
Query Processing

in Location-Based Social Networks

Ammar Sohail

A thesis submitted for the degree of Doctor of Philosophy at

Monash University in 2018

Clayton School of Information Technology

Copyright Notice

c©ammar sohail (2018)

I certify that I have made all reasonable efforts to secure copyright permissions

for third-party content included in this thesis and have not knowingly added

copyright content to my work without the owner’s permission.

1

Declaration

This thesis contains no material which has been accepted for the award of any

other degree or diploma at any university or equivalent institution and that, to

the best of my knowledge and belief, this thesis contains no material previously

published or written by another person, except where due reference is made in

the text of the thesis.

Signature:

Print Name: Ammar Sohail

Date: 01 September 2018

2

Publications during Enrolment

1. Ammar Sohail, Ghulam Murtaza, and David Taniar. Retrieving Top-

k Famous Places in Location-Based Social Networks. In 27th

Australasian Database Conference, ADC 2016:17-31 (ERA B).

2. Ammar Sohail, Park Jeongho, Andreas Züfle and David Taniar Query

Processing in Location-based Social Networks. In International

Workshop on Social Computing, (IWSC):1379-1381, 2017, co-located

with 26th International World Wide Web Conference, (WWW) 2017

(ERA A).

3. Ammar Sohail, Muhammad Aamir Cheema and David Taniar Social-

Aware Spatial Top-k and Skyline Queries. In The Computer Jour-

nal,62,2018 (ERA A*).

4. Ammar Sohail, Arif Hidayat, Muhammad Aamir Cheema and David

Taniar Location-Aware Group Preference Queries in Social-Networks.

In 29th Australasian Database Conference, 2018:53-67

5. Ammar Sohail, Muhammad Aamir Cheema and David Taniar Geo-

Social Temporal Top-k Queries in Location-Based Social Net-

works. In WWW Journal (ERA A) (Submitted and Under Review).

3

Thesis including published works declaration

I hereby declare that this thesis contains no material which has been accepted

for the award of any other degree or diploma at any university or equivalent

institution and that, to the best of my knowledge and belief, this thesis contains

no material previously published or written by another person, except where

due reference is made in the text of the thesis.

This thesis includes 4 original papers published in peer reviewed journals or

conferences and 1 paper has been submitted and is under review. The core

theme of the thesis is to study geo-social queries on social networks. The ideas,

development and writing up of all the papers in the thesis were the principal

responsibility of myself, the student, working within the Faculty of Information

Technology, Monash University, under the supervision of Dr. Muhammad

Aamir Cheema, Assoc Professor David Taniar and Dr. Iqbal Gondal.

The inclusion of co-authors reflects the fact that the work came from active

collaboration between researchers and acknowledges input into team-based re-

search.

In the case of Chapter 3, 4, 5 and 6 my contribution to the work involved the

following:

4

5

I have renumbered sections of submitted or published papers in order to gen-

erate a consistent presentation within the thesis.

Student signature: Date: 01 September 2018

The undersigned hereby certify that the above declaration correctly reflects the

nature and extent of the student’s and co-authors’ contributions to this work.

In instances where I am not the responsible author I have consulted with the

responsible author to agree on the respective contributions of the authors.

Main Supervisor signature: Date: 01 September 2018

6

Acknowledgements

First and foremost, I would like to thank God for all the blessings He bestowed

upon me and for providing me persistent guidance throughout my life. Without

His blessings, I would have not been able to finish my thesis.

I would like to express my special appreciation and thanks to my advisor Dr.

Muhamamd Aamir Cheema, you have been a tremendous mentor for me. I

would like to thank you for encouraging my research and for allowing me to

grow as a researcher. Your advice on both research as well as on my career

has been priceless. Besides my advisor, I would like to thank the rest of my

thesis committee: Assoc Professor David Taniar and Dr. Iqbal Gondal, for

their insightful comments and encouragement.

Also, I am thankful to Monash University for the financial support and ar-

rangements during my PhD study.

I thank my fellow research mates, Arif Hidayat, Anasthasia Agnes Haryanto,

Chaluka Salgado, Nasser Allheeib, Tenindra Abeywickrama, Utari Wijayanti

and Zhou Shou, for the stimulating discussions and for all the fun we have had

in the last few years.

A special thanks to my family. Words cannot express how grateful I am to my

mother and father, for all of the sacrifices that you have made on my behalf and

your prayer for me was what sustained me thus far. An extra special thanks

to my sincere father, Tariq Sohail Sheikh, for always loving and supporting

me. Finally, I would like to express appreciation to my beloved wife Rauqia

Ammar who spent sleepless nights with and was always there to support in

7

the moments when there was no one to answer my queries. Last but not least,

a loving thanks to my siblings and my in-laws for their prayers and support

and a very very special thanks to my daughter, Zara Ammar, for always being

with me and putting a big smile on my face during stressful times.

8

Abstract

Recent advances in location-acquisition techniques and GPS-embedded mo-

bile devices have essentially enhanced the user experience in location-based

services. The widespread of these technologies and devices have made location

information an integrated part of social networks resulting in the emergence of

new concept called Location-Based Social Networks (LBSNs). Similarly, these

LBSNs allow people to record and share their location and are a rich source

of information which can be exploited to study people’s various attributes and

characteristics.

Location-based social services usually process various types of queries such

as Geo-Social Top-k queries, Geo-Social Nearest Neighbours queries and Geo-

Social Skyline queries to offer many interesting services such as in disaster

management, public health, security, tourism, marketing etc. Undoubtedly,

social connections play a vital role in our daily lives to enable us in making

right decisions in various activities and events and thus impose some influence

on us. In our daily life, besides our own preference, we usually turn to our

friends for opinions of songs, restaurants or movies.

Specifically, we studied four different Location-Based queries (Top-k, Sky-

line, Aggregate Nearest Neighbour and Temporal) on Social Networks in this

work. In the first work, we formalize a new problem namely, Top-k famous

places TkFP query and propose efficient query processing techniques. We pro-

posed efficient indexing techniques which facilitate combine filtering of both

social and spatial components. Similarly, we proposed effective query pro-

cessing algorithms to produce top-k query results. We conducted exhaustive

9

experiments on real and synthetic datasets to demonstrate the effectiveness of

our techniques.

We also extended our aforementioned work to solve Socio-Spatial Skyline

Query (SSSQ) which does not require any scoring function and user also does

not need to have adequate domain knowledge to decide good value of preference

parameter between social and spatial components. In particular, we introduce

three different techniques i.e., I) Social- First II) Spatial-First and III) Hybrid;

and efficient indexing and pruning methods to answer the query efficiently.

In the third work, we studied a problem of finding top-k places considering

their distance from a group of query users and popularity of the place among

each query user’s social connections (e.g., the number of check-ins at the place

by each q’s friends). We presented Branch-and-Bound approach to solving

the problem followed by several optimization techniques to further improve its

performance.

In the fourth work, we added a third dimension (time) to our first work and

studied a problem of finding top-k places considering their distance from the

query user q and popularity of the place among q’s social connections during

a certain period of time. At first, we presented two different approaches i.e.,

Social-First and Spatial-First to solve our problem and then we propose our

main algorithm called Hybrid. We conducted an exhaustive evaluation of the

proposed schemes using real dataset and demonstrate the effectiveness the

approaches. Our experiments showed that our main algorithm outperforms

the other two.

10

Contents

1 Introduction 19

1.1 Motivation . 22

1.1.1 Geo-Social Queries . 25

1.1.2 Geo-Social Skyline Queries 26

1.1.3 Geo-Social Temporal Queries 26

1.1.4 Geo-Social Group Queries 27

1.2 Research Questions and Contributions 27

1.2.1 RQ-1: Location-Based Top-k Queries in Social Networks 28

1.2.2 RQ-2: Spatial Skyline Queries in Social Networks 28

1.2.3 RQ-3: Spatial Group Top-k Queries in Social Networks . 29

1.2.4 RQ-4: Spatial Temporal Top-k Queries in Social Networks 30

1.3 Thesis Organization . 31

2 Literature Review 32

2.1 Geo-Social Queries . 33

2.2 kNN Queries . 38

2.3 Top-k Queries . 39

2.4 Skyline Queries . 44

2.5 Group Queries . 47

2.6 Temporal Queries . 48

11

2.7 Bulk Loading Techniques . 50

2.8 Other related work . 51

3 Location-Based Top-k Queries in Social Networks 54

3.1 Introduction . 55

3.2 Contributions . 57

3.3 Preliminaries . 58

3.3.1 Problem Definition . 58

3.3.2 Framework Overview . 60

3.4 Proposed Technique . 61

3.4.1 Social-First based Approach 61

3.4.2 Spatial-First based Approach 63

3.4.3 Hybrid Approach . 65

3.5 Experiments . 68

3.5.1 Experimental Setup . 68

3.5.2 Performance Evaluation 69

3.6 A Demo for Location-Based Top-k Queries in Social Networks . 73

3.6.1 Framework and Query Processing Overview 73

3.6.2 Demonstration Details 75

3.7 Conclusions . 77

4 Spatial Skyline Queries in Social Networks 78

4.1 Introduction . 78

4.2 Contributions . 79

4.3 Problem Definition . 80

4.4 Proposed Techniques . 82

4.4.1 Social-First Based Algorithm 82

4.4.2 Spatial-First Based Algorithm 83

12

4.4.3 Hybrid Algorithm . 84

4.5 Experiments . 93

4.5.1 Experimental Setup . 93

4.5.2 Performance Evaluation 94

4.5.3 Analysis of Results Quality 98

4.6 Conclusions . 102

5 Spatial Group Top-k Queries in Social Networks 104

5.1 Introduction . 104

5.1.1 Contributions . 106

5.2 Preliminaries . 107

5.2.1 Problem Definition . 107

5.3 Techniques Overview . 109

5.3.1 Branch-and-Bound (B&B) Algorithm 109

5.3.2 Optimized Algorithm . 110

5.4 Experiments . 116

5.4.1 Experimental Setup . 116

5.4.2 Performance Evaluation 117

5.5 Conclusions . 120

6 Spatial Temporal Top-k Queries in Social Networks 121

6.1 Introduction . 121

6.2 Problem Definition . 124

6.2.1 Framework Overview . 126

6.3 Proposed Techniques . 128

6.3.1 Social-First based Approach 128

6.3.2 Spatial-First based Approach 129

6.3.3 Hybrid Approach . 131

13

6.4 Experiments . 138

6.4.1 Experimental Setup . 138

6.4.2 Performance Evaluation 139

6.5 Conclusions . 145

7 Concluding Remarks 146

7.1 Conclusion . 146

7.2 Future Work . 148

14

List of Figures

1.1 Locality Information in Social Networks 21

1.2 Example of Check-In activity 22

1.3 The user’s current location is Clayton Australia but query re-

turns the results from Clayton in Indiana, USA. 24

2.1 Geo-Social Framework . 35

2.2 Example of Social-Spatial Graph 36

2.3 Unicorn Framework . 38

2.4 Social Network Example . 41

2.5 Top-k Query Example . 41

2.6 Index Structure . 42

2.7 Example: Skyline Query . 45

3.1 Top-k Query Example . 60

3.2 Summary of Friends’ check-ins 66

3.3 Cell Overlap . 67

3.4 Effect of varying range (number of places) 69

3.5 Performance comparison on different number of friends 70

3.6 Effect of number of Queries . 71

3.7 Effect of Grid Size and varying number of requested places (k) . 72

3.8 Effect of varying data set sizes (number of places) 72

15

3.9 Framework Architecture . 74

3.10 Main Interface . 76

3.11 TkFP Query Result . 77

4.1 Mapping . 82

4.2 Sample Dataset and Skyline Mapping 86

4.3 Social and Spatial score of a Range Grid Cell 87

4.4 Range cell mapping to skyline workspace grid 88

4.5 Grid Index and Record-keeping Structures 89

4.6 Dominated Blocks . 90

4.7 Block Visiting Order . 91

4.8 Effect of varying range (number of places) 95

4.9 Performance comparison on different number of friends 96

4.10 Effect of number of Queries . 97

4.11 Effect of Grid Size . 98

4.12 Effect of varying dataset sizes 98

4.13 Effect of number of friends . 99

4.14 # common places returned by both queries 100

4.15 Analysis of results . 101

5.1 MBR Social Score Bound . 112

5.2 MBR Based Search Space . 114

5.3 Effect of varying number of requested places (k) 118

5.4 Effect of varying number of Friends 118

5.5 Effect of varying Query MBR Size 119

5.6 Effect of varying Group Size (n) 119

6.1 Temporal Top-k Query Example 126

6.2 3D Friends Check-Ins R-Tree . 132

16

6.3 A cell’s Social Score Upper Bound 134

6.4 Social Score Computation Example 136

6.5 Index Size . 140

6.6 Effect of Grid Size . 141

6.7 Effect of varying number of requested places (k) 141

6.8 Effect of varying Range . 142

6.9 Effect of varying number of Friends 143

6.10 Effect of varying number of Queries 144

6.11 Effect of varying Temporal Interval 145

17

List of Tables

2.1 Sample Dataset . 45

4.1 Sample Dataset . 82

4.2 Parameters (Default shown in bold) 94

4.3 Datasets Characteristics . 94

5.1 Sample Dataset and Aggregate Scores 108

5.2 Parameters (Default shown in bold) 117

6.1 Notations . 127

6.2 Parameters (Default shown in bold) 139

18

Chapter 1

Introduction

Online social networks provide a rich source of valuable information that can

be used for tracking public opinions, political trends, disseminate news, or

just to socialise by finding the right group of people to communicate with [1].

Worldwide penetration of online social networks is ever increasing and it is

estimated that 72 percent (around 2.5 billion) of worldwide internet users use

social networks, which is 3 percent up from 69 percent in 2016 [2]. Online

activities involving social media are one of the most popular online activities

with very high people engagement rates and are opening new horizons of mobile

possibilities.

Moreover, North America ranks first among regions where social media is

highly popular, with a social media penetration rate of 66 percent. In 2016,

more than 81 percent of the United States population had a social media pro-

file. In another recent report, it is shown that almost 79 percent Australians

use online social networks and nearly 60 percent connect through social me-

dia everyday [3]. The immense popularity of social media has resulted in

the generation of large volume of social data and extracting information from

19

these social networks is widely practiced by commercial companies, govern-

ment agencies and individuals . For instance, the data obtained from social

networks have been used to monitor disease outbreaks [4, 5]. Similarly, the

social media integration in businesses has recently reached the highest level

recorded. More than 51 percent of the small and 58 percent of the medium

businesses have a social media presence, while for large businesses the rate has

reached to 85 % [4, 5]. These statistics show that businesses extensively utilize

the social network tools to obtain various benefits such as market research, in-

creased revenue, recruitment ,brand development and networking etc [6]. The

social networks have also been researched to assist law enforcement agencies in

solving various criminal cases. For example, the US National Security Agency

(NSA) uses social media data for various national security projects [7] such as

identifying suspects of a crime. Similarly, social networks allowed Richmond

City Policy Department to locate a homicide witness and compile data related

to sixteen convenience store robberies that were not previously thought to be

connected [8]. Further, it is reported in McKinsey report that companies can

increase their productivity upto 25 % by incorporating social media technology

in their business model. Also, Google revealed in recently conducted survey

that 41 percent of professionals use social media search to find information,

people and expertise more quickly [9].

Social networks are comprised of various types of entities and are usually

represented as a complex graph where nodes represent various entities in the

social network (such as users, places or pages) and the edges represent the

relationships between different nodes. These relationships are not only limited

to friendship relations but also contain other types of relationships such as

works-at, born-in, and studies-at etc. In addition, the nodes may also

contain spatial information such as a user’s check-ins at different locations.

20

Since social networks are not only about friendships now a days, these are

relatively complex structures than ordinary networks and in recent years, the

increasing use of mobile devices, location-based services and advancements in

location-acquisition technologies (e.g., GPS and Web 2.0), have made location

information an essential part of such graphs [10]. This in return, results in the

generation of new set of associations between users and locations like user-user,

location-location and user-location as shown in Figure 1.1. In addition, these

associations are rich sources of information which can be exploited to analyze

people’s every day behaviour to offer many interesting services such as mobile

marketing [11, 12, 13], disaster relief [14, 15, 16] and traffic forecasting [17, 18].

Figure 1.1: Locality Information in Social Networks

This fusion of social and geographical information has given rise to the no-

tion of online social media known as location-based social networks (LBSNs)

such as Facebook, Twitter, Foursquare etc. Such LBSNs allow people to record

their locations. For example, an activity called check-in, through which peo-

ple can record their visits to various places. Figure 1.2 depicts two different

types of entities one of which also constitutes locality information (an entity

21

of type place) and the entities can be connected through a check-in relation-

ship. Similarly, people can search for local places (e.g., caf és, restaurants)

and different types of offers.

Figure 1.2: Example of Check-In activity

Lets consider another example of a Facebook user Alice who was born in

Germany, works at Monash University and checks-in at a particular restaurant.

Facebook records this information by linking Facebook pages for Monash Uni-

versity and Germany with Alice [19], e.g., Alice and Monash University are

connected by an edge labelled works-at and Alice and Germany are connected

with an edge labelled born-in. The check-in information records the places

the user has visited.

1.1 Motivation

As stated earlier, social networks have applications in a variety of domains

like law enforcement [8], national and global security [7, 20], emergency man-

agement [21], predicting/monitoring disease spread [4, 5], advertisement [22],

22

analytics [23] and many more.

Spatial data and social relationships in LBSNs provide a rich source of

information which can be exploited to offer many interesting services. Consider

the example of a German tourist visiting Melbourne. She may want to find

a nearby pub which is popular (e.g., frequently visited) among people from

Germany. This involves utilizing spatial information (i.e., nearby pub, check-

ins) as well as social information (i.e., people who were born-in Germany).

Similarly, a user may want to find nearby places that are most popular among

her friends, e.g., the places most frequently visited by her friends. The ability to

efficiently find and exploit relevant information from the social network data

is at the backbone of all such applications. However, current technology to

effectively and efficiently exploit social networks for search related purposes is

not as mature as the advances achieved by the Web search engines. Specifically,

the current technology suffers from the limitation where the search results do

not consider geographical location of the query which leads to poor-quality

and often incoherent results.

For example, consider a user who is interested in finding fast food restau-

rants close to her geographical location and issues a query ”fast food restau-

rants”. The search that retrieves the query results while considering the query

location is known as location-aware search. Majority of the existing work for

search on social networks do not handle location-aware search. Figure 1.3 illus-

trates an example where a query is issued by the user’s computer on Facebook

Graph Search in Monash University Clayton campus. However, the returned

results contain the restaurants from Clayton in USA. Ideally, a location-aware

social search engine would return the nearby restaurants from Monash Uni-

versity Clayton campus and in addition to that, may consider the user’s social

relationships in social network to further tailor the results containing restau-

23

rants that have been visited/liked by the people connected to her in the social

network (for example, her colleagues, friends, people from the same country

etc.).

Figure 1.3: The user’s current location is Clayton Australia but query returns
the results from Clayton in Indiana, USA.

Facebook Graph search is based on Unicorn [19] which is an online in-

memory social graph-aware indexing system. Unfortunately, Unicorn suffers

from few limitations, for example, it cannot handle location information in

social networks effectively. Because, it does not leverage highly developed

spatial data structures, rather, it considers each location as a Facebook Page

and represents the relationships such as lives-in between the page and users

by creating edges. See Section 2 for more detail.

Similarly, previous works have various limitations and do not handle geo-social

queries properly. Therefore, motivated by this, we focuses on geo-social queries

in this thesis .

Existing relevant literature can be classified into various categories like,

Geo-Social Top-k Queries, Geo-Social Skyline Queries, Geo-Social Group Queries

and Geo-Social Temporal Queries. Next, we present definitions of the different

24

types of queries.

1.1.1 Geo-Social Queries

Geo-Social queries aim at extracting objects of interest (e.g., friends, restau-

rants) combining both the social relationships and the current location of ob-

jects under consideration. For example, a French immigrant recently moved to

Toronto may be interested in finding social activities for french people. This

involves exploiting social relationships between social media users (people who

were born-in France) and their current location data (living in Toronto). Geo-

Social queries can be further classified into the following types of queries.

1.1.1.1 Geo-Social Range Queries

A geo-social range query (range search) finds objects of interest that are within

distance r from a given query location q based on given social criteria. For

example, a query user q may be interested in finding her friends within the

range of 2 kilometres.

1.1.1.2 Geo-Social KNN Queries

A k nearest neighbour query (kNN) retrieves k closest objects of interest to a

given query point q. In other words, a kNN query returns a set of k objects

such that there does not exist any other object which is closer to the q than

any of the k returned objects. A kNN query is called NN query when k = 1.

In geo-social context, given a query point q and a positive integer k, a kNN

query retrieves k closest objects from q among the objects that satisfy a given

social criterion. For example, a Samsung employee may be looking for 2 people

in Melbourne close to her location who also work in Samsung to join her for a

lunch.

25

1.1.1.3 Geo-Social Top-k Queries

A geo-social top-k query aims at retrieving a list of k objects (e.g., friends,

restaurants) with highest scores, where the score of each object is computed

using a user defined preference function based on given spatial and social rele-

vance. The spatial relevance is based on how close the object is to the query q

and social relevance is based on social relationships in the social network to be

considered. For instance, a Canadian tourist may be looking for 2 restaurants

that are popular among people from Germany and are close to her.

1.1.2 Geo-Social Skyline Queries

Like top-k query, a skyline query takes into account multiple attributes to

retrieve objects of interest. However, a skyline query does not require a pref-

erence function to be specified by a query user. Given a query user q, an

object o dominates another object o′ if o is preferable for q than o′ in at least

one attribute and is not worse than o′ on all other attributes. For example, a

German tourist considers distance and popularity of a restaurant among cus-

tomers who were born-in Germany to choose the restaurant for dinner. Thus,

a restaurant x dominates restaurant y if it is closer to q than y and is socially

more relevant for q than y. Informally, a skyline query returns every object o

that is not dominated by any other object.

1.1.3 Geo-Social Temporal Queries

A geo-social temporal query aims at retrieving a list of objects (e.g., friends,

restaurants) with highest ranking scores according to user’s defined spatial,

social and temporal criteria. For example, find recently opened fast food

restaurants in Melbourne that became popular or retrieve a list of popular

26

amusement parks during Christmas holidays.

1.1.4 Geo-Social Group Queries

Given two datasets P (e.g., places) and Q (queries), a group (aggregate) near-

est neighbor (GNN) query retrieves places of interest p ∈ P with smallest

aggregate distance(s) to the query points in Q. Assuming, for example, n

users at locations q1, q2, ...qn, a GNN query retrieves place p ∈ P that mini-

mizes the sum of distances |p, qi| for 1 ≤ i ≤ n that the query users have to

travel in order to meet there. Similarly, another GNN query may return the

place p ∈ P that minimizes the maximum distance that any query user has

to travel. In geo-social context, given a set of query points Q, a GNN query

retrieves a place p ∈ P that minimizes the sum of distances |p, qi| while satis-

fying a given social criterion. For example, some conference attendees would

like to go out for dinner together and for this purpose, we may consider their

respective locations and given social criterion to recommend restaurants.

All of the aforementioned queries have not been studied before and we are

the first to study all these queries. We note that most of the existing studies

either cannot handle this or are too inefficient. For details, see Section 2.

1.2 Research Questions and Contributions

The main focus of the research in this Ph.D. thesis is to study geo-social

queries that have a variety of applications as discussed earlier. To overcome

current limitations in previous work, we investigate and propose efficient index-

ing techniques and algorithms to process geographical and social components

together. Specifically, we address following research questions in this thesis

and make various contributions to each research question as described next.

27

1.2.1 RQ-1: Location-Based Top-k Queries in Social

Networks

In first chapter, we formalize a new problem namely, Top-k famous places

(TkFP) query and propose efficient query processing techniques. Specifically,

a TkFP query retrieves top-k places (points of interest) ranked according to

their spatial and social relevance to the query user where the spatial relevance

is based on how close the place is to a given location and the social relevance

is based on how frequently it is visited by the one-hop neighbors of the query

user in the social graph. In addition, we propose three algorithms to efficiently

answer the query by leveraging proposed index structures. Our extensive ex-

perimental study conducted on real and synthetic data sets demonstrates the

effectiveness of proposed techniques. Our research [24] on this research ques-

tion was published in Australasian Database Conference (ADC), 2015.

In-addition to this, we develop a demonstration to show the real application

of Location-Based Top-k Queries in social networks. This demonstration en-

ables participants to view actual output of TkFP query containing top-k places

checked-in by friends in a given region. The demo [25] was published in Inter-

national Workshop on Social Computing (IWSC) 2017, co-located with 26th

International World Wide Web Conference (WWW) 2017.

1.2.2 RQ-2: Spatial Skyline Queries in Social

Networks

A top-k query uses a scoring function that combines social and spatial scores

to rank the objects. However, users must have adequate domain knowledge to

be able to decide upon a good value of α. In particular, it is not easy to define

a scoring function (e.g., due to incompatible attributes, different distributions

28

of attributes, the inability of users to choose a good scoring function) [26].

Therefore, to complement our Top-k famous places query, we extend our work

to study skyline queries which return those objects that are not dominated by

any other object and are within given range r (i.e., ||q, p|| < r). In order to

answer such queries, we compute social and spatial scores of each place; and

maps it to a space where x-coordinate refers to spatial score and y-coordinate

refers to social score. Then, the set of places which are not dominated by

any other place are returned. The intuition behind using a range r is that

sometimes users are not interested in places that are too far. We propose three

techniques to process the query and propose efficient algorithms and indexing

techniques. Furthermore, we conduct an extensive experimental study on real

and synthetic data sets and compare their performance with [27] and find that

our algorithms are significantly better than the competitor. Our research [28]

on this research question was published in The Computer Journal in 2018.

1.2.3 RQ-3: Spatial Group Top-k Queries in Social

Networks

In many applications, a group of users may want to plan an activity and to

find a point of interest (POI) for example, some conference attendees would

like to go out for dinner together. For this purpose, we may consider their

respective locations and social circles to recommend required POIs. Therefore,

in our third work, we study a problem of finding top-k places considering their

distance from the group of query users Q and popularity of the place among

each query user qi ∈ Q’s social connections (e.g., the number of check-ins at

the place by each q’s friends). To the best of our knowledge, we are the first

to study the SG-Topk query that retrieves nearby places popular among a

29

particular group of users w.r.t. each query user qi ∈ Q in the social network.

We present Branch-and-Bound algorithm to solve the problem followed by

some proposed optimization techniques to further improve its performance. We

conduct an exhaustive evaluation of the proposed schemes using real dataset

and demonstrate the effectiveness of the schemes. Our research [29] on this

research question was published in Australasian Database Conference (ADC),

2018.

1.2.4 RQ-4: Spatial Temporal Top-k Queries in

Social Networks

We present three different algorithms to answer such queries efficiently. In

addition, we propose some index structures to store data which helps in pruning

unnecessary objects.

In this study detailed in chapter four, we add a third dimension (time) to

our first work and study a problem of finding top-k places considering their

distance from the query user q and popularity of the place among q’s social

connections during a certain period of time. Consider an example of a visitor

from Switzerland visiting Melbourne. She maybe keen in finding a nearby

caf é which serves Rösti (a traditional Swedish hot cake) with coffee and has

become popular (e.g., frequently visited) among people from Switzerland in

last year. This involves utilizing spatial information (i.e., nearby caf é, check-

ins), social information (i.e., people who were born-in Switzerland) as well

as temporal information (i.e., caf és that are visited during last year). We

formalize the problem as a Geo-Social Temporal Top-k (GSTTk) query and

propose three techniques to answer the query: I) Social-First, II) Spatial-First

and III) Hybrid. To improve the query performance, we propose few index

30

structures (e.g., FCR-Tree, 3D Check-Ins RTree) which enable flexible data

management and algorithmic design. We conduct extensive experiments using

real and synthetic data sets to demonstrate the effectiveness of the proposed

algorithms. Our research on this research question has been submitted to

WWW Journal and currently is under review.

