
Transmission-Line Matrix (TLM) modelling
of neural fields

By

Momcilo Prodanovic, MEng.

A thesis submitted for the Degree of
Master of Engineering Science (Research)

Department of Electrical and Computer Systems Engineering
Monash University

Melbourne, Victoria 3800
Australia

December, 2017

iii

Copyright notice

© Momcilo Prodanovic (2017). All Rights Reserved.

I certify that I have made all reasonable efforts to secure copyright permissions for third-
party content included in this thesis and have not knowingly added copyright content to my
work without the owner's permission.

v

Abstract

Brain structure and dynamics have been the focus of a vast number of recent scientific
studies. Numerous models have been developed for the purpose to describe the neural
processes at different scales, ranging from the substructures of the individual neurons,
through neural network models at the microscopic level describing the interconnections
between the individual neurons with varying degrees of idealisation, up to the mesoscopic
models explaining how the neural populations interact to the macroscopic neural field models
informing us about the whole brain dynamics and the interactions between the large-scale
neural systems such as the cortical regions, the thalamus, and the brain stem. In the early
days of neuroscience, models had to be kept simpler so that results could be obtained
analytically. The recent development of powerful computers has allowed researchers to
create more realistic, but also more complex models based on numerical simulation methods,
avoiding limitations and simplified assumptions usually built in analytical solutions.

Depending on the model concept used, there are many ways the equations can be solved
numerically. One approach is to replace the equations by analogue models and probably the
best-known example is the usage of electrical network to mimic the physical problem where
solution could be obtained using conventional circuit analysis techniques in either the time or
frequency domains. The most elegant electrical equivalent network numerical method is the
Transmission-Line Matrix method (TLM) that leads to a simple numerical discretisation
scheme.

In this thesis, the feasibility to numerically solve the inhomogeneous damped wave equations
using TLM techniques is explored. The equations are used in a multiscale neural field brain
model, called NeuroField, to represent axonal propagation of activity through the cortex. The
hypothesis tested was if the usage of TLM leads to more understandable and efficient brain
modelling and what the cost in computer resources for those benefits is. This approach differs
from the currently used Finite Difference (FD) numerical method in NeuroField by providing
the electrical equivalent network where all the NeuroField model parameters have analogues
in electrical elements of the TLM node, thus enabling better understanding of the physical
implications of discretisation and of the model.

The numerical approximations of NeuroField damped wave equations developed and solved
in this thesis by TLM simulations show a great compatibility with FD. In future, the developed,
TLM based NeuroField model, can be used for building a brain-on-the-chip for in-silico brain
experimentation, which will greatly help the advancement of neuroscience.

vii

Declaration

This thesis contains no material which has been accepted for the award of any other degree
or diploma at any university or equivalent institution and that, to the best of my knowledge
and belief, this thesis contains no material previously published or written by another
person, except where due reference is made in the text of the thesis.

Momcilo Prodanovic

Melbourne, Australia

December, 2017

ix

Acknowledgements

I would like to thank my main supervisor, Professor Arthur Lowery, for his guidance and
encouragement throughout my research work. Without his supervision and expert advice this
thesis would not have been possible.

I would also like to thank my associate supervisor, Professor Thomas Drummond, for his
valuable suggestions.

Special thanks to Professor Peter Robinson and Dr Paula Sanz-Leon from the School of Physics
at the University of Sydney for providing me the access to their NeuroField software and their
invaluable support and comments whenever I had some doubts about the program.

Sincere thanks to Monash University, Faculty of Engineering and the Department of Electrical
and Computer Systems Engineering (ECSE) for supporting me academically and financially for
the duration of my Master research.

I also want to thank to The Australian Research Council (ARC) Centre of Excellence for
Integrative Brain Function (CIBF) for the financial support to travel to the Centre’s meetings
and the opportunity to collaborate with the great scientists in the neuroscience field within
the Centre.

Thanks to all my new friends and colleagues at ECSE (Harish Vangala, Jignesh Jokhakar,
Dilpreet Buxi and Callum Laurenson) for their emotional support and the productive technical
discussions throughout my candidature.

Finally, I must express my very profound gratitude to my parents and to my spouse Emma,
for providing me with unfailing support and continuous encouragement throughout my years
of study and through the process of researching and writing this thesis. This accomplishment
would not have been possible without them. Thank you.

Momcilo Prodanovic

xi

Contents
Abstract .. v

1. Introduction .. 1

2. Computational Neuroscience ... 6

2.1. Models of neurons .. 6

2.2. Computational models of the brain .. 8

2.2.1. Spiking neuron models .. 10

2.2.2. Neuronal network models .. 11

2.2.3. Neural mass models and neural field models ... 12

2.2.4. Composite neural models ... 14

2.2.5. Neural simulators .. 14

2.3. Conclusion ... 15

3. “NeuroField” Program .. 16

3.1. NeuroField algorithm .. 17

3.2. Conclusion ... 20

4. Transmission-line matrix method ... 22

4.1. TLM literature review ... 22

4.2. Analogy of TLM method and neurological activity ... 26

4.3. TLM algorithm ... 27

4.4. Conclusion ... 31

5. Numerical solution of hyperbolic equations .. 32

5.1. Analytical solution of the 1D undamped wave equation ... 33

5.2. Analytical solution of the 1D damped wave equation .. 35

5.3. Numerical solution of plucked string equation – 1D undamped wave equation 35

5.4. Numerical solution of the 1D damped wave equation ... 38

5.5. Analytical solution of the 2D undamped wave equation ... 40

5.6. Analytical solution of the 2D damped wave equation .. 42

5.7. Numerical solution of 2D undamped wave equation ... 43

5.8. Numerical solution of 2D damped wave equation ... 46

5.9. The nine-point stencil method for numerical solution of the 2D wave equation 48

5.10. Numerical comparisons between five-point and nine-point stencils 52

5.11. Conclusion ... 58

6. Mapping NeuroField parameters to TLM ... 59

6.1. NeuroField wave equation in FD ... 60

6.2. TLM method for inhomogeneous (or forced) damped wave equation 61

6.2.1. TLM equivalent network ... 61

6.2.2. Calculation of TLM cell parameters to match NeuroField and the units analysis 64

6.2.3. Electrical equivalent for lumped TLM cell ... 68

xii

6.3. Discretisation and Boundary conditions ... 74

6.3.1. Space and time discretisation in FD method .. 74

6.3.2. Courant condition for FD numerical method .. 75

6.3.3. Space and time discretisation in TLM ... 77

6.3.4. Boundary conditions ... 79

6.4. Conclusion ... 79

7. Comparison of the FD and TLM simulations .. 81

7.1. Comparison between FD and TLM methods to numerically solve the 2D wave PDEs 82

7.1.1. Undamped wave PDEs .. 82

7.1.2. Damped wave PDEs .. 89

7.2. Comparing the NeuroField simulations using FD and TLM methods for solving the
governing wave equation in MATLAB ... 95

7.2.1. One-population NeuroField model ... 95

7.2.2. Two-populations NeuroField model ... 107

7.2.3. Four-populations NeuroField model ... 111

7.2.4. Discussion of the results ... 117

7.3. Conclusion ... 124

8. Conclusions and recommendations for future work .. 126

Appendix A: MATLAB code for One-population model using TLM ... 130

Appendix B: MATLAB code for One-population model using FD .. 135

Appendix C: MATLAB code for solving 2D wave PDEs using 5-point stencil FD method 139

Appendix D: MATLAB code for solving 2D wave PDEs using 9-point stencil FD method 143

References .. 147

1

1. Introduction

Brain structure and dynamics have been the focus of a vast number of recent scientific

studies (Bower & Beeman, 1998; Breakspear, Jirsa, & Deco, 2010; Dayan & Abbott, 2001;

Deco, Jirsa, Robinson, Breakspear, & Friston, 2008; Friston & Dolan, 2010; Northrop,

2001). Numerous models have been developed for the purpose to describe the neural

processes at different scales, starting from the substructures of the individual neurons

(Brette et al., 2007; Carnevale & Hines, 2006; Dayan & Abbott, 2001; Deco et al., 2008;

Gerstner & Kistler, 2002; Gewaltig & Diesmann, 2007; Northrop, 2001). Neural network

models at the microscopic level describe the interconnections between the individual

neurons with varying degrees of idealisation (Bower & Beeman, 1998; Brette et al., 2007;

Carnevale & Hines, 2006; Gerstner & Kistler, 2002; Goodman & Brette, 2009; McLaughlin,

Shapley, Shelley, & Wielaard, 2000; Tapson et al., 2013), whereas the mesoscopic models

explain how the neural populations interact (Freeman, 2012; Ritter, Schirner, McIntosh,

2

& Jirsa, 2013), for example, in cortical columns. Finally, at the macroscopic scale, the

neural field models inform us about the whole brain dynamics and the interactions

between the large-scale neural systems such as the cortical regions, the thalamus, and

the brain stem (Beurle, 1956; S. Coombes, 2010; Deco et al., 2008; Nunez, 1974).

In the early days of neuroscience, models had to be kept simpler so that results could

be obtained analytically. The recent development of high-performance computers has

allowed researchers to create and visualise more realistic, but also more complex models

based on numerical simulation methods, avoiding limitations and simplified assumptions

usually built in analytical solutions (Hoefer, 2012).

Depending on the model concept used, there are many ways the physical processes

could be solved numerically (Cogan, O'Connor, & Pulko, 2005). One approach is to replace

the equations by analogue models and probably the best-known example is the usage of

electrical network to mimic the physical problem where solution could be obtained using

conventional circuit analysis techniques in either the time or frequency domains. The

most elegant electrical equivalent network numerical method is the Transmission-Line

Matrix method (TLM) (P. B. Johns & Beurle, 1971) that leads to a simple and natural

numerical discretisation scheme for electromagnetic field problems. The main difference

between the TLM and other numerical methods, such as, the widely used, Finite

Difference (FD) (Thom, 1961), is a discretisation approach. To use the FD method, the

physical problem which is to be solved must have two levels of approximations: first it

should be modelled by differential or integral equations and then this model is solved by

numerical methods using purely mathematical discretisation approach (Cogan et al.,

2005). On the other side, the TLM has a physical approach based on Huygens’ principle

3

(Hoefer, 1985), where a continuous system is replaced by a network of transmission lines.

The major advantage of the TLM over the FD method is that all the required discretisation

is built-in in the initial model, which is then solved without any further approximation

avoiding many anomalous effects that can arise in FD (Cogan et al., 2005). That makes

TLM perfect method for analysing even the most complicated structures, boundaries and

material properties. When simulating unstable systems, such as brain dynamics,

numerical stability is particularly important. In TLM there are no problems with

convergence, stability or spurious solutions and the method is limited only by the amount

of memory storage required, which depends on the complexity of the TLM mesh (Hoefer,

1985). However, according to (Sadiku, 2009), the TLM method sometimes may have one

important disadvantage over FD: programs using finite-difference time-domain (FDTD)

method, introduced by Yee (Kane, 1966) in solving the electromagnetic (EM) field

problems can almost be two times faster in CPU time than equivalent TLM programs

under identical conditions and require less memory.

As a part of The Australian Research Council (ARC) Centre of Excellence for Integrative

Brain Function (CIBF), which has been established in 2013 as an Australia-wide team of

neuroscientists with their primary focuses on understanding how the human brain

interacts with the world, through a collaboration with Prof. Peter Robinson and his Brain

Dynamics group at The University of Sydney we gain access to their multiscale neural field

brain model, called NeuroField (P. Sanz-Leon, 2017; Robinson, Rennie, Rowe, O'Connor,

& Gordon, 2005). NeuroField models the interactions of spatially extended populations of

neurons and can predict the spectral and time characteristics of brain electrical activity

observable by electroencephalography (EEG), magnetoencephalography (MEG),

functional magnetic resonance imaging (fMRI), electrocorticography (ECoG) and other

4

non-invasive imaging modalities (P. Sanz-Leon, 2017). The governing neural field

equations in NeuroField are expressed as the Partial Differential Equations (PDE) for the

inhomogeneous damped wave equations. These equations represent the axonal

propagation of activity through the cortex and are numerically solved in NeuroField by

applying the FD method (Robinson, Rennie, & Wright, 1997).

In this thesis, the feasibility to numerically solve the inhomogeneous damped wave

PDEs using TLM techniques is explored. The hypothesis tested was whether the usage of

TLM leads to more understandable and efficient brain modelling and, what the cost in

computer resources for those benefits is. This approach differs from the currently used

FD numerical method by providing the electrical equivalent network where all the

NeuroField model parameters have analogues in electrical elements of TLM node, thus

enabling better interpretation of the physical implications of discretisation and of the

model. In order to compare the cost in computer resources of both methods, the main

algorithm of NeuroField program, along with the FD approximation of the governing wave

PDEs was translated from C++ into MATLAB.

The numerical approximations of NeuroField damped wave equations developed and

solved in this thesis by TLM simulations show a great compatibility with FD method. Being

a viable solution, the computational efficiency the TLM method is discussed. In the future,

developed TLM based NeuroField model can be used for building a brain-on-the-chip for

in-silico brain experimentation, which will greatly help the advancement of neuroscience.

The thesis is structured as follows: introduction to computational neuroscience and

different types of neural models, including the neural field models is presented in Chapter

2. The in-depth explanation of the NeuroField algorithm is given in Chapter 3. The

5

theoretical background to TLM modelling is given in Chapter 4. In Chapter 5 we present

the FD approach to numerically solve the hyperbolic PDEs and discuss the differences

between five- and nine-point stencils used to approximate the Laplacian operator in 2D.

Section 6.1 of Chapter 6 is the explanation of FD numerical method used to solve the

governing PDEs in NeuroField. Then the proposed 2D TLM node which can be used to

solve the PDEs is presented and its parameters are calculated. Within the same Chapter,

the space and time discretisation, some methods’ constraints and boundary conditions

used in both numerical methods are discussed. Simulation comparisons and the

discussion of the results are shown in Chapter 7, followed by the conclusion and

recommendations for future work in Chapter 8. The MATLAB code for One-population

NeuroField model using the TLM method is presented in Appendix A, and for the FD

method in Appendix B.

6

2. Computational Neuroscience

Theoretical analysis and computational modelling in neuroscience are, according to

(Dayan & Abbott, 2001), important tools for determining the functioning of nervous

systems and in-depth understanding why they operate in particular ways. In this Chapter,

the overview of some of the most important computational neuroscience models is

presented, ranging from a single neuron models to the large scale neural simulators.

2.1. Models of neurons

Computational neuroscience has a long history, starting with the ground-breaking

conductance-based, mathematical model of Hodgkin and Huxley, back in 1952, for the

generation of the nerve action potential (Hodgkin & Huxley, 1952a, 1952b, 1952c, 1952d).

The Hodgkin-Huxley (H-H) model dealt with events at the molecular and ionic levels on

unit area of a giant squid axon membrane (Northrop, 2001). Unfortunately, the

computational complexity of H-H like neuron models, such as Wilson-Cowan model (Hugh

7

R. Wilson, 1999; H. R. Wilson & Cowan, 1973), prevents us from using them for the

simulation of even modestly-sized neural networks of a few hundred neurons because of

the amount of computer time required. To combat this, while at the same time trying to

preserve as much of the complex dynamics as possible, a variety of simpler

phenomenological models has been developed (Eckhorn, Reitboeck, Arndt, & Dicke, 1990;

Rulkov, Timofeev, & Bazhenov, 2004), which aim at keeping most of the dynamical effects

produced by voltage-gated channels using the equations that are pushing the models

further away from the physiological mechanisms (Wells, 2005).

Models that describe the membrane potential of a neuron by a single variable V are

called single-compartment models (Dayan & Abbott, 2001). The simplest integrate-and-

fire neuron model, proposed by Lapicque in 1907 (a good overview of the spiking neuron

models can be found in Chapter 4 of (Gerstner & Kistler, 2002)) and the H-H model fall

within this category. Although single-compartment models give a good approximation of

a neuron, the membrane potentials can vary considerably over the surface of the cell

membrane, especially for neurons with long and narrow processes, or rapidly changing

membrane potentials. In those cases, the cable theory (Rall, 2011) must be used for the

mathematical analysis of signal propagation within neurons. The problem is that the cable

equation can be solved analytically only in relatively simple cases, but when the

complexity of real membrane conductances are included, the membrane potential must

be calculated numerically. This is done by splitting the neuron into separate regions or

compartments, and approximating the continuous membrane potential by a discrete set

of values representing the potentials with the different compartment. Each compartment

should be small enough so that there is negligible variation of the membrane potential

across it. These models are called multi-compartment models (Dayan & Abbott, 2001).

8

In the 1960s, digital computers were not user-friendly as tools for interactive

modelling, thus early neural modellers like Leon Harmon at Bell Labs developed

dedicated, compact transistor circuits to emulate spike generation, and various nonlinear

RC low-pass networks to model the generation of excitatory and inhibitory postsynaptic

potentials and signal conduction dendrites called neuromimes. Neuromimes offered the

experimenter two advantages: they ran in real time and they could be easily

interconnected with patch cords. Also, the modeller could listen to their spike outputs on

headphones or speaker and detect the subtle changes in phase between two spike

outputs, frequency changes, bursting, etc. More about the neuromimes can be found in

the Chapter 3 of (Northrop, 2001).

2.2. Computational models of the brain

In a recent Special Issue of NeuroImage (Breakspear et al., 2010) authors tried to

classify models into relevant categories, but they admitted that it wasn’t an easy task. A

term “computational model of the brain”, as they say, is usually used for a range of

computational techniques for the analysis of functional and anatomical neuroimaging

data, but it also includes biophysical forward models that allow mapping between models

and experimental data, as well as the models that address activity at smaller scales.

 The big impact that computational neuroscience has had on neuroimaging over the

past years is discussed by (Friston & Dolan, 2010) where they draw the distinction

between models of the brain as a computational machine and computational models of

neuronal dynamics. Computational machine models focus on optimal control and decision

(game) theory to illustrate the role of functional models in imaging neuroscience. In terms

of biophysical modelling, they are investigating dynamic causal modelling, with a special

9

emphasis on recent advances in neural-mass models for hemodynamic and

electrophysiological time series. The neural field models, which are used for modelling the

brain at large scales, which is necessary for interpreting EEG, fMRI, MEG and optical

imaging data, are reviewed by Coombes (S. Coombes, 2010). The conclusion is that neural

field models provide a good framework for unifying data from different imaging

modalities. Starting with a description of neural mass models, they spatially extended

cortical models of layered two-dimensional sheets with long range axonal connections

mediating synaptic interactions. The models, based on differential, brain wave, equations

are described and techniques for the analysis of such models, including how to determine

the onset of spatio-temporal pattern forming instabilities, are reviewed. An overview of

the open challenges for the development of multi-scale models that can integrate

macroscopic models at large spatial scales with models at the microscopic scale is

presented.

Furthermore, (Deco et al., 2008) have reviewed and integrated, in a unifying

framework, a variety of computational approaches that have been used to characterize

the dynamics of the cortex, as evidenced at different levels of measurement (scales).

Modelling at the single neuron level is necessary because this is the level at which

information is exchanged between the computing elements of the brain; the neurons. The

mesoscopic models explain how the neural populations interact in cortical columns, while

the macroscopic models can inform us about whole brain dynamics and interactions

between large-scale neural systems such as the cortical regions, the thalamus, and the

brain stem. Each level of description relates uniquely to neuroscience data, from single-

unit recordings, through local field potentials to fMRI, EEG, and MEG (Deco et al., 2008).

10

2.2.1. Spiking neuron models

One of the current brain models is “Spaun” (Semantic Pointer Architecture Unified

Network), a large-scale spiking neural network model of the functioning brain (Eliasmith

et al., 2012; Terrence C. Stewart, Bekolay, & Eliasmith, 2012; T. C. Stewart & Eliasmith,

2014; Tapson et al., 2013), which consists of 2.5-million-neurons that bridges the gap

between neural activity and biological function by exhibiting many different behaviours.

The model is presented only with visual image sequences, and it draws all its responses

with a physically modelled arm. Although simplified, the model captures many aspects of

neuroanatomy, neurophysiology, and psychological behaviour, which are demonstrated

via diverse tasks. The network implementing the “Spaun” model consists of three

hierarchies (visual system, motor and the working memory), an action-selection

mechanism, and five subsystems. Components of the model communicate using spiking

neurons that implement neural representations that is called “semantic pointers,” using

various firing patterns. The number of cells in the visual hierarchy gradually decreases

from the primary visual cortex (V1) to the inferior temporal cortex (IT), meaning that the

information has been compressed from a higher dimensional (image-based) space into a

lower dimensional (feature) space. However, the “Spaun” has many limitations that

distinguish it from developed brains. For one, “Spaun” is not as adaptive as a real brain,

as the model is unable to learn completely new tasks. In addition, both attention and eye

position of the model is fixed, making “Spaun” unable to control its own input.

Anatomically, many areas of the brain are missing from the model. Those that are included

have too few neurons and perform only a subset of functions found in their respective

areas. Physiologically, the variability of spiking in the model is not always reflective of the

variability observed in real brains. However, as available computational power increases,

11

many of these limitations can be overcome via the same methods as those used to

construct “Spaun”.

More about spiking neuron models can be found in (Dayan & Abbott, 2001; Gerstner

& Kistler, 2002).

2.2.2. Neuronal network models

Neuronal network model with circuitry that is based on the anatomy has been built

for macaque primary visual cortex (McLaughlin et al., 2000) with 4 orientation

hypercolumns. Also, a comparison of models of orientation and ocular dominance

columns in the visual cortex was given by (Erwin, Obermayer, & Schulten, 1995). But

Bednar argues in (Bednar, 2012) that the approaches researchers have used to help

understand mammalian visual systems tend to have quite different assumptions,

strengths, and weaknesses. Computational models of the visual cortex have typically

implemented either a proposed circuit for part of the visual cortex of the adult, assuming

a very specific wiring pattern based on findings from adults, or else attempted to explain

the long-term development of a visual cortex region from an initially undifferentiated

starting point. He adds that previous models of adult V1 have been able to account for

many of the measured properties of V1 neurons, while not explaining how these

properties arise or why neurons have those properties. Moreover, previous

developmental models have been able to reproduce the overall organization of specific

feature maps in V1, such as orientation maps, but are generally formulated at an abstract

level that does not allow testing with real images or analysis of detailed neural properties

relevant for visual function. Thus, Bednar shows in this review how these models could

represent a single, consistent explanation for a wide body of experimental evidence, and

12

form a compact hypothesis for much of the development and behaviour of neurons in the

visual cortex. The models proposed are the first developmental models with wiring

consistent with V1, the first to have realistic behaviour with respect to visual contrast, and

the first to include all the demonstrated visual feature dimensions.

2.2.3. Neural mass models and neural field models

Models of the cortex can establish which types of large-scale neuronal networks can

perform computations and characterize their emergent properties (Deco et al., 2008).

Neural mass models (Stephen Coombes & Byrne, 2016; David & Friston, 2003; Moran et

al., 2007; Pinotsis, Robinson, beim Graben, & Friston, 2014; Schellenberger Costa et al.,

2016) are used for studying the temporal dynamics of whole brain dynamics and may

explain how the neuronal activity unfolds on the spatially continuous cortical sheet (Deco

et al., 2008). They can model the coarse-grained activity of large populations of neurons

and synapses and have proven especially useful in understanding brain rhythms (Stephen

Coombes & Byrne, 2016). In neural mass models, the properties of a large population of

spiking neurons are averaged into a single population, and it is assumed that all neurons

in a population are located at the same point (Pinotsis et al., 2014).

Neural field models fall under the same category as the neural mass models and are

called mean field models of neural activity; but compared to neural mass models, which

characterise activity over time only, neural field models retain spatial information

(Pinotsis et al., 2014). This means that neuronal activity depends on its current state as

well as spatial gradients, which allow its spread horizontally across the cortical surface.

Some of the neural field models for modelling the brain at the large scales were

developed by Nunez (Nunez, 1974; Nunez & Srinivasan, 2006). Nunez solved this model

13

analytically for a 1D loop cortex, and for two-dimensional cortex with periodic and with

spheroidal boundary conditions ignoring the more complicated convoluted form of the

real cortex, and the inhomogeneity of cortical connections, interpreting observed cortical

wave frequencies in terms of discrete Eigen frequencies with the alpha rhythm being at

the fundamental cortical Eigen frequency (Robinson et al., 1997). Wright and Liley (Wright

& Liley, 1995, 1996) introduced a spatially discretised model in which the cortex is treated

as 2D and divided into patches, each of which is parametrised by the mean densities of

excitatory and inhibitory neurons, their mean firing rates, and their mean densities of

interconnections. Nonlinear effects and axonal and dendritic delays were all included,

with a Green-function formulation describing the interconnections between patches as a

function of their spatial and temporal separation. This model incorporated all relevant

effects mentioned above, except convolutions and nonuniformities in cortical

connectivity, while allowing for the imposition of a variety of boundary conditions.

Moreover, its parameters were largely physiologically measurable, a significant advantage

when comparing its predictions with measurements. However, simulations based on it

have been limited to very small systems, or very coarse resolution in larger systems, due

to its formulation in terms of Green functions, which are very slow to evaluate, and a

numerically intensive treatment of dendritic lags (Robinson et al., 1997). Robinson

(Robinson et al., 1997) introduced a model of cortical electrical activity which includes

nonlinearities, axonal and dendritic time lags, variable geometries and boundary

conditions in 2D, and which permits analytic studies of wave properties and stability, while

speeding computation to the point that whole-cortex simulations are possible with good

resolution. This lead to a series of papers using the Robinson’s “NeuroField” model

predicting steady states, stability, waves, spectra, coherence, correlations, EEG, ERP, SSEP,

14

ECoG, fMRI, Seizures, Parkinson’s, Arousal Dynamics (normal, abnormal, jetlag, drugs),

vision, neural plasticity, connection matrices (Abeysuriya, Rennie, & Robinson, 2014;

Abeysuriya, Rennie, Robinson, & Kim, 2014; Kerr, Rennie, & Robinson, 2011; Rennie,

Robinson, & Wright, 2002; Roberts & Robinson, 2012; Robinson, 2014; Robinson & Kim,

2012; Robinson, Rennie, Rowe, & O'Connor, 2004a; Robinson et al., 2005; Robinson et al.,

2001; Robinson, Sarkar, Pandejee, & Henderson, 2014; van Albada, Gray, Drysdale, &

Robinson, 2009; van Albada, Kerr, Chiang, Rennie, & Robinson, 2010; van Albada &

Robinson, 2009; Wu & Robinson, 2007; Yamaguchi, Ogawa, Nakao, Jimbo, & Kotani,

2014).

