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Abstract 

Brain structure and dynamics have been the focus of a vast number of recent scientific 
studies. Numerous models have been developed for the purpose to describe the neural 
processes at different scales, ranging from the substructures of the individual neurons, 
through neural network models at the microscopic level describing the interconnections 
between the individual neurons with varying degrees of idealisation, up to the mesoscopic 
models explaining how the neural populations interact to the macroscopic neural field models 
informing us about the whole brain dynamics and the interactions between the large-scale 
neural systems such as the cortical regions, the thalamus, and the brain stem. In the early 
days of neuroscience, models had to be kept simpler so that results could be obtained 
analytically. The recent development of powerful computers has allowed researchers to 
create more realistic, but also more complex models based on numerical simulation methods, 
avoiding limitations and simplified assumptions usually built in analytical solutions. 

Depending on the model concept used, there are many ways the equations can be solved 
numerically. One approach is to replace the equations by analogue models and probably the 
best-known example is the usage of electrical network to mimic the physical problem where 
solution could be obtained using conventional circuit analysis techniques in either the time or 
frequency domains. The most elegant electrical equivalent network numerical method is the 
Transmission-Line Matrix method (TLM) that leads to a simple numerical discretisation 
scheme. 

In this thesis, the feasibility to numerically solve the inhomogeneous damped wave equations 
using TLM techniques is explored. The equations are used in a multiscale neural field brain 
model, called NeuroField, to represent axonal propagation of activity through the cortex. The 
hypothesis tested was if the usage of TLM leads to more understandable and efficient brain 
modelling and what the cost in computer resources for those benefits is. This approach differs 
from the currently used Finite Difference (FD) numerical method in NeuroField by providing 
the electrical equivalent network where all the NeuroField model parameters have analogues 
in electrical elements of the TLM node, thus enabling better understanding of the physical 
implications of discretisation and of the model.   

The numerical approximations of NeuroField damped wave equations developed and solved 
in this thesis by TLM simulations show a great compatibility with FD. In future, the developed, 
TLM based NeuroField model, can be used for building a brain-on-the-chip for in-silico brain 
experimentation, which will greatly help the advancement of neuroscience. 
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1. Introduction 

Brain structure and dynamics have been the focus of a vast number of recent scientific 

studies (Bower & Beeman, 1998; Breakspear, Jirsa, & Deco, 2010; Dayan & Abbott, 2001; 

Deco, Jirsa, Robinson, Breakspear, & Friston, 2008; Friston & Dolan, 2010; Northrop, 

2001). Numerous models have been developed for the purpose to describe the neural 

processes at different scales, starting from the substructures of the individual neurons 

(Brette et al., 2007; Carnevale & Hines, 2006; Dayan & Abbott, 2001; Deco et al., 2008; 

Gerstner & Kistler, 2002; Gewaltig & Diesmann, 2007; Northrop, 2001). Neural network 

models at the microscopic level describe the interconnections between the individual 

neurons with varying degrees of idealisation (Bower & Beeman, 1998; Brette et al., 2007; 

Carnevale & Hines, 2006; Gerstner & Kistler, 2002; Goodman & Brette, 2009; McLaughlin, 

Shapley, Shelley, & Wielaard, 2000; Tapson et al., 2013), whereas the mesoscopic models 

explain how the neural populations interact (Freeman, 2012; Ritter, Schirner, McIntosh, 
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& Jirsa, 2013), for example, in cortical columns. Finally, at the macroscopic scale, the 

neural field models inform us about the whole brain dynamics and the interactions 

between the large-scale neural systems such as the cortical regions, the thalamus, and 

the brain stem (Beurle, 1956; S. Coombes, 2010; Deco et al., 2008; Nunez, 1974). 

In the early days of neuroscience, models had to be kept simpler so that results could 

be obtained analytically. The recent development of high-performance computers has 

allowed researchers to create and visualise more realistic, but also more complex models 

based on numerical simulation methods, avoiding limitations and simplified assumptions 

usually built in analytical solutions (Hoefer, 2012). 

Depending on the model concept used, there are many ways the physical processes 

could be solved numerically (Cogan, O'Connor, & Pulko, 2005). One approach is to replace 

the equations by analogue models and probably the best-known example is the usage of 

electrical network to mimic the physical problem where solution could be obtained using 

conventional circuit analysis techniques in either the time or frequency domains. The 

most elegant electrical equivalent network numerical method is the Transmission-Line 

Matrix method (TLM) (P. B. Johns & Beurle, 1971) that leads to a simple and natural 

numerical discretisation scheme for electromagnetic field problems. The main difference 

between the TLM and other numerical methods, such as, the widely used, Finite 

Difference (FD) (Thom, 1961), is a discretisation approach. To use the FD method, the 

physical problem which is to be solved must have two levels of approximations: first it 

should be modelled by differential or integral equations and then this model is solved by 

numerical methods using purely mathematical discretisation approach (Cogan et al., 

2005). On the other side, the TLM has a physical approach based on Huygens’ principle 
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(Hoefer, 1985), where a continuous system is replaced by a network of transmission lines. 

The major advantage of the TLM over the FD method is that all the required discretisation 

is built-in in the initial model, which is then solved without any further approximation 

avoiding many anomalous effects that can arise in FD (Cogan et al., 2005). That makes 

TLM perfect method for analysing even the most complicated structures, boundaries and 

material properties. When simulating unstable systems, such as brain dynamics, 

numerical stability is particularly important. In TLM there are no problems with 

convergence, stability or spurious solutions and the method is limited only by the amount 

of memory storage required, which depends on the complexity of the TLM mesh (Hoefer, 

1985). However, according to (Sadiku, 2009), the TLM method sometimes may have one 

important disadvantage over FD: programs using finite-difference time-domain (FDTD) 

method, introduced by Yee (Kane, 1966) in solving the electromagnetic (EM) field 

problems can almost be two times faster in CPU time than equivalent TLM programs 

under identical conditions and require less memory.  

As a part of The Australian Research Council (ARC) Centre of Excellence for Integrative 

Brain Function (CIBF), which has been established in 2013 as an Australia-wide team of 

neuroscientists with their primary focuses on understanding how the human brain 

interacts with the world, through a collaboration with Prof. Peter Robinson and his Brain 

Dynamics group at The University of Sydney we gain access to their multiscale neural field 

brain model, called NeuroField (P. Sanz-Leon, 2017; Robinson, Rennie, Rowe, O'Connor, 

& Gordon, 2005). NeuroField models the interactions of spatially extended populations of 

neurons and can predict the spectral and time characteristics of brain electrical activity 

observable by electroencephalography (EEG), magnetoencephalography (MEG), 

functional magnetic resonance imaging (fMRI), electrocorticography (ECoG) and other 
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non-invasive imaging modalities (P. Sanz-Leon, 2017). The governing neural field 

equations in NeuroField are expressed as the Partial Differential Equations (PDE) for the 

inhomogeneous damped wave equations. These equations represent the axonal 

propagation of activity through the cortex and are numerically solved in NeuroField by 

applying the FD method (Robinson, Rennie, & Wright, 1997). 

In this thesis, the feasibility to numerically solve the inhomogeneous damped wave 

PDEs using TLM techniques is explored. The hypothesis tested was whether the usage of 

TLM leads to more understandable and efficient brain modelling and, what the cost in 

computer resources for those benefits is. This approach differs from the currently used 

FD numerical method by providing the electrical equivalent network where all the 

NeuroField model parameters have analogues in electrical elements of TLM node, thus 

enabling better interpretation of the physical implications of discretisation and of the 

model. In order to compare the cost in computer resources of both methods, the main 

algorithm of NeuroField program, along with the FD approximation of the governing wave 

PDEs was translated from C++ into MATLAB. 

The numerical approximations of NeuroField damped wave equations developed and 

solved in this thesis by TLM simulations show a great compatibility with FD method.  Being 

a viable solution, the computational efficiency the TLM method is discussed. In the future, 

developed TLM based NeuroField model can be used for building a brain-on-the-chip for 

in-silico brain experimentation, which will greatly help the advancement of neuroscience. 

The thesis is structured as follows: introduction to computational neuroscience and 

different types of neural models, including the neural field models is presented in Chapter 

2. The in-depth explanation of the NeuroField algorithm is given in Chapter 3. The 
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theoretical background to TLM modelling is given in Chapter 4. In Chapter 5 we present 

the FD approach to numerically solve the hyperbolic PDEs and discuss the differences 

between five- and nine-point stencils used to approximate the Laplacian operator in 2D. 

Section 6.1 of Chapter 6 is the explanation of FD numerical method used to solve the 

governing PDEs in NeuroField. Then the proposed 2D TLM node which can be used to 

solve the PDEs is presented and its parameters are calculated. Within the same Chapter, 

the space and time discretisation, some methods’ constraints and boundary conditions 

used in both numerical methods are discussed. Simulation comparisons and the 

discussion of the results are shown in Chapter 7, followed by the conclusion and 

recommendations for future work in Chapter 8. The MATLAB code for One-population 

NeuroField model using the TLM method is presented in Appendix A, and for the FD 

method in Appendix B. 
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2. Computational Neuroscience 

Theoretical analysis and computational modelling in neuroscience are, according to 

(Dayan & Abbott, 2001), important tools for determining the functioning of nervous 

systems and in-depth understanding why they operate in particular ways. In this Chapter, 

the overview of some of the most important computational neuroscience models is 

presented, ranging from a single neuron models to the large scale neural simulators. 

2.1. Models of neurons 

Computational neuroscience has a long history, starting with the ground-breaking 

conductance-based, mathematical model of Hodgkin and Huxley, back in 1952, for the 

generation of the nerve action potential (Hodgkin & Huxley, 1952a, 1952b, 1952c, 1952d). 

The Hodgkin-Huxley (H-H) model dealt with events at the molecular and ionic levels on 

unit area of a giant squid axon membrane (Northrop, 2001). Unfortunately, the 

computational complexity of H-H like neuron models, such as Wilson-Cowan model (Hugh 
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R. Wilson, 1999; H. R. Wilson & Cowan, 1973), prevents us from using them for the 

simulation of even modestly-sized neural networks of a few hundred neurons because of 

the amount of computer time required. To combat this, while at the same time trying to 

preserve as much of the complex dynamics as possible, a variety of simpler 

phenomenological models has been developed (Eckhorn, Reitboeck, Arndt, & Dicke, 1990; 

Rulkov, Timofeev, & Bazhenov, 2004), which aim at keeping most of the dynamical effects 

produced by voltage-gated channels using the equations that are pushing the models 

further away from the physiological mechanisms (Wells, 2005). 

Models that describe the membrane potential of a neuron by a single variable V are 

called single-compartment models (Dayan & Abbott, 2001). The simplest integrate-and-

fire neuron model, proposed by Lapicque in 1907 (a good overview of the spiking neuron 

models can be found in Chapter 4 of (Gerstner & Kistler, 2002)) and the H-H model fall 

within this category. Although single-compartment models give a good approximation of 

a neuron, the membrane potentials can vary considerably over the surface of the cell 

membrane, especially for neurons with long and narrow processes, or rapidly changing 

membrane potentials. In those cases, the cable theory (Rall, 2011) must be used for the 

mathematical analysis of signal propagation within neurons. The problem is that the cable 

equation can be solved analytically only in relatively simple cases, but when the 

complexity of real membrane conductances are included, the membrane potential must 

be calculated numerically. This is done by splitting the neuron into separate regions or 

compartments, and approximating the continuous membrane potential by a discrete set 

of values representing the potentials with the different compartment. Each compartment 

should be small enough so that there is negligible variation of the membrane potential 

across it. These models are called multi-compartment models (Dayan & Abbott, 2001). 
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In the 1960s, digital computers were not user-friendly as tools for interactive 

modelling, thus early neural modellers like Leon Harmon at Bell Labs developed 

dedicated, compact transistor circuits to emulate spike generation, and various nonlinear 

RC low-pass networks to model the generation of excitatory and inhibitory postsynaptic 

potentials and signal conduction dendrites called neuromimes. Neuromimes offered the 

experimenter two advantages: they ran in real time and they could be easily 

interconnected with patch cords. Also, the modeller could listen to their spike outputs on 

headphones or speaker and detect the subtle changes in phase between two spike 

outputs, frequency changes, bursting, etc. More about the neuromimes can be found in 

the Chapter 3 of (Northrop, 2001). 

2.2. Computational models of the brain 

In a recent Special Issue of NeuroImage (Breakspear et al., 2010) authors tried to 

classify models into relevant categories, but they admitted that it wasn’t an easy task. A 

term “computational model of the brain”, as they say, is usually used for a range of 

computational techniques for the analysis of functional and anatomical neuroimaging 

data, but it also includes biophysical forward models that allow mapping between models 

and experimental data, as well as the models that address activity at smaller scales. 

 The big impact that computational neuroscience has had on neuroimaging over the 

past years is discussed by (Friston & Dolan, 2010) where they draw the distinction 

between models of the brain as a computational machine and computational models of 

neuronal dynamics. Computational machine models focus on optimal control and decision 

(game) theory to illustrate the role of functional models in imaging neuroscience. In terms 

of biophysical modelling, they are investigating dynamic causal modelling, with a special 
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emphasis on recent advances in neural-mass models for hemodynamic and 

electrophysiological time series. The neural field models, which are used for modelling the 

brain at large scales, which is necessary for interpreting EEG, fMRI, MEG and optical 

imaging data, are reviewed by Coombes (S. Coombes, 2010). The conclusion is that neural 

field models provide a good framework for unifying data from different imaging 

modalities. Starting with a description of neural mass models, they spatially extended 

cortical models of layered two-dimensional sheets with long range axonal connections 

mediating synaptic interactions. The models, based on differential, brain wave, equations 

are described and techniques for the analysis of such models, including how to determine 

the onset of spatio-temporal pattern forming instabilities, are reviewed. An overview of 

the open challenges for the development of multi-scale models that can integrate 

macroscopic models at large spatial scales with models at the microscopic scale is 

presented. 

Furthermore, (Deco et al., 2008) have reviewed and integrated, in a unifying 

framework, a variety of computational approaches that have been used to characterize 

the dynamics of the cortex, as evidenced at different levels of measurement (scales). 

Modelling at the single neuron level is necessary because this is the level at which 

information is exchanged between the computing elements of the brain; the neurons. The 

mesoscopic models explain how the neural populations interact in cortical columns, while 

the macroscopic models can inform us about whole brain dynamics and interactions 

between large-scale neural systems such as the cortical regions, the thalamus, and the 

brain stem. Each level of description relates uniquely to neuroscience data, from single-

unit recordings, through local field potentials to fMRI, EEG, and MEG (Deco et al., 2008). 
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2.2.1. Spiking neuron models 

One of the current brain models is “Spaun” (Semantic Pointer Architecture Unified 

Network), a large-scale spiking neural network model of the functioning brain (Eliasmith 

et al., 2012; Terrence C. Stewart, Bekolay, & Eliasmith, 2012; T. C. Stewart & Eliasmith, 

2014; Tapson et al., 2013), which consists of  2.5-million-neurons that bridges the gap 

between neural activity and biological function by exhibiting many different behaviours. 

The model is presented only with visual image sequences, and it draws all its responses 

with a physically modelled arm. Although simplified, the model captures many aspects of 

neuroanatomy, neurophysiology, and psychological behaviour, which are demonstrated 

via diverse tasks. The network implementing the “Spaun” model consists of three 

hierarchies (visual system, motor and the working memory), an action-selection 

mechanism, and five subsystems. Components of the model communicate using spiking 

neurons that implement neural representations that is called “semantic pointers,” using 

various firing patterns. The number of cells in the visual hierarchy gradually decreases 

from the primary visual cortex (V1) to the inferior temporal cortex (IT), meaning that the 

information has been compressed from a higher dimensional (image-based) space into a 

lower dimensional (feature) space. However, the “Spaun” has many limitations that 

distinguish it from developed brains. For one, “Spaun” is not as adaptive as a real brain, 

as the model is unable to learn completely new tasks. In addition, both attention and eye 

position of the model is fixed, making “Spaun” unable to control its own input. 

Anatomically, many areas of the brain are missing from the model. Those that are included 

have too few neurons and perform only a subset of functions found in their respective 

areas. Physiologically, the variability of spiking in the model is not always reflective of the 

variability observed in real brains. However, as available computational power increases, 
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many of these limitations can be overcome via the same methods as those used to 

construct “Spaun”.  

More about spiking neuron models can be found in (Dayan & Abbott, 2001; Gerstner 

& Kistler, 2002). 

2.2.2. Neuronal network models 

Neuronal network model with circuitry that is based on the anatomy has been built 

for macaque primary visual cortex (McLaughlin et al., 2000) with 4 orientation 

hypercolumns. Also, a comparison of models of orientation and ocular dominance 

columns in the visual cortex was given by (Erwin, Obermayer, & Schulten, 1995). But 

Bednar argues in (Bednar, 2012) that the approaches researchers have used to help 

understand mammalian visual systems tend to have quite different assumptions, 

strengths, and weaknesses. Computational models of the visual cortex have typically 

implemented either a proposed circuit for part of the visual cortex of the adult, assuming 

a very specific wiring pattern based on findings from adults, or else attempted to explain 

the long-term development of a visual cortex region from an initially undifferentiated 

starting point. He adds that previous models of adult V1 have been able to account for 

many of the measured properties of V1 neurons, while not explaining how these 

properties arise or why neurons have those properties. Moreover, previous 

developmental models have been able to reproduce the overall organization of specific 

feature maps in V1, such as orientation maps, but are generally formulated at an abstract 

level that does not allow testing with real images or analysis of detailed neural properties 

relevant for visual function. Thus, Bednar shows in this review how these models could 

represent a single, consistent explanation for a wide body of experimental evidence, and 
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form a compact hypothesis for much of the development and behaviour of neurons in the 

visual cortex. The models proposed are the first developmental models with wiring 

consistent with V1, the first to have realistic behaviour with respect to visual contrast, and 

the first to include all the demonstrated visual feature dimensions.  

2.2.3. Neural mass models and neural field models 

Models of the cortex can establish which types of large-scale neuronal networks can 

perform computations and characterize their emergent properties (Deco et al., 2008). 

Neural mass models (Stephen Coombes & Byrne, 2016; David & Friston, 2003; Moran et 

al., 2007; Pinotsis, Robinson, beim Graben, & Friston, 2014; Schellenberger Costa et al., 

2016) are used for studying the temporal dynamics of whole brain dynamics and may 

explain how the neuronal activity unfolds on the spatially continuous cortical sheet (Deco 

et al., 2008). They can model the coarse-grained activity of large populations of neurons 

and synapses and have proven especially useful in understanding brain rhythms (Stephen 

Coombes & Byrne, 2016). In neural mass models, the properties of a large population of 

spiking neurons are averaged into a single population, and it is assumed that all neurons 

in a population are located at the same point (Pinotsis et al., 2014). 

Neural field models fall under the same category as the neural mass models and are 

called mean field models of neural activity; but compared to neural mass models, which 

characterise activity over time only, neural field models retain spatial information 

(Pinotsis et al., 2014). This means that neuronal activity depends on its current state as 

well as spatial gradients, which allow its spread horizontally across the cortical surface.  

Some of the neural field models for modelling the brain at the large scales were 

developed by Nunez (Nunez, 1974; Nunez & Srinivasan, 2006). Nunez solved this model 
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analytically for a 1D loop cortex, and for two-dimensional cortex with periodic and with 

spheroidal boundary conditions ignoring the more complicated convoluted form of the 

real cortex, and the inhomogeneity of cortical connections, interpreting observed cortical 

wave frequencies in terms of discrete Eigen frequencies with the alpha rhythm being at 

the fundamental cortical Eigen frequency (Robinson et al., 1997). Wright and Liley (Wright 

& Liley, 1995, 1996) introduced a spatially discretised model in which the cortex is treated 

as 2D and divided into patches, each of which is parametrised by the mean densities of 

excitatory and inhibitory neurons, their mean firing rates, and their mean densities of 

interconnections. Nonlinear effects and axonal and dendritic delays were all included, 

with a Green-function formulation describing the interconnections between patches as a 

function of their spatial and temporal separation. This model incorporated all relevant 

effects mentioned above, except convolutions and nonuniformities in cortical 

connectivity, while allowing for the imposition of a variety of boundary conditions. 

Moreover, its parameters were largely physiologically measurable, a significant advantage 

when comparing its predictions with measurements. However, simulations based on it 

have been limited to very small systems, or very coarse resolution in larger systems, due 

to its formulation in terms of Green functions, which are very slow to evaluate, and a 

numerically intensive treatment of dendritic lags (Robinson et al., 1997). Robinson 

(Robinson et al., 1997) introduced a model of cortical electrical activity which includes 

nonlinearities, axonal and dendritic time lags, variable geometries and boundary 

conditions in 2D, and which permits analytic studies of wave properties and stability, while 

speeding computation to the point that whole-cortex simulations are possible with good 

resolution. This lead to a series of papers using the Robinson’s “NeuroField” model 

predicting steady states, stability, waves, spectra, coherence, correlations, EEG, ERP, SSEP, 
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ECoG, fMRI, Seizures, Parkinson’s, Arousal Dynamics (normal, abnormal, jetlag, drugs), 

vision, neural plasticity, connection matrices (Abeysuriya, Rennie, & Robinson, 2014; 

Abeysuriya, Rennie, Robinson, & Kim, 2014; Kerr, Rennie, & Robinson, 2011; Rennie, 

Robinson, & Wright, 2002; Roberts & Robinson, 2012; Robinson, 2014; Robinson & Kim, 

2012; Robinson, Rennie, Rowe, & O'Connor, 2004a; Robinson et al., 2005; Robinson et al., 

2001; Robinson, Sarkar, Pandejee, & Henderson, 2014; van Albada, Gray, Drysdale, & 

Robinson, 2009; van Albada, Kerr, Chiang, Rennie, & Robinson, 2010; van Albada & 

Robinson, 2009; Wu & Robinson, 2007; Yamaguchi, Ogawa, Nakao, Jimbo, & Kotani, 

2014). 

2.2.4. Composite neural models 

One composite, network/field neural model (Kerr et al., 2013) was created for the 

purpose of exploring how the basal ganglia influences cortical information flow and how 

that influence becomes pathological in Parkinson’s disease (PD). The basal ganglia plays a 

crucial role in the execution of movements, as demonstrated by the severe motor deficits 

that accompany PD. The network model consisted of 4950 spiking neurons, divided into 

15 excitatory and inhibitory cell populations in the thalamus and cortex. The field model 

consisted of the cortex, thalamus, striatum, subthalamic nucleus, and globus pallidus. 

Compared to the network driven by the healthy model, the PD-driven network had lower 

firing rates, a shift in spectral power toward lower frequencies, and higher probability of 

bursting, which was consistent with empirical data on PD. 

