
8

10
10

2 4 8 16 32 64

C
o

s
t

(µ
s

)

Source-Destination Distance (%)

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

10
0

10
2

10
4

10
6

10
8

10
10

2 4 8 16 32 64

C
o

s
t

(µ
s

)

Source-Destination Distance (%)

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 3.20: Effect of varying distance between sl and dl

exponentially when the queries and dataset increase. The OptDist itself has the best

approximation compared to the other two approximation algorithms (AncestorPriority

and Euclidean). Its running time is definitely a lot better than the baseline algorithm but

the AncestorPriority and Euclidean-based algorithms still beats it by a few microseconds,

especially when all the keywords in the user query are positive.

The AncestorPriority often follows the trend of OptDist on both the runnning time

and accuracy. In terms of running time, AncestorPriority is frequently faster by only a few

microseconds compared to OptDist. On the other hand, the accuracy of AncestorPriority

is slightly lower than OptDist because of the early pruning. Compared to the Euclidean,

AncestorPriority still has better accuracy even though its speed is still slower than the

Euclidean.

The Euclidean-based algorithm’s main strength is in its fast runtime. For a quick

approximation, the Euclidean-based algorithm can be used but it has the lowest accuracy

compared to the other algorithms. The Euclidean however does not perform well when

the density of the negative keywords are high.

3.7. CONCLUSION 81

In general, OptDist offers the best solution in comparison with the other algorithms.

Even though the Euclidean-based algorithm outperforms the running time of OptDist

when the queries contain all positive keywords, OptDist still provide better approximation.

OptDist is more stable in both its speed and approximation accuracy.

3.7 Conclusion

In this study, we introduce a new variant of Spatial Keywords Query on Road Networks,

which is the Best Path Query. The Best Path Query is an NP-Hard problem as it can be

reduced to the Travelling Salesman Problem (TSP). Throughout our study, we develop

an indexing technique called the IG-Tree that can process both spatial and textual infor-

mation on road networks environments. This indexing technique can be used on various

types of Spatial Keywords Query, especially on the Best Path Query. Three algorithms to

solve the Best Path Query are also proposed in this research, namely the Optimal Distance

Approximation Search, Ancestor Priority Search, and the Euclidean-based Approximation

solution. Each algorithm has its own strengths and weaknesses. The effectiveness and ef-

ficiency of the proposed algorithms are demonstrated through our extensive experiments.

82 CHAPTER 3. BEST PATH QUERIES ON ROAD NETWORKS

Chapter 4

Best Path Queries on Weighted

Regions

4.1 Overview

With the rapid growth in Location-Based Services (LBS) these days, the way people inter-

act with LBS applications is becoming more advanced [128, 129]. The LBS applications

must be able to cater user needs despite the varieties of user queries. Users are no longer

asking for simple navigation search or finding specific spatial location of a Point of Interest

(POI), but they now ask for more complicated queries like route planning [20]. On top of

that, the user queries are not merely in a form of spatial information, but also involving

other factors like textual information, which adds more challenges to the LBS applications

[130]. Due to this reason, many researches have been conducted in order to improve the

capability of LBS applications [131, 132, 133, 134, 135, 136].

One of the most popular study in this area is on route planning. The main objective of

route planning is to help users efficiently plan their trip from a source location to several

different locations based on their preferences and then ending the trip at a target location.

The preferences in this case can be in a form of keywords. For example, a user wants to

go home from her workplace and on her way home she has to stop by a supermarket to

grocery shop, refilling car’s fuel, and getting take away for dinner. Thus, the user will

invoke a query that contains her source and destination locations and several keywords

for her preferred places to visit like supermarket, fuel station, and restaurant. The input

of this particular query involves both spatial and textual information, which is known as

83

84 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

Spatio-Textual Query, while the output will be a path with the most efficient cost (e.g.

time, distance) taken. There are many variants of route planning query in Spatio-Textual

area, and one of the recent variants is the Best Path Query [137].

In Best Path Query, given a source location sl, a destination location dl, and a set of

keywords K = {k1, k2, ..., kn}, where each ki for 1 ≤ i ≤ n can be positive (denoted by k+)

or negative (denoted by k−), find the Best Path from sl to dl, denoted by BP (sl, dl,K),

that passes through all k+ and avoid all k− with optimum cost. Based on this definition,

the Best Path Query has the same goal with general route planning queries but it also

considers negative keywords in the path searching process. The negative keywords here

indicate places that users want to avoid, which it actually increases the complexity of the

problem. The recent study of Best Path Query offers some solutions to the Best Path

problem, including a new indexing technique that can be used to process both spatial and

textual information. However, the current Best Path problem only focuses specifically on

road networks environment.

Even though there is a significant number of solutions have been proposed to solve route

planning problem, the focus of the existing works on route planning in Spatio-Textual area

are always on either Euclidean space or Road Networks. Only recently that researchers

start to expand to Indoor spaces [110]. Even so, there is no study yet on Weighted Regions

environment. Consider someone with special needs, such as those with wheelchairs, who

has to plan a trip in advanced as he has to consider the topology of the road he has to

pass through. A path with staircases that gives the most efficient cost for general users

would not work for these people as it is not easily accessible by them. So the existing

works lack in the consideration of the different terrain that the user has to pass.

Moreover, the Euclidean distance-based approach is not always accurate as it does

not reflect the real representation of the earth as the earth’s surface is not constantly a

flat concrete surface [25]. Due to this reason, Euclidean distance does not actually offer

an optimal solution in real life. The same fact also applies to road networks. Real road

networks only offer the distance of the most common passable roads. Unfortunately the

distance is being generalised without considering the impact of the earth terrains. For

example the amount of effort to pass a flat surface covered in grass is different from a

flat concrete surface. The effort of passing through a slope is totally different from a flat

surface. So not all roads are easily accessible. This is particularly crucial in concern of

4.1. OVERVIEW 85

Figure 4.1: A map that incorporate various terrain [3]

various types of vehicles or even for wheelchair users who has to carry themselves through

roads with different types of surface and sloped angles. Because of these reasons, we

conduct our study to investigate the impact of the Best Path Query on Weighted Regions

(wBestPath) and propose the best solution for route planning on a complex environment

like this.

Similar to the Best Path Query on road networks, the wBestPath has to deal with both

spatial and textual information. The query that the users give in wBestPath consists of

source and destination locations, and a set of keywords that indicates the places the

users want to visit or avoid throughout their trip before arriving to the destination. The

keywords can be in a positive and negative conditions. Positive keyword means the place

the user wants to visit, while the negative keyword means the place that the user wants

to avoid. The main difference between the traditional Best Path [137] and the wBestPath

is in the space model where wBestPath deals with more complex environment, which

is the weighted regions. In this study, the weighted region is formalised to Delaunay

Triangulation representation and each triangle is assigned with a weight. Figure 4.1 shows

an example of a weighted region map that incorporate various terrains. This map is

subdivided into polygonal regions and each region has a specific weight depending on the

type of terrain. Hence, the definition of wBestPath is as follow:

Definition 4. (wBestPath) Given a weighted regions space DT (P), where each region

dti is assigned with a certain weight wdti (wdti ∈ [1,+∞]), a set of spatio-textual objects

O, and a set of user queries that consist of a source location sl, a destination location dl,

86 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

and a set of keywords K = {k1, k2, ..., kn}, where each ki for 1 ≤ i ≤ n can be positive

(denoted by k+) or negative (denoted by k−), find the Best Path from sl to dl, denoted

by wBestPath(sl, dl,K), that passes through all k+ and avoid all k− on DT (P) with the

least amount of travel cost.

As an example of wBestPath query, assume that a user wants to plan a trip from

his current location to his house while visiting a bookshop and a cafe in between his

trip. So in this case, the query consists of a source location sl and a destination location

dl, and also some keywords, which are bookshop and cafe (K = {bookshop, cafe}). In

this query, we have to return the most optimum path that satisfies the user’s preferred

keyword conditions. Using Figure 4.2 as an illustration of this example, the weighted

regions space is denoted by the triangulations while the region weights are indicated by

the grey level of each triangle. The darker the grey level, the heavier the weight of

the region. Looking at this illustration, the user’s source and location are located on

different area and there are also two cafes and a bookshop in the space. Hence there are

several possibilities of route combination. The possible combinations consist of {source→

cafe1 → bookshop → destination}, {source → cafe2 → bookshop → destination},

{source → bookshop → cafe1 → destination}, and {source → bookshop → cafe2 →

destination}. In the Euclidean space model, the ideal solution is to have the route from

{source → cafe1 → bookshop → destination}. However, because of the weight of the

Figure 4.2: Illustration of route planning on weighted regions

4.1. OVERVIEW 87

regions, this is not the best solution as cafe 1 is located on a heavy weighted region. The

path computation for wBestPath incorporates the weight of each region. Thus in this

example, {source → cafe2 → bookshop → destination} gives a better solution because

we also have to consider the effort of passing through each weighted region in the path

computation. The problem may also elevate when we start adding negative keywords

to the query, in which the regions where the negative keywords are located have to be

avoided.

4.1.1 Challenges

A significant number of solutions to solve route planning in Spatio-Textual context have

been proposed in the past years, even with the fact that route planning is an NP-Hard

problem [23, 24]. Even though route planning problem has been widely studied, there is

no existing solution to route planning on weighted regions. Current solutions are mostly

focusing on simple Euclidean space model or Road Networks model, which unfortunately

cannot be applied to weighted regions space model.

As previously mentioned, we formalise the weighted regions to Delaunay Triangulation

as Delaunay Triangulation is commonly used for modelling terrain [138]. A matter that we

need to consider when working with a terrain is that every surface is different. Figure 4.1

shows an example of terrain map. Each colour indicates different types of surface. When

travelling through different surfaces, the effort taken will varied depending on the type of

the surface. We can say that each surface has its own travel cost/weight that will affect

our path planning. For instance when a vehicle is going from a concrete surface to a soil

surface, the speed or even the direction of the vehicle might change because of the shift of

terrain. Suppose that the vehicle maintains its speed when entering the new surface, then

there must be a refraction on the path of the vehicle.

The weight of the terrain surface has a major impact on wBestPath. When transition-

ing between different terrain, the path will be affected. Therefore we utilize Snell’s Law

of Refraction to compute the impact [139]. This law is to identify the refracted angle to

travel between different types of surface, which can be computed through the following

ratio:
sin θ1
sin θ2

=
v1
v2

=
λ1
λ2

=
n2
n1

, where θ is the angle measured from the normal boundary, v

is the velocity, λ is wavelength, and n is the refractive index (in our case it is the surface’s

weight).

88 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

The problem in this study is also intensified with the addition of negative keywords

in the query as we have to ensure the route chosen will not pass through any of these

negative keywords. Thus, with all of these challenges, we strive to provide some solutions

to solve wBestPath problem.

4.1.2 Contributions

Our primary contributions in this chapter are summarised as follows.

• We formalise the wBestPath, a study on route planning on weighted regions. To the

best of our knowledge, this research is the first to attempt on this kind of problem.

• We propose wIG-Tree, an indexing technique that incorporates spatio-textual at-

tributes that can be used to solve Best Path problem on weighted regions.

• We propose two approximation algorithms with different trade-offs that utilise the

wIG-Tree to process the wBestPath queries.

• We conduct a comprehensive set of experiments to demonstrate the effectiveness and

efficiency of our algorithms.

4.1.3 Organisation

The remaining sections are organised as follows. Section 4.2 presents the preliminaries

and the query model. Section 4.3 briefly discuss some basic concepts that are used in

this study. Section 4.4 presents our proposed index structure, which is called the wIG-

Tree. Section 4.5 discuss the impact of negative keywords to the wBestPath problem.

Section 4.6 explains our proposed algorithms to solve wBestPath. Section 4.7 reports the

experimental results of our proposed solution. Finally, we conclude this chapter in Section

4.8.

4.2 Problem Statement

In this section, we present the formal definition for wBestPath as well as the definition of

weighted regions and data model.

4.2. PROBLEM STATEMENT 89

Weighted Regions We consider weighted region as a polygonal subdivision that is

denoted by Delaunay Triangulation DT (P). The DT (P) itself is specified by a set

of points/vertices P = {v1, v2, ..., vn}, a set of edges E, and a set of triangle faces

TF = {dtv1,v2,v3 , dtv2,v3,v4 ..., dtvn−2,vn−1,vn} ⊂ DT (P). Each point vn in P has a coordi-

nate location {x, y}, where x and y are the longitute and latitude. Each edge (vi, vj) ∈ E

connects two adjacent points vi, vj ∈ P . Each dtvi,vj ,vk has a weight wdtvi,vj ,vk ∈ [1,+∞]

that denotes the cost to pass the region.

Figure 4.3 shows an example of our space model. The whole region is denoted by

Delaunay Triangulation that consists of a set of vertices and each face has its own weight

which is indicated by the grey level. In this case, the darker the colour of the triangle face,

the more expensive the weight to travel through this particular region.

food

supermarket,
book

book

food

cinema

Figure 4.3: Weighted regions space model

Data Model A spatio-textual object o is an object with a spatial coordinate {x, y} that

contains a set of keywords from T = {t1, t2, ..., tx}. We assume that spatio-textual objects

are located at faces in TF . The DT (P) in Figure 4.3 contains five spatio-textual objects

that are spread throughout several faces. For example, object o1 is located inside dtv7,v8,v9

and it contains a set of keywords {book, supermarket}.

wBestPath Given a set of points P = {v1, v2, ..., vn} in R2 space, Delaunay Triangu-

lation DT (P), a set of weights W = wdtv1,v2,v3 , wdtv2,v3,v4 ..., wdtvn−2,vn−1,vn
, dt ⊂ DT (P),

a set of spatio-textual objects O and a set of user queries. The user queries consist of a

source location sl, destination location dl, and preferable keywords K = {k1, k2, ..., kz},

90 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

where each ki, 1 ≤ i ≤ z, can be positive (k+) or negative (k−). A positive keyword

k+ means that the keyword satisfies what the user wants (e.g. the places user wishes to

visit), while a negative keyword k− means that part of the keyword expresses negative

connotation which the user wants to avoid. Having all this information, we want to find

the Best Path wBP (sl, dl,K) that establishes a shortest path from sl to dl while passing

through all k+ and avoid k− in a given weighted regions model.

Table 4.1 presents the list of mathematical notations used in this chapter.

Table 4.1: List of notations used in the chapter

Notation Definition

DT (P) Weighted regions

ci Coordinate location of vertex vi
dtvn−2,vn−1,vn Triangle face formed by vn−2, vn−1, vn
wdtvn−2,vn−1,vn

Weight of triangle face dtvn−2,vn−1,vn

δ(u, v) Shortest path between u and v

dist(u, v) Distance between u and v

sl, dl Source location, destination location

K Query keywords given by user

k+, k− Positive keyword, negative keyword

wBP (sl, dl,K) The weighted Best Path from sl to dl that passes through all k+ and avoids k−

4.3 Basic Concepts

In this section, we provide some brief background on IG-Tree and wNeighbor, which inspire

us to develop the proposed solution to wBestPath.

4.3.1 IG-Tree

IG-Tree is an index structure that can be used on various types of Spatial Keywords

Query, especially on the Best Path Query on Road Networks environment [137]. It is

capable to index both road networks and textual information of objects. The IG-Tree

itself is a hybrid between IR2-Tree [1] and G-Tree [68, 69], where the IR2-Tree is a data

structure for indexing Spatial Keywords Queries in Euclidean space, while the G-Tree is

used for indexing Road Networks. Both of these index structures are combined in IG-Tree

as they have their own benefits to solve the Best Path Query.

In IG-Tree, the road network is partitioned and transformed into a graph-based tree

structure. Utilizing the multi-level partitioning algorithm [122], the road network (treated

4.3. BASIC CONCEPTS 91

as a graph) is divided into equal-sized subgraphs. Each partition consists of two or more

vertices and makes up one node in the IG-Tree. After the graph partition process, vertices

that connect one partition to another are marked as borders. Through these borders,

the shortest paths between border-to-border are pre-computed and stored in Distance

Matrices in order to speed up the path computation in the query processing stage.

Meanwhile the spatio-textual objects are transformed into bitmap inverted index. The

two indexes of road network and spatio-textual objects are then combined by attaching the

inverted index to the tree (as can be seen in Figure 4.4). The inverted index is attached

to its corresponding vertices at the leaf nodes. For each parent node, its inverted index

is calculated using logical OR of its child nodes. The Keyword Distance Matrices that

computes the distance of the nearest keyword matching vertex from each border are also

provided.

As the IG-Tree can efficiently index Spatio-Textual data and it can be used to process

Best Path Query on road networks, this indexing technique unfortunately is not appli-

cable to wBestPath as the space model is different and wBestPath has more complex

environment to process.