2.2.4. Composite neural models

One composite, network/field neural model (Kerr et al., 2013) was created for the

purpose of exploring how the basal ganglia influences cortical information flow and how

that influence becomes pathological in Parkinson’s disease (PD). The basal ganglia plays a

crucial role in the execution of movements, as demonstrated by the severe motor deficits

that accompany PD. The network model consisted of 4950 spiking neurons, divided into

15 excitatory and inhibitory cell populations in the thalamus and cortex. The field model

consisted of the cortex, thalamus, striatum, subthalamic nucleus, and globus pallidus.

Compared to the network driven by the healthy model, the PD-driven network had lower

firing rates, a shift in spectral power toward lower frequencies, and higher probability of

bursting, which was consistent with empirical data on PD.

2.2.5. Neural simulators

Neural simulators provide tools for conveniently building, managing, and using models

in a way that is numerically sound and computationally efficient. These simulators

15

implement computationally efficient algorithms and are widely used for large-scale

modelling and complex biophysical models. They tend to be well-suited to problems that

are closely linked to experimental data, especially those that involve cells with complex

anatomical and biophysical properties. The main goal of the neural simulators is to

minimise the development time for a neural model, and, in particular, the time spent

writing code, so that scientists can spend their time on the details of their model rather

than the details of its implementation.

Several successful neural simulators are used today (Brette et al., 2007), such as

Neuron (Carnevale & Hines, 2006) and Genesis (Bower & Beeman, 1998) for

compartmental modelling, and NEST (Gewaltig & Diesmann, 2007) and Brian (Goodman

& Brette, 2009) for large scale network modelling. A review of network simulators is given

by (Brette et al., 2007) and the up-to-date comparison of neural network simulators is

given by (Mingus, 2014).

2.3. Conclusion

In this Chapter, the overview of some of the most important computational

neuroscience models was presented, ranging from a single neuron models to the large

scale neural simulators. The neural field models, which are the focus of this thesis, are

used for modelling the brain at large scales. They provide a good framework for unifying

data from different imaging modalities (EEG, fMRI, MEG, optical imaging data) and fall

under the same category as the neural mass models; but compared to neural mass

models, which characterise activity over time only, neural field models retain spatial

information, which allow its spread horizontally across the cortical surface.

16

3. “NeuroField” Program

Prof. Peter Robinson and his Brain Dynamics group at The University of Sydney have

developed a multiscale neural field brain model, called NeuroField (P. Sanz-Leon, 2017;

Robinson et al., 1997). NeuroField models the interactions of spatially extended

populations of neurons and can predict the spectral and time characteristics of brain

electrical activity observable by EEG, MEG, fMRI, ECoG and other non-invasive imaging

modalities (P. Sanz-Leon, 2017). It models brain activity by averaging firing rates, soma

voltages and incoming activities over many neurons and is capable of modelling both the

large numbers of neurons, as well the fine structures in the brain and its activities (P. Sanz-

Leon, 2017).

In this Chapter, the algorithm of NeuroField, implemented as a C++ program that

solves the neural field model of (Rennie et al., 2002; Robinson et al., 2005; Robinson et

al., 1997), and the main macroscopic variables are explained.

17

3.1. NeuroField algorithm

In modelling a brain system, the neuronal populations and the connections between

them should be specified first. The macroscopic variables that describe the activity of each

neural population a and its interaction with other populations b are the mean soma

potential (),aV r t


, the mean firing rate (),aQ r t


, and the propagating axonal spike-rate

field (),ab r tϕ


 that arrives at population a from population b (P. Sanz-Leon, 2017). The

main dynamic process of a generic neural field model with three populations can be seen

in Figure 3.1. Geometrically, the cortical sheet is represented by a 2D grid. Each square

element of this grid represents a node with a certain extent x∆ . On this grid, a given

position, defined with the position vector r


 in the 2D Cartesian coordinate system, is

assumed to be the actual position in the neuronal population 1. The second population is

linked to the first population via a primary topographic one-to-one map. The same value

of r


 is assigned to such points.

The axonal spike-rate field, ()23 ,r tϕ


, from the stimulation population 3, ()3 ,Q r t


propagates to the thalamic population 2, ()2 ,Q r t


. It is weighted by the synaptic coupling

strength 23υ

 23 23 23P υ ϕ= (3.1)

These weighted inputs are then temporally summed via convolution with a dendritic

response function and evoke postsynaptic potentials and produce the soma potential 2V :

18

() () ()

()

23 23 23 23 23

2

23 2
23 23 23 23

, ,

1 1 1 1

D t V r t r t

d dD t
dt dt

υ ϕ τ

α β α β

= −

 
= + + + 

 

 

 (3.2)

In these equations, 231 β and 231 α are the rise and the fall time-constants,

respectively, of the response at the cell body, and 23τ is the long-range time delay

between populations (for example between thalamus and the cortex) (Robinson et al.,

2005).

Action potentials are generated at the axonal hillock when the soma voltage exceeds

a threshold θ and the firing rate ()2 ,Q r t


 of the population is obtained via the nonlinear

sigmoidal activation function:

 () () () ()
()

max
2 2

2 2

2

, ,
, ,

1 exp
,

QQ r t S V r t
V r t r t

r t

θ

σ

 = =   −
 + −
 ′ 

 

 



 (3.3)

where maxQ is the maximum attainable firing rate, 2θ is the mean firing threshold, and

2 2 3σ σ π′= is the standard deviation of the threshold distribution in the neural

population. ()2 ,V r t


 can be calculated as a sum of all the contributions from the potentials

coming from other populations b at a particular location a . In this example

() ()2 23, ,V r t V r t=
 

 , but the general formula is:

 () (), ,a ab
b

V r t V r t=∑
 

 (3.4)

19

Lastly the transformation of ()2 ,Q r t


 into ()12 ,r tϕ


 embodies the spatiotemporal

propagation of pulses generated in Population 2 to other locations (like cortical

Population 1) through the axon fibres:

() () () ()
()

12 12 2 2

2
2 2

12 122 2
12 12

, , , ,

1 2, 1

r t r t Q r t S V r t

r t r
t t

ϕ

γ γ

 = =  
∂ ∂

= + + − ∇
∂ ∂

   



D

D
 (3.5)

where 12r is the mean range of axons between populations 2 and 1, 12 12 12v rγ = is the

temporal damping rate of pulses in axons governing the dispersion of propagating waves,

the speed of propagation of the field ()12 ,r tϕ


 is 12v and 2∇ is the Laplacian operator (P.

Sanz-Leon, 2017).

 The axonal spike-rate ()12 ,r tϕ


 will then propagate to cortical population 1.

Figure 3.1 Diagram of the dynamical processes that occur within and between neural populations in

NeuroField program

20

The biophysical processes described above make the main algorithm of NeuroField

and each process is handled by one of the main classes in NeuroField program (P. Sanz-

Leon, 2017):

 ab ab bQϕ =D Propagator

 ab ab abP υ ϕ= Couple

 ab ab abD V P= Dendrite

 a a ab
b

Q S V =   
∑ QResponse

Propagator computes and determines the form of the axonal propagation of the

presynaptic neural population Eq. (3.5). The connections between two populations are

represented by an object of the class Couple, Eq. (3.1). The dendritic response of the

postsynaptic population Eq. (3.2) is handled by Dendrite. Finally, each neural population

is associated with QResponse which produces the soma response Eq. (3.3) (P. Sanz-Leon,

2017).

The more, in detailed explanation of the NeuroField algorithm can be found in (P.

Sanz-Leon, 2017). Some of the models solved by NeuroField, along with many of their

applications are described in more details in (Abeysuriya, Rennie, & Robinson, 2014;

Abeysuriya, Rennie, Robinson, et al., 2014; Kerr et al., 2011; Rennie et al., 2002; Robinson

et al., 2004a; Robinson et al., 2001; van Albada et al., 2010).

3.2. Conclusion

In this Chapter, the algorithm of NeuroField program, which solves the multiscale

neural field brain model of (Rennie et al., 2002; Robinson et al., 2005; Robinson et al.,

1997), was explained on a generic neural field model with three populations. The

21

macroscopic variables that describe the activity of each neural population and its

interaction with other populations were defined. Finally, the main classes in NeuroField

program, which are handling the biophysical processes that occur in this model, were

presented.

22

4. Transmission-line matrix method

The introduction to Transmission-Line Matrix (TLM) method, with a literature review

is presented in this Chapter. We also discuss the advantages of TLM to finite difference

(FD) method and the possibility to use TLM to model neural activity. The last Section

describes the basic algorithm for simulating the propagation of fields using TLM method.

4.1. TLM literature review

The Transmission-Line Matrix (TLM) method (or Transmission-Line Modelling method,

as it is sometimes called) is one of the best-known examples of analogue models used to

numerically solve the equations modelling a physical phenomenon. In TLM, an electrical

network is used to mimic the physical problem where solution can be obtained using

conventional circuit analysis techniques in either time or frequency domains. As a network

model of Maxwell’s equations formulated in terms of the scattering of impulses, it

23

possesses exceptional versatility, numerical stability, robustness and isotropic wave

properties (Russer, 2000).

TLM was developed and first published in 1971 by Johns and Beurle (P. B. Johns &

Beurle, 1971) as a physical approach based on Huygens’ principle (Huygens, 1690). In TLM,

a continuous system is replaced by a network of transmission lines and the space is

discretised by a subdivision into cells. The electromagnetic field is modelled by wave

pulses propagating between adjacent cells and scattered within the cells. In TLM the

discretised field state is represented by a state vector summarizing the states of all TLM

cells. One single computation of a pulse response produces a large amount of information.

The frequency characteristics may be evaluated over the entire frequency range of

interest by Fourier transform of the transient time–domain results. The versatility of the

TLM method allows straightforward calculation of complicated structures, boundaries

and material properties. There are no problems with convergence, stability or spurious

solutions1 in TLM and the method is limited only by the amount of memory storage

required, which depends on the complexity of the TLM mesh (Sadiku, 2009). In general,

the smallest feature in the structure should contain at least three nodes for good

resolution (Hoefer, 1985).

TLM is mostly used in computational electromagnetics but its flexibility and the

simplicity of formulation and programming also extend it to other fields of research where

the wave equations need to be solved numerically. Some of the examples are:

1 Although, accuracy decreses for high frequencies.

24

• 2D scattering problems in rectangular waveguides (field distribution of

propagating and evanescent modes, wave impedance, scattering parameters

of discontinuities) (P. B. Johns & Beurle, 1971);

• 2D eigenvalue problems (Sina Akhtarzad, 1975; P. B. Johns, 1972; Yi-Chi &

Hoefer, 1980);

• 3D eigenvalue and hybrid field problems (dispersion characteristics of planar

transmission lines, wave impedances, losses, Eigen frequencies, mode fields,

Q factors of resonators, modelling of discontinuities) (S. Akhtarzad & Johns,

1975);

• Lumped network analysis (P. B. Johns & Brien, 1980);

• Diffusion problems (Amri, Saidane, & Pulko, 2011; Cogan et al., 2005; Desai et

al., 1992);

• Acoustic propagation (Portí & Morente, 2001);

• Modelling of semiconductor lasers (Lowery, 1989);

• Induced currents in biological bodies exposed to EM fields (Deford & Gandhi,

1985);

• Ultrasound non-destructive testing of materials (Ciocan & Ida, 2003);

• Fast simulation of fluid flow dynamics (Velut & Tummescheit, 2011);

• Modelling of various mechanical processes (Cogan et al., 2005).

A field theoretical derivation of TLM was presented in (Krumpholz & Russer, 1994)

with 3D TLM method with condensed symmetric node directly derived from Maxwell’s

equations using Method of Moments. The main difference between TLM and other

numerical methods, such as, the widely used, Finite Difference (FD) (Thom, 1961), is its

25

discretisation approach. To use the FD method, the physical problem that should be

solved must have two levels of approximation: first it should be modelled by differential

or integral equation and then this model is solved by numerical method using purely

mathematical discretisation approach, while the TLM has a physical approach as

mentioned above. The major advantage of the TLM over the FD method is that all the

required discretisation is built into the initial model, which is then solved without any

further approximation avoiding many anomalous effects that can arise in FD (Cogan et al.,

2005). A field theoretical comparison of the Finite-difference finite-time (FDTD)2, and the

3D TLM methods was conducted by (Krumpholz, Huber, & Russer, 1995). They concluded

that the 3D TLM exhibits some disadvantages in comparison to the FDTD from field

theoretical point of view, mainly in the number of parameters needed for the TLM

simulation, which some of them are nonphysical. Although the TLM is a very flexible

analysis strategy similar to the FDTD in capabilities, more codes tend to be available with

the FDTD method because, according to (Sadiku, 2009), the FDTD has a simpler algorithm,

it can almost be two times faster in CPU time than equivalent TLM programs under

identical conditions and requires less memory. However, according to Johns (P. B. Johns,

1987), the two methods complement each other rather than compete with each other.

Hoefer in (Hoefer, 2012) gives a historical overview of development of TLM and FDTD in

parallel. The various sources of error and the limitations of the TLM method are given,

and methods for error correction or reduction, as well as improvements of numerical

efficiency, are discussed in (Hoefer, 1985).

2 Finite-difference finite-time (FDTD) method was introduced by Yee (Kane, 1966). It uses
the FD method in solving the electromagnetic (EM) field problems.

26

An universal 3D TLM FORTRAN computer program was written by (Sina Akhtarzad,

1975) and the ease of application, versatility and accuracy of the TLM method is

demonstrated by analysing a wide variety of microwave resonators. The surface mode

phenomenon of microstrip is also investigated in this reference.

One popular commercial software package exists for solving TLM. It is called The TLM

solver of CST MICROWAVE STUDIO® (CST MWS), and it is based on the 3D time-domain

TLM method (Cst.com, 2015).

4.2. Analogy of TLM method and neurological activity

The TLM method can be applied to problems in other areas, such as thermodynamics,

optics, and acoustic wave motion. Aside from the area of physics, however, there is a

branch in the biological sciences to which the TLM method appears to have a natural

affinity. The possible application is in neuroscience, specifically, in modelling the brain

functions as speculated by Nunez in (Nunez & Srinivasan, 2006), where he talks about EEG

dynamic behaviour that is similar to the transmission line theory. Weiner in (M. Weiner,

2010) speculates how the TLM method may be used as a framework to describe

neurological activity of the brain, since it relies on a vast array of nerve fibres and

synapses, analogous to the transmission lines and nodes of the TLM matrix.

As Weiner says (Maurice Weiner, 2010), in the area of nerve cells, the nerve fibres and

synapses appear to play a role similar to transmission lines and nodal scatterers in the

TLM model. Nerve impulses are conveyed along the fibres. The synapses exist at the

juncture of two or more fibres and they serve to control the flow of the impulses from

one fibre to another. The nature of the impulse propagation along the fibres is discussed

in (Nunez & Srinivasan, 2006; Ray & Roy, 2010). Needless to say, the nerve fibres do not

27

form neat geometrical shapes, such as cubes or hexagons, as we assume in TLM analysis.

The actual fibres appear as a tangled array with irregular shapes and with varying fibre

lengths. Despite these differences, the same type of analysis may be applied to nerve

impulses, taking into account the random nature of the fibre shape and length. In some

ways the irregularity of the fibres is an advantage since it removes the anisotropy

associated with the symmetry elements, where the energy is constrained to flow in only

certain directions. With an irregular cell matrix, we are not bound to a preferred direction

(Maurice Weiner, 2010). TLM has been used to model the propagation of action potentials

along the axon in myelinated nerve in (Villapecellin-Cid, Rao, & Reina-Tosina, 2003;

Villapecellin-Cid, Roa, & Reina-Tosina, 2001, 2002).

In case of using TLM as a brain model, one must obtain predictions of TLM model and

compare these with experimental observations. To our knowledge, the use of TLM

method to model neural fields has never been done.

4.3. TLM algorithm

The TLM algorithm consists of the propagation of the wave amplitudes from the mesh

nodes to the neighbouring nodes and the scattering of the wave amplitudes in the mesh

nodes. The propagation and the scattering of the wave amplitudes may be expressed by

operator equations.

The two-dimensional TLM method is suitable for the analysis of electromagnetic fields

with the electric field components oriented normal and the magnetic field parallel to a

certain plane of reference (Transverse Electric (TE) case), or - vice versa - the magnetic

field components oriented normal and the electric field parallel to the plane of reference

(Transverse Magnetic (TM) case). Figure 4.1.A shows a TE arrangement with two parallel

28

conducting plates. This arrangement may be modelled by a two-dimensional mesh of lines

as depicted in Figure 4.1.B.

Figure 4.1 – TE arrangement with two parallel conducting plates. A) Parallel plates; B) 2D mesh. Taken from

(Russer, 2000)

The two-dimensional mesh of lines may be modelled by interconnected four ports

shown in Figure 4.2 (Russer, 2000). The lossless 2D TLM cell with lumped elements is shown

in Figure 4.3.

Figure 4.2 – 2D TLM shunt cell (Russer, 2000)

Figure 4.3 – Lossless TLM cell represented by lumped elements (Sadiku, 2009)

29

If a voltage pulse of amplitude 1𝑉𝑉 is incident on the central node (Figure 4.4), this pulse

will be partially reflected and transmitted according to the transmission-line theory. If we

assume that each line has a characteristic impedance 0 2
d

d

LZ
C

= (Figure 4.5), then the

incident pulse sees effectively three transmission lines in parallel, with a combined

impedance of 0 3Z . The reflection coefficient and the transmission coefficient are given

by:

()

0 0

0 0

0

0 0

3 1
3 2

2 3 1
3 2

Z ZR
Z Z

Z
T

Z Z

−
= = −

+

= = +
+

 (4.1)

Figure 4.4 – An incident voltage pulse and scattering at the node

If we assume that in general formulation there are pulses incident from all four

directions, we can calculate the nodal voltage (),k nV x y :

 () ()1 2 3 4,
2

i i i i
k k k k

k n

V V V V
V x y

+ + +
= (4.2)

where k t t= ∆ is the iteration number. Superscript i in i
k jV denotes the incident pulse

coming from a port denoted with the subscript j (Figure 4.5).

The pulse, which is scattered back to port 2, for example, is:

 1 2 2
r i

k k n kV V V+ = − (4.3)

30

which is the same as the sum of reflected and transmitted pulses from all other arms. The

entire scattering process of a lossless TLM node can be given in matrix form by:

1 1

2 2

3 3

4 41

r i

r i

r i

r i
k k

V V
V V

S
V V
V V

+

   
   
   = ⋅   
      
   

 (4.4)

where S is the scattering matrix:

1 1 1 1
1 1 1 11
1 1 1 12
1 1 1 1

S

− 
 − =
 −
 

− 

 (4.5)

Figure 4.5 – Lumped equivalent circuit for a 2D lossless TLM cell (Cogan et al., 2005)

Furthermore, each impulse travels the discretisation distance x∆ during the

discretisation time t∆ automatically becoming an incident impulse on the neighbouring

node (Cogan et al., 2005). The connections to other nodes as seen at node (),x y can be

expressed in terms of space and time-step, 1k + as:

31

() ()
() ()
() ()
() ()

1 1 1 3

1 2 1 4

1 3 1 1

1 4 1 2

, , 1

, 1,

, , 1

, 1,

i r
k k

i r
k k

i r
k k

i r
k k

V x y V x y

V x y V x y

V x y V x y

V x y V x y

+ +

+ +

+ +

+ +

= −

= −

= +

= + (4.6)

The repeated iteration of processes of scattering (Eq. (4.4)), connection (Eq. (4.6)) and

summation (Eq. (4.2)) for every time step forms the basic algorithm of the TLM method

for a 2D TLM network (Cogan et al., 2005).

The impulse response of the network is then found by initially fixing the magnitudes,

directions and positions of all impulses at 𝑡𝑡 = 0 and then calculating the state of the

network at successive time intervals. Three consecutive scatterings are shown in Figure

4.6, visualizing the spreading of the injected voltage across the 2D network.

Figure 4.6 – Heatmap of three consecutive scatterings in 2D TLM network created in MATLAB. Left image - the
initial impulse; middle - first iteration; right - second iteration. White – positive values, Orange – zero, Black –

negative values.

4.4. Conclusion

The introduction to TLM method, with a literature review was presented in this

Chapter. The advantages of TLM to FD method and the possibility to use TLM to model

neural activity were discussed in Section 4.2. In Section 4.3 the lossless 2D TLM cell with

lumped elements was introduced. Furthermore, the equations for basic algorithm of the

TLM method, which consists of three main processes (incident, scattering, connection) for

every time step, for a 2D TLM network, were presented.

32

5. Numerical solution of hyperbolic equations

In Chapter 3 was mentioned that NeuroField is coded in the C++ programming

language. For testing the feasibility to numerically solve the governing inhomogeneous

damped wave PDEs, used in NeuroField program, using TLM techniques, main algorithm

of NeuroField, with its FD method of numerical approximations of governing wave

equations, had to be reprogramed into MATLAB (Appendix B). Furthermore, the “old”

version of NeuroField program (Robinson et al., 2005) used the so called nine-point stencil

in FD method which was not compatible with TLM method because of the extra diagonal

terms.

In this Chapter, the possibility of using the five-point stencil to numerically solve the

undamped and damped wave PDEs, instead of the nine-point stencil is explored.

33

5.1. Analytical solution of the 1D undamped wave equation

The equation used in NeuroField to represent the axonal propagation of activity

through the cortex is inhomogeneous (or forced) damped wave equation (Robinson et al.,

1997), but in order to find the numerical solution to that equation, first the analytical

solution to 1D undamped wave equation PDE is presented.

The 1D undamped wave equation for a lossless plucked string (Cogan et al., 2005):

2 2

2 2
2 2 , u u T

t x
β β

ρ
∂ ∂

= =
∂ ∂

 (5.1)

where (),u x t denotes the vertical displacement of the string at position x at time 0t > ,

T denotes the tension of the string in 2kg m s⋅ and ρ is the mass per unit length of the

segment of the string in kg m ; thus the constant 2β has the units 2 2m s , which means

that β can be thought of as a velocity with which a small transverse disturbance moves

along the string.

If Eq. (5.1) is rearranged as
2 2

2
2 2 0u u

t x
β∂ ∂

− =
∂ ∂

, it can be seen that it is a hyperbolic

equation, since 1, , 0TA C B
ρ

= = − = and therefore 2 4 4 0TB AC
ρ

− = > .

The initial conditions for this problem are in the form of an initial position function

() (),0u x f x= and an initial velocity function () (),0u x g x
t

∂
=

∂
.

Boundary conditions: we will assume that the two ends of the string are fixed for every

t ; that is, () ()0, , 0u t u L t= = for all 0t > .

34

The analytical solution for this wave equation can be found using the method called

Separation of Variables (Olsen-Kettle, 2011).

If we let () () (),u x t X x T t= and substitute that into the Eq. (5.1) we get:

 2XT X Tβ′′ ′′= (5.2)

where ‘ denotes differentiation in respect to time for T and differentiation in respect to

displacement for X . Dividing Eq. (5.2) by 2 XTβ yields:

2

2 2 2
XT X T T X

XT XT T X
β λ

β β β
′′ ′′ ′′ ′′
= ⇒ = = − (5.3)

This results in the two ordinary differential equations:

 2

0
0

X X
T T

λ

λβ

′′ + =

′′ + =
 (5.4)

Once those two ordinary differential equations are solved using boundary conditions,

we can get the general solution of the 1D undamped wave equation in the form:

 () () ()
1 1

, sin cos sinn n n n n
n n

n x n nu x t C X x T t A t B t
L L L
π πβ πβ∞ ∞

= =

      = = +            
∑ ∑ (5.5)

If we want to find the complete solution of the 1D wave equation with zero boundary

conditions, then using first initial condition we can determine the constants nA . Once we

find them, we can use the second initial condition to find nB .

35

5.2. Analytical solution of the 1D damped wave equation

Consider the equation:

2 2

2
2 22 u u uc

t t x
β∂ ∂ ∂

+ =
∂ ∂ ∂

 (5.6)

where c is a small positive constant. The term 2 uc
t

∂
∂

 represents a damping force

proportional to the velocity u
t

∂
∂

.

Using the separation of variables method to solve Eq. (5.6) (Arfken, Weber, & Harris,

2013) we have:

2

2 2 2
2 2XT cXT X T T cT X
XT XT T X

β λ
β β β
′′ ′′ ′′ ′′ ′′ ′′+ +

= ⇒ = = − (5.7)

Again, this can be separated into two ordinary differential equations:

 2

0
2 0

X X
T cT T

λ

λβ

′′ + =

′′ ′+ + =
 (5.8)

In order to solve Eq. (5.8) we will assume that the length of the string is L π= , the

constant 2 1β = , and 1c < . The solution of the 1D damped wave equation is then:

 () () () ()2 2 2 2

1

, sin cos sinct
n n

n

u x t nx e A n c t B n c t
∞

−

=

 = − + −  ∑ (5.9)

5.3. Numerical solution of plucked string equation – 1D undamped wave equation

In Finite Difference (FD) approximation, the derivatives in the PDEs are approximate

by linear combination of function values at the grid points.