2.2.5. Neural simulators 

Neural simulators provide tools for conveniently building, managing, and using models 

in a way that is numerically sound and computationally efficient. These simulators 
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implement computationally efficient algorithms and are widely used for large-scale 

modelling and complex biophysical models. They tend to be well-suited to problems that 

are closely linked to experimental data, especially those that involve cells with complex 

anatomical and biophysical properties. The main goal of the neural simulators is to 

minimise the development time for a neural model, and, in particular, the time spent 

writing code, so that scientists can spend their time on the details of their model rather 

than the details of its implementation. 

Several successful neural simulators are used today (Brette et al., 2007), such as 

Neuron (Carnevale & Hines, 2006) and Genesis (Bower & Beeman, 1998) for 

compartmental modelling, and NEST (Gewaltig & Diesmann, 2007) and Brian (Goodman 

& Brette, 2009) for large scale network modelling. A review of network simulators is given 

by (Brette et al., 2007) and the up-to-date comparison of neural network simulators is 

given by (Mingus, 2014). 

2.3. Conclusion 

In this Chapter, the overview of some of the most important computational 

neuroscience models was presented, ranging from a single neuron models to the large 

scale neural simulators. The neural field models, which are the focus of this thesis, are 

used for modelling the brain at large scales. They provide a good framework for unifying 

data from different imaging modalities (EEG, fMRI, MEG, optical imaging data) and fall 

under the same category as the neural mass models; but compared to neural mass 

models, which characterise activity over time only, neural field models retain spatial 

information, which allow its spread horizontally across the cortical surface.  
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3. “NeuroField” Program 

Prof. Peter Robinson and his Brain Dynamics group at The University of Sydney have 

developed a multiscale neural field brain model, called NeuroField (P. Sanz-Leon, 2017; 

Robinson et al., 1997). NeuroField models the interactions of spatially extended 

populations of neurons and can predict the spectral and time characteristics of brain 

electrical activity observable by EEG, MEG, fMRI, ECoG and other non-invasive imaging 

modalities (P. Sanz-Leon, 2017). It models brain activity by averaging firing rates, soma 

voltages and incoming activities over many neurons and is capable of modelling both the 

large numbers of neurons, as well the fine structures in the brain and its activities (P. Sanz-

Leon, 2017). 

In this Chapter, the algorithm of NeuroField, implemented as a C++ program that 

solves the neural field model of (Rennie et al., 2002; Robinson et al., 2005; Robinson et 

al., 1997), and the main macroscopic variables are explained. 
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3.1. NeuroField algorithm 

In modelling a brain system, the neuronal populations and the connections between 

them should be specified first. The macroscopic variables that describe the activity of each 

neural population a  and its interaction with other populations b  are the mean soma 

potential ( ),aV r t


, the mean firing rate ( ),aQ r t


, and the propagating axonal spike-rate 

field ( ),ab r tϕ


 that arrives at population a   from population b (P. Sanz-Leon, 2017). The 

main dynamic process of a generic neural field model with three populations can be seen 

in Figure 3.1. Geometrically, the cortical sheet is represented by a 2D grid. Each square 

element of this grid represents a node with a certain extent x∆ . On this grid, a given 

position, defined with the position vector r


 in the 2D Cartesian coordinate system, is 

assumed to be the actual position in the neuronal population 1. The second population is 

linked to the first population via a primary topographic one-to-one map. The same value 

of r


 is assigned to such points.  

The axonal spike-rate field, ( )23 ,r tϕ


, from the stimulation population 3, ( )3 ,Q r t


 

propagates to the thalamic population 2, ( )2 ,Q r t


. It is weighted by the synaptic coupling 

strength 23υ   

 23 23 23P υ ϕ=   (3.1) 

These weighted inputs are then temporally summed via convolution with a dendritic 

response function and evoke postsynaptic potentials and produce the soma potential 2V : 
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( ) ( ) ( )

( )

23 23 23 23 23

2

23 2
23 23 23 23

, ,

1 1 1 1

D t V r t r t

d dD t
dt dt

υ ϕ τ

α β α β

= −

 
= + + + 

 

 

  (3.2) 

In these equations, 231 β  and 231 α   are the rise and the fall time-constants, 

respectively, of the response at the cell body, and 23τ  is the long-range time delay 

between populations (for example between thalamus and the cortex) (Robinson et al., 

2005).  

Action potentials are generated at the axonal hillock when the soma voltage exceeds 

a threshold θ  and the firing rate ( )2 ,Q r t


 of the population is obtained via the nonlinear 

sigmoidal activation function: 

 ( ) ( ) ( ) ( )
( )

max
2 2

2 2

2

, ,
, ,

1 exp
,

QQ r t S V r t
V r t r t

r t

θ

σ

 = =   −
 + −
 ′ 

 

 



  (3.3) 

where maxQ  is the maximum attainable firing rate, 2θ  is the mean firing threshold, and 

2 2 3σ σ π′=  is the standard deviation of the threshold distribution in the neural 

population. ( )2 ,V r t


 can be calculated as a sum of all the contributions from the potentials 

coming from other populations b   at a particular location a  . In this example  

( ) ( )2 23, ,V r t V r t=
 

 , but the general formula is:  

 ( ) ( ), ,a ab
b

V r t V r t=∑
 

  (3.4) 
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Lastly the transformation of ( )2 ,Q r t


 into ( )12 ,r tϕ


 embodies the spatiotemporal 

propagation of pulses generated in Population 2 to other locations (like cortical 

Population 1) through the axon fibres: 

 
( ) ( ) ( ) ( )
( )

12 12 2 2

2
2 2

12 122 2
12 12

, , , ,

1 2, 1

r t r t Q r t S V r t

r t r
t t

ϕ

γ γ

 = =  
∂ ∂

= + + − ∇
∂ ∂

   



D

D
  (3.5) 

where 12r  is the mean range of axons between populations 2 and 1, 12 12 12v rγ =   is the 

temporal damping rate of pulses in axons governing the dispersion of propagating waves, 

the speed of propagation of the field ( )12 ,r tϕ


 is 12v  and 2∇  is the Laplacian operator (P. 

Sanz-Leon, 2017). 

 The axonal spike-rate ( )12 ,r tϕ


 will then propagate to cortical population 1. 

 
Figure 3.1 Diagram of the dynamical processes that occur within and between neural populations in 

NeuroField program 
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The biophysical processes described above make the main algorithm of NeuroField 

and each process is handled by one of the main classes in NeuroField program (P. Sanz-

Leon, 2017): 

 ab ab bQϕ =D   Propagator 

 ab ab abP υ ϕ=   Couple 

 ab ab abD V P=   Dendrite 

 a a ab
b

Q S V =   
∑   QResponse 

Propagator computes and determines the form of the axonal propagation of the 

presynaptic neural population Eq. (3.5). The connections between two populations are 

represented by an object of the class Couple, Eq. (3.1). The dendritic response of the 

postsynaptic population Eq. (3.2) is handled by Dendrite. Finally, each neural population 

is associated with QResponse which produces the soma response Eq. (3.3) (P. Sanz-Leon, 

2017). 

The more, in detailed explanation of the NeuroField algorithm can be found in (P. 

Sanz-Leon, 2017). Some of the models solved by NeuroField, along with many of their 

applications are described in more details in (Abeysuriya, Rennie, & Robinson, 2014; 

Abeysuriya, Rennie, Robinson, et al., 2014; Kerr et al., 2011; Rennie et al., 2002; Robinson 

et al., 2004a; Robinson et al., 2001; van Albada et al., 2010). 

3.2. Conclusion 

In this Chapter, the algorithm of NeuroField program, which solves the multiscale 

neural field brain model of (Rennie et al., 2002; Robinson et al., 2005; Robinson et al., 

1997), was explained on a generic neural field model with three populations. The 
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macroscopic variables that describe the activity of each neural population and its 

interaction with other populations were defined. Finally, the main classes in NeuroField 

program, which are handling the biophysical processes that occur in this model, were 

presented. 
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4. Transmission-line matrix method 

The introduction to Transmission-Line Matrix (TLM) method, with a literature review 

is presented in this Chapter. We also discuss the advantages of TLM to finite difference 

(FD) method and the possibility to use TLM to model neural activity. The last Section 

describes the basic algorithm for simulating the propagation of fields using TLM method. 

4.1. TLM literature review 

The Transmission-Line Matrix (TLM) method (or Transmission-Line Modelling method, 

as it is sometimes called) is one of the best-known examples of analogue models used to 

numerically solve the equations modelling a physical phenomenon. In TLM, an electrical 

network is used to mimic the physical problem where solution can be obtained using 

conventional circuit analysis techniques in either time or frequency domains. As a network 

model of Maxwell’s equations formulated in terms of the scattering of impulses, it 



23 
 

 
 

possesses exceptional versatility, numerical stability, robustness and isotropic wave 

properties (Russer, 2000). 

TLM was developed and first published in 1971 by Johns and Beurle (P. B. Johns & 

Beurle, 1971) as a physical approach based on Huygens’ principle (Huygens, 1690). In TLM, 

a continuous system is replaced by a network of transmission lines and the space is 

discretised by a subdivision into cells. The electromagnetic field is modelled by wave 

pulses propagating between adjacent cells and scattered within the cells. In TLM the 

discretised field state is represented by a state vector summarizing the states of all TLM 

cells. One single computation of a pulse response produces a large amount of information. 

The frequency characteristics may be evaluated over the entire frequency range of 

interest by Fourier transform of the transient time–domain results. The versatility of the 

TLM method allows straightforward calculation of complicated structures, boundaries 

and material properties. There are no problems with convergence, stability or spurious 

solutions1 in TLM and the method is limited only by the amount of memory storage 

required, which depends on the complexity of the TLM mesh (Sadiku, 2009). In general, 

the smallest feature in the structure should contain at least three nodes for good 

resolution (Hoefer, 1985).  

TLM is mostly used in computational electromagnetics but its flexibility and the 

simplicity of formulation and programming also extend it to other fields of research where 

the wave equations need to be solved numerically. Some of the examples are: 

                                                            
1 Although, accuracy decreses for high frequencies. 
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• 2D scattering problems in rectangular waveguides (field distribution of 

propagating and evanescent modes, wave impedance, scattering parameters 

of discontinuities) (P. B. Johns & Beurle, 1971); 

• 2D eigenvalue problems (Sina Akhtarzad, 1975; P. B. Johns, 1972; Yi-Chi & 

Hoefer, 1980); 

• 3D eigenvalue and hybrid field problems (dispersion characteristics of planar 

transmission lines, wave impedances, losses, Eigen frequencies, mode fields, 

Q factors of resonators, modelling of discontinuities) (S. Akhtarzad & Johns, 

1975); 

• Lumped network analysis (P. B. Johns & Brien, 1980); 

• Diffusion problems (Amri, Saidane, & Pulko, 2011; Cogan et al., 2005; Desai et 

al., 1992); 

• Acoustic propagation (Portí & Morente, 2001); 

• Modelling of semiconductor lasers (Lowery, 1989); 

• Induced currents in biological bodies exposed to EM fields (Deford & Gandhi, 

1985); 

• Ultrasound non-destructive testing of materials (Ciocan & Ida, 2003); 

• Fast simulation of fluid flow dynamics (Velut & Tummescheit, 2011); 

• Modelling of various mechanical processes (Cogan et al., 2005). 

A field theoretical derivation of TLM was presented in (Krumpholz & Russer, 1994) 

with 3D TLM method with condensed symmetric node directly derived from Maxwell’s 

equations using Method of Moments. The main difference between TLM and other 

numerical methods, such as, the widely used, Finite Difference (FD) (Thom, 1961), is its 
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discretisation approach. To use the FD method, the physical problem that should be 

solved must have two levels of approximation: first it should be modelled by differential 

or integral equation and then this model is solved by numerical method using purely 

mathematical discretisation approach, while the TLM has a physical approach as 

mentioned above. The major advantage of the TLM over the FD method is that all the 

required discretisation is built into the initial model, which is then solved without any 

further approximation avoiding many anomalous effects that can arise in FD (Cogan et al., 

2005). A field theoretical comparison of the Finite-difference finite-time (FDTD)2,  and the 

3D TLM methods was conducted by (Krumpholz, Huber, & Russer, 1995). They concluded 

that the 3D TLM exhibits some disadvantages in comparison to the FDTD from field 

theoretical point of view, mainly in the number of parameters needed for the TLM 

simulation, which some of them are nonphysical. Although the TLM is a very flexible 

analysis strategy similar to the FDTD in capabilities, more codes tend to be available with 

the FDTD method because, according to (Sadiku, 2009), the FDTD has a simpler algorithm, 

it can almost be two times faster in CPU time than equivalent TLM programs under 

identical conditions and requires less memory. However, according to Johns (P. B. Johns, 

1987), the two methods complement each other rather than compete with each other. 

Hoefer in (Hoefer, 2012) gives a historical overview of development of TLM and FDTD in 

parallel. The various sources of error and the limitations of the TLM method are given, 

and methods for error correction or reduction, as well as improvements of numerical 

efficiency, are discussed in (Hoefer, 1985). 

                                                            
2 Finite-difference finite-time (FDTD) method was introduced by Yee (Kane, 1966). It uses 
the FD method in solving the electromagnetic (EM) field problems. 
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An universal 3D TLM FORTRAN computer program was written by (Sina Akhtarzad, 

1975) and the ease of application, versatility and accuracy of the TLM method is 

demonstrated by analysing a wide variety of microwave resonators. The surface mode 

phenomenon of microstrip is also investigated in this reference. 

One popular commercial software package exists for solving TLM. It is called The TLM 

solver of CST MICROWAVE STUDIO® (CST MWS), and it is based on the 3D time-domain 

TLM method (Cst.com, 2015). 

4.2. Analogy of TLM method and neurological activity 

The TLM method can be applied to problems in other areas, such as thermodynamics, 

optics, and acoustic wave motion.  Aside from the area of physics, however, there is a 

branch in the biological sciences to which the TLM method appears to have a natural 

affinity. The possible application is in neuroscience, specifically, in modelling the brain 

functions as speculated by Nunez in (Nunez & Srinivasan, 2006), where he talks about EEG 

dynamic behaviour that is similar to the transmission line theory. Weiner in (M. Weiner, 

2010) speculates how the TLM method may be used as a framework to describe 

neurological activity of the brain, since it relies on a vast array of nerve fibres and 

synapses, analogous to the transmission lines and nodes of the TLM matrix. 

As Weiner says (Maurice Weiner, 2010), in the area of nerve cells, the nerve fibres and 

synapses appear to play a role similar to transmission lines and nodal scatterers in the 

TLM model. Nerve impulses are conveyed along the fibres. The synapses exist at the 

juncture of two or more fibres and they serve to control the flow of the impulses from 

one fibre to another. The nature of the impulse propagation along the fibres is discussed 

in (Nunez & Srinivasan, 2006; Ray & Roy, 2010). Needless to say, the nerve fibres do not 
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form neat geometrical shapes, such as cubes or hexagons, as we assume in TLM analysis. 

The actual fibres appear as a tangled array with irregular shapes and with varying fibre 

lengths. Despite these differences, the same type of analysis may be applied to nerve 

impulses, taking into account the random nature of the fibre shape and length. In some 

ways the irregularity of the fibres is an advantage since it removes the anisotropy 

associated with the symmetry elements, where the energy is constrained to flow in only 

certain directions. With an irregular cell matrix, we are not bound to a preferred direction 

(Maurice Weiner, 2010). TLM has been used to model the propagation of action potentials 

along the axon in myelinated nerve in (Villapecellin-Cid, Rao, & Reina-Tosina, 2003; 

Villapecellin-Cid, Roa, & Reina-Tosina, 2001, 2002). 

In case of using TLM as a brain model, one must obtain predictions of TLM model and 

compare these with experimental observations. To our knowledge, the use of TLM 

method to model neural fields has never been done. 

4.3. TLM algorithm 

The TLM algorithm consists of the propagation of the wave amplitudes from the mesh 

nodes to the neighbouring nodes and the scattering of the wave amplitudes in the mesh 

nodes. The propagation and the scattering of the wave amplitudes may be expressed by 

operator equations. 

The two-dimensional TLM method is suitable for the analysis of electromagnetic fields 

with the electric field components oriented normal and the magnetic field parallel to a 

certain plane of reference (Transverse Electric (TE) case), or - vice versa - the magnetic 

field components oriented normal and the electric field parallel to the plane of reference 

(Transverse Magnetic (TM) case). Figure 4.1.A shows a TE arrangement with two parallel 
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conducting plates. This arrangement may be modelled by a two-dimensional mesh of lines 

as depicted in Figure 4.1.B. 

 
Figure 4.1 – TE arrangement with two parallel conducting plates. A) Parallel plates; B) 2D mesh. Taken from 

(Russer, 2000) 

The two-dimensional mesh of lines may be modelled by interconnected four ports 

shown in Figure 4.2 (Russer, 2000). The lossless 2D TLM cell with lumped elements is shown 

in Figure 4.3.  

 
Figure 4.2 – 2D TLM shunt cell (Russer, 2000) 

 
Figure 4.3 – Lossless TLM cell represented by lumped elements (Sadiku, 2009) 
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If a voltage pulse of amplitude 1𝑉𝑉 is incident on the central node (Figure 4.4), this pulse 

will be partially reflected and transmitted according to the transmission-line theory. If we 

assume that each line has a characteristic impedance 0 2
d

d

LZ
C

= (Figure 4.5), then the 

incident pulse sees effectively three transmission lines in parallel, with a combined 

impedance of 0 3Z . The reflection coefficient and the transmission coefficient are given 

by: 

 
( )

0 0

0 0

0

0 0

3 1
3 2

2 3 1
3 2

Z ZR
Z Z

Z
T

Z Z

−
= = −

+

= = +
+

  (4.1) 

 
Figure 4.4 – An incident voltage pulse and scattering at the node 

If we assume that in general formulation there are pulses incident from all four 

directions, we can calculate the nodal voltage ( ),k nV x y : 

 ( ) ( )1 2 3 4,
2

i i i i
k k k k

k n

V V V V
V x y

+ + +
=   (4.2) 

where k t t= ∆  is the iteration number. Superscript i  in i
k jV  denotes the incident pulse 

coming from a port denoted with the subscript j ( Figure 4.5). 

The pulse, which is scattered back to port 2, for example, is: 

 1 2 2
r i

k k n kV V V+ = −   (4.3) 
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which is the same as the sum of reflected and transmitted pulses from all other arms. The 

entire scattering process of a lossless TLM node can be given in matrix form by: 

 

1 1

2 2

3 3

4 41

r i

r i

r i

r i
k k

V V
V V

S
V V
V V

+

   
   
   = ⋅   
      
   

  (4.4) 

where S  is the scattering matrix: 

 

1 1 1 1
1 1 1 11
1 1 1 12
1 1 1 1

S

− 
 − =
 −
 

− 

  (4.5) 

 
Figure 4.5 – Lumped equivalent circuit for a 2D lossless TLM cell (Cogan et al., 2005) 

 

Furthermore, each impulse travels the discretisation distance x∆  during the 

discretisation time t∆  automatically becoming an incident impulse on the neighbouring 

node (Cogan et al., 2005). The connections to other nodes as seen at node ( ),x y  can be 

expressed in terms of space and time-step, 1k +  as: 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1 1 3

1 2 1 4

1 3 1 1

1 4 1 2

, , 1

, 1,

, , 1

, 1,

i r
k k

i r
k k

i r
k k

i r
k k

V x y V x y

V x y V x y

V x y V x y

V x y V x y

+ +

+ +

+ +

+ +

= −

= −

= +

= +   (4.6) 

The repeated iteration of processes of scattering (Eq. (4.4)), connection (Eq. (4.6)) and 

summation (Eq. (4.2)) for every time step forms the basic algorithm of the TLM method 

for a 2D TLM network (Cogan et al., 2005). 

The impulse response of the network is then found by initially fixing the magnitudes, 

directions and positions of all impulses at 𝑡𝑡 = 0 and then calculating the state of the 

network at successive time intervals. Three consecutive scatterings are shown in Figure 

4.6, visualizing the spreading of the injected voltage across the 2D network. 

 
Figure 4.6 – Heatmap of three consecutive scatterings in 2D TLM network created in MATLAB. Left image - the 
initial impulse; middle - first iteration; right - second iteration. White – positive values, Orange – zero, Black – 

negative values. 

4.4. Conclusion 

The introduction to TLM method, with a literature review was presented in this 

Chapter. The advantages of TLM to FD method and the possibility to use TLM to model 

neural activity were discussed in Section 4.2. In Section 4.3 the lossless 2D TLM cell with 

lumped elements was introduced. Furthermore, the equations for basic algorithm of the 

TLM method, which consists of three main processes (incident, scattering, connection) for 

every time step, for a 2D TLM network, were presented.  
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5. Numerical solution of hyperbolic equations 

In Chapter 3 was mentioned that NeuroField is coded in the C++ programming 

language. For testing the feasibility to numerically solve the governing inhomogeneous 

damped wave PDEs, used in NeuroField program, using TLM techniques, main algorithm 

of NeuroField, with its FD method of numerical approximations of governing wave 

equations, had to be reprogramed into MATLAB (Appendix B). Furthermore, the “old” 

version of NeuroField program (Robinson et al., 2005) used the so called nine-point stencil 

in FD method which was not compatible with TLM method because of the extra diagonal 

terms. 

In this Chapter, the possibility of using the five-point stencil to numerically solve the 

undamped and damped wave PDEs, instead of the nine-point stencil is explored.  
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5.1. Analytical solution of the 1D undamped wave equation 

The equation used in NeuroField to represent the axonal propagation of activity 

through the cortex is inhomogeneous (or forced) damped wave equation (Robinson et al., 

1997), but in order to find the numerical solution to that equation, first the analytical 

solution to 1D undamped wave equation PDE is presented.  

The 1D undamped wave equation for a lossless plucked string (Cogan et al., 2005): 

 
2 2

2 2
2 2 ,  u u T

t x
β β

ρ
∂ ∂

= =
∂ ∂

  (5.1) 

where ( ),u x t  denotes the vertical displacement of the string at position x  at time 0t > , 

T  denotes the tension of the string in 2kg m s⋅ and ρ  is the mass per unit length of the 

segment of the string in kg m ; thus the constant 2β  has the units 2 2m s , which means 

that β  can be thought of as a velocity with which a small transverse disturbance moves 

along the string. 

If Eq. (5.1) is rearranged as 
2 2

2
2 2 0u u

t x
β∂ ∂

− =
∂ ∂

, it can be seen that it is a hyperbolic 

equation, since 1,  ,  0TA C B
ρ

= = − =  and therefore 2 4 4 0TB AC
ρ

− = > . 

The initial conditions for this problem are in the form of an initial position function 

( ) ( ),0u x f x=  and an initial velocity function ( ) ( ),0u x g x
t

∂
=

∂
. 

