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Abstract

Magnetic Resonance Imaging (MRI) is one of the widely used imaging modalities

in clinical practice due to its high quality diagnostic images. The good contrast

between soft tissues provided by MRI makes it useful for a diverse range of clini-

cal applications. It is used in a wide variety of clinical applications ranging from

structural brain scans to detect tumors, functional neuro-imaging to analyse brain

function, cardiovascular imaging to diagnose abnormalities in the heart and diffu-

sion tensor imaging to map brain’s neutral network to name a few. However these

applications of MRI comes at a cost of its slow imaging speed compared to other

imaging modalities such as Computed Tomography (CT) and ultrasound. Accel-

erating the data acquisition has been an active area of research since the advent

of MRI. MRI acceleration techniques can be broadly classified in two categories,

one is parallel imaging (PMRI) which uses knowledge of receiver coil sensitivities

and second is compressive sensing (CS) which uses knowledge of inherent sparsity

in MR images.

The objective of this thesis is to optimally combine the techniques of PMRI

and CS to achieve higher acceleration and produce better quality images. This

research has resulted in two novel acceleration techniques, one for static imaging

and another for dynamic imaging.

The first technique “multichannel compressive sensing MRI using noiselet en-

coding” acquires reduced data in the noiselet domain and uses the knowledge of

receiver coil sensitivities to reconstruct the image through a multichannel compres-
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sive sensing (MCS) reconstruction. Simulations are presented in the MCS frame-

work to compare the performance of noiselet encoding reconstructions and Fourier

encoding reconstructions at different acceleration factors. The comparisons indi-

cate that the multichannel noiselet measurement matrix has a better Restricted

Isometery Property (RIP) than that of its Fourier counterpart, and that noiselet

encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image

resolution and can achieve higher acceleration factors. To demonstrate the fea-

sibility of the proposed noiselet encoding scheme, a pulse sequence with tailored

spatially selective RF excitation pulses was designed and implemented on a 3T

scanner.

The second technique “k-space aliasing” uses multiple radio frequency (RF)

excitation pulses to overlap different regions of k-space and simultaneously ac-

quire all k-space data in a dynamic scan in a time span shorter than that of a

full acquisition. The method exploits the fact that in most dynamic imaging, a

non-uniform distribution of energy in k-space results in different k-space regions

exhibiting different temporal bandwidths. In-vivo feasibility is first demonstrated

for acceleration factor of 3 in 2D cardiac triggered imaging. Additionally, the

method is combined with parallel imaging and compressive sensing to further ac-

celerate the dynamic MRI scans.
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Chapter 1

Introduction

1.1 Overview

Magnetic resonance imaging (MRI) or nuclear magnetic resonance imaging (NMRI)

is a non invasive medical imaging technique used in radiology to visualize detailed

internal structures. The first MR image was published in 1973 and the first cross-

sectional image of a living mouse was published in January 1974. The first studies

performed on humans were published in 1977. By comparison, the first human

X-ray image was taken in 1895. MRI is a relatively new and advanced technology,

it does not use any ionizing radiation and there are no known harmful effect of

MRI examination. Instead it uses a powerful magnetic field to align the magneti-

zation of hydrogen atoms in the body and then uses radio frequency (RF) fields

to systematically alter the alignment of the magnetization. In response to a RF

field, the excited region produces a rotating magnetic field detectable by the re-

ceive coils of the scanner, this information is recorded to construct an image of

the scanned region of the body. MRI uses RF pulses to excite a region of interest,

and magnetic field gradients are used to encode the excited region. In MRI, the

combination of RF pulses and gradient waveforms is called a pulse sequence of

MRI. The contrast in the MR images can be adjusted by tailoring the flip angle

and the timing in the pulse sequence. MR images can provide different contrast

of the region of interest called T1 and T2 relaxation. The good contrast between

the soft tissues provided by MRI makes it useful in Neurology, Musculoskeletal,

Cardiovascular and Cancer. Since MRI does not have any harmful radiations com-

pared to CT, it is advisable to use MRI when both modalities can provide same

diagnosis information.
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1.2 Speed Limitation of MRI

The advantages of MR imaging comes at a cost of slow and long data acquisi-

tion times. MRI acquires data in the Fourier domain called k-space. In order

to reconstruct a 2D image of the excited region, the whole of k-space needs to

be traversed. In most of the basic pulse sequences, the k-space is traversed on a

cartesian grid and one excitation is needed to acquire each line in k-space called

a phase encoding line. This traversal is time consuming and often takes several

minutes depending on the pulse sequence. For instance a spin echo sequence can

take around 5-15 minute to acquire data for a single slice. The long scanning time

of MRI results in patient discomfort and low throughput per day that limits the

use of MRI for some dynamic imaging applications that require high spatial and

temporal resolution. Often this limitation require radiographers to make a trade-

off between spatial and temporal resolution in dynamic imaging applications such

as cardiac cine, perfusion, angiography and function MRI, to name a few.

One important area in MRI where the sluggish imaging speed of MRI effects

most is dynamic imaging. The goal of dynamic MRI is to capture the time evo-

lution of a signal of interest through the fast acquisition of k-t space. Since MRI

acquires signal from a preferred imaging location through the use of magnetic

field gradients, only a sequential acquisition of k-t data is possible, this places

fundamental restrictions on the maximum spatial and temporal resolution that

can be simultaneously realized by a dynamic MRI acquisition. Over the years,

several methods have been proposed to address this issue. Some of these meth-

ods make certain assumptions about the imaged object and/or temporal signal

of interest [3–19], and other techniques operate independent of the same [20–24].

These assumptions, when made, are typically done so to exploit any spatial and/or

temporal redundancy that may exist in the k-t data to be acquired.

Provided their assumptions hold, these methods can tailor the acquisition of

k-t data to capture information efficiently. Irrespective of the assumptions, in all

these approaches, the acquisition of k-t space is altered in an attempt to satisfy

the competing requirements for spatial and temporal resolutions. Despite the ad-

vances, applications such as interventional imaging [25], contrast enhanced MR

Angiography [26], evaluation of cardiac function [27] and abdominal imaging [28]

can always benefit from larger acceleration factors. The fundamental limitation

in these and other dynamic imaging applications continues to be the trade-off be-

tween spatial and temporal resolutions.

Accelerating data acquisition in MRI has been an active area of research since

2



the advent of MRI. Initially researchers focused on improving the hardware of the

scanner to speed up the data acquisition process. This lead to fast and better

gradient system which eventually have been used in fast imaging sequences such

as EPI [29, 30], GRASE [31] and RARE [32]. However further improvement in

the hardware could not be carried out with the same pace because of some funda-

mental and physiological limitations such as specific absorption rate (SAR) and

nerve stimulation. Therefore, the later research in 1990’s and early 2000’s was

focused on acquiring less amount of data and exploiting various redundancies in

the MR acquisition process to reconstruct the desired image. The technique of

Parallel Imaging (PMRI) [21, 23, 33–35] was one of them which uses information

about the spatial sensitivities of the multiple receiver coils to reconstruct image

from undersampled data. Another interesting active area of research that came

up in late 2000’s is compressive sensing (CS). Compressive sensing exploits the

fact that MR images are sparse in wavelets/finite difference domain thus all of

the data is not required for perfect reconstruction of the sparse representation of

the image. CS acquires incoherent measurements and attempt to estimate the

compressed representation of image from the randomly under-sampled data.

1.3 Research Aims and Technical Approaches

The objective of this research work is to optimally combine the existing techniques

of parallel imaging and compressive sensing. This research work aims to achieve

high acceleration factors and/or improve the image quality using both PMRI and

CS in tandem. At the conception stage, extensive simulations were used to vali-

date the new ideas. After validation of idea, MR pulse sequences were designed to

implement the developed methods on and to acquire data from the MRI scanner

for the validation of experimental feasibility of the proposed ideas/methods.

The novel contributions of this thesis are two new acceleration techniques. The

first technique is developed to reduce scan time in static imaging and is called

noiselet encoded multichannel compressive sensing MRI [36, 37]. The noiselets

have certain favorable mathematical properties for CS such as they are unitary

basis hence perfect reconstruction is possible from fully sampled data, they are

completely incoherent with wavelet basis and spreads energy in measurement do-

main hence well suited for CS reconstruction from under-sampled data. Therefore,

in order to take the advantage of these mathematical properties a new method of

acquiring data in the noiselet domain is developed and implemented on a 3T MRI

scanner. This new data acquisition and reconstruction method achieves better
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image quality and higher acceleration factors than conventional Fourier encoding.

The second technique is developed for dynamic imaging called k-space aliasing [38]

that uses multiple excitation pulses to acquire k-space data in aliased form. The

acquired aliased k-space is then un-aliased in the post processing using a simple

Fourier transformation along time frames. This technique of k-space aliasing is

combined with the technique of PMRI and CS to achieve further acceleration in

MR imaging [39].

1.4 Thesis Structure

In chapter 2 fundamentals of MR physics, MR signal generation, data acquisition

and MR image reconstruction is presented. This chapter provides a literature

survey of the various existing methods in the field of accelerated MR imaging,

which includes parallel imaging techniques - SENSE [21], SMASH [34], AUTO-

SMASH [35] and GRAPPA [23]. An introduction to the theory of compressive

sensing and its application to MRI is also presented in this chapter.

In chapter 3, a new technique is developed to address the imaging speed prob-

lem in static MRI. A compressive sensing technique that acquires data in noiselet

domain instead of conventional Fourier domain is described in detail. A detailed

theory is developed to use noiselets in compressive sensing MRI. The design and

implementation details of pulse sequence to acquire noiselet encoded data is de-

scribed and experimental results are presented. The simulation and experimental

studies that compare the performance of the proposed noiselet encoding and con-

ventional Fourier encoding are also presented here.

In chapter 4, a new technique for accelerating dynamic MRI scans called k-

space aliasing is developed. The theory of k-space aliasing is described in detail

followed by the reconstruction method for k-space un-aliasing. A design and im-

plementation of pulse sequence for k-space aliasing is presented followed by invivo

cardiac cine experimental results. A combination of k-space aliasing with the par-

allel imaging technique GRAPPA is also presented here.

In chapter 5, an existing compressive sensing method for accelerating cardiac

cine scans called k-t sparse is presented. This method is combined with our tech-

nique of k-space aliasing to further accelerate cardiac cine scans. A comparative

experimental study is presented that compares the performance of the proposed

combination with the existing method of k-t sparse.

In chapter 6, contributions of the thesis are summarized and some possible

extensions for future work are proposed.

4



Chapter 2

Principles of MRI and

Acceleration Techniques

2.1 MRI Physics

An understanding of MRI physics at atomic level requires quantum mechanics.

However, a classical treatment is simple to understand the macroscopic behavior of

the atoms. MRI is a spectroscopic method where the image is formed by localizing

the Nuclear Magnetic Resonance (NMR) signal by frequency [1]. The phenomenon

of NMR arises in atoms with odd number of protons/neutrons since they possess a

nuclear spin. These individual spinning charges have an associated small magnetic

moment. MRI acquires signal generated from these spinning nuclei to reconstruct

image of internal organs of human body. The Hydrogen (1H proton) atom is most

abundant in the body and therefore MRI essentially acquires signal generated

from these hydrogen atom. The hydrogen atoms act as a tiny magnet and in the

absence of any external magnetic field, they are randomly oriented in space in

such a way that the net magnetization due to all atoms is zero (Fig. 2.1 (a)).

When a uniform magnetic field B0 is applied, all the atoms either aligned parallel

or anti parallel to the direction of the applied magnetic field (Fig. 2.1 (b)). This

give rise to a net magnetization in the direction of magnetic field (M). Interaction

of these spins with radio frequency field B1 is used to generate MR signal and

linear gradient field G is used to encode the signal on to the Fourier space known

as k-space. In the sections following this we will describe the interaction of spins

with the three magnetic field (B0, B1 and gradients) present in the MRI scanner.
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Figure 2.1: (a): Spins of hydrogen atoms randomly aligned in the absence of magnetic field
B0; (b): Spins of hydrogen atoms aligned parallel and anti-parallel to the applied magnetic filed
B0, here the number of spins aligned parallel are more than that of spins aligned anti-parallel.

2.1.1 Interaction with Static Magnetic Field B0

When nuclear spins are subjected to a static magnetic field, B0 in the z direction,

the spins align in the direction of B0, giving rise to a net magnetization vector M.

This effect is termed as magnetization. These aligned spins exhibits resonance and

precesses at a well defined frequency called Larmor frequency. The spin angular

momentum of a proton is a vector quantity expressed as

Figure 2.2: Axis convention in MRI
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S =
h

2π
(2.1)

where h is Planck’s constant. And I is called the spin operator in quantum me-

chanics. For hydrogen I =±1. The magnetic dipole moment associated with S is

given by

µ = γS (2.2)

where γ is called the gyromagnetic ratio of the proton (42.58 MHz T−1 ).Therefore,

per unit volume of the magnetic dipole moment M =
∑
µ.

Fig. 2.2 shows the axis conventions. The z direction is called the longitudinal

direction while the xy direction is called the transverse direction. At thermal

equilibrium, M and B will be pointing in the same direction. If M is made to

point in a different direction than B, precessional behavior of the magnetization

will occur. The torque applied to the dipole moment µ in the presence of B is

µ×B and torque is equal to rate of change of angular momentum.

dS

dt
= µ×B (2.3)

Multiplying both sides by γ
dS

dt
= µ× γB (2.4)

The solution to this equation is for M to precess about B at a frequency, known

as Larmor frequency, given by

ω = γB rad/sec (2.5)

f = γ
h

2π
B Hz (2.6)

The magnetization is resonant at this well-defined frequency.

2.1.2 Bloch Equation

To describe the dynamics of the nuclear magnetization we combine Eq.2.4 with

Eq.2.9 and Eq.2.12, which gives rise to Bloch equation

dM

dt
= µ× γB − Mxi+Mxj

T2

− (Mz −Mo)k

T1

(2.7)
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where

γ is gyromagnetic ratio

T1 is spin-lattice (longitudinal-z) relaxation time constant

T2 is spin-spin (transverse-xy) relaxation time constant

i, j, k are unit vectors in x,y,z - directions respectively

The cross product relation describes a precessional behaviour while the relaxation

terms describe the exponential behaviour of both the longitudinal and transverse

components.

2.1.3 Interaction with the Radiofrequency Field B1

A magnetic field B1 applied in the transverse direction and rotating at the Lar-

mor frequency induces a torque on the magnetization, causing M to rotate away

from the equilibrium position along z while precessing about the z-axis. The fre-

quency of rotation away from the z-axis is ω = γB1, an analogous result to the

Larmor relationship. Following this excitation, the magnetization will continue to

precess about the z axis at a processional frequency proportional to the applied

field(B1). Given a transverse component to the magnetization, detection of the

magnetization becomes possible via Faraday’s law of induction. The detection

occurs because the precessing magnetization causes a change in flux φ in the coil,

thereby inducing a small electromotive force (EMF)

ε =
∂φ

∂t
(2.8)

The resulting time signal is known as free induction decay (FID) as shown in Fig.

2.3 and represents a basic MR signal that is recorded. The common excitation

angle is 90◦ in which magnetization gets rotated completely to the xy plane and

corresponds to a largest possible recordable signal. Eventually M returns to its

equilibrium state along z. This implies that the transverse component Mxy must

decay away and longitudinal componentMz must regrow. Following the excitation,

the transverse component of the magnetization decays away while the longitudinal

component returns to its thermal equilibrium state. Two MR parameters, T1

and T2, characterize this return to equilibrium and are called relaxation time

constants.
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Figure 2.3: Free induction decay signal generated in the transverse plane (xy-plane) after
excitation with 90◦ RF pulse.

2.1.4 Longitudinal Relaxation

In the presence of a strong static magnetic field the spins are in thermal equilibrium

resulting in magnetization M0 in the longitudinal direction. After applying a 90◦

RF pulse, the longitudinal component of the magnetization behaves according to

dMz

dt
=
Mz −M0

T1

(2.9)

The solution of this equation is

Mz = M0 + (Mz(0)−M0)e−t/T1 (2.10)

Following a 90◦ excitation Mz(0) = 0. Therefore

Mz = M0(1− e−t/T1) (2.11)

T1 is called the spin-lattice time constant and characterizes the return to equi-

librium along the z-direction. The longitudinal relaxation curve is shown in Fig.

2.4(a). Physically this involves the exchange of energy between the nuclei and the

surrounding lattice. Thermal equilibrium occurs when Mz is restored to M0. This

happens when the lowest energy state is reached.

