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Abstract

Network diagrams are used to visually represent information concerning interconnected
objects. These objects could be social (e.g. a group of friends), biological (e.g. a protein-
protein interaction system), or belong to any other application area. Diagrams, in general,
assist the understanding and analysis of some underlying data, however their visualisation
is extremely challenging. The two major challenges of network diagram visualisation
are scalability and quality. Most visualisations suffer from the problem of scalability;
where the more information they show the harder it becomes to read or understand them.
This is a key problem for network diagrams, since many of today’s networks consist of
thousands or even millions of objects. Quality is another key factor for designing visual
representations. A lot of research has been conducted to formalise design principles for
visualisations. Similarly, researchers have identified several layout features that enhance
the quality of network diagrams. Nonetheless, it is difficult to design network layout
models that support even some combinations of these features. Furthermore, these two
challenges are intertwined and cannot be solved independently, as the requirements for
the layout quality change with the size of the network diagram.

In this thesis we explore the two ends of the network layout problem and aim to
achieve visualisations that are both scalable; to very large network data, but are in some
sense optimal with respect to the quality of automatically computed layout. We pro-
pose an optimal layout model for small networks or smaller parts of large networks. To
achieve this, we apply and explore the application of state-of-the-art combinatorial opti-
misation techniques to the network layout problem to obtain a high-quality detailed view
of network data. Our evaluation shows that these techniques can support optimal layouts
for networks with less than one hundred nodes in reasonable time. We then explore the
threshold that separates small and large networks in terms of cognition capacities. We
approach this by conducting a survey on empirical studies, which use node-link diagrams
as part of their evaluation, and a user study where we evaluate cognitive load with respect
to network size. We discover that most empirical studies use networks with less than a
hundred nodes and that cognitive load significantly increases beyond this limit. We also
propose a summary representation for large networks. We use decomposition techniques
to show connectivity information but hide details of individual nodes and links. Our eval-
uation shows that the summary evaluation scales to very large networks and allows users
to perform overview tasks efficiently.
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The title All Diagrams Neat and Beautiful, All Networks Great and Small is an epigram

inspired by the first two sentences of a hymn from the 19th century [21].

“All things bright and beautiful, All creatures great and small”

The epigram reflects on the work in this thesis, which proposes compact and

aesthetically pleasing diagrams for both small and large networks, but is not literal. We

are not claiming to have tackled representation challenges for all types of networks, nor

cover every beautiful representation.
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Chapter 1

Introduction

“All things bright and beautiful,
All creatures great and small,
He gave us eyes to see them,
And lips that we might tell,”

Cecil Frances Alexander,
All Things Bright and Beautiful

The first two sentences of the first
verse and the first two sentences of the

last verse of a song published in
Hymns for Little Children.

The title of this thesis is inspired by
the hymn and changed to reflect the

work in this thesis with respect to
network visualisation.

W ith the advances in technology and its accessibility, we are faced with large
amounts of data. Visualisation is a powerful tool that can be used to understand

and communicate complex and large data. Network visualisation deals with data that is
relational. Algorithms that create network diagrams are torn between scalability and qual-
ity. We aim to identify a threshold for data complexity, below which we should use high
quality layout techniques and beyond which we should use summary representations.

Networks are groups or systems of interconnected things. These interconnected things
are often referred to as nodes, and the connections between them are called links.1 In-
teresting networks arise in different application areas, such as Biology, Sociology, and
Communications. The basic definition of a network is independent of application, but
further refinements might occur based on the needs of specific applications. For example,
the flow of water in a water distribution network, where the water tanks are nodes and
the pipes connecting them are links, necessitates a certain direction on the links. Such
networks, in which the nodes are sources or targets, are known as directed networks.

A group of friends is an example of a social network, where the nodes are people and
the links between them represent their friendships. Nodes and links can have additional

1nodes–vertices and links–edges can be used interchangeably

1
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(a) A node-link representation of a social net-
work. The nodes represent the people and the
lines (links) represent their friendship. The names
are shown using text labels, which are placed in
proximity to their respective nodes.
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(b) A social network represented using an adja-
cency matrix. The people are represented by po-
sitions on the horizontal and vertical axes. The
intersecting cells between each column and row
represents an existing friendship between the per-
son on that column and the person on that row. In
this case, if a cell is marked grey then a friendship
exists, otherwise it does not.

Figure 1.1: The same small social network of friends is represented with a node-link
diagram on the left and a matrix on the right. Both representations show all the people in
the network and their relationships.

attributes associated with them. The names of the people in a social network are examples
of ‘node attributes’, while the age of the relationship is an example of a ‘link attribute’.

The increase in number of connected devices and the rapid advances in technology,
have allowed the gathering of large amounts of data. This data is often relational, which
means that it can be represented as a network. For example, the 14 social networks in the
Stanford SNAP collection have 515,362 nodes and 8,575,643 links on average (median:
79,333 nodes and 677,876 links) [213]. The largest network in their collection represents
the members of an on-line community called LiveJournal [8]. The network has almost five
million members and around 69 million connections. Understanding and communicating
these large networks by text is very hard. Hence, diagrams are used to compress these
lengthy chunks of text into neatly informative representations. Network Visualisation or
Graph Drawing, deals with creating diagrams for networks.

Node-link diagrams are one of the most common types of visualisation used to repre-
sent networks. Naturally, and as the name suggests, marks of different shapes are used to
represent the nodes. These are often circles, squares, or dots, while links are represented
by lines, which are drawn between the nodes. Node-link diagrams are one of the oldest
ways to visualise networks and, to date, remain the most commonly used. Figure 1.1(a)
presents an example of a node-link diagram. This diagram represents a fabricated social
network, where the nodes represent people and a link exists between two people if they
are friends.
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Various visual channels can be used to encode information as properties of marks
[233]. Different channels are used to represent different types of information. For exam-
ple, with colour channels, hue can be used to represent categorical information of nodes
(e.g. name of a person), while luminance can be used to represent ordinal information
(e.g. age). Further visual channels, such as position, shape, tilt, or size can be used on the
marks to show different attributes of nodes and links. For example, nodes of a network
may be arranged left to right or top to bottom to show hierarchy in a directed network. It
could also be used to show a certain flow, similar to the example of Figure 1.2. In this
case, the links have arrowheads, which are shape channels used in order to show direction.

An alternative way to visualise networks is with a tabular, or adjacency matrix, repre-
sentation. Nodes are represented by the rows and the columns of the matrix. A link exists
between the two nodes if the cell at the intersection of the respective row and column
is marked. Figure 1.1(b) shows an example of a matrix diagram, which represents the
same network as Figure 1.1(a). In this case, the people are represented by the rows and
columns. The intersecting cell between a row and a column represents the relationship
between the people represented by the respective row and column. In this example, Kelly
and Cathrine are friends, since the row representing Cathrine and the column representing
Kelly intersect at a grey cell. The presence of a link can be shown using different marks
and channels within a cell. For example, the cell may be shaded or marked with glyphs of
various shapes. Similarly, link attributes may be indicated by different marks or channels,
such as colour-shading or labels. The precise potential benefits of different visual marks
and channels is still an area of ongoing research (e.g. [65] [77]).

There are also other techniques to visualise networks, but these usually tend to be
variations, or hybrids, of the above two methods. One of the biggest advantages of us-
ing adjacency matrices over node-link diagrams is that they do not share the challenges
associated with drawing the links, such as crossings and occlusion. Adjacency matrices
associate a cell for each connection, thus eliminating the possibility of overlap. Nonethe-
less, this leads to non-compact visualisations, since a cell is needed for each pair of nodes,
whether or not that pair of nodes is actually connected by a link. A matrix is a square
with an area of n× n, where n is the number of nodes, thus the size of a matrix grows
quadratically with the number of nodes. Node-link diagrams remain the most popular
way to visualise network data [233]. The strongest weakness of adjacency matrices is
their inability to reflect the topological structure of the underlying network. The direct
representation of links in node-link diagrams prove to be more suitable for tasks that re-
quire a detailed understanding of the connections in a network (e.g. finding paths), than
the indirect representation in adjacency matrices [141].

1.1 Challenges of Network Diagrams

Above, we describe at a very high-level, the most commonly used approaches to network
visualisation. We started to hint at the problem of scale also, in that matrices grow in area
very quickly as the number of nodes increases, while node-link diagrams become very
cluttered and difficult to read when there are many links between nodes.

In this section, we identify four significant challenges (labelled CH-1–4) for mak-
ing clear and insightful network visualisations for graphs of all sizes, link-densities and
complexities. We outline them below, with detailed discussion to follow:
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Figure 1.2: A network that represents the different steps of a trip booking process. The
nodes of the network represent the current state of the booking, while the links represent
a transition from one state to the other. This diagram is drawn using our Ultra-Compact
Grid Layout method, which is discussed in Chapter 3. The nodes are represented using
rectangles arranged on different spatial positions. In this example, the nodes have addi-
tional attributes (state label and state description). These attributes are shown using labels
on the rectangles. The nodes are also grouped into a hierarchy. The grouping is based
on an edge compression technique called power graph compression [109], which is dis-
cussed further in Section 2.5. The links of this network also have additional attributes.
The type of link is represented by a different colour hue, while the direction is denoted by
the arrowhead.
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• CH-1: Methods that produce quality layouts are difficult to adapt to different layout
requirements.

• CH-2: Methods for quality layout do not scale computationally for large networks,
while fast methods that scale for large networks produce poorer quality layouts.

• CH-3: Cognitive and perceptual limits mean that networks beyond a certain size
are hard to understand, regardless of the quality of layout.

• CH-4: Tasks that require an understanding of high-level structure of large, dense
and complex networks are not well supported by existing network visualisation
techniques.

The quality and readability of network diagrams has been a hot topic in the field of
information visualisation. Munzner explains that the effectiveness of visual channels,
in general, are calculated through accuracy, discriminability, separability, and the ability
of providing visual pop-out and perceptual groupings [233]. More specifically, many
researchers have conducted empirical studies in order to understand what makes network
diagrams more readable and memorable. We discuss these studies further in Section 2.4.

For node-link diagrams, studies have found several layout features that affect the qual-
ity. For example, studies have shown that reducing the number of crossings between the
lines representing the edges will positively affect readability. Compactness is another ex-
ample; there is a general belief that diagrams become less readable and memorable, the
more white space is included.

The major challenge is deciding on a placement for nodes and routing the links in a
way to maximise desired features, while minimising the undesired ones. However, at-
tempting to create node-link diagrams with some of these features is hard (CH-2). For
example, finding a layout that minimises edge crossings is NP-complete [136]. Optimis-
ing these features also necessitates trade-offs, which further complicate the design pro-
cess. Attempting to minimise the number of edge crossings might require non-symmetric
layouts. The challenge of drawing networks, with as many desirable features as possible,
is amplified when the size of the represented networks are large.

Existing methods for network layout focus on several layout features that have been
identified to improve readability. These methods are often based on complex multi-stage
pipelines, which in turn, adds additional dependencies (CH-1). As an example, so-called
"orthogonal" approaches seek to break the layout problem down into a sequence of com-
binatorial optimisation sub-problems, such that the network can ultimately be rendered
with only horizontal and vertical line segments. These approaches are appealing since
they seek to minimise link crossings, however, they achieve this at the cost of introducing
bends into links. Attempting to minimise the number of bends could lead to long links and
non-compact diagrams, which are also aesthetics that affect readability. Figure 1.3 shows
an example of an orthogonal drawing of a small network with 13 nodes. Such complex,
multi-stage approaches to layout introduce dependencies between the order in which the
phases occur; changing this order would result in different layouts.

Due to the existence of very large networks in some domains, state-of-the-art meth-
ods for network layout mainly focus on heuristic techniques that ease the computational
complexity. One of the most commonly used approaches for network visualisation is the
force-directed approach (also known as force-based). Layouts created using this approach
are regarded as ‘faithful’ to the structure of the network, since connected nodes are kept
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Figure 1.3: The same network of Figure 1.2, which represents the different steps of a trip
booking process. The nodes represent the state of the booking, while the links represent a
transition from one state to another. In this example, we do not use the edge compression
technique. This diagram was created using yEd graph editor [14] and is based on an
orthogonal layout.



1.1. CHALLENGES OF NETWORK DIAGRAMS 7

Figure 1.4: This network represents the co-occurrences of the characters in the Les Mis-
erables [177] novel. The nodes represent the characters of the novel, and two nodes are
linked if the characters appear in the same chapter. The names of the characters are not
shown to avoid clutter. This layout was created using the force-directed method of D3 [3].
We can clearly see that the nodes that are closely connected are placed in proximity, re-
sulting in visually identifiable clusters encircled using grey dotted lines. However, many
of the marks are drawn on top of each other, which makes it difficult to see the details.
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Figure 1.5: A random network with 1,000 nodes and 2,000 edges created using a net-
workx [154] graph generator, which is based on the Watts-Strogatz model [321]. The dia-
gram was created in 869 milliseconds, using the sfdp drawing engine of GraphViz [118].
The sfdp engine is based on a multi-level force-based algorithm [164] (see Section 2.2.1
for a discussion of force-based graph drawing algorithms).
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(a) Node-link diagrams become hard to read
when the network is large, and resemble hairballs
when the network is dense. This diagram was cre-
ated using the organic layout of the yEd graph ed-
itor [14].

(b) The square matrix grows in area with the in-
crease in number of nodes. The larger it grows the
less number of pixels on a screen are devoted to
one cell. Beyond a certain value, cells might be-
come invisible, since they will have less than one
pixel allocated to them. Furthermore, adjacency
matrices resemble out-of-tune TVs for large net-
works. This diagram was created using D3 [3] and
the rows and columns have been ordered using the
optimal leaf ordering of Reorder.js [128]. All the
cells adjacent to a filled cell in the adjacency ma-
trix were also filled to compensate for the small
size of each cell, thus making connections more
visible.

Figure 1.6: A protein-protein interaction network, with 3,273 nodes and 15,631 edges,
represented with a node-link diagram (left) and an adjacency matrix (right).

close to each other. Figure 1.4 shows an example arranged using a D3 [3] force-based
layout method.

Even though some methods that follow this approach are computationally fast and
can arrange layouts for large networks, the resulting diagrams often resemble ‘hair-balls’
(CH-2). Figure 1.5 shows a diagram of a network with 1,000 nodes and 2,000 edges
drawn using sfdp [164], which is one of the most scalable force-based methods.

Apart from the technical challenges of visualising large networks, there is a limit of
cognition that naturally arises. This limitation persists no matter how well the network
visualisation is designed and represented, or what advanced technologies are used to ex-
hibit them. Displaying an overwhelming amount of information, regardless of how well
it is shown, leads to visual clutter (CH-3).

According to Munzner, there are five major ways to overcome this limitation: derive
new data, change the view over time, partition into multiple views, reduce the amount
of data shown within a view, and embed focus and context information together within a
single view [233]. We discuss techniques that resort to these measures in Section 2.5. We
also propose a summary representation that shows a reduced amount of data in Chapter 6.
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While there are numerous interactive tools to visualise large networks, the cognitive
limitations of working with such large networks is understudied. Identifying these limita-
tions would help inform the design of more effective tools for network visualisation.

Recent research has also proposed ways to visualise representative summaries of very
large networks. However most summary representations are tailored to allow detailed
analysis and require complex computation (CH-4). GraphPrism [185] is an example of a
summary representation for large networks. It uses tabular views with colour-coded cells
providing a number of node-specific and edge-specific metrics. This is a novel approach
that provides a summary of a great amount of information about a network, but will be
unfamiliar to most users, and likely hard for them to interpret. Moreover, many of the met-
rics used require expensive computation (CH-2). We discuss summary representations in
more detail in Section 2.5.

1.2 Research Aims and Questions
In this section we present our research questions in relation to the challenges discussed in
the previous section.

The motivation for our research is to produce a visual representation with the highest
possible quality for networks. We aim to explore the limits of cognitive scalability of
graph visualisation, beyond which an overview representation with fewer elements would
be more suitable than a detailed representation. We also aim to produce a summary visual-
isation of large networks that is designed to allow general tasks to be performed efficiently,
thus tackling both challenges of quality and scalability of network visualisation.

This guides us to our overarching research question;

• How can we design visualisations that will allow people to efficiently under-
stand and work with network data of all sizes?

Researchers have identified layout features that enhance the quality of node-link dia-
grams. Nonetheless, employing these features to create layouts is computationally hard
and often leads to complex pipeline methods (CH-1 and CH-2). We want our method to
avoid such rigid steps. Rather than the ‘HOW’, we want to focus more on the ‘WHAT’,
in terms of a final layout. Declarative programming would allow us to formalise a model
of the network layout problem with an objective that is independent of the exact steps
leading to it.

• RQ-1: How can we model the network layout problem in a way that general-
purpose optimisation solvers can be used to compute extremely high-quality
layout with respect to aesthetic and readability criteria?

We want to explore the limits of cognition from a network visualisation perspective,
since the cognitive scalability of node-link diagrams is understudied. Methods for net-
work layout that can handle large networks often sacrifice quality for scalability (CH-3).
We can make better design choices by understanding how different factors in network
visualisation affect its comprehension.

• RQ-2: What are the factors that limit human cognition of network represen-
tations of various sizes?
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Figure 1.7: A representation of a small network, which shows the relationships between
visited Wikipedia pages of about 14 music composers. The layout is optimal, in terms
of compactness and proximity of connected nodes. The layout is based on our optimal
model for network layout and was solved using SAT. This layout has an additional feature,
allowing the nodes to have a 2×1 or 1×2 size. Computing the placement and orientation
of the nodes took 37.42 seconds on a regular laptop.

Recent techniques for visualising very large networks aim to handle the issue of cogni-
tive scalability (CH-3) by using interactivity. However there is a need for summary repre-
sentations that show enough structural information to allow viewers to perform overview
tasks efficiently (CH-4).

• RQ-3: What visualisation designs better support overview tasks for very large
networks?

Techniques for summary representations should also be computationally fast in order
to scale to large networks and large sets of networks (CH-4).

1.3 Contributions
The work presented in this thesis has several contributions. We group them into three
main themes, which are discussed further in this section.

High-Quality Layout for Small Networks
In response to RQ-1 (Section 1.2), we propose a novel model for network layout: Ultra-
Compact Grid Layout, which aims to maximise compactness and minimise distances be-
tween connected nodes (Chapter 3). It also supports hierarchical groupings and is easily
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adapted to support other layout features. We show the benefits of this layout model via
real world examples. We also create variations of the model, which support other desired
layout features, thus showing the flexibility of our proposed method. Figures 1.2 and 1.7
show examples that were created based on our layout model. For the example shown in
Figure 1.7, we allow the nodes to be positioned either as portrait or landscape, but still
achieve an optimal layout in terms of compactness and short links.

We devised a generic optimisation problem that represents this model and developed
four implementations. Two of the implementations were developed using Mixed Inte-
ger Programming (MIP) – OPL and MiniZinc [236] and solved using CPLEX [2]. One
was developed using Constraint Programming (CP) –MiniZinc [236] and solved using
G12/CPX [129]. The implementation found to be most practical for small networks
was developed using the Boolean Satisfiability Problem (SAT) and solved using Bum-
bleBEE [226]. The experimental evaluation of these implementations showed that the
SAT solver was able to handle larger networks than the G12/CPX solver and CPLEX.

However, even the best solver could only offer an optimal solution in reasonable time
for small graphs (e.g. under 100 nodes). To try to scale the general approach to larger net-
works, we also developed a modified version of the MIP implementation using a Large
Neighbourhood Search meta-heuristic. This version starts with an initial layout created
using WebCola [13] with constraints to place the nodes on grid points. Parts of this layout
(neighbourhoods) are iteratively reconfigured to achieve an optimal placement. Dividing
the whole problem into sub-problems and solving them iteratively in this way, reduced
the strain on the solver and achieved faster running times. The experimental evaluation
showed that this approach scales to larger networks.

This work has been published in:
Yoghourdjian, V., Dwyer, T., Gange, G., Kieffer, S., Klein, K., & Marriott, K. (2016).

High-quality ultra-compact grid layout of grouped networks. IEEE Transactions on Visu-
alization and Computer Graphics, 22(1), 339-348.

What is Small, What is Large?

We have identified a size threshold for node-link diagrams, in terms of number of nodes
and density, beyond which tasks that require a detailed understanding of the network
structure become very difficult (RQ-2).

We wanted to understand the limits of complexity in terms of network size with which
people could effectively visualise using node-link representations. That is, while the prob-
lem of computational scalability of network layout is well studied, we wanted to know
more about what the human limitations of understanding visualisations of graphs was,
and whether we could get some insights into these human-limitations from a meta-study
of the literature reporting human trials of various network visualisation techniques. Thus,
we conducted a survey, which covers 152 empirical studies that evaluate node-link dia-
grams. These studies were gathered from 124 articles, which were published in reputable
journals and conference proceedings. The survey showed that most of the studies used
sparse networks with up to a few hundred nodes. Beyond these limits most visualisations
use interaction to focus only on parts of the networks at given times. We present the
survey and our findings in Chapter 4.

We were unable to find any existing study that directly explores the limits of cognitive
scalability with respect to the size of networks. Thus we conducted a controlled study to
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explore the effects of network size on cognitive load. In our study, we showed node-link
representations of networks with different sizes and asked the participants of the study to
find a shortest path between two given nodes. In addition to the common measures used
to analyse efficiency (such as accuracy, response time, and subjective feedback), we used
physiological measures, such as eye-tracking data, heart-rate, and electrical activity of the
brain.

Our results showed that cognitive load increases with the increase in network size and
becomes overwhelming for graphs with many nodes, or dense graphs. We discuss this in
more detail in Chapter 5. The results also showed strong correlations between different
layout features and efficiency measures. This validates the usefulness of our optimal
layout, which does not scale to networks with more than a hundred nodes, beyond which
cognitive load becomes challenging.

Based on our findings from the survey (Chapter 4) and user study (Chapter 5), through-
out this thesis we use small to refer to networks with 20 nodes or less, medium for net-
works with more than 20 nodes but 50 nodes or less, large for networks with > 50 and
≤ 200 nodes, and very large for networks with > 200 nodes. We use sparse for networks
with densities of more than 1 and densities of 2 or less, dense for networks with > 2 and
≤ 4 densities, and very dense for networks with densities of more than 4.

The survey has been submitted to the Information Visualisation Journal, while the
user study has been submitted to IEEE Conference on Information Visualization.

Summary Representation of Large Networks

For large and very large networks, and in response to RQ-3, we propose a summary
representation. The studies covered in our survey that considered large or very large
networks tended to involve tasks that did not require a detailed level of information (we
discuss task types further in Chapter 4). Similarly, the results of our user study, which is
discussed in Chapter 5, showed that detailed tasks become too difficult on large networks.

We explored different graph decomposition techniques, in order to reduce large net-
work data to smaller representative networks. We wanted to use a decomposition tech-
nique that is extremely fast, hides most of the low-level nodes and links of the network,
and would result in an intuitive summary that could be easily related to the original net-
work, unlike existing summary representations that are non-intuitive and computationally
expensive to create.

We partitioned the network into components based on the denseness of their connec-
tions. This can be done in linear time of the number of edges. Moreover, the resulting
summary highlights the densely connected parts of the network and identifies parts that
are not closely related.

We represented this summary using different visualisation idioms that work well with
hierarchical structures: treemaps, icicle plots, and packed circles.

We conducted an experimental evaluation to validate the theoretical running time of
creating our proposed summary using circle packing, which we call Graph Thumbnails,
by comparing it to the actual running time. Our results show that a Graph Thumbnail
representation can be created for a network in linear time with respect to the number of
edges.

We also conducted two user studies to evaluate the effectiveness of Graph Thumbnails.
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3273 15631

Figure 1.8: The same protein-protein interaction network of Figure 1.6, represented using
our technique for visualising structural summaries of large networks–Graph Thumbnails.
The number on the lower left indicates the number of nodes in the graph, while the num-
ber on the lower right indicates the number of edges. The stacked bar underneath the
numbers shows the distribution of nodes across the different coloured components of the
thumbnail. The histogram on top, shows the degree distribution.

The first study aimed to compare Graph Thumbnails to node-link diagrams and adja-
cency matrices in terms of the ability to show similarities and differences between pairs of
networks. The results showed that Graph Thumbnails and adjacency matrices outperform
node-link diagrams significantly. They also showed that participants were better at iden-
tifying similarities when using our method over the two other representations. According
to the post-survey questionnaire, the qualitative results for preference were in favour of
Graph Thumbnails.

In the second user study, we asked the participants to perform three overview tasks
given the three visual representations. The results show that Graph Thumbnails outper-
form the other two on all tasks.

Our evaluation confirmed that our proposed informative summary suits overview tasks
better than the detailed node-link and matrix views. We also show through a usage case
how to use Graph Thumbnails in a real-world example.

This work has been published in:
Yoghourdjian, V., Dwyer, T., Klein, K., Marriott, K., & Wybrow, M. (2018). Graph

Thumbnails: Identifying and Comparing Multiple Graphs at a Glance. IEEE Transac-
tions on Visualization and Computer Graphics.

1.4 Thesis Outline
This thesis is structured in the following way. In Chapter 2 we provide the necessary
notations and characteristics of different networks. We present popular graph drawing
approaches and algorithms in Section 2.2. In Section 2.3 we discuss common tasks that
are performed on network visualisation. In Section 2.4, we discuss aesthetics and layout
features which affect readability. We also discuss methods for community detection and
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common summary representations in Section 2.5. Further background is presented as
necessary in each chapter.

In Chapter 3 we present a novel approach to solve the network layout problem us-
ing combinatorial optimisation techniques. The resulting layout, which is based on our
Ultra-Compact Grid Layout model, is optimally compact and enforces grouping and non-
overlap constraints. We also discuss the advantages of this approach and provide three
implementations, using Mixed Integer Programming, Constraint Programming and the
Boolean Satisfiability Problem. As an extension to the optimal approach, we propose a
method that uses Large Neighbourhood Search meta-heuristics. Lastly, we evaluate the
running time of all the methods.

Chapter 4 presents an exhaustive survey of empirical studies involving node-link di-
agrams. In Chapter 5 we present a user study that explores the effects of graph size and
other visual factors on the cognitive load of participants when finding the shortest path
between two nodes in node-link diagrams.

In Chapter 6 we present a technique to decompose large networks into meaningful
summaries (Graph Thumbnails). We discuss the design process and mention the com-
plexity of the algorithm. We also provide an experimental evaluation.We evaluate the
usefulness of our technique by conducting two user studies that compare Graph Thumb-
nails to node-link diagrams and adjacency matrices. We also present a usage case that
demonstrates a useful application of Graph Thumbnails.

Chapter 7 presents overall conclusions and ideas for future work that lead on logically
from the topics explored, and the findings revealed in this thesis.
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Chapter 2

Background and Literature Review

«Ճանաչել զիմաստութիւն եւ

զխրատ, իմանալ զբանս հանճարոյ։»

The first sentence written using the
Armenian alphabet translated from the

Bible (Proverbs 1-2):
“for gaining wisdom and instruction;
for understanding words of insight;”

In this chapter, we present definitions and terminology that are necessary to under-
stand the work described in this thesis. We also present related work with respect to the
challenges and research questions outlined in Section 1.1 and Section 1.2, respectively.
Many of the algorithms for network layout were developed by the graph drawing research
community and have strong theoretical bases, thus, in Section 2.1 we briefly cover some
necessary definitions of graph theory. We also discuss the foundation of graph drawing
as a pre-requisite for network visualisation in Section 2.2.

In Section 2.3, we discuss tasks that are commonly performed when using networks.
Network visualisations are often evaluated based on their efficiency in supporting certain
tasks. Since the quality of network visualisation is one of the major topics in this the-
sis, we present studies that quantitatively and qualitatively evaluate layout aesthetics and
features (Section 2.4). One of the contributions of this thesis is a novel summary repre-
sentation for large networks that provides insight into the structure of the network, while
hiding details that would otherwise create clutter. In Section 2.5, we present community
detection and some popular summary representations.

2.1 Graph Theory
Graph Theory is a branch of discrete mathematics that deals with graphs. A graph G =
(V,E) consists of a set V of vertices and a set E of edges. An edge e ∈ E represents a
relationship between a pair (u,v) : u,v ∈ V of vertices. In the case where u = v, then the
edge is called a ‘loop’.

An important characteristic of vertices in a graph is their degree or valency. The
degree of a vertex represents the number of edges connected to it. A vertex v ∈ V can
exist in G without belonging to any edge e ∈ E. Vertices that do not have any edge
connecting to them are also known as 0-degree, or isolated vertices. A graph is known to

17
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Figure 2.1: A simplified diagram created by Euler, which shows the seven bridges of
Königsberg [14].

be disconnected if there exists any pair (u,v) : u,v ∈V of vertices that cannot be reached
from one another. A graph with only one vertex is known as a ‘trivial graph’.

The number of vertices and the number of edges in a graph are finite. In theory, the
number of nodes is referred to as the order of the graph, and the number of edges is known
as the size of the graph (although in practice, size also has different meanings). Terms
such as ‘small graphs’ and ‘large graphs’ are often used in practice to refer to the number
of vertices, while the terms ‘sparse’ and ‘dense’ are used to refer to the number of edges.
We revisit these terms in Chapters 4 and 5 and explore graph size with respect to human
cognition.

An undirected graph is one whose edges are not directed. In contrast, an edge e in a
directed graph has a source u and a target v. In other words, the pair (u,v) for a directed
edge e is ordered. A weighted graph is one that has a quantitative attribute associated with
each edge. A complete graph has an edge between all pairs of vertices. Trees and regular
graphs are two of the simplest types of graphs. A connected undirected graph with no
cycles is a tree. A tree may also be defined over a directed graph — no node has more
than one incoming edge. While a graph whose vertices have equal degrees is called a
regular graph. Graphs are classified into categories based on their structure. For example,
in scale-free graphs, the degree distribution of the vertices follows a power law. In other
words, scale-free graphs have few nodes with high valency and many nodes with a few
connections. In addition to scale-free graphs, we use graphs from different classes in our
user studies of Chapter 6.

The earliest known use of a graph by a mathematician arose from a notable math-
ematical problem known as the “Seven Bridges of Königsberg”. The challenge was to
find a route through the city that would cross each of the seven bridges only once. In an
article to prove that this problem has no solution, Leonhard Euler considered the seven
bridges of the city of Königsberg to be seven edges between four vertices, as shown in
Figure 2.1 [122]. This transformation is an example of how simplified abstractions help
solve a problem. Euler’s theory suggests two possible cases where a route can be found
that would cross each bridge only once (also known as an Euler walk). One possible case
is when the representative graph has exactly two vertices with odd degrees. In this case,
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the two odd-degree vertices are the start and the end points. Another possible case exists
when there are no vertices with odd degrees. In this case, however, the starting and ending
points are the same. All four vertices in the Königsberg example have odd degrees, thus,
an Euler walk does not exist.

Graph theory commonly deals with topics of identifying, classifying, and counting
graphs and subgraphs with specific characteristics. Topics related to connectivity and
traversability are also common. Similar to the “Seven Bridges of Königsberg” problem,
there are other problems that deal with path finding and reachability, such as the shortest
path problem. We explore the limits of the ability of node-link diagrams to assist in path
finding problems in terms of network size in Chapter 6.

Another major branch of problems in graph theory involve decomposition, which aims
to break a graph into meaningful sub-graphs. Community detection is another example,
where vertices of a graph are grouped into sets that share common characteristics. We
decompose large graphs into much smaller trees based on the connectivity structure of
the graphs in Chapter 6.

Graphs naturally arise in different application areas. Molecular structure in Chem-
istry can be represented as graphs. Other examples of graphs arise in Biology (we present
a usage case of an optimal layout for a biological pathway in Figure 3.7 of Chapter 3.
Another example of a biological network is presented through a usage case of our pro-
posed summary representation; to visualise a set of protein-protein interaction networks
in Chapter 6 (Figure 6.14). Networks are also common in circuitry and software engi-
neering. We present a usage case of an optimal layout for a software-dependency network
in Chapter 3 (Figure 3.2).

Graph theory is rich with other definitions and characteristics of graphs. The Hand-
book of Graph Theory [148] provides more details and additional definitions.

2.2 Graph Drawing

Graph Drawing is a field with roots in Mathematics and Computer Science that deals
with visually representing or embedding graphs in a plane or space. Different approaches
and standards have been applied to represent graphs in the two-dimensional planes, and
three-dimensional space. Dots are often used to represent vertices and an arc is drawn
between two dots to represent an edge if the two vertices are connected. However, the
terms ‘dots’ and ‘arcs’ were more often used before the age of computers and are thus,
replaced by ‘nodes’ and ‘links’ respectively.

One of the earliest problems in graph drawing is the embedding of graphs on the
Euclidean plane. In a planar embedding, the dots representing the vertices are assigned
points on a two-dimensional plane, while each edge is represented by an arc connecting
pairs of points, such that no arc intersects any other arc, including itself. Nonetheless,
some graphs cannot have a planar embedding. The graphs that can be embedded on the
plane are called ‘planar graphs’.

Other problems in graph drawing involve maintaining symmetry and minimising
number of crossings as an optimisation problem. We refer to the Handbook of Graph
Drawing and Visualization [297] for more details.

Graph drawing algorithms take a graph as input and return a drawing of that graph.
One of the earliest graph drawing algorithms was proposed by Tutte, which decides on
the position of a node based on the average position of its connections [303].



20 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.2.1 Graph Drawing Models and Methods

The field of graph drawing evolved further, with the need for algorithms to draw general
graphs rather than specific classes of graphs, such as planar or sparse (few edges), and
tree-like graphs. That is, early methods were applicable only to very limited classes of
graphs. For example, Tutte’s method was only applicable to planar, bi-connected graphs
(each node is reachable from all other nodes by two distinct paths). A single graph can
be drawn in several different ways. Thus, a major challenge in graph drawing is to decide
how to achieve a good arrangement, in terms of readability.

In this section we present some of the commonly used methods and algorithms for
drawing graphs.