Boundary conditions: we will assume that the two ends of the string are fixed for every 

t ; that is, ( ) ( )0, , 0u t u L t= =  for all 0t > . 
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The analytical solution for this wave equation can be found using the method called 

Separation of Variables (Olsen-Kettle, 2011). 

If we let ( ) ( ) ( ),u x t X x T t=  and substitute that into the Eq. (5.1) we get: 

 2XT X Tβ′′ ′′=   (5.2) 

where ‘ denotes differentiation in respect to time for T  and differentiation in respect to 

displacement for X . Dividing Eq. (5.2) by 2 XTβ  yields: 

 
2

2 2 2
XT X T T X

XT XT T X
β λ

β β β
′′ ′′ ′′ ′′
= ⇒ = = −   (5.3) 

This results in the two ordinary differential equations: 

 2

0
0

X X
T T

λ

λβ

′′ + =

′′ + =
  (5.4) 

Once those two ordinary differential equations are solved using boundary conditions, 

we can get the general solution of the 1D undamped wave equation in the form: 

 ( ) ( ) ( )
1 1

, sin cos sinn n n n n
n n

n x n nu x t C X x T t A t B t
L L L
π πβ πβ∞ ∞

= =

      = = +            
∑ ∑   (5.5) 

If we want to find the complete solution of the 1D wave equation with zero boundary 

conditions, then using first initial condition we can determine the constants nA . Once we 

find them, we can use the second initial condition to find nB . 
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5.2. Analytical solution of the 1D damped wave equation 

Consider the equation: 

 
2 2

2
2 22  u u uc

t t x
β∂ ∂ ∂

+ =
∂ ∂ ∂

  (5.6) 

where c  is a small positive constant. The term 2 uc
t

∂
∂

 represents a damping force 

proportional to the velocity u
t

∂
∂

.  

Using the separation of variables method to solve Eq. (5.6) (Arfken, Weber, & Harris, 

2013) we have: 

 
2

2 2 2
2 2XT cXT X T T cT X
XT XT T X

β λ
β β β
′′ ′′ ′′ ′′ ′′ ′′+ +

= ⇒ = = −   (5.7) 

Again, this can be separated into two ordinary differential equations: 

 2

0
2 0

X X
T cT T

λ

λβ

′′ + =

′′ ′+ + =
  (5.8) 

In order to solve Eq. (5.8) we will assume that the length of the string is L π= , the 

constant 2 1β = , and 1c < . The solution of the 1D damped wave equation is then: 

 ( ) ( ) ( ) ( )2 2 2 2

1

, sin cos sinct
n n

n

u x t nx e A n c t B n c t
∞

−

=

 = − + −  ∑   (5.9) 

5.3. Numerical solution of plucked string equation – 1D undamped wave equation 

In Finite Difference (FD) approximation, the derivatives in the PDEs are approximate 

by linear combination of function values at the grid points. 
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For 1D case, we can replace the temporal 
2

2
u

t
∂
∂

 and spatial 
2

2
u

x
∂
∂

 derivatives with the 

finite central difference approximation on a discretised domain (Figure 5.1): 

 ,  
1

,  0
,  0 1

k

j

T Lt x
m n

t k t k m
x j x j n

∆ = ∆ =
+

= ⋅∆ ≤ ≤
= ⋅∆ ≤ ≤ +

  (5.10) 

where t∆  is the time step, T  is the total time of the simulation, m  is the number of time 

steps, x∆  is the mesh size, L  is the length of the string and 1n +  is the number of 

segments in which the string is divided into. kt  is the time at time step k , and jx  a grid 

point at position j . 

 
Figure 5.1 – Discretisation of string, length 𝐿𝐿, for numerical solution of 1D wave equation. 𝑥𝑥𝑗𝑗 are grid points and ∆𝑥𝑥 is the 

mesh size. 

The finite central difference approximations (Olsen-Kettle, 2011) are: 

 

1 12

2 2

2
1 1

2 2

2

2

k k k
j j j

k k k
j j j

u u uu
t t

u u uu
x x

+ −

+ −

− +∂
=

∂ ∆
− +∂

=
∂ ∆

  (5.11) 

where k
ju  denotes the value of u  at time point k  and grid point j . 
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The 1D undamped wave equation is then: 

 
1 1

1 12
2 2

2 2k k k k k k
j j j j j ju u u u u u

t x
β

+ −
+ −− + − +

=
∆ ∆

⋅   (5.12) 

The equation to find ju  for the next time step 1k +  is given by: 

 ( ) ( )1 1
1 12 1k k k k k

j j j j ju u s u s u u+ −
+ −= − + − + +   (5.13) 

where 
2 2

2  ts
x

β ∆
=

∆
 . 

The solution for the first step, 1u  can be found in a matrix form from the Eq. (5.13). If 

we let the number of segments, in which the string from Figure 5.1 is divided into, to be 

four, 1 4n + =   , there will only be three interior points and 1u   can be expressed in a 

matrix form as: 

 
( )

( )
( )

1 0 0 1
1 1 0 1

1 1 0 1
2 2 2
1 0 0 1
3 3 4 3

2 1 0
2 1 0

0 2 1

u s s u u u
u u s s s u s u

u s s u u u

A b

−

−

−

       − 
        = = − ⋅ + ⋅ −        
        −        








  (5.14) 

where A  is the block tridiagonal coefficient matrix and b


 is the vector of boundary 

conditions multiplied by the coefficient s  . Using the boundary conditions ( ) 00, ku t u=  

and ( ) 4, ku L t u=  and the initial conditions 0
j ju f=  and ( )1 1 2j j ju u t g x− = − ∆ ⋅  we can find 

the solution for 1u   for this case as: 

 
( )

( )
( )

1 0
1 1 0 1

1 1
2 2 2
1 0
3 3 4 3

2 1 0
1 12 1 0
2 2

0 2 1

u s s f u g
u u s s s f s t g

u s s f u g

d

   −     
        = = − ⋅ + ⋅ ⋅ + ∆ ⋅        
        −        






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Or: 

 1 01 1
2 2

u A u b d= ⋅ + +
 

    (5.15) 

where d


 is the vector of the initial conditions. 

The general 2nd order iterative scheme for all other steps is then: 

 1 1k k ku A u b u+ −= ⋅ + −


  

  (5.16) 

Finally, we assumed that that the two ends of the string are fixed, thus the boundary 

conditions are: 

 

( )
( )

0

4

0,

,

0

0

k

k

u t u

u L t u=

=

=

=

  

which will make all the values in the vector b


 be zero and the equation for the 1st time 

step and the iterative formula will be reduced to: 

 

1 0

1 1

1
2

k k k

u A u d

u A u u+ −

= ⋅ +

= ⋅ −



 

     (5.17) 

The derivation presented here solves the wave equations by using explicit methods, 

which means that the next value of u  will be computed from the known past values and, 

equivalently, all the future time terms appear on one side of the equation (Olsen-Kettle, 

2011). 

5.4. Numerical solution of the 1D damped wave equation 

The numerical solution of the 1D damped wave equation is very similar to the solution 

of the undamped equation. We start again with replacing the temporal and spatial 
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derivatives with the finite central difference approximation (Olsen-Kettle, 2011) on the 

same discretised domain (Figure 5.1), which now gives us the equation: 

 
1 1 1 1

1 12
2 2

2 2
2

2

k k k k k k k k
j j j j j j j ju u u u u u u u

c
t t x

β
+ − + −

+ −− + − − +
+ ⋅ = ⋅

∆ ∆ ∆
  (5.18) 

The equation for ju  for the future time step 1k +  is now: 

 ( ) ( )1 1
1 1

1 1 12 1
1 1 1

k k k k k
j j j j j

c tu u s u s u u
c t c t c t

+ −
+ −

− ∆
= − + − + +

+ ∆ + ∆ + ∆
  (5.19) 

From the initial and boundary conditions we can calculate the first iteration as: 

 1 01 1
2 2
c t c tu A u b d+ ∆ + ∆

= ⋅ + +
 

    (5.20) 

And the general iterative formula is: 

 1 1k k ku A u b e u+ −= ⋅ + − ⋅


  

  (5.21) 

where 1
1

c te
c t

− ∆
=

+ ∆
 . 

Finally, using the boundary conditions for the string with fixed edges all the values in 

the vector b


 will be zero and the equation for the 1st time step and the iterative formula 

will be reduced to: 

 

1 0

1 1

1
2

k k k

c tu A u d

u A u e u+ −

+ ∆
= ⋅ +

= ⋅ − ⋅



 

     (5.22) 
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5.5. Analytical solution of the 2D undamped wave equation 

The 2D wave equation can be visualised as a vibration of a thin elastic membrane 

stretched tightly over a rectangular frame with the edges firmly fixed at its walls (Figure 

5.2): 

 
2 2 2

2
2 2 2 ,  0 ,  0 ,  0u u u x a y b t T

t x y
β

 ∂ ∂ ∂
= + ≤ ≤ ≤ ≤ ≤ ≤ ∂ ∂ ∂ 

  (5.23) 

where ( ), ,u x y t  denotes the displacement of the membrane at position ( ),x y  at time

0t > . 

 
Figure 5.2 – A thin elastic membrane stretched tightly over a rectangular frame dimensions 𝑎𝑎 × 𝑏𝑏, with the edges fixed 

to a rigid frame. 

 

The boundary conditions for the membrane with fixed edges can be expressed as: 

 
( ) ( )
( ) ( )
0, , , , 0

,0, , , 0

u y t u a y t

u x t u x b t

= =

= =
  (5.24) 
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The initial deformation of the membrane and how is it set to motion can be described 

with the initial conditions: 

 
( ) ( )

( ) ( )

, ,0 ,

, ,0 ,

u x y f x y
u x y g x y
t

=

∂
=

∂

  (5.25) 

The analytical solution for the 2D wave equation Eq. (5.23) can be found using the 

Separation of Variables method in the similar way as for the 1D case described in the 

Section 5.1. 

If we let ( ) ( ) ( ) ( ), ,u x y t X x Y y T t=  and substitute that into the Eq. (5.23) we get: 

 ( )2XYT X YT XY Tβ′′ ′′ ′′= +   (5.26) 

Dividing Eq. (5.26) by XYT  yields: 

 ( )2
2 2 2X YT XY TXYT T X

XYT XYT T
Y
YX

β
β β ω

′′ ′′+′′ ′′ ′′ ′′
= ⇒ = + = −   (5.27) 

which can be separated into three differential equations: 

 

2

2

2

0
0
0

x

y

T T
X k X
Y k Y

ω′′ + =

′′ + =

′′ + =

  (5.28) 

Once these differential equations are solved using boundary conditions, we can get 

the general solution of the 2D wave equation in the form: 

 ( ) ( ) ( ) ( ) ( ), , , ,
1 1

, , cos sin sin sinn m n m n m n m x y
n m

u x y t A t B t k x k yω ω
∞ ∞

= =

 = ⋅ + ⋅ ⋅ ⋅ ⋅ ∑∑   (5.29) 
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where 1,2,3...n = , 1,2,3...m = , x
nk
a
π

= , y
mk
b
π

= , 2 2
,n m x yk kω β= +  and ,n mA  and ,n mB  

are the constants that can be determined from the initial conditions as: 

 

( ) ( ) ( )

( ) ( ) ( )

,
0 0

,
, 0 0

4 , sin sin

4 , sin sin

b a

n m x y

b a

n m x y
n m

A f x y k x dx k y dy
a b

B g x y k x dx k y dy
a bω

 
= ⋅ ⋅ ⋅ ⋅  

 
= ⋅ ⋅ ⋅ ⋅ ⋅  

∫ ∫

∫ ∫
  (5.30) 

5.6. Analytical solution of the 2D damped wave equation 

The 2D damped wave equation is: 

 
2 2 2

2
2 2 22u u u uc

t t x y
β

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

  (5.31) 

where the term 2 uc
t

∂
∂

 represents a damping force proportional to the velocity u
t

∂
∂

. 

Using the separation of variables method to solve Eq. (5.31) we have: 

 ( )2
2 2 22 2X YT XY TXYT cXYT T cT X

XYT XY T
Y
YT X

β
β β ω

′′ ′′+′′ ′′ ′′ ′′ ′′+ +
= ⇒ = + = −

′′
  (5.32) 

Again, this can be separated into three ordinary differential equations: 

 

2

2

2

2 0
0
0

x

y

T cT T
X k X
Y k Y

ω′′ ′+ + =

′′ + =

′′ + =

  (5.33) 

The last two differential equations in Eq. are trivial to solve using boundary conditions, 

but the first one can have different solutions depending of the value of ω . If we assume 

that 2 2cω > , then the solution of the 2D damped wave equation is: 
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( ) ( )
( ) ( ) ( )

2 2
, ,

1 1

2 2
, ,

, , cos

sin sin sin

ct
n m n m

n m

n m n m x y

u x y t e A c t

B c t k x k y

ω

ω

∞ ∞
−

= =

= ⋅ − ⋅ +

− ⋅ ⋅ ⋅ ⋅ ⋅

∑∑

  (5.34) 

where ,n mA  and ,n mB  can be determined from Eq. (5.30). 

5.7. Numerical solution of 2D undamped wave equation 

The 2D undamped wave equation Eq. (5.23) can be numerically solved using FD 

approximation on a discretised domain (Figure 5.3): 

 ,  ,  
1 1

,  0
,  0 1
,  0 1

k

i

j

Tt x y
m n p

t k t k

a b

m
x i x i n

j y j py

∆ = ∆ = ∆ =
+ +

= ⋅∆ ≤ ≤
= ⋅∆ ≤ ≤ +
= ⋅∆ ≤ ≤ +

  (5.35) 

Let’s assume that our membrane is divided into 16 cells, or that 3,  3n p= =  (Figure 

5.3). 

 
Figure 5.3 – Discretisation of a thin elastic membrane stretched tightly over a rectangular frame dimensions 𝑎𝑎 × 𝑏𝑏, with 
the edges fixed to the frame, for FD solution of the 2D wave equation. 𝑢𝑢𝑖𝑖,𝑗𝑗  denotes the displacement of the membrane at 

�𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗� position. ∆𝑥𝑥 and ∆𝑦𝑦 are the mesh sizes in 𝑥𝑥 and 𝑦𝑦 directions, respectively. 
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The boundary conditions are: 

 

( )
( )
( )
( )

0,

4,

,0

,4

0, ,

, ,

,0,

, ,

k
j

k
j

k
i

k
i

u y t u

u a y t u

u x t u

u x b t u

=

=

=

=

  

The initial conditions can be described as: 

 
( ) ( )

( ) ( )

,

,, ,0 ,

, ,0 , i j

i j
u x y

u x y f x y

gy

f

g x
t

∂
=

= =

=
∂

  

We can use the finite central difference approximation again to approximate the 

temporal and spatial derivatives. The approximate 2D wave equation will then be: 

 
1 1

, , , 1, , 1, , 1 , , 12 2
2 2 2

2 2 2k k k k k k k k k
i j i j i j i j i j i j i j i j i ju u u u u u u u u

t x y
β β

+ −
+ − + −− + − + − +

= +
∆ ∆ ∆

⋅ ⋅   (5.36) 

where ,
k
i ju  denotes the value of u  at time point k  and grid point ,i jx y . 

If we introduce the substitutions 
2 2

2x
ts

x
β ∆

=
∆

  and 
2 2

2y
ts

y
β ∆

=
∆

, we get the the 

equation for ,i ju  for the future time step 1k + : 

 ( ) ( ) ( )1 1
, , , 1, 1, , 1 , 12 1k k k k k k k

i j i j x y i j x i j i j y i j i ju u s s u s u u s u u+ −
+ − + −= − + − − + + + +   (5.37) 

From the initial and boundary conditions we can calculate the first iteration as: 

 ( ) ( ) ( )1 0 0 0 0 0
, , 1, 1, , 1 , 1 ,1

2 2
yx

i j x y i j i j i j i j i j i j

ssu s s u u u u u tg+ − + −= − − + + + + + ∆   (5.38) 

Both the iterative formula and the equation for the 1st time step can be calculated 

using the similar matrix method as for the 1D case. 
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For 1u : 

 1 01 1
2 2

u A u b d= ⋅ + +
 

    (5.39) 

And for all other steps, the general iterative scheme is then: 

 1 1k k ku A u b u+ −= ⋅ + −


  

  (5.40) 

where A  and b


 are the matrix and vector, respectively, shown in Figure 5.4, with 

( )2 1 x ys sλ = − − . 

 
Figure 5.4 – Matrix A and vector 𝑏𝑏�⃗   used for matrix method for numerical solution of 2D undamped wave equation 

 
Finally, the boundary conditions for the membrane with fixed edges can be expressed as: 

 

( )
( )
( )
( )

0,

4,

,0

,4

0, ,

, ,

,0,

,

0

0,

0

0

k
j

k
j

k
i

k
i

u y t u

u a y t u

u x t u

u x b t u

=

=

=

=

=

=

=

=
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Considering these boundary conditions, all the values in the vector b


 will be zero and the 

equation for the 1st time step and the iterative formula will be reduced to: 

 

1 0

1 1

1
2

k k k

u A u d

u A u u+ −

= ⋅ +

= ⋅ −



 

     (5.41) 

5.8. Numerical solution of 2D damped wave equation 

We start again by replacing the temporal and spatial derivatives in Eq. (5.31) with the 

finite central difference approximation on the same discretised domain as the 2D 

undamped wave equation (Figure 5.3), with the same boundary and the initial conditions. 

This now gives us the equation: 

 

1 1 1 1
, , , , ,

2

1, , 1, , 1 , , 12 2
2 2

2
 2

2
2 2

                              

k k k k k
i j i j i j i j i j

k k k k k k
i j i j i j i j i j i j

u u u u u
c

t t
u u u u u u

x y
β β

+ − + −

+ − + −

− + −
+ ⋅ =

∆ ∆
− + − +

⋅ + ⋅
∆ ∆

  (5.42) 

Using the same substitutions as for the undamped wave, we can find the equation for 

1
,
k
i ju +  : 

 

( )

( ) ( )

1 1
, , ,

1, 1, , 1 , 1

1 1 2 1
1 1
1 1

1 1

k k k
i j i j x y i j

k k k k
x i j i j y i j i j

c tu u s s u
c t c t

s u u s u u
c t c t

+ −

+ − + −

− ∆
= − + − − +

+ ∆ + ∆

+ + +
+ ∆ + ∆

  (5.43) 

Both the iterative formula and the equation for the 1st time step can be calculated 

using the similar matrix method as for the undamped 2D case. 

For 1u : 

 1 01 1
2 2d d
c t c tu A u b d+

= ⋅
∆ + ∆

+ +
 

    (5.44) 
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and for all other steps, the general iterative scheme is then: 

 1 1k k k
d du A u b e u+ −= + − ⋅⋅



     (5.45) 

where 1
1dA A

c t
= ⋅

+ ∆
, 1

1db b
c t

= ⋅
+ ∆

 

 and 1
1

c te
c t

− ∆
=

+ ∆
 . A  and b



 are the matrix and 

vector, respectively, shown in Figure 5.4. 

Finally, using the boundary conditions for the membrane with fixed edges all the 

values in the vector b


 will be zero and the equation for the 1st time step and the iterative 

formula will be reduced to: 

 

1 0

1 1

1
2 d

k k k
d

c tu A u d

u A u e u+ −

+ ∆
= +

= ⋅ − ⋅

⋅


 

     (5.46) 

The discrete approximation to the Laplacian operator 
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
  used until this 

point is known as the five-point Laplacian (Abramowitz, 1974) or five-point stencil and it 

is a second-order accurate scheme. There are two possible forms of the five-point 

Laplacian operator, one making use of points adjacent to the centre point, and another 

one employing points diagonally adjacent. These two forms of the operator may be 

linearly combined to yield a so-called nine-point stencil which is also a second-order 

accurate scheme (Barkley Rosser, 1975; P. Sanz-Leon, 2017). 

In Sections 5.7 and 5.8 the faster, matrix method of numerical solution of the 2D wave 

equations using five-point stencil is derived. This method calculates the wave propagation 

computationally faster than the iterative five-point stencil method, but is limited by 

computer memory, since the whole wave space is calculated at once. 
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In the next Section (5.9), we will show the nine-point Laplacian matrix method for 

numerical solution of the 2D damped wave equation (Barkley Rosser, 1975). 

5.9. The nine-point stencil method for numerical solution of the 2D wave equation 

The previous Sections (5.7 and 5.8) described the five-point stencil numerical scheme 

for numerical solution of the 2D wave equation. The difference between five-point and 

nine-point stencils are shown in Figure 5.5. 

 
Figure 5.5 – The five-point and the nine-point stencils 

 

In order to find the numerical solution for the 2D damped wave equation, with the 

same number of cells, boundary and initial conditions as used in the previous Chapters, 

using the nine-point stencil, we should start with the Eq. (5.31): 

 
2 2 2

2
2 2 22u u u uc

t t x y
β

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

  

As we know, 
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
 is called Laplacian. Thus for the nine-point stencil we can 

write: 
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2

2 2
92 2  u uc u

t t
β∂ ∂

+ = ∇
∂ ∂

  (5.47) 

where 2
9∇  is the nine-point Laplacian, and 2 9

9  
α

∇ =
∆  (Barkley Rosser, 1975). The operator 

9∆  is: 

 ( ) ( )
2 2 2 2

9 2 2 2 2

1 1
10 2 10 2, 20 , ;  ;  

1 1

c
y x x yu x y b b u x y b c
x y x y

c

 
∆ − ∆ ∆ − ∆ ∆ = − = =  ∆ + ∆ ∆ + ∆

  

. 

Each coefficient in the operator 9∆  is multiplied with the corresponding point in mesh, 

for example, if a coefficient is m  units above the horizontal centre line and n  units to the 

right of the vertical centre line, we will have a product of that coefficient with 

( ),u x n x y m y+ ⋅∆ + ⋅∆  . The entire operator denotes the sum of these products; thus we 

will have: 

 

( ) ( )

( ) ( )

2 2

9 , 1, 1,2 2

2 2

, 1 , 1 1, 1 1, 1 1, 1 1, 12 2

10 2, 20

10 2

i j i j i j

i j i j i j i j i j i j

y xu x y u u u
x y

x y u u u u u u
x y

+ −

+ − + + + − − + − −

∆ − ∆
∆ = − + + +

∆ + ∆

∆ − ∆
+ + + + +

∆ + ∆
  (5.48) 

The coefficient α  is: 

 
2 2

2 2
12 x y

x y
α ∆ ∆
=
∆ + ∆

  (5.49) 

When we go back to the damped wave equation, Eq. (5.47), and solve it for 1
,
k
i ju + , we 

get: 
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( )

( ) ( )

( )

1 1
, , ,

1, 1, , 1 , 1

1, 1 1, 1 1, 1 1, 1

1 1 2 20
1 1

1 1

1

k k k
i j i j m i j

yk k k kx
i j i j i j i j

k k k km
i j i j i j i j

c tu u s u
c t c t

ss u u u u
c t c t

s u u u u
c t

+ −

+ − + −

+ + + − − + − +

− ∆
= − + − +

+ ∆ + ∆

+ + + +
+ ∆ + ∆

+ + +
+ ∆

  (5.50) 

where 1ms C s= , 2xs C s= , 3ys C s= , and 
2 2

2 212
ts

x y
β ∆

=
∆ ∆

, while 2 2
1C x y= ∆ + ∆ , 

2 2
2 10 2C y x= ∆ − ∆ , and 2

3
210 2C x y= ∆ − ∆ . 