1.3 Thesis Organization

Below, we present the structure of the rest of the thesis.

• Chapter 2 presents a review of the related work

• Chapter 3 describes our work on top-k spatial queries in social networks

• Chapter 4 covers our work on spatial skyline queries in social networks

• Chapter 5 constitutes our work on spatial group top-k queries in social

networks

• Chapter 6 covers our work on spatial temporal top-k queries in social

networks

• Chapter 7 concludes our research and describes several possible directions

for future work

31

Chapter 2

Literature Review

In this chapter, we provide some background on two types of queries that is,

spatial only queries and geo-social queries. Since we studied geo-social queries

in this thesis, we will also cover some background on spatial only queries to

better understand the geo-social queries.

In Section 2.1, we present an overview of geo-social queries. In Section

2.2, we describe kNN queries and Section 2.3 presents an overview of the work

involving top-k queries which return upto k objects based on given criteria.

Section 2.4 provides literature review on skyline queries where a query returns

non-dominated objects without requiring user-defined preference criteria. A

brief literature on group queries is presented in section 2.5 where the query

involves more than one query objects. In section 2.6, we give an overview on

temporal queries where such queries retrieve results based on given temporal

properties and in sections 2.7 and 2.8, we present an overview of bulk loading

techniques and some other related work.

32

2.1 Geo-Social Queries

The integration of geo-spatial data into social networks has enabled users to

utilize social networks to assist them in day to day decision making. Using

these loacation-based social networks, users can easily share their geo-spatial

locations and location-related contents in the physical world via online plat-

forms. For example, a user with a mobile phone can share comments with her

friends about a restaurant at which she has dined in. Other users can expand

their social networks using friend suggestions derived from overlapped location

histories. For instance, people who constantly hike on the same mountain can

be put in contact. The location dimension bridges the gap between the phys-

ical world and the digital online social networking services, giving rise to new

opportunities and challenges in traditional recommender systems. [30]

This gives rise to new types of queries called, Geo-Social queries which aim

at extracting objects of interest (e.g., friends, restaurants) combining both the

social relationships and the current location of objects under consideration. For

example, a French immigrant recently moved to Toronto is interested in finding

social activities for french people. Geo-Social query processing is an emerging

field and getting attention of research community these days [31, 32, 33, 34].

Below, we provide comprehensive overview of some of the works done so far in

this domain.

In [35], an algebraic model to answer geo-social queries is proposed. This

model consists of set of operators to query the geo-social data. They replicate

the graphs to represent spatial and social components which can be very large

in terms of social networks thus, making query processing more cumbersome.

Huang et al [36] studied a geo-social query that retrieves a set of nearby friends

of a user that share common interests, without providing concrete query pro-

33

cessing algorithms. [37] defined a new query namely, Geo-Social Circle of

Friends to retrieve the group of friends in geo-social settings whose members

are close to each other based on their geographical and social circumstances

such as for group sports, social gathering and community services. Yang et al

[38] introduced another type of group query by extending the work presented

in [37] namely, Social-Spatial Group Query (SSGQ) which is useful for im-

promptu activity planning. In addition, nearest neighbour queries have been

widely applied in location-based social networks recently[39, 40, 41, 42, 43].

Nikos et al [44] proposed a framework to process geo-social queries. Specifi-

cally, it segregates social, geographical and query processing components. Let’s

assume a user wants to find k nearest friends in a given region. To process

the query, first they get all friends of her, followed by fetching all users in

given region. Subsequently, the intersection is performed on these two sets

to answer the query. The key limitation involved here is that the number of

acquaintances and number of users in a given region can be very large thus,

performing intersection is not efficient. Figure 2.1 illustrates the proposed

framework to process the geo-social query. It is clearly shown that social and

spatial components are processed separately followed by combining the results

before release.

In addition to the proposed framework, they proposed some algorithms for

primitive queries to support social and spatial query processing modules like

GetFriends(u) returns the set of friends of u. Similarly, AreFriends(ui, uj)

returns true if given users are friends and false otherwise. On the other hand,

for the spatial component, RangeUsers(u, r) which returns users in radius r

from query user q and NearestUsers(q, k) which fetch k users nearest to q

are proposed. They also proposed a NearestStarGroup query by combin-

34

Figure 2.1: Geo-Social Framework

ing primitive queries to return a user group which makes a sub-graph of social

network of user u provided that the aggregate euclidean distance is minimized.

Eunjoon et al [45] proposed a model to predict the mobility of the users

namely, Periodic and Social Mobility model which consists of three compo-

nents: i) a model of spatial locations visited by a user quite often ii) a model

of temporal patterns and iii) a model of movements influenced by her social

circle. The proposed model also adheres the limitation of not being capable of

processing social and spatial components together to return the query results.

Another effort to manage the social and spatial data is made by Yerach

et al [46]. They studied a problem of extracting life patterns of a user from

her location history to answer the query which involves the Sporadic events

in one’s daily life. For example, a taxi driver visits many places in a day but

seldom visits a same place in the day. Further, they imitated the social and

spatial network graphs into socio-spatial graph by connecting these with life

pattern edges and embedded the location information into it. Such graphs

35

are being constructed separately for each user and location. Thus, making it

impossible to prune location and social components together.

Figure 2.2: Example of Social-Spatial Graph

Possibly, Facebook Graph search is considered as the most advanced and State-

of-the-Art social network search system which allows to search including ad-

vanced filters on social relationships, for example, find German people who

work in Samsung and live in Melbourne. The search system is based on Uni-

corn [19] which is an online in-memory social graph-aware indexing system

supporting search on very large graphs (social networks). Unfortunately, Uni-

corn suffers from few limitations, for example, it cannot handle location in-

formation in social networks effectively. Because, it does not leverage highly

developed spatial data structures, rather, it considers each location as a Face-

book Page and represents the relationships such as lives-in between the page

and users by creating edges.

Initially, old search on Facebook was keyword based in which the results

were retrieved according to the user’s entered keywords. Later on, they started

developing a new search product called Typehead ; which delivered results based

36

on ”prefix matching”. But these two techniques exhibit lack of performance

due to limited capacity of index size. Thus, they decided to develop a new

technique based on inverted index paradigm for graph search and finally ended

up with Unicorn. There are three major components of unicorn as follows:

• Index: a many-to-many relationship which maps entities to the attributes

• A framework to construct the index on data and updates

• A system to retrieve results based on different type of constraints

In-addition, Unicorn divides index into many instances (verticals) based on

different entity types (users, pages, facility points) since, each of them requires

different ranking scores. Each entity is maintained by separate Unicorn verti-

cal. A Top Aggregator receives a query and returns results after coordinating

with all verticals to combine results based on their ranking scores. The scoring

process works on one entity at a time which is independent of scores assigned

to other entities. For example, if we want to search for restaurants which are

famous (are being liked) among Monash employees; firstly, a search on ”user”

vertical is performed to fetch the Monash employees and then a search with

these users is performed on ”facility points” vertical to retrieve restaurants

famous among them. Figure 2.3 illustrates the framework of unicorn which

consists of three layers: i) top aggregator ii) vertical aggregator and iii) index

server.

Let’s take another example of finding ”friends of my friends who live in

Melbourne”. Initially, Unicorn retrieves a set of entities (nodes) that are con-

nected through an edge type ”my-friends” who lives in Melbourne. In second

step, it takes first result set and then fetches the nodes who are the friends

37

Figure 2.3: Unicorn Framework

of first result set. Although, this architecture can handle large datasets like

Facebook and has huge index size, but it still needs to process social and spa-

tial components individually and is unable to embed location information in

social graph.

2.2 kNN Queries

A k nearest neighbour query (kNN) [47] retrieves k closest objects of inter-

est to a given query point q. In other words, a kNN query returns a set

of k objects such that there does not exist any other object which is closer

to the q than any of the k returned objects. A kNN query is called NN

query when k = 1. The concept and implications of kNN queries have been

studied in various fields such as data mining, spatial databases, geo-social

databases and computational geometry. These studies have been carried out

in various environments such as Euclidean space, road networks and indoor

space [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. kNN queries have

38

also been investigated in various conditions such as in a case where certain

data is not readily available due to some factors like delay, loss or equipment

limitations [62, 63, 64, 65]. Further, such queries have been used in terrains en-

vironment, where the elevation information is taken into account [66, 67, 68, 69]

and in snapshot queries, where the results are computed based on the current

locations of the objects [70, 48, 71, 72, 73, 50, 74, 75]

In addition, kNN queries have been widely applied in location-based so-

cial networks recently [39, 40, 41, 42, 43]. Given a query user q with her

location and social network information, objects to be retrieved k, a spatial

distance constraint and an social constraint, a geo-social nearest neighbour

query (GSNNQ) retrieves k nearest neighbours from the q satisfying the so-

cial constraint. For example, such as, retrieving a set of k nearest friends to

the q’s location.

2.3 Top-k Queries

kNN queries only consider distance parameter between query user and objects

of interests. However, a top-k query considers multiple attributes of the objects

of the interest where one of the attributes is the distance to the query point.

Formally, a top-k query returns k objects of interests having the best scores.

The score of each object is computed using a user’s defined scoring function.

A user’s preference function is a linear function with a weight assigned to each

attribute that shows the importance of the respective attribute.

Top-k queries have been extensively studied under various query models

[76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. Fagin’s algorithm (FA) [88],

threshold algorithm (TA) (independently proposed in [88], [89], [90]) and no-

random access (NRA) [88] propose some of the top-k processing algorithms

39

that combine multiple ranked lists and return the top-k objects. Ilyas et al

[86] give a comprehensive survey of top-k query processing techniques.

In addition, Top-k queries have not only been studied with uncertain data,

where exact data is not always available [91, 92, 93, 94], but also with vari-

ous scoring functions [95, 96], such as monotonic or generic scoring functions.

Recent works also incorporate textual relevance of the objects (top-k spatial

keyword queries) by integrating inverted index on top of R*-tree [76].

Top-k queries have recently been applied on location-based social networks.

A geo-social top-k query aims at retrieving a list of k objects of interest (e.g.,

friends, restaurants) with highest scores, where the score of each object is

computed using a user defined preference function based on given spatial and

social criteria. Consider an example of social circle of a query user q in Figure

2.4. Assume, we have a set of few places and are interested in retrieving Top-k

places according to their social and spatial relevance.

Figure 2.5(a) illustrates the locations of all the places P = {p1, p2, p3, p4}.

The query q’s location shown in Figure 2.5(a) with k = 2 and range r =

0.15, has a set of friends {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10}. The number in

bracket next to each place is the check-in count made by q’s friends. Figure

2.5(b) shows the Euclidean distances and the visitors of each place amongst

q’s friends. Lets assume α = 0.5 (where α is a weightage constant), the score

of the p1 w.r.t. q is computed as 0.025 + 0 = 0.025. Similarly, we have

Score(p2) = 0.185, Score(p3) = 0.205 and Score(p4) = 0.115. The result of

the query q is (p2, p3).

Wu et al [27] presented a work involving geo-social queries and proposed a

new query named as social-aware top-k spatial keyword query (SkSK) which

retrieves a list of k objects ranked according to their spatial proximity, textual

(e.g. restaurant has menu and different facilities) and social relevance. The

40

Figure 2.4: Social Network Example

Figure 2.5: Top-k Query Example

social relevance is defined as a function of the users who are ”fans” of an object

considering how close they are to the query user.

Another work is presented by Jiang et al [97] in which they proposed a

method to find top-k local users in geo-social media data. First, they ex-

tract all tweets in the given range and rank each tweet based on number of

replies/forwards to that tweet. For this, they build a tweet thread tree of each

tweet and sum-up replies/forwards at each level. This tweets ranking is con-

sidered as social score of the user who initiated the tweet. Then, they compute

spatial score of each user who has posted tweets in the range. However, their

social scoring criteria is not applicable to our problem definition.

41

Further, they leveraged a Hybrid Index design based on Geohash encoding

which is actually Quadtree [98] based. This hybrid structure is shown in Figure

2.6 which consists of two parts: forward index and inverted index. Forward

index stores the keywords according to their geohash codes and associates each

entry to the posting lists which is stored in inverted index. Specifically, each

inverted index record refers to tweets in the database.

Figure 2.6: Index Structure

Li et al [43] presented a work on influence maximization problem [99].

Given a geo-social network, where each user has a spatial location, and a

query q with a given spatial region r and an integer k, the location-aware

influence maximization problem retrieves k initial users in given region as

seeds to maximize the influence spread, meaning by, the maximum number of

users in the query region that are influenced by selected seeds. To address this

problem, they proposed two algorithms: i) Expansion based method which

first checks the users in query region and then expand to their friends and ii)

Spatial based indexes which divides whole space into the small regions and

for every region, users are precomputed and maintained. However, for large

42

number of k these algorithms are quite expensive.

To elaborate further, users in geo-social network are connected to each

other via some sort of social relationship and they also have their current

location stored in it. Each user’s probability to activate friends depends upon

the degree of her vertex, i.e. the number of directly connected users. At first,

every user is inactive and if gets selected, its state changes to active and also

activates its acquaintances in same manner and this will proceed like a chain.

The aim is to select k initial seeds who have maximum connectivity to activate

maximum number of users. This work also has the same limitation of not being

able to prune users together on the basis of their social and spatial feature like

either users in a close proximity will be selected first and then will be processed

to find the maximum connected user or vice versa.

Ahuja et al [100] presented a work on spatial keyword search by exploit-

ing given user’s social network. Generally, keyword search in social networks

targets to fetch group of users forming a specific social structure [101, 102].

On the other hand, in spatial keyword search, the aim is to retrieve facility

points that satisfy given spatial and textual criteria [103, 104]. In this work,

they presented a geo-social keyword search which belongs to a class of top− k

queries.

For query processing, they proposed an index structure called Geo-Social

Keyword Index (GSK Index) which is a hybrid index structure that stores

users and facility points. The proposed index is grid based with height h and

at each level, a cell constitutes all child cells and their contained objects. The

key limitation of this approach is that to extract social or spatial information,

either we have to find all users in given region first and then compute their

social ties and textual relevance with query q or other way round.

43

2.4 Skyline Queries

A top-k query uses a scoring function that combines the scores of multiple

attributes under consideration to rank the objects of interest. However, users

must have adequate domain knowledge to be able to decide upon preference

function. In particular, it is not easy to define a preference function (e.g., due

to incompatible attributes, different distributions of attributes, the inability

of users to choose a good scoring function) [26]. On the other hand, a skyline

query considers multiple attributes same a top-k query does, however, it does

not require the query user to specify her preference function. Formally, a sky-

line query retrieves all objects that are not dominated by any other object.

Given a query user q, an object o dominates another object o′ if o is prefer-

able for q than o′ in at least one attribute and is not worse than o′ on other

attributes.

Consider an example in Figure 2.7 where we have a set of places P =

{p1, p2, p3, p4, p5, p6, p7, p8} inside range r = 0.15, given by query q and a set

of friends of q, Fq = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10}. For each place, we

compute its spatial and social scores based on its distance from query q and

number of friends of q who checked-in at this place. Next, we map each place

to a space where x-coordinate refers to spatial score and y-coordinate refers to

social score as illustrated in Figure 2.7(b).

For Example in table 2.1, the social and spatial scores of place p3 are 0.8

and 0.01 respectively and using these scores, p3 is mapped to the space as

shown in Figure 2.7(b). To retrieve query result, we utilize this space to find

such places that are not dominated by any other place. For example, place

p7 dominates p5 because p7.social > p5.social and p7.spatial > p5.spatial.

Hence, the Skyline query returns p7 and p3 which are not dominated by any

44

other place.

Id dist(q,p) p.spatial Visitors p.social
P1 0.10 0.05 - 0

P2 0.07 0.08
u1, u3, u5
u7, u9

0.5

P3 0.14 0.01
u1, u2, u4
u5, u7, u8
u9, u10

0.8

P4 0.12 0.03 u4, u6, u8 0.3
P5 0.09 0.06 u4, u5 0.2
P6 0.09 0.06 u3, u4, u7, u9 0.4

P7 0.04 0.11
u1, u2, u4, u5
u8, u9, u10

0.7

P8 0.05 0.10 u4 0.1

Table 2.1: Sample Dataset

(a) Places in Range (b) Mapping

Figure 2.7: Example: Skyline Query

There has been considerable work done in the literature regarding skyline

queries [105, 106, 106, 107, 108]. These include computing skyline queries in

partially ordered domain, in a distributed settings, in road networks, contin-

uous skyline queries [109, 110, 111, 112, 113, 114, 115] and many more. The

skyline operator was first introduced in [116] followed by many generic skyline

computation algorithms such as Block-Nested Loop (BNL), Divide and Con-

45

quer (DC) approach which were proposed by same authors. Since then, skyline

processing has appealed many researchers and has attracted the attention of

many in database community. Additionally, a Bitmap algorithm was proposed

in [117] to improve the original algorithms which involve low cardinality do-

mains i.e., datasets with small number of discrete attributes. There exists

few other solutions to process such datasets for instance, as proposed in [107].

Similarly, another approach was introduced in [116] known as Index algorithm

which divides the dataset into d sorted lists for d optimized measures.

Another R-Tree [118] based approach known as Nearest-Neighbour (NN)

was proposed in [119]. This approach starts with finding the nearest neigh-

bour to the query and thus, objects dominated by the nearest neighbour can

be pruned. [120] proposed a Branch-and-Bound Search (BBS) method to over-

come the overlapping problem persists in (NN) algorithm. This approach is

guaranteed to visit each page of the R-Tree at most once.

The above algorithms can be categorised into two classes: 1) Index-based

algorithms and 2) Non-index-based algorithms. BBS, NN, Index algorithm

and Bitmap algorithms fall into the first category. Similarly, second category

is comprised of (SF), (DC), (BNL) and Linear Elimination Sort for skyline

algorithm [108]. Index-based algorithms have advantage over non-index-based

algorithms in a way that they only have to access a portion of the dataset to

process the skyline while others have to access whole dataset atleast once.

Most of work on skyline computation does not consider social aspect. To

the best of our knowledge, there exists only one work [121] in literature that

considers both social and spatial aspects for skyline queries. They define sky-

line query as a set of users who are not dominated by any other user where a

user u is said to be dominated by another user u′ if u′ is closer to the query

location and u′ is socially closer to the query user. The problem we study in

46

this thesis is fundamentally different as we focus on returning skyline places

(instead of skyline users) where a place p is dominated by another place p′ if

p′ is closer to the query user and the number of q′s friends who visited p′ is

greater than the number of q′s friend who visited p. For this, they use Ran-

dom walk with restart method (RWR) to compute social distance which is very

expensive and to optimize, they propose a method to approximate the results

(social similarity) which does not return exact results.

2.5 Group Queries

Group (Aggregate) nearest neighbour query is one of the most useful operators

for analyzing networks and graph data, e.g. social networks, traffic networks,

and biological networks. Given two spatial datasets P (e.g., places) and Q

(queries), a group nearest neighbor (GNN) query retrieves the point(s) of P

with the smallest aggregate distance(s) to points in Q. Let’s assume n users

at different locations q1, q2...qn, a GNN query outputs the place p ∈ P that

minimizes the sum of distances |p, qi| for 1 ≤ i ≤ n that the users have to

travel in order to meet there. Similarly, in another variant of GNN query, the

users might be keen in finding a point p ∈ P that minimizes the maximum

distance that they have to travel.

In many applications, a group of users may want to plan an activity to

find a point of interest (POI) for example, some conference attendees would

like to go out for dinner together. For this purpose, we may consider their

respective locations and social circles to recommend required POIs. Group

(aggregate) nearest neighbour queries are first presented by Papadias et al.

[122] and proposed three different methods MQM (multi query method), SPM

(single point method) and MBM (minimum bounding method). The propsed

47

methods are designed for Euclidean space and are not suitable for criteria

involving users’ preference. In 2007, Yiu et al. [123] introduces a new query

called top-k spatial preference query which returns top-k objects whose ranking

is defined by other objects around them. Yuan et al. [124] proposed a new

query which returns top-k objects based on distance and objects ratings. Many

previous studies [123, 125] have proposed to integrate POI properties into POI

recommendations however, these works do not consider user preferences.

To improve the efficiency of the algorithms proposed in [123], Rocha-Junior

et al. [126] proposed an approach to process spatial preference query based

on the materialization technique that leads to significant savings in both com-

putational and I/O costs. Tsatsanifos et al. [127] presented an SRT-index

to process top-k spatio-textual preference queries. A spatio-textual preference

score is defined for each feature object that takes into account a non-spatial

score and the textual similarity to user-specified keywords, but it does not

consider the user’s location and group preference. The problem of processing

spatial preference query on road networks is studied in [128, 129].

To determine the top-k objects using group (aggregate) function, Fagin

has given an algorithm ”Fagin’s Algorithm or FA” [130] which is much more

efficient than naive. However, the threshold algorithm “TA” [89] which is

remarkably simple algorithm and is essentially more optimal. Unlike FA, which

requires large buffers (whose size may grow exponentially as the database size

grows), TA requires only a small, constant-size buffer.

2.6 Temporal Queries

Temporal dynamics and how they impact upon various components of in-

formation retrieval (IR) systems have received a large share of attention in

48

the last decade. In particular, the study of relevance in information retrieval

can now be framed within temporal information retrieval approaches, which

explain how user behavior vary with time, and how we can use them in or-

der to improve retrieval effectiveness. Temporal queries retrieve query results

based on given temporal properties. It is noteworthy that time dimension has

strong influence in many domains for example, Topic Detection and Track-

ing, Spatial queries, Information retrieval, Top-k queries, Geo-Textual queries

[131, 132, 133]. Consider an example of a visitor from Switzerland visiting

Melbourne. She may be keen in finding a nearby caf é which serves Rösti (a

traditional Swedish hot cake) with coffee and has become popular (e.g., fre-

quently visited) among people from Switzerland in last year. This involves

utilizing spatial information (i.e., nearby caf é, check-ins), social information

(i.e., people who were born-in Switzerland) as well as temporal information

(i.e., caf és that are visited during last year).

A specific research work involves incorporating temporal influence into rec-

ommender system for better understanding of users’ temporal preferences. For

example, some early work [134, 135] discovered the dynamics of user preference

or interest over time. Recently, researchers started investigating periodic pat-

terns of user preferences (e.g., weekend night interests). One solution is to add

a time dimension to user-item matrix and apply techniques introduced in [136].

Work proposed in [137] offers time-aware recommendations using a user-based

collaborative filtering method. However, none of the proposed works exploit

user’s social circle to recommend point of interests (POIs).

POI recommendation is an important task in LBSNs. [138] discussed how

to use memory-based techniques to recommend POIs. Further, to improve the

techniques, they leveraged other dimensions to capture more information e.g.,

temporal effects [137]. Similarly, [139] introduced a factorization based POI

49

recommendation model which incorporates the temporal matching between

user movement and POI popularity. They recommend POIs based on user’s

personal check-in history and explores user’s trip trajectories to recommend

POIs. However, none of these works consider social relationship to retrieve

query results.

Huiji et al [140] investigated the temporal effects on location recommen-

dation on LBSNs. In this work, they introduced a location recommendation

framework based on the temporal properties of user movement observed from

a real-world LBSN dataset. For temporal, they model daily patterns of check-

ins of a user and proposed a User -Location matrix where an entry is check-ins

count to that place by the user. They maintain many instances of the ma-

trix based on time distribution. Since their method is for recommendation, it

cannot be applied on exact query results retrieval.

2.7 Bulk Loading Techniques

Bulk loading refers to the process of creating an index from scratch for a given

data set. In an early attempt on bulk insertion for an R-tree, the data items

to be inserted are first sorted by their spatial proximity (e.g., the Hilbert value

of the center) and then packed into blocks of B rectangles [141]. These blocks

are then inserted one at a time using standard insertion algorithm. Intuitively,

the algorithm should give an insertion speed-up of B (as a block of B data

items is inserted at a time), but it is likely to increase overlap. Thus, produces

a worse index in terms of query performance.

There is another work on the bulk insertion which uses a STLT (small-

tree-large-tree) approach [142]. The STLT constructs an R-tree (small tree)

from the data set and inserts it into the target Rtree (large tree). To insert a

50

small tree into a large tree, it chooses an appropriate location to maintain the

balance of the resulting large tree. However, this approach has the following

shortcoming: if a small tree covers a large area, the node of a large tree into

which a small tree is inserted needs to be enlarged to enclose it. This means

the STLT only works well for highly skewed data sets [143].

A variant of STLT is the GBI (Generalized Bulk Insertion) technique [143].

In this work, the input data set is partitioned into a number of clusters by

grouping spatially close data items into the same cluster. After clustering,

from each of these clusters, R-trees are built. Finally, these R-trees are inserted

into the target tree one at a time. Data items not included in any cluster are

classified as outliers and inserted one by one using normal R-tree insertion.

This work alleviated the limitation of the STLT which is highly dependent on

data distribution. However, this suffers with the same problem of the R-trees

being inserted may increase the overall overlap of the target R-tree.

Another class of bulk operations rely on a buffer strategy for dynamic R-

trees [144]. This approach adopts the lazy buffering technique of the buffer

tree [145]. Basic idea of their work is to attach buffers to the internal nodes

of an R-tree in pre-calculated levels and keep the total size of the buffers to

fit in the memory. Then, when an object is inserted, it is stored in the buffer

until it gets full. When the buffer is full, data objects in the buffer are pushed

down to buffer at the lower level.

2.8 Other related work

The work in geo-social networks can be classified into many categories and for

the scope of typical thesis, it is almost impossible to cover all of those. For

the sake of brevity, in this section, we will only cover some previous work in

51

the category of Recommendation in geo-social networks. The goal of Recom-

mendation is to recommend a set of objects (e.g. friends, restaurants) that a

target user might be interested in. Plenty of work has been done in this field

but we will cover few of them here.

Ye et al [146] proposed a recommender technique which leverages the col-

laborative filtering module to aggregate multiple facets like i) user’s preferences

that can be extracted from her check-in history, ii) user’s social associations,

which can be extracted from her social network and iii) spatial distance be-

tween query q’s current location and candidate facility points. Further, the

probability of a facility point can be estimated by aggregating social and spa-

tial weighing parameters and if the value of social weighing parameter is equal

to 1, then it implies that probability completely depends on social factor. If

both weighing parameters are zero, then recommendation only depends on

user preferences.

The authors exploit outcome of two large datasets i.e., Whrrl and Foursquare

by using different values of weighing factors and found that their model allows

relatively high precision and recall. In addition, they found that spatial influ-

ences have more impact on the possibility of user visiting a facility point than

of social associations user.

Since collaborative filtering technique cannot directly address all aspects

related to how social and spatial information influence one’s choice over many

facility points, Liu et al [147] presented a model that combines different ge-

ographical factors to rank spatial component such as regional popularity and

the Toblers first law of geography. In addition to this, they used a factor

52

which exploits explicit rating recommendation to implicit feedback by taking

into account the skewed count of check-ins.

All aforementioned geo-social queries can also be classified into the Con-

tinuous paradigm in which the result of the query needs to be updated at all

times by considering the dynamic nature of spatial and social data. Users can

move to different location and/ social networks are being updated continuously.

Some work has been presented to handle dynamic nature of these components.