Force-Based Approaches

The earliest network layout algorithms are mostly force-based. The force-directed ap-
proach was independently discovered by Fisk and Isett [130], and Eades [111]. Fisk and Isett
assumed components of a circuit to be connected by elastic leads, “which are in a state
of tension until they contract to some arbitrarily short length”. Similarly, Eades [111]
likened vertices to metal balls connected to each other by springs. When suspended and
released, the nodes end up in positions that reflect the network’s structure.

The earliest variations of the force-directed approach focus on modifying the force
model. For example, Kamada and Kawai [186] present a new force-directed model, which
takes into consideration a desired distance between connected nodes. The computational
complexity of their proposed algorithm is generally O(|V |3) or O(|V |2log|V |+ |E||V |) for
sparse graphs [297]. In contrast, Fruchterman and Reingold [132] argue that the model
does not have to be physically realistic and ignore the physical reality of the repulsion
and attraction forces. In their model, they make sure that nodes are evenly distributed,
in addition to having uniform edge lengths and inherent symmetries. They also propose
an iterative improvement of the layout using a linear measure called ‘temperature’. Each
iteration of their algorithm has a complexity of O(|V |2 + |E|) [297].

More than thirty years after the first force-based algorithm, Hadany and Harel [152]
introduced a ‘multi-scale’ technique that divides the layout problem into coarse-scale and
fine-scale node position adjustments. They show examples of diagrams for networks with
more than 1,000 nodes, achieved by their technique.

The force-directed approach remains the most commonly used in graph drawing
methods, due to its computational speed. The most scalable examples, developed so far,
are the multi-level algorithms of Walshaw [315], Hachul and Jünger [151], and Hu [164].
All three algorithms have a worst case running time of O(|V |log|V |+ |E|) per iteration.

The aesthetic benefits brought forth with the force-directed approach degrade as the
graphs get larger in size or become denser. The overlap of marks, especially edge cross-
ings in dense graphs, makes it hard to see the underlying structure (e.g. Figure 1.5).
Nonetheless, it is still one of the most widely used approaches, mainly due to its sim-
plicity to implement and its speed.

We make use of the force-directed approach to create an initial layout for our iterative
method, discussed in Chapter 3.
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Figure 2.2: My family represented as a graph using a hierarchical layout. The hierarchy
is represented using levels where nodes are placed on the same row if they belong to the
same level. For example, my parents are placed on the first row and my siblings and I are
placed on the second row. Links pointing downwards are used to connect my parents to
each of my siblings and myself. This diagram was created using yEd [14]

Layered Approaches

In many cases, the relationships between the vertices are directed, and imply a hierarchy.
Arrowheads are often used to indicate the direction of the edges. An arrowhead is placed
at the side of the destination or target node. The hierarchy is shown by placing nodes
of different hierarchies on separate horizontal or vertical layers. Figure 2.2 shows an
example of a network arranged using a layered approach.

One of the key additions to the layered approach, compared to the force-based ap-
proach, is the requirement that links are to be pointing in the same direction. Sugiyama et
al. [293] propose a multi-stage approach to arrange graphs using a layered layout, which
respects hierarchies. During the first stage of the algorithm, a physical hierarchy is
formed. The second stage deals with ‘breaking’ cycles. An edge pointing to the op-
posite direction is reversed to ‘break’ a cycle. The third stage gets rid of long edges by
adding dummy vertices where edges cross layers. The fourth stage deals with replacing
vertices in each level of the hierarchy to achieve a minimum number of crossings. Vertices
are moved again in the fifth stage, in order to achieve secondary characteristics, such as
straight lines and proximity. In the final stage, dummy nodes are removed and long edges
are reinstated. Sugiyama’s algorithm has a computational complexity of O(|V ||E|log|E|)

Recent research has proposed alternative ways to achieve the desired results of the
various stages of the original algorithm. For example, Eiglsperger et al. [117] propose
a faster approach (O(|V |+ |E|log|E|)) that avoids the insertion of unnecessary dummy
nodes.

The biggest challenge of the layered approach is the rigidity imposed by the multi-
stage structure. The inherent dependencies between the stages make it difficult to change
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the layout at later stages. We aim to overcome this challenge by using declarative pro-
gramming techniques, discussed in Chapter 3.

Orthogonal Approaches

Another popular approach for network layout algorithms is ‘orthogonal’ layout, which
uses horizontal and vertical line segments to represent the edges. The main motivation,
for this approach, is to increase the angular resolution of the layout. Angular resolution
increases when the edges that stem from the same vertex are further apart. Minimal bends
and compactness are also aesthetics that are often considered in algorithms that are based
on the orthogonal approach. These two aesthetics are often contradictory and have trade-
offs.

Batini et al. [56] presented a way to arrange networks in an orthogonal layout style.
Their method is widely used and is known as Topology-Shape-Metrics (TSM). TSM is
incremental and consists of three main steps: Planarisation; the first step, minimises edge
crossings and the external boundaries. Orthogonalisation; the second step, minimises the
number of bends. Grid embedding, which is the third and final step, minimises the global
length of edges and the area of the smallest rectangle covering the diagram (compactness).
The three steps deal with three sets of characteristics, namely topology, shape and metrics.
The complexity of their proposed algorithm is O(|V |2 + |E|).

Most orthogonal algorithms arrange the nodes on a grid (e.g. [191, 296]). Grid ar-
rangements make the diagrams memorable and easy to follow [222] [232]. They are used
by designers in typographical layouts, where a viewing space is divided into regular cells.
Also, people who draw graphs manually prefer to use a grid-layout [263].

We use an optimally compact orthogonal grid layout called CompactGrid in Chap-
ter 3. Similar to the layered approach, orthogonal-based methods suffer from dependen-
cies between the stages of their multi-stage structure. Our declarative approach does not
require such dependencies and, instead, uses weighted objectives which are easily modi-
fied per the requirements of the application.

2.2.2 Network Layout as a Combinatorial Optimisation Problem

Combinatorial Optimisation deals with problems, where an optimal combination of deci-
sions must be made on a set of variables, while satisfying a set of constraints.

An optimisation problem is often described as a model with input parameters, decision
variables, constraints that must be satisfied, and an objective function that is either min-
imised or maximised. The knapsack problem is a common example of a combinatorial
optimisation problem. In this problem, a knapsack exists with a limited weight capacity.
It has to be filled with items from a set, where each item has a weight and a value. The
objective is to fill the knapsack based on the highest value, but not exceed the weight limit
of the knapsack.

In the case of network layout problems, multiple layout features can be expressed
either as constraints, which need to be satisfied, or as part of the objective function that is
optimised.

There are several programming paradigms that can be used to describe an optimisation
problem. Integer Linear Programming (ILP), Mixed Integer Programming (MIP) [95],
Constraint Programming (CP) [209], and Boolean Satisfiability (SAT) [84] are examples
of generic methods for solving combinatorial optimisation problems. For example, the
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difference between ILP and MIP is that, in ILP, all the variables must be of type integer,
while in MIP, the variables do not have to be discrete.

Sometimes the problems associated with graph layout are too hard to be solved to
optimality in a reasonable amount of time. In such cases, heuristics can be used to speed
up the optimisation. Heuristics can dramatically enhance the solving time with relatively
small effort, but do not guarantee optimal solutions and lead to approximate solutions
that are often good enough. Meta-heuristics are top-level strategies that guide the use
of underlying heuristics to solve a given problem. Simulated annealing, Neighbourhood
Search, Greedy Randomised Adaptive Search, The Pilot Method, Tabu Search, and others
are examples of meta-heuristics [313].

For example, Simulated Annealing is named after the chemical transformation of crys-
tals into their solid forms and involves a gradual cooling of temperature in order to yield
the best shapes [137]. Davidson and Harel [91] use it in graph drawing. They define an
objective function that aims to achieve even distribution of nodes, compactness, uniform
edge length, and minimum number of crossings. The computational complexity of their
proposed algorithm, which terminates after a constant number of stages, is O(|V |2|E|).

Many of the methods and algorithms presented in Section 2.2 use combinatorial op-
timisation partially in their approach. Batini et al. [56] used it to minimise the number of
crossings. Klau and Mutzel [195] used ILP to enhance compaction. Sugiyama et al. [293]
used it to minimise bends. The main limitation for not using generic combinatorial opti-
misation methods has mainly been due to performance limitations. Gange et al. [133] use
SAT and MIP solvers to minimise crossings and minimise edge deletion, for planarisation
to optimality, in layered network layout.

Combinatorial Optimisation techniques have advanced in the recent years. For exam-
ple, Lima et al. [216] evaluate the effect of enhancements in MIP on two classic problems
and report massive improvements in terms of time.

Computing power has also advanced tremendously in the last two decades. The aver-
age memory of personal computers in 1995 was 4–8MBs, whereas nowadays it’s 4–8GBs.
Processing power has had a jump as well, with 200 MHz1 processors in 1996 to 4.2 GHz2

processors with multiple cores in 2015.

In addition to improvements in solver techniques, enhancements have occurred at
the level of designing the model. Previously, the models were encoded using low level
clauses, but in time new higher-level modelling languages have been developed [61] (e.g.
Minizinc [236]).

Many decision problems in diverse fields, where optimising characteristics of the final
results are desired, benefit from the advances in combinatorial optimisation techniques.
Network visualisation fits perfectly into this category. In Chapter 3 we discuss the use of
generic optimisation solvers to create network layouts with optimal quality with respect
to different layout features. We also evaluate different generic optimisation solvers with
respect to the network layout problem.

1http://www.intel.com/pressroom/kits/quickrefyr.htm#1996
2http://ark.intel.com/products/family/88392/6th-Generation-Intel-Core-i7-Processors#@Desktop
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2.3 Tasks for Network Visualisation

In this section, we discuss different types of tasks that are performed on network visual-
isations. In the literature, tasks are sometimes perceived as those performed by the visu-
alisation; we consider those as interactions and consider tasks to be queries or activities
performed by the analysts or the users.

Shneiderman and Aris [288] present 14 basic tasks that are often performed on net-
works. They explain that these form a starting point and that “There are an unlimited
number of tasks that could be defined.”. Lee et al. [212] present compound tasks that
represent detailed tasks. They also categorise these compound tasks into four groups:
Topology-based, Attribute-based, Browsing, and Overview. We revisit this taxonomy in
Chapter 4 and provide a visual description in Figure 4.7(a).

Tasks in the categories: Topology-based, Attribute-based and Browsing, require a de-
tailed understanding of the network, while Overview tasks, according to Lee et al. [212],
are exploratory and are used to get estimates quickly. Lee et al. [212] also discuss ‘high-
level tasks’, which are excluded from the four categories. They consider tasks related
to changes in a graph over time to be ‘high-level tasks’. Nonetheless, dynamic graphs
that change in time have many additional tasks that need to be considered. A separate
taxonomy by Ahn et al. [18] includes tasks for dynamic graphs.

Throughout this thesis we differentiate between tasks that require a detailed under-
standing of the network data, such as finding the shortest path between two nodes in a
network, and those that can be performed with a high-level understanding of the network
structure (e.g. estimating which network is the most dense in a set of networks); except
in Chapter 4, where we survey the literature with respect to empirical studies that include
node-link diagrams and use the taxonomy of Lee et al. [212].

2.4 Evaluating Network Diagrams -
Cognition and Perception

The algorithms and methods described in Section 2.2 are designed to achieve certain
layout features and aesthetics that improve readability. However, these algorithms were
not evaluated until the 1990s, 30 years after their conception. Most of the early evaluations
compared existing algorithms to each other rather than focusing on domain application
and requirements. In this section, we present a wealth of research that has empirically
evaluated these algorithms and aesthetics.

One of the earliest works by Himsolt [158] focused on evaluating layout quality, based
on algorithms rather than features. Even so, layout features were indirectly explored,
since most algorithms are associated with specific layout features. He evaluated layout
algorithms based on the layout features they handle, the restrictions on the characteristics
of the input graphs, and their time performance. He also considered a visual preference/
rating by assigning a higher score to layouts he preferred. He concluded that traditionally
used features for layout and their rankings must change, and existing algorithms should
be revised in order to be more flexible. Similarly, Purchase [257] evaluated the efficiency
of layouts produced by eight existing layout algorithms. The eight algorithms were a
mix of force-based, orthogonal, and layered approaches. The results showed that even
though each of the eight algorithms were designed according to different aesthetics, the
performance of the participants did not differ significantly.
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In an earlier work, Purchase et al. [260] conducted a task-based user study in order
to assess the influence of three layout features, namely crossings, bends and symmetry.
The participants were asked to perform the following tasks; identify the shortest path
between two given vertices, the minimum number of vertices that need to be removed to
eliminate paths between two given vertices, and the minimum number of edges that need
to be removed to eliminate paths between two given vertices. The results showed that the
number of crossings and bends have a large influence on quality, but the results did not
show any conclusive relation between symmetry and task performance. In another study,
Purchase [256] discovered that the number of edge crossings is a more important aesthetic
than the number of bends and symmetry. Furthermore, the angle between edges on a node
and an orthogonal drawing of edges and nodes did not reveal any significant advantage.
In a later work, Ware et al. [320] evaluated six layout features, namely continuity, number
of crossings, angle of crossings, number of branches, shortest path length, and geometric
line length. They asked the participants to find the shortest path between two marked
vertices. They concluded that the ‘bendiness’ of the shortest paths had a stronger effect
than the number of crossings.

In order to evaluate diagrams according to layout features, Purchase formulated ways
to measure their presence in network diagrams [258]. She devised formulae to measure
seven layout features: number of crossings, number of bends, symmetry, minimum angle
between edges connected to a node, edge orthogonality, node orthogonality, and consis-
tent flow direction. These metrics can be used to either evaluate already drawn graphs,
or to formulate a cost function for algorithms that perform optimisation. Purchase argues
that the decision should be about the weight of each layout feature, rather than simply ex-
cluding or including features. Our layout model, which is described in Chapter 3, allows
the assignment of weights to layout features defined as objectives, according to layout
requirements.

Other than assessing existing layout algorithms and predefined features, more recent
work has attempted to identify features that are not found in layouts produced by exist-
ing methods, but are preferred by humans and widely used in human-generated diagrams.
Ham and Rogowitz [305] asked users to rearrange the vertices of given network diagrams
to achieve graphs that best represented the data structure. They evaluated the results by
measuring cluster separability, extraction, distance, and delineation features in the rear-
ranged diagrams. They concluded that the layouts produced by the participants where
highly structured and had less crossings. The results also showed that uniform edge
lengths were not particularly sought after. Dwyer et al. [106] conducted a study simi-
lar to the former; they discovered that the participants created layouts with less crossings.
They conducted a second study where they evaluated the user-generated layouts and com-
pared them to force-based, orthogonal and circular3 layouts, which were achieved using
automated algorithms. Similar studies by Purchase et al. [263] and Kieffer et al. [191]
discovered that humans prefer grid-based layouts. Based on their findings, Kieffer et
al. [191] developed an algorithm that takes into consideration layout features discovered
through user studies done on human-generated orthogonal layouts.

There is a lot of work done in investigating the correlation between human-preferred
and algorithm-based layout features, as well as the quality of network diagrams on one
hand, and the trade-off between these features on the other. However, some of these
works are hard to find and are distributed across a variety of publications. In order to have
a better understanding, avoid repeating the same experiments, and to advance the field, it

3when the nodes are arranged on the circumference of a circle and the edges are chords
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is important to conduct an extensive review of the literature. In Chapter 4 we present our
exhaustive survey on empirical studies performed on node-link diagrams.

2.5 Visual Representations of Large Networks
In addition to the computational complexity of layout algorithms, beyond a certain num-
ber of nodes and links, visual marks representing these nodes and links start overlapping
and covering each other. Layout algorithms that can produce node-link diagrams of large
networks often aim to arrange the nodes in a way to reflect the structure of the network.
However, even the layouts with optimal arrangements will reach a limit and resemble
‘hair-balls’. Adjacency matrices and hybrid visualisations are also used to visualise large
networks. The rows and columns of adjacency matrices can be reordered to show dif-
ferent structural information (e.g. [128]). The results of a study by Ghoniem et al. [140]
show that adjacency matrices are more effective than node-link diagrams for most tasks
except path finding. More recent studies show that node-link diagrams are as useful,
to perform tasks that require an understanding of network structure, as adjacency matri-
ces [17,247]. The results of a study by Okoe et al. [247] confirms that adjacency matrices
performed poorly for path finding tasks, but also outperformed node-link diagrams in
finding common-neighbours and counting clusters. The results of our study, which is
discussed in Chapter 6, also show that adjacency matrices are better at identifying high-
level differences in the structure of networks than node-link diagrams. However, even
adjacency matrices have scalability limits and resemble ‘out-of-tune-TVs’ when used to
visualise networks beyond a certain size.

Interactive tools are commonly used to overcome the scalability issues of visualising
large and complex data. Yi et al. [334] propose seven categories for interaction techniques
that are used in visualisation. We discuss these categories further in Chapter 4 and Fig-
ure 4.7(b). In the context of network visualisation, arrangements of nodes in node-link
diagrams and the reordering of rows and columns in adjacency matrices (Reconfigure)
aim at placing communities of nodes close to each other to highlight the structure of the
network (Connect). This degrades smoothly with larger networks to show ‘heat map’ like
representations for adjacency matrices and clustered masses for node-link diagrams.

Other common techniques are to filter out nodes or links (Filter), or aggregate them
into fewer representative elements, which could be interactively compressed or expanded
(Abstract/Elaborate). Zooming (Abstract/Elaborate) can also be used to show further
detail, while keeping parts of the network out of view. Navigation techniques (Explore)
would then be used to move around the visualisation and change the view as necessary.

Some techniques rely on the user to interact with the visualisation (e.g. [107]), while
others rely on automatic highlighting, filtering, or aggregating parts of the network into
communities. Generally, communities, also known as clusters or modules, are discovered
based on the notion that there should be more connections or shared characteristics be-
tween the nodes or links within a community, than between them and external ones in the
rest of the network.

Community detection algorithms deal with detecting and partitioning graphs into
communities. Algorithms differ in what they consider to be good partitioning criteria.
Thus, one of the main challenges for network visualisation is to choose a good clustering
to portray important characteristics of the network. Another challenge is the difficulty
of finding optimal partitions, thus heuristics and approximations are needed to be able to
partition large networks.
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Modularity [238] is one of the most popular measures for community detection. It is
measured by comparing the number of edges within a community to the expected number
of edges in a random graph with a similar degree distribution. The idea is based on the
assumption that random graphs are not expected to possess inherent community struc-
tures. Clauset et al. [81] propose a fast and greedy algorithm that has a running time of
O(|E|d log |V |).

The Minimum Description Length (MDL) [265] is another interesting clustering prin-
ciple, which compresses nodes and edges into fewer elements based on the similar fea-
tures that they share. Some approaches are based on finding bridges that connect dense
communities to the rest of the network; without these bridges the communities would be
isolated. Edge Betweenness [146] is a measure used to detect bridges. It is measured for
each edge by calculating the number of shortest paths between pairs of vertices that tra-
verse it. Kolda and Bader [200] propose an algorithm for community detection using the
edge betweenness measure with a time complexity of O(|E||V |). Kirchoff’s equation is
used to assign voltages to nodes. Nodes with similar voltages would form a community.
This can be done in O(|V |+ |E|) time [327]. Similarly, label propagation and node colour-
ing techniques can be used to detect communities. Random walks can be used to traverse
the network in a stochastic way and determine a closeness measure for nodes based on the
number of hops needed to reach one from the other. Walktrap [254] and infomap [269]
are popular community detection algorithms that are based on random walks.

Some community detection algorithms are based on the structural characteristics of
the communities. Stars, cliques and leaf nodes are the most common structures consid-
ered. A clique is a group of nodes in a graph that are fully connected to each other. A star
is a tree with one internal node that is connected to all the other leaf nodes. For exam-
ple, Palla et al. [250] suggest using k-cliques as communities. ASK-GraphView [16] uses
community detection to compress isolated tree-like structures. Koutra and Kang [202]
propose a tool called VoG that uses MDL to detect cliques and stars. Dunne and Shnei-
derman [103] propose using compact glyphs to represent cliques and other structural com-
munities.

The k-core decomposition is achieved by recursively removing nodes that have a de-
gree less than k, starting with the lowest degree, and until all nodes have a degree≥ k [54].
Alvarez et al. [26] propose using the k-core decomposition to arrange the nodes on the
circumference of nested circles. We also use the k-core decomposition in achieving our
novel summary representation, which is discussed in Chapter 6.

Link Clustering approaches deal with detecting communities of links rather than nodes
(e.g. [193]). Edge bundling techniques are used to group several links with similar fea-
tures (e.g. [121] [100] [43] [324]). There are also approaches with loose definitions of
communities [89].

Some approaches are adjustable to use multiple community detection methods. Hive
plots [205] arrange the nodes on multiple axes so that the nodes within a community are
placed on the same axis. GraphPrism [185] shows a summary of the properties of the
nodes and the links using matrices. The properties in the summary representation can
be used to interactively highlight parts of the node-link (detailed) representation of the
network.

Many tools are interactive and allow the users to navigate through communities. Eades
and Huang [113] propose an interactive visualisation that expands and compresses groups
as necessary, while van Ham and Wijk [306] propose a fish eye scheme to interactively
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look into groups. TopoLayout [29] uses different clustering techniques to compress nodes
and edges into meta-nodes and meta-edges.

The nature of the graphs at hand can also play a decisive role in selecting one com-
munity detection approach over the other. Many of the approaches mentioned above
work well on sparse graphs, but do not detect meaningful communities in dense graphs.
Lancichinetti and Forunato [208] conduct a study to compare some of the popular com-
munity detection algorithms. The results show that the Infomap [269] method performed
the best across a wide range of graphs with different characteristics. Lee and Archam-
bault [210] conduct a study, which shows that Infomap detects communities similar to
what users would identify. Wu et al. [328] conduct studies to explore community detec-
tion approaches with respect to their ability to show network structure.

We further discuss existing visual representations for large networks in Chapter 6.

2.6 Conclusion
Most algorithms for network layout focus on improving computational complexity. Eval-
uation methods also focus on aesthetic criteria and layout features that enhance readabil-
ity.

It is widely believed that node-link diagrams for larger networks are not suited for
tasks that require a detailed understanding of the network. This means that for small
networks, quality and readability should be the main focus, while for large networks a
summary representation should sufficiently show structural information, while hiding the
details of the underlying network. An important question is, what is ‘small’ and what is
‘large’, and beyond what size of networks should one move from the detailed representa-
tion to the summary representation? We explore these in this thesis.



Chapter 3

High-Quality Ultra-Compact Grid
Layout

“and though she be but little,
she is fierce.”

William Shakespeare
A Midsummer Night’s Dream

As discussed in Chapter 2, there has been a lot of research into what constitutes a
good network layout. Most existing tools to create network diagrams of high quality use
complex multi-stage pipelines. Attempting to modify these pipeline techniques is very
tedious. Furthermore, the layouts produced by them have significant issues. For example,
in attempts to create layouts with minimal overlap, the outcome ends up having a lot of
wasted space.

As contributions of this chapter, we present a novel ultra-compact and grid-like net-
work layout aesthetic. We also reassess the use of combinatorial optimisation to achieve
an optimal drawing of a network according to different layout features. The abundant
use of grid arrangements by designers, almost universally in typographical layout, has
inspired the former, while the latter is motivated by the advances in combinatorial opti-
misation.

The second contribution of this chapter is to reassess whether these techniques can be
used for high-quality layout of small graphs. While they are fast enough for graphs of
up to around 50 nodes, we found these methods are too slow for larger graphs. Our third
contribution is a Large Neighbourhood Search meta-heuristic approach, that makes these
techniques scalable to larger networks.

The work discussed in this chapter was done in collaboration with my supervisors:
Tim Dwyer, Karsten Klein, Kim Marriott and Michael Wybrow, and collaborators Steve
Kieffer and Graeme Gange. The results were published in Transactions on Computer
Graphics and Visualization as proceedings from the 2015 IEEE Conference on Informa-
tion Visualization (InfoVis), with the exception of Section 3.8.

29
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(a) Grid systems in typographic lay-
out.

(b) With graphic designers playing an increasing role in the de-
sign of user interfaces for phone, tablet and desktop operating
systems, this traditional grid-based design aesthetic is becom-
ing more popular in these media. A case in point is Microsoft’s
‘Modern’ interface, which seeks to unify app-design across de-
vices.

Figure 3.1: The resurgence of the grid-design aesthetic in new media leads us to re-
examine some of the aesthetic assumptions that have been made in designing layout meth-
ods for network diagrams.

3.1 Introduction
Computer science researchers (and others) have been exploring different ways to auto-
matically lay out and draw diagrams that represent graphs or networks for many decades.
Because of the difficulty of the network layout problem and limited computational power
of early computers, the primary focus was on developing fast heuristic techniques with
low time complexity. As computer power rapidly increased through the ‘90s and 2000s,
many researchers continued to focus on fast heuristic techniques in a race to see who
could untangle the biggest graphs.

Other research led to the development of complex multi-stage layout frameworks for
higher quality layout of smaller networks. For example, a seminal paper by Batini et
al. [56] proposed a multi-stage layout framework called Topology-Shape-Metrics (TSM),
which led to the development of orthogonal graph drawing techniques, designed to pro-
duce drawings with orthogonal connectors. Another family of multi-stage approaches
arose following Sugiyama et al. [293], specifically for layered-layout of directed graphs.

One feature common to the layouts produced by all of these different algorithms for
network layout is the use of white space to clearly separate nodes and an implicit visual
emphasis on edges rather than nodes. This leads to relatively sparse layouts in which most
of the display space is empty. The main contribution of this chapter is to investigate a new
network layout aesthetic based on Ultra-Compact Grid Layout.

This new aesthetic is motivated by the grid arrangements that are used almost univer-
sally by designers in typographical layout, and are increasingly common in other media
such as computer interfaces (Figure 3.1). Layout in this tradition is built upon a grid
that divides the viewing space into regular cells. Individual elements may span multi-
ple grid-cells but—as much as possible—the grid subdivisions are respected. This ap-
proach provides a regularity to the layout that leads the eye in a familiar and comfortable
way [232]. Recent studies of network layout have shown that grid arrangements are mem-
orable [222], when people arrange small diagrams themselves they prefer to place nodes
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at grid-points, [263] and such placements are also preferred to TSM-based orthogonal
layout [191].

As we have mentioned, TSM-based orthogonal layout techniques were also influenced
by a grid-aesthetic, though probably more due to circuit layout traditions than typogra-
phy. As Figure 3.5 shows, our new aesthetic leads to a very different visual style. It uses
ultra-compact arrangement on a grid with group membership shown by containment in
nested rectangular regions. This containment then enables the use of the ‘powergraph’
approach [270] to collapse edges. In such an edge-compressed view [104] an edge from a
group to another group implies all nodes in the first group are connected to all nodes in the
second. Unlike virtually all existing approaches to ‘powergraphs’, or network diagrams
with clustering, we do not require that groups are hierarchical, making our approach ap-
plicable to other types of diagrams such as representations of overlapping set-membership
(Figure 3.6).

After exploring grid-design, this chapter’s second contribution is to investigate prac-
tical methods for producing Ultra-Compact Grid Layout of the highest-possible quality.
Rather than developing a specialised algorithm, we decided to explore more general pur-
pose optimisation-based approaches. One reason for this is that current frameworks for
high-quality network layout separate the layout into a pipeline of different steps and, as a
consequence, the resulting layouts are often compromised because of the fixed trade-off
between aesthetic criteria imposed by the pipeline. Furthermore, the implementations of
these multi-stage pipeline methods are complex and brittle, as discussed before in Chap-
ters 1 and 2 and, later in Section 3.3.

Since the time when pipeline-based graph-layout methods such as TSM were con-
ceived, generic technologies for solving combinatorial and mixed-integer optimisation
problems have improved by several orders of magnitude. Simultaneously, the computing
power available on average desktop machines has increased exponentially. Optimisation
problems that once took weeks to solve with home-sized computers can now be solved in
seconds on current home computers.

We feel then, that the time is right to reassess network layout and see whether these
general-purpose optimisation techniques can be usefully applied to solve simple mathe-
matical models encoding such layout problems. One advantage of using such a generic
approach is that it allows us to readily explore this new aesthetic, by allowing us to rapidly
create examples from different applications and with different aesthetic trade-offs (Sec-
tion 3.2).

Thus, after developing a model for Ultra-Compact Grid Layout (Section 3.4), we
compare the applicability of several generic optimisation techniques (MIP, CP and SAT)
to this problem (Section 3.5). While useful for exploring the design of the layout model,
we found that even the best of these solving technique was only practical (in terms of
running time) for graphs of up to around 50 nodes.

A common fall-back for solving difficult combinatorial optimisation problems is to
use generic meta-heuristic techniques like tabu search, simulated annealing or genetic
programming. Dozens of different techniques have been proposed. While not guaranteed
to find an optimal solution, they are routinely used to find ‘good’ solutions to problems
that are too hard to solve optimally using MIP, CP or SAT. We therefore developed a
meta-heuristic to solve our layout problem.

We decided to use Large Neighbourhood Search (LNS) [19, 253](Section 3.7). This
class of meta-heuristic is currently de rigueur for solving various transportation and
scheduling problems. While we are not the first to try generic meta-heuristic approaches
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for network layout, we are the first to consider LNS. Though not guaranteed to find an
optimally compact solution, our evaluation shows that our LNS heuristic found reason-
ably good layouts (when compared to the optimal layout) and scaled to graphs with 100
nodes.

In summary, the technical contributions of this chapter are to:
- Introduce a new Ultra-Compact Grid Layout for networks and explore the design-space
(Section 3.2);
- Present a declarative model of layout goals and constraints that allows us to rapidly
evaluate different refinements and applications of these aesthetic criteria, solvable using
generic constrained optimisation techniques and without the need for specialised algo-
rithm development (Section 3.4);
- Compare the efficiency of different generic optimisation techniques (MIP, CP, SAT) for
solving our declarative model (Section 3.5);
- Explore the use of a Large Neighbourhood Search based meta-heuristic to solve this
declarative model. This would allow us to obtain compact grid layouts for graphs of up
to 100 nodes in less than five minutes (Section 3.7).

This chapter is structured in the following way. We present a new grid-based layout
aesthetic for network diagrams in Section 3.2. We also provide some usage examples
of our novel aesthetic. In Section 3.3, we present some related work. In Section 3.4
we present a declarative model of the network layout problem to achieve our proposed
aesthetic. Section 3.5 provides details of how this model was implemented using three
generic optimisation techniques: Mixed Integer Programming (MIP), Constraint Pro-
gramming (CP), and Boolean Satisfiability Problem (SAT). We proceed by evaluating and
comparing three generic solvers that can solve our three implementations, namely CPLEX
for MIP, Gurobi for CP, and BumbleBEE for SAT, in Section 3.6. We evaluate the use
of LNS to achieve better running time in Section 3.7. Finally, in Section 3.8, we present
additional exploration of ways we can enhance the solving time of our techniques.

3.2 Design

In this section we present a new layout aesthetic for network diagrams that is based on
grid layout in typography, and we provide a number of motivating examples. The aesthetic
incorporates the following layout requirements.

R1 - Node Content Emphasis

Many applications have more than just simple labels associated with nodes, such as rich
graphics or text in paragraph or tabular form. In typography, grid-cells are packed quite
densely in order to maximise the area devoted to this content. By contrast, orthogonal
network diagram layouts are typically very sparse, devoting more space for edge paths,
which—in order to minimise bends and crossings—may be very long. Networks featured
in Figures 3.1, 3.3, 3.7(b) and 3.2 all contain significant text and graphic content asso-
ciated with each of the nodes. For this detail to remain readable at reasonable scales,
without resorting to interactive focus-and-context techniques (e.g. [180]), compact node-
placement is essential. A strong correlation between human preference and layout com-
pactness is also observed in a recent study by Kieffer et al. [191].
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(a) The details of the routing process. This example shows an edge being routed
from the ‘DrawPreview’ node to the ‘Figure’ node. The path of the edge needs to
avoid crossing the nodes with thick borders. The segments of the edge that intersect
with these obstacles are removed from the routing graph. 0-cost port connections
are visible on the source and target nodes.

(b) After the routing is complete, the chosen edge paths are bundled and separated within the
available channel space.

Figure 3.2: A software-dependency network with the routing detail and the final result.
This example was solved in 0.732 seconds with a SAT solver (BumbleBEE). This network
shows dependencies between types, methods and properties in C] code and was obtained
in a debugging scenario using the Visual Studio Code Map tool. This layout neatly illus-
trates the cause of the bug: that Square is the only sub-class of Figure not created by the
GetNextFigure method. Code snippets and icons on each of the nodes give added context,
again illustrating the need for node content emphasis.
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R2 - Proximity Implies Connectivity

If we are to devote less space to edge paths in our grid arrangements then we must rely
more on the proximity of nodes to indicate connectivity. Recent studies have shown that
layout that achieves such proximity is strongly preferred by readers of small diagrams
[106]. In addition, this objective indirectly addresses crossings simply because shorter
edges are less likely to cross. Minimising edge-length can sometimes be a more successful
strategy for minimising crossings than heuristics, which directly address crossings, e.g.
[105].

R3 - Variable Node Dimensions

Some nodes may have significantly more content than others. Following typographical
layout conventions, these nodes can be expanded to fit their content, but they must always
fully fill a rectangular set of grid-cells. Furthermore, where different orientations of the
node are possible (e.g. picture beside text or picture below text), the layout should choose
the orientation to best suit the layout. Figure 3.3 demonstrates layout with variable node
orientations.

R4 - Containment

The semantics of many applications involve representing group membership over sets of
nodes. In typography, such relationships are shown through nested rectangular enclosing
regions.

R5 - Flow

In applications where the directionality is important, we would like flow to be shown in
multiple directions, for example, left-to-right and top-to-bottom, as in document layout.