Both the iterative formula and the equation for the 1st time step are exactly the same 

as for five-point stencil damped wave solution. 

For 1u : 

 1 01 1
2 2d d
c t c tu A u b d+

= ⋅
∆ + ∆

+ +
 

    (5.51) 

and for all other steps, the general iterative scheme is then: 

 1 1k k k
d du A u b e u+ −= + − ⋅⋅



     (5.52) 

where 1
1dA A

c t
= ⋅

+ ∆
, 1

1db b
c t

= ⋅
+ ∆

 

 and 1
1

c te
c t

− ∆
=

+ ∆
 . A  and b



 are the matrix and 

vector, respectively, shown in Figure 5.6. 

The update equations for the undamped wave equation using the nine-point stencil 

are also exactly the same as for the five-point stencil. 

For 1u : 

 1 01 1
2 2

u A u b d= ⋅ + +
 

    (5.53) 
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and for all other steps, the general iterative scheme is then: 

 1 1k k ku A u b u+ −= ⋅ + −


  

  (5.54) 

but now, A  and b


 are the matrix and vector, respectively, shown in Figure 5.6, with 

2 20 msλ = − . 

 
Figure 5.6 – Matrix A and vector 𝑏𝑏�⃗  used for matrix method for numerical solution of 2D undamped wave equation using 

nine-point stencil. 

Finally, using the boundary conditions for the membrane with fixed edges all the 

values in the vector b


 will be zero and the equations for the 1st time step (Eq.(5.51) and 

Eq.(5.53)) and the iterative formulae (Eq.(5.52) and Eq.(5.54)) will be reduced to:

 

1 0

1 1

1
2 d

k k k
d

c tu A u d

u A u e u+ −

+ ∆
= +

= −

⋅

⋅⋅



 

     (5.55) 

for the damped wave, and: 

 

1 0

1 1

1
2

k k k

u A u d

u A u u+ −

= ⋅ +

= ⋅ −



 

     (5.56) 

 for the undamped wave. 
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5.10. Numerical comparisons between five-point and nine-point stencils 

In order to compare the five-point and the nine-point stencils discrete approximation 

methods of the Laplacian operator, the MATLAB programs for both methods were built 

(Appendix C and Appendix D). 

The simulations were all run in MATLAB R2017a running on a laptop with Intel i7 core 

processor and 16GB RAM. All the simulations had the same grid size, duration of the 

simulation and the step size: 

 12 ,  2400;   2 ,  199,  199T s m a b m n p= = = = = =   

The mesh was initialised with the 2D Gaussian function spread over the whole mesh 

with the peak of the function in the central node, amplitude of 5 and variance 

2 5 24 10 mσ −= ⋅ . The time of the code execution for each simulation is given in Table 5-1. 

Table 5-1 – Time of the code execution of the simulations using 5- and 9-point stencil methods to solve the 2-D wave PDE 

Simulation: Time [s]: 
9-point stencil – undamped wave 2.123368 
9-point stencil – damped wave 2.233060 
5-point stencil – undamped wave 1.485464 
5-point stencil – damped wave 1.600054 

 

A comparison was made between 3 points in a mesh, as shown in Figure 5.7. 
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Figure 5.7 – Three points in the mesh that are monitored in the comparisons between the 9-point and 5-point stencils. 

The mesh consists of 200x200 cells. Black dot represents the central point in mesh, where the stimulus is applied. Red dot 
is the central-right point, while blue dot is a diagonal point. Both red and blue points are distanced the same length from 

the central point, which is demonstrated by the yellow circle. 

 

First, the Figure 5.8 shows the nodes’ traces when the 9-point stencil is used for solving 

the damped and the undamped waves. It is clear that the damped wave’s oscillations are 

getting weaker with time and will eventually disappear. 

 
Figure 5.8 – The effect of damping using the 9-point stencil method for the three locations specified in Figure 5.7. The red 

lines are damped and black lines are undamped waves. 
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Next, we show the nodes’ traces for 9-point and 5-point stencils in time domain. Figure 

5.9 and Figure 5.10 show the undamped waves, while Figure 5.11 and Figure 5.12 are 

showing the damped waves. From these figures we calculated that the maximum 

difference is less than 0.5% between 9-point and 5-point stencils in time domain. 

 
Figure 5.9 – The undamped waveforms generated by the 9-point (red line) and 5-point (black line) stencils for the three 

locations specified in Figure 5.7. 

 

 
Figure 5.10 – The accumulation of error between the undamped waveforms generated by the 9-point and 5-point 

stencils the three locations specified in Figure 5.7. 
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Figure 5.11 – Damped waveforms generated by the 9-point (red line) and 5-point (black line) stencils for the three 

locations specified in Figure 5.7. 

 

 
Figure 5.12 – The accumulation of error between the damped waveforms generated by the 9-point and 5-point stencils 

the three locations specified in Figure 5.7. 
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After that, we compared both stencils for undamped waves in frequency domain as 

well, Figure 5.13. There, the error between 9-point and 5-point stencils frequency spectra 

is multiplied by 100 so we can observe it on the same plots as the signals we are 

comparing. 

 
Figure 5.13 – The frequency spectra for the undamped waveforms generated by the 9-point (red line) and 5-point (black 

line) stencils for the three locations specified in Figure 5.7. The error (multiplied by 100) is shown with green line. 

 

We also compared both stencils over the whole mesh using the correlation (corr 

function built in MATLAB, which computes p -values for Pearson's correlation using a 

Student's t  distribution for a transformation of the correlation), Figure 5.14, and Nash–

Sutcliffe Efficiency Index (Zachary, Richard, & Cutter, 2006), Figure 5.15. Nash–Sutcliffe 

Efficiency Index is a common measure of model accuracy, calculated as: 

 
( )
( )

2

01
2

0 01

1
T t t

mt
T t
t

Q Q
E

Q Q
=

=

−
= −

−

∑
∑
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where t
mQ  is the predicted (modelled) value at time t  , 0

tQ  is the observed (measured) 

value at time t   and 0Q  is the mean of the observed values.  

 
Figure 5.14 – The correlation between 9-point and 5-point stencils for: A) undamped, B) damped, waves 

 

 
Figure 5.15 – The Nash–Sutcliffe Efficiency Index between 9-point and 5-point stencils for: A) undamped, B) damped, waves 

 

Both methods show that, there is a slight difference in diagonal parts of the mesh, 

which was expected considering that 9-point stencil has the diagonal terms, whereas 5-

point stencil doesn’t. But when we inspect the numbers on the figures, we see that these 
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differences are so small, that we can pick 5-point stencil over 9-point stencil in our 

calculations without having problems with the numerical error. 

5.11. Conclusion 

In this Chapter, the possibility of using the five-point stencil to numerically solve the 

undamped and damped wave PDEs, instead of the nine-point stencil is explored. The 

results show that the five-point stencil could indeed be used instead of the nine-point 

stencil in NeuroField model to solve the governing damped wave equation, providing a 

significant speed up in code execution, without losing accuracy. 

This result was discussed with the creators of NeuroField from The University of 

Sydney and was discovered that they were also working towards changing the method of 

solving the wave equation from nine-point to five-point stencil for easier understanding 

of the code. The presented results of our tests assured them that, by using five-point 

stencil, there will be significant speed up in the computation, the code will be easier to 

understand and all without losing accuracy. This investigation also helped us to translate 

NeuroField from C++ to MATLAB (presented in Appendix B) by better understanding some 

of the processes in NeuroField program. 
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6. Mapping NeuroField parameters to TLM 

In the first part of this Chapter the numerical approximations of governing wave PDEs 

in NeuroField using FD method and the iterative formula are presented. The proposed 

TLM cell for numerically solving the inhomogeneous damped wave PDEs is presented and 

the PDE equivalent to the analytical solution in NeuroField is derived in the second part 

of this Chapter (6.2). In the same Section, the TLM node parameters are calculated to 

match the NeuroField parameters and finally the scattering algorithm and calculating 

nodal voltage for Link-Line and Link-Resistor TLM node are derived. 

The last Section of this Chapter discusses the space and time discretisation, some 

methods’ constraints and boundary conditions used in both numerical methods. 
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6.1. NeuroField wave equation in FD 

The governing differential equation that represents axonal propagation of activity 

through the cortex in the NeuroField model is the inhomogeneous (or forced) damped 

wave equation relating the field ( ),ab r tϕ   to the driving signal ( ),bQ r t : 

 ( ) ( ) ( ) ( ) ( )
2

2 2
2 2

, ,1 2 , , ,ab ab
ab ab ab b

ab ab

r t r t
r t r r t Q r t

t t
ϕ ϕ

ϕ ϕ
γ γ

∂ ∂
+ + = ∇ +

∂ ∂

 

     (6.1) 

This equation can be simplified by converting it into the undamped wave equation 

simply by introducing substitutions ( )exp ab bau tϕ γ=   and ( )expb abtQω γ=  (P. Sanz-Leon, 

2017), which gives: 

 ( ) ( ) ( )
2

2 2
2 2

,1 , ,ab
ab

u r t
r u r t r t

t
ω

γ
∂

= ∇ +
∂



    (6.2) 

This PDE is similar to the 2D undamped wave PDE, Eq.  5.1 from Chapter 5, and 

therefore can be solved numerically using the same five-point stencil explicit method 

(Olsen-Kettle, 2011). After a derivation, which is presented in detail in (P. Sanz-Leon, 

2017), the explicit solution to compute future values of u  is: 

 

( ) ( )

( ) ( )
( )

1 2 2 1
, , , 1 , 1 1, 1, ,

2 2
2 1 1

, , ,

2
, 1 , 1 1, 1,

2 4

10 4
12

n n n n n n n
m l m l m l m l m l m l m l

n n nab
m l m l m l

n n n n
m l m l m l m l

u p u p u u u u u

k p

p

ω ω ω

ω

γ

ω ω ω

+ −
+ − + −

+ −

+ − + −

= − + + + + −

+ − + +

+ + + +    (6.3) 

where superscript n  is the index in time units of k t= ∆ , centred at current time t  and 

the future and previous states are 1+  and 1−  step away respectively. That means that 

the current state is indexed by n , 1n +  denotes 0 t+ ∆  and 1n −  denotes 0 t− ∆ . In Eq 

(6.3) tp v
x
∆

=
∆

 is the Courant number (see Section 6.3.2). 
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Finally, when the axonal field ( ),ab r tϕ   and the driving signal ( ),bQ r t  are re-

introduced in Eq. (6.3), the iterative formula for propagation of the axonal fields ( ),ab r tϕ   

is (P. Sanz-Leon, 2017): 

 

( ) ( ){
( ) ( )

( ) }

1 2 2 1
, , , 1 , 1 1, 1, ,

2 2
2 1 1

, , ,

2
, 1 , 1 1, 1,

2 4

10 4
12

ab ab

ab ab

t tn n n n n n n
m l m l m l m l m l m l m l

t tn n nab
m l m l m l

n n n n
m l m l m l m l

e p p e

k p Q Q e Q e

p Q Q Q Q

γ γ

γ γ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

γ

− ∆ − ∆+ −
+ − + −

∆ − ∆+ −

+ − + −

= − + + + + −

+ − + +

+ + + +    (6.4) 

6.2. TLM method for inhomogeneous (or forced) damped wave equation 

6.2.1. TLM equivalent network 

In order to make a TLM model that can simulate the same inhomogeneous (forced) 

damped wave equation, we needed the TLM equivalent network, as shown in Figure 6.1, 

where zV  is the voltage at a node, kI  is the current generator and dR  (resistance), dC  

(capacitance), dL  (inductance), dG  (conductance) are the distributed electrical 

parameters per unit length of the individual transmission lines making up the mesh (Desai 

et al., 1992). The length between two TLM nodes is l∆ . 
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Figure 6.1 – One cell of the 2-D TLM mesh for the model of damped wave equation 

represented as lumped components, similar to (Amri et al., 2011) 

 

After applying Kirchhoff’s current law at node 0 we get: 

 2 2x zy
d z d

kI I I VG V C
y x l t

∂ ∂ ∂
− − + = +
∂ ∂ ∆ ∂

  (6.5) 

Then, applying the Kirchhoff’s voltage law around the loop in y-z plane we get: 

 2 yz
d y d

IV R I L
x t

∂∂
= − −

∂ ∂
  (6.6) 

And if we do similar for x-z plane we have: 

 2 xz
d x d

IV R I L
z t

∂∂
= − −

∂ ∂
  (6.7) 

To form a wave equation, Eq. (6.5) needs to be differentiated with respect to t , Eq. 

(6.6) with respect to y , and Eq. (6.7) with respect to x : 
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2 2 2

2

22

2

2 2

2

2 2

2

2

y x k z z
d d

y yz
d d

y x x
d d

I I I l V VG C
y t x t t t t

I IV R L
y y y t
V I IR L
x x x t

∂ ∂ ∂ ∆ ∂ ∂
− − + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂
= − −

∂ ∂ ∂ ∂

∂ ∂ ∂
= − −

∂ ∂ ∂ ∂

  (6.8) 

After substitution we get: 

 ( )
2

2
22 4 2 4 2 k d kz z

d d d d d d d d z z d
I L IV VL C R C L G R G V V R

t t l l t
∂∂ ∂

+ + + = ∇ + +
∂ ∂ ∆ ∆ ∂

  (6.9) 

In some earlier works by (Desai et al., 1992) and (Amri et al., 2011) the derivative over 

time for current source kI  in Eq. (6.8) was set to zero, because the driving force for the 

diffusion equations was constant over time, but in our case the driving force, the mean 

firing rate ( ),bQ r t , varies over time and is also dependent of surrounding brain activities 

that are connected to the particular neural population b . 

If we divide the NeuroField equation (6.1) by 2
abr , we get: 

 ( ) ( ) ( ) ( ) ( )
2

2
2 2 2 2 2 2

, ,1 2 1 1, , ,ab ab
ab ab b

ab ab ab ab ab ab

r t r t
r t r t Q r t

r t r t r r
ϕ ϕ

ϕ ϕ
γ γ

∂ ∂
+ + = ∇ +

∂ ∂

 

     (6.10) 

From Equations (6.9) and (6.10), the following equivalences between the TLM lumped 

parameters and NeuroField parameters can be drawn: 
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,
12

24 2

14

12 ,

z ab

d d
ab ab

d d d d
ab ab

d d
ab

k d k
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V r t

L C
r

R C L G
r

R G
r

I L IR Q r t
l l t r

ϕ

γ

γ

=

=

+ =

=

∂
+ =

∆ ∆ ∂



   (6.11) 

6.2.2. Calculation of TLM cell parameters to match NeuroField and the units analysis 

To match TLM node parameters to NeuroField, the units analysis is used. First, we 

need to write all the parameters with their S.I. units, where X  is numerical quantity of 

the parameter and the corresponding dimensional unit is in square brackets: 

[ ]
[ ]
[ ]
[ ]

( ) [ ]
( ) [ ]

2

2

,

1

1

1,

1

d d d

d d d

d d d

d d d d

z z

k k

ab ab

ab ab

ab ab

b b

sR R R
m F m

F sC C C
m H

H sL L L
m F m

F sG G G G
m s m H m

V V V

I I A

s

r r m

r t

Q r t Q

s

s

γ γ

ϕ ϕ

Ω   = ⋅ = ⋅   ⋅   
  = ⋅ = ⋅      
  = ⋅ = ⋅    ⋅   

     = ⋅ = ⋅ = ⋅     Ω⋅ ⋅ ⋅     
= ⋅

= ⋅

=

=

⋅

⋅

=

=

⋅

⋅





 

This way, while calculating the parameters for TLM node, we can immediately check 

if the units on both sides of the equations are the same. 

Starting from the impedance of the transmission line 0Z  we have the following: 
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 2
0 2d dL C Z⇒ =   (6.12) 

The speed of the wave across the 2-D mesh can be expressed as: 

 [ ] [ ]
2

1
2

11
2

1
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d d

d d

d
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v
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s s FL C
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     ⋅ = ⋅ = ⋅          

  

Here we can substitute the expression for inductance Eq. (6.12) and calculate dL  and

dC  as: 

 
2

00

1 1
22 2

ab ab ab a
dd d

b C ZC Z C
r rγ γ= ⇒ =

⋅
  

 
0

1
2 ab ab

dC
Z rγ
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ab ab

Z
L

rγ
=   (6.13) 

Now we should check the units for equivalence 3 from Eq. (6.11): 
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     ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅     ⋅ ⋅     

   ⋅ + ⋅ ⋅ = ⋅      
  (6.14) 
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From Eq. (6.13) and (6.14) we can find the relation between dR  and dG : 

 02
0 2

0 0

1

a
d

b

d
d

b a
d

Z R
R Z G G

Z Zr r
+ = ⇒ = −   (6.15) 

We should also check the units for the equivalence 4 from Eq. (6.11): 
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From Eq. (6.15) and (6.16) we can finally calculate dR  and dG : 
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=   (6.17) 

Finally, from equivalences 1 and 5, Eq. (6.11), we have: 

 [ ] 1
z abV V

s
ϕ  ⋅ = ⋅   

  (6.18) 
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  (6.19) 

Since TLM is a numerical method, we are working with constant time steps t∆  instead 

of t∂ , thus 
1n n

k k k kI I I I
t t t

−∂ ∆ −
= =

∂ ∆ ∆
 , where n  is the current iteration step of the TLM. If we 

divide Eq. (6.19) with 
2 dR

l∆
and change the derivative of kI with 

1n n
k kI I

t

−−

∆
we get the 

iterative formula for calculating the driving force in our TLM model: 
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  (6.20) 

When 0n = we have: 0 0

0
k b

ab

I Q
Z r

l
=

∆ , where 0
bQ is the steady-state value of the neural 

population b . 

From the dimensional analysis of Eq. (6.18) and Eq. (6.19) it is obvious that the units 

do not agree, thus to achieve full dimensional homogeneity in equivalences between 

NeuroField and TLM parameters we should multiply voltage zV  and current kI  with the 

appropriate unity constant 
2

21V
A sU

kg m
 ⋅

= ⋅  ⋅ 
. 

Finally, here is the summary of the numerical quantities for all the TLM node 

parameters should we want to match them to NeuroField: 
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6.2.3. Electrical equivalent for lumped TLM cell 

The lumped network can now be converted into a 2D electrical network with the set 

impedance 0Z . 

Impedance 0Z  can be set to any arbitrary value, as shown in Figure 6.2, while values 

for resistance R and conductance G can be calculated as: 

 
2

d

d

R dx R

G dx G

= ⋅

= ⋅ ⋅
  

The electrical equivalent for lumped TLM cell for numerical solution of 

inhomogeneous damped wave equation is shown in Figure 6.3. 
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Figure 6.2 – The influence of impedance 𝑍𝑍0 on profiles in One-population NeuroField model based on the TLM method: 

𝑍𝑍0 = 10−4Ω red line,  𝑍𝑍0 = 1Ω blue line, 𝑍𝑍0 = 104Ω  green line. Left figure - central node traces for propagation field 𝜑𝜑1, 
Right figure - equatorial profiles of the same axonal fields for iteration step 49. Simulation was driven by a sine wave of 

amplitude 1𝑠𝑠−1 and frequency of 20Hz, applied at the centre of the mesh. 

 

 
Figure 6.3 – Lumped electrical equivalent of a TLM cell with calculated parameters to match the NeuroField model 

 

There are two TLM implantations in lossy formulation, depending on the relative 

placement of the transmission lines and resistors within a node. If we are making 

observations at the interface between two resistors, than that is called link-line TLM node 

(Figure 6.4), where as if the observations are made at the centre of the transmission line 

that is called link-resistor TLM node (Figure 6.6) (Cogan et al., 2005). 
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6.2.3.1. Link-Line TLM node 

 
Figure 6.4 – Lumped electrical equivalent of a TLM cell – Link-Line configuration 

 

We need to find the impulse scattering matrix for a proposed Link-Line TLM node as 

well as voltage at the node centre nV . 

We can calculate voltage at any point on the transmission line as 2 2 2
i r

nV V V= + , where 

2
iV is the voltage impulse entering a TLM node from the west, at port 2, and 2

rV  is the 

scattered (reflected) pulse from a node to port 2. In lossless TLM 2nV  is equal to node 

voltage nV , but in link-line arrangement they are not the same and we need to calculate 

both separately. 

First, we can calculate 2nV , which will also give us the equation for the reflected 

voltage 2
rV . 

Using superposition method, we get: 
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 2 0
2

0

2 i
n

n
V R V ZV

R Z
⋅ + ⋅

=
+

  (6.22) 

Then we can find the reflected pulse: 

 ( )
2 2 2

2 0 0
2

0

r i
n
i

r n

V V V
V R Z V Z

V
R Z

= −

⋅ − + ⋅
=

+
  (6.23) 

Test: 

If 0R =  we expect that 2n nV V=  and 2 2
r i

nV V V= − : 

 

2 0
2

0i
r

V Z
V

⋅ −
=

( ) 0nV Z+ ⋅

00 Z+ 2

2 0
2

2 0

i
n

i
n

n

V V

V V Z
V

= −

⋅ + ⋅
=

00 Z+ nV=

  

The same method can be applied to calculate the reflected pulses for other ports ( 1
rV

, 3
rV  and 4

rV  ). Next, we need to calculate the Nodal voltage nV . Let’s start with the nodal 

voltage for impulse from direction 2 approaching the resistors at the centre of node from 

left (Figure 6.5).  
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Figure 6.5 – The Link-Line configuration – Thevenin circuit or calculation of nodal voltage 

 

The Thevenin equivalent circuit assumes that this pulse has originated from voltage 

source 22 i
kV  . Using simple potential divider formula, we can calculate the contribution to 

the voltage at the centre of the node: 

 22 i T
T k

e T

RV V
Z R

= ⋅
+

  

where 0eZ R Z= +  and 
3

e
T

e

ZR
G Z

=
+ ⋅

. The incident wave from one direction, for 

example 2
iV , will contribute to the voltage at the centre of the node with: 

 
( )

2
2

0

2
4

i
k

T
VV

R Z G
=

+ + ⋅
  (6.24) 

The current source (Figure 6.4) also contributes to the voltage at the node centre with: 

 ( )
( )

0

04
k

I
I R Z

V
R Z G
⋅ +

=
+ + ⋅

  (6.25) 
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Now, total voltage at the node centre can be calculated as the sum of all contributions 

from all four directions and voltage from the current source: 

 
( )

( )
( )

( )
1 2 3 4 0

0 0

2
4 4

i i i i
k k k k k

k n

V V V V I R Z
V

R Z G R Z G
⋅ + + + ⋅ +

= +
+ + ⋅ + + ⋅

  (6.26) 

 

6.2.3.2. Link-Resistor TLM node 

 
Figure 6.6 – Lumped electrical equivalent of a TLM cell – Link-Resistor configuration 

 

In a 2D link-resistor node, the transmission lines are connected through two resistors, 

as shown in Figure 6.6. The scattered waves at discrete time intervals are identical to those 

in lossless TLM and can be calculated from: 

 4 4
r i

nV V V= −   (6.27) 

However, the presence of linking resistors will set a second scattering event that occur 

at the half-time intervals. This is because the pulse reflected from the node at position

( )x , 4
rV , and traveling along a line, sees its resistor and the resistor and the transmission 
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line of the target node at ( )1x +  as a miss-matching load. Connection equations then 

need to include this as: 

 

( ) ( ) ( )
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  (6.28) 

where ( )0R R Zρ′ = +  and ( )0 01 Z R Zτ ρ′′ ′′= − = + . 