36

For 1D case, we can replace the temporal
2

2
u

t
∂
∂

 and spatial
2

2
u

x
∂
∂

 derivatives with the

finite central difference approximation on a discretised domain (Figure 5.1):

 ,
1

, 0
, 0 1

k

j

T Lt x
m n

t k t k m
x j x j n

∆ = ∆ =
+

= ⋅∆ ≤ ≤
= ⋅∆ ≤ ≤ +

 (5.10)

where t∆ is the time step, T is the total time of the simulation, m is the number of time

steps, x∆ is the mesh size, L is the length of the string and 1n + is the number of

segments in which the string is divided into. kt is the time at time step k , and jx a grid

point at position j .

Figure 5.1 – Discretisation of string, length 𝐿𝐿, for numerical solution of 1D wave equation. 𝑥𝑥𝑗𝑗 are grid points and ∆𝑥𝑥 is the

mesh size.

The finite central difference approximations (Olsen-Kettle, 2011) are:

1 12

2 2

2
1 1

2 2

2

2

k k k
j j j

k k k
j j j

u u uu
t t

u u uu
x x

+ −

+ −

− +∂
=

∂ ∆
− +∂

=
∂ ∆

 (5.11)

where k
ju denotes the value of u at time point k and grid point j .

37

The 1D undamped wave equation is then:

1 1

1 12
2 2

2 2k k k k k k
j j j j j ju u u u u u

t x
β

+ −
+ −− + − +

=
∆ ∆

⋅ (5.12)

The equation to find ju for the next time step 1k + is given by:

 () ()1 1
1 12 1k k k k k

j j j j ju u s u s u u+ −
+ −= − + − + + (5.13)

where
2 2

2 ts
x

β ∆
=

∆
 .

The solution for the first step, 1u can be found in a matrix form from the Eq. (5.13). If

we let the number of segments, in which the string from Figure 5.1 is divided into, to be

four, 1 4n + = , there will only be three interior points and 1u can be expressed in a

matrix form as:

()

()
()

1 0 0 1
1 1 0 1

1 1 0 1
2 2 2
1 0 0 1
3 3 4 3

2 1 0
2 1 0

0 2 1

u s s u u u
u u s s s u s u

u s s u u u

A b

−

−

−

       − 
        = = − ⋅ + ⋅ −        
        −        








 (5.14)

where A is the block tridiagonal coefficient matrix and b


 is the vector of boundary

conditions multiplied by the coefficient s . Using the boundary conditions () 00, ku t u=

and () 4, ku L t u= and the initial conditions 0
j ju f= and ()1 1 2j j ju u t g x− = − ∆ ⋅ we can find

the solution for 1u for this case as:

()

()
()

1 0
1 1 0 1

1 1
2 2 2
1 0
3 3 4 3

2 1 0
1 12 1 0
2 2

0 2 1

u s s f u g
u u s s s f s t g

u s s f u g

d

   −     
        = = − ⋅ + ⋅ ⋅ + ∆ ⋅        
        −        







38

Or:

 1 01 1
2 2

u A u b d= ⋅ + +
 

  (5.15)

where d


 is the vector of the initial conditions.

The general 2nd order iterative scheme for all other steps is then:

 1 1k k ku A u b u+ −= ⋅ + −


  

 (5.16)

Finally, we assumed that that the two ends of the string are fixed, thus the boundary

conditions are:

()
()

0

4

0,

,

0

0

k

k

u t u

u L t u=

=

=

=

which will make all the values in the vector b


 be zero and the equation for the 1st time

step and the iterative formula will be reduced to:

1 0

1 1

1
2

k k k

u A u d

u A u u+ −

= ⋅ +

= ⋅ −



 

   (5.17)

The derivation presented here solves the wave equations by using explicit methods,

which means that the next value of u will be computed from the known past values and,

equivalently, all the future time terms appear on one side of the equation (Olsen-Kettle,

2011).

5.4. Numerical solution of the 1D damped wave equation

The numerical solution of the 1D damped wave equation is very similar to the solution

of the undamped equation. We start again with replacing the temporal and spatial

39

derivatives with the finite central difference approximation (Olsen-Kettle, 2011) on the

same discretised domain (Figure 5.1), which now gives us the equation:

1 1 1 1

1 12
2 2

2 2
2

2

k k k k k k k k
j j j j j j j ju u u u u u u u

c
t t x

β
+ − + −

+ −− + − − +
+ ⋅ = ⋅

∆ ∆ ∆
 (5.18)

The equation for ju for the future time step 1k + is now:

 () ()1 1
1 1

1 1 12 1
1 1 1

k k k k k
j j j j j

c tu u s u s u u
c t c t c t

+ −
+ −

− ∆
= − + − + +

+ ∆ + ∆ + ∆
 (5.19)

From the initial and boundary conditions we can calculate the first iteration as:

 1 01 1
2 2
c t c tu A u b d+ ∆ + ∆

= ⋅ + +
 

  (5.20)

And the general iterative formula is:

 1 1k k ku A u b e u+ −= ⋅ + − ⋅


  

 (5.21)

where 1
1

c te
c t

− ∆
=

+ ∆
 .

Finally, using the boundary conditions for the string with fixed edges all the values in

the vector b


 will be zero and the equation for the 1st time step and the iterative formula

will be reduced to:

1 0

1 1

1
2

k k k

c tu A u d

u A u e u+ −

+ ∆
= ⋅ +

= ⋅ − ⋅



 

   (5.22)

40

5.5. Analytical solution of the 2D undamped wave equation

The 2D wave equation can be visualised as a vibration of a thin elastic membrane

stretched tightly over a rectangular frame with the edges firmly fixed at its walls (Figure

5.2):

2 2 2

2
2 2 2 , 0 , 0 , 0u u u x a y b t T

t x y
β

 ∂ ∂ ∂
= + ≤ ≤ ≤ ≤ ≤ ≤ ∂ ∂ ∂ 

 (5.23)

where (), ,u x y t denotes the displacement of the membrane at position (),x y at time

0t > .

Figure 5.2 – A thin elastic membrane stretched tightly over a rectangular frame dimensions 𝑎𝑎 × 𝑏𝑏, with the edges fixed

to a rigid frame.

The boundary conditions for the membrane with fixed edges can be expressed as:

() ()
() ()
0, , , , 0

,0, , , 0

u y t u a y t

u x t u x b t

= =

= =
 (5.24)

41

The initial deformation of the membrane and how is it set to motion can be described

with the initial conditions:

() ()

() ()

, ,0 ,

, ,0 ,

u x y f x y
u x y g x y
t

=

∂
=

∂

 (5.25)

The analytical solution for the 2D wave equation Eq. (5.23) can be found using the

Separation of Variables method in the similar way as for the 1D case described in the

Section 5.1.

If we let () () () (), ,u x y t X x Y y T t= and substitute that into the Eq. (5.23) we get:

 ()2XYT X YT XY Tβ′′ ′′ ′′= + (5.26)

Dividing Eq. (5.26) by XYT yields:

 ()2
2 2 2X YT XY TXYT T X

XYT XYT T
Y
YX

β
β β ω

′′ ′′+′′ ′′ ′′ ′′
= ⇒ = + = − (5.27)

which can be separated into three differential equations:

2

2

2

0
0
0

x

y

T T
X k X
Y k Y

ω′′ + =

′′ + =

′′ + =

 (5.28)

Once these differential equations are solved using boundary conditions, we can get

the general solution of the 2D wave equation in the form:

 () () () () (), , , ,
1 1

, , cos sin sin sinn m n m n m n m x y
n m

u x y t A t B t k x k yω ω
∞ ∞

= =

 = ⋅ + ⋅ ⋅ ⋅ ⋅ ∑∑ (5.29)

42

where 1,2,3...n = , 1,2,3...m = , x
nk
a
π

= , y
mk
b
π

= , 2 2
,n m x yk kω β= + and ,n mA and ,n mB

are the constants that can be determined from the initial conditions as:

() () ()

() () ()

,
0 0

,
, 0 0

4 , sin sin

4 , sin sin

b a

n m x y

b a

n m x y
n m

A f x y k x dx k y dy
a b

B g x y k x dx k y dy
a bω

 
= ⋅ ⋅ ⋅ ⋅  

 
= ⋅ ⋅ ⋅ ⋅ ⋅  

∫ ∫

∫ ∫
 (5.30)

5.6. Analytical solution of the 2D damped wave equation

The 2D damped wave equation is:

2 2 2

2
2 2 22u u u uc

t t x y
β

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

 (5.31)

where the term 2 uc
t

∂
∂

 represents a damping force proportional to the velocity u
t

∂
∂

.

Using the separation of variables method to solve Eq. (5.31) we have:

 ()2
2 2 22 2X YT XY TXYT cXYT T cT X

XYT XY T
Y
YT X

β
β β ω

′′ ′′+′′ ′′ ′′ ′′ ′′+ +
= ⇒ = + = −

′′
 (5.32)

Again, this can be separated into three ordinary differential equations:

2

2

2

2 0
0
0

x

y

T cT T
X k X
Y k Y

ω′′ ′+ + =

′′ + =

′′ + =

 (5.33)

The last two differential equations in Eq. are trivial to solve using boundary conditions,

but the first one can have different solutions depending of the value of ω . If we assume

that 2 2cω > , then the solution of the 2D damped wave equation is:

43

() ()
() () ()

2 2
, ,

1 1

2 2
, ,

, , cos

sin sin sin

ct
n m n m

n m

n m n m x y

u x y t e A c t

B c t k x k y

ω

ω

∞ ∞
−

= =

= ⋅ − ⋅ +

− ⋅ ⋅ ⋅ ⋅ ⋅

∑∑

 (5.34)

where ,n mA and ,n mB can be determined from Eq. (5.30).

5.7. Numerical solution of 2D undamped wave equation

The 2D undamped wave equation Eq. (5.23) can be numerically solved using FD

approximation on a discretised domain (Figure 5.3):

 , ,
1 1

, 0
, 0 1
, 0 1

k

i

j

Tt x y
m n p

t k t k

a b

m
x i x i n

j y j py

∆ = ∆ = ∆ =
+ +

= ⋅∆ ≤ ≤
= ⋅∆ ≤ ≤ +
= ⋅∆ ≤ ≤ +

 (5.35)

Let’s assume that our membrane is divided into 16 cells, or that 3, 3n p= = (Figure

5.3).

Figure 5.3 – Discretisation of a thin elastic membrane stretched tightly over a rectangular frame dimensions 𝑎𝑎 × 𝑏𝑏, with
the edges fixed to the frame, for FD solution of the 2D wave equation. 𝑢𝑢𝑖𝑖,𝑗𝑗 denotes the displacement of the membrane at

�𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗� position. ∆𝑥𝑥 and ∆𝑦𝑦 are the mesh sizes in 𝑥𝑥 and 𝑦𝑦 directions, respectively.

44

The boundary conditions are:

()
()
()
()

0,

4,

,0

,4

0, ,

, ,

,0,

, ,

k
j

k
j

k
i

k
i

u y t u

u a y t u

u x t u

u x b t u

=

=

=

=

The initial conditions can be described as:

() ()

() ()

,

,, ,0 ,

, ,0 , i j

i j
u x y

u x y f x y

gy

f

g x
t

∂
=

= =

=
∂

We can use the finite central difference approximation again to approximate the

temporal and spatial derivatives. The approximate 2D wave equation will then be:

1 1

, , , 1, , 1, , 1 , , 12 2
2 2 2

2 2 2k k k k k k k k k
i j i j i j i j i j i j i j i j i ju u u u u u u u u

t x y
β β

+ −
+ − + −− + − + − +

= +
∆ ∆ ∆

⋅ ⋅ (5.36)

where ,
k
i ju denotes the value of u at time point k and grid point ,i jx y .

If we introduce the substitutions
2 2

2x
ts

x
β ∆

=
∆

 and
2 2

2y
ts

y
β ∆

=
∆

, we get the the

equation for ,i ju for the future time step 1k + :

 () () ()1 1
, , , 1, 1, , 1 , 12 1k k k k k k k

i j i j x y i j x i j i j y i j i ju u s s u s u u s u u+ −
+ − + −= − + − − + + + + (5.37)

From the initial and boundary conditions we can calculate the first iteration as:

 () () ()1 0 0 0 0 0
, , 1, 1, , 1 , 1 ,1

2 2
yx

i j x y i j i j i j i j i j i j

ssu s s u u u u u tg+ − + −= − − + + + + + ∆ (5.38)

Both the iterative formula and the equation for the 1st time step can be calculated

using the similar matrix method as for the 1D case.

45

For 1u :

 1 01 1
2 2

u A u b d= ⋅ + +
 

  (5.39)

And for all other steps, the general iterative scheme is then:

 1 1k k ku A u b u+ −= ⋅ + −


  

 (5.40)

where A and b


 are the matrix and vector, respectively, shown in Figure 5.4, with

()2 1 x ys sλ = − − .

Figure 5.4 – Matrix A and vector 𝑏𝑏�⃗ used for matrix method for numerical solution of 2D undamped wave equation

Finally, the boundary conditions for the membrane with fixed edges can be expressed as:

()
()
()
()

0,

4,

,0

,4

0, ,

, ,

,0,

,

0

0,

0

0

k
j

k
j

k
i

k
i

u y t u

u a y t u

u x t u

u x b t u

=

=

=

=

=

=

=

=

46

Considering these boundary conditions, all the values in the vector b


 will be zero and the

equation for the 1st time step and the iterative formula will be reduced to:

1 0

1 1

1
2

k k k

u A u d

u A u u+ −

= ⋅ +

= ⋅ −



 

   (5.41)

5.8. Numerical solution of 2D damped wave equation

We start again by replacing the temporal and spatial derivatives in Eq. (5.31) with the

finite central difference approximation on the same discretised domain as the 2D

undamped wave equation (Figure 5.3), with the same boundary and the initial conditions.

This now gives us the equation:

1 1 1 1
, , , , ,

2

1, , 1, , 1 , , 12 2
2 2

2
 2

2
2 2

k k k k k
i j i j i j i j i j

k k k k k k
i j i j i j i j i j i j

u u u u u
c

t t
u u u u u u

x y
β β

+ − + −

+ − + −

− + −
+ ⋅ =

∆ ∆
− + − +

⋅ + ⋅
∆ ∆

 (5.42)

Using the same substitutions as for the undamped wave, we can find the equation for

1
,
k
i ju + :

()

() ()

1 1
, , ,

1, 1, , 1 , 1

1 1 2 1
1 1
1 1

1 1

k k k
i j i j x y i j

k k k k
x i j i j y i j i j

c tu u s s u
c t c t

s u u s u u
c t c t

+ −

+ − + −

− ∆
= − + − − +

+ ∆ + ∆

+ + +
+ ∆ + ∆

 (5.43)

Both the iterative formula and the equation for the 1st time step can be calculated

using the similar matrix method as for the undamped 2D case.

For 1u :

 1 01 1
2 2d d
c t c tu A u b d+

= ⋅
∆ + ∆

+ +
 

  (5.44)

47

and for all other steps, the general iterative scheme is then:

 1 1k k k
d du A u b e u+ −= + − ⋅⋅



   (5.45)

where 1
1dA A

c t
= ⋅

+ ∆
, 1

1db b
c t

= ⋅
+ ∆

 

 and 1
1

c te
c t

− ∆
=

+ ∆
 . A and b



 are the matrix and

vector, respectively, shown in Figure 5.4.

Finally, using the boundary conditions for the membrane with fixed edges all the

values in the vector b


 will be zero and the equation for the 1st time step and the iterative

formula will be reduced to:

1 0

1 1

1
2 d

k k k
d

c tu A u d

u A u e u+ −

+ ∆
= +

= ⋅ − ⋅

⋅


 

   (5.46)

The discrete approximation to the Laplacian operator
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
 used until this

point is known as the five-point Laplacian (Abramowitz, 1974) or five-point stencil and it

is a second-order accurate scheme. There are two possible forms of the five-point

Laplacian operator, one making use of points adjacent to the centre point, and another

one employing points diagonally adjacent. These two forms of the operator may be

linearly combined to yield a so-called nine-point stencil which is also a second-order

accurate scheme (Barkley Rosser, 1975; P. Sanz-Leon, 2017).

In Sections 5.7 and 5.8 the faster, matrix method of numerical solution of the 2D wave

equations using five-point stencil is derived. This method calculates the wave propagation

computationally faster than the iterative five-point stencil method, but is limited by

computer memory, since the whole wave space is calculated at once.

48

In the next Section (5.9), we will show the nine-point Laplacian matrix method for

numerical solution of the 2D damped wave equation (Barkley Rosser, 1975).

5.9. The nine-point stencil method for numerical solution of the 2D wave equation

The previous Sections (5.7 and 5.8) described the five-point stencil numerical scheme

for numerical solution of the 2D wave equation. The difference between five-point and

nine-point stencils are shown in Figure 5.5.

Figure 5.5 – The five-point and the nine-point stencils

In order to find the numerical solution for the 2D damped wave equation, with the

same number of cells, boundary and initial conditions as used in the previous Chapters,

using the nine-point stencil, we should start with the Eq. (5.31):

2 2 2

2
2 2 22u u u uc

t t x y
β

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

As we know,
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
 is called Laplacian. Thus for the nine-point stencil we can

write:

49

2

2 2
92 2 u uc u

t t
β∂ ∂

+ = ∇
∂ ∂

 (5.47)

where 2
9∇ is the nine-point Laplacian, and 2 9

9
α

∇ =
∆ (Barkley Rosser, 1975). The operator

9∆ is:

 () ()
2 2 2 2

9 2 2 2 2

1 1
10 2 10 2, 20 , ; ;

1 1

c
y x x yu x y b b u x y b c
x y x y

c

 
∆ − ∆ ∆ − ∆ ∆ = − = =  ∆ + ∆ ∆ + ∆

  

.

Each coefficient in the operator 9∆ is multiplied with the corresponding point in mesh,

for example, if a coefficient is m units above the horizontal centre line and n units to the

right of the vertical centre line, we will have a product of that coefficient with

(),u x n x y m y+ ⋅∆ + ⋅∆ . The entire operator denotes the sum of these products; thus we

will have:

() ()

() ()

2 2

9 , 1, 1,2 2

2 2

, 1 , 1 1, 1 1, 1 1, 1 1, 12 2

10 2, 20

10 2

i j i j i j

i j i j i j i j i j i j

y xu x y u u u
x y

x y u u u u u u
x y

+ −

+ − + + + − − + − −

∆ − ∆
∆ = − + + +

∆ + ∆

∆ − ∆
+ + + + +

∆ + ∆
 (5.48)

The coefficient α is:

2 2

2 2
12 x y

x y
α ∆ ∆
=
∆ + ∆

 (5.49)

When we go back to the damped wave equation, Eq. (5.47), and solve it for 1
,
k
i ju + , we

get:

50

()

() ()

()

1 1
, , ,

1, 1, , 1 , 1

1, 1 1, 1 1, 1 1, 1

1 1 2 20
1 1

1 1

1

k k k
i j i j m i j

yk k k kx
i j i j i j i j

k k k km
i j i j i j i j

c tu u s u
c t c t

ss u u u u
c t c t

s u u u u
c t

+ −

+ − + −

+ + + − − + − +

− ∆
= − + − +

+ ∆ + ∆

+ + + +
+ ∆ + ∆

+ + +
+ ∆

 (5.50)

where 1ms C s= , 2xs C s= , 3ys C s= , and
2 2

2 212
ts

x y
β ∆

=
∆ ∆

, while 2 2
1C x y= ∆ + ∆ ,

2 2
2 10 2C y x= ∆ − ∆ , and 2

3
210 2C x y= ∆ − ∆ .

Both the iterative formula and the equation for the 1st time step are exactly the same

as for five-point stencil damped wave solution.

For 1u :

 1 01 1
2 2d d
c t c tu A u b d+

= ⋅
∆ + ∆

+ +
 

  (5.51)

and for all other steps, the general iterative scheme is then:

 1 1k k k
d du A u b e u+ −= + − ⋅⋅



   (5.52)

where 1
1dA A

c t
= ⋅

+ ∆
, 1

1db b
c t

= ⋅
+ ∆

 

 and 1
1

c te
c t

− ∆
=

+ ∆
 . A and b



 are the matrix and

vector, respectively, shown in Figure 5.6.

The update equations for the undamped wave equation using the nine-point stencil

are also exactly the same as for the five-point stencil.

For 1u :

 1 01 1
2 2

u A u b d= ⋅ + +
 

  (5.53)

51

and for all other steps, the general iterative scheme is then:

 1 1k k ku A u b u+ −= ⋅ + −


  

 (5.54)

but now, A and b


 are the matrix and vector, respectively, shown in Figure 5.6, with

2 20 msλ = − .

Figure 5.6 – Matrix A and vector 𝑏𝑏�⃗ used for matrix method for numerical solution of 2D undamped wave equation using

nine-point stencil.

Finally, using the boundary conditions for the membrane with fixed edges all the

values in the vector b


 will be zero and the equations for the 1st time step (Eq.(5.51) and

Eq.(5.53)) and the iterative formulae (Eq.(5.52) and Eq.(5.54)) will be reduced to:

1 0

1 1

1
2 d

k k k
d

c tu A u d

u A u e u+ −

+ ∆
= +

= −

⋅

⋅⋅



 

   (5.55)

for the damped wave, and:

1 0

1 1

1
2

k k k

u A u d

u A u u+ −

= ⋅ +

= ⋅ −



 

   (5.56)

 for the undamped wave.

52

5.10. Numerical comparisons between five-point and nine-point stencils

In order to compare the five-point and the nine-point stencils discrete approximation

methods of the Laplacian operator, the MATLAB programs for both methods were built

(Appendix C and Appendix D).

The simulations were all run in MATLAB R2017a running on a laptop with Intel i7 core

processor and 16GB RAM. All the simulations had the same grid size, duration of the

simulation and the step size:

 12 , 2400; 2 , 199, 199T s m a b m n p= = = = = =

The mesh was initialised with the 2D Gaussian function spread over the whole mesh

with the peak of the function in the central node, amplitude of 5 and variance

2 5 24 10 mσ −= ⋅ . The time of the code execution for each simulation is given in Table 5-1.

Table 5-1 – Time of the code execution of the simulations using 5- and 9-point stencil methods to solve the 2-D wave PDE

Simulation: Time [s]:
9-point stencil – undamped wave 2.123368
9-point stencil – damped wave 2.233060
5-point stencil – undamped wave 1.485464
5-point stencil – damped wave 1.600054

A comparison was made between 3 points in a mesh, as shown in Figure 5.7.

53

Figure 5.7 – Three points in the mesh that are monitored in the comparisons between the 9-point and 5-point stencils.

The mesh consists of 200x200 cells. Black dot represents the central point in mesh, where the stimulus is applied. Red dot
is the central-right point, while blue dot is a diagonal point. Both red and blue points are distanced the same length from

the central point, which is demonstrated by the yellow circle.

First, the Figure 5.8 shows the nodes’ traces when the 9-point stencil is used for solving

the damped and the undamped waves. It is clear that the damped wave’s oscillations are

getting weaker with time and will eventually disappear.

Figure 5.8 – The effect of damping using the 9-point stencil method for the three locations specified in Figure 5.7. The red

lines are damped and black lines are undamped waves.

54

Next, we show the nodes’ traces for 9-point and 5-point stencils in time domain. Figure

5.9 and Figure 5.10 show the undamped waves, while Figure 5.11 and Figure 5.12 are

showing the damped waves. From these figures we calculated that the maximum

difference is less than 0.5% between 9-point and 5-point stencils in time domain.

Figure 5.9 – The undamped waveforms generated by the 9-point (red line) and 5-point (black line) stencils for the three

locations specified in Figure 5.7.

Figure 5.10 – The accumulation of error between the undamped waveforms generated by the 9-point and 5-point

stencils the three locations specified in Figure 5.7.

55

Figure 5.11 – Damped waveforms generated by the 9-point (red line) and 5-point (black line) stencils for the three

locations specified in Figure 5.7.

Figure 5.12 – The accumulation of error between the damped waveforms generated by the 9-point and 5-point stencils

the three locations specified in Figure 5.7.

56

After that, we compared both stencils for undamped waves in frequency domain as

well, Figure 5.13. There, the error between 9-point and 5-point stencils frequency spectra

is multiplied by 100 so we can observe it on the same plots as the signals we are

comparing.

Figure 5.13 – The frequency spectra for the undamped waveforms generated by the 9-point (red line) and 5-point (black

line) stencils for the three locations specified in Figure 5.7. The error (multiplied by 100) is shown with green line.

We also compared both stencils over the whole mesh using the correlation (corr

function built in MATLAB, which computes p -values for Pearson's correlation using a

Student's t distribution for a transformation of the correlation), Figure 5.14, and Nash–

Sutcliffe Efficiency Index (Zachary, Richard, & Cutter, 2006), Figure 5.15. Nash–Sutcliffe

Efficiency Index is a common measure of model accuracy, calculated as:

()
()

2

01
2

0 01

1
T t t

mt
T t
t

Q Q
E

Q Q
=

=

−
= −

−

∑
∑

57

where t
mQ is the predicted (modelled) value at time t , 0

tQ is the observed (measured)

value at time t and 0Q is the mean of the observed values.

Figure 5.14 – The correlation between 9-point and 5-point stencils for: A) undamped, B) damped, waves

Figure 5.15 – The Nash–Sutcliffe Efficiency Index between 9-point and 5-point stencils for: A) undamped, B) damped, waves

Both methods show that, there is a slight difference in diagonal parts of the mesh,

which was expected considering that 9-point stencil has the diagonal terms, whereas 5-

point stencil doesn’t. But when we inspect the numbers on the figures, we see that these

58

differences are so small, that we can pick 5-point stencil over 9-point stencil in our

calculations without having problems with the numerical error.