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G0

1111

G1
v1 v7 1011

G3
v1 0010

G2
v2 v3 1110

G4
v8 v7 1001

G5
v2v3v5 1010

G6
v4 0100

Distance Matrix for G0 Keyword Distance Matrix for G0

Distance Matrix for G1

Distance Matrix for G3

Keyword Distance Matrix for G1

Keyword Distance Matrix for G3

Figure 4.4: IG-Tree

92 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

4.3.2 wNeighbor

As previously discussed in Section 2.5, the first work to investigate the k Nearest Neighbour

on weighted regions (WkNN) was done by Li et al. [121]. The WkNN query is defined

as follow. Given a finite triangulation in the space, edge’s weight we, face’s weight wf , a

query point s, a destination point set D, and a value k for the number of objects to be

retrieved. WkNN query finds a result set R of the top k nearest neighbours of point s in

a destination point set D, that satisfies

{d(x, q) < d(x′, q)|x ∈ R, x′ ∈ D −R, |R| = k}

where d(·) indicates the weighted distance between two points.

In their work, Li et al. [121] introduced the concept of Combination Region (CR),

which is a combination of region faces that share the same indexing data. The CR can be

identified by an area that contains one block face or faces that are connected by combina-

tion angles. The block face and combination angles in this case are determined through

the characteristics of shortest path in weighted regions, which are as follow.

• If cosβ < 1 − 2/m2, then the shortest path between s and t must be through the

edges of f . The angle β for this case is called the block angle as it can block the

shortest path that try to cross the adjacent edges of β. If a face contains three block

angles, then it is a block face.

• If cosβ < 1− 2/m2 is not satisfied, then there is a possibility that the shortest path

between s and t is a direct line. When angle β is not a block angle, it is considered

as combination angle the shortest path can pass through the adjacent edges of β.

Through the characterisations of shortest path in weighted regions, a new data struc-

ture called Weighted Indexing Map (WIM) is proposed by Li et al. [121]. This data

structure stores crList, a list of CRs, and also pList, an altered R*-Tree that stores the

location of vertices and destination points. An algorithm to answer the WkNN query

that utilises WIM, namely wNeighbor algorithm, is also proposed. The wNeighbor adopts

both Dijkstra’s algorithm [63] and Mitchell’s algorithm [116] in its query processing phase.

Based on the characterisation of shortest path, if given a query point s in Rs and a desti-

nation point d in Rd, Rs is disconnected from Rd, then the shortest path utilises Dijkstra’s

4.4. DATA INDEX 93

algorithm. But if Rs and Rd are adjacent to each other, then the shortest path is calcu-

lated using Mitchell’s algorithm. Based on the shortest paths between the query point to

the destination points, we can easily identify the WkNN result.

The wNeighbor offers outstanding solution to k Nearest Neighbour queries on weighted

regions. The solution provided are not fully applicable to wBest Path as wBest Path is

dealing with Spatio-Textual queries. However in this study, we adopt the characterisation

of shortest path in wNeighbor in developing our techniques.

4.4 Data Index

This section presents the wIG-Tree, an indexing technique for planning the Best Path on

Weighted Regions (wBestPath).

4.4.1 wIG-Tree

In this study of wBestPath, we devise a new indexing technique called wIG-Tree that can

be used to process spatial and textual information on weighted regions. The index con-

struction of wIG-Tree consists of several components: (1) tree construction, (2) distance

matrices computation, (3) face-buckets, (4) keyword index, and (5) keywords distance ma-

trices computation. Some methods from IG-Tree are adopted in the creation of wIG-Tree

(e.g. the tree construction and distance matrices computation), but some modifications

are done in order to accommodate the weighted regions environment.

Firstly, the vertices P and edges E in the weighted regions that is denoted by Delaunay

Triangulation DT (P) are indexed in a similar manner as the IG-Tree. Using the multi-

level partitioning algorithm [122], the vertices P and edges E of the weighted regions

DT (P) are partitioned into equal-sized subgraphs. Each subgraph partition consists of

two or more vertices. Figure 4.5 shows the example of the region partition of the weighted

regions given in Figure 4.3. The tree construction is similar to the IG-Tree in which every

node of the tree is based on the subgraph in the graph partition.

In the example in Figure 4.5, the weighted regions, determined by the Delaunay Tri-

angulation with different coloured-weights, is divided into several partitions. The first

partition of G0 consists of equal-sized subgraph partitions of G1 and G2. G1 and G2 are

also partitioned until the subgraph only consists of at least two vertices. In this case, the

94 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

G0
G1 G2

food

supermarket,
book

book

food

cinema

G3

G4

G5

G6

Figure 4.5: Partition

smallest partitions are G3, G4, G5, and G6. The partition G3 contains vertices v1, v10 and

v11; subgraph partition G4 contains vertices v7, v8 and v9; subgraph partition G5 contains

vertices v2, v3 and v5; and finally, subgraph partition G6 contains vertices v4 and v6. Each

subgraph partition composes a node on the wIG-Tree, as shown in Figure 4.6. G0 is the

root and each partition of G0 are its children nodes, while the vertices are in the leaf

nodes.

We also have to maintain the connection between partitions in the tree. The connection

is identified by the vertices in a partition whose edges connect to other partition. For

example v11 in partition G3 connects the subgraph in partition G3 to the subgraph in

partition G4 through v8 and v9. Thus, v11 can be considered as one of the borders of G3.

The other vertices in G3, specifically v1 and v10 are also borders as they connect subgraph

partition G3 to other borders. So each partition can have more than one border. In this

case, the borders of G3 are {v1, v10, v11}; the borders of G4 are {v7, v8, v9}; the borders

of G5 are {v2, v3, v5}; the borders of G6 are {v4, v6}; the borders of G1 are {v1, v7, v10};

and the borders of G5 are {v2, v3, v5, v6}. These borders are also recorded in the wIG-Tree

based on the nodes they belong, which can be seen in Figure 4.6.

Distance Matrices between borders are also pre-computed at this stage. The usage

of distance matrices is to store the shortest paths between border-to-border in order to

speed up the path computation later in the query processing stage. The calculation of

distance on weighted regions is slightly different from the normal road networks or other

4.4. DATA INDEX 95

v1
0000c1

v10
0010c10

v11
0010c11

v8
1011c8

v9
1001c9

v7
1001c7

v2
1000c2

v3
1110c3

v5
1000c5

v4
0100c4

v6
0100c6

G0
1111

G1
v1v7v10 1011

G3
v1v10v11 0010

G2
v2v3v5v6 1110

G4
v7v8v9 1011

G5
v2v3v5 1110

G6
v4v6 0100

dtv1v3v7
00004

dtv1v2v3
00002

dtv1v2v10
00004

dtv1v7v8
00003

dtv1v8v10
00001

dtv2v3v5
10002

dtv1v2v3
00002

dtv2v5v10
00001

dtv1v2v10
00004

dtv2v3v5
10002

dtv1v2v3
00002

dtv3v4v5
00001

dtv3v4v6
01001

dtv1v3v7
00004

dtv3v6v7
00104

dtv1v2v10
00004

dtv1v8v10
00001

dtv2v5v10
00001

dtv8v10v11

00102

dtv8v9v11
00001

dtv8v10v11

00102

dtv8v9v11
00001

dtv8v10v11

00102
dtv1v7v8
00003

dtv1v8v10
00001

dtv7v8v9
10011

dtv7v8v9
10011

dtv8v9v11
00001

dtv7v8v9
10011

dtv1v7v8
00003

dtv1v3v7
00004

dtv3v6v7
00104

dtv2v3v5
10002

dtv3v4v5
00001

dtv2v5v10
00001

dtv4v5v6
00001

dtv4v5v6
00001

dtv3v4v6
01001

dtv3v4v5
00001

dtv4v5v6
00001

dtv3v4v6
01001

dtv3v6v7
00104

WRv₁ WRv₁₀ WRv₁₁ WRv₈ WRv₉ WRv₇ WRv₂ WRv₃ WRv₅ WRv₄ WRv₆

Figure 4.6: wIG-Tree

simple environment model due to the impact of the weight of each region. Following the

property of edge weight in [121], the distance indexed in the wIG-Tree is based on the

product of distance of an edge (x, y) and the minimum weight of the corresponding edge

min{wdtx,y,z , wdtx,y,w}. For example, assume that the distance from v1 to v2 is 1, the

weight wdtv1,v2,v3 is 2, and the weight wdtv1,v2,v10 is 3. So the distance that will be stored

in the distance matrices is the product of (v1, v2) = 1 and min{wdtv1,v2,v3 , wdtv1,v2,v10} = 2,

which is (distance · weight) = 2. Table 4.2 - Table 4.8 present the distance matrices for

each node in IG-Tree.

Another important component of weighted region is its faces that hold a certain

weight. Moreover in our data model, the spatio-textual objects are located in a trian-

gle face. Thus this information is crucial to be stored inside the wIG-Tree. So for each

vertex, we identify its corresponding faces as each vertex is a part of at least one triangle

face. Note that according to the properties of Delaunay Triangulation, each vertex has

an average of six surrounding triangles. So in the wIG-Tree, the faces that belong to

96 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

Table 4.2: Distance Matrix for G0

G0 v1 v2 v3 v5 v6 v7 v10
v1 0 2 4 4 6 6 1

v2 2 0 2 2 4 6 8

v3 2 2 0 1 3 8 10

v5 4 2 1 0 2 9 4

v6 6 4 3 2 0 5 6

v7 6 6 8 9 5 0 7

v10 1 8 10 4 6 7 0

Table 4.3: Distance Matrix for G1

G1 v1 v7 v8 v9 v10 v11
v1 0 6 1 2 1 3

v7 6 0 2 3 7 3

v10 1 7 2 3 0 2

Table 4.4: Distance Matrix for G2

G2 v2 v3 v4 v5 v6
v2 0 2 3 2 4

v3 2 0 2 1 3

v5 2 1 1 0 2

v6 4 3 1 2 0

Table 4.5: Distance Matrix
for G3

G3 v1 v10 v11
v1 0 1 3

v10 1 0 2

v11 3 2 0

Table 4.6: Distance Ma-
trix for G4

G4 v7 v8 v9
v7 0 2 3

v8 2 0 1

v9 3 1 0

Table 4.7: Distance Ma-
trix for G5

G5 v2 v3 v5
v2 0 2 2

v3 2 0 1

v5 2 1 0

Table 4.8: Distance
Matrix for G6

G6 v4 v6
v4 0 1

v6 1 0

a certain vertex is stored inside a face-bucket and it is attached into their correspond-

ing vertices on the leaf node of wIG-Tree, together with the information of its weight

and which keywords lie inside the triangle face. Figure 4.6 shows an illustration of the

face-buckets that holds the weighted regions information and they are attached to its

corressponding vertex in the wIG-Tree. Vertex v1 makes up five triangle faces, which

are dtv1,v2,v3 , dtv1,v2,v10 , dtv1,v3,v7 , dtv1,v7,v8 , dtv1,v8,v10 . All these faces are combined into a

face-bucket WRv1 and is attached into vertex v1 in wIG-Tree.

As we are also dealing with spatio-textual objects in wBestPath, this information is

also kept in the wIG-Tree in a bitmap invertex index form. First of all, all the keywords

in the space are sorted and assigned a binary value based on its location in each region

face. Using the case in Figure 4.5 as an example, there are four keywords available, which

are book, cinema, food, and supermarket. These keywords are then sorted and we assign

a binary value to all the triangle faces based on the availability of the keyword in the

face. The keywords are indexed into bitmap inverted index as in Table 4.9. For instance,

face dtv7,v8,v9 contains keywords book and supermarket, so it is assigned a binary value

of 1001. All these inverted indexes are then stored at the face-bucket of wIG-Tree. We

4.4. DATA INDEX 97

also attach the inverted index to the vertices at the leaf nodes and the parent nodes. The

inverted index however is calculated using logical OR of its child nodes as to indicate

the combination of keywords that can be accessed through those vertices or subgraphs.

For example the inverted index of v8 is calculated using logical OR of the face-bucket

WRv8 that contains 0010 at dtv8,v10,v11 and 1001 at dtv7,v8,v9 , which in this case it produce

inverted index of 1011 for vertex v8. The same calculation is applied to every node in the

tree. The index at the root node is usually made up of all 1s.

Table 4.9: Keyword index

XXXXXXXXXXXFace
Keyword

Book Cinema Food Supermarket

dtv8,v9,v11 0 0 0 0

dtv7,v8,v9 1 0 0 1

dtv8,v10,v11 0 0 1 0

dtv1,v8,v10 0 0 0 0

dtv1,v7,v8 0 0 0 0

dtv1,v2,v10 0 0 0 0

dtv1,v3,v7 0 0 0 0

dtv1,v2,v3 0 0 0 0

dtv2,v5,v10 0 0 0 0

dtv2,v3,v5 1 0 0 0

dtv3,v6,v7 0 0 1 0

dtv3,v4,v6 0 1 0 0

dtv3,v4,v5 0 0 0 0

dtv4,v5,v6 0 0 0 0

The last component of wIG-Tree is the Keyword Distance Matrices, which its purpose

is to pre-compute the shortest path from certain vertices to the nearest keywords. The

way the Keyword Distance Matrix is stored and calculated in wIG-Tree is very different

from IG-Tree. In wIG-Tree, we only store the shortest paths between the keyword with its

surrounding vertices, instead of borders. The surrounding vertices in this case are identified

through the Combination Region (CR) method that was discussed in Section 4.3.2. So

for each keyword matched spatio-textual object, we find its CR. For each CR, we collect

the vertices that makes up the corresponding CR. We call all these vertices as the access

points to the keyword matched spatio-textual object. Through all these access points, we

can calculate the shortest paths from each access point to the keyword matched objects

that are inside the CR. The shortest path here is calculated using Mitchell’s Algorithm

[116]. Each shortest path distance is then recorded in the Keywords Distance Matrix.

98 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

Different from IG-Tree where it keeps the Keyword Distance Matrices in every node, the

Keyword Distance Matrices in wIG-Tree are only available for the face-buckets.

For example, suppose that we want to build the Keyword Distance Matrix of face-

bucket WRv2 . Keyword book, whose inverted index is 1000, is available inside WRv2 .

There are four faces inside this face-bucket. However, only one of them contains a spatio-

textual object. Therefore we only focus on finding the CR of dtv2,v3,v5 where the keyword

is located. Assume that the CR for this case comprises faces dtv2,v3,v5 and dtv1,v2,v3 .

Thus, the access points for this CR are v1, v2, v3, v5. We calculate the shortest paths from

v1, v2, v3, v5 to the keyword inside this CR, which then stored in the distance matrix as

shown in Table 4.10.

Table 4.10: Keyword Distance Matrix of face WRv2

1000

v1 3.82

v2 1.31

v3 1.88

v5 2.98

Based on the discussion above, wIG-Tree consists of two tiers: the tree and the face-

buckets. The root and children nodes of the tree contain the subgraph partition, borders,

and keywords related to the partition. The leaf nodes contain the vertices, together with

their coordinate location, and the keywords that can be access through the vertices. The

face-buckets maintain the information of the faces related to each vertex. There are also

two types of matrices recorded in wIG-Tree: distance matrices and keywords distance

matrices. The distance matrices are used to store the shortest distance between borders

in the tree tier, while the keywords distance matrices are for storing the shortest distance

between access points to the keyword matched spatio-textual objects.

4.5 Negative Query Keywords

The wIG-Tree data structure holds a number of information that can help us in answering

route planning query on weighted regions. However in the wBestPath query, the users

are allowed to provide some keywords as input and the keywords given can be both in

positive and negative values. The positive keywords indicate the spatio-textual objects

that the user wants to visit, while negative keywords indicate the spatio-textual objects

4.5. NEGATIVE QUERY KEYWORDS 99

that the user wants to avoid. Based on textual relevancy of the query keywords and the

keywords of spatio-textual objects, we can determine which objects we can include to our

wBestPath result and which path have to be avoided throughout our route in finding the

wBestPath. In the case of finding path with positive keyword objects, the wIG-Tree can

be utilised and produce significant result to the query. For instance when we want to find

the nearest book from v2, we can check the location of v2 in the wIG-Tree and see whether

the inverted index of keyword book is also located at this node. When the keyword is

found in the tree, we can proceed to the keywords distance matrix of WRv2 to get the

distance from v2 to the keyword. However, when it comes to finding a path with negative

keywords, the complexity increases as there are paths that we have to avoid.

In the case of negative keywords are detected, the current wIG-Tree requires an update.

As we do not want to pass any negative keywords, the spatio-textual object that contains

the negative keyword is regarded as an obstacle. The region where it is located is also

regarded as unpassable area. The unpassable area means that the weight of the area

is ∞. Therefore we have to update the wIG-Tree, specifically on the distance matrices

and keywords distance matrices, to indicate the change in weight of the region face that

contains the negative keyword. The procedure of updating the wIG-Tree is as follow:

1. If a k− is detected at one of the nodes of wIG-Tree, then trace which region face the

k− is located. So we need to traverse the tree until the face-bucket in order to get

the exact location of the k−.