Chen et al [148] proposed a new type of query namely, Temporal Spatial-

Keyword Top-k Subscription (TaSK)query which considers following three com-

ponents to evaluate the relevance of geo-textual objects, i) Text relevance, ii)

Spatial distance and iii) Time stamp of the geo-textual object. This query

continuously keeps track of the objects (e.g. tweets with spatial information)

and updates its top-k result set accordingly. This query is issued by a newly

published object only if the ranking score of new object is higher than the

current found kth object in result set.

They propose a concept of Conditional Influence Region (CIR) based on the

notion of continuous k nearest neighbours queries. Moreover, CIR is leveraged

to represent the query and to generate a filtering constraint in accordance to

the spatial cell to determine whether the new object is a result of the query

or not. Techniques to group and index TaSK queries are also devised so that

these can be evaluated simultaneously.

53

Chapter 3

Location-Based Top-k Queries

in Social Networks

In this chapter, we study location-based top-k queries in social networks and

formalize a new problem namely, Top-k famous places (TkFP) query and pro-

pose efficient query processing techniques. Specifically, a TkFP query retrieves

top-k places (points of interest) ranked according to their spatial and social

relevance to the query user where the spatial relevance is based on how close a

place is to a given location and the social relevance is based on how frequently

it is visited by one-hop neighbors of the query user in the social graph. The

outline of the chapter is as follows: Section 3.1 contains introduction of the

chapter, Section 3.2 lists down the contributions we have made, Section 3.3

presents preliminaries, Section 3.4 describes the proposed techniques, Section

3.5 consists of experimental evaluation, Section 3.6 describes the demonstra-

tion built to visualize the query results and Section 3.7 concludes the chapter.

54

3.1 Introduction

A location-based social network is usually represented as a complex graph

where nodes represent various entities in the social network (such as users,

places or pages) and the edges represent relationships between different nodes.

These relationships are not only limited to friendship relations but also contain

other types of relationships such as works-at, born-in and studies-at etc

[24]. In addition, the nodes and edges may also contain spatial information

such as a user’s check-ins at different locations [28]. Consider the example of

a Facebook user Sarah who was born in USA, works at Monash University

and checks-in at a particular restaurant. Facebook records this information by

linking Facebook pages for Monash University and USA with Sarah [19], e.g.,

Sarah and Monash University are connected by an edge labelled works-at and,

Sarah and USA are connected with an edge labelled born-in. The check-in

information records the places the user has visited.

Spatial data and social relationships in LBSNs provide a rich source of

information which can be exploited to offer many interesting services. Consider

the example of a German tourist visiting Melbourne. She may want to find

a nearby pub which is popular (e.g., frequently visited) among people from

Germany. This involves utilizing spatial information (i.e., nearby pub, check-

ins) as well as social information (i.e., people who were born-in Germany).

Similarly, a user may want to find nearby places that are most popular among

her friends, e.g., the places most frequently visited by her friends.

The applications of such queries are not only limited to traditional location-

based social services. These can also be used in disaster management, public

health, security, tourism, marketing etc.. For example, in public safety and

crime prevention, law enforcement agencies may be keen on finding frequently

55

visited places by users who have tweeted about Drugs, Burglary and Extor-

tion and have also joined some pages/groups containing/sharing information

related to those crimes on social networks. The users are socially connected

through an edge (entity) e.g., a tweet, a page or a group in social network and

then agencies can exploit one-hop neighbours of the entities to find frequently

visited places to raid and prevent drugs dissemination.

Although various types of queries have been studied on LBSNs [100, 31,

149, 46, 37, 38], to the best of our knowledge, none of existing techniques

can be applied to answer queries like the above that aim at finding near by

places that are popular among a particular group of users; satisfying a social

constraint. Motivated by this, in this chapter, we formalize this problem as

a Top-k famous places (TkFP) query and propose efficient query processing

techniques. Specifically, a TkFP query retrieves top-k places (points of inter-

est) ranked according to their spatial and social relevance to query user. The

spatial relevance is based on how close a place is to a given query location

and the social relevance is based on how frequently it is visited by one-hop

neighbors of the query user in social graph. A formal definition is provided in

Section 3.3.1.

In this chapter, we present three approaches to answer TkFP query pro-

cessing called, 1) Social-First, 2) Spatial-First and 3) Hybrid. The first two

approaches separately process the social and spatial components of the query

and do not require a specialized index. The third approach (Hybrid) is capa-

ble of processing social and spatial components simultaneously by utilizing a

hybrid index specifically designed to handle TkFP queries.

In addition to this, we develop a demonstration of the proposed query which

enables participants to view the actual output of the TkFP query containing

top-k places checked-in by the friends of the query user in given range.

56

3.2 Contributions

We make the following contributions in this chapter.

1. To the best of our knowledge, we are the first to study the TkFP queries

that retrieves near by places popular among a particular group of users

in the social network.

2. We propose a framework to process the query which consists of three

approaches which enable flexible data management and algorithmic de-

sign. These approaches are, I) Social-First II) Spatial-First and III)

Hybrid. The Social-First approach first processes the social component

(e.g., friendship relations and their check-ins) and then processes the

spatial component (e.g., places in given range) where as Spatial-First

initially processes the spatial component followed by processing the so-

cial component. In contrast, the Hybrid is capable of processing both

social and spatial components simultaneously to answer such queries.

3. We conduct an exhaustive evaluation of the proposed schemes using real

and synthetic datasets and demonstrate the effectiveness of the proposed

approaches. Since there is no prior algorithm available to solve TkFP

queries, we compare the three proposed algorithms with each other to

evaluate their performance. Our experimental results show that Hybrid

performs several times better than the other two.

4. We develop a demonstration of the proposed query which enables par-

ticipants to view the actual output of the TkFP query containing top-k

places checked-in by the friends of the query user in given range. Our

framework prototype adopts client-server model in which users submit

57

their queries through a web browser (client) and queries are then for-

warded to the server. On server side, the top-k POIs are computed and

finally results are sent back to the user.

3.3 Preliminaries

3.3.1 Problem Definition

Location Based Social Network (LBSN): A location-based social network

consists of a set of entities U (e.g., users, Facebook Pages etc.) and a set of

places P . The relationship between two entities u and v are indicated by a

labeled edge where the label indicates the type of relationship (e.g., friend,

lives-in). LBSN also records check-ins where a check-in of a user u ∈ U at

a particular place p ∈ P indicates an instance that u had visited the place P .

Score of a place p: Given a query user q, and a range r, the score of a place

p ∈ P is 0 if ||q, p|| ≥ r where ||q, p|| is the Euclidean distance between query

location and p. If ||q, p|| ≤ r, the score of p is a weighted sum of its spatial

score (denoted as pspatial) and its social score (denoted as psocial).

p.score = α× pspatial + (1− α)× psocial (3.1)

where α is a parameter used to control the relative importance of spatial

and social scores. The social score p.social is computed as follows. Let Fq

denote the one-hop neighbors of the query user considering a particular rela-

tionship type, e.g., if the relationship is born-in and the query entity is the

Facebook Page named Germany, then Fq is a set of users born in Germany.

Although our techniques can be used on any type of relationship, for the ease

of presentation, in the rest of the paper we only consider the friendship re-

58

lationships. In this context, Fq contains the friends of the query user q. Let

p.visitors denote the set of all users that visited (i.e., checked-in at) the place

p. The social score psocial is computed as follows.

psocial =
|Fq ∩ p.visitors|

|Fq|
(3.2)

where |X| denote the cardinality of a set X. Intuitively, psocial is the pro-

portion of the friends of q who have visited the place p.

The spatial score pspatial is based on how close the place is to the query

location. Formally, given a range r, pspatial = 0, (r − ||q, p||) where ||q, p||

indicates Euclidean distance between the query location and p. Note that

psocial is always between 0 to 1 and we normalize pspatial such that it is also

within the range 0 to 1, e.g., the data space is normalized such that ||q, p|| ≤ 1

and r ≤ 1.

Top-k Famous Places (TkFP) Query: Given an LBSN, a TkFP query q

returns k places having highest scores, where score (p.score) of each place p is

computed based on Equation 3.1.

Example 2.1: Figure 3.1(a) illustrates the locations of a set of places P =

{p1, p2, p3, p4}. The query q shown in Figure 3.1(a) with k = 2 and range

r = 0.15, has a set of friends Fq = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10}. The

number in bracket next to each place is the check-in count made by q’s friends.

Figure 3.1(b) shows the Euclidean distances and the visitors of each place

amongst q’s friends. Let us assume α = 0.5, the score of the p1 w.r.t. q

is computed as 0.025 + 0 = 0.025. Similarly, we have Score(p2) = 0.185,

Score(p3) = 0.205 and Score(p4) = 0.115. The result of the query q is (p2, p3)

according to scoring function in equation 3.1.

59

Figure 3.1: Top-k Query Example

3.3.2 Framework Overview

The proposed framework consists of three approaches to answer TkFP query:

I) Social-First II) Spatial-First and III) Hybrid. The Social-First approach

first processes the social component (e.g., friendship relations and their check-

ins) and then processes the spatial component (e.g., places in given range)

where as Spatial-First initially processes the spatial component followed by

processing the social component. In contrast, the Hybrid approach is capable

of processing both social and spatial components simultaneously to answer such

queries. More specifically, it leverages two types of pre-processed information

associated with each user u ∈ U , her check-in information (check-ins) and

summary of her friends’ check-ins information.

To the best of our knowledge, there is no unanimously accepted social

or spatial storage implementation. Specifically, Facebook uses adjacency lists

stored in Memcached [150] which is a distributed memory caching system, on

the other hand, Twitter leverages the R*-Tree [151] spatial index. Further,

Foursquare uses MongoDB [152], a document oriented database. Similarly,

academics research has been adopting various kind of approaches such as [46]

60

uses adjacency list stored in Neo4j which is a graph based database, where as

[35] utilizes relational tables for storing the friendship relations.

Similar to the existing work on KNN queries, we tailored the storage im-

plementation for our technique in a way that suites our requirements. More

specifically, we index places and users’ check-in information by adopting R-Tree

[153] spatial Index structure. Before presenting our technique, we present the

definition of Facility R-Tree, Check-in R-Tree and Friendship Index.

Facility R-Tree: We create an R-tree where all places (p ∈ P) in the dataset

are indexed based on their location coordinates.

Check-in R-Tree: For each user u, we create a Check-In R-Tree which in-

dexes all check-ins of the u. This is a 2-dimensional R-tree containing the

location coordinates information of each check-in. If a place p is visited by

a user multiple times, it will be indexed as many times it was visited hence,

Check-in R-Tree contains duplicate entries for the place p since many appli-

cations (e.g., which include ranking and recommendation of places) do require

complete check-in information of users.

Friendship Index: For each user, her friends are indexed using B+-Tree

sorted on their IDs. This is used to efficiently retrieve the friends based on

their IDs.

3.4 Proposed Technique

3.4.1 Social-First based Approach

Intuitively, Social-First approach, first processes the social component of given

query q and computes the score of all the places p ∈ P which have been

checked-in by her friends u ∈ Fq. Next, using given range r, it processes the

spatial component of the q and computes the score of the remaining places

61

p ∈ P which are not checked-in and returns the set of top-k places based on

their score and q’s defined preference criteria α. We next describe the technique

in detail with pseudocode given in Algorithm 1.

Initially, in the first loop of the algorithm, we compute the score of each

place p in given range r, that has been visited by the friends u ∈ Fq of query

q while maintaining the score of current kth place p based on their social and

spatial scores by exploiting the Check-in R-Tree of each friend u. In-addition,

in the second loop, the Facility R-Tree is exploited to compute the score of

those places p ∈ P in range r which are not visited by q’s friends hence, their

respective score only comprises of spatial component and their (Psocial) = 0

which subsequently yields the top-k result set. Let us assume, the score of

current kth place p is Scorek, next lemma shows that if the ||q, p|| ≥ (r− Scorek
α

),

we can prune that place p. Next, we introduce our first pruning rule in Lemma

3.1.

Lemma 3.1 Every place p that has a distance ||q, p|| from query q greater

than current (r − (Scorek/α)), cannot be in the Top-k places.

Proof Given a query user q, a range r, preference factor α, a place p which is

not checked-in by any user u ∈ Fq has social component (psocial) = 0, by using

equation 3.1 and equation 3.2 we get,

Score(p) = α(r − ||q, p||) + 0 (3.3)

To be the candidate for the Top-k places, a place p’s score must be greater

than current Scorek, hence

Socrek ≤ Socre(p) (3.4)

By substituting the value of Socre(p) from eq. 3.3,

62

Socrek ≤ α(r − ||q, p||)

||q, p|| ≤ (r − (Scorek/α))

(3.5)

Algorithm 1: Social-First

Input : Query q, range r, weight-age constant α, integer k,
Output: Result set R

1 foreach friend u in Fq do
2 Traverse check-in R-Tree of u ; // Accessing Check-in R-Tree by

branch and bound method

3 foreach place p in r in Check-in R-Tree do
4 update social score and score of p;
5 update Scorek;

6 end

7 end
8 Traverse Facility R-Tree ; // Accessing Facility R-Tree by branch

and bound method

9 foreach place p in range r in Facility R-Tree do
10 if p.dist ≤ (r − (Scorek/α)) ; // from Lemma 3.1

11 then
12 compute Score(p);
13 update Scorek;

14 end

15 end
16 return Return R

3.4.2 Spatial-First based Approach

Initially, this approach starts with the processing of spatial component of the

query q by computing the score of each place p in given range r regardless of

the fact whether it is checked-in by any friend u ∈ Fq of q or not. Moreover, it

then computes the social score of each place p by first computing the number

of friends checked-in to it by performing an intersection of the set of q’s friends

Fq and the set of visitors of the place Vp followed by computing the social score

63

psocial of p and then yields the result set. We next elaborate the technique in

detail with pseudocode given in Algorithm 2.

Specifically, for each place p ∈ P in range r, we compute the Score(p)

in ascending order of the distance of the place p from q. To achieve this, a

Heap is initialized with the root entry of Facility R-Tree with ||q, e|| as a key

to process spatial component first. Each entry is iteratively retrieved from

Heap and processed as follows. For each place p in range r, we first, compute

social component of the score by counting the number of friends u ∈ Fq who

have visited the place p followed by the computation of the final score using

equation 3.1. Let us assume, the score of current kth place p is Scorek, next

lemma shows that if the ||q, p|| ≥ (r − (Scorek−(1−α))
α

), the process stops since

every subsequent place p entry in Heap is further than the current place p

entry from q. Next, we introduce our second pruning rule in Lemma 3.2.

Lemma 3.2 Every place p that has distance ||q, p|| from query q greater than

current Scorek, cannot be in the Top-k places.

Proof Given a query user q, a range r, preference factor α, to be the candidate

for the Top-k places, a place p’s score must be greater than current Scorek, by

using equation 3.1 and equation 3.2, we get,

Socrek ≤ Socre(p) (3.6)

By substituting the value of Socre(p), we get,

Socrek ≤ α(r − ||q, p||) + (1− α)

(
Fq ∩ Vp
|Fq|

)
(3.7)

Since the maximum possible social score of given place can be 1, we get

64

Socrek ≤ α(r − ||q, p||) + (1− α) ∗ 1

||q, p|| ≤ (r − (Socrek − (1− α))

α
)

(3.8)

Algorithm 2: Spatial-First

Input : Query q, range r, weight-age constant α, integer k,
Output: Result set R

1 Traverse Facility R-Tree ; // Accessing Facility R-Tree by branch

and bound method

2 foreach place p in r in Facility R-Tree do
3 if ||q, p|| ≥ (r − ((Scorek − (1− α))/α)) ; // from Lemma 3.2

4 then
5 return Result set R
6 end
7 count friends ← Fu ∩ Vp;
8 compute Score(p);
9 update Scorek ;

10 end
11 return Result set R

3.4.3 Hybrid Approach

3.4.3.1 Friends Check-ins R-Tree:

To Optimize, we propose a spatial indexing structure, the Friends Check-ins

R-tree, that supports the simultaneous pruning of friends and places. It is an

R-Tree based structure which is constructed for each user u ∈ U and is able to

prune the search space. FCR-Tree stores check-in information of each friend

u ∈ Fq of q, thus representing the check-in summary of all friends of q. The

objects of FCR-Tree are the root MBRs of each friend’s Check-in R-Tree. The

update of the index in case of new check-in entry of any friend u, is not costly

since these are being bulk updated after certain period of time.

65

Let’s assume a user u ∈ U where the friends of u are Fu = {u1, u2, u3. . . u19, u20}.

Figure 3.2 illustrates the idea behind the FCR-Tree. Next, we describe our

proposed technique in detail.

Figure 3.2: Summary of Friends’ check-ins

In this approach, the score of each place p in range r is computed by

processing the social and spatial components of query q together. To answer

the TkFP queries efficiently, this approach leverages the Friends Check-ins R-

Tree of query q to prune the friends which have not visited the top-k places

and Grid Spatial Index to prune the places in given range r which cannot be

the candidate for the top-k result set. More specifically, to compute the social

and spatial scores of a place p, this approach supports simultaneous pruning

of q’s friends set Fq and places p ∈ P in given range r. We next elaborate the

technique in detail with pseudocode given in Algorithm 3.

To achieve this, initially, grid portioning approach is employed to divide

the area formed by given range r into small cells. Similarly, for each grid cell

gc, a set of places Pgc ∈ P which lie inside the cell is maintained by using the

Facility R-Tree and distance of the closest place p to q in a cell is recorded as

the cell distance from q. In addition, a set of friends who might have visited a

66

cell denoted as Vcell is computed for each cell by exploiting Friends Check-ins

R-Tree (FCR − Tree) of q and counting the number of overlapping objects

of FCR − Tree with the cell. Figure 3.3 illustrates an example of a cell and

overlapping objects in which four objects are overlapping with the cell and

therefore, the overlap count of the cell is 4.

Figure 3.3: Cell Overlap

Once the overlap count and distance to the q for each cell gc is computed,

a ranking score of each cell is computed using equation 3.9 which serves as an

upper bound on the score of any place in the cell. Moreover, to compute the

score of a place p in range r, the places p ∈ Pgc of the cell gc with highest score

are processed first. If the current kth score is greater than the next cell’s score,

the process stops since all subsequent cells can not contain a place with higher

ranking score.

Scorecell = α(r − cell.distance) + (1− α)

(
OverlapCountcell

|Fq|

)
(3.9)

67

Algorithm 3: Hybrid Algorithm

Input : Query q, range r, weight-age constant α, integer k,
Output: Result set R

1 Traverse Facility R-Tree ; // Using branch and bound method

2 foreach place p in r in Facility R-Tree do
3 compute Score(p);
4 insert p in corresponding cell’s places set;
5 update the distance of corresponding cell;
6 update Scorek;

7 end
8 Traverse FCR-Tree of q ; // Using branch and bound method

9 foreach cell gc do
10 compute overlapCcount(gc) and Score(gc);
11 end
12 foreach cell gc do
13 if Scoregc ≤ Scorek then
14 return Result set R;
15 end
16 foreach place p in cell gc do
17 compute check-in count of p ← Vcell ∩ Vp;
18 update Score(p) and Scorek;

19 end

20 end
21 return Result set R

3.5 Experiments

3.5.1 Experimental Setup

To the best of our knowledge, there is no prior algorithm to solve TkFP queries

therefore, we compare the three proposed algorithms with each other to eval-

uate their performance.

All algorithms were implemented in C++ and experiments were run on

Intel Core I 3 2.4GHz PC with 8GB memory running on 64-bit Ubuntu Linux.

Specifically, we use same real data set of Gowalla as of [45]. Gowalla is a

location based social network which later was acquired by Facebook. It contains

68

196,591 users, 950,327 friendships, 6,442,890 check-ins and 1,280,956 checked-

in places across the world. The page size of each Facility R-Tree index is set

to 4096 Bytes and 1024 Bytes for Check-in R-Tree and FCR-Tree indexes.

We randomly select 100 users and treat them as query points. The cost in

experiments correspond to average cost of 100 queries. The default value of

range r is 100 km and the default value of k is set to 10 unless mentioned

otherwise.

3.5.2 Performance Evaluation

Effect of Range: We analyse the performance of our algorithms for various

range values ranging from 10− 400 kms. The size of the area formed by given

range determines the number of places it contains (ranging from 1500−94000).

Figure 3.4 shows that Spatial-First algorithm is most affected at bigger range

values hence its performance deteriorates due to large number of places. Note

that, the Hybrid algorithm performs better for bigger range since it is more

likely to find top-k places after processing fewer cells. Figure 3.4(b) shows

that I/O cost increases for bigger range values due to large number of places

in range which result in higher index access rate.

 0

 500

 1000

 1500

 2000

50 100 200 400

C
P

U
 C

o
s
t

(S
e
c
)

Range (km)

Hybrid
Social-First

Spatial-First

(a) CPU cost

 0

 20000

 40000

 60000

 80000

 100000

 120000

50 100 200 400

#
IO

Range (km)

Hybrid

1
6
5
8

8
3
9
4

2
8
6
9
1

9
5
9
4
4

Social-First

7
7
7

9
8
6

1
5
4
4

3
3
0
4

Spatial-First

1
6
3
6

8
3
7
1

2
8
6
6
7

9
6
6
1
5

(b) I/O cost

Figure 3.4: Effect of varying range (number of places)

69

Effect of Average number of Friends: In Figure 3.5, we study the

effect of the average number of friends of each query. Note that the size of

FCR-Tree depends on the size of friends set of each user in data set which

essentially affects the Hybrid algorithm. Further, Spatial-First algorithm is

greatly affected by it because the intersection of two large sets i.e. visitors

set and friends set is more expensive. Specifically, Figure 3.5(a), shows the

CPU cost and Figure 3.5(b) shows the I/O cost of each method for varying

average number of friends. The average number of places in given range r is

38319. Note that when average number of friends increases, the CPU and I/O

cost of all three algorithms increases since each friend’s check-in information

is required to verify candidate places.

 0

 50

 100

 150

 200

200 400 600 800

C
P

U
 C

o
s
t

(S
e
c
)

#Ave.Friends

Hybrid

3
0
.2

6
6
1

3
7
.1

6
5
6

3
9
.6

4
7
1

4
5
.1

5
8
6

Social-First

3
8
.9

5
6
3

4
4
.4

7
9
5

4
7
.4

1
3
9

5
6
.7

4
3
0

Spatial-First

3
8
.9

7
4
1

8
4
.5

1
1
8

1
0
1
.1

8
3

1
4
5
.2

7
5

(a) CPU cost

 0

 2000

 4000

 6000

 8000

 10000

 12000

200 400 600 800

#
IO

Ave.Friends

Hybrid

5
9
9
1 6
9
0
9

7
6
0
2 8
4
3
7

Social-First

3
2
7

5
0
8

7
0
0

8
8
9

Spatial-First

6
0
0
7 6
9
1
9

7
5
9
5 8
4
6
1

(b) I/O cost

Figure 3.5: Performance comparison on different number of friends

Effect of concurrent number of Queries: Geo-Social services seek to

answer large number of incoming queries simultaneously due to the enormous

size of registered users. Therefore, the number of concurrent queries rang-

ing from 50 to 200 are analyzed for all three algorithm. In addition, each

experiment involves average number of friends ranging from 750 − 1350 and

approximately 10,000 average number of places in given range r. All three

algorithms need to traverse the Facility-RTree every time a TkFP query is

70

issued to verify candidate place. The Social-First algorithm also needs to tra-

verse the Check-in R-Tree. On the other hand, Hybrid algorithm leverages the

FCR-Tree and both Spatial-First and Hybrid greatly rely on the visitors set of

the places. In Figure 3.6, we report the CPU and I/O cost of each algorithm

on Gowalla data set for different number of queries. As expected, the I/O cost

of Social-First algorithm is less than the other two due to low dependency on

indexes. Note that Hybrid is up to four times better than Social-First and

Spatial-First algorithms.

 0

 50

 100

 150

 200

 250

 300

 350

 400

50 100 150 200

C
P

U
 C

o
s
t

(S
e
c
)

Queries

Hybrid

2
1
.7

1
9

4
3
.7

5
4

6
2
.9

0
7

7
9
.0

1
9

Social-First

3
4
.5

7
4

5
4
.6

3
8

7
5
.4

2
9

9
3
.1

4
6

Spatial-First

8
1
.7

9
6 1
4
4
.2

0
9

2
3
2
.5

0
9 2
9
1
.4

7
6

(a) CPU cost

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

50 100 150 200

#
IO

Queries

Hybrid

1
1
2
8
6

9
8
8
3

1
0
6
8
4

1
0
3
1
2

Social-First

1
4
7
5

1
1
2
2

1
0
1
4

9
3
3

Spatial-First

1
1
2
5
1

9
8
6
6

1
0
6
8
2

1
0
3
0
8

(b) I/O cost

Figure 3.6: Effect of number of Queries

Effect of Grid Size: In Figure 3.7(a), we study the effect of the size

of grid partitioning ranges from 2− 64 on Hybrid algorithm. The size of grid

affects the the CPU cost since the size of a cell defines how many places will be

processed/pruned at once. Similarly, it also affects the termination condition

on the algorithm. Note that the best CPU performance can be achieved by

dividing the area into grid of size 4× 4.

Effect of k: In previous experiments, the value of k is set to 10. Next, we

analyze the performance of three algorithms for various values of k. Note that

in Figure 3.7(b), all three algorithms are nearly independent of k. The reason

is that, we have to update the result set every time we update the score of a

71

place. Therefore, the size of the result set does not impose great computation

load. In terms of I/O cost, Figure 3.7(c) shows that all three algorithms do

not get affected by the value of k.

 0

 10

 20

 30

 40

 50

 60

2 4 8 16 32 64

C
P

U
 C

o
s

t
(S

e
c

)

Grid Width

Hybrid

44.75 43.27 43.58 44.96 45.88 47.65

(a) Grid Size

 0

 50

 100

 150

 200

 250

5 10 15 20

C
P

U
 C

o
s

t
(S

e
c

)

Effect of K

Hybrid
Social-First

Spatial-First

(b) CPU cost

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

5 10 15 20

#
IO

Effect of K

Hybrid

8
3

5
7

8
3

9
4

8
3

9
4

8
3

9
4

Social-First

9
8

6

9
8

6

9
8

6

9
8

6

Spatial-First

8
3

7
1

8
3

7
1

8
3

7
1

8
3

7
1

(c) I/O cost

Figure 3.7: Effect of Grid Size and varying number of requested places (k)

Effect of Data Set Size: In Figure 3.8(a) and 3.8(b), we study the

effect of data set size on the performance of the three algorithms. Specifically,

we conduct experiments on synthetic data sets of different sizes containing

places ranging from 100k to 500k. In Figure 3.8(a), note that the Spatial-

First algorithm is most effected by number of places. Similarly, in Figure

3.8(b), Hybrid and Spatial-First have higher I/O cost due to the intersection

performed on visitors set of places and friends set of query q.

 0

 20

 40

 60

 80

 100

100k 200k 300k 400k 500k

C
P

U
 C

o
s
t

(S
e
c
)

DataSet Size (#Places)

Hybrid

4
.9

7
5
1

1
0
.3

5
6
3

1
2
.5

5
4
5

1
6
.3

9
5
1

2
0
.4

6
5
4

Social-First

6
.4

6
3
1

1
2
.6

7
5
0

1
5
.4

5
4
6

2
1
.0

1
2
1

2
9
.2

3
4
9

Spatial-First

1
6
.8

2
0
1 3
3
.8

9
4
3

4
1
.3

4
7
1 5
7
.8

9
7
9 7
4
.9

5
0
3

(a) CPU cost

 0

 1000

 2000

 3000

 4000

 5000

100k 200k 300k 400k 500k

#
IO

DataSet Size (#Places)

Hybrid

9
0
9

1
7
2
1

2
9
6
7 3

5
7
1

4
4
6
4

Social-First

1
3
7

2
5
1

4
2
1

5
8
3

7
2
9

Spatial-First

9
0
1

1
7
1
0

2
8
9
9 3

5
0
3

4
4
1
1

(b) I/O cost

Figure 3.8: Effect of varying data set sizes (number of places)

72

3.6 A Demo for Location-Based Top-k

Queries in Social Networks

In this section, we develop a demonstration to show the real application of

Location-Based Top-k Queries on Social Networks. This demonstration en-

ables participants to view the actual output of the TkFP query containing the

top-k places checked-in by friends in given region.