5.11. Conclusion

In this Chapter, the possibility of using the five-point stencil to numerically solve the

undamped and damped wave PDEs, instead of the nine-point stencil is explored. The

results show that the five-point stencil could indeed be used instead of the nine-point

stencil in NeuroField model to solve the governing damped wave equation, providing a

significant speed up in code execution, without losing accuracy.

This result was discussed with the creators of NeuroField from The University of

Sydney and was discovered that they were also working towards changing the method of

solving the wave equation from nine-point to five-point stencil for easier understanding

of the code. The presented results of our tests assured them that, by using five-point

stencil, there will be significant speed up in the computation, the code will be easier to

understand and all without losing accuracy. This investigation also helped us to translate

NeuroField from C++ to MATLAB (presented in Appendix B) by better understanding some

of the processes in NeuroField program.

59

6. Mapping NeuroField parameters to TLM

In the first part of this Chapter the numerical approximations of governing wave PDEs

in NeuroField using FD method and the iterative formula are presented. The proposed

TLM cell for numerically solving the inhomogeneous damped wave PDEs is presented and

the PDE equivalent to the analytical solution in NeuroField is derived in the second part

of this Chapter (6.2). In the same Section, the TLM node parameters are calculated to

match the NeuroField parameters and finally the scattering algorithm and calculating

nodal voltage for Link-Line and Link-Resistor TLM node are derived.

The last Section of this Chapter discusses the space and time discretisation, some

methods’ constraints and boundary conditions used in both numerical methods.

60

6.1. NeuroField wave equation in FD

The governing differential equation that represents axonal propagation of activity

through the cortex in the NeuroField model is the inhomogeneous (or forced) damped

wave equation relating the field (),ab r tϕ  to the driving signal (),bQ r t :

 () () () () ()
2

2 2
2 2

, ,1 2 , , ,ab ab
ab ab ab b

ab ab

r t r t
r t r r t Q r t

t t
ϕ ϕ

ϕ ϕ
γ γ

∂ ∂
+ + = ∇ +

∂ ∂

 

   (6.1)

This equation can be simplified by converting it into the undamped wave equation

simply by introducing substitutions ()exp ab bau tϕ γ= and ()expb abtQω γ= (P. Sanz-Leon,

2017), which gives:

 () () ()
2

2 2
2 2

,1 , ,ab
ab

u r t
r u r t r t

t
ω

γ
∂

= ∇ +
∂



  (6.2)

This PDE is similar to the 2D undamped wave PDE, Eq. 5.1 from Chapter 5, and

therefore can be solved numerically using the same five-point stencil explicit method

(Olsen-Kettle, 2011). After a derivation, which is presented in detail in (P. Sanz-Leon,

2017), the explicit solution to compute future values of u is:

() ()

() ()
()

1 2 2 1
, , , 1 , 1 1, 1, ,

2 2
2 1 1

, , ,

2
, 1 , 1 1, 1,

2 4

10 4
12

n n n n n n n
m l m l m l m l m l m l m l

n n nab
m l m l m l

n n n n
m l m l m l m l

u p u p u u u u u

k p

p

ω ω ω

ω

γ

ω ω ω

+ −
+ − + −

+ −

+ − + −

= − + + + + −

+ − + +

+ + + +  (6.3)

where superscript n is the index in time units of k t= ∆ , centred at current time t and

the future and previous states are 1+ and 1− step away respectively. That means that

the current state is indexed by n , 1n + denotes 0 t+ ∆ and 1n − denotes 0 t− ∆ . In Eq

(6.3) tp v
x
∆

=
∆

 is the Courant number (see Section 6.3.2).

61

Finally, when the axonal field (),ab r tϕ  and the driving signal (),bQ r t are re-

introduced in Eq. (6.3), the iterative formula for propagation of the axonal fields (),ab r tϕ 

is (P. Sanz-Leon, 2017):

() (){
() ()

() }

1 2 2 1
, , , 1 , 1 1, 1, ,

2 2
2 1 1

, , ,

2
, 1 , 1 1, 1,

2 4

10 4
12

ab ab

ab ab

t tn n n n n n n
m l m l m l m l m l m l m l

t tn n nab
m l m l m l

n n n n
m l m l m l m l

e p p e

k p Q Q e Q e

p Q Q Q Q

γ γ

γ γ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

γ

− ∆ − ∆+ −
+ − + −

∆ − ∆+ −

+ − + −

= − + + + + −

+ − + +

+ + + +  (6.4)

6.2. TLM method for inhomogeneous (or forced) damped wave equation

6.2.1. TLM equivalent network

In order to make a TLM model that can simulate the same inhomogeneous (forced)

damped wave equation, we needed the TLM equivalent network, as shown in Figure 6.1,

where zV is the voltage at a node, kI is the current generator and dR (resistance), dC

(capacitance), dL (inductance), dG (conductance) are the distributed electrical

parameters per unit length of the individual transmission lines making up the mesh (Desai

et al., 1992). The length between two TLM nodes is l∆ .

62

Figure 6.1 – One cell of the 2-D TLM mesh for the model of damped wave equation

represented as lumped components, similar to (Amri et al., 2011)

After applying Kirchhoff’s current law at node 0 we get:

 2 2x zy
d z d

kI I I VG V C
y x l t

∂ ∂ ∂
− − + = +
∂ ∂ ∆ ∂

 (6.5)

Then, applying the Kirchhoff’s voltage law around the loop in y-z plane we get:

 2 yz
d y d

IV R I L
x t

∂∂
= − −

∂ ∂
 (6.6)

And if we do similar for x-z plane we have:

 2 xz
d x d

IV R I L
z t

∂∂
= − −

∂ ∂
 (6.7)

To form a wave equation, Eq. (6.5) needs to be differentiated with respect to t , Eq.

(6.6) with respect to y , and Eq. (6.7) with respect to x :

63

2 2 2

2

22

2

2 2

2

2 2

2

2

y x k z z
d d

y yz
d d

y x x
d d

I I I l V VG C
y t x t t t t

I IV R L
y y y t
V I IR L
x x x t

∂ ∂ ∂ ∆ ∂ ∂
− − + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂
= − −

∂ ∂ ∂ ∂

∂ ∂ ∂
= − −

∂ ∂ ∂ ∂

 (6.8)

After substitution we get:

 ()
2

2
22 4 2 4 2 k d kz z

d d d d d d d d z z d
I L IV VL C R C L G R G V V R

t t l l t
∂∂ ∂

+ + + = ∇ + +
∂ ∂ ∆ ∆ ∂

 (6.9)

In some earlier works by (Desai et al., 1992) and (Amri et al., 2011) the derivative over

time for current source kI in Eq. (6.8) was set to zero, because the driving force for the

diffusion equations was constant over time, but in our case the driving force, the mean

firing rate (),bQ r t , varies over time and is also dependent of surrounding brain activities

that are connected to the particular neural population b .

If we divide the NeuroField equation (6.1) by 2
abr , we get:

 () () () () ()
2

2
2 2 2 2 2 2

, ,1 2 1 1, , ,ab ab
ab ab b

ab ab ab ab ab ab

r t r t
r t r t Q r t

r t r t r r
ϕ ϕ

ϕ ϕ
γ γ

∂ ∂
+ + = ∇ +

∂ ∂

 

   (6.10)

From Equations (6.9) and (6.10), the following equivalences between the TLM lumped

parameters and NeuroField parameters can be drawn:

64

()

()

2 2

2

2

2

,
12

24 2

14

12 ,

z ab

d d
ab ab

d d d d
ab ab

d d
ab

k d k
d b

ab

V r t

L C
r

R C L G
r

R G
r

I L IR Q r t
l l t r

ϕ

γ

γ

=

=

+ =

=

∂
+ =

∆ ∆ ∂



 (6.11)

6.2.2. Calculation of TLM cell parameters to match NeuroField and the units analysis

To match TLM node parameters to NeuroField, the units analysis is used. First, we

need to write all the parameters with their S.I. units, where X is numerical quantity of

the parameter and the corresponding dimensional unit is in square brackets:

[]
[]
[]
[]

() []
() []

2

2

,

1

1

1,

1

d d d

d d d

d d d

d d d d

z z

k k

ab ab

ab ab

ab ab

b b

sR R R
m F m

F sC C C
m H

H sL L L
m F m

F sG G G G
m s m H m

V V V

I I A

s

r r m

r t

Q r t Q

s

s

γ γ

ϕ ϕ

Ω   = ⋅ = ⋅   ⋅   
  = ⋅ = ⋅      
  = ⋅ = ⋅    ⋅   

     = ⋅ = ⋅ = ⋅     Ω⋅ ⋅ ⋅     
= ⋅

= ⋅

=

=

⋅

⋅

=

=

⋅

⋅





This way, while calculating the parameters for TLM node, we can immediately check

if the units on both sides of the equations are the same.

Starting from the impedance of the transmission line 0Z we have the following:

65

 [] []

2

0 02 22

d
dd

d d
d

sL LF mLZ Z
FC CC
m

 
⋅  ⋅ = ⇒ ⋅ Ω = = ⋅ Ω

 ⋅   

 2
0 2d dL C Z⇒ = (6.12)

The speed of the wave across the 2-D mesh can be expressed as:

 [] []
2

1
2

11
2

1
2

d d

d d

d

ab ab

ab ab

ab
d

ab

v
L C

mv s m
s s FL C

F m m

m m m

r

r

v
s

r
s sL C

γ

γ

γ

= =

 ⋅ = ⋅ ⋅ ⋅ =      ⋅ ⋅ ⋅   ⋅   

     ⋅ = ⋅ = ⋅          

Here we can substitute the expression for inductance Eq. (6.12) and calculate dL and

dC as:

2

00

1 1
22 2

ab ab ab a
dd d

b C ZC Z C
r rγ γ= ⇒ =

⋅

0

1
2 ab ab

dC
Z rγ

= , 0
d

ab ab

Z
L

rγ
= (6.13)

Now we should check the units for equivalence 3 from Eq. (6.11):

 ()

2

2

2

2

22

2

2

2

4

4

4

2

2

2

d d d d

d d

ab ab

a
d d

d

b ab

ab ab
d d d

R C L G

F s H s sR C L G
m F m m H m m

s sR C L
m

r

r

G
m r

γ

γ

γ

+ =

     ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅     ⋅ ⋅     

   ⋅ + ⋅ ⋅ = ⋅      
 (6.14)

66

From Eq. (6.13) and (6.14) we can find the relation between dR and dG :

 02
0 2

0 0

1

a
d

b

d
d

b a
d

Z R
R Z G G

Z Zr r
+ = ⇒ = − (6.15)

We should also check the units for the equivalence 4 from Eq. (6.11):

2

2 2

2 2 2

1

14

1 1

1 1 1

4

4

d d

d d
ab

a

d

b

a
d

b

R G
r

r m
R G

m

R G
m r m

m

=

 ⋅   



Ω ⋅ ⋅ ⋅ = Ω ⋅ 

  ⋅     
⋅ ⋅


= (6.16)

From Eq. (6.15) and (6.16) we can finally calculate dR and dG :

2
0 0

2

2
00

2

0

2
14

4

1

0

2
0

14

1

ab ab

d
d

d d

ab ab

ab

d

R
R

Z Zr

R R
ZZ

r

r

R

r

rZ

⋅
 

− =

− +

−

 
 

=

=



 0

2d
ab

Z
R

r
= ,

0

1
2 a

d
b

G
Z r

= (6.17)

Finally, from equivalences 1 and 5, Eq. (6.11), we have:

 [] 1
z abV V

s
ϕ  ⋅ = ⋅   

 (6.18)

67

22
1 112 k d k

d b
ab

I L IA H AR Q
l m m l t m s s mm r

∂Ω   ⋅ ⋅ + ⋅ ⋅ ⋅ =   ∆ ∆ 
⋅

∂ ⋅ 

[] [] 22 11k d k
d b

ab

I L I
R V V Q

l l t r s
∂

⋅ + ⋅

 
 
 

 ⋅=
∆ ∆ ∂ 

 (6.19)

Since TLM is a numerical method, we are working with constant time steps t∆ instead

of t∂ , thus
1n n

k k k kI I I I
t t t

−∂ ∆ −
= =

∂ ∆ ∆
 , where n is the current iteration step of the TLM. If we

divide Eq. (6.19) with
2 dR

l∆
and change the derivative of kI with

1n n
k kI I

t

−−

∆
we get the

iterative formula for calculating the driving force in our TLM model:

1

0

0

11

1

11

n n
k b

ab ab

n
b

ab abn
k

ab

n n
k k

n
k

I Q
Z r

Q
Z r

I Il
t

l I
t

t

I

γ

γ

γ

−

−

= −
−∆
∆

∆
∆

+

=

∆
+

 (6.20)

When 0n = we have: 0 0

0
k b

ab

I Q
Z r

l
=

∆ , where 0
bQ is the steady-state value of the neural

population b .

From the dimensional analysis of Eq. (6.18) and Eq. (6.19) it is obvious that the units

do not agree, thus to achieve full dimensional homogeneity in equivalences between

NeuroField and TLM parameters we should multiply voltage zV and current kI with the

appropriate unity constant
2

21V
A sU

kg m
 ⋅

= ⋅  ⋅ 
.

Finally, here is the summary of the numerical quantities for all the TLM node

parameters should we want to match them to NeuroField:

68

0

0

0

0

0 0

1

0

0

1
2

2

1
2

1

,11

z ab

d

d
ab ab

a

d

d

n
b

ab abn
k k

b ab

ab

ab

b
ab

n

ab

k

V

C
Z

Z
L

r

Z
R

G
Z

Q
Z r

I

r

r

r

l I
t l

t

I Q
Z r

ϕ

γ

γ

γ

γ

−

=

=

=

=

∆
∆ ∆

+

=

∆

=

=
+

 (6.21)

6.2.3. Electrical equivalent for lumped TLM cell

The lumped network can now be converted into a 2D electrical network with the set

impedance 0Z .

Impedance 0Z can be set to any arbitrary value, as shown in Figure 6.2, while values

for resistance R and conductance G can be calculated as:

2

d

d

R dx R

G dx G

= ⋅

= ⋅ ⋅

The electrical equivalent for lumped TLM cell for numerical solution of

inhomogeneous damped wave equation is shown in Figure 6.3.

69

Figure 6.2 – The influence of impedance 𝑍𝑍0 on profiles in One-population NeuroField model based on the TLM method:

𝑍𝑍0 = 10−4Ω red line, 𝑍𝑍0 = 1Ω blue line, 𝑍𝑍0 = 104Ω green line. Left figure - central node traces for propagation field 𝜑𝜑1,
Right figure - equatorial profiles of the same axonal fields for iteration step 49. Simulation was driven by a sine wave of

amplitude 1𝑠𝑠−1 and frequency of 20Hz, applied at the centre of the mesh.

Figure 6.3 – Lumped electrical equivalent of a TLM cell with calculated parameters to match the NeuroField model

There are two TLM implantations in lossy formulation, depending on the relative

placement of the transmission lines and resistors within a node. If we are making

observations at the interface between two resistors, than that is called link-line TLM node

(Figure 6.4), where as if the observations are made at the centre of the transmission line

that is called link-resistor TLM node (Figure 6.6) (Cogan et al., 2005).

70

6.2.3.1. Link-Line TLM node

Figure 6.4 – Lumped electrical equivalent of a TLM cell – Link-Line configuration

We need to find the impulse scattering matrix for a proposed Link-Line TLM node as

well as voltage at the node centre nV .

We can calculate voltage at any point on the transmission line as 2 2 2
i r

nV V V= + , where

2
iV is the voltage impulse entering a TLM node from the west, at port 2, and 2

rV is the

scattered (reflected) pulse from a node to port 2. In lossless TLM 2nV is equal to node

voltage nV , but in link-line arrangement they are not the same and we need to calculate

both separately.

First, we can calculate 2nV , which will also give us the equation for the reflected

voltage 2
rV .

Using superposition method, we get:

71

 2 0
2

0

2 i
n

n
V R V ZV

R Z
⋅ + ⋅

=
+

 (6.22)

Then we can find the reflected pulse:

 ()
2 2 2

2 0 0
2

0

r i
n
i

r n

V V V
V R Z V Z

V
R Z

= −

⋅ − + ⋅
=

+
 (6.23)

Test:

If 0R = we expect that 2n nV V= and 2 2
r i

nV V V= − :

2 0
2

0i
r

V Z
V

⋅ −
=

() 0nV Z+ ⋅

00 Z+ 2

2 0
2

2 0

i
n

i
n

n

V V

V V Z
V

= −

⋅ + ⋅
=

00 Z+ nV=

The same method can be applied to calculate the reflected pulses for other ports (1
rV

, 3
rV and 4

rV). Next, we need to calculate the Nodal voltage nV . Let’s start with the nodal

voltage for impulse from direction 2 approaching the resistors at the centre of node from

left (Figure 6.5).

72

Figure 6.5 – The Link-Line configuration – Thevenin circuit or calculation of nodal voltage

The Thevenin equivalent circuit assumes that this pulse has originated from voltage

source 22 i
kV . Using simple potential divider formula, we can calculate the contribution to

the voltage at the centre of the node:

 22 i T
T k

e T

RV V
Z R

= ⋅
+

where 0eZ R Z= + and
3

e
T

e

ZR
G Z

=
+ ⋅

. The incident wave from one direction, for

example 2
iV , will contribute to the voltage at the centre of the node with:

()

2
2

0

2
4

i
k

T
VV

R Z G
=

+ + ⋅
 (6.24)

The current source (Figure 6.4) also contributes to the voltage at the node centre with:

 ()
()

0

04
k

I
I R Z

V
R Z G
⋅ +

=
+ + ⋅

 (6.25)

73

Now, total voltage at the node centre can be calculated as the sum of all contributions

from all four directions and voltage from the current source:

()

()
()

()
1 2 3 4 0

0 0

2
4 4

i i i i
k k k k k

k n

V V V V I R Z
V

R Z G R Z G
⋅ + + + ⋅ +

= +
+ + ⋅ + + ⋅

 (6.26)

6.2.3.2. Link-Resistor TLM node

Figure 6.6 – Lumped electrical equivalent of a TLM cell – Link-Resistor configuration

In a 2D link-resistor node, the transmission lines are connected through two resistors,

as shown in Figure 6.6. The scattered waves at discrete time intervals are identical to those

in lossless TLM and can be calculated from:

 4 4
r i

nV V V= − (6.27)

However, the presence of linking resistors will set a second scattering event that occur

at the half-time intervals. This is because the pulse reflected from the node at position

()x , 4
rV , and traveling along a line, sees its resistor and the resistor and the transmission

74

line of the target node at ()1x + as a miss-matching load. Connection equations then

need to include this as:

() () ()
() () ()
() () ()
() () ()

1 1 1 3

1 2 2 4

1 3 3 1

1 4 4 2

, , , 1

, , 1,

, , , 1

, , 1,

i r r
k k k

i r r
k k k

i r r
k k k

i r r
k k k

V x y V x y V x y

V x y V x y V x y

V x y V x y V x y

V x y V x y V x y

ρ τ

ρ τ

ρ τ

ρ τ

+

+

+

+

′ ′′= ⋅ + ⋅ −

′ ′′= ⋅ + ⋅ −

′ ′′= ⋅ + ⋅ +

′ ′′= ⋅ + ⋅ +

 (6.28)

where ()0R R Zρ′ = + and ()0 01 Z R Zτ ρ′′ ′′= − = + .

The nodal potential is then:

()1 2 3 4 0

0 0

2
4 4

i i i i
k k k k k

k n

V V V V I ZV
G Z G Z

⋅ + + + ⋅
= +

+ ⋅ + ⋅
 (6.29)

In the link-line TLM nodal formulation, the “jumps-to-zero” effects can be observed as

a sawtooth effect during a single-shot excitation of a spatial mesh (Cogan et al., 2005). It

is a well-known anomaly in a range of numerical models when the frequencies are

approaching 1 2 t∆ . For the heat-flow and particle diffusion simulations following single-

shot injection into a TLM the problem can be solved using a link-resistor TLM nodal

formulation for lossy TLM (Cogan et al., 2005).

6.3. Discretisation and Boundary conditions

6.3.1. Space and time discretisation in FD method

The cortex is modelled in NeuroFeild as a 2D rectangular sheet, with edges of length

w and h []m . For all the simulations in this thesis, squared sheet, dimensions:

[]0.5w h m= = , is used. The number of nodes xN can be specified in the configuration

75

file for NeuroField model (P. Sanz-Leon, 2017), which determines the discretisation along

x and y axes:

x

wx y
N

∆ = ∆ = (6.30)

If cortex model is 2D square sheet, then y xN N= , Figure 6.7. Otherwise, number of

nodes in y axis has to be calculated from the total number of nodes specified in the

configuration file of NeuroField model (P. Sanz-Leon, 2017).

Figure 6.7 – Discretised space for a generic cortical model in NeuroField simulations.

6.3.2. Courant condition for FD numerical method

The Courant condition (Courant–Friedrichs–Lewy (CFL) condition) is a necessary

condition for convergence when solving the hyperbolic PDEs numerically by the explicit

FD method (Courant, Friedrichs, & Lewy, 1967). Once the length interval x∆ has been

chosen and the speed of the propagating wave v is known, the time step, t∆ , can be

evaluated using CFL in order to obtain a stable solution and a specified accuracy. In the

2D case (Press, Teukolsky, Vetterling, & Flannery, 1992) the value of the CFL number p

must be below:

 max
1
2

tp v
x
∆

= ≤
∆

 (6.31)

76

where v is the speed of the wave and t∆ is the time step size.

This gives the maximum CFL number for NeuroField as:

 max
1
2ab

tp v
x
∆

= ≤
∆

 (6.32)

where the speed of propagation of the field (),ab r tϕ


 is calculated as ab ab abv rγ= .

From a physical point of view, the CFL condition ensures that the propagation speed

of any physical perturbation is always smaller than the numerical one which is nv x t= ∆ ∆

(Rezzolla & Zanotti, 2014).

In (Robinson et al., 1997) a stricter condition was imposed, where the CFL number is

0.1p = . In some other NeuroField models (Abeysuriya, Rennie, & Robinson, 2014)

0.06p ≈ , or in (van Albada et al., 2009) 0.028p = .

Although the solution of the hyperbolic PDEs is numerically stable using FD method

when the CFL conditions are met, there is still a question if the discretisation domain is

optimal for simulations of all the frequencies of interest. When the discretisation domain

is not optimal, then there is a good chance that either space or time is poorly sampled in

the simulation. In FDTD numerical simulations of EM fields, for example, there is usually

one more condition that needs to be fulfilled in order to be certain that the optimal space

discretisation is achieved: the grid resolution x∆ depends on the shortest wavelength

minλ of the highest frequency of interest maxf . For a good space discretisation, it is

suggested that
min

0.1x
λ
∆

≤ .

77

We will give an example of the NeuroField model with the poorly sampled space in

the simulation. Let the speed of the axonal field propagation in the model be

6ab abv r m sγ= = . That is the minimal axonal velocity according to (Robinson, Rennie,

Rowe, & O'Connor, 2004b). If the number of nodes in the mesh is 30xN = , and the time

step is 410t s−∆ = (Abeysuriya, Rennie, & Robinson, 2014), we can find the maximum

frequency that can be simulated.

Firstly, the discretisation along x and y axes is the same and is:

0.0167
x

wx y m
N

∆ = ∆ = = . Then, if we say that the maximum frequency of interest for

brain modelling is max 100f Hz= , which is the maximum frequency of gamma brain waves

(Hughes, 2008), we get the shortest wavelength to be min 0.06mλ = . The ratio between

and is then
min

0.28x
λ
∆

≈ . That means we are modelling the highest frequency of interest

with only 3.6 x∆ . At the same time, we have an oversampling in time domain.

If the space discretisation fulfils the condition that
min

0.1x
λ
∆

≤ then the model from this

example will be able to simulate the frequencies only up to 36Hz , which might not show

some of the processes in brain during the simulation.

6.3.3. Space and time discretisation in TLM

The TLM method is explicit, unconditionally stable numerical method for the solution

of differential equations (Peter B. Johns, 1977). The propagation velocity on a rectangular

mesh depends on frequency and direction, the phenomenon called numerical dispersion

78

(Cogan et al., 2005). To reach the diagonal node, a wavefront needs to travel the distance

of 2 x∆ , but it can only do that in 2 t∆ , so the propagation velocity is actually:

 1
2prop

xv
t

∆
=

∆
 (6.33)

Due to the dispersion, in TLM velocity drops to zero when / 0.25x λ∆ = . That means

that it is not possible to propagate a wave if the discretisation is equal to four nodes per

wavelength (Cogan et al., 2005). As in FDTD method, when the
min

0.1x
λ
∆

≤ , the propagation

velocity in TLM is approximated to 1 2 of the free space speed and it is considered to

be almost constant (Figure 6.8). Once the speed and the space discretisation are set in

TLM, time discretisation is then easily calculated from Eq. (6.33).

Figure 6.8 – Normalised propagation velocity plotted versus normalised frequency to show dispersion. The maximum

velocity is 70.7% of the free-space velocity (Cogan et al., 2005).

In our MATLAB simulations of FD and TLM methods in NeuroField models, the speed

of the axonal propagation was set to be the same for both methods. The CFL condition in

79

FD method was set to 1
2

p = which yielded the same discretisation in space and time

for both methods.

6.3.4. Boundary conditions

The periodic boundary conditions (PBC) are implemented in NeuroField program (P.

Sanz-Leon, 2017). When the signal reaches the far-right edge of the cortical sheet, it will

emerge on the far-left side with the same velocity and continue its propagation to the

right. The opposite applies for the signals travelling in the left direction. Similarly, the

signals travelling towards top of the sheet will reappear again on the bottom with the

same velocity, and vice versa. This produces the effect that the waves propagate on a

sphere, but in topological terms, the space made by PBC can be thought of as being

mapped onto a torus (Figure 6.9).