9



Figure 2.4: (a) Longitudinal relaxation time curve: With the 90◦ excitation pulse the longi-
tudinal component becomes zero. Following the 90◦ excitation pulse the spins comes back to
thermal equilibrium and longitudinal magnetization recovers exponentially with the time con-
stant T1. (b) Transverse relaxation time curve: With the 90◦ excitation pulse all the spins flips
into the transverse plane resulting in magnetization M0 in transverse plane. Following the 90◦

excitation pulse the spins comes back to thermal equilibrium and the transverse magnetization
decays exponentially with the time constant T2, this decay results from the dephasing of spins
in the transverse plane

2.1.5 Transverse Relaxation

In the presence of a strong static magnetic field all the spins are aligned along the

longitudinal direction resulting in zero magnetization in transverse plane. after 90◦

excitation RF pulse the behavior of transverse component of the magnetization is

described by
dMxy

dt
= −Mxy

T2

(2.12)

The solution (after a 90◦ excitation -Mxy(0) = M0) is simply

Mxy = M0e
(−t/T2) (2.13)

T2 is called the spin-spin time constant and characterizes the decay of transverse

magnetization. The intermolecular interaction of the spins results in dephasing

among the spins in the transverse plane resulting in T2 decay. The transverse re-

laxation curve is shown in Fig. 2.4(b). However T2 relaxation process also depend

on z-component field fluctuations, therefore T2 < T1. The z-component fluctua-

tions often dominate T2 relaxation process. The relaxation due to z-component

fluctuations is called the T2∗ decay. In the presence of field fluctuations in z-

component, the transverse component dephase rapidly resulting in very fast decay

of transverse component characterized as T2∗ decay.
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2.2 Interaction with the Magnetic Gradient Field

Distribution of spinning hydrogen can be estimated from the FID signal which is

characterized by the precession frequency. However, it is not possible to acquire

signal separately from individual spinning hydrogen atom, the signal acquired

by the receiver coils will be summation of the signal emanating from the entire

excited region of interest. Therefore to estimate the distribution of hydrogen atom

in space, linear gradient fields are used to create a spatial localization. This spatial

localization is achieved by using linear magnetic field gradients (G) on top of static

magnetic field B0. Gradients can create a linearly varying magnetic field across the

bore of the scanner in all three directions. With the application of linear gradient

the resonance frequency of protons varies in space and a signal equivalent to the

bandwidth of precessing protons is generated.

2.2.1 X-Gradient Field

If we apply a gradient, Gx in the x-direction, then the applied field is B0 + Gxx.

The frequency of spins thus becomes a function of their x-locations. i.e. ω(x) =

γ(B0 +Gxx) = ω0 +γGxx. So if a constant Gx is turned on after an excitation, the

recorded time (FID) signal contains contribution from oscillators emitting signals

over a range of frequencies. Therefore, the Fourier transform of the FID time signal

determines the contribution from each frequency which in turn linearly maps to a

particular position. So a one dimensional image can be formed since x-position is

encoded as temporal frequency.

2.2.2 Selective Excitation through Z Gradient Field

If B1 is applied in the presence of B0, then all spins are at the same resonance

frequency and the excitation is non-selective as all spins in the volume are tipped.

This necessitates a 3D imaging to be performed which is usually a time consuming

endeavor unless image contrast or spatial resolution is compromised. Hence it is

desirable to reduce 3D imaging into a manageable 2D one by exciting a plane.

Such a selective excitation is achieved by applying B1 in presence of B0 and a

linear gradient field Gz. If we wish to excite a plane perpendicular to the z-axis

of thickness 4Z, then Gz turns on during the RF excitation. With Gz on the

resonance frequency varies along the z-position. As B1 must be tuned to the

Larmor frequency for excitation to occur, B1 must possess temporal frequency

bandwidth that matches the bandwidth of resonance frequencies of the spins in
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Figure 2.5: Selective excitation of a slice perpendicular to Z-axis by the RF Pulse. The gradient
in Z-direction makes the spins to precess at different frequency and the bandwidth of the RF
excitation pulse determines the thickness of slice.

the slice of interest. The desired bandwidth is 4ω = γGz4Z , centered about ω0

for excitation of the plane at Z = 0 (Fig. 2.5).To achieve a slice excitation with

a rectangular profile, the frequency content of B1 must be a rectangular function.

Thus if Fourier transform of B1 is to be a rectangular function, and then ideally

B1 must be a sinc function.

2.2.3 2D Fourier Transform Imaging Method

After a selective excitation of a 2D section, the signal readout occurs in the pres-

ence of a constant gradient field Gx and a FID time signal Sr(t) is recorded. At

a particular location all the spins along y oscillate at the same frequency and

therefore sum to give the value at that frequency bin. This signal corresponds

precisely to acquiring a projection in which the line integrals are along the y-

direction. Thus the Fourier transform of Sr(t) directly gives the projection of

magnetization m(x, y) along the y-direction. Going for a phased representation

of the rotating magnetization vectors, the signal generated by the oscillator at

position (x, y) can be written as m(x, y)e−ωt where m(x, y) is a complex quantity

given by m(x, y) = mx(x, y) + imy(x, y) and ω is the frequency of rotation of the

vector e−ωt. In the presence of the gradient in the x direction, the frequency is

spatially dependent and given by ω(x) = ω0 + γGxx.

The total received signal Sr(t) can be written by integrating over the entire excited
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plane.

Sr(t) =

∫
x

∫
y

m(x, y)e−iωte−iγGxxtdxdy (2.14)

Since we are interested in the base band signal, the base band signal s(t) is ex-

pressed as

s(t) = Sr(t)e
+ωt (2.15)

=

∫
x

∫
y

m(x, y)e−iγGxxtdxdy (2.16)

However, this signal does not provide the object distribution along the ray path.

So m(x, y) is to be spatially weighted in some clever way before the projection

takes place.

2.2.4 Y-Gradient Field

To effectively apply the spatial frequency weighting factor in MR, a gradient Gy

in the y direction is turned on a time ty before recording the FID. As a result the

spins which were originally in phase become increasingly out-of-phase with time.

i.e., the phase of the spins oscillating at ω(y) = ω0 + γGyy after an interval ty

is ω0ty + γGytyy. In essence the spins are spatially phase-encoded by the time

the FID is to be recorded, with the amount of phase encoding dependent on the

amplitude Gy and on the interval ty. Because m(x, y) is complex valued, the

distribution becomes weighted by the complex exponential corresponding to the

spatial frequency (γ/2π)Gyty and the distribution that is projected at time ty is

m(x, y)e−iγGytyy.

Once all FIDs are assembled, a simple 2D Inverse Fourier transform is used to

reconstruct M(X, Y ). Effectively, when the Fourier transform is performed in

the kx-direction, the FID time signal transforms into projections, each projection

corresponding to a particular ky spatial frequency component. Now, if a Fourier

transform is performed on these projections in the ky-direction, yields the object

distribution m(x, y). The baseband signal is written as

s(t, ty) =

∫
x

∫
y

[m(x, y)e−iγGytyy]e−iγGxxtdxdy (2.17)
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Let gty(x) =
∫
x
m(x, y)e−iγGytyydy be the line integral of m(x, y)e−iγGytyydy, then

s(t, ty) =

∫
x

∫
y

gtye
−iγGxxtdxdy (2.18)

Thus s(t, ty) provides information about gty(x) the projection of phase warped

version of m(x, y). Generalized form can written as

s(t, ty) =

∫
x

∫
y

[m(x, y)e−iγGytyy]e−iγGxxtdxdy (2.19)

= F2D[m(x, y)]|kx=(γ/2π)Gxt,ky=(γ/2π)Gyty (2.20)

So after assembling all FIDs (and therefore all horizontal lines in Fourier space),

we simply take the inverse 2-D transform to reconstruct m(x, y).

2.3 K-space and Spatial Aliasing

k-space is the spatial frequency space which is the original domain in which data is

acquired in MRI. k-space is discretely sampled. The resolution of the final image

is determined by the highest spatial frequency sampled (Ωx and Ωy) while the field

of view is determined by the sampling rate (4kx and 4ky.)
The Nyquist theorem implies the following inequalities:

4kx ≤ 1

2Ωx

, FOVx =
1

4kx
(2.21)

Similar inequalities can be obtained for the image height (y-direction). The opti-

mal spacing in the k-space is given by

4k∗x ≤
1

2FOVx
,4k∗y ≤

1

2FOVy
(2.22)

In the frequency encode (x) direction the sampling rate is dictated by the analogue-

to-digital converter (ADC) used on the receiver, boards which rarely presents

aliasing problems. However, in the phase encode (y) direction the sampling rate

is dictated by the magnitude of the k-space shift imposed by the phase encode

gradient lobe. As each phase encoding step takes a significant amount of time it

is imperative that we minimize the number of steps required to traverse a fixed

extent of k-space if we are to reduce the scan time. So we obviously intend to take
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Figure 2.6: (a): Image domain; (b): k-space domain

as large step as possible or as small FOV as possible. However, if the FOV does

not wholly contain the object then this will lead to aliasing in the object domain.

2.4 MRI Pulse Sequence

Fig. 2.7 shows a typical pulse sequence for MRI data acquisition. In the presence

of uniform magnetic field B0, first z-gradient is applied which creates a linear

variation in magnetic field along z direction then RF pulse is applied which flips

all the atoms of a particular slice at z = z0 in the transverse plane (xy plane).

Following this a phase encode is applied for some time that creates phase variation

along y direction. Now x-gradient is applied which creates linear variation in

magnetic field in x direction, as a result all the atom precesses along x direction

with different frequency. The signal is readout during the application of x-gradient

and is called readout gradient of frequency encode. The whole process is repeated

with different phase encoding step every time and corresponding k space locations

are filled. For an image of dimension 256×256, one needs 256 phase encodes and

256 sampling points during readout.

2.5 Acceleration with Parallel Imaging

Parallel imaging [33,40] is based on the idea that the spatially varying sensitivities

of individual coil elements forming a receive coil array can be used to instanta-

neously encode spatial information during signal reception. This simultaneous sig-

15



Figure 2.7: Gradient Recall Echo Pulse Sequence

nal encoding allows for the reduction of the number of necessary phase-encoding

steps conventionally required for magnetic resonance imaging and thus the accel-

eration of scanning or the increase of spatial resolution, keeping the total scan

time constant. The development of parallel imaging began with the introduc-

tion of the phased array coil concept as a suitable hardware platform to increase

the signal-to-noise ratio. Multiple independent and decoupled reception coils each

connected to an individual receiver allowed a local signal reception, minimizing the

noise, dominated by the object itself, to the sensitive volume of the coil. Different

algorithms have been used to combine the individual coil data and to compen-

sate for the residual reception inhomogeneities. Some of these approaches already

partly anticipated recent developments in parallel imaging and have, therefore,

something in common with algorithms used for approaches to accelerate scanning.

Parallel imaging algorithms can primarily be classified in two categories:

1. Algorithm that works in image domain such as SENSE, SPACE RIP

2. Algorithm that works in k-space domain such as SMASH, AUTOSMASH,

GRAPPA.

2.5.1 SENSE

As originally presented, the Cartesian form of SENSE [21, 22] is found upon a

uniform downsampling pattern. Based on the subsequent aliasing pattern that

results from this subsampling choice, one can construct a small system for each
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Figure 2.8: When k-space is sampled at Nyquist rate there is no aliasing in the image (left),
however with the uniform down sampling by a factor of 2 in k-space results in aliasing in the
image (right)

spatial-domain pixel in the acquired data reference frame. Solving this small

system gives unaliased spatial-domain pixels. This process is then repeated for

each pixel in the FOV. For example, consider a multiple coil acquisition employing

a uniform downsampling by 2 phase-encode k-space acquisition pattern. In the

spatial domain, this sampling pattern will alias a pixel (j, x) with a pixel from

the alternate half of the FOV, (j +N/2, x), as shown in Fig. 2.8. To reconstruct

the image, SENSE estimate these two pixel values, [I( j, x), I( j + N/2, x)]. The

reconstruction equation is formed using estimates of the coil sensitivity at the

location of these aliased pixels.

v1(j, x) = W1(j, x)I(j, x) +W1(j +N/2, x)I(j +N/2, x) (2.23)

Collecting together the expressions for each coil yields the SENSE linear system

of equations 
v1(j, x)

v2(j, x)
...

vL(j, x)

 =


W1(j, x) W1(j +N/2, x)

W2(j, x) W2(j +N/2, x)
...

...

WL(j, x) WL(j +N/2, x)

×

v1(j, x)

v2(j, x)
...

vL(j, x)


which is repeated for each pixel location in the acquired spatial-domain coordi-

nate system. Using an identical framework, this approach has also been used for

variable density under-sampling patterns
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2.5.2 SMASH

SMASH [20, 23, 34, 41] stands for simultaneous acquisition of spatial harmonics,

is a k-space technique, in the sense that it seeks to estimate a composite k-space

of the image from partial data acquired in different coils. Image reconstruction is

performed by Fourier transformation of the composite k-space. SMASH operates

by using linear combinations of simultaneously acquired signals from multiple sur-

face coils with different spatial sensitivities.

First, the sensitivity profiles Wk(x, y) are linearly combined to approximate com-

posite spatial harmonics in the phase-encoded direction as follows:

WComp
m =

K∑
k=1

amk Wk(x, y) ≈ Aejm4kyy (2.24)

where ky = 2/FOV, A is a complex constant, and K is the total number of coils

used. This approximation tries to fit the 2-D coil-sensitivity profiles to a 1-D

function in the y direction, rendering the fit challenging and error prone. Once

the weights are computed, the signals can be combined to form shifted lines of the

image k-space as follows:

sCompm =
K∑
k=1

amk .sk(G
i
y, t) (2.25)

=
K∑
k=1

amk

∫∫
I(x, y)Wk(x, y)ej(kxxt+kyy)dxdy (2.26)

=

∫∫
I(x, y)

K∑
k=1

amk Wk(x, y)ej(kxxt+kyy)dxdy (2.27)

Combining Equation 2.24 and Equation 2.27 results in:

sCompm =

∫∫
I(x, y)Aej(m4Kyy)ej(kxxt+kyy)dxdy (2.28)

= A

∫∫
I(x, y)ej[kxxt+(ky+m4ky)y]dxdy (2.29)

This shows that shifted k-space lines can be synthesized using a linear combina-

tion of the same phase-encoded signals acquired in all the coils in the array. Note

that the harmonic fit is approximately, but not exactly, sinusoidal leading to the

problems in reconstruction. Fig. 2.9 shows the signal flow for the SMASH algo-

rithm. Here each coil is used to collect regularly subsampled k-space sets with a
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Figure 2.9: Combining data in SMASH imaging

skip factor of two. Reconstructing these sets yields aliased images, weighted by

the coil sensitivity profiles. The acquired signals are combined linearly to form

the harmonics as described in Equation 2.14. Reconstruction of each harmonic set

separately also yields aliased images, where the coil weighting has been removed.

Finally, the harmonic sets are combined into a k-space representation, filling odd

lines from one harmonic and even lines from the other. Note that the chosen

acceleration factor in SMASH imaging determines the number of harmonic fits

needed to generate the composite k-space data.

2.5.3 AUTO-SMASH

One of the significant difficulties with implementing SMASH clinically is that the

reconstruction quality is greatly dependent on the coil configuration used. Com-

pounding this difficulty is the fact that coil sensitivities are only approximately

known. Thus, more recent k-space methods have focused on bypassing the need to

estimate coil-sensitivity maps. The first such approach was AUTO-SMASH [35],

in which one additional line of k-space is acquired in the low-frequency region

and futher improvements were made in [42]. The harmonic fit coefficients are

then determined by fitting the acquired lines of k-space to this autocalibration

line. Specifically, the k-space extrapolation coefficients ak(m) are determined via
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Figure 2.10: Data flow and reconstruction in AUTO-SMASH imaging

solution of a linear system of equations:

SComp(ky +m4ky) =
L∑
l=1

b
(m)
l .Sl(ky) (2.30)

=
L∑
l=1

a
(m)
k SACSl (ky + n4ky) (2.31)

This expression can be written in matrix form as

SComp(:, ky +m4ky) =
[
b

(m)
1 b

(m)
2 . . . b

(m)
L

]
×


S1(.., ky +m4ky)
S2(.., ky +m4ky)
...SL(.., ky +m4ky)

 (2.32)

where SComp(:, ky + m4ky) and Sl(:, ky + m4ky) represent vectors from the ac-

quired k-space data set.

The reconstructed image is formed using these coefficients in the same fashion as

the original SMASH reconstruction equations. A schematic describing the data

flow in AUTO-SMASH is shown in Fig. 2.10

2.5.4 GRAPPA

Generalized Partial Parallel Acquisition uses coil sensitivity to estimate missing

line of undersampled k-space. It generates full FOV image for each coil that are
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Figure 2.11: Pictorial representation of GRAPPA Algorithm

futher combined to reconstruct final image. As individual coil images are recon-

structed with GRAPPA method, it result in higher SNR than the AUTO SMASH

technique. In [43–47] researchers showed the improvement in the GRAPPA tech-

nique and analysis of the reconstruction quality based on G-Factor analysis. This

technique is also used for dyanamic imaging for cardiac application and is ex-

tended to non cartesian trajectories in [48–54]. In GRAPPA [23], uncombined

images are generated for each coil in the array by applying multiple blockwise

reconstructions to generate the missing lines for each coil. This process is shown

in Fig. 2.11. Again, data acquired in each coil of the array (black circles) are

fit to the ACS line (gray circles). However, as can be seen, data from multiple

lines from all coils are used to fit an ACS line in a single coil, in this case an ACS

line from coil 4. This fit gives the weights which can then be used to generate the

missing lines from that coil. Once all of the lines are reconstructed for a particular

coil, a Fourier transform can be used to generate the uncombined image for that

coil. Once this process is repeated for each coil of the array, the full set of uncom-

bined images can be obtained, which can then be combined using a normal sum

of squares reconstruction. In general, the process of reconstructing data in coil j

at a line (ky −m4ky) offset from the normally acquired data using a blockwise

reconstruction can be represented by

Sj(kx, ky +m4ky) =
L∑
l−1

Nb−1∑
b=0

W (j, b, l,m)Sl(kx, ky − bR4ky) (2.33)

where R represents the acceleration factor. Nb is the number of blocks used in the

reconstruction, where a block is defined as a single acquired line and (R -1) miss-
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ing lines (Fig.2.11). In this case, n(j, b, l,m) represents the weights used in this

now expanded linear combination. In this linear combination, the index l counts

through the individual coils, while the index b counts through the individual re-

construction blocks. This process is repeated for each coil in the array, resulting in

L uncombined single coil images which can then be combined using a conventional

sum of squares reconstruction or any other optimal array combination.