This demonstration enables participants to view the actual output of the TGS

query containing the top-k POIs checked-in by friends in given region. In

addition to this, other information related to top-k POIs such as name, address,

visitors count, friends detail can also be viewed using Google Maps in browser-

based interface. On the server side, we process the TGS query to efficiently

retrieve the top-k POIs. Further, communication between server and client is

handled using standard HTTP post operations.

3.6.1 Framework and Query Processing Overview

Our framework prototype adopts client-server model in which users submit

their queries through a web browser (client), and queries are then sent to the

server. For each TGS query, the top-k POIs are computed and are sent back

to the user. Figure 3.9 illustrates the architecture of our framework.

3.6.1.1 Client Side

The client side provides users with a mechanism to interact with the server

side through a browser-based interface for submitting queries and to view

the retrieved POIs. The client side component provides interaction with the

map through Google Maps API. When a TGS query is submitted, the users

73

Figure 3.9: Framework Architecture

specify their user id, a location, a range (radius) and number of desired POIs

k. Consequently, queries are sent to the server by HTTP post operation. After

a query is processed at the server side, the retrieved top-k POIs are returned

and displayed using Google Maps in the client side browser.

3.6.1.2 Server Side

Overview:

The web server is built using JSP and Apache Tomcat by applying MVC

(model, view, controller) architecture. The MVC is divided into business logic

and view logic. When a query is received by JSP server (Controller), it is

forwarded to Model where the query processing algorithm implemented in

Java is invoked to retrieved the result set which is then, forwarded to View to

be sent to the client side browser.

Query Processing:

On server side, the TGS query can be answered by employing any of the three

proposed approaches. Simply stated, Social-First approach first retrieves social

74

information (set of friends) of the query q and then for each friend, the score

of all checked-in POIs (spatial component) in given range is computed and

updated where as, Spatial-First approach starts with the processing of spatial

component of the query q by retrieving all POIs in given range regardless of

the fact whether these are checked-in by any friend of q or not. Moreover,

it then computes the social score of each POI by computing the number of

friends checked-in to it by performing an intersection of the set of q’s friends

and the set of visitors of the POI. In addition, Hybrid approach is capable

of computing the score of each POI in range by processing social and spatial

components of query q together.

In other words, It prunes the friends (which have not visited the top-k

POIs) and the POIs in given range (which cannot be the candidate for the

top-k) simultaneously. Specifically, the algorithm indexes each user’s check-in

summary using well-known spatial data structure i.e., R-tree [153] along with

storing each user’s friends’ check-in summary in a separate index structure.

Similarly, grid partitioning approach is employed to divide the region formed

by given range r into small cells which facilitates in identifying those cells

(including the POIs lie inside) that do not overlap with the objects of friend’s

check-in summary R-tree hence are pruned along with the objects (i.e., friends)

which do not overlap with cells without further processing.

3.6.2 Demonstration Details

In this demonstration, participants will be able to experience how the system

can be used for issuing TGS queries to retrieve Top-k POIs in friends circle.

The client-side (browser) interfaces are shown in Figure 3.10 and 3.11.

75

Figure 3.10: Main Interface

3.6.2.1 Submitting a TGS Query:

Initially, users specify a query User id. Using the Foursquare API, the frame-

work focuses on that users hometown. Subsequently, users specify their loca-

tion by clicking on Google Maps (the latitude and longitude of the selected

location is obtained using Google Maps API), radius of the query region using

the slide bar and number of desired POIs they are interested in to find.

3.6.2.2 Dataset:

We use real-world foursquare [154] data set for the demonstration. The data

set contains 3473835 friendship relations, 33,278,683 check-ins, 266,909 users

and 3,680,126 POIs. Each POI is represented by a unique id and has longitude

and latitude information associated with it. The POI’s id is used to retrieved

additional information such as POI name and address. Similarly, each check-in

entry has user id, longitude and latitude information of checked-in POI and

time stamp at which it was issued.

76

(a) Query Result (b) POI Detail

Figure 3.11: TkFP Query Result

3.7 Conclusions

In this chapter, we study location-based top-k queries in social networks and

formalize a new problem namely, Top-k famous places TkFP query which en-

riches the semantics of the conventional spatial query by introducing a social

relevance component. A TkFP query retrieves top-k places (points of inter-

est) ranked according to their spatial and social relevance to the query user.

We propose three approaches namely, 1) Social-First 2) Spatial-First and 3)

Hybrid to efficiently process such queries. Further, an FCR-Tree index struc-

ture is proposed that integrates social information with spatial information.

Results of empirical studies with an implementation demonstrate the effective-

ness of the proposed approaches using real and synthetic datasets. In addition

to this, we develop a demonstration of the proposed query which enables par-

ticipants to view the actual output of the TkFP query containing top-k places

checked-in by the friends of the query user in given range.

77

Chapter 4

Spatial Skyline Queries in Social

Networks

In this chapter, to complement our Top-k famous places query, we extend our

work to study skyline queries that do not require a scoring function to retrieve

desired objects within given range r (i.e., ||q, p|| < r) that are not dominated

by any other object. The outline of the chapter is as follows: Section 4.1

contains introduction of the chapter, Section 4.2 lists down the contributions

we have made, Section 4.3 explains the problem definition, Section 4.4 describes

the proposed techniques, Section 4.5 consists of experimental evaluation and

Section 4.6 concludes the chapter.

4.1 Introduction

In Top-k queries, a user needs to define a scoring function that combines

social and spatial scores to rank objects which may not be trivial (e.g., due

to incompatible attributes, different distributions of attributes, the inability of

users to choose a good scoring function) [26]. Motivated by this, to complement

78

our Top-k famous places TkFP query presented in previous chapter, we study

skyline queries that do not require a scoring function to retrieve desired objects

and we formalize a new query called, Socio-Spacial Skyline Query.

A Socio-Spacial Skyline Query SSSQ returns every place for which there does

not exist any other place that has a better social score and better spatial

score. In SSSQ query, we do not need to have a scoring function therefore,

skyline queries are natural and popular choice for the applications involving

multi-criteria decision making [116, 119, 120, 155, 156, 157, 117].

Let us take an example of a German tourist visiting Melbourne who is

looking for some restaurants that are close and are also popular among German

people. An SSSQ returns every restaurant p for which there does not exist any

other restaurant p′ that is closer to her location and is more popular among

German people. A formal definition is provided in Section 4.3.

We present three approaches to solve SSSQ queries namely, 1) Social-First, 2)

Spatial-First and 3) Hybrid. The first two approaches separately process the

social and spatial components of the queries and do not require a specialized

index. However, the third approach (Hybrid) is capable of processing social

and spatial components simultaneously.

4.2 Contributions

We make the following contributions in this chapter.

1. We extend our work to propose SSSQ queries that return places which

are not dominated by any other place.

2. We present a framework consisting of three approaches to solve SSSQ

queries, namely Social-First, Spatial-First and Hybrid. The first two

approaches separately process the social and spatial components of the

79

queries and do not require a specialized index. However, the third ap-

proach (Hybrid) is capable of processing social and spatial components

simultaneously by utilizing a hybrid index. For efficient retrieval and

filtering of objects, we partition our skyline work space into a grid and

map the objects in it using their social and spatial score. To further

improve the pruning phase, we map each grid cell to skyline workspace

grid as a 2-dimensional point and filter dominated ones along with all

the objects that lie inside them.

3. We conduct an extensive evaluation of the proposed schemes using real

and synthetic datasets and demonstrate the effectiveness of the proposed

approaches and compare their performance with [27]. Our results show

that our algorithms are significantly better than the competitor.

4.3 Problem Definition

In this work, we are interested in retrieving places in given range r based

on their social and spatial scores. The top-k query uses a scoring function

that combines social and spatial scores to rank the objects. However, users

must have adequate domain knowledge to be able to decide upon a good value

of α. In partucular, it is not easy to define a scoring function (e.g., due to

incompatible attributes, different distributions of attributes, the inability of

users to choose a good scoring function) [26].

Therefore, to complement our Top-k famous places query, we extend our

work to study skyline queries which return the objects that are within the

range r (i.e., ||q, p|| < r) and are not dominated by any other object. In order

to answer these queries, we compute psocial and pspatial scores of each place as

defined in previous section (3.3.1). The intuition behind using a range r is

80

that sometimes users are not interested in places that are too far. Below we

formally define our query.

Dominance. A place p is dominated by a place p′ if psocial ≤ p′social and

pspatial ≤ p′spatial and for atleast one of the following two holds: psocial < p′social

and pspatial < p′spatial. We denote the dominance relationship as p′ ≺ p which

implies that place p is dominated by place p′.

Socio-Spatial Skyline Query (SSSQ): Given a query q and a range r, an

SSSQ returns every place p for which ||q, p|| < r and p is not dominated by

any other place p′.

We use an example given in Table 4.1 and in Figure 4.1 to illustrate

the problem definition. Let us assume that we have a set of places P =

{p1, p2, p3, p4, p5, p6, p7, p8} inside range r = 0.15, given by query q and a set

of friends of q, Fq = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10}. For each place, we

compute its spatial and social scores based on its distance from query q and

number of friends of q who checked-in at this place. Next, we map each place

to a space where x-coordinate refers to spatial score and y-coordinate refers to

social score as illustrated in Figure 4.1(b).

For Example in Table 4.1, the social and spatial scores of place p3 are 0.8

and 0.01 respectively and using these scores, p3 is mapped to the space as

shown in Figure 4.1(b). To retrieve query result, we utilize this space to find

such places that are not dominated by any other place. For example, place p7

dominates p5 because p7.social > p5.social and p7.spatial > p5.spatial. Hence,

the SSSQ query returns p7 and p3 which are not dominated by any other place.

81

Id dist(q,p) p.spatial Visitors p.social
P1 0.10 0.05 - 0

P2 0.07 0.08
u1, u3, u5
u7, u9

0.5

P3 0.14 0.01
u1, u2, u4
u5, u7, u8
u9, u10

0.8

P4 0.12 0.03 u4, u6, u8 0.3
P5 0.09 0.06 u4, u5 0.2
P6 0.09 0.06 u3, u4, u7, u9 0.4

P7 0.04 0.11
u1, u2, u4, u5
u8, u9, u10

0.7

P8 0.05 0.10 u4 0.1

Table 4.1: Sample Dataset

(a) Places in Range (b) Mapping to 2D-Space

Figure 4.1: Mapping

4.4 Proposed Techniques

4.4.1 Social-First Based Algorithm

Social-First based approach accesses only those places that are visited by q’s

friends rather than accessing each place in range r. This approach first looks

at the check-ins of each friend to compute social score of each visited place

82

p ∈ P in given range r. Then we only use the visited places in the range to

compute skyline places as described in algorithm 4.

Initially, in the first loop of the algorithm (at line 1), it exploits Check-in

R-Tree of each friend u ∈ Fq of query q to get the places in range r followed by

computing social score of each candidate place p in r (at line 3). In-addition

to this, we also compute spatial score of each candidate place p. Next, each

candidate place p is accessed in descending order of the sum of two scores

(at line 5) because accessing the places in this order guarantees that a place

is skyline if and only if it is not dominated by any place in S [120], where

S is the set of skyline places obtained so far. Then each candidate place p

is examined for the dominance (at line 6). Finally, the nearest neighbour of

query q is computed (at line 8) and is added to the skyline places if it is not

checked-in by her friends. Below lemma 4.1 shows that nearest neighbour of

query q is always a skyline object.

Lemma 4.1 A nearest neighbour (NN) of the query is always a skyline place.

Proof There cannot be any place p′ that has a smaller distance than the near-

est neighbour p of the query q. If there are more than one nearest neighbours,

then the nearest neighbour with highest social score is not dominated by any

other nearest neighbour and is considered as a skyline place.

4.4.2 Spatial-First Based Algorithm

This approach first gets all places in range r by issuing a range query on Facility

R-Tree (at line 1) in algorithm 5. Then, in the first loop of the algorithm (at

line 2), it computes spatial and social scores of each place in given range r.

83

Algorithm 4: Skyline: Social-First Algorithm

Input : Query q, Range r
Output: Skyline Result set S

1 foreach friend u of q do
2 Issue a range query on Check-in R-Tree;
3 foreach place p in range r do
4 update social score of p and add it to candidate places;
5 end

6 end
7 foreach candidate place p in descending order of psocial + pspatial do
8 if place p is not dominated by any place p′ in S then
9 insert p into skyline result set S

10 end
11 Compute NN and insert into skyline result set S;
12 return Result set S

Next, each place in range is accessed in descending order of the sum of two

scores (at line 5) and then is examined for the dominance (at line 6). If the

place is not dominated by skyline places obtained so far, it is inserted into the

skyline places set S.

Spatial-First approach accesses only one R-tree index (i.e., Facility R-Tree)

while Social-First approach has to access as many R-tree indices as the number

of friends of query q. On Contrary, the down side of Spatial-First approach is

that it retrieves all the places in given range r and computes their social score

while Social-First approach computes the social score of only those places in

the range r that are visited by q’s friends. Next, we address the weakness of

both in below section.

4.4.3 Hybrid Algorithm

This section focuses on our third approach (i.e., Hybrid) to process SSSQ

which is capable of processing both social and spatial aspects simultaneously.

Before presenting the technique, first we describe our index and record keeping

84

Algorithm 5: Skyline: Spatial-First Algorithm

Input : Query q, range r
Output: Result set S

1 Issue a range query on facility R-Tree;
2 foreach place p in range r do
3 Compute spatial and social score;
4 Insert p into candidate places;

5 end
6 foreach candidate place p in descending order of psocial + pspatial do
7 if place p is not dominated by any place p′ in S then
8 insert p into skyline result set S;
9 end

10 end
11 return Result set S

structures.

4.4.3.1 Two Grids

We first introduce two grid indices that are employed to speed-up retrieval and

pruning process.

1. Range Grid: This grid is built upon the region formed by given range r

by splitting it into small cells as shown in Figure 4.2(a). Each cell has following

information associated with it:

• Places that lie in the cell.

• Number of overlapping Friends’ Check-In R-tree (FCR-Tree) object rect-

angles (root MBR of Check-In R-Trees) with that particular cell. As

stated in Section 3.4.3.1, this information is used to compute a bound

on the social scores of the places in the cell.

2. Skyline Workspace Grid: As described earlier, for each place inside

range r, we compute social (Psocial) and spatial (Pspatial) scores and then

85

maps the place to a 2-dimensional space where Psocial is mapped along y-

axis and Pspatial is mapped along x-axis. This 2-dimensional space is called

skyline workspace.

Similar to Range Grid, we divide our skyline workspace into a grid as shown

in Figure 4.2(b) to index each object based on its social and spatial scores. This

aids in retrieving, examining dominance and filtering objects efficiently.

Please note that to avoid disambiguity, we denote a cell of range grid as a

cell and a cell of skyline workspace grid as a block in rest of the chapter.

Figure 4.2(b) shows the mapping of all places in the range to their cor-

responding skyline workspace grid blocks based on their social and spatial

scores. For example, denoting bottom-left block of the skyline workspace grid

bij (where i is a row number staring with 0 and j is a column number starting

with 0) as b0,0, place p3 is mapped to block b3,0 and place p7 is mapped to

block b3,4.

(a) Places in Range (b) Mapping to Skyline workspace

Figure 4.2: Sample Dataset and Skyline Mapping

86

4.4.3.2 Mapping Range Grid Cell

In-addition to the mapping of places to skyline grid blocks, each range grid

cell Cij is mapped to skyline workspace grid. To achieve this, first we compute

social and spatial scores (i.e., csocial, cspatial) of each cell. To understand further,

let us take an example of range grid cell C1,2 with three places (i.e., p2, p6, p8)

inside it as shown in Figure 4.3(a) with their social and spatial scores listed

in Figure 4.3(b). Assuming, the cell C1,2 overlaps with six objects of FCR-

Tree that is considered as social score (csocial = 0.6) of the cell. In-addition,

the spatial score of place P8 that lies in the cell is largest among all and is

considered as the cell’s spatial score (cspatial = 0.10). Therefore, these scores

serve as an upper bound on scores of any place inside the cell and by using

these scores, the cell is mapped to its corresponding skyline workspace gird

block b2,3 as a point C1,2(csocial, cspatial) as shown in Figure 4.4.

(a) Cell C1,2 (b) Places’ scores

Figure 4.3: Social and Spatial score of a Range Grid Cell

Based on this, we can conclude that the cell point C1,2(0.10, 0.6) in skyline

workspace clearly dominates all the places (i.e., p2, p6, p8) that lie in it. In

contrast, if cell C1,2 in skyline workspace is dominated by any other object

(e.g., p7), the cell is immediately pruned along with all the places inside it

due to having smaller social and spatial scores than the cell’s. Therefore, the

places lie inside the cell cannot be the part of skyline places hence, this pruning

considerably improves the query processing time.

87

Figure 4.4: Range cell mapping to skyline workspace grid

Algorithm 6 describes the indexing of range and skyline workspace along

with mapping of each range grid cell Cij to the skyline workspace grid. Initially,

we start by constructing a grid index in region formed by range r (at line

1). Then in the first loop (at line 3), we index each place in range to its

corresponding range grid cell C along with updating the cell’s spatial score

(cspatial)(at line 4). In-addition, the skyline workspace is divided into a grid

(at line 5) and a range query is issued on FCR-Tree to get all the friends of

query q who might have visited any place in the range (at line 6). Finally, in

second loop (at line 7), for each range grid cell C, the upper bound (csocial) on

social score of the places that lie in the cell is computed and then the cell is

mapped to its corresponding skyline workspace block b using the cell’s social

and spatial scores.

Each block bij of skyline workspace grid is associated with two types of lists,

one of which contains range grid cell objects that lie inside and the second one

contains actual places p inside that block as shown in Figure 4.5.

88

Algorithm 6: Indexing and Mapping

Input : Query q, range r
Output: Range and Skyline Grids

1 Construct a range grid defined by range r;
2 Issue a range query on facility R-Tree;
3 foreach place p in r do
4 map it to corresponding cell Cij and update spatial score of cell;
5 end
6 Construct skyline workspace grid;
7 Issue a range query on FCR-Tree to get q’s friends;
8 foreach cell Cij do
9 compute social score;

10 Map Cij to corresponding block bij;

11 end

Figure 4.5: Grid Index and Record-keeping Structures

89

4.4.3.3 Computation Module

Intuition:

Let us assume that we have a place p in skyline workspace grid as illustrated

in Figure 4.6. Note that the block b2,2 is dominated by place p therefore, no

place or range grid cell in the block can contain a skyline place p. Similarly, all

the blocks in the shaded area R do not need to be accessed if we have already

seen the place p.

To make blocks access efficient, we need to access them in a particular order

where order is determined by maxScore which is defined in definition 4.1. For

each block, we en-heap the blocks below and towards left of it. If a block is

dominated, it is pruned.

Figure 4.6: Dominated Blocks

Definition 4.1 maxScore(b)

maxScore(b) of any given block of skyline workspace grid is a summation of

its top-right corner coordinates (i.e., Psocial, Pspatial).

For example example in Figure 4.7, the maxScore of block b4,4 is 2 (sum

90

of top-right corner coordinates i.e., 1,1) and the maxScore of b3,3 is 0.8+0.8

= 1.6. Since the top-right corner of skyline workspace P (1, 1) has the highest

maxScore, the block b4,4 is selected first for processing. Now Consider two

points p1 and p2 at the low-right and at the top-left corner of b4,4 respec-

tively. Note that points p1 and p2 have higher maxScore than any object in

shaded region. Precisely, for every unprocessed block bij, maxScore(bij) ≤

max(maxScore(b3,4),maxScore(b4,3)). Consequently, the block to be pro-

cessed after b4,4 is either b3,4 or b4,3 and let us assume that maxScore(b4,3 ≤

maxScore(b3,4), b3,4 is the second one to be processed. Further, the blocks

with the third highest maxScore is determined among b4,3, b3,3 and b2,4. We

next describe the technique in detail with pseudocode given in Algorithm 7.

Figure 4.7: Block Visiting Order

Algorithm:

Initially, algorithm 7 invokes Indexing and Mapping algorithm (algorithm 6)

to compute social and spatial scores of each range grid cell and to index them

to their corresponding skyline workspace grid blocks (at line 1). Further, the

91

algorithm employs the method described above to process blocks in descending

maxScore(b) order, retaining the property of visiting the minimal set of blocks.

To handle this, a maxHeap is initialized with the top-right block b4,4 of skyline

workspace grid with its maxScore as a sorting key (at line 2).

Algorithm 7: Skyline: Hybrid

Input : query q, range r, grid size g
Output: Result set S

1 Invoke Indexing and Mapping(q, r);
2 Insert top-right block b in Heap;
3 while Heap is not empty do
4 de-heap block bij;
5 if bij is not dominated then
6 foreach cell point c in bij do
7 if c is not dominated then
8 foreach place p in c do
9 Compute social score;

10 insert it into respective block bij if it is not dominated;

11 end

12 end

13 end
14 foreach place p in bij in descending order of psocial + pspatial do
15 if p is not dominated then
16 Insert in skyline result set S
17 end

18 end
19 if Adjacent blocks of bij are not dominated then
20 en-heap blocks;
21 end

22 end

23 end
24 return Result set S

Then, algorithm starts de-heaping the blocks iteratively (at line 3) and if a

block is dominated by any skyline place p (at line 5), it is immediately pruned

and consequently, the blocks below and left of it are not en-heaped. Since at

this stage, only range grid cells are indexed to the skyline workspace, it first

examines each cell object Cij for dominance which lie inside the de-heaped

92

block (at line 6) and if a cell is dominated by any already found skyline place

so far (at line 7), it is pruned. Consequently, all the places that lie in the

pruned cell object are also discarded and are not processed further.

Further, if a cell object Cij is not dominated, then for each place that lie in

it (loop at line 8), the algorithm computes social score (Psocial) of it (at line 9).

Then, the place is indexed to its corresponding skyline workspace grid block b

provided that the place is not dominated by any skyline place found so far (at

line 10). However, if a corresponding block is dominated, it is marked to avoid

being en-heaped in maxHeap. Subsequently, after indexing each place in the

range to its corresponding blocks, the algorithm starts examining each place p

that lie in the current de-heaped block for dominance (at line 12) in descending

order of Psocial +Pspatial and updates the skyline result set. The algorithm also

en-heaps the blocks below and to the left of current de-heaped block using

their maxScores provided that neither of them have been en-heaped before

nor are they dominated by any skyline place found so far (at line 14). The

algorithm terminates when all the blocks in maxHeap are examined and returns

the skyline places (at line 16).

4.5 Experiments

4.5.1 Experimental Setup

In existing work, the techniques are either not applicable or cannot be effi-

ciently extended to solve SSSQ queries. However, although the paper [27]

studies a different problem, we have implemented their algorithm and com-

pared our techniques against it.

All the algorithms are implemented using the exact experimental settings

as described earlier in Section 3.5.1. Table 4.3 contains summary of the

93

datasets used in experimental evaluation. Gowalla dataset characteristics are

already described in Section 3.5.1. In addition to this, we derived five syn-

thetic datasets from Gowalla which consist of places ranging from 100, 000 to

500, 000 and their corresponding number of visitors, check-ins and friendship

relations among the chosen visitors. The page size of each Facility R-Tree

index is set to 4096 Bytes and 1024 Bytes for Check-in R-Tree and FCR-Tree

indexes. For each experiment, we randomly select 100 users and treat them as

query points. The cost in the experiments correspond to the average cost of

100 queries. The default value of range r is 100 km and the default value of k

is set to 10 unless mentioned otherwise.

Parameters Values
Number of Queries 50, 100, 150, 200

Range (km) 50, 100, 200, 400
Dataset Size

(Places in thousands)
100, 200, 300, 400, 500, 1300

Grid Size 2, 4, 8, 16, 32, 64
Average Friends 200, 400, 600, 800

k 5, 10, 15, 20

Table 4.2: Parameters (Default shown in bold)

DataSet Places Users Friendships Check-Ins
Gowalla 1,280,956 196,591 950,327 6,442,890

Synthetic 01 100,000 17,162 77,254 503,000
Synthetic 02 200,000 39,223 152,957 1,100,698
Synthetic 03 300,000 61,394 241,369 1,830,235
Synthetic 04 400,000 86,687 301,887 2,536,897
Synthetic 05 500,000 103,856 395,745 3,258,659

Table 4.3: Datasets Characteristics

4.5.2 Performance Evaluation

Effect of Range: We analyse the performance of our algorithms for various

range values ranging from 100−400 kms. The size of the area formed by given

94

range determines the number of places it contains (ranging from 1500−94000).

Figure 4.8 shows that Spatial-First algorithm is most affected at bigger range

values due to more number of places to be processed hence, it’s performance

deteriorates. Similarly, Social-First approach does not get affected much by

the range because it only takes into account the visited places by query q’s

friends. Note that, the Hybrid algorithm performs better for bigger range

since it is more likely to find skyline places by processing fewer blocks and

by pruning more cells including their corresponding places which lie in them

simultaneously. Figure 4.8(b) shows that I/O cost increases for bigger range

values due to large number of places in given range and large number of visitors

(in spatial-first approach) which results in higher index access rate.

 0

 3

 6

 9

 12

 15

50 100 200 400

C
P

U
 C

o
st

 (
S

ec
)

Range (km)

Social-First

0
.1

2
6

0
.2

5
3

0
.4

8
8

6
.1

5
9

Spatial-First

0
.1

2
4

0
.6

7
6 2
.4

1
8

9
.5

8
7

Hybrid

0
.0

1
5

0
.0

8
0

0
.2

9
3

1
.5

2
2

(a) CPU cost

 0

 300

 600

 900

 1200

 1500

50 100 200 400

#I
O

Range (km)

Social-First
7 8 1
0 2
0

Spatial-First
1
6 8

3

2
8
6

9
6
6Hybrid

1
6 8

3

2
8
6

9
5
7

(b) I/O cost

Figure 4.8: Effect of varying range (number of places)

Effect of Average number of Friends: In Figure 4.9, we study the

effect of the average number of friends of each query. Note that the size of

FCR-Tree depends on the number of friends of each user in the dataset which

essentially affects the Hybrid algorithm to some extent. Further, Spatial-First

algorithm is greatly affected by it because the intersection of two large sets i.e.,

visitors set of each place in range and friends set of query q is more expensive.

Similarly, Social-First algorithm is greatly affected by the number of friends

95

since it has to process more Check-in R-trees. Specifically, Figure 4.9(a), shows

the CPU cost and Figure 4.9(b) shows the I/O cost of each method for varying

average number of friends. The average number of places in given range r is

38319. Note that when average number of friends increases, the CPU and I/O

cost of all three algorithms increases since each friend’s check-in information

is required to verify the candidate places.