Figure 6.9 – The illustration of periodic boundary condition (PBC) implemented in NeuroField. The left image is the 2D

cortical sheet, which is mapped onto a torus (right image).

6.4. Conclusion

The goal in this Chapter was to develop the TLM equivalent network capable of solving

the inhomogeneous damped wave equations used in NeuroField, which was presented in

Section 6.2. The electrical equivalent parameters for TLM cell were calculated in the same

80

Section. In Section 6.1 the equations describing the FD numerical approach in solving the

damped wave equations, built into the NeuroField program, were presented. The analysis

of space and time discretisation for both methods (Section 6.3) showed that TLM is

unconditionally stable method, compared to FD, where the length of the cell and the time

step need to be picked carefully, so that they can meet the Courant condition. Finally, the

boundary conditions, implemented in NeuroField program, were discussed in subsection

6.3.4.

81

7. Comparison of the FD and TLM simulations

In this Chapter, results from MATLAB simulations are compared. The first Section (7.1)

presents the comparison between FD method, using five-point stencil approach

(described in Chapter 5), and TLM method to numerically solve the 2D undamped and

damped wave PDEs. Two initial conditions are examined: the Dirac impulse, applied to the

central node in the mesh, and the 2D Gaussian function spread over the whole mesh with

the peak of the function in the central node of the mesh. Both numerical methods are

compared with the analytical solutions for 2D undamped and damped wave PDEs shown

in Chapter 5.

NeuroField simulations using the FD method, reprogrammed in MATLAB (Appendix B),

are compared against the TLM method with the matched parameters (Appendix A) in the

last Section (7.2) of this Chapter. These methods are compared in simulations of three

NeuroField models consisting of One-, Two- and Four-populations. For the One-

82

population NeuroField model (subsection 7.2.1), simulations with 7 different stimuli are

compared: Pulse, Sine waves with frequencies 12Hz and 40Hz and Gaussian waves with

two different variances 2σ depending on the same frequencies as used for Sine waves

stimuli. The effects of changing the temporal damping coefficient abγ are also examined

in this subsection. In the last subsection (7.2.4) the results of the NeuroField simulation

comparisons are discussed.

7.1. Comparison between FD and TLM methods to numerically solve the 2D wave

PDEs

In Chapter 5, we derived the iterative method for numerically solving 2D wave

equations, both undamped and damped, using five-point stencil method for discrete

approximation of the Laplacian operator. Now, we will use the same programs built for

numerical comparisons between five- and nine-point stencils in Chapter 5 (Appendix C and

Appendix D) to compare their outputs with the TLM model presented in Chapter 6. The

parameters for the 2D FD wave modes are calculated to match the TLM parameters from

NeuroField model. It is expected that this TLM model will be able to simulate undamped

and damped waves just by turning off certain electrical elements in the TLM node.

7.1.1. Undamped wave PDEs

Undamped wave is a lossless wave, thus in order to numerically find a solution using

TLM techniques, the lossless TLM node shown in Figure 4.3 can be employed.

After solving this TLM node for voltage zV , we get the Helmholtz wave equation

(Sadiku, 2009) in 2D space:

2

2
22 z

d d z
VL C V
t

∂
= ∇

∂
 (7.1)

83

If we divide Eq. (7.1) with 2 d dL C and if we recall equation for 2D undamped wave Eq.

(5.23), we get the following:

2
2 2

2

2
2

2

1
2

z
z

d d

u u
t
V V
t L C

β∂
= ∇

∂
∂

= ∇
∂

From here we can notice the equivalences:

 2 1 1
2 2

z

d d d d

u V

L C L C
β β

=

= ⇒ =

where β is the speed of the wave.

To compare the TLM model, presented in Chapter 6, against the FD method for solving

the undamped wave we need to turn off all the losses and external sources, which is the

current source in our case. If we set 0d dR G= = and remove the current source kI from

the Eq. (6.9) we get exactly the same equation as Eq. (7.1).

In Chapter 5 we calculated the speed of the TLM wave using NeuroField parameters

as 1
2ab ab

d d

v
C

r
L

γ= = . Comparing two expressions for wave speed, we get that vβ = .

7.1.1.1. Comparison of the simulations for 2D undamped wave

Simulations of 2D undamped wave using FD and TLM techniques were run in MATLAB

R2017a running on a laptop with Intel i7 core processor and 16GB RAM. Simulation

parameters were the same for both programs and are shown in the Table 7-1. All

boundaries were set to be perfectly reflective and two different initial conditions (I.C.)

were examined: Dirac impulse (Figure 7.1) and 2D Gaussian spread (Figure 7.2).

84

Figure 7.1 – Dirac impulse initial condition.

Figure 7.2 – 2D Gaussian spread initial condition

Table 7-1 – Simulation parameters for 2D undamped wave

abr abγ v β= maxf w h= x yN N= _sim time Steps

0.2m 130s− 6m s 100Hz 0.5m 84 0.06s 89
7.1.1.1.1. Dirac impulse I.C.

For this simulation, we applied Dirac impulse (Figure 7.1) to the central node in the

mesh with the amplitude of 1 and other nodes are set to 0. Time-series of the middle

nodes for both approaches are inspected and their traces are compared with the

analytical solution in Figure 7.3.

85

Figure 7.3 – Central node traces for 2D undamped waves with Dirac Impulse I.C. Analytical solution – green dotted line,

FD – blue line, TLM – red dashed line

The voltages across the central horizontal lines of both meshes were inspected and

compared with the analytical solution, which showed us the spreading of the waves in

time Figure 7.4.

86

Figure 7.4 – Equatorial profiles for 2D undamped waves with Dirac Impulse I.C. in four iteration steps. Analytical solution

– green dotted line, FD – blue line, TLM – red dashed line

87

7.1.1.1.2. Gaussian spread I.C.

In order to excite the mesh with the broad frequency range, but to avoid the high

frequencies, the following simulations were run with the 2D Gaussian function spread

(Figure 7.2) over the whole mesh with the peak of the function in the central node,

amplitude of 1 and variance 2 20.025mσ = . Figure 7.5 shows the traces of the middle

nodes for both approaches and Figure 7.6 are the equatorial profiles of both meshes.

Analytical solution for the Gaussian spread I.C. wasn’t found due to its complexity.

Figure 7.5 – Central node traces for 2D undamped waves with Gaussian I.C. FD – blue line, TLM – red dashed line.

88

Figure 7.6 – Equatorial profiles for 2D undamped waves with Gaussian I.C. in four iteration steps. FD – blue line, TLM –

red dashed line.

7.1.1.2. Discussion of the results

It can be observed from Figure 7.3 and Figure 7.4 that the numerical approximation of

the analytical solution of the 2D undamped wave PDE using FD and TLM methods is the

same for Dirac impulse I.C.. When comparing FD and TLM methods for Gaussian I.C we

may notice slight differences towards the ends of the traces in Figure 7.5 and for the

iteration step 43 in Figure 7.6. To quantitatively describe differences in the central traces,

we used Nash-Sutcliffe Efficiency Index (Zachary et al., 2006) and the results are shown in

Table 7-2:

Table 7-2 – Nash-Sutcliffe Efficiency Index showing how similar are the central node traces between analytical solution and
numerical methods and between FD and TLM when simulating 2D undamped wave

 Dirac Impulse I.C. Gaussian I.C.
FD vs. analytical 0.7441 N/A

TLM vs. analytical 0.7441 N/A
TLM vs. FD 1 0.999964

89

We can conclude from the Table 7-2 that for the simulations when the Dirac impulse is

set as the I.C. we get the perfect match between two numerical methods. There is a slight

difference in methods, of the order of 510− when the Gaussian is set as the I.C.

7.1.2. Damped wave PDEs

To compare 2D damped wave numerical solutions using FD and TLM methods, we

should recall the differential equation for 2D damped wave from Chapter 5, Eq. (5.31) and

TLM equation for inhomogeneous damped wave equation from Chapter 6, Eq. (6.9). For

easier explanation, we will repeat these two equations here:

 ()

2
2 2

2

2
2

2

2

2 4 2 4 2 k d kz z
d d d d d d d d z z d

u uc
t t

I L IV VL C R C L G R G V V R
t t l

u

l t

β∂ ∂
+ = ∇

∂ ∂
∂∂ ∂

+ + + = ∇ + +
∂ ∂ ∆ ∆ ∂

 (7.2)

We notice that for these to equations to be equivalent, we should set 0dG = and turn

off the current source kI in the TLM equation. That way we get the lossy wave equation,

also known as the telegrapher’s equation:

2

2
22 4z z

d d d d z
V VL C R C V
t t

∂ ∂
+ = ∇

∂ ∂
 (7.3)

 If we divide the 2D damped wave equation by 2β we get:

2

2
2 2 2

1 2 u c uu
t tβ β

∂ ∂
+ = ∇

∂ ∂
 (7.4)

From Eq. (7.3) and Eq. (7.4) we can find the following equivalences:

90

 2

2

2

1
2

4
2
ab

d d

z

d d

c

u V

v
L C

R C c γ

β β

β
= ⇒ =

=

= ⇒ =

Electrical equivalent TLM node in this case can be either link-line or link-resistor type

node. For our simulations, we picked link-line lossy node, shown in Figure 6.4.

The reflected pulse in this case can be calculated using the same equation as Eq. (6.23)

and nodal voltage can be found by removing kI term from the Eq. (6.26), which gives us

the same expression for nodal voltage as Eq. (4.2).

7.1.2.1. Comparison of the simulations for 2D damped wave

Simulations of 2D damped wave using FD and TLM methods were run on the same

platform as the simulations for undamped wave using the same parameters as shown in

the Table 7-1, with one extra parameter for damping, 115
2
abc sγ −= = . All boundaries were

set to be perfectly reflective and two different I.C. were examined again: Dirac impulse

(Figure 7.1) and 2D Gaussian spread (Figure 7.2).

7.1.2.1.1. Dirac impulse I.C.

For this simulation, we again applied the Dirac impulse (Figure 7.1) to the central node

in the mesh with the amplitude of 1 and other nodes are set to 0. Time-series of the middle

nodes for both approaches are inspected and their traces are compared with the

analytical solution in Figure 7.7.

91

Figure 7.7 – Central node traces for 2D damped waves with Dirac Impulse I.C. Analytical solution – green dotted line, FD

– blue line, TLM – red dashed line

We also inspected equatorial profiles of both meshes and compared them with the

analytical solution, which showed us the spreading of the waves in time Figure 7.8.

92

Figure 7.8 – Equatorial profiles for 2D damped waves with Dirac Impulse I.C. in four iteration steps. Analytical solution –

green dotted line, FD – blue line, TLM – red dashed line

93

7.1.2.1.2. Gaussian spread I.C.

These simulations were run with the 2D Gaussian function spread (Figure 7.2) over the

whole mesh with the peak of the function in the central node, with the same amplitude

of 1 and variance 2 20.025mσ = as for undamped wave simulations. Figure 7.9 shows the

traces of the middle nodes for both approaches and Figure 7.10 are the equatorial profiles

of both meshes. Analytical solution for the Gaussian spread I.C. wasn’t found due to its

complexity.

Figure 7.9 – Central node traces for 2D damped waves with Gaussian I.C. FD – blue line, TLM – red dashed line

94

Figure 7.10 – Equatorial profiles for 2D damped waves with Gaussian I.C. in four iteration steps. FD – blue line, TLM – red

dashed line

7.1.2.2. Discussion of the results

Visual observations of Figure 7.7 and Figure 7.8 show that the numerical approximation

of the analytical solution for the damped wave PDE using FD and TLM methods should be

the same for Dirac impulse I.C., but for Gaussian I.C. we can notice slight differences in

the traces in Figure 7.9 and in Figure 7.10 for the iteration steps 8 to 43. We compared the

central traces again using Nash-Sutcliffe Efficiency Index and the results are shown in Table

7-3:

Table 7-3 – Nash-Sutcliffe Efficiency Index showing how similar are the central node traces between analytical solution and
numerical methods and between FD and TLM when simulating 2D damped wave

 Dirac Impulse I.C. Gaussian I.C.
FD vs. analytical 0.767604 N/A

TLM vs. analytical 0.749382 N/A
TLM vs. FD 0.999869 0.992915

We can notice from the Table 7-3 that for the simulations when the Dirac impulse is

set as the I.C. FD method slightly better approximates the analytical solution. When the

95

Gaussian is set as the I.C. the difference between numerical methods is an order of

magnitude larger than for Dirac impulse and 2 orders of magnitude larger than for

Gaussian I.C. in undamped wave. Nevertheless, this is still considered an excellent match

between FD and TLM methods.

7.2. Comparing the NeuroField simulations using FD and TLM methods for solving

the governing wave equation in MATLAB

In this Section, the NeuroField simulations using the FD method, reprogrammed in

MATLAB, are compared against the TLM method with the matched parameters. These

methods are compared in simulations of three NeuroField models consisting of One-,

Two- and Four- neuronal populations.

7.2.1. One-population NeuroField model

One-population NeuroField model is the simplest model that can be used to illustrate

the neural dynamics in NeuroField. Although it is called One-population model, it

effectively consists of two populations: one is stimulus and the other one is excitatory

neural population, Figure 7.11.

Figure 7.11 – Block diagram of One-population NeuroField model. Red arrow indicates inhomogeneous damped wave

propagation; thick, dashed black arrow indicates stimulus propagation.

96

Parameters for this model were taken from (Robinson et al., 2004b), with the only

difference in the axonal propagation parameters which are chosen, for illustrative

purposes, as the maximum, 0.2abr m= , and the minimum, 130ab sγ −= , values of the given

range, obtainable without effecting model-based constraints. The rest of the parameters

used in these simulations are shown in Table 7-4, where 0
1Q is the steady state, low firing

rate in which the system was initially in.

Table 7-4 – Simulation parameters for One-population NeuroField model

v β= x yN N= _sim time Steps 0
1Q 1υ 2υ

6m s 84 0.15s 357 110s− 0 410 Vs−
In order to compare FD and TLM methods, the simulations with five different stimuli

are run: Pulse, Sine waves with frequencies 12Hz and 40Hz and Gaussian pulses with two

different variances 2σ depending on the same frequencies as used for Sine waves stimuli.

The MATLAB code for the TLM method is presented in Appendix A, and for the FD method

in Appendix B.

7.2.1.1. Pulse stimulus

For this simulation, the model was driven by a pulse applied in the centre of the grid,

with the amplitude of 11s− and the duration of 10dt . Time-series of the central nodes for

both methods were inspected and their traces are showed in Figure 7.12. Neural activity

distributions are shown in Figure 7.13 for FD and Figure 7.14 for TLM methods. Equatorial

profiles of axonal fields are compared in Figure 7.15, and their power spectrums were

compared in Figure 7.16.

97

Figure 7.12 – Central node traces for One-population NeuroField model driven by a pulse. A) Mean firing rate for population

1, 𝑄𝑄1 ; B) propagation field 𝜑𝜑1. FD – blue line, TLM – red dashed line

Figure 7.13 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using FD

method. Axonal fields propagate radially outwards. The model was driven by a pulse applied at the centre of a grid. In each
timeframe, the mean has been subtracted, so the colour shows deviations from the average amplitude at that iteration step.

98

Figure 7.14 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using TLM

method. Axonal fields propagate radially outwards. The model was driven by a pulse applied at the centre of a grid. In each
timeframe, the mean has been subtracted, so the colour shows deviations from the average amplitude at that iteration step.

Figure 7.15 – Equatorial profiles of axonal fields, with the subtracted mean values, of the One-population model at four different

iteration steps in the simulations. The model was driven by a pulse applied at the centre of a grid. FD – blue line, TLM – red dashed
line.

99

Figure 7.16 – Power spectrum of the axonal fields in the One-population model with pulse drive. A) Power spectral density
estimate of the central trace using the standard MATLAB function pwelch; B) Spatially summed spectrum using NeuroField

MATLAB module. FD – blue line, TLM – red dashed line.

7.2.1.2. Sine wave stimulus

For this simulation, the model was driven by a sine wave applied in the centre of the

grid of amplitude 11s− and two different frequencies: 12Hz and 40Hz, corresponding to

frequencies of alpha and gamma brain waves, respectively.

Time-series of the central nodes for both methods were inspected and their traces are

showed in Figure 7.17. Neural activity distributions are shown in Figure 7.18 for FD and

Figure 7.19 for TLM methods. Equatorial profiles of axonal fields are compared in Figure

7.20, and their power spectrums were compared in Figure 7.21.

100

Figure 7.17 – Central node traces for One-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1 with two

different frequencies: 12Hz left figures, 40Hz right figures. A) and B) Mean firing rates for populations 1, 𝑄𝑄1 , C) and D)
propagation fields 𝜑𝜑1. FD – blue line, TLM – red dashed line.

Figure 7.18 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using FD

method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 12Hz
applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows deviations from the average

amplitude at that iteration step.

101

Figure 7.19 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using TLM

method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 12Hz
applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows deviations from the average

amplitude at that iteration step.

Figure 7.20 – Equatorial profiles of axonal fields, with the subtracted mean values, of the One-population model at four different
iteration steps in the simulations. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 12Hz applied at the

centre of a grid. FD – blue line, TLM – red dashed line.

102

Figure 7.21 – Power spectrum of the axonal fields in the One-population model with sine wave drive of amplitude 1𝑠𝑠−1 and
two different frequencies: 12Hz top figures, 40Hz bottom figures. A) and C) Power spectral density estimates of the central

traces using the standard MATLAB function pwelch; B) and D) Spatially summed spectrum using NeuroField MATLAB
module. FD – blue line, TLM – red dashed line.

7.2.1.3. Gaussian stimulus

In order to excite the mesh with the broad frequency range, but to avoid the high

frequencies, for this simulation the model was driven by a Gaussian pulse applied in the

centre of the grid, with the amplitude of 11s− and two different variances 2σ depending

on frequencies: 12Hz and 40Hz. Variances were calculated as:
2

2

8
fσ = , where f is the

frequency of interest.

Time-series of the central nodes for both methods were inspected and their traces are

showed in Figure 7.22. Neural activity distributions are shown in Figure 7.23 for FD and

Figure 7.24 for TLM methods. Equatorial profiles of axonal fields are compared in Figure

7.25, and their power spectrums were compared in Figure 7.26.

103

Figure 7.22 – Central node traces for One-population NeuroField model driven by a Gaussian wave of amplitude 1𝑠𝑠−1 and

two different variances depending on frequencies: 12Hz left figures, 40Hz right figures. A) and B) Mean firing rates for
populations 1, 𝑄𝑄1 , C) and D) propagation fields 𝜑𝜑1. FD – blue line, TLM – red dashed line.

Figure 7.23 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using FD

method. Axonal fields propagate radially outwards. The model was driven by a Gaussian wave of amplitude 1𝑠𝑠−1 and the variance
for 12Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows deviations from the

average amplitude at that iteration step.

104

Figure 7.24 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using TLM

method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 12Hz
applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows deviations from the average

amplitude at that iteration step.

Figure 7.25 – Equatorial profiles of axonal fields, with the subtracted mean values, of the One-population model at four different

iteration steps in the simulations. The model was driven by a Gaussian wave of amplitude 1𝑠𝑠−1 and the variance for 12Hz applied
at the centre of a grid. FD – blue line, TLM – red dashed line.

105

Figure 7.26 – Power spectrum of the axonal fields in the One-population model with Gaussian wave of amplitude 1𝑠𝑠−1 and
two different variances depending on frequencies: 12Hz top figures, 40Hz bottom figures. A) and C) Power spectral density

estimates of the central traces using the standard MATLAB function pwelch; B) and D) Spatially summed spectrum using
NeuroField MATLAB module. FD – blue line, TLM – red dashed line.

7.2.1.4. Effects of changing the temporal damping coefficient

To investigate the effects of changing temporal damping coefficient, abγ , on

NeuroField models, we have used several values for abγ , that fall into the range showed

in (Robinson et al., 2004b). Figure 7.27 and Figure 7.28 are central node traces and

equatorial profiles for propagation fields 1ϕ , respectively, for three values: 30, 60 and 120

1s−   . In these simulations, we kept the wave speed constant, thus changing the axonal

range, abr ,parameter accordingly. The models were driven by the sine wave of amplitude

11s− and frequency of 20Hz applied at the centre of the grid.

106

Figure 7.27 – Central node traces for One-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1 and

frequency of 20Hz. 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1 – blue lines; 𝛾𝛾𝑎𝑎𝑎𝑎 = 60𝑠𝑠−1 – red lines; 𝛾𝛾𝑎𝑎𝑎𝑎 = 120𝑠𝑠−1 – green lines. FD – solid lines, TLM
– dashed lines.

Figure 7.28 – Equatorial profiles of axonal fields, with the subtracted mean values, of the One-population model at

iteration step 49. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 20Hz. 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1 – blue
lines; 𝛾𝛾𝑎𝑎𝑎𝑎 = 60𝑠𝑠−1 – red lines; 𝛾𝛾𝑎𝑎𝑎𝑎 = 120𝑠𝑠−1 – green lines. FD – solid lines, TLM – dashed lines.

107

7.2.2. Two-populations NeuroField model

A Two-population NeuroField model is the reduced Corticothalamic model from

(Robinson et al., 2004b). It consists of three populations: excitatory cortical 1Q , relay

nuclei 2Q and stimulus 3Q . For illustration purposes, axonal propagation from relay

nuclei to cortical population is also inhomogeneous damped wave, instead of “1-to-1”

mapping used in the original corticothalamic model, Figure 7.29.

Figure 7.29 – Block diagram of Two-populations NeuroField model. Red arrow indicates inhomogeneous damped wave

propagation; thick, dashed black arrow indicates stimulus propagation.

Parameters for this model were taken from (Robinson et al., 2004b). The initial steady

state low firing rates for populations 1 (excitatory cortical) and 2 (relay nuclei) are 0
1Q and

0
2Q respectively. In contrast with One-population model, axonal propagation parameters

are not changed here. The rest of the parameters used in these simulations are shown in

Table 7-5.

108

Table 7-5 – Simulation parameters for Two-population NeuroField model

[]v m sβ= 9.9760 0 1
1Q s−   5.2484

x yN N= 51 0 1
2Q s−   8.7897

[]_sim time s 0.15 []1 Vsυ 31.525 10−⋅

Steps 360 []2 Vsυ 45.675 10−⋅

 []3 Vsυ 33.593 10−⋅

These models were driven by the sine wave stimulus of amplitude 11s− and frequency

of 20Hz applied in the centre of the grid.

Time-series of the central nodes for both methods were inspected and their traces are

showed in Figure 7.30. Neural activity distributions are shown in Figure 7.31 for FD and

Figure 7.32 for TLM methods. Equatorial profiles of axonal fields are compared in Figure

7.33, and their power spectrums were compared in Figure 7.34.

109

Figure 7.30 – Central node traces for Two-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1 and

frequency of 20Hz. A) and C) Mean firing rates for populations 2 and 1, 𝑄𝑄2 and 𝑄𝑄1 respectively, B) and D) propagation fields
𝜑𝜑2 and 𝜑𝜑1 ,respectively, driven by the corresponding mean firing rates. FD – blue line, TLM – red dashed line.

Figure 7.31 – Distribution of the propagation field 𝜑𝜑2 from the Two-population model at four different iteration steps in a

simulation using FD method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude1𝑠𝑠−1
and frequency of 20Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows

deviations from the average amplitude at that iteration step.

110

Figure 7.32 – Distribution of the propagation field 𝜑𝜑2 from the Two-population model at four different iteration steps in a

simulation using TLM method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude1𝑠𝑠−1
and frequency of 20Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows

deviations from the average amplitude at that iteration step.

Figure 7.33 – Equatorial profiles of axonal fields, 𝜑𝜑2 , with the subtracted mean values, of the Two-population model at four

different iteration steps in the simulations. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 20Hz applied
at the centre of a grid. FD – blue line, TLM – red dashed line.

111

Figure 7.34 – Power spectrum of 𝜑𝜑2 axonal fields in the Two-population model with sine wave of amplitude 1𝑠𝑠−1 and

frequency of 20Hz. A) Power spectral density estimates of the central traces using the standard MATLAB function pwelch; B)
spatially summed spectrum using NeuroField MATLAB module. FD – blue line, TLM – red dashed line.

7.2.3. Four-populations NeuroField model

Four-populations NeuroField model represents the complete Corticothalamic model

from (Robinson et al., 2004b). It consists of five populations: excitatory and inhibitory

cortical 1Q and 2Q , reticular 3Q , relay nuclei 4Q and stimulus 5Q , Figure 7.35. The main

difference between this NeuroField model and Corticothalamic model in Robinson 2004

is that this model was driven by the sine wave stimulus of amplitude 11s− and frequency

of 20Hz applied in the centre of the grid instead of the spatiotemporal white noise used

to approximate external stimuli of the spontaneous EEG.

112

Figure 7.35 – Block diagram of Four-populations NeuroField model. Red arrows indicate inhomogeneous damped wave

propagations; thick, dashed black arrow indicates stimulus propagation; blue arrows are “1-to-1” mapping.

Parameters for this model were also taken from (Robinson et al., 2004b). The initial

steady state low firing rates for populations are denoted with the superscript 0 in the Table

7-6. Axonal propagation parameters are the same as for Corticothalamic model. In this

model, some connections have included long range time delay 10dtτ = . The rest of the

parameters used in these simulations are the same as for Two-populations model, like the

wave speed, number of cells in the grid, thus equal dx as well, simulation time and

number of steps, which gives the same dt too.