2. Once the region face dt is located, get the access points (AP) of the spatio-textual

object that contains k−.

3. Update the keywords distance matrix for region face dt to∞, making it as unpassable

area.

4. Check if the other region faces in the same face-bucket of dt has any overlapping

access points. For those overlapping access points, they have to be excluded from

the list so that we can avoid the possibility of passing through the unpassable area

of dt.

100 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

5. Traverse back to the tree tier to update the distance matrices because of the unpass-

able area. Path reconstruction is required for all the tree nodes where the access

points AP are part of the border.

The update, however, does not always affect the whole wIG-Tree. As the identification

of negative keywords only happens in the query processing stage, it depends on the moment

when we encounter a negative keyword in a node of the tree. If we encounter one while

traversing through the wIG-Tree, then:

• If node Gx contains k− and no k+ available in this node, then we can block the

whole branch of node Gx. By doing this, we have pruned any unnecessary subtree.

• If node Gx contains both k+ and k−, then traverse through the children nodes until

k+ and k− are on different nodes.

– If k+ and k− are on different nodes, the node with k− can be blocked and its

subtree can be pruned.

– If k+ and k− are still in the same node until the leaf node, then we have to

check the face-bucket to locate the exact location of k+ and k−.

∗ If k+ and k− are in the same region face, then the weight of the region

face has to be updated, which we have to follow the procedure of updating

wIG-Tree that was explained before. Furthermore, even though there is

k+ in this particular region face, we have to give up the k+ as it is inside

an unpassable area. We have to find other spatio-textual object with k+

in another area, rather than the one with k−.

∗ If k+ and k− are at different faces, then the face where k− is located is

blocked by updating its weight (follow the update procedure). Meanwhile

for k+, some of the access points of the face where k+ is located might be

removed because they overlap with the access point list of k− (procedure

step 4). k+ however is still accessible through the remaining access points.

4.6. QUERY PROCESSING 101

4.6 Query Processing

In this section, we discuss our proposed algorithms to solve wBestPath. The algorithms,

namely the Minimum Distance Approximation (MDA) and Minimum Path Approximation

(MPA), utilises the wIG-Tree. A baseline algorithm is also discussed in this section.

4.6.1 Baseline Algorithm

A naive approach to solve the wBestPath is by finding all possible combinations of routes.

In this case, we get the permutation of all combinations of positive keywords and then at

the end find the route with the least cost among all. This approach will give a precise

solution, but the performance is very low. Algorithm 6 shows the pseudo-code of the

baseline algorithm.

At the first stage, the query keywords given by the user is indexed to bitmap inverted

file Kif and also locating where the source location sl is. If the source location is inside a

triangulation face, not at a certain vertex, then we have to find its nearest border vn and

compute the shortest path from sl to the nearest border vn by using Mitchell’s algorithm.

Otherwise if sl is at a vertex, then we only have to locate the leaf node of the vertex vn

(lines 2-8). The purpose of finding vn is to locate our starting leaf node in the tree in

order to find the wBestPath.

The next step is to scan through all of the spatio-textual objects’ access points through

the leaf node of wIG-Tree to find a set of vertices Vk with keywords that match to k+ in

Kif (lines 9-11). The purpose of collecting these access points is to help us in identifying

the entrance to the region where our keyword is located. Based on the keyword matched

vertices Vk, we can start assembling the possible path combinations through cartesian

product of Vk. So for each combination of path, we also have to get the permutation

to help computing the path with the least distance (lines 12-13). For example a user

wants to find a path with keywords cinema and supermarket. The inverted index of

cinema is 0100 and the inverted index of supermarket is 0001. While scanning through

the wIG-Tree, we can find that the access points of 0100 are v3, v4, v6 and the access

points of 0001 are v7, v8, v9. So based on these access points, we can find the possible

path combinations that can contribute to the result of wBestPath. The possible paths

will involve the combinations of {v3, v7}, {v3, v8}, {v3, v9}, {v4, v7}, {v4, v8}, {v4, v9},

102 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

{v6, v7}, {v6, v8}, and {v6, v9}. After we have found all possible combinations through the

cartesian product of the keyword matched vertices, we calculate the distance from sl to

the permutation of the possible paths and then at the end finishing at the destination

location dl (lines 14-27). While calculating the paths, we also have to keep track the path

with the least cost in order to get the best solution for wBestPath (lines 28-30).

As mentioned earlier, this algorithm can give precise solution. However, this algorithm

runs more than 10 hours just to compute wBestPath with 5 query keywords due to the

fact that it is an NP -Hard problem. Taking more than 10 hours just to plan one trip

is definitely not applicable in our daily life. Therefore in the next two subsections, we

discuss our propose solutions to this problem.

Algorithm 6 The Baseline

Input: wIG-Tree, sl, dl, K in
Output: wBestPath(sl, dl,K) out
1: Index K to bitmap inverted file Kif ;
2: Locate sl;
3: if sl is inside a face then
4: vn ← nearest border from sl;
5: Calculate δ(sl, vn) by Mitchell’s algorithm;
6: else
7: vn ← leaf(sl);
8: end if
9: for each oi ∈ O do

10: Vk = KeywordMatch(oi, k
+);

11: end for
12: cartesian product(Vk);
13: for each cart product(Vk) result cp do

14: Permutation(cp);
15: for each permutation permx ∈ Permutation(cp) do

16: vstart ← Ø;
17: for each vertex v in permx do

18: if vstart = Ø then
19: Find δ(vn, v);
20: Find δ(v, k+v);
21: else
22: Find δ(vstart, v);
23: Find δ(v, k+v);
24: end if
25: vstart = v;
26: end for
27: Find δ(vstart, dl) by Mitchell’s algorithm;
28: if current path is the shortest then
29: wBestPath(sl, dl,K);
30: end if
31: end for
32: end for
33: return wBestPath(sl, dl,K);

4.6. QUERY PROCESSING 103

Algorithm 7 Shortest Path Search δ(sl, dl) on wIG-Tree

Input: wIG-Tree, sl, dl, inverted file Kif in
Output:δ(sl, dl) out
1: Index K to inverted file Kif ;
2: if sl is inside a face then
3: vsl ← nearest border from sl;
4: Calculate δ(sl, vn) by Mitchell’s algorithm;
5: else
6: vsl ← leaf(sl);
7: end if
8: Gsl = parent(vsl);
9: if dl is inside a face then

10: vdl
← nearest border from dl;

11: Calculate δ(dl, vn) by Mitchell’s algorithm;
12: else
13: vdl

← leaf(dl);
14: end if
15: Gdl

= parent(vdl
);

16: while Gsl 6= Gdl
do

17: bsl ← nearest border from vsl
18: if Gsl contains k− then
19: Path reconstruction for partition Gsl ;
20: end if
21: dist(dl, bsl)+ = dist(vsl , bsl);
22: vsl = bsl
23: bdl

← nearest border from vdl

24: if Gdl
contains k− then

25: Path reconstruction for partition Gdl
;

26: end if
27: dist(dl, bdl

)+ = dist(vdl
, bdl

);
28: vdl

= bdl
;

29: Gsl = parent(vsl);
30: Gdl

= parent(vdl
);

31: end while
32: if Gsl == Gdl

then
33: dist(sl, dl) = dist(sl, bsl) + dist(dl, bdl

) + dist(vsl , vdl
);

34: return δ(sl, dl);
35: end if

4.6.2 Minimum Distance Approximation (MDA) Algorithm

Due to the low performance of the Baseline Algorithm, which runs in non-polynomial

time, we propose an approximate solution that runs faster than the baseline, which we

call Minimum Distance Approximation (MDA) Algorithm. The MDA algorithm is divided

into three phases. The first phase is the query input initialisation. The second phase is

the process of collecting candidate objects that match with the query keywords. Then the

third phase is the best path construction based on the candidate objects from the second

phase. Algorithm 8 describes the pseudo-code of our MDA algorithm.

At the beginning of the first phase, all of the query input, which consists of a source

location sl, a destination location dl, and a set of query keywords K, are initialised in

104 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

order to prepare them for the path construction process. The query keywords K are

transformed into bitmap inverted file Kif (line 1). We also have to locate the position of

sl and dl (lines 2-13). If both sl and dl are inside a region face, not at a vertex, then we

have to find the nearest border from sl and dl. The nearest border from sl is marked as

vsl (line 3), while the nearest border from dl is marked as vdl (line 9). Otherwise if sl or

dl is located at a vertex, that particular vertex will be our starting point vsl (for sl) or

destination point vdl (for dl).

Once all of the query inputs are processed, then we can move to the next phase to

start collecting the candidate objects. Candidate objects are spatio-textual objects which

contain the keywords that match with one of the keywords in K and has the best location

from sl and dl. The best location here means that among all spatio-textual objects with a

particular keyword kz, the spatio-textual object on has the most optimum cost when it is

paired up with sl and dl. So the cost of constructing a path sl → on → dl is the shortest

compare to the other objects. The idea behind this algorithm comes from the fact that

route planning with only one category can be solved in polynomial time.

Lines 14-24 of Algorithm 8 shows the second phase of MDA algorithm. So for each

keyword kn in the query keyword set K, we find the best path between sl → kn → dl.

The computation to find the best path is through the calculation of shortest path from

sl to kn and then from kn to dl. The shortest path algorithm that we use in wIG-Tree is

shown in Algorithm 7. From all the possible paths for each keyword, we find the one with

the minimum distance, which then the spatio-textual object that contains kn becomes a

candidate point. This candidate point is then stored into a queue Qk. Once we have found

the best path for all of the keywords in K, we have all the candidate objects locations

that will help us establish the best path on weighted regions.

In the last phase of MDA algorithm (lines 25-35), our method is to progressively adding

the next nearest neighbour of the last point we visit from a list of candidate objects. In

this case, we start the path construction from sl and then find the nearest candidate object

that we previously stored in Qk (line 27). After the first nearest neighbour Qkn is found,

we establish the shortest path between sl to Qkn (line 28) and then dequeue Qkn from the

candidate object list Qk (line 33). The Qkn then become our new starting point where we

find the next nearest neighbour of Qkn from the candidate list Qk and repeat the same

process until all of the candidate objects have been visited (Qk is empty). At the end, we

4.6. QUERY PROCESSING 105

have a path from sl to all of the spatio-textual objects that contains the query keywords

in K. Then from this point, we only have to find the path from the last visited object to

the destination point dl, which complete the wBestPath search.

The MDA algorithm performs better than the baseline algorithm in terms of the run-

ning time. However the downside for this algorithm is on the accuracy in which the

accuracy is compromised in order to optimise the runtime. The result is not always 100%

accurate, especially when the query involved is large.

Algorithm 8 MDA Algorithm

Input: wIG-Tree, sl, dl, K in
Output: wBestPath(sl, dl,K) out
1: Index K to inverted file Kif ;
2: if sl is inside a face then
3: vsl ← nearest border from sl;
4: Calculate δ(sl, vn) by Mitchell’s algorithm;
5: else
6: vsl ← leaf(sl);
7: end if
8: if dl is inside a face then
9: vdl

← nearest border from dl;
10: Calculate δ(dl, vn) by Mitchell’s algorithm;
11: else
12: vdl

← leaf(dl);
13: end if
14: for each inverted keyword kn in Kif do
15: if kn+ then
16: δ(vsl , kn);
17: δ(kn, vdl

);
18: dist(sl, dl) = dist(sl, vsl) + dist(vsl , kn) + dist(kn, vdl

) + dist(kn, dl);
19: end if
20: if dist(sl, dl) < minDist then
21: Store (kn) location to queue Qk;
22: minDist = dist(sl, dl);
23: end if
24: end for
25: while Qk 6= Ø do
26: if current path is 0 then
27: Find NN(sl, Qk);
28: Find shortest path δ(sl, Qkn);
29: else
30: Find NN(Qkn− 1, Qk);
31: Find shortest path δ(Qkn− 1, Qkn);
32: end if
33: Dequeue Qkn from Qk;
34: end while
35: Find shortest path δ(Qkn, dl);

106 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

4.6.3 Minimum Path Approximation (MPA) Algorithm

Another approximation algorithm that we proposed in this study is Minimum Path Ap-

proximation (MPA) Algorithm. The idea behind this algorithm is to minimize the path

traversal by doing expansion to the spatio-textual objects while computing the path be-

tween source and destination points. Algorithm 9 presents the pseudo-code of the MPA

algorithm. The MPA algorithm consists of three phases. The first phase is the initiali-

sation of query input (lines 1-13). The second phase is to find the common ancestor of

the source point sl and destination point dl and also checking the ancestor node whose all

keywords match with the query keywords K (lines 14-18). The last phase is the best path

formation and expansion (lines 19-32).

The first phase for this algorithm (lines 1-13) is similar to the MDA algorithm where

we want to locate the position of the source point sl and destination point dl. If sl and

dl are inside a region face, then we have to find their nearest borders (vsl and vdl) and

calculate the shortest path of δ(sl, vsl) and δ(dl, vdl) by using Mitchell’s algorithm. If sl

and dl are at certain vertices, then these vertices are the starting point vsl for sl and

destination point vdl for dl.

In the second phase, we are looking for an ancestor node in wIG-Tree that is the

common ancestor node between sl and dl and also contains all relevant keywords of the

query input. Thus in line 14 of Algorithm 9, the algorithm attempts to find the common

ancestor node Ga between sl and dl. Then the next step is to check whether all query

keywords Kif are available in the node Ga. If some of the keywords in Kif are not available

in Ga, then we have to check the parent node of Ga. We keep repeating this step until

all keywords are found (lines 15-18). At the end of this phase, we will have an ancestor

node that contains all necessary keywords for the query and we can also establish a path

between sl and dl. The reason of getting this ancestor node is to limit our traversal space

to the subtree/branch of this ancestor node, which means that the nodes outside this

ancestor node’s subtree are pruned.

The last phase of MPA algorithm is where we construct the wBestPath. In this phase,

we start our route construction from sl and finish at dl while expanding the path in between

these two points in order to find the query keywords. So in lines 19-20 of Algorithm 9,

we initialise the current point (vcurr) that we are visiting, which starts at sl, and also

the parent node (Gsl) of our current point. Starting our route search, we have to check

4.6. QUERY PROCESSING 107

whether Gsl contains any keyword from Kif (line 22). If there is matching keyword kn in

Gsl , then we have to traverse the children nodes of Gsl to where kn is located and find

the shortest path from sl to kn (lines 23-25). Once the shortest path between sl to kn is

found, the keyword kn is removed from Kif (line 27). So now our currently visited point is

the location of kn (line 26). We repeat the same step where we have to check whether the

current visited node Gsl contains any keyword in Kif . If there is no matching keyword,

then we move to the parent node of Gsl in order to find any matching keyword (line 29).

We keep traversing the tree until Kif is empty (all query keywords are found). At the end

when the path from sl to all the location of query keywords in Kif is establish, we can

finish the path from the last visited keyword to destination point dl (line 32).

Algorithm 9 MPA Algorithm

Input: wIG-Tree, sl, dl, K in
Output: wBestPath(sl, dl,K) out
1: Index K to inverted file Kif ;
2: if sl is inside a face then
3: vsl ← nearest border from sl;
4: Calculate δ(sl, vn) by Mitchell’s algorithm;
5: else
6: vsl ← leaf(sl);
7: end if
8: if dl is inside a face then
9: vdl

← nearest border from dl;
10: Calculate δ(dl, vn) by Mitchell’s algorithm;
11: else
12: vdl

← leaf(dl);
13: end if
14: Ga ← commonAncestor(sl, dl);
15: Check if Ga contains all keywords in Kif ;
16: while Ga ⊕Kif = 1 do
17: Ga = parent(Ga);
18: end while
19: vcurr ← sl;
20: Gsl ← parent(sl);
21: while Gsl 6= parent(Ga) and Kif 6= Ø do
22: if Gsl ⊕Kif = 0 then
23: kn ← matched keyword;
24: vkn

← leaf(kn);
25: δ(vcurr, vkn);
26: vcurr = vkn ;
27: Kif = Kif \ kn;
28: else
29: Gsl = parent(Gsl)
30: end if
31: end while
32: Find shortest path δ(vcurr, dl);

108 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

The MPA algorithm offers some advantages and also drawbacks. The number of visited

vertices are generally lesser than MDA but it does not guarantee the minimum distance.

The accuracy of MPA itself can be lower than MDA. The main advantage of MPA algo-

rithm, however, is in the early pruning of nodes, which narrow down the path traversal

to a smaller subtree and avoiding unnecessary traversal to other tree branches that can

cause longer running time.

4.7 Experiment

This section provides the detailed experimental evaluations of our proposed solutions to

the wBestPath. We evaluate the performance of the wIG-Tree indexing scheme and we

also compare the efficiency and accuracy of the algorithms from Section 4.6, which are the

Baseline Algorithm, Minimum Distance Approximation (MDA) Algorithm, and Minimum

Path Approximation (MPA) Algorithm.