 0

 0.2

 0.4

 0.6

 0.8

 1

200 400 600 800

C
P

U
 C

o
st

 (
S

ec
)

#Ave.Friends

Social-First

0
.0

9
1

0
.1

3
4

0
.1

9
3

0
.2

7
4

Spatial-First

0
.1

9
3 0

.3
7
7

0
.4

7
2

0
.6

7
5

Hybrid

0
.0

2
6

0
.0

4
5

0
.0

6
2

0
.0

8
0

(a) CPU cost

 0

 20

 40

 60

 80

 100

 120

 140

200 400 600 800

#I
O

Ave.Friends

Social-First

1 2 3 4

Spatial-First

3
0

6
6 7

5 8
3

Hybrid

2
9

6
6 7

5 8
3

(b) I/O cost

Figure 4.9: Performance comparison on different number of friends

Effect of concurrent number of Queries: The number of concurrent

queries ranging from 50 to 200 are analysed for all three algorithm. In addition,

each experiment involves average number of friends ranging from 200 − 800

and approximately 10,000 average number of places in given range r. All

three algorithms need to traverse the Facility-RTree every time an SSSQ is

issued to retrieve candidate places. In-addition, Social-First algorithm also

traverses the Check-in R-Tree that belongs to each friend and as we increase

the number of queries, the number of friends to be processed, also increase.

Therefore, Social-First algorithm exhibits more CPU cost for large number of

queries. On the other hand, Hybrid algorithm leverages the FCR-Tree and

both Spatial-First and Hybrid greatly rely on the size of visitors set of the

places. In Figure 4.10, we report the CPU and I/O cost of each algorithm on

96

Gowalla data set for different number of queries. As expected, the I/O cost

of Social-First algorithm is less than the other two due to low dependency on

indexes. Note that Hybrid is up to eight times better than Social-First and

Spatial-First algorithms.

 0

 0.4

 0.8

 1.2

 1.6

50 100 150 200

C
P

U
 C

o
s

t
(S

e
c

)

Queries

Social-First

0
.1

9
4

0
.2

4
3

0
.3

0
8

0
.3

7
8

Spatial-Spatial

0
.4

2
4

0
.7

1
2 0
.8

5
5 0
.9

9
7

Hybrid

0
.0

4
2

0
.0

7
9

0
.1

0
5

0
.1

2
7

(a) CPU cost

 0

 20

 40

 60

 80

 100

 120

 140

50 100 150 200
#I

O

Queries

Social-First

6 7 8 1
0

Spatial-First

7
6 7
9 8
3 8
6

Hybrid

7
6 7
9 8
3 8
6

(b) I/O cost

Figure 4.10: Effect of number of Queries

Effect of Grid Size: In Figure 4.11, we study the effect of the size of

grid partitioning ranges from 2− 16 on Hybrid algorithm. For region grid, the

size of grid affects the the CPU cost since the size of a cell defines how many

places will be processed/pruned simultaneously. Similarly, it also affects the

termination condition on the algorithm. Note that the best CPU performance

can be achieved by dividing the area into grid of size 4 × 4. In-addition, the

Skyline workspace is also partitioned into 4×4 grid because algorithm achieves

optimal performance at this granularity.

Effect of Dataset Size: In Figure 4.12(a) and 4.12(b), we study the

effect of data set size on the performance of the three algorithms. Specifically,

we conduct experiments on synthetic data sets of different sizes containing

places ranging from 100k to 500k. In Figure 4.12(a), note that the Spatial-

First algorithm is most effected by number of places. Similarly, in Figure

4.12(b), Hybrid and Spatial-First have higher I/O cost due to the intersection

97

 0

 0.05

 0.1

 0.15

 0.2

 0.25

2x2 4x4 8x8 12x12 16x16
C

P
U

 C
o

s
t

(S
e

c
)

Grid Size

Hybrid

0.165

0.075 0.075 0.079 0.084

Figure 4.11: Effect of Grid Size

performed on visitors set of each place and friends set of query q.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

100k 200k 300k 400k 500k

C
P

U
 C

o
st

 (
S

ec
)

DataSet Size (#Places)

Social-First

0
.0

0
1
2

0
.0

0
4
9

0
.0

0
8
1

0
.0

1
3
9 0
.0

2
4
0

Spatial-First

0
.0

0
0
5

0
.0

0
3
1

0
.0

0
6
0

0
.0

2
1
0

0
.0

4
1
7

Hybrid

0
.0

0
0
6

0
.0

0
1
2

0
.0

0
3
0

0
.0

0
6
7

0
.0

0
8
5

(a) CPU cost

 0

 4

 8

 12

 16

 20

100k 200k 300k 400k 500k

#I
O

DataSet Size (#Places)

Social-First

1 1 1

2 2

Spatial-First
1

2

6

1
1

1
5

Hybrid
1

2

6

1
1

1
5

(b) I/O cost

Figure 4.12: Effect of varying dataset sizes

4.5.3 Analysis of Results Quality

Top-k queries and skyline queries both have been extensively studied in the

past. The advantage of a top-k query is that the number of objects to be

returned is controlled by the user (by giving a value of k). However, the top-k

query assumes that the user is able to define a suitable scoring function (e.g., a

suitable value of α). This may be challenging because the user may not be able

to choose a suitable scoring function mainly because of the incompatibility of

the attributes involved in top-k queries and their distributions [26]. A skyline

98

query addresses this problem and does not require a scoring function to be

defined. However, the user cannot control the number of objects returned by

the query and, in the worst case, the number of skyline objects may be equal

to the total number of objects in the data set. Therefore, top-k queries and

skyline queries complement each other. In this section, we analyse the size of

socio-spatial skyline queries and compare the results returned by top-k queries

and skyline queries.

Size of Skyline: In Figure 4.13, we run 100 skyline queries for each setting

and report the average size of skyline. Figure 4.13(a) shows that the average

size of skyline is 2 to 5 as we vary the average number of friends for the query

user. Note that, on average, the total number of places in the query range

is more than 7, 000 and skyline shortlists up to 5 places, on average, that

dominate all other places in terms of both spatial score and social score. One

reason for such a small skyline size is that the data is sparse and there may

not be many check-ins in the given range by all of the query users’ friends and,

as a result, the social score for most of the places may be zero.

 0

 2

 4

 6

200 400 600 800

S

ky
lin

e
O

b
je

ct
s

Friends

#Places in Range: 7,188

Skyline

2.36

3.21 3.39

4.44

(a) Small number of average friends

 0

 15

 30

 45

25,000 50,000 75,000 100,000

S

ky
lin

e
O

b
je

ct
s

Friends

#Places in Range: 7,188

Skyline

15.19

21.21

27.73

38.64

(b) Large number of average friends

Figure 4.13: Effect of number of friends

In Figure 4.13(b), we evaluate the size of skyline for a more challenging case

where the average number of friends for the query user is varied from 25, 000

99

to 100, 000. We remark that this is a realistic setting and many users may have

such a large number of friends, e.g., query user is a page “Germany” and its

friends represent the people who were born in Germany. Figure 4.13(b) shows

that the size of skyline increases with the average number of friends but the

size is still much smaller compared to the total number of places in the range.

This shows that the skyline query studied in this paper is useful and returns

only a small number of objects to the user. In the rest of the experiments, we

choose 50, 000 as default for the average number of friends of the query user.

Results Returned by Top-k vs Skyline: In this section, we compare and

analyse the results returned by skyline queries and top-k queries. In Fig-

ure 4.14, we run 100 queries for each setting and report the average number of

result objects returned by top-k queries, skyline queries and the average num-

ber of objects that are returned by both of the queries (shown as “# Common

Places”). Specifically, Figure 4.14(a) studies the effect of k and Figure 4.14(b)

compares skyline and top-10 queries for varying α. Figure 4.14 demonstrates

that the results returned by both top-k and skyline queries share many objects

but, at the same time, each query reports several places that the other query

fails to return. This shows that the two queries complement each other.

 0

 20

 40

 60

 80

1 5 10 20 30 40 50

P

la
ce

s

k

#Places in Range: 7,188

Skyline Places

2
1

2
1

2
1

2
1

2
1

2
1

2
1

Common Places

1 3

6 1
0 1
3 1
5 1
8

Top-k Places

1

5

1
0

2
0

3
0

4
0

5
0

(a) Effect of k

 0

 10

 20

 30

 40

0.1 0.3 0.5 0.7 0.9

P

la
ce

s

Alpha

#Places in Range: 7,188

Skyline Places

2
1

2
1

2
1

2
1

2
1

Common Places

6 6 6 5 4

Top-k Places

1
0

1
0

1
0

1
0

1
0

(b) Effect of α

Figure 4.14: # common places returned by both queries

100

In Figure 4.15, we further analyze the results returned by the two types of

queries. Specifically, the result places are mapped to a two dimensional space

where x-axis corresponds to their social scores and y-axis corresponds to their

spatial scores. In Figure 4.15(a), the skyline query returns 15 places. The

top-5 query with α = 0.1 (high preference for social score) returns the places

shown with small red circles. Three of these top-5 places are the skyline points

and the other two places are not the skyline points because they are dominated

by other places. For the top-5 queries with α = 0.5 (equal preference for both

social and spatial scores) and α = 0.9 (high preference for spatial score), the

top-5 places are the places on the top-left of the figure (having high spatial

scores but low social scores). Figure 4.15(b) shows similar results except that

some of the top-5 places for α = 0.5 (equal preference) are the places in

bottom-right of the figure and some are in the top-left of the figure.

 0

 0.02

 0.04

 0.06

 0 0.007 0.014 0.021 0.028

S
p

at
ia

l S
co

re

Social Score

#Places in Range: 5,226

Skyline
Top 5, alpha: 0.1
Top 5, alpha: 0.5
Top 5, alpha: 0.9

(a) Skyline vs Top-k for user 1

 0

 0.0025

 0.005

 0.0075

 0.01

 0 0.0019 0.0038 0.0057 0.0076

S
p

at
ia

l S
co

re

Social Score

#Places in Range: 6,379

Skyline
Top 5, alpha: 0.1
Top 5, alpha: 0.5
Top 5, alpha: 0.9

(b) Skyline vs Top-k for user 2

Figure 4.15: Analysis of results

Figure 4.15 shows that the top-k queries may sometimes fail to capture the

users’ requirements, e.g., for example, by choosing α = 0.5, a user may have

wanted to obtain the places that have reasonably high values on both social

and spatial scores but the results may contain places with either high social

scores but very low spatial scores or high spatial scores but very low social

101

scores (as in Figure 4.15). The skyline query addresses this problem to some

extent and gives a better coverage of the results. However, it fails to capture

the requirements of users who have chosen α to be too high or too low. For

example, in Figure 4.15(b), the skyline contains only one object that has a

high social score, therefore, it would fail to capture the requirements of a user

who prefers social score much more than the spatial score (e.g., α = 0.1) and

wants to obtain several places with high social scores. In contrast, the top-5

query with α = 0.1 returns 5 objects each having a high social score. Also, as

pointed out earlier, the number of skyline objects may be arbitrarily large and

the user may not be able to control the number of objects returned.

4.6 Conclusions

In this chapter, we extend our work to complement our work in chapter one and

propose another query called, Socio-Spacial Skyline Query SSSQ. We present

three approaches to process the query called, 1) Social-First, 2) Spatial-First

and 3) Hybrid. The first two approaches separately process the social and spa-

tial components of the query and do not require a specialized index. The third

approach (Hybrid) is capable of processing social and spatial components si-

multaneously by utilizing a hybrid index specifically designed to handle TkFP

and SSSQ queries. For efficient retrieval and filtering of objects, we partition

our skyline work space into a grid and map the objects in it using their social

and spatial score. To further improve the pruning phase, we map each grid

cell to skyline workspace grid as a 2-dimensional point and filter dominated

ones along with all the objects that lie inside them. We conduct an exten-

sive evaluation of the proposed schemes using real and synthetic datasets and

demonstrate the effectiveness of the proposed approaches and compare their

102

performance with [27]. Our results show that our algorithms are significantly

better than the competitor.

103

Chapter 5

Spatial Group Top-k Queries in

Social Networks

In this chapter, we study a problem of finding top-k places considering their

distance from the group of query users Q and popularity of the place among

each query user qi ∈ Q’s social connections (e.g., the number of check-ins at

the place by each q’s friends). We formalize this problem as a Geo-Social

Group preference Top-k (SG-Topk) query and propose efficient query process-

ing techniques. The outline of the chapter is as follows: Section 5.1 introduces

the research problem and contains the contributions we have made, Section 5.2

explains the problem definition, Section 5.3 describes the proposed techniques,

Section 5.4 consists of experimental evaluation and Section 5.5 concludes the

chapter.

5.1 Introduction

In many applications, a group of users may want to plan an activity to find

a point of interest (POI) for example, some conference attendees would like

104

to go out for dinner together. For this purpose, we consider their respective

locations and social circles to recommend required POIs. In this chapter, we

study a problem of finding top-k places considering their distance from the

group of query users Q and popularity of the place among each query user

qi ∈ Q’s social connections (e.g., the number of check-ins at the place by each

q’s friends).

Consider an example of a group of tourists visiting Melbourne. The group

consists of tourists from various countries e.g., conference attendees from Italy,

Germany and Denmark. They may want to find a nearby pub which is popular

(e.g., frequently visited) among people from their respective countries. This

involves utilizing spatial information (i.e., near by pub, check-ins) as well as

social information (i.e., people who were born-in Italy, Germany and Den-

mark).

Although several types of queries have been investigated on LBSNs [124,

31, 158], to the best of our knowledge, none of the existing methods can be

applied to answer the queries like the above that aim at finding near by places

that are popular in social circles of the query users satisfying social and spatial

constraints. Motivated by this, in this chapter, we formalize this problem as

a Geo-Social Group preference Top-k (SG-Topk) query and propose efficient

query processing techniques. Specifically, a SG-Topk query retrieves top-k

places (points of interest) ranked according to their spatial and social relevance

to the group of query users where the spatial relevance is based on how close

the place is to the location of each group member and the social relevance is

based on how frequently it is visited by the one-hop neighbors of each query

user qi ∈ Q. definition is provided in Section 5.2.1.

Firstly, we present Branch-and-Bound approach to solve our problem. Then,

we propose some optimization techniques to further improve its performance.

105

Our experimental study shows that our optimized algorithm outperforms the

other one.

5.1.1 Contributions

The contributions made in this chapter are listed below.

1. To the best of our knowledge, we are the first to study the SG-Topk

query that retrieves near by places popular among a particular group of

users w.r.t. each query user qi ∈ Q in the social network.

2. We present Branch-and-Bound algorithm followed by some optimization

techniques to further improve the algorithm. The Branch-and-Bound ap-

proach uses R-tree to process places in ascending order of their aggregate

distance from each query user qi ∈ Q and then computes social score of

each place p to finally compute aggregate score i.e., aggScore(p). Since

computation of aggScore(p) of each p ∈ P is computationally expensive,

our optimized approach leverages the FCR-Tree to offer efficient pruning

techniques to prune irrelevant place. Moreover, the optimized algorithm

computes a region based on current found top − kth aggregate score to

quickly check the entries that can be pruned.

3. We conduct an exhaustive evaluation of the proposed schemes using real

dataset and test them on various aggregate functions e.g., min, max, avg.

Our results demonstrate the effectiveness of the proposed schemes.

106

5.2 Preliminaries

5.2.1 Problem Definition

The score of a place is defined in a similar way as in Chapter 3. We briefly

describe it here again.

Score of a place p [24, 28]: Given a query user qi, the score of a place

p ∈ P is the weighted sum of its spatial score (denoted as spatial(p, qi)) and

its social score (denoted as social(p, qi)).

Score(p, qi) = α× spatial(p, qi) + (1− α)× social(p, qi) (5.1)

Let Vp denotes the set of all users that visited (i.e., checked-in at) the place.

The social score social(p, qi) of place p is computed as follows:

social(p, qi) = 1− |Fqi ∩ Vp|
|Fqi|

(5.2)

The spatial score spatial(p, qi) is based on how close the place is to the

query user qi ∈ Q. Formally, spatial(p, qi) = ||p, qi||, where ||p, qi|| indicates

Euclidean distance between the query user and p. Note that social(p, qi) is

always between 0 to 1 and the smaller social score is considered better. In

addition, we also normalize spatial(p, qi) such that it is also between 0 to 1,

e.g., the data space is normalized such that ||p, qi|| ≤ 1.

Aggregate Score of a place p: Given a set of query users Q = {q1, q2, ...qn},

the aggregate score of a place p (denoted as aggScore(p)) is computed using a

monotonic scoring function f which takes as input each Score(p, qi) for every

qi ∈ Q.

aggScore(p) = f(Score(p, qi), ..., Score(p, qn)) (5.3)

107

P ||p, qi|| Social(p, qi) Score(p, qi) aggScore(p)

p1

q1 = 0.10
q2 = 0.14
q3 = 0.12

q1 = 0.6
q2 = 0.4
q3 = 0.8

q1 = 0.35
q2 = 0.27
q3 = 0.46

Avg = 0.36
min = 0.27
max = 0.46

p2

q1 = 0.09
q2 = 0.05
q3 = 0.13

q1 = 0.8
q2 = 0.6
q3 = 0.4

q1 = 0.445
q2 = 0.325
q3 = 0.265

Avg = 0.345
min = 0.265
max = 0.445

p3

q1 = 0.22
q2 = 0.20
q3 = 0.15

q1 = 1.0
q2 = 0.6
q3 = 0.8

q1 = 0.61
q2 = 0.40
q3 = 0.475

Avg = 0.495
min = 0.40
max = 0.61

p4

q1 = 0.20
q2 = 0.17
q3 = 0.10

q1 = 0.2
q2 = 0.4
q3 = 0.4

q1 = 0.20
q2 = 0.285
q3 = 0.25

Avg = 0.245
min = 0.20
max = 0.285

p5

q1 = 0.17
q2 = 0.12
q3 = 0.09

q1 = 0.6
q2 = 0.8
q3 = 0.4

q1 = 0.385
q2 = 0.46
q3 = 0.245

Avg = 0.363
min = 0.245
max = 0.46

Table 5.1: Sample Dataset and Aggregate Scores

For example, if f is average, the aggregate score corresponds to
∑i=n

i=1 Score(p, qi)/n.

Similarly, if f is min, the aggregate score corresponds to minimum of Score(p, qi)

for qi ∈ Q.

Geo-Social Group preference Top-k (SG-Topk) Query: Given a set of

places P = {p1, p2, ...pn} in a LBSN, a SG-Topk query Q returns k places with

smallest aggregate score aggScore(p). The aggScore(p) of each place p ∈ P is

computed as described above depending on the function f used. Some exam-

ples of the function f are min, max and avg. For instance, if f corresponds to

min, the aggregate score will be aggScore(p) = min(Score(p, qi), ..., Score(p, qn))

that is, aggScore(p) = arg min
i:1 to n

Score(p, qi) ∀ qi ∈ Q . As an example, consider

a dataset containing a set of places i.e., P = {p1, p2, p3, p4, p5} and Q is a set

of query users i.e., Q = {q1, q2, q3}. Table 5.1 illustrates spatial score, social

score, and score for each place p for each query user qi and it also shows the

aggregate score.

If f corresponds to avg, α = 0.5 and k = 2, the corresponding SG-Top2

query reports places (p4 and p2) that minimizes the average aggregate score

108

aggScore(p). Similarly, if f corresponds to max, the SG-Top2 query reports

places (p4 and p2) that minimizes the maximum aggregate score (aggScore(p)).

On the other hand, if f corresponds to min, the SG-Top2 query reports places

(p4 and p5) that minimizes the minimum aggregate score (aggScore(p)).

5.3 Techniques Overview

Before presenting our approaches to solve SG-Topk query in detail, first we

provide a brief overview of the approaches and to the best of our knowledge,

there does not exist any technique in literature that can be adopted to answer

the proposed query. First we present Branch-and-Bound approach and then

we present optimization techniques to further improve its performance. The

Branch-and-Bound approach uses R-tree to process places in ascending order

of their aggregate distance from each query user qi ∈ Q and then computes

social score of each place p to finally compute aggregate score i.e., aggScore(p).

Since computation of aggScore(p) of each p ∈ P is computationally expensive,

our Optimized approach leverages the FCR-Tree (as defined in section 3.4.3.1)

to offer efficient pruning techniques to prune such candidate places that cannot

be a part of top-k places.

5.3.1 Branch-and-Bound (B&B) Algorithm

Before presenting our Optimized approach, we first discuss B&B approach to

process SG-Topk query. The B&B approach is to traverse Facility R-Tree

in best-first manner. For this purpose, we use a min-heap where the key

for each entry E is minAggDist(Q,E). To compute minAggDist(Q,E), the

algorithm computes minimum distance of E from each query user qi ∈ Q and

then according to the aggregate function f provided, the algorithm finalises the

value of minAggDist(Q,E). For example, if f = min, the minAggDist(Q,E)

109

is the smallest minimum distance between E and any of the qi. Then, we

initialize min-heap with the root of Facility R-Tree.

Further, the algorithm starts de-heaping entries in ascendingminAggDist(Q,E)

order. If a de-heaped entry E is a node, it computes its lower-bound aggre-

gate score (denoted as LBaggScore(E)) based on its minAggDist(Q,E) only,

assuming that its social score i.e., social(E) is minimum. Further, if the de-

heaped entry E is an object (a place p), it computes its exact aggregate score

aggScore(p) and updates top-k places. Finally, at any point, if an entry E

having lower-bound aggregate score worse than current kth best place score

(denoted as aggScorek) is de-heaped, the algorithm terminates. The reason

is, every subsequent entry E in min-heap will have worse aggregate score than

the current aggScorek.

5.3.2 Optimized Algorithm

This section focuses on our Optimized approach to process SG-Topk queries

and before presenting the technique in detail, first we describe a specialized

index specifically designed for the technique.

5.3.2.1 Computation Module:

In B&B algorithm, since lower-bound of Facility R-tree nodes is computed

based only on minAggDist(Q,E), it is loose which results in high computa-

tion cost. To develop an efficient approach to computing solution for SG-Topk

query, we propose few improvements in the algorithm. First, we present high-

lights of the improvements we made.

1. First we compute tighter lower-bound on aggregate score of a node entry

110

E i.e., LBaggScore(E) using better estimate of its social score. For this

purpose, the algorithm exploits FCR-Tree of each query user qi ∈ Q.

2. Then, the algorithm computes a region (denoted as region bounded rect-

angle, RBR) based on current aggScorek to quickly check the entries

that can be pruned.

3. Finally, while en-heaping an entry E, we make an observation to avoid

computing its lower-bound on social score by associating its parent node’s

lower-bound on social score with it as an initial estimate.

The details of the above mentioned improvements are provided next.

1. Computing Lower bound on Aggregate score:

Recall that in B&B approach, to estimate best possible aggregate score LBaggScore(E)

of an entry E, we assume that its social score i.e., social(E) is maximum and

therefore, its lower-bound is loose. To overcome this limitation, the Optimized

algorithm leverages Friends Check-ins R-Tree (FCR-Tree) to estimate social

score of the E (denoted as LBSocial(E)) which in return, tightens the lower-

bound on aggregate score LBaggScore(E).

Specifically, to compute LBSocial(E) of an entry E of Facility R-tree,

the algorithm traverses specialized index i.e., FCR-Tree of a query user qi to

compute number of its objects (root MBRs of Check-In R-trees of friends)

intersecting with E. Let’s consider an example in Figure 5.1 where we have a

Facility R-tree entry E and some FCR-Tree objects belonging to qi’s friends

ranging from u1 to u5. Since only u1, u4 and u5 overlap with E, they might have

checked-in at any place p in E. Therefore, the maximum number of friends

who might have visited a place in E is 3, which can be used to obtain the

111

lower-bound on social score. Let’s denote the number of overlapping objects

as numOverlap, the lower-bound on social score is computes as 1− numOverlap
|Fqi| .

In addition, once the lower-bound on social score against a query user qi is

computed, the lower-bound on score (denoted as LBScore(E, qi)) is computed

against the query user qi using equation 5.4. The pseudocode of computing

LBScore(E, qi) is given in Algorithm 8.

Figure 5.1: MBR Social Score Bound

LBScore(E, qi) = α×minDist(E, qi) + (1−α)×
(

1− numOverlap

|Fqi|

)
(5.4)

2. Optimal MBR based Search Regions:

Recall that in B&B, we need to compute minDist(E, qi) n times to compute

minDist(E,Q). For this purpose, we require to compute minimum distance

112

Algorithm 8: Get-LBaggScore(mbr,Q)

1 numOverlap = ∅;
2 foreach user qi ∈ Q do
3 Issue a range query on FCR-Tree;
4 numOverlap = Compute number of objects overlapping with the

mbr;

5 LBSocial(mbr, qi) = 1− numOverlap
|Fqi| ;

6 LBScore(mbr, qi) =
α×minDist(mbr, qi) + (1− α)× LBSocial(mbr, qi) ;

7 end
8 LBaggScore(mbr) = f(LBScore(mbr, qi), ..., LBScore(mbr, qn));
9 return LBaggScore(mbr)

from the entry E to each qi and if this distance is greater than aggScorek
α

, we

can ignore E. However, this requires computing minDist(E, qi) n times. To

overcome this problem, we create a Region Bounding Rectangle (denoted as

RBR) such that if an entry E does not overlap with it, it is pruned.

In particular, RBR is defined by corresponding aggregate function f and

its size depends on current aggScorek and α i.e., aggScorek
α

. The algorithm only

accesses those entries which intersect with it. Figure 5.2 demonstrates two

RBRs for min, max and average aggregate functions.

• Min : Consider SG-Topk query with Q = {q1, q2, q3} in Figure 5.2(a).

The shaded area corresponds to the RBR for min (where n = 3) which

is a minimum bounding rectangle of union of three circles (centred at

q1, q2, q3) each with radius aggScorek
α

. Entry E for example, should be not

visited since it is not intersecting with the RBR and cannot contain a

place p whose smallest score w.r.t. any of the qi ∈ Q is smaller than

current aggScorek i.e., for any place p in E, aggScore(p) > aggScorek.

• Max : The RBR corresponds to the intersection of three minimum

bounding rectangles (shaded area) for each circle (centred at correspond-

113

ing qi) with radius aggScorek
α

as illustrated in Figure 5.2(b). Let’s take an

example of an entry E intersecting with the circle of q3. This entry E

should not be visited because for any place p in E, which is outside this

intersected area, dist(qi, p) > aggScorek for at least one qi. Therefore,

aggScore(p) > aggScorek.

• Average : For f=Average, the RBR is same as f=min because a place

p for which aggScore(p) regarding f=min is greater than aggScorek, its

aggScore(p) regarding f=Average is also greater than aggScorek. Note

that a place p that is outside RBR, has aggScore(p) > aggScorek be-

cause its average distance is greater than aggScorek
α

. For example, an entry

E should not be visited since it is not intersecting with the RBR as shown

in Figure 5.2(a). Therefore, it cannot contain a place p whose average

score (aggScore(p)) w.r.t. all qi ∈ Q is smaller than current aggScorek.

(a) Search Region (f=avg, min) (b) Search Region (f=max)

Figure 5.2: MBR Based Search Space

3. Observation on Social Score:

114

Recall that in step 1, to compute lower-bound aggregate score of an entry E, it

requires traversing FCR-Tree another time while inserting it in priority queue

for the first time. To avoid this overhead, we consider its parent’s social score

lower-bound as an initial estimate of E ′s social score lower-bound which is a

valid lower-bound on a child’s social score.

We next describe the algorithm in detail with pseudocode given in Algo-

rithm 9.

5.3.2.2 Algorithm Overview:

Algorithm 9 starts traversing Facility R-tree in best-first approach. For this

purpose, a min-heap is initialized with the root node with LBaggScore(root)

as a sorting key (at line 3). To compute LBaggScore, it first invokes Get-

LBaggScore(mbr,Q) (algorithm 8). Then in first loop (at line 4), algorithm

starts de-heaping entries iteratively and examines whether or not it intersects

with RBR, if it does not, it is immediately pruned along with all the entries lie

inside (at line 6). Further, if the entry E overlaps and is a place p (an object),

the algorithm computes its aggScore(P) (at line 8) and update current kth

best place score aggScorek and RBR (at line 9).

