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Abstract 

In the last decade, a new computing platform, Wireless Sensor Networks 

(WSN), has emerged. This platform is an interconnected and distributed 

transducer network of tiny, inexpensive sensors, and it has emerged as one of 

the essentials of contemporary ubiquitous computing. A WSN’s many tiny 

sensor nodes work together to perform one or more tasks, normally involving 

some type of monitoring, tracking and controlling. One of the main goals of 

WSNs is to sense physical environments and detect events occurring in the 

field of interest. Detection of events or materials of interest can be done by 

processing and analysing sensory information obtained by sensor nodes. 

Pattern recognition is one of the most useful and commonly utilised machine 

learning techniques in the literature for event detection in WSNs, especially 

when dealing with complex events. However, pattern recognition is highly 

affected by the limited resources offered by WSNs, including limited energy 

and limited computational, communicational and memory resources. In 

addition to limited resources, WSNs face other challenges in event detection, 

related to the dynamic nature of the environments in which WSNs are usually 

deployed. For example, a memorised pattern in a WSN pattern recognition 

scheme could appear in a different form, such as size dilation or location 

change, in the field of interest, or the WSN network’s topology or sensor node 

locations might change, meaning the information memorised within the 
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network will have different relations and distribution. The pattern recognition 

scheme also requires the capability of handling noisy patterns in order to 

maintain a high accuracy level. These noisy patterns are mainly the result of 

the monitoring environment and the limited lifetime of sensor nodes. Another 

issue associated with the nature of WSNs is the restricted number of training 

instances available, as events generally occur in some form of randomness. 

Therefore, designing a pattern recognition scheme for event detection in WSNs 

is a matter of a trade-off between detection accuracy, the use of limited 

available resources and dealing with existing challenges.  

 The first goal of this research project is to propose pattern recognition 

schemes capable of addressing the limitations associated with resource-

constrained networks such as WSNs. The research first investigates the 

existing learning techniques for WSNs and their limitations. Then the research 

proposes two novel collaborative in-network pattern recognition-based event 

detection schemes which are lightweight and scalable and which suit resource-

constrained networks such as WSNs well. In this research, two pattern 

recognition schemes are proposed: the Macroscopic Object Heuristics 

Algorithm (MOHA) and the Light Macroscopic Object Heuristics Algorithm 

(LMOHA). The main aim for proposing the second scheme (LMOHA) is to 

reduce the overall computational complexity of the MOHA scheme for event 

detection and pattern recognition. The proposed schemes adopt the distributed 

parallel recognition mechanisms of Graph Neuron (GN) to minimise 

recognition computations and communications and thus will lead to 
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maintaining low levels of consumption of the limited resources. The distributed 

network structure of the proposed schemes will result in loosely coupled 

connectivity between a network’s nodes and will avoid iterative learning. 

Therefore, the proposed schemes will perform recognition operations in a 

single learning cycle of predictable duration, which will make them good 

candidates for implementation of large-scale, real-time problems. 

 The second aim of this research project is to deal with a WSN’s 

dynamic nature and limited prior knowledge of events. Thus, pattern 

transformation invariant schemes are proposed in this research. The first 

proposed scheme (i.e. MOHA) implements an edge detection gradient-based 

mechanism that searches the edges and boundaries of patterns and replaces 

traditional local information storing. The second proposed scheme (i.e. 

LMOHA) implements a similar mechanism as MOHA; however, its 

mechanism searches for the sensory-based shapes of patterns. These 

mechanisms allow the proposed schemes to identify dynamic and continuous 

changes in patterns. Consequently, the proposed schemes will be capable of 

performing recognition operations in dynamic environments and will also 

provide a high level of detection accuracy using a minimal amount of available 

information about patterns. Required protocols for performing the schemes’ 

operations are also presented and discussed. 

 Theoretical and experimental analysis and evaluation of the presented 

schemes is conducted in the research. The evaluation includes time complexity, 

recognition accuracy, communicational and computational overhead, energy 
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consumption and lifetime analysis. The schemes’ performance is also 

compared with that of existing recognition schemes. This shows that the 

proposed schemes are capable of minimising computational and 

communicational overheads in resource-constrained networks, enabling those 

networks to perform efficient recognition activities for patterns that involve 

transformations within a single learning cycle while maintaining a high level of 

scalability and accuracy. The results show that a network that implements mica 

2 motes and requires 3.0625 milliseconds to send a single message can perform 

recognition operations within a single learning cycle duration, ranging between 

5.17 and 2231.39 milliseconds using the MOHA scheme and 5.17 and 

16,441.33 milliseconds using the LMOHA scheme, for 40,000- and 65,536-

node network settings, respectively. The results also show that using a multi-

channel MAC message exchange model in both proposed schemes will 

considerably reduce the network’s learning cycle time. The results also show 

that energy requirements can be decreased by up to 75.86 per cent using the 

MOHA scheme and by 70.69 per cent using the LMOHA scheme, in 

comparison to other recognition techniques. In terms of efficiency, theoretical 

and experimental analyses show that both proposed schemes are highly capable 

of dealing with noisy and transformed patterns with a high level of accuracy. 

However, each presented different limits of tolerance to noisy patterns and 

different types of transformed patterns. The results show that the MOHA 

scheme offers more accurate recognition for scaled patterns than the LMOHA 

scheme. However, the LMOHA scheme provides more accurate recognition for 
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noisy and rotated patterns than the MOHA scheme. In conclusion, both 

proposed schemes showed a very significant capability of performing pattern 

recognition in WSNs, as they showed a very good capability of handling noisy 

and transformed patterns and limiting the number of communications, and 

hence, limiting the use of energy resources. 

Finally, the research presents and discusses several simulations for each 

proposed scheme. The results of these simulations show that the proposed 

schemes have a very high accuracy in dealing with transformed patterns 

compared to other existing schemes. The results also show the capability of the 

proposed schemes’ networks of performing complex and real-life recognition 

problems by using a minimal amount of training information. They also show 

the feasibility of utilising the proposed schemes in real scenarios and different 

application domains. 
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Chapter 1 

1 Introduction 

 

1.1 Preamble 

In the current era of technological advancements, the progress of information 

technology has followed Moore’s law which states: “The complexity for 

minimum component costs has increased at a rate of roughly a factor of two 

per year. Certainly over the short term this rate can be expected to continue, if 

not increase” [1]. The evolution of computer technology has gone a step ahead 

by offering the control of devices in our environment. These devices have 

embedded systems that are small and often have specific purposes, which can 

be found in countless applications and devices such as traffic lights, cars, 

medical equipment, and even smart phones. We are also moving towards an era 

of ubiquitous computing, of which Marc Weiser, the father of ubiquitous 

computing said, “The most profound technologies are those that disappear. 

They weave themselves into the fabric of everyday life until they are 

indistinguishable from it” [2]. He predicted that computers will be seamlessly 

and effectively integrated in all aspects of our daily lives and will be integrated 

in our environment without their existence being noticed. 
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In the last decade, a new computing platform, namely, Wireless Sensor 

Networks (WSNs), has emerged. This platform is an interconnected and 

distributed transducer network of tiny, inexpensive sensors, and has emerged as 

one of the essentials of contemporary ubiquitous computing. A WSN consists 

of many tiny sensor nodes that work together to perform one task or more, 

normally involving some type of monitoring, tracking, and controlling. With 

the recent advances in micro-electromechanical system (MEMS) technology 

and wireless communications, building a low-cost, low-power WSN with 

multifunctional sensors has become an achievable goal that is receiving a lot of 

attention [3-11]. These sensors are tiny in size and capable of sensing, 

processing data, and communicating with each other, normally via a radio 

frequency (RF) channel [3]. The main purpose of sensor nodes in a WSN is to 

provide a view of the observed area by interacting and exchanging information. 

These smart sensor nodes are called “motes” and were developed as part of the 

smart dust project at the University of California in Berkeley [12, 13]. 

Figure 1.1 shows an example of a WSN network in action. In this 

example, sensor nodes are distributed over a large geographical area in order to 

detect certain objects (e.g. aircraft and tank) or events (e.g. fire and other 

natural phenomena) in their vicinities. Each one of these nodes is supported 

with a CPU, a battery, a sensing capability, and a communication element. 

Moreover, all nodes are placed in ideal positions to help sense objects or events 

accurately. The sensor nodes regularly scan the observed area. Subsequently, 
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they analyse the collected data, exchange information and pass the results to 

the base station where the user can utilise the information. 
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Figure 1.1: An example of a WSN [13]. 

 

Figure 1.2: Examples of sensor nodes [14]. 

The size of a sensor node may vary. Some nodes are as small as a speck 

of dust, whereas others are nearly one cubic centimetre in size as shown in 

Figure 1.2. A sensor node consists of five main components: a Memory, a 

Controller, a Communications device, Sensors/ actuators, and a Power supply 
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(see Figure 1.3). All these components should work together in order to 

accomplish the sensor’s assigned task. Moreover, the limited power supply 

should be taken into consideration when components perform their operations 

[15-18]. 
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Memory

 

Figure 1.3: Hardware components of a sensor node [15]. 

The main features of sensor networks are [3, 4, 16, 19-21]: 

 They are able to self-organise.  

 They have short-range broadcast communication and multihop routing. 

 They are densely deployed and cooperative in their efforts.  

 The topology of a WSN is frequently changing owing to node failures 

and signal fading. 

 They have limited transmission power, computing power, energy, and 

memory. 

These features, especially the last three, make wireless sensor networks 

different from mesh and wireless ad hoc networks. 
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WSNs can consist of many different kinds of sensors including seismic, 

magnetic, thermal, visual, infrared, acoustic, and radar, which are capable of 

monitoring a wide variety of ambient conditions including [22-24]: 

temperature, humidity, pressure, speed, direction, movement, light, soil 

composition, noise levels, the presence or absence of certain kinds of objects, 

and mechanical stress levels on attached objects. Hence, a great variety of 

WSN applications are possible. This range of applications includes homeland 

security, monitoring of space assets for potential and human-made threats in 

space, ground-based monitoring of both land and water, intelligence gathering 

for defence, environmental monitoring, urban warfare, weather and climate 

analysis and prediction, battlefield monitoring and surveillance, exploration of 

the Solar System and beyond, monitoring of seismic acceleration, strain, 

temperature, wind speed and GPS data. 

In order to understand the existing and potential applications of wireless 

sensor networks, sophisticated and extremely efficient communication 

protocols are required [23]. A typical WSN consists of a large number of 

sensor nodes densely deployed either inside a physical phenomenon or very 

close to it. In order to enable reliable and efficient observation of the 

environment and to initiate the most appropriate responses, the phenomenon’s 

physical features should be reliably detected/estimated from the collective 

information provided by the sensor nodes [22, 23]. Moreover, instead of 

sending the raw data to the nodes that are responsible for fusion, sensor nodes 

utilise their processing capabilities to locally carry out simple computations 
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and transmit only the required and partially processed data. This process is 

called in-network processing which is intended to find the most pertinent 

knowledge from the observed environment or the object. Hence, these 

properties of wireless sensor networks present unique challenges for the 

development of communication protocols and detection algorithms. 

1.2 Observation of the Environment 

One of the main factors driving the research on wireless sensor networks is 

their sensing capability that allows them to measure their surrounding 

(pressure, light, humidity, temperature, vibration etc.), and sense motions in the 

physical world. Utilising satellites for observation purposes has its advantages. 

For example, a satellite’s ability to provide a real-time weather map is 

outstanding. However, it cannot be used to record temperature or sounds, or 

monitor objects inside houses or caves. On the other hand, wireless sensor 

nodes can be deployed very densely within the environment, in close proximity 

to all events of interest [25]. 

 Some sensor applications still depend on wired sensor nodes. However, 

it is anticipated that wireless sensor nodes will replace them for the following 

reasons [26]. Firstly, wired sensor networks require more time to be configured 

and deployed, precluding applications that require immediate data collection. 

This makes them infeasible for certain applications, such as automotive or 

battlefield surveillance, where mobility and rapid deployment are essential. 

Moreover, the cost of deploying wired sensor networks is very high because of 
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the cost of wiring which can range from $40 to $2000 per linear foot of wire. 

The cost of existing applications can be reduced by replacing wired sensors 

with wireless sensors. Wireless sensor networks can also allow new 

applications that would otherwise be impossible. According to data collected 

from Freedonia Group and Frost & Sullivin [26, 27], the hardware market for 

wireless sensors is expected to rise at the rate of 20% per year, three times 

more than the market for wired sensors. 

 The Great Duck Island project (GDI) [28] is one of the earliest and 

most cited examples of a wireless sensor network application. The GDI project 

showed how the wireless sensor network technology can be generally very 

useful for ecosystem monitoring and particularly useful for the observation of 

bird-nesting grounds. In the past, scientists had to frequently visit every bird 

burrow and record their observations. This procedure was labour-intensive and 

disturbed the birds’ habitat. In the GDI project, shoe-box-size sensor nodes 

were installed in or close to the burrows of petrels in order to collect useful live 

data and pass them on to the web. Moreover, scientists were able to remotely 

perform on-the-fly experiments and collect useful data from previously 

unreachable locations. 

 While wireless sensor networks are well-known for their ability to 

perform efficiently in applications concerning biodiversity monitoring and 

observation, they are also utilised in a variety of other applications. For 

instance, in recent years, wireless sensor networks have made an appearance in 

the healthcare domain[29]. These wireless sensor networks carry the promise 
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of being able to greatly improve and expand the quality of care in a number of 

contexts and for different sectors of the population. For example, primary 

system prototypes have verified the potential of wireless sensor networks to: 

enable early detection of clinical deterioration via real-time patient monitoring 

in hospitals [30, 31], improve first responders’ ability to provide emergency 

care in huge disaster zones via automatic electronic triage [32, 33], enhance the 

health and life quality of the elderly people via smart environments [34], and 

assist in large-scale field studies of human behaviour and chronic diseases [35, 

36]. 

 In wireless sensor network applications, the most predominant model 

involves transferring sensory data to a base-station for analysis [14, 19, 37]. 

After the deployment of sensor nodes in the observed field, sensor nodes 

collect sensory data from their particular locations either continuously, 

periodically, initiated by users, driven by events, or by hybrids of these 

methods [38]. These collected sensory data are locally processed before being 

transmitted to a centralised processing entity, namely, the base station, where 

further information processing may take place. At the base-station, the 

collected data is integrated and analysed to infer the status of the observed 

field. 

1.3 The Effects of the Nature of WSNs 

One of the main goals of WSNs is to sense physical environments and detect 

events occurring in the field of interest [39, 40]. The detection of events or 



 

9 

objects of interest can be performed by processing and analysing sensory 

information obtained by sensor nodes. Pattern recognition is one of most useful 

and commonly utilised machine learning techniques in the literature for event 

detection in WSNs, especially when dealing with complex events [23, 25, 41-

50]. As WSNs are normally deployed in large numbers, the network scaling 

property is an important consideration when designing a pattern recognition 

scheme for WSNs. Size scaling requires managing the way sensor nodes are 

going to communicate with each other. The number of communications 

involved in a WSN scheme design is critical as it will determine the number of 

communications each sensor is going to handle. This will have consequences 

for the sensor’s lifetime as well as the time required to obtain a final result 

from these communications. In real-time applications, convergence time is 

extremely important. In pattern recognition processes, sensor nodes send data 

to either a fusion centre (i.e. base station) or to other sensor nodes in the 

network in order to conclude pattern detection. Consequently, the network’s 

convergence time is highly dependent on the process of delivering information 

from one point to another. In general, the scaling of a WSN must ensure a 

limited amount of communication in order to conserve energy resources and 

speed up the recognition process to support real-time applications of WSNs. 