Part of the motivation for this work was the search for an effective layout method for edge-
compressed dense, directed networks [104]. Without compression, graphs that have only
a few nodes but many edges are already very difficult to read. For example, Figure 3.4
shows the state-chart for a travel booking system with 13 nodes and 44 edges arranged
using the commercial layout software, yFiles [15].

Figures 3.5(a) and 3.5(b) show the edge-compressed version of the network with only
17 edges. In the compressed representation, an edge between two groups implies a bi-
clique. That is, every node contained in the source group of the edge is the source of
an edge to every node in the target group. Thus, precisely the same connectivity struc-
ture is conveyed but in a less cluttered way. Further, the grouping inferred by the edge-
compression reveals structure; it is obvious from the single edge adjacent to the largest
group, and the trip cancelled state that every state other than start is cancellable.

Figures 3.5(a) and 3.5(b) compare layouts obtained by a standard TSM approach
(yFiles) and by our model. Our layout model here keeps connected nodes close together
(R2) while preserving group containment within rectangular regions (R4). Furthermore,
the layout is as compact as possible while respecting node and group containments, thus
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Figure 3.3: Links between major composers arranged with our model with the solver
choosing the best orientations for nodes. Layout took 37.422 seconds using the SAT
solver — disjunctions due to variable node orientations expand the search space.
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Figure 3.4: A traditional TSM-based orthogonal layout of the flat network. This diagram
was produced using the commercial layout software yFiles [14]. The network represents
the different steps of a trip booking process. The nodes represent the state of the booking,
while the links represent a transition for one state to another.
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(a) The powergraph resulting from the edge compression of the original
state-machine of the booking system drawn using a TSM-based orthogonal
layout. This diagram still has a lot of wasted space. If it was coerced to a
grid, then the dimensions would be 6×7, leaving 29 empty grid-cells.

(b) The same powergraph of the state-machine drawn using our Ultra-
Compact Grid Layout. The diagram has 4× 4 grid dimensions, with only
three empty grid-cells. As seen from the figures, the nodes in this diagram
are much larger, allowing us to include more detailed descriptions of each
state, due to the optimal use of space. This optimally compact solution was
found in 0.464 seconds using the SAT solver BumbleBEE. Although we do
not explicitly consider acquiring a minimal number of edge bends and cross-
ings, our layout has an equal quality in these respects to the TSM-based
orthogonal layout shown above. Moreover, our layout significantly reduces
the overall area and total edge-length.

Figure 3.5: Drawings of the state machine for a travel-booking system. An edge com-
pression technique is used to compress the 44 original edges into 14 edges. The resulting
graph is called a powergraph. Both drawings of the powergraph show a clearer structure
than the drawing of the original network (without the edge compression), which is shown
in Figure 3.4. For example, the outermost compartment makes it obvious that all states
apart from ‘starting state’ are cancellable, i.e. have a link to ‘trip cancelled’.
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Figure 3.6: An example where group members can belong to more than one group. This
Euler diagram shows researchers of a lab (anonymised). The groupings are based on
their research interests. For example, ‘Salvador Dali’ is interested in both ‘Visualisation’
and ‘Optimisation’. The problem of arranging this network into an optimal diagram,
based on our described requirements, was solved in 0.047 seconds using the SAT solver
BumbleBEE.

maximising space for, and hence readability of, node labels (R1). When node area is max-
imised in this way, we are able to include additional explanatory content for each node
and the diagram becomes a more complete, stand-alone description of the state-machine.

Figure 3.3 demonstrates the possibility to provide a very compact layout for a graph
with nodes that require more than a single grid-cell to fit their content (R3). The network
is a section of the ‘Composers Graph’ that was one of the challenges for the 2014 Graph
Drawing Conference contest [1]. Each node is a composer for whom we want to show
both biographical details and a portrait. We allow the textual biographical details to fill
one grid-cell, while the portrait can go in an adjacent cell, either beside or below the text.
The solver automatically chooses the orientation of each node that permits layout that is
optimal with respect to the other layout requirements.

Figure 3.6 is an Euler diagram representing the research interests of members of our
lab (anonymised). Set labels are also treated as nodes and laid out within the same grid
system. Note that the containment (R4) is no longer a strict hierarchy, yet our general
layout model is still applicable. Drawing Euler diagrams under certain constraints, such
as convexity of the regions, is not always possible. Actually, realising the drawing in an
aesthetic way is a further challenge. Both of these problems have seen a lot of interest
from computer-scientists and mathematicians, and sophisticated algorithms have been
developed [267, 278]. Here, we have defined the layout for rectangular boxes with a
relatively simple declarative model, and left both the problems of determining feasibility
and (if possible) placement to the solver.

In Figure 3.7 we compare two different arrangements of a biological pathway net-
work. In such, pathways the direction of the edges is often very important, for example,
indicating the direction of a reaction. It is therefore a common convention to show flow
in such diagrams from top-to-bottom or from left-to-right. Figure 3.7(a) uses a standard
‘Sugiyama style’ [293] layout obtained, again, with yFiles. This method assigns nodes
to layers, such that edges exclusively span layers. By contrast, Figure 3.7(b) introduces a
disjunction constraint allowing edges to flow either left-to-right or top-to-bottom.
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Figure 3.2(b) shows a software-dependency graph. This network shows dependencies
between types, methods and properties in C] code and was obtained in a debugging sce-
nario using the Visual Studio Code Map tool. This layout neatly illustrates the cause of the
bug: that Square is the only sub-class of Figure not created by the GetNextFigure method.
Code snippets and icons on each of the nodes give added context, again illustrating the
need for node content emphasis (R1).

3.3 Related work
The most widely-used family of automatic layout methods for undirected graphs are based
on force-directed layout [197]. These methods iteratively place nodes such that edge-
lengths become relatively uniform, while disconnected nodes are spaced further apart.
This approach is attractive because the basic variants are easy to implement. In addition,
force-based representations reveal the structure of small graphs, and cluster nodes in a
certain way, so that proximity implies connectivity (R2). However, force-based represen-
tations are very organic — the antithesis of grid layout.

Rohrschneider et al. [268] tried to overcome that problem for biological networks
by first computing a stress-based node-placement on a grid, followed by an edge rout-
ing heuristic. This approach does not allow group information to be taken into account,
and the graph structure is hard to discern from the layouts. Recent work from Kieffer et
al. [190] explored augmenting the objective function of a constrained force-directed tech-
nique to prefer nodes placed at grid-points, thereby creating a compromise between a
grid-aesthetic and R2. This method (extended to grouped graphs) provides the starting
point for our LNS approach.

A layout exploration in the specific domain of Metro-map layout from Nöllenburg and
Wolff [242] was similar to ours in spirit in its attempt to obtain high-quality layout through
the use of optimal (MIP) techniques. However, the metro-map layout problem is signif-
icantly constrained in that the topology is already given by the geographical positions of
the stations. As a layout adjustment problem, rather than completely free arrangement of
nodes, it is therefore more similar in terms of tractability to the LNS approach explored
in Section 3.7.

Orthogonal layout approaches seek to represent edges with axis-parallel segments,
preferably with only a small number of right-angle bends. From the approaches that
were proposed, the planarisation-based Topology-Shape-Metrics (TSM) framework [56]
has proven to be by far the most successful in practice. TSM first fixes an embedding for
the planarised input graph, then solves bend minimisation for this embedding to achieve
an orthogonal shape, and in the final compaction step, computes node positions for this
shape.

However, TSM has limitations that inspire the work presented in this chapter: Primacy
is given to minimising edge crossings, prohibiting a good compromise between aesthetic
criteria, and even optimal solutions for a single phase (e.g. calculated using ILP, MIP
or SAT strategies [62, 133, 195]). This will generally not lead to a solution close to the
optimum, with respect to all optimisation criteria (see Figure 3.4). Orthogonal methods
also typically do a poor job of handling nodes of widely varying dimensions, and they are
difficult to extend for main constraints in applications, in particular grouping of nodes and
flow direction. An exploration of applying optimal methods (ILP and SAT) to particular
graph-theoretical problems related to orthogonal-drawings was considered by Biedl et
al. [66] but their results are not readily applicable to practical layout. Betz et al. [64]
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integrate upward crossing minimisation into a TSM approach to support non-uniform
node heights for layouts of directed graphs.

A number of other researchers have investigated the use of meta-heuristic approaches
to graph layout. Davidson and Harel [91] investigated the use of simulated annealing
(SA) for undirected graphs. Harel and Sardas [155] used SA to beautify a layout drawn
with a planarisation-based approach. Barsky et al. [52] and Kojima et al. [199] propose
methods based on SA and local-search (respectively) for biological networks. The work
of Barsky et al. is the most similar because they lay out the nodes on a grid, however,
the layout is not particularly compact and does not use rectangular compartments. To our
knowledge, ours is the first use of LNS for graph layout.

3.4 Layout Model
In this section we present a high-level declarative model for placing grouped nodes in a
grid layout that formulates the problem as a constrained optimisation problem.1

3.4.1 Node-Placement Model
The high-level model for node-placement takes the following as input:

1. The set of leaf or base nodes B = {1, ...,nB} and the set of container nodes C =
{nB+1, ..,nC} which contain groups of other nodes.

2. A fixed width wu and height hu for every base node u ∈ B. These are positive
integers.

3. Every container node has a set of nodes that are contained inside it. These can be
container or base nodes. This is specified by the Boolean matrix con[u,v] which
is true iff v ∈ B∪C is inside u ∈ C. The containment relationship need not be
hierarchical.

4. The containment relationship gives rise to a non-overlap relationship between nodes.
For convenience, this is pre-computed and passed into the model. It is given by the
symmetric Boolean matrix disj[u,v] which is true if u,v ∈ B∪C should not overlap.

5. For each pair of nodes u,v ∈ B∪C there is a non-negative desired distance dd[u,v]
between them with a non-negative weight ddw[u,v]. The weight ddw[u,v] is 0 if u
is contained in v or vice versa.

6. A maximum grid size, gx and gy, both of which are positive integers big enough to
ensure that they contain the optimal layout.

Neither con nor disj need to contain redundant constraints: for efficiency they should
be minimal.

We experimented with different desired distances and weights. Following stress-based
methods [134], we tried setting the desired distance between two nodes to the graph-
theoretic-distance, taking into account containment2. We also tried simply setting the

1The full model in MiniZinc is available under an open-source license [236]
2This is the length of the shortest path between the nodes in an extended graph where there is an edge

between two nodes x,y, in this extended graph if there is an edge in the original graph, or if con[x,y] or
con[y,x] holds.
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(a) Sugiyama style layered-layout with six layers and flow direction strictly left-to-
right.

(b) Compact grid layout obtained with relaxed flow direction; solved
in 2.035 seconds using the SAT solver.

Figure 3.7: A directed biological pathway from
http://www.pathwaycommons.org.

desired distance and weight to the edge adjacency matrix. Observing similar results for
both approaches, we opted for the latter.

Variables and constraints:

1. The core decision variable in our model is the position (xs[u],ys[u]) of the top-left
corner of each base node u ∈ B. This must be a point on the grid: xs[u] ∈ {1, ...,gx}
and ys[u] ∈ {1, ...,gy} where gx and gy give the size of the grid.

2. The position of the bottom-right corner of each base node is functionally dependent
upon this: ∀u ∈ B, xf [u] = xs[u]+w[u] and yf [u] = ys[u]+h[u].

3. We require that the whole node fits on the grid: ∀u ∈ B, xf [u]≤ gx and yf [u]≤ gy.
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4. The position, width, and height of the container nodes are also functionally depen-
dent on the position of the base nodes; as the containers are just the bounding box
of their constituents, so ∀u ∈C,v ∈ B∪C:

xs[u] = min{xs[v] | v ∈ B∪C∧ con[u,v]}
xf [u] = max{xf [v] | v ∈ B∪C∧ con[u,v]}
w[u] = xf [u]− xs[u]

and similar in the y-dimension.

5. The following disjunction ensures that nodes do not overlap: ∀u< v∈C s.t. disj[u,v],

xf [u]≤ xs[v]∨ xf [v]≤ xs[u]∨ yf [u]≤ ys[v]∨ yf [v]≤ ys[u].

Objective function to be minimised:

stress+αcc+βoc

α and β are fixed weights and the functions stress, cc and oc measure different aesthetic
criteria, as follows.

The stress term is the difference between the desired and actual distance between the
nodes. Because we are using orthogonal connectors and grid layout, we use Manhattan
distance. We measure the distance between the closest points on the perimeter of the
nodes rather than between the centre of the nodes, as this leads to considerably better
layout in the case that the nodes are not squares. To compute this we use the functionally
dependent variables:

dx[u,v] =


xs[v]− xf [u]+1, if xf [u]≤ xs[v]
xs[u]− xf [v]+1, if xf [v]≤ xs[u]
0, otherwise.

We define dy[u,v] symmetrically. Now,

stress = ∑
u,v∈B∪C

ddw[u,v] · |dx[u,v]+dy[u,v]−dd[u,v]| .

The other components of the objective function are designed to ensure ∀u ∈ B∪C
that compartments are compact cc = ∑u∈C w[u] + h[u], that the entire layout is compact
oc≥ xf [u], and that it fits inside a rectangle with a given aspect ratio ar: yf [u]≤ ar ·oc.

A great advantage of using a constrained optimisation approach is that it is straight-
forward to add additional constraint encodings based on additional aesthetic criteria.
Thus, for the example presented in Figure 3.3, we add a constraint to dictate a fixed
perimeter of size 2×1 for base nodes; placed either horizontally or vertically. In the flow
layout in Figure 3.7 each source node should be either above or to the left of the desti-
nation node — another disjunction. Note that the optimisation problem that we tackle
with our model is NP-hard, as can be shown by reduction from the rectangle packing
problem [201].

Initially we tried to use a single constrained optimisation model for both node-placement
and edge routing. This modelled each edge using a fixed number of horizontal and ver-
tical segments (some of which could be 0 length) and including a penalty term for each
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pair of segments to penalise possible edge crossings. However, this proved too slow for
all but very small networks, and so is currently still not practical. We therefore developed
a separate heuristic algorithm for edge routing given the positions of the nodes on a grid.

3.4.2 Routing
The grid-aesthetic naturally suggests routing connectors between base and container nodes
in an orthogonal-style, i.e. with straight-line segments aligned to the grid. Obviously,
intersections between these orthogonal edge paths and node boundaries (other than the
source/target of the edge) should be avoided. Edge paths should only intersect container
boundary rectangles if the container is the source or target, or is an ancestor of the source
or target.

Currently, the standard for orthogonal connector routing is to route over an orthogonal
visibility graph, followed by a ‘nudging’ phase to centre edge segments in channels be-
tween nodes [329]. Strict grid placement of nodes simplifies this problem considerably,
as we can route over the graph formed by the grid itself, intersected with the centre lines
between each column and row of nodes (see Figure 3.2). When we route an individual
edge, we remove any edge segments which intersect nodes other than the start and end
nodes, or segments intersecting containers which are not ancestors of the start and end
nodes.

We also connect ports on the start and end nodes to each other. These port connections
have zero cost in the subsequent shortest path finding problem between the start and end
nodes. Thus, the route will always run through the ports providing the shortest path
between source and target. Otherwise, the cost of traversing each segment in the shortest
path traversal (Dijkstra) is simply the length of that segment, plus an additional penalty if
traversing the edge would add a bend to the current path.

Finally, bundles of co-linear edge segments are constructed and an ordering within
bundles that avoids unnecessary crossings is found, as suggested by Nöllenburg [241].
This ordering is used to generate constraints for a simple quadratic program subject to
separation constraints (with solution as per [108]), to neatly space the edge segments in
the available channels.

3.5 Optimal Node-Placement
The declarative model is a complete and precise mathematical formulation of the node-
placement problem. In this section we evaluate three of the most widely used, generic
techniques for solving such discrete constrained optimisation problems: Mixed-Integer
Programming (MIP), Boolean Satisfiability (SAT), and Constraint Programming (CP).
These are all guaranteed to find an optimal solution to the problem. In this section we
detail the exact encodings used, as well as the experimental evaluation.

3.5.1 Constraint Programming
Subject to minor syntactic changes, the model given in Section 3.4 is a MiniZinc [236]
model. The actual MiniZinc is shown in Appendix A. Thus, it can be directly executed
and solved using any of the underlying solvers supported by MiniZinc.

For our evaluation we used a state-of-the-art constraint programming solver, G12/CPX
[129] which utilises lazy clause generation. CPX, like most constraint programming
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solvers, provides global constraints for finding the minimum and maximum elements in a
list or array, and a predicate or function to compute the absolute value of a function and
disjunctions of constraints. The calculation of distance between two nodes u, v in a given
dimension was encoded as the expression

dx[u,v] = max([0,xs[v]− xf [u]+1,xs[u]− xf [v]+1])

3.5.2 SAT
SAT solvers are designed to find values for Boolean variables that satisfy conjunctions of
clauses, that is, disjunctions of Boolean literals. When encoding an integer problem into
SAT, each integer variable x ∈ [1, . . . ,n] is usually encoded as a set of Boolean variables
[x1, . . . ,xn]. There are two standard encodings for integer variables with small domains.

The sparse encoding requires that exactly one of the n variables is true; this gives the
semantics

xi ≡ [[x = i]]

where this is read as the Boolean variable xi in the encoded SAT model is true iff x = i
holds in the original integer programming model. The direct encoding of this semantic
requires O(n2) clauses, since in addition to the set of disjunctions that ensure that at
least one is true, it also requires an encoding that ensures that at most, one value holds.
Each pair of distinct values (i, j) requires a disjunction. There are n(n−1)/2 such pairs,
resulting in 1+n(n−1)/2 clauses.

The alternative unary encoding of integer variables instead ensures that the xi are
ordered; that is, xi⇒ xi−1. These literals then have the semantics

xi ≡ [[x≥ i]].

In addition to requiring only O(n) clauses, the unary encoding is convenient for encoding
a range of arithmetic constraints.

Example 1 Using the unary encoding, x≤ y can be encoded as∧
i

[[x≥ i]]→ [[y≥ i]]≡
∧

i

¬xi∨ yi.

Example 2 Using the unary encoding, x = |y| can be encoded as∧
i≥0

[[x≥ i]]↔ ([[y≥ i]]∨ [[y≤−i]])≡
∧
i≥0

xi↔ (yi∨¬y1−i).

Example 3 x = max(y1, . . . ,yn) can be encoded as:∧
i

([[x≥ i]]↔
∨

j

[[y j ≥ i]])≡
∧

i

(xi↔
∨

j

yi
j).

Because of these advantages we use the unary encoding. Linear arithmetic constraints,
such as x = ∑ciyi, can be implemented using a range of encodings, such as BDDs, adders
or cardinality networks [40, 85, 115].

Reified versions of these constraints can also be easily constructed. A reified con-
straint is of form b↔ C and constrains the Boolean b to be true iff the constraint C
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holds in the model. Reification is a standard technique used to encode disjunctions of
constraints: the disjunction C1∨C2 is encoded as

(b1↔C1)∧ (b2↔C2)∧ (b1∨b2).

Given these primitives, we can straightforwardly encode the model into SAT. For ex-
ample, the non-overlap of nodes u and v becomes

(bleft∨bright∨babove∨bbelow)
∧ bleft↔ xf [u]≤ xs[v]
∧ bright↔ xf [v]≤ xs[u]
∧ babove↔ yf [u]≤ ys[v]
∧ bbelow↔ yf [v]≤ ys[u]


The encoding of the problem into SAT was performed using the Ben-Gurion Univer-

sity Equi-Propagation Encoder (BEE) [226], which compiles a declarative specification
to SAT. Primitive arithmetic constraints are encoded using direct unary adders; whereas,
larger sums, such as the objective value, are encoded with odd-even sorting networks.
The optimisation is handled by solving a sequence of SAT instances. The solver initially
solves the problem P and returns a solution o = k. Then it adds the constraint (o < k) to
the model and solves again. This is repeated until the resulting problem is found to be
unsatisfiable. Hence, the last solution found is optimal.

3.5.3 MIP
The MIP encoding is the most complex among the approaches we compare. We use
the standard MIP encoding of minimum and maximum and absolute value [323]. We
used six matrices of binary variables to keep track of the relative position of each pair of
vertices u,v. The arrays left[u,v], xoverlap[u,v], right[u,v] encode that u must be to the
left, horizontally overlap, or must be to the right of v; and analogously in the y direction
we have below[u,v], yoverlap[u,v], above[u,v]. The following constraint enforces the
desired relationships in the x-direction, a similar constraint is used for the y-direction:
∀u < v ∈ B∪C

lt(x f [u],xs[v], left[u,v])∧ lt(x f [v],xs[u],right[u,v]) ∧
lt(xs[u],x f [v],xoverlap[u,v])∧ lt(xs[v],x f [u],xoverlap[u,v])

where lt(x1,x2,b) enforces that b→ x1 ≤ x2 and has the standard MIP encoding −M ∗
(1−b)+ x1 ≤ x2 where M is a sufficiently large constant.

Using these it is simple to encode non-overlap and compute the distance between
nodes:

1. The relative positions are mutually exclusive in each direction: ∀u < v ∈ B∪C,

(left[u,v]+ xoverlap[u,v]+ right[u,v] = 1) ∧
(above[u,v]+ yoverlap[u,v]+below[u,v] = 1)

2. If there is a containment relationship between two nodes then they overlap in both direc-
tions: ∀u < v ∈ B∪C s.t. con[u,v]∨con[v,u] then xoverlap[u,v] = 1∧yoverlap[u,v] =
1.
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3. Enforce non-overlap: ∀u < v ∈ B∪C s.t. dis j[u,v],

left[u,v]+ right[u,v]+above[u,v]+below[u,v]≥ 1

4. Compute x-distance: ∀u < v ∈ B∪C we have:

(dx[u,v]≥ 0.0)∧ (dx[u,v]≥ xs[v]− x f [u]+1) ∧
(dx[u,v]≥ xs[u]− x f [v]+1)

and:
lt(dx[u,v],0.0,xoverlap[u,v]) ∧
lt(dx[u,v],(xs[v]− x f [u]+1), left[u,v]) ∧
lt(dx[u,v],(xs[u]− x f [v]+1),right[u,v])

and similarly for the y-direction.

We used the C++ implementation of IBM ILOG Concert Technology [7] and MiniZ-
inc to encode our MIP model. We solved them using the state-of-the-art CPlex MIP
solver [2], and for the MiniZinc model we used the flatzinc compatible CPlex interface.
Both encodings yielded similar results. We show the results of the first.

3.6 Experimental Evaluation
In order to study the performance of our model encodings for CP, MIP and SAT on dif-
ferent graph characteristics, we ran experiments on different types of input graphs. Ex-
periments were run on a standard desktop machine with an Intel Core i7-4771 3.50GHz
processor and 32GB RAM. Solvers were restricted to run on a single thread with a time-
out of 300 seconds. The results were drawn using HTML5, JavaScript, D3.js [3] and
Cola.js [13].

Our graph corpus consists of graphs from two sources; a set of randomly generated
scale-free graphs, and a set of graphs derived from real-world instances. For the latter set,
we use a selection of 100 graphs from the well-established Rome graph set [10], as al-
ready used in [188]. This sample contains 10 graphs from each group of graphs with sizes
|nodes| = 10,20, . . . ,100 and covers the Rome set well [188]. Density (|edges|/|nodes|)
ranges from tree-like (∼ 1), to quite dense (1.61). We generated the flat scale-free graphs
based on the model proposed by Bollobás et al. [104], with 10 graphs for each graph size
from 7 to 100 nodes. In these generated graphs we controlled for edge density such that
|edges|/|nodes| is up to 1.22. Our decision to use scale-free graphs is motivated by the
fact that scale-freeness is often observed in graphs stemming from important application
areas like biology and the social sciences. To obtain a grouping for each of these graphs,
an edge-compression heuristic [109] was applied. Thus, our full corpus consists of 940
flat-graphs, 100 Rome graphs, and the corresponding 1040 grouped graphs, called ‘pow-
ergraphs’ in the sequel. We then attempted to obtain a layout for each graph using our
MIP, CP and SAT.

For our experiments, the components of the objective function were weighed in the
following order. The stress component was given a weight of four, the compartment
compactness was given a weight of two (α = 1/2), and the entire layout compactness
was given a weight of three (β = 3/4). These values yielded the most desirable results,
and can be modified to fit the needs and expectations of the users.
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Running the solvers on graphs of different sizes showed that the SAT solver was able
to solve graphs of larger sizes, while CP and MIP solvers were slower. Figure 3.8 shows
the median running time for all graphs up to the largest solved instance, with 57 nodes.
The results of Figure 3.8 are presented in Table 3.1. While these results tend to favour
SAT over MIP, we cannot say definitively under what conditions such layout models are
better suited to one solver over the other. Our intuition here is that SAT is typically
well suited to problems with small variable domains and highly disjunctive constraints,
whereas MIP can handle large domains gracefully only when a linear relaxation gives a
good approximation to disjunctions.

powergraph flatgraph
<3s <1m <5m <3s <1m <5m

MIP 7 9 11 7 9 11
CP 15 16 25 13 16 25
SAT 25 38 57 18 24 36

Table 3.1: The highest node count of graphs solved by MIP, CP, and SAT; categorised into
three time frames. It is clear that SAT performed best, followed by CP, with MIP having
the worst performance for both ‘powergraphs’ and ‘flatgraphs’.

3.7 Large Neighbourhood Search Meta-Heuristic
The results presented in Section 3.6 indicate that SAT may be used to find optimal Ultra-
Compact Grid Layout for small grouped graphs reliably, in around a second, which may
be suitable for a web-service. It can be argued that interactive visualisations of small
neighbourhoods are useful in exploring very large graphs, through filtering or semantic
zooming that restricts the view to a sub-graph or aggregated overview. Still, being able to
reliably visualise networks with hundreds of nodes gives a lot more flexibility.

A common fall-back when solving hard combinatorial optimisation problems is to
use generic meta-heuristic techniques like tabu search, simulated annealing or genetic
programming. While not guaranteed to find an optimal solution, they are routinely used
to find ‘good’ solutions to problems that are too hard to solve optimally.

We use Large Neighbourhood Search (LNS), which is currently the method of choice
for solving various transportation and scheduling problems. The basic approach is to
explore a large neighbourhood around the current solution and iteratively move to a high-
quality neighbouring solution until no improvement is possible. One way in which the
search can be done is to use a generic constrained optimisation technique to search the
neighbourhood for the best solution. The advantage of this is that the search is then
guaranteed to only find solutions that respect the problem constraints. This is why we
decided to use LNS; with other meta-heuristic techniques, like simulated annealing, it
would have been difficult to ensure that the containment and non-overlap constraints were
satisfied during the search.

The LNS heuristic is intuitively simple: find an initial solution and then iteratively
improve it by choosing a set of nodes for improvement. The space of their possible
positions forms the neighbourhood for the search. Their new position is found by using
MIP to solve the model given in Section 3.4, with some additional constraints fixing the
relative position of the other nodes. The reason that we used MIP is that while MIP was
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Figure 3.8: Median solve times for ‘flatgraphs’ and ‘powergraphs’. Filled marks represent
instances for which optimal results were found in under five minutes. Hollow marks
indicate not all instances were solved in that time. Size of the marks indicate number of
instances solved.



3.7. LARGE NEIGHBOURHOOD SEARCH META-HEURISTIC 49

power-graphs

flat-graphs

Figure 3.9: Average quality of objective obtained with the Large Neighbourhood
Search (LNS) heuristic and the starting layout computed using Force-Directed Grid-Snap
(FDGS), compared to the optimal objective for ‘flatgraphs’ (top) and ‘powergraphs’ (bot-
tom). This is shown with respect to graph size.
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slower than both CP and SAT for solving the original model, we found that it was the
fastest method for solving this more constrained sub-problem. We believe this is for two
reasons. The first is that the addition of relative position constraints removes most of the
disjunctions from the model, so that the linear relaxation gives a good approximation to
the underlying problem. The second is that MIP solvers such as CPLEX support warm
start when solving similar problems. Algorithm 1 gives an overview of our heuristic.

Algorithm 1 Grid Layout Heuristic
1: procedure GRID LAYOUT ( Graph g, Model m )
2: l← getForceDirectedLayoutWithGridSnap(g)
3: d← getDataWithTightConstraints(l)
4: SolverLoad(m,d)
5: b← 10, c← nil, t← |B|/5 seconds
6: for each c← getNextNodeOrContainer(g,c) do
7: relaxOrderingConstraints(c)
8: δ ← δ ∪ getContainedNodes(c)
9: lc1← getFreeLeavesDirectlyConnected(c)
10: δ ← δ ∪ lc1
11: δ ← δ ∪ getFreeLeavesDirectlyConnected(lc1)
12: δ ← δ ∪ getContainedLeavesDirectlyConnected(c)
13: relaxUpTo_b_nodes(δ ,b)
14: val← runCPLEXsolver(timeout=t)
15: setWarmStart(val)
16: updateConstraints(val)
17: end for
18: for each leaves← getUpTo(FreeLeaves(g), b) do
19: relax(leaves)
20: repeat 12-15
21: end for
22: return val
23: end procedure

The first step is to find an initial layout for the grouped network with a constraint-
based force-directed approach. We implemented the ‘grid-snap’ technique described by
Kieffer et al. [190] in the Cola.js [13] browser-based constraint-layout library. We
extended this method to handle group-hierarchy containment inside rectangular regions
using separation constraints, as described in [105]. The layout obtained by this heuris-
tic Force-Directed Grid Snap (FDGS) approach for a 45-node graph is shown in Fig-
ure 3.12(a).

From this initial layout, two types of additional constraints are added to the model
(Section 3.4) to massively reduce the search space. First, we generate inequality con-
straints over the x- and y-positions for pairs of nodes (Figure 3.10), locking their hori-
zontal and vertical order. To allow the solver to move a neighbourhood of nodes, these
constraints are selectively relaxed, as described below. Additional constraints on edge-
length further restrict the search to only equal or shorter edges. This is done by bounding
the Manhattan distance between adjacent nodes by their Manhattan separation from the
FDGS layout.

In order to obtain improvements in reasonable time, we iteratively relax the ordering
constraints for a subset δ of nodes and run the solver on this relaxed model. New ordering
constraints for the nodes in δ and potentially tightened bounds on the edge-lengths are
derived from the resulting layout and added to the model for the next iteration, where
a solver warmstart is used to speed up the computation. The relaxation is divided into
two main parts, represented by the for loops in Algorithm 1, lines 6 and 18. The first
part processes neighbourhoods of nodes, the second is a post-processing to find the best
placement for free leaves, that is, leaf nodes not contained in any other node.
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Figure 3.10: Constraints types derived from the grid-snap layout to be added to the layout
model. Ordering constraints for the pairwise relative positions between nodes in x and y
dimension are added for all nodes pairs. (a) shows the horizontal ordering constraints for
node 3, which restrict its x position to be less or equal to those of 6 and 10, and larger
or equal than those of 9, 5, and 2. The constraints for the y position are obtained in the
same way. (b) shows the edge-length constraints for node 3, in this case all distances to
adjacent nodes have bound 1.
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(a) Starting layout: container A is
selected for neighbourhood detection.
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(b) Result: Nodes moved to a new position are high-
lighted with red outline. Node 3 was repositioned
within container B, decreasing the container size, and
container A was assigned a more horizontal shape,
allowing the drawing to fit into a much smaller grid,
moving all relaxed nodes. The length of the edge be-
tween nodes 4 and 7 was decreased from 4 to 3. Grid
size has been reduced from 5×5 to 5×3.

Figure 3.11: A step in the Large Neighbourhood Search heuristic.
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In each iteration of part one, the selection of nodes for relaxation is as follows: first,
we select a node c, whose neighbourhood will be relaxed, to be included in δ (Function
getNextNodeOrContainer in Algorithm 1). In case there are contained nodes, we first
pick c from the list of containers ordered by size, that is, the largest container in the first
iteration, followed by the second largest, and so on. Otherwise, we consider each node
as an empty container, and in each iteration select one of them in random order. We now
add further nodes to δ up to a small bound b on the size of δ . In our implementation,
b = 10 gave a good trade-off between running time and quality improvement. First, we
randomly select up to b nodes in c. If c has fewer nodes than b, we add further nodes
in the following order until |δ | = b: The group lc1 of free leaves that are adjacent to c.
The group of free leaves that are adjacent to nodes in lc1. Contained leaf nodes that are
adjacent to c.

After relaxing the ordering constraints for the nodes in δ , we run the solver for a
limited time t. Figure 3.11 illustrates such a step of the heuristic. We choose t = |B|/5
such that the total run-time for the algorithm is always bounded proportionally to the size
of the graph. The result is used to initialise the next iteration and the solver warmstart.

We iterate until each container (or each node, in case there are no containers) has been
selected once (for-loop at Line 6 of Algorithm 1). Afterwards, we relax sets of free leaves
independent of a container, and rerun the solver, until all free leaves have been relaxed
once (for-loop at Line 18 of Algorithm 1). The final layout is shown in Figure 3.12(b).

We evaluated the LNS heuristic on our graph corpus. The reduction in search space
leads to significantly faster solves as can be seen in Figure 3.8. Figure 3.9 compares
the layout quality of LNS and FDGS with the optimal as obtained by SAT. Across all
graphs in our corpus, the mean quality ratio for FDGS was ∼ 1.24 while for LNS it was
∼ 1.1, i.e. LNS was typically twice as close to the optimal as FDGS. Visually, FDGS
gives a much less compact layout with a significantly larger total edge-length, compared
to layout refined by LNS as evidenced by the side-by-side comparisons in Figures 3.12
and 3.16.3

3.8 Additional Experiments

In this section we discuss some work that was done in attempts to achieve better running
times. However, as the improvements yielded only minor gains, we did not explore these
thoroughly.

In Mathematics, objects of a set can be split into equivalence classes based on a de-
fined notion of equivalence. In the case of our layout problem, we can divide nodes into
equivalence classes based on their connections. A pair of nodes in a graph are equivalent
if they have exactly the same connections.