The nodal potential is then: 

 
( )1 2 3 4 0

0 0

2
4 4

i i i i
k k k k k

k n

V V V V I ZV
G Z G Z

⋅ + + + ⋅
= +

+ ⋅ + ⋅
  (6.29) 

In the link-line TLM nodal formulation, the “jumps-to-zero” effects can be observed as 

a sawtooth effect during a single-shot excitation of a spatial mesh (Cogan et al., 2005). It 

is a well-known anomaly in a range of numerical models when the frequencies are 

approaching 1 2 t∆ . For the heat-flow and particle diffusion simulations following single-

shot injection into a TLM the problem can be solved using a link-resistor TLM nodal 

formulation for lossy TLM (Cogan et al., 2005). 

6.3. Discretisation and Boundary conditions 

6.3.1. Space and time discretisation in FD method 

The cortex is modelled in NeuroFeild as a 2D rectangular sheet, with edges of length 

w  and h  [ ]m . For all the simulations in this thesis, squared sheet, dimensions: 

[ ]0.5w h m= = , is used. The number of nodes xN  can be specified in the configuration 
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file for NeuroField model (P. Sanz-Leon, 2017), which determines the discretisation along 

x  and y  axes: 

 
x

wx y
N

∆ = ∆ =   (6.30) 

If cortex model is 2D square sheet, then y xN N= , Figure 6.7. Otherwise, number of 

nodes in y axis has to be calculated from the total number of nodes specified in the 

configuration file of NeuroField model (P. Sanz-Leon, 2017). 

 
Figure 6.7 – Discretised space for a generic cortical model in NeuroField simulations. 

 

6.3.2. Courant condition for FD numerical method 

The Courant condition (Courant–Friedrichs–Lewy (CFL) condition) is a necessary 

condition for convergence when solving the hyperbolic PDEs numerically by the explicit 

FD method (Courant, Friedrichs, & Lewy, 1967). Once the length interval x∆  has been 

chosen and the speed of the propagating wave v  is known, the time step, t∆ , can be 

evaluated using CFL in order to obtain a stable solution and a specified accuracy. In the 

2D case (Press, Teukolsky, Vetterling, & Flannery, 1992) the value of the CFL number p  

must be below: 

 max
1
2

tp v
x
∆

= ≤
∆

  (6.31) 
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where v  is the speed of the wave and t∆  is the time step size. 

This gives the maximum CFL number for NeuroField as: 

 max
1
2ab

tp v
x
∆

= ≤
∆

  (6.32) 

where the speed of propagation of the field ( ),ab r tϕ


 is calculated as ab ab abv rγ= . 

From a physical point of view, the CFL condition ensures that the propagation speed 

of any physical perturbation is always smaller than the numerical one which is nv x t= ∆ ∆  

(Rezzolla & Zanotti, 2014). 

In (Robinson et al., 1997) a stricter condition was imposed, where the CFL number is 

0.1p = . In some other NeuroField models (Abeysuriya, Rennie, & Robinson, 2014)

0.06p ≈ , or in (van Albada et al., 2009) 0.028p = . 

Although the solution of the hyperbolic PDEs is numerically stable using FD method 

when the CFL conditions are met, there is still a question if the discretisation domain is 

optimal for simulations of all the frequencies of interest. When the discretisation domain 

is not optimal, then there is a good chance that either space or time is poorly sampled in 

the simulation. In FDTD numerical simulations of EM fields, for example, there is usually 

one more condition that needs to be fulfilled in order to be certain that the optimal space 

discretisation is achieved: the grid resolution x∆  depends on the shortest wavelength 

minλ  of the highest frequency of interest maxf . For a good space discretisation, it is 

suggested that 
min

0.1x
λ
∆

≤ . 
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We will give an example of the NeuroField model with the poorly sampled space in 

the simulation. Let the speed of the axonal field propagation in the model be 

6ab abv r m sγ= = . That is the minimal axonal velocity according to (Robinson, Rennie, 

Rowe, & O'Connor, 2004b). If the number of nodes in the mesh is 30xN = , and the time 

step is 410t s−∆ =  (Abeysuriya, Rennie, & Robinson, 2014), we can find the maximum 

frequency that can be simulated. 

Firstly, the discretisation along x  and y  axes is the same and is: 

0.0167
x

wx y m
N

∆ = ∆ = = . Then, if we say that the maximum frequency of interest for 

brain modelling is max 100f Hz= , which is the maximum frequency of gamma brain waves 

(Hughes, 2008), we get the shortest wavelength to be min 0.06mλ = . The ratio between 

and is then 
min

0.28x
λ
∆

≈ . That means we are modelling the highest frequency of interest 

with only 3.6 x∆ . At the same time, we have an oversampling in time domain. 

If the space discretisation fulfils the condition that 
min

0.1x
λ
∆

≤ then the model from this 

example will be able to simulate the frequencies only up to 36Hz , which might not show 

some of the processes in brain during the simulation. 

6.3.3. Space and time discretisation in TLM 

The TLM method is explicit, unconditionally stable numerical method for the solution 

of differential equations (Peter B. Johns, 1977). The propagation velocity on a rectangular 

mesh depends on frequency and direction, the phenomenon called numerical dispersion 
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(Cogan et al., 2005). To reach the diagonal node, a wavefront needs to travel the distance 

of 2 x∆ , but it can only do that in 2 t∆ , so the propagation velocity is actually: 

 1
2prop

xv
t

∆
=

∆
  (6.33) 

Due to the dispersion, in TLM velocity drops to zero when / 0.25x λ∆ = . That means 

that it is not possible to propagate a wave if the discretisation is equal to four nodes per 

wavelength (Cogan et al., 2005). As in FDTD method, when the 
min

0.1x
λ
∆

≤ , the propagation 

velocity in TLM is approximated to 1 2  of the free space speed and it is considered to 

be almost constant (Figure 6.8). Once the speed and the space discretisation are set in 

TLM, time discretisation is then easily calculated from Eq. (6.33).  

 
Figure 6.8 – Normalised propagation velocity plotted versus normalised frequency to show dispersion. The maximum 

velocity is 70.7% of the free-space velocity (Cogan et al., 2005). 

 

In our MATLAB simulations of FD and TLM methods in NeuroField models, the speed 

of the axonal propagation was set to be the same for both methods. The CFL condition in 
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FD method was set to 1
2

p =  which yielded the same discretisation in space and time 

for both methods. 

6.3.4. Boundary conditions 

The periodic boundary conditions (PBC) are implemented in NeuroField program (P. 

Sanz-Leon, 2017). When the signal reaches the far-right edge of the cortical sheet, it will 

emerge on the far-left side with the same velocity and continue its propagation to the 

right. The opposite applies for the signals travelling in the left direction. Similarly, the 

signals travelling towards top of the sheet will reappear again on the bottom with the 

same velocity, and vice versa. This produces the effect that the waves propagate on a 

sphere, but in topological terms, the space made by PBC can be thought of as being 

mapped onto a torus (Figure 6.9). 

 
Figure 6.9 – The illustration of periodic boundary condition (PBC) implemented in NeuroField. The left image is the 2D 

cortical sheet, which is mapped onto a torus (right image). 

 

6.4. Conclusion 

The goal in this Chapter was to develop the TLM equivalent network capable of solving 

the inhomogeneous damped wave equations used in NeuroField, which was presented in 

Section 6.2. The electrical equivalent parameters for TLM cell were calculated in the same 
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Section. In Section 6.1 the equations describing the FD numerical approach in solving the 

damped wave equations, built into the NeuroField program, were presented. The analysis 

of space and time discretisation for both methods (Section 6.3) showed that TLM is 

unconditionally stable method, compared to FD, where the length of the cell and the time 

step need to be picked carefully, so that they can meet the Courant condition. Finally, the 

boundary conditions, implemented in NeuroField program, were discussed in subsection 

6.3.4. 
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7. Comparison of the FD and TLM simulations 

In this Chapter, results from MATLAB simulations are compared. The first Section (7.1) 

presents the comparison between FD method, using five-point stencil approach 

(described in Chapter 5), and TLM method to numerically solve the 2D undamped and 

damped wave PDEs. Two initial conditions are examined: the Dirac impulse, applied to the 

central node in the mesh, and the 2D Gaussian function spread over the whole mesh with 

the peak of the function in the central node of the mesh. Both numerical methods are 

compared with the analytical solutions for 2D undamped and damped wave PDEs shown 

in Chapter 5. 

NeuroField simulations using the FD method, reprogrammed in MATLAB (Appendix B), 

are compared against the TLM method with the matched parameters (Appendix A) in the 

last Section (7.2) of this Chapter. These methods are compared in simulations of three 

NeuroField models consisting of One-, Two- and Four-populations. For the One-
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population NeuroField model (subsection 7.2.1), simulations with 7 different stimuli are 

compared: Pulse, Sine waves with frequencies 12Hz and 40Hz and Gaussian waves with 

two different variances 2σ  depending on the same frequencies as used for Sine waves 

stimuli. The effects of changing the temporal damping coefficient abγ  are also examined 

in this subsection. In the last subsection (7.2.4) the results of the NeuroField simulation 

comparisons are discussed. 

7.1. Comparison between FD and TLM methods to numerically solve the 2D wave 

PDEs 

In Chapter 5, we derived the iterative method for numerically solving 2D wave 

equations, both undamped and damped, using five-point stencil method for discrete 

approximation of the Laplacian operator. Now, we will use the same programs built for 

numerical comparisons between five- and nine-point stencils in Chapter 5 (Appendix C and 

Appendix D) to compare their outputs with the TLM model presented in Chapter 6. The 

parameters for the 2D FD wave modes are calculated to match the TLM parameters from 

NeuroField model. It is expected that this TLM model will be able to simulate undamped 

and damped waves just by turning off certain electrical elements in the TLM node. 

7.1.1. Undamped wave PDEs 

Undamped wave is a lossless wave, thus in order to numerically find a solution using 

TLM techniques, the lossless TLM node shown in Figure 4.3 can be employed. 

After solving this TLM node for voltage zV , we get the Helmholtz wave equation 

(Sadiku, 2009) in 2D space: 

 
2

2
22 z

d d z
VL C V
t

∂
= ∇

∂
  (7.1) 
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If we divide Eq. (7.1) with 2 d dL C  and if we recall equation for 2D undamped wave Eq. 

(5.23), we get the following: 

 

2
2 2

2

2
2

2

1
2

z
z

d d

u u
t
V V
t L C

β∂
= ∇

∂
∂

= ∇
∂

  

From here we can notice the equivalences: 

 2 1 1
2 2

z

d d d d

u V

L C L C
β β

=

= ⇒ =
  

where β  is the speed of the wave. 

To compare the TLM model, presented in Chapter 6, against the FD method for solving 

the undamped wave we need to turn off all the losses and external sources, which is the 

current source in our case. If we set  0d dR G= =  and remove the current source kI  from 

the Eq. (6.9) we get exactly the same equation as Eq. (7.1). 

In Chapter 5 we calculated the speed of the TLM wave using NeuroField parameters 

as 1
2ab ab

d d

v
C

r
L

γ= =  . Comparing two expressions for wave speed, we get that vβ =  . 

7.1.1.1. Comparison of the simulations for 2D undamped wave 

Simulations of 2D undamped wave using FD and TLM techniques were run in MATLAB 

R2017a running on a laptop with Intel i7 core processor and 16GB RAM. Simulation 

parameters were the same for both programs and are shown in the Table 7-1. All 

boundaries were set to be perfectly reflective and two different initial conditions (I.C.) 

were examined: Dirac impulse (Figure 7.1) and 2D Gaussian spread (Figure 7.2). 
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Figure 7.1 – Dirac impulse initial condition. 

 
Figure 7.2 – 2D Gaussian spread initial condition 

 

Table 7-1 – Simulation parameters for 2D undamped wave 

abr  abγ  v β=  maxf  w h=  x yN N=  _sim time  Steps  

0.2m   130s−   6m s   100Hz   0.5m   84   0.06s   89   
7.1.1.1.1. Dirac impulse I.C. 

For this simulation, we applied Dirac impulse (Figure 7.1) to the central node in the 

mesh with the amplitude of 1 and other nodes are set to 0. Time-series of the middle 

nodes for both approaches are inspected and their traces are compared with the 

analytical solution in Figure 7.3. 
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Figure 7.3 – Central node traces for 2D undamped waves with Dirac Impulse I.C. Analytical solution – green dotted line, 

FD – blue line, TLM – red dashed line 

 

The voltages across the central horizontal lines of both meshes were inspected and 

compared with the analytical solution, which showed us the spreading of the waves in 

time Figure 7.4. 
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Figure 7.4 – Equatorial profiles for 2D undamped waves with Dirac Impulse I.C. in four iteration steps. Analytical solution 

– green dotted line, FD – blue line, TLM – red dashed line 
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7.1.1.1.2. Gaussian spread I.C. 

In order to excite the mesh with the broad frequency range, but to avoid the high 

frequencies, the following simulations were run with the 2D Gaussian function spread 

(Figure 7.2) over the whole mesh with the peak of the function in the central node, 

amplitude of 1 and variance 2 20.025mσ =  . Figure 7.5 shows the traces of the middle 

nodes for both approaches and Figure 7.6 are the equatorial profiles of both meshes. 

Analytical solution for the Gaussian spread I.C. wasn’t found due to its complexity. 

 
Figure 7.5 – Central node traces for 2D undamped waves with Gaussian I.C. FD – blue line, TLM – red dashed line. 
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Figure 7.6 – Equatorial profiles for 2D undamped waves with Gaussian I.C. in four iteration steps. FD – blue line, TLM – 

red dashed line. 

 

7.1.1.2. Discussion of the results 

It can be observed from Figure 7.3 and Figure 7.4 that the numerical approximation of 

the analytical solution of the 2D undamped wave PDE using FD and TLM methods is the 

same for Dirac impulse I.C.. When comparing FD and TLM methods for Gaussian I.C we 

may notice slight differences towards the ends of the traces in Figure 7.5 and for the 

iteration step 43 in Figure 7.6. To quantitatively describe differences in the central traces, 

we used Nash-Sutcliffe Efficiency Index (Zachary et al., 2006) and the results are shown in 

Table 7-2: 

Table 7-2 – Nash-Sutcliffe Efficiency Index showing how similar are the central node traces between analytical solution and 
numerical methods and between FD and TLM when simulating 2D undamped wave 

 Dirac Impulse I.C. Gaussian I.C. 
FD vs. analytical 0.7441 N/A 

TLM vs. analytical 0.7441 N/A 
TLM vs. FD 1 0.999964 
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We can conclude from the Table 7-2 that for the simulations when the Dirac impulse is 

set as the I.C. we get the perfect match between two numerical methods. There is a slight 

difference in methods, of the order of 510−  when the Gaussian is set as the I.C. 

7.1.2. Damped wave PDEs 

To compare 2D damped wave numerical solutions using FD and TLM methods, we 

should recall the differential equation for 2D damped wave from Chapter 5, Eq. (5.31) and 

TLM equation for inhomogeneous damped wave equation from Chapter 6, Eq. (6.9). For 

easier explanation, we will repeat these two equations here: 

 ( )

2
2 2

2

2
2

2

2  

2 4 2 4 2 k d kz z
d d d d d d d d z z d

u uc
t t

I L IV VL C R C L G R G V V R
t t l

u

l t

β∂ ∂
+ = ∇

∂ ∂
∂∂ ∂

+ + + = ∇ + +
∂ ∂ ∆ ∆ ∂

  (7.2) 

We notice that for these to equations to be equivalent, we should set 0dG =  and turn 

off the current source kI  in the TLM equation. That way we get the lossy wave equation, 

also known as the telegrapher’s equation: 

 
2

2
22 4z z

d d d d z
V VL C R C V
t t

∂ ∂
+ = ∇

∂ ∂
  (7.3) 

 If we divide the 2D damped wave equation by 2β  we get: 

 
2

2
2 2 2

1 2  u c uu
t tβ β

∂ ∂
+ = ∇

∂ ∂
  (7.4) 

From Eq. (7.3) and Eq. (7.4) we can find the following equivalences: 
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Electrical equivalent TLM node in this case can be either link-line or link-resistor type 

node. For our simulations, we picked link-line lossy node, shown in Figure 6.4.  

The reflected pulse in this case can be calculated using the same equation as Eq. (6.23) 

and nodal voltage can be found by removing kI  term from the Eq. (6.26), which gives us 

the same expression for nodal voltage as Eq. (4.2).  

7.1.2.1. Comparison of the simulations for 2D damped wave 

Simulations of 2D damped wave using FD and TLM methods were run on the same 

platform as the simulations for undamped wave using the same parameters as shown in 

the Table 7-1, with one extra parameter for damping, 115
2
abc sγ −= = . All boundaries were 

set to be perfectly reflective and two different I.C. were examined again: Dirac impulse 

(Figure 7.1) and 2D Gaussian spread (Figure 7.2). 

7.1.2.1.1. Dirac impulse I.C. 

For this simulation, we again applied the Dirac impulse (Figure 7.1) to the central node 

in the mesh with the amplitude of 1 and other nodes are set to 0. Time-series of the middle 

nodes for both approaches are inspected and their traces are compared with the 

analytical solution in Figure 7.7. 
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Figure 7.7 – Central node traces for 2D damped waves with Dirac Impulse I.C. Analytical solution – green dotted line, FD 

– blue line, TLM – red dashed line 

 

We also inspected equatorial profiles of both meshes and compared them with the 

analytical solution, which showed us the spreading of the waves in time Figure 7.8. 
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Figure 7.8 – Equatorial profiles for 2D damped waves with Dirac Impulse I.C. in four iteration steps. Analytical solution – 

green dotted line, FD – blue line, TLM – red dashed line 
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7.1.2.1.2. Gaussian spread I.C. 

These simulations were run with the 2D Gaussian function spread (Figure 7.2) over the 

whole mesh with the peak of the function in the central node, with the same amplitude 

of 1 and variance 2 20.025mσ =  as for undamped wave simulations. Figure 7.9 shows the 

traces of the middle nodes for both approaches and Figure 7.10 are the equatorial profiles 

of both meshes. Analytical solution for the Gaussian spread I.C. wasn’t found due to its 

complexity. 

 
Figure 7.9 – Central node traces for 2D damped waves with Gaussian I.C. FD – blue line, TLM – red dashed line 
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Figure 7.10 – Equatorial profiles for 2D damped waves with Gaussian I.C. in four iteration steps. FD – blue line, TLM – red 

dashed line 

 

7.1.2.2. Discussion of the results 

Visual observations of Figure 7.7 and Figure 7.8 show that the numerical approximation 

of the analytical solution for the damped wave PDE using FD and TLM methods should be 

the same for Dirac impulse I.C., but for Gaussian I.C. we can notice slight differences in 

the traces in Figure 7.9 and in Figure 7.10 for the iteration steps 8 to 43. We compared the 

central traces again using Nash-Sutcliffe Efficiency Index and the results are shown in Table 

7-3: 

Table 7-3 – Nash-Sutcliffe Efficiency Index showing how similar are the central node traces between analytical solution and 
numerical methods and between FD and TLM when simulating 2D damped wave 

 Dirac Impulse I.C. Gaussian I.C. 
FD vs. analytical 0.767604 N/A 

TLM vs. analytical 0.749382 N/A 
TLM vs. FD 0.999869 0.992915 

We can notice from the Table 7-3 that for the simulations when the Dirac impulse is 

set as the I.C. FD method slightly better approximates the analytical solution. When the 
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Gaussian is set as the I.C. the difference between numerical methods is an order of 

magnitude larger than for Dirac impulse and 2 orders of magnitude larger than for 

Gaussian I.C. in undamped wave. Nevertheless, this is still considered an excellent match 

between FD and TLM methods. 

7.2. Comparing the NeuroField simulations using FD and TLM methods for solving 

the governing wave equation in MATLAB 

In this Section, the NeuroField simulations using the FD method, reprogrammed in 

MATLAB, are compared against the TLM method with the matched parameters. These 

methods are compared in simulations of three NeuroField models consisting of One-, 

Two- and Four- neuronal populations. 

7.2.1. One-population NeuroField model 

One-population NeuroField model is the simplest model that can be used to illustrate 

the neural dynamics in NeuroField. Although it is called One-population model, it 

effectively consists of two populations: one is stimulus and the other one is excitatory 

neural population, Figure 7.11. 

 
Figure 7.11 – Block diagram of One-population NeuroField model. Red arrow indicates inhomogeneous damped wave 

propagation; thick, dashed black arrow indicates stimulus propagation. 
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Parameters for this model were taken from (Robinson et al., 2004b), with the only 

difference in the axonal propagation parameters which are chosen, for illustrative 

purposes, as the maximum, 0.2abr m= , and the minimum, 130ab sγ −= , values of the given 

range, obtainable without effecting model-based constraints. The rest of the parameters 

used in these simulations are shown in Table 7-4, where 0
1Q  is the steady state, low firing 

rate in which the system was initially in. 

Table 7-4 – Simulation parameters for One-population NeuroField model 

v β=  x yN N=  _sim time  Steps  0
1Q  1υ   2υ   

6m s   84   0.15s   357   110s−   0   410 Vs−   
In order to compare FD and TLM methods, the simulations with five different stimuli 

are run: Pulse, Sine waves with frequencies 12Hz and 40Hz and Gaussian pulses with two 

different variances 2σ  depending on the same frequencies as used for Sine waves stimuli. 