Table 7-6 – Simulation parameters for Four-population NeuroField model

0 1
1Q s−   5.2484 []4 Vsυ 31.525 10−⋅
0 1
2Q s−   5.2484 []5 Vsυ 3-3.023 10−⋅
0 1
3Q s−   15.3960 []6 Vsυ 45.675 10−⋅
0 1
4Q s−   8.7897 []7 Vsυ 41.696 10−⋅

 []8 Vsυ 55.070 10−⋅
[]1 Vsυ 31.525 10−⋅ []9 Vsυ 33.447 10−⋅
[]2 Vsυ 3-3.023 10−⋅ []10 Vsυ 3-1.465 10−⋅
[]3 Vsυ 45.675 10−⋅ []11 Vsυ 33.593 10−⋅

113

Time-series of the central nodes for both methods were inspected and their traces are

showed in Figure 7.36 and Figure 7.37. Neural activity distributions are shown in Figure 7.38

for FD and Figure 7.39 for TLM methods. Equatorial profiles of axonal fields are compared

in Figure 7.40, and their power spectrums were compared in Figure 7.41.

Figure 7.36 – Central node traces for Four-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1 and

frequency of 20Hz. A) and B) Mean firing rates for populations 1 and 2, 𝑄𝑄1 and 𝑄𝑄2 respectively, C) and D) propagation fields
𝜑𝜑1 and 𝜑𝜑2 ,respectively, driven by the corresponding mean firing rates shown above them. FD – blue line, TLM – red dashed

line.

114

Figure 7.37 – Central node traces for Four-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1 and

frequency of 20Hz. A) and B) Mean firing rates for populations 3 and 4, 𝑄𝑄3 and 𝑄𝑄4 respectively, C) and D) propagation fields
𝜑𝜑10 and 𝜑𝜑3 ,respectively, driven by the corresponding mean firing rates shown above them. FD – blue line, TLM – red

dashed line.

115

Figure 7.38 – Distribution of the propagation field 𝜑𝜑1 from the Four-population model at four different iteration steps in a

simulation using FD method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1
and frequency of 20Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows

deviations from the average amplitude at that iteration step.

Figure 7.39 – Distribution of the propagation field 𝜑𝜑1 from the Four-population model at four different iteration steps in a

simulation using TLM method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1
and frequency of 20Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows

deviations from the average amplitude at that iteration step.

116

Figure 7.40 – Equatorial profiles of axonal fields, 𝜑𝜑1, with the subtracted mean values, of the Four-population model at four

different iteration steps in the simulations. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 20Hz applied
at the centre of a grid. FD – blue line, TLM – red dashed line.

117

Figure 7.41 – Power spectrum of some axonal fields in the Four-population model with sine wave of amplitude 1𝑠𝑠−1 and

frequency of 20Hz. Top pair corresponds to 𝜑𝜑1 , middle to 𝜑𝜑3 and bottom pair to 𝜑𝜑5 . A), C) and E) are Power spectral
density estimates of the central traces using the standard MATLAB function pwelch; B), D) and F) are spatially summed

spectrums using NeuroField MATLAB module. FD – blue line, TLM – red dashed line.

7.2.4. Discussion of the results

In this Section, we compared two numerical methods for solving the governing

inhomogeneous damped wave differential equation in NeuroField, FD and TLM.

NeuroField models with three levels of complexity (Figure 7.11, Figure 7.29 and Figure 7.35)

were simulated for both methods. It is noticeable from inspecting the figures in Section

7.2 for all three NeuroField models that there are some slight differences between FD and

TLM methods when the axonal propagation fields are compared (Table 7-7). In One-

118

population models, mean firing rates are the same, because they don’t depend on

damped wave propagation fields. However, in other models, some differences can be

observed (Table 7-7).

Table 7-7 – Nash-Sutcliffe Efficiency Index (NSEI) for the central node traces of mean firing rates and axonal propagation
fields showing how similar they are between FD and TLM methods for all three NeuroField models presented in Figures 7.12
to 7.37.

 NSEI

O
ne

-p
op

ul
at

io
n

m
od

el

Figure 7.12 1Q 1

1ϕ 0.9616

Figure 7.17 1Q 1

1ϕ 0.9974

Figure 7.22 1Q 1

1ϕ 0.9616

Tw
o-

po
pu

la
tio

ns

m
od

el

Figure 7.30

1Q 0.9965

2Q 1

1ϕ 0.9786

2ϕ 0.9743

Fo
ur

-p
op

ul
at

io
ns

 m
od

el

Figure 7.36

1Q 0.9924

2Q 0.9924

1ϕ 0.9834

2ϕ 0.9924

Figure 7.37

3Q 0.9929

4Q 0.9949

10ϕ 0.9929

3ϕ 0.9965

The rapid alterations in the power spectrum of a single traces (central trace),

observable in Figures, are the artefacts that occur due to windowing, considering that only

5 periods were used for the sine stimulus. When the power spectrums of all the traces are

spatially summed the artefacts are gone.

119

7.2.4.1. Time of code execution

According to (Sadiku, 2009), the FD methods can be up to two times faster in CPU time

than equivalent TLM programs under identical conditions. In order to compare the CPU

times required for both methods, the main algorithm of NeuroField program, along with

the FD approximation of the governing wave PDEs, was translated from C++ into MATLAB

(Appendix B) and then the execution times for each simulation were measured. The results

are shown in the Table 7-8.

Table 7-8 – Average execution times for FD and TLM simulations of NeuroField One- and Four-populations models ran in
MATLAB 2017a and C++

 MATLAB 2017a C++
 FD [s] TLM [s] FD [s]
One-population model:
8 simulations/method 3048.70 3048.67 8.504

Four-population model:
1 simulation/method 12469.76 12671.11 12.347

From the Table 7-8 we can see that both methods’ execution times in MATLAB, even

though they are equally fast, are significantly worse than compared to NeuroField

program built in C++, where the same Four-population model takes only 12 seconds to

execute. The biggest slowdown in both MATLAB programs is the calculation of differential

equations required to find soma potentials abV , using standard MATLAB function ode45.

Finding abV is necessary for calculation of firing rates for each population.

The real CPU time required for FD and TLM methods in MATLAB was obscured because

of the calculation of differential equations required to find soma potentials abV , thus we

ran another comparison of CPU time of code execution for both numerical methods by

bypassing the slow pre-processing algorithm.

120

Table 7-9 – Average execution times for FD and TLM simulations of NeuroField One- and Four-populations models ran in
MATLAB 2017a when the slow pre-processing algorithm is bypassed

 FD [s] TLM [s] Ratio (TLM/FD)

One-population model 0.08569 0.18695 2.1817

Four-population model 0.15972 0.30451 1.9065

This time, we can see from Table 7-9 that for the One-population model the FD method

is two times faster than the equivalent TLM program, which agrees with the literature

(Sadiku, 2009). The result isn’t surprising because the TLM method has four commands to

execute in each iteration (calculate current kI , calculate scattered pulses, connect to the

next nodes, calculate new nodes’ voltages), where in the FD method the 5-point stencil is

sliding across the whole mesh in two “for” loops. When the complexity of the model is

increasing, it is noticeable that the CPU time difference is lowering. This is probably due

to the matrix implementation of TLM method, which is significantly faster to execute in

MATLAB than “for” loops used in FD method.

Perhaps the code execution times for TLM could be reduced more by more careful

code optimisation, but FD method run times could also be lowered by using the matrix

approach, as described in Chapter 5.

7.2.4.2. Fitting parameters in TLM method to better correspond to FD

While we were testing the effects of changing temporal damping coefficient, abγ , on

NeuroField models, Figure 7.27, we found that central node traces reach maximum firing

rate faster as abγ is rising. That behaviour was observed for both methods and it shows

that governing inhomogeneous damped wave differential equation is acting like a

response from an overdamped RLC Low Pass Filter. When abγ is rising, damped wave

121

equation will reach critically damped response, which is the rise with the fastest possible

time without getting into oscillation (unstable) state. If we would push abγ above critical

stage, we would get the underdamped oscillatory response. From the same figure, it is

also noticeable that there is almost constant difference between two methods as the

damping coefficient is changing.

Equatorial profiles in Figure 7.28 show that there is a difference in wave spreading as

temporal damping coefficient is changing, but the radius of the spread remains the same,

which is expected as the wave speed is kept constant.

Analysing Figure 7.27 we found that in order to have the same axonal propagation

fields from both numerical methods, we should make abγ parameter slightly bigger in

TLM, which is probably due to the stray inductances and capacitances in TLM nodes. We

used Nash-Sutcliffe Efficiency Index to compare 1ϕ from both methods and find the

optimal value for abγ parameter in TLM, Table 7-10. If we would plot the original versus

optimal parameters we would get the linear function, shown in Figure 7.42.

Table 7-10 – Temporal damping coefficients 𝛾𝛾𝑎𝑎𝑎𝑎 used in NeuroField models with TLM method, original and optimally fitted
and Nash-Sutcliffe Efficiency Index (NSEI) comparing axonal propagation fields when using TLM to FD method with original
𝛾𝛾𝑎𝑎𝑎𝑎.

Original abγ
NSEI for original

abγ Optimal abγ
NSEI for optimal

abγ
One-population model

30 0.9616204 36 0.9999256
40 0.9675656 48 0.9999242
60 0.9722288 72 0.9999093

100 0.9754292 120 0.9998594
120 0.9762378 144 0.9998289
150 0.9771014 181 0.9997777

Four-population model
116 0.9951895 140 0.9999839

122

Figure 7.42 – The relationship between original versus optimal 𝛾𝛾𝑎𝑎𝑎𝑎 parameters after fitting TLM method to FD for One-

population model. Blue line – straight line connection between data points (Red dots), Green dashed line – linear fit
through data points.

Finally, we used the optimal abγ parameters found for One- and Four-populations

models to run the TLM simulations again and compared them to FD simulations with the

original abγ parameters. The results for One-population model driven by the sine wave of

amplitude 11s− and frequency of 20Hz applied at the centre of the grid, for 130ab sγ −= are

shown in Figure 7.43 for central node traces and Figure 7.44 for equatorial profiles, while

the results for Four-population model with 1116ab sγ −= driven by the same stimulus and

are shown in Figure 7.45 and Figure 7.46.

From these figures we can see that TLM method is almost perfectly matched with FD

when optimal value for abγ parameter is used.

123

Figure 7.43 – Fitting 𝛾𝛾𝑎𝑎𝑎𝑎 parameters for TLM method to match FD. Central node traces of propagation fields for One-

population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 20Hz. FD – solid blue line with
𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1, TLM – dashed lines: 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1 – black; 𝛾𝛾𝑎𝑎𝑎𝑎 = 36𝑠𝑠−1 – red; 𝛾𝛾𝑎𝑎𝑎𝑎 = 37𝑠𝑠−1 – green; 𝛾𝛾𝑎𝑎𝑎𝑎 = 38𝑠𝑠−1 –

purple.

Figure 7.44 – Fitting 𝛾𝛾𝑎𝑎𝑎𝑎 parameters for TLM method to match FD. Equatorial profiles of axonal fields, with the

subtracted mean values, of the One-population model at iteration step 50. The model was driven by a sine wave of
amplitude 1𝑠𝑠−1 and frequency of 20Hz. FD – solid blue line with 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1, TLM – dashed lines: 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1 – black;

𝛾𝛾𝑎𝑎𝑎𝑎 = 36𝑠𝑠−1 – red; 𝛾𝛾𝑎𝑎𝑎𝑎 = 37𝑠𝑠−1 – green; 𝛾𝛾𝑎𝑎𝑎𝑎 = 38𝑠𝑠−1 – purple.

124

Figure 7.45 – Fitting 𝛾𝛾𝑎𝑎𝑎𝑎 parameters for TLM method to match FD. Central node traces for Four-population NeuroField
model driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 20Hz. A) Mean firing rates for population 1, 𝑄𝑄1, B)

propagation fields 𝜑𝜑1. FD – solid blue line with 𝛾𝛾𝑎𝑎𝑎𝑎 = 116𝑠𝑠−1, TLM – dashed red line with 𝛾𝛾𝑎𝑎𝑎𝑎 = 140𝑠𝑠−1.

Figure 7.46 – Fitting 𝛾𝛾𝑎𝑎𝑎𝑎 parameters for TLM method to match FD. Equatorial profiles of axonal fields, with the

subtracted mean values, of the Four-population model at iteration step 49. The model was driven by a sine wave of
amplitude 1𝑠𝑠−1 and frequency of 20Hz. FD – solid blue line with 𝛾𝛾𝑎𝑎𝑎𝑎 = 116𝑠𝑠−1, TLM – dashed red line with 𝛾𝛾𝑎𝑎𝑎𝑎 =

140𝑠𝑠−1.

7.3. Conclusion

The two numerical methods (TLM and FD) were compared in this Chapter for different

levels of complexity of wave PDEs. First, they were compared by solving the least

complicated case, the undamped wave PDEs (subsection 7.1.1). Afterwards, the methods

were tested on damped wave PDEs (subsection 7.1.2). Finally, TLM and FD were compared

for three cortical models (one-, two- and four-population), governed by the

125

inhomogeneous damped wave PDEs, and with the Dirac impulse, Gaussian wave and sine

wave as the stimuli. The Dirac impulse was used to test the models’ response to a single

shot excitation. In order to excite the mesh with the broad frequency range, but to avoid

the high frequencies, the Gaussian wave was chosen for a stimulus. Finally, to test the

model for the specific frequencies that may occur in brain, the sine wave stimulus was

used. The results of NeuroField simulations with TLM method show a great compatibility

when compared to NeuroField numerically approximated by FD (Table 7-7). The slight

differences in simulations may occur due to the stray inductances and capacitances in TLM

nodes and it was shown that they could be minimised by changing the temporal damping

coefficient abγ in TLM based model (subsection 7.2.4.2).

The computational efficiency the TLM method was tested in subsection 7.2.4.1. It has

been shown that for the One-population model the FD method is two times faster in CPU

time than the equivalent TLM program, which agrees with the literature (Sadiku, 2009),

but as the complexity of the model is increasing, it is noticeable that the difference in

required CPU time is lowered due to the matrix implementation of TLM method, which is

considerably faster to execute in MATLAB than “for” loops used in FD method.

126

8. Conclusions and recommendations for future work

The TLM method is one of the best-known examples of analogue models used to

numerically solve the equations modelling a physical phenomenon. In TLM, an electrical

network is used to mimic the physical problem, so the solutions could be obtained using

conventional circuit analysis techniques in either the time or frequency domains. The

versatility of the TLM method allows straightforward calculation of complicated

structures, boundaries and material properties. There are no problems with convergence,

stability or spurious solutions in TLM and the method is limited only by the amount of

memory storage required, which depends on the complexity of the TLM mesh (Hoefer,

1985). Due to its simplicity of formulation and programming, it is used in variety of

research fields where the wave equations should be solved numerically. The major

advantage of the TLM over FD method is that all the required discretisation is built-in in

the initial model, which is then solved without any further approximation avoiding many

127

anomalous effects that can arise in FD (Cogan et al., 2005). When compared to FDTD in

EM models TLM is reported to sometimes be two times slower in CPU time and requires

more memory space (Sadiku, 2009). That is mostly due to a simpler mathematical

algorithm which the FDTD is based on and the fact that for 3D node FDTD requires only

seven real memory stores compared to 22 stores per node in TLM for an isotropic

dielectric medium (Sadiku, 2009). One of the possible applications of TLM method is in

neuroscience, specifically, in modelling the brain functions as speculated by Nunez in

(Nunez & Srinivasan, 2006) and Weiner in (M. Weiner, 2010), where the TLM method may

be used as a framework to describe neurological activity of the brain, since it relies on a

vast array of nerve fibres and synapses, analogous to the transmission lines and nodes of

the TLM matrix.

In this thesis, the feasibility to numerically solve the governing inhomogeneous

damped wave PDEs from neural field theory, used in NeuroField program, using TLM

techniques has been explored. The hypothesis tested was whether the usage of TLM leads

to more understandable and efficient brain modelling and what the cost in computer

resources for those benefits is. This approach differs from the currently used FD

numerical method by providing the electrical equivalent network where all the NeuroField

model parameters have analogues in electrical elements of TLM node, thus enabling

better interpretation of the physical implications of discretisation and of the model. In

order to compare the cost in computer resources of both methods, the main algorithm of

NeuroField program, along with the FD approximation of the governing wave PDEs was

translated from C++ into MATLAB (Appendix B).

128

NeuroField is a multiscale neural field brain model developed by Prof. Peter Robinson

and his Brain Dynamics group at The University of Sydney (P. Sanz-Leon, 2017; Robinson

et al., 2005). It models the whole brain dynamics through the interactions of spatially

extended populations of neurons and can predict the spectral and time characteristics of

brain electrical activity observable by various non-invasive imaging modalities (P. Sanz-

Leon, 2017). The governing neural field equations in NeuroField represent the axonal

propagation of activity through the cortex and are numerically solved in NeuroField by

applying the FD method (Robinson et al., 1997).

In Chapter 6 the numerical approximations of NeuroField damped wave equations

were developed and solved using TLM method. The electrical equivalent parameters for

TLM node are calculated in the same Chapter. The analysis of space and time

discretisation for both methods showed that TLM is unconditionally stable method,

compared to FD, where the length of the cell and the time step need to be picked

cautiously so that they can meet the Courant condition.

Two methods were compared in Chapter 7 using three levels of complexity of cortical

models (one-, two- and four-population) and with Dirac impulse, sine wave and Gaussian

wave as the stimuli. The results of NeuroField simulations with TLM method show a great

compatibility when compared to NeuroField numerically approximated by FD. The slight

differences in simulations may occur due to the stray inductances and capacitances in TLM

nodes and can be minimised by changing the temporal damping coefficient abγ in TLM

based model.

Being a viable solution, the computational efficiency the TLM method was tested. It

has been shown that for the One-population model the FD method (Appendix B) is two

129

times faster in CPU time than the equivalent TLM program (Appendix A), which agrees with

the literature (Sadiku, 2009), but as the complexity of the model is increasing, it is

noticeable that the difference in required CPU time is lowered due to the matrix

implementation of TLM method, which is considerably faster to execute in MATLAB than

“for” loops used in FD method.

Encouraged by these results, we propose that the next step in TLM modelling of neural

fields would be to translate the developed TLM code in C++ language, and plug it into the

NeuroField code for further testing of the compatibility and speed of execution. When

compared to FD method built in C++ NeuroField program, where the same Four-

population model takes only couple of seconds to execute, both methods’ execution times

in MATLAB are significantly worse due to the slow pre-processing algorithm for calculation

of differential equations required to find soma potentials abV , using standard MATLAB

function ode45.

Replacing the FD method for numerically approximating governing wave equations in

NeuroField with TLM should enable better interpretation of the physical implications of

discretisation and of the model by modelling the physical problem with the electrical

equivalent network where all the NeuroField model parameters have analogues in

electrical elements of TLM node, thus opening a great possibility for a development of a

brain-on-the-chip for in-silico multiscale brain experimentation, which will greatly help

the advancement of neuroscience.

130

Appendix A: MATLAB code for One-population model using TLM

function [Q_POP1, PHI1, Q_POP2, PHI2] = TLM_code_Neurofield_1popNFTMod_Sine
(freq,r_a,gamma_ab)

%% TLM NeuroField code
% Implementation of the lossy TLM cell with parameters matched with NeuroField:
% Zo=1; Ld=2*Cd*Zo^2=Zo/(gamma_ab*r_a); Rd = (Zo/(2*r_a)); Gd = 1/(Zo*2*r_a); V=Phi;
Ik=((dx/(Zo*r_a))*Q+(1/(gamma_ab*dt_tlm))*Ik(iter-1))/(1+1/(gamma_ab*dt_tlm));
% Simulation of "onepop.conf" with Sine wave stimulus and periodic BC

%% Set global variables
global alpha beta P_i
% UNITS
meters = 1;
seconds = 1;
hertz = 1/seconds;

%%%
%% DASHBOARD
%%%
% NEUROFIELD PARAMETERS

% Grid size
Nx_nft = 30; % number of cells in X direction
Ny_nft = 30; % number of cells in Y direction

% Sigmoid parameters
Theta = 0.01292;
Sigma = 0.0038;
Qmax = 340;

% Dendrite parameters
alpha = 83;
beta = 769;

% Propagation parameters (wave)
% r_a = 0.2 * meters; % mean range of axons
% gamma_ab = 30 * hertz; % cortical damping rate
v_a = r_a * gamma_ab; % axonal velocity

% Coupling parameters
nu_1 = 0;
nu_2 = 1e-4;

% Initial firing rate for the whole population:
Qin = 10;

% SOURCE PARAMETERS
fmax = 100 * hertz; % max freq that we want to simulate. From fmax we calculate the
duration of our pulse source!
lam0 = v_a/fmax; % minimal freespace wavelength of our simulation

% DEVICE PARAMETERS
w = 0.5 * meters;
h = 0.5 * meters;

% GRID PARAMETERS
disp_fact = 0.1; % dispersion factor for TLM (when dx/lam <= 0.1 v_tlm = 1/sqrt(2)*v_a

131

%%%
%% COMPUTE OPTIMIZED GRID
%%%

% NOMINAL RESOLUTION

dx_tlm = lam0*disp_fact; % grid resolution resolving the shortest wavelength (lam0/nmax =
min wavelength)
dx_nft = w/Nx_nft; % resolving the minimum dimension
dx = min([dx_tlm dx_nft]);
dy = dx;

% SNAP GRID TO CRITICAL DIMENSION
Nx = ceil(w/dx);
dx = w/Nx;
Ny = ceil(w/dy);
dy = w/Ny;

%% The rest of GRID parameters for TLM
v_tlm = v_a; % speed of the wave

%%%
%% BUILD DEVICE ON GRID
%%%

% COMPUTE START AND STOP INDICES OF DEVICE
nx_dev = round(w/dx); % number of cells for width of the device = Nx in this case
x_start_dev = 2; % where does the device start on our grid
x_end_dev = x_start_dev + nx_dev - 1; % where does the device end on our grid
ny_dev = round(h/dy); % = Ny in this case
y_start_dev = 2;
y_end_dev = y_start_dev + ny_dev - 1;

% COMPUTE GRID SIZE
Nx = nx_dev + 2; % number of cells, including boundary regions
Sx = Nx*dx; % new physical size of the whole simulation grid

Ny = ny_dev + 2;
Sy = Ny*dy;

% COMPUTE GRID AXIS
xa = (0:Nx-1)*dx;
ya = (0:Ny-1)*dy;

%%%
%% COMPUTE THE SOURCE
%%%
% COMPUTE STABLE TIME STEP (dt)
dmin = min([dx dy]);
dt_tlm = dmin/(sqrt(2)*v_tlm);
% freq = 20*hertz;

% COMPUTE SOURCE PARAMETERS
tau = 0.5/freq; % duration needs to be sufficient so that includes enough power at max freq
t0 = 3*tau; % offset - if not given at the 1st step we will be in the middle of gaussian.

% It's not good to turn on the source that fast, we should rather ease into it
% and out of it.