SENSE and GRAPPA are most commonly used in practice, particularly on

commercial scanner and SMASH/AUTO SMASH are rarely used now because of

their limitation and poor performance.

2.6 Acceleration with Compressive Sensing

Compressive Sensing [55–58] is a technique that tries to acquire data in com-

pressed form. In other words, CS is a technique that uses prior information about

the signal to reconstruct it from the fewer number of measurements than required.

In most of the applications of CS, the prior information about the signal is spar-

sity. If the signal is known to be sparse in certain domain such as wavelet, finite

difference or DCT, then according to this newly developed theory of CS it is

possible to reconstruct signal from fewer measurements than required for perfect

reconstruction.

2.6.1 Compressive Sensing Theory

Compressive sensing is a mathematical theory describing how a sparse signals can

be faithfully recovered after sampling projections well below the Nyquist sampling

rate.

Consider a signal x in the n dimensional complex space Cn that can be sparsely

represented in Ψ domain as s = Ψx, where Ψ is the n × n sparsifying transform

matrix. The signal s is K-sparse, that is, only the K coefficients in s are non-zero.

A measurement system measures signal y in m dimensional space by taking only

m projections of the signal x as

y = Φx (2.34)

where y ∈ Cm, K < m� n and Φ is the m×n measurement matrix. In MRI, Φ is

usually a (partially) randomly under-sampled discrete Fourier transform matrix.
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Equation (2.34) can be further expressed as

y = ΦΨ∗s, x = Ψ∗s (2.35)

where ∗ represents the conjugate transpose operation and the signal x is sparse

in the Ψ domain. MR images can be sparsely represented in the wavelet domain

using the wavelet transform matrix. Given the measurement y and the matrices

Φ and Ψ, there exist many solutions satisfying (2.34) and recovering x becomes

an ill posed problem. The CS theory provides a unique solution to the ill-posed

problem by solving the following optimization program:

min
x̂
‖Ψx̂‖l1 s. t. y = Φx̂ (2.36)

where ‖x‖l1 :=
∑

i |xi| is the l1 norm of x, with xi the ith element of x. Exact

reconstruction of the signal x is achievable if certain mathematical conditions hold.

2.6.2 Restricted Isometry in Compressive Sensing

An important sufficient condition for exact reconstruction of x is the so called

restricted isometry property (RIP) [59–61]. For a normalized measurement matrix

Φ with unit column norms, the RIP is given as

(1− δK)‖x‖2
l2
≤ ‖Φx‖2

l2
≤ (1 + δK)‖x‖2

l2
(2.37)

where δK ∈ (0, 1) is called the RIP constant and l2 norm is defined as ‖x‖l2 =

(
∑
i

|xi|2)1/2. The RIP (2.37) is equivalent to [59,62,63]

(1− δK) ≤ σ2
min[Φsub(K)] ≤ σ2

max[Φsub(K)] ≤ (1 + δK), (2.38)

where Φsub(K) is the m × K submatrix formed from K distinct columns of Φ,

and σmin[Φsub(K)] and σmax[Φsub(K)] are the minimum and maximum singular

values1 of Φsub(K), respectively. The RIP constant δK is the smallest constant

that satisfies the inequalities (2.38) for every m × K sized submatrix of Φ, and

it is essentially a bound on the distance between unity and the singular values of

all Φsub(K)s. It is shown in [61] that if δ2K < 1, then a K-sparse signal x can be

exactly reconstructed from the measurements of Φ.

1In [59, 62, 63], the eigenvalue λ[Φsub(K)∗Φsub(K)] is used for (2.38), where
λ[Φsub(K)∗Φsub(K)] = σ2[Φsub(K)].
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While δK ∈ (0, 1) renders the exact reconstruction of x, the value of δK de-

termines the stability of reconstruction. In the presence of measurement noise ε,

y = Φx+ ε and the reconstructed signal x̂ satisfies (Section 5.2 [64])

‖x− x̂‖2
l2
≤ 4ε2

1− δ2K

. (2.39)

Thus, the smaller the δK , the smaller the reconstruction error, and vice versa.

Since measurement noise always exists in practice, the size of δK is an important

performance measure of a measurement matrix Φ for both the reconstruct-ability

and reconstruction error. However, the computation of δK for a given Φ is NP

hard and hence intractable. Since the RIP constant δK is essentially a bound on

the distance between 1 and the singular values of all Φsub(K)s, the size of δK can

be assessed by the distances from 1 to the σmin[Φsub(K)]s and σmax[Φsub(K)]s.

The smaller the distance, the smaller the δK and hence the better performance

of Φ. Since (2.38) must hold for all the m × K submatrices of Φ, the statistics

of σmin[Φsub(K)] and σmax[Φsub(K)] over randomly sampled Φsub(K)’s are used

in [62, 63, 65] to assess the RIP performance of a given measurement matrix Φ.

This method is also adopted in this work.

2.6.3 Incoherence in Compressive Sensing

Another important sufficient condition for exact reconstruction of x is the inco-

herence [57, 66]. For a pair of measurement matrix Φ and sparsifying transform

matrix Ψ, satisfying Φ∗Φ = nI and Ψ∗Ψ = I, their incoherence is defined as

µ(Φ,Ψ) = max
k,j
| 〈Φk,Ψj〉 | (2.40)

where Φk and Ψj are respectively the kth and jth columns of Φ and Ψ, and

µ(Φ,Ψ) ∈ [1,
√
n]. The value µ(Φ,Ψ) = 1 is termed as maximal incoherence.

As shown in [57], if m ≥ C · µ2(Φ,Ψ) · K · log(n), where C is a small constant,

then a K-sparse signal x can be exactly reconstructed. Thus, µ(Φ,Ψ) determines

the minimum number of measurements needed for exact reconstruction of x. The

smaller the µ(Φ,Ψ), the smaller the m (the fewer the measurements) needed for

exact reconstruction of x.

It is important to note that both the RIP and the incoherence are sufficient

conditions on the measurement matrix. So they are parallel and either or both of

them can be used to design, analyze and assess the measurement matrix for exact

reconstruction of x.

24



2.6.4 Compressive Sensing in MRI

Accelerating the data acquisition process is an active area of research in MRI,

and Compressive Sensing (CS) is a promising solution that can improve the speed

of data acquisition in MRI. CS [57, 59, 65, 67, 68] is a technique that permits the

faithful reconstruction of the signal of interest from the data acquired below the

Nyquist sampling rate. MRI is a ideal system [69] for CS applications as it acquires

image already in encoded form rather than in pixel domain. The application of CS

in MRI was first described in [2], where variable density random under-sampling of

phase encodes was suggested as a sampling strategy. Parallel imaging techniques

[20,21,23] have also been combined with CS in [70–75] to further accelerate MRI

scans, and CS-MRI has been applied for dynamic imaging, exploiting k-t space

sparsity [73,76–79].

The theory of CS provides a solution to an ill-posed inverse problem by exploit-

ing prior knowledge of signal sparsity or compressibility. This theory guarantees

perfect reconstruction of the signal from the under-sampled data if certain condi-

tions are satisfied [57,59,60,65,67,68]: (i) sparsity or compressibility of the signal

in the transform domain; (ii) Restricted Isometry Property (RIP) of the measure-

ment matrix or incoherence between the measurement and sparsifying transform

matrices; and (iii) a non-linear reconstruction algorithm that promotes sparse rep-

resentation of the image and enforces data consistency of reconstruction with the

acquired data.

2.6.5 Sampling Scheme in CS MRI

Regular or equally spaced under-sampling in k-space results in aliasing artifact

in the image domain. However, random under-sampling in k-space results in

noise like artifact in the image domain instead of aliasing. Therefore, an image

reconstructed with random under-sampling of k-space is almost free from aliasing

artifact but contains noise like artifact in the image called incoherent artifacts.

These incoherent artifacts are thus eliminated using the non-linear reconstruction

in CS-MRI. Ideally in 2D MR imaging, random under-sampling in both phase

encode (PE) and frequency encode (FE) direction is required to optimally use CS

reconstruction. However random under-sampling in both PE and FE direction

is not possible due to practical limitation of the MRI scanner. Practically, only

under-sampling along PE direction is feasible in 2D MR imaging. Therefore in [69],

random under-sampling in PE direction was used to acquire data. One fact that

was considered while designing under-sampling pattern in [69] is that most of the
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Figure 2.12: Practical random under-sampling of k-space

energy in k-space is concentrated in the centre phase encodes. Thus, in order to

capture most of the energy during acquisition, a variable density under-sampling

of the k-space was proposed as shown in Fig.2.12, where up-down direction is PE

direction and left-right is FE direction.

2.6.6 Example of Compressive Sensing in 1D

The CS sampling and reconstruction can be understood with an intuitive example

show in Fig.2.13. Consider a sparse signal (Fig. 2.13(1)) in image domain [2] and

its representation in k-space Fig. 2.13(2). Equispaced under-sampling in k-space

by a factor of eight and reconstruction with zero filling result in aliasing in image

domain as shown in Fig.2.13(3a). This reconstruction results in inherent ambiguity

and it is not possible to recover the original signal without any further knowledge

about the signal. Now consider a random under-sampling of the same signal by a

factor of eight in k-space. The zeros filled Fourier transform reconstruction of the

randomly under-sampling k-space signal results in image domain signal as shown

in Fig. 2.13(3). The random under-sampling and zero filled Fourier transform

reconstruction results in original signal superimposed with additive random noise.

These random noise like artifact are noise but a leakage of energy from the non

zero coefficient of the signal to zero coefficient of the signal. The energy from the

non zero coefficient interfere with the zero coefficient and appears as noise in the

reconstructed signal. Therefore, the problem is transformed into a signal denoising

problem. A simple reconstruction procedure involves thresholding and recovering

strong coefficient as shown in Fig. 2.13(4-5), followed by calculation of interference

due to strong coefficient (Fig. 2.13(6)) and subtracting it from the originally

reconstructed signal (Fig. 2.13(4)). This procedure eliminates the interference

due to strong coefficient and results in signal having smaller coefficients above the

noise floor (Fig. 2.13(7)). With iterative thresholding and subtraction, smaller

coefficient can be recovered and original signal can be restored.
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Figure 2.13: Compressive sampling and signal reconstruction

2.6.7 Application of Compressive Sensing in MRI

In Fig.2.14 [2] a brain image is represented as m, let Ψ denote the linear operator

that transforms from pixel representation into a sparse representation, and let Fu

be the under-sampled Fourier transform operator, corresponding to the k-space

under-sampling schemes discussed in subsection 2.6.5. The partial k-space data is

acquired as y = Fux, direct zero filled inverse Fourier reconstruction (m̂ = F ∗uy)

results in image with incoherent artifact (Fig.2.14). In order to obtain the desired

image the following constrained optimization program is solved:

min ‖Ψm̂‖l1 s.t ‖Fum̂− y‖l2 < ε

Here m̂ is the reconstructed image, y is the measured k-space data from the

scanner, and ε controls the fidelity of the reconstruction to the measured data.

The threshold parameter ε is set below the expected noise level. The first term in

above reconstruction program essentially minimizes the the sparse representation

(wavelet) of the desired image and the second term enforces the consistency with

the acquired data.
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Figure 2.14: Application of Compressive Sensing in MRI [2]. (a) is acquired k-space of the
image, (b) is image reconstructed after taking 2D FFT of the k-space, (d) is sparse representation
of the image after taking 2D wavelet transform of the image, (e) represents a partial k-space, here
the red dots represent the sampled points in k-space and (c) represents the image reconstructed
after taking 2D FFT of the partial k-space. The image shown in (c) looks similar to the original
image (b) but have some incoherent artifacts, these noise like incoherent artifacts are removed
by applying the compressive sensing reconstruction algorithm.
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Chapter 3

Multichannel Compressive

Sensing MRI Using Noiselet

Encoding

3.1 Introduction

The structural imaging applications such as 3D MRI can always benefit from the

accelerated imaging. The scan time reduction in static imaging can reduce the

patient discomfort, increase the throughput thereby reducing the cost incurred

per person and can reduce the imaging artifact due to patients motion. Therefore

in order to accelerate static imaging, in this chapter we present a method to

accelerate structural MRI scans. The approach we have used to accelerate static

MRI is a mutichannel compressive sensing framework.

Compressive Sensing (CS) is a promising technique that can improve the speed

of data acquisition in MRI. CS [59, 65, 67, 68, 80] is a technique that permits the

faithful reconstruction of the signal of interest from the data acquired below the

Nyquist sampling rate. MRI is a ideal system [69] for CS applications as it acquires

image already in encoded form rather than in pixel domain. The application of CS

in MRI was first described in [2], where variable density random under-sampling of

phase encodes was suggested as a sampling strategy. Parallel imaging techniques

[21,23,35] have also been combined with CS in [70–75] to further accelerate MRI

scans, and CS-MRI has been applied to dynamic imaging, exploiting k-t space

sparsity [73,76–79].

The theory of CS provides a solution to an ill-posed inverse problem by exploit-

ing prior knowledge of signal sparsity or compressibility. This theory guarantees
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perfect reconstruction of the signal from the under-sampled data if certain condi-

tions are satisfied [59,60,65,67,68,80]: (i) sparsity or compressibility of the signal

in the transform domain; (ii) Restricted Isometry Property (RIP) of the measure-

ment matrix or incoherence between the measurement and sparsifying transform

matrices; and (iii) a non-linear reconstruction algorithm that promotes sparse rep-

resentation of the image and enforces data consistency of reconstruction with the

acquired data.

The sparsity or compressibility condition is satisfied by MR images as they are

known to be sparse or compressible in the wavelet domain and the finite differ-

ence domain [2, 70–72]. However, the RIP is difficult to verify for a given deter-

ministic measurement matrix since it is computationally NP (Non-deterministic

Polynomial-time) hard [81]. An empirical solution to this problem in the CS lit-

erature is to use random measurement matrices. A randomly sampled frequency

domain data can capture pertinent information from a sparse signal with fewer

measurements and allows accurate reconstruction of the signal by the convex l1

optimization program. This property was first proved mathematically for Gaus-

sian matrices [61, 65] and has recently been extended to a wide class of random

matrices [82]. Based on this property, [83] proposed using spatially selective RF

pulses to implement random encoding along the phase encode direction, with the

entries of the random measurement matrix drawn from Gaussian distribution.

This random encoding scheme attempts to approximate the sufficient conditions

for perfect CS reconstruction, but as described in [83], this measurement matrix

is not unitary and results in noise amplification even after taking all the required

measurements. Another problem with random encoding is computational com-

plexity. Dense random matrices consume large amounts of memory and require

computationally expensive matrix multiplications in CS-reconstruction [80, 84].

This problem is partially alleviated in [83] by using fast Fourier transforms of the

matrix multiplications, but still requires more memory and computations than

those of structured/unitary measurement matrices.

MRI uses the Fourier basis to encode the excited region of interest. The Fourier

measurement matrix is weakly incoherent with the wavelet sparsifying transform

matrix, thus is sub-optimal for CS-MRI [85]. The incoherence is essentially a mea-

sure of the spread of sparse signal energy in the measurement domain [80]. Various

attempts have been made in [83,85–88] to spread the energy of the MR signal in the

measurement domain. In [85, 89], the spread spectrum technique was presented

which convolves the k-space with the Fourier transform of a chirp function to

spread the energy of the MR signal in the measurement domain. The chirp modu-
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lation is implemented through the use of second order shim coils. In [86–88,90–92],

other non-Fourier encoding strategies were described for compressive sensing that

aims to spread the energy of the MR signal in the measurement domain. While

these encoding strategies can spread the signal energy to some extent, none of

them has the theoretically proven maximal incoherence for the complete spread

of the signal energy.

Noiselet bases [66, 93] are known to completely spread out the energy of the

signal in the measurement domain, which is a desired property in CS. Noiselets

are also known to be maximally incoherent with Haar wavelets that makes them

the best suited bases for CS. Further, noiselet matrices are complex valued, sym-

metric and unitary, which simplifies the implementation of image reconstruction

program in CS-MRI. In the simulation study of [94], it is found that the noise-

let measurement matrix outperforms the chirp modulation measurement matrix

when the noise level is high. Also, as shown in Section 3.3.5 of this chapter, the

multichannel noiselet measurement matrix exhibits much better RIP than that of

its Fourier counterpart. In order to take the advantage of maximal incoherence

and better RIP provided by noiselet measurement matrix, we have investigated

the use of noiselet encoding for CS-MRI.