While using the ‘powergraph’ edge compression technique [104], we realised that the
compressed graph ended up with several nodes that did not have any edges. Figure 3.13
shows a simplified example, where all the nodes in the compressed network end up with
no edges. The positions of nodes 1 and 2 could be interchanged without affecting the
quality of the layout. Similarly, it does not matter in which order nodes 3 and 4 are
placed. Getting rid of these nodes from the network layout problem would result in fewer

3More examples highlighting the difference in quality between FDGS layout and that obtained by FDGS
with LNS refinement are available on-line [6].
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(a) Left: Force-directed layout with containment. Right: Force-directed layout with grid-snap. Solve time:
2.2 seconds. Grid Size = 10× 11. Total Edge Length = 33. Number of Edge Crossings = 4. Objective
= 35.89% higher than optimum. The first neighbourhood considered by the LNS search is highlighted in
blue.
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(b) LNS outcome. Highlighted nodes are the last
neighbourhood with relaxed constraints, the node with
pink outline was the only one moved by the solver.
Solve Time = 43 seconds. Grid Size = 9× 8. Total
Edge Length = 29. Number of Edge Crossings = 4.
Objective = 17.94% higher than optimum.
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(c) Optimum. Only one edge has more than
unit length. Grid Size = 7× 7 and is opti-
mal. Total Edge Length = 24. Number of
Edge Crossings = 0. Solved by SAT in 99.2
seconds.

Figure 3.12: A network with 45 nodes arranged in four ways: the force-directed approach
that forms the basis of our LNS approach; the grid-snap approach that allows us to derive
the constraints for the LNS approach; the final outcome of the LNS approach; and the
final optimal outcome of the SAT.
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(a) A small network with four nodes. Node
1 has connections to nodes 3 and 4, but so
does node 2.

(b) The same network as in the figure on
the left, but the edges have been compressed
using the powergraph [104] technique.

Figure 3.13: An example showing a network with two equivalence classes, nodes 1 and 2,
belong to the same equivalence class, while nodes 3 and 4 belong to another equivalence
class.

variables for which the solvers need to find optimal values and thus reduce the search
space.

We modified our model, such that equivalent nodes would be removed from the pool
of variables. Instead, they would be allocated a reserved space in the group to which they
belong. Thus, after the solver finds an optimal layout, they are reinserted into the reserved
spaces. We evaluated the running time of the CPLEX [2] solver for finding optimal layouts
for networks with different sizes (from the corpus of randomly generated scale-free graphs
discussed in Section 3.6) using this reduction technique. Without the equivalence class
reduction, CPLEX was able to find optimal layouts for networks with 7, 9, and 11 nodes,
in under 3, 60, and 300 seconds respectively (as shown in Table 3.1). With the equivalence
class reduction, CPLEX was able to find optimal layouts for networks with 12, 17, and
25 nodes in under 3, 60, and 300 seconds respectively, as seen in Figure 3.14. Using
this technique significantly reduced the solving time for instances where a large number
of equivalent nodes existed, however, it obviously did not enhance those with few or no
equivalent nodes, as exhibited by some outliers in Figure 3.14(a).

We also conducted an experimental evaluation to understand the effects of the size of
the neighbourhood in the LNS approach on the running time. We varied the number of
nodes whose constraints are relaxed during the iterative steps of the LNS approach, and
ran the CPLEX solver on networks with different sizes (from the corpus of ROME graphs
mentioned in Section 3.6). The results are shown in Figure 3.15. The running time of the
solver increases exponentially with the increase in the size of relaxed neighbourhoods.

3.9 Conclusion

We have introduced a new ultra-compact, grid-like layout aesthetic for node-link diagrams
with arbitrary containment that is motivated by the grid arrangements that are used almost
universally by designers in typographical layout. We have explored whether generic con-
strained optimisation techniques (MIP, CP and SAT) are now fast enough to be used for
high-quality drawings of this kind. We found that SAT was the most effective, and quite
practical for producing high-quality layouts for graphs of up to 20 nodes in under a second
— useful, for example, in interactive contexts where it is possible to obtain an aggregated
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Figure 3.14: The results of the experimental evaluation of the model equipped with fil-
tering out nodes with similar equivalence classes. Figure 3.14(a) shows the running time
of CPLEX to find an optimal solution, while Figure 3.14(b) shows the number of feasible
versus optimal solutions achieved out of the ten instances for each graph order.
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(a) Force-directed layout with grid-snap. Grid Size = 16×
14. Total Edge Length = 138. Number of Crossings =
52. Solve Time = 14.4 seconds. The first neighbourhood
considered by the LNS search is highlighted.
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(b) LNS. Highlighted nodes are the last
neighbourhood with relaxed constraints, the
node with pink outline was the only one
moved by the solver. Grid Size = 13× 14.
Total Edge Length = 135. Number of Cross-
ings = 50. Solve Time = 348 seconds.

Figure 3.16: Two diagrams of a network with 100 nodes, created using a force-directed
layout and our LNS approach.
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or partial view of a larger network; and graphs of up to 50 nodes in a few minutes may be
useful for producing canonical off-line views.

Although in this chapter, we discuss solving a set of models for network layout to opti-
mality, it is open for debate as to whether our particular model represents the ‘best possible
visualisation’, and we do not claim this. Rather, this is precisely one of our core motiva-
tions: by rapidly modelling different types of layout through declarative techniques, we
are able to rapidly experiment with different approaches to the layout problem. A number
of the ideas for layout presented here (e.g. re-orientable nodes, ultra-compactness, multi-
directional flow layout; as well as arbitrary group containments), are to our knowledge
very novel and very difficult to experiment with, than by any other means.

Another promising use of the optimal techniques is in finding a baseline against which
approximate methods may be compared to assess quality. This was demonstrated in our
evaluation of the LNS meta-heuristic approach. Our evaluation showed that the LNS
method could produce compact layouts for graphs with up to 100 nodes in a few minutes
that are usually within 20% of the objective function’s optimum.

We also explored enhancements to improve the scalability of our approach by reducing
the number of variables. Such modifications only slightly improved the solving time
and it is known that detailed representations of large networks become difficult to read,
regardless of layout quality, thus,



Chapter 4

Cognitive Load - A Survey

“nanos gigantum humeris insidentes”

Bernard of Chartres,
which translates into: “dwarves seated

on the shoulders of giants”

For decades, researchers in information visualisation and graph drawing have focused
on developing techniques for the layout and display of very large and complex networks.
Experiments involving human participants have also explored the readability of different
styles of layout and representations for such networks. In both bodies of literature, net-
works are frequently referred to as being ‘large’ or ‘complex’, yet these terms are relative.
From a human-centred, experiment point-of-view, what constitutes ‘large’ (for example)
depends on several factors, such as data complexity, visual complexity, and the tech-
nology used. In this chapter, we survey the literature on human-centred experiments to
understand how, in practice, different features and characteristics of node-link diagrams
affect visual complexity.

This survey was conducted in collaboration with my supervisors Tim Dwyer and
Karsten Klein, Daniel Archambault, Stephan Diehl, Helen C. Purchase, and Hsiamg-Yun
Wu. We have submitted a review paper to the Information Visualization Journal.

4.1 Introduction

There has been much work done on designing algorithms that can efficiently scale to
create pictures of very large graphs (see Section 2.2. However, what remains a more open
question is whether pictures of very large and complex networks require a mental effort
that exceeds the capabilities of an average human brain.

Eick and Karr [116] define the term ‘visual scalability’ as the capability of visual-
isation tools to effectively display large data sets. They also discuss factors affecting
visual scalability, like human perception, monitor resolution, visual metaphors, interac-
tivity, data structures and algorithms, as well as the computational infrastructure. A more
recent discussion of these, and similar factors, are presented by Jankun-Kelly et al. [178].
They also distinguish perceptual and cognitive scalability: “though elements may be per-
ceivable, they may still exhaust cognitive resources”.

58
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In cognitive psychology, Miller’s “seven plus or minus two” [228] is commonly ac-
cepted as a rule-of-thumb for the limitation on peoples’ working memory. Working mem-
ory is an example of one of the ‘cognitive ceilings’ that might affect peoples’ ability to
reason about large networks. Do working memory and other cognitive limitations have
implications for the size and complexity of graphs that we should be trying to visualise?

Huang et al. [169] propose a framework for cognitive load in the context of graph
visualisation. Based on results from cognitive psychology, they sketch a model that relates
cognitive load during graph analysis tasks to mental effort and task performance in terms
of response time and accuracy. They discuss a number of other factors affecting cognitive
load: the domain (e.g. a highly technical and specific domain requires the user to relate
their knowledge to the visual); the data itself (e.g. structure of the graph); the task (does it
require deep understanding of the graph structure?); visual representation (does it follow
best practice layout and design principles); demographic (e.g. the experience of the users);
and time pressure. They report on one study of cognitive load that confirms some of these
effects, but their model which suggests step changes in performance due to load, while
compelling, is not fully validated.

In a more general evaluation of effect of display type on visualisation cognition, Yost
and North [337] demonstrated that more pixels make it possible to show more data without
significant loss of performance. Going from 2 to 32 mega pixels led to a 20-fold increase
in displayed data: the task completion times tripled, while accuracy only decreased from
95% to 92%. However, the data, visualisations and tasks considered (such as search and
comparison) are relatively simple compared to networks and associated tasks involving
understanding of connectivity. It cannot be assumed that such results carry over, or that
display size is the only—or even most—significant limitation. The goal of the survey pre-
sented in this chapter is to better understand these cognitive limitations. To differentiate
this human aspect of scalability of node-link diagrams from technological or technique
specific limitations, we use the term ‘cognitive scalability’.

This topic is important for our field, as such insights can guide the design of future
techniques. For example, we are attempting to find tacit knowledge in past studies con-
cerning the number of nodes and edges that are too difficult to work with in a single view.
If we can establish such numbers, then it might suggest that we need to direct efforts away
from algorithms and rendering techniques that can scale to huge numbers of network el-
ements. Instead, for such large networks, we could focus on interactive ways to explore
neighbourhoods (e.g. [107, 304]) or abstractions (e.g. [16, 30, 103]) instead of attempting
to display the full set of nodes and links.

Thus, we survey a large number of papers reporting empirical studies of node-link
diagrams, being exhaustive within the corpora of core visualisation proceedings and jour-
nals. We aim to establish a consensus for definitions of adjectives like ‘large’ or ‘dense’
for node-link diagrams that are too complex to be easily comprehensible or useful for
standard graph analysis tasks. We also provide an overview of the types of networks and
tasks, as well as experimental design of these experiments.

In general, we find that the limits of scalability of the node-link network visualisation
paradigm are rarely addressed directly. Rather, there seem to be tacit assumptions (or
possibly unreported pilot findings) about what size node-link diagrams are usable for dif-
ferent tasks, and experiments stay within these bounds while testing specific techniques.

Our key findings are that only a small range of graph sizes and structures have been
used in experimental evaluations of graph visualisation techniques, mostly limited to
small and sparse graphs. In particular, three quarters of studies use graphs with 100
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nodes and 200 edges or less, and the remaining studies test interactive techniques, such
that only a small portion of the graph is shown on the screen at a time. These findings are
discussed further throughout the chapter and listed in full in the conclusion.

This chapter is structured as follows: Section 4.2 discusses related surveys, primarily
in graph visualisation; Section 4.3 outlines our scope, methodology, and describes our cat-
egorisation framework; then we present the results of our survey in Sections 4.4 , 4.5 and 4.6,
followed by a discussion on trends in the network visualisation community in Section 4.7.

4.2 Related Surveys

In the fields of graph drawing and visualisation, a number of surveys have considered
scalability from different perspectives. In particular, there has been much discussion of
the scalability of algorithms and computer hardware to compute node-link diagram layout.
Such papers tacitly acknowledge that very “large” and “dense” graphs are difficult to
read and hence propose interaction techniques to navigate aggregated graphs. They may
even report on studies of the readability of networks using different layout, interaction or
rendering techniques. Yet, rarely do they explicitly address the question of what is the
largest (most complex) such diagram that people can usefully comprehend.

Many past surveys characterise the techniques available for graph visualisation. The
surveys of Herman et al. [157] and von Landesberger et al. [311] are both of this type, fo-
cusing on techniques for graph visualisation and their strengths and weaknesses. Elmqvist
and Fekete [119] characterise techniques in information visualisation that use hierarchical
representations as a form of data abstraction. Recent surveys have also focused on specific
areas of network visualisation including multi-faceted graph visualisation [153], group
structures in graphs [308, 309], matrix reordering techniques [60], edge bundling [214],
and networks in social media [78].

These surveys organise graph visualisation methods at the technique level, or spe-
cialise in a particular technique and present a survey of research in the area in-depth.
These surveys do not focus on questions about how scalable these representations are
from a human-centred perspective.

In the area of dynamic graphs, surveys have been conducted on dynamic networks [59]
and dynamic data in information visualisation in general [41]. There have also been
reviews focused on the human-centred effectiveness of animation, small multiples, and
drawing stability (mental map preservation) by summarising experimental results and
providing guidelines for visualisation designers. One such work by Archambault and
Purchase [33] summarises empirical results that relate to mental map preservation in dy-
namic graph drawing. In a later work [34], based on the results of new studies, they
review the conditions where animation and small multiples are effective and present new
results for diagrams of low drawing stability. These papers focus on dynamic network
visualisation and do not consider network visualisation in general. While providing a sur-
vey of human-centred effectiveness of visualisations to some degree, they do not consider
cognitive scalability of the representations directly.

In this chapter, we review evaluations of node-link visualisations of static and dy-
namic graphs. What is unique to our survey is that it examines cognitive scalability of
node-link visualisations of graphs through the lens of human-centred experiments, to gain
bounds on the sizes of graphs that have been displayed to the human while still usefully
supporting analysis tasks. We seek to answer this question by surveying the literature
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of controlled experiments involving human participants to test node-link diagram repre-
sentations of networks. Our summary information about the networks, techniques, and
tasks considered in these studies also presents an up-to-date snapshot of the evolution and
state-of-the-art, controlled network visualisation evaluation.

4.3 Methodology
In this section, we clarify the scope of this survey, including the venues that we examined,
and describe our categorisation framework. We have tried to be as systematic as possible
in covering complete conference and journal venues with clearly defined constraints, as
detailed below.

4.3.1 Scope of Survey

To the best of our ability, we have sought to include in this survey all papers with a human-
centred experiment (formal user study) where at least one of the conditions is a node-link
representation. Both static and dynamic graph drawing studies were considered. For
much of our analysis we focus on individual studies, where papers could contain multiple
studies. Throughout the survey, ‘paper’ refers to the publication that presents the study,
while ‘study’ refers to an individual experiment.

Our time range begins with the earliest formal human studies in network visualisation
of which we are aware [260] and ends on the 31st of March 2018. We consider the major
conferences and journals listed in Table 4.1 and, examine all publications from this date,
or the founding of, the conference/journal. This date is based on the above limit and
accessibility of the venue. Well-known articles outside these venues are also included and
listed under ‘Other’.

For most venues, we were able to read all titles and further examine the abstracts of pa-
pers that were relevant to our survey. The only exception was ACM CHI, where there were
far too many papers: CHI accepts up to 600 papers in total each year. Instead, we found
relevant papers at CHI using the HCI Bibliography.1 A query of this database, limited
to the CHI conference and using search terms ‘(network | graph) visuali*
study’, returned 25 results, of which close inspection revealed 12 to be relevant, as
detailed in Table 4.12.

4.3.2 Categorisation Framework

Information about each paper was collected and coded according to a number of criteria.
Section 4.4 reports our findings on the sizes of graphs used in experiments. We identified
the number of nodes and edges used within each study and computed the density of the
graphs. If the study was on dynamic graphs, we counted the number of timeslices. We
noted if this information was explicitly stated or whether it needed to be derived or in-
ferred (only nodes, only edges, or both). Exact numbers were sometimes unavailable, but
we estimated the sizes based on figures of the stimuli (e.g. [172,175]). If authors provided

1http://hcibib.org/bs.cgi
2We also provide our curated bibliography as an online Tableau story

https://public.tableau.com/profile/vahan\#!/vizhome/cognitiveScalability/

CognitiveScalability
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Table 4.1: Venues considered in this survey.

Venue First Paper # of Studies # of Papers References

ACM CHI 2006 16 13 [22, 24, 77, 103, 123, 161, 210, 230, 234, 282, 289, 341, 343]
Diagrams 2006 5 5 [80, 244, 264, 319, 336]
EuroVis & CGF 2009 16 13 [37, 47, 90, 101, 138, 139, 245, 246, 274, 275, 287, 299, 346]
GD 1995 25 23 [32, 36, 49, 53, 67, 70, 73, 127, 143, 147, 173, 194, 198, 221,

227, 247, 256, 259–262, 347]
IVJ 2002 19 14 [35, 92, 126, 141, 163, 169, 187, 203, 217, 243, 266, 310, 318,

320]
PacificVis 2008 7 6 [31, 71, 160, 168, 171, 174]
InfoVis & TVCG 2003 61 47 [23, 38, 44, 45, 48, 68, 72, 86, 88, 106, 110, 140, 142, 149, 156,

159,166,176,181,183,191,206,207,211,222,237,252,263,
271,276,286,290,298,300,302,305,314,324–326,328,330,
332, 333, 335, 338, 342, 345]

Other 3 3 [167, 172, 175]

Total 152 124

the algorithm and parameters used to generate the graphs, we computed the size based on
this information (e.g. [160, 161, 318, 330]).

Section 4.5 discusses other factors we found relating to scalability and, as such, is
divided into three parts: HCI factors, graph drawing factors, and study design. The first
part presents our findings on factors relative to human computer interaction and scalabil-
ity. We coded and described the types of tasks [212] and interaction [334] used in each
study. Application areas—if any—and the challenges they pose are also collected and
are discussed in this section. The second part presents graph drawing factors related to
scalability. We gathered information about the types of graphs, whether they were static
or dynamic, and if they had attributes. We recorded information about the graph structure
and noted if the data was real or generated. We also coded the layout algorithm used in
the experiment. The third part discusses factors with respect to study design, including
the number and nature of participants and whether the studies were within or between
subject. In addition, we discuss the results of the study, and present the studies that are
interesting in this data set.

Section 4.6 presents information about how the authors of experiments decide how
large a graph should be presented to a participant. In particular, it discusses pilot studies
and justification for using graphs of a certain size. In Section 4.7, we discuss the evolution
of studies and their design over time in our community. Information about how studies
have evolved and their venues is presented here also. The final sections of this chapter
include a discussion and a conclusion.

4.4 Basic Measures of Complexity
In this section, we consider measures of size that can be used to describe the graphs used
in studies.

There are numerous measures that could be used when considering complexity of
graph visualisations. However, we have found that in reports on graph study design and
methodology, typically, very few are considered. The number of nodes is the most com-
monly reported measure.The number of edges and/or density, on the other hand, is less
frequently provided - although it is known to be a significant factor [141]. More edges,
inevitably leads to more edge crossings, which is known to affect readability [256]. When
the data changes over time (i.e. dynamic graphs) additional measures, such as number of
timeslices, become similarly important to gauge complexity.
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Table 4.2: Summary of graph sizes used in usability studies of graph visualisation. We
used |E|

|V |(|V |−1) ×100 to calculate density, and |E||V | to calculate linear density.

Measure Minimum Maximum Average Median Lower Quartile Upper Quartile

nodes 2 113 M. 457,242 49.5 18.5 116.5
edges 1 1.8 B. 7.87 M. 73 23 242.5

density 0.014 115.5 10 5 1.7 10
linear density 0.38 102.8 3.5 1.5 1 2.4

timeslices 2 15 6 6 3 7

Since our interest is primarily in findings regarding the scalability of network visual-
isation, we report on the distribution of graph sizes considered within studies. Table 4.2
summarises the minimum, maximum, average, median, and upper/lower quartiles for
these metrics. While there is a large range across all these metrics, in each case the
median is closer to the minimum. This skewed distribution implies that the majority of
studies use small graphs.

In order to have a better understanding of the range of sizes of graphs used across and
within user studies, we plotted for each study the number of nodes against the number
of edges for both the smallest graph used in each study and the largest (Figs. 4.1, 4.2).
Each minimum and maximum pair is connected by a link showing the range of graph
sizes evaluated in that study. The circles are: hollow if the number of nodes and edges
was not mentioned by the authors; double enclosed if only the number of nodes was
mentioned; full if both number of nodes and edges were mentioned, or both metrics
were otherwise apparent (e.g. if number of nodes n was given and the graph type was
a tree, we assumed n− 1 edges were present). In cases where the information was not
mentioned we estimated the graph sizes from the figures (e.g. [70, 72, 142, 191, 246, 282,
299,300,305,341,345,346]). We also used the hue of the circles to differentiate between
static and dynamic graphs.

Where precise sizes were not provided, we did our best to infer approximate sizes.
For example, in some cases we were able to estimate the graph sizes from the figures
( [70, 72, 142, 191, 246, 282, 299, 300, 305, 341, 345, 346]).

The following subsections discuss each of the four measures of Table 4.2 in more
detail.

4.4.1 Number of Nodes

The number of nodes in a graph is an important, but incomplete indicator, of complex-
ity. It is clear that, for most tasks, difficulty is affected by introducing more nodes to a
connected graph. We would assume that most experimenters pilot, or at least consider,
graphs with different numbers of nodes to avoid tasks that are too trivial or impossible.
Yet out of the 152 studies covered in this survey, 28 studies do not mention node count at
all.

Among the studies that are included in our survey, 15 studies use graphs with more
than 1,000 nodes [37,68,103,207,217,221,234,302,318,325,328,335,347] and another
nine that use graphs with more than 500 nodes [181, 210, 230, 245, 263, 290, 335, 338].

Among these studies, the majority aim to evaluate tools that use interactive explo-
ration to extract parts (e.g. neighbourhoods) of the graph (20 / 24 studies, 83%). Some
of these studies evaluate aggregation techniques, thus they would require graphs with a
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Figure 4.1: The size of graphs used in user studies. The x-axis shows the number of
nodes, while the y-axis shows the number of edges. Both axes have a log scale. The grey
circles represent static graphs, while the blue show dynamic graphs.
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Figure 4.3: Histogram of the minimum (light blue) and maximum (dark blue) number of
nodes of graphs used in studies.

large number of nodes, in order to highlight the benefits of compressing several nodes
into fewer representations.

It is problematic to infer cognitive scalability of graph visualisation in the presence
of interactivity because most of these studies do not ask the participants to perform the
tasks on the whole graph. Rather, only a part of the graph is visible. When the authors
do not report the precise number of nodes actually visible to the user, there is little that
can be inferred about cognitive scalability. Eight of these 24 studies also use smaller
networks with fewer than 100 nodes in their evaluations. This is shown by the long lines
(Fig. 4.1, 4.2) that connect different graph sizes used by the same studies.

In order to understand the selection of number of nodes, we plotted a histogram of the
number of nodes. Fig. 4.3 shows a number of spikes around specific numbers of nodes:
20, 50, and 100. The biggest spikes are at graphs with 50 nodes, which were used by
18 studies, followed by 20 and 100, used in 16 and 14 studies respectively. We believe
that spikes at these round numbers suggest experimenters choose the number of nodes
arbitrarily. These round numbers were not identified by empirical research and a formal
study on ceiling and floor effects for graph cognitive scalability might lead to a better
selection of the number of nodes.

Nine additional studies use graphs with more than 200 nodes. Similar to the above,
some of these studies only show subparts of the network [90, 206, 247, 319], while some
evaluate tools that scale well with large networks [71,72,90,143,147,160,206,319]. Four
out of these nine studies have also used networks with less than 100 nodes.

To conclude, only 56 out of 152 studies use graphs with more than 100 nodes. Most
of the studies that use a large number of nodes, use abstractions or aggregation to show
only parts of the graph at a time, but do not report on the number of nodes seen at a given
abstraction. In general, it is not clear why most researchers choose to use graphs with
100 nodes or less (121 / 152 studies, 80%). Some authors mention pilot studies where
they discovered ceiling or floor effects, which could be seen as indications of cognitive
scalability. We discuss these in Section 4.6.1; however to our knowledge, controlled
studies were not conducted to verify or explain these effects.

4.4.2 Number of Edges
The number of edges in a graph is also an important indicator of complexity, especially in
node-link diagrams, where the edges are drawn as lines. A large number of edges neces-
sitates an increased number of crossings and overlap (collinear and therefore ambiguous
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Figure 4.4: Histogram of the minimum (light blue) and maximum (dark blue) number of
edges of graphs used in studies.

lines). An excessive number of links often lead to what are known as ‘hairball’ visualisa-
tions. Among the 152 studies covered in this survey, 124 explicitly mention the number
of nodes, while only 87 specify the number of edges.

There are only 28 studies that use graphs with 1,000 edges or more. Most of these
allow the participants to look at parts of the network instead of performing the task on
the whole network [37, 103, 143, 156, 206, 211, 217, 230, 234, 245, 247, 252, 286, 290, 302,
310, 318, 325, 338, 347]. Similar to studies that use a large number of nodes to highlight
the benefits of aggregation or interaction methods, some studies use a large number of
edges to show the benefits of edge compression, bundling, or highlighting techniques.
Many evaluate tools or techniques where they, by design, scale well to handle graphs
with a large number of edges. For example, a study by Giacomo et al. [143] evaluates
a technique that highlights edges in order to enhance the readability of graphs that have
many edge crossings. Another category of studies that use a large number of edges,
evaluate visualisations (e.g. adjacency matrices) that scale well with a large number of
edges in comparison to node-link diagrams [48, 141, 156, 207, 247, 332].

Again, just as we saw spikes in frequency at round numbers of nodes used for study
graphs (Fig. 4.3), in Fig. 4.4 we see spikes particularly at 10, 20, 60, and 100 edges.
However, the spikes are less pronounced: only ten, seven, seven, and eight studies, re-
spectively. The smaller spikes for number of edges compared to number of nodes, tends
to suggest that experimenters choose a specific number of nodes first, then adjust the den-
sity, presumably to control the difficulty level for their specific tasks. We found that 97
studies use graphs with less than 100 edges, while 75 studies use graphs with 100 edges
or more.

In summary, we were surprised that about half of the studies do not report the number
of edges. We would argue that without this information, graph evaluations are difficult
to reproduce. The majority of studies use graphs with less than 1,000 edges (126 / 152
studies, 83%). The 28 studies that use graphs with 1,000 edges or more, either evaluate
tools that require dense community structures, aim to show that node-link diagrams fail
to perform well on graphs with a large number of edges, or highlight the benefits of
aggregation and interaction techniques.
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4.4.3 Density

The previous section mentions studies that use graphs with a large number of edges.
Nonetheless, most of these graphs have very low densities (relatively few edges to the
number of nodes).

In this section we focus on studies that explicitly consider the effect of density on
readability. We used |E|

|V |(|V |−1) to calculate density. This represents the ratio of the number
of existing edges E to the number of all possible edges for the number of nodes V . For
simplicity, we multiply this ratio by 100 to achieve percentages.

There are also other ways to derive density. The so-called linear density |E||V | is often
used to compare the number of edges E to the number of nodes V . In this measure, tree-
like graphs will have density close to 1. Ghoniem et al. [140] suggest using square-root

density
√
|E|
|V |2 , since its range is bounded to the interval [0, 1√

2
). Any of these definitions

can be used; the choice depends on utility [224].
Fig. 4.5 shows the density of real and generated graphs used in studies. Most studies

use graphs with densities of 50% or less. There are only three studies that use graphs
with densities higher than 50% [159, 310, 333]. All three studies evaluate methods that
are tailored to scale well for dense networks.

In fact, all studies that use graphs with ten nodes or more and a density of more than
20% evaluate matrix-like visualisations that scale well for dense graphs [141, 187, 332,
341] or evaluate edge-compression and edge-bundling tools [45, 110].

In summary, in the surveyed studies, dense graphs are mostly small and have less
than ten nodes. The only studies that evaluate visualisations using dense graphs (> 20%
density) with more than a trivial number of nodes, tend to be those testing matrix diagrams
or edge compression techniques. With the exception of these types of studies, all studies
that use graphs with more than 50 nodes, choose to use sparse graphs with a density of
less than 10%. 119 out of 152 studies (78%) use graphs with a density of less than 10%,
while 129 out of 152 studies (85%) use graphs with less than 20% density.

4.4.4 Number of Timeslices

In the case of dynamic graphs or static graphs with dynamic attributes, and in addition to
the number of nodes, and the number of edges or density, the number of timeslices is an
important measure of cognitive scalability.

Among the 152 studies (described in 124 papers) covered in this survey, 22 use dy-
namic graphs. Compared to the reporting of size metrics discussed above, it seems dy-
namic graph evaluation papers are reasonably consistent about reporting the number of
timeslices.

Fig. 4.6 shows a histogram of the number of timeslices. For previous metrics, we
used the minimum and maximum values to derive the charts, but since there are only
a few studies that use dynamic graphs, we included all the values. There is no visible
difference between odd and even numbers. There is, however, a clearly visible spike at
six timeslices. Seven studies, out of the total 22, use dynamic graphs with six timeslices.

We suggest that six timeslices is typically chosen as it is small enough for a small
multiples representation of a dynamic graph to fit on a screen with each timeslice being at
a reasonable scale. Farrugia and Quigley [126] conduct two studies in order to compare
animated displays to static ones. They used two graphs with six timeslices each. For the
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Figure 4.6: Histogram of the number of timeslices of dynamic graphs used in the sur-
veyed studies.

static view, they placed the six timeslices next to each other on a 2×3 grid. Similarly, Ar-
chambault and Purchase [35] conduct a study that evaluates the effects of three factors–
static versus animated presentation of dynamic attribute values, force-directed versus hi-
erarchical layout of constant graph structure, and ‘with history’ versus ‘without history’
persistence, for displaying graphs with dynamic attributes. They use six timeslices, with
each covering one-sixth of the screen.

Shi et al. [286] conduct the only study that tests a variety of time slice counts. They
demonstrate the scalability of various aggregation techniques against the more typical
small multiples display of timeslices. They use four dynamic graphs with different num-
bers of timeslices. They use graphs with 15, 12, 4, and 5 timeslices and 674, 109, 298, and
16 nodes respectively. For their small-multiples condition, they use either a 6 or 24-cell
grid to make the full set of timeslices for each graph visible. Unlike the studies above,
where the number of timeslices were chosen to fill the small multiplies grid, in this study
the odd numbers of timeslices would have left part of the screen unused.

Others choose the number of timeslices according to the norms of specific application
areas. North et al. [243] use a directed graph with 46 nodes, 36 edges, and 12 timeslices
in their evaluation of three existing visualisation methods for dynamic graphs. They claim
that this is a typical size of pathways used by biologists.

In addition to the number of timeslices, the number of graph elements that change
from one timeslice to another is important. Authors report these values in different ways.
For example, some state the maximum number of changed elements [32], while others
report on the average [262, 264].

In summary, the number of timeslices for dynamic graphs is often small. Most studies
use less than ten timeslices (except for [243, 286]). Moreover, they often consider only a
fixed number of timeslices (except Shi et al. [286] who use four variations). Some studies
pick the number of timeslices to best fit their visualisations on screen. Others choose what
is common in the respective application area.

4.5 Other Factors and Scalability

In addition to the basic measures of the previous section, other factors and their interplay
influence the cognitive scalability of graph visualisations. In the following sections, we
discuss HCI, graph drawing, and study design factors.
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Figure 4.7: Task and interaction taxonomies. Task taxonomy (a) proposed by Lee et
al. [212], which mainly includes Topology, Attribute, Browsing, and Overview tasks. In-
teraction types (b) introduced by Yi et al. [334], which include Select, Explore, Reconfig-
ure, Encode, Abstract/Elaborate, Filter, and Connect. However, Create is newly added in
our taxonomy.

4.5.1 HCI Factors

Graph visualisations are often tailored to efficiently serve domain-specific tasks. Modern
visualisation tools are equipped with various interaction techniques. Interaction plays a
key role in allowing graph visualisations to scale to larger data sets. They were rarely
investigated in earlier visualisations, but have been widely discussed in recent times.

In this section, we discuss the interplay between different types of tasks, interaction
techniques and application areas on one hand, and the basic measures of graph size on the
other.

Tasks

To analyse and understand the trend, as well as the impacts of scalability in relation to
tasks, we classified the various tasks used in studies into four main categories based on
the taxonomy of Lee et al. [212]. Fig. 4.7(a) shows a summary of tasks investigated in
our survey: Topology-based tasks allow participants to detect node adjacency, accessi-
bility, common connection, and connectivity. Attribute-based tasks support identification
of nodes and links by the data attributes associated with them. Browsing tasks include
following or revisiting a path. High-level or deliberately more abstract tasks were classi-
fied as Overview tasks. Note that we considered tasks that asked the participants to find
the shortest path to be in the Topology-based category, even if they required some path
following. We categorised path following tasks as Browsing, only if participants were
explicitly asked to follow a certain path.
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Table 4.3: The type of tasks used within the studies.

Task References # of Studies

Attribute [35–37, 44, 47, 68, 70, 80, 90, 103, 123, 127, 138, 141, 142, 149, 159, 163, 173, 176, 181, 183, 187, 203,
210, 211, 243, 252, 266, 274–276, 282, 287, 289, 290, 298–300, 326, 341–343, 345, 347]

53

Browsing [24,32,37,48,53,86,101,106,163,166,168,174,194,206,211,230,237,274,289,290,318,324,341,
342]

26

Overview [22, 24, 31, 36–38, 44, 49, 68, 103, 127, 141, 147, 149, 156, 159, 173, 181, 191, 203, 207, 217, 221, 237,
243, 247, 259, 262, 275, 286, 290, 300, 302, 310, 318, 328, 332, 335, 338, 341, 346, 347]

52

Topology [22–24, 31, 36–38, 45, 47, 49, 67, 70–73, 77, 80, 88, 90, 92, 101, 103, 106, 110, 123, 126, 127, 139, 141,
143, 156, 159–161, 163, 166–169, 171–175, 181, 183, 187, 191, 194, 198, 206, 210, 211, 217, 222, 227,
230, 234, 237, 243–247, 252, 256, 260–264, 266, 271, 274–276, 286, 287, 289, 290, 298–300, 305, 310,
314, 318–320, 325, 326, 330, 332, 333, 336, 341, 342, 345, 346]

114

Table 4.3 shows how the different tasks were used in the 152 studies (noting that sev-
eral studies used more than one task). Topology-based tasks were most common (47%),
followed by Attribute-based (22%) and Overview (21%). The majority of the studies
(75%, 114 out of 152 studies) used tasks that are categorised as Topology-based.