Otherwise, the algorithm invokes Get-LBaggScore(mbr,Q) (algorithm 8)

to compute LBaggScore(E) (at line 11). Subsequently, if LBaggScore(E) is

better than current aggScorek, in second loop, it starts en-heaping its child

nodes provided that they overlap with RBR (at line 14). Moreover, if a child

node c qualifies, the algorithm computes its LBaggScore(c) by inheriting its

social score from its parent. Consequently, if the estimated LBaggScore(c) of c

115

Algorithm 9: Optimized Algorithm

1 min-heap = ∅, aggScorek =∞;
2 LBaggScore = Get-LBaggScore(root,Q);
3 Initialize min-heap with root of Facility R-tree with LBaggScore as a

key ;
4 while min-heap 6= ∅ do
5 De-heap entry E;
6 if E overlaps with RBR then
7 if E is an object then
8 Compute aggScore(E);
9 Update aggScorek and RBR;

10 else
11 LBaggScore(E) = Get-LBaggScore(E,Q) // Algorithm 8

12 if LBaggScore(E) < aggScorek then
13 foreach child node c of E do
14 if c overlaps with RBR then
15 LBaggScore(c) =

α×minAggDist(c,Q) + (1− α)× LBsocial(E);
16 if LBaggScore(c) < aggScorek then
17 insert c in min-heap;

18 end

19 end
20 return Return Top-k Places

is less than the current aggScorek, it is finally en-heaped for further processing

(at line 17). Once min-heap is emptied, the algorithm terminates and reports

top-k places (at line 20).

5.4 Experiments

5.4.1 Experimental Setup

To the best of our knowledge, this problem has not been studied before and no

previous algorithm can be trivially extended to answer SG-Topk queries there-

fore, we evaluate the proposed algorithms on their performance by comparing

them with each other.

116

Parameters Values
Group Size (n) 2, 4, 6, 8

f min, max, avg
Query MBR Size (km) 50, 100, 200, 400

Average Friends 200, 400, 600, 800
k 5, 10, 15, 20

Table 5.2: Parameters (Default shown in bold)

Each method is implemented by employing the exact experimental settings

and datasets described earlier in Section 3.5.1. Various parameters used in

our experiments are shown in Table 5.2 where Query MBR Size represents the

size of the region in which query users are spread. For each experiment, we

randomly choose 10 groups of query users and consider them as query groups

Q.

5.4.2 Performance Evaluation

Effect of k: In this evaluation, we test our proposed algorithms for various

values of k for min, max and avg function. Note that for f = min in Figure

5.3(a), Optimized Algorithm (OA) is upto 10 times faster and the performance

is not significantly affected by the value of k. The reason is that, the main cost

depends on traversing Facility R-tree and then computing lower bounds of the

nodes and this dominant cost is not affected by k. Similarly, in Figure 5.3(b)

for f = max, Branch-and-Bound Algorithm (B&B) takes little bit longer to

process the query due to more number of places being qualified as candidates.

However, for f = avg both the algorithms performs better as compared to other

functions where OA outperforms B&B by atleast 8 time as shown in Figure

5.3(c).

Effect of Average number of Friends: In this experiment, we study the

effect of number of friends on B&B and OA algorithms in Figure 5.4. Note

that the size of FCR-Tree relies on number of friends of a query user qi ∈ Q.

117

 0

 6

 12

 18

 24

5 10 15 20

C
P

U
 C

o
s
t

(S
e
c
)

Effect of K

B&B

1
4
.7

1

1
5
.4

5

1
6
.2

3

1
7
.1

6

OA

1
.9

8

2
.0

6

2
.1

3

2
.2

5

(a) f=min

 0

 6

 12

 18

 24

 30

5 10 15 20

C
P

U
 C

o
s
t

(S
e
c
)

Effect of K

B&B

1
7
.7

3

1
8
.3

1

1
8
.8

7

1
9
.6

1OA

2
.2

9

2
.3

6

2
.4

1

2
.5

0

(b) f=max

 0

 6

 12

 18

 24

5 10 15 20

C
P

U
 C

o
s
t

(S
e
c
)

Effect of K

B&B

1
2
.7

3

1
3
.4

6

1
4
.3

1

1
5
.1

3

OA

1
.4

6

1
.5

3

1
.6

0

1
.7

1

(c) f=avg

Figure 5.3: Effect of varying number of requested places (k)

Also, the distribution of each friend’s check-ins in search space determines the

size of root node of Check-in R-Tree. This in return, affects the lower-bound

on social score of Facility R-tree entries in OA Algorithm. In B&B algorithm,

CPU cost mainly depends on computing the social score of the places p ∈ P

and as we increase the number of friends, the CPU cost increases. On the

other hand, OA algorithm is less affected due to the optimization techniques.

Note that, if f=avg, both the algorithms perform better than min and max

functions due to lower aggScorek which aids in pruning more places.

 0

 6

 12

 18

 24

 30

 36

200 400 600 800

C
P

U
 C

o
s
t

(S
e
c
)

#Ave.Friends

B&B

9
.8

6 1
5
.4

5 2
2
.7

7 2
9
.3

1

OA

1
.6

1

2
.0

9

2
.6

8

3
.3

9

(a) f=min

 0

 6

 12

 18

 24

 30

 36

200 400 600 800

C
P

U
 C

o
s
t

(S
e
c
)

#Ave.Friends

B&B

1
0
.3

4 1
7
.5

3 2
2
.9

6 3
0
.0

1

OA

1
.5

2

1
.9

7

2
.5

1

3
.1

3

(b) f=max

 0

 6

 12

 18

 24

 30

 36

200 400 600 800

C
P

U
 C

o
s
t

(S
e
c
)

#Ave.Friends

B&B

8
.4

2 1
3
.4

6 1
9
.3

7

2
7
.1

1

OA

1
.2

1

1
.5

3

1
.9

6

2
.5

1

(c) f=avg

Figure 5.4: Effect of varying number of Friends

Effect of Query MBR Size: Next in Figure 5.5, we evaluate the performance

of our algorithms on query MBR size. For this purpose, we randomly spread

the query users in the region of size between 50 to 400 kilometres. Note that,

as we increase the size, it does not affects the query processing to great extent

since the main cost involves traversing Facility R-tree, computing lower-bounds

118

and social score of the query. Note that for f = min and f = max in Figure

5.5(a) and 5.5(b) respectively, Optimized Algorithm (OA) is upto 10 times

faster than B&B algorithm. However, if f = average, the algorithms perform

relatively better as illustrated in Figure 5.5(c).

 0

 6

 12

 18

 24

 30

50 100 200 400

C
P

U
 C

o
s
t

(S
e
c
)

Query MBR Size (km)

B&B

1
5
.4

1

1
5
.6

9

1
5
.9

7

1
6
.5

2

OA

1
.9

9

2
.0

3

2
.0

8

2
.1

6

(a) f=min

 0

 6

 12

 18

 24

50 100 200 400

C
P

U
 C

o
s
t

(S
e
c
)

Query MBR Size (km)

B&B

1
5
.3

8

1
5
.5

1

1
5
.8

4

1
6
.2

9

OA

2
.0

3

2
.0

7

2
.1

2

2
.1

9

(b) f=max

 0

 6

 12

 18

 24

50 100 200 400

C
P

U
 C

o
s
t

(S
e
c
)

Query MBR Size (km)

B&B

1
1
.7

9

1
2
.0

1

1
2
.3

1

1
2
.7

9

OA

1
.4

1

1
.4

7

1
.5

2

1
.5

9

(c) f=avg

Figure 5.5: Effect of varying Query MBR Size

Effect of Group Size: In this evaluation, we test our proposed algorithms

for different group sizes ranging from 2 to 8 for min, max and avg aggregate

functions in Figure 5.6. As we increase the group size, it greatly affects the

performance of the two algorithms because the algorithms have to process

spatial and social information for more query users. However, for larger groups,

OA performs better than the other one. In addition, if f = avg, both the

algorithms perform relatively better than min and max as shown in Figure

5.6(c).

 0

 6

 12

 18

 24

 30

2 4 6 8

C
P

U
 C

o
s
t

(S
e
c
)

Group Size

B&B

1
2
.7

1

1
6
.4

5 2
0
.7

7

2
4
.3

6

OA

1
.8

1

2
.0

9

2
.4

2

2
.7

5

(a) f=min

 0

 6

 12

 18

 24

 30

2 4 6 8

C
P

U
 C

o
s
t

(S
e
c
)

Group Size

B&B

1
2
.9

6

1
6
.5

3 2
1
.0

1

2
3
.5

7

OA

2
.0

9

2
.3

6

2
.7

2

3
.2

8

(b) f=max

 0

 6

 12

 18

 24

 30

2 4 6 8

C
P

U
 C

o
s
t

(S
e
c
)

Group Size

B&B

1
0
.4

6

1
3
.6

1 1
7
.3

9 2
1
.8

7OA

1
.1

3

1
.5

5

2
.8

7

2
.1

8

(c) f=avg

Figure 5.6: Effect of varying Group Size (n)

119

5.5 Conclusions

In this chapter, we study Spatial Group Top-k queries in Social Networks and

formalize this problem as a Geo-Social Group preference Top-k (SG-Topk)

query that retrieves near by places popular among a particular group of users

w.r.t. each query user qi ∈ Q in the social network. We present Branch-and-

Bound algorithm followed by some optimization techniques to further improve

the algorithm. The Branch-and-Bound approach uses R-tree to process places

in ascending order of their aggregate distance from each query user qi ∈ Q

and then computes social score of each place p to finally compute aggregate

score i.e., aggScore(p). Since computation of aggScore(p) of each p ∈ P

is computationally expensive, our Optimized approach leverages the FCR-

Tree to offer efficient pruning techniques to prune irrelevant place. Moreover,

the optimized algorithm computes a region based on current found top − kth

aggregate score to quickly check the entries that can be pruned. In addition

to this, we conduct an exhaustive evaluation of the proposed schemes using

real dataset and test them on various aggregate functions e.g., min, max, avg.

Our results demonstrate the effectiveness of the proposed schemes.

120

Chapter 6

Spatial Temporal Top-k Queries

in Social Networks

In this chapter, we investigate Spatial Temporal Top-k queries in Social Net-

works and propose a new type of query called Geo-Social Temporal Top − k

(GSTTk) query by adding a third dimension (time) to our first work presented

in chapter three which retrieves top-k places considering their distance from

the query user q and popularity of the place among q’s social connections dur-

ing a certain period of time. The outline of the chapter is as follows: Section

6.1 introduces the research problem and the contributions we have made, Sec-

tion 6.2 explains the problem definition, Section 6.3 describes the proposed

techniques, Section 6.4 consists of experimental evaluation and Section 6.5

concludes the chapter.

6.1 Introduction

Temporal queries retrieve query results based on given temporal properties. It

is noteworthy that time dimension has a strong influence in many domains, for

121

example, Topic Detection and Tracking, Spatial queries, Information retrieval,

Top-k queries, Geo-Textual queries [131, 132]. Therefore, in this chapter, we

added a third dimension (time) to our first work presented in chapter three

and study a problem of finding top-k places considering their distance from the

query user q and popularity of the place among q’s social connections during a

certain period of time. Consider an example of a visitor from Switzerland vis-

iting Melbourne. She maybe keen in finding a nearby caf é which serves Rösti

(a traditional Swedish hot cake) with coffee and has become popular (e.g.,

frequently visited) among people from Switzerland in last year. This involves

utilizing spatial information (i.e., nearby caf é, check-ins), social information

(i.e., people who were born-in Switzerland) as well as temporal information

(i.e., caf és that are visited during last year).

The applications of such queries are not only limited to traditional location-

based social services. These can also be used in disaster management, public

health, security, tourism, marketing etc. For example, in disease monitoring,

we may want to find frequently visited places (top-k) in last 6 months by people

infected by Ebola virus. Consider a health-based social network where each

health risk (e.g., Ebola) is an entity and people affected by it are connected

to it via an edge. One can issue a query to find the top-k frequently visited

places in the last 6 months by the one-hop neighbors of the Ebola entity.

Similarly, for instance in public safety and crime prevention, law enforcement

agencies may be keen on finding frequently visited places in last one month by

users who have tweeted about Drugs and have also joined some pages/groups

containing/sharing drugs related information on social networks. The users are

socially connected through an edge (entity) e.g., a tweet, a page or a group in

social network and then agencies can exploit one-hop neighbours of the entities

to find frequently visited places to raid and prevent drugs dissemination.

122

Further, such kind of queries can also be exploited by various businesses.

Consider a chain of Chinese grocery stores that is interested in opening a

new store in an area/shopping centre which is frequently visited by Chinese

people in recent months. The Chinese people are socially connected through

a Facebook page for China having born-in relationship. By analyzing their

visits information in recent months, the company can discover a suitable venue

for this purpose.

As we have remarked before, several types of queries have been investigated

on LBSNs [31, 149], to the best of our knowledge, none of the existing methods

can be applied to answer the queries like mentioned above that aim at finding

nearby places that are popular among a particular group of users satisfying

social and temporal constraint. Motivated by this, in this chapter, we formalize

this problem as a Geo-Social Temporal Top-k (GSTTk) query and propose

efficient query processing techniques. Specifically, a GSTTk query retrieves

top-k places (points of interest) ranked according to their spatial, social and

temporal relevance to the query user where the spatial relevance is based on

how close the place is to a given location and, the social and temporal relevance

is based on how frequently it is visited by the one-hop neighbors of the query

user in the social graph during given time interval. A formal definition is

provided in Section 6.2.

We make the following contributions in this chapter.

• We believe that we are the first to study the GSTTk query that retrieves

nearby places popular among a particular group of users in the social

network during specified temporal interval.

• At first, we present two different approaches i.e., Social-First and Spatial-

First to solve our problem and then we propose our main algorithm called

123

Hybrid. In addition, we propose three dimensional index structures like

3DFCR-Tree and 3D Check-In R-Tree which facilitate in efficient pruning

of objects based on temporal constraints.

• We conduct an exhaustive evaluation of the proposed schemes using real

dataset and demonstrate the effectiveness of the proposed approaches.

Our experiments show that our main algorithm outperforms the other

two.

6.2 Problem Definition

The score of a place is defined in a similar way as in Chapter 3. We briefly

describe it here again.

Score of a place p: Given a query user q, a range r and a temporal interval

I[st, et] (where st denotes start time and et denotes end time), the score of a

place p ∈ P is 0 if ||q, p|| ≥ r where ||q, p|| is the Euclidean distance between

query location and p. If ||q, p|| ≤ r, the score of p is a weighted sum of

its spatial score (denoted as pspatial) and its social score (based on number of

check-ins of query q’s friends in the given temporal interval I, which is denoted

as psocial).

p.score = α× pspatial + (1− α)× psocial (6.1)

Let p.visitors denotes the set of all users that visited (i.e., checked-in at)

the place p during given temporal interval I(st, et). The social score psocial of

place p is computed as follows:

psocial =
|Fq ∩ p.visitors|

|Fq|
(6.2)

124

Intuitively, psocial is the proportion of friends of q who have visited a place

p during given temporal interval I.

The spatial score pspatial is based on how close the place is to the query

location. Formally, given a range r, pspatial = 0 if the place does not lie in the

range r. Otherwise, pspatial = (r − ||q, p||) where ||q, p|| indicates Euclidean

distance between query location and p. Note that psocial is always between 0

to 1 and we normalize pspatial such that it is also within the range 0 to 1, e.g.,

the data space is normalized such that ||q, p|| ≤ 1 and r ≤ 1.

Geo-Social Temporal Top-k (GSTTk) Query: Given an LBSN, a GSTTk

query q returns k places with the highest scores where the score p.score of each

place p is computed as described above.

Example 2.1: Figure 6.1(a) illustrates the locations of a set of places P =

{p1, p2, p3, p4} and a query q. Let’s assume that the query q is with k = 2,

range r = 0.15, temporal interval I is ”during last year” and has a set of

friends Fq = {u1, u2....u9, u10}. The number in bracket next to each place is

the number of friends of q who visited the place during last year. Figure 6.1(b)

shows the Euclidean distances and visitors (from the friends of q i.e., Fq) of

each place during all times (column 3) as well as during last year (column 4).

Let’s assume α = 0.5, the spatial score of p2 is pspatial = 0.07, the social score

of p2 is psocial = 0.30 and by applying Equation 6.1, we get the score of p2 i.e.,

p2.score = 0.5× 0.07 + (1− 0.5)× 0.30 = 0.185.

Similarly, for p1, the spatial score is pspatial = 0.05, the social score of p1

is psocial = 0.0 and by applying the same equation, we get the score of p1 i.e.,

p1.score = 0.5× 0.05 + (1− 0.5)× 0.0 = 0.025. For p3 and p4, their scores will

be Score(p3) = 0.205 and Score(p4) = 0.115 respectively. The result of the

query q is (p2, p3) according to scoring function in equation 6.1. The important

notations used in this paper are listed in Table 6.1.

125

(a) A Query q

(b) Sample Dataset

Figure 6.1: Temporal Top-k Query Example

6.2.1 Framework Overview

The proposed framework consists of three techniques to answer GSTTk query:

I) Social-First, II) Spatial-First and III) Hybrid. The Social-First approach

first processes the social component (e.g., friendship relations and their check-

ins) for given temporal interval I and then processes spatial component (e.g.,

places in given range). The Spatial-First approach initially processes the spa-

tial component followed by processing the social component. In contrast, Hy-

brid approach is capable of processing both social and spatial components

simultaneously to answer the query. More specifically, it utilizes two types of

pre-processed information associated with each user u ∈ U .

1. Her check-in information (check-ins) and summary of her friends’ check-

126

Notation Definition
q Query User i.e., q ∈ U
u User i.e., u ∈ U
p A place i.e., p ∈ P
I Temporal Interval
st Start Time
et End Time
Fq Set of Friends of query user q
p.visitors Set of visitors of a place p
r Given query range
k Number of requested places
cij Range Grid’s cell
Pc Set of places lie inside a cell
Vcell Set of visitors of a cell

Table 6.1: Notations

ins information.

2. The information which summarizes the visitors’ check-in for each place

p.

Precisely, we index places, users’ check-in information and visitor’s check-in

information by exploiting R-tree [118]. Before presenting our techniques, we

briefly describe the indexes used in the techniques.

3D Check-In R-Tree: For each user u, we create a 3D Check-In R-Tree

which indexes all the check-ins of the u. This is a three-dimensional R-tree,

where two dimensions belong to location coordinates of a check-in and the

third dimension corresponds to timestamp of the check-in.

127

6.3 Proposed Techniques

6.3.1 Social-First based Approach

In this approach, scores of the places in given range r are computed by consid-

ering the check-ins of each friend u ∈ Fq. Specifically, for each friend u ∈ Fq, its

3D Check-In R-Tree is traversed to obtain the places in the range where u has

checked-in during given temporal interval I. The social score of each checked-

in place by any friend is updated. When every user u ∈ Fq is processed, we

have the final social score of each place in the range. Next, the algorithm

considers each place in the range and computes its final score. Finally, the

top-k places are returned.

Let’s assume, the score of current kth place p is Scorek, it was shown in [24]

that if the ||q, p|| ≥ (r − Scorek
α

), we can prune that place p. We next describe

the technique in detail with pseudocode given in Algorithm 10.

Initially, in the first loop of the algorithm (at line 1), it exploits 3D Check-

in R-Tree of each friend u ∈ Fq of query q to get all places in range r provided

that, its time dimension intersects with the given time interval I. Then, the

algorithm computes social score and score of each candidate place p in r (at

line 4) while maintaining the score of current kth place p (at line 7). Further,

in the third loop (at line 11), the Facility R-Tree is exploited to compute the

score of those places p ∈ P in range r which are not visited by q’s friends

(at line 13). Hence, their respective scores only comprises of spatial score and

their (Psocial) = 0. Finally, the top-k result set is retrieved using Scorek (at

line 16).

128

Algorithm 10: Social-First

Input : Query q, range r, weight-age constant α, integer k, Time
Interval I(st, et)

Output: Result set R
1 foreach friend u in Fq do
2 if time interval I overlaps with 3D Check-In R-tree’s time

dimension then
3 Issue a range query on 3D Check-In R-tree;
4 foreach place p in r do
5 if st ≤ timecheck−in(p) ≤ et then
6 update social score and score of p;
7 update Scorek;

8 end

9 end
10 Issue a range query on Facility R-Tree;
11 foreach place p in range r do
12 if p.dist ≤ (r − (Scorek/α)) then
13 compute Score(p);
14 update Scorek;

15 end
16 return R

6.3.2 Spatial-First based Approach

Initially, this approach retrieves all places in given range r and computes spatial

score of each place p in ascending order of distance from q. For each accessed

place, its social score is computed by exploring the visitors of the place and

the friends of the query user q. For each unaccessed place p, an upper bound

is computed using its distance from q and assuming its social score to be 1

(the maximum possible). The algorithm terminates if the upper bound score

of the next place is smaller than the score of kth place found so far.

Let’s assume, the score of current kth place p is Scorek, it was shown in [24]

that if the ||q, p|| ≥ (r− (Scorek−(1−α))
α

), the process stops since every subsequent

place p in the priority queue is further than the current place p from q. Next,

we elaborate the technique in detail with pseudocode given in Algorithm 11.

129

The algorithm starts with the issuance of a range query on Facility R-Tree

to retrieve all places in range r (at line 2). Then in first loop (at line 3), for

each place p ∈ P in range r, we compute the Score of p in ascending order of

the distance of the place p from q. To achieve this, a min-heap is initialized

with the root entry of Facility R-Tree with ||q, e|| as a key to process spatial

component first. Further, it computes social score of a place p by retrieving

the number of friends u ∈ Fq who visited the place in given temporal interval I

by exploring the visitors’ information of the place (at line 8). Finally, the final

score of place p is computed using equation 6.1 (at line 12). If the distance of

the retrieved place p from q i.e., ||q, p|| ≥ (r− (Scorek−(1−α))
α

), the process stops

(at line 5) since every subsequent place p entry in min-heap is further than the

retrieved place p entry from q.

Algorithm 11: Spatial-First

Input : Query q, range r, weight-age constant α, integer k, Time
Interval I(st, et)

Output: Result set R
1 Vp = ∅;
2 Issue a range query on Facility R-Tree;
3 foreach place p in range r do
4 if ||q, p|| ≥ (r − ((Scorek − (1− α))/α)) then
5 return Result set R
6 Vp = Get p.visitors;
7 sort Vp on time;
8 foreach visitor v ∈ Vp do
9 if st ≤ VcheckInT ime ≤ et then

10 update Psocial;

11 end
12 Compute Score of p ;
13 update Scorek ;

14 end
15 return Result set R

130

6.3.3 Hybrid Approach

This section focuses on our third approach (i.e., Hybrid) to process GSTTk

queries which is capable of processing social, spatial and temporal components

simultaneously. Before presenting the technique in detail, we describe our

index and space partitioning techniques.

3D Friends Check-Ins R-Tree: In addition to the previous indexes, for

each user u, we introduce another index called 3D Friends Check-Ins R-tree

(3DFCR-Tree) which maintains the summary of check-ins of the user u’s

friends. Specifically, 3DFCR-Tree stores check-in information of each friend of

u by indexing a few MBRs for each friend. Thus, it represents the summary

of all friends check-ins.

One approach is to use the root MBR of each of u’s friends 3D Check-

In R-Tree and index them in 3DFCR-Tree. The problem with indexing root

MBR is that, many root nodes may be too big (e.g., consider a user who has

checked-in in every continent) and this would result in huge overlap among the

MBRs affecting the effectiveness of the R-tree. To overcome the shortcoming,

we propose to index the children of the root nodes instead of the root nodes.

Let’s assume a query q ∈ U where the friends of q are Fq = {u1, u2, u3. . . u19, u20}.

Figure 6.2(a) illustrates the idea of the 3DFCR-Tree of q. Similarly, Figure

6.2(b) shows one of the leaf nodes of a 3DFCR-Tree which indexes child entries

of root MBR of few friends’ (e.g., u1, u3, u7) 3D Check-In R-Trees.

Visitors Check-Ins R-Tree (VCRTree): As described earlier, for each

user, we maintain her friends’ summary to prune irrelevant friends when a

query arrives. Similarly, each place p has visitors (p.visitors containing their

IDs) and their check-ins information during different times. To maintain this

information, we create an R-tree (denoted as VCRTree) and each indexed

131

(a) Summary of Friends’ check-Ins

(b) Leaf Node

Figure 6.2: 3D Friends Check-Ins R-Tree

point is a two-dimensional point where one dimension is visitor ID and other

dimension is check-in time.

6.3.3.1 Algorithm Overview:

132

Initially, when a query arrives, we create a two dimensional grid (which covers

given range r) on the fly. For each cell of the grid, we compute an upper bound

on score for each place that may lie in the cell (to be explained later) and based

on the upper bound, we access places in the order to prune unnecessary places

and friends which are not relevant. Secondly, by employing VCRTree for re-

maining candidate places, we further prune the irrelevant ones based on social

and temporal criteria. Below, we explain the pruning criteria in detail with

pseudocode given in Algorithm 12.

Using Range Grid: In this step, we construct the on the fly 2D-Grid to

prune two kind of objects based on 3DFCR-Tree as follows.

1. Pruning Friends: If an MBR of 3DFCR-Tree does not overlap with

the grid or with given temporal interval I, we can prune it which in return,

prunes that particular friend. The pruned friends are the friends of the query

who have not checked-in in given range r during given temporal interval I.

Specifically, to compute the upper bound on social score of a cell cij of range

grid, the algorithm traverses 3DFCR-Tree of a query user q to compute number

of objects (child nodes of root of friends’ Check-In R-trees) intersecting with

the cell. Let’s consider an example in Figure 6.3 where we have a range grid

cell cij and some 3DFCR-Tree objects belonging to q’s friends ranging from

u1 to u5. Since only u1, u4 and u5 overlap with cij, they might have checked-in

at any place p in the cell. Therefore, the maximum number of friends who

might have visited a place in the cell is 3, which can be used to obtain the

upper bound on social score.

2. Pruning Places: Each cell cij in the grid contains a list of places

133

Figure 6.3: A cell’s Social Score Upper Bound

Pc that lie inside it and a list of overlapping MBRs of 3DFCR-Tree (denoted

as Vcell) based on criteria described above. Once the list Vcell for each cell

is fetched, an upper bound on the score (denoted as Scorecell) of each cell is

computed using equation 6.3.

Scorecell = α(r −mindist(cell, q)) + (1− α)

(
|Vcell|
|Fq|

)
(6.3)

Since, |Vcell| denotes the number of query friends who might have visited a

place in the cell within the query temporal interval, the upper bound on social

score of a cell is computed as |Vcell||Fq | . Similarly, (r −mindist(cell, q)) gives an

upper bound on the spatial score of any place in the cell where mindist(cell, q)

denotes the distance between the query q and the nearest place p to the q in

the cell.

In first loop (at line 1), for each cell in descending order of the Scorecell,

the algorithm accesses each place p in the cell (at line 4) to compute score

of the place while maintaining the current kth place score (at line 7). If the

current kth place score is greater than the next cell’s Scorecell, the algorithm

stops since all the subsequent cells can not contain a place with higher score

134

than current kth place’s score (at line 3). Below, we describe how to compute

the score of a candidate place efficiently.