In order to take the advantage of multiple measurements provided by an MR

scanner through the use of multiple channels, a Multichannel Compressive Sensing

(MCS) framework is proposed in [70] for CS reconstructions. The MCS framework

simultaneously uses data from the multiple channels to reconstruct the desired

image instead of reconstructing separate images from each channel, resulting in

higher acceleration factors and improved image quality. Therefore, in this work

we describe the theory and implementation details of using noiselet bases as the

measurement matrix in MCS-MRI. Considering the lack of analysis and sufficient

understanding of MCS-MRI in the literature, we also present an empirical RIP

analysis of the multichannel noiselet measurement matrix in comparison with its

Fourier counterpart. The results indicate that the multichannel noiselet mea-

surement matrix outperforms its Fourier counterpart, and that noiselet encoding

outperforms Fourier encoding in preserving image resolution for the same accelera-

tion factors, and can achieve higher acceleration factors than the Fourier encoding

scheme for the desired image quality and resolution.

This chapter is organized as follows. In section 3.2, we describe the background

of CS, sufficient conditions for CS and develops a model for MCS-MRI reconstruc-

tion. In section 3.3, we describe the noiselet basis function, its properties and our

motivation for using noiselets in MRI. A pulse sequence design to implement the
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proposed noiselet encoding scheme is also described in this section, followed by an

empirical RIP analysis of the multichannel noiselet measurement matrix in com-

parison with its Fourier counterpart. In section 3.4, simulation studies comparing

the performance of noiselet encoded and Fourier encoded MCS-MRI for different

acceleration factors are demonstrated on a brain image. The effect of the number

of channels and level of noise on the reconstruction is also evaluated for both the

encoding schemes. In section 3.5, we demonstrate the feasibility of the proposed

encoding scheme by acquiring noiselet encoded data from a phantom and a hu-

man brain. Retrospective under-sampling is performed on the acquired noiselet

encoded and the Fourier encoded data to simulate accelerated acquisition. The

nonlinear conjugate method [69] with wavelet and total variation (TV) penalties

is used to solve the minimization program for MCS-MRI. In section 3.6, we discuss

the findings, limitation and further extension of the technique.

3.2 Multichannel Compressive Sensing

In section 2.6, the theory of compressive sensing and associated mathematical

properties were described in detail. Since MRI acquire multiple measurements of

the desired signal through use multiple channels, thus it make sense to use all the

data together. Therefore, in this section we develop a mathematical model for

multichannel compressive sensing.

Given the multiple channels, the data acquisition process can be modeled as

yi = ΦΓix = ΦΓiΨ
∗s, i = 1, 2, · · · , L, where Γi = diag[γij]j=1,2,··· ,n is the complex

valued sensitivity map matrix of the ith receive channel, with γij being the sensi-

tivity of the ith channel at the jth pixel of the vectorized image, L is the number

of receive channels, yi is the data acquired from the ith receive coil and s = Ψx.

In matrix form, the yi’s can be written as

Y :=


y1

y2

...

yL

 =


ΦΓ1

ΦΓ2

...

ΦΓL

x =: Ex = EΨ∗s. (3.1)

As seen from above, with L receive channels, the measurement matrix for x be-

comes E, which has a column of L measurement matrices ΦΓi’s and dimension

Lm × n. It is important to note that Γis are complex valued and Γi 6= Γj, i 6= j,

in general. Hence, ΦΓi 6= ΦΓj for i 6= j and they can be independent of each
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other, depending on the specific values of Γi and Γj. As a result, the multichannel

measurement matrix E provides more independent measurements than that of the

single channel Φ, which may reduce the number of measurements, m, needed at

each channel for exact reconstruction of x. This reasoning is confirmed by the

empirical analysis of E in Section 3.3.5.

In light of the above discussion, the following MCS optimization is considered

for reconstructing the desired image x from the multichannel measurements of

MRI.

min
x̂
‖Ψx̂‖l1 s.t. ‖Y − Ex̂‖l2 ≤ ε (3.2)

where Ψ is the wavelet transform operator and ε determines the allowed noise level

in the reconstructed image. The ln norm is defined as ‖x‖ln = (
∑
i

|xi|n)1/n

MR images are also known to be sparse in the total variation (TV) domain.

It is demonstrated in [95] that the TV penalty is critical to the performance of

CS-MRI, and that MR images can be recovered more efficiently with the use of

TV penalty together with the wavelet penalty. Therefore, most of the CS-MRI

work [2, 69, 71, 72, 83, 86, 88, 91, 92] has used both TV and wavelet penalties for

better reconstruction performance. To be consistent with this common practice in

CS-MRI, the TV penalty is included in the objective function (3.2) for MCS-MRI

reconstruction, together with the wavelet penalty. Equation (3.2) is a constrained

optimization problem which is computationally intensive to solve. To relax the

problem, (3.2) is converted to the unconstrained optimization problem with the

inclusion of TV penalty.

min
x̂

λ1‖Ψx̂‖l1 + λ2‖TV x̂‖l1 + ‖Y − Ex̂‖2
l2

(3.3)

where TV is a 2D total variation operator and λ1, λ2 are regularization parameters

for wavelet and TV penalties, respectively. The 2D TV is defined as TV (x) =∑
i,j

(|xi+1,j − xi,j|+ |xi,j+1 − xi,j|)

Daubechies-4 (db-4) wavelet is usually used in CS-MRI because of its superior

performance in sparsifying the MR images. To be consistent with this fact and

fair in comparison with the existing CS-MRI results, the unconstrained objective

function (3.3) with the Ψ of the db-4 wavelet operator will be used throughout all

the simulations and reconstructions in this work.
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3.3 Noiselet Encoding in CS-MRI

3.3.1 Noiselets

Noiselets are functions which are noise-like in the sense that they are totally incom-

pressible by orthogonal wavelet packet methods [66, 93]. Noiselet basis functions

are constructed similar to the wavelet basis functions, through a multi-scale iter-

ation of the mother bases function but with a twist. As wavelets are constructed

by translates and dilates of the mother wavelet function, noiselets are constructed

by twisting the translates and dilates [80]. The mother bases function χ(x) can

be defined as

χ(x) =

{
1 x ∈ [0,1)

0 otherwise

The family of noiselet basis functions are generated in the interval [0, 1) as

f1(x) = χ(x)

f2n(x) = (1− i)fn(2x) + (1 + i)fn(2x− 1)

f2n+1(x) = (1 + i)fn(2x) + (1− i)fn(2x− 1)

(3.4)

where i =
√
−1 and f2n , . . . . . . , f2n+1 form the unitary basis for the vector space

Vn. An example of a 4×4 noiselet transform matrix is given below.

1

2


0− 1i 1 + 0i 1− 0i 0 + 1i

1 + 0i 0 + 1i 0− 1i 1− 0i

1− 0i 0− 1i 0 + 1i 1 + 0i

0 + 1i 1− 0i 1 + 0i 0− 1i

 (3.5)

Fig.3.1 shows real, imaginary and absolute part of the first basis of a 16 point

noiselets. The real and imaginary part consist of only three values -1,0,1 and

absolute part is always 1. This makes noiselets easy implement as it consist of

only three values compared to random encoding where the basis are made up of

random values.

Noiselets totally spread out the signal energy in the measurement domain and

are known to be maximally incoherent with the Haar wavelet. The mutual inco-

herence parameter between the noiselet measurement matrix Φ and the sparsifying

Haar wavelet transform matrix Ψ has been shown to be equal to 1 [80], which is

the minimum value possible for the incoherence. Therefore, theoretically, noiselets

are the best suited measurement basis function for CS-MRI when the wavelet is
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Figure 3.1: (a):Real part of noiselet basis; (b): Imaginary part of noiselet basis (c): solute
part of noiselet basis. The real and imaginary part consist of only three values -1,0,1 and absolute
part is always 1. This makes noiselets easy implement as it consist of only three values compared
to random encoding where the basis are made up of random values.

used as sparsifying transform matrix.

3.3.2 Motivation

The motivations behind using noiselets as a measurement matrix in MCS-MRI are

as follows:

• Noiselet basis function is unitary and hence does not amplify noise as in the

case of random encoding [83].

• Noiselets completely spreads out the signal energy in the measurement do-

main and are maximally incoherent with wavelets.

• Unlike random basis, noiselet basis has conjugate symmetry. Thus, this

property of symmetry can be exploited by using the partial Fourier like

technique.

• Noiselets are derived in the same way as wavelets, therefore it can be mod-

elled as a multi-scale filter-bank and can be applied in O(n · log(n)).
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We proposed to use the noiselet encoding in the phase encode (PE) direction in

2D and 3D MR imaging. Therefore, the acquired data is noiselet encoded in the

PE direction and Fourier encoded in the frequency encode (FE) direction/s.

3.3.3 Pulse Sequence Design for Noiselet Encoding

In conventional 2D MR imaging sequences, a spatially selective RF excitation

pulse is used to select the slice and the linear spatial gradients are used to en-

code the excited slice onto the Fourier transform space. In [89, 90, 96, 97], it is

demonstrated that the spatially selective RF excitation pulse can also be used to

encode the imaging volume. In [83, 90, 98, 99], the wavelet, SVD and random en-

coding profiles have been implemented using the spatially selective RF excitation

pulses. An analysis using the linear response model described in [96] provides a

theoretical framework to design spatially selective RF excitation pulses for imple-

mentation of non-Fourier encoding. Under the small flip angle (≤ 30◦) regime, the

RF pulse envelope can be calculated directly by taking the Fourier transform of

the desired excitation profile. However this method of designing an RF excitation

pulse requires excellent RF and main field homogeneity.

To excite a noiselet profile during excitation, one can design an RF pulse enve-

lope by directly taking the Fourier transform of the noiselet basis functions. For

an image of size 256×256, the noiselet measurement matrix has 256 rows and 256

columns (see (3.5) for the low dimensional example). The Fourier transformation

of each row of the noiselet matrix will result in 256 RF excitation pulses.

A pulse sequence for the noiselet encoding of 2D MR imaging is shown in

Fig. 3.2 (a). The pulse sequence is designed by tailoring the spin echo sequence.

The RF excitation pulse in the conventional spin echo sequence is replaced by

the noiselet RF pulse, and the slice select gradient is shifted to phase encoding

axis. The 180◦ refocusing RF pulse is used in conjunction with the slice selection

gradient to select the slice that refocuses the spins only in the desired slice. Spoilers

are used after the readout gradient to remove any residual signal in the transverse

plane. A new RF excitation pulse is used for every new TR to excite a new noiselet

profile, and a total of 256 TR are required for excitation of the complete set of

noiselet bases. The readout gradient strength determines the FOV in the readout

direction, while the phase encoding gradient strength and duration of the RF

excitation pulse determines the field of view (FOV) in phase encoding direction.
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Figure 3.2: (a): Pulse sequence diagram for implementation of noiselet encoding in 2D imaging,
where Gss is the gradient in slice (z) direction, Gpe is the gradient in phase encoding (y) direction,
and Gro is the gradient in readout (x) direction. The RF pulse duration is 5.12 ms and the flip
angle is 10◦, which excites a noiselet profile along y-direction. The 180◦ refocusing pulse is used
to select the desired slice in z-direction. A new RF pulse is executed for every new TR and the
complete acquisition of all noiselet basis functions requires 256 different RF pulses derived from
the noiselet measurement matrix. (b): Pulse sequence diagram for implementation of noiselet
encoding in 3D imaging. The RF pulse excites a noiselet profile along y-direction and gradient
blips are used along slice encode direction to encode slice direction with Fourier bases.

The FOV in phase encoding direction is determined as

FOVpe =
1

γGy∆tp
(3.6)

where Gy is the gradient strength in PE direction, γ is the gyromagnetic ratio, and

∆tp is the dwell time of the RF pulse which is defined as ∆tp = (Duration of RF

pulse) / (Number of points in RF pulse). Equation (3.6) is used to calculate the

gradient strength Gy required in the phase encoding direction during execution of

RF excitation pulse.

The method described above can also be used to design the pulse sequence for

the noiselet encoding of 3D MR imaging as shown in Fig. 3.2 (b).

3.3.4 Under-sampling in noiselet encoding

Noiselet transform is a type of Haar-Walsh transform. The noiselet transform

coefficients totally spread out the signal in scale and time (or spatial location) [93].

As a result, each subset of the transform coefficients contains a certain information

of the original signal at all the scales and times (spatial locations), and can be used

alone with zero padding to reconstruct the original signal at a lower resolution.

This important property is demonstrated by the example shown in Fig. 3.3.

Fig. 3.3 shows a brain image of size 256 × 256, and the 3D magnitude map

of the noiselet transform of the brain image along the phase encoding direction
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Figure 3.3: (a): Brain image of size 256×256; (b): 3D magnitude map of the noiselet transform
of the brain image along phase encoding direction (noiselet encodes); (c): image reconstructed
using only the first 64 noiselet encodes; (d), (e) and (f): are the images reconstructed with
the second, third and fourth 64 noiselet encodes respectively.

(all noiselet encodes). Fig. 3.3 (c-f) shows the images reconstructed with the

first, second, third and fourth 64 noiselet encodes by zero padding the rest. Each

of these images are reconstructed using one quarter of the noiselet encodes and

has low resolution than the original image. However, each of these images have

complementary information about the original image and have approximately the

same amount of energy and information because they are reconstructed using the

same size of partial matrix from the original coefficient matrix.

Based on the above property of noiselet transform, we propose to under-sample

the noiselet encoded data along the phase encoding direction according to the uni-

form probability distribution function. One sampling mask using this scheme is

shown in Fig. 3.4(a) where the white lines represent the sampled data points and

the black lines represent the unsampled data points. Fig. 3.4(b) shows the sam-

pling mask for Fourier encoding scheme drawn from a variable density probability

distribution function shown in Fig. 3.4(c).

3.3.5 Empirical RIP analysis of measurement matrix

According to the CS theory summarized in Section 3.2, the measurement matrix

is crucial to the performance of CS reconstruction, and the performance of a

measurement matrix Φ for a K-sparse signal x can be assessed by the statistics
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Figure 3.4: (a): Completely random sampling pattern for noiselet encoding generated using
the uniform probability distribution function, where the white lines represent the sampled phase
encodes; (b): variable density random under-sampling pattern for the Fourier encoding scheme,
with the sampling mask generated according to Gaussian probability distribution function; and
(c): probability distribution function used to generate variable density random undersampling
pattern where the probability of sampling the center phase encodes is equal to 1, while the
probability decays as a Guassian function with distance from the center phase encodes. The
central fully sampled region is always between 20%-25% of the total number of sampled phase
encodes.

of σmin[Φsub(K)] and σmax[Φsub(K)] over the Φsub(K)s consisting of k distinct

columns of Φ. To understand the behavior and advantage of the noiselet encoding

proposed above, we have used this method to assess the noiselet measurement

matrix in comparison to the conventional Fourier measurement matrix.

In the assessment, the size of the signal was n = 256, the number of measure-

ments m = 100, the number of channels L = 1, 8 and 14, and the sparsity K was

varied from 5 to 100 with an increment of 5. For L = 1, the measurement matrices,

Φs, were generated for the noiselet and Fourier encodings, respectively. For L = 8

and 14, the measurement matrices Es as given in (3.1) were generated for the noise-

let and Fourier encodings, respectively. For each K, 2,000 submatrices Φsub(K)s

were drawn uniformly randomly from the columns of Φ, then the σmin[Φsub(K)]

and σmax[Φsub(K)] of every Φsub(K) were calculated. The same procedure is used

to obtain the submatrices Esub(K)s from E and to calculate the σmin[Esub(K)] and

σmax[Esub(K)] of every Esub(K). The statistics of σmin[Φsub(K)]s, σmax[Φsub(K)]s,

σmin[Esub(K)]s and σmax[Esub(K)]s were accumulated from their respective 2,000

samples.

Fig. 3.5 shows the means and standard deviations of the minimum and max-

imum singular values of Φsub(K)s and Esub(K)s versus the sparsity K for the

Fourier and noiselet measurement matrices. As seen from the figure, in single

channel case, the singular values of noiselet measurement matrix are closer to 1

than those of Fourier measurement matrix, but are not significantly different. As
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the number of channels increases, the singular values of noiselet and Fourier mea-

surement matrices all move towards 1, but those of noiselet measurement matrix

move much closer to 1 than those of Fourier measurement matrix. By the CS

theory, when the maximum distance from 1 to the singular values is less than 1,

it equals roughly the RIP constant δK [61]. Therefore, the figure actually reveals

two facts: 1) For both the noiselet and Fourier measurement matrices, the RIP

constant δK decreases as the number of channels increases. 2) As the number of

channels increases, the RIP constant δK of noiselet measurement matrix deceases

much more than that of Fourier measurement matrix. According to the CS theory,

these imply that the multichannel measurement matrix should generally outper-

form the single channel measurement matrix, and that the multichannel noiselet

measurement matrix should generally outperform the multichannel Fourier mea-

surement matrix.

As a particular example consider the curves in Fig. 3.5 (d) for the noiselet

measurement matrix. To facilitate discussion, the distances from 1 to the singular

values of a measurement matrix will be called the δ-distances here. In single

channel case, the δ-distances of noiselet measurement matrix are less than 1 for

K ≤ 40. By RIP, this implies that the single channel noiselet measurement matrix

can guarantee the recovery of the signals with sparsity K ≤ 20. When the number

of channels is increased to 14, the δ-distances are less than 1 for K ≤ 85. So the

14 channel noiselet measurement matrix can guarantee the recovery of the signals

with sparsity K ≤ 42. The improvement in terms of sparsity is two folds. In

contrast, for the 14 channel Fourier measurement matrix shown in Fig. 3.5 (c), its

δ-distances are less than 1 only for K < 30, so it can only guarantee the recovery

of the signals with sparsity K < 15.