 Furthermore, a pattern recognition scheme should have several 

invariant features. In WSNs, the need for such features increases because 

WSNs are dynamic and the nature of monitored fields of interest is changing. 

In other words, a memorised pattern in a WSN pattern recognition scheme 
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could appear in different form, such as size dilation or location change, in the 

field of interest. Or the WSN network’s topology or sensor node locations 

might change, meaning that the memorised information within the network will 

have different relations and distribution. Another issue associated with the 

nature of WSNs is the restricted number of training instances available as 

events generally occur in some form of randomness [42, 51]. Therefore, the 

design of a pattern recognition scheme must take into account the restricted 

amount of training data available and the changing environment in WSN 

networks and fields. 

1.4 Challenges in the Development of Sensor 

Network Applications 

Sensor networks are often compared with ad-hoc networks such as Mobile Ad 

Hoc Networks (MANET) [14, 19, 52-54]. Similar to the MANET nodes, 

sensor nodes are battery powered and communicate wirelessly over a limited 

bandwidth with the communication channel being prone to errors. However, 

they have many characteristics that differentiate them from ad-hoc networks. 

First of all, sensor nodes are densely deployed in the field of interest sometimes 

over a vast geographical area to achieve a single goal, which is to sense the 

observed field and communicate sensory data. Highly dense deployment leads 

to significant amounts of redundancy in sensory data, and as a result, sensor 

network designs usually incorporate redundancy-removal techniques. 
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 Additionally, sensor networks adopt data-centric approaches, where the 

emphasis is on finding methods to efficiently deliver sensory data without 

using nodes’ identification numbers (IDs). Utilising the nodes' identification 

numbers to route sensory data might not be reliable or efficient due to the 

sensor nodes’ dynamics, which might unexpectedly lead to those nodes going 

offline as a result of consuming all of their energy resources; hence, data 

aggregation methods can be used to reduce the amount of communicated 

sensory data in the sensor network [55]. 

 Secondly, unlike point-to-point communication in ad hoc networks, in 

sensor networks, sensory data are broadcast to the base-station. As a result, 

sensor networks have a many-to-one data flow. Thirdly, even though both 

networks are battery powered, the replacement or recharging of sensor node 

batteries is sometimes not possible. Lastly, in contrast to user-driven ad hoc 

networks, sensor networks are closely coupled with the observed environment 

and are often driven by the stimuli of environmental events. 

 The main factors that uniquely challenge the design of sensor networks 

applications are as follows: 

 Ad hoc deployment: Even though sensor nodes might be deployed in 

deliberately chosen locations, most sensor applications deploy sensors 

purely randomly, with no clear structure [56-58]. In the initial stages of 

deployment, usually sensor nodes are installed in full in the 

environment and then more nodes are added to the network in order to 

increase the coverage and the quality of measurement [58]. 
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 Lifetime: Sensor networks are considered for long-term deployment in 

remote, sensitive, and inaccessible locations in the observed 

environment. In some cases, providing power sources or replacing 

sensor nodes is infeasible and therefore the sensor nodes continue to 

operate until they run out of battery power. 

 Unattended operations: Sensor nodes are required to operate 

independently without any dependence on human intervention or 

supporting infrastructure due to the huge number of sensor nodes and 

the hostility of the observed environment [57, 59]. 

 Dynamic changes: Sensor networks are prone to network changes such 

as the addition of sensor nodes or node/link failure. Moreover, event 

occurrence might be unpredictable and random. Therefore, the network 

dynamics and changes in the environment affect the sensor network’s 

operation and longevity [19]. 

 Scale: A sensor network may be comprised of numerous nodes in order 

to support large-scale temporal and spatial sampling. Furthermore, the 

network might have to convey information about many events 

occurring simultaneously over a huge geographic area [59]. 

1.5 Motivation 

A WSN consists of many tiny sensor nodes that work together to perform one 

task or more, normally involving some type of monitoring, tracking, and 

controlling. One of the main aims of WSNs is to sense physical environments 
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and detect events occurring in the field of interest [39, 40]. Detection of events 

or materials of interest can be done by processing and analysing sensory 

information obtained by sensor nodes. As discussed previously, pattern 

recognition is one of the most useful and commonly utilised machine learning 

techniques in the literature for event detection in WSNs, especially when 

dealing with complex events [23, 25, 41-50]. It is one of the key capabilities 

required for processing the collected information. It is envisaged that a new 

form of capability, in monitoring systems, can be introduced by having pattern 

recognition operate within a wireless sensor network. However, using a 

conventional pattern recognition technique within wireless sensor networks 

requires modifications to the existing schemes so as to address resource 

limitations [60]. 

 Graph-matching pattern recognition provides a universal representation 

formalism that may be well-suited to pattern recognition in wireless sensor 

networks [61]. Unfortunately, the graph-based algorithms also become 

computationally prohibitive with an increase in size of the pattern database 

[62]. This increase makes the employment of those algorithms in resource-

constrained wireless sensor networks a difficult task. Graph Neuron (GN), 

proposed in [63], is an approach that conserves resources through algorithmic 

simplicity and allows fast template matching. Hence, the scheme can decrease 

the computational cost of processing in-situ information gathered by sensor 

nodes. 
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 However, in order to have a high level of recognition accuracy, the 

pattern recognition scheme for event detection in WSNs should be able to 

identify dynamic and continuous changes in patterns, which in this research is 

called ‘the capability of dealing with transformed patterns’. Most pattern 

recognition schemes such as GN and K-nearest neighbour cannot deal with 

these types of patterns, as will be disscussed in Chapter 2. In WSNs, these 

capabilities are more important because WSNs are dynamic and the nature of 

the monitored fields of interest is changing. As stated previously, a memorised 

pattern in a WSN pattern recognition scheme could appear in a different form, 

such as size dilation or location change, in the field of interest. Also, the WSN 

network’s topology or sensor node locations might change, meaning that the 

memorised information within the network will have different relations and 

distribution. Moreover, the pattern recognition scheme must be able to handle 

noisy patterns in order to maintain a high level of accuracy. The noisy patterns 

are mainly the result of the monitoring environment and the limited lifetime of 

sensor nodes. The noisy patterns, damage to the sensor nodes, dead sensor 

nodes, and lost packets might cause the loss of some parts of the detected 

pattern. Therefore, generally a pattern recognition scheme for WSNs should be 

capable of detecting events and patterns even if some parts of the detected 

pattern are lost. Another issue associated with the nature of WSNs is the 

restricted number of training instances available as events generally occur in 

some form of randomness [42, 51]. This randomness can be tackled by using 

adaptive learning techniques that are capable of searching for similarities 
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between a stored event and a currently encountered one. These techniques store 

event patterns, allowing WSNs to learn from experience and develop 

information about patterns. Therefore, the design of a pattern recognition 

scheme must address two issues: the restricted amount of training data 

available, and the changing environment in WSN networks and fields. 

 Moreover, pattern recognition is highly affected by the limited 

resources offered by WSNs, including limited energy and limited 

computational, communication and memory resources. In most cases, the 

sensor nodes are powered by independent sources such as on-board batteries, 

so the lifespan of the sensor node is often determined by the amount of 

processing and communication it carries out. Clearly, the energy-efficiency of 

the network will be increased by reducing the amount of communication 

between sensor nodes while maintaining the overall performance of the 

wireless sensor network. The reduction of communication also reduces the 

excessive concentration of communication traffic at the base node. The issue of 

excessive traffic at the base node has been shown to dramatically degrade the 

overall performance of the network [43, 64, 65]. 

 Moreover, the lifespan of the wireless sensor network can be increased 

by activating only a subset group of sensor nodes. In many sensor network 

applications, not every sensor node always provides useful information. As a 

result, pattern recognition approaches in WSNs require the activation of only a 

subset group of sensor nodes with information useful for pattern recognition, 

and switching off as many senor nodes as possible to conserve their energy. 
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 Therefore, through this study, we shall propose a pattern recognition 

scheme for event detection that is capable of detecting transformed and noisy 

patterns using a minimal amount of available information about patterns while 

addressing the resource constraints of WSNs. Unlike traditional pattern 

schemes, this research work adopts mechanisms to conserve energy while 

effectively performing pattern recognition. 

1.6 Hypothesis and Research Objectives 

Based upon the research motivation stated in the previous section, the main 

hypothesis of this research is that the best means of addressing the issue of 

event detection in WSNs is to have a pattern recognition algorithm combined 

with fully distributed and parallel techniques, which works purely with 

localised node adjacency-based relationships (i.e. computations). Moreover, it 

will do so without requiring huge computational resources, making it suitable 

for wireless sensor networks. The parallelism helps to reduce the amount of 

processing required to detect an event by sharing these computations among 

sensor nodes. This capability makes it possible for such a scheme to perform 

quite complex operations by dividing them into simple processes that are 

suitable for resource-limited sensor nodes. Adjacency-based relationships (i.e. 

computations) will increase a WSN’s ability to handle complex, invariant (i.e. 

transformed), and noisy patterns, which will in turn increase the recognition 

accuracy. Additionally, this research expects that the use of a loosely coupled 

connectivity scheme will scale up efficiently in terms of time and resources 
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management when it is utilised in resource-limited networks like WSNs. By 

offering a fast and accurate scheme that suits WSNs, it is possible to utilise 

such scheme to address real-time application problems. 

 The main objective of this thesis is to propose a pattern recognition 

scheme for event detection that is capable of detecting transformed and noisy 

patterns using a minimal amount of available information about patterns while 

addressing the resource constraints of WSNs. In order to achieve the main aim 

of this research and support its hypothesis, a number of objectives have been 

formulated as follows: 

1- To conduct a review on current pattern recognition schemes. The 

capabilities of current pattern recognition schemes to be utilised in a 

resource constrained environment such as a wireless sensor network will 

be studied. Subsequently, relevant schemes will be tested to check their 

ability to: 

 have restricted communications, computations, and memory 

requirements; 

 scale in terms of network size; 

 have predicted convergence time; 

 address invariance properties for dynamic networks and changing 

patterns; 

 detect complex and noisy patterns; 

 solve randomness problems, meaning that the scheme should maintain 

high accuracy with a restricted number of available training instances. 
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2- To propose a new pattern recognition scheme for event detection in WSNs 

that is capable of detecting transformed and noisy patterns. Moreover, the 

proposed scheme will be compared with current pattern recognition 

schemes in order to ascertain its capabilities in performing accurate pattern 

recognition, which includes the ability to detect transformed, complex and 

noisy patterns. 

3- To investigate the capability and effectiveness of the proposed scheme to 

address problems associated with event randomness. The proposed scheme 

will be compared with existing pattern recognition schemes to examine its 

ability to maintain high accuracy with a restricted number of available 

training instances. 

4- To perform extensive evaluation and analysis of the complexity of the 

proposed scheme in terms of memory size, number of communications, 

and learning cycle time. Additionally, the proposed scheme will be 

compared with current pattern recognition schemes in these terms. 

5- To increase the lifetime of the network by activating only a subset group of 

sensor nodes with information useful for pattern recognition and switching 

off as many sensor nodes as possible to conserve their energy. This will 

lead to an increase in the overall lifespan of the network. 

6- To conduct a study of the performance of the proposed scheme under 

varying networking parameters. The proposed scheme will be analysed to 

study the influence of different types of MAC protocols on it. MAC 

message exchange models for the proposed scheme to function over these 
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protocols will be proposed. It is anticipated that these models will assist in 

estimating the time and resource requirements of the proposed scheme in 

terms of the communication overhead imposed on the underlying network 

of wireless sensors. 

7- To investigate the capability and effectiveness of the proposed scheme to 

be utilised for complex and real-life problems. Two of the best-known 

WSN applications are used for this purpose, namely, handwritten character 

recognition and human activity recognition. For Human Activity 

Recognition systems to be functional, two types of data collection methods 

are generally used: camera-based and sensor-based. The recognition 

accuracy of the proposed scheme will be evaluated based on these two 

types of data. These study cases will prove the usability and advantages of 

the proposed scheme to be utilised in real-life cases and different 

application domains. 

1.7 Research Contributions 

The contributions of this thesis can be summarised as follows: 

1- The development of new pattern-recognition-based event detection 

schemes for resource-constrained networks such as WSNs: The 

developed schemes address the limited resources of WSNs by 

performing communication and computational tasks in a distributed 

manner. They involve a distribution technique to split the patterns into 

sub-patterns and utilise only a subset group of sensor nodes in the 
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recognition process. This technique will reduce the number of sensor 

nodes involved in the recognition process, and in turn will reduce the 

amount of communication required for recognition; moreover, the 

remaining nodes can be switched off or deactivated. Consequently, the 

distributed techniques will be more suitable for real-time and real-life 

WSN applications, especially those that require pattern and event 

detections over a large area in terms of communications and 

computations complexity. 

2- The development of pattern transformation-invariant schemes for 

WSNs: In large regions that are under surveillance, patterns and events 

occur randomly and changeably. A pattern or an event could occur in a 

certain part of the region with a set of characteristics and it may take a 

long time for a similar pattern or event to occur in a different part of the 

region with variations of the previous characteristics. Thus, the 

proposed detection schemes will address randomness and changing 

phenomena by adopting techniques that make it possible to store 

patterns and recognise transformations in patterns such as translation, 

dilation, and rotation. 

3- The development of an edge determination mechanism based on a 

well-established edge detection technique of image segmentation 

that offers to the recognition schemes the capability of 

transformation-invariant detection: The event may spread over an 

area of irregular shape. In WSN, events can be described as shapes (i.e. 
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objects or boundaries) but not visual shapes. They can be described as 

sensory-based shapes. The knowledge obtained from edge detection 

techniques in image processing and segmentation can be utilised to 

recognise events that produce geometric shapes on the basis of the 

sensor readings. For example, a forest fire will have an edge at the fire 

front based on temperature reading, a flood will have an edge based on 

moisture or pressure, and a tornado will have an edge based on 

pressure. The proposed schemes use an edge detection mechanism to 

locate and determine the edges and the boundaries of an event. By 

describing events and patterns using their main edges and boundaries, it 

is possible to achieve an efficient recognition scheme that can detect 

transformations that may occur in these events and patterns. To the best 

of our knowledge, the schemes proposed in this research are the first 

pattern recognition schemes to utilise edge determination mechanisms 

based on a well-established edge detection technique of image 

segmentation in the recognition process, which can offer 

transformation-invariant detection capabilities. The first proposed 

scheme in this research implements an edge detection gradient-based 

mechanism that searches the edges and boundaries of patterns and 

replaces traditional local information storing. The second proposed 

scheme implements a mechanism similar to the first one; however, its 

mechanism searches for the sensory-based shapes of patterns. These 
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mechanisms allow the proposed schemes to identify dynamic and 

continuous changes in patterns.  