4.7.1 Settings

Environment The experiments are conducted on 2.5 GHz Intel Core i7-4870HQ CPU

and 12 GB RAM running 64-bit Ubuntu. All of the algorithms were written in single-

threaded C++.

Datasets We use three datasets of Computational Fluid Dynamics (CFD) Dataset from

[140, 141, 142]. The details of these CFD datasets are provided in Table 4.11. The weights

of the regions are synthetically generated. The keyword information is produced using the

keyword sets from [125]. Then each keyword object is mapped into a certain region by

randomly assigning the x and y coordinate of the object inside the weighted regions.

In order to detect the negative keywords given by the users, we utilize some negative

sentiment analysis based on words from [126, 127] to help us in identifying certain words

that can be considered as negative words.

Table 4.11: CFD Datasets

Dataset # Vertices # Edges # Triangles

CFD-1 5,088 58,554 9,759

CFD-2 52,510 621,984 103,664

CFD-3 208,688 2,487,936 414,656

4.7. EXPERIMENT 109

Queries For the experiments, we generate the keyword set K for the test queries with

a random distribution from a keyword pool. We vary the size of K in the test queries

from 1 to 15. We also set the size of object density of K from 1% to 30% of the whole

datasets. The object density here means the number of spatio-textual objects for each

query keyword in comparison to the number of vertices in the space. Furthermore, we

also evaluate the impact of varying the distance between sl and dl. In this experiment,

the distance is varied from 2% up to 64% of the maximum distance between sl and dl.

4.7.2 Index Evaluation

We evaluate our proposed indexing technique, wIG-Tree, in terms of index building time

and index size. As the wIG-Tree has no competitor yet, we compare wIG-Tree with IG-

Tree and G-Tree, which are the predecessors of wIG-Tree. Even though IG-Tree and

G-Tree are the predecessors of wIG-Tree, there are some information that wIG-Tree has

but both IG-Tree and G-Tree do not have.

Figure 4.7a presents the index running time for each method to build the indices for

each given dataset. This figure shows that wIG-Tree takes the longest time to be built

in comparison to the IG-Tree and G-Tree. It does make sense as the wIG-Tree has more

data to be indexed (e.g. weight of the region) and also involves different computation in

terms of the path construction when we compare this index compared to the other two

indexes. The wIG-Tree may look a lot slower when it is compared to the G-Tree, but

G-Tree unfortunately does not index any spatio-textual objects.

The same trend also applies for the index size, which is shown in Figure 4.7b. The wIG-

Tree has higher space consumption due to the fact that we need to store more information.

The wIG-Tree involves indexing weighted regions in which the information of each region

has to be stored inside additional face-buckets to the tree, where the IG-Tree and G-Tree

do not have this kind of information.

Based on these evaluations, the wIG-Tree itself is still comparable with the other two

predecessors, especially for the fact that wIG-Tree incorporate more data of weighted

regions.

110 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

CFD-1 CFD-2 CFD-3

In
d

e
x

in
g

 t
im

e
 (

m
s

)
wIG-Tree

IG-Tree
G-Tree

(a) Building time

10
0

10
1

10
2

10
3

CFD-1 CFD-2 CFD-3

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

wIG-Tree
IG-Tree
G-Tree

(b) Index size

Figure 4.7: Index building time and size on CFD datasets

4.7.3 Performance Study

Here, we present the efficiency study results of our query processing algorithms on two

metrics, which are on the running time and approximation accuracy. The approxima-

tion accuracy presents the percentage of the result accuracy produced by each algorithm

in comparison to the expected correct result that is obtained by running the baseline

algorithm.

Effect of k+

This section investigates the effect of the positive keywords (k+) that are given as the

query input by users. As can be seen in Figure 4.8, the MPA algorithm has better running

time compared to both MDA and the baseline algorithms. Even though we increase the

number of k+, MPA still performs the best. The baseline algorithm itself performs the

worst compared to the other two algorithms due to the fact that it has to compute all

possible combination of routes. When the number of K increases to 5, it takes more than

10 hours to finish the baseline algorithm, which is far from acceptable.

In terms of accuracy, MDA performs better than MPA, as shown in Figure 4.9. The

reason for this is because MDA finds the best location for each keyword in order to

minimize the total distance. However, MPA focuses on finding lesser route and limits its

working space to a smaller subtree, which impacted on the accuracy. As can be seen in

Figure 4.9, the higher the number of K and also the bigger the datasets, the lower the

accuracy of MPA algorithm. So even though MPA performs well in terms of its running

time, it has a drawback in its accuracy.

4.7. EXPERIMENT 111

Based on the discussion above, we can say that MDA has better overall performance

compared to the baseline algorithm and MPA algorithm. Even though MPA beats MDA

for running time, MDA is still comparable to MPA as the time gap is not that much and

it actually gives more accurate results than MPA. But if we are just dealing with smaller

data and query sizes, MPA may still offer good results to the wBestPath. So depending

on our goal, both MDA and MPA have their own advantages.

 0

 500

 1000

 1500

 2000

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s
)

K

MDA

MPA

Baseline

(a) Running time for CFD-1

 0

 1000

 2000

 3000

 4000

 5000

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s
)

K

MDA

MPA

Baseline

(b) Running time for CFD-2

 0

 500

 1000

 1500

 2000

 2500

 3000

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s
)

K

MDA

MPA

Baseline

(c) Running time for CFD-3

Figure 4.8: Query performance with all positive query keywords

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

MDA

MPA

(a) Approximation accuracy
for CFD-1

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

MDA

MPA

(b) Approximation accuracy
for CFD-2

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

MDA

MPA

(c) Approximation accuracy
for CFD-3

Figure 4.9: Approximation accuracy for all positive query keywords

Effect of k−

In our experiment, we want to evaluate the impact of having some negative keywords (k−)

as part of our query. The (k−) itself has a significant impact to our result as it may also

forbid us to retrieve any results. So in this case, the distribution of k− in our test queries

is always maintained to be lesser than the number of k+ for this particular experiment in

order to guarantee that the results can be retrieved.

Figure 4.10 shows the running time of each algorithm when the test query contains

some negative keywords. The running time for MPA is surprisingly similar to MDA and

sometimes MPA is even slower than MDA, which is very different from the previous case

112 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

where MPA always outperforms MDA in terms of their query processing running time.

The baseline algorithm is always the worst compared to the MDA and MPA.

The accuracy evaluation on queries that involve k− is presented in Figure 4.11. Based

on our experiments, the accuracy for algorithms MDA and MPA are the same despite the

big accuracy gap in the previous case (Figure 4.9). The result is quite surprising but it is

however understandable because of the path blockage when the trip reaches any negative

keywords. The path blockage may have caused similar route to be chosen for these two

algorithms.

Overall, both MDA and MPA algorithms offer similar performance in terms of their

running time and accuracy when we are dealing with queries that contain some negative

keywords (k−).

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s
)

K

MDA

MPA

Baseline

(a) Running time for CFD-1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s
)

K

MDA

MPA

Baseline

(b) Running time for CFD-2

 0

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

1 5 10 15

Q
u

e
ry

 t
im

e
 (

µ
s
)

K

MDA

MPA

Baseline

(c) Running time for CFD-3

Figure 4.10: Query performance with combination of positive and negative query keywords

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

MDA

MPA

(a) Approximation accuracy
for CFD-1

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

MDA

MPA

(b) Approximation accuracy
for CFD-2

0

20

40

60

80

100

1 5 10 15

A
c

c
u

ra
c

y
 (

%
)

K

MDA

MPA

(c) Approximation accuracy
for CFD-3

Figure 4.11: Approximation accuracy for datasets with negative keywords

Effect of keyword densities

As previously mentioned in our experiment settings (Section 4.7.1), we want to observe

the query performance based on the keyword densities. The density here means for the

total number of vertices in the space, the number of spatio-textual objects for each query

keyword in the space is based on the percentage of the total number of vertices. For

4.7. EXPERIMENT 113

example, the density of spatio-textual objects for 100 vertices is 10%, which means that

there are 10 objects that match each query keyword in the space.

Figure 4.12 shows the query performance of the spatio-textual objects density for all

positive keywords. We set the density for this particular experiment from 1% to 30%.

As shown in Figure 4.12, the running time of MPA algorithm is usually around 1 order

of magnitude compared to the baseline. The running time MDA algorithm itself can

outperform both MPA and baseline, especially shown in Figure 4.12b.

Meanwhile, Figure 4.13 shows the query performance of the spatio-textual objects

density for all negative keywords. We only set the density up to 5.5% by the reason of

having higher density of negative keywords will return no path/no result at all. Based

on the result in Figure 4.13, the running time trend of both MDA and MPA algorithms

are similar. Compared to the baseline algorithm, the MDA and MPA are still better in

performance even though some cases the baseline seems to have similar runtime as seen

in Figure 4.13c.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

e
ry

 t
im

e
 (

µ
s
)

Density

MDA

MPA

Baseline

(a) Running time for CFD-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

e
ry

 t
im

e
 (

µ
s
)

Density

MDA

MPA

Baseline

(b) Running time for CFD-2

10
4

10
5

10
6

10
7

10
8

10
9

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

e
ry

 t
im

e
 (

µ
s
)

Density

MDA

MPA

Baseline

(c) Running time for CFD-3

Figure 4.12: Query performance based on keyword density

10
2

10
3

10
4

0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Q
u

e
ry

 t
im

e
 (

µ
s
)

Density %

MDA

MPA

Baseline

(a) Running time for CFD-1

10
4

10
5

10
6

10
7

10
8

0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Q
u

e
ry

 t
im

e
 (

µ
s
)

Density %

MDA

MPA

Baseline

(b) Running time for CFD-2

10
4

10
5

10
6

10
7

10
8

10
9

0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Q
u

e
ry

 t
im

e
 (

µ
s
)

Density %

MDA

MPA

Baseline

(c) Running time for CFD-3

Figure 4.13: Query performance based on keyword density with all negative keywords

Effect of distance between sl and dl

Here, we study the effect of varying the distance between source location sl and destination

location dl pairs. The distance between sl and dl are varied from 2%, 4%, 8%, 16%, 32%,

114 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

up to 64% of the maximum distance between the two points in each dataset. We set

|K| = 15 by default and K contains both positive and negative keywords (k+, k−). Figure

4.14 shows the experimental results of the source-destination pair distance. The results for

both MDA and MPA algorithms run in constant time despite the increase in the distance

range. The baseline algorithm however increases significantly, which is why we only include

the baseline results for 2% in Figure 4.14.

10
4

10
5

10
6

10
7

10
8

2 4 8 16 32 64

C
o

s
t

(µ
s
)

Source-Destination Distance (%)

MDA

MPA

Baseline

(a) Running time for CFD-1

10
4

10
5

10
6

10
7

10
8

10
9

2 4 8 16 32 64

C
o

s
t

(µ
s
)

Source-Destination Distance (%)

MDA

MPA

Baseline

(b) Running time for CFD-2

10
4

10
5

10
6

10
7

10
8

10
9

10
10

2 4 8 16 32 64

C
o

s
t

(µ
s
)

Source-Destination Distance (%)

MDA

MPA

Baseline

(c) Running time for CFD-3

Figure 4.14: Effect of varying distance between sl and dl

Summary

In this experimental study, we evaluated the baseline algorithm, MDA algorithm, and MPA

algorithm. Each algorithm is evaluated through different cases and from these evaluations

we can see that each algorithm has its own strength and weaknesses. For the baseline

algorithm, it offers precise solution but the main problem is in its runtime. The running

time exponentially increases in general when the queries and datasets increase. The MDA

algorithm is generally better than the baseline algorithm in terms of query processing time,

but the accuracy is compromised in order to boost the runtime. Meanwhile for the MPA

algorithm, there are times when it excels both MDA and baseline algorithms in terms of

running time, such as in the case where we evaluate the effect of k+. But there are also

times where MPA algorithm follows similar trend to MDA. In terms of accuracy, MPA does

not offer the best accuracy compared to MDA. Even though there are some cases where

the baseline algorithm can compete with the runtime of both MDA and MPA, the baseline

algorithm is still not the best solution to wBestPath. So in general, the MDA algorithm

offers the best solution based on the overall query processing runtime and accuracy.

4.8. CONCLUSION 115

4.8 Conclusion

In this chapter, we study a new Spatio-Textual Query on a whole different environment

than the traditional spatial queries, which is the wBestPath. The wBestPath is a variant of

route planning query that returns a shortest path from a source point to a destination point

while visiting a number of positive keywords and avoiding negative keywords in a weighted

regions space model. We proposed a new indexing technique for Spatio-Textual queries on

weighted regions called wIG-Tree. We also proposed two approximation algorithms with

different trade-offs that exploit the wIG-Tree in order to solve the wBestPath problem,

namely the Minimum Distance Approximation (MDA) Algorithm and Minimum Path

Approximation (MPA) Algorithm. The results of our extensive experiments demonstrate

the effectiveness and efficiency of our proposed solutions.

116 CHAPTER 4. BEST PATH QUERIES ON WEIGHTED REGIONS

Chapter 5

Final Remarks

5.1 Overview

This chapter provides an overall conclusion of our research. Section 5.2 presents the

highlights of the research contributions in this PhD thesis. Some possible future works on

this research topic is discussed in Section 5.3.

5.2 Conclusion

In this thesis, we conduct a research on route planning in Spatio-Textual context. We

propose a new Spatial Keywords Query, namely the Best Path Query. The Best Path

Query is a variant of route planning query that also handles negative keywords which these

negative keywords can be considered as obstacles. Our research derived from the fact that

there are very limited studies on route planning in Spatio-Textual area and no existing

work in this area that considers any negative keywords as part of the query. With the

rise of demand in Geographical Information System (GIS), we realise that we have to be

able to handle not only complex user queries, but also different types of environment that

the user uses. The existing works also are more centred to Euclidean space. Therefore

we conducted our study on two different environments, which are Road Networks and

Weighted Regions.

In Chapter 2, we explore some existing queries in Spatial Databases area, which are

the basis of our research, and we provide some discussions on the limitations of the cur-

rent works. Through our exploration, we learn that Spatial Queries can be categorised

according to the working space models. The existing research on the Spatial Databases

117

118 CHAPTER 5. FINAL REMARKS

area are mostly focus on the Euclidean space model and Road Networks model. Each

space model can affect the way we solve a certain spatial query, hence we also discuss

various techniques that have been developed for spatial queries in each space model. Not

only the basic queries, we also analyse the different types of Spatial Keywords Queries and

current indexing techniques in this area of study. In this Chapter too, some reviews on

the Route Planning Queries are provided as our main research focus is on the combination

of both Spatial Keywords and Route Planning Queries. Furthermore, as we mentioned

earlier, the main focus on the existing studies are mostly centred on Euclidean space and

Road Networks. Therefore, we explore another space model that represents the real earth

surface, which is the Weighted Regions. The existing studies on this particular space

model is typically on shortest path query. There is only one existing study on spatial

query in a weighted regions model, which is the wNeighbor. We review both of these

types of weighted regions query and their solutions in this sub-chapter, in which help us

in developing our research.

In Chapter 3, we focus our study on Best Path on Road Networks. In this case, given

a source location sl, a destination location dl, and a set of keywords K = {k1, k2, ..., kn},

where each ki for 1 ≤ i ≤ n can be positive (denoted by k+) or negative (denoted by

k−), in a road network G, find the Best Path from sl to dl, denoted by BP (sl, dl,K),

that passes through all k+ and avoid all k− with the most optimum cost. In this chapter,

we showed that our Best Path Query is an NP-Hard problem. Our solution towards the

Best Path Query consists of three approximation algorithms, namely the Optimal Distance

Approximation Search, Ancestor Priority Search, and the Euclidean-based Approximation

solution. Each of these algorithms has its own strengths and weaknesses. These algorithms

also utilise our newly proposed index structure, called the IG-Tree. Our experimental

evaluation shows that the IG-Tree is comparable to its predecessor technique, which is

the G-Tree. We also evaluated the effectiveness and efficiency of each of our proposed

algorithm in this chapter.

In Chapter 4, we extend our research on Best Path problem to a more complex space

model, which is the Weighted Regions. We conducted some studies on the existing works

on the weighted regions and despite the limitation of current works in Spatial Queries on

Weighted Regions, we successfully designed a new indexing technique and algorithms to

answer the Best Path Query. To the best of our knowledge, we are the first to propose a

5.3. LIMITATIONS AND FUTURE RESEARCH 119

solution on spatio-textual route planning query in weighted regions model. The definition

of Best Path problem on Weighted Regions is as follow. Given a weighted regions space

DT (P), where each region dti is assigned with a certain weight wdti (wdti ∈ [1,+∞]), a

set of spatio-textual objects O, and a set of user queries that consist of a source location

sl, a destination location dl, and a set of keywords K = {k1, k2, ..., kn}, where each ki

for 1 ≤ i ≤ n can be positive (denoted by k+) or negative (denoted by k−), find the

Best Path from sl to dl, denoted by wBestPath(sl, dl,K), that passes through all k+

and avoid all k− on DT (P) with the least amount of travel cost. So in this chapter, we

propose a new indexing technique called the wIG-Tree, which incorporates the weighted

regions with spatio-textual objects. And utilising this indexing scheme, we develop two

algorithms to answer the Best Path Query on weighted regions, which are the Minimum

Distance Approximation (MDA) Algorithm and Minimum Path Approximation (MPA)

Algorithm. Some extensive experiments to evaluate the accuracy and efficiency of our

proposed solutions are also included in this chapter.