The MATLAB code for the TLM method is presented in Appendix A, and for the FD method 

in Appendix B.  

7.2.1.1. Pulse stimulus 

For this simulation, the model was driven by a pulse applied in the centre of the grid, 

with the amplitude of 11s−  and the duration of 10dt . Time-series of the central nodes for 

both methods were inspected and their traces are showed in Figure 7.12. Neural activity 

distributions are shown in Figure 7.13 for FD and Figure 7.14 for TLM methods. Equatorial 

profiles of axonal fields are compared in Figure 7.15, and their power spectrums were 

compared in Figure 7.16. 
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Figure 7.12 – Central node traces for One-population NeuroField model driven by a pulse. A) Mean firing rate for population 

1, 𝑄𝑄1 ; B) propagation field 𝜑𝜑1. FD – blue line, TLM – red dashed line 

 

 
Figure 7.13 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using FD 

method. Axonal fields propagate radially outwards. The model was driven by a pulse applied at the centre of a grid. In each 
timeframe, the mean has been subtracted, so the colour shows deviations from the average amplitude at that iteration step. 
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Figure 7.14 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using TLM 

method. Axonal fields propagate radially outwards. The model was driven by a pulse applied at the centre of a grid. In each 
timeframe, the mean has been subtracted, so the colour shows deviations from the average amplitude at that iteration step. 

 

 
Figure 7.15 – Equatorial profiles of axonal fields, with the subtracted mean values, of the One-population model at four different 

iteration steps in the simulations. The model was driven by a pulse applied at the centre of a grid. FD – blue line, TLM – red dashed 
line. 
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Figure 7.16 – Power spectrum of the axonal fields in the One-population model with pulse drive. A) Power spectral density 
estimate of the central trace using the standard MATLAB function pwelch; B) Spatially summed spectrum using NeuroField 

MATLAB module. FD – blue line, TLM – red dashed line. 

 

7.2.1.2. Sine wave stimulus 

For this simulation, the model was driven by a sine wave applied in the centre of the 

grid of amplitude 11s−  and two different frequencies: 12Hz and 40Hz, corresponding to 

frequencies of alpha and gamma brain waves, respectively.  

Time-series of the central nodes for both methods were inspected and their traces are 

showed in Figure 7.17. Neural activity distributions are shown in Figure 7.18 for FD and 

Figure 7.19 for TLM methods. Equatorial profiles of axonal fields are compared in Figure 

7.20, and their power spectrums were compared in Figure 7.21. 
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Figure 7.17 – Central node traces for One-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1  with two 

different frequencies: 12Hz left figures, 40Hz right figures. A) and B) Mean firing rates for populations 1, 𝑄𝑄1 , C) and D) 
propagation fields 𝜑𝜑1. FD – blue line, TLM – red dashed line. 

 

 
Figure 7.18 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using FD 

method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 12Hz 
applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows deviations from the average 

amplitude at that iteration step. 
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Figure 7.19 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using TLM 

method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 12Hz 
applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows deviations from the average 

amplitude at that iteration step. 

 

 
Figure 7.20 – Equatorial profiles of axonal fields, with the subtracted mean values, of the One-population model at four different 
iteration steps in the simulations. The model was driven by a sine wave of amplitude 1𝑠𝑠−1  and frequency of 12Hz applied at the 

centre of a grid. FD – blue line, TLM – red dashed line. 
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Figure 7.21 – Power spectrum of the axonal fields in the One-population model with sine wave drive of amplitude 1𝑠𝑠−1  and 
two different frequencies: 12Hz top figures, 40Hz bottom figures. A) and C) Power spectral density estimates of the central 

traces using the standard MATLAB function pwelch; B) and D) Spatially summed spectrum using NeuroField MATLAB 
module. FD – blue line, TLM – red dashed line. 

 

7.2.1.3. Gaussian stimulus 

In order to excite the mesh with the broad frequency range, but to avoid the high 

frequencies, for this simulation the model was driven by a Gaussian pulse applied in the 

centre of the grid, with the amplitude of 11s−  and two different variances 2σ  depending 

on frequencies: 12Hz and 40Hz. Variances were calculated as: 
2

2

8
fσ =  , where f  is the 

frequency of interest. 

Time-series of the central nodes for both methods were inspected and their traces are 

showed in Figure 7.22. Neural activity distributions are shown in Figure 7.23 for FD and 

Figure 7.24 for TLM methods. Equatorial profiles of axonal fields are compared in Figure 

7.25, and their power spectrums were compared in Figure 7.26. 
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Figure 7.22 – Central node traces for One-population NeuroField model driven by a Gaussian wave of amplitude 1𝑠𝑠−1  and 

two different variances depending on frequencies: 12Hz left figures, 40Hz right figures. A) and B) Mean firing rates for 
populations 1, 𝑄𝑄1  , C) and D) propagation fields 𝜑𝜑1. FD – blue line, TLM – red dashed line. 

 

 
Figure 7.23 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using FD 

method. Axonal fields propagate radially outwards. The model was driven by a Gaussian wave of amplitude 1𝑠𝑠−1 and the variance 
for 12Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows deviations from the 

average amplitude at that iteration step. 
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Figure 7.24 – Neural activity distribution of the One-population model at four different iteration steps in a simulation using TLM 

method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 12Hz 
applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows deviations from the average 

amplitude at that iteration step. 

 

 
Figure 7.25 – Equatorial profiles of axonal fields, with the subtracted mean values, of the One-population model at four different 

iteration steps in the simulations. The model was driven by a Gaussian wave of amplitude 1𝑠𝑠−1  and the variance for 12Hz applied 
at the centre of a grid. FD – blue line, TLM – red dashed line. 
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Figure 7.26 – Power spectrum of the axonal fields in the One-population model with Gaussian wave of amplitude 1𝑠𝑠−1  and 
two different variances depending on frequencies: 12Hz top figures, 40Hz bottom figures. A) and C) Power spectral density 

estimates of the central traces using the standard MATLAB function pwelch; B) and D) Spatially summed spectrum using 
NeuroField MATLAB module. FD – blue line, TLM – red dashed line. 

 

7.2.1.4. Effects of changing the temporal damping coefficient  

To investigate the effects of changing temporal damping coefficient, abγ , on 

NeuroField models, we have used several values for abγ , that fall into the range showed 

in (Robinson et al., 2004b). Figure 7.27 and Figure 7.28 are central node traces and 

equatorial profiles for propagation fields 1ϕ , respectively, for three values: 30, 60 and 120 

1s−   . In these simulations, we kept the wave speed constant, thus changing the axonal 

range, abr  ,parameter accordingly. The models were driven by the sine wave of amplitude 

11s−  and frequency of 20Hz applied at the centre of the grid. 
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Figure 7.27 – Central node traces for One-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1  and 

frequency of 20Hz. 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1 – blue lines; 𝛾𝛾𝑎𝑎𝑎𝑎 = 60𝑠𝑠−1 – red lines; 𝛾𝛾𝑎𝑎𝑎𝑎 = 120𝑠𝑠−1 – green lines. FD – solid lines, TLM 
– dashed lines. 

 

 
Figure 7.28 – Equatorial profiles of axonal fields, with the subtracted mean values, of the One-population model at 

iteration step 49. The model was driven by a sine wave of amplitude 1𝑠𝑠−1  and frequency of 20Hz. 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1 – blue 
lines; 𝛾𝛾𝑎𝑎𝑎𝑎 = 60𝑠𝑠−1 – red lines; 𝛾𝛾𝑎𝑎𝑎𝑎 = 120𝑠𝑠−1 – green lines. FD – solid lines, TLM – dashed lines. 

 

 



107 
 

 
 

7.2.2. Two-populations NeuroField model 

A Two-population NeuroField model is the reduced Corticothalamic model from 

(Robinson et al., 2004b). It consists of three populations: excitatory cortical 1Q , relay 

nuclei 2Q  and stimulus 3Q . For illustration purposes, axonal propagation from relay 

nuclei to cortical population is also inhomogeneous damped wave, instead of “1-to-1” 

mapping used in the original corticothalamic model, Figure 7.29.  

 
Figure 7.29 – Block diagram of Two-populations NeuroField model. Red arrow indicates inhomogeneous damped wave 

propagation; thick, dashed black arrow indicates stimulus propagation. 

 

Parameters for this model were taken from (Robinson et al., 2004b). The initial steady 

state low firing rates for populations 1 (excitatory cortical) and 2 (relay nuclei) are 0
1Q  and 

0
2Q  respectively. In contrast with One-population model, axonal propagation parameters 

are not changed here. The rest of the parameters used in these simulations are shown in 

Table 7-5. 
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Table 7-5 – Simulation parameters for Two-population NeuroField model 

[ ]v m sβ=  9.9760  0 1
1Q s−    5.2484  

x yN N=  51 0 1
2Q s−    8.7897  

[ ]_sim time s  0.15  [ ]1 Vsυ  31.525 10−⋅  

Steps  360  [ ]2 Vsυ  45.675 10−⋅  

  [ ]3 Vsυ  33.593 10−⋅  

 

These models were driven by the sine wave stimulus of amplitude 11s−  and frequency 

of 20Hz applied in the centre of the grid. 

Time-series of the central nodes for both methods were inspected and their traces are 

showed in Figure 7.30. Neural activity distributions are shown in Figure 7.31 for FD and 

Figure 7.32 for TLM methods. Equatorial profiles of axonal fields are compared in Figure 

7.33, and their power spectrums were compared in Figure 7.34. 
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Figure 7.30 – Central node traces for Two-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1  and 

frequency of 20Hz. A) and C) Mean firing rates for populations 2 and 1, 𝑄𝑄2 and 𝑄𝑄1  respectively, B) and D) propagation fields 
𝜑𝜑2 and 𝜑𝜑1  ,respectively, driven by the corresponding mean firing rates. FD – blue line, TLM – red dashed line. 

 

 
Figure 7.31 – Distribution of the propagation field 𝜑𝜑2 from the Two-population model at four different iteration steps in a 

simulation using FD method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude1𝑠𝑠−1  
and frequency of 20Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows 

deviations from the average amplitude at that iteration step. 
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Figure 7.32 – Distribution of the propagation field 𝜑𝜑2 from the Two-population model at four different iteration steps in a 

simulation using TLM method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude1𝑠𝑠−1  
and frequency of 20Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows 

deviations from the average amplitude at that iteration step. 

 

 
Figure 7.33 – Equatorial profiles of axonal fields, 𝜑𝜑2 , with the subtracted mean values, of the Two-population model at four 

different iteration steps in the simulations. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 and frequency of 20Hz applied 
at the centre of a grid. FD – blue line, TLM – red dashed line. 
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Figure 7.34 – Power spectrum of 𝜑𝜑2 axonal fields in the Two-population model with sine wave of amplitude 1𝑠𝑠−1  and 

frequency of 20Hz. A) Power spectral density estimates of the central traces using the standard MATLAB function pwelch; B) 
spatially summed spectrum using NeuroField MATLAB module. FD – blue line, TLM – red dashed line. 

7.2.3. Four-populations NeuroField model 

Four-populations NeuroField model represents the complete Corticothalamic model 

from (Robinson et al., 2004b). It consists of five populations: excitatory and inhibitory 

cortical 1Q  and 2Q , reticular 3Q , relay nuclei 4Q  and stimulus 5Q , Figure 7.35. The main 

difference between this NeuroField model and Corticothalamic model in Robinson 2004 

is that this model was driven by the sine wave stimulus of amplitude 11s−  and frequency 

of 20Hz applied in the centre of the grid instead of the spatiotemporal white noise used 

to approximate external stimuli of the spontaneous EEG.  
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Figure 7.35 – Block diagram of Four-populations NeuroField model. Red arrows indicate inhomogeneous damped wave 

propagations; thick, dashed black arrow indicates stimulus propagation; blue arrows are “1-to-1” mapping. 

 

Parameters for this model were also taken from (Robinson et al., 2004b). The initial 

steady state low firing rates for populations are denoted with the superscript 0 in the Table 

7-6. Axonal propagation parameters are the same as for Corticothalamic model. In this 

model, some connections have included long range time delay 10dtτ = . The rest of the 

parameters used in these simulations are the same as for Two-populations model, like the 

wave speed, number of cells in the grid, thus equal dx  as well, simulation time and 

number of steps, which gives the same dt too. 

Table 7-6 – Simulation parameters for Four-population NeuroField model 

0 1
1Q s−    5.2484  [ ]4 Vsυ  31.525 10−⋅  
0 1
2Q s−    5.2484  [ ]5 Vsυ  3-3.023 10−⋅  
0 1
3Q s−    15.3960   [ ]6 Vsυ  45.675 10−⋅  
0 1
4Q s−    8.7897  [ ]7 Vsυ  41.696 10−⋅   

  [ ]8 Vsυ  55.070 10−⋅   
[ ]1 Vsυ  31.525 10−⋅  [ ]9 Vsυ  33.447 10−⋅   
[ ]2 Vsυ  3-3.023 10−⋅   [ ]10 Vsυ  3-1.465 10−⋅   
[ ]3 Vsυ  45.675 10−⋅  [ ]11 Vsυ  33.593 10−⋅  
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Time-series of the central nodes for both methods were inspected and their traces are 

showed in Figure 7.36 and Figure 7.37. Neural activity distributions are shown in Figure 7.38 

for FD and Figure 7.39 for TLM methods. Equatorial profiles of axonal fields are compared 

in Figure 7.40, and their power spectrums were compared in Figure 7.41. 

 
Figure 7.36 – Central node traces for Four-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1  and 

frequency of 20Hz. A) and B) Mean firing rates for populations 1 and 2, 𝑄𝑄1 and 𝑄𝑄2  respectively, C) and D) propagation fields 
𝜑𝜑1 and 𝜑𝜑2  ,respectively, driven by the corresponding mean firing rates shown above them. FD – blue line, TLM – red dashed 

line. 
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Figure 7.37 – Central node traces for Four-population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1  and 

frequency of 20Hz. A) and B) Mean firing rates for populations 3 and 4, 𝑄𝑄3 and 𝑄𝑄4  respectively, C) and D) propagation fields 
𝜑𝜑10 and 𝜑𝜑3  ,respectively, driven by the corresponding mean firing rates shown above them. FD – blue line, TLM – red 

dashed line. 

 



115 
 

 
 

 
Figure 7.38 – Distribution of the propagation field 𝜑𝜑1  from the Four-population model at four different iteration steps in a 

simulation using FD method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 
and frequency of 20Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows 

deviations from the average amplitude at that iteration step. 

 
Figure 7.39 – Distribution of the propagation field 𝜑𝜑1  from the Four-population model at four different iteration steps in a 

simulation using TLM method. Axonal fields propagate radially outwards. The model was driven by a sine wave of amplitude 1𝑠𝑠−1 
and frequency of 20Hz applied at the centre of a grid. In each timeframe, the mean has been subtracted, so the colour shows 

deviations from the average amplitude at that iteration step. 
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Figure 7.40 – Equatorial profiles of axonal fields, 𝜑𝜑1, with the subtracted mean values, of the Four-population model at four 

different iteration steps in the simulations. The model was driven by a sine wave of amplitude  1𝑠𝑠−1 and frequency of 20Hz applied 
at the centre of a grid. FD – blue line, TLM – red dashed line. 
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Figure 7.41 – Power spectrum of some axonal fields in the Four-population model with sine wave of amplitude 1𝑠𝑠−1  and 

frequency of 20Hz. Top pair corresponds to 𝜑𝜑1 , middle to 𝜑𝜑3 and bottom pair to 𝜑𝜑5 . A), C) and E) are Power spectral 
density estimates of the central traces using the standard MATLAB function pwelch; B), D) and F) are spatially summed 

spectrums using NeuroField MATLAB module. FD – blue line, TLM – red dashed line. 

 

7.2.4. Discussion of the results 

In this Section, we compared two numerical methods for solving the governing 

inhomogeneous damped wave differential equation in NeuroField, FD and TLM. 

NeuroField models with three levels of complexity (Figure 7.11, Figure 7.29 and Figure 7.35) 

were simulated for both methods. It is noticeable from inspecting the figures in Section 

7.2 for all three NeuroField models that there are some slight differences between FD and 

TLM methods when the axonal propagation fields are compared (Table 7-7). In One-
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population models, mean firing rates are the same, because they don’t depend on 

damped wave propagation fields. However, in other models, some differences can be 

observed (Table 7-7). 

Table 7-7 – Nash-Sutcliffe Efficiency Index (NSEI) for the central node traces of mean firing rates and axonal propagation 
fields showing how similar they are between FD and TLM methods for all three NeuroField models presented in Figures 7.12 
to 7.37. 

   NSEI 

O
ne

-p
op

ul
at

io
n 

m
od

el
 

Figure 7.12 1Q  1 

1ϕ  0.9616 

Figure 7.17 1Q  1 

1ϕ  0.9974 

Figure 7.22 1Q  1 

1ϕ  0.9616 
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Figure 7.30 

1Q  0.9965 

2Q  1 

1ϕ  0.9786 

2ϕ  0.9743 

Fo
ur
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ul
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Figure 7.36 

1Q  0.9924 

2Q  0.9924 

1ϕ  0.9834 

2ϕ  0.9924 

Figure 7.37 

3Q  0.9929 

4Q  0.9949 

10ϕ  0.9929 

3ϕ  0.9965 
 

The rapid alterations in the power spectrum of a single traces (central trace), 

observable in Figures, are the artefacts that occur due to windowing, considering that only 

5 periods were used for the sine stimulus. When the power spectrums of all the traces are 

spatially summed the artefacts are gone. 
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7.2.4.1. Time of code execution 

According to (Sadiku, 2009), the FD methods can be up to two times faster in CPU time 

than equivalent TLM programs under identical conditions. In order to compare the CPU 

times required for both methods, the main algorithm of NeuroField program, along with 

the FD approximation of the governing wave PDEs, was translated from C++ into MATLAB 

(Appendix B) and then the execution times for each simulation were measured. The results 

are shown in the Table 7-8.  

Table 7-8 – Average execution times for FD and TLM simulations of NeuroField One- and Four-populations models ran in 
MATLAB 2017a and C++ 

 MATLAB 2017a C++ 
 FD [s] TLM [s] FD [s] 
One-population model: 
8 simulations/method 3048.70 3048.67 8.504 

Four-population model: 
1 simulation/method 12469.76 12671.11 12.347 

 

From the Table 7-8 we can see that both methods’ execution times in MATLAB, even 

though they are equally fast, are significantly worse than compared to NeuroField 

program built in C++, where the same Four-population model takes only 12 seconds to 

execute. The biggest slowdown in both MATLAB programs is the calculation of differential 

equations required to find soma potentials abV , using standard MATLAB function ode45. 

Finding abV  is necessary for calculation of firing rates for each population. 

The real CPU time required for FD and TLM methods in MATLAB was obscured because 

of the calculation of differential equations required to find soma potentials abV , thus we 

ran another comparison of CPU time of code execution for both numerical methods by 

bypassing the slow pre-processing algorithm. 
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Table 7-9 – Average execution times for FD and TLM simulations of NeuroField One- and Four-populations models ran in 
MATLAB 2017a when the slow pre-processing algorithm is bypassed 

 FD [s] TLM [s] Ratio (TLM/FD) 

One-population model 0.08569 0.18695 2.1817 

Four-population model 0.15972 0.30451 1.9065 
 

This time, we can see from Table 7-9 that for the One-population model the FD method 

is two times faster than the equivalent TLM program, which agrees with the literature 

(Sadiku, 2009). The result isn’t surprising because the TLM method has four commands to 

execute in each iteration (calculate current kI , calculate scattered pulses, connect to the 

next nodes, calculate new nodes’ voltages), where in the FD method the 5-point stencil is 

sliding across the whole mesh in two “for” loops. When the complexity of the model is 

increasing, it is noticeable that the CPU time difference is lowering. This is probably due 

to the matrix implementation of TLM method, which is significantly faster to execute in 

MATLAB than “for” loops used in FD method. 

Perhaps the code execution times for TLM could be reduced more by more careful 

code optimisation, but FD method run times could also be lowered by using the matrix 

approach, as described in Chapter 5. 

7.2.4.2. Fitting parameters in TLM method to better correspond to FD 

While we were testing the effects of changing temporal damping coefficient, abγ , on 

NeuroField models, Figure 7.27, we found that central node traces reach maximum firing 

rate faster as abγ  is rising. That behaviour was observed for both methods and it shows 

that governing inhomogeneous damped wave differential equation is acting like a 

response from an overdamped RLC Low Pass Filter. When abγ  is rising, damped wave 



121 
 

 
 

equation will reach critically damped response, which is the rise with the fastest possible 

time without getting into oscillation (unstable) state. If we would push abγ  above critical 

stage, we would get the underdamped oscillatory response. From the same figure, it is 

also noticeable that there is almost constant difference between two methods as the 

damping coefficient is changing. 

Equatorial profiles in Figure 7.28 show that there is a difference in wave spreading as 

temporal damping coefficient is changing, but the radius of the spread remains the same, 

which is expected as the wave speed is kept constant. 

Analysing Figure 7.27 we found that in order to have the same axonal propagation 

fields from both numerical methods, we should make abγ  parameter slightly bigger in 

TLM, which is probably due to the stray inductances and capacitances in TLM nodes. We 

used Nash-Sutcliffe Efficiency Index to compare 1ϕ  from both methods and find the 

optimal value for abγ  parameter in TLM, Table 7-10. If we would plot the original versus 

optimal parameters we would get the linear function, shown in Figure 7.42. 

Table 7-10 – Temporal damping coefficients 𝛾𝛾𝑎𝑎𝑎𝑎 used in NeuroField models with TLM method, original and optimally fitted 
and Nash-Sutcliffe Efficiency Index (NSEI) comparing axonal propagation fields when using TLM to FD method with original 
𝛾𝛾𝑎𝑎𝑎𝑎. 

Original abγ  
NSEI for original 

abγ  Optimal abγ  
NSEI for optimal 

abγ  
One-population model 

30 0.9616204 36 0.9999256 
40 0.9675656 48 0.9999242 
60 0.9722288 72 0.9999093 

100 0.9754292 120 0.9998594 
120 0.9762378 144 0.9998289 
150 0.9771014 181 0.9997777 

Four-population model 
116 0.9951895 140 0.9999839 
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Figure 7.42 – The relationship between original versus optimal 𝛾𝛾𝑎𝑎𝑎𝑎 parameters after fitting TLM method to FD for One-

population model. Blue line – straight line connection between data points (Red dots), Green dashed line – linear fit 
through data points. 