4- The development of communication protocols for pattern 

recognition in resource-constrained networks: Communication 

protocols are needed for WSNs to be functional in terms of detection 

techniques. These protocols will be presented in this thesis. They will 

describe the tasks and communications required by network nodes 

when learning and recognising patterns, from sensing the data to 

producing the result. 

5- The design of a pattern-recognition-based classification model for 

WSNs: Complex classification problems are common challenging tasks 

for resource-constrained networks such as WSNs. In this thesis, a 

pattern-recognition-based classification model is proposed. This model 

demonstrates the ability of the proposed schemes to perform 

classification tasks with minimal resource requirements using pattern 

recognition capabilities while maintaining high accuracy compared to 

other classification schemes. This model shows the advantage of using 

pattern recognition capabilities in solving complex classification 

problems. 

6- An analysis and evaluation of the proposed schemes: Analysis and 

simulations for the proposed pattern recognition schemes will be 

conducted in this thesis. This will include time complexity analysis, 

analysis of the effects of pattern translations, and determining the 
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accuracy levels of various means of pattern detection. Moreover, this 

thesis will provide a comparison between the proposed schemes and 

other existing pattern recognition schemes in terms of accuracy, 

communication overhead, and computational overhead. 

1.8 Thesis Structure 

This thesis is divided into seven chapters as follows: 

 Chapter 1: The introductory chapter provides overall information about 

the research area. The chapter also discusses the research’s motivation, 

objectives and contributions. Finally, it presents the structure of the thesis. 

 Chapter 2: The Pattern Recognition in Wireless Sensor Networks chapter 

presents the background of pattern recognition in wireless sensor networks. 

It also provides a detailed analysis of existing pattern recognition schemes 

for WSNs, including threshold-based, template matching, nearest 

neighbour, statistical, syntactical, fuzzy logic, and neural networks 

techniques. Moreover, issues related to the implementation of such 

schemes for pattern recognition will be discussed. Finally, a set of metrics 

to evaluate the suitability of existing schemes for detecting changing events 

using WSNs will be presented and a comparison of these schemes 

provided. 

 Chapter 3: This chapter proposes a novel pattern detection scheme for 

WSNs: Macroscopic Object Heuristics Algorithm (MOHA). The scheme 

will provide transformation and noisy pattern recognition capabilities in a 
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lightweight and distributed manner that suits WSNs. It implements an edge 

detection gradient-based mechanism that searches the edges and boundaries 

of patterns and replaces traditional local information storage. This 

mechanism allows the proposed scheme to identify dynamic and 

continuous changes in patterns. The scheme reduces the number of nodes 

and required computations, memory resources, and number of 

communications needed for performing pattern recognition in WSNs. This 

is achieved by adopting a distributed and parallel design, along with 

efficient activation processes. This scheme is fault-tolerant and speeds up 

recognition by leveraging the parallel distributed processing capabilities of 

WSNs. An extensive analysis of the presented scheme will be provided, 

including time complexity and simulation tests. Finally, the proposed 

scheme will be tested and compared with existing schemes in terms of 

accuracy. 

 Chapter 4: The Light Macroscopic Object Heuristics Algorithm 

(LMOHA) chapter proposes a lighter version of MOHA scheme, intended 

to reduce the computational complexity of the MOHA’s S&I for pattern 

recognition, which will lead to a reduction in the overall computational 

complexity of the MOHA scheme. Moreover, the LMOHA scheme offers 

the same capabilities of the MOHA scheme in dealing with noisy and 

transformed patterns. The LMOHA implements an edge detection gradient-

based mechanism (similar to the MOHA’s mechanism) to search for the 

sensory-based shapes of patterns. This mechanism allows the LMOHA 
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scheme to identify dynamic and continuous changes in patterns and reduce 

the computational complexity of recognition operations. As with the 

MOHA, the scheme adopts the GN approach to maintain minimal 

communication and computational requirements to thus provide a 

lightweight pattern recognition scheme that suits resource-constrained 

systems and networks such as WSNs. This chapter also presents 

descriptions of the required protocols needed to enable the proposed 

scheme to be implemented in network environments. Furthermore, a series 

of analyses, evaluations and simulations for LMOHA implementation is 

provided along with a comparison between it and MOHA scheme. 

 Chapter 5: The Medium Access Control Protocols Influence on MOHA 

and LMOHA chapter discusses different types of existing MAC protocols 

and MAC message exchange models for the MOHA and LMOHA schemes 

to function over these protocols. These models will help in estimating the 

time and resource requirements of the MOHA and LMOHA schemes in 

terms of the communication overhead imposed on the underlying network 

of wireless sensors. Additionally, this chapter presents an experiment-

derived evaluation of MOHA and LMOHA schemes’ communicational 

overhead in terms of time and energy requirements. The main objective of 

this experiment is to estimate the lifetime and execution duration of the 

networks utilising the communicational models (MAC protocols) present in 

the beginning of this chapter. Finally, this chapter concludes with an 

overall comparison of the MOHA and LMOHA schemes in terms of 
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network structure, pattern matching criteria, handling noisy and 

transformed patterns, number of nodes participating in recognition, node 

utilisation, and network’s lifetime. 

 Chapter 6: This chapter, Evaluating the Performance of MOHA and 

LMOHA Schemes, describes a series of simulations conducted for both 

proposed schemes. Also, it compares the proposed schemes with other 

well-known pattern recognition schemes. Three tests will be presented and 

discussed in this chapter. The first test is intended to compare the accuracy 

of the proposed schemes with well-known existing schemes in dealing with 

transformed patterns. The second test is used to ascertain the capability of 

MOHA and LMOHA schemes to deal with complex and real-life problems. 

This test will involve the recognition of handwritten characters. This test 

will show that both proposed schemes are capable of performing a 

recognition operation using a minimal number of training samples while 

still maintaining a high level of accuracy compared with other schemes. 

The third and final test is intended to prove the possibility of using the 

proposed schemes for real classification problems. One well-known 

application that can be utilised for this purpose is human activity 

recognition. In this test, the proposed schemes will be compared with other 

existing techniques using a limited amount of collected data to demonstrate 

the capability of the scheme in addressing activity recognition problems 

using two different types of datasets, namely, vision-based and sensor-

based datasets.  
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 Chapter 7: The Conclusion and Future Work chapter concludes the thesis 

by summarising the contributions of this research. Additionally, issues 

related to proposed schemes and future work will be presented in this 

chapter.  
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Chapter 2 

2 Pattern Recognition in Wireless Sensor 

Networks 

 

2.1 Preamble 

The main task of a wireless sensor network (WSN) is to sense a physical or 

network environment and detect events that are occurring in the field of interest 

or in the monitored network [39, 40]. One of the most common application 

scenarios in WSNs is that of object detection and event recognition [40, 47, 66-

70]. In such applications, many sensor nodes are deployed within a large-scale 

area to monitor the intrusion or diffusion of specific objects or material of 

interest such as enemy vehicles, wild fires, bio-chemical materials, and so on 

[40, 47]. Moreover, the sensor nodes can be deployed within the network to 

monitor and detect network congestions or network security attacks. According 

to Chandy [71], an event in general may be seen as “changes in the real state”. 

More specifically, Johansson [72] define an event as “Changes that take place 

in one or more elements within a large group of these elements”. In WSNs, an 

event is described as observable changes in the readings of the sensors [73]. 
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More precisely, it is an event that comprises a collection of sensor readings 

which describes a specific or an irregular activity [74]. In general, we define an 

event in WSNs as a change in the state that describes a specific state of 

predefined phenomena in the field of interest. Examples of event detection in 

WSNs include the detection of fires in forests, a border intruder, network 

congestion or a network security attack. 

The detection of events or materials of interest can be done by 

processing and analysing sensory information obtained by sensor nodes. To our 

knowledge, and according to the literature, pattern recognition is a commonly 

utilised technique for event detection in WSNs, especially when dealing with 

complex events [23, 25, 41-50]. Watanabe [75] defines a pattern as the 

opposite of disorder. Catania et al. [76] define a pattern as “a compact and rich 

in semantics representation of raw data”. In this research, we define a pattern 

as a set of raw sensory data that describes the main characteristics or attributes 

that represent an event. In other words, a pattern can be seen as the signature of 

an event. This research focuses on the capability to detect (i.e. classify and 

recognise) transformed patterns of an event. 

 Pattern recognition is strongly influenced by the limited resources 

offered by WSNs, including limited energy and limited computational, 

communicational, and memory resources. In addition to limited resources, 

WSNs pose other challenges for event detection. These challenges are related 

to the nature of the environments in which WSNs are usually deployed. For 

example, WSNs are usually deployed in hostile environments, making sensors 
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susceptible to physical damage and intentional tampering. Additionally, 

sources of electricity are not usually available for running sensor nodes, 

requiring these sensors to be operated using batteries with a limited capacity. 

Also, WSNs are usually required to communicate in an ad hoc manner using 

low frequency radio signals due to the absence of wires in deployed 

environments. Furthermore, WSNs are generally deployed as large numbers of 

sensors in order to monitor an area of interest, which therefore requires the 

utilisation of low cost sensor nodes. This will limit the types of instruments and 

resources that can be supplied to these sensor nodes [53]. Therefore, pattern 

recognition in WSNs is a matter of a trade-off between detection accuracy, the 

use of limited available resources, and dealing with existing challenges [77]. 

  Other challenges for pattern recognition in WSNs are application-

related. WSNs support a variety of real-time applications including battlefield 

monitoring, environmental monitoring, emergency relief, microsurgery, human 

activity monitoring, and to a greater extent various disciplines such as health, 

environment, education, surveillance, and others. Such applications have 

unique requirements in order to be beneficial. These requirements are driven by 

the fact that real-time applications should result in decision-making at a certain 

point in time. Fast reporting to the WSN sink or to a monitoring server is one 

of these requirements. This necessitates an efficient communication 

methodology and a global decision-making mechanism. Reliable and accurate 

detection is another requirement for critical mission applications in order to 

reduce false alarms. Furthermore, these applications require the network to be 
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fault-tolerant. This means that a WSN should be capable of dealing with noisy 

patterns and faulty nodes [78]. 

 Luo et al. [79] state that detection accuracy versus the management of 

energy resources is the main challenge in providing proper event and pattern 

detection capabilities for WSN applications. Existing event detection and 

pattern recognition schemes use neural networks, support Vector Machines 

(SVM), Fuzzy Inference Systems (FIS), and other detection techniques. These 

techniques are generally tailored to provide detection capabilities for specific 

applications or problematic scenarios. These techniques may fulfil some of the 

requirements (e.g. detection accuracy) while failing at others (e.g. lightweight 

detection). Therefore, this thesis seeks to develop a pattern recognition scheme 

that leads to pattern transformation detection in WSNs which fulfil real-time 

application requirements by balancing detection accuracy and WSN resource 

constraints. 

The objectives of this chapter are as follows: 

1. To briefly introduce WSNs, including their network topologies, 

applications, and network architecture.   

2. To present and analyse existing pattern recognition schemes for WSNs.  

3. To present and analyse the requirements of pattern recognition in 

WSNs. 

4. To compare existing schemes based on the requirements of pattern 

recognition in WSNs and discuss any issue related to these schemes. 
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5. To discuss the possible techniques that can be applied in order to 

overcome the limitations of the existing schemes. 

The remainder of this chapter is organised as follows: Section 2.2 

contains a brief introduction to WSNs, their network topologies, applications, 

and network architecture. Section 2.3 presents and analyses existing pattern 

recognition schemes for WSNs. Section 2.4 presents and analyses the 

requirements of pattern recognition in WSNs. Section 2.5 compares existing 

schemes based on the requirements of pattern recognition in WSNs and 

discusses the issues associated with these schemes. Section 2.6 discusses the 

possible techniques that can be applied to overcome the limitations of existing 

schemes. Finally, section 2.7 provides an overview of the chapter. 

2.2 Wireless Sensor Networks (WSNs) 

Wireless Sensor Networks (WSNs) are a specific type of ad hoc network. A 

WSN consists of a number of smart sensor nodes that sense physical activities 

such as motion, heat, speed, and many other environmental parameters. WSNs 

provide solutions for multiple applications such as climate sensing, factory 

monitoring, traffic monitoring, pollution measuring, and human activity 

monitoring. A WSN can scale to thousands of densely deployed sensor nodes 

in order to perform its tasks. Dense WSN networks are useful because sensor 

nodes are generally susceptible to failures. A sensor node is small, its size 

generally varying from the size of a grain to the size of a hand. Sensor nodes 

are limited in their energy, memory, and computational resources, thereby 
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limiting the effectiveness of WSNs. Therefore, traditional applications and 

protocols that are applied to networks in general are usually not applicable to 

WSNs [11, 15, 19, 80, 81]. 

 As discussed in Chapter 1, a sensor node consists of five main 

components: a memory, a controller, a communications device, sensors/ 

actuators, and a power supply. The controller is the main element of a wireless 

sensor node. It collects data from the sensor itself, processes this data, 

determines where and when to send the data, obtains data from other sensors, 

and determines the actuator’s behaviour. It is also responsible for executing a 

variety of programs (e.g. communication protocols) on the sensor nodes. 

Additionally, it controls all of the behaviours of the sensor node’s elements. To 

sum up, the controller is the Central Processing Unit (CPU) of the sensor node 

[15, 82, 83]. The memory component consists of two main elements: Random 

Access Memory (RAM) and Read-Only Memory (ROM). RAM is responsible 

for storing packets received from other sensor nodes, intermediate sensor 

readings, and so on. On the other hand, ROM is responsible for saving 

programs and applications. Moreover, a flash memory may be utilised as a part 

of the memory components to support memory tasks and to act as a back-up for 

RAM when it is insufficient or when it goes down [15, 82, 83]. The 

communication component is utilised to exchange data between a sensor node 

and other nodes and devices in WSN. It consists of two elements: a wireless 

transmitter and a wireless receiver. Both of these elements interact with the 

transmission medium in order to achieve the communication. For example, 
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coding, data rates, and modulation are some of the communication 

component’s tasks [15, 82, 83]. Sensors and actuators perform the main jobs of 

a sensor node. Sensors are responsible for detecting and measuring the physical 

parameters of the observed area or the direction of an observed object. 

Moreover, actuators are responsible for performing actions such as turning off 

a switch based on the observed and analysed data [15, 82, 83]. Power supply is 

the energy-conserving unit of a sensor node. The required energy for sensor 

node tasks may be obtained from batteries. Moreover, the energy can be 

obtained from the environment (e.g. solar cells) through the recharging process 

[15, 82, 83]. Moreover, some sensors may include other components to 

enhance performance or to perform specific tasks. Solar panels and GPS 

devices are examples of these additional components. Due to the limited size of 

a sensor, the capabilities and resources of its components are also limited [19, 

84]. 