5.3 Limitations and Future Research

There are still some improvements that can be done to our current work. Thus, some

possible directions for future works are as follow:

• Our main focus right now is on finding the best route with all possible combinations

of keywords. However, having all possible combinations increases the processing time

of our query. An interesting idea is to find a clustered area that consist of the objects

with the given positive keywords. It may have longer distance in total compared to

the current solution, but the distance for all the objects might be shorter as all are

clustered together in one area.

• Currently, our solution to the Best Path Query is limited to exact keyword matching.

There are a lot of times that we are unable to retrieve any Best Path if the keywords

that the user provide are not available in the index. For future work, a Query

Expansion for the keywords will be needed. The Query Expansion here is to expand

the keywords given by the user to other related keywords. For example when we

give a keyword burger but there is no such keyword on the space, then we can find

120 CHAPTER 5. FINAL REMARKS

other related keyword to burger, such as fast-food. Thus our query will be expanded

and will return a result.

In this Query Expansion we have to consider the synonyms and other related con-

cepts of each word. A special index for the keywords must be generated in the

beginning to help the searching. The index will be in a hierarchical form where each

word will be grouped into their own category. It will consider the hyponymy and

hypernymy of each keyword.

• In our second objective, the weighted regions are simplified due to the complexity

of the environment. The method for calculating the best path right now is through

the adaptation of both Euclidean and road networks. It can still be optimised in

order to increase the path planning efficiency and accuracy. The indexing technique

is also able to be optimised by combining similar regions together to decrease the

amount of information that we record.

• The current IG-Tree and wIG-Tree techniques utilises bitmap inverted file to index

the textual information of the spatio-textual objects in the space. However, the

bitmap inverted index only allows exact match to the keywords given. Thus, we

can further improve the IG-Tree and wIG-Tree indices to include keyword scoring

function in order to increase the keyword search accuracy.

References

[1] I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial databases,”

in Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on,

pp. 656–665, IEEE, 2008.

[2] J. B. Rocha-Junior and K. Nørv̊ag, “Top-k spatial keyword queries on road net-

works,” in Proceedings of the 15th international conference on extending database

technology, pp. 168–179, ACM, 2012.

[3] esri, “Arcgis desktop.” http://desktop.arcgis.com/en/, accessed 2019-02-

18.

[4] R. Ramakrishnan and J. Gehrke, Database Management Systems. New York, NY,

USA: McGraw-Hill, Inc., 2nd ed., 2000.

[5] R. H. Güting, “An introduction to spatial database systems,” The VLDB Journal,

vol. 3, pp. 357–399, Oct. 1994.

[6] K. M. Adhinugraha, D. Taniar, and M. Indrawan, “Finding reverse nearest neighbors

by region,” Concurrency and Computation: Practice and Experience, vol. 26, no. 5,

pp. 1142–1156, 2014.

[7] K. Hwang and S. Cho, “A lifelog browser for visualization and search of mobile

everyday-life,” Mobile Information Systems, vol. 10, no. 3, pp. 243–258, 2014.

[8] A. B. Waluyo, B. Srinivasan, and D. Taniar, “Research in mobile database query

optimization and processing,” Mob. Inf. Syst., vol. 1, pp. 225–252, Dec. 2005.

[9] A. B. Waluyo, D. Taniar, W. Rahayu, and B. Srinivasan, “Mobile service oriented

architectures for nn-queries,” J. Netw. Comput. Appl., vol. 32, pp. 434–447, Mar.

2009.

121

http://desktop.arcgis.com/en/

122 REFERENCES

[10] I. Yairi and S. Igi, “Mobility support gis with universal-designed data of

barrier/barrier-free terrains and facilities for all pedestrians including the elderly

and the disabled,” in Systems, Man and Cybernetics, 2006. SMC ’06. IEEE Inter-

national Conference on, vol. 4, pp. 2909–2914, Oct 2006.

[11] R. Zhong, J. Fan, G. Li, K.-L. Tan, and L. Zhou, “Location-aware instant search,”

in ACM CIKM, pp. 385–394, 2012.

[12] Y. Li, D. Wu, J. Xu, B. Choi, and W. Su, “Spatial-aware interest group queries in

location-based social networks,” Data & Knowledge Engineering, vol. 92, no. Sup-

plement C, pp. 20 – 38, 2014.

[13] S. B. R. Institute, “Mobile browser vs applica-

tion preferences.” http://www.statisticbrain.com/

mobile-browser-vs-application-preferences/, accessed 2019-02-18.

[14] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, “Processing spatial-keyword (sk)

queries in geographic information retrieval (gir) systems,” in Scientific and Statistical

Database Management, 2007. SSBDM ’07. 19th International Conference on, pp. 16–

16, July 2007.

[15] Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient query processing in geographic

web search engines,” in Proceedings of the 2006 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’06, (New York, NY, USA), pp. 277–288,

ACM, 2006.

[16] M. Mari, “Top global smartphone apps, whos in the top

10.” http://blog.globalwebindex.net/chart-of-the-day/

top-global-smartphone-apps-who-s-in-the-top-10/, accessed 2019-

02-18.

[17] D. Zhang, Y. M. Chee, A. Mondal, A. K. Tung, and M. Kitsuregawa, “Keyword

search in spatial databases: Towards searching by document,” in Data Engineering,

2009. ICDE’09. IEEE 25th International Conference on, pp. 688–699, IEEE, 2009.

[18] C. B. Jones, A. I. Abdelmoty, D. Finch, G. Fu, and S. Vaid, Geographic Informa-

tion Science: Third International Conference, GIScience 2004, Adelphi, MD, USA,

http://www.statisticbrain.com/mobile-browser-vs-application-preferences/
http://www.statisticbrain.com/mobile-browser-vs-application-preferences/
http://blog.globalwebindex.net/chart-of-the-day/top-global-smartphone-apps-who-s-in-the-top-10/
http://blog.globalwebindex.net/chart-of-the-day/top-global-smartphone-apps-who-s-in-the-top-10/

REFERENCES 123

October 20-23, 2004. Proceedings, ch. The SPIRIT Spatial Search Engine: Archi-

tecture, Ontologies and Spatial Indexing, pp. 125–139. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2004.

[19] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query processing: An

experimental evaluation,” in Proceedings of the VLDB Endowment, vol. 6, pp. 217–

228, 2013.

[20] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng, “On trip planning

queries in spatial databases,” in Proceedings of the 9th International Conference

on Advances in Spatial and Temporal Databases, SSTD’05, (Berlin, Heidelberg),

pp. 273–290, Springer-Verlag, 2005.

[21] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi, “The optimal sequenced route

query,” The VLDB Journal, vol. 17, pp. 765–787, July 2008.

[22] X. Cao, L. Chen, G. Cong, J. Guan, N. T. Phan, and X. Xiao, “Kors: Keyword-

aware optimal route search system,” in Data Engineering (ICDE), 2013 IEEE 29th

International Conference on, pp. 1340–1343, April 2013.

[23] S. Arora, “Approximation schemes for np-hard geometric optimization problems: a

survey,” Mathematical Programming, vol. 97, no. 1, pp. 43–69.

[24] S. Arora, “Polynomial time approximation schemes for euclidean traveling salesman

and other geometric problems,” J. ACM, vol. 45, pp. 753–782, Sept. 1998.

[25] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh, “A road network embedding

technique for k-nearest neighbor search in moving object databases,” in Proceedings

of the 10th ACM International Symposium on Advances in Geographic Information

Systems, GIS ’02, (New York, NY, USA), pp. 94–100, ACM, 2002.

[26] Y. Saab and M. VanPutte, “Shortest path planning on topographical maps,” IEEE

Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,

vol. 29, no. 1, pp. 139–150, 1999.

[27] Z. Sun and J. H. Reif, “On finding approximate optimal paths in weighted regions,”

Journal of Algorithms, vol. 58, no. 1, pp. 1 – 32, 2006.

124 REFERENCES

[28] C. Li, Y. Gu, G. Yu, and F. Li, wNeighbors: A Method for Finding k Nearest

Neighbors in Weighted Regions. 2011.

[29] “Elementary linear algebra: Howard anton, (wiley, new york, 1991) 526 pages,”

Discrete Applied Mathematics, vol. 36, no. 1, p. 95, 1992.

[30] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in spatial net-

work databases,” in Proceedings 2003 {VLDB} Conference (J.-C. Freytag, P. Lock-

emann, S. Abiteboul, M. Carey, P. Selinger, and A. Heuer, eds.), pp. 802 – 813, San

Francisco: Morgan Kaufmann, 2003.

[31] A. N. Papadopoulos and Y. Manolopoulos, “Multiple range query optimization in

spatial databases,” in Advances in Databases and Information Systems (W. Litwin,

T. Morzy, and G. Vossen, eds.), (Berlin, Heidelberg), pp. 71–82, Springer Berlin

Heidelberg, 1998.

[32] J. Shan, D. Zhang, and B. Salzberg, “On spatial-range closest-pair query,” in Ad-

vances in Spatial and Temporal Databases (T. Hadzilacos, Y. Manolopoulos, J. Rod-

dick, and Y. Theodoridis, eds.), (Berlin, Heidelberg), pp. 252–269, Springer Berlin

Heidelberg, 2003.

[33] H. K. Ng and H. W. Leong, “Path-based range query processing using sorted path

and rectangle intersection approach,” in Database Systems for Advanced Applications

(Y. Lee, J. Li, K.-Y. Whang, and D. Lee, eds.), (Berlin, Heidelberg), pp. 184–189,

Springer Berlin Heidelberg, 2004.

[34] D. Li, J. Cao, X. Lu, and K. C. C. Chen, “Efficient range query processing in peer-

to-peer systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 21,

pp. 78–91, Jan 2009.

[35] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang, “Continuous moni-

toring of distance-based range queries,” IEEE Transactions on Knowledge and Data

Engineering, vol. 23, pp. 1182–1199, Aug 2011.

[36] S. Ilarri, E. Mena, and A. Illarramendi, “Location-dependent query processing:

Where we are and where we are heading,” ACM Comput. Surv., vol. 42, pp. 12:1–

12:73, Mar. 2010.

REFERENCES 125

[37] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,” SIGMOD

Rec., vol. 24, pp. 71–79, May 1995.

[38] T. Seidl and H.-P. Kriegel, “Optimal multi-step k-nearest neighbor search,” SIG-

MOD Rec., vol. 27, pp. 154–165, June 1998.

[39] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,” ACM

Trans. Database Syst., vol. 24, pp. 265–318, June 1999.

[40] D. Taniar and W. Rahayu, “A taxonomy for nearest neighbour queries in spatial

databases,” Journal of Computer and System Sciences, vol. 79, no. 7, pp. 1017 –

1039, 2013.

[41] H. Cho, S. J. Kwon, and T. Chung, “A safe exit algorithm for continuous nearest

neighbor monitoring in road networks,” Mobile Information Systems, vol. 9, no. 1,

pp. 37–53, 2013.

[42] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” SIGMOD

Rec., vol. 14, pp. 47–57, June 1984.

[43] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An efficient

and robust access method for points and rectangles,” SIGMOD Rec., vol. 19, pp. 322–

331, May 1990.

[44] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The r+-tree: A dynamic index for

multi-dimensional objects,” pp. 507–518, 1987.

[45] I. Kamel and C. Faloutsos, “Hilbert r-tree: An improved r-tree using fractals,” in

Proceedings of the 20th International Conference on Very Large Data Bases, VLDB

’94, (San Francisco, CA, USA), pp. 500–509, Morgan Kaufmann Publishers Inc.,

1994.

[46] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The x-tree: An index structure for

high-dimensional data,” in Proceedings of the 22th International Conference on Very

Large Data Bases, VLDB ’96, (San Francisco, CA, USA), pp. 28–39, Morgan Kauf-

mann Publishers Inc., 1996.

126 REFERENCES

[47] C. Yang and K.-I. Lin, “An index structure for efficient reverse nearest neighbor

queries,” in Data Engineering, 2001. Proceedings. 17th International Conference on,

pp. 485–492, 2001.

[48] F. Korn and S. Muthukrishnan, “Influence sets based on reverse nearest neighbor

queries,” in Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’00, (New York, NY, USA), pp. 201–212, ACM,

2000.

[49] T. Nghiem, K. Maulana, A. Waluyo, D. Green, and D. Taniar, “Bichromatic reverse

nearest neighbors in mobile peer-to-peer networks,” in Pervasive Computing and

Communications (PerCom), 2013 IEEE International Conference on, pp. 160–165,

March 2013.

[50] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group nearest neighbor queries,”

in Data Engineering, 2004. Proceedings. 20th International Conference on, pp. 301–

312, March 2004.

[51] T. Nghiem, D. Green, and D. Taniar, “Peer-to-peer group k-nearest neighbours

in mobile ad-hoc networks,” in Parallel and Distributed Systems (ICPADS), 2013

International Conference on, pp. 166–173, Dec 2013.

[52] D. W. Choi and C. W. Chung, “Nearest neighborhood search in spatial databases,”

in Data Engineering (ICDE), 2015 IEEE 31st International Conference on, pp. 699–

710, April 2015.

[53] R. Benetis, S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest and reverse nearest

neighbor queries for moving objects,” The VLDB Journal, vol. 15, pp. 229–249,

Sept. 2006.

[54] A. Singh, H. Ferhatosmanoglu, and A. c. Tosun, “High dimensional reverse nearest

neighbor queries,” in Proceedings of the Twelfth International Conference on Infor-

mation and Knowledge Management, CIKM ’03, (New York, NY, USA), pp. 91–98,

ACM, 2003.

[55] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle, “Reverse k-nearest

neighbor search in dynamic and general metric databases,” in Proceedings of the 12th

REFERENCES 127

International Conference on Extending Database Technology: Advances in Database

Technology, EDBT ’09, (New York, NY, USA), pp. 886–897, ACM, 2009.

[56] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi, “Verifying spatial queries using

voronoi neighbors,” in Proceedings of the 18th SIGSPATIAL International Con-

ference on Advances in Geographic Information Systems, GIS ’10, (New York, NY,

USA), pp. 350–359, ACM, 2010.

[57] D. Taniar, M. Safar, Q. T. Tran, W. Rahayu, and J. H. Park, “Spatial network rnn

queries in gis,” The Computer Journal, vol. 54, no. 4, pp. 617–627, 2011.

[58] K. Xuan, G. Zhao, D. Taniar, M. Safar, and B. Srinivasan, “Constrained range search

query processing on road networks,” Concurrency and Computation: Practice and

Experience, vol. 23, no. 5, pp. 491–504, 2011.

[59] M. Cheema, X. Lin, W. Zhang, and Y. Zhang, “Influence zone: Efficiently processing

reverse k nearest neighbors queries,” in Data Engineering (ICDE), 2011 IEEE 27th

International Conference on, pp. 577–588, April 2011.

[60] K. Xuan, G. Zhao, D. Taniar, W. Rahayu, M. Safar, and B. Srinivasan, “Voronoi-

based range and continuous range query processing in mobile databases,” J. Comput.

Syst. Sci., vol. 77, pp. 637–651, July 2011.

[61] K. Xuan, G. Zhao, D. Taniar, M. Safar, and B. Srinivasan, “Voronoi-based multi-

level range search in mobile navigation,” Multimedia Tools Appl., vol. 53, pp. 459–

479, June 2011.

[62] M. Safar, D. Ibrahimi, and D. Taniar, “Voronoi-based reverse nearest neighbor query

processing on spatial networks,” Multimedia Systems, vol. 15, no. 5, pp. 295–308,

2009.

[63] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math.,

vol. 1, pp. 269–271, Dec. 1959.

[64] D. R. Lanning, G. K. Harrell, and J. Wang, “Dijkstra’s algorithm and google maps,”

in Proceedings of the 2014 ACM Southeast Regional Conference, ACM SE ’14, (New

York, NY, USA), pp. 30:1–30:3, ACM, 2014.

128 REFERENCES

[65] W. Zeng and R. L. Church, “Finding shortest paths on real road networks: the case

for a*,” International Journal of Geographical Information Science, vol. 23, no. 4,

pp. 531–543, 2009.