Algorithm 12: Hybrid Algorithm

1 foreach Range Grid cell cij in descending order of upper bound scores
do

2 if Scorecell ≤ Scorek then
3 return top-k results;
4 foreach place p in cell cij do
5 ComputeScore(p) ; // Algorithm 13

6 end
7 Update top-k results and Scorek;

8 end

6.3.3.2 Computing Score of a Candidate Place:

Intuition: A näıve approach: Let’s consider a query q with a list of friends

and their check-ins, and a place p with a list of visitors. To compute score of

the place, we have to traverse through whole friends’ list and visitors’ list to

see if a friend has visited the place during given temporal interval I.

In general, the above approach is not efficient since in many applications,

the size of Fq may be huge e.g., people born-in Germany. To speed-up the

query processing, we employ an R-Tree (VCR-Tree) to index visitor IDs and

their check-in times (as described earlier).

Let’s consider an example where we have three MBRs of VCR-Tree (R1,

R2 and R3) shown in Figure 6.4 along with given temporal interval I(20, 45)

(shaded area) and a list of friends Fq. Clearly, MBR R2 neither intersects

with any user in Fq (see the broken lines) nor with given temporal interval

I. Therefore, we can prune the MBR. Note that, MBR R3 does overlap with

given temporal interval I. However, it does not intersect with any user in Fq

135

and can also be pruned. Similarly, we can prune user U11 since none of the

three MBRs intersect with it. Since MBR R1 intersects with both the Fq and

given temporal interval I, it might contain check-ins of the friends. In Figure

6.4, the relevant users of the query q are U14, U18 and U21 (shown in solid)

who visited the place during given temporal interval I. Next, we explain the

technique in Algorithm 13 with pseudocode given below.

Figure 6.4: Social Score Computation Example

To compute the score of a candidate place p, the algorithm starts finding

the friends of q who visited the place p by traversing the Fq in ascending order

of friend IDs (at line 1). For this purpose, it accesses MBRs of VCRTree of the

place p based on their minimum visitor ID by first initializing a min-heap with

root MBR of VCRTree with minimum visitor ID as sorting key (at line 2).

Then, in first loop (at line 3), the algorithm starts de-heaping entries iteratively

and examines whether or not it intersects with the remaining number of friends

in Fq (to be verified as visitors and denoted as Fq.remaining) and given temporal

136

interval I (at line 7). If the entry E intersects with either of the two and is also

an object (i.e., check-in belongs to a friend in the Fq), the algorithm either

updates the social score of the place p or prunes it based on an upper bound

on the score of the place p (denoted as PmaxScore) using Equation 6.4.

PmaxScore = α× pspatial + (1− α)× PmaxSocial (6.4)

To choose from one of the two options, the algorithm first computes PmaxScore

of the place p using maximum possible social score of the place p (denoted as

PmaxSocial) which is computed as described in Equation 6.5. Let Fq.traversed

denotes a subset of the Fq which has been traversed so far to find friends in

the Fq who visited the place p and assuming all the remaining friends in the

Fq.remaining have visited the place p.

PmaxSocial =
|Fq.traversed ∩ p.visitors|+ |Fq.remaining|

|Fq|
(6.5)

Intuitively, PmaxSocial is the maximum possible social score of a place p at

any point during the computation of final score of the place p. Consequently,

if PmaxScore of the place p is less than the current kth place score, the algorithm

terminates without computing the final score and prunes the place p (at line

10) since it cannot be in top-k places. Otherwise, it updates the social score

of the place p (at line 12). Similarly, if the entry E does not overlap either

with the Fq.remaining or given temporal interval I, it is instantly pruned and

consequently, its child entries are not en-heaped.

6.3.3.3 Handling Updates:

137

Algorithm 13: ComputeScore(p)

1 F ← first friend in Fq;
2 Initialize min-heap with Root of VCR-Tree;
3 while min-heap is not empty do
4 De-heap entry E;
5 if F < Minimum Visitor ID of E then
6 F ← binary search to find first F in Fq with ID >= minimum

visitor ID of E;
7 if (E overlaps with given temporal interval I or with the friend

F then
8 if E is an object then
9 if PmaxScore < Scorek then

10 Prune the place p;
11 else
12 Update Social score ;

13 else
14 Insert child entries of E into min-heap with minimum

visitor ID as a key;

15 end
16 Return Score(p);

Now, we provide a very high level idea of how to update the indexes. For

this purpose, we index last month data using a separate data structure in

addition to the data structure that maintains all previous months data and

during query processing, we use both the data structures. Similarly, to update

the data structures, a periodic bulk update is performed.

6.4 Experiments

6.4.1 Experimental Setup

To the best of our knowledge, this problem has not been studied before and no

previous algorithm can be trivially extended to answer GSTTk queries. There-

138

Parameters Values
Number of Queries 50, 100, 150, 200

Range (km) 50, 100, 200, 400
Temporal Interval (Months) 1, 3, 6, 12

Grid Size 8, 16, 24, 32
Average Friends 200, 400, 600, 800

k 5, 10, 15, 20

Table 6.2: Parameters (Default shown in bold)

fore, we evaluate the proposed algorithms on their performance by comparing

them with each other.

Each method is implemented by employing the exact experimental settings

and datasets described earlier in Section 3.5.1. Various parameters used in

our experiments are shown in Table 6.2 where Query MBR Size represents the

size of the region in which query users are spread. For each experiment, we

randomly choose 100 users and consider them as query users.

6.4.2 Performance Evaluation

Index Size: Figure 6.5 compares the index sizes of five different subsets of

the real dataset. To obtain these datasets, we randomly selected 100, 000 to

500, 000 places and we extracted their corresponding social networks based on

visitors of the places. The input data contains places, check-in information,

friends and their relationship information in few simple text files (without

indexing). The value on top of each Bar denotes how many times bigger the

respective index size is compared to the input data. For example, for 100, 000

places, the size of indexes utilized by the Social-First algorithm is 2.29 times

bigger than the input data. Note that the size of all our indexes is linear to

the input data for all datasets (e.g., Hybrid is 3-4 times bigger than the input

data). As expected, Hybrid index is the largest index.

139

 0.0

 1.0

 2.0

 3.0

100k 200k 300k 400k 500k 1300k

In
d

ex
 S

iz
e

(G
B

)

Number of Places

Input Data
Social-First

2.
29 2.

28 2.
28 2.

31 2.
26

2.
32

Spatial-First

1.
32 1.
22 1.
20 1.
20 1.
19

1.
21

Hybrid

4.
09 3.

76 3.
75 3.

75 3.
67

3.
61

Figure 6.5: Index Size

Effect of Grid Size: In Figure 6.6, we study the effect of different number

of cells in which grid is partitioned in Hybrid technique. The CPU cost also

depends on the number of cells because it affects grid partitioning and grid

cells’ upper bound computation which plays a vital role in pruning phase.

In our study, we found that the best CPU performance can be achieved by

splitting the region covering given range r into grid of 16 × 16 cells for the

default parameters.

Effect of k: In this evaluation, we test our proposed techniques for various

values of k. As shown in Figure 6.7(a), Hybrid is up to 15 times faster and the

performance is not significantly affected by the value of k. The reason is that,

the main cost depends on creating the grid and then computing upper bounds

of the cells and this dominant cost is not affected by k. Similarly, I/O cost

remains unaffected to much extent as illustrated in Figure 6.7(b) for all the

three algorithms since the higher value of k does not incur more disk access.

Note that, Hybrid performs better than the other two even though it processes

more indexes. However, due to efficient pruning techniques, it incurs less I/O

140

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

8x8 16x16 24x24 32x32

C
P

U
 C

o
st

 (
S

ec
)

Grid Size

Hybrid

0.311

0.199
0.214 0.218

Figure 6.6: Effect of Grid Size

cost.

 0

 1

 2

 3

 4

 5

 6

 7

5 10 15 20

C
P

U
 C

o
st

 (
S

ec
)

Effect of K

Social-First

3
.9

1

3
.9

5

3
.9

6

3
.9

9

Spatial-Spatial

2
.9

8

3
.0

1

3
.0

2

3
.0

5

Hybrid

0
.3

2

0
.3

3

0
.3

5

0
.3

6

(a) CPU cost

 0

 150

 300

 450

 600

5 10 15 20

#I
O

Effect of K

Social-First

3
8
3

3
8
5

3
8
5

3
8
4

Spatial-First

3
9
3

3
9
2

3
9
2

3
9
3

Hybrid

3
3
0

3
3
1

3
3
0

3
3
1

(b) I/O cost

Figure 6.7: Effect of varying number of requested places (k)

Effect of Range: Next, we evaluate the performance of our techniques for

range between 50 to 400 kilometers in Figure 6.8. The region in which we

want to find top-k places is defined by the given range r containing average

number of places between 5, 000 to 100, 000. Note that, Spatial-First is linearly

affected as we increase the range r due to linear growth in number of places as

shown in Figure 6.8(a). Similarly, Social-First shows a steady growth in CPU

cost with the increase in range r. Although it accesses the 3D Check-In R-Tree

141

for each friend but the cost is increased because the cost of range query on

these R-trees is affected with the range r. Note that, Hybrid performs several

times better than the other two. Further, in terms of I/O cost, as we increase

the range r, Social-First again shows a steady growth since the number of 3D

Check-In R-Trees which need to be processed, is independent of the range r as

illustrated in Figure 6.8(b). Note that, Spatial-First is most affected since as

we increase the range r, it has to process more places which in return, incurs

more disk access.

 0

 2

 4

 6

 8

50 100 200 400

C
P

U
 C

o
st

 (
S

ec
)

Range (km)

Social-First

2
.5

5 3
.1

1 3
.6

9

4
.1

8

Spatial-First

2
.5

9

2
.9

8 3
.8

7

5
.2

4

Hybrid

0
.1

6

0
.3

3

0
.4

9

0
.8

1

(a) CPU cost

 0

 220

 440

 660

 880

 1100

50 100 200 400

#I
O

Range (km)

Social-First

3
5
0

3
8
5

4
2
8

4
7
5

Spatial-First

3
3
4 3
9
2 4
8
3

7
9
6

Hybrid

3
0
4

3
3
0 3
9
9

5
6
7

(b) I/O cost

Figure 6.8: Effect of varying Range

Effect of Average number of Friends: In this experiment, we study the

effect of number of friends on the three techniques in Figure 6.9. Note that the

size of 3DFCR-Tree relies on number of query q’s friends and the distribution of

each friend’s check-ins in search space which determines the number of objects

to be indexed in 3DFCR-Tree. This in return affects the upper bound of

grid cells in Hybrid technique. In Spatial-First technique, CPU cost is mainly

dependent on the cost of range query on Facility R-Tree and to some extent on

number of query q’s friends which affect the social score computation module

as depicted in Figure 6.9(a). Similarly, as we increase the number of friends,

Social-First has to process more 3D Check-In R-Trees which affects its CPU

142

cost. Note that, when we increase the average number of friends, we found

that Social-First is linearly affected since it requires to access 3D Check-In

R-Tree for each friend as shown in Figure 6.9(b).

 0

 1

 2

 3

 4

 5

 6

 7

 8

200 400 600 800

C
P

U
 C

o
st

 (
S

ec
)

#Ave.Friends

Social-First

2
.5

9 3
.4

1 3
.9

9

4
.4

6

Spatial-First

2
.1

9

2
.4

1 2
.9

8

3
.3

3

Hybrid

0
.1

9

0
.2

5

0
.3

2

0
.4

1

(a) CPU cost

 0

 150

 300

 450

 600

 750

200 400 600 800
#I

O
Ave.Friends

Social-First

2
6
6 3
2
4 3

9
9 4
5
7

Spatial-First

3
7
6

3
9
8

4
2
3

4
2
9

Hybrid

3
7
1 4
1
0

4
2
1

4
1
7

(b) I/O cost

Figure 6.9: Effect of varying number of Friends

Effect of concurrent number of Queries: Next, we compare the perfor-

mance of our techniques for various number of queries. Figure 6.10(a) shows

average CPU cost of the techniques which slightly varies depending on the

number of query q’s friends and query location. Social-First technique has

higher CPU cost for any number of queries than the other two because it

accesses 3D Check-In R-Tree for each friend and issues a range query as il-

lustrated in the figure. Similarly, Spatial-First has slightly different CPU cost

because of different query and number of places in range r. Note that, Hybrid

algorithm performs several times better and the cost for different number of

queries is slightly affected by the query location, number of friends and number

of places in range r. Similarly, for all the three algorithms, the average I/O

cost is mainly independent of the number of queries and is slightly affected

by the query location, number of friends and number of places in range r as

depicted in Figure 6.10(b).

Effect of Temporal Interval: In Figure 6.11, we evaluate the effect of size of

143

 0

 2

 4

 6

 8

50 100 150 200

C
P

U
 C

o
st

 (
S

ec
)

Queries

Social-First

4
.1

6

3
.9

1

4
.0

3

3
.8

9

Spatial-Spatial

2
.8

2

2
.9

8

2
.8

6

2
.9

3

Hybrid

0
.3

4

0
.3

2

0
.3

7

0
.3

5

(a) CPU cost

 0

 150

 300

 450

 600

 750

50 100 150 200

#I
O

Queries

Social-First

3
6
5

3
6
4

3
6
7

3
6
2

Spatial-First

3
8
1

3
8
5

3
8
9 4
3
0

Hybrid

3
1
1

3
3
7

3
6
3

3
8
8

(b) I/O cost

Figure 6.10: Effect of varying number of Queries

temporal interval I to test the performance of the three methods. Social-First

algorithm has higher CPU cost even for smaller temporal intervals because

most of 3D Check-In R-Trees overlap with the temporal interval as shown

in Figure 6.11(a). Similarly, the CPU cost of Spatial-First method remains

high specifically for bigger temporal intervals due to more number of places

to be processed. On the other hand, in Hybrid technique, temporal interval

affects cells’ upper bound computation and consequently, the pruning phase

gets affected. Note that, Hybrid performs several times better than the others.

Further, in terms of I/O cost, as we increase the temporal interval I, Social-

First shows a steady growth since the number of 3D Check-In R-Trees which

need to be processed, slightly depends on the temporal interval I as illustrated

in Figure 6.11(b). Note that, Spatial-First is most affected since as we increase

the temporal interval I, it has to process more places and is the main cause of

high disk access.

144

 0

 2

 4

 6

 8

1 3 6 12

C
P

U
 C

o
st

 (
S

ec
)

Temporal Interval (Months)

Social-First

2
.6

7

3
.1

1 3
.8

9

4
.1

8

Spatial-First

2
.4

7

2
.6

8

3
.0

5

5
.2

4Hybrid

0
.1

5

0
.1

6

0
.2

9

0
.3

7

(a) CPU cost

 0

 170

 340

 510

 680

 850

1 3 6 12

#I
O

Temporal Interval (Months)

Social-First

3
2
5

3
3
9 3
8
5 4
3
5

Spatial-First

3
5
2

3
6
8

3
9
2

5
9
6

Hybrid

3
0
4

3
2
0

3
3
4

4
6
7

(b) I/O cost

Figure 6.11: Effect of varying Temporal Interval

6.5 Conclusions

In this chapter, we study Spatial Temporal Top-k queries on Social Networks

and we believe that we are the first to formalize this problem as Geo-Social

Temporal Top-k (GSTTk) query where the query retrieves top-k places (points

of interest) ranked according to their spatial, social and temporal relevance to

the query user. Further, we propose efficient indexing and query processing

techniques and present two different approaches i.e., Social-First and Spatial-

First to solve our problem and then, we propose our main algorithm called

Hybrid. Hybrid technique is capable of processing social, spatial and temporal

components simultaneously by utilizing a hybrid index specifically designed

to handle GSTTk queries. In addition, we propose three dimensional index

structures like 3DFCR-Tree and 3D Check-In R-Tree which facilitate in effi-

cient pruning of objects based on temporal constraints. Results of empirical

studies demonstrate the effectiveness of our main algorithm (i.e., Hybrid).

145

Chapter 7

Concluding Remarks

7.1 Conclusion

In this thesis, we study various location-based queries in social networks and

propose efficient indexing and query processing techniques. The summary of

the contributions made to this thesis is listed below.

In chapter 3, we are the first to study TkFP queries that retrieve nearby

places popular among a particular set of users in a social network by taking

into account their social and spatial relevance. We propose efficient indexing

and pruning techniques and based on these, we design three algorithms to

process the query including the once which is capable of processing both social

and spatial components simultaneously by leveraging our specialised indexing

structures. Our extensive experimental study conducted on real and synthetic

data sets demonstrates the effectiveness of proposed techniques.

In-addition to this, we develop a demonstration to show the real application of

Location-Based Top-k Queries in social networks. This demonstration enables

participants to view actual output of TkFP query containing top-k places

146

checked-in by friends in a given region.

A top-k query uses a scoring function that combines social and spatial

scores to rank the objects. However, users must have adequate domain knowl-

edge to be able to decide upon a good value of α. In particular, it is not

easy to define a scoring function (e.g., due to incompatible attributes, differ-

ent distributions of attributes, the inability of users to choose a good scoring

function) [26]. Therefore, to complement our Top-k famous places query, we

extend our work to study skyline queries which return those objects that are

within given range r (i.e., ||q, p|| < r) and are not dominated by any other

object. In order to answer such queries, we compute social and spatial scores

of each place and map it to a space where x-coordinate refers to spatial score

and y-coordinate refers to social score to retrieve such places which are not

dominated by any other place . The intuition behind using a range r is that

sometimes users are not interested in places that are too far. We propose three

techniques to process the query and propose efficient algorithms and indexing

techniques. Furthermore, We conduct an extensive experimental study on real

and synthetic data sets and compare their performance with [27] and find that

our algorithms are significantly better than the competitor.

In many applications, a group of users may want to plan an activity and

to find a point of interest (POI) for example, some conference attendees would

like to go out for dinner together. For this purpose, we may consider their

respective locations and social circles to recommend required POIs. Therefore,

in our third work, we study a problem of finding top-k places considering their

distance from the group of query users Q and popularity of the place among

each query user qi ∈ Q’s social connections (e.g., the number of check-ins at

the place by each q’s friends). To the best of our knowledge, we are the first

to study the SG-Topk query that retrieves nearby places popular among a

147

particular group of users w.r.t. each query user qi ∈ Q in the social network.

We present Branch-and-Bound algorithm to solve the problem followed by

some proposed optimization techniques to further improve its performance. We

conduct an exhaustive evaluation of the proposed schemes using real dataset

and demonstrate the effectiveness of the schemes.

In this study, we add a third dimension (time) to our first work and study a

problem of finding top-k places considering their distance from the query user q

and popularity of the place among q’s social connections during a certain period

of time. Based on this, we formalize the problem as a Geo-Social Temporal Top-

k (GSTTk) query and propose three techniques to answer the query: I) Social-

First, II) Spatial-First and III) Hybrid. To improve the query performance,

we propose few index structures (e.g., FCR-Tree, 3D Check-Ins RTree) which

enable flexible data management and algorithmic design. We conduct extensive

experiments using real and synthetic data sets to demonstrate the effectiveness

of the proposed algorithms.

7.2 Future Work

There are several interesting directions for future work which we briefly de-

scribe as follows:

• In this work, we have studied some location-based queries in social net-

works. In RQ1, we studied a problem of finding top-k places based on

its spatial and social relevance. However, a user might be interested not

only in finding top-k places but also in finding top-k Regions of Interest.

There are many real world applications that can leverage such queries

like in urban planning, marketing and many more.

Intuitively, the goal of such query is to find the location of nearest group

148

of points of interest, which is different from returning the single point

in the usual NN query. Thus, the primitive data type is extended from

a point of interest to a region of interest. It can be represented as a

particular-sized region of interest (ROI) containing multiple POIs not

necessarily of the same type. Of course, the number of points constituting

a region cannot be too small. Thus, we seek each ROI to be contained

at least a particular number of POIs.

Score of a Region of Interest RoI : Given a query user qi, a radius r,

minimum number of required places in a circle MinPOIs, the score of

a RoI is the weighted sum of its spatial score (denoted as spatial(RoI))

and its social score (denoted as social(RoI)).

Top-k Regions of Interests (TkRI) Query: Given a set of places P =

{p1, p2, ...pn} in an LBSN, a query user q, a positive number k, minimum

number of places MinPOIs required in each region of interest (RoI) and

a radius r, a TkRI query finds k locations o ∈ O that maximizes the score

(Score(RoI)) of each RoI using given radius r centred at o and contains

at least MinPOIs.

• In RQ4, we considered time window as a third dimension. There can be

another interesting possible direction to handle time window where the

freshness rate in scoring function can also be considered. For example,

we can give more priority to the recent check-ins and less to those carry-

ing older timestamps. For example, a tourist visiting Melbourne may be

interested in finding recently ongoing activities which are popular among

German people. Such queries can be exploited in many real world ap-

plications such as in crime prevention, disaster management and many

more.

149

• Often, a direct relationship between two entities in LBSNs does not suf-

fice the requirement of getting desired results based on social criteria. For

example, if a German visitor is looking for any German food restaurant

popular among German people in Melbourne, and could not find any

desired results, she might be interested in extending the search criteria

to the friends of German people who are Australian (this time we have

more than one edge. i.e., a path from user u to v in an LBSN graph).

In such scenario, the social component constitutes multiple relationships.

Based on this, we can further extend the social circle to extract social rel-

evance. Such queries can be utilized any many applications, for example

in health, marketing, law enforcement any many more.

There are two types of distances in LBSNs: social distance and spatial

distance. The integration of the two requires careful balance of different

metrics.

Social network is an undirected weighted graph (denoted as G(V,E)) and

w(u, v) denotes the weight of an edge between two entities which defines

relationship type.

Definition: Social Distance. Social distance between 2 entities u and

v in a given graph G is a sum of weights of the shortest path between

them and is denoted by distsocial(u, v). Similarly, distsocial(u, v) = w(u, v)

if there is a direct edge between them.

150

Bibliography

[1] Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner. Social network

search as a volatile multi-armed bandit problem. HUMAN, 2(2):pp–84,

2013.

[2] https : / / www . statista . com / statistics / 278414 /

number-of-worldwide-social-network-users/.

[3] https : / / www . yellow . com . au / wp-content / uploads / 2018 / 06 /

Yellow-Social-Media-Report-2018-Consumer.pdf.

[4] Theresa Marie Bernardo, Andrijana Rajic, Ian Young, Katie Robiadek,

Mai T Pham, and Julie A Funk. Scoping review on search queries and

social media for disease surveillance: a chronology of innovation. Journal

of medical Internet research, 15(7), 2013.

[5] Janáına Gomide, Adriano Veloso, Wagner Meira Jr, Virǵılio Almeida,

Fabŕıcio Benevenuto, Fernanda Ferraz, and Mauro Teixeira. Dengue

surveillance based on a computational model of spatio-temporal locality

of twitter. In Proceedings of the 3rd international web science conference,

page 3. ACM, 2011.

[6] https : / / www . business . gov . au / info / plan-and-start /

develop-your-business-plans.

151

[7] https://edition.cnn.com/2013/09/30/us/nsa-social-networks/.

[8] Jennifer A Johnson and John David Reitzel. Social network analysis in

an operational environment: Defining the utility of a network approach

for crime analysis using the richmond city police department as a case

study. In International Police Executive Symposium, 2011.

[9] https : / / atelier . bnpparibas / sites / default / files / google _

reseaux_sociaux.pdf.

[10] Philip E Ross. Top 11 technologies of the decade. IEEE Spectrum,

1(48):27–63, 2011.

[11] Hans H Bauer, Tina Reichardt, Stuart J Barnes, and Marcus M Neu-

mann. Driving consumer acceptance of mobile marketing: A theoretical

framework and empirical study. Journal of electronic commerce research,

6(3):181, 2005.

[12] Stuart J Barnes and Eusebio Scornavacca. Mobile marketing: the role

of permission and acceptance. International Journal of Mobile Commu-

nications, 2(2):128–139, 2004.

[13] Michael T Gastner and Mark EJ Newman. The spatial structure of net-

works. The European Physical Journal B-Condensed Matter and Com-

plex Systems, 49(2):247–252, 2006.

[14] Michael F Goodchild and J Alan Glennon. Crowdsourcing geographic

information for disaster response: a research frontier. International Jour-

nal of Digital Earth, 3(3):231–241, 2010.

[15] Huiji Gao, Xufei Wang, Geoffrey Barbier, and Huan Liu. Promoting

coordination for disaster relief–from crowdsourcing to coordination. In

152

Social computing, behavioral-cultural modeling and prediction, pages 197–

204. Springer, 2011.

[16] Huiji Gao, Geoffrey Barbier, Rebecca Goolsby, and Daniel Zeng. Har-

nessing the crowdsourcing power of social media for disaster relief. Tech-

nical report, DTIC Document, 2011.

[17] Hussein Dia. An object-oriented neural network approach to short-

term traffic forecasting. European Journal of Operational Research,

131(2):253–261, 2001.

[18] Moshe Ben-Akiva, Michel Bierlaire, Haris Koutsopoulos, and Rabi

Mishalani. Dynamit: a simulation-based system for traffic prediction.

In DACCORS short term forecasting workshop, The Netherlands. Cite-

seer, 1998.

[19] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian

Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin,

Sriram Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, and Ning

Zhang. Unicorn: A system for searching the social graph. PVLDB,

6(11):1150–1161, 2013.

[20] https : / / www . attorneygeneral . gov . au / Mediareleases / Pages /

2015/FirstQuarter/20-February-2015-Combating.

[21] Stefan Raue, Leif Azzopardi, and Chris W Johnson. # trapped!: social

media search system requirements for emergency management profes-

sionals. In Proceedings of the 36th international ACM SIGIR conference

on Research and development in information retrieval, pages 1073–1076.

ACM, 2013.

153

[22] https : / / www . emarketer . com / Article /

Social-Network-Ad-Spending-Hit-2368-Billion-Worldwide-2015/

1012357.

[23] https : / / www . marketsandmarkets . com / PressReleases /

social-media-analytics.asp.

[24] Ammar Sohail, Ghulam Murtaza, and David Taniar. Retrieving top-k

famous places in location-based social networks. In Databases Theory

and Applications - 27th Australasian Database Conference, ADC 2016,

Sydney, NSW, September 28-29, 2016, Proceedings, pages 17–30, 2016.

[25] Ammar Sohail, David Taniar, Andreas Züfle, and Jeong-Ho Park. Query

processing in location-based social networks. In Proceedings of the 26th

International Conference on World Wide Web Companion, Perth, Aus-

tralia, April 3-7, 2017, pages 1379–1381, 2017.

[26] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient similarity search

and classification via rank aggregation. In Proceedings of the 2003 ACM

SIGMOD International Conference on Management of Data, San Diego,

California, USA, June 9-12, 2003, pages 301–312. ACM, New York, NY,

USA, 2003.

[27] Dingming Wu, Yafei Li, Byron Choi, and Jianliang Xu. Social-aware

top-k spatial keyword search. In IEEE MDM, 2014, Brisbane, Australia.

[28] Ammar Sohail, Muhammad Aamir Cheema, and David Taniar. Social-

aware spatial top-k and skyline queries. The Computer Journal, 62,

2018.

[29] Ammar Sohail, Arif Hidayat, Muhammad Aamir Cheema, and David

Taniar. Location-aware group preference queries in social-networks. In

154

Databases Theory and Applications - 29th Australasian Database Con-

ference, ADC 2018, Gold Coast, QLD, Australia, May 24-27, 2018, Pro-

ceedings, pages 53–67, 2018.

[30] Jie Bao, Yu Zheng, David Wilkie, and Mohamed Mokbel. Recommen-

dations in location-based social networks: a survey. GeoInformatica,

19(3):525–565, 2015.