This might be an indication that researchers perceive tasks concerned with under-
standing the structure of the graph as good evaluation measures for graph visualisa-
tion. However, the number of studies that use Topology-based decreases as graph size
increases, while Overview tasks become more popular. They become equally popular
(37%) in studies that use graphs with 300 nodes or more. For graphs with 1,000 nodes
or more, Overview tasks are used excessively (43%), while Topology-based tasks become
less common (30%). We believe that this is expected, since Overview tasks do not require
a detailed understanding of the graph, but deal with general properties and estimates.

In order to understand the combinations of tasks in each study, we plot these as com-
posite nodes in Fig. 4.8. Six studies use only Topology-based tasks when using graphs
with 500 nodes or more [71, 72, 234, 245, 325]. The first three studies [71, 72, 234] use
graphs with a simpler structure, i.e. trees. Moreover, the trees they use have less than
1,000 nodes. The other three studies [234, 252, 325], which use graphs with more than
5,000 nodes, allow participants to interact with the graphs and show only parts of the
graph at a given time. This implies that tasks and interactions are mutually reinforcing
each other in large graph visualisation.

Marner et al. [221] use a large graph with 7,885 nodes and 427,406 edges in their
study. They project the graph on a wall-sized display and ask participants to untangle it
until they achieve a better overview. We believe that even though their process allowed
for an Overview task, it would have been almost impossible for the participants to per-
form more complex tasks, such as path-finding or counting triangles. Similarly, Kwon et
al. [207] use graphs of up to 113 million nodes and 1.8 billion edges in their study, but
only ask the participants to rate the similarities between the graphs. Note that among
all tasks, Topology-based tasks have been widely used in most of the studies since the
connectivity plays a key role for understanding graph structures. Path finding is the most
common task (66 over 114 in our survey) among Topology-based tasks, and therefore can
serve as the primary task for demonstrating the usability of graph visualisation. For ex-
ample, following the investigation by Bae and Watson [140], and Ghoniem et al. [48], it
is reasonable to use node-link diagrams for path-finding purposes when the graph is less
than 200 nodes.

Another interesting study using Topology-based tasks is conducted by Moskovich et
al. [230]. They use two graphs with 1,000 nodes. The sparser one has 1,485 edges, while
the denser one has 2,488 edges. We believe that they wanted a graph large enough to make
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the task difficult, especially when finding the immediate neighbours of a given node. The
authors propose an interactive navigation technique Bring-and-Go, which aids this task
by bringing all adjacent nodes closer to a selected node. This study demonstrates the
complexity of these tasks on graphs with a large number of edges. Both error rates and
performance times increase significantly from the sparser graph to the denser graph.

Some authors discuss the choice of graph sizes in relation to the results of their studies.
Huang et al. [169] justify the increase in errors by explaining that human perception and
cognitive systems become overburdened when dealing with large graphs, even with 25
nodes and 98 links. Okoe et al. [245] use a graph with 900 nodes and 2,500 edges.
However, they mention a high error rate of more than 50%. They associate this to the
difficulty of the tasks. They explain that the large number of edges voided the highlighting
advantage of the evaluated technique. Wong et al. [325] mention that they tried to use
graphs that were not too complex, but their attempts were not successful for all the tasks.

Only nine out of the 53 studies that require participants to perform Attribute-based
tasks, use more than 200 nodes [37, 68, 90, 103, 181, 210, 252, 290, 347]. Two of these
studies aggregate multiple nodes into singular representations: motifs [103] and metan-
odes [37]. It is natural to assume that Attribute-based tasks would be difficult on graphs
with too many elements, since Attribute-based tasks are related to data attributes asso-
ciated to nodes and links. While this is backed by our survey for number of nodes, the
number of edges ranges between 10 and 1,000 for most studies using Attribute-based
tasks.

For Browsing tasks, we assumed that experimenters would use sparse graphs. This
is backed by our findings as shown in Fig. 4.9. Also, in addition to the density of the
graphs, studies that require performing Browsing tasks use graphs with fewer number of
nodes (≤ 200), with the exception of five outliers [37, 206, 230, 290, 318]. Four of these
outliers use interactive highlighting to assist the participants in performing the task [206,
230,290,318], while the fifth [37] uses metanodes and metaedges, which are aggregations
of multiple nodes and edges into singular representations. As seen in Fig. 4.8, Browsing
tasks are only used on very sparse graphs (< 10%), except for one study by Zhao et
al. [341] that uses graphs with 40% and 42.9% densities. The latter allows participants to
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highlight specific nodes and their connections, thus showing small subsets of edges at a
given time.

In summary, Topology-based tasks are the most common tasks to evaluate graph vi-
sualisation; nonetheless, the number of Topology-based tasks is relatively reduced when
using graphs with more than 300 nodes. In such cases, Overview tasks become more com-
mon, especially when the tasks are assisted with multiple interaction techniques. Sparse
graphs (< 10%) with few nodes (≤ 200) are used when asking the participants to per-
form Browsing tasks. Similarly, Attribute-based tasks are not common in studies that use
graphs with more than 200 nodes.

Interaction

Early graph experiments did not make much use of interaction; their focus being on the
interpretation of static graph drawing–often being simply presented on paper (e.g. [256,
259, 260]). In more recent years, several experiments have tested the worth of node-link
diagrams using interactive systems that permit more extensive exploration of the relational
information. In such cases, the use of interaction techniques is often a crucial component
of the study design.

We used the interaction taxonomy of Yi et al. [334] as a means of classifying the dif-
ferent types of interaction used in the experimental studies: Select allows users to mark
objects on screen as interesting; Explore enables users to navigate a hidden subset of data;
Reconfigure changes spatial arrangement; Encode allows users to transform data values to
their preferred visual mapping (e.g. colour, size, or shapes); Abstract/Elaborate enables
users to adjust the level of detail of a data representation; Filter allows users to prevent the
display of data fulfilling given conditions, and; Connect allows the highlighting of rela-
tionships between data. For the purposes of this survey, we added an additional category:
Create, which allows users to generate graph drawings.

Of the 152 studies, 80 used no interaction at all. Table 4.4 shows how the remaining
72 used interaction (noting that several studies used more than one interaction technique).
Of all the occasions when interaction techniques were used, Abstract/Elaborate was most
common (20%), followed by Select (19%), Explore (16%) and Reconfigure (16%). Thus,
there is no single category that dominates (unlike our finding with the task category).

Fig. 4.10 shows the different types of interaction used in the studies, with respect to
graph size. We note that 25 of 60 studies (42%) use a single interaction type for those
graphs with 500 nodes or fewer, while for those studies using graphs with more than 500
nodes, this ratio drops to 32% (6 out of 19 studies).

Tiny graphs (e.g. 4 nodes and 5 edges) are easy to understand without the support of
interaction (see lower dashed lines shown in Fig. 4.11), although even studies that used
graphs with as few as ten nodes and ten edges used interaction. The majority of studies
that do not use any interaction use graphs with 100 nodes or less (70 / 80 studies, 88%)
and 500 edges or less (71 / 80 studies, 89%) (upper dashed lines in Fig. 4.11). These
bounds allow us to group the interaction techniques into two sets: techniques used on
graphs with greater than 100 nodes and 500 edges: Abstract/Elaborate, Connect, Explore,
Reconfigure, Select; and techniques used on graphs with fewer than 100 nodes and 500
edges: Encode, Create, and Filter. If we consider the degree of effort required by the user
in applying these techniques, the first set can be considered relatively straightforward –
the techniques are usually tested by having participants apply the built-in functionality
to look at the data in a different way until the answer is obvious. By contrast, Encode
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Figure 4.11: Interaction types used in studies with relation to the number of nodes (on
the left), and the number of edges (on the right).

Table 4.4: The type of interaction used within the studies.

Interaction References # of Studies

None [22–24, 31, 32, 35, 36, 45, 47, 49, 67, 70, 71, 73, 80, 92, 101, 110, 126, 143, 147, 149, 159–161,
166–169, 171–175, 181, 183, 187, 191, 203, 207, 227, 243, 246, 256, 259–262, 264, 282, 298–
300, 310, 320, 328, 330, 332, 333, 335, 336, 345, 346]

80

Abstract-Elaborate [24, 37, 68, 86, 90, 103, 123, 139, 142, 198, 211, 217, 230, 234, 237, 245, 247, 252, 263, 276,
286, 287, 289, 290, 302, 319, 324–326, 338, 347]

32

Connect [48, 77, 88, 90, 123, 127, 141, 156, 163, 176, 194, 210, 211, 217, 230, 245, 247, 252, 290, 314,
318, 319, 338, 341–343]

29

Create [222, 244, 263, 305] 4
Encode [123, 176, 342] 4
Explore [37,38,68,123,127,138,139,176,198,206,211,234,245,247,252,263,271,274–276,286,

287, 290, 325, 326]
26

Filter [44, 90, 123, 252, 266, 290] 9
Reconfigure [24,44,90,106,123,191,210,221,230,234,247,252,266,286,290,305,325,326,342,347] 25

Select [37, 53, 68, 72, 86, 88, 90, 106, 141, 176, 191, 194, 206, 210, 217, 237, 245, 247, 263, 266, 286,
290, 326, 342]

30

and Create require more effort on the part of the users, since (possibly creative) decisions
need to be made.

Interaction tasks can come with a time trade-off, however, as an example, finding
labels inside an abstract node (which represents a set of aggregated nodes), could be more
time consuming due to the interaction, than the task of finding labels outside of it, which
is always completed faster [103]. Care, therefore, needs to be taken in the interpretation of
the timing data collected (especially if participants are allowed unlimited time to perform
their task), since such data might include superfluous interaction.

To conclude, the combination of multiple interactions can improve the visualisation
of large graphs, and this is more significant as graph size increases.

Application Areas

There are several domain-specific studies where the aim is enhanced understanding of the
content, and so the tasks were clearly focused on the domain knowledge (e.g. [244,266]).
For example, Tanahashi et al. [299] performed a comparative study of four different ways
of presenting data for the purposes of introducing information visualisation to novices,
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where a graph drawing was one of the visualisation types. Their analysis not only consid-
ered the efficacy of the visualisations, but also looked at two different types of learning
(active and passive), and two different teaching methods (top-down and bottom-up). They
were therefore able to propose guidelines for writing effective information visualisation
tutorials. North et al. [243] compared two different types of evaluation (benchmark and
insight) using three different visualisation alternatives depicting gene expression data, and
all tasks were related to understanding of the data.

While some application areas have well defined and restricted characteristics for the
networks under investigation, in others there can be a large range of impacting factors that
potentially affect scalability. In the life sciences, a variety of network types are investi-
gated, ranging in size from a few dozen to a few million nodes, and showing a similar
variety in other network characteristics, e.g. density or diameter. In addition, the required
tasks can differ significantly between use cases, e.g. from deciding reachability to the de-
tection of dynamic patterns, which affects the limits of readability. RNA sequence graphs,
like the ones used in [221], can have up to several million nodes and edges and dense local
structures, but they often have a very sparse global structure, making the visual detection
of so-called repeats (loops that indicate repetitive structures in RNA sequences), a feasible
task. On the other hand, metabolic pathways like the ones used in [347] are often planar
or near-planar graphs with low local and global density, requiring that the semantics asso-
ciated with the metabolic flow are incorporated in the layout and the visual representation.
While these pathways are parts of a large and complex network of metabolic reactions in
an organism, the visual analysis is often restricted to such sparse sub-networks that have
a specific functionality, e.g. the synthesis of a particular biomolecule.

4.5.2 Graph Drawing Factors

For several decades now, the field of Graph Drawing has led to the development of ef-
ficient algorithms for layout computation as well as graph visualisation metaphors, and
has also investigated the impact of the resulting visualisations on readability and task
performance. For some years, a main focus has been on the computational complexity
and scalability of algorithms, but since the development of methods that scale to sev-
eral million nodes and edges, the focus has shifted to the visual complexity and human
interpretability of the resulting layouts [112].

As layout methods differ in computational scalability, in their performance on certain
graph classes, and also in the features and characteristics of the resulting layouts, the
interplay between graph structure and layout method used in studies will strongly impact
the limits of cognitive scalability. Comparisons between different methods are rare, as
the selection is often motivated by real-world application requirements. While constraint-
based methods can create high-quality layouts, which might be of interest for studying the
limits of cognitive scalability, the methods do not scale well regarding the computational
complexity. Thus, for large graph sizes, researchers have to resort to fast heuristics, e.g.
multi-level force-based methods.

Graph Type and Structure

While the number of nodes and the density can give a first indication on the complexity of
a graph with respect to cognitive scalability, a more fine-grained description of the struc-
ture is necessary to investigate its impact. Certain graph classes might result in layouts
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with minor quality, e.g. low diameter graphs like friendship networks can lead to hairball
drawings when standard force-directed methods are applied. On the other hand, graphs
with a globally sparse structure like the ones used by Marner et al. [221] are well suited
for untangling and structure identification tasks, even when the number of nodes is huge,
as the global and local structures simply scale with the size.

A further distinction can be made regarding the use of directed and undirected graphs.
While 103 of the studies used undirected graphs, only 33 of them used directed graphs,
and 15 used trees. With the exception of the two near-tree sparse graphs from the OnGrax
study [347], and one graph from a study on directed edge representations [160], all graphs
with more than 200 nodes are either undirected or trees. Some studies based their graph
selection on real world examples. In some cases, the graphs were taken from specific
application areas. Most commonly: social networks [24, 35, 67, 123, 126, 127, 169, 173,
210], followed by co-authorship networks [23, 44, 156, 286, 341] and biological networks
[191, 221, 234, 243, 347]. Shi et al. [286] use four dynamic graphs from two domains–
communication and co-authorship networks.

Layout Method

The distribution of layout methods in the investigated studies shows the expected dom-
inance of force-directed methods. Variants of this class of methods scale well compu-
tationally, and appear to be the preferred method used in a variety of publicly available
graph visualisations and systems. Together, with the linear time tree layout methods,
these methods are the only ones used for studies with more than one thousand nodes.
More than 50% of the studies used a force-directed layout to draw the networks, followed
by multiple types, used in around 18% of the studies. Note that our classification of layout
methods specifies the initial layout the subjects are presented with, and does not consider
whether the subjects could manually, or by means of an algorithm, change the layout in
an interactive interface.

While the practical computational scalability of many methods changed due to im-
proved algorithms and implementations, the relative performance stayed the same with
force-directed and tree layouts being by far the fastest, and methods that require solvers,
e.g. constraint-based methods, being slowest.

Borkin et al. [68] present a radial-based tree layout to display file system provenance
and motivate their choice, with the failure of node-link diagrams to show a high-level
summary for the large-scale provenance data graphs. Their study results indicate that
users were more efficient with the interactive radial layout representation than with an
existing conventional node-link diagram tool.

The range of the basic graph size metrics for each of the layout methods fits the expec-
tation. Manual layouts are only performed on graphs of 120 nodes or less, with the notable
exception of the study on the collaborative graph visualisation system OnGrax [347]. In
this system, however, an initial layout was given, which was manually created by domain
experts, and the user could simply rearrange this layout manually.

4.5.3 General Study Design Factors

Just over half the studies (92 / 152 studies, 61%) follow a typical design of asking partici-
pants to perform graph reading tasks under different conditions (the independent variables
- often different layouts, different visualisations or different interaction techniques) and
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collecting response time and accuracy data as the dependent variables (with some also
collecting preference choices). Most studies rely on these three dependent variables to
measure the efficiency of the visualisations at hand.

With respect to graph size, there is no discernible difference in the sizes used for
typical graph reading studies and the others–both categories have similar distribution of
graph sizes.

Some experiments collected process data as the main dependent variable (e.g. [71,
72]). Others collected eye-tracking data [77, 237, 319, 335]. Wong et al. [326] counted
the number of mouse actions (click, move, zoom, pan, and turn) as a measure of extent of
interaction with different forms of visualisation of labelled graphs, while Nekrasovski et
al. [234] looked closely at the mouse drag action.

There were 129 studies that used a within-participants study design, where 22 used
between-participants, and one used a mixture of both. Within-participants studies are
popular because they have the advantage of eliminating any effects relating to variability
between the participants, and, while they may be subject to the learning effect, the effects
of this are easily mitigated by appropriate randomisation. They do, however, tend to
take longer than between-participants experiments, where the participants can have more
time to work with only a selected few of the stimuli (rather than all of them, as it is in
the within-participants case). Thus, the tasks for within-participants studies tend to be
smaller and simpler than those used in between-participants studies.

We might expect that there would be more between-participants’ experiments in recent
years, since such experiments are more suitable for crowd-sourcing: within-participant
experiments tend to take too long to be appropriate for crowd-sourced participants. How-
ever, this is not the case - there is a similar publication year profile for both categories of
study.

4.6 Size Rationale
In the previous sections we discussed how different metrics could affect scalability. This
was mainly done based on what we could gather from the aim and the results of the
studies. In “Basic Measures of Scalability” we reviewed the range of number of nodes
and edges for graphs in studies, and discovered that most studies using large numbers of
nodes and edges want to highlight the advantages of using specific techniques. However,
in some cases, the authors explicitly mention the reasons for picking a specific number
of nodes or edges. Some authors performed pilot studies which allowed them to deter-
mine the size of graphs that would best suit their evaluation. Others were based on the
authors’ experiences and understandings of the requirements. We discuss these further in
the following sections.

4.6.1 Pilot Studies
The papers in our survey rarely mention pilot studies that determine a ceiling or floor
affect to scalability. We believe that many conduct pilot studies but do not mention them
explicitly. In this section, we discuss a select few that provide the reasoning for their pilot
studies and the decisions made with regards to factors that affect cognitive scalability.

Archambault et al. [37] mention that the largest graph size for their study was deter-
mined by pilot studies. They start with small, medium and large sized graphs; however
the pilot participants could not complete the tasks on the large graphs. Thus, instead of
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the large graph, they use a smaller graph. The largest graph they use has 3,351 nodes and
4,083 edges. Archambault and Purchase [35] use a pilot study to find a reasonable graph
size. They use a maximum of 50 nodes and 100 edges. Similarly, Dawson et al. [92]
mention a pilot study to balance density and difficulty. They use graphs with 75 nodes
and 150 edges.

Some design their pilots to find reasonable graph densities to allow the participants to
finish the tasks in a restricted time limit. Kobourov et al. [198] find 120 nodes and 2.5
density as maximum measures to complete the tasks under two minutes, while others use
pilot studies in order to explore different layouts and graph structures for specific tasks;
e.g. Netzel et al. [237] aim at finding thresholds for assisting tasks of finding the longest
link and biggest cluster.

Saket et al. [276] mention a pilot study where they chose 50 nodes as minimum and
200 nodes as maximum. They also chose three density levels N, 2N, and 4N. Borkin et
al. [68] conducted a pilot study to determine the boundaries between the easy and dif-
ficult tasks. They mention that graphs of 10s, 100s, 1000s, and 10,000s of nodes were
compared. They classified trees with 42 to 346 nodes as easy, while trees with 1,192 to
5,480 nodes as hard. Similarly, Marriott et al. [222] note that their pilot study showed
that larger graphs beyond 6 nodes were too difficult to be memorised. Conversely, Xu et
al. [330] rely on a pilot study and choose 100 as the maximum number of nodes for their
graphs. They further increase this to 200 in their second study, due to the lack of a ceiling
effect in their first study.

4.6.2 What is Small? What is Large?

Testing the boundaries of readability/scalability may generally not be a primary goal for
experimental studies. Instead, researchers might pick a size range that they consider ac-
ceptable in order not to have scalability as a confounding factor in their results. In ad-
dition, technical limitations, such as screen size and resolution, and also typical require-
ments from application areas, like characteristics of occurring networks of interest, might
play an important role in the determination of graph sizes, but are often not reported ex-
plicitly and will also change over the years. Furthermore, there might be standard bench-
mark sets used, or simply graphs picked based on availability, instead of using graphs that
allow one to investigate scalability effects.

Some studies do not mention pilots, but justify their choices of graph size as an attempt
to meet particular requirement for their studies. Archambault et al. [38] use real graphs,
with the largest having 60 nodes and 68 edges. They explain that they chose two data sets
each consisting of realistic size and structure.

Sometimes, the rationale is task-oriented. For example, Kieffer et al. [191] justify
their use of small graphs to allow the participants to manually draw the graphs in a rea-
sonable amount of time. Similarly, Purchase et al. [263] use two graphs with 10 nodes and
11 and 18 edges, to make it manageable for the task of drawing the networks. Blythe et
al. [67] note that they use a small graph in order not to overwhelm the participants with
the amount of information. They use a small graph with 12 nodes and 24 edges.

Others, such as Hlawatsch et al. [159], justify using small graphs to avoid the need for
interaction. They use ten graphs with eight nodes and 22 to 40 edges. They also use ten
graphs with 20 nodes and 147 to 264 edges. Similarly, Alper et al. [23] chose not to vary
the graph size drastically in order to avoid the requirement of zooming.
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Zhao et al. [343] justify their size selection to fit the diagrams to screen. They use
graphs with 167 nodes and 902 edges in their evaluation of a visualisation called Ma-
trixWave. Kadaba et al. [183] mention that they needed graphs that were small enough
to be memorisable. They use a daisy-structured graph with 11 nodes. In a second study
they use smaller graphs with 3 nodes and 2 edges. Holden and Van Wijk [161] explain
that they wanted to generate graphs with an adequate number of vertices, without causing
a large amount of visual clutter resulting in an excessively high edge density.

In contrast, some studies use large graphs in order to highlight the benefits and im-
provements of some techniques with respect to scalability. Lee et al. [211] justify their
selection of graphs with 200 nodes as complex graphs. They also state that 200 nodes is
considered to be an upper bound for currently studied food webs. Huang et al. [171] men-
tion that they choose graphs with a density ranging from 10% to 20%, and their drawings
have the same crossing ratio of 40% in order to have reasonably complex graphs. The
largest graph they use has 50 nodes and 245 edges. Dwyer et al. [106] state that the
graphs they used were larger in size (50 nodes), than ones (17 nodes) used in another
study which inspired their work, while Okoe et al. [247] justify their selection of a graph
with 258 nodes and 1090 edges as larger than previously used graphs, yet sufficiently
small to be evaluated in a browser.

To conclude, some authors provide a rationale for their selection of graphs with a
specific range of node and edge counts. These often resemble our discussions and hy-
potheses, nonetheless, we wanted to keep a clear separation between what constitutes our
opinions and the rationale provided by the experimenters.

4.7 Research Trends

By analysing our survey data from a historical perspective, we tried to gain some insights
about the development of the research community, including trends with respect to graph
sizes, participants, tasks, and interaction types used in the studies.

Of the studies surveyed in this chapter, 40% were published in TVCG/InfoVis, 16% at
Graph Drawing, 13% in the Infromation Visualisation Journal, and another 11% at CHI.
Historically, the first seven studies [67, 70, 256, 259, 260] were all published at Graph
Drawing between 1995 and 2000. The first study [266] in the Information Visualisation
Journal appeared in 2002. The first one [324] in TVCG/InfoVis was in 2003, whereas the
first one [234] at CHI in 2006, and the first one [346] at EuroVis in 2009.

The seminal papers [67, 260] of 1995 focused on static graphs and were followed
by another ten papers (with a total of 16 studies) on static graphs. The first study on
dynamic graphs [262] was published in 2006, more than ten years after the first one on
static graphs. As we cover a period of 24 years from 1995 to 2018, it is reasonable to
compare the first and second half of the studied period with the first half ending in 2006,
and the second half starting in 2007. Whilst during the first half, the average publication
frequency was around two studies per year, it considerably increased to 11 studies per
year for the second half. Of these studies, on average, nine focussed on static and two on
dynamic graphs.

Fig. 4.12 shows the number of nodes of static and dynamic graphs used in studies in
different years. While for static graphs the number of nodes increased from below 20 in
1995 to several thousand ten years later, the graph size of dynamic graphs stayed 100 or
below (with one exception [286] in 2015).
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Since we observed a considerable increase in the graph size for static graphs, we
expected that researchers would also try to recruit more participants for their studies. It
turns out that there was actually a big difference, if we compare the first and the second
half of our studied period. In the first half the median number of participants, for studies
that used static graphs, was 14. In the second half it increased to 21. Interestingly, a closer
look at the first half of the studied period reveals a dramatic drop of the median number
of participants. It decreased from 75 for the original 7 studies [67, 70, 256, 259, 260]
(all published at GD) of the period from 1995 to 2000 to nine for the subsequent 11
studies [141, 173, 266, 318, 320, 324, 326] from 2001 to 2005 (mostly published in the
Information Visualisation Journal).

4.8 Conclusions

4.8.1 Specific Findings

We report the following key findings:

• There are some clear ‘default’ numbers of nodes and edges used by most studies.
At a maximum, most studies use graphs with 100 nodes, followed by 50 nodes and
100 edges, while their smallest graphs have 20, followed by 50 and 10 nodes, and
10 edges. The round numbers used by most studies suggest the choice of size to test
is somewhat arbitrary, as opposed t being based on empirical evidence of cognitive
limitations.

• 80% of studies (121 / 152 studies) use graphs with 100 nodes or less, while only
37% (56 / 152 studies) use graphs with more than 100 nodes.

• 74% of studies (113 / 152 studies) use graphs with 200 edges or less, while only
34% (52 / 152 studies) use graphs with more than 200 edges.

• 70% of studies (23 / 33 studies) that use graphs with more than 200 nodes use
interaction and aggregation techniques to show only parts of the network to the
participants at a given time.

• Most of the studies that use graphs with more than 1,000 edges evaluate tools that
are intended to be able to cope with a substantially large number of edges, or are
oriented towards performing well for networks of specific structure, e.g. densely
connected communities.

• Only 12% (18 / 152 studies) of the studies surveyed use graphs with a density of
more than 20%.

• Studies that use graphs with more than 20% density either use small graphs (< 10
nodes), evaluate matrix representations, or evaluate edge bundling and compression
techniques.

• 32% of studies (7 / 22 studies) that use dynamic graphs use six timeslices. This is
often to best fit small multiples representations to screen.
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Table 4.5: Four categories of graph size based on number of nodes.

# of Nodes # of Studies # of Studies with no interac-
tion

# of Studies with Overview
Tasks

small ≤ 20 62 (41%) 39 (63%) 19 (31%)
medium [21,50] 50 (33%) 31 (62%) 12 (24%)
large [51,200] 56 (37%) 27 (48%) 16 (29%)
v. large > 200 33 (22%) 10 (30%) 19 (58%)

Table 4.6: Four categories of graphs based on linear density.

Linear Density # of Studies # of Studies with no inter-
action

# of Studies with Overview
Tasks

tree-like & disconnected [0,1.0] 49 (32%) 20 (41%) 15 (31%)
sparse [1.01,2.0] 67 (44%) 40 (60%) 20 (30%)
dense [2.01,4.0] 31 (20%) 18 (58%) 7 (23%)
v. dense > 4.0 26 (17%) 12 (46%) 13 (50%)

• The most common type of tasks is Topology-based (114 / 152 studies, 75%), how-
ever for graphs with 1,000 nodes or more, Overview tasks prevail (13 / 18 studies,
72%).

• Attribute-based tasks are commonly used for graphs with 200 nodes or less (47 / 53
studies, 89%) and less than 10% density (42 / 53 studies, 79%).

• Browsing tasks are commonly used for graphs with 200 nodes or less (24 / 26 stud-
ies, 92%) and less than 10% density (25 / 26 studies, 96%).

• Studies with larger graphs (> 500 nodes) tend to use multiple types of interaction,
while using a single type of interaction is more common in studies with smaller
graphs (≤ 500 nodes).

• The majority of studies with no interaction used graphs with 100 nodes or less (70
/ 80 studies, 88%) and less than 10% density (57 / 80 studies, 71%).

• The tasks of Abstract/Elaborate, Connect, Explore, Reconfigure, and Select were
used on larger graphs, while Create, Encode, and Filter were used on smaller graphs
(≤ 100 nodes and < 10% density).

4.8.2 Discussion

While there has been a significant focus on computational scalability of node-link di-
agrams layout and rendering, in a race to visualise the largest networks, it seems re-
searchers have understudied human cognitive limitations in understanding such diagrams.
A better knowledge of cognitive scalability in this regard would have several benefits. In
tools that allow the user to interactively explore a large network through neighbourhood or
aggregated views, tool developers could more intelligently control the number of elements
in these views. Furthermore, if our community could give clear and informed guidance to
users of graph visualisation it would help them to select the right tool for their purpose.
For example, in creating figures for papers, biologists reporting on the interactions of par-
ticular proteins may be better off showing a focused neighbourhood around those specific
proteins rather than providing a hairball. Similarly, if the users were experimenters, they
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would choose their corpora, design their tasks and pick layout methods based on these
well-defined limits.

Thus, the aim of this survey was to explore factors that would affect cognitive scal-
ability via reviewing existing empirical studies that have used node-link diagrams. We
have noticed that controlled experiments tend to focus on graph datasets of size within a
fairly limited window (tens to a few hundred nodes and low density). We also discovered
that even though the most common type of tasks performed on a network, in general, is
related to the topology of the network, overview tasks become more popular for larger
networks. Similarly tasks related to detailed attributes associated to the nodes or edges
and browsing are not common on networks with more than a couple hundred nodes. With
regards to interaction, studies with large graphs tend to allow for more than one type
of interaction. Furthermore, we discovered that some interaction types, such as Create,
Encode and Filter are only used on small graphs, while others, e.g., Abstract/Elaborate,
Connect, Explore, Reconfigure, and Select are also used on large graphs.

This survey has also helped identify some weaknesses in the design and reporting of
empirical studies that use node-link diagrams. For example, several studies do not report
on the sizes of the graphs used, while others do not report on the number of elements visi-
ble to the participants at a given time. We provide a list of recommendations to overcome
these weaknesses in future studies.

A motivation for this work was to identify or validate terms that are used to categorise
ranges for graph size. Table 4.5 presents four categories with respect to number of nodes.
According to the surveyed studies, there are clear cuts at 20, 50, and 200 nodes. We
categorise these into ranges that represent small, medium, large and very large graphs.
We categorise sparse, dense, and very dense graphs based on linear density in Table 4.6.
Hopefully this breakdown gives future researchers a clear motivation for selecting differ-
ent graph sizes for their studies. For example, there are only seven studies that use dense
graphs with overview tasks.

Our findings indicate a threshold at 200 nodes and 10% density. This threshold is
respected by empirical studies that include tasks requiring a detailed analysis of the net-
work. Nonetheless, we believe that this threshold is a result of the expert intuition of the
researchers, rather than empirical research. A controlled study is needed to validate and
refine this threshold, thus in the next chapter, we present a user study that explores the
cognitive scalability of node-link diagrams.



Chapter 5

Cognitive Load - A User Study

“here be dragons”

Used on maps to connote uncharted
territories.

The classical phrase was:
“here are lions”

Certain layout characteristics are known to be detrimental to the readability of node-
link diagram representations of network data, as discussed in Section 2.4. There has been
a large amount of work that focuses on designing algorithms that compute layouts that
minimise such characteristics. In Chapter 3, we present a novel Ultra-Compact Grid
Layout model that results in diagrams with optimal quality, with respect to specific char-
acteristics. However, it is widely understood that even the best network layout algorithms
ultimately result in ‘hairball’ visualisations when the graph data reaches a certain degree
of complexity, requiring simplification through aggregation or interaction (such as filter-
ing) to remain usable. There has been little work towards understanding the cognitive
limits of humans when working with network diagrams. To this end, we perform a con-
trolled study to understand workload limits when performing tasks that require a detailed
understanding of the network topology, such as finding shortest paths in graphs with var-
ious orders and densities. We use performance measures (accuracy and response time),
subjective feedback, and physiological measures (EEG, pupil dilation, and heart rate vari-
ability) in order to explore the effects of graph size (order and density) on cognitive load.
We also explore the effects of layout features, including number of crossings, angle of
crossings, Euclidean distance, and turning angles on cognitive load. Our results show that
there is a significant drop in the efficiency of node-link diagrams to find shortest paths,
when using graphs with more than 50 nodes and a density of four.

The work discussed in this chapter was done in collaboration with my supervisors Tim
Dwyer, Kim Marriott and Michael Wybrow. We have submitted an article describing this
work to the IEEE Conference on Information Visualization (InfoVis) 2018.

5.1 Introduction
Visualisation helps analysts to understand and explain complex data. However, there
exist factors that limit the amount of information that can be visualised. Scalability is a
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major issue in visualisation design. Eick and Karr [116] discuss how human perception,
monitor resolution, visual metaphors, interactivity, data structures and algorithms, and
computational infrastructure affect visual scalability. For network visualisation, the last
five factors have been well explored [179]. However, human perception and cognition
remain understudied.

Surveys like that of Jankun et al. [179] speak about the so-called ‘hair-ball effect’,
wherein, node-link diagram representations of small-world or scale-free graphs beyond
some unquantified density threshold, are no longer useful for understanding the connec-
tivity of all but peripheral nodes in the visualisation. We show an example of a ‘hairball’
in Figure 1.5.

Many studies in the last two decades, as discussed in Section 5.2 and Chapter 4, pro-
pose refinements to visualisation techniques and conduct experiments to see if these are
more readable than standard node-link diagram visualisations. To be precise, typically
the independent variable in such studies is visualisation technique. Sometimes a few dif-
ferent datasets may be used, but the data size is usually chosen in advance (e.g., through
piloting), to offer a degree of complexity that allows the chosen tasks to be completed
correctly in a reasonable time. As a result, this does little to address the basic gap in our
understanding of node-link diagram efficacy.