 Table 2.1 shows several types of sensor hardware nodes with different 

capabilities. Each of these types is utilised for different purposes. Additionally, 

sensor nodes are usually wirelessly connected and densely deployed to 

construct large-scale WSNs in order to sense and monitor physical 

environments. The connectivity between WSN sensor nodes can be done 

according to different network topologies as discussed in the following sub-

section. 
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Table 2.1: Some of the current WSN platforms [85]. 

Node, Year CPU Memory Radio Notes 

Special-purpose Sensor Nodes 

Spec, 2003 4-8Mhz 3KB RAM 50-100Kbps 
Used for low-power 

operation. 

Generic Sensor Nodes 

Mica-2, 2001 
ATMEGA 

128 

4KB RAM 

128KB Flash 
76Kbps 

Primary TinyOS 

development 

platform. 

Telos, 2004 
Motorola 

HCS08 
4KB RAM 250Kbps 

Supports IEEE 

802.15.4 standard. 

Allows higher-layer 

Zigbee standard. 

Mica-Z, 2004 
ATMEGA 

128 

4KB RAM 

128KB Flash 
250Kbps 

Supports IEEE 

802.15.4 standard. 

Allows higher-layer 

Zigbee standard. 

High-bandwidth Sensor Nodes 

Imote 1.0, 

2003 

ARM 

7TDMI 12-

48Mhz 

64KB SRAM 

512KB Flash 
Bluetooth 1.1 

Multihop utilising 

scatternets. Easy 

connections to 

phones and PDAs. 

Gateway Nodes 

PC104 nodes 
X86 

processor 

32KB Flash 

64KB SRAM 

Serial 

connection to 

sensor 

network 

Embedded Linux or 

Windows support. 

 

2.2.1 WSN network topologies 

Three types of network topologies are commonly in use in WSNs [86, 87]: star, 

peer-to peer, and two-tier (also known as cluster tree), see Figure 2.1. In the 

star topology, a central device is in control of the network’s communications. 

This device can be a sensor node, an access point or any communication unit 

that is capable of linking sensor nodes. In general, a central device has a larger 

memory capacity, higher processing capabilities and more energy resources 

than other sensor nodes in the network. The main issue that restricts the use of 

such a topology is the possibility of single-point failures. The peer-to-peer 
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network topology allows each sensor node in the network to directly 

communicate with its neighbours within its communication range. If a sensor 

node needs to communicate with more distant nodes, routing protocols may be 

utilised, allowing some sensor nodes in the network to act as routers. The use 

of such a topology allows the network to be more fault-tolerant and flexible. 

However, managing a WSN that has a peer-to-peer network topology can be 

challenging. The two-tier network topology is a combination of star and peer-

to-peer topologies. The network in this topology is divided into groups. Each 

group is connected utilising a star topology. The central devices communicate 

using a peer-to-peer topology. 

 

 

Figure 2.1: WSN network topologies. 



 

37 

2.2.2 WSN applications 

Chen and Varshney [78] classify WSN applications based on their 

requirements as follows: 

1. Event-driven: Event-driven applications in WSNs are most likely to be 

real-time applications where the network is analysing sensory data to 

detect a specific or a set of events. The events in these applications are 

usually infrequent, which means that sensors can remain in sleep mode 

for most of the time. However, these events are expected to be mission-

critical and require quick recognition and reporting. In this application 

category, the detection requirements are fast reporting, distributed 

recognition, reliabity and accurate detection, noisy patterns detection, 

and able to provide location information. 

2. Query-driven (sink-initiated): In this type of application, data is 

gathered based on sink commands. Applications of this sort are usually 

interactive and mission-critical. The sink can send query commands to 

obtain sensory data in order to take an action. The requirements of these 

applications are fast reporting, fast distribution of sensory data, reliable 

reporting, and noisy pattern detection. They may also require location 

information reporting capabilities. 

3. Continuous and periodic reporting: This is where WSN nodes are 

continuously reporting information to the sink according to a specific 

timeframe. These applications can be either real-time or asynchronous. 

For real-time applications, the emphasis is on fast information reporting 
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while noisy patterns and lost information are tolerated (to a certain 

extent). 

4. Hybrid models: This is where an application may combine two or 

more of the applications presented above. An example of these 

applications is tracking-based applications where the network is 

interested in detecting intruders in a specific location. The requirements 

of these types of applications depend on the number of application 

types being used, which might include all of the above requirements. 

Additionally, Iyer et al. [88] classify the different applications of WSNs 

as data gathering, object tracking, and event detection. In data gathering, each 

sensor node sends its readings to a sink or a base station either periodically or 

in accordance with the sink request. Therefore, the main goal of data gathering 

is solely to obtain information about the field of interest without in-network 

decision-making. Intuitively, this means that the sensor nodes of a WSN do not 

collaborate to perform computations and/or memorisations on gathered data in 

this type of application. Object tracking focuses on monitoring the movement 

and the state of one or more objects that enter the field of interest and can use 

data-gathering applications to achieve this goal. As such, it is a challenging 

task that requires dealing with computational complexity within the resource 

constraints of the WSN while often also requiring real-time detection and 

solutions. Moreover, the WSN datasets in this type of applications are often 

being continuously generated, meaning that a dataset must be analysed just-in-

time before the next dataset is collected. Event detection can be considered to 
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be a higher level abstraction of the data that represents a unique occurrence or a 

feature in the WSN dataset. 

2.2.3 WSN network architecture 

WSNs are a network comprised of many sensor nodes. A set of protocols is 

required to perform networking functions such as processing information and 

communicating with other sensor nodes. In networking, such protocols are 

segmented into layers that distinguish between the roles for each protocol. The 

standard networking segmentation is the Open System Interconnection (OSI) 

network reference model, which was developed to standardise the protocols of 

networking by the ISO organisation [89]. Therefore, the term ‘ISO reference 

model’ is also utilised to represent the standard model. In this model, the 

network protocols are divided into seven layers: Application, Presentation, 

Session, Transport, Network, Datalink and Physical. Each layer is assigned 

with specific roles in the networking process. 

 Additionally, WSNs carry unique features and limitations. Therefore, 

there are several network architecture models available for WSNs in the 

literature. A common model for WSNs contains five layers [90]: Application, 

Transport, Network, Data-link and Physical. In the following sub-sections, the 

tasks for each layer are briefly presented and discussed. 



 

40 

2.2.3.1 Application layer 

The Application layer provides high level protocols and applications that are 

commonly available in a WSN base station rather than in the rest of the 

network’s sensor nodes [91]. The absence of this layer from sensors is due to 

the high level of processing it requires compared to the limited computational 

capabilities offered by sensor nodes. A WSN base station is expected to 

include much higher computational capabilities that enable the hosting of such 

high level processing requirements and achieve a comprehensive outcome for 

the whole network. 

2.2.3.2 Transport layer 

Transport layer protocols offer reliable communication services between two 

ends in the network. In this layer, the protocols ensure the highest possible 

level of Quality of Service (QoS). This can be achieved by offering services 

such as message segmentation, flow control, congestion control, and message 

retransmission for lost packets [92]. The techniques for implementing and 

designing transport protocols in WSNs affect the QoS and throughput of a 

WSN network and should vary from one application to another as different 

applications have different QoS tolerance levels. 

2.2.3.3 Network layer 

The Network layer deals with routing packets within the network. This 

includes developing mechanisms for building routing tables to allow sensor 



 

41 

nodes to direct their messages and redirect incoming messages from other 

sensor nodes to the proper hop. Unlike traditional networks, WSNs do not 

provide IP addresses and, hence, do not provide IP routing capabilities. The 

design of network layer protocols in WSNs should take into consideration 

network scaling, routing fairness, and security issues, along with the existence 

of resource constraints. Furthermore, network protocols in such network 

environments should address the problem of sensor nodes’ limited lifetime by 

involving fault-tolerant procedures [90]. 

2.2.3.4 Data-link layer or MAC protocols 

The Data-link layer or Medium Access Control (MAC) protocols are utilised as 

an underlying layer of the network layer protocols. MAC protocols control and 

manage the access of the shared wireless medium between WSN nodes [93]. In 

WSNs, the communication environment is noisy and sensor nodes’ resources 

are limited. Therefore, MAC protocols designed for WSNs take power 

consumption into account and attempt to reduce collisions between 

communicational nodes to avoid retransmission of packets [19]. Nodes in 

WSNs usually alternate between active mode and low power consumption 

sleep mode to conserve energy resources. Hence, WSN MAC protocols should 

consider ways of communicating with sensor nodes that are in sleep mode in 

order to avoid occupying communicational channels and increase the 

throughput of the network [94]. Traditional MAC protocols for WSNs allow 

each node to have only one communication at a time. However, recent WSN 
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MAC protocol research trends have moved towards multichannel MAC 

capabilities that allow a WSN node to have multiple communications at the 

same time to support multi-task operations [94]. 

2.2.3.5 Physical layer 

The lowest layer in the model is the WSN Physical layer. This layer includes 

all physical components of sensors such as chips, transceivers, and processors 

[91].  

Tiny sensor design results in limited resources for WSNs as limited 

memory, computational, and communicational resources are available per 

sensor. Therefore, these constraints have to be addressed when designing WSN 

protocols in any layer in the model. Sensor nodes mostly work in a 

collaborative manner in order to tackle these limitations and create larger 

interactive resources to deal with detection problems. 

2.3 Pattern Recognition in WSNs 

Wittenburg et al. [95] and Duda et al. [96] divided the pattern recognition 

process into the following three main steps: 

1. Sampling: Gathering sensing data and describing the sensed object. 

2. Feature Extraction: Obtaining the main features of the sensed object. 

The main goal is to reduce data required to describe the object’s 

pattern, which reduces the computations and resources needed to 

recognise it.  
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3. Classification: Classifying objects according to categories by utilising 

extracted features. 

Pattern recognition schemes in WSNs have been classified from 

different perspectives. For instance, Predd et al. [97] classified distributed 

learning and recognition in WSNs as kernel, supervised, unsupervised, and 

distributed learning algorithms. Their main focus was to classify them in terms 

of fusion-centric and ad hoc network topologies. In a supervised pattern 

recognition algorithm, the system is first trained with the training pattern that 

has been provided by a teacher entity. After that, the system will be fed with 

the incoming patterns. On the other hand, in an unsupervised pattern 

recognition algorithm, the system starts directly to learn and deal with 

incoming patterns. Moreover, Nakamura et al. [98] present different 

classification perspectives for data fusion, one such application being pattern 

recognition. They classify pattern recognition into the following areas: 

Bayesian, Dempser-Shapher, Fuzzy Logic, Neural Networks, and Semantic.  

In this section, we will discuss different pattern recognition schemes 

that have been utilised for WSNs in the literature. These schemes are classified 

as threshold-based, statistical, K-nearest neighbour, conditional, support vector 

machines, neural networks, and graph neuron schemes. Figure 2.2 summarises 

these schemes. 
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Figure 2.2: Classification of existing pattern recognition schemes for WSNs. 

2.3.1 Threshold-based approaches 

The threshold-based pattern recognition technique is one of the simplest, most 

well-known, and widely utilised pattern recognition techniques in WSNs. In 

this approach, one or more threshold values is assigned to each sensor node, so 

a sensor node will declare the detection of the event of interest when its reading 

value hits the threshold value. For example, Kim et al. [99] proposed a fence 

surveillance scheme that can detect intruders based on thresholds obtained 

from the average signal measurements of each sensor. In this scheme, a sensor 

node will send a DETECT signal to the base station when its reading value 

exceeds its threshold. Another example in the literature is the work of Jabbar et 

al. [100] where the authors proposed a threshold-based load balancing 

technique for routing problems in WSNs. 
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Threshold-based pattern recognition techniques are considered to be 

light-weight and simple. Moreover, such techniques do not require complex 

network communication relationships between sensor nodes. However, three 

main issues are associated with the implementation of threshold-based 

techniques for pattern recognition in WSNs. First of all, threshold-based 

pattern recognition cannot describe and address complex detection problems; 

thus, it will produce many false alarms when used to address such problems. 

Secondly, these techniques are limited in when it comes to dealing with noisy 

patterns [101]. The WSN patterns that have been discussed in the literature are 

commonly noisy [96]. Therefore, this limitation makes these techniques 

inappropriate for pattern recognition in WSNs. Thirdly, in some applications, 

the determining of threshold values can be very difficult and challenging [102]. 

Threshold-based techniques provide pattern recognition with 

lightweight capabilities in terms of computations and communications. 

However, such techniques offer problem-specific solutions and their accuracy 

is limited when it comes to complex problems and noisy environments. 

2.3.2 Statistical approaches 

Statistical pattern recognition approaches are predicated on the probability of 

pattern occurrence and the Bayesian decision rule. These approaches are based 

on the following assumptions: the occurrence probabilities values are known 

and recognition decision is achievable in terms of probability [96, 103, 104]. In 

these approaches, the patterns are classified in terms of state of nature, where 
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every pattern can be assigned to one class (state). The likelihood of the pattern 

being a certain class is known as the priority probability [103]. For instance, if 

we want to recognise a fruit as either an apple or an orange, then the states are 

“apple” and “orange”. In this scenario, the priority probability of an input 

pattern is decided in accordance with historical knowledge or data, which links 

the input pattern’s characteristics and features (such as input shape) to one of 

the states (i.e., if the input pattern shape is a circle, then P(orange)=0.74 and 

P(apple)=0.25). The final decision can be made based on the highest prior 

probability, which can be expressed as follows: 

𝑖𝑓 𝑃(𝑜𝑟𝑎𝑛𝑔𝑒) > 𝑃(𝑎𝑝𝑝𝑙𝑒), 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑠 𝑜𝑟𝑎𝑛𝑔𝑒         (2.1) 

 In order to avoid making the same decision whenever the same 

situation is encountered, such statistical models use class-conditional-

probability to minimise the classification error rate (i.e. the fruit could be an 

apple even if its shape is a circle) and can be described as an extra feature that 

supports the decision-making process. For example, the shape and colour can 

be utilised to distinguish between an apple and an orange. In order to make a 

decision about an incoming pattern, statistical approaches use the Bayesian 

decision rule. Let x be the statistical variable, i is the class number, and 𝐶𝑖 is 

class number i. The Bayesian decision rule can be described as follows [96]: 

𝑃(𝐶𝑖|𝑥) =
𝑝(𝑥|𝐶𝑖)𝑝(𝐶𝑖)

𝑝(𝑥)
                                        (2.2) 

where 𝑃(𝐶𝑖|𝑥) is the classification of the incoming pattern given x (posterior), 

𝑝(𝑥|𝐶𝑖) is the conditional probability density of class 𝐶𝑖 given x, 𝑝(𝐶𝑖) is the 
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prior probability of class 𝐶𝑖, and 𝑝(𝑥) is the evidence probability of x for j 

number of entered (stored) classes that can be calculated according to the 

following Equation [96]: 

𝑃(𝑥) =∑𝑝(𝑥|𝐶𝑖)𝑝(𝐶𝑖)

𝑗

𝑖=1

                                        (2.3) 

In practical classification problems, statistical approaches use more 

than one variable (i.e. feature). If the statistical relationships and dependencies 

between variables are known, Bayesian belief networks are used for solving 

classification problems. Figure 2.3 shows a simple example of a Bayesian 

belief network. In this example, four variables A, B, C, and D and their 

dependencies are available. The final decision is made based on the 

dependencies’ statistics. 