From the above assessment, it can be expected that the multichannel CS MRI

will outperform the single channel CS MRI and that the noiselet encoding mul-

tichannel CS MRI will outperform the Fourier encoding multichannel CS MRI in

practice. These are confirmed by the simulation and experiment results presented

in the next sections.

It is important to note that the above empirical analysis results are obtained

by using the complex valued sensitivity maps. If only the magnitudes of the

sensitivity maps are used, the above results will not hold. Therefore, the complex

valued sensitivity maps of multiple receive coils are the source for the significant

performance improvement of the multichannel measurement matrix.
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Figure 3.5: The means and standard deviations of maximum and minimum singular values
versus sparsity K for (a) and (c): Fourier measurement matrix, (b) and (d): noiselet mea-
surement matrix. The distance (δk) of singular values from unity determines the RIP of the
measurement matrix. Smaller the value of δk better the RIP of the measurement matrix. It is
evident from this figure that for all the cases the RIP for noiselet measurement matrix is better
than that of Fourier measurement matrix. Moreover it can also be observed that as the number
of receiver channel increases, the RIP for noiselet measurement matrix improves more that that
of Fourier measurement matrix.

3.4 Simulation Study and Results

Simulations were performed on a (256×256) brain image to investigate the perfor-

mance of noiselet encoded and Fourier encoded MRI. The simulation study was

divided into two parts: (i) a simulation study with a single channel using uniform

sensitivity and (ii) a simulation study with multiple channels where the sensitivity

profiles were estimated from the acquired data.
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3.4.1 Single Channel Simulation with a Uniform Sensitiv-

ity Profile

Fourier encoded CS-MRI A Fourier transform of the image was taken in the PE

direction to simulate Fourier encoding. Two types of sampling strategies were used

to sample Fourier encoded data: (i) a variable density random sampling pattern as

shown in Fig. 3.4 (b) where samples were taken in the PE direction according to

a Gaussian distribution function, and (ii) a completely random sampling pattern

as shown in Fig. 3.4 (a) where samples were taken in the PE direction according

to the uniform density function. The non-linear program of (3.3) was solved to

reconstruct the final image for acceleration factors of 2 and 3. In these cases the

encoding matrix E does not have any sensitivity information (i.e. E = Φ).

Noiselet encoded CS-MRI A noiselet transform of the image was taken in the

PE direction to simulate noiselet encoding. A completely random sampling pattern

was used to sample the noiselet encoded data in the PE direction and the non-

linear program of (3.3) was solved to reconstruct the final image for acceleration

factors of 2 and 3. In these cases the encoding matrix E does not have any

sensitivity information (i.e. E = Φ).

Fig. 3.6 show the images reconstructed with Fourier encoding and noiselet

encoding using variable density random under-sampling and completely random

under-sampling pattern respectively. The noiselet encoded CS-MRI performs sim-

ilar to that of the Fourier encoded CS-MRI. This is due to the fact that in the

case of variable density random under-sampling, the Fourier encoding judiciously

exploits extra information about the data, namely the structure of k-space. The

center of the k-space data has maximum energy and hence, by densely sampling

the center of k-space, the Fourier encoding captures most of the signal energy and

results in better performance.

In practice, the MR data is collected through the use of multiple channels,

and data in each channel is slightly different from the other channels. The actual

k-space data is convolved with the Fourier transform of the sensitivity profiles of

the individual channel, making the data from each channel different from others.

This sensitivity information can also be taken into consideration while performing

the CS reconstruction, by applying the multichannel CS frame. Therefore, to

further study the effect of sensitivity information on noiselet encoding and Fourier

encoding, MCS-MRI simulations were performed. To quantitatively compare the

performance of both the encoding schemes, we used the relative error defined in
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Figure 3.6: Ref: represents the reference image 256×256 (up/down: phase encodes, left/right:
frequency encode); (a)-(b): show images reconstructed using Fourier encoding with variable
density random under-sampling patterns for acceleration factors of 2 and 3 respectively; (c)-
(d): show images reconstructed using noiselet encoding with completely random under-sampling
patterns for acceleration factors of 2 and 3 respectively. Noiselet encoded CS-MRI performs
better than the Fourier encoded CS-MRI when completely random under-sampling is used for
both the encoding schemes. This is due to the better incoherence provided by the noiselets.
However, noiselet encoding with a random under-sampling pattern performs similar to Fourier
encoding with a variable density random under-sampling pattern.

(3.7) as a metric:

Relative error =
‖x0 − x̂‖l2
‖x0‖l2

(3.7)

First we investigated the effect of the number of channels on the reconstruction

quality using the MCS framework. For a fixed number of measurements, the

number of channels was varied and the mean of the relative error for 1000 such

simulations was calculated. Fig. 3.7 shows the plot of the mean relative error

versus the number of channels for the acceleration factors of 2 and 3. When

the number of channels was two, the noiselet encoding scheme outperformed the

Fourier encoding scheme for both the acceleration factors of 2 and 3. However,

when number of channels was equal to one, the noiselet encoding outperformed the

Fourier encoding for an acceleration factor of 2, but not for an acceleration factor of

3. It is interesting to note that noiselet encoding outperformed Fourier encoding for

both acceleration factors when the number of channels was greater than one. These

simulations suggest that noiselet encoding should take into account the sensitivity

information while performing CS, and therefore noiselet encoding is potentially a
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Figure 3.7: The mean relative error and standard deviation (vertical bar) versus the number of
receive channels for acceleration factors of 2 and 3, showing that the error increases as the number
of channels decreases. Noiselet encoding outperforms Fourier encoding for both acceleration
factors when the number of channels is more than two. However for a single channel, noiselet
encoding outperforms Fourier encoding only for the acceleration factor of 2.

better encoding scheme for MCS-MRI. Based on the fact that noiselet encoding

performs better than Fourier encoding for multi-channel data, we investigated the

performance of both the encoding schemes using muti-channel data.

3.4.2 Multiple Channel Simulation

A (256×256) brain image was used to compare the performance of noiselet en-

coding and Fourier encoding in MCS-MRI for different acceleration factors. Eight

complex sensitivity maps (Fig. 3.8) obtained from the head coil of a Siemens Skyra

3T scanner were used to perform the simulations. For solving the minimization

program in (3.3), we used the nonlinear conjugate gradient with the backtracking

line search method [2]. The measurement matrix (Φ) was the discrete Fourier

transform matrix while the daubechies-4 wavelet transform matrix (Ψ) and TV

were used as sparsifying transforms.

Fourier encoded MCS-MRI The reference brain image was multiplied by

the sensitivity function to generate eight sensitivity encoded images. The Fourier

transform of each these images was taken in the PE direction; only a few PEs

were taken according to the Gaussian probability distribution function. MCS-MRI

reconstruction of (3.3) was solved using the nonlinear conjugate gradient algorithm

on this data. An example sampling scheme for the Fourier encoded MCS-MRI is

shown in Fig. 3.4(a). Noiselet encoded MCS-MRI A Noiselet transform of

the sensitivity encoded images was taken in the PE direction, with only a few PE

selected according to the uniform probability distribution function. MCS-MRI
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Figure 3.8: The eight coil sensitivity magnitude maps used in simulations that were estimated
from the data acquired on MR scanner.

reconstruction of (3.3) was solved using the nonlinear conjugate gradient on this

data. An example of the sampling scheme for noiselet encoded MCS-MRI is shown

in Fig. 3.4(b).

For a noiseless simulation, the reconstructed images for different acceleration

factors (4, 8 and 16) are shown in Fig. 3.9. The difference images in Fig. 3.9

(d)-(f) and (j)-(l) demonstrate that the error in noiselet encoding is always less

than in Fourier encoding, and that the noiselet encoded MCS-MRI reconstruction

preserves spatial resolution better than the Fourier encoded MCS-MRI. Fig. 3.9

(m) and (n) show the zoomed images reconstructed with Fourier encoding for ac-

celeration factors of 8 and 16 respectively, while Fig. 3.9 (o) and (p) show the

zoomed images reconstructed with noiselet encoding for an acceleration factors of

8 and 16 respectively. The zoomed images highlight that the spatial resolution

of the noiselet encoded reconstructions outperforms the Fourier encoded recon-

structions. Moreover, the spatial resolution provided by the noiselet encoding at

an acceleration factor of 16 is comparable to that of the Fourier encoding at an

acceleration factor of 8, suggesting that noiselet encoding performs approximately

twice as good as Fourier encoding.

To measure the relative error, simulations were performed on the brain image

for 1000 times by randomly generating a sampling mask each time. The mean

of the relative errors was calculated after 1000 such reconstructions at every ac-

celeration factor. The mean relative error versus the number of measurements

is plotted in Fig. 3.10 and highlights that noiselet encoding outperforms Fourier

encoding for all acceleration factors. The relative error for noiselet encoding at

an acceleration factor of 16 was the same as the relative error for Fourier encod-

ing at an acceleration factor of 8 indicating that higher acceleration factors are

achievable with noiselet encoding compared to Fourier encoding.

In practice, MR data always has some noise and the level of noise depends upon
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Figure 3.9: Simulation results for MCS-MRI comparing the noiselet encoding and Fourier
encoding schemes (up/down: phase encodes, left/right: frequency encode). (a)-(c): show
images reconstructed with Fourier encoding for acceleration factors of 4, 8, and 16 respectively;
(d)-(f): show difference images with Fourier encoding for acceleration factors of 4, 8, and
16 respectively; (g)-(i): show images reconstructed with noiselet encoding for acceleration
factors of 4, 8, and 16 respectively; (j)-(l): show difference images with noiselet encoding for
acceleration factors of 4, 8, and 16 respectively; (m)-(n): show zoomed portion of images
reconstructed with Fourier encoding for acceleration factors of 8, and 16 respectively; (o)-(p):
show zoomed portion of images reconstructed with noiselet encoding for acceleration factors of
8, and 16 respectively. The zoomed images highlight that MCS-MRI using noiselet encoding
reconstructions outperforms the Fourier encoding for preserving image resolution.
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Figure 3.10: The mean relative error and standard deviation (vertical bar) versus the acceler-
ation factor in MCS-MRI highlighting that noiselet encoding consistently outperforms Fourier
encoding.

many factors including the FOV, resolution, type of imaging sequence, magnetic

field inhomogeneity and RF inhomogeneity. Therefore, simulations were carried

out to evaluate the performance of both the noiselet encoding and Fourier encod-

ing schemes in the presence of variable levels of noise. Different levels of random

Gaussian noise were added to the measured k-space data, and MCS-MRI recon-

struction was performed for noiselet and Fourier encoding schemes. For every

level of noise, 1000 simulations were performed and the mean of the relative error

was calculated. Fig. 3.11 shows the mean relative error as a function of the Sig-

nal to Noise Ratio (SNR), demonstrating the comparative performance of noiselet

encoding reconstructions and Fourier encoding reconstructions in the presence of

noise. The plots demonstrate that noiselet encoding outperforms Fourier encoding

for SNR above 20 dB for all acceleration factors, but does a poor job at SNR of 10

dB. However, as shown in the images in Fig. 3.11(d), only the images with SNR

above 20 dB are adequate for diagnostic purposes. Thus, acquisitions with 10 dB

SNR is not a viable scanner operation condition and the poor performance of noise-

let encoding at 10 dB SNR is not a practical limitation. The poor performance of

noiselet encoding at 10 dB SNR can be attributed to the fact that at extremely

low SNR, most of the noiselet coefficients are severely corrupted by the noise since

their magnitudes are approximately uniform. In contrast, the Fourier coefficients

at the center of k-space have much larger magnitudes and hence are less affected
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Figure 3.11: (a), (b) and (c): are the plots of the mean relative error as a function of the
signal to noise ratio (SNR) for different number of measurements. When the SNR is greater
than 20 dB, the noiselet encoding outperforms Fourier encoding in the presence of noise for all
acceleration factors; (d): show the brain images with SNR of 10, 20, 30 and 50 dB.

by the noise at low SNR. These large magnitude coefficients are fully utilized in

reconstruction because of the centralized variable density sampling scheme, hence

Fourier encoding is less affected by the noise and performs better at low SNR.

3.5 Experiments

Experiments were carried out on Siemens Skyra 3T MRI scanner with a maximum

gradient strength of 40 mT/m and a maximum slew rate of 200 mT/m/sec. In-

formed consent was taken from healthy volunteers in accordance with the Institu-

tion’s ethics policy. To validate the practical implementation of noiselet encoding,

the pulse sequence shown in Fig. 3.2 was used to acquire noiselet encoded data.

An RF excitation pulse with 256 points was used with the duration equal to 5.12

ms and flip angle of 10◦. We also acquired the Fourier encoded data using the
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spin echo (SE) sequence to compare the quality of the reconstructed image from

the data acquired by the noiselet encoding sequence. An apodized slice selective

sinc RF excitation pulse was used in the spin echo sequence with a duration of

2.56 ms and a flip angle of 10◦. The protocol parameters for the noiselet encoding

sequence and the Fourier encoding SE sequence were (i) Phantom experiments

FOV = 200 mm, TE/TR = 26/750 ms, averages = 2, image matrix = 256×256;

and (ii) In vivo experiments FOV = 240 mm, TE/TR = 26/750 ms, averages

= 2, image matrix = 256×256.

The performance of the MCS-MRI reconstruction depends on the accuracy of

the sensitivity matrix estimated. We used the regularized self-calibrated estima-

tion method [100] to estimate the sensitivity maps from the acquired data. This

method estimates the sensitivity map Γ̂i of the ith receive coil by using

Γ̂i = min
Γ

1

2
‖Ii − ΓIref‖2 + βR(Γ) (3.8)

where i ∈ [1, 2, · · · , L] and R(Γ) is a spatial roughness penalty function with

weighting factor β. The reference image Iref can be obtained using the sum of

squares of individual coil images Ii’s. For the experimental results presented below,

the sensitivity maps were estimated from fully sampled images using (3.8). The

data was acquired using a 32 channel head coil, but only the data from 14 channels

with good SNR was used in the reconstruction.

Non-Fourier encoding in general is sensitive to field inhomogeneities, but care-

ful design of the sequence and good shimming can result in high quality images.

To reconstruct the noiselet encoded data the inverse Fourier transform was taken

along the frequency encoding axis and the inverse noiselet transform was taken

along the PE axis. To reconstruct the Fourier encoded data, an inverse Fourier

transform was taken along both axes. Fig. 3.12 shows the images reconstructed

from the noiselet encoded data and Fourier encoded data sets. These images

demonstrate that the noiselet encoding reconstructions are practically feasible

and produce artifact free images. Fig. 3.12(c) shows a zoomed portion of the

noiselet encoded image, while Fig. 3.12(f) shows a zoomed portion of the Fourier

encoded image. The zoomed images reveal that the resolution of the image from

noiselet encoding with 256 noiselet excitation is the same as that of the image

from Fourier encoding with 256 phase encodes. Fig. 3.12 (g) and (i) show the

T2 weighted images for the brain with noiselet encoding and Fourier encoding,

respectively. Fig. 3.12 (h) and (j) show the T1 weighted images for the brain with

noiselet encoding and Fourier encoding, respectively. It is evident from the in vivo
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Figure 3.12: Images reconstructed using fully sampled noiselet encoded and Fourier encoded
data acquired on the 3T scanner (up/down: phase encodes, left/right: frequency encode). The
noiselet encoded data was acquired using the pulse sequence described in section 3.3.3, and
Fourier encoded data was acquired using a conventional spin echo sequence. (c)-(f): show the
zoomed portion of the images in (b) and (e) respectively, with the zoomed images demonstrating
that noiselet encoding provides similar image resolution to that of Fourier encoding; (g)-(h):
show T2 and T1 weighted brain images using noiselet encoding respectively; (i)-(j): show T2 and
T1 weighted brain images using Fourier encoding respectively. These in vivo images demonstrate
the practical feasibility of the proposed noiselet encoding scheme.

images that the proposed noiselet encoding is feasible in practice.

To validate the feasibility of the proposed reconstruction method, we performed

retrospective under-sampling on the acquired noiselet encoded data and Fourier

encoded data to simulate accelerated data acquisition. After retrospective under-

sampling, the unconstrained optimization program (3.3) was solved using the non-

linear conjugate gradient method to reconstruct the desired image for different

acceleration factors. Fig. 3.13 (a)-(c) shows the reconstructed images for the

acceleration factors of 4, 8 and 16 on the Fourier encoded data while Fig. 3.13

(d)-(f) shows the corresponding difference images. Similarly, Fig. 3.13 (g)-(i)

shows the reconstructed images for the acceleration factors of 4, 8 and 16 on the

noiselet encoded data, and Fig. 3.13 (j)-(l) shows the corresponding difference

images for noiselet encoded MCS-MRI. These results on the acquired data are

consistent with the simulation results and indicate that the noiselet encoding is
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superior to the Fourier encoding in preserving resolution.