% COMPUTE THE NUMBER OF TIME STEPS
STEPS = 357+1; % 5 periods

% COMPUTE THE SOURCE
% ta = (0: STEPS-1-1)*dt_tlm; % time array
ta = (1: STEPS-1)*dt_tlm; % time array - it should begin with 0,

 % but this way is consistent with NeuralField Cpp program

132

% Gaussian source:
% stim = exp(-((ta - t0)/tau).^2);
% stim(ceil(2*t0/dt_tlm)+2:end)=0; % cut Gaussian to be symmetrical with respect to centre

% Sine wave source:
stim = 1*sin(2*pi*freq*ta);

% Pulse source:
% pulse_ON = 1;
% pulse_OFF = 9;
% stim = zeros(1,length(ta));
% stim(pulse_ON:pulse_OFF) = 1;

% POSITION OF THE SOURCE
nx_src = ceil(Nx/2);
ny_src = ceil(Ny/2);

%% Plot stimulus
% figure()
% plot(ta,stim)
% xlabel('Time (s)')
% ylabel('Amplitude')
% title('Stimulus')

%%%
%% INITIALIZE TLM PARAMETERS
%%%
Zo = 1;
Ro = dx*(Zo/(2*r_a));
G = 2*dx*(1/(Zo*2*r_a));

C1 = 8/(4+(Ro+Zo)*G);
C2 = (Ro+Zo)/(4+(Ro+Zo)*G);
C3 = dx/(Zo*r_a);
C4 = 1/(gamma_ab*dt_tlm);
C5 = 1+C4;

% set up connection matrices
Cn=[[zeros(Nx-1,1) eye(Nx-1)];zeros(1,Nx)];Cs=Cn';
Ce=[[zeros(Ny-1,1) eye(Ny-1)];zeros(1,Ny)];Cw=Ce';

% make room for incident and scattered voltages
mvi = zeros(Ny,Nx,4); % Matrix of Vis all points repeated 4x (4 ports) for each
interaction
mvr = zeros(Ny,Nx,4); % Matrix of Vrs all points repeated 4x (4 ports) for each
interaction
Ey = zeros(Ny,Nx); % Matrix of Ex for all the points for each interaction
Ik = zeros(Ny,Nx); % Current source generator

%%%
%% INITIALIZE POPULATIONS
%%%
Q_POP1 = zeros(ny_dev,nx_dev,STEPS); % Mean firing rate for Population 1
PHI1 = zeros(ny_dev,nx_dev,STEPS); % Axonal propagation field 1
Q_POP2 = zeros(ny_dev,nx_dev,STEPS); % Mean firing rate for Population 2
PHI2 = zeros(ny_dev,nx_dev,STEPS); % Axonal propagation field 2

Q_POP1(:,:,1:2) = Qin;
PHI1(:,:,1:2) = Qin;

% Initialize Nodal Voltages for TLM:
Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev) = C3*Q_POP1(:,:,1);

133

mvi(y_start_dev:y_end_dev,x_start_dev:x_end_dev,1)=(PHI1(:,:,1)-
C2*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C1;
mvi(y_start_dev:y_end_dev,x_start_dev:x_end_dev,2)=(PHI1(:,:,1)-
C2*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C1;
mvi(y_start_dev:y_end_dev,x_start_dev:x_end_dev,3)=(PHI1(:,:,1)-
C2*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C1;
mvi(y_start_dev:y_end_dev,x_start_dev:x_end_dev,4)=(PHI1(:,:,1)-
C2*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C1;

Ey(:,:)=(2*(mvi(:,:,1)+mvi(:,:,2)+mvi(:,:,3)+mvi(:,:,4)))/(4+(Ro+Zo)*G)+Ik(:,:)*((Ro+Zo)/(4
+(Ro+Zo)*G));
% Now Ey(:,:,1)=PHI_POP1(:,:,1)=Q_POP1(:,:,1)=Qin

% Initialize vars for diff eq to get some potential V:
timerange = [0 dt_tlm];
V_i = zeros(1,ny_dev*nx_dev);
dV_i_dt = zeros(1,ny_dev*nx_dev);

h = waitbar(0,'Please wait...'); % Initialise progress bar
tic

for iter = 2:STEPS % Main loop

 % Finding Q_POP1:
%%%
 % Solving diff eq to get soma potential V:
 P = nu_1*PHI1(:,:,iter-1) + nu_2*PHI2(:,:,iter-1);
 P = reshape(P,[],1);
 for i = 1 : length(P)
 P_i = P(i);
 initalvalue = [V_i(i) dV_i_dt(i)];
 [~,V_temp] = ode45(@soma_potential,timerange,initalvalue);
 V_i(i) = V_temp(end,1);
 dV_i_dt(i) = V_temp(end,2);
 end
 V = reshape(V_i,ny_dev,nx_dev);
%%%
 Q_POP1(:,:,iter) = Qmax./(1 + exp(-(V-Theta)./Sigma));

 % Calculate PHI1 (TLM scatter process):

 Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev) =
(C3*Q_POP1(:,:,iter)+C4*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C5;
%%%
%% Calculate scattered pulses
%%%
 mvr(:,:,:) = (Ey(:,:).*Zo + mvi(:,:,:).*(Ro-Zo))./(Ro+Zo);
%%%
%% Connection to next node - calculate incident pulses
%%%
 mvi(:,:,1) = Cn*mvr(:,:,3);
 mvi(:,:,3) = Cs*mvr(:,:,1);
 mvi(:,:,2) = mvr(:,:,4)*Ce;
 mvi(:,:,4) = mvr(:,:,2)*Cw;
%%%
%% Boundary conditions
%%%
 % Periodic BC - folded sheet simulating torus
 mvi(2,:,3) = mvr(Ny-1,:,1);
 mvi(Ny-1,:,1) = mvr(2,:,3);
 mvi(:,Nx-1,4) = mvr(:,2,2);
 mvi(:,2,2) = mvr(:,Nx-1,4);

134

%%%
%% Outputs to a specific point of the mesh
%%%
 Ey(:,:) = (2*(mvi(:,:,1)+mvi(:,:,2)+mvi(:,:,3)+mvi(:,:,4)))/(4+(Ro+Zo)*G) +
Ik(:,:)*((Ro+Zo)/(4+(Ro+Zo)*G));

 PHI1(:,:,iter) = Ey(y_start_dev:y_end_dev,x_start_dev:x_end_dev);

 % Calculate PHI2:
 Q_POP2(ny_src,nx_src,iter) = stim(iter-1);
 PHI2(:,:,iter) = Q_POP2(:,:,iter); % this is because the propagation function is "MAP"

 % update progress bar:
 waitbar(iter/STEPS,h,[num2str(iter) ' of ' num2str(STEPS) ' finished'])
end

toc
close(h) % close progress bar

135

Appendix B: MATLAB code for One-population model using FD

function [Q_POP1, PHI1, Q_POP2, PHI2] = Neurofield_Matlab_1popNFTMod_Sine
(freq,r_a,gamma_ab)

%% NeuroField code in Matlab
% Reprogramed NFT code from C++ to Matlab for comparison with TLM Neurofield code
% Simulation of "onepop.conf" with Sine wave, Gaussian and Pulse stimulus and periodic BC

%% Set global variables
global alpha beta P_i
% UNITS
meters = 1;
seconds = 1;
hertz = 1/seconds;

%%%
%% DASHBOARD
%%%
% NEUROFIELD PARAMETERS

% Grid size
Nx_nft = 30; % number of cells in X direction
Ny_nft = 30; % number of cells in Y direction

% Sigmoid parameters
Theta = 0.01292;
Sigma = 0.0038;
Qmax = 340;

% Dendrite parameters
alpha = 83;
beta = 769;

% Propagation parameters (wave)
% r_a = 0.2 * meters; % mean range of axons
% gamma_ab = 30 * hertz; % cortical damping rate
v_a = r_a * gamma_ab; % axonal velocity

% Coupling parameters
nu_1 = 0;
nu_2 = 1e-4;

% Initial firing rate for the whole population:
Qin = 10;

% SOURCE PARAMETERS
fmax = 100 * hertz; % max freq that we want to simulate. From fmax we calculate the
duration of our pulse source!
lam0 = v_a/fmax; % minimal freespace wavelength of our simulation

% DEVICE PARAMETERS
w = 0.5 * meters;
h = 0.5 * meters;

% GRID PARAMETERS
disp_fact = 0.1; % dispersion factor for TLM (when dx/lam <= 0.1 v_tlm = 1/sqrt(2)*v_a

136

%%%
%% COMPUTE OPTIMIZED GRID
%%%

% NOMINAL RESOLUTION

dx_tlm = lam0*disp_fact; % grid resolution resolving the shortest wavelength (lam0/nmax =
min wavelength)
dx_nft = w/Nx_nft;% resolving the minimum dimension
dx = min([dx_tlm dx_nft]);
dy = dx;

% SNAP GRID TO CRITICAL DIMENSION
Nx = ceil(w/dx);
dx = w/Nx;
Ny = ceil(w/dy);
dy = w/Ny;

% Adjust wave speed:
v_tlm = v_a;

%%%
%% COMPUTE THE SOURCE
%%%
% COMPUTE STABLE TIME STEP (dt)
dmin = min([dx dy]);
dt_tlm = dmin/(sqrt(2)*v_tlm);
% freq = 20*hertz;

% COMPUTE SOURCE PARAMETERS
tau = 0.5/freq; % duration needs to be sufficient so that includes enough power at max freq
t0 = 3*tau; % offset - if not given at the 1st step we will be in the middle of gaussian.
 % It's not good to turn on the source that fast, we should rather ease into it
and out of it.

% COMPUTE THE NUMBER OF TIME STEPS
STEPS = 359; % 5 periods - 357+2(2 is added for initial steps t(-1) and t(0))

% COMPUTE THE SOURCE
% ta = (0: STEPS-1-2)*dt_tlm; % time array
ta = (1: STEPS-1-1)*dt_tlm; % time array - it should begin with 0,
 % but this way is consistent with NeuralField Cpp program
% Gaussian source:
% stim = exp(-((ta - t0)/tau).^2);
% stim(ceil(2*t0/dt_tlm)+2:end)=0; % cut Gaussian to be symmetrical with respect to centre

% Sine wave source:
stim = 1*sin(2*pi*freq*ta);

% Pulse source:
% pulse_ON = 1;
% pulse_OFF = 9;
% stim = zeros(1,length(ta));
% stim(pulse_ON:pulse_OFF) = 1;

% POSITION OF THE SOURCE
nx_src = ceil(Nx/2);
ny_src = ceil(Ny/2);

%% Plot stimulus
% figure()
% plot(ta,stim)
% xlabel('Time (s)')
% ylabel('Amplitude')
% title('Stimulus')

137

%%%
%% INITIALIZE POPULATIONS
%%%
% Calculated constants (from NeuroField program - Eq. 6.4 in thesis)
p_tlm = v_tlm*dt_tlm/dx; %Courant condition - should be 1/sqrt(2)
A1 = 2 - 4*p_tlm^2;
A2 = dt_tlm^2*gamma_ab^2/12;
A3 = 10 - 4*p_tlm^2;
expfactneg = exp(-dt_tlm*gamma_ab);
expfactpos = exp(dt_tlm*gamma_ab);

Q_POP1 = zeros(Ny,Nx,STEPS); % Mean firing rate for Population 1
PHI1 = zeros(Ny,Nx,STEPS); % Axonal propagation field 1
Q_POP2 = zeros(Ny,Nx,STEPS); % Mean firing rate for Population 2
PHI2 = zeros(Ny,Nx,STEPS); % Axonal propagation field 2

Q_POP1(:,:,1:2) = Qin;
PHI1(:,:,1:2) = Qin;

% Initialize vars for diff eq to get soma potential V:
timerange = [0 dt_tlm];
V_i = zeros(1,Ny*Nx);
dV_i_dt = zeros(1,Ny*Nx);

h = waitbar(0,'Please wait...'); % Initialise progress bar
tic

for iter = 3:STEPS % Main loop
 % Finding Q_POP1:
%%%
 % Solving diff eq to get soma potential V:
 P = nu_1*PHI1(:,:,iter-1) + nu_2*PHI2(:,:,iter-1);
 P = reshape(P,[],1);

 for i = 1 : length(P)
 P_i = P(i);
 initalvalue = [V_i(i) dV_i_dt(i)];
 [~,V_temp] = ode45(@soma_potential,timerange,initalvalue);
 V_i(i) = V_temp(end,1);
 dV_i_dt(i) = V_temp(end,2);
 end
 V = reshape(V_i,Ny,Nx);
%%%
 Q_POP1(:,:,iter) = Qmax./(1 + exp(-(V-Theta)./Sigma));

 % Calculate PHI1 (FD method):
%%%
 % Find Phi from Q using FD method from NeuroField Cpp code (Eq. 6.4 in thesis):
 for y=2:Ny-1
 for x=2:Nx-1
 PHI1(y,x,iter) = expfactneg*(A1*PHI1(y,x,iter-1) + p_tlm^2*(PHI1(y-1,x,iter-
1)+PHI1(y+1,x,iter-1)+PHI1(y,x+1,iter-1)+PHI1(y,x-1,iter-1)) - PHI1(y,x,iter-
2)*expfactneg...
 + A2*(A3*Q_POP1(y,x,iter-1) + (Q_POP1(y,x,iter)*expfactpos +
Q_POP1(y,x,iter-2)*expfactneg) + p_tlm^2*(Q_POP1(y-1,x,iter-1)+Q_POP1(y+1,x,iter-
1)+Q_POP1(y,x+1,iter-1)+Q_POP1(y,x-1,iter-1))));
 end
 end

 % Periodic BC
 norht = PHI1(2,2:Nx-1,iter);
 south = PHI1(Ny-1,2:Nx-1,iter);
 west = PHI1(2:Ny-1,2,iter);
 east = PHI1(2:Ny-1,Nx-1,iter);
 nwc = PHI1(2,2,iter);
 swc = PHI1(Ny-1,2,iter);

138

 nec = PHI1(2,Nx-1,iter);
 sec = PHI1(Ny-1,Nx-1,iter);
 PHI1(1,2:Nx-1,iter) = south;
 PHI1(Ny,2:Nx-1,iter) = norht;
 PHI1(2:Ny-1,1,iter) = east;
 PHI1(2:Ny-1,Nx,iter) = west;
 PHI1(1,1,iter) = nec;
 PHI1(Ny,1,iter) = sec;
 PHI1(1,Nx,iter) = nwc;
 PHI1(Ny,Nx,iter) = swc;
%%%

 % Calculate PHI2:
 Q_POP2(ny_src,nx_src,iter) = stim(iter-2);
 PHI2(:,:,iter) = Q_POP2(:,:,iter); % this is because the propagation function is "MAP"

 % update progress bar:
 waitbar(iter/STEPS,h,[num2str(iter) ' of ' num2str(STEPS) ' finished'])
end

toc
close(h) % close progress bar

139

Appendix C: MATLAB code for solving 2D wave PDEs using 5-point

stencil FD method

function [U_Matrix,tvec] = Wave2D_5p_stencil (Damped,Pwidth,Gaussian)

%% Wave2D_5p_stencil
% using an explicit central difference method for the 2D wave equation:
% U_tt = c^2*(U_xx+U_yy)
% Input parameters:
% Damped <- 0 for undamped wave; 1 for damped wave
% Pwidth <- width of Gaussian pulse (0.2 was used in thesis)
% Gaussian <- 0 for Dirac IC; 1 for Gaussian IC

x1=0;
max_x = 2; % length of membrane in x-direction
x2=max_x;

y1=0;
max_y = 2; % length of membrane in y-direction
y2=max_y;

T = 12 ; % length of time for solution (period 1.2)

n = 199; % no of grid points Xn
p = 199; % no of grid points Yn
m = 2400; % 120 per period

dx = max_x/(n+1); % grid spacing in x direction
dy = max_y/(p+1); % grid spacing in y direction

dt = T/m; % timestep size

t=0; % initial time = 0

c = 1; % wave speed

if Damped
 kappa=0.2; % frictional coefficient
 C1 = 1+kappa*dt;
 C2 = 1-kappa*dt;
 e = C2/C1;
else
 C1 = 1;
 e = 1;
end

s_x = (c^2)*(dt^2)/(dx^2); % gain parameter in x direction
s_y = (c^2)*(dt^2)/(dy^2); % gain parameter in y direction

CourantCondition_x = c*dt/dx; % Courant condition for x direction
CourantCondition_y = c*dt/dy; % Courant condition for y direction

if CourantCondition_x > 1
 fprintf('Courant Condition in x direction is > 1 so central difference method is
unstable, please reduce time step size to gain stability');
 return
end

140

if CourantCondition_y > 1
 fprintf('Courant Condition in y direction is > 1 so central difference method is
unstable, please reduce time step size to gain stability');
 return
end

%% Build the A matrix to march finite difference solution forward in time

lambda = 2*(1-s_x-s_y);

temp_diag = lambda*ones(n,1);
temp_sub = s_y*ones(n,1);
temp_sup = temp_sub;

% Create n-by-n diagonal matrix block:
A_diag_block = spdiags([temp_sub,temp_diag,temp_sup],[-1 0 1],n,n);

% show matrix:
% test_A_t = full (A_t);
clear temp_diag temp_sub temp_sup

% Create diagonal matrix A_Sx:
temp_diag_X = s_x*ones(n*p,1);
A_Sx = spdiags([temp_diag_X, temp_diag_X],[-n n],n*p,n*p);

% show matrix:
% test_A_X = full (A_X);
clear temp_diag_X

% Create a block diagonal matrix:
A_diag = kron(eye(n),A_diag_block);
clear A_diag_block

% Finally create matrix A:
A = (1/C1)*(A_diag + A_Sx);

% show matrix:
% test_A = full (A);
clear A_diag A_Sx

%% Specify boundary conditions through vector b and by changing any rows in A matrix needed
- for Neumann boundary conditions
% we have u(0,t) = 0 = u(a,t)

b = (1/C1)*zeros(n*p,1); %if the boundary conditions are different, then "zeros(n,1)"
should be changed to the adequate vector

%% Initial conditions for du/dt
% in this case u_t(x,y,0) = 0.

d = zeros(n*p,1); %if the initial conditions are different, change "d" accordingly

%% Set up mesh
% in x-direction:
x = linspace(x1+dx,x2-dx, n)';
% in y-direction:
y = linspace(y1+dy,y2-dy, p)';

%%%
%% Set up vector U^0 at time tk=0: U(x,y,0) = f(x,y)
% Formatting Gaussian Pulse:

% Setting Gaussian parameters
Eo=5; % Pulse amplitude
Gmu=max_x/2; % Centre of pulse
sigmaxSq = Pwidth*max_x; %pulse width x - used to be 0.05 for elongated gaussian

141

sigmaySq = Pwidth*max_y; %pulse width y -

if Gaussian
 ax = 2*sigmaxSq;
 ay = 2*sigmaySq;

 % Generating Gaussian
 Gauss_x = exp(-pi^2*((x-Gmu).^2/ax)); % Horizontal

 Gauss_y = exp(-pi^2*((y-Gmu).^2/ay)); % Vertical

 U_tk_last_Matrix = Eo*Gauss_y*Gauss_x'; % Gaussian in 2D

else % Dirac I.C.
 U_tk_last_Matrix = zeros(n,p);
 U_tk_last_Matrix (round(length(x)/2),round(length(y)/2)) = 5;
end

%{
% Cut mask - if we want to set just the mid part of the membrane to
% gaussian and the rest to 0 (or some other value):

% Cut_mask = zeros(n,p);
% for i = 1:n
% for j = 1:p
% if x(i) >= 0.3*max_x && x(i) <= 0.7*max_x
% if y(j) >= 0.3*max_y && y(j) <= 0.7*max_y
% Cut_mask(i,j)= 1;
% else
% Cut_mask(i,j) = 0;
% end;
% else
% Cut_mask(i,j) = 0;
% end;
% end;
% end;

U_tk_last_Matrix = U_tk_last_Matrix.*Cut_mask;
%}

U_tk_last = reshape(U_tk_last_Matrix.',[],1);

%% First we initialise and find U^1 = U_tk at time k=1

t = t+dt;
U_tk = (C1/2)*A*U_tk_last + (C1/2)*b + d;

U_tk_Matrix = reshape(U_tk,n,[]);
U_tk_Matrix = U_tk_Matrix';

%{
figure(1)
mesh (x,y,U_tk_last_Matrix)
title ('Initial condition for plucked elastic membrane')
xlabel ('x')
ylabel ('y')
zlabel ('U')
axis ('tight')

figure(2)
mesh (x,y,U_tk_Matrix)
title ('Vibrations of elastic membrane after 1 time step')
xlabel ('x')
ylabel ('y')
zlabel ('U')
axis ('tight')

142

%}

clear x y d Gauss_x Gauss_y
%% Store solution for each time in matrix U(n_x_m):

U_Matrix = zeros(n,p,m);
tvec = zeros(m,1);

U_Matrix(:,:,1) = U_tk_last_Matrix;
tvec(1) = t-dt;
U_Matrix(:,:,2) = U_tk_Matrix;
tvec(2) = t;

clear U_tk_last_Matrix U_tk_Matrix
%% March solution forward in time using U_tk+1 = A*U_tk + b:

for k = 2:m % Main loop
 t = t+dt;
 % if boundary conditions vary with time you need to update b here
 U_tk_new = A*U_tk + b - e*U_tk_last;

 U_tk_new_Matrix = reshape(U_tk_new,n,[]);
 U_tk_new_Matrix = U_tk_new_Matrix';
 U_Matrix(:,:,k) = U_tk_new_Matrix;

 % for next time step:
 U_tk_last = U_tk;
 U_tk = U_tk_new;
 tvec(k) = t;

end

clear U_tk_last U_tk U_tk_new

143

Appendix D: MATLAB code for solving 2D wave PDEs using 9-point

stencil FD method

function [U_Matrix,tvec] = Wave2D_9p_stencil (Damped,Pwidth,Gaussian)

%% Wave2D_9p_stencil
% using an explicit central difference method for the 2D wave equation:
% U_tt = c^2*(U_xx+U_yy)
% Input parameters:
% Damped <- 0 for undamped wave; 1 for damped wave
% Pwidth <- width of Gaussian pulse (0.2 was used in thesis)
% Gaussian <- 0 for Dirac IC; 1 for Gaussian IC

x1=0;
max_x = 2; % length of membrane in x-direction
x2=max_x;

y1=0;
max_y = 2; % length of membrane in y-direction
y2=max_y;

T = 12 ; % length of time for solution (period 1.2)

n = 199; % no of grid points Xn
p = 199; % no of grid points Yn
m = 2400; % 120 per period

dx = max_x/(n+1); % grid spacing in x direction
dy = max_y/(p+1); % grid spacing in y direction

dt = T/m; % timestep size

t=0; % initial time = 0

c = 1; % wave speed

C1 = dx^2 + dy^2;
C2 = 10*dy^2 - 2*dx^2;
C3 = 10*dx^2 - 2*dy^2;

s = (c^2)*(dt^2)/(12*dx^2*dy^2);

s_x = C2*s; % gain parameter in x direction
s_y = C3*s; % gain parameter in y direction
s_m = C1*s; % gain parameter in xy direction

if Damped
 kappa=0.2; % frictional coefficient
 C4 = 1+kappa*dt;
 C5 = 1-kappa*dt;
 e = C5/C4;
else % Undamped wave
 C4 = 1;
 e = 1;
end

CourantCondition_x = c*dt/dx; % Courant condition for x direction
CourantCondition_y = c*dt/dy; % Courant condition for y direction

144

if CourantCondition_x > 1
 fprintf('Courant Condition in x direction is > 1 so central difference method is
unstable, please reduce time step size to gain stability');
 return
end

if CourantCondition_y > 1
 fprintf('Courant Condition in y direction is > 1 so central difference method is
unstable, please reduce time step size to gain stability');
 return
end

%% Build the A matrix to march finite difference solution forward in time

lambda = 2*(1-10*s_m);

temp_diag = lambda*ones(n,1);
temp_sub = s_y*ones(n,1);
temp_sup = temp_sub;

% Create n-by-n diagonal matrix block:
A_diag_block = spdiags([temp_sub,temp_diag,temp_sup],[-1 0 1],n,n);

% % show matrix:
% test_A_t = full (A_diag_block);
clear temp_diag temp_sub temp_sup

% Create diagonal matrix A_Sx:
temp_diag = s_x*ones(n,1);
temp_sub = s_m*ones(n,1);
temp_sup = temp_sub;
% Create n-by-n diagonal matrix block:
A_Sx_block = spdiags([temp_sub,temp_diag,temp_sup],[-1 0 1],n,n);
Ones_sub_sup = spdiags([ones(n,1),ones(n,1)],[-1 1],n,n);

% % show matrix:
% test_A_X = full (A_Sx_block);
clear temp_diag temp_sub temp_sup

% Create a block diagonal matrix:
A_diag = kron(eye(n),A_diag_block);

% % show matrix:
% test_A_diag = full (A_diag);
clear A_diag_block

A_Sx = kron(Ones_sub_sup,A_Sx_block);

% % show matrix:
% test_A_X = full (A_Sx);
clear A_Sx_block Ones_sub_sup

% Finally create matrix A:
A = (1/C4)*(A_diag + A_Sx);

% % show matrix:
% test_A = full (A);
clear A_diag A_Sx

%% Specify boundary conditions through vector b and by changing any rows in A matrix needed
- for Neumann boundary conditions
% we have u(0,t) = 0 = u(a,t)

b = (1/C4)*zeros(n*p,1); %if the boundary conditions are different, then "zeros(n,1)"
should be changed to the adequate vector

145

%% initial conditions for du/dt
% in this case u_t(x,y,0) = 0.

d = zeros(n*p,1); %if the initial conditions are different, change "d" accordingly

%% Set up mesh
% in x-direction:
x = linspace(x1+dx,x2-dx, n)';
% in y-direction:
y = linspace(y1+dy,y2-dy, p)';

%%%
%% Set up vector U^0 at time tk=0: U(x,y,0) = f(x,y)
% Formatting Gaussian Pulse:

% Setting Gaussian parameters
Eo=5; % Pulse amplitude
Gmu=max_x/2; % Centre of pulse
sigmaxSq = Pwidth*max_x; %pulse width x - used to be 0.05 for elongated gaussian
sigmaySq = Pwidth*max_y; %pulse width y -

if Gaussian
 ax = 2*sigmaxSq;
 ay = 2*sigmaySq;

 % Generating Gaussian
 Gauss_x = exp(-pi^2*((x-Gmu).^2/ax)); % Horizontal

 Gauss_y = exp(-pi^2*((y-Gmu).^2/ay)); % Vertical

 U_tk_last_Matrix = Eo*Gauss_y*Gauss_x'; % Gaussian in 2D

else % Dirac I.C.
 U_tk_last_Matrix = zeros(n,p);
 U_tk_last_Matrix (round(length(x)/2),round(length(y)/2)) = 5;
end

%{
% Cut mask - if we want to set just the mid part of the membrane to
% gaussian and the rest to 0 (or some other value):

% Cut_mask = zeros(n,p);
% for i = 1:n
% for j = 1:p
% if x(i) >= 0.3*max_x && x(i) <= 0.7*max_x
% if y(j) >= 0.3*max_y && y(j) <= 0.7*max_y
% Cut_mask(i,j)= 1;
% else
% Cut_mask(i,j) = 0;
% end;
% else
% Cut_mask(i,j) = 0;
% end;
% end;
% end;

U_tk_last_Matrix = U_tk_last_Matrix.*Cut_mask;
%}

U_tk_last = reshape(U_tk_last_Matrix.',[],1);

146

%% First we initialise and find U^1 = U_tk at time k=1

t = t+dt;
U_tk = (C4/2)*A*U_tk_last + (C4/2)*b + d;

U_tk_Matrix = reshape(U_tk,n,[]);
U_tk_Matrix = U_tk_Matrix';

%{
figure(1)
mesh (x,y,U_tk_last_Matrix)
title ('Initial condition for plucked elastic membrane')
xlabel ('x')
ylabel ('y')
zlabel ('U')
axis ('tight')

figure(2)
mesh (x,y,U_tk_Matrix)
title ('Vibrations of elastic membrane after 1 time step')
xlabel ('x')
ylabel ('y')
zlabel ('U')
axis ('tight')
%}

clear x y d Gauss_x Gauss_y
%% Store solution for each time in matrix U(nxm):

U_Matrix = zeros(n,p,m);
tvec = zeros(m,1);

U_Matrix(:,:,1) = U_tk_last_Matrix;
tvec(1) = t-dt;
U_Matrix(:,:,2) = U_tk_Matrix;
tvec(2) = t;

clear U_tk_last_Matrix U_tk_Matrix
%% March solution forward in time using U_tk+1 = A*U_tk + b:

for k = 2:m % Main loop
 t = t+dt;
 % if boundary conditions vary with time you need to update b here
 U_tk_new = A*U_tk + b - e*U_tk_last;

 U_tk_new_Matrix = reshape(U_tk_new,n,[]);
 U_tk_new_Matrix = U_tk_new_Matrix';
 U_Matrix(:,:,k) = U_tk_new_Matrix;

 % for next time step:
 U_tk_last = U_tk;
 U_tk = U_tk_new;
 tvec(k) = t;

end

clear U_tk_last U_tk U_tk_new

147

References

Abeysuriya, R. G., Rennie, C. J., & Robinson, P. A. (2014). Prediction and verification of nonlinear
sleep spindle harmonic oscillations. J Theor Biol, 344, 70-77. doi: 10.1016/j.jtbi.2013.11.013

Abeysuriya, R. G., Rennie, C. J., Robinson, P. A., & Kim, J. W. (2014). Experimental observation of a
theoretically predicted nonlinear sleep spindle harmonic in human EEG. Clin Neurophysiol,
125(10), 2016-2023. doi: 10.1016/j.clinph.2014.01.025

Abramowitz, M. (1974). Handbook of Mathematical Functions, With Formulas, Graphs, and
Mathematical Tables: Dover Publications, Incorporated.