[66] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-

termination of minimum cost paths,” IEEE Transactions on Systems Science and

Cybernetics, vol. 4, pp. 100–107, July 1968.

[67] J. Sankaranarayanan, H. Alborzi, and H. Samet, “Efficient query processing on

spatial networks,” in Proceedings of the 13th Annual ACM International Workshop

on Geographic Information Systems, GIS ’05, (New York, NY, USA), pp. 200–209,

ACM, 2005.

[68] R. Zhong, G. Li, K.-L. Tan, and L. Zhou, “G-tree: An efficient index for knn search

on road networks,” in ACM CIKM, pp. 39–48, 2013.

[69] R. Zhong, G. Li, K. L. Tan, L. Zhou, and Z. Gong, “G-tree: An efficient and scalable

index for spatial search on road networks,” IEEE Transactions on Knowledge and

Data Engineering, vol. 27, no. 8, pp. 2175–2189, 2015.

[70] K. C. K. Lee, W. Lee, B. Zheng, and Y. Tian, “Road: A new spatial object search

framework for road networks,” IEEE Transactions on Knowledge and Data Engi-

neering, vol. 24, pp. 547–560, March 2012.

[71] C. S. Jensen, J. Kolářvr, T. B. Pedersen, and I. Timko, “Nearest neighbor queries

in road networks,” in Proceedings of the 11th ACM International Symposium on

Advances in Geographic Information Systems, GIS ’03, (New York, NY, USA), pp. 1–

8, ACM, 2003.

[72] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neighbor search for spa-

tial network databases,” in Proceedings of the Thirtieth International Conference on

Very Large Data Bases - Volume 30, VLDB ’04, pp. 840–851, VLDB Endowment,

2004.

[73] M. R. Kolahdouzan and C. Shahabi, “Continuous k-nearest neighbor queries in

spatial network databases,” in STDBM, 2004.

REFERENCES 129

[74] H. Hu, D. L. Lee, and J. Xu, “Fast nearest neighbor search on road networks,”

in Advances in Database Technology - EDBT 2006 (Y. Ioannidis, M. H. Scholl,

J. W. Schmidt, F. Matthes, M. Hatzopoulos, K. Boehm, A. Kemper, T. Grust,

and C. Boehm, eds.), (Berlin, Heidelberg), pp. 186–203, Springer Berlin Heidelberg,

2006.

[75] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis, “Continuous nearest

neighbor monitoring in road networks,” in Proceedings of the 32Nd International

Conference on Very Large Data Bases, VLDB ’06, pp. 43–54, VLDB Endowment,

2006.

[76] H.-J. Cho and C.-W. Chung, “An efficient and scalable approach to cnn queries in

a road network,” in Proceedings of the 31st International Conference on Very Large

Data Bases, VLDB ’05, pp. 865–876, VLDB Endowment, 2005.

[77] K. Xuan, G. Zhao, D. Taniar, B. Srinivasan, M. Safar, and M. Gavrilova, “Net-

work voronoi diagram based range search,” in Advanced Information Networking

and Applications, 2009. AINA ’09. International Conference on, pp. 741–748, May

2009.

[78] Q. T. Tran, D. Taniar, and M. Safar, “Bichromatic reverse nearest-neighbor search

in mobile systems,” Systems Journal, IEEE, vol. 4, pp. 230–242, June 2010.

[79] S.-H. Shin, S.-C. Lee, S.-W. Kim, J. Lee, and E. G. Im, “Efficient shortest path

finding of k-nearest neighbor objects in road network databases,” in Proceedings of

the 2010 ACM Symposium on Applied Computing, SAC ’10, (New York, NY, USA),

pp. 1661–1665, ACM, 2010.

[80] M. Safar, “Enhanced continuous knn queries using pine on road networks,” in Digital

Information Management, 2006 1st International Conference on, pp. 248–256, Dec

2007.

[81] A. Cary, O. Wolfson, and N. Rishe, “Efficient and scalable method for processing

top-k spatial boolean queries,” in Scientific and Statistical Database Management

(M. Gertz and B. Ludäscher, eds.), (Berlin, Heidelberg), pp. 87–95, Springer Berlin

Heidelberg, 2010.

130 REFERENCES

[82] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard, D. Wu, and M. L.

Yiu, “Spatial keyword querying,” in Conceptual Modeling, pp. 16–29, 2012.

[83] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, “Processing spatial-keyword (sk)

queries in geographic information retrieval (gir) systems,” in Proceedings of the 19th

International Conference on Scientific and Statistical Database Management, SS-

DBM ’07, (Washington, DC, USA), pp. 16–, IEEE Computer Society, 2007.

[84] Z. Li, K. C. K. Lee, B. Zheng, W. C. Lee, D. Lee, and X. Wang, “Ir-tree: An efficient

index for geographic document search,” IEEE Transactions on Knowledge and Data

Engineering, vol. 23, pp. 585–599, April 2011.

[85] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most relevant

spatial web objects,” Proc. VLDB Endow., vol. 2, pp. 337–348, Aug. 2009.

[86] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson, “Spatio-textual indexing for

geographical search on the web,” in Advances in Spatial and Temporal Databases

(C. Bauzer Medeiros, M. J. Egenhofer, and E. Bertino, eds.), (Berlin, Heidelberg),

pp. 218–235, Springer Berlin Heidelberg, 2005.

[87] A. Khodaei, C. Shahabi, and C. Li, “Hybrid indexing and seamless ranking of spatial

and textual features of web documents,” in Database and Expert Systems Applica-

tions (P. G. Bringas, A. Hameurlain, and G. Quirchmayr, eds.), (Berlin, Heidelberg),

pp. 450–466, Springer Berlin Heidelberg, 2010.

[88] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma, “Hybrid index structures

for location-based web search,” in Proceedings of the 14th ACM International Con-

ference on Information and Knowledge Management, CIKM ’05, (New York, NY,

USA), pp. 155–162, ACM, 2005.

[89] X. Cao, G. Cong, and C. S. Jensen, “Retrieving top-k prestige-based relevant spatial

web objects,” Proc. VLDB Endow., vol. 3, pp. 373–384, Sept. 2010.

[90] J. Xu and H. Lu, “Efficiently answer top-k queries on typed intervals,” Information

Systems, vol. 71, no. Supplement C, pp. 164 – 181, 2017.

REFERENCES 131

[91] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint top-k spatial keyword query

processing,” IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 10,

pp. 1889–1903, 2012.

[92] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient continuously moving top-k

spatial keyword query processing,” in Data Engineering (ICDE), 2011 IEEE 27th

International Conference on, pp. 541–552, IEEE, 2011.

[93] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial keyword querying,”

in Proceedings of the 2011 ACM SIGMOD International Conference on Management

of data, pp. 373–384, ACM, 2011.

[94] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu, “Collective spatial keyword

queries: a distance owner-driven approach,” in Proceedings of the 2013 ACM SIG-

MOD International Conference on Management of Data, pp. 689–700, ACM, 2013.

[95] L. Guo, J. Shao, H. Aung, and K.-L. Tan, “Efficient continuous top-k spatial keyword

queries on road networks,” GeoInformatica, vol. 19, no. 1, pp. 29–60, 2015.

[96] J. Lu, Y. Lu, and G. Cong, “Reverse spatial and textual k nearest neighbor search,”

in ACM SIGMOD, pp. 349–360, 2011.

[97] Y. Gao, X. Qin, B. Zheng, and G. Chen, “Efficient reverse top-k boolean spatial

keyword queries on road networks,” Knowledge and Data Engineering, IEEE Trans-

actions on, vol. 27, pp. 1205–1218, May 2015.

[98] H. Hu, G. Li, Z. Bao, J. Feng, Y. Wu, Z. Gong, and Y. Xu, “Top-k spatio-textual

similarity join,” IEEE Transactions on Knowledge and Data Engineering, vol. 28,

no. 2, pp. 551–565, 2016.

[99] K. Zheng, H. Su, B. Zheng, S. Shang, J. Xu, J. Liu, and X. Zhou, “Interactive top-k

spatial keyword queries,” in Data Engineering (ICDE), 2015 IEEE 31st Interna-

tional Conference on, pp. 423–434, April 2015.

[100] P. Zhang, H. Lin, B. Yao, and D. Lu, “Level-aware collective spatial keyword

queries,” Information Sciences, vol. 378, no. Supplement C, pp. 194 – 214, 2017.

[101] C. Zhang, Y. Zhang, W. Zhang, X. Lin, M. A. Cheema, and X. Wang, “Diversified

spatial keyword search on road networks,” in EDBT, pp. 367–378, 2014.

132 REFERENCES

[102] X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu, “Retrieving regions of interest for

user exploration,” Proc. VLDB Endow., vol. 7, pp. 733–744, May 2014.

[103] Y. Xu, J. Guan, F. Li, and S. Zhou, “Scalable continual top-k keyword search in

relational databases,” Data & Knowledge Engineering, vol. 86, pp. 206–223, 2013.

[104] C. Luo, L. Junlin, G. Li, W. Wei, Y. Li, and J. Li, “Efficient reverse spatial and

textual k nearest neighbor queries on road networks,” Knowledge-Based Systems,

vol. 93, no. Supplement C, pp. 121 – 134, 2016.

[105] D.-W. Choi and C.-W. Chung, “A k-partitioning algorithm for clustering large-scale

spatio-textual data,” Information Systems, vol. 64, no. Supplement C, pp. 1 – 11,

2017.

[106] S. Alsubaiee and C. Li, “Fuzzy keyword search on spatial data,” in Database Systems

for Advanced Applications, pp. 464–467, Springer, 2010.

[107] D. Zhang, B. C. Ooi, and A. K. H. Tung, “Locating mapped resources in web 2.0,”

in IEEE ICDE, pp. 521–532, 2010.

[108] S. Luo, Y. Luo, S. Zhou, G. Cong, J. Guan, and Z. Yong, “Distributed spatial

keyword querying on road networks.,” in EDBT, pp. 235–246, 2014.

[109] T. Hashem, T. Hashem, M. E. Ali, and L. Kulik, “Group trip planning queries in

spatial databases,” in Proceedings of the 13th International Conference on Advances

in Spatial and Temporal Databases, SSTD’13, (Berlin, Heidelberg), pp. 259–276,

Springer-Verlag, 2013.

[110] D. Taniar, M. A. Cheema, and Z. Shao, “Trip Planning Queries in Indoor Venues,”

The Computer Journal, vol. 61, pp. 409–426, 11 2017.

[111] H. Chen, W.-S. Ku, M.-T. Sun, and R. Zimmermann, “The multi-rule partial se-

quenced route query,” in Proceedings of the 16th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, GIS ’08, (New York,

NY, USA), pp. 10:1–10:10, ACM, 2008.

[112] C. Salgado, “Keyword-aware skyline routes search in indoor venues,” in Proceedings

of the 9th ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness,

ISA’18, (New York, NY, USA), pp. 25–31, ACM, 2018.

REFERENCES 133

[113] J. Dai, C. Liu, J. Xu, and Z. Ding, “On personalized and sequenced route planning,”

World Wide Web, vol. 19, pp. 679–705, Jul 2016.

[114] S. C. Soma, T. Hashem, M. A. Cheema, and S. Samrose, “Trip planning queries with

location privacy in spatial databases,” World Wide Web, vol. 20, no. 2, pp. 205–236,

2017.

[115] S. Du, H. Zhang, H. Xu, J. Yang, and O. Tu, “To make the travel healthier: a

new tourism personalized route recommendation algorithm,” Journal of Ambient

Intelligence and Humanized Computing, Oct 2018.

[116] J. S. B. Mitchell and C. H. Papadimitriou, “The weighted region problem: Finding

shortest paths through a weighted planar subdivision,” J. ACM, vol. 38, pp. 18–73,

Jan. 1991.

[117] S.-W. Cheng, J. Jin, A. Vigneron, and Y. Wang, “Approximate shortest homotopic

paths in weighted regions,” in Algorithms and Computation (O. Cheong, K.-Y. Chwa,

and K. Park, eds.), (Berlin, Heidelberg), pp. 109–120, Springer Berlin Heidelberg,

2010.

[118] L. Aleksandrov, A. Maheshwari, and J.-R. Sack, “Determining approximate shortest

paths on weighted polyhedral surfaces,” J. ACM, vol. 52, pp. 25–53, Jan. 2005.

[119] M. Lanthier, A. Maheshwari, and J.-R. Sack, “Shortest anisotropic paths on

terrains,” in Automata, Languages and Programming (J. Wiedermann, P. van

Emde Boas, and M. Nielsen, eds.), (Berlin, Heidelberg), pp. 524–533, Springer Berlin

Heidelberg, 1999.

[120] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J. R. Sack, “An ε — approxi-

mation algorithm for weighted shortest paths on polyhedral surfaces,” in Algorithm

Theory — SWAT’98 (S. Arnborg and L. Ivansson, eds.), (Berlin, Heidelberg), pp. 11–

22, Springer Berlin Heidelberg, 1998.

[121] C. Li, Y. Gu, G. Yu, and F. Li, “wneighbors: A method for finding k nearest

neighbors in weighted regions,” in Database Systems for Advanced Applications (J. X.

Yu, M. H. Kim, and R. Unland, eds.), (Berlin, Heidelberg), pp. 134–148, Springer

Berlin Heidelberg, 2011.

134 REFERENCES

[122] G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,” in Proceed-

ings of the ACM/IEEE Conference on Supercomputing, 1995.

[123] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An efficient

and robust access method for points and rectangles,” in ACM SIGMOD, pp. 322–

331, 1990.

[124] C. Demetrescu, “9th dimacs implementation challenge - shortest paths.” http:

//www.dis.uniroma1.it/challenge9/download.shtml, accessed 2019-02-

18.

[125] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng, “Real datasets

for spatial databases: Road networks and points of interest.” http://www.cs.

utah.edu/˜lifeifei/SpatialDataset.htm, accessed 2019-02-18.

[126] P. Stone, “General inquirer.” http://www.wjh.harvard.edu/˜inquirer/

No.html, accessed 2019-02-18.

[127] J. Breen, “twitter-sentiment-analysis-tutorial-201107.” https://github.

com/jeffreybreen/twitter-sentiment-analysis-tutorial-201107/

blob/master/data/opinion-lexicon-English/negative-words.txt,

accessed 2019-02-18.

[128] H. Schrom-Feiertag, P. Luley, and L. Paletta, A Mobile LBS for Geo-Content Gener-

ation Facilitating Users to Share, Rate and Access Information in a Novel Manner,

pp. 55–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[129] N. Allheeib, M. S. Islam, D. Taniar, Z. Shao, and M. A. Cheema, “Density-based

reverse nearest neighbourhood search in spatial databases,” Journal of Ambient

Intelligence and Humanized Computing, Oct 2018.

[130] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa, “Keyword

search in spatial databases: Towards searching by document,” in 2009 IEEE 25th

International Conference on Data Engineering, pp. 688–699, March 2009.

[131] I. K. Adusei, K. Kyamakya, and F. Erbas, “Location-based services: advances and

challenges,” in Canadian Conference on Electrical and Computer Engineering 2004

(IEEE Cat. No.04CH37513), vol. 1, pp. 1–7 Vol.1, May 2004.

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.wjh.harvard.edu/~inquirer/No.html
http://www.wjh.harvard.edu/~inquirer/No.html
https://github.com/jeffreybreen/twitter-sentiment-analysis-tutorial-201107/blob/master/data/opinion-lexicon-English/negative-words.txt
https://github.com/jeffreybreen/twitter-sentiment-analysis-tutorial-201107/blob/master/data/opinion-lexicon-English/negative-words.txt
https://github.com/jeffreybreen/twitter-sentiment-analysis-tutorial-201107/blob/master/data/opinion-lexicon-English/negative-words.txt

REFERENCES 135

[132] K. Virrantaus, J. Markkula, A. Garmash, V. Terziyan, J. Veijalainen, A. Katanosov,

and H. Tirri, “Developing gis-supported location-based services,” in Proceedings

of the Second International Conference on Web Information Systems Engineering,

vol. 2, pp. 66–75 vol.2, Dec 2001.

[133] M. Gruteser and D. Grunwald, “Anonymous usage of location-based services through

spatial and temporal cloaking,” in Proceedings of the 1st International Conference

on Mobile Systems, Applications and Services, MobiSys ’03, (New York, NY, USA),

pp. 31–42, ACM, 2003.

[134] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee, “Location-based spatial

queries,” in Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’03, (New York, NY, USA), pp. 443–454, ACM,

2003.

[135] J. Xu, L. Guo, Z. Ding, X. Sun, and C. Liu, “Traffic aware route planning in dynamic

road networks,” in Database Systems for Advanced Applications (S.-g. Lee, Z. Peng,

X. Zhou, Y.-S. Moon, R. Unland, and J. Yoo, eds.), (Berlin, Heidelberg), pp. 576–

591, Springer Berlin Heidelberg, 2012.