Fig. 3.13 (A-H) shows the zoomed portion of the reconstructed images with

Fourier encoding and noiselet encoding. One can distinguish between the small

dots in the zoomed images reconstructed with noiselet encoding while it is difficult

to distinguish these dots in the images reconstructed with Fourier encoding. This

demonstrates that noiselet encoding is able to preserve resolution better than the

Fourier encoding. Fig. 3.14 show the images reconstructed with Fourier encoding

and noiselet encoding for various acceleration factors on the data acquired for one

axial slice of the brain. Since the SNR of the in vivo images is less than in the

phantom images, reconstruction is shown only up to an acceleration factor of 8.

The difference images demonstrate that noiselet encoding outperforms Fourier en-

coding for all acceleration factors. In particular, at the acceleration factor of 8 the

image reconstructed with Fourier encoded data has significantly poorer resolution

compared to the image reconstructed with noiselet encoded data.
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Figure 3.13: MCS-MRI reconstruction on the acquired noiselet encoded and Fourier encoded
data for different acceleration factors (up/down: phase encodes, left/right: frequency encode).
RF: shows reference image reconstructed from fully sampled Fourier encoded data; RN: shows
reference image reconstructed from fully sampled Noiselet encoded data; (a)-(c): show images
reconstructed using Fourier encoding for acceleration factor of 4, 8 and 16 respectively; (d)-
(f): show the difference images using Fourier encoding for acceleration factor of 4, 8 and 16
respectively; (g)-(i): show images reconstructed using noiselet encoding for acceleration factor
of 4, 8 and 16 respectively; (j)-(l): show the difference images using noiselet encoding for
acceleration factor of 4, 8 and 16 respectively. The result here aligns with the simulation results
and noiselet encoding outperforms Fourier encoding in preserving resolution. (A-H): Zoomed
portion of phantom images reconstructed with Fourier encoding and noiselet encoding with
different acceleration factors. (A): shows the original image reconstructed from fully sampled
Fourier encoded data; (B), (C) and (D): show the Fourier encoded reconstructed images for
acceleration factors of 4, 8 and 16 respectively; (E): shows the image reconstructed from fully
sampled noiselet encoded data; (F), (G) and (H): show the noiselet encoded reconstructed
images for acceleration factors of 4, 8 and 16 respectively demonstrating that noiselet encoding
produces improved resolution images than than Fourier encoding at all acceleration factors.
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Figure 3.14: MCS-MRI reconstruction on in vivo brain images using acquired noiselet encoded
and Fourier encoded data for different acceleration factors (up/down: phase encodes, left/right:
frequency encode). (a): shows reference image reconstructed from fully sampled Fourier en-
coded data; (b)-(d): show images reconstructed using Fourier encoding for acceleration factor
of 2.6, 4 and 8 respectively; (e)-(g): show the difference images using Fourier encoding for
acceleration factor of 2.6, 4 and 8 respectively; (h): shows reference image reconstructed from
fully sampled Noiselet encoded data; (i)-(k): show images reconstructed using noiselet encoding
for acceleration factor of 2.6, 4 and 8 respectively; (l)-(n): show the difference images using
noiselet encoding for acceleration factor of 2.6, 4 and 8 respectively. It can be seen from the
difference images that noiselet encoding outperforms Fourier encoding on the acquired invivo
data. The loss in resolution is clearly visible for Fourier encoding at an acceleration factor of 8.

53



Fig. 3.15 shows the images reconstructed with noiselet and Fourier encodings

using 3D GRE sequence. In our implementation of noiselet encoding in 2D spin

echo sequence, the flip angle of 10◦ was used, which results in loss of some available

SNR. Therefore, we have implemented noiselet encoding in 3D Gradient Echo

(GRE) sequence as shown in Fig. 3.2 (b), which uses noiselets encoding in one

direction and Fourier encoding in other two directions. The noiselet encoding is

performed using specially selective RF excitation pulse, while the Fourier encoding

is performed using gradients. Phantom data was acquired using this sequence with

the following parameters: FOV = 200×200 mm2, TE/TR = 6.5/13 ms, slices = 32,

FOV of slice = 160 mm, flip angle = 5◦ and (noiselets) phase encodes = 256. A 3D

Fourier encoded data was also acquired with exactly same parameters. It can be

seen from the images that the noiselet encoding provides similar quality of images

to that of Fourier encoding. These images are only shown here to demonstrate

the feasibility that noiselet encoding can be implemented in 3D GRE sequence.

Figure 3.15: (a) and (b): Two slices of image reconstructed using 3D GRE noiselet encoding
sequence, the up/down direction is noiselet encoding direction and left/right direction if Fourier
encoding direction; (c) and (d): two slices of image reconstructed with Fourier encoding using
3D GRE sequence.

3.6 Discussion

We have presented a new method of encoding the MR data in PE direction with

noiselet basis functions for accelerating MRI scans using MCS-MRI reconstruc-
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tion. The simulation results demonstrate that the proposed encoding gives rise to

a multichannel measurement matrix with improved RIP, and the reconstruction

method using the noiselet bases outperforms the conventional Fourier encoding

scheme. The mean relative error for noiselet encoding at the acceleration fac-

tor of 16 is comparable to that of Fourier encoding at the acceleration factor of

8, demonstrating that higher acceleration factors can be achieved with noiselet

encoding than the Fourier encoding in the MCS framework.

The reconstruction from the noiselet encoding scheme preserves image spatial

resolution far better than the Fourier encoding scheme. The Fourier encoding

scheme intelligently exploits the property of k-space since most of the energy is

concentrated at the center of the k-space. Therefore, densely sampling the center

and randomly under-sampling the outer regions of the k-space retains most of

the energy in the acquired data. However retaining most of the energy does not

imply that most of the information is captured in the acquisition. The low energy

(high frequency) component in the outer k-space contains the information about

the fine features of the image that the variable density random under-sampling

pattern fails to capture. Therefore, the images reconstructed with the Fourier

encoding scheme look visually good but have reduced resolution due to insufficient

information about the high frequency components in the acquired data. On the

other hand, noiselet encoding completely spreads out the energy of the signal in

the measurement domain. Therefore each measurement in the noiselet domain has

sufficient information to reconstruct the fine details of the image, thus preserving

the resolution better than the Fourier encoding.

Noiselet basis functions have some interesting properties that can be exploited,

for example noiselets are unitary basis functions and have complex conjugate sym-

metry. This conjugate symmetry property can be exploited in a way similar to

that of the Fourier encoding for partial acquisition [101,102]. Another interesting

property of noiselet basis functions, as for the Fourier basis functions, is that regu-

lar under-sampling in the noiselet domain results in aliasing in the image domain.

Therefore in the case of regular under-sampling in the noiselet domain, unaliasing

with SENSE [21] alone can also be used for noiselet encoding.

In general the implementation of non-Fourier encoding suffers from a few lim-

itations, and hence the current implementation of noiselet encoding also suffers

from these limitations as summarized below. (i) In 2D imaging implementation of

noiselet encoding, the excitation of noiselet profile is not slice selective, thus a slice

selective 180◦ pulse is required after excitation, which limits the noiselet encoding

to spin echo type sequences. The spin echo sequence always have long TR, there-
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fore the proposed noiselet encoding can only be used for applications requiring

long TR, such as structural scans, but will be of little use in dynamic imaging.

(ii) In the current implementation, to simplify the design of noiselet excitation

pulse we have used direct Fourier transform method that limits the excitation to

the low flip angle regime, resulting in the sacrifice of some available SNR. (iii)

The duration of noiselet RF excitation pulse is long compared to the conventional

sinc RF pulse and the noiselet encoding can only be implemented in one direction

in the current implementation. (iv) Due to dielectric effects, etc, in practice, B1

field is always not perfectly homogeneous. Because B1 is used for spatial encoding

in the proposed noiselet encoding scheme, B1 inhomogeneity may introduce some

perturbations to the noiselet measurement matrix, which in turn may result in

some image artifact if the perturbation is large.

The above limitations are not specific to noiselet encoding scheme but are

common to all non-Fourier encoding schemes. Here we discuss some probable so-

lutions to the above mentioned problems. (i) The problem of slice selection can

be alleviated using a 3D gradient echo (GRE) sequences where a 3D volume can

be excited with a noiselet profile in one dimension and other two dimensions can

be Fourier encoded. A demonstrative pulse sequence for this solution has been

given in Section 3.3.3 and its scan result has been given in Section 3.5, showing

the feasibility of this solution. (ii) The low tip angle in current implementation

is the limitation of the direct Fourier transform method used to compute the RF

pulse. It is not an intrinsic limitation of noiselet encoding. Although difficult,

computation of large tip angle noiselet RF pulse is possible by using nonlinear

computation methods such as direct iterative solution of Bloch equation [103] and

the SLR method [104, 105], which are currently being investigated. (iii) The du-

ration of the RF pulse can be reduced by using parallel-transmit and multiple

dimensional excitation of noiselet profiles to achieve encoding [103, 106]. This is

our ongoing research. (iv) The perturbations to the measurement matrix induce

an equivalent deterministic noise additive to the measured MR signals. When the

inverse noiselet transform is applied directly to the fully sampled dataset to recon-

struct the image, a structured artifact may show up if the perturbation is large.

This problem can be alleviated when the CS reconstruction method as given in

(3.3) is used for image reconstruction. This is because the CS reconstruction al-

gorithm has inherent denoising capability, which can suppress small perturbations

by enforcing the prescribed bound ε on the reconstruction error. See Section 3.2

and the references therein for detailed discussions. For this reason and also be-

cause of the high quality of the new 3T scanner used in our experiments, we have
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not observed structured image artefacts in the experiments presented in Section

3.5.

3.7 Conclusion

In this chapter we have introduced a method of acquiring data in the noiselet do-

main and presented a method for the design and implementation of pulse sequences

to acquire data in the noiselet domain. The performance of the noiselet encoding

has been thoroughly evaluated by extensive numerical analysis, simulation and

experiments. The results indicate that the multichannel noiselet measurement

matrix has better RIP than that of its Fourier counterpart, and that the noiselet

encoding scheme in MCS-MRI outperforms the conventional Fourier encoding in

preserving image resolution, and can achieve higher acceleration factors than the

conventional Fourier encoding scheme. The implementation of noiselet encoding

by tailoring spin echo and gradient echo sequences demonstrates that the pro-

posed encoding scheme is pragmatic. The proposed technique has the potential to

accelerate image acquisition in applications that require high resolution images.
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Chapter 4

K-Space Aliasing for Accelerated

Imaging

In chapter 3, we presented a method to accelerate static imaging with multichannel

CS using noiselet encoding. However, the dynamic imaging application are the

ones that can benefit most from accelerated imaging. Therefore in this chapter we

propose a novel method to accelerate dynamic MRI scans using a new technique

of k-space aliasing.

4.1 Introduction to Dynamic MRI

The goal of dynamic MRI is to capture the time evolution of a signal of inter-

est through the fast acquisition of k-t space. Since MRI acquires signal from a

preferred imaging location through the use of magnetic field gradients, only a

sequential acquisition of k-t data is possible, thus placing fundamental restric-

tions on the maximum spatial and temporal resolution that can be simultaneously

realized by a dynamic MRI acquisition. Over the years, several methods have

been proposed to address this issue while some of these methods make certain

assumptions about the imaged object and/or temporal signal of interest [3–19],

other techniques operate independent of the same [20–24]. The assumptions, when

made, are typically done so to exploit any spatial and/or temporal redundancy

that may exist in the k-t data that is to be acquired.

Of the various dynamic MRI methods that make assumptions about the im-

aged object and/or temporal information, some are of particular interest given

the work presented here. These are techniques such as UNFOLD [16] and reduced

FOV approaches [12–15], which operate on the assumption that dynamic infor-
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mation is largely confined to a portion of the imaged object and methods such as

keyhole imaging [3–7], TRICKS [8] and others [9,10] that make a similar assump-

tion of the imaged objects k-space representation.

Provided their assumptions hold, these methods can tailor the acquisition of

k-t data to capture information efficiently. For example, in UNFOLD spatially

distinct voxels are deliberately overlapped by under-sampling k-space while simul-

taneously tagging the overlapped voxels in time with a phase function. A Fourier

transformation along the time axis of k-t space can then resolve the aliased voxels.

In methods such as keyhole imaging and the like, while central k-space is acquired

in every time frame, it is assumed that the higher spatial frequencies contain little

or no dynamic information and are therefore acquired less frequently. Techniques

such as Fourier interpolation, weighted substitution, utilizing a priori informa-

tion [18, 19] and sliding window reconstruction are then used to estimate the un-

acquired data points. Irrespective of the assumptions, in all these approaches, the

acquisition of k-t space is altered in an attempt to satisfy the competing require-

ments for spatial and temporal resolution.

Separately, image acceleration techniques falling under the category of Par-

allel Imaging (PMRI) [20–24] and Compressed Sensing (CS) [2] have also been

employed to increase spatial and/or temporal resolution of a dynamic MRI scan.

While PMRI methods rely on spatial encoding provided by multiple RF coils to

complement the MRI gradient encoding process, CS methods are applicable when

certain conditions related to the sparsity of the MRI image or its representation

in a transform domain are fulfilled. These techniques can be employed either in-

dependently [2, 24, 73, 107, 108] or in tandem [109, 110] with any of the methods

previously mentioned to accelerate a dynamic MRI scan. Despite the advances,

applications such as interventional imaging [25], contrast enhanced MR Angiogra-

phy [26], evaluation of cardiac function [27] and abdominal imaging [28] can always

benefit from larger acceleration factors. The fundamental limitation in these and

other dynamic imaging applications continues to be the trade-off between spatial

and temporal resolution.

In this chapter, we introduce the concept of k-space aliasing and attempt to

address this trade-off between spatial and temporal resolution by leveraging the

same. The method, here after referred to as RATE (Rapid MRI Acquisition us-

ing Tailored Signal Excitation modules), utilizes a combination of RF excitation

pulses and gradient waveforms to deliberately overlap distinct k-space points. The

method exploits the fact that in most dynamic imaging, a non-uniform distribu-

tion of energy in k-space results in different regions exhibiting different temporal
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bandwidths. By accelerating the scan through k-space aliasing, additional tem-

poral bandwidth is made available and the same is used to accommodate the

differing temporal bandwidths of the overlapped k-space points. Additionally, the

amplitude and phase of the RF excitation pulses are used to tag the overlapped

k-space points that then enables the use of a simple Fourier transformation along

the time axis of the acquired data to resolve the overlapped k-space points.

A feature of the technique is that overlapping of k-space points is achieved

through the signal excitation process and not through the use of any data sam-

pling trajectory. Furthermore, as demonstrated in this work, the method can be

combined with Parallel Imaging to achieve very large acceleration factors.

4.2 Theory

4.2.1 Signal Excitation in RATE

In order to acquire overlapped or aliased k-space data with a pulse sequence, the

conventional RF excitation pulse in the sequence is replaced by a signal excitation

module comprising of RF excitation pulses and gradient waveforms. A simple

example of such a module is given in Fig. 4.1 for a k-space aliasing factor Rk

= 2. The two RF pulses in this module will generate two Free Induction Decay

(FID) signals and one spin echo. Table 4.1 lists the analytical expressions for the

amplitudes of each of these signal pathways along with their values for two different

sets of flip angles. For Set.2, the FIDs are the dominant signal pathways while the

spin echo is 42 dB weaker than the weakest FID and is therefore irrelevant. Once

a condition is established wherein the FIDs are the dominant signal pathways, the

phase encoding blips in the module can be used to encode the two FIDs to different

phase encoding locations. A readout gradient that follows such a module will now

detect the two FIDs simultaneously resulting in an aliased acquisition. The total

signal resulting from the excitation module under such conditions is given by:

S(t) =

∫
O(x, y){a1e

−jk1y + a2e
−jk2y}e−jkxxdx dy (4.1)

Here, k1 = γ(Gpe1 +Gpe2)tp, k2 = γ(Gpe2)tp, tp is the duration of the phase encode

blips, O(x, y) is a 2D slice of the imaged object and a1, a2 are the FID amplitudes

given by the analytical expressions in Table 4.1.

One or both the phase encoding blips in the module can now be varied from
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Figure 4.1: The RATE module for N=2 consisting of two RF pulses with flip angle and initial
phase of (θ1, φ1) and (θ2, φ2) respectively. In this implementation, Gpe1 is kept constant while
Gpe2 is varied from one TR to the next. A denotes the areas of the respective slice select gradient
and rewinder lobes.

Table 4.1: Magnitude of signal pathways generated by using two excitation RF pulses

Siganl pathways Amplitude Set - 1 Set - 2
θ1 = 90◦, θ2 = 90◦ θ1 = 10◦, θ2 = 10◦

φ1 = φ2 = 0◦ φ1 = φ2 = 0◦

FID - 1 sin(θ1)cos2(θ2/2)ejφ1 0 0.1666
FID - 2 cos(θ1)sin(θ2)ejφ2 0 0.3502
Spin Echo-1 sin(θ1)sin2(θ2/2) 1 0.0013
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one TR to the next in order to complete an aliased 2D acquisition. For 3D k-

space aliasing, the secondary phase encoding axis must be introduced inside the

module along with additional secondary phase encoding blips. In order to acquire

sub-sampled aliased k-space that can later be restored through PMRI, a simple

increase of the step size of one or more of the phase encoding blips in the module

will suffice.