[31] Nikos Armenatzoglou, Ritesh Ahuja, and Dimitris Papadias. Geo-social

ranking: functions and query processing. VLDB J., 24(6):783–799, 2015.

[32] Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris Papadias. A

general framework for geo-social query processing. PVLDB, 6(10):913–

924, 2013.

[33] Gregory Ference, Mao Ye, and Wang-Chien Lee. Location recommen-

dation for out-of-town users in location-based social networks. In 22nd

ACM, CIKM 2013, San Francisco, CA, USA.

[34] Kyriakos Mouratidis, Jing Li, Yu Tang, and Nikos Mamoulis. Joint

search by social and spatial proximity. IEEE Trans. Knowl. Data Eng.,

27(3):781–793, 2015.

[35] Yerach Doytsher, Ben Galon, and Yaron Kanza. Querying geo-social

data by bridging spatial networks and social networks. In LBSN 2010,

San Jose, CA, USA,.

[36] Qian Huang and Yu Liu. On geo-social network services. In Geoinfor-

matics, 2009 17th International Conference on, pages 1–6. Ieee, 2009.

155

[37] Weimo Liu, Weiwei Sun, Chunan Chen, Yan Huang, Yinan Jing, and

Kunjie Chen. Circle of friend query in geo-social networks. In DASFAA,

Busan, South Korea, April, 2012.

[38] De-Nian Yang, Chih-Ya Shen, Wang-Chien Lee, and Ming-Syan Chen.

On socio-spatial group query for location-based social networks. In KDD

2012, Beijing, China.

[39] Mao Ye, Peifeng Yin, and Wang-Chien Lee. Location recommendation

for location-based social networks. In Proceedings of the 18th SIGSPA-

TIAL International Conference on Advances in Geographic Information

Systems, pages 458–461. ACM, 2010.

[40] Mohamed Sarwat, Justin J Levandoski, Ahmed Eldawy, and Mohamed F

Mokbel. Lars*: An efficient and scalable location-aware recommender

system. Knowledge and Data Engineering, IEEE Transactions on,

26(6):1384–1399, 2014.

[41] Huiji Gao and Huan Liu. Data analysis on location-based social net-

works. In Mobile social networking, pages 165–194. Springer, 2014.

[42] Jiwei Li and Claire Cardie. Timeline generation: tracking individuals

on twitter. In 23rd International World Wide Web Conference, WWW

2014, Seoul, Korea.

[43] Guoliang Li, Shuo Chen, Jianhua Feng, Kian-Lee Tan, and Wen-Syan

Li. Efficient location-aware influence maximization. In SIGMOD 2014,

Snowbird, UT, USA.

[44] Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris Papadias. A

general framework for geo-social query processing. Proceedings of the

VLDB Endowment, 2013.

156

[45] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobil-

ity: user movement in location-based social networks. In KDD. ACM,

2011.

[46] Yerach Doytsher, Ben Galon, and Yaron Kanza. Managing socio-spatial

data as large graphs, In WWW, 2012.

[47] Flip Korn and S. Muthukrishnan. Influence sets based on reverse nearest

neighbor queries. In Proceedings of the 2000 ACM SIGMOD Interna-

tional Conference on Management of Data, May 16-18, 2000, Dallas,

Texas, USA., pages 201–212, 2000.

[48] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest neigh-

bor queries. In Proceedings of the 1995 ACM SIGMOD International

Conference on Management of Data, San Jose, California, May 22-25,

1995., pages 71–79, 1995.

[49] Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial

databases. ACM Trans. Database Syst., 24(2):265–318, 1999.

[50] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest

neighbor search. In SIGMOD 1998, Proceedings ACM SIGMOD Inter-

national Conference on Management of Data, June 2-4, 1998, Seattle,

Washington, USA., pages 154–165, 1998.

[51] Christian S. Jensen, Jan Kolárvr, Torben Bach Pedersen, and Igor

Timko. Nearest neighbor queries in road networks. In GIS, pages 1–

8, 2003.

[52] M. Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor

search for spatial network databases. In VLDB, pages 840–851, 2004.

157

[53] Mohammad R. Kolahdouzan and Cyrus Shahabi. Continuous k-nearest

neighbor queries in spatial network databases. In Spatio-Temporal

Database Management, 2nd International Workshop STDBM’04,

Toronto, Canada, August 30, 2004, pages 33–40, 2004.

[54] Cyrus Shahabi, Mohammad R. Kolahdouzan, and Mehdi Sharifzadeh.

A road network embedding technique for k-nearest neighbor search in

moving object databases. In ACM-GIS, pages 94–10, 2002.

[55] Hyung-Ju Cho and Chin-Wan Chung. An efficient and scalable approach

to cnn queries in a road network. In VLDB, pages 865–876, 2005.

[56] Haibo Hu, Dik Lun Lee, and Jianliang Xu. Fast nearest neighbor search

on road networks. In Advances in Database Technology - EDBT 2006,

10th International Conference on Extending Database Technology, Mu-

nich, Germany, March 26-31, 2006, Proceedings, pages 186–203, 2006.

[57] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos

Mamoulis. Continuous nearest neighbor monitoring in road networks.

In VLDB, pages 43–54, 2006.

[58] Hua Lu, Xin Cao, and Christian S. Jensen. A foundation for efficient in-

door distance-aware query processing. In IEEE 28th International Con-

ference on Data Engineering (ICDE 2012), Washington, DC, USA (Ar-

lington, Virginia), 1-5 April, 2012, pages 438–449, 2012.

[59] Xike Xie, Hua Lu, and Torben Bach Pedersen. Efficient distance-aware

query evaluation on indoor moving objects. In Jensen et al. [159], pages

434–445.

[60] Jiao Yu, Wei-Shinn Ku, Min-Te Sun, and Hua Lu. An RFID and par-

ticle filter-based indoor spatial query evaluation system. In Joint 2013

158

EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March

18-22, 2013, pages 263–274, 2013.

[61] Joon-Seok Kim and Ki-Joune Li. Location k-anonymity in indoor spaces.

GeoInformatica, 20(3):415–451, 2016.

[62] Hans-Peter Kriegel, Peter Kunath, and Matthias Renz. Probabilistic

nearest-neighbor query on uncertain objects. In DASFAA, pages 337–

348, 2007.

[63] Yuan-Ko Huang, Shi-Jei Liao, and Chiang Lee. Efficient continuous k-

nearest neighbor query processing over moving objects with uncertain

speed and direction. In SSDBM, pages 549–557, 2008.

[64] Yuan-Ko Huang, Shi-Jei Liao, and Chiang Lee. Evaluating continuous

k-nearest neighbor query on moving objects with uncertainty. Inf. Syst.,

34(4-5):415–437, 2009.

[65] Goce Trajcevski, Roberto Tamassia, Hui Ding, Peter Scheuermann, and

Isabel F. Cruz. Continuous probabilistic nearest-neighbor queries for

uncertain trajectories. In EDBT 2009, 12th International Conference on

Extending Database Technology, Saint Petersburg, Russia, March 24-26,

2009, Proceedings, pages 874–885, 2009.

[66] Cyrus Shahabi, Lu An Tang, and Songhua Xing. Indexing land surface

for efficient knn query. PVLDB, 1(1):1020–1031, 2008.

[67] Ke Deng, Xiaofang Zhou, Heng Tao Shen, Kai Xu, and Xuemin Lin.

Surface k-nn query processing. In Proceedings of the 22nd International

Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta,

GA, USA, page 78, 2006.

159

[68] Ke Deng, Xiaofang Zhou, Heng Tao Shen, Qing Liu, Kai Xu, and Xuemin

Lin. A multi-resolution surface distance model for k -nn query processing.

VLDB J., 17(5):1101–1119, 2008.

[69] Songhua Xing, Cyrus Shahabi, and Bei Pan. Continuous monitoring of

nearest neighbors on land surface. PVLDB, 2(1):1114–1125, 2009.

[70] Andreas Henrich. A distance scan algorithm for spatial access structures.

In ACM-GIS, pages 136–143, 1994.

[71] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot L. Siegel,

and Zenon Protopapas. Fast nearest neighbor search in medical image

databases. In VLDB’96, Proceedings of 22th International Conference on

Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India,

pages 215–226, 1996.

[72] Apostolos Papadopoulos and Yannis Manolopoulos. Performance of near-

est neighbor queries in r-trees. In Database Theory - ICDT ’97, 6th Inter-

national Conference, Delphi, Greece, January 8-10, 1997, Proceedings,

pages 394–408, 1997.

[73] Norio Katayama and Shin’ichi Satoh. The sr-tree: An index structure for

high-dimensional nearest neighbor queries. In SIGMOD 1997, Proceed-

ings ACM SIGMOD International Conference on Management of Data,

May 13-15, 1997, Tucson, Arizona, USA., pages 369–380, 1997.

[74] Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. Scal-

able network distance browsing in spatial databases. In Proceedings of

the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 43–

54, 2008.

160

[75] Surajit Chaudhuri and Luis Gravano. Evaluating top-k selection queries.

In Proceedings of the 25th International Conference on Very Large Data

Bases, VLDB ’99, pages 397–410, San Francisco, CA, USA, 1999. Morgan

Kaufmann Publishers Inc.

[76] Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and Wei-Ying

Ma. Hybrid index structures for location-based web search. In Proceed-

ings of the 2005 ACM CIKM International Conference on Information

and Knowledge Management, Bremen, Germany, October 31 - November

5, 2005, pages 155–162, 2005.

[77] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. In-

verted linear quadtree: Efficient top k spatial keyword search. In Jensen

et al. [159], pages 901–912.

[78] João B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil

Nørv̊ag. Efficient processing of top-k spatial keyword queries. In Ad-

vances in Spatial and Temporal Databases - 12th International Sympo-

sium, SSTD 2011, Minneapolis, MN, USA, August 24-26, 2011, Pro-

ceedings, pages 205–222, 2011.

[79] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[80] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Joining ranked

inputs in practice. In VLDB 2002, Proceedings of 28th International

Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong,

China, pages 950–961, 2002.

[81] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and

Jeffrey Scott Vitter. Supporting incremental join queries on ranked in-

161

puts. In VLDB 2001, Proceedings of 27th International Conference on

Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 281–

290, 2001.

[82] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting

top-k join queries in relational databases. VLDB J., 13(3):207–221, 2004.

[83] Vagelis Hristidis and Yannis Papakonstantinou. Algorithms and appli-

cations for answering ranked queries using ranked views. VLDB J.,

13(1):49–70, 2004.

[84] Chengkai Li, Kevin Chen-Chuan Chang, and Ihab F. Ilyas. Supporting

ad-hoc ranking aggregates. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, Chicago, Illinois, USA,

June 27-29, 2006, pages 61–72, 2006.

[85] Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang,

and Haixun Wang. A generic framework for top-k pairs and top-k objects

queries over sliding windows. IEEE Transactions on Knowledge and Data

Engineering, 26(6):1349–1366, 2012.

[86] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of

top-k query processing techniques in relational database systems. ACM

Comput. Surv., 40(4):11:1–11:58, 2008.

[87] Muhammad Aamir Cheema, Zhitao Shen, Xuemin Lin, and Wenjie

Zhang. A unified framework for efficiently processing ranking related

queries. In Proceedings of the 17th International Conference on Extend-

ing Database Technology, EDBT 2014, Athens, Greece, March 24-28,

2014., pages 427–438. OpenProceedings, Konstanz, Germany, 2014.

162

[88] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[89] Surya Nepal and M. V. Ramakrishna. Query processing issues in image

(multimedia) databases. In Proceedings of the 15th International Con-

ference on Data Engineering, Sydney, Austrialia, March 23-26, 1999,

pages 22–29, 1999.

[90] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Optimizing

multi-feature queries for image databases. In VLDB 2000, Proceedings

of 26th International Conference on Very Large Data Bases, September

10-14, 2000, Cairo, Egypt, pages 419–428. ACM, New York, NY, USA,

2000.

[91] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k query

evaluation with probabilistic guarantees. In (e)Proceedings of the Thir-

tieth International Conference on Very Large Data Bases, Toronto,

Canada, August 31 - September 3 2004, pages 648–659, 2004.

[92] Giuseppe Amato, Fausto Rabitti, Pasquale Savino, and Pavel Zezula.

Region proximity in metric spaces and its use for approximate similarity

search. ACM Trans. Inf. Syst., 21(2):192–227, 2003.

[93] Christopher Ré, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query

evaluation on probabilistic data. In Proceedings of the 23rd International

Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Is-

tanbul, Turkey, April 15-20, 2007, pages 886–895, 2007.

[94] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang.

Top-k query processing in uncertain databases. In Proceedings of the

23rd International Conference on Data Engineering, ICDE 2007, The

163

Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 896–905,

2007.

[95] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. In PODS, 2001.

[96] Zhen Zhang, Seung-won Hwang, Kevin Chen-Chuan Chang, Min Wang,

Christian A. Lang, and Yuan-Chi Chang. Boolean + ranking: querying

a database by k-constrained optimization. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, Chicago,

Illinois, USA, June 27-29, 2006, pages 359–370, 2006.

[97] Jinling Jiang, Hua Lu, Bin Yang, and Bin Cui. Finding top-k local users

in geo-tagged social media data. In 31st IEEE ICDE 2015, Seoul, South

Korea.

[98] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure

for retrieval on composite keys. Acta Inf., 4:1–9, 1974.

[99] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization

for prevalent viral marketing in large-scale social networks. In Proceed-

ings of the 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010,

pages 1029–1038, 2010.

[100] Ritesh Ahuja, Nikos Armenatzoglou, Dimitris Papadias, and George J.

Fakas. Geo-social keyword search. In SSTD 2015, Hong Kong, China

[160].

[101] Mehdi Kargar and Aijun An. Discovering top-k teams of experts

with/without a leader in social networks. In Proceedings of the 20th

164

ACM Conference on Information and Knowledge Management, CIKM

2011, Glasgow, United Kingdom, October 24-28, 2011, pages 985–994,

2011.

[102] Mehdi Kargar and Aijun An. Keyword search in graphs: Finding r-

cliques. PVLDB, 4(10):681–692, 2011.

[103] Xin Cao, Gao Cong, Christian S. Jensen, and Beng Chin Ooi. Collective

spatial keyword querying. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD 2011, Athens,

Greece, June 12-16, 2011, pages 373–384, 2011.

[104] Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and Wei-Ying

Ma. Hybrid index structures for location-based web search. In Proceed-

ings of the 2005 ACM CIKM International Conference on Information

and Knowledge Management, Bremen, Germany, October 31 - November

5, 2005, pages 155–162, 2005.

[105] Wenjie Zhang, Xuemin Lin, Ying Zhang, Muhammad Aamir Cheema,

and Qing Zhang. Stochastic skylines. ACM Trans. Database Syst.,

37(2):14:1–14:34, 2012.

[106] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Ying

Zhang. A safe zone based approach for monitoring moving skyline

queries. In Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceed-

ings, Genoa, Italy, March 18-22, 2013, pages 275–286. OpenProceedings,

Konstanz, Germany, 2013.

[107] Michael D. Morse, Jignesh M. Patel, and H. V. Jagadish. Efficient skyline

computation over low-cardinality domains. In Proceedings of the 33rd In-

ternational Conference on Very Large Data Bases, University of Vienna,

165

Austria, September 23-27, 2007, pages 267–278. ACM, New York, NY,

USA, 2007.

[108] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Maximal vector com-

putation in large data sets. In Proceedings of the 31st International

Conference on Very Large Data Bases, Trondheim, Norway, August 30

- September 2, 2005, pages 229–240. ACM, New York, NY, USA, 2005.

[109] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. Efficient dis-

tributed skylining for web information systems. In Advances in Database

Technology - EDBT 2004, 9th International Conference on Extending

Database Technology, Heraklion, Crete, Greece, March 14-18, 2004, Pro-

ceedings, pages 256–273. Springer, Berlin, Germany, 2004.

[110] Chee Yong Chan, Pin-Kwang Eng, and Kian-Lee Tan. Stratified compu-

tation of skylines with partially-ordered domains. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, Bal-

timore, Maryland, USA, June 14-16, 2005, pages 203–214. ACM, New

York, NY, USA, 2005.

[111] Yufei Tao and Dimitris Papadias. Maintaining sliding window skylines

on data streams. IEEE Trans. Knowl. Data Eng., 18(2):377–391, 2006.

[112] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline

operator. In Proceedings of the 17th International Conference on Data

Engineering, April 2-6, 2001, Heidelberg, Germany, pages 421–430, 2001.

[113] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars

in the sky: An online algorithm for skyline queries. In VLDB 2002,

Proceedings of 28th International Conference on Very Large Data Bases,

August 20-23, 2002, Hong Kong, China, pages 275–286, 2002.

166

[114] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal

and progressive algorithm for skyline queries. In SIGMOD Conference,

pages 467–478, 2003.

[115] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive

skyline computation. In VLDB 2001, Proceedings of 27th International

Conference on Very Large Data Bases, September 11-14, 2001, Roma,

Italy, pages 301–310, 2001.

[116] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The sky-

line operator. In Proceedings of the 17th International Conference on

Data Engineering, April 2-6, 2001, Heidelberg, Germany, pages 421–

430. Springer, Berlin Heidelberg, 2001.

[117] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive

skyline computation. In VLDB 2001, Proceedings of 27th International

Conference on Very Large Data Bases, September 11-14, 2001, Roma,

Italy, pages 301–310. ACM, New York, NY, USA, 2001.

[118] Antonin Guttman. R-trees: A dynamic index structure for spatial search-

ing. In SIGMOD Conference, 1984.

[119] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in

the sky: An online algorithm for skyline queries. In VLDB 2002, Proceed-

ings of 28th International Conference on Very Large Data Bases, August

20-23, 2002, Hong Kong, China, pages 275–286. ACM, New York, NY,

USA, 2002.

[120] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal

and progressive algorithm for skyline queries. In Proceedings of the 2003

ACM SIGMOD International Conference on Management of Data, San

167

Diego, California, USA, June 9-12, 2003, pages 467–478. ACM, New

York, NY, USA, 2003.

[121] Tobias Emrich, Maximilian Franzke, Nikos Mamoulis, Matthias Renz,

and Andreas Züfle. Geo-social skyline queries. In Database Systems for

Advanced Applications - 19th International Conference, DASFAA 2014,

Bali, Indonesia, April 21-24, 2014. Proceedings, Part II, pages 77–91.

Springer, Berlin Heidelberg, 2014.

[122] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis.

Group nearest neighbor queries. In Data Engineering, 2004. Proceedings.

20th International Conference on, pages 301–312. IEEE, 2004.

[123] Man Lung Yiu, Xiangyuan Dai, Nikos Mamoulis, and Michail Vaitis.

Top-k spatial preference queries. In Proceedings of the 23rd International

Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Is-

tanbul, Turkey, April 15-20, 2007, pages 1076–1085, 2007.

[124] Yuan Tian, Peiquan Jin, Shouhong Wan, and Lihua Yue. Group pref-

erence queries for location-based social networks. In Web and Big Data

- First International Joint Conference, APWeb-WAIM 2017, Beijing,

China, July 7-9, 2017, Proceedings, Part I, pages 556–564, 2017.

[125] Muhammad Attique, Hyung-Ju Cho, Rize Jin, and Tae-Sun Chung. Top-

k spatial preference queries in directed road networks. ISPRS Int. J.

Geo-Information, 5(10):170, 2016.

[126] João B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil

Nørv̊ag. Efficient processing of top-k spatial preference queries. PVLDB,

4(2):93–104, 2010.

168

[127] George Tsatsanifos and Akrivi Vlachou. On processing top-k spatio-

textual preference queries. In Proceedings of the 18th International Con-

ference on Extending Database Technology, EDBT 2015, Brussels, Bel-

gium, March 23-27, 2015., pages 433–444, 2015.

[128] Muhammad Attique, Rizwan Qamar, Hyung-Ju Cho, and Tae-Sun

Chung. A new approach to process top-k spatial preference queries in

a directed road network. In Proceedings of the Third ACM SIGSPA-

TIAL International Workshop on Mobile Geographic Information Sys-

tems, MobiGIS 2014, Dallas/Fort Worth, TX, USA, November 4, 2014,

pages 34–42, 2014.

[129] Hyung-Ju Cho, Se Jin Kwon, and Tae-Sun Chung. ALPS: an efficient

algorithm for top-k spatial preference search in road networks. Knowl.

Inf. Syst., 42(3):599–631, 2015.

[130] Ronald Fagin. Combining fuzzy information from multiple systems. J.

Comput. Syst. Sci., 58(1):83–99, February 1999.

[131] Feifei Li, Ke Yi, and Wangchao Le. Top-k queries on temporal data.

VLDB J., 19(5):715–733, 2010.

[132] Tuan-Anh Hoang-Vu, Huy T. Vo, and Juliana Freire. A unified index

for spatio-temporal keyword queries. In Proceedings of the 25th ACM

International Conference on Information and Knowledge Management,

CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016, pages 135–

144, 2016.

[133] Arif Hidayat, Muhammad Aamir Cheema, and David Taniar. Relaxed

reverse nearest neighbors queries. In Advances in Spatial and Temporal

169

Databases - 14th International Symposium, SSTD 2015, Hong Kong,

China, August 26-28, 2015. Proceedings [160], pages 61–79.

[134] Yehuda Koren. Collaborative filtering with temporal dynamics. Com-

mun. ACM, 53(4):89–97, 2010.

[135] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings

of the 2005 ACM CIKM International Conference on Information and

Knowledge Management, Bremen, Germany, October 31 - November 5,

2005, pages 485–492, 2005.

[136] James McInerney, Jiangchuan Zheng, Alex Rogers, and Nicholas R. Jen-

nings. Modelling heterogeneous location habits in human populations for

location prediction under data sparsity. In The 2013 ACM International

Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’13,

Zurich, Switzerland, September 8-12, 2013, pages 469–478, 2013.

[137] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat-

Thalmann. Time-aware point-of-interest recommendation. In The 36th

International ACM SIGIR conference on research and development in

Information Retrieval, SIGIR ’13, Dublin, Ireland - July 28 - August

01, 2013, pages 363–372, 2013.

[138] Mao Ye, Peifeng Yin, and Wang-Chien Lee. Location recommendation

for location-based social networks. In 18th ACM SIGSPATIAL Inter-

national Symposium on Advances in Geographic Information Systems,

ACM-GIS 2010, November 3-5, 2010, San Jose, CA, USA, Proceedings,

pages 458–461, 2010.

[139] Zijun Yao, Yanjie Fu, Bin Liu, Yanchi Liu, and Hui Xiong. POI recom-

mendation: A temporal matching between POI popularity and user reg-

170

ularity. In IEEE 16th International Conference on Data Mining, ICDM

2016, December 12-15, 2016, Barcelona, Spain, pages 549–558, 2016.

[140] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Exploring temporal

effects for location recommendation on location-based social networks. In

Seventh ACM Conference on Recommender Systems, RecSys ’13, Hong

Kong, China, October 12-16, 2013, pages 93–100, 2013.

[141] I Kamel, M Khalil, and V Kouramajian. Bulk insertion in dynamic r-

trees. In Proceedings of the International Symposium on Spatial Data

Handling, volume 4, pages 31–42, 1996.

[142] Li Chen, Rupesh Choubey, and Elke A. Rundensteiner. Bulk-insertions

info r-trees using the small-tree-large-tree approach. In ACM-GIS ’98,

Proceedings of the 6th international symposium on Advances in Geo-

graphic Information Systems, November 6-7, 1998, Washington, DC,

USA, pages 161–162, 1998.

[143] Rupesh Choubey, Li Chen, and Elke A. Rundensteiner. GBI: A gener-

alized r-tree bulk-insertion strategy. In Advances in Spatial Databases,

6th International Symposium, SSD’99, Hong Kong, China, July 20-23,

1999, Proceedings, pages 91–108, 1999.

[144] Lars Arge, Klaus H. Hinrichs, Jan Vahrenhold, and Jeffrey Scott Vitter.

Efficient bulk operations on dynamic r-trees. Algorithmica, 33(1):104–

128, 2002.

[145] Lars Arge. The buffer tree: A new technique for optimal i/o-algorithms

(extended abstract). In Algorithms and Data Structures, 4th Interna-

tional Workshop, WADS ’95, Kingston, Ontario, Canada, August 16-18,

1995, Proceedings, pages 334–345, 1995.

171

[146] Mao Ye, Peifeng Yin, Wang-Chien Lee, and Dik Lun Lee. Exploiting ge-

ographical influence for collaborative point-of-interest recommendation.

In Proceeding of the 34th International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, SIGIR 2011, Beijing,

China, July 25-29, 2011, pages 325–334, 2011.

[147] Bin Liu, Yanjie Fu, Zijun Yao, and Hui Xiong. Learning geographi-

cal preferences for point-of-interest recommendation. In The 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages 1043–

1051, 2013.

[148] Lisi Chen, Gao Cong, Xin Cao, and Kian-Lee Tan. Temporal spatial-

keyword top-k publish/subscribe. In 31st IEEE International Confer-

ence on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17,

2015, pages 255–266, 2015.

[149] Tobias Emrich, Maximilian Franzke, Nikos Mamoulis, Matthias Renz,

and Andreas Züfle. Geo-social skyline queries. In DASFAA, 2014.

[150] Memcached. http://memcached.org/.

[151] Twitter: Real-time Geo. http://slideshare.net/raffikrikorian/

rtgeo-where-20-2011.

[152] GeoSpatial indexes in MongoDB. http://docs.mongodb.org/manual/

core/geospatial-indexes/.

[153] Antonin Guttman. R-trees: A dynamic index structure for spatial search-

ing. In SIGMOD’84, 1984, pages 47–57, 1984.

172

[154] Dingqi Yang, Daqing Zhang, and Bingqing Qu. Participatory cul-

tural mapping based on collective behavior data in location-based so-

cial networks. ACM Transactions on Intelligent Systems and Technology

(TIST), 7(3):30, 2016.

[155] Ke Deng, Xiaofang Zhou, and Heng Tao Shen. Multi-source skyline

query processing in road networks. In Proceedings of the 23rd Inter-

national Conference on Data Engineering, ICDE 2007, The Marmara

Hotel, Istanbul, Turkey, April 15-20, 2007, pages 796–805. IEEE, New

York, NY, USA, 2007.

[156] Dimitris Sacharidis, Panagiotis Bouros, and Timos K. Sellis. Caching

dynamic skyline queries. In Scientific and Statistical Database Manage-

ment, 20th International Conference, SSDBM 2008, Hong Kong, China,

July 9-11, 2008, Proceedings, pages 455–472. IEEE, New York, NY, USA,

2008.

[157] Mehdi Sharifzadeh and Cyrus Shahabi. The spatial skyline queries. In

Proceedings of the 32nd International Conference on Very Large Data

Bases, Seoul, Korea, September 12-15, 2006, pages 751–762. ACM, New

York, NY, USA, 2006.

[158] Yuqiu Qian, Ziyu Lu, Nikos Mamoulis, and David W. Cheung. P-LAG:

location-aware group recommendation for passive users. In Advances in

Spatial and Temporal Databases - 15th International Symposium, SSTD

2017, Arlington, VA, USA, August 21-23, 2017, Proceedings, pages 242–

259, 2017.

[159] Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou, ed-

itors. 29th IEEE International Conference on Data Engineering, ICDE

173

2013, Brisbane, Australia, April 8-12, 2013. IEEE Computer Society,

2013.

[160] Ritesh Ahuja, Nikos Armenatzoglou, Dimitris Papadias, and George J.

Fakas. Geo-social keyword search. In Advances in Spatial and Tem-

poral Databases, SSTD 2015, Hong Kong, China, August 26-28, 2015.

Proceedings [160], pages 431–450.

174