[136] L. Wu, W. Ma, Y. Yang, and K. Wang, “A competitive analysis approach for route

choice with uncertain travel times and blocked nodes,” Journal of Ambient Intelli-

gence and Humanized Computing, vol. 10, pp. 345–355, Jan 2019.

[137] A. A. Haryanto, M. S. Islam, D. Taniar, and M. A. Cheema, “Ig-tree: an efficient

spatial keyword index for planning best path queries on road networks,” World Wide

Web, Nov 2018.

[138] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational Geometry:

Algorithms and Applications. Santa Clara, CA, USA: Springer-Verlag TELOS, 3rd

ed. ed., 2008.

[139] N. A. Papadakis and A. N. Perakis, “Deterministic minimal time vessel routing,”

Operations Research, vol. 38, no. 3, pp. 426–438, 1990.

[140] S. T. Leutenegger, “Multi dimensional data sets.” https://www.cs.du.edu/

˜leut/MultiDimData.html, accessed 2019-02-18.

https://www.cs.du.edu/~leut/MultiDimData.html
https://www.cs.du.edu/~leut/MultiDimData.html

136 REFERENCES

[141] S. T. Leutenegger, M. A. Lopez, and J. Edgington, “Str: a simple and efficient

algorithm for r-tree packing,” in Proceedings 13th International Conference on Data

Engineering, pp. 497–506, April 1997.

[142] D. J. Mavriplis, “An advancing front delaunay triangulation algorithm designed for

robustness,” Journal of Computational Physics, vol. 117, no. 1, pp. 90 – 101, 1995.

Appendix A

Best Path on Road Networks

This appendix section provides some sample datasets that we use in our experiments and

also the raw evaluation results of our experiments on Best Path in Road Networks setting.

A.1 Sample Datasets

In this section, we provide some sample datasets that we use in our experiments. Each

dataset consists of vertices data, edges data, and keywords data. We also provide a snippet

of the IG-Tree data structure after all these datasets have been indexed.

A.1.1 Sample data for vertices

Below we present sample vertices data. The first line indicates the number of vertices in

the dataset, the second line and forward consists of v to indicate that it is a vertex, an ID

of the vertex, the longitude and latitude of the corresponding vertex.

264346

v 1 -73530767 41085396

v 2 -73530538 41086098

v 3 -73519366 41048796

v 4 -73519377 41048654

v 5 -73524567 41093796

v 6 -73525490 41093834

v 7 -73531927 41110484

v 8 -73530106 41110611

137

138 APPENDIX A. BEST PATH ON ROAD NETWORKS

v 9 -73529341 41125895

v 10 -73529746 41127369

v 11 -73530583 41125051

v 12 -73529763 41085358

v 13 -73529834 41086062

v 14 -73613384 41065086

v 15 -73615019 41065131

v 16 -73693133 41058075

v 17 -73694273 41059296

v 18 -73512230 41287431

v 19 -73511896 41286556

v 20 -73501634 41286067

v 21 -73501424 41284975

v 22 -73500122 41286141

v 23 -73554632 41132182

v 24 -73554531 41129747

v 25 -73663848 41025429
...

v 264346 -73917690 41291980

A.1.2 Sample data for edges

Below we present sample edges data. The first line indicates the number of vertices and

edges in the dataset. The second line and forward consists of a to indicate that it is an

edge, the vertex where the edge starts, the vertex where the edge ends, and the edge’s

weight.

264346 733846

a 1 2 803

a 2 1 803

a 3 4 158

a 4 3 158

a 5 6 774

a 6 5 774

A.1. SAMPLE DATASETS 139

a 7 8 1531

a 8 7 1531

a 9 10 1673

a 10 9 1673

a 9 11 1400

a 11 9 1400

a 1 12 842

a 12 1 842

a 2 13 591

a 13 2 591

a 14 15 1371

a 15 14 1371

a 16 17 1659

a 17 16 1659

a 18 19 1012

a 19 18 1012

a 20 21 1226

a 21 20 1226

a 20 22 1265
...

a 259707 261228 389

A.1.3 Sample data for keywords

The keywords dataset presented below consists of a keyword and its coordinate location

in the graph.

airport -124.18944 41.93778

airport -124.21056 40.78028

airport -124.21222 40.78083

airport -124.23472 41.77917

airport -124.23639 41.78
...

arch -115.74778 35.23944

140 APPENDIX A. BEST PATH ON ROAD NETWORKS

arch -116.09972 34.88194

arch -116.76444 36.285

arch -116.84194 34.95111

arch -117.2725 32.85111
...

area -114.5675 32.76083

area -115.07722 34.14111

area -115.25194 35.20139

area -115.37722 34.34833

area -115.51333 33.07556
...

woods -124.08444 41.78889

woods -124.08667 41.78611

woods -124.10861 41.76806

woods -124.12889 41.76639

woods -124.13056 41.80639

A.1. SAMPLE DATASETS 141

A.1.4 A snippet of IG-Tree data structure

Figure A.1: A snippet of the indexed vertices and edges data to IG-Tree

142 APPENDIX A. BEST PATH ON ROAD NETWORKS

A.2 Evaluation Data

This section presents the evaluation results of our experiments in Chapter 3.

A.2.1 IG-Tree

Table A.1: Building Time (ms)

Dataset IG-Tree G-Tree

CAL 2790.23 1992.50
NY 554465.00 498784.15
COL 1127079.26 1035827.45
FLA 3658657.04 3612154.00

Table A.2: Index Size (MB)

Dataset IG-Tree G-Tree

CAL 18.94 16.80
NY 321.40 297.40
COL 489.80 454.10
FLA 1335.70 1200.00

Table A.3: Index Reconstruction Time (ms)

No. of k− Runtime

1 0.92

2 192.732

3 298.844

4 267.300

5 374.010

6 379.524

7 389.116

8 377.966

9 364.102

10 775.528

11 1082.498

12 1169.898

13 1142.446

14 1238.278

15 1378.931

A.2. EVALUATION DATA 143

A.2.2 Query Performance with all positive query keywords

Table A.4: Query performance (in µs) with all positive query keywords for CAL

K OptDist Ancestor Euclidean Baseline

1 118 30 20 360

5 420 270 164 2025160

10 822 572 456 ∞
15 1148 854 562 ∞

Table A.5: Query performance (in µs) with all positive query keywords for NY

K OptDist Ancestor Euclidean Baseline

1 280 300 170 480

5 960 1110 1200 21507410

10 1750 1830 1780 ∞
15 2520 2580 3100 ∞

Table A.6: Query performance (in µs) with all positive query keywords for COL

K OptDist Ancestor Euclidean Baseline

1 472 530 186 1060

5 1272 1296 776 11917850

10 2528 2886 2022.5 ∞
15 4170 4430 2650 ∞

Table A.7: Query performance (in µs) with all positive query keywords for FLA

K OptDist Ancestor Euclidean Baseline

1 484 420 160 1410

5 1644 1136 677.5 22731410

10 1940 1630 1322.5 ∞
15 2966 2780 1540 ∞

144 APPENDIX A. BEST PATH ON ROAD NETWORKS

A.2.3 Approximation accuracy for all positive query keywords

Table A.8: Approximation accuracy for CAL

K OptDist Ancestor Euclidean

1 100.00% 100.00% 100.00%

5 90.97% 89.08% 89.08%

10 17.84% 11.35% 11.35%

15 22.44% 15.95% 15.95%

Table A.9: Approximation accuracy for NY

K OptDist Ancestor Euclidean

1 100.00% 100.00% 98.27%

5 83.65% 72.69% 13.26%

10 92.15% 72.33% 4.83%

15 68.33% 43.57% 0.00%

Table A.10: Approximation accuracy for COL

K OptDist Ancestor Euclidean

1 100.00% 100.00% 92.89%

5 89.96% 89.96% 89.23%

10 79.00% 51.20% 26.62%

15 53.72% 46.08% 16.02%

Table A.11: Approximation accuracy for FLA

K OptDist Ancestor Euclidean

1 100.00% 100.00% 44.58%

5 74.74% 51.30% 9.07%

10 28.93% 2.32% 0.00%

15 28.93% 3.95% 0.00%

A.2. EVALUATION DATA 145

A.2.4 Query performance with combination of positive and negative

query keywords

Table A.12: Query performance (in µs) for CAL

K OptDist Ancestor Euclidean Baseline

1 126 130 28 420

5 392 440 174 2070810

10 870 800 328 ∞
15 1278 1170 376 ∞

Table A.13: Query performance (in µs) for NY

K OptDist Ancestor Euclidean Baseline

1 370 370 200 560

5 1430 1530 1330 15867510

10 2570 2520 1780 ∞
15 3830 3590 3070 ∞

Table A.14: Query performance (in µs) for COL

K OptDist Ancestor Euclidean Baseline

1 508 486 190 1210

5 4311358 4330274 1425448 317350200

10 8750282 8473730 1420520 ∞
15 13212202 12908344 2777676 ∞

Table A.15: Query performance (in µs) for FLA

K OptDist Ancestor Euclidean Baseline

1 4771740 4627490 240 4455530

5 11746080 12028610 890 ∞
10 33483730 31591060 4431390 ∞
15 47044680 51762480 8832640 ∞

146 APPENDIX A. BEST PATH ON ROAD NETWORKS

A.2.5 Approximation accuracy for datasets with negative keywords

Table A.16: Approximation accuracy for CAL

K OptDist Ancestor Euclidean

1 100.00% 100.00% 100.00%

5 89.08% 89.08% 89.08%

10 6.49% 6.49% 4.86%

15 6.49% 6.49% 7.30%

Table A.17: Approximation accuracy for NY

K OptDist Ancestor Euclidean

1 100.00% 100.00% 98.27%

5 83.65% 83.65% 13.26%

10 86.14% 86.14% 21.82%

15 68.33% 68.33% 0.00%

Table A.18: Approximation accuracy for COL

K OptDist Ancestor Euclidean

1 100.00% 100.00% 92.89%

5 33.95% 33.95% 30.61%

10 30.31% 30.31% 10.12%

15 55.15% 55.15% 14.19%

Table A.19: Approximation accuracy for FLA

K OptDist Ancestor Euclidean

1 100.00% 100.00% 44.58%

5 77.18% 77.18% 12.79%

10 28.93% 28.93% 22.08%

15 28.17% 28.17% 0.00%

A.2. EVALUATION DATA 147

A.2.6 Query performance based on keyword density

Table A.20: Running time for CAL (µs)

Density OptDist Ancestor Euclidean Baseline

0.01 7730 310 260 111480

0.05 36160 210 560 754650

0.10 80150 460 1170 1632060

0.15 160820 600 1560 1988160

0.20 167140 680 2110 3601800

0.25 206610 590 3780 4790410

0.30 241010 830 2800 5824460

Table A.21: Running time for NY (µs)

Density OptDist Ancestor Euclidean Baseline

0.01 314880 316110 2420 5205130

0.05 1514410 1437980 7680 28806980

0.10 3132610 2866290 15120 72088560

0.15 4383280 4356070 22100 117026160

0.20 5958840 5881730 28440 181371380

0.25 7492410 7210280 36040 246477170

0.30 9170350 8789430 43050 325406060

Table A.22: Running time for COL (µs)

Density OptDist Ancestor Euclidean Baseline

0.01 740457 736650 58900 5233520

0.05 3942953 3769780 23670 5777270

0.10 7610313 7646680 32410 11319830

0.15 11546237 10990880 38770 78222030

0.20 14963597 15037360 49960 142473920

0.25 19289803 18938100 69610 29134130

0.30 23850140 23798180 66170 167117250

Table A.23: Running time for FLA (µs)

Density OptDist Ancestor Euclidean Baseline

0.01 4781260 25870 11160 192074020

0.05 23185060 20830 39940 1149258000

0.10 50665380 41420 75510 ∞
0.15 76096870 62720 133880 ∞
0.20 94145250 89870 144610 ∞
0.25 117999220 98620 175000 ∞
0.30 145745630 128560 207170 ∞

148 APPENDIX A. BEST PATH ON ROAD NETWORKS

A.2.7 Query performance when K is varied (keyword density=0.05)

Table A.24: Query performance (in µs) when K is varied for CAL

K OptDist Ancestor Euclidean Baseline

1 9850 8280 180 44230

5 38100 36930 370 6421390

10 117810 115470 870 ∞
15 169650 165590 2350 ∞

Table A.25: Query performance (in µs) when K is varied for NY

K OptDist Ancestor Euclidean Baseline

1 1514410 1437980 7680 28806980

5 7476930 7388430 42720 325406060

10 14470460 14024720 92570 ∞
15 21355820 21221190 142780 ∞

Table A.26: Query performance (in µs) when K is varied for COL

K OptDist Ancestor Euclidean Baseline

1 3212160 2889780 2920 22378240

5 24689770 23079440 37275 ∞
10 38218740 35421150 117195 ∞
15 47106560 44772080 168980 ∞

Table A.27: Query performance (in µs) when K is varied for FLA

K OptDist Ancestor Euclidean Baseline

1 40302960 41841250 152840 64213900

5 163691360 157232920 273540 ∞
10 261409640 245686190 752300 ∞
15 448582940 421862600 957670 ∞

A.2. EVALUATION DATA 149

A.2.8 Query performance based on keyword density with all negative

keywords

Table A.28: Running time for CAL (µs)

Density OptDist Ancestor Euclidean Baseline

0.01 10.00 13.50 37.33 24.00

0.015 10.00 12.50 23.33 12.00

0.02 10.00 10.00 20.00 18.00

0.025 10.00 10.00 30.00 13.00

0.03 10.00 10.00 23.33 12.00

0.035 10.00 12.50 23.33 32.00

0.04 10.00 10.00 23.33 18.00

0.045 10.00 10.00 20.00 14.00

0.05 10.00 15.00 16.67 22.00

0.055 10.00 10.00 26.67 16.00

Table A.29: Running time for NY (µs)

Density OptDist Ancestor Euclidean Baseline

0.01 70.00 60.00 7030.00 8700.00

0.015 80.00 70.00 10480.00 10890.00

0.02 80.00 80.00 16270.00 16940.00

0.025 80.00 80.00 22400.00 22790.00

0.03 100.00 90.00 29360.00 31270.00

0.035 110.00 90.00 32010.00 39810.00

0.04 120.00 100.00 50760.00 62910.00

0.045 120.00 110.00 70020.00 101380.00

0.05 110.00 100.00 70730.00 112950.00

0.055 90.00 110.00 106520.00 157560.00

Table A.30: Running time for COL (µs)

Density OptDist Ancestor Euclidean Baseline

0.01 210 210 4018410 3368290

0.015 130 130 29100 61390

0.02 100 100 1944510 1694840

0.025 100 100 5715200 3318000

0.03 120 110 198620 116290

0.035 120 120 2181470 1797700

0.04 100 110 3914810 3410070

0.045 240 100 5646470 5114500

0.05 230 140 4637690 2746790

0.055 220 100 5856380 5425160

150 APPENDIX A. BEST PATH ON ROAD NETWORKS

Table A.31: Running time for FLA (µs)

Density OptDist Ancestor Euclidean Baseline

0.01 150 180 134700 36676

0.015 110 120 291410 34790

0.02 90 140 505340 71830

0.025 80 110 683270 160700

0.03 80 110 2379900 130240

0.035 110 180 2530570 220020

0.04 80 120 1458890 2486840

0.045 140 170 3818020 3933990

0.05 190 180 6122890 1851210

0.055 180 150 2594470 4640500

A.2.9 Running time based on keyword ratio (positive:negative)

Table A.32: Running time for CAL (µs)

Ratio (k+ : k−) OptDist Ancestor Euclidean Baseline

1:0 19350 15960 240 63140

0:1 10 10 10 10

1:1 19590 18670 130 59060

5:0 81540 76240 510 628240

0:5 10 20 10 10

5:1 124580 121570 910 965350

Table A.33: Running time for NY (µs)

Ratio (k+ : k−) OptDist Ancestor Euclidean Baseline

1:0 432675 338290 3430 5301010

0:1 40 40 40 56250

1:1 755130 431200 14750 8175750

5:0 1578150 1648927 12740 29581170

0:5 60 90 60 131250

5:1 3484590 1428350 1140 104590

Table A.34: Running time for COL (µs)

Ratio (k+ : k−) OptDist Ancestor Euclidean Baseline

1:0 754100 646270 122040 8297350

0:1 120 140 10 68130

1:1 7275250 6606650 4160 17669590

5:0 3275750 3016690 28700 53244890

0:5 180 110 10 2869860

5:1 51253040 51583770 23950 122071220

A.2. EVALUATION DATA 151

Table A.35: Running time for FLA (µs)

Ratio (k+ : k−) OptDist Ancestor Euclidean Baseline

1:0 4641073 4695650 157815 264780230

0:1 85 120 10 124475

1:1 58663630 62213150 229835 340855640

5:0 24277520 14570340 38985 1329239960

0:5 200 170 10 2155695

5:1 288156000 291612900 32670 170465957

A.2.10 Effect of varying distance between sl and dl

Table A.36: Running time for CAL (µs)

sl-dl Distance OptDist Ancestor Euclidean Baseline

2% 1982 1644 495 7703

4% 1456 1334 385 63029220012

8% 1452 1388 378 ∞
16% 2174 2016 410 ∞
32% 2284 2342 1015 ∞
64% 2650 2886 488 ∞

Table A.37: Running time for NY (µs)

sl-dl Distance OptDist Ancestor Euclidean Baseline

2% 2713 257 1860 7214300

4% 2695 2815 1900 ∞
8% 3200 3413 1810 ∞
16% 3919 3721 2040 ∞
32% 4345 3928 2350 ∞
64% 4391 4588 2100 ∞

Table A.38: Running time for COL (µs)

sl-dl Distance OptDist Ancestor Euclidean Baseline

2% 10286004 10100062 1415092 763418401

4% 10597290 10121202 1375676 ∞
8% 10721350 10229815 3026498 ∞
16% 10812266 10411977.14 1513884 ∞
32% 12872446 12450766 1464288 ∞
64% 12908952 12889676 1467690 ∞

152 APPENDIX A. BEST PATH ON ROAD NETWORKS

Table A.39: Running time for FLA (µs)

sl-dl Distance OptDist Ancestor Euclidean Baseline

2% 51416950 51420868 8464684 7134293200

4% 51226042 49723128 16750744 ∞
8% 54082062 51796420 20881688 ∞
16% 64164566 64205782 16848088 ∞
32% 63393884 66546390 16776136 ∞
64% 61654196 67316516 13249918 ∞

Appendix B

Best Path on Weighted Regions

This appendix section provides some sample datasets that we use in our experiments and

also the raw evaluation results of our experiments on Best Path in Weighted Regions

setting.