 

 

Figure 2.3: An example of Bayesian belief network. 

 On the other hand, Naive Bayes statistical classification is utilised when 

the statistical relationships and conditional dependencies between variables are 
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unknown. In this classification method, the assumption that variables (e.g. a, b, 

and c) are conditionally independent is taken into account and can be 

represented as follows [96]: 

𝑃(𝑎, 𝑏|𝑐) = 𝑃(𝑎|𝑐)𝑃(𝑏|𝑐)                                        (2.4) 

  Non-parametric statistical classification methods assume that statistical 

density distribution is not available. Therefore, such techniques obtain 

probability densities from a set of training samples. This assumption is based 

on the fact that in most classification problems, probability density of classes is 

unknown [51, 96]. Such techniques utilise distance thresholds based on 

probability observations to decide the incoming pattern’s class. According to 

Zhang et al. [51], such techniques are commonly utilised in WSNs as outlier 

detection methods and can be classified as histogram and kernel approaches. 

Histogram approaches count the probability of the occurrence of data classes 

and instances and compare incoming patterns with the calculated probabilities. 

Kernel approaches create probability distribution functions and use thresholds 

to determine an instance class. 

 Elnahraway and Nath [105] present a Naive Bayesian distributed 

method to detect faulty sensors. Their proposed technique provides an outlier 

detection method using spatio-temporal classification where each node 

evaluates its readings probability according to one of many predefined classes. 

Wu et al. [106] present a Naive Bayesian-based technique for applications in 

the medical domain. In their work, they utilised WSNs to monitor patients and 

detect abnormal gait patterns. Mittal et al. [107] present Bayesian belief 
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network approaches to weather status detection. Their technique acquires 

weather attributes such as humidity and temperature values from WSNs and 

then applies a two-step method for classification. The first step constructs the 

relationship between obtained attributes and the second step performs the 

recognition based on the constructed relationships. Sun and Edward [108] 

present a non-parametric distributed statistical approach to detect specific 

events (e.g. loud cheering) in sports stadiums. Each sensor in a WSN deployed 

in a stadium decides the occurrence of an event locally, based on noise levels, 

and then sends the result to a cluster head. The cluster head then detects the 

event based on the optimal median from the information collected by all 

participating sensors. 

 The use of statistical pattern recognition approaches in WSNs poses a 

number of challenges. In most classification problems, such as the ones in 

WSNs, the prior knowledge of probability distribution is rare [51, 96, 103]. 

Thus, implementing most parametric statistical approaches becomes unfeasible 

due to the lack of such knowledge. Non-parametric statistical approaches are 

more feasible since such approaches do not require prior information about 

probability distribution. However, the accuracy of these techniques is highly 

dependent on the number of available training samples as they construct 

probability distributions based on available samples [96, 103]. In WSNs, the 

number of samples of patterns and events is limited due to the randomness 

feature of information gathering in WSNs [42, 51]. That is, the occurrence of 

an event may be captured on rare occasions. Additionally, obtaining enough 



 

50 

information about an existing pattern in order to construct probability 

distributions is limited due to WSNs’ communicational and computational 

limitations [109]. These limitations make the use of non-parametric approaches 

in WSNs challenging. Moreover, some non-parametric approaches such as 

histogram techniques require high communicational overheads to obtain 

histogram information [51]. These requirements are at odds with the limited 

communicational capabilities of WSNs. Other non-parametric approaches such 

as kernel techniques require defining thresholds in order to estimate probability 

densities. However, determining such thresholds may be challenging [51]. 

2.3.3 K-nearest neighbour (KNN) 

The K-nearest neighbour (KNN) approach is one of the simplest non-

parametric classification techniques, which assumes that the density 

distributions of pattern samples are unknown [96, 110]. The KNN approach 

computes distance or similarity measures between two data instances and 

makes a decision based on the result of the comparison. The distance between 

two samples is calculated according to a predefined function. One of the most 

popular distance functions in KNN is the Euclidian distance, which can be 

represented as follows [111]: 

𝑑(𝑥, 𝑦) = √∑(𝑎𝑖(𝑥) − 𝑎𝑖(𝑦))2
𝑛

𝑖=1

                                       (2.5) 

where 𝑑(𝑥, 𝑦) is the distance between instances x and y, n is the number of 

attributes, and 𝑎𝑖 is the i’th attribute of the instance. 
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 The decision in a KNN algorithm is based on the number of nearest 

neighbours (k). After calculating the distances to each neighbour, a KNN 

scheme will vote among k neighbouring instances to classify an incoming 

pattern according to labelled classes. Such voting can be described as follows 

[110]: 

𝐶(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦[𝐶(𝑁1),… , 𝐶(𝑁𝑘) ]                             (2.6) 

where 𝐶(𝑥) is the class label of instance x, 𝐶(𝑁𝑖) is the class label of the i’th 

nearest neighbour to instance x, k is the number of nearest neighbours assigned 

to KNN, 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 and means the highest number of instances that have the 

same class label. Figure 2.4 shows a simple classification example utilising 

KNN. In this example, seven instances are classified into two classes, C1 (Red) 

and C2 (Green). The task is to classify instance x as one of these classes using 

KNN. The KNN uses Euclidian distance as the distance function. In Figure 2.4, 

(a) shows the use of k=1, (b) k=3, and (c) k=5. The classification results show 

that when utilising k=1, the classification result for x is C1 (as the nearest 

neighbour is of class C1); when utilising k=3, the classification result for x is 

C2 as two instances out of three (majority) are of class C2, and when utilising 

k=5, the classification result for x is C1 as three instances out of five are of 

class C1. 
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Figure 2.4: An example of KNN classification. 

An example of KNN being utilised in WSNs is the work of Li et al. 

[112] where they utilised KNN for distinguishing between tracked and wheeled 

vehicles in distributed sensor networks. In [113], KNN was one of the 

classifiers that was used to classify the type of moving vehicles in distributed 

sensor networks. Moreover, KNN is commonly utilised as an outlier pattern 

recognition algorithm in WSNs [51]. This means that the normal activities of a 

network are modelled as pattern instances and stored in the network. A data 

instance is considered to be an outlier if its measure is far from the 

neighbouring instances that represent normal activities [51]. The main 

assumption on which such techniques are based is that an outlier occurrence 

takes place far from its neighbours [114]. An example of the nearest neighbour 

outlier detection technique for WSNs is the work of Zhang et al. [115]. In their 

work, they propose a tree aggregation structure where each node sends some 

information to its parent. Then, the sink decides the global n outliers for the 



 

53 

network and sends back this information to the network for verification. The 

process continues until all the network nodes agree on the outliers. 

There are several issues related to utilising KNN as a classifier in 

general and as a pattern recognition technique in WSNs. First of all, KNN 

depends on the utilisation of a distance function. In some classification 

problems, the standard Euclidian distance function does not lead to accurate 

classification [111]. Therefore, more complicated functions might be required. 

Secondly, the accuracy and complexity of KNN is dependent on the choice of 

the number of neighbours (k). Such dependency requires k to be tuned in such a 

way that it balances complexity and accuracy. Additionally, such dependency 

could lead to tuning k according to the probability distribution of data, making 

the process data-dependent [110]. Thirdly, the decision process in KNN is 

based on a majority function. In the case of tie voting, complex algorithms 

must be utilised to break the tie decision. Such complex algorithms could lead 

to higher KNN complexity [110]. Fourthly, KNN requires large memory 

resources to memorise distances between data instances, especially when used 

in WSNs [116]. Fifthly, KNN requires high computational resources to 

compute distances, which makes this technique lack scalability when 

implemented in WSNs [51]. 

2.3.4 Conditional and structural methods 

There are a set of conditional and structural classification methods in the 

literature that have been utilised for classification problems in WSNs. These 
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methods attempt to create a relationship between pattern elements and are 

commonly utilised when non-metric data is available [96, 103]. These 

techniques can be categorised as syntactical, fuzzy logic, and decision tree 

methods. 

2.3.4.1 Syntactical approaches 

The syntactic approach creates structural rules in order to describe the 

relationship between sub-patterns and patterns. It adopts the language theory in 

which letters form words and words form sentences based on grammatical 

rules. This approach analyses sub-pattern relationships and primitive elements 

in order to provide pattern recognition. Identifying primitives that describe 

patterns and describing the relationships (rules) between sub-patterns are the 

syntactic approach’s main constraint [117]. This analysis can be performed by 

utilising different schemes such as tree grammars, transformations, neural 

networks, and more [118]. 

An example of the use of the syntactical method in WSNs is the work 

of Latha et al. [119] where they utilise the syntactical method in semantic 

tracking for wildlife preservation using WSNs. The syntactical method is 

utilised as a processing stage that checks a node’s detection with other nodes in 

the same cluster. Syntactic pattern recognition provides complex pattern 

recognition, which is usually utilised if there is no appropriate statistical 

scheme available. On other hand, its recognition procedure and grammars are 

complex, especially in the presence of noise [120]. Another issue ralated to this 
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technique is the large amount of training data required for training and creating 

relationships between sub-patterns [103]. 

2.3.4.2 Fuzzy logic 

Fuzzy Inference System (FIS) is typically the name of a system that employs a 

fuzzy logic technique. FIS maps inputs to outputs with the help of fuzzy sets, 

rule base, and membership functions in order to arrive at conclusions [121]. 

This system is created based on three main elements: membership functions, 

rule base, and reasoning mechanism [122]. In this system, inputs should be first 

classified to fuzzy sets according to membership functions. For example, 

temperature readings could be classified into low, medium, and high. After 

that, the conclusion, which is based on the classified inputs, is provided by 

using the rule base. The rule base consists of IF-THEN rules, which receive 

more than one value in order to make a conclusion. An example of a fuzzy base 

rule is: 

𝐼𝑓 𝑥 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵, 𝑡ℎ𝑒𝑛 𝑧 = 𝑓(𝑥, 𝑦)                        (2.7) 

where x and y are the classified inputs and z is the FIS output. Obtaining such 

rules for a FIS may need pre-knowledge regarding the relationships between 

variables [121]. Implementing these rules on variables is called ‘approximate 

reasoning mechanism’ or ‘fuzzy reasoning of a FIS’. 

 In [121], authors proposed a WSN activity recognition system based on 

FIS to support workers involved in car assembling and training. Zarei et al. 

[123] proposed a FIS congestion control algorithm for WSNs in order to 
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recognise malicious node activities. Moreover, Feng et al. [124] utilised FIS to 

measure the distance between WSN nodes to achieve better localisation. In 

FIS, the main challenge is to obtain the fuzzy sets and the IF-THEN rules. 

According to Nakamura et al. [98], FIS is often used to control a neural 

network’s learning rates rather than being utilised for recognition, which will 

lead to the same issues with pattern recognition in WSNs that will be presented 

in the neural networks (NNs) sub-section. Moreover, deducing rules in most 

WSN applications might be challenging.  

2.3.4.3 Decision tree approaches 

Decision tree methods are constructed from a set of nodes that are logically 

arranged in a tree-like shape. Each node makes a decision about the incoming 

pattern feature and, based on that decision, the process questions the next 

feature in lower level nodes. An example of a simple decision tree is shown in 

Figure 2.5. In this example, five fruit classes, watermelon, grape, grapefruit, 

lemon, and banana are to be recognised by using three features: their colour, 

size, and shape. The tree in Figure 2.5 has four levels, including the root of the 

tree. The number of levels determines the depth of a decision tree. In decision 

trees, the same question, Size? in this example, can appears in different places 

in the tree [96]. One of the most common decision tree structures used for 

classification purposes is the binary decision tree. In this structure, each node 

makes one out of two decisions and inspects a single feature at a node to 

minimise recognition time and complexity [103]. 
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Figure 2.5: An example of a simple decision tree for fruit classification. 

 An example of a decision tree technique implementation in WSNs is 

the work of Bahrepour et al. [125]. In their work, they propose a WSN event 

detection mechanism based on a decision tree technique. The proposed scheme 

distributes features into several trees where each tree makes one decision. 

Finally, a voting process takes place between the results obtained by the trees 

to determine the detected event. Decision trees are expected to involve limited 

computations and communications. However, decision tree techniques are 

affected by noisy patterns which increase the scheme’s complexity, especially 

for large scale trees [126]. As a result, decision trees are more useful as 

decision-making processes on top of another pattern recognition technique. 

2.3.5 Support vector machines (SVM) 

In [127], the authors (Cortes and Vapnik) propose the Support Vector Machine 

(SVM) as a classification and learning machine. In SVM network, input 

vectors are (non-linearly) mapped to a very high dimension feature space. In 
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this feature space, a linear decision with special properties is built, which 

guarantees a high generalisation capability for the network. Then, the 

hyperplane, which performs class separation, is built in this high space. The 

linear decision function with a maximum margin between the vectors of two 

classes is called an optimal hyperplane. Figure 2.6 shows an instance of a 

separable issue in a two-dimensional space for two different classes. The 

vectors (points), located on a class margin line, are called support vectors and 

the distance between the margin lines of the two classes is called an optimal 

margin. In order to perform classification, a test vector (input pattern) should 

be compared with every support vector in order to identify the class to which 

this test vector belongs [112, 113, 127]. In practical implementation, SVMs 

utilise a classification function which can be calculated based on the kernel 

representation. Therefore, the choice of the kernel will have impacts on the 

classification process of the network [112]. 
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Figure 2.6: An example of a separable issue in a two-dimensional space 

for two different classes utilising SVM. Black marked vectors (training 

samples) represent the support vector for each class [127]. 
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 One of the examples of the SVMs implementation in WSNs is the work 

of Wang et al. [128]. In their work, they propose a target classification method 

based on SVM that overcomes the false alarm rate in samples in WSNs. The 

authors propose the use of energy consumption metrics to construct an SVM-

based classifier for WSNs in two paradigms, namely, centralised and 

distributed. The centralised paradigm represents the traditional SVM classifier. 

Conversely, the distributed method attempts to utilise samples (i.e. nodes) 

close to hyperplanes in order to reduce classification overhead costs. The main 

aim of the distributed classifier is to allow a set of sensors to communicate with 

a set of cluster heads to construct an SVM classifier. Tran and Nguyen [129] 

utilise SVMs with a radial basis function network (RBFN) kernel for error 

tolerance localisation in WSNs. The authors propose the use of connectivity 

information, such as number of hops, as metrics to classify WSNs and estimate 

sensors locations. Another example is the work of Abu Sajana et al. [130] who 

utilise SVM to detect physical intrusion attacks on WSNs that contain passive 

infrared (PIR) sensors. The aim is to reduce false alarms caused by detecting 

windblown vegetation. They propose the use of Haar transformation and 

frequency binning along with SVMs to resolve the classification problem. 