 

Finally, we used the optimal abγ  parameters found for One- and Four-populations 

models to run the TLM simulations again and compared them to FD simulations with the 

original abγ  parameters. The results for One-population model driven by the sine wave of 

amplitude 11s−  and frequency of 20Hz applied at the centre of the grid, for 130ab sγ −=  are 

shown in Figure 7.43 for central node traces and Figure 7.44 for equatorial profiles, while 

the results for Four-population model with 1116ab sγ −=  driven by the same stimulus and 

are shown in Figure 7.45 and Figure 7.46. 

From these figures we can see that TLM method is almost perfectly matched with FD 

when optimal value for abγ  parameter is used. 
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Figure 7.43 – Fitting 𝛾𝛾𝑎𝑎𝑎𝑎 parameters for TLM method to match FD. Central node traces of propagation fields for One-

population NeuroField model driven by a sine wave of amplitude 1𝑠𝑠−1  and frequency of 20Hz. FD – solid blue line with 
𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1, TLM – dashed lines: 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1 – black; 𝛾𝛾𝑎𝑎𝑎𝑎 = 36𝑠𝑠−1 – red; 𝛾𝛾𝑎𝑎𝑎𝑎 = 37𝑠𝑠−1 – green; 𝛾𝛾𝑎𝑎𝑎𝑎 = 38𝑠𝑠−1 – 

purple. 

 

 
Figure 7.44 – Fitting 𝛾𝛾𝑎𝑎𝑎𝑎 parameters for TLM method to match FD. Equatorial profiles of axonal fields, with the 

subtracted mean values, of the One-population model at iteration step 50. The model was driven by a sine wave of 
amplitude 1𝑠𝑠−1  and frequency of 20Hz. FD – solid blue line with 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1, TLM – dashed lines: 𝛾𝛾𝑎𝑎𝑎𝑎 = 30𝑠𝑠−1 – black; 

𝛾𝛾𝑎𝑎𝑎𝑎 = 36𝑠𝑠−1 – red; 𝛾𝛾𝑎𝑎𝑎𝑎 = 37𝑠𝑠−1 – green; 𝛾𝛾𝑎𝑎𝑎𝑎 = 38𝑠𝑠−1 – purple. 
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Figure 7.45 – Fitting 𝛾𝛾𝑎𝑎𝑎𝑎 parameters for TLM method to match FD. Central node traces for Four-population NeuroField 
model driven by a sine wave of amplitude 1𝑠𝑠−1  and frequency of 20Hz. A) Mean firing rates for population 1, 𝑄𝑄1, B) 

propagation fields 𝜑𝜑1. FD – solid blue line with 𝛾𝛾𝑎𝑎𝑎𝑎 = 116𝑠𝑠−1, TLM – dashed red line with 𝛾𝛾𝑎𝑎𝑎𝑎 = 140𝑠𝑠−1. 

 

 
Figure 7.46 – Fitting 𝛾𝛾𝑎𝑎𝑎𝑎 parameters for TLM method to match FD. Equatorial profiles of axonal fields, with the 

subtracted mean values, of the Four-population model at iteration step 49. The model was driven by a sine wave of 
amplitude 1𝑠𝑠−1  and frequency of 20Hz. FD – solid blue line with 𝛾𝛾𝑎𝑎𝑎𝑎 = 116𝑠𝑠−1, TLM – dashed red line with 𝛾𝛾𝑎𝑎𝑎𝑎 =

140𝑠𝑠−1. 

 

7.3. Conclusion 

The two numerical methods (TLM and FD) were compared in this Chapter for different 

levels of complexity of wave PDEs. First, they were compared by solving the least 

complicated case, the undamped wave PDEs (subsection 7.1.1). Afterwards, the methods 

were tested on damped wave PDEs (subsection 7.1.2). Finally, TLM and FD were compared 

for three cortical models (one-, two- and four-population), governed by the 
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inhomogeneous damped wave PDEs, and with the Dirac impulse, Gaussian wave and sine 

wave as the stimuli. The Dirac impulse was used to test the models’ response to a single 

shot excitation. In order to excite the mesh with the broad frequency range, but to avoid 

the high frequencies, the Gaussian wave was chosen for a stimulus. Finally, to test the 

model for the specific frequencies that may occur in brain, the sine wave stimulus was 

used. The results of NeuroField simulations with TLM method show a great compatibility 

when compared to NeuroField numerically approximated by FD (Table 7-7). The slight 

differences in simulations may occur due to the stray inductances and capacitances in TLM 

nodes and it was shown that they could be minimised by changing the temporal damping 

coefficient abγ in TLM based model (subsection 7.2.4.2). 

The computational efficiency the TLM method was tested in subsection 7.2.4.1. It has 

been shown that for the One-population model the FD method is two times faster in CPU 

time than the equivalent TLM program, which agrees with the literature (Sadiku, 2009), 

but as the complexity of the model is increasing, it is noticeable that the difference in 

required CPU time is lowered due to the matrix implementation of TLM method, which is 

considerably faster to execute in MATLAB than “for” loops used in FD method. 

  



 
 

126 
 

8. Conclusions and recommendations for future work 

The TLM method is one of the best-known examples of analogue models used to 

numerically solve the equations modelling a physical phenomenon. In TLM, an electrical 

network is used to mimic the physical problem, so the solutions could be obtained using 

conventional circuit analysis techniques in either the time or frequency domains. The 

versatility of the TLM method allows straightforward calculation of complicated 

structures, boundaries and material properties. There are no problems with convergence, 

stability or spurious solutions in TLM and the method is limited only by the amount of 

memory storage required, which depends on the complexity of the TLM mesh (Hoefer, 

1985). Due to its simplicity of formulation and programming, it is used in variety of 

research fields where the wave equations should be solved numerically. The major 

advantage of the TLM over FD method is that all the required discretisation is built-in in 

the initial model, which is then solved without any further approximation avoiding many 



127 
 

 
 

anomalous effects that can arise in FD (Cogan et al., 2005). When compared to FDTD in 

EM models TLM is reported to sometimes be two times slower in CPU time and requires 

more memory space (Sadiku, 2009). That is mostly due to a simpler mathematical 

algorithm which the FDTD is based on and the fact that for 3D node FDTD requires only 

seven real memory stores compared to 22 stores per node in TLM for an isotropic 

dielectric medium (Sadiku, 2009). One of the possible applications of TLM method is in 

neuroscience, specifically, in modelling the brain functions as speculated by Nunez in 

(Nunez & Srinivasan, 2006) and Weiner in (M. Weiner, 2010), where the TLM method may 

be used as a framework to describe neurological activity of the brain, since it relies on a 

vast array of nerve fibres and synapses, analogous to the transmission lines and nodes of 

the TLM matrix.  

In this thesis, the feasibility to numerically solve the governing inhomogeneous 

damped wave PDEs from neural field theory, used in NeuroField program, using TLM 

techniques has been explored. The hypothesis tested was whether the usage of TLM leads 

to more understandable and efficient brain modelling and what the cost in computer 

resources for those benefits is.  This approach differs from the currently used FD 

numerical method by providing the electrical equivalent network where all the NeuroField 

model parameters have analogues in electrical elements of TLM node, thus enabling 

better interpretation of the physical implications of discretisation and of the model. In 

order to compare the cost in computer resources of both methods, the main algorithm of 

NeuroField program, along with the FD approximation of the governing wave PDEs was 

translated from C++ into MATLAB (Appendix B). 
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NeuroField is a multiscale neural field brain model developed by Prof. Peter Robinson 

and his Brain Dynamics group at The University of Sydney (P. Sanz-Leon, 2017; Robinson 

et al., 2005). It models the whole brain dynamics through the interactions of spatially 

extended populations of neurons and can predict the spectral and time characteristics of 

brain electrical activity observable by various non-invasive imaging modalities (P. Sanz-

Leon, 2017). The governing neural field equations in NeuroField represent the axonal 

propagation of activity through the cortex and are numerically solved in NeuroField by 

applying the FD method (Robinson et al., 1997). 

In Chapter 6 the numerical approximations of NeuroField damped wave equations 

were developed and solved using TLM method. The electrical equivalent parameters for 

TLM node are calculated in the same Chapter. The analysis of space and time 

discretisation for both methods showed that TLM is unconditionally stable method, 

compared to FD, where the length of the cell and the time step need to be picked 

cautiously so that they can meet the Courant condition.  

Two methods were compared in Chapter 7 using three levels of complexity of cortical 

models (one-, two- and four-population) and with Dirac impulse, sine wave and Gaussian 

wave as the stimuli. The results of NeuroField simulations with TLM method show a great 

compatibility when compared to NeuroField numerically approximated by FD. The slight 

differences in simulations may occur due to the stray inductances and capacitances in TLM 

nodes and can be minimised by changing the temporal damping coefficient abγ in TLM 

based model. 

Being a viable solution, the computational efficiency the TLM method was tested. It 

has been shown that for the One-population model the FD method (Appendix B) is two 
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times faster in CPU time than the equivalent TLM program (Appendix A), which agrees with 

the literature (Sadiku, 2009), but as the complexity of the model is increasing, it is 

noticeable that the difference in required CPU time is lowered due to the matrix 

implementation of TLM method, which is considerably faster to execute in MATLAB than 

“for” loops used in FD method. 

Encouraged by these results, we propose that the next step in TLM modelling of neural 

fields would be to translate the developed TLM code in C++ language, and plug it into the 

NeuroField code for further testing of the compatibility and speed of execution. When 

compared to FD method built in C++ NeuroField program, where the same Four-

population model takes only couple of seconds to execute, both methods’ execution times 

in MATLAB are significantly worse due to the slow pre-processing algorithm for calculation 

of differential equations required to find soma potentials abV , using standard MATLAB 

function ode45. 

Replacing the FD method for numerically approximating governing wave equations in 

NeuroField with TLM should enable better interpretation of the physical implications of 

discretisation and of the model by modelling the physical problem with the electrical 

equivalent network where all the NeuroField model parameters have analogues in 

electrical elements of TLM node, thus opening a great possibility for a development of a 

brain-on-the-chip for in-silico multiscale brain experimentation, which will greatly help 

the advancement of neuroscience. 
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Appendix A: MATLAB code for One-population model using TLM 

function [Q_POP1, PHI1, Q_POP2, PHI2] = TLM_code_Neurofield_1popNFTMod_Sine 
(freq,r_a,gamma_ab) 
  
%% TLM NeuroField code 
% Implementation of the lossy TLM cell with parameters matched with NeuroField: 
% Zo=1; Ld=2*Cd*Zo^2=Zo/(gamma_ab*r_a); Rd = (Zo/(2*r_a)); Gd = 1/(Zo*2*r_a); V=Phi; 
Ik=((dx/(Zo*r_a))*Q+(1/(gamma_ab*dt_tlm))*Ik(iter-1))/(1+1/(gamma_ab*dt_tlm)); 
% Simulation of "onepop.conf" with Sine wave stimulus and periodic BC 
  
%% Set global variables 
global alpha beta P_i 
% UNITS 
meters      = 1; 
seconds     = 1; 
hertz       = 1/seconds; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% DASHBOARD 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% NEUROFIELD PARAMETERS 
  
% Grid size 
Nx_nft = 30; % number of cells in X direction 
Ny_nft = 30; % number of cells in Y direction 
  
% Sigmoid parameters 
Theta = 0.01292; 
Sigma = 0.0038; 
Qmax = 340; 
  
% Dendrite parameters 
alpha = 83; 
beta = 769; 
  
% Propagation parameters (wave) 
% r_a = 0.2 * meters; % mean range of axons 
% gamma_ab = 30 * hertz; % cortical damping rate 
v_a = r_a * gamma_ab; % axonal velocity 
  
% Coupling parameters 
nu_1 = 0; 
nu_2 = 1e-4; 
  
% Initial firing rate for the whole population: 
Qin = 10; 
  
% SOURCE PARAMETERS 
fmax = 100 * hertz; % max freq that we want to simulate. From fmax we calculate the 
duration of our pulse source! 
lam0 = v_a/fmax; % minimal freespace wavelength of our simulation 
  
% DEVICE PARAMETERS 
w = 0.5 * meters; 
h = 0.5 * meters; 
  
% GRID PARAMETERS 
disp_fact = 0.1; % dispersion factor for TLM (when dx/lam <= 0.1 v_tlm = 1/sqrt(2)*v_a 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% COMPUTE OPTIMIZED GRID 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% NOMINAL RESOLUTION 
  
dx_tlm  = lam0*disp_fact; % grid resolution resolving the shortest wavelength (lam0/nmax = 
min wavelength) 
dx_nft  = w/Nx_nft; % resolving the minimum dimension 
dx      = min([dx_tlm dx_nft]); 
dy      = dx; 
  
% SNAP GRID TO CRITICAL DIMENSION 
Nx = ceil(w/dx); 
dx = w/Nx; 
Ny = ceil(w/dy); 
dy = w/Ny; 
  
  
%% The rest of GRID parameters for TLM 
v_tlm = v_a; % speed of the wave 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% BUILD DEVICE ON GRID 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% COMPUTE START AND STOP INDICES OF DEVICE 
nx_dev = round(w/dx); % number of cells for width of the device = Nx in this case 
x_start_dev = 2; % where does the device start on our grid 
x_end_dev = x_start_dev + nx_dev - 1; % where does the device end on our grid 
ny_dev = round(h/dy); % = Ny in this case 
y_start_dev = 2; 
y_end_dev = y_start_dev + ny_dev - 1; 
  
% COMPUTE GRID SIZE 
Nx = nx_dev + 2; % number of cells, including boundary regions 
Sx = Nx*dx; % new physical size of the whole simulation grid 
  
Ny = ny_dev + 2; 
Sy = Ny*dy; 
  
% COMPUTE GRID AXIS 
xa = (0:Nx-1)*dx; 
ya = (0:Ny-1)*dy; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% COMPUTE THE SOURCE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% COMPUTE STABLE TIME STEP (dt) 
dmin = min([dx dy]); 
dt_tlm = dmin/(sqrt(2)*v_tlm); 
% freq = 20*hertz; 
  
% COMPUTE SOURCE PARAMETERS 
tau = 0.5/freq; % duration needs to be sufficient so that includes enough power at max freq 
t0 = 3*tau; % offset - if not given at the 1st step we will be in the middle of gaussian. 

% It's not good to turn on the source that fast, we should rather ease into it  
% and out of it. 

  
% COMPUTE THE NUMBER OF TIME STEPS 
STEPS = 357+1; % 5 periods 
  
% COMPUTE THE SOURCE 
% ta = (0: STEPS-1-1)*dt_tlm; % time array 
ta = (1: STEPS-1)*dt_tlm; % time array - it should begin with 0, 

    % but this way is consistent with NeuralField Cpp program 
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% Gaussian source: 
% stim = exp(-((ta - t0)/tau).^2); 
% stim(ceil(2*t0/dt_tlm)+2:end)=0; % cut Gaussian to be symmetrical with respect to centre 
  
% Sine wave source: 
stim = 1*sin(2*pi*freq*ta); 
  
% Pulse source: 
% pulse_ON = 1; 
% pulse_OFF = 9; 
% stim = zeros(1,length(ta)); 
% stim(pulse_ON:pulse_OFF) = 1; 
  
% POSITION OF THE SOURCE 
nx_src = ceil(Nx/2); 
ny_src = ceil(Ny/2); 
  
%% Plot stimulus 
% figure() 
% plot(ta,stim) 
% xlabel('Time (s)') 
% ylabel('Amplitude') 
% title('Stimulus') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% INITIALIZE TLM PARAMETERS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Zo = 1; 
Ro = dx*(Zo/(2*r_a)); 
G = 2*dx*(1/(Zo*2*r_a)); 
  
C1 = 8/(4+(Ro+Zo)*G); 
C2 = (Ro+Zo)/(4+(Ro+Zo)*G); 
C3 = dx/(Zo*r_a); 
C4 = 1/(gamma_ab*dt_tlm); 
C5 = 1+C4; 
  
% set up connection matrices 
Cn=[[zeros(Nx-1,1) eye(Nx-1)];zeros(1,Nx)];Cs=Cn'; 
Ce=[[zeros(Ny-1,1) eye(Ny-1)];zeros(1,Ny)];Cw=Ce'; 
  
% make room for incident and scattered voltages 
mvi = zeros(Ny,Nx,4); % Matrix of Vis all points repeated 4x (4 ports ) for each 
interaction 
mvr = zeros(Ny,Nx,4); % Matrix of Vrs all points repeated 4x (4 ports ) for each 
interaction 
Ey = zeros(Ny,Nx); % Matrix of Ex for all the points for each interaction 
Ik = zeros(Ny,Nx); % Current source generator 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% INITIALIZE POPULATIONS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Q_POP1 = zeros(ny_dev,nx_dev,STEPS); % Mean firing rate for Population 1 
PHI1 = zeros(ny_dev,nx_dev,STEPS); % Axonal propagation field 1 
Q_POP2 = zeros(ny_dev,nx_dev,STEPS); % Mean firing rate for Population 2 
PHI2 = zeros(ny_dev,nx_dev,STEPS); % Axonal propagation field 2 
  
Q_POP1(:,:,1:2) = Qin; 
PHI1(:,:,1:2) = Qin; 
  
% Initialize Nodal Voltages for TLM: 
Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev) = C3*Q_POP1(:,:,1); 
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mvi(y_start_dev:y_end_dev,x_start_dev:x_end_dev,1)=(PHI1(:,:,1)-
C2*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C1; 
mvi(y_start_dev:y_end_dev,x_start_dev:x_end_dev,2)=(PHI1(:,:,1)-
C2*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C1; 
mvi(y_start_dev:y_end_dev,x_start_dev:x_end_dev,3)=(PHI1(:,:,1)-
C2*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C1; 
mvi(y_start_dev:y_end_dev,x_start_dev:x_end_dev,4)=(PHI1(:,:,1)-
C2*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C1; 
  
Ey(:,:)=(2*(mvi(:,:,1)+mvi(:,:,2)+mvi(:,:,3)+mvi(:,:,4)))/(4+(Ro+Zo)*G)+Ik(:,:)*((Ro+Zo)/(4
+(Ro+Zo)*G)); 
% Now Ey(:,:,1)=PHI_POP1(:,:,1)=Q_POP1(:,:,1)=Qin 
  
% Initialize vars for diff eq to get some potential V: 
timerange = [0 dt_tlm]; 
V_i = zeros(1,ny_dev*nx_dev); 
dV_i_dt = zeros(1,ny_dev*nx_dev); 
  
h = waitbar(0,'Please wait...'); % Initialise progress bar 
tic 
 
for iter = 2:STEPS % Main loop 
     
    % Finding Q_POP1: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Solving diff eq to get soma potential V: 
    P = nu_1*PHI1(:,:,iter-1) + nu_2*PHI2(:,:,iter-1); 
    P = reshape(P,[],1); 
    for i = 1 : length(P) 
        P_i = P(i); 
        initalvalue = [V_i(i) dV_i_dt(i)]; 
        [~,V_temp] = ode45(@soma_potential,timerange,initalvalue); 
        V_i(i)  = V_temp(end,1); 
        dV_i_dt(i) = V_temp(end,2); 
    end 
    V = reshape(V_i,ny_dev,nx_dev); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Q_POP1(:,:,iter) = Qmax./( 1 + exp( -(V-Theta)./Sigma ) ); 
     
     
    % Calculate PHI1 (TLM scatter process): 
     
    Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev) = 
(C3*Q_POP1(:,:,iter)+C4*Ik(y_start_dev:y_end_dev,x_start_dev:x_end_dev))/C5; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculate scattered pulses 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    mvr(:,:,:) = (Ey(:,:).*Zo + mvi(:,:,:).*(Ro-Zo))./(Ro+Zo); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Connection to next node - calculate incident pulses 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    mvi(:,:,1) = Cn*mvr(:,:,3); 
    mvi(:,:,3) = Cs*mvr(:,:,1); 
    mvi(:,:,2) = mvr(:,:,4)*Ce; 
    mvi(:,:,4) = mvr(:,:,2)*Cw; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Boundary conditions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Periodic BC - folded sheet simulating torus 
    mvi(2,:,3) = mvr(Ny-1,:,1); 
    mvi(Ny-1,:,1) = mvr(2,:,3); 
    mvi(:,Nx-1,4) = mvr(:,2,2); 
    mvi(:,2,2) = mvr(:,Nx-1,4); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Outputs to a specific point of the mesh 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Ey(:,:) = (2*(mvi(:,:,1)+mvi(:,:,2)+mvi(:,:,3)+mvi(:,:,4)))/(4+(Ro+Zo)*G) + 
Ik(:,:)*((Ro+Zo)/(4+(Ro+Zo)*G)); 
     
    PHI1(:,:,iter) = Ey(y_start_dev:y_end_dev,x_start_dev:x_end_dev); 
     
    % Calculate PHI2: 
    Q_POP2(ny_src,nx_src,iter) = stim(iter-1); 
    PHI2(:,:,iter) = Q_POP2(:,:,iter); % this is because the propagation function is "MAP" 
     
    % update progress bar: 
    waitbar(iter/STEPS,h,[num2str(iter) ' of ' num2str(STEPS) ' finished']) 
end 
  
toc 
close(h) % close progress bar 
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Appendix B: MATLAB code for One-population model using FD 

function [Q_POP1, PHI1, Q_POP2, PHI2] = Neurofield_Matlab_1popNFTMod_Sine 
(freq,r_a,gamma_ab) 
  
%% NeuroField code in Matlab 
% Reprogramed NFT code from C++ to Matlab for comparison with TLM Neurofield code 
% Simulation of "onepop.conf" with Sine wave, Gaussian and Pulse stimulus and periodic BC 
  
%% Set global variables 
global alpha beta P_i 
% UNITS 
meters      = 1; 
seconds     = 1; 
hertz       = 1/seconds; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% DASHBOARD 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% NEUROFIELD PARAMETERS 
  
% Grid size 
Nx_nft = 30; % number of cells in X direction 
Ny_nft = 30; % number of cells in Y direction 
  
% Sigmoid parameters 
Theta = 0.01292; 
Sigma = 0.0038; 
Qmax = 340; 
  
% Dendrite parameters 
alpha = 83; 
beta = 769; 
  
% Propagation parameters (wave) 
% r_a = 0.2 * meters; % mean range of axons 
% gamma_ab = 30 * hertz; % cortical damping rate 
v_a = r_a * gamma_ab; % axonal velocity 
  
% Coupling parameters 
nu_1 = 0; 
nu_2 = 1e-4; 
  
% Initial firing rate for the whole population: 
Qin = 10; 
  
% SOURCE PARAMETERS 
fmax = 100 * hertz; % max freq that we want to simulate. From fmax we calculate the 
duration of our pulse source! 
lam0 = v_a/fmax; % minimal freespace wavelength of our simulation 
  
% DEVICE PARAMETERS 
w = 0.5 * meters; 
h = 0.5 * meters; 
  
% GRID PARAMETERS 
disp_fact = 0.1; % dispersion factor for TLM (when dx/lam <= 0.1 v_tlm = 1/sqrt(2)*v_a 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% COMPUTE OPTIMIZED GRID 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% NOMINAL RESOLUTION 
  
dx_tlm  = lam0*disp_fact; % grid resolution resolving the shortest wavelength (lam0/nmax = 
min wavelength) 
dx_nft  = w/Nx_nft;% resolving the minimum dimension 
dx      = min([dx_tlm dx_nft]); 
dy      = dx; 
  
% SNAP GRID TO CRITICAL DIMENSION 
Nx = ceil(w/dx); 
dx = w/Nx; 
Ny = ceil(w/dy); 
dy = w/Ny; 
  
% Adjust wave speed: 
v_tlm = v_a; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% COMPUTE THE SOURCE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% COMPUTE STABLE TIME STEP (dt) 
dmin = min([dx dy]);  
dt_tlm = dmin/(sqrt(2)*v_tlm); 
% freq = 20*hertz; 
  
% COMPUTE SOURCE PARAMETERS 
tau = 0.5/freq; % duration needs to be sufficient so that includes enough power at max freq 
t0 = 3*tau; % offset - if not given at the 1st step we will be in the middle of gaussian. 
            % It's not good to turn on the source that fast, we should rather ease into it 
and out of it. 
  