B.1 Sample Datasets

In this section, we provide some sample datasets that we use in our experiments. Each

weighted regions dataset consists of vertices data, edges data, faces data, and keywords

data. We also provide a snippet of the wIG-Tree data structure after all these datasets

have been indexed.

B.1.1 Sample data for vertices

Below we present sample vertices data. The first line indicates the number of vertices in

the dataset, the second line and forward consists of v to indicate that it is a vertex, an ID

of the vertex, the longitude and latitude of the corresponding vertex.

5088

v 1 -0.0000000E+02 -0.0000000E+02

v 2 -0.7196484E+01 -0.10000000E+0

v 3 -0.4912166E+01 0.10000000E+02

v 4 -0.1590125E+01 0.10000000E+02

v 5 0.1216096E+01 .10000000E+02

v 6 0.4028150E+01 .10000000E+02

153

154 APPENDIX B. BEST PATH ON WEIGHTED REGIONS

v 7 0.6832086E+01 .10000000E+02

v 8 0.10000000E+02 0.10000000E+02

v 9 0.10000000E+02 0.72046522E+01

v 10 0.000000E+02 44394928E+01

v 11 0.10000000E+02 0.16758174E+01

v 12 0.10000000E+02 0.10975847E+01

v 13 0.10000000E+02 0.38789688E+01

v 14 0.10000000E+02 0.66524759E+01

v 15 0.10000000E+02 0.10000000E+02

v 16 0.72485234E+01 0.10000000E+02

v 17 0.44925888E+01 0.10000000E+02

v 18 0.17219966E+01 0.10000000E+02

v 19 -0.10595662E+01 0.10000000E+02

v 20 -0.38374964E+01 0.10000000E+02

v 21 -0.66067043E+01 0.10000000E+02

v 22 -0.10000000E+02 0.10000000E+02

v 23 -0.10000000E+02 0.72126789E+01

v 24 -0.10000000E+02 0.44215686E+01

v 25 -0.10000000E+02 0.16171541E+01
...

v 5088 -0.73502172E+01 -0.63912125E+01

B.1.2 Sample data for edges

Below we present sample edges data. The first line indicates the number of vertices and

edges in the dataset. The second line and forward consists of a to indicate that it is an

edge, the vertex where the edge starts, the vertex where the edge ends, and the edge’s

weight.

5088 58554

a 5045 5066 1.33275693481564

a 844 295 0.00440306118276318

a 551 466 0.00140518531945969

a 9 8 2.7953478

B.1. SAMPLE DATASETS 155

a 4952 4972 0.702577814698251

a 4988 5027 1.19710684530158

a 728 795 0.00486440527707684

a 439 517 0.00113300306857157

a 298 297 0.00439908271034647

a 5079 14 2.37968692327731

a 4951 4957 0.841799039091048

a 5030 5017 1.23130491867307

a 696 90 0.00501435348120274

a 24 23 2.7911103

a 22 21 3.3932957

a 454 457 0.00126814174177649

a 2 1 7.19717875019483

a 457 513 0.00106442981296512

a 876 877 0.00514234148352673

a 5068 3 17.3618169663472

a 5060 5062 2.00429877030636

a 429 474 0.000766538897405759

a 918 258 0.00492902253747427

a 282 281 0.00447362678231983

a 988 358 0.00707860329115861
...

a 2 5068 7.60800162786464

B.1.3 Sample data for triangle faces

Below we present sample faces data. The first line indicates the number of faces in the

dataset. The second line and forward consists of t to indicate that it is a face, vertices

{vi, vj , vk} that make up the triangle face, and the face’s weight.

9759

t 5045 5066 5007 20

t 844 295 846 17

t 551 466 516 10

156 APPENDIX B. BEST PATH ON WEIGHTED REGIONS

t 9 8 7 15

t 4952 4972 4956 5

t 4988 5027 5016 5

t 728 795 794 9

t 439 517 451 7

t 298 297 873 7

t 5079 14 5065 18

t 4951 4957 4996 20

t 5030 5017 5013 5

t 696 90 1007 5

t 24 23 5082 13

t 22 21 5081 1

t 454 457 440 3

t 2 1 8 5

t 457 513 481 16

t 876 877 889 19

t 5068 3 2 8

t 5060 5062 5061 16

t 429 474 476 4

t 918 258 1010 7

t 282 281 917 15

t 988 358 1132 17
...

a 2 5068 7.60800162786464

B.1.4 Sample data for keywords

Below we present some sample keywords that we use in our experiments of wBestPath. In

our program, we use a random generator to place these keywords randomly in the weighted

regions.

airport

arch

area

B.1. SAMPLE DATASETS 157

arroyo

bar

basin

bay

beach

bench

bend

bridge

building

canal

cape

cemetery

channel

church

civil

cliff

crater

crossing

dam

falls

flat

forest
...

woods

158 APPENDIX B. BEST PATH ON WEIGHTED REGIONS

B.1.5 Sample Data Generator

Figure B.1: Sample program to generate Delaunay Triangulation datasets

B.1. SAMPLE DATASETS 159

B.1.6 A snippet of wIG-Tree data structure

Figure B.2: A snippet of the indexed vertices, edges, and faces data to wIG-Tree

160 APPENDIX B. BEST PATH ON WEIGHTED REGIONS

B.2 Evaluation Data of Best Path on Weighted Regions

This section presents the evaluation results of our experiments in Chapter 4.

B.2.1 wIG-Tree

Table B.1: Building Time (ms)

Dataset wIG-Tree IG-Tree G-Tree

CFD-1 14282.933 1660.15 763.61
CFD-2 680163.79 24598.38 10405.35
CFD-3 11725780.75 122522.72 84217.70

Table B.2: Index Size (MB)

Dataset wIG-Tree IG-Tree G-Tree

CFD-1 29.279 7.8 6.6
CFD-2 313.5 135.5 120.9
CFD-3 1251.6 460.2 398.5

B.2.2 Query Performance with all positive query keywords

Table B.3: Query performance (in µs) with all positive query keywords for CFD-1

K MDA MPA Baseline

1 250 20 220

5 570 360 6621240

10 1330 1000 ∞
15 1820 1130 ∞

Table B.4: Query performance (in µs) with all positive query keywords for CFD-2

K MDA MPA Baseline

1 333 342 480

5 1150 1298 21507410

10 2408 2488 ∞
15 3392 4218 ∞

Table B.5: Query performance (in µs) with all positive query keywords for CFD-3

K MDA MPA Baseline

1 635 552 1410

5 1178 1066 22731410

10 1924 1432 ∞
15 2667 2388 ∞

B.2. EVALUATION DATA OF BEST PATH ON WEIGHTED REGIONS 161

B.2.3 Approximation accuracy for all positive query keywords

Table B.6: Approximation accuracy for CFD-1

K MDA MPA

1 100.00% 100.00%

5 95.04% 59.29%

10 81.37% 37.01%

15 81.37% 10.29%

Table B.7: Approximation accuracy for CFD-2

K MDA MPA

1 100.00% 100.00%

5 93.65% 73.69%

10 92.15% 47.79%

15 68.33% 23.57%

Table B.8: Approximation accuracy for CFD-3

K MDA MPA

1 100.00% 100.00%

5 74.74% 51.30%

10 31.00% 2.32%

15 28.93% 3.95%

162 APPENDIX B. BEST PATH ON WEIGHTED REGIONS

B.2.4 Query performance with combination of positive and negative

query keywords

Table B.9: Query performance (in µs) for CFD-1

K MDA MPA Baseline

1 194 205 517

5 276798 275825 1219522590

10 510492 505584 ∞
15 802734 841557 ∞

Table B.10: Query performance (in µs) for CFD-2

K MDA MPA Baseline

1 403 402 560

5 1136 1206 15867510

10 2372 2404 ∞
15 2966 3724 ∞

Table B.11: Query performance (in µs) for CFD-3

K MDA MPA Baseline

1 4577428 4680524 4455530

5 11396902 12076554 ∞
10 33139018 34992438 ∞
15 49971682 50326990 ∞

B.2.5 Approximation accuracy for datasets with negative keywords

Table B.12: Approximation accuracy for CFD-1

K MDA MPA

1 100.00% 100.00%

5 95.04% 95.04%

10 81.37% 81.37%

15 81.37% 81.37%

Table B.13: Approximation accuracy for CFD-2

K MDA MPA

1 100.00% 100.00%

5 83.65% 83.65%

10 79.14% 79.14%

15 68.33% 68.33%

B.2. EVALUATION DATA OF BEST PATH ON WEIGHTED REGIONS 163

Table B.14: Approximation accuracy for CFD-3

K MDA MPA

1 100.00% 100.00%

5 77.18% 77.18%

10 28.93% 28.93%

15 29.17% 29.17%

B.2.6 Query performance based on keyword density

Table B.15: Running time for CFD-1 (µs)

Density MDA MPA Baseline

0.01 6830 7890 23800

0.05 32060 29270 103420

0.10 78870 58900 309430

0.15 118520 96020 428710

0.20 136880 126200 604100

0.25 165360 159540 715300

0.30 187800 185900 927930

Table B.16: Running time for CFD-2 (µs)

Density MDA MPA Baseline

0.01 4648 45790 496150

0.05 23325 248790 2423280

0.10 48784 499890 6553570

0.15 71647 723670 12422250

0.20 95635 982680 19761120

0.25 127055 1387240 28752420

0.30 149762 1551030 39041870

Table B.17: Running time for CFD-3 (µs)

Density MDA MPA Baseline

0.01 848570 956870 30486030

0.05 4073110 4832290 172278150

0.10 8127180 9981500 379953640

0.15 12239270 15110690 ∞
0.20 16254880 19180300 ∞
0.25 20620330 21393360 ∞
0.30 24515200 24641760 ∞

164 APPENDIX B. BEST PATH ON WEIGHTED REGIONS

B.2.7 Query performance based on keyword density with all negative

keywords

Table B.18: Running time for CFD-1 (µs)

Density (%) MDA MPA Baseline

0.1 890 963 1845

0.5 710 695 1500

1 713 760 1110

1.5 643 670 1300

2 793 740 1220

2.5 780 670 1140

3 607 635 1490

3.5 942 975 1152

4 980 1380 2000

4.5 740 700 1380

5 600 660 720

5.5 820 760 1060

Table B.19: Running time for CFD-2 (µs)

Density (%) MDA MPA Baseline

0.1 296000 286000 1027000

0.5 289000 285000 2390000

1 678740 680000 1373930

1.5 521000 524000 1674000

2 407000 386000 1709000

2.5 397000 419000 2070000

3 2090330 2100970 4322110

3.5 622000 555000 1804000

4 1831690 1826220 3773060

4.5 2178450 2441407 2192468

5 791000 813000 2033000

5.5 1086740 1069770 2124880

B.2. EVALUATION DATA OF BEST PATH ON WEIGHTED REGIONS 165

Table B.20: Running time for CFD-3 (µs)

Density (%) MDA MPA Baseline

0.1 497000 444000 8631900

0.5 4585450 4405320 10384980

1 2156150 2263580 6275550

1.5 923000 983700 13982900

2 10643470 10244370 11498040

2.5 11121190 11076300 16605270

3 11409230 11227130 23908850

3.5 15894050 15436930 32179790

4 12406210 12473930 18118060

4.5 20262750 19020530 34702960

5 19735120 18381600 34399800

5.5 14569600 13386450 28133340

B.2.8 Effect of varying distance between sl and dl

Table B.21: Running time for CFD-1 (µs)

Density (%) MDA MPA Baseline

2% 994865 1005517 7703000

4% 916310 939057 ∞
8% 934115 967367 ∞
16% 898915 959023 ∞
32% 912095 912200 ∞
64% 840020 884157 ∞

Table B.22: Running time for CFD-2 (µs)

Density (%) MDA MPA Baseline

2% 2620000 3135000 77723012

4% 2405000 3055000 ∞
8% 2750000 3200000 ∞
16% 3210000 3995000 ∞
32% 3470000 3745000 ∞
64% 4060000 4740000 ∞

Table B.23: Running time for CFD-3 (µs)

Density (%) MDA MPA Baseline

2% 55782285 56133445 810350000

4% 57731875 58302465 ∞
8% 68949950 70007595 ∞
16% 69102365 69391260 ∞
32% 74646890 69288190 ∞
64% 72281560 69840325 ∞

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation
	Best Path on Road Networks
	Best Path on Weighted Regions

	Research Objectives
	Contributions
	Best Path on Road Networks
	Best Path on Weighted Regions

	Thesis Organisation

	Literature Review
	Overview
	Spatial Only Queries
	Spatial Queries on Euclidean Space
	Spatial Queries on Road Networks

	Spatial Keywords Queries
	Route-Planning Queries
	Weighted Regions
	Shortest Path on Weighted Regions
	wNeighbor

	Summary of Existing Issues

	Best Path Queries on Road Networks
	Overview
	Challenges
	Contributions
	Organisation

	Preliminaries
	Road Network
	Data Model
	Query Model

	Complexity Analysis
	Data Index
	G-Tree
	IR2-Tree
	Proposed Data Index: IG-Tree

	Query Processing
	Baseline Algorithm
	Optimal Distance Approximation Search
	Ancestor Priority Approximation Search
	Euclidean-based Approximation Search

	Experiment
	Settings
	Index Evaluation
	Performance Study

	Conclusion

	Best Path Queries on Weighted Regions
	Overview
	Challenges
	Contributions
	Organisation

	Problem Statement
	Basic Concepts
	IG-Tree
	wNeighbor

	Data Index
	wIG-Tree

	Negative Query Keywords
	Query Processing
	Baseline Algorithm
	Minimum Distance Approximation (MDA) Algorithm
	Minimum Path Approximation (MPA) Algorithm

	Experiment
	Settings
	Index Evaluation
	Performance Study

	Conclusion

	Final Remarks
	Overview
	Conclusion
	Limitations and Future Research

	References
	Appendix A Best Path on Road Networks
	Sample Datasets
	Sample data for vertices
	Sample data for edges
	Sample data for keywords
	A snippet of IG-Tree data structure

	Evaluation Data
	IG-Tree
	Query Performance with all positive query keywords
	Approximation accuracy for all positive query keywords
	Query performance with combination of positive and negative query keywords
	Approximation accuracy for datasets with negative keywords
	Query performance based on keyword density
	Query performance when K is varied (keyword density=0.05)
	Query performance based on keyword density with all negative keywords
	Running time based on keyword ratio (positive:negative)
	Effect of varying distance between sl and dl

	Appendix B Best Path on Weighted Regions
	Sample Datasets
	Sample data for vertices
	Sample data for edges
	Sample data for triangle faces
	Sample data for keywords
	Sample Data Generator
	A snippet of wIG-Tree data structure

	Evaluation Data of Best Path on Weighted Regions
	wIG-Tree
	Query Performance with all positive query keywords
	Approximation accuracy for all positive query keywords
	Query performance with combination of positive and negative query keywords
	Approximation accuracy for datasets with negative keywords
	Query performance based on keyword density
	Query performance based on keyword density with all negative keywords
	Effect of varying distance between sl and dl