 The main challenge of using SVMs for classification problems in 

WSNs comes from the fact that a technique who implements an SVM classifier 

requires centralised processing capabilities in order to create hyperplanes and 

classify incoming patterns based on computed information. Another challenge 

is related to the number of training samples required, which can lead to an 
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extensive training period [112, 128]. In order to create separating hyperplanes 

between classes and correctly classify instances, SVMs require a large number 

of training datasets. Such requirements may be challenging in applications that 

expect patterns to occur randomly. Another challenging issue when utilising 

SVMs is their dependency on kernel functions. The use of kernel functions will 

tie SVM techniques to the issues related to the kernel itself. For instance, an 

SVM technique that implements a neural network (NN) method as its kernel 

function will suffer from tightly coupled connectivity between nodes and the 

iterative processing associated with NNs. Therefore, the choice of the type of 

kernel function plays a very important role in determining the suitability of an 

SVM technique for use in WSNs. 

2.3.6 Neural networks (NNs) 

Neural Networks (NNs), also known as Artificial Neural Networks (ANNs), 

are computational techniques that provide parallelism in pattern learning and 

recognition [98]. Associative Memory (AM) is one of the neural network 

techniques capable of memorising and retrieving patterns in a distributed 

manner. The literature shows that AM has been utilised to offer pattern 

recognition solutions based on its capability of recalling memorised templates 

[131]. Moreover, AM networks are capable of dealing with noisy patterns and 

are considered to be a robust solution [132]. In general, AM depends on 

utilising tiny memory chunks available in computational units to accomplish 

the distributed memory management. NNs schemes can be classified as feed-
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forward neural networks, adaptive resonance theory, hopfield networks, self-

organising maps, and recurrent neural networks. 

2.3.6.1 Feed-forward NNs 

The feed-forward network is a layered network consisting of neurons 

(processing nodes), which implements a supervised associative memory 

approach. It describes associations between the input layer and the output layer 

[133]. Each neuron in a layer is connected to each neuron in the layer above by 

variable weight values [134]. Figure 2.7 shows the general structure of feed-

forward networks [133, 134]. Such networks are commonly utilised in pattern 

recognition applications [96, 135]. In this network, the layers located between 

the input and output layers are known as the hidden layers. The input layer is 

not involved in any computation. Thus, all computations take place in the 

hidden layers. Each hidden layer calculates the inner product of inputs with 

weights, which is called the network’s activation function. The connections 

between neurons are usually called synapses and the values of these synapses 

are called synapse weights, which are calculated using a non-linear activation 

function. In this approach, the activation of a neuron depends on a predefined 

weight and a bias unit assigned to neurons [96]. Each neuron’s activation 

values determine the signal strength from the input layer to the output layer. To 

determine each neuron’s weight and bias, a learning rule, such as the 

generalized delta-rule or the back propagation rule, will be applied. 
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Figure 2.7: The Feed-Forward network structure that has P inputs and N hidden 

layers [134]. 

 

 In [136], Awad et al. propose a feed-forward based recognition 

algorithm for localisation and location estimation in WSNs. The proposed 

approach utilises the feed-forward network to analyse received signal strength 

indicator (RSSI) to estimate the distance between two sensor nodes. Rajkamal 

and Ranjan [137] utilise feed-forward networks to classify exchanged packets 

between sensor nodes, based on the nature of the incoming data to be able to 

control the traffic flow in a WSN. In addition, radial basis function networks 

(RBFNs) are one type of the feed-forward network. RBFN consists of three 

layers: input, hidden, and output [138]. Ishizuka and Aida [139] utilise RBFN 

to achieve efficient low-power sensor placement. Tran and Nguyen [129] use 

RBFN as a kernel function for a support vector machine (SVM) technique in 

the localisation of WSNs’ nodes. 
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2.3.6.2 Adaptive resonance theory (ART) 

The Adaptive Resonance Theory (ART) is a multi-layer unsupervised neural 

network method, which solves the problem of the limitation on learning 

scalability of neural networks. This limitation is known as the stability-

plasticity dilemma [140]. In an ART network, there are three main layers: 

input, comparison, and recognition layers (see Figure 2.8). 

 

RG1

G2

Input layer

Comparison layer

Recognition layer

Input pattern  

Figure 2.8: ART network architecture [140]. 

The input pattern is received and stored by the input layer. In such 

networks, each neuron in the input layer is directly connected to a 

corresponding neuron in the comparison layer, utilising non-modifiable 

weights. On the other hand, each neuron in the comparison layer is directly 

connected to all neurons in the recognition layer, utilising modifiable weights. 

In ART structure, there is also a feedback connection where each neuron in the 

recognition layer is linked to all neurons in the comparison layer. Moreover, 

this architecture utilises gain modules (G1 and G2) and the orienting sub-

system (R). These are the signals that play the role of controlling the activating 
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and deactivating neurons in the comparison and recognition layers [141]. In the 

comparison layer, the neurons are fed with three inputs: input pattern, feedback 

pattern from the recognition layer, and the gain value G1. In the recognition 

layer, neurons receive two inputs, from the comparison layer and G2. The 

recognition process is based on calculating the weights and determining the 

winning neuron in the recognition layer. The neuron having the highest weight 

will be activated and compared to the stored patterns to find a match. If no 

match is found, the neuron will be deactivated and another neuron will be 

activated and compared. This procedure continues until the network finds a 

match. Otherwise, the input pattern will be stored [140]. 

 YuanYuan and Parker [142] proposed an ART-based WSN detection 

system to detect intruders in an unknown environment. Kumar et al. [143, 144] 

implement ART networks in WSNs to classify patterns in order to achieve 

clustering aggregation in unknown environments. Kulakov and Davcev [145] 

utilised ART networks as classifiers to detect unusual WSN’s motes behaviour 

in order to identify intruders. From the above description and examples, ART 

networks offer scalability in terms of the total number of stored patterns. Such 

networks are also useful for classifying patterns without having prior 

information such as statistics [143, 144]. However, there is no guaranteed 

convergence time, which would decrease the appropriateness of this approach 

for use in WSNs. Moreover, the high connectivity requirements between layers 

would be prohibitive in terms of power. 
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2.3.6.3 Hopfield networks 

The Hopfield network structure is based on a single-layer network in which 

every neuron is fully connected to all other neurons [146] (see Figure 2.9). In 

the Hopfield network, every connection is measured as a weight, which is 

assigned during the pattern learning stage. Both connections, which occur 

between two neurons, must have an equal weight that can be measured by 

utilising the following equation: 

𝑊𝑗𝑘 = {
∑𝑥𝑗

𝑝𝑥𝑘
𝑝,            𝑗 ≠ 𝑘

𝑇

𝑝=1

0,                         𝑗 = 𝑘

                                  (2.8) 

where 𝑊𝑗𝑘 is the connection weight, 𝑥𝑗
𝑝
 and 𝑥𝑘

𝑝 are the pattern number p for 

neurons j and k respectively, and T is the total number of patterns [131]. This 

equation describes the Hopfield neural network in the discrete representation. 

In [147], Massini argued that the Hopfield neural network is limited in terms of 

the total numbers of patterns that can be memorised and detected. 

 

 

Figure 2.9: The structure of Hopfield network based on a single-layer network  

[147]. 

 Additionally, Hopfield networks can be classified into two types: 

Discrete Hopfield Network (DHN) and Continuous Hopfield Network (CHN) 



 

66 

[148]. DHN is a stochastic model, which provides simple implementation and 

fast processing. However, DHN utilises binary values for the states of neurons, 

and it therefore produces only approximate results. As a result, DHN cannot 

offer a precise solution in a pattern recognition application. On the other hand, 

CHN provides a near-optimal solution by utilising a differential equation 

approach. This is actually an extra load for CHN, since it needs more time for 

its simulation. As a result, CHN is not appropriate for a pattern recognition 

application that needs fast recognition, such as in biometric pattern recognition. 

 Hopfield neural networks are one of the simplest and most common 

types of NNs that have been utilised for pattern recognition problems in WSNs. 

For instance, Chen et al. [149] utilised Hopfield networks in target tracking by 

matching sensor nodes’ measurements with the target tracks. Wang et al. [150] 

used Hopfield networks to identify the sensor nodes that had the lowest power 

consumption rates. In another example, Levendovszky et al. [151] propose a 

Hopfield NN-based datalink layer algorithm for WSNs. The proposed 

algorithm attempts to schedule data forwarding in WSNs based on specific 

QoS metrics. The obtained QoS metrics are fed into Hopfield networks in order 

to find the data packets’ optimum forward scheduling times. Tisza et al. [152] 

propose a multicast routing protocol for WSNs utilising Hopfield NNs. The 

proposed algorithm is based on the assumption that the routing information 

obtained by the network is incomplete. The proposed routing algorithm obtains 

the incomplete link’s metrics from the WSN and utilises Hopfield networks to 
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create the best routing tree that fulfils certain quality of service (QoS) criteria 

(e.g. routing delay).  

2.3.6.4 Self-organising maps (SOM) 

Self-Organizing Maps (SOM), also known as Kohonen maps, are unsupervised 

learning algorithms [153, 154]. In these networks, the neurons are organised in 

a regular manner and can be of the shape of one or many dimensional space. In 

the initialisation stage, each neuron in the network is assigned a random 

weight. The SOM training phase goes through two main stages: 

 Competition stage: In this stage, the training samples are presented to 

the network. Then, they are compared to neurons’ weights and finally 

the neuron that has the maximum value is considered the winning 

neuron. This comparison process is controlled by a discrimination 

function (such as inner product or Euclidean distance).  

 Adaptation stage: In this stage, the winning neuron’s weight is 

updated based on the neighbourhood function and the learning rate 

parameter. 

In such networks, the learning procedure goes in iterative cycles. At the 

end of each iteration cycle, the number of neighbours and the learning rate are 

reduced [155]. After the learning procedure has been completed, it is possible 

to present patterns to the network in order to undertake classification processes. 

In the classification process, each of the presented pattern weights is compared 
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to each neuron’s weight and then the neuron that has the closest weight 

becomes the input vector class. 

One of the examples of the SOM implementation in WSNs is the work 

of Giorgetti et al. [156]. Here they proposed a localisation mechanism that 

determines nodes’ coordinates in WSNs based on SOM. Moreover, Postolache 

et al. [157] utilised sensor networks and a SOM algorithm to validate sensor 

failure and to detect pollution events. Regardless of the classification properties 

offered by SOM, centralised processing is required in order to compare weights 

and to determine the output class. Thus, tailoring SOM for utilisation in WSNs 

might be resource-exhaustive. 

2.3.6.5 Recurrent neural networks (RNN) 

Recurrent neural network (RNN), also known as feedback neural network, is a 

multi-layer structured neural network. As a feedback neural network, the 

output of RNN is fed back to the input in order to improve recognition 

accuracy and reduce error percentage [96]. These feedback links (i.e. from 

output to input) are not available in standard neural networks [158]. Figure 

2.10 shows the RNN structure [96], which has an input layer, a hidden layer, 

and an output layer.  
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Figure 2.10: The structure of RNN [96]. 

Connor et al. [159] classified RNNs into two types: standard and 

relaxation. The standard RNNs work as standard neural networks with the 

feedback links. However, the relaxation RNNs perform learning and 

recognition continuously until the feedback inputs reach a precise predefined 

class. This would guarantee a predictable convergence time. However, in some 

scenarios and applications, such as time series prediction, it is impossible to 

achieve this goal. 

One of the examples of the RNN implementation in WSNs is the work 

of Raju et al. [160]. The authors present a faulty data detection system for 

WSNs using RNN. The proposed system obtains the output of a sensor’s 

neighbours to be fed as input into an RNN model in order to detect faulty 

information. Barron et al. [161] and Moustapha and Selmic [158] utilise RNN-

based methods for fault detection in WSNs. They use an RNN to model a 

sensor node and its related communications with other nodes in the network. 

Their aim is to utilise previous output samples from communicating sensors in 

addition to the current and previous output samples of the modelled sensor as 
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an input to the RNN model in order to detect failures in a dynamic 

environment.  

2.3.6.6 Issues related to implementing NNs in WSNs 

Neural Networks (NN) offer parallel pattern recognition capabilities for 

multiple problems. However, there are some issues that degrade the suitability 

of such techniques for pattern recognition in WSNs. One of the most prominent 

issues is the tightly coupled connectivity between neurons. In a single layered 

NN such as a Hopfield network, each neuron is connected to every other 

neuron in the network. In a multi-layer NN such as feed-forward networks, 

each neuron in a layer is connected to each neuron in an upper layer. Such tight 

connectivity between neurons will require a high number of network 

communications between WSN nodes, which means high power consumption. 

In addition, such connectivity limits a WSN that implement a NN technique 

from scale up in terms of network size. 

 Pattern recognition using NN techniques involves an iterative process. 

This means that a network performs actions such as weight calculations in 

repetitive steps until reaching an optimum status. The number of these steps is 

usually unpredictable and in some cases is not guaranteed to lead to an optimal 

solution. Consequently, the convergence time of an NN technique is high. 

Therefore, the suitability of such techniques in real-time WSN applications is 

limited. Furthermore, such iterative processes involve a large number of 
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computations which will result in resource consumption when implemented in 

resource-constrained networks such as WSNs. 

 In some NNs such as Hopfield networks, and some types of the feed-

forward networks, predetermined synaptic weights and relationships between 

nodes are required. Moreover, generally NNs require a large number of 

training samples in order to correctly classify incoming patterns. These 

requirements may be challenging in some applications, especially for 

environments where patterns are expected to occur randomly. 

 In general, NNs provide distributed and parallel pattern recognition 

capabilities. However, the performance of such schemes is affected by the 

large number of communications, iterative processing, and high computational 

resources involved, as well as the non-guaranteed convergence time and the 

predetermined weights and large number of pattern training samples that are 

required. These factors and requirements make the implementation of such 

schemes in resource-constrained networks such as WSNs either unfeasible or 

challenging. 

2.3.7 Graph Neuron (GN) 

A Graph Neuron (GN) is a graph-based pattern recognition algorithm that 

utilises a simple graph-like approach with in-network processing. This reduces 

the amount of processing required for recognition of a single pattern amongst a 

set of different patterns [162-164]. 
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 The use of a GN offers a parallel approach that permits several sensor 

nodes in the network to work together to recognise a pattern [164]. This 

parallelism helps to reduce the amount of processing required to identify a 

pattern by sharing these computations between nodes, which makes it very 

practical for use in wireless sensor networks [60, 164]. 

 As an in-network processing algorithm, a GN’s operations take place 

within the network body with the collaboration of nodes. This is an advantage 

that helps to resolve the issue that the processing required will increase as the 

target moves far away from the base node. Additionally, GN applications 

perform quite complex operations by dividing them into simple communicating 

sequential processes (CSPs). A GN can adapt more patterns with a reasonable 

increase in the overhead [164, 165]. All these characteristics make a GN a 

suitable pattern recognition system for wireless sensor networks. 

 The parallelism of the GN algorithm results from its use of associative 

memory (AM) systems, and with the aim of overcoming the shortcomings of 

other modern approaches. Moreover, the GN algorithm is an inclusive 

technology, with the possibility of incorporating other technologies such as 

spatiotemporal encoded neurons and evolutionary optimisation techniques 

[164]. 