The excitation module is compatible with all pulse sequences and depending

on the sequence in which it is used, the effective acceleration that is achievable will

vary. For instance, with a short TR SSFP [111] sequence, a large Rk excitation

module will result in increased TE and TR that will quickly negate the benefits

of acceleration provided by the module itself. However, the excited aliased signals

property is such that the one or more k-space lines acquired in a TR will always be

from the desired aliased k-space. As a result, the modules can be used sparingly in

time efficient multiple echo sequences such as EPI [112] that preserve the benefits

of acceleration. Therefore, in this work, an IGEPI [113] sequence was preferred to

demonstrate the larger acceleration factors.

4.2.2 Application to dynamic imaging

As can be seen from the analytical expressions of a1, a2, the amplitudes and phases

of the FIDs are user controlled through the flip angles and phases of the RF

excitation pulses in the excitation module. Therefore, given eqn.(4.1), it can be

stated that the coefficients a1, a2 are tagging coefficients that are used to control

the magnitudes and phases of the individual FID signal pathways and is a useful

property when using the module in dynamic imaging scenarios.

For instance, consider a dynamic imaging scan where the module from Fig. 4.1

is used in a pulse sequence to acquire aliased and thus accelerated k-t space. Now,

in the first time frame of this acquisition, assume the user sets the RF phases to be

φ1 = φ2 = 0, such that two phase encodes k1 and k2 overlap onto a single k-space

point ka = k1 + k2. Next, during the second time frame, all module parameters

remain the same except for φ2, which the user sets to π. The overlapped point

ka is now k1 − k2. Now, consider the acquisition of a time series of images where

φ1 = φ2 = 0 for every even time frame and φ1 = φ2 = π for every odd time frame.

The overlapped point kalias is then given by the following equation:

ka(t) = k1 + k2e
jπt (4.2)
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Here, t is the time frame number. If the overlapped phase-encodes contain dynamic

information, then eqn.(4.2) becomes the following:

ka(t) = k1(t) + k2(t)ejπt (4.3)

A Fourier transformation in time will give the temporal frequency spectrum of

ka(t). This spectrum will consist of the spectrum of k1(t), centered at DC, and

that of k2(t), centered at the Nyquist frequency. As shown in Fig. 4.2, the two

spectra can now be separated using a simple filter. For Rk (k-space aliasing factor)

= N , the signal at the overlapped k-space point is given by:

ka(t) =
N∑
n=1

kn(t)ejφn(t) (4.4)

In eqn.(4.2) - (4.4), the magnitudes of all the ‘a’ coefficients have been assumed

to be unity.

Clearly, in order for this process to be successful, there must exist a relative

difference in the temporal bandwidths of the overlapped k-space points, in this

case k1(t) and k2(t). For instance, in Fig. 4.2, it is assumed that k1(t) is more

dynamic than k2(t). Crucially, no assumptions need to be made about the relative

difference between the temporal bandwidths of these two points and it is only

required that there exist such a difference for the RATE method to be applicable.

However, the extent of this difference does have an impact on the efficiency of

the process and as a result, the effective acceleration that can be achieved. For

instance, if only one of the overlapped points were dynamic in Fig. 4.2 while the

other remained completely static, the method will result in maximum efficiency as

all the additional temporal bandwidth provided by acceleration can be allocated

to just one point. However, when both points are equally dynamic, the technique

will prove ineffective as the overlaps can never be fully corrected. In between these

two extremes there exist a whole range of dynamic imaging conditions where the

technique will function with varying degrees of efficiency.

Therefore, the effective achievable acceleration due to RATE is given by the

following:

Aeff = ηAtarget

(
TRorig

TRRATE

)
(4.5)

Here, η is the maximum fraction of the additional temporal bandwidth allocated to

a particular portion of k-space usually central k-space, Atarget is equal to Rk, TRorig

is the original TR of the pulse sequence and TRRATE is the new TR after the
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Figure 4.2: The temporal spectra of two overlapped points is shown wherein k1(f) is more
dynamic than k2(f). The Fermi filter used to extract k1(f) has a larger bandwidth compared
to the filter used to extract k2(f).

insertion of the RATE module.

4.2.3 Improving Aeff with Parallel Imaging

As can be seen from eqn.(4.5), there are two sources of inefficiency that can result

in Aeff that is lower than what was desired. The first source of inefficiency is

caused by the insertion of the signal excitation module into the pulse sequence

while the second source of inefficiency is η, which is a function of the differences in

the temporal bandwidths across various regions of k-space. Moreover, the factor

η depends on the nature of the dynamic scan itself and there is little flexibility

available to the user in defining the same without loss of information. However,

the first source of inefficiency can be addressed, at least for the IGEPI sequence,

by increasing the acquisition echo-train length (ETL). Nevertheless, as Rk is in-

creased, large ETL will be required to compensate for the same that can result

in increased eddy current related artifacts. Another powerful and easy to imple-

ment option for increasing Aeff is to use the RATE method in combination with

PMRI. The acquisition of aliased, sub-sampled k-space using the RATE-PMRI

combination will result in an Atarget = Rk ×Rpmri where Rpmri is the acceleration

factor due to PMRI. Clearly, such a combination will provide effective acceleration

factors larger that of either of the two methods individually.

Fig. 4.3 shows the sampling pattern that can be used for simultaneous aliasing

and sub-sampling of k-space. The aliased k-space (Fig. 4.3(c)) is regularly sub-

sampled to get aliased and sub-sampled k-space (Fig. 4.3(e)) resulting in reduced

dimension aliased image (Fig. 4.3(f)).

A complete realization of the proposed method is now possible through the
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Figure 4.3: (a): k-space for the brain image where a1, a2 and a3 are top, middle and bottom
portion of k-space; (b): brain image corresponding to k-space in a; (c): aliased k-space generated
by adding a1, a2 and a3; (d): image corresponding to k-space in c; (e): aliased and sub-sampled
k-space formed by sub-sampling c; (f): image corresponding to k-space in e.

following steps:

Step 1: Design the RATE signal excitation module with the following design

parameters: (a) the k-space acceleration factor ARATE (b) Appropriate choice of θ

and φ (c) All relevant gradient waveforms for performing FID encoding. Finally,

optimize the duration of the RATE module to improve Aeff .

Step 2:: Insert the RATE module into the desired pulse sequence and collect

multiple time frames of k-aliased data by incrementing φ of all the RF pulses as

a function of time frames.

Step 3: Fourier transformation along the temporal axis of the acquired data fol-

lowed by filtering to separate the overlapped spectra.

Step 4: Generate the final un-aliased k − t data by re-locating the unaliased

phase-encodes to their respective locations in k − t space.

Step 5: If sub-sampling is also performed, the result of step 4 will be regularly

under-sampled k − t space. GRAPPA reconstruction can then be applied on this

data to generate the final, fully restored dataset.

These implementation stages in the RATE and RATE-PMRI combination have

been listed in the flow chart in Fig. 4.4. In this work, the GRAPPA [23] method

was preferred for the PMRI reconstruction stage.
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Figure 4.4: Flow chart showing acquisition and reconstruction for k-space aliasing and k-space
aliasing with sub-sampling.

4.3 Methods

All data reconstruction was performed on MATLAB (Natick, USA) using a com-

puter with an Intel dual core 1.8GHz processor and 2GB of RAM.

Simulated data: First, simulated data studies were performed on a cardiac

(PINCAT) [114] numerical phantom of dimension 240×240 with 60 time frames

and a temporal bandwidth of 40 Hz. For Rk = 3, the RATE signal excitation

module will generate a total of eight signal pathways of different magnitudes that

will be a function of the flip angles of the RF excitation pulses in the module.

Therefore, in order to determine the impact of the residual signal pathways on

reconstruction accuracy, all eight signal pathways that would be generated by the

module were simulated and encoded to their appropriate locations along the phase

encoding axis. The simulated flip angles of the 3 RF pulses in the module were

set to 10◦ each. Next, the top, middle and bottom phase encode blocks in 2D

k-space, containing 80 phase encodes each, were overlapped to generate an aliased

k-space time frames. Only the top and bottom phase encode blocks were tagged

with the RF phase values of −5πt/6 and 5πt/6 radians respectively, where t was

time frame number. In order to restore the un-aliased k − t space dataset, the

overlapped time frames were stacked together to form an overlapped k − t space

dataset and a Fourier transformation was performed along the time axis of this

dataset. This resulted in a separation of the overlapped spectra, enabling the use

of Fermi filters to filter out the overlapped spectra. The maximum fraction of

the additional temporal bandwidth (η = 0.8) was allocated to the central k-space

phase encode block as it contained the maximum amount of energy. An inverse

Fourier transformation on this dataset resulted in the final set of restored images.

In these simulations, the loss in acceleration due to the insertion of the RATE

module was ignored.

in-vivo data: A total of five in-vivo datasets for cardiac triggered cine imaging
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Figure 4.5: Sequence diagram used to acquire k-space aliased dataset that consist of three exci-
tation RF pulses with the flip angle and initial phase of (θ1, φ1), (θ2, φ2) and (θ3, φ3) respectively;
Gpe1 and Gpe2 were gradient in PE direction that kept constant for the whole acquisition and
Gpe3 is varied for each TR; A and B denotes a finite area under the slice and read gradient re-
spectively; Gpe, Gss and Gro were the gradient in phase, slice and readout direction respectively;
all timings are in micro seconds.

were acquired of which two were fully sampled datasets and three were accelerated

(aliased k-space) datasets. One fully sampled dataset was acquired using gradient

echo (GRE) sequence and other was acquired using interleaved gradient echo EPI

(IGEPI) with echo train length (ETL) equals to 4. Two accelerated datasets with

acceleration factor of 2 and 3 was also acquired using GRE sequence. One accel-

erated dataset with acceleration facotor of 3 was acquired using IGEPI sequence.

An IGEPI sequence for acquisition of aliased k-space data is shown in Fig. 4.5.

The accelerated dataset acquires aliased k-space data and the phase encodes for

such data is refereed to as aliased phase encodes (APEs). The tagging coefficients

in aliasing module designed for acceleration factor of 3 were −5πt/6, 0 and 5πt/6

for first, second and third RF pulse respectively, where t is time frame number.

Table 4.2 shows the parameters used for the scanning protocol.

4.4 Results

All experimental data were acquired on a commercial 3T MRI scanner (Skyra,

Siemens Medical Systems, Erlangen, Germany) using 18 receiver elements. Sev-

eral datasets were acquired to validate the performance of the proposed method

and results from some of these datasets are reported next. Informed consent was

obtained from all volunteers.
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Table 4.2: Parameter for in-vivo data acquisition protocol

Parameters Accelerated
datasets-I

Accelerated
datasets-II

Accelerated
datasets-
III

Fully
sampled
datasets-I

Fully
sampled
datasets-II

Acceleration
factor

2 3 3 - -

Echo train
length
(ETL)

1 1 4 1 4

TR (ms) 4.4 5 12 5 12
Temporal
resolution
(ms)

17.6 20 12 40 36

Number of
heart beats

30 20 30 30 20

Cardiac
phases

32 30 48 17 24

Flip angle (5◦,5◦) (5◦,5◦,5◦) (10◦,10◦,10◦) 10◦ 10◦

FOV
(mm2)

300×300 300×300 300×300 300×300 300×300

Aliased
phase
encodes

120 80 80 - -

Phase en-
codes

- - - 240 240

Resolution
(mm2)

1.25×1.25 1.25×1.25 1.25×1.25 1.25×1.25 1.25×1.25

Bandwidth
(Hz/Pixel)

1220 1220 1220 1220 1220

Slice thick-
ness (mm)

8 8 8 8 8

η 0.8 0.8 0.8 - -
Image ma-
trix

240×256 240×256 240×256 240×256 240×256
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4.4.1 Simulation results

Fig. 4.6 displays the results from the simulation studies on the PINCAT Phantom

for Rk=3. Fig. 4.6(a) demonstrates the manner in which the spectra of three

overlapped k-space points are separated by applying the Fourier transformation

along the temporal axis. Fig. 4.6(b) is a single timeframe from the original

dataset while the image in Fig. 4.6(c) is the same time frame reconstructed after

k-space unaliasing. The error plot shown in Fig. 4.6(d) confirmed that for this

particular ROI, the maximum difference between the original and reconstructed

time domain signal was 2 %. This was also the maximum error value over the

entire reconstructed dataset.

Figure 4.6: (a): Spectrum of one of the k-space point after taking Fourier transformation
along time frames, where the black arrow indicated the three separate peaks; (b): one time
frame of original dataset; (c): same time frame of reconstructed image after k-space unaliasing;
(d): Time evolution of the ROI indicated by white arrow; solid line for original dataset, dashed
line for reconstructed dataset and dotted line for error between original and reconstructed time
frames.

69



Figure 4.7: (a): Eight cardiac phases reconstructed from fully sampled dataset acquired
using GRE sequence; (b): Eight cardiac phases reconstructed from accelerated dataset with
acceleration factor of 2 which acquired using GRE sequence. It can be observed from the images
that both the set of images have same quality and there are no visible artifacts due to introduction
of aliasing module.

4.4.2 Experimental results

Fig 4.7(a) shows the eight cardiac phases from a fully sampled cardiac triggered

cine imaging protocol using GRE sequence and Fig. 4.7(b) shows eight cardiac

phases reconstructed from accelerated dataset-I using reconstruction method de-

scribed in section.4.2.2. It can be seen from the images that both the set of images

have similar quality and there are no visible artifacts due to introduction of alias-

ing module. Fig. 4.8 shows the images reconstructed from accelerated dataset-II

with acceleration factor of 3 acquired using GRE sequence. These images are still

of high quality but on close inspection we can see a very mild blurring in the

images compared to the images reconstructed with acceleration factor of 2.

The aliasing module in our experiments were highly optimized to get minimum

possible duration and the duration of aliasing module for acceleration factor of 3

was 4 ms. However this duration is still longer than the conventional single RF

pulse used in GRE sequence for excitation. One of the drawback of using aliasing

module in GRE sequence is that it increases the TR of the sequence, negating
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Figure 4.8: Eight cardiac phases reconstructed from accelerated dataset with acceleration
factor of 3 acquired using GRE sequence.

some of the acceleration provided by the k-space aliasing technique. To improve

upon this problem of increased TR we have incorporated aliasing module for a

factor of 3 in an IGEPI sequence. An IGEPI sequence was designed with echo

train length of 4, thus the increase in duration introduced by aliasing module was

distributed among 4 phase encode lines and effectively the increase in TR per

phase encode was minimized. Fig. 4.9 shows the images reconstructed from fully

sampled and accelerated datasets-III in IGEPI sequence.

The technique of k-space aliasing can be easily combined with parallel imaging

techniques such as SENSE and GRAPPA. K-space aliasing acquires data in aliased

form or overlapped form, this aliased k-space data can easily be sub-sampled

similar to sub-sampling in parallel imaging. When the aliased k-space data is also

sub-sampled then one can use k-space un-aliasing followed by parallel imaging

reconstruction to reconstruct the desired full k-space. To validate this technique an

aliased k-space data acquired using GRE sequence was retrospectively sub-sampled

to simulate aliased and sub-sampled k-space acquisition. The reconstruction of

full k-space then became two step process, first k-space un-aliasing was applied to

the acquired aliased and sub-sampled data to get sub-sampled k-space data. In

the second step GRAPPA reconstruction was applied on sub-sampled data from
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Figure 4.9: (a): Eight cardiac phases reconstructed from fully sampled dataset acquired
using IGEPI sequence; (b): Eight cardiac phases reconstructed from accelerated dataset with
acceleration factor of 2 which acquired using IGEPI sequence. It can be observed from the
images that both the set of images have same quality and there are no visible artifacts due to
introduction of aliasing module.

first step to reconstruct full k-space. The GRAPPA weights was calculated from

the first time frame and the same weights were used to reconstruct k-space for

every time frame. In real acquisition this requires only one time frame of fully

sampled k-space data that would be used to estimate the weights for GRAPPA

reconstruction. Using this method we have simulated parallel imaging with PMRI

acceleration factor of 2 and 3 on aliased k-space data (k-space aliasing factor of 3)

and the reconstruction results are shown in Fig. 4.10. It can be seen on comparing

the reconstructed images from fully sampled and accelerated dataset that there

were no additional artifacts introduced due to the incorporation of aliasing module

in the IGEPI sequence.

4.5 Discussion

In this work, the theory of accelerating dynamic MRI scans via k-aliasing through

the RATE method has been presented along with experimental results that vali-

dated the same. Several previously proposed non-PMRI/CS techniques attempt
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Figure 4.10: (a): Images reconstructed from RATE-PMRI combination, with RATE accelera-
tion factor of 3 and PMRI acceleration factor of 2; (b): Images reconstructed from RATE-PMRI
combination, with RATE acceleration factor of 3 and PMRI acceleration factor of 3.

to improve the effective temporal resolution of dynamic scans by either skipping

some or all high spatial frequencies in every time frame, by sharing data between

time frames using a sliding window, by temporally interpolating between acquired

data points, or by using low resolution training datasets to correct for any image

domain aliasing that may occur in the accelerated datasets. RATE differs from all

of these approaches in the following ways: It accelerates a dynamic MRI scan by

deliberately causing k-space aliasing rather than image-domain aliasing. Secondly,

due to k-aliasing, it is able to sample all k-space points in every time frame and

restores the un-aliased k-space data through a simple temporal filtering process.

Finally, RATE does not rely on any priory training datasets to correct k-aliasing.