We conducted an experiment where 22 participants performed a challenging—but
commonly used—connectivity understanding task on force-directed, node-link visuali-
sations for a range of data sizes and densities. In contrast to existing studies, we used
the same visualisation technique throughout our study, and varied the data size and den-
sity in an attempt to establish some baseline measurements on human performance. In
addition to the commonly analysed measures of speed and accuracy of task completion
and subjective feedback, we also collected physiological measures known to be associ-
ated with mental effort: brain electrical activity, heart rate, and pupil size. The goal was
to establish guidelines for potential limits of scalability in node-link diagram representa-
tions that may inform visualisation designers about ideal amounts of data to show and at
what point it becomes necessary to limit the number of nodes and links that are displayed
to the user, e.g., through selective filtering or aggregation techniques. Our data will also
provide a benchmark against which other researchers can systematically compare other
graph structures, different visualisation techniques, and so on.

Our results indicate that the efficiency of node-link diagrams significantly deteriorates
for scale-free graphs with more than 50 nodes and a density of four. Individual analyses
of accuracy, response time, subjective feedback, and EEG data agree with this finding.

However, we found that cognitive load did not uniformly increase with the number
of nodes and density. Our second major contribution is to investigate the intrinsic and
visual factors that affect cognitive load. The results showed a high correlation between
these factors and subjective feedback and accuracy, however, there exist other variables
that impact response time, pupil dilation, heart rate, and brain electrical activity, than
properties of the graphs.

Our research informs the design of future network visualisation algorithms and soft-
ware by clarifying the visual features that algorithms should focus on to reduce cognitive
load, and in addition, the cognitive limits on the use of node-link diagrams for path follow-
ing tasks. Furthermore, we have presented an experimentation model that combines both
performance, self-reported and physiological factors to evaluate cognitive load, which
could be applied to future user studies to evaluate other kinds of visualisation.
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In the next section, we provide some definitions of terminology used in this chapter.
We also discuss previous work related to this chapter. In Section 5.3 we present our user
study in detail and discuss the results. In Section 5.4, we present some intrinsic and visual
characteristics of the stimuli used in our study. We also show correlations between these
characteristics and the results of the study. Section 5.5 presents our exploration of visual-
isation efficiency based on the results of our study. Section 5.6 notes some limitations to
our work and describes directions for future work.

5.2 Background and Related Work

5.2.1 Cognitive Load

One of the most famous works on limits of human cognition is that of Miller [228], which
suggests that humans can hold up to seven, plus or minus two, pieces of information in
their short-term memory.

Cognitive Load Theory suggests that humans process information using limited work-
ing memory [294]. The theory was initially developed in the fields of education and
instructional design. It suggests that cognitive load, induced by different instructional
formats, should be reduced by designing instructional materials that are void of problem-
solving, so that cognitive processing capacity can be devoted to knowledge acquisition.

Cognitive Load Theory was further extended to discuss three main types of cognitive
load: intrinsic, extraneous, and germane. Intrinsic cognitive load is associated with the
inherent difficulty of the instruction or task. Extraneous cognitive load depends on how
the instruction and information are presented. While germane cognitive load refers to
processing, acquiring and automating schemata [76, 295].

Three main types of measures can be used to assess cognitive load: subjective feed-
back, performance-based (accuracy and response time), and physiological [93]. Different
measures are chosen and accepted in different fields based on their particular character-
istics, such as, sensitivity to detect changes in cognitive load, task interference, operator
acceptance, and implementation requirements.

Even though physiological measures have been abundantly used to measure cognitive
load in systems engineering and psychology, to our knowledge, there are no studies that
use physiological measures to evaluate graph visualisations. While performance-based
and subjective measures are often used. Part of the contribution of this chapter is our
initial exploration of the applicability of the different measures to network visualisation.
For example, as discussed in Section 5.3, pupil dilation may be affected by the number of
white pixels showing in the visual stimuli and, therefore, not be an accurate measure of
cognitive load.

Some studies have used physiological measures to evaluate other visualisation types
with respect to cognitive load.

Anderson et al. [28] conducted a user study comparing the cognitive load of partic-
ipants when identifying the larger interquartile range on a variation of box plot types.
They measured task difficulty, response time and cognitive load. They used the spec-
tral differences in the alpha and theta frequency bands of the signals acquired by EEG
as an indicator of cognitive load. The results showed a correlation between these three
measures, with an increase in response time and cognitive load, as tasks became more
difficult.



5.2. BACKGROUND AND RELATED WORK 89

Peck et al. [251] used functional near-infrared spectroscopy to compare the cognitive
load imposed by pie charts versus bar charts. They also used accuracy, response time,
and subjective feedback (NASA-TLX). They asked participants to estimate differences
between two highlighted sections, and given either a pie chart or a bar chart. The results
do not show any difference in cognitive load between the two visualisation idioms. This
is perhaps attributable to the task not really involving problem-solving, but relying mostly
on visual perception.

5.2.2 Network Visualisation Readability Studies

We discussed several studies that evaluate the readability of network visualisations in
Chapter 2. We have also conducted a thorough literature survey of 125 graph visualisation
studies, focusing on the scale of data, which is further discussed in Chapter 4. The follow-
ing is only a brief synopsis of that survey, but to our knowledge, only one study directly
uses cognitive load as a measure to evaluate graph visualisations. Huang et al. [170] con-
duct a study that explores cognitive load in node-link diagrams. They propose and utilise
a visualisation efficiency measure based on the approach proposed by Paas and Van Mer-
rienboer [249], which combines mental effort and performance measures. They rely on
manipulating visual, data, and task complexities, to show that cognitive load is affected
by these complexities. However, the graphs they use are fairly small and they do not use
physiological measures to calculate mental effort. Instead they use subjective feedback as
their only measure of mental effort, but their results also confirm that subjective feedback
is a good indicator of cognitive load.

Task response time is a fairly standard measure of visualisation efficiency used across
many network visualisation studies. A study by Ware et al. [320] explores the effects
of different layout features on response time in a shortest path-finding task on node-link
diagrams, which they attribute to ‘cognitive cost’. Their results indicate that the number
of hops on the shortest path has the highest cognitive cost, followed by the number and
degree of turns along the shortest paths.

Marriott et al. [222] conduct a study that explores the effects of layout features of
node-link diagrams on memorability. The participants were asked to look at a node-link
diagram for three seconds, after which they were to recall and redraw it. Memorability
relies on working memory and is an aspect of cognitive load. However, the graphs were
very small due to the task at hand, with only 5-6 nodes and 5-6 edges. The results of the
study show that attaining certain features in the visualisation aids memorability.

There has been a lot of research in exploring the effects of layout features of node-link
diagrams on readability, in particular, using shortest path finding as a task [92, 167, 174,
198, 256, 260].

Other empirical studies compare node-link diagrams with other visualisation types
and techniques. For example, Ghoniem et al. [140] compare the effectiveness of node-link
diagrams with adjacency matrices, with respect to different tasks. The study is unusual
in testing relatively dense graphs, e.g. up to 100 nodes and 3,600 edges. For such graphs
they found matrices provided better support than node-link diagrams for many tasks, the
exception being path finding, which remains very difficult in matrices regardless of den-
sity.

Otherwise, there are many more studies evaluating different representations of net-
work data, but they rarely significantly vary the size of the graph data, preferring one or
two data sets carefully chosen through piloting, to be well within the capabilities of at least
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one of the techniques being tested (e.g. [147,210,275]). We are aware of a few studies that
involve large graphs (e.g. hundreds or thousands of nodes) [37, 103, 221, 230, 234, 318],
but they all use interactive query or aggregation techniques, allowing the user to filter the
input graph, so that only a small subset of the nodes and links are actually shown to the
participant.

In Chapter 3 we point to a lack of results indicating that large network visualisations
are sufficiently readable to support graph topology understanding, and to motivate the
development of our Ultra-Compact Grid Layout algorithms that provide higher quality
layout for smaller graphs. The work detailed in this chapter aims to provide some data to
address this gap in our understanding of basic scalability of a standard graph visualisation
technique.

5.3 User Study
We believe that there exists an inherent limit of graph sizes beyond which humans will
fail to perform tasks that require a detailed understanding of part of the graph, e.g. path-
finding tasks. General research on cognitive load suggests that human cognition has its
limits, however, these limits are under-explored in graph visualisation.

We designed a study aiming to find a limit in graph complexity beyond which detailed
tasks cannot be performed. Our study builds on the study by Huang et al. [170], which
explored some aspects of human cognition and mental effort with respect to three different
types of complexity: visual, data, and task. Our study focuses on cognitive load in node-
link diagrams with respect to visual and data complexities using a much greater range of
graph sizes and densities to systematically look for limits of scalability. We also explore
physiological measures of EEG, pupil dilation and heart rate variability.

The task chosen for our study was to find the shortest path between two nodes in a
given graph. Finding the shortest path is one of the most common tasks used in studies on
node-link diagrams. Participants were shown a range of graphs with different sizes and
densities arranged using force-directed network layout. They were instructed to identify
the shortest path and specify the number of points on this path, if they could.

The study had 22 participants: 14 male, 8 female. 18 participants were in the age
range 20–30, while four were aged 35–45. All participants had a background in Computer
Science. The participants were asked about their familiarity with node-link diagrams and
the shortest path problem. Nine participants frequently encountered node-link diagrams
and the shortest path problem, while 13 occasionally did.

For this work we limit our search in this space to two dimensions; the number of
nodes and edge density. Of course, graph complexity depends on additional variables that
control the structure of the graph. To keep our study under two hours, we were forced to
limit it to a single type of structure. We chose scale-free networks generated, as discussed,
in the next section.

5.3.1 Graph corpus
We generated 42 graphs using code written in JavaScript and based on the Barabási-
Albert [51] model. We preferred not to use standard generators, since most take—as a
parameter—the total number of nodes, and the number of edges added, at each iteration.
Alternatively, we wanted to specify the total number of nodes and edges. We also wanted
our generated graphs to be similar to real-world graphs. The Barabási-Albert model is
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25
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Figure 5.1: Six of the 42 stimuli used in the study. The diagrams in the top row represent
the smallest networks in the corpus in terms of node count (25 nodes), while the diagrams
in the bottom row represent the largest networks (175 nodes). The density of the networks
increases from left to right. The diagrams were created using the force-directed constraint-
based layout implemented in WebCola [13]. A thin white halo was added around the
nodes to help identify link-node crossings against incident links on nodes.

known to produce graphs with small-world characteristics. Such graphs are common in
nature and are frequently studied. For example, in cell-biology [20], bibliography [125]
and the internet topology [124].

The number of nodes in the generated graphs ranged from 25 to 175 nodes in incre-
ments of 25. We experimented with different sets of number of nodes, but our pilot studies
showed that, at 25 nodes, the accuracy was at a maximum, while at 175 nodes, the task
was already too difficult.

To calculate the edges, we used densities of 2, 4 and 6, where

density = number of edges/number of nodes.

We chose these densities because real-world examples often have densities of less than
10 [224] and the results of our pilot studies showed that the graphs became unreadable
beyond these values.

The graphs were arranged using the force-directed layout of WebCola [13] and saved
as drawings in SVG format. We presented these drawings to the participants in a random
order using a Latin square design.

5.3.2 Setup

Study set up is depicted in Figure 5.2.
The study was run on a Windows 10 Dell Latitude E7440 laptop, equipped with 2.7

GHz i7 processor and 8 GB RAM. The visual representations were displayed in a 1920×
1080 pixel area on a 22-inch HP monitor. Mozilla Firefox 46.0 was used to display the
visualisations and collect participant responses.

A Tobii Pro X3-120 eye tracker [11] was used throughout the study. This was directly
linked to the laptop.
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Figure 5.2: One of the participants during the study (face obscured for anonymity) wear-
ing the g.nautilus EEG cap. The eye-tracker device is mounted under the display and the
heart rate monitor is worn under clothing.

A g.Nautilus [4] electroencephalography (EEG) cap was also linked to the laptop to
record the electrical activity of the brain via g.Recorder; a software provided by g.tec [4].
The cap exposes 32 data channels with dry electrodes spatially organised, based on the
International 10-20 EEG placement system, with Modified Combinatorial Nomenclature.
Additional reference and ground electrodes were attached to the back of the participants’
ears. The EEG sampling was set to 250 Hz. An analogue bandpass filter was applied
between 0.5 Hz and 100 Hz. A notch filter was used to suppress 48 Hz to 52 Hz power
line interferences. Sensitivity was set to +/- 2250 mV.

A Polar H10 heart rate sensor was used to acquire heart rate information. This was
linked to an iphone 4 via Bluetooth and HRV Logger [5].

5.3.3 Procedure

The participants were shown an explanatory statement and were asked to sign a consent
form. They were then presented with a short tutorial explaining the concept of shortest
path and the task requirements.

For each experimental task, a pair of nodes were highlighted in orange and the partic-
ipants were asked to find the shortest path and take note of the number of nodes between
these end nodes. The correct answers for our tasks ranged from one to six. We also
allowed participants to answer with ‘unsure’ so that they did not need to guess.

In order to pick the end nodes in each layout, we first selected the furthest node from
the centre of the diagram and then selected the nearest node to the opposite side of the
vector, passing through the centre. Due to the small-world nature of the graphs and the
force-directed nature of the layout, this would lead to non-trivial shortest paths.
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Each participant had to perform the task 45 times, of which three were training. The
stimuli were shown in a randomised order and a Latin square was used to balance their
occurrences. Each task was preceded by five seconds of blank screen to serve as a rest
period, which served as a baseline for the physiological measures.

After each task, the participants were asked to provide subjective feedback based on
the nine-grade symmetrical category scale used by Huang et al. [170] and evaluated by
Bratfisch et al. [69].

5.3.4 Results

We categorise our dependent measures into three categories: performance-based, sub-
jective, and physiological. We analyse these with respect to our independent variables:
number of nodes, number of edges, and density.

We show the results for the performance-based measures in Figures 5.3 and 5.4, the
subjective ratings of difficulty in Figure 5.5, and the results of the EEG data analysis in
Figure 5.6.

We show the results with respect to each stimulus. The stimuli are arranged in in-
creasing order of node count on the horizontal axis and increasing order of density on the
vertical axis.

The red (p < .001) and pink (p < .05) lines in the figures indicate statistically signif-
icant differences found using the Kruskal-Wallis test. The solid lines are transitive; i.e.
they indicate significant differences between all graphs of smaller size in comparison to
all larger graphs, while the dashed arcs indicate significances between the pairs connected
by the arrow heads. All significant results reported have p< .001, unless otherwise stated.

Performance-based

In the performance-based category, we consider the accuracy and response time of the
participants to complete the tasks. For accuracy, we consider ‘unsure’ as an incorrect
answer. The response time excludes the time to submit the answers and only considers
the time when the participants perform the task by attempting to find the shortest path.

Figure 5.3 shows percentages of correct, incorrect and unsure answers for each stim-
ulus. The number of nodes and density of the stimuli are shown on the horizontal and
vertical axes respectively. For graphs with 25 nodes, we found a significant drop in ac-
curacy between densities of 2 and 6, while for graphs with 50 and 75 nodes, we found a
significant drop in accuracy when using graphs with a density of more than 4.

We found that accuracy significantly deteriorates when using graphs with 100 nodes
or more, compared to graphs with 25 nodes. The results also show a significant drop
in accuracy for graphs with a density of 4, beyond 50 nodes. Accuracy significantly
decreases for graphs with a density of 2, between graphs with 75 nodes or less, and graphs
with 125 nodes. This is also evident between graphs with 50 nodes or less, and graphs
with 150 nodes.

With the exception of one outlier, the accuracy of participants, when shown graphs
with 125 nodes or more, is very close to the threshold that represents the probability of
submitting a correct answer by random selection.

Figure 5.4 shows the response time of the participants in seconds with respect to each
stimulus. The number of nodes and density are shown on the horizontal and vertical axes
respectively.
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Figure 5.3: The percentage of correct answers in comparison to incorrect and unsure an-
swers for each stimulus across the 22 participants. The stimuli are ordered in increasing
number of nodes and density. The black dashed line at 16.67% indicates the percentage
of correct answers that could be due to mere chance. The red lines show statistical signifi-
cance (p < .001) between the differences of specific graph sizes. The solid lines represent
transitive significance, while the dashed lines represent significance only between the ar-
row tips.
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Figure 5.4: Response time with respect to each stimulus. The node count, density and
version of the stimuli are also shown. Similar to the previous figure, the red lines show
statistical significance (p< .001) between the differences of specific graph sizes, while the
pink lines show a statistical significance of p < .05. The solid lines represent transitive
significance, while the dashed lines represent significance only between the arrow tips.
Even though, ‘unsure’ answers are included in the figure, they are excluded from the
statistical analysis.
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Figure 5.5: The difficulty rating shown for each stimulus. The stimuli are ordered by
increasing node count on the horizontal axis and increasing density on the vertical axis.
The lines indicate statistical significance (p < .001) between the ratings.

Our results indicate that response time significantly increases beyond 50 nodes when
using a density of 2 and beyond 25 nodes when using a density of 4 or 6. They also
indicate a significant increase in response time beyond a density of 4 for graphs with 25
nodes.

Subjective

The participants were asked to rate the difficulty of each trial. They were given a nine-
grade symmetrical category scale used by Huang et al. [170] and validated by Bratfisch et
al. [69]. The scale uses the following terms: ‘very very easy’, ‘very easy’, ‘easy’, ‘rather
easy’, ‘neither easy nor difficult’, ‘rather difficult’, ‘difficult’, ‘very difficult’, ‘very very
difficult’.

Figure 5.5 shows the rating of each stimulus. The number of nodes and density are
shown on the horizontal and vertical axes respectively.

Our results show that for graphs with a density of 2, the participants rated graphs with
25 nodes as significantly more difficult than graphs with 75 nodes or more. They also
rated graphs with a density of 2 and 50 nodes as significantly more difficult than graphs
with 100 nodes or more. For denser graphs with densities of 4 and 6, the difficulty ratings
were significantly higher for graphs with 50 nodes or less, compared to graphs with 75
nodes or more.

The participants found density 6 graphs to be more difficult than graphs with densities
of 2 or 4 for graphs with 75 nodes or less. The results also show that graphs with 175
nodes and a density of 2 were significantly more difficult than graphs with 175 nodes and
densities of 4 or 6.

Physiological

Pupil Dilation: We used Tobii Studio to record the eye tracker data from the Tobii Pro
X3-120. We used the average of the two eyes in order to reduce noise. In cases where we
had pupil size information of one eye, we used that alone.

For each task, we used the five seconds pre-task resting period to extract an average
baseline, then we calculated pupil dilation by subtracting the average pupil size during
the inter-trial rest period from the peak pupil size during task performance. We used peak
dilation instead of mean pupil dilation, since the latter does not work well with tasks that
vary in length across participants [58].
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We did not find any significant differences in peak dilation between different graph
sizes.
Heart Rate Variability: We recorded the beats per minute (bpm) and r-r interval for each
participant using a polar H10 heart rate monitor.

We used rmssd and pnn50, which are common measures for heart rate variability anal-
ysis, in order to analyse our results. However, we did not find any significant differences
between the trials.
Electrical Activity of the Brain: We used EEGlab [96] to process and analyse the EEG
data exported from g.Recorder.

Cognitive and memory performance are identified to be reflected within the alpha (8
- 12 Hz) and theta (4 - 8 Hz) frequency bands [196]. Thus, we filtered the EEG data by
applying a low-pass filter of 15 Hz and a high-pass filter of 1 Hz. This filter would also
get rid of possible noise and muscle artefacts [87].

We also manually checked for bad channels and tasks. We fixed bad channels by
filtering them out and recreating data using interpolation, whereas, we filtered out the bad
tasks completely. We also removed the total EEG data of one participant. Overall, we
found 21 bad channels and 26 bad tasks across the remaining 21 participants.

The acquired EEG data is a two-dimensional table. One dimension represents time,
while the other represents the electrodes. We cut this continuous data into segments, in
order to analyse changes in the EEG data with respect to our tasks.

We considered frequencies of 3, 4, 5, 6, 7 Hz for the theta band and 8, 9, 10, 11, 12
Hz for the alpha band. We used the Fast Fourier transform function in MATLAB [9] to
extract the power of these frequencies during the period of each task. We then measured
the difference between the mean power of the alpha frequencies and the mean power of
the theta frequencies. We call this measure ‘EEG cognitive load’.

After a visual check on the results, we realised that the ‘unsure’ answers were adding
a lot of noise. Since we do not have a way to differentiate ‘unsure’ answers that were the
result of giving up too early, we filter out all the ‘unsure’ answers.

Figure 5.6 shows the results of the cognitive load measured using the EEG data for
each visual stimulus. The different node counts are shown using the columns, while the
three different densities are shown using the three rows.

The results show a significant increase in EEG cognitive load for graphs with 25 nodes
or more, for all densities. The results also show a significant increase in EEG cognitive
load beyond 50, and 75 nodes for graphs with a density of 2. For graphs with these node
counts; (25, 50 and 75), there is also a significant increase in EEG cognitive load beyond
a density of 4.

5.3.5 Discussion

Accuracy, response time, subjective feedback and electrical activity of the brain show
that the task of path finding between two nodes becomes significantly difficult beyond a
density of 4. They also show a cut-off at 50 nodes. In terms of accuracy, participants
were as accurate as random selection beyond graphs with 100 nodes. Response time and
electrical activity of the brain push this cut-off even further down to 25 nodes.

Even though we tried to constrain the visual complexity of our stimuli by limiting
ourselves to the use of node-link diagrams to visualise the study corpus, we found some
changes in the results that were not explained by the data complexity (node count and
density). For example, the second graph (version 1) with 175 nodes and a density of 2,
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Figure 5.6: EEG cognitive load with respect to each stimulus. Number of nodes and
density are shown on the horizontal and vertical axes respectively. Even though, the
‘unsure’ answers are shown in the figure, they are filtered out in the statistical analysis.
The red lines represent statistical significance of p < .001 between the differences in
cognitive load, while the pink lines have a lower significance of p < .05. The solid lines
have a transitive nature, while the dashed lines are specific to the sections they point to.

stands out as an outlier in Figure 5.3 with an average accuracy of 77.27%; its counterpart
(version 0) has an average accuracy of 18.18%. After investigating the layouts of these
two graphs, we found obvious differences in the visual complexity, which could affect
cognitive load. We discuss our exploration of these factors in the next section.

5.4 Factors Affecting Cognitive Load

In the previous section, we analyse the results of our study with respect to the number of
nodes and the density of each of the graphs. However, we believe that these are just coarse
measures of complexity, and that there also exists other factors that affect cognitive load.

There has been a lot of research to understand how different layout features affect the
readability of node-link diagrams. We discussed these works in more detail in Section 2.
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5.4.1 Graph Metrics

We considered two types of metrics: intrinsic and visual. The intrinsic metrics are re-
lated to the data, while the visual metrics are layout features acquired due to the visual
representation.

In addition to the number of nodes and density, we considered other intrinsic metrics.
For each of the 42 graphs in our corpus, we measured the number of all possible shortest
paths using breadth-first search, the number of intermediate nodes on the shortest path,
and the average degree of nodes on the shortest paths.

For our visual metrics, we counted the number of link-link crossings, the number of
node-link crossings, the average number of link-link crossings on the shortest paths, the
average number of node-link crossings on the shortest paths, the average penalty for small
angles between crossings on the shortest paths, the average turning angle on the shortest
paths, the average distance of nodes on the shortest paths to the Geodesic path (Geodesic
path deviation), and the average Euclidean distance of the shortest paths.

The penalty for small angles was calculated by measuring the angle between two line
crossings and subtracting it from 90 degrees. This would apply a high penalty for small
angles, while adding small penalties for angles closer to 90 degrees.

Figure 5.7 shows examples where some of these factors are highlighted. The graph
shown in the examples is from our study corpus. It has 6 possible shortest paths (Fig. 5.7(a)),
each with 4 intermediate nodes. The nodes on the shortest paths have an accumulated de-
gree of 56 (Fig. 5.7(h), average = 28.33/path). The node-link diagram representing the
graph has 57 link-link crossings (Fig. 5.7(b)) and 6 node-link crossings (Fig. 5.7(c)).
There are 33 link-link crossings (Fig. 5.7(d), average = 8.33/path) and 1 node-link cross-
ing (Fig. 5.7(e), average = 0.17/path) on the shortest paths. The sum of the Euclidean
distance of the links on the shortest paths is 2803.66 (Fig. 5.7(f), average = 1067.47/path).
The sum of the distance between the nodes on the shortest paths from the Geodesic path
is 874.46 (Fig. 5.7(g), average = 415.66/path). The sum of the penalty for small angles
of line-line crossings on the shortest paths is 925.92 (Fig. 5.7(i), average = 217.08/path).
Lastly, the sum of the turning angles on the shortest paths is 426.72 degrees (Fig. 5.7(j),
average = 105.58 degrees).

Figure 5.9 shows some intrinsic and visual characteristics of all the graphs used in
our study. The metric at 0 degrees clockwise is the number of intermediate nodes on the
shortest path. 60 degrees clockwise represents the penalty for small crossing angles. At
120 degrees clockwise we show the number of link-link crossings, while at 240 degrees
clockwise, we show the number of node-link crossings. At 240 degrees clockwise, we
show the number of possible shortest paths.

As expected, our analysis shows that the number of hops decreases with the increase
in density. It also shows that the number of crossings increases with the increase in node
count and density.

Similarly, Figure 5.8 shows some metrics that are associated to the shortest paths
of the graphs used in our user study. The metric at 0 degrees clockwise is the average
penalty for small angles between crossings on the shortest paths. The average degree
of nodes on the shortest paths is shown at 60 degrees clockwise. The average Geodesic
path deviation is shown at 120 degrees clockwise. The average Euclidean distance of the
shortest paths is represented at 180 degrees. The metric shown at 210 degrees clockwise
is the average count of link-link crossings on the shortest paths. Finally, the point at 240
degrees clockwise represents the average turning angle on the shortest paths.
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Figure 5.7: Intrinsic and visual metrics for a sample graph used in the study with 25 nodes
and 50 edges (density 2, version 0).
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Section 5.3.
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Figure 5.10: The linear correlation (adjusted R-squared) between different graph charac-
teristics. The visual factors are represented by the columns, while the intrinsic factors are
represented by the rows. The y-axes have different scales.

An obvious pattern is the increase in node degrees on the shortest paths as the node
count and density increase. Moreover, to fully explore these dependencies, we retrieved
the independent linear correlations of each factor with respect to all other factors.

Figure 5.10 shows how changing one factor affects other factors. It is evident that an
increase in the average degree of nodes on the shortest paths, the number of nodes, and
density, greatly affect the number of link-link crossings and—naturally—the penalty for
small angles of crossings.

Similarly, the number of nodes and density are highly correlated, with the average
number of link-link crossings on the shortest paths and the average penalty for small
angles on the shortest paths.

It is interesting that we did not find a correlation between the average degree of nodes
on the shortest paths with the average number of link-link crossings on the shortest paths.

The correlations of the number of nodes with visual factors are very similar to that
of density. However, the average turning angle on the shortest paths and the average Eu-
clidean distance on the shortest paths show a higher correlation with the number of nodes
than with density, while the number of node-link crossings shows a higher correlation
with density than the number of nodes.

The correlations of the average degrees of nodes on the shortest paths are similar to
the combined correlations of the number of nodes and density, with the exceptions of the
average link-link crossings on the shortest paths and the average penalty for small angles
on the shortest paths.

The correlations of the number of possible shortest paths and, the number of inter-
mediate nodes on the shortest paths, are highly similar. They correlate the most with the
average Geodesic path deviance and the average turning angle on the shortest paths.
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Figure 5.11: The linear correlation (adjusted R-squared) of intrinsic factors with visual
factors of the graphs used as stimuli and the results of our user study. The y-axes have
different scales.

5.4.2 Correlations

After identifying the features of our graphs and exploring the correlations of intrinsic
factors with visual factors, we explore possible correlations of both, intrinsic and visual
factors, with the results of our user study. In other words, in this section, we analyse the
dependent variables of our study with respect to the independent variables. The indepen-
dent variables being the intrinsic and visual factors mentioned in the previous section.

Figure 5.11 shows the correlations of intrinsic factors with visual factors (independent
variables), and resulting measures from our study (dependent variables). Two distinct
patterns are visible.

Subjective feedback, accuracy and cognitive load, measured using the EEG, have sim-
ilar correlations, where most factors have an effect. Density has the highest impact on
subjective feedback, while the number of nodes has the highest impact on accuracy, and
the average degree of nodes has the highest influence on cognitive load measured, using
the EEG.

Pupil peak dilation and response time also have similar correlations. However, they
are mostly affected by the steep turning angles on the shortest paths, the Euclidean dis-
tance of the shortest paths, and the number of intermediate nodes on the shortest paths.

We did not find any significant correlations between the factors and the heart rate
variability measures. Steep turns on the shortest paths are correlated with all the other
measures.

There seems to be other factors that affect pupil dilation and cognitive load mea-
sured using the EEG. Similarly, but to a lesser extent, response time is affected by other
unknown variables. Changes in graph characteristics are highly correlated with the sub-
jective feedback of participants. They also show a good correlation with accuracy.
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Figure 5.12: The efficiency of finding a shortest path on node-link diagrams of graphs
with different node counts and densities. The node count is represented by positions
on the horizontal axis, while the densities are shown on the vertical axis. The red lines
indicate significant differences (p< .001). The solid lines represent transitive differences,
while the dashed lines are restricted to the sections they point to.

5.5 Visualisation Efficiency

Paas et al. [249] propose a computational method to measure instructional efficiency in
relation to cognitive load. Huang et al. [170] extend this method to measure visualisa-
tion efficiency. They define efficiency as the difference between standardised accuracy,
response time, and mental effort. They explain that efficiency increases when accuracy
is high, difficulty is low and response time is short. For their study, they use subjective
feedback as a measure of mental effort.

5.5.1 Efficiency Using Subjective Feedback

Similar to the study by Huang et al. [170], we use the subjective rating of difficulty as
mental effort and calculate visualisation efficiency for each of the stimuli used in our
study.
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We show the results in Figure 5.12. The node count and density of each graph are
shown using the horizontal and vertical axes respectively. The red lines in the figure
indicate statistically significant differences found using the Kruskal-Wallis test (p< .001).
The solid lines are transitive; i.e. they indicate significant differences between all graphs
of smaller size in comparison to all larger graphs. The dashed arcs indicate significances
between the arrow tips.

The results show that for all graphs with 75 nodes or more, except for those with a
density of 6, efficiency was significantly less than the ones with 50 nodes or less. For
density 6, graphs with 75 nodes or more were significantly less efficient than those with
25 nodes.

The results also show that even for small graphs with 50 nodes or less, efficiency
significantly drops beyond a density of 4. Also for graphs with 75 nodes, efficiency
significantly dropped for density 6 compared to density 2.

This confirms our previous finding that shortest path finding becomes significantly
more difficult beyond 50 nodes and a density of 4.

5.5.2 Efficiency Using EEG Data
Subjective feedback is one of the most commonly used measures in empirical studies
[248]. It is inexpensive, does not interfere with the primary task of the study, and is well
validated. The results of our study also showed a high correlation of subjective feedback
with the intrinsic and visual factors of the graphs, as discussed in Section 5.4. However,
due to recent innovations in wearable sensors, physiological measures are gaining popu-
larity. We swapped subjective feedback as the measure for mental effort in the efficiency
calculation, with the EEG cognitive load measure (discussed in Section 5.3). We name
this, ‘efficiency 2.0’, to avoid confusion.

Figure 5.13 shows the results of the modified efficiency calculation for each stimulus
used in our study. The node count and density of each graph are shown using the hori-
zontal and vertical axes respectively. The results show that for all graphs with 75 nodes
or more, except for those with a density of 6, efficiency was significantly lower than for
graphs with 50 nodes or less. Similarly, for all graphs with 50 nodes or more, including
ones with density 6, efficiency was significantly lower than those with 25 nodes. Also,
for graphs with 75 nodes or less, efficiency dropped significantly when the graph density
increased.

The modified measure is more sensitive to changes in cognitive load. However, both
measures reflect the results of the individual measures and confirm the cut-off at 50 nodes,
and a 4 in density. Choosing one over the other depends on the evaluation needs of individ-
ual studies. Electroencephalograms are still rather expensive and some of our participants
expressed discomfort when wearing the EEG cap.

5.6 Limitations and Future Work
An obvious and intentional limitation of the user study, discussed in Section 5.3, is the
use of one visual representation - specifically node-link diagrams. We aimed to minimise
the effects of visual complexity on cognitive load, in order to emphasise the effects of
data complexity. Future research can do the opposite to explore the effects of visual
complexity on cognitive load. Results attained from different visual representations can
also be compared to our data relative to node-link diagrams.
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Figure 5.13: The modified efficiency of finding a shortest path on node-link diagrams
of graphs with different node counts and densities. The node counts are represented by
positions on the horizontal axis, while the densities are shown on the vertical axis. The
red lines indicate significant differences (p < .001). The solid lines represent transitive
differences, while each dashed line is restricted to a pair.
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We use scale-free graphs, but in future work, we intend to use other types of network
data. We would like to explore how cognitive load changes for sparser graphs. Our
experimental model can be applied to explore different complexity domains.

As future work, we would also like to explore other aspects of eye data. In addition
to eye pupil diameter, we recorded eye movement data. We would like to explore the
correlation between total eye movement and cognitive load. Perhaps the lack of significant
findings with respect to pupil dilation was due to illumination effects. Pupil diameter is
sensitive to light [58] and with denser graphs the screen would get darker.

One of the limitations of our study was that we used one task: finding a shortest path
between two nodes. Nonetheless, we believe that this complex task is representative of a
fundamental class of tasks and involves other ‘sub-tasks’, such as disambiguating edges,
inspecting neighbours, remembering previously inspected nodes, browsing through paths,
and so on. As future work, it would be possible to perform studies with other detail-
oriented tasks and compare the results with ours. These would lead to the understanding
of the effects of task complexity on cognitive load.