 The GN algorithm distributes its required computations between several 

nodes, instead of using normal sequential processing to achieve parallelism and 

a better AM system. Additionally, it has been implemented as a self-organising 

virtual network of processing nodes. Each node executes the same copy of a 



 

73 

simple AM application, and it offers a parallelism framework. Hence, the GN 

algorithm is extremely suitable for parallel systems such as wireless sensor 

networks [63, 164]. The GN algorithm can accomplish AM by interconnecting 

nodes in a graph-like formation, called the GN array [166], which is illustrated 

in Figure 2.11. 

 

 

Figure 2.11: A GN array with parallel memorisation and recall operations 

[63]. 

 

 In general, the GN algorithm performs pattern recognition in three 

stages [63, 166]: 

1. Mapping the input patterns to the suitable nodes 

2. Determining the end of the input pattern 

3. Updating the bias and performing the memorisation, or recalling 

operation for the pattern. 

Typically, these stages are executed in parallel inside a small network, 

and this solves the problem of finding a matching pattern in a large pattern 

domain [63]. 
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Figure 2.12: Data representation within the GN nodes for an input pattern 

XXYZZ. 

 

 The simplest form of a GN network can be implemented as a two-

dimensional (2-D) array. In this implementation, the pattern is stored as a 

graph-like structure where each atomic component of the structure has its own 

(value, position) representation, as shown in Figure 2.12. In a multi-

dimensional GN network, the number of values in each position may increase 

in order to represent the additional information. Through the implementation of 

such an array, the GN network is able to convert the spatial/temporal patterns 

into a graph-like shape. The GN then compares the edges of the graph in order 

to decide whether to recall or memorise the patterns. The main advantage of 

the graph-like form lies in its provision of a method for placing the 

spatial/temporal information in a single context. This provides a mechanism 

with which to compare the individual data points and the order in which these 

points occur. The disadvantage of this approach is that it requires a huge 
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number of comparison processes to match the input patterns with the stored 

patterns [63, 165]. 

 In order to perform pattern recognition [63], each node initialises a 

memory structure called the ‘bias array’ in which it stores the incoming pattern 

as sets of p(value, position) pairs. Each input pattern is automatically 

synthesised into its components by the GN array. The GN nodes corresponding 

to the respective p(value, position) pairs are activated by the input pattern. 

Each activated node exchanges its value and position with its neighbouring 

nodes (i.e. previous and next). In the memorisation process, a node will store 

the combinations of its own value and its neighbours’ values. For the recall 

process, it will look up the bias array for a matching combination. The node 

raises a recall, a ‘yes’ vote, if the combination is found in its bias array. Only if 

all GN nodes vote ‘yes’, recalled the input pattern, then the input pattern will 

be recalled by the network. Figure 2.13 illustrates the architecture and 

communications between GN nodes in a four-position GN array, with two 

possible values X and Y storing pattern YXYY. 

 

 

Figure 2.13: The GN array responses for the input pattern “YXYY”. 
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 Despite the lightweight pattern recognition capabilities offered by the 

GN scheme, the recognition accuracy of the GN scheme is affected by the 

limited perspective of each neuron as each node knows only about its 

immediate neighbours. As a result, GN nodes may recall all of the sub-patterns 

together, leading to a complete recall, even when the complete received pattern 

has not previously been memorised. For instance, consider a GN array that can 

accept patterns made of six possible values, a, b, c, d, e, and f (rows), and five 

possible locations (columns). The pattern size is the same as the number of 

locations. Two input patterns have been memorised in this array: “abcdf” and 

“fbcde”. If the GN array receives an “abcde” pattern, then it will raise a false 

recall. This is known as the intersection or crosstalk phenomenon, which 

affects the accuracy of the GN algorithm. Furthermore, the use of GN scheme 

in WSNs is affected by the constraint that each node is required to 

communicate with a single entity (i.e. base station) in order to perform pattern 

recognition operations. Such requirements increase the number of 

communications and overhead throughout the network. 

2.3.7.1 Hierarchal graph neuron (HGN) 

The hierarchal graph neuron (HGN) [164] theory is the improved version of the 

basic GN theory, which can address the crosstalk phenomenon by adding 

higher GN array levels. The HGN fixes the crosstalk problem by using a 

pyramidal framework in order to obtain a better perspective of the incoming 

pattern. The HGN creates a set of layers above the neurons that receive the 
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incoming pattern. The goals are to provide higher oversight over an incoming 

pattern and to minimise direct communications between nodes and the base 

station. The HGN is constructed using layers of GN arrays in a logical 

pyramidal shape that allows a single node (the top node in the pyramid) to 

classify the incoming pattern and communicate with the base station. Figure 

2.14 shows an example of a simple binary HGN that handles a five-element 

pattern size. 

 

 

Figure 2.14: A HGN structure for a 5-element binary pattern. 

 The incoming pattern is firstly processed by the base layer of the HGN 

(i.e. base GN), and then each neuron sends its calculations to its corresponding 

higher level neuron. This process continues to the top node of the structure. 

This allows neurons in higher levels to acquire better knowledge about the 

incoming pattern. The top node decides the pattern’s index based on a given 

command from the base station (memorise or recall). However, if the top node 

fails to classify the pattern, the base node communicates with lower level nodes 

to vote for an answer. It is evident that the neurons in layers higher than the 



 

78 

base layer monitor and manage nodes. That is, these nodes do not receive 

pattern elements. Instead, they receive index numbers calculated by the base 

layer (and lower level) nodes. 

 We will go back to the same example that we utilised to explain the 

crosstalk issue in the previous section to demonstrate and explain how the 

HGN can solve this issue. In the example, the GN array can accept patterns 

made of six possible values, a, b, c, d, e, and f, and five possible positions. 

Both “abcdf” and “fbcde” input patterns have been memorised in this array. In 

HGN theory, when the GN array receives the “abcde” pattern, all GN nodes 

located in the bottom layer will raise a recall; however, when the GN array 

goes to the higher layers, the GN nodes located on them will discover that the 

underlying GN nodes have raised recalls from different stored patterns as they 

have a broader view of the input pattern. As a result, they will memorise the 

input pattern thereby resolving the pattern crosstalk phenomenon (see figure 

2.15). 

 

 

Figure 2.15: HGN array with the pattern crosstalk issue. 
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 The HGN addresses the issue of crosstalk associated with GN schemes. 

However, the size of the HGN can scale significantly with the increase in 

pattern size due to the utilisation of managing neurons in its structure. If the 

pattern size is 𝑃𝑠𝑖𝑧𝑒 and the number of possible values of a pattern element is v, 

then the size of the HGN network (𝐻𝐺𝑁𝑠𝑖𝑧𝑒) can be calculated according to the 

following equation [164]: 

𝐻𝐺𝑁𝑠𝑖𝑧𝑒 = 𝑣 (
𝑃𝑠𝑖𝑧𝑒 + 1

2
)
2

                                    (2.9) 

Furthermore, the HGN attempts to reduce direct communications 

between each node in the network and the base station. However, with the 

presence of noisy patterns, an HGN network’s top node will fail to classify the 

incoming pattern and the base station will communicate with nodes in lower 

layers to vote for an answer. Therefore, an HGN scheme’s communications are 

affected by noisy patterns. 

2.3.7.2 Distributed hierarchal graph neuron (DHGN) 

The distributed hierarchal graph neuron (DHGN) [167] attempts to address the 

large scale of HGN and reduce the number of direct communications required 

for voting. DHGN splits an incoming pattern into sub-patterns so they can be 

processed by multiple HGN networks. Figure 2.16 shows an example of a 

DHGN structure for a pattern size of 9 that has been split into 3 sub-patterns 

and sent to 3 HGNs where each HGN processes 3 elements. Each HGN 

network processes the assigned sub-pattern and presents its final result through 
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its top node. The base station conducts a voting process between the top nodes 

of the GN networks in order to make a final decision about an incoming 

pattern. 

 

 

Figure 2.16: A DHGN structure for a 9 bits pattern size that has been divided 

into 3 sub-patterns. 

 

 DHGN decreases the number of nodes required for the construction of 

the network by limiting the number of managing neurons. However, the use of 

managing neurons leads to an increase in DHGN size with the increase in 

pattern size. For instance, in a uniform distribution of pattern size 𝑃𝑠𝑖𝑧𝑒, let 

𝑆𝑃𝑠𝑖𝑧𝑒 be the sub-pattern size and n HGN networks. Thus, a DHGN network 

size (𝐷𝐻𝐺𝑁𝑠𝑖𝑧𝑒) can be calculated according to the following formula: 

𝐷𝐻𝐺𝑁𝑠𝑖𝑧𝑒 = 𝑛 × 𝑣 (
𝑆𝑃𝑠𝑖𝑧𝑒 + 1

2
)
2

                                (2.10) 

 DHGN adopts an HGN scheme. It has been shown that when a pattern 

is distorted (i.e. a noisy pattern), the top node of an HGN will not make a 

decision about the incoming pattern. Instead, the base station conducts a voting 
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process that involves nodes in lower layers in order to inspect the result. 

Conversely, DHGN avoids such processes in order to limit direct 

communications with the base station and also to speed up the detection 

process. The main issue that a DHGN network may encounter is when a 

distributed noise is present. In this case, a DHGN network may fail to reach a 

conclusion about the incoming pattern. For example, if each sub-pattern in the 

example given in Figure 2.16 has been changed by at least one bit, each HGN 

network would fail to reach a conclusion regarding the incoming pattern. In 

other words, all top nodes will give the result 0 (i.e. fail to recognise the 

pattern). Since the base station conducts the voting process only amongst the 

top nodes of all HGN networks and does not involve lower layers, the network 

is unable to recognise the incoming pattern. 

 GN involves a limited number of communications and computations in 

performing learning operations. This feature makes GN a very good candidate 

for pattern recognition applications in resource-constrained WSNs. However, 

the accuracy of GN is constrained by the limited information available for each 

node. HGN and DHGN provide higher accuracy levels by involving a 

hierarchal network structure. Communications in both schemes are maintained 

at low numbers by adopting parallel and distributed mechanisms. However, the 

scalability of HGN and DHGN schemes is not the most appropriate for large 

scale WSNs as the number of required nodes increases exponentially with the 

increase of the problem (pattern) size. 
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2.4 Pattern Recognition Requirements in WSNs 

Pattern recognition in WSNs is affected mainly by the limited physical design 

of sensor nodes, the nature of WSNs and the type of patterns a WSN is dealing 

with. The requirements of performing pattern recognition in large scale WSNs 

for real-time applications will be discussed in this section. 

 Sensor nodes are generally designed to be small in size, which restricts 

the resources available in each sensor. As discussed previously, a sensor 

consists of five main components: a processing unit (controller), a 

communication unit, a memory unit, an energy source (power supply), and 

sensing unit. The limited size of a sensor results in the limited size of these 

components. As a result, each task assigned to each one of this component can 

utilise only a restricted amount of resources. The energy source is one of the 

main factors influencing the performance of a sensor and the design of a WSN. 

In general, a sensor in WSNs utilises a battery that has a short life. 

Furthermore, in most applications, batteries are not likely to be replaced. This 

means that the lifetime of the battery determines the lifetime of the sensor. In 

addition, since the energy source of a sensor is limited, energy consumption 

caused by another sensor’s components must be reduced. 

 In WSNs, a sensor node’s communication is considered to be the most 

energy-consuming task, and can drain the sensor’s energy resources [39]. 

Therefore, a pattern recognition scheme in WSNs should involve a restricted 

number of communications per sensor in order to increase the lifetime of 
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sensors. Additionally, computational capabilities of a sensor node in a WSN 

are constrained due to the small sensor size (small processor) and limited 

energy available. As a result, involving large amounts of data processing in a 

sensor node is an exhaustive job that will shorten the life of the sensor. This is 

not only because data processing requires energy, but also because the sensor 

node will be kept in active mode for long periods of time. Moreover, the higher 

the processing assigned to a sensor node, the more time the sensor requires to 

obtain a result. If the amount of processing is large, the time required to obtain 

a result from this processing might be unexpected. Therefore, a pattern 

recognition algorithm in WSNs should involve a limited amount of data 

processing for each sensor node aligned with the sensor node’s computational 

resources in order to avoid energy consumption and to ensure a timely result. 

The memory size of a sensor is also intuitively small. Therefore, each sensor 

node must hold the minimum amount of data it requires in order to process and 

detect patterns in a WSN pattern recognition scheme. 

 Other important requirements for pattern recognition in WSNs are due 

to the nature of the WSN network design. As WSNs are normally deployed in 

large numbers, network scaling is an important consideration when designing a 

pattern recognition scheme for WSNs. Size scaling requires managing the way 

in which sensor nodes are going to communicate with each other. The number 

of communications involved in a WSN scheme design is critical as it will 

determine the number of communications that each sensor is going to handle. 

This will have consequences for the sensor’s lifetime as well as the time 
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required to obtain a final result from these communications. In real-time 

applications, convergence time is extremely important. In pattern recognition 

processes, sensor nodes send data to either a fusion centre (i.e. base station) or 

to other sensor nodes in the network in order to conclude pattern detection. 

Consequently, the network’s convergence time is highly dependent on the 

process of delivering information from one point to another. In general, scaling 

a WSN must maintain a limited method of communication to conserve energy 

resources and speed up the recognition process to support real-time 

applications in WSNs. 

 Furthermore, a pattern recognition scheme should have some invariant 

features. In WSNs, the need for such features increases because WSNs are 

dynamic and the nature of monitored fields of interest is changing. In other 

words, a memorised pattern in a WSN pattern recognition scheme could appear 

in a different form, such as size dilation or location change, in the field of 

interest. Or the WSN network’s topology or sensor node locations might 

change, meaning the information memorised within the network will have 

different relations and distribution. Another issue associated with the nature of 

WSNs is the restricted number of training instances available as events 

generally occur in some form of randomness [42, 51]. Therefore, the design of 

a pattern recognition scheme must take into account the restricted amount of 

training data available as well as the changing environment in WSN networks 

and fields. 
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 One of the most important requirements for a pattern recognition 

scheme is its ability to provide high recognition accuracy. Consequently, such 

a scheme should be capable of detecting events with a very small percentage of 

false alarms. Furthermore, it must achieve this without consuming the limited 

resources available in the sensor nodes. As mentioned previously in this 

section, a pattern recognition scheme can reduce its network consumption by 

involving a restricted number of communications per sensor, reducing the 

amounts of data processing per sensor, and retaining the minimum amount of 

data the sensor requires in order to process and detect patterns. In general, the 

pattern recognition scheme for event detection in WSNs should provide a 

balance between having a good level of accuracy and maintaining a restricted 

level of network consumption. 

 Furthermore, in order to have a high level of recognition accuracy, the 

pattern recognition scheme should be able to deal with transformed patterns. 