Methods to accelerate MRI scans through the use of multiple RF excitation

pulses during excitation have been proposed before [115–117]. The signal excita-

tion approach as proposed in this work circumvents some of the design constraints

that limit the broader applicability of these methods for scan acceleration pur-

poses. For instance, the RATE module addresses the issue of slice selection and

can be designed to image any slice at any orientation. Furthermore, the simultane-

ous acquisition of overlapped phase encodes is achieved without any alteration in

the duration of the readout gradients. Finally, the RATE module can preserve the
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original properties of the pulse sequence into which it is inserted at the expense

of a small increase in the TE and TR of the original sequence.

Another interesting property of the RATE module is that when it is designed

to overlap single phase encodes, the image domain aliasing artifact is identical to

that of sub-sampled PMRI data. As a result, it is possible to use receiver sensitiv-

ity maps to correct for the same although as mentioned before, the block aliased

approach is ideal when using RATE in combination with PMRI. Nevertheless,

noise propagation due to reconstruction will be different from conventional PMRI

although whether the same is beneficial or not is yet to be determined.

4.5.1 Image Artifacts

A typical artifact that one can expect to see in an image reconstructed from a k-

space dataset that contains residual aliasing is an oscillatory artifact spread along

the phase encoding dimension. The severity of this artifact is a function of SNR

and the extent of spectral overlap in the temporal spectrum of the accelerated

dataset.

For example, the temporal spectrum of an accelerated dataset contains the

temporal spectra of all the overlapped k-space points. Each of these will in turn

consist of its own DC coefficient. Provided these DC coefficients have not been

corrupted by k-aliasing, they can be extracted to reconstruct a baseline estimate

of the underlying morphology. The signals in the image domain can be consid-

ered to fluctuate around this baseline estimate and the SNR of this baseline will

determine whether or not the distortions from the oscillatory artifacts appear se-

vere. This is because the oscillatory artifacts affect the range of signal fluctuations

and a poor SNR baseline image will make the same appear exaggerated. Another

property of these artifacts is that except under extreme k-aliasing conditions, the

artifacts will always remain confined to the most dynamic regions of the image.

The largely static regions of the reconstructed image will always remain artifact-

free. The static regions will be corrupted by the oscillatory artifact only when the

DC components in the spectra of the overlapped points are also corrupted due to

substantial spectral overlap.

4.5.2 Implementation challenges

The integration of the RATE module into the IGEPI sequence resulted in certain

constraints on the flip angles of the RF pulses in the RATE module. The cumu-

lative flip angle of the RATE module had to remain less than or equal to 45◦. For
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larger cumulative flip angles, oscillatory artifacts were introduced due to k-space

aliasing caused by the unwanted signal pathways, which were no longer negligible.

A second, minor correction that needed to be performed during accelerated

data reconstruction was the correction for the relative differences in phase be-

tween the various FIDs generated by the RATE module. These can be corrected

for by taking into account the RF excitation frequencies and the inter-pulse du-

rations within the module. However, when off-resonance components such as Fat

exist, this correction will be sub-optimal for the same that could result in minor

blurring and ringing artifacts vis-a-vis the fat component in the image.

With regards to other pulse sequences, the implementation challenges will vary.

For example, with SSFP sequences, the increment in RF phase values as a function

of time frame number will result in multiple signal pathways whose interference

will cause in severe image artifacts. Therefore, whether or not to use the RATE

module in an SSFP sequence has to be determined by taking into consideration

the imaging conditions. For instance, with real time imaging, a single time frame

can be fully acquired using the RATE module in an SSFP sequence since the RF

phases will remain constant for the duration of the acquisition for the particular

time frame. However, the transverse steady state must be spoiled after the last

phase overlapped encode has been acquired as the RF phases for the next time

frame will be different due to the data tagging process. Therefore, the steady state

condition will have to be re-established for each new time frame resulting in some

acquisition inefficiency.

4.6 Conclusion

We have developed and tested a new imaging technique called RATE that relies on

k-space aliasing to accelerate dynamic MRI scans. Future work will involve using

CS with RATE-PMRI to demonstrate greater acceleration factors. Furthermore,

for certain overlapped k-space acquisitions, receiver sensitivity maps can be used to

correct for the resultant image domain artifacts potentially broadening the scope

of application of the proposed method to even non-dynamic imaging conditions.

This remains an active area of investigation and our initial work along these lines

has shown promise.
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Chapter 5

Accelerating k-t sparse using

k-space aliasing for dynamic MRI

5.1 Introduction

When acquiring dynamic scene, there is one more dimension of time frames. The

data thus acquired is a three dimensional data called k-t space, two dimension of

space and one dimension of time. In order to exploit redundancy along time frames

various techniques were proposed such as k-t blast/k-t sense [11], k-t GRAPPA

[48], k-t focus [77] and k-t sparse [76]. Here we focus on one of the technique of CS

for dynamic imaging, k-t sparse. k-t sparse is a compressive sensing acceleration

technique for dynamic imaging that exploits sparsity in k-t space.

In Chapter 4, we have developed a new method of acceleration for reducing

scan time in dynamic imaging called k-space aliasing. The technique of k-space

aliasing overlaps different portions of k-space and acquires the overlapped/aliased

k-space data. The acquired aliased data is then resolved by taking a simple Fourier

transformation along time.

The technique of k-space aliasing exploits redundancy in temporal domain to

reconstruct image from under-sampled data, while the k-t sparse technique exploits

k-t domain sparsity to reconstruct image from randomly under-sampled k-t space

data. As the two aforesaid techniques exploits two different kind of redundancy

in the acquired data, it make sense to combine both in order to achieve further

acceleration in dynamic imaging. Therefore, in this chapter we propose a novel

method to combine k-t sparse and k-space aliasing to achieve higher acceleration

than each of the individual techniques alone.
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Figure 5.1: Each time frame when randomly under-sampled in phase encode direction with
different sampling pattern would result in 2D random under-sampling pattern in k-t space as
shown in this figure.

5.2 Background

5.2.1 k-space aliasing

In Chapter 4, an aliasing module that acquires k-space data in aliased from was

described in detail.

5.2.2 k-t sparse

K-t sparse [76] is a technique that exploits spatiotemporal sparsity to accelerate

dynamic MRI scans. Equidistant under-sampling in k-t space results in aliasing

artifact in spatial – temporal frequency (x-f) space. However random under-

sampling of k-t space as shown in Fig. 5.1 results in incoherent aliasing artifact

in x-f space. The aliasing artifact is also incoherent in sparse transform domain

(Wavelet transform in space and Fourier transform in time). This incoherent

aliasing artifact in transform domain can be removed by minimizing the sparse

representation of k-t space subjected to data fidelity constraint by solving the

following non-linear minimization program

min
x
‖ψx‖l1 + λ‖Fx− y‖l2 (5.1)

where x is the dynamic scene and ψ represent the sparsifying transform op-

erator, F is under-sampled Fourier transform operator, y is acquired data after

random order under-sampling of phase encodes and λ is a regularization param-

eter that enforces data consistency and determines the allowed noise level in the

reconstructed image.
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Figure 5.2: (a) k-space time frames; (b) imaging sequence; (c) sparse representation of k-t
space; (d) overlapped k-space data acquired using k-space aliasing module; (e) images obtained
by 2D FFT of acquired overlapped data; (f) sparse representation of overlapped k-t space.

5.3 Proposed Technique

In k-t sparse Fourier transform is used along time and wavelet tranform is used

along phase encode direction to sparsify the imaging sequence. Fig. 5.2(a) shows

k-space data acquired without using k-space aliasing module and Fig. 5.2(c) shows

sparse representation of the imaging scene. Similarly Fig. 5.2(d) shows the data

acquired using k-space aliasing module designed for factor of 3; Fig. 5.2(e) shows

the images reconstructed using 2D Fourier transform of aliased k-space data and

Fig. 5.2(f) shows their sparse representation. It is evident from Fig. 5.2(d) that

the aliased k-space data is also sparse in the same transform domain, however

the level of sparsity has changed and it has become less sparse compared to Fig.

5.2(c).

If aliasing module is used in any pulse sequence then effectively we are acquiring
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data from an aliased or overlapped k-space. Hereafter, we term the phase encodes

acquired using aliasing module as aliased phase encodes (APE). While using k-

space aliasing module the sequence developer has the flexibility to choose which

APEs to acquire. Therefore in order to combine k-space aliasing with k-t sparse,

we propose to randomly under-sample the APEs that would result in incoherent

aliasing artifact in x-f space. Here we represent Xu to be 2D Fourier transform of

Kalias (Kalias
FFT←→ Xu). Similarly, imaging sequence X to be 2D Fourier transform

of full k-space data set K (K
FFT←→ X).

1. First the acquired data (aliased and under-sampled) is subject to a mini-

mization program that approximate the overlapped k-t space instead of full

k-t space.

min
x
‖ψXu‖l1 + λ‖FXu − y‖l2 (5.2)

where λ is the regularization parameter for solving minimization program

and F is Fourier transformation operator.

2. Once the aliased k-space data Kalias is recovered through Step1, then apply-

ing a simple Fourier transformation along time and use of fermi filter can

recover the desired k-space data (X) as discussed in k-space aliasing section.

5.4 Simulation Results

The feasibility of the proposed technique was validated on cardiac triggered dataset

acquired using Siemens Skyra 3T human scanner. Informed consent was taken

from the volunteer in accordance with institute policy. Aliaising module designed

for acceleration factor of 3 was inserted in place of RF excitation pulse in an

interleaved gradient echo EPI sequence to acquire overlapped k-space data set with

echo train length (ETL) = 4, FOV = 300×300 mm2, TR = 12 ms, cardiac phases =

48, segment size = 4, number of segment = 16, APEs = 80, number of heart beats

= 16 and acquisition window = 700 ms (acquisition time after ECG trigger). Echo

train length of 4, results in acquisition of 4 APEs for each cardiac phase giving

temporal resolution of 12 ms. Echo shifting [113] was implemented in the IGEPI

sequence to suppress ghosting due to FAT. The images were reconstructed with k-

space unaliasing reconstruction resulting in 48 time frames of size 240×240 pixels.

These images were used as reference image for all the simulation presented here.
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For simulating k-t sparse, each time frame was under-sampled in phase encode

direction with different sampling pattern that would result in 2D random under-

sampling pattern in k-t space (Fig. 5.1). The minimization program given in

eq.(5.1) was solved using nonlinear conjugate gradient algorithm to recover the

imaging sequence. Result for the same is shown in Fig. 5.3(b), (c) and (d).

For simulating k-t sparse and k-space aliasing combination, first the k-space

data was overlapped as shown in Fig. 5.2(d) to form aliased k-space; then random

under-sampling of aliased phase encode (APE) was done to generate a 2D random

under-sampling in k-t space. In reconstruction, first eq.(5.2) was solved to recover

aliased k-space data that was then subject to k-space unaliasing reconstruction

method to recover full k-space data set. The result for the same is shown in Fig.

5.3(e), (f), and (g). In case of the proposed combination of k-space aliasing and k-t

sparse the total acceleration factor would be multiplication of acceleration factor

due to k-space aliasing and k-t sparse. It is evident from the simulation results

that the proposed method preserves resolution of image and removes incoherent

aliasing artifact better than k-t sparse.

Table.1 shows that mean square error (MSE) at different acceleration factors

for the k-t sparse alone and the proposed ‘combination of k-space aliasing and

k-t sparse’. The MSE for the proposed combination was always less than the k-t

sparse alone. Therefore, the proposed combination performs better than the k-t

sparse at all acceleration factors. Moreover as the acceleration factor increases,

the increase in MSE for the k-t sparse was more than that of increase in MSE for

the proposed combination. Therefore, the proposed combination becomes even

more superior to the k-t sparse at higher acceleration factors.

Table 5.1: Mean square error at different acceleration factors

Acceleration
factor

k-t sparse Proposed
method

4 5.5890 ×
10−5

4.9813 ×
10−5

6 5.5977 ×
10−5

4.9817 ×
10−5

8 5.6100 ×
10−5

4.9846 ×
10−5
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Figure 5.3: (a) One time frame of reference image; (b), (c) and (d) are reconstructed image
by k-t sparse for acceleration factors of 4, 6 and 8 respectively; (e), (f) and (g) are reconstructed
image by the proposed method for total acceleration factor (k-space aliasing acceleration factor
× k-t sparse acceleration factor) of 4 (3×1.33), 6 (3×2) and 8 (3×2.66) respectively.

5.5 Discussion

K-space aliasing exploits redundancy in temporal domain by allocating targeted

temporal bandwidth to different region of k-space, while k-t sparse exploits sparsity

of k-t space in transform domain. Therefore each of the technique exploits different

redundancy of the imaging process and their combination provides acceleration

that would not be achievable by each of the individual techniques alone.

A critical factor in k-t sparse reconstruction is the ratio n/N, where n is the

number of acquired PEs and N is the number of targeted PEs to be reconstructed

after l1 minimization. This ratio will be very low when k-t sparse alone is used

as compared to the k-t sparse and k-space aliasing combination. For instance,

if k-t sparse alone was used and the total number of targeted PEs were 300 and

the acquired PEs were only 50, then the ratio n/N would be 0.1667 . However,

for the ‘k-t sparse and k-space aliasing combination’ the target N will be aliased
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k-space consisting of only 100 APEs, and the acquired APEs will still be 50. This

increases the ratio n/N to 0.5, thereby dramatically increasing the performance

of l1 minimization component of the proposed combination. Also this technique

applies the l1 minimization on aliased k-space (reduced dimension) data, thereby

significantly reducing the required computation time to solve non-linear program.

K-space aliasing has been combined with GRAPPA and compressed sensing

(CS) in Chapter 4. When combined with GRAPPA, the achievable acceleration

factor would be limited by g-factor of the coil geometry. However when combined

with CS, the achievable acceleration factor would be limited by sparsity of image

and incoherence due to sampling pattern. This scheme differs from the previously

presented scheme [39], as it exploits spatiotemporal sparsity rather than only

spatial sparsity and exploits 2D incoherence rather than 1D incoherence during

reconstruction. The combination of k-space aliasing with GRAPPA or k-t sparse

achieves higher acceleration than each of the individual techniques alone. The

more optimal combination would be to combine all the three k-space aliasing,

GRAPPA and k-t sparse that can provide very high frame rate dynamic imaging.

However as the acceleration factor increases there is an inherent penalty on the

SNR of the reconstruction. Therefore the above mentioned combination should

be used after evaluation of the speed and SNR requirement of the specific clinical

imaging application.

5.6 Conclusion

A novel sampling method to rapidly acquire k-t space is proposed. The proposed

method reconstructs high frame rate MR images by exploiting both sparsity and

temporal redundancy. This method has potential to be used in clinical applications

requiring high spatial and temporal resolution.
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Chapter 6

Summary and Recommendation

The outcome of the research work undertaken in this thesis is the development

of two novel data acquisition techniques and their combination with the parallel

imaging and the compressive sensing techniques. Thus the title ”Compressive

parallel MRI for accelerated imaging” fits well to the thesis. In the first part

of the thesis acceleration method for static imaging was developed and in the

second part acceleration method for dynamic imaging was developed. The key

contribution of the thesis are consolidated into the following points:

• A novel data acquisition method to acquire data in noiselet domain instead of

conventional Fourier domain to accelerate static MRI scans using mutichan-

nel compressive sensing is developed. The simulation and experimental re-

sults suggest that the noiselelt encoding MCS-MRI outperforms conventional

Fourier encoding MCS-MRI and produces higher quality images.

• An empirical analysis comparing the performance of noiselet encoded MCS-

MRI over Fourier encoded MCS-MRI is presented. The empirical analysis

concludes that for multichannel CS, noiselet measurement matrix have better

RIP compared to Fourier measurement matrix. Thus the noiselet encoded

MCS-MRI outperforms Fourier encoded MCS-MRI.

• A novel data acquisition method of acquiring aliased k-space data using

multiple RF excitation pulses to accelerate dynamic MRI scans is developed.

• A combination of k-space aliasing with parallel imaging technique GRAPPA

and with compressive sensing technique k-t sparse is developed. The pro-

posed combination results in high frame rate cardiac cine imaging.
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This research work developed two novel data acquisition and reconstruction meth-

ods and many possible future extension on them are possible. Some interesting

future possibilities are listed below:

• Empirical analysis on noiselet measurement matrix shows large improve-

ment in condition number. Therefore SENSE reconstruction alone can be

used with noiselet encoded data to improve the performance of SENSE re-

construction.

• One of the limitation of the current implementation of noiselet encoding

pulse sequence is that it can be used only for 2D imaging where one di-

rection is noiselet and other is Fourier. To optimally exploit better RIP

provided by noiselet measurement matrix, 3D imaging is better candidate

for noiselet encoding MCS-MRI. Therefore, we propose the designing of mul-

tidimensional noiselet RF excitation pulses in 3D noiselet encoding where

two dimensions will be noiselet encoded and third direction will be Fourier

encoded.

• The current implementation of noiselet encoding can only be used under

low flip angle regime (flip angle≤ 30◦) that results in some sacrifice of the

available SNR. In order to improve the SNR, we propose to design of large

flip angle noiselet excitation pulse using SLR algorithm.

• Feasibility of k-space aliasing is shown only for the 2D cardiac cine imag-

ing. It will be interesting to see the application of k-space aliasing and its

combination with PMRI, to other dynamic applications such as functional

neuroimaging and perfusion which require high temporal resolution.
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