% COMPUTE THE NUMBER OF TIME STEPS 
STEPS = 359; % 5 periods - 357+2(2 is added for initial steps t(-1) and t(0)) 
  
% COMPUTE THE SOURCE 
% ta = (0: STEPS-1-2)*dt_tlm; % time array 
ta = (1: STEPS-1-1)*dt_tlm; % time array - it should begin with 0, 
                            % but this way is consistent with NeuralField Cpp program 
% Gaussian source: 
% stim = exp(-((ta - t0)/tau).^2); 
% stim(ceil(2*t0/dt_tlm)+2:end)=0; % cut Gaussian to be symmetrical with respect to centre 
  
% Sine wave source: 
stim = 1*sin(2*pi*freq*ta); 
  
% Pulse source: 
% pulse_ON = 1; 
% pulse_OFF = 9; 
% stim = zeros(1,length(ta)); 
% stim(pulse_ON:pulse_OFF) = 1; 
  
% POSITION OF THE SOURCE 
nx_src = ceil(Nx/2); 
ny_src = ceil(Ny/2); 
  
%% Plot stimulus 
% figure() 
% plot(ta,stim) 
% xlabel('Time (s)') 
% ylabel('Amplitude') 
% title('Stimulus') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% INITIALIZE POPULATIONS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculated constants (from NeuroField program - Eq. 6.4 in thesis) 
p_tlm = v_tlm*dt_tlm/dx; %Courant condition - should be 1/sqrt(2) 
A1 = 2 - 4*p_tlm^2; 
A2 = dt_tlm^2*gamma_ab^2/12; 
A3 = 10 - 4*p_tlm^2; 
expfactneg = exp(-dt_tlm*gamma_ab); 
expfactpos = exp(dt_tlm*gamma_ab); 
  
Q_POP1 = zeros(Ny,Nx,STEPS); % Mean firing rate for Population 1 
PHI1 = zeros(Ny,Nx,STEPS); % Axonal propagation field 1 
Q_POP2 = zeros(Ny,Nx,STEPS); % Mean firing rate for Population 2 
PHI2 = zeros(Ny,Nx,STEPS); % Axonal propagation field 2 
  
Q_POP1(:,:,1:2) = Qin; 
PHI1(:,:,1:2) = Qin; 
  
% Initialize vars for diff eq to get soma potential V: 
timerange = [0 dt_tlm]; 
V_i = zeros(1,Ny*Nx); 
dV_i_dt = zeros(1,Ny*Nx); 
  
h = waitbar(0,'Please wait...'); % Initialise progress bar 
tic 
 
for iter = 3:STEPS % Main loop 
    % Finding Q_POP1: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Solving diff eq to get soma potential V: 
    P = nu_1*PHI1(:,:,iter-1) + nu_2*PHI2(:,:,iter-1); 
    P = reshape(P,[],1); 
     
    for i = 1 : length(P) 
        P_i = P(i); 
        initalvalue = [V_i(i) dV_i_dt(i)]; 
        [~,V_temp] = ode45(@soma_potential,timerange,initalvalue); 
        V_i(i)  = V_temp(end,1); 
        dV_i_dt(i) = V_temp(end,2); 
    end 
    V = reshape(V_i,Ny,Nx); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Q_POP1(:,:,iter) = Qmax./( 1 + exp( -(V-Theta)./Sigma ) ); 
     
    % Calculate PHI1 (FD method): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Find Phi from Q using FD method from NeuroField Cpp code (Eq. 6.4 in thesis): 
    for y=2:Ny-1 
        for x=2:Nx-1 
            PHI1(y,x,iter) = expfactneg*(A1*PHI1(y,x,iter-1) + p_tlm^2*(PHI1(y-1,x,iter-
1)+PHI1(y+1,x,iter-1)+PHI1(y,x+1,iter-1)+PHI1(y,x-1,iter-1)) - PHI1(y,x,iter-
2)*expfactneg... 
                + A2*(A3*Q_POP1(y,x,iter-1) + (Q_POP1(y,x,iter)*expfactpos + 
Q_POP1(y,x,iter-2)*expfactneg) + p_tlm^2*(Q_POP1(y-1,x,iter-1)+Q_POP1(y+1,x,iter-
1)+Q_POP1(y,x+1,iter-1)+Q_POP1(y,x-1,iter-1)))); 
        end 
    end 
     
    % Periodic BC 
    norht = PHI1(2,2:Nx-1,iter); 
    south = PHI1(Ny-1,2:Nx-1,iter); 
    west = PHI1(2:Ny-1,2,iter); 
    east = PHI1(2:Ny-1,Nx-1,iter); 
    nwc = PHI1(2,2,iter); 
    swc = PHI1(Ny-1,2,iter); 
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    nec = PHI1(2,Nx-1,iter); 
    sec = PHI1(Ny-1,Nx-1,iter); 
    PHI1(1,2:Nx-1,iter) = south; 
    PHI1(Ny,2:Nx-1,iter) = norht; 
    PHI1(2:Ny-1,1,iter) = east; 
    PHI1(2:Ny-1,Nx,iter) = west; 
    PHI1(1,1,iter) = nec; 
    PHI1(Ny,1,iter) = sec; 
    PHI1(1,Nx,iter) = nwc; 
    PHI1(Ny,Nx,iter) = swc; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    % Calculate PHI2: 
    Q_POP2(ny_src,nx_src,iter) = stim(iter-2); 
    PHI2(:,:,iter) = Q_POP2(:,:,iter); % this is because the propagation function is "MAP" 
     
    % update progress bar: 
    waitbar(iter/STEPS,h,[num2str(iter) ' of ' num2str(STEPS) ' finished']) 
end 
  
toc 
close(h) % close progress bar 
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Appendix C: MATLAB code for solving 2D wave PDEs using 5-point 

stencil FD method 

function [U_Matrix,tvec] = Wave2D_5p_stencil (Damped,Pwidth,Gaussian) 
  
%% Wave2D_5p_stencil 
% using an explicit central difference method for the 2D wave equation: 
% U_tt = c^2*(U_xx+U_yy) 
% Input parameters: 
% Damped <- 0 for undamped wave; 1 for damped wave 
% Pwidth <- width of Gaussian pulse (0.2 was used in thesis) 
% Gaussian <- 0 for Dirac IC; 1 for Gaussian IC 
  
x1=0; 
max_x = 2; % length of membrane in x-direction 
x2=max_x; 
  
y1=0; 
max_y = 2; % length of membrane in y-direction 
y2=max_y; 
  
T = 12 ; % length of time for solution (period 1.2) 
  
n = 199;   % no of grid points Xn 
p = 199;   % no of grid points Yn 
m = 2400;  % 120 per period 
  
dx = max_x/(n+1); % grid spacing in x direction 
dy = max_y/(p+1); % grid spacing in y direction 
  
dt = T/m; % timestep size 
  
t=0; % initial time = 0 
  
c = 1; % wave speed  
  
if Damped 
    kappa=0.2;  % frictional coefficient 
    C1 = 1+kappa*dt; 
    C2 = 1-kappa*dt; 
    e = C2/C1; 
else 
    C1 = 1; 
    e = 1; 
end 
  
s_x = (c^2)*(dt^2)/(dx^2);  % gain parameter in x direction 
s_y = (c^2)*(dt^2)/(dy^2);  % gain parameter in y direction 
  
CourantCondition_x = c*dt/dx;  % Courant condition for x direction 
CourantCondition_y = c*dt/dy;  % Courant condition for y direction 
  
if CourantCondition_x > 1 
   fprintf('Courant Condition in x direction is > 1 so central difference method is 
unstable, please reduce time step size to gain stability'); 
   return 
end 
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if CourantCondition_y > 1 
   fprintf('Courant Condition in y direction is > 1 so central difference method is 
unstable, please reduce time step size to gain stability'); 
   return 
end 
  
%% Build the A matrix to march finite difference solution forward in time 
  
lambda = 2*(1-s_x-s_y); 
  
temp_diag = lambda*ones(n,1); 
temp_sub = s_y*ones(n,1); 
temp_sup = temp_sub; 
  
% Create n-by-n diagonal matrix block: 
A_diag_block = spdiags([temp_sub,temp_diag,temp_sup],[-1 0 1],n,n); 
  
% show matrix: 
% test_A_t = full (A_t); 
clear temp_diag temp_sub temp_sup 
  
% Create diagonal matrix A_Sx: 
temp_diag_X = s_x*ones(n*p,1); 
A_Sx = spdiags([temp_diag_X, temp_diag_X],[-n n],n*p,n*p); 
  
% show matrix: 
% test_A_X = full (A_X); 
clear temp_diag_X 
  
% Create a block diagonal matrix: 
A_diag = kron(eye(n),A_diag_block); 
clear A_diag_block 
  
% Finally create matrix A: 
A = (1/C1)*(A_diag + A_Sx); 
  
% show matrix: 
% test_A = full (A); 
clear A_diag A_Sx 
  
%% Specify boundary conditions through vector b and by changing any rows in A matrix needed 
- for Neumann boundary conditions 
% we have u(0,t) = 0 = u(a,t) 
  
b = (1/C1)*zeros(n*p,1); %if the boundary conditions are different, then "zeros(n,1)" 
should be changed to the adequate vector 
  
%% Initial conditions for du/dt 
% in this case u_t(x,y,0) = 0.  
  
d = zeros(n*p,1); %if the initial conditions are different, change "d" accordingly 
  
%% Set up mesh 
% in x-direction: 
x = linspace(x1+dx,x2-dx, n)'; 
% in y-direction: 
y = linspace(y1+dy,y2-dy, p)'; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Set up vector U^0 at time tk=0: U(x,y,0) = f(x,y) 
% Formatting Gaussian Pulse: 
  
% Setting Gaussian parameters 
Eo=5; % Pulse amplitude 
Gmu=max_x/2; % Centre of pulse 
sigmaxSq = Pwidth*max_x; %pulse width x - used to be 0.05 for elongated gaussian 
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sigmaySq = Pwidth*max_y; %pulse width y -  
  
if Gaussian 
    ax = 2*sigmaxSq; 
    ay = 2*sigmaySq; 
     
    % Generating Gaussian 
    Gauss_x = exp(-pi^2*((x-Gmu).^2/ax)); % Horizontal 
     
    Gauss_y = exp(-pi^2*((y-Gmu).^2/ay)); % Vertical 
     
    U_tk_last_Matrix = Eo*Gauss_y*Gauss_x'; % Gaussian in 2D 
     
else % Dirac I.C. 
    U_tk_last_Matrix = zeros(n,p); 
    U_tk_last_Matrix (round(length(x)/2),round(length(y)/2)) = 5; 
end 
  
%{ 
% Cut mask - if we want to set just the mid part of the membrane to 
% gaussian and the rest to 0 (or some other value): 
  
% Cut_mask = zeros(n,p); 
% for i = 1:n 
%     for j = 1:p 
%         if x(i) >= 0.3*max_x && x(i) <= 0.7*max_x 
%             if y(j) >= 0.3*max_y && y(j) <= 0.7*max_y 
%                 Cut_mask(i,j)= 1; 
%             else 
%                 Cut_mask(i,j) = 0; 
%             end; 
%         else 
%             Cut_mask(i,j) = 0; 
%         end; 
%     end; 
% end; 
  
U_tk_last_Matrix = U_tk_last_Matrix.*Cut_mask; 
%} 
  
U_tk_last = reshape(U_tk_last_Matrix.',[],1); 
  
%% First we initialise and find U^1 = U_tk at time k=1 
  
t = t+dt; 
U_tk = (C1/2)*A*U_tk_last + (C1/2)*b + d; 
  
U_tk_Matrix = reshape(U_tk,n,[]); 
U_tk_Matrix = U_tk_Matrix'; 
  
%{ 
figure(1) 
mesh (x,y,U_tk_last_Matrix) 
title ('Initial condition for plucked elastic membrane') 
xlabel ('x') 
ylabel ('y') 
zlabel ('U') 
axis ('tight') 
  
figure(2) 
mesh (x,y,U_tk_Matrix) 
title ('Vibrations of elastic membrane after 1 time step') 
xlabel ('x') 
ylabel ('y') 
zlabel ('U') 
axis ('tight') 
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%} 
  
clear x y d Gauss_x Gauss_y 
%% Store solution for each time in matrix U(n_x_m): 
  
U_Matrix = zeros(n,p,m); 
tvec = zeros(m,1); 
  
U_Matrix(:,:,1) = U_tk_last_Matrix; 
tvec(1) = t-dt; 
U_Matrix(:,:,2) = U_tk_Matrix; 
tvec(2) = t; 
  
clear U_tk_last_Matrix U_tk_Matrix 
%% March solution forward in time using U_tk+1 = A*U_tk + b: 
  
for k = 2:m % Main loop 
    t = t+dt; 
    % if boundary conditions vary with time you need to update b here 
    U_tk_new = A*U_tk + b - e*U_tk_last;     
  
    U_tk_new_Matrix = reshape(U_tk_new,n,[]); 
    U_tk_new_Matrix = U_tk_new_Matrix'; 
    U_Matrix(:,:,k) = U_tk_new_Matrix; 
  
    % for next time step: 
    U_tk_last = U_tk; 
    U_tk = U_tk_new; 
    tvec(k) = t; 
  
end 
  
clear U_tk_last U_tk U_tk_new 
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Appendix D: MATLAB code for solving 2D wave PDEs using 9-point 

stencil FD method 

function [U_Matrix,tvec] = Wave2D_9p_stencil (Damped,Pwidth,Gaussian) 
  
%% Wave2D_9p_stencil 
% using an explicit central difference method for the 2D wave equation: 
% U_tt = c^2*(U_xx+U_yy) 
% Input parameters: 
% Damped <- 0 for undamped wave; 1 for damped wave 
% Pwidth <- width of Gaussian pulse (0.2 was used in thesis) 
% Gaussian <- 0 for Dirac IC; 1 for Gaussian IC 
  
x1=0; 
max_x = 2; % length of membrane in x-direction 
x2=max_x; 
  
y1=0; 
max_y = 2; % length of membrane in y-direction 
y2=max_y; 
  
T = 12 ; % length of time for solution (period 1.2) 
  
n = 199;   % no of grid points Xn 
p = 199;   % no of grid points Yn 
m = 2400;  % 120 per period 
  
dx = max_x/(n+1); % grid spacing in x direction 
dy = max_y/(p+1); % grid spacing in y direction 
  
dt = T/m; % timestep size 
  
t=0; % initial time = 0 
  
c = 1; % wave speed  
  
C1 = dx^2 + dy^2; 
C2 = 10*dy^2 - 2*dx^2; 
C3 = 10*dx^2 - 2*dy^2; 
  
s = (c^2)*(dt^2)/(12*dx^2*dy^2); 
  
s_x = C2*s;  % gain parameter in x direction 
s_y = C3*s;  % gain parameter in y direction 
s_m = C1*s;  % gain parameter in xy direction 
  
if Damped 
    kappa=0.2;  % frictional coefficient 
    C4 = 1+kappa*dt; 
    C5 = 1-kappa*dt; 
    e = C5/C4; 
else % Undamped wave 
    C4 = 1; 
    e = 1; 
end 
  
CourantCondition_x = c*dt/dx;  % Courant condition for x direction 
CourantCondition_y = c*dt/dy;  % Courant condition for y direction 
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if CourantCondition_x > 1 
   fprintf('Courant Condition in x direction is > 1 so central difference method is 
unstable, please reduce time step size to gain stability'); 
   return 
end 
  
if CourantCondition_y > 1 
   fprintf('Courant Condition in y direction is > 1 so central difference method is 
unstable, please reduce time step size to gain stability'); 
   return 
end 
  
%% Build the A matrix to march finite difference solution forward in time 
  
lambda = 2*(1-10*s_m); 
  
temp_diag = lambda*ones(n,1); 
temp_sub = s_y*ones(n,1); 
temp_sup = temp_sub; 
  
% Create n-by-n diagonal matrix block: 
A_diag_block = spdiags([temp_sub,temp_diag,temp_sup],[-1 0 1],n,n); 
  
% % show matrix: 
% test_A_t = full (A_diag_block); 
clear temp_diag temp_sub temp_sup 
  
% Create diagonal matrix A_Sx: 
temp_diag = s_x*ones(n,1); 
temp_sub = s_m*ones(n,1); 
temp_sup = temp_sub; 
% Create n-by-n diagonal matrix block: 
A_Sx_block = spdiags([temp_sub,temp_diag,temp_sup],[-1 0 1],n,n); 
Ones_sub_sup = spdiags([ones(n,1),ones(n,1)],[-1 1],n,n); 
  
% % show matrix: 
% test_A_X = full (A_Sx_block); 
clear temp_diag temp_sub temp_sup 
  
% Create a block diagonal matrix: 
A_diag = kron(eye(n),A_diag_block); 
  
% % show matrix: 
% test_A_diag = full (A_diag); 
clear A_diag_block 
  
A_Sx = kron(Ones_sub_sup,A_Sx_block); 
  
% % show matrix: 
% test_A_X = full (A_Sx); 
clear A_Sx_block Ones_sub_sup 
  
% Finally create matrix A: 
A = (1/C4)*(A_diag + A_Sx); 
  
% % show matrix: 
% test_A = full (A); 
clear A_diag A_Sx 
  
%% Specify boundary conditions through vector b and by changing any rows in A matrix needed 
- for Neumann boundary conditions 
% we have u(0,t) = 0 = u(a,t) 
  
b = (1/C4)*zeros(n*p,1); %if the boundary conditions are different, then "zeros(n,1)" 
should be changed to the adequate vector 
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%% initial conditions for du/dt 
% in this case u_t(x,y,0) = 0.  
  
d = zeros(n*p,1); %if the initial conditions are different, change "d" accordingly 
  
%% Set up mesh 
% in x-direction: 
x = linspace(x1+dx,x2-dx, n)'; 
% in y-direction: 
y = linspace(y1+dy,y2-dy, p)'; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Set up vector U^0 at time tk=0: U(x,y,0) = f(x,y) 
% Formatting Gaussian Pulse: 
  
% Setting Gaussian parameters 
Eo=5; % Pulse amplitude 
Gmu=max_x/2; % Centre of pulse 
sigmaxSq = Pwidth*max_x; %pulse width x - used to be 0.05 for elongated gaussian 
sigmaySq = Pwidth*max_y; %pulse width y -  
  
if Gaussian 
    ax = 2*sigmaxSq; 
    ay = 2*sigmaySq; 
     
    % Generating Gaussian 
    Gauss_x = exp(-pi^2*((x-Gmu).^2/ax)); % Horizontal 
     
    Gauss_y = exp(-pi^2*((y-Gmu).^2/ay)); % Vertical 
     
    U_tk_last_Matrix = Eo*Gauss_y*Gauss_x'; % Gaussian in 2D 
     
else % Dirac I.C. 
    U_tk_last_Matrix = zeros(n,p); 
    U_tk_last_Matrix (round(length(x)/2),round(length(y)/2)) = 5; 
end 
  
  
%{ 
% Cut mask - if we want to set just the mid part of the membrane to 
% gaussian and the rest to 0 (or some other value): 
  
% Cut_mask = zeros(n,p); 
% for i = 1:n 
%     for j = 1:p 
%         if x(i) >= 0.3*max_x && x(i) <= 0.7*max_x 
%             if y(j) >= 0.3*max_y && y(j) <= 0.7*max_y 
%                 Cut_mask(i,j)= 1; 
%             else 
%                 Cut_mask(i,j) = 0; 
%             end; 
%         else 
%             Cut_mask(i,j) = 0; 
%         end; 
%     end; 
% end; 
  
U_tk_last_Matrix = U_tk_last_Matrix.*Cut_mask; 
%} 
  
U_tk_last = reshape(U_tk_last_Matrix.',[],1); 
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%% First we initialise and find U^1 = U_tk at time k=1 
  
t = t+dt; 
U_tk = (C4/2)*A*U_tk_last + (C4/2)*b + d; 
  
U_tk_Matrix = reshape(U_tk,n,[]); 
U_tk_Matrix = U_tk_Matrix'; 
  
%{ 
figure(1) 
mesh (x,y,U_tk_last_Matrix) 
title ('Initial condition for plucked elastic membrane') 
xlabel ('x') 
ylabel ('y') 
zlabel ('U') 
axis ('tight') 
  
figure(2) 
mesh (x,y,U_tk_Matrix) 
title ('Vibrations of elastic membrane after 1 time step') 
xlabel ('x') 
ylabel ('y') 
zlabel ('U') 
axis ('tight') 
%} 
  
clear x y d Gauss_x Gauss_y 
%% Store solution for each time in matrix U(nxm): 
  
U_Matrix = zeros(n,p,m); 
tvec = zeros(m,1); 
  
U_Matrix(:,:,1) = U_tk_last_Matrix; 
tvec(1) = t-dt; 
U_Matrix(:,:,2) = U_tk_Matrix; 
tvec(2) = t; 
  
clear U_tk_last_Matrix U_tk_Matrix 
%% March solution forward in time using U_tk+1 = A*U_tk + b: 
  
for k = 2:m % Main loop 
    t = t+dt; 
    % if boundary conditions vary with time you need to update b here 
    U_tk_new = A*U_tk + b - e*U_tk_last;     
  
    U_tk_new_Matrix = reshape(U_tk_new,n,[]); 
    U_tk_new_Matrix = U_tk_new_Matrix'; 
    U_Matrix(:,:,k) = U_tk_new_Matrix; 
  
    % for next time step: 
    U_tk_last = U_tk; 
    U_tk = U_tk_new; 
    tvec(k) = t; 
  
end 
  
clear U_tk_last U_tk U_tk_new 
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