In continuation of the work discussed in Section 5.4, we intend to develop a thorough
cognitive model that would include different factors of graph complexity.

5.7 Conclusion
In this chapter, we explore the effects of graph size (number of nodes and density) on
cognitive load. We limit our exploration to one task: finding a shortest path between
two nodes. Our results show that all measures of cognitive load indicate heavy load
beyond graphs with more than 50 nodes. They also show that cognitive load increases
significantly for graphs with a density higher than four.

We use one standard visualisation technique (force-directed node-link diagrams) to
show the graphs to the participants. Thus minimising changes in visual complexity.
Nonetheless, due to dependencies between graph structure and layout, we end up having
different layout features between the stimuli. We explore the correlation of these visual
factors with the intrinsic factors belonging to the data in Section 5.4. We also explore the
correlations of these factors with the dependent variables of the user study.

Our results confirm the usefulness of our high-quality Ultra-Compact Grid Layout,
which we presented in Chapter 3. We were initially worried that our method was not able
to handle large networks, but now realise that diagrams of large networks are not suited
for tasks that require a detailed understanding of the network. The work in this chapter
can guide visualisation designers when creating visualisations that must scale to larger
graph data (e.g. setting limits on neighbourhood size in overview-and-detail techniques
using node-link diagrams for detail). We also hope this work stimulates development of
new techniques that demonstrably scale to more complex networks, such as our summary
representation discussed in the next chapter.



Chapter 6

Graph Thumbnails: Making Sense of
Very Large Networks

“but now, from way up here,
it’s crystal clear”

Sir Timothy Miles Bindon Rice,
A Whole New World

A song from Disney’s animated film
Aladdin.

In this chapter we propose Graph Thumbnails, small icon-like visualisations of the
high-level structure of network data. Graph Thumbnails are designed to be legible in
small multiples to support rapid browsing within large graph corpora. Compared to exist-
ing graph-visualisation techniques our representation has several advantages: (1) the vi-
sualisation can be computed in linear time; (2) it is canonical in the sense that isomorphic
graphs always have identical thumbnails; and (3) it provides precise information about the
graph structure. We report the results of two user studies. The first study compares Graph
Thumbnails to node-link and matrix views for identifying similar graphs. The second
study investigates the comprehensibility of the different representations. We demonstrate
the usefulness of this representation for summarising the evolution of protein-protein in-
teraction networks across a range of species.

The work presented in this chapter was accomplished in collaboration with my su-
pervisors Tim Dwyer, Karsten Klein, Kim Marriott, and Michael Wybrow. An article
describing the work was published in Transactions on Computer Graphics and Visualiza-
tion.

6.1 Introduction
Modern graphics computing power makes it possible and tempting to create visualisa-
tions that render individual marks for each node and link in large network data. For
example, node-link diagrams are typically drawn with a circle or rectangle mark for each
node—possibly with a label—and a line for each link. Further, it is a triumph of algo-
rithm engineering that we now have reasonably efficient methods for computing unfolded

108
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layouts of diagrams with tens or hundreds of thousands of nodes in seconds or minutes
(e.g. [39, 165]). Such algorithms work quite well for sparse tree-like or mesh structures,
but on networks that have a scale-free or small-world property the node-link diagrams
cannot be untangled sufficiently to understand the connectivity—the infamous “hair-ball”
problem (e.g. Figure 6.1(a)). Adjacency matrices are an alternative representation that
sidesteps the problem of tangled edges by giving each edge a mark in its own matrix cell.
However, matrices become unreadable when there are large numbers of nodes, as the rows
and columns become too narrow (e.g. Figure 6.1(b)).

In addition to efficient methods that are able to produce diagrams for large networks,
we propose a high-quality layout for small to medium networks, which is presented and
discussed in Chapter 3. However, not every visualisation task requires a level of detail
where every graph element is visible. Sometimes we just want an overview of the large-
scale structure of the network. Some applications call for a quick comparative view of a
large number of networks, for example, when comparing the structure of networks from
different origins, or when trying to understand the evolution of a dynamically changing
network. The results of the user study presented in Chapter 5, show that path finding tasks
become significantly challenging beyond networks with more than 50 nodes and densities
of four.

Another inspiration for the technique presented in this chapter is that force-directed
layouts of large and reasonably dense networks tend to look like vaguely circular blobs.
Maybe it is possible to see that the graph has several interlinked blobs. Maybe some
denser cores are visible within the blobs. But, broadly speaking, if that is all you see after
the effort of running a large-scale physics simulation to untangle the network, can we not
find a more efficient way to decompose the network into some hierarchical structure and
then visualise this hierarchy directly?

Most current decompositions and aggregations proposed for large graph analysis are
challenging both in their computational complexity and interpretability, as—similar to
the network layout algorithms mentioned above—they are typically intended to allow a
detailed analysis of a single network. We are exploring how far we can simplify computa-
tion and visualisation while still retaining characteristic structural features that allow us to
clearly distinguish different networks over a large set, or to detect high-level similarities.

The Graph Thumbnail representation explored in this chapter offers quick comparison
and intuitive representation. It maintains structural information and hierarchy and can act
as an overview for complex and large networks. A typical application—as we will see
in Section 6.7—would be to browse a set of large networks in order to identify patterns
across networks, or to detect outlier networks. Another obvious use for thumbnail repre-
sentations of graphs is the same way thumbnail representations are used in file explorers
or menu exploration: as an iconic view of a graph file that can easily be found amongst a
large collection.

Thus, to summarise, the visualisation tasks we consider are:

• Identification: Quick identification of a network from a collection, e.g. browsing
through a directory full of graph files.

• Comparison: Finding similarly structured networks from a collection, or alterna-
tively, finding outliers (i.e. dissimilar networks).

• Overview: Quickly ascertain key structural information about the overall network
structure at a glance.
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(a) Force-directed node-link diagrams

(b) Adjacency Matrices with overplotting

3273 15631 4038 37072

(c) Graph Thumbnails

Figure 6.1: Three ways to represent the 70% and 90% confidence protein-protein interac-
tion networks for E. coli. The graph shown on the left of each subfigure has 3,273 nodes
and 15,631 edges, while the graph on the right has 4,038 nodes and 37,072 edges.
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The main contributions of this chapter are as follows:

1. We propose a novel Thumbnail representation for networks (Figure 6.1(c)) that:

• takes linear time in the number of edges of the network;

• always produces the same visual for a given input graph structure—and hence
is canonical in the sense that isomorphic graphs will always have identical
thumbnails; and

• provides precise information about the graph structure in a readable way.

2. We detail the design considerations and evolution of our thumbnail design, via a
user study, both in terms of the choice of decomposition used to obtain a represen-
tative hierarchy of the graph, and the visual elements of the thumbnails (Section
6.3).

3. We evaluate people’s ability to quickly judge the similarity of different types of
graph structure using thumbnails, node-link and matrix representations of large
graphs (Section 6.5)—in support of Identification and Comparison tasks, via a
second user study.

4. We evaluate people’s ability to read structural details about graphs using these three
representations (Section 6.6)—in support of Overview tasks.

5. We explore a detailed application of Graph Thumbnails for understanding a set
of networks modelling protein-protein interaction across different organisms and
their growth (due to biologists’ growing understanding) over time (Section 6.7)—
Comparison and Overview tasks.

6.2 Background and Related Work
Most existing work on network visualisation has focused on exploring detailed structure
within a single network. However, comparison has been mentioned (briefly) by Lee et
al. [212] in their task taxonomy for graph visualisation. Krzywinski et al. [205] introduce
hive plots, which arrange nodes on radially oriented axes according to their character-
istics, but suffer from the problem of scalability due to crossings of dense edge lines,
and are computationally non-linear. Small-multiple visualisation has been used before
when comparing timesteps in dynamic graphs, and where the set of nodes in the graph
is wholly or partially the same in each graph (if nodes can appear and disappear). For
example, Burch and Weiskopf [74] use a small-multiple ‘edge splatting’ technique where
the node positions do not change, but high-level patterns in edge connectivity can be seen
to change between graphs. Similarly, Bach et al. [42] explored small-multiple visualisa-
tion of dynamic brain activity networks, comparing experimental data collected from a
number of patients across time. Each network was represented by a matrix view, which
was found to support the task of weighted link comparison well. However, the networks
were small, modelling the relationships between only 30 or so brain regions (nodes).

Thus, it seems most past work on network comparison has focused on detailed com-
parison of individual changes in edge weights or neighbourhoods. In general, we have
found little past work on visual techniques for comparing high-level network structure
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over large numbers of graphs and with arbitrary nodesets. Non-visual analytical tech-
niques have been developed for classifying and determining structural similarity between
sets of networks (e.g. [225]), or to visualise sets of structural statistics across a graph
corpus (e.g. Kennedy et al. [189]—we use this ‘graph landscape’ information to classify
the corpus of graphs used in Study 1, Section 6.5). Kairam et al. [185] developed a vi-
sual dashboard display of structural summary statistics for a network (such as centrality
metrics). Similarly, Freire et al. [131] use a visual dashboard display to act as an analysis
tool for multiple networks. However, understanding the display required a good under-
standing of the metrics, and the dashboard was proposed as a complementary view to a
node-link diagram.

To make visualisation scale to large networks without creating overwhelming detail,
some sort of aggregation is necessary. For node-link diagrams an obvious target for aggre-
gation are the links, being potentially far more numerous than nodes and causing clutter
through crossings. The link (edge) lines can be spatially [344] or structurally [43] grouped
and drawn as bundles. Cliques and bi-partite cliques of nodes can be identified and their
links implied through aggregate connections [103,104,270]. Alternately, the links can be
omitted entirely and, instead, communities of highly-linked nodes represented in contigu-
ous coloured regions [135]. However, all of these techniques require complex algorithms
with running time greater than linear in the number of graph elements.

There are faster techniques for finding hierarchical decompositions of graphs. Major
approaches include SPQR-trees for the decomposition into tri-connected components, in
particular, for planar graph drawing [99], k-core decomposition [55], [144, 182] or even
simple stochastic sampling [240, 307]. Seidman introduced the notion of a k-core [284]
of a graph G, a maximal connected induced subgraph H = (V ′,E ′) of G = (V,E) where
V ⊂V ′,E ⊂ E ′ such that, for the minimum degree δ (H) it holds δ (H)≥ k. The concept
was later extended to weighted graphs [145], and further generalised to so-called nuclei,
which represent more complex connectivity structures, but are also harder to intuitively
interpret [280]. Furthermore, k-core decompositions have been explored in the past as a
basis for layout of nodes in large and dense networks into concentric circular ‘shells’ [26]
or 2.5-dimensional levels [57], reflecting their coreness. In particular, Alvarez et al. [26]
identified the utility of such drawings for so-called ‘finger-printing’ of large graphs, im-
plying that the ‘shells’ of nodes formed a pattern that was distinctive enough for gross
structure identification purposes. A number of works have used similar approaches, using
various decomposition techniques to emphasise high-level structure in large-scale node-
link visualisations. Archambault et al. [29] decompose large graphs as far as bi-connected
components before choosing a layout algorithm most suitable for the structure of each of
those components. In each of the above methods, however, the full set of nodes and edges
is involved in the layout meaning that the visual clutter is too great for small-multiples
comparison. Very recent work by Zhang et al. [340] has explored the use of a terrain
metaphor to visualise attributes associated with the nodes and the edges of a graph. They
consider various attributes in their examples, including k-core depth. Their 3D renderings
could be considered a hybrid of our icicle and treemap representations.

6.3 Design
Our concept for a ‘thumbnail’ representation of a large graph that supports identification,
comparison, and overview tasks, has two key elements: the hierarchical decomposition
technique and the visual representation of this hierarchy. In most respects it is possible
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Figure 6.2: A network where all the vertices are connected to each other. The blue ellipse
represents the 1-connected component. The green one represents the 2-connected com-
ponent, while the orange ellipse represents the 3-core component. In this example, one
1-connected component contains all the vertices of the network. This network has two
2-connected components within the same 1-connected component. The orange ellipse is
also 2-connected since our decomposition yields a hierarchical tree. The sole 3-core com-
ponent of this network can be found by recursively removing all the vertices that have a
degree of 0, 1, and 2 consecutively.

to separate these two concerns. As will be discussed, the semantics of the decomposition
used in the examples in this chapter influence the colour scheme of our visual design, but
otherwise, it is possible to create a thumbnail view from any hierarchical decomposition.
As stated earlier, the particular decomposition explored here is chosen because of its linear
running time and unambiguous (canonical) nature.

6.3.1 Hierarchical Graph Decomposition
We want each of the elements in our thumbnail network representation to say something
very concrete about the structure of the graph. That is, a visual element of the thumb-
nail (such as a circle) should correspond to a substructure in the graph that is precisely
definable. As a counter example, community detection methods fail this test since they
typically seek to optimise a non-convex function over the sets of nodes assigned to clus-
ters. For example, Girvan-Newman clustering [146] uses a greedy method to attempt to
maximise the modularity score of each cluster. We cannot really say anything concrete
about a cluster hierarchy obtained using this method because: a) it is likely only an ap-
proximation of the maximal modularity cluster decomposition; b) even if an optimum can
be found, it is likely not unique; and c) a particular cluster’s modularity is only defined
relative to the rest of the graph structure. Furthermore, modularity-maximising cluster-
ing methods are not suitable for our purposes because even approximation methods for
the (otherwise NP-hard) optimisation problem trade off running time with precision and
even the fastest (and most imprecise) remain super-linear. Clusterings obtained using ran-
dom walks (e.g., [254]) have also become popular in recent times, but these also trade off
precision with running time.

An intuitive approach to finding dense substructures, which are components of signif-
icant functional relevance in many application areas like biology or the social sciences,
would be to calculate a hierarchy of k-connected subgraphs in the network, i.e. subgraphs
for which, between each pair of vertices, there are at least k vertex-disjoint paths. Fig-
ure 6.2 shows an example of a network where all the vertices belong to the same 1-
connected component. The network also has two distinct 2-connected components, where
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one contains three vertices, and the other, four. So called k-vertex-connected components
are also easily defined (explained) using Menger’s theorem as maximal components in
which at least k nodes must be removed in order to split the component into 2 or more
connected components. However, a decomposition of k-vertex-connected components
(only) is not a practical approach for large graph browsing, for a number of reasons.

While k-vertex-connectivity of a graph for values of k up to 3 can be tested in linear
time, and a graph can be decomposed into so-called tri-connected components in linear
time ( [98, 150]), these components are not necessarily 3-connected, and extracting 3-
connected components from them is not straightforward. To the best of our knowledge,
there is no practical linear time algorithm available to accomplish this.

In addition, the decomposition into k-connected components is not unique for k ≥
4, and thus, it is not well-defined as to what the set of k-connected components would
be for general k. Consequently, there is no canonical hierarchical decomposition for k-
connectivity known. A similar decomposition was described by Carmesin et al. [75], only
for so-called k-blocks, as a concept based on the (k−1)-inseparability of the block within
the original graph. This concept is more difficult to interpret in practical applications, e.g.
the nodes do not even need to induce a connected subgraph, and there is also no linear-
time algorithm known to compute the decomposition. In addition, it is not easy to make a
comparison of similar structures over a set of graphs based on their k-block structure.

By contrast, k-cores for k ≥ 3 are relatively straightforward, canonical, and a full k-
core decomposition can be computed in time linear in the number of edges, due to an
algorithm by Batagelj and Zavesnik [55]. A k-core of a graph is a component of the
subgraph found by repeatedly removing vertices that have degrees less than k. Figure 6.2
shows an example network with a 3-core subgraph.

In light of these concerns, our final choice of decomposition (which we name a k-
core-component clustering or KC3 decomposition) for Graph Thumbnails is relatively
simple:

• Level 1 is made up of singly-connected components.

• Level 2 consists of bi-connected components.

• Level 3 is 3-cores that are contained within a bi-connected component.

• Levels 4 and up are k-cores (k > 3).

Clearly, all bi-connected components are contained in singly-connected components
and all k-cores (k > 3) are contained in (k−1)-cores. A challenge is that 3-cores are not
strictly contained in a bi-connected component. To enforce a strict hierarchy we begin
computing the core decomposition using bi-connected components as starting points.

For Study 1 we used an earlier version of KC3 using tri-connected components (the
R nodes of an SPQR decomposition) for Level 3 and beginning the search for k-cores for
Levels 4 and up (k > 3) within these tri-connected components. However, in Study 2 we
wanted the participants to be able to understand the decomposition in order to make pre-
cise assessments of the graph structure. We found people were confused by the definition
of tri-connectivity and so we opted for the simpler definition above.

Figure 6.3 shows an example of applying this decomposition on the popular network
of Zachary’s Karate Club [339].

In summary, KC3 returns a canonical and hierarchical tree for the 1, 2-connected and
k-core components of a network, which can be computed in linear time.
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Figure 6.3: Zachary’s Karate Club network [339], shown using node-link, matrix and
Graph Thumbnail representations. The colours show the four levels of the KC3 decompo-
sition. This network is known for its two main communities: one around the administrator
and a denser one around the instructor. These communities are respected in the KC3 de-
composition and can be clearly seen in the Graph Thumbnail representation.

6.3.2 Visual Design
As previously mentioned, the inspiration for Graph Thumbnails was to have a small vi-
sual, showing a minimum amount of detail while still providing sufficient insight into the
structure of the network; suggestive of a conventional large-scale network visualisation.
We can expand upon these requirements for Graph Thumbnail visuals as follows:

• R1 - suggestive of a standard large-scale network visualisation technique;

• R2 - as readable as possible to support small-multiple comparisons;

• R3 - the level in the cluster hierarchy of each visual element to be clear;

• R4 - the visual elements accurately convey the relative size of the cluster to which
they correspond; and

• R5 - the representation should scale to arbitrarily large or dense networks.

Beginning by considering R1, force-directed layouts such as those in Figure 6.1(a)
suggest an arrangement of circles. Adjacency matrices, such as those in Figure 6.1(b),
suggest something more square, such as a treemap. If we attribute less significance to R1,
a third option is to avoid the inaccuracy of area encoding and use a mapping where the
length of the visual elements precisely encodes the size of clusters.

Treemaps

Treemaps over a cluster hierarchy have been considered before by Muelder and Ma as a
layout strategy for large graphs [102, 231]. Their approach used the treemap slice-and-
dice algorithm to arrange the nodes inside nested rectangular regions corresponding to the
cluster hierarchy, then the full set of edges were overlaid on the node arrangement. In the
resulting visualisation, the cluster hierarchy is still evident, but the clutter (due to edges)
meant that the final rendering suffers from similar problems to large-scale force-directed
layout (i.e. the ‘hairball effect’). One possible thumbnail design, then, is simply to render
the cluster-hierarchy treemap without the edges (see Figure 6.4(a)). Being space-filling,
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(a) Treemap (b) Icicle plot

3273 15631

(c) Graph Thumbnail

Figure 6.4: Comparison of the three visual designs explored for Graph Thumbnails.

treemaps arguably have the advantage that they maximise the ‘data ink’ and are, thus,
efficient for small-multiple representations (R2). The number of nodes involved in each
element of the cluster hierarchy is indicated by the area of the corresponding rectangular
mark in the treemap (R4).

Icicle Plots

It is well known in psychology [292], and reinforced by experimental results in readabil-
ity of information graphics [83], that encoding a scalar value with area causes people to
underestimate the true value. Thus, we also considered icicle plots [204], which have the
advantage over treemaps by using a length encoding of the marks to precisely indicate
cluster size (R5). Also, depth of each cluster in the hierarchy is precisely readable from
the vertical position of the marks (R4), while in the treemap, we rely on the colour encod-
ing and rectangular containment to indicate hierarchy depth. Unfortunately, we found that
the minute features of icicle plots for large graphs, such as can be seen in Figure 6.4(b),
became unreadable when reduced to thumbnail size (-R2, -R5).

Circles

The third design option we considered, involved a nested ‘circle packing’; employing
the algorithm proposed by Wang et al. [316]. While not completely filling the available
rectangular area, like a treemap or an icicle plot, a ‘circle packing’ still gives a good
aspect ratio, a reasonable use of space (R2, R5), and uses circle area to indicate the size
of clusters (R4). In our piloting for Study 1, we eventually settled on circle packing as
the preferred thumbnail design over treemaps, as we felt they convey a stronger sense
of hierarchy (R3). In addition, the empty areas at the corners turned out to be useful
gaps where we could place additional adornments, described below. We preferred them
over icicle plots, due to the aforementioned issue of scalability. The evaluation done by
McGuffin and Robert [223] shows that leaf nodes in nested circles have a larger portion
of the overall area than those in icicle plots. They also show that nested circles have a
better distribution of area across the different levels of the tree than icicle plots.

Of the three thumbnail representations considered, the circle packing is also, arguably,
the most strongly reminiscent of a conventional large-scale network visualisation, being
suggestive of the ‘blob’ structure of a large-scale force-directed layout (R1).
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(b) Adaptive colour scheme.

Figure 6.5: Graph Thumbnail visual design. We use the Pack function from D3 [3], which
uses nested circles to represent a hierarchy. The sizes of the circles are representative of
the number of nodes contained within the respective component.

Colour Scheme

Our colour scheme evolved between Study 1 and Study 2. The original colour scheme
used in Study 1 is shown in Figure 6.7. Essentially, we used a diverging palette with warm
colours for the single-, bi- and tri-connected components, and cool colours for the k-cores.
The mid-colour (white) was chosen to align with the special case of 4-core children of tri-
connected components.

For the quick similarity task in Study 1, the participants only saw each pair of thumb-
nails for three seconds at a time. Thus, other than needing to provide good contrast, the
precise choice of colour scheme was less significant for Study 1 than for Study 2; the
latter requiring much closer inspection to interpret structural details. Also, as previously
mentioned, for Study 2 we modified the KC3 clustering to transition from bi-connected
components to k-cores at level 3. Thus, while piloting for Study 2 we tested a new colour
scheme that inverted the mapping of cool and warm colours. Further, we opted to have
distinct hues for the sparser clusters. Thus, in our final colour scheme, singly connected
components are blue, bi-connected components are green, 3-core children of bi-connected
components are yellow and higher cores are interpolated from red to dark brown. Thus,
there is a clear mapping of warmth of colour to density of connectivity within each cluster
level.

One issue with colour selection is that there is a trade-off between clear readability
for the higher-level (sparser) clusters and scalability, to very dense graphs with many
levels of cores. It is also a trade-off between having a canonical colour scheme (the same
across all graph sets) and maximising the discriminability of adjacent colours when the
core hierarchy is very deep. Our solution is to fix the colours for the first five levels, and
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then interpolate from red to maroon in the LAB colour space for levels corresponding to
k-cores where k ≥ 6, as shown in Figure 6.5(b).

With the examples in this chapter, we also use this colour scheme for the elements of
the node-link and matrix representations. That is, we colour the nodes by their deepest
cluster level membership and the links by the deepest common cluster-level membership
of the two nodes that each connects. These coloured node-link and matrix representations
were additional conditions in Study 2.

Annotations and Adornments

In several examples shown in this chapter, as well as the use-case described in Section 6.7,
the Graph Thumbnails were augmented with additional annotations. Examples of these
annotations are detailed in Figure 6.5(a). Note that these annotations and adornments were
not used in the studies where we were concerned with testing the readability of the basic
thumbnail design and comparing it with standard node-link and matrix representations
(which typically do not use such adornments).

The size of a Graph Thumbnail is independent of the number of nodes and edges
in the network. This allows for matching of networks with similar structural properties
independent of size. However, the absolute numbers of nodes and edges are key iden-
tifying features of a network, so we choose to add these numbers as labels to the lower
left and right corners of the thumbnail. When a large set of graphs are being compared
with small-multiples, it can be useful to have a visual encoding of these numbers. Thus,
we add bars below these numbers where the length of the bar double encodes the number
of nodes/edges. Since Graph Thumbnails need to display graphs with a wide variety of
sizes, we choose to make the lengths of these bars relative to the set of graphs displayed
in a given small-multiples matrix, with the maximum length being just less than half the
width of the thumbnail. This allows relative sizes of graphs within the set to be compared
at a glance. Within the node and edge count bars, we further show the breakdown of these
elements into the various clusters, with colour bands corresponding to the level-hierarchy
colour scheme.

Node degree distribution is a method frequently used as a rough profile of graph struc-
ture. We display an inverted histogram across the top of the thumbnail where the height of
each bar indicates the number of nodes of a given node degree, with lower degree nodes
on the left. 0-degree nodes (if any) will be the left-most bar and coloured grey. Within
each bar, the membership of nodes of different degrees to clusters is again indicated with
coloured bands. The right-most bar is a cumulative count of nodes of degree > 30. This
maximum prevents the bars from becoming too thin in very large and dense graphs.

6.4 Algorithm Scalability
The algorithm to create Graph Thumbnails has three stages.

1. Hierarchical Decomposition. This returns the different connected and core com-
ponents of the network as described in Section 6.3.1. This takes linear time in the
number of edges.

2. Canonical Encoding. In this stage of the algorithm, we encode the nodes of the
tree, which is acquired by the first stage of the algorithm, in order to achieve a
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Figure 6.6: The average running time of creating Graph Thumbnails for large graphs of
different sizes. We were able to represent graphs with 300,000 nodes and 1,800,000 edges
in approximately six seconds.

canonical ordering. The canonical encoding of a tree can be computed in linear
time [162, Chapter 3].

3. Circle Packing. We use the D3 [3] implementation of the circle packing algo-
rithm proposed by Wang et al. [316]. The positions of the circles are based on the
canonical ordering achieved in the previous stage. We use the standard JavaScript
sort which requires O(m logm) time, where m is the number of components in the
tree returned by the Hierarchical Decomposition. However we could use the lex-
icographic sort of strings of varying length instead, which takes O(m) time [162,
Chapter 3].

We conducted an experimental evaluation to verify that, in practice, our algorithm for
creating Graph Thumbnails takes linear time in the number of edges.

We used a NetworkX [154] random graph generator based on the Watts-Strogatz model
to generate 25 small-world graph instances of 11 different orders (number of nodes) and
three different densities. The order of the graphs ranged from 50,000 to 300,000 nodes,
with 25,000 nodes added at each step. To obtain different graph densities, we set the
number of edges to be a multiple of the number of nodes, thus in Figure 6.6 the number
of edges increases linearly with respect to the number of nodes. We used 2, 4 and 6 times
the number of nodes to decide the number of edges. We ended up with a total of 825
graphs.

The times reported in Figure 6.6 are the complete times required to create a Graph
Thumbnail representation for each graph size. The results clearly show the linear trend in
running time with number of edges. We were able to create a Graph Thumbnail represen-
tation for graphs with 50,000 nodes and 100,000 edges in 582 milliseconds, graphs with
225,000 nodes and 1,350,000 edges in under five seconds, and graphs of 300,000 nodes
and 1,800,000 edges in 6.24 seconds.
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C2 - sparse Watts Strogatz C4 - clustered Barabási Albert C5- dense Watts StrogatzC3 - Barabási AlbertC1 - Erdős Rényi
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Figure 6.7: Study 1 stimuli. Ten graphs from five graph classes, shown in three visual
representations: Graph Thumbnail, node-link and matrix.

6.5 Study 1: Identifying Similarity

Our first study evaluated people’s ability to differentiate large graphs with different struc-
tural properties using Graph Thumbnail (GT), node-link (NL) and matrix (MX) repre-
sentations. The study aimed to show how much the three visual representations aided the
Identification and Comparison tasks. We chose to compare against matrix and node-link
views due to their wide use in practice, which is not shared by the more novel techniques
for aggregated views identified in Sections 6.2 and 2.5.

We came up with five different graph classes based on different generating techniques.
In general, we focused on generators that produce small-world and scale-free graphs, as
these arise frequently in important application areas, such as Biology and Social Sciences.

The first C1, second C2 and fifth C5 classes were based on two NetworkX [154] gener-
ators: Watts-Strogatz and ErdősRényi [283].

The Watts-Strogatz generator returns graphs with small-world properties, such as
short average path lengths and high clustering, whereas the ErdősRényi generator returns
binomial graphs, which have low clustering coefficients and do not have many hubs.

The parameters of Watts-Strogatz were changed to yield sparse and dense graphs,
giving the second and fifth classes respectively.

The third class C3 was based on the BarabásiAlbert model [51]. The BarabásiAlbert
generator uses preferential attachment to return scale-free graphs.

The fourth class C4 used a hybrid generator for clustered graphs. It employed the
BarabásiAlbert model to generate two subgraphs and merged them by randomly adding
edges between the low-degree nodes of each. We generated two graphs from each of the
five graph classes, leading to the ten graphs shown in Figure 6.7, each with 1,000 nodes.

The NL stimuli were created using the force layout of D3.js [3]. MX stimuli were
created and ordered using Reorder.js with barycenter reordering [128]. At first, we found
that all but the diagonal portions of the matrices were unreadable, since the individual cells
were smaller than a pixel when scaled to thumbnail size. Thus, we increased the cell-size,
allowing each filled cell to overplot its adjacent eight cells. We feel this is a necessary
modification for any large-scale use of matrices in order for patterns and outliers to remain
visible.
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6.5.1 Procedure

The study had 21 participants: 16 male, 5 female. The participants were shown an ex-
planatory statement. After agreeing to participate, participants were asked questions about
their background: how often they saw network diagrams and how familiar they were with
the terms ‘cluster’ and ‘connected components’. 7 participants often came across net-
work diagrams, 11 occasionally did, while 3 never did. 7 of the participants were familiar
with the terms ‘cluster’ and ‘connected components’. In preparation for the task, par-
ticipants were shown a set of diagrams generated using the same five generators used to
produce the study stimuli. This was done to give them an idea of the range of similari-
ties or differences in the diagrams of all three visual representations they were about to
be shown. There was no additional explanation or training questions—we wanted par-
ticipants to consider purely visual similarities, rather than have them try to interpret the
visualisations.

We used a within-subjects design where participants were asked to rate similarity
of diagrams within all three visual representations: GT, NL, and MX. Participants were
shown pairs of diagrams from the same visual representation side-by-side at the thumb-
nail size of 300× 300 pixels. Each pair was displayed for three seconds before they
were hidden, and the participant was asked to rate their similarity on a five-point scale
from ‘Similar’ to ‘Different’. Participants were shown each pair of diagrams twice (both
left-right orderings). The overall presentation order cycled between the three different
representations, in random order.

The study was performed on site with a facilitator present. The study was presented to
the participant using a custom website rendered by Google Chrome in full-screen mode
on a 21-inch monitor with 1680×1050 pixel resolution. Participants were entered into a
random draw for an AUD$50 voucher.

6.5.2 Hypotheses

• H1 - We hypothesised that large graphs shown using MX would be more distin-
guishable than NL, even though the relationships between nodes are more direct in
NL than MX. However, the fact that in MX they are assigned a non-overlapping
pixel helps the discrimination task.

• H2 - Similarly, we hypothesised that GT would allow large graphs to become
more distinguishable than when using NL or MX, since GT is designed to show
an overview and will have distinct, non-overlapping and well packed circles.

6.5.3 Results

We collected 270 similarity ratings for each user; 90 for each visual representation from
all possible pairings of the 10 graphs excluding comparison of a graph with itself 1.
The graphs are divided into 5 classes, therefore, the full matrix of scores is denoted
S(CiGk,C jGl) i, j ∈ {1, . . . ,5} k, l ∈ {1,2}.

Figure 6.8 shows multidimensional scaling plots of the mean similarity ratings be-
tween graphs for each visual representation. The distances inversely represent similarity,
so pairs of graphs that participants considered more similar are closer together. The plots

1The full results are published online at vahany.com/gt-study1-results.html
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Figure 6.9: A multidimensional scaling plot with distances representing dissimilarity of
17 graph properties, computed using the Graph Landscape method [189]. We can clearly
identify the pairs of graphs generated with the same methods, and the particularly large
distance of the sparse Watts-Strogatz graphs to the rest. Hue represents the graph class.

suggest that GT and MX helped the participants identify the differences between graphs
from different classes, since the dots with different hues are placed far from each other.
Similarly, we notice that GT and MX helped identify the similarities of graphs that belong
to the same class, since the dots with similar hues are placed close to each other. However,
with NL, the participants could not differentiate between the six graphs that belonged to
three different classes: C3, C5, and C1.

The significant differences in discriminability between the classes, as indicated on
the MDS plots by arrows, were determined as follows. For each participant and visual
representation, and a given class Ci, we consider the rating provided by the participant of
CiG1 and CiG2 to selfsimilarity12(Ci). i.e.,

selfsimilarity12(Ci) = S(CiG1,CiG2) (6.1)

For each class Ci we consider each participant’s ability to differentiate graphs in Ci
from all graphs not in Ci, while using each visual representation, with a discriminability
score:

discriminability12(Ci) =

5

∑
j=1, j 6=i

( 2

∑
k=1

2

∑
l=1

(selfsimilarity12(Ci)−S(CiGk,C jGl))

+(selfsimilarity12(Ci)−S(C jGk,CiGl))
) (6.2)

Ranging over k and l considers the pairs of graphs from classes other than Ci, shown
in both normal and reverse order. For each class Ci we have a second similarity rating
selfsimilarity21 for the graphs within Ci, presented in reverse order, which gives us a
second discriminability measure discriminability21(Ci). The possible range is −128 ≤
discriminability(Ci) ≤ 128, where 128 would occur if a participant gave the pair within
Ci a rating of 5 (the highest) and gave all comparisons to other classes (C j 6=i) a rating of 1
(the lowest). In the reverse case, discriminability(Ci) would be −128, but in practice no
participant had a negative score for any representation.

Overall, we had two scores for five pairs, three visual representations, and 21 par-
ticipants. We analysed the results using the Kruskal-Wallis test, which showed that GT
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GT

NL

MX

Figure 6.10: 15 participants submitted a 5-star rating of how easy it was to do the simi-
larity tasks, given each visual representation. More than 50% of the participants rated GT
on the easy side, while only 33.33%, and less than 30% of the participants, thought MX
and NL were easy respectively.

and MX had significantly higher scores than NL (p-value = 0.001716). There was no
significant difference between GT and MX.