Akhtarzad, S. (1975). Analysis of Lossy Microwave Structures and Microstrip Resonators by the TLM
Method. PhD thesis.

Akhtarzad, S., & Johns, P. B. (1975). Three-Dimensional Transmission-Line Matrix Computer Analysis
of Microstrip Resonators. IEEE Transactions on Microwave Theory and Techniques, 23(12),
990-997. doi: 10.1109/TMTT.1975.1128732

Amri, A., Saidane, A., & Pulko, S. (2011). Thermal analysis of a three-dimensional breast model with
embedded tumour using the transmission line matrix (TLM) method. Computers in Biology
and Medicine, 41(2), 76-86. doi: http://dx.doi.org/10.1016/j.compbiomed.2010.12.002

Arfken, G. B., Weber, H. J., & Harris, F. E. (2013). Chapter 9 - Partial Differential Equations
Mathematical Methods for Physicists (Seventh Edition) (pp. 401-445). Boston: Academic
Press.

Barkley Rosser, J. (1975). Nine-point difference solutions for Poisson's equation. Computers &
Mathematics with Applications, 1(3), 351-360. doi: http://dx.doi.org/10.1016/0898-
1221(75)90035-8

Bednar, J. A. (2012). Building a mechanistic model of the development and function of the primary
visual cortex. Journal of Physiology-Paris, 106(5-6), 194-211. doi:
10.1016/j.jphysparis.2011.12.001

Beurle, R. L. (1956). Properties of a Mass of Cells Capable of Regenerating Pulses. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences, 240(669), 55-94.

Bower, J. M., & Beeman, D. (1998). The book of GENESIS (2nd ed.): exploring realistic neural models
with the GEneral NEural SImulation System: Springer-Verlag New York, Inc.

Breakspear, M., Jirsa, V., & Deco, G. (2010). Computational models of the brain: from structure to
function. Neuroimage, 52(3), 727-730. doi: 10.1016/j.neuroimage.2010.05.061

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., . . . Destexhe, A. (2007).
Simulation of networks of spiking neurons: a review of tools and strategies. Journal of
Computational Neuroscience, 23(3), 349-398. doi: 10.1007/s10827-007-0038-6

Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book: Cambridge University Press.
Ciocan, R., & Ida, N. (2003). Applications of Transmission Line Matrix Method For NDT (Vol. 8 No.3).

NDT.net.
Cogan, D. d., O'Connor, W. J., & Pulko, S. (2005). Transmission Line Matrix (TLM) in Computational

Mechanics: CRC Press, Inc.
Coombes, S. (2010). Large-scale neural dynamics: Simple and complex. Neuroimage, 52(3), 731-739.

doi: http://dx.doi.org/10.1016/j.neuroimage.2010.01.045
Coombes, S., & Byrne, A. (2016). Next generation neural mass models: In A. Torcini and F. Corinth,

editors, Lecture Notes in Nonlinear Dynamics in Computational Neuroscience: from Physics
and Biology to ICT. Springer.

Courant, R., Friedrichs, K., & Lewy, H. (1967). On the partial difference equations of mathematical
physics. IBM J. Res. Dev., 11(2), 215-234. doi: 10.1147/rd.112.0215

Cst.com. (2015). TLM Solver of CST MICROWAVE STUDIO®. Retrieved 05/11/2015, from
https://www.cst.com/Products/CSTMWS/TLM-Solver

http://dx.doi.org/10.1016/j.compbiomed.2010.12.002
http://dx.doi.org/10.1016/0898-1221(75)90035-8
http://dx.doi.org/10.1016/0898-1221(75)90035-8
http://dx.doi.org/10.1016/j.neuroimage.2010.01.045
http://www.cst.com/Products/CSTMWS/TLM-Solver

148

David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG:: coupling and neuronal
dynamics. Neuroimage, 20(3), 1743-1755. doi:
https://doi.org/10.1016/j.neuroimage.2003.07.015

Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience : Computational and Mathematical
Modeling of Neural Systems. Cambridge, Mass.: Massachusetts Institute of Technology
Press.

Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., & Friston, K. (2008). The Dynamic Brain: From
Spiking Neurons to Neural Masses and Cortical Fields. PLoS Comput Biol, 4(8), e1000092. doi:
10.1371/journal.pcbi.1000092

Deford, J. F., & Gandhi, O. P. (1985). An Impedance Method to Calculate Currents Induced in
Biological Bodies Exposed to Quasi-Static Electromagnetic Fields. IEEE Transactions on
Electromagnetic Compatibility, EMC-27(3), 168-173. doi: 10.1109/TEMC.1985.304281

Desai, R. A., Lowery, A. J., Christopoulos, C., Naylor, P., Blanshard, J. M. V., & Gregson, K. (1992).
Computer modelling of microwave cooking using the transmission-line model. IEE
Proceedings A - Science, Measurement and Technology, 139(1), 30-38. doi: 10.1049/ip-a-
3.1992.0005

Eckhorn, R., Reitboeck, H., Arndt, M., & Dicke, P. (1990). Feature Linking via Synchronization among
Distributed Assemblies: Simulations of Results from Cat Visual Cortex. Neural Comput, 2(3),
293-307. doi: 10.1162/neco.1990.2.3.293

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., & Rasmussen, D. (2012). A
Large-Scale Model of the Functioning Brain. Science, 338(6111), 1202-1205. doi:
10.1126/science.1225266

Erwin, E., Obermayer, K., & Schulten, K. (1995). Models of orientation and ocular dominance
columns in the visual cortex: a critical comparison. Neural Comput, 7(3), 425-468.

Freeman, W. (2012). Neurodynamics: An Exploration in Mesoscopic Brain Dynamics: Springer
London.

Friston, K. J., & Dolan, R. J. (2010). Computational and dynamic models in neuroimaging.
Neuroimage, 52(3), 752-765. doi: http://dx.doi.org/10.1016/j.neuroimage.2009.12.068

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models : single neurons, populations, plasticity.
Cambridge: Cambridge University Press.

Gewaltig, M., & Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia, 2, 1430.
Goodman, D. F. M., & Brette, R. (2009). The Brian simulator. Frontiers in Neuroscience, 3. doi:

10.3389/neuro.01.026.2009
Hodgkin, A. L., & Huxley, A. F. (1952a). Currents carried by sodium and potassium ions through the

membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 449-472.
Hodgkin, A. L., & Huxley, A. F. (1952b). The components of membrane conductance in the giant axon

of Loligo. The Journal of Physiology, 116(4), 473-496.
Hodgkin, A. L., & Huxley, A. F. (1952c). The dual effect of membrane potential on sodium

conductance in the giant axon of Loligo. The Journal of Physiology, 116(4), 497-506.
Hodgkin, A. L., & Huxley, A. F. (1952d). A quantitative description of membrane current and its

application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500-
544.

Hoefer, W. J. R. (1985). The Transmission-Line Matrix Method - Theory and Applications. Microwave
Theory and Techniques, IEEE Transactions on, 33(10), 882-893. doi:
10.1109/TMTT.1985.1133146

Hoefer, W. J. R. (2012, 21-24 May 2012). A history of time domain electromagnetics - a voyage back
in time. Paper presented at the Electromagnetic Compatibility (APEMC), 2012 Asia-Pacific
Symposium on.

Hughes, J. R. (2008). Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy
and behavior. Epilepsy Behav, 13(1), 25-31. doi: 10.1016/j.yebeh.2008.01.011

http://dx.doi.org/10.1016/j.neuroimage.2009.12.068

149

Huygens, C. (1690). Traité de la lumière: Ou sont expliquées les causes de ce qui luy arrive dans la
reflexion, et dans la refraction Et particulierement dans l'etrange refraction du cristal
d'Islande ; Avec un discours de la cause de la pesanteur: van der Aa.

Johns, P. B. (1972). Application of the transmission-line-matrix method to homogeneous waveguides
of arbitrary cross-section. Electrical Engineers, Proceedings of the Institution of, 119(8),
1086-1091. doi: 10.1049/piee.1972.0206

Johns, P. B. (1977). A simple explicit and unconditionally stable numerical routine for the solution of
the diffusion equation. International Journal for Numerical Methods in Engineering, 11(8),
1307-1328. doi: 10.1002/nme.1620110810

Johns, P. B. (1987). On the Relationship Between TLM and Finite-Difference Methods for Maxwell's
Equations (Short Paper). IEEE Transactions on Microwave Theory and Techniques, 35(1), 60-
61. doi: 10.1109/TMTT.1987.1133595

Johns, P. B., & Beurle, R. L. (1971). Numerical solution of 2-dimensional scattering problems using a
transmission-line matrix. Electrical Engineers, Proceedings of the Institution of, 118(9), 1203-
1208. doi: 10.1049/piee.1971.0217

Johns, P. B., & Brien, M. O. (1980). Use of the transmission-line modelling (t.l.m.) method to solve
non-linear lumped networks. Radio and Electronic Engineer, 50(1.2), 59-70. doi:
10.1049/ree.1980.0006

Kane, Y. (1966). Numerical solution of initial boundary value problems involving maxwell's equations
in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302-307. doi:
10.1109/TAP.1966.1138693

Kerr, C. C., Rennie, C. J., & Robinson, P. A. (2011). Model-based analysis and quantification of age
trends in auditory evoked potentials. Clin Neurophysiol, 122(1), 134-147. doi:
10.1016/j.clinph.2010.05.030

Kerr, C. C., Van Albada, S. J., Neymotin, S. A., Chadderdon, G. L., Robinson, P. A., & Lytton, W. W.
(2013). Cortical information flow in Parkinson's disease: a composite network/field model.
Front Comput Neurosci, 7, 39. doi: 10.3389/fncom.2013.00039

Krumpholz, M., Huber, C., & Russer, P. (1995). A field theoretical comparison of FDTD and TLM.
Microwave Theory and Techniques, IEEE Transactions on, 43(8), 1935-1950. doi:
10.1109/22.402284

Krumpholz, M., & Russer, P. (1994). A field theoretical derivation of TLM. Microwave Theory and
Techniques, IEEE Transactions on, 42(9), 1660-1668. doi: 10.1109/22.310559

Lowery, A. J. (1989). Transmission-line modelling of semiconductor lasers: The transmission-line
laser model. International Journal of Numerical Modelling: Electronic Networks, Devices and
Fields, 2(4), 249-265. doi: 10.1002/jnm.1660020408

McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, D. J. (2000). A neuronal network model of
macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer
4Cα. Proceedings of the National Academy of Sciences, 97(14), 8087-8092. doi:
10.1073/pnas.110135097

Mingus, B. (2014). Comparison of Neural Network Simulators. Retrieved 05/11/2015, from
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulator
s

Moran, R. J., Kiebel, S. J., Stephan, K. E., Reilly, R. B., Daunizeau, J., & Friston, K. J. (2007). A neural
mass model of spectral responses in electrophysiology. Neuroimage, 37(3-3), 706-720. doi:
10.1016/j.neuroimage.2007.05.032

Northrop, R. B. (2001). Introduction to dynamic modeling of neuro-sensory systems. Boca Raton, FL:
CRC Press.

Nunez, P. L. (1974). The brain wave equation: a model for the EEG. Mathematical Biosciences, 21(3–
4), 279-297. doi: http://dx.doi.org/10.1016/0025-5564(74)90020-0

Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain : the neurophysics of EEG (2nd ed.
ed.). Oxford

http://dx.doi.org/10.1016/0025-5564(74)90020-0

150

New York: Oxford University Press.
Olsen-Kettle, L. (2011). Numerical solution of partial differential equations and code: Earth Systems

Science Computational Centre Publications.
P. Sanz-Leon, P. A. R., S. A. Knock, R. G. Abeysuriya, P. M. Drysdale, P. K. Fung, C. J. Rennie and X.

Zhao. (2017). NeuroField: A software for neural field simulations in C++. In preparation for
PlosCB.

Pinotsis, D., Robinson, P., beim Graben, P., & Friston, K. (2014). Neural masses and fields: modeling
the dynamics of brain activity. Front Comput Neurosci, 8, 149. doi:
10.3389/fncom.2014.00149

Portí, J. A., & Morente, J. A. (2001). TLM method and acoustics. International Journal of Numerical
Modelling: Electronic Networks, Devices and Fields, 14(2), 171-183. doi: 10.1002/jnm.405

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C (2nd
ed.): the art of scientific computing: Cambridge University Press.

Rall, W. (2011). Core Conductor Theory and Cable Properties of Neurons Comprehensive Physiology:
John Wiley & Sons, Inc.

Ray, K., & Roy, M. K. (2010, 7-9 July 2010). A theoretical basis for brain waves with implications for a
large scale integration required for cognitive processes. Paper presented at the Cognitive
Informatics (ICCI), 2010 9th IEEE International Conference on.

Rennie, C. J., Robinson, P. A., & Wright, J. J. (2002). Unified neurophysical model of EEG spectra and
evoked potentials. Biol Cybern, 86(6), 457-471. doi: 10.1007/s00422-002-0310-9

Rezzolla, L., & Zanotti, O. (2014). Relativistic hydrodynamics. Oxford: Oxford University Press.
Ritter, P., Schirner, M., McIntosh, A. R., & Jirsa, V. K. (2013). The Virtual Brain Integrates

Computational Modeling and Multimodal Neuroimaging. Brain Connect, 3(2), 121-145. doi:
10.1089/brain.2012.0120

Roberts, J. A., & Robinson, P. A. (2012). Corticothalamic dynamics: Structure of parameter space,
spectra, instabilities, and reduced model. Physical Review E, 85(1), 011910.

Robinson, P. A. (2014). Determination of effective brain connectivity from functional connectivity
using propagator-based interferometry and neural field theory with application to the
corticothalamic system. Physical Review E, 90(4). doi: 10.1103/PhysRevE.90.042712

Robinson, P. A., & Kim, J. W. (2012). Spike, rate, field, and hybrid methods for treating neuronal
dynamics and interactions. J Neurosci Methods, 205(2), 283-294. doi:
10.1016/j.jneumeth.2012.01.018

Robinson, P. A., Rennie, C. J., Rowe, D. L., & O'Connor, S. C. (2004a). Estimation of multiscale
neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp, 23(1),
53-72. doi: 10.1002/hbm.20032

Robinson, P. A., Rennie, C. J., Rowe, D. L., & O'Connor, S. C. (2004b). Estimation of multiscale
neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp, 23(1),
53-72. doi: 10.1002/hbm.20032

Robinson, P. A., Rennie, C. J., Rowe, D. L., O'Connor, S. C., & Gordon, E. (2005). Multiscale brain
modelling. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457),
1043-1050. doi: 10.1098/rstb.2005.1638

Robinson, P. A., Rennie, C. J., & Wright, J. J. (1997). Propagation and stability of waves of electrical
activity in the cerebral cortex. Physical Review E, 56(1), 826-840.

Robinson, P. A., Rennie, C. J., Wright, J. J., Bahramali, H., Gordon, E., & Rowe, D. L. (2001). Prediction
of electroencephalographic spectra from neurophysiology. Physical Review E, 63(2), 021903.

Robinson, P. A., Sarkar, S., Pandejee, G. M., & Henderson, J. A. (2014). Determination of effective
brain connectivity from functional connectivity with application to resting state
connectivities. Physical Review E, 90(1). doi: 10.1103/PhysRevE.90.012707

Rulkov, N. F., Timofeev, I., & Bazhenov, M. (2004). Oscillations in Large-Scale Cortical Networks:
Map-Based Model. Journal of Computational Neuroscience, 17(2), 203-223. doi:
10.1023/B:JCNS.0000037683.55688.7e

151

Russer, P. (2000). The Transmission Line Matrix Method. In N. Uzunoglu, K. Nikita & D. Kaklamani
(Eds.), Applied Computational Electromagnetics (Vol. 171, pp. 243-269): Springer Berlin
Heidelberg.

Sadiku, M. N. O. (2009). Numerical Techniques in Electromagnetics with MATLAB, Third Edition:
Taylor & Francis.

Schellenberger Costa, M., Weigenand, A., Ngo, H.-V. V., Marshall, L., Born, J., Martinetz, T., &
Claussen, J. C. (2016). A Thalamocortical Neural Mass Model of the EEG during NREM Sleep
and Its Response to Auditory Stimulation. PLoS Comput Biol, 12(9), e1005022. doi:
10.1371/journal.pcbi.1005022

Stewart, T. C., Bekolay, T., & Eliasmith, C. (2012). Learning to Select Actions with Spiking Neurons in
the Basal Ganglia. Frontiers in Neuroscience, 6, 2. doi: 10.3389/fnins.2012.00002

Stewart, T. C., & Eliasmith, C. (2014). Large-Scale Synthesis of Functional Spiking Neural Circuits.
Proceedings of the IEEE, 102(5), 881-898. doi: 10.1109/JPROC.2014.2306061

Tapson, J. C., Cohen, G. K., Afshar, S., Stiefel, K. M., Buskila, Y., Hamilton, T. J., & van Schaik, A.
(2013). Synthesis of neural networks for spatio-temporal spike pattern recognition and
processing. Frontiers in Neuroscience, 7. doi: 10.3389/fnins.2013.00153

Thom, A. (1961). Field computations in engineering & physics [by] A. Thom and C.J. Apelt. London,
New York: Van Nostrand.

van Albada, S. J., Gray, R. T., Drysdale, P. M., & Robinson, P. A. (2009). Mean-field modeling of the
basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations. J Theor Biol,
257(4), 664-688. doi: 10.1016/j.jtbi.2008.12.013

van Albada, S. J., Kerr, C. C., Chiang, A. K., Rennie, C. J., & Robinson, P. A. (2010). Neurophysiological
changes with age probed by inverse modeling of EEG spectra. Clin Neurophysiol, 121(1), 21-
38. doi: 10.1016/j.clinph.2009.09.021

van Albada, S. J., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical
system. I Firing rates in healthy and parkinsonian states. J Theor Biol, 257(4), 642-663. doi:
10.1016/j.jtbi.2008.12.018

Velut, S., & Tummescheit, H. (2011). Implementation of a transmission line model for fast simulation
of fluid flow dynamics.

Villapecellin-Cid, M. M., Rao, L., & Reina-Tosina, J. (2003, 17-21 Sept. 2003). Ranvier nodes
impedance match with internodal transmission lines of myelinated axons. Paper presented
at the Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual
International Conference of the IEEE.

Villapecellin-Cid, M. M., Roa, L. M., & Reina-Tosina, J. (2001, 2001). Transverse magnetic waves in
myelinated nerves. Paper presented at the Engineering in Medicine and Biology Society,
2001. Proceedings of the 23rd Annual International Conference of the IEEE.

Villapecellin-Cid, M. M., Roa, L. M., & Reina-Tosina, J. (2002, 23-26 Oct. 2002). Electromagnetic fields
induced in anisotropic tissues by myelinated axons. Paper presented at the Engineering in
Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the
Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second
Joint.

Weiner, M. (2010). Electromagnetic Analysis Using Transmission Line Variables: World Scientific.
Weiner, M. (2010). Introduction to Transmission Lines and Their Application to Electromagnetic

Phenomena Electromagnetic Analysis Using Transmission Line Variables (2nd ed., pp. 1-63):
WORLD SCIENTIFIC.

Wells, R. B. (2005). Cortical Neurons and Circuits: A tutorial introduction. LCNTR Tech Brief, Moscow:
The University of Idaho, http://www.mrc.uidaho.edu/~rwells/techdocs/.

Wilson, H. R. (1999). Simplified Dynamics of Human and Mammalian Neocortical Neurons. J Theor
Biol, 200(4), 375-388. doi: http://dx.doi.org/10.1006/jtbi.1999.1002

Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical
and thalamic nervous tissue. Kybernetik, 13(2), 55-80. doi: 10.1007/BF00288786

http://www.mrc.uidaho.edu/%7Erwells/techdocs/
http://dx.doi.org/10.1006/jtbi.1999.1002

152

Wright, J. J., & Liley, D. T. J. (1995). Simulation of electrocortical waves. Biological Cybernetics, 72(4),
347-356. doi: 10.1007/BF00202790

Wright, J. J., & Liley, D. T. J. (1996). Dynamics of the brain at global and microscopic scales: Neural
networks and the EEG. Behavioral and Brain Sciences, 19(02), 285-295. doi:
doi:10.1017/S0140525X00042679

Wu, H., & Robinson, P. A. (2007). Modeling and investigation of neural activity in the thalamus. J
Theor Biol, 244(1), 1-14. doi: 10.1016/j.jtbi.2006.07.016

Yamaguchi, I., Ogawa, Y., Nakao, H., Jimbo, Y., & Kotani, K. (2014). Linear Analysis of the
Corticothalamic Model with Time Delay. Electronics and Communications in Japan, 97(8), 32-
44. doi: 10.1002/ecj.11581

Yi-Chi, S., & Hoefer, W. J. R. (1980). Dominant and Second-Order Mode Cutoff Frequencies in Fin
Lines Calculated with a Two-Dimensional TLM Program. IEEE Transactions on Microwave
Theory and Techniques, 28(12), 1443-1448. doi: 10.1109/TMTT.1980.1130264

Zachary, K., Richard, H. M., & Cutter, A. G. (2006). Evaluation of the Nash–Sutcliffe Efficiency Index.
doi: 10.1061/(ASCE)1084-0699(2006)11:6(597)

	Abstract
	1. Introduction
	2. Computational Neuroscience
	2.1. Models of neurons
	2.2. Computational models of the brain
	2.2.1. Spiking neuron models
	2.2.2. Neuronal network models
	2.2.3. Neural mass models and neural field models
	2.2.4. Composite neural models
	2.2.5. Neural simulators

	2.3. Conclusion

	3. “NeuroField” Program
	3.1. NeuroField algorithm
	3.2. Conclusion

	4. Transmission-line matrix method
	4.1. TLM literature review
	4.2. Analogy of TLM method and neurological activity
	4.3. TLM algorithm
	4.4. Conclusion

	5. Numerical solution of hyperbolic equations
	5.1. Analytical solution of the 1D undamped wave equation
	5.2. Analytical solution of the 1D damped wave equation
	5.3. Numerical solution of plucked string equation – 1D undamped wave equation
	5.4. Numerical solution of the 1D damped wave equation
	5.5. Analytical solution of the 2D undamped wave equation
	5.6. Analytical solution of the 2D damped wave equation
	5.7. Numerical solution of 2D undamped wave equation
	5.8. Numerical solution of 2D damped wave equation
	5.9. The nine-point stencil method for numerical solution of the 2D wave equation
	5.10. Numerical comparisons between five-point and nine-point stencils
	5.11. Conclusion

	6. Mapping NeuroField parameters to TLM
	6.1. NeuroField wave equation in FD
	6.2. TLM method for inhomogeneous (or forced) damped wave equation
	6.2.1. TLM equivalent network
	6.2.2. Calculation of TLM cell parameters to match NeuroField and the units analysis
	6.2.3. Electrical equivalent for lumped TLM cell
	6.2.3.1. Link-Line TLM node
	6.2.3.2. Link-Resistor TLM node

	6.3. Discretisation and Boundary conditions
	6.3.1. Space and time discretisation in FD method
	6.3.2. Courant condition for FD numerical method
	6.3.3. Space and time discretisation in TLM
	6.3.4. Boundary conditions

	6.4. Conclusion

	7. Comparison of the FD and TLM simulations
	7.1. Comparison between FD and TLM methods to numerically solve the 2D wave PDEs
	7.1.1. Undamped wave PDEs
	7.1.1.1. Comparison of the simulations for 2D undamped wave
	7.1.1.1.1. Dirac impulse I.C.
	7.1.1.1.2. Gaussian spread I.C.

	7.1.1.2. Discussion of the results

	7.1.2. Damped wave PDEs
	7.1.2.1. Comparison of the simulations for 2D damped wave
	7.1.2.1.1. Dirac impulse I.C.
	7.1.2.1.2. Gaussian spread I.C.

	7.1.2.2. Discussion of the results

	7.2. Comparing the NeuroField simulations using FD and TLM methods for solving the governing wave equation in MATLAB
	7.2.1. One-population NeuroField model
	7.2.1.1. Pulse stimulus
	7.2.1.2. Sine wave stimulus
	7.2.1.3. Gaussian stimulus
	7.2.1.4. Effects of changing the temporal damping coefficient

	7.2.2. Two-populations NeuroField model
	7.2.3. Four-populations NeuroField model
	7.2.4. Discussion of the results
	7.2.4.1. Time of code execution
	7.2.4.2. Fitting parameters in TLM method to better correspond to FD

	7.3. Conclusion

	8. Conclusions and recommendations for future work
	Appendix A: MATLAB code for One-population model using TLM
	Appendix B: MATLAB code for One-population model using FD
	Appendix C: MATLAB code for solving 2D wave PDEs using 5-point stencil FD method
	Appendix D: MATLAB code for solving 2D wave PDEs using 9-point stencil FD method
	References