We also checked if any particular pair of graphs had a significantly higher discrim-
inability across the three visual representations. To do this, we filtered the set of measures
by different visual representations into three subsets. We ran the Kruskal-Wallis test to
check for significant differences between the measures across the five similar pairs.

The arrows in Figure 6.8 show the statistically significant differences in discriminabil-
ity between the five classes. The direction goes from higher discriminability to lower. The
label indicates ratio of observed over critical difference found using the multiple compar-
ison test between different classes with p < .001 using the Kruskal-Wallis test.

While using NL, the participants were able to discriminate the class of sparse Watts-
Strogatz graphs C2 and the clustered graphs C4 more easily than the other three classes:
C1, C3, and C5.

When using MX, the participants were able to differentiate all classes better than the
class of sparse Watts-Strogatz graphs C2. They also had higher discriminability scores for
the class of clustered graphs C4, over all other classes, except the class of dense Watts-
Strogatz graphs C5.

With GT, the participants could identify the class of dense Watts-Strogatz graphs C5
better than all classes, except the class of ErdősRényi graphs C1. They could also differ-
entiate the class of sparse Watts-Strogatz graphs C2 and the class of ErdősRényi graphs
C1 better than the class of BarabásiAlbert graphs C3.

To check for any learning effect, we further partitioned the results into three equal
sets, for the position of pairs within the entire set shown to each participant. We did not
find any significant differences in the results across different stages of the study.

We asked participants to provide post-study feedback. They were asked to use a 5-star
rating to express how easy it was to perform the task using each visual representation. 15
participants submitted feedback. Figure 6.10 shows the results of the 5-star rating of the
post-study survey. More than 50% of respondents rated GT as being on the easy side,
versus only 33.33% for MX, and less than 20% for NL.

Participants were also asked to describe how each visual representation helped them
complete the similarity tasks. For NL, three participants mentioned that size and shape
helped, while four mentioned density could be used to compare similarity. For MX, five
participants said they used the position, location or distribution of dots, and 8 mentioned
using the density or concentration for determining similarity. For GT, five participants
said they used the circles, with five participants stating the circle nesting, hierarchy or
pattern helped with the task. Several participants also mentioned either colour or sizes as
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a beneficial feature. Five participants specifically stated the GT representation made the
task easy.

6.5.4 Discussion
Analysis of the Study 1 results showed that both GT and MX allowed significantly better
discrimination of graphs from different classes over NL, thus supporting H1 and partially
supporting H2. Even though the study showed no significant differences between the
results of GT and MX, the feedback from the participants favoured GT over the two other
visual representations.

While single graph properties, like diameter or average degree, are not well suited to
discriminate between classes of graphs, combinations of such properties can be used for
characterisation and comparison of graphs. However, due to the diversity of properties
and the complexity of their interplay, it is hard to support a good comparison at a glance.
The graph landscape is a concept for the visual analysis of graph structure that uses a
large set of such graph properties for in-depth analysis of graph set characteristics and
overlap [189]. An MDS map may be used to spot clusters and outliers, as shown in
Figure 6.9 for the graphs of our study. The ground truth here is that pairs of graphs
that are generated with the same method can be clearly identified, and the sparse Watts-
Strogatz graphs have the largest distance to the other graphs. We would hope to see a
similar landscape emerge from the similarity ratings observed by participants. Indeed,
MDS plots of our analysis of participant ratings of similarity in Figure 6.8 do show a
similar landscape with the same features.
Limitations: The design of GT has evolved somewhat since Study 1. At the time, it had
a different colour scheme and a different structure as discussed in Section 6.3. However,
since the rapid similarity ranking task was based on very high-level features, we expect
the results to be repeatable with the new design.

The networks used in the study were each 1,000 nodes. This size was chosen as we
found larger graphs unreadable with MX or NL. The image size used in this study was
300×300 pixels. This could be considered large for a ‘thumbnail’ image. We believe that
at smaller scales, GT would still remain usable, while NL and MX might not.

6.6 Study 2: Understanding Structure
Study 1 did not require participants to interpret or understand the visual representations,
only to notice visual differences supporting Identification and Comparison. We there-
fore performed a second study to evaluate whether GT, NL and MX convey structural
properties sufficiently to support Overview tasks.

The study had four tasks using 12 different 20-node graphs, randomly picked from the
Rome Graphs corpus [10]. The graphs were used unmodified for tasks 3 and 4. The first
two tasks involved finding 1- and 2-connected components. For these tasks, the number
of components in each graph were controlled by randomly adding and removing links.

As in Study 1, we used GT, NL and MX to show the graphs. For GT we used the final
design colour scheme discussed in Section 6.3. We had two variations of NL and MX:
grey (NLGrey, MXGrey) and coloured versions (NLColour, MXColour) using a similar
colour scheme as GT. For MXColour, if the nodes connected by an edge belonged to
different components of different levels, the cell representing the edge would be coloured
according to the higher component.
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(a) Task 1: 1-connected components (correct answer 2)

(b) Task 2: 2-connected components (correct answer 4)

Figure 6.11: Sample stimuli from Study 2. Answers were multiple choice (0 . . .6 or
unsure).

6.6.1 Procedure

The participants were shown an explanatory statement. After agreeing to this, they were
asked questions on their background: how often they saw network diagrams and how
familiar they were with the terms ‘cluster’ and ‘connected components’. Participants
then worked through two tutorials [12], which explained the basics of connectivity and
presented the different visual representations. Each task had several training questions
that had to be answered correctly before the participants could proceed.

Task 1

The participants were asked to count the 1-connected components of a network. The
networks were shown using NL, GT, MX, MXColour, NLColour. In addition to the ex-
amples in Figure 6.11(a), the task included MXGrey and NLGrey diagrams. Piloting
revealed that extra training was required for MX. Participants were instructed that in or-
der for two nodes or blocks to be part of the same 1-connected component, they needed
to overlap with at least one cell.

• H1.1 We hypothesised that participants would be faster, more accurate and require
less eye movement while using GT than with MX.

• H1.2 Similarly, we expected NL to be better than MX.
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• H1.3 We also expected colour encoding to help MX and NL, thus we hypothesised
NLColour would be better than NLGrey.

• H1.4 Similarly, we expected MXColour to be better than MXGrey.

Task 2

Counting 2-connected components. Again, extra training was required for MX: partici-
pants were told that in order for two nodes or blocks to be part of the same 2-connected
component in MX, they needed to overlap by at least two cells (see Figure 6.11(b)). The
example also shows that the colouring alone is not enough, since there might exist a bridge
node between two 2-connected components.

• H2.1 We hypothesised that GT would be better than MX.

• H2.2 Similarly, we expected that GT would be better than NL

• H2.3 We also hypothesised that NL would be better than MX.

• H2.4 Again, we expected NLColour to be better than NLGrey.

• H2.5 Similarly, we expected MXColour to be better than MXGrey.

Task 3

Shown a pair of networks, participants had to pick the one with more links. The networks
were shown using all five representations.

• H3.1 We hypothesised MX would be better than NL.

• H3.2 Similarly, we expected MX to be better than GT. As mentioned previously,
GT did not include annotations for this study (an edge count annotation would have
made this task trivial).

Task 4

In the final task, the participants were asked to match a given reference graph shown using
GT, MXGrey or MXColour to one of three NLGrey graphs (Figure 6.12).

• H4 Since GT elides detail, we hypothesised that MX would outperform GT.

6.6.2 Setup
Tasks 1 and 2 had 10 training and 40 timed questions each. Task 3 had 3 training and 50
timed questions. Task 4: 6 training and 30 timed. A timeout of 10 seconds was applied
for Tasks 1–3, while Task 4 had a timeout of 30 seconds; after which the graphs were
hidden. The number of trials and the timeouts were decided upon through pilot studies.
All visual stimuli were shown an equal number of times and their order was decided by
latin square.

A Tobii pro x3-120 eye tracker was used throughout the study. The study was run on
a Windows 10 Dell Latitude E7440 laptop, equipped with 2.7 GHz i7 processor and 8 GB
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(a) MXColour reference graph (correct answer third NLGrey)

(b) GT reference graph (correct answer first NLGrey)

Figure 6.12: Sample stimuli from Task 4 of Study 2. From the selection of three NLGrey
graphs, participants were required to select the one that best matched the reference.
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RAM. It was shown on a 22-inch HP monitor, using a Mozilla Firefox 47.0 browser. The
eye tracker was linked to the laptop through a Tobii pro external processing unit.

We had 26 participants (eight of whom also participated in the previous study): 19
male, 7 female; 22 aged 20–30, two aged 30–40, and two 40-50. Six participants stated
that they often saw network diagrams, 18 participants said that they occasionally saw
network diagrams, and two said that they had never seen network diagrams before. 9
participants were not familiar with the terms ‘cluster’ and ‘connected components’, while
17 were.

6.6.3 Results

Tasks 1 and 2 each had 8 trials× 5 techniques× 26 participants = 1,040 trials. For Task 3,
we had 10 trials× 5 techniques× 26 participants = 1,300 trials, and for Task 4 there were
10 trials × 3 techniques × 26 participants = 780 trials. In total we had 4,160 trials across
all four tasks. On average, the participants answered 81.5% of all questions correctly,
15.7% incorrectly, and 2.8% were answered as ‘unsure’. These ‘unsure’ answers were
counted as incorrect in the analysis. Unless specified otherwise, response times are for
correct answers. Eye movement was measured by calculating the distance between two
consecutive gaze points, then summing them for each visual stimuli, task and participant.
Full results are shown in Figure 6.13.

The following results are statistically significant using the Kruskal-Wallis test with
p < .001.

In Task 1, results strongly support H1.1: participants had higher speed and accuracy,
and less eye movement when using GT over MX. Results also strongly support H1.2: par-
ticipants had higher speed and accuracy, and less eye movement when using NL over MX,
except that the results did not show any significant differences in accuracy between NL
and MXColour. We did not find any significant differences to support H1.3 and H1.4—
colour highlighting of component hierarchy in NL and MX were of little benefit.

The results of Task 2 strongly support H2.1 (GT over MX) and H2.3 favouring NL
over MX; as well as H2.2 (GT over NL) for speed and eye movement, but not for accuracy.

We did not find any support for H3.1 (MX over NL) and H3.2 (MX over GT). On the
contrary, the results showed that the participants took less time overall when using GT
and NLGrey over MX, and NLColour over MXGrey. They also took less time to perform
correctly when using NLGrey over MXGrey.

The results did not support H4 (MX over GT). They did show that GT outperformed
MXGrey in both speed and accuracy. They also showed that colour enhanced the speed
and accuracy of participants for MX.

To check for any learning effect we partitioned the trials into three equal sets, for each
task and each participant. We did not find any significant differences in the results across
the three sets.

6.6.4 Discussion

The results show participants performed equally well using GT and NL on 1- and 2-
connected component detection in Tasks 1 and 2, while they struggled in accuracy, speed
and eye movement when using MX. In Task 2, participants performed slower and moved
their eyes more while finding 2-connected components using NL than GT.
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There were no significant differences in accuracy across the different stimuli for edge
density estimation in Task 3. However, as mentioned earlier, if we included the adorn-
ments of GT, it would have been a simple task of reading and comparing the edge count
directly from the adornments. Furthermore, we were surprised to find that both GT and
NL aided the speed of the participants over MX, where edge-density should directly cor-
respond to cell-density. Another surprising result was that of GT outperforming MXGrey
in matching with NLGrey in Task 4.

Many participants said that the colour confused them when applied to NL and MX,
which was born out in our results in all tasks except the matching in Task 4. Participants
performed Task 4 better when using MXColour over MXGrey.

Generally, MX was outperformed by GT across all tasks. 10 participants expressed
difficulties completing the tasks using MX, and the same number of participants said that
performing the tasks using GT was easy. Overall, we attribute this to GT removing the
detail of MX that was not directly necessary to complete each task.
Limitations: The study used only small graphs, with the size chosen through piloting to
make the tasks possible in limited time using all three representations. The limiting factor
was the scalability of NL and MX representations, while GT scales with less clutter, as
seen in Figure 6.1 and Figure 6.14.

6.7 Use Case

We apply our approach to the analysis of protein-protein interaction (PPI) data. Analy-
sis of PPI is an important step to better understand the complex mechanisms of life and
diseases. Information about suspected and confirmed PPI is collected in a number of
databases. Some of these only store manually curated data, while others also store au-
tomatically derived information, e.g. from literature mining. These databases grow over
time, changing due to new evidence arising from experiments. Many PPI databases allow
download of historical releases for comparison and to ensure that an analysis takes into
account the properties of the corresponding release.

PPI networks model proteins as nodes and interactions as edges. There has long been
debate on the structural properties of PPI networks, including argument of scale-freeness,
i.e. connectivity distributed according to a power law [82,301], small-worldness, i.e. most
nodes can be reached by most other nodes with only a few hops, and relatively high local
clustering compared to random networks. As evidence for PPI can be derived from a mul-
titude of sources, including experiments or transfer from other species, interactions can be
highly dynamic. Hence, entries (edges) in PPI databases are usually assigned probability
or confidence scores, due to the high rate of false negatives and false positives [312].

PPI networks are often represented as hairball node-link diagrams (Figure 6.1(a)),
sometimes with the goal of showing complexity rather than structure. Common force-
directed layout methods are usually unable to untangle such networks properly due to their
small diameter. Biologists have a need to compare networks (e.g. between individuals,
species, or conditions, and to investigate evolutionary changes), to gain an overview on
the structural characteristics, and to deduce molecular function. Thus, all three of the
visualisation tasks that we aim to support with Graph Thumbnails are relevant for PPI
analysis.

We downloaded both the most reliable core and full data sets from the Database of
Interacting Proteins (DIP) [277]. This includes manually curated PPI data for the years
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2008–2017 for seven species (last release for each year), including several model organ-
isms, which have long been the focus of scientific research. Comparing those networks,
both across species and across years, can be supported by a representation with a focus on
the connectivity and hierarchical density, as those features show both the basic structural
characteristics of PPI and the change in the coverage of those interactions by the database.
We can compare the required numbers of years and species using small-multiples (R2),
where each thumbnail will indicate a hierarchical structure (or its absence due to the
lack of confirmed evidence) that biologists could also glean from force-directed layouts
(R1). While ultimately some ‘drill-down’ facility is required to obtain information on
the properties of individual proteins and interactions, the depth of the hierarchy and its
components, as well as their size, allows analysts to judge differences in the PPI networks
due either to: database updates over the years; differences in these updates depending on
the species; or general differences in the species’ networks (R3,R4). As PPI knowledge
is continually growing, a solution that supports such a comparison also needs to scale to
the large networks stored in PPI databases (R5).

There are a wealth of publications using topological features like degree distribution,
clustering coefficient, and average shortest path for characterisation and comparison of
PPI networks. These numbers alone can, however, vary for biologically-similar networks
or be very close for biologically-differing networks. In addition, it is a tedious process to
understand their interplay and to interpret the impact of their combination for comparison
purposes, in particular for larger sets of networks. Proteins can also work together in com-
plexes, which might overlap and can be hierarchically organised. These features will be
difficult to detect in a standard node-link diagram. We thus investigated the applicability
of the Graph Thumbnail representation for analysis of the evolution of PPI networks for
a range of species.

The Graph Thumbnail depiction of the DIP data is shown in Figure 6.14. It clearly
shows the development of the connectivity in the core set for most organisms, in contrast
to the small changes in the connectivity for the full set, where often a monolithic structure
is present from the earlier years on. We can also distinguish the different levels of connec-
tivity occurring in the different species in the early years, where for the most interesting
model organisms (in particular S. cerevisiae), large structures with deep cores are already
visible, due to the state of research at the time. In addition, we can clearly spot differ-
ences in development of different organisms, depending on the amount of research put
into the detection of PPI over time, with strong activity for E. coli, H. sapiens, M. muscu-
lus, and with R. norvegicus having very low coherence. In contrast, R. norvegicus’ core
set comprises nearly the full dataset.

6.8 Limitations
One limitation that arises from the canonical characteristic of Graph Thumbnails, is the
fact that graphs with similar structure but different content will result in similar Graph
Thumbnail representations. We feel that for graph browsing applications, canonicity is the
more significant goal, since differences between similar representations can be resolved
through a more detailed inspection—which, as mentioned previously, we are not trying
to replace. By contrast, differing representations of similar graphs might lead to these
similarities being missed entirely.

We base our studies on one representation, although there exist other possibilities
(some of which we mention in Section 6.3), however, we chose to test Graph Thumbnails
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based on our iterative design process. We also use one clustering algorithm, while there
exist other possible ways. Nonetheless, as we point out, the one we chose has properties
that made it favourable over many others - in particular, canonicity and linear running
time.

6.9 Conclusion
The Graph Thumbnail representation is not a replacement for node-link and matrix repre-
sentations, which are clearly required for detailed inspection of local structure. However,
our results show that in Identification, Comparison and Overview related tasks, detail
can be confusing and may be better served by a structural overview, such as provided by
Graph Thumbnails. Generally, visual comparison of high-level graph structure is under-
studied. The approach of Study 1 is a step to fill this void. Our results indicate that the
Graph Thumbnail representation can allow humans to identify graphs with various struc-
tures that are also differentiated by the graph landscape metrics. Our first study showed
that Graph Thumbnails are at least as indicative of the network structure as matrices, and
significantly better than node-link diagrams. With a second study, we further evaluated
Graph Thumbnails by asking the participants to do certain Overview tasks, related to con-
nectivity, density and matching. The results showed that in most cases Graph Thumbnails
outperformed both matrices and node-link diagrams.
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Conclusion

«Ցտեսութիւն ընկերներ,

Ահա օրն է մթներ,

Յաջորդ մեր հանդիպումին,

Հարցեր ունինք տակաւին։»

Վարուժան Արք. Հերկելեան՝

Կենդանիներու Ժողով

An Armenian hymn for children:
Animals’ Meeting,

written by Varoujan Hergelian.

Translates into “Until we meet again
friends, this meeting is concluded, at

our next encounter, we still have open
questions.”

Networks are sets of interconnected things, which are better understood when visu-
alised [317]. Node-link diagrams are one of the most popular methods for visualising
networks, however, there are limits to the number of nodes and links that can be shown in
node-link diagrams before they begin to overlap. Quality of layout is another major chal-
lenge in network visualisation. There are many possible ways to draw the nodes and the
links, thus, researchers in the field have spent decades exploring aesthetics and features
that enhance the readability of node-link diagrams. Moreover, producing high-quality,
clear diagrams becomes more difficult as networks become bigger, denser and more com-
plex.

Most existing layout techniques for networks deal with the computational complexity
of drawing networks by using heuristics and multi-stage methods, which are difficult to
refine and modify (CH-1 in Section 1.1). Many of these techniques lead to layouts with
unwanted features due to trade-offs between features introduced at different stages (e.g.
long edges to avoid crossings), and thus lead to poorer quality, when compared to human
generated layouts [191] (CH-2 in Section 1.1). We proposed a novel layout model called
Ultra-Compact Grid Layout that favours compactness and is motivated by grid-based
typographical layouts.

The main reason why many of the existing methods use heuristics to find reasonable
approximations to desired layout aesthetics, is scalability (CH-2 in Section 1.1). Finding
layouts that enhance aesthetics to optimality is computationally expensive. We decided to
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pay the computational price and achieve an optimal layout with respect to our proposed
aesthetics. Our optimal methods were able to handle small and medium sized networks,
producing aesthetically pleasing and compact layouts.

We subsequently extended the Ultra-Compact Grid Layout approach to handle larger
networks. We employed Large Neighbourhood Search meta-heuristics and developed an
iterative method that would focus on small neighbourhoods of the network at one time and
produce ‘near-optimal’ (locally optimal) layouts according to some additional restrictions.
This method allowed us to create diagrams for networks based on the Ultra-Compact Grid
Layout, with up to 100 nodes in under five minutes.

Ultra-Compact Grid Layout: The first major contribution of this thesis is a novel
grid-based layout model (Chapter 3).

• We showed the adaptivity of the Ultra-Compact Grid Layout model and its useful-
ness to show hierarchical, grouped, directed and other types of networks, via usage
cases.

• We compared the performance of three generic optimisation solvers when solving
the network layout problem to achieve an optimal Ultra-Compact Grid Layout.

– The SAT solver performed the best and was able to find optimal layouts for
networks with around 60 nodes in five minutes.

• We proposed a heuristic version of the Ultra-Compact Grid Layout model based
on the Large Neighbourhood Search meta-heuristics (LNS), that can produce near-
optimal layouts for networks with 100 nodes in under five minutes.

• Force-based grid layouts had poorer quality than layouts created using our LNS
approach, which in turn, had poorer quality compared the optimal Ultra-Compact
Grid Layout.

An obvious question arising from exploring the scalability of our approach for cre-
ating optimal and near-optimal visualisations for networks based on the Ultra-Compact
Grid Layout was, what is a reasonable size for networks that need to or can be visually
represented in detail?

We conducted a survey on empirical studies that have used node-link diagrams, in the
hopes of finding limits that previous researchers have encountered in terms of network
size. We also looked for other factors that might affect the complexity of the visualisa-
tions and limit their comprehension. We discovered, through the survey, that tasks which
required a detailed understanding of the network are often performed on networks with
100 nodes or less, thus, showing that the use of our Ultra-Compact Grid Layout is indeed
practical. Another important discovery through the survey was that large networks are
mostly used when interactive techniques were involved in the evaluation, and the tasks
did not require a detailed understanding of the network. The survey is presented in detail
in Chapter 4.

The studies examined in the survey did not reveal limits of network size that hinder
human comprehension. Only a few studies explored these limits explicitly, but they also
did not report a threshold beyond which detailed node-link diagrams become too difficult
to understand (CH-3 in Section 1.1). Thus, we conducted our own study. We showed the
participants node-link diagrams of networks with different sizes and asked them to find the
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shortest path between two highlighted nodes. In addition to performance and subjective
measures, we used physiological measures such as electrical activity of the brain, pupil
dilation and heart rate variability, to study the effects of network size on cognitive load.
The results showed that node-link diagrams become difficult and inefficient for networks
beyond 50 nodes and a density of 4 when performing path-finding tasks. The user study
and our findings are discussed in details in Chapter 5.

The second major contribution of the thesis is the exploration of how network size
relates to the complexity of network visualisation.

• We identified four categories of network size with respect to number of nodes.

– Small networks have 20 nodes or less.

– Medium networks have more than 20 nodes and 50 nodes or less.

– Large networks have more than 50 nodes and 200 nodes or less.

– Very large networks have more than 200 nodes.

• We identified three categories of networks with respect to density.

– Sparse networks have densities of more than 1 and densities of 2 or less.

– Dense networks have densities of more than 2 and densities of 4 or less.

– Very dense networks have densities of more than 4.

• Tasks that require a detailed understanding of the network are often performed on
small networks.

• Tasks that are often performed on large networks require only a high-level under-
standing of the overall network structure.

• We collated 152 studies into a survey and provided on-line, interactive visualisa-
tions to explore them.

• We discovered, through a user study, that the efficiency of node-link diagrams sig-
nificantly deteriorates when finding shortest paths in scale-free networks with more
than 50 nodes and densities of more than 4.

• We identified the effects of visual factors, such as number of crossings in node-link
diagrams on performance and cognition, when finding shortest paths.

• We identified the effects of intrinsic factors, such as the number of nodes and den-
sity of networks on performance and cognition, when finding shortest paths using
node-link diagrams.

If our Ultra-Compact Grid Layout can be used for small networks, a summary repre-
sentation that provides high-level insight into the structure of the network is needed for
large networks (CH-4 in Section 1.1). We proposed a decomposition of the network that
produces a hierarchical tree with many fewer elements than the number of nodes. The
decomposition is based on the connectivity structure of the network, thus a good prospect
for a summary. We explored the design space to visualise this summary, ended up choos-
ing packed circles, and called the representation Graph Thumbnails. We conducted user
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studies to compare Graph Thumbnails to node-link diagrams and adjacency matrices, in
terms of their efficiency, to support overview tasks. We also showed a usage case where
Graph Thumbnails are used to browse through a set of large protein-protein interaction
networks and show their evolution. We discussed these in more detail in Chapter 6.

Graph Thumbnails: As a third major contribution of this thesis we proposed a novel,
small, icon-like summary representation of network structure (Chapter 6).

• We compared Graph Thumbnails to node-link diagrams and adjacency matrices
with respect to their efficiency to support overview tasks.

– Graph Thumbnails were significantly more accurate in identifying similarities
and differences between networks compared to node-link diagrams.

– Subjective feedback showed a preference for Graph Thumbnails over node-
link diagrams and adjacency matrices.

– Adjacency matrices were significantly more accurate in identifying similari-
ties and differences between networks compared to node-link diagrams.

– We discovered that Graph Thumbnails are more intuitive and can reveal struc-
tural information that relates to node-link diagrams, compared to adjacency
matrices (Section 6.6).

• We showed, through a usage case, that Graph Thumbnails are useful in display-
ing summaries of large networks and providing insight into the evolution of large
networks, such as protein-protein interaction networks (Section 6.7).

7.1 Future Work
A continuation of the work discussed in this thesis could be to combine the optimal repre-
sentation based on the Ultra-Compact Grid Layout with the Graph Thumbnail summary
representation. The Graph Thumbnail summary representation could act as an overview,
whereas the detailed diagram (possibly based on the Ultra-Compact Grid Layout), could
be revealed through interactive navigation performed via the overview. For example,
hovering over a particular cluster in one thumbnail could highlight the locations of sim-
ilar nodes in thumbnails for other graphs in the set, or to use thumbnails to provide an
overview in an interactive graph-browsing scenario, similar to one presented by Dwyer et
al. [107]. A smaller neighbourhood of interest could be shown in a detailed high-quality
view, while the cluster memberships of the nodes in the neighbourhood could be indi-
cated through highlights in the thumbnail overview. The choice between the optimal
and heuristic layout models could be decided based on the size of the sub-network be-
ing explored, and could be switched interactively. Figure 7.1 shows a basic sketch of a
sub-network revealed on a Graph Thumbnail, and which could develop into an interactive
network visualisation tool. This combination would help make the optimisation model for
the Ultra-Compact Grid Layout more constrained and might make it easier to be solved,
since the placement model will be restricted by the clusters of the Graph Thumbnail.

Even though visual representations that are created based on the Ultra-Compact Grid
Layout are optimal with respect to compactness and features included in the objective
function, the routing is not optimal. Nonetheless, since routing highly depends on the
placement of the nodes, the resulting layouts are of high quality. Figure 3.12 shows an
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Figure 7.1: A sketch of a possible application of a Graph Thumbnail representation with
detailed network information.

example in comparing some aesthetics in a diagram based on a force-based layout, the
near-optimal Ultra-Compact Grid Layout with LNS, and the optimal Ultra-Compact Grid
Layout. Even though, the Ultra-Compact Grid Layout model does not explicitly minimise
the number of crossings, the resulting layouts have very few crossings. As future work,
it would be interesting to incorporate decision variables for routing in the layout model,
and evaluate the resulting layouts.

An interesting direction for our heuristic approach, discussed in Chapter 3, might be
to vary the neighbourhood selection for relaxation. We believe that the neighbourhood
selection has an important effect on the level of improvement and better selection crite-
ria could lead to layouts with higher quality, while maintaining the same computational
complexity. Interviews with experts could identify possible criteria that could guide the
neighbourhood selection. Another possibility is to allow the user to interactively select
areas of interest as neighbourhoods, thus, involving a human in the loop. This could be
useful in diagram creation or in editing scenarios.

In our investigation of the effects of network size on cognitive load in Chapter 5, we
limited ourselves to using only one type of task. It would be interesting to investigate the
effects of network size on cognitive load with respect to other tasks also. It would also
be interesting to find a lower bound on cognitive load, below which tasks become too
repetitive, and as a result, might lead to decreased accuracy due to difficulty maintaining
focus.

A possible future direction for the Graph Thumbnail representation is to experiment
with circle packing algorithms, such that the layout can convey other aspects of graph
structure. Some possibilities for adjusting, like scale and rotation of components due to
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metrics, are relatively easy. More sophisticated packing, such as trying to bring compo-
nents closer together based on their inter-connectivity, is also possible, but the problem
quickly devolves into a similar level of complexity to force-directed layout. Another pos-
sibility would be to obtain more fitted non-circular cluster boundaries that more accurately
convey the total cluster size with area. Voronoi treemaps [50] might be a starting point
for this.

7.2 Closing Remarks
The motivation behind this work was to visualise both small and large networks using
neat and aesthetically pleasing diagrams. I achieved this by creating diagrams for small
networks based on the Ultra-Compact Grid Layout and Graph Thumbnails for large net-
works. I also explored and identified what size of networks should be identified as small
versus large and sparse versus dense.

In general, the ease of experimenting with different layouts through simple edits to the
declarative model described in Section 3.4, opens up a world of possibilities that should be
explored before embarking on engineering faster heuristics. A significant open challenge
is a layout model that somehow incorporates routing in a way that is efficiently solvable
to optimality.

There are many applications, such as the yEd Graph Editor and the Graph Visual-
ization Software (Graphviz), and libraries and packages, such as ogdf, networkx, d3.js,
cola.js, and Cytoscape.js, for creating network diagrams, however, it is still difficult to
find many of the state-of-the-art layout methods in one place or sometimes even at all.
I believe, there is a need in the network visualisation community to create a common
platform and encourage researchers to upload their proposed layout methods onto this
platform, in addition to publishing in well known venues.

I hope that my research paves the way for future research in identifying guidelines for
useful sizes of networks for different tasks. These guidelines could inform the design of
future network visualisation methods. Clustering algorithms for network data could also
be designed to reduce networks to fewer elements based on these guidelines.
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Appendix A

CP Model

include "globals.mzn";

int: nv; // number of vertices
set of int: vertices = 1..nv;
constraint assert(nv >= 2, "need at least two vertice");
array[vertices] of 0..maxwidth : swd; // specified width &

height
array[vertices] of 0..maxheight : sht;
array[vertices] of var 1..maxwidth: wd; // calculated width

& height
array[vertices] of var 1..maxheight: ht;
constraint (forall (u in vertices where swd[u] != 0)(wd[u] =

swd[u]));
constraint (forall (u in vertices where sht[u] != 0)(ht[u] =

sht[u]));
// desired (Manhattan) distance and weight between each pair

of vertices
array[vertices,vertices] of 0..(maxwidth+maxheight): dd;
array[vertices,vertices] of int: ddw;
constraint
assert(forall(u,v in vertices where u!=v)(dd[u,v] >= 0), "dd

should be >=0");
constraint
assert(forall(u,v in vertices where u!=v)(ddw[u,v] >= 0),

"ddw should be >=0");
// containment matrix for each pair of vertices
array[vertices,vertices] of bool : containment;
// non-overlap matrix for each pair of vertices : 0 if they

should not overlap and 1 if they are allowed
array[vertices,vertices] of bool : noverlap;
int: maxwidth; // maximum starting width of grid
int: maxheight; // maximum starting height of grid
var int : maxX;
var int : maxY;
constraint 0 <= maxX /\ maxX <= maxwidth;
constraint 0 <= maxY /\ maxY <= maxheight;
// core decision variables
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// vertex position
array[vertices] of var 0..maxwidth: xs;
array[vertices] of var 0..maxwidth: xf;
array[vertices] of var 0..maxheight: ys;
array[vertices] of var 0..maxheight: yf;
constraint forall(u in vertices)(xf[u] = xs[u]+wd[u]);
constraint forall(u in vertices)(yf[u] = ys[u]+ht[u]);
// symmetry constraints
int : smallu = min([u | u in vertices where exists(v in

vertices)(noverlap[u,v])]);
int : smallv = min([v | v in vertices where exists(u in

vertices)(noverlap[u,v])]);
constraint xs[smallu] <= xs[smallv] /\ ys[smallu] <=

ys[smallv];
// some vertices should not overlap
constraint
forall(u,v in vertices where u < v /\

noverlap[u,v])(nonOverlap(u,v));
predicate nonOverlap(vertices: u, vertices:v) =
((xf[u] <= xs[v]) \/ (xf[v] <= xs[u]) \/ (yf[u] <= ys[v]) \/

(yf[v] <= ys[u]));
// all vertices contained in their parent container
constraint
forall(u in vertices where exists(v in

vertices)(containment[u,v])) (
xs[u] = min([xs[v]|v in vertices where containment[u,v]]) /\
xf[u] = max([xf[v]|v in vertices where containment[u,v]]) /\
ys[u] = min([ys[v]|v in vertices where containment[u,v]]) /\
yf[u] = max([yf[v]|v in vertices where containment[u,v]]));
// all vertices are in the drawing area
constraint
forall(v in vertices)(
0 <= xs[v] /\ xf[v] <= maxX);
constraint
forall(v in vertices)(
0 <= ys[v] /\ yf[v] <= maxY);
// distance between vertices
array[vertices,vertices] of var 0..maxwidth: xAbsDist;
array[vertices,vertices] of var 0..maxheight: yAbsDist;
constraint
forall(u,v in vertices where u < v) (
xabsdist[u,v]=max([0,xs[v]-xf[u]+1,xs[u]-xf[v]+1]) /\
yAbsDist[u,v]= max([0,ys[v]-yf[u]+1,ys[u]-yf[v]+1]));
// Manhattan stress
array[vertices,vertices] of var 0..(2*(maxwidth+maxheight)):

absdist;
constraint
forall(u,v in vertices where u < v) (
absdist[u,v]=abs(xAbsDist[u,v]+yAbsDist[u,v]-dd[u,v]));
var int stress=sum(u,v in

vertices)((ddw[u,v])*(absdist[u,v]));
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var int size=sum(u in vertices)(wd[u]+ht[u]);
var int m=(4*stress)+(1*size)+(2*maxX)+(2*maxY);
solve
minimize m;
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