These patterns represent the state or condition of an event. In WSNs, there is a 

greater need for this capability because WSNs are dynamic and the nature of 

monitored fields of interest is changing. As previously mentioned, a memorised 

pattern in a WSN pattern recognition scheme could appear in a different form, 

such as size dilation or location change, in the field of interest. Also, the WSN 

network’s topology or sensor node locations might change, meaning the 

information memorised within the network will have different relations and 

distribution. Moreover, the pattern recognition scheme must be able to handle 

noisy patterns in order to maintain a high level of accuracy. The noisy patterns 
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are mainly the result of the monitoring environment and the limited life of 

sensor nodes. The noisy patterns, the sensor nodes’ damages, dead sensor 

nodes, and lost packets might cause the loss of some parts of the detected 

pattern. Therefore, generally a pattern recognition scheme for WSNs should be 

capable to detect events and patterns even if some parts of the detected pattern 

are lost. 

 Many WSNs applications, such as fire surveillance and human 

activities recognition, are real-time applications and therefore require fast 

pattern recognition. This can be achieved by reducing the number of 

communications required to perform pattern detection, which will lead to the 

conservation of energy and acceleration of the recognition process. In general, 

the pattern recognition scheme in WSNs should limit the amount of 

communication to save energy resources and speed up the recognition process 

to support real-time applications in WSNs. 

 Generally, the main requirements of a pattern recognition scheme in 

large-scale WSNs suitable for real-time applications can be summarised as 

follows: 

 Restricted communications, computations, and memory requirements.  

 Ability to scale in terms of network size. 

 Predicted convergence time. 

 Ability to addresses invariance properties for dynamic networks and 

changing patterns. 
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 Ability to solve randomness problems, meaning that the scheme should 

maintain high accuracy with a restricted number of available training 

instances. 

 Ability to detect complex and noisy patterns. 

 High level of recognition accuracy while maintaining a limited level of 

network consumption. 

 Ability to provide fast pattern recognition to support real-time 

applications in WSNs. 

2.5 Comparing Existing Schemes 

This section compares the different pattern recognition schemes presented in 

section 2.3 for WSNs based on the requirements listed in the previous section 

2.4. The main aim of this research is to present a recognition scheme for event 

detection that is capable of detecting transformed and noisy patterns using a 

minimal amount of available information about patterns while addressing the 

resource constraints of WSNs. 

 The main aim of pattern recognition in WSNs is to offer greater 

recognition accuracy and reduce the number of false alarms. Simple schemes, 

such as threshold-based scheme, seem to be perfect for simple problems. On 

the other hand, these schemes fail to deal with complex patterns, leading to 

false alarms. The nature of WSNs and the fields they monitor can create more 

complex problems for recognition schemes. Sensor nodes could run out of 

energy or lose information because of the noise in the physical transmitting 
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medium. Therefore, schemes should be capable of overcoming such challenges 

and offer recognition capabilities despite the lost information. Such problems 

can decrease the accuracy of several known schemes. For instance, a DHGN 

scheme might inaccurately classify patterns when distributed noise is present. 

If each cluster of a DHGN network is presented with noise, cluster heads will 

not be able to conclude sub-pattern detection and the final voting of the process 

could lead to inaccurate detection. Another instance is decision tree schemes. 

These techniques may fail to correctly classify noisy patterns in large-scale 

networks. 

 Most existing schemes are able to implement a number of nodes equal 

to the pattern size 𝑃𝑠𝑖𝑧𝑒. For example, Hopfield networks allow input/output 

neurons of size 𝑃𝑠𝑖𝑧𝑒. Conversely, HGNs and DHGNs require a larger number 

of nodes to adopt the same patterns, as can be seen from Equations 2.9 and 

2.10. The higher number of nodes in HGNs and DHGNs is the result of 

requiring higher level neuron positions and the need to have one node for each 

possible value v in each position. It can be concluded from Equations 2.9 and 

2.10 that the number of nodes (or sensors) increases exponentially with the 

increase in pattern size and the number of possible values for each pattern 

element. 

 On the other hand, the number of communications involved in neural 

networks such as Hopfield networks is high due to tightly coupled connectivity 

and iterative processing. The number of communications required for a 

Hopfield network is (𝑃𝑠𝑖𝑧𝑒 × (𝑃𝑠𝑖𝑧𝑒 − 1)) as each node is connected to every 
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other node. Intuitively, the number of communications grows exponentially 

with the increase in pattern size as this number is related to the square of the 

pattern size. Since neural networks require iterations to reach an optimal state, 

communications between neurons are repeated several times, resulting in high 

communicational demand that would be exhaustive if implemented on sensor 

nodes. Some statistical approaches such as histogram methods also involve a 

large number of communications in order to collect specific information from 

the network. 

 From a computational perspective, most of the existing schemes either 

provide distributed processing or require centralised processing. SVM, for 

instance, requires centralised processing in order to create the required 

hyperplanes and classify patterns. Statistical approaches require global 

information to be available in a centralised component in order to compute 

distributions and perform recognition. There have been attempts to distribute 

statistical models amongst sensor nodes in WSNs and compute these 

distributions locally before sending the information to a fusion centre or a base 

station. The work of Luo et al. [79] is an example of this technique. However, 

the accuracy of such techniques depends on the physical communication 

medium’s noise tolerance and the thresholds computed to perform 

computations locally in sensor nodes. Neural networks provide parallel and 

distributed functionality in terms of computations. However, the iterative 

process of neural networks requires a great amount of data processing. KNN 

techniques can be seen as simple, distributed approaches for pattern 
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recognition. However, the computational complexity of a KNN scheme 

depends on the number of neighbours k. The higher the value of k, the more 

complex the scheme becomes. Therefore, the tuning of the value of k plays a 

crucial role in determining a KNN scheme’s computational simplicity. 

 Memory requirements per sensor node are limited in most existing 

schemes. However, in KNN, each sensor node keeps information about 

distances to each of its neighbouring nodes. The amount of memory needed for 

each sensor node in this case will depend on the value of k and the number of 

classes. In the HGN, the higher nodes in the hierarchy require more memory. 

In the base layer (i.e. input layer) each sensor node is expected to hold up to 

(2𝑣) in its memory (v is the possible number of a pattern’s element values) as 

each sensor node communicates with its two direct neighbours. Each node in 

the top position of the hierarchy of the HGN is expected to hold up to 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑣
. 

 The number of available training samples is commonly restricted in 

WSNs. Most existing detection schemes require a large amount of data in order 

to correctly recognise and classify patterns. Statistical approaches utilise 

training samples so as to construct distribution probabilities. The more samples 

the scheme is trained with, the higher the accuracy it achieves. Similarly, SVM 

requires large amounts of data in order to create separation hyperplanes. A 

limited amount of data could result in inaccurately setting hyperplanes and 

create large gaps between classes. Neural networks have the same requirement 

in order to accurately create weighting matrices. The limited number of 
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training samples in this case affects the invariant property of a recognition 

scheme. Statistical, SVM and neural network approaches are the best 

candidates for offering this invariant feature compared to other existing 

schemes. However, this feature is encumbered by having to present a large 

number of training samples to a network implementing such schemes. 

 Real-time applications require fast pattern detection. In this area, GN 

approaches such as HGNs and DHGNs offer one-cycle recognition that suits 

such applications. On the other hand, neural networks, SVM, and decision trees 

recognition schemes may require more time to converge compared to other 

existing schemes. A neural network’s convergence time to an optimum state 

depends on the number of iterations involved. A single iteration involves 

communications and computations to be performed by neurons. These 

activities can be time consuming as the number of iterations grows. In SVM 

schemes, recognition time depends on the selection of the kernel. If the kernel 

chosen is one of the time-costly techniques, such as neural networks, the 

detection time will intuitively increase. The choice of kernel in this case will be 

a trade-off between time and other factors such as accuracy. For decision trees, 

recognition time depends on the depth of a tree. The depth of a tree is the 

number of levels required to perform recognition and depends on the number 

of attributes the tree is inspecting. The more attributes to inspect, the greater 

the depth of the tree, and hence the more time it takes to reach a decision about 

a pattern. In addition to the depth of a tree, the method utilised to inspect each 

attribute affects the time cycle of detection. 
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 It can be clearly seen that different schemes have different limitations 

in regards to the requirements of pattern recognition in WSNs. Table 2.2 shows 

a comparison between existing pattern recognition schemes in WSNs. It can be 

clearly seen from the table that none of the existing schemes can meet all the 

necessary requirements. Therefore, new schemes need to be proposed in order 

to fulfil all of these requirements. 

2.6 Proposed Solution 

Performing pattern recognition in WSNs requires tackling two main issues: 

correctly classifying patterns and restricting the use of constrained resources. 

Solving the problem of pattern recognition in WSNs is seen as a trade-off 

between accuracy and resources exhaustion [77, 168]. Existing solutions do not 

address the resource-constrained nature of WSNs and assume reliable message 

delivery in the network [79]. This causes such schemes to be resource-

exhaustive and to require substantial tailoring to suit WSN applications [44]. 

Therefore, Tanenbaum et al. [53] concluded that existing techniques can be 

implemented only on limited-scale WSNs. 
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Table 2.2: The capability of the existing pattern recognition schemes to fulfil the thesis requirements. 

Approach 

WSN requirements Pattern recognition requirements 

Communicati

ons 

Computations 

 

Memory Network  Time Transforma

tion 

invariant 

(Transform

ed patterns) 

Random 

patterns 

(restricted 

number of 

available 

training 

samples) 

Complex 

patterns 

Noisy patterns 

Threshold-based Low Low Low Small Low No No No No 

Statistical 

approaches 
Low High / Centralised Moderate Small Low Yes No Yes Yes 

KNN Low High (Depends on k) High Small Low No Yes Yes Yes 

Decision trees Low Dependant Low Small Low Yes No Yes No 

SVM Low Centralised Low Small Low Yes No Yes Yes 

Neural networks High High Low Small High Yes No Yes Yes 

Graph Neuron 

(GN) 
Low Low Low Small Low No Yes Yes Yes 

HGN Low Low Moderate Large Low No Yes Yes Yes 

DHGN Low Low Moderate Large Low No Yes Yes No 

Proposed scheme 

(target) 
Low Low Low Small Low Yes Yes Yes Yes 
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 In recent research, distributed approaches have been used to address the 

pattern recognition problem in WSNs. According to Giridhar and Kumar [169], 

sending information from each sensor node to the base station or a fusion 

centre in a WSN is inefficient. Consequently, according to the authors, the 

whole network should perform as a distributed cooperative computational 

component. Wittenburg et al. [44] suggest that the processing involved in 

application levels should be pushed and distributed in the network level in 

order to achieve conservative resource consumption schemes for WSNs. 

Chamberland and Veeravalli [39] suggest that the utilisation of distributed 

pattern recognition is the most efficient method for WSNs. They state that data 

should be computed by sensor nodes locally, and only part of the resulting 

information should be sent, in order to conserve the WSNs’ limited resources. 

However, the authors highlight that the choice of which information should be 

sent to the base station of a WSN is crucial to such implementation. 

 Furthermore, using in-network processing can solve the pattern 

recognition problem in WSNs, since sensor nodes go beyond their basic 

functionality of sensing and passing sensory data to actually being involved in 

processing data en-route within the network [170-174]. There are many 

advantages in utilising in-network approaches. First, these approaches are more 

robust against individual sensor node or link failures. They are also normally 

designed in a distributed manner, which improves the network scalability. 

Finally, they require less communication, which leads to better resource and 
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bandwidth utilisation and which in general improves the longevity of the 

network. 

 The main hypothesis of this research is that the best means of 

addressing the issue of event detection in WSNs is to have a pattern 

recognition algorithm combined with fully distributed and parallel techniques, 

which works purely with localised node adjacency-based relationships (i.e. 

computations). Moreover, it will do so without requiring huge computational 

resources, making it suitable for wireless sensor networks. The parallelism 

helps to reduce the amount of processing required to detect an event by sharing 

these computations among sensor nodes. This capability makes it possible for 

such a scheme to perform quite complex operations by dividing them into 

simple processes that are suitable for resource-limited sensor nodes. 

Adjacency-based relationships (i.e. computations) will increase a WSN’s 

ability to handle complex, invariant (i.e. transformed), and noisy patterns, 

which will in turn increase the recognition accuracy. Additionally, this research 

expects that the use of a loosely coupled connectivity scheme will scale up 

efficiently in terms of time and resources management when it is utilised in 

resource-limited networks like WSNs. By offering a fast and accurate scheme 

that suits WSNs, it is possible to utilise such scheme to address real-time 

application problems. 
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2.7 Conclusion 

This chapter has presented an overview of WSNs and the pattern recognition 

challenges that are associated with such networks. WSNs pose many 

challenges for complex applications such as pattern recognition and event 

detection. WSNs face greater challenges if an application is a real-time one and 

needs to be implemented on a large-scale network. These challenges and 

limitations stem from the constraint resources that a WSN can offer, including 

computational, communicational and memory resources. As a result, these 

limitations mean that pattern recognition issues in WSNs need to be addressed 

by means of a trade-off between performance and resource consumption. 

 Existing schemes that offer solutions for the pattern recognition issue in 

WSNs include threshold-based, statistical, KNN, conditional, SVM, neural 

networks GN, HGN, and DHGN schemes. Each one of these schemes presents 

several issues when implemented on WSNs. Examples of these issues include 

the requirements of centralised processing, iterative processing and large 

numbers of communications. Therefore, each one of these schemes would 

require substantial modification in order to be adopted by WSNs. Most existing 

pattern recognition schemes can be implemented on limited-scale size WSNs. 

Therefore, efforts should be made to enhance the scalability and performance 

of pattern recognition. 

 Distributed and in-network processing techniques conserve resources in 

a way which perfectly suits the nature of WSNs. These techniques allow the 
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spread of computations across the network. Distributed processing can be 

achieved by allowing each sensor node to locally process data and send the 

final result to another entity in the network. However, it is important to utilise a 

method for choosing which other sensor nodes to communicate with, what data 

should be processed and what information should be sent. 

 In WSNs, minimising communications between nodes is one of the best 

approaches to resource utilisation. The main reason for this is that sending a 

message from one sensor node to another is the most energy-consuming task 

that a sensor node can perform. Therefore, this chapter proposes the use of the 

adjacency communication technique in order to reduce the number and range 

of communications. The processing of data acquired from adjacent nodes 

allows the network to communicate and process data in a loosely coupled 

fashion. In addition to conserving resources, this would allow the network to 

decrease the time needed for recognition. Such features will make the proposed 

schemes good candidates for resource-constrained networks such as WSNs, 

allowing them to solve complex and real-time problems. 
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Chapter 3 

3 Macroscopic Object Heuristics 

Algorithm (MOHA) 

 

3.1 Preamble 

Wireless Sensor Networks (WSNs) make it possible to sense physical 

parameters in a field of interest. These sensory data can be analysed in order to 

detect the presence of a physical activity or events in that field of interest and 

take action in accordance with the detected activity. The analysis of sensory 

data is a processing task that can be done using two approaches: centralised 

and in-network [19, 170-174]. In centralised processing, data obtained by 

sensor nodes are aggregated in one machine that has the computational ability 

to analyse sensory information. However, this approach is considered 

inefficient in large-scale, resource-constrained WSNs, especially for 

applications that require data to be analysed quickly in order to support 

decision-making processes [169]. In contrast, in-network processing allows 

network sensor nodes to perform computations on obtained data locally and in 

a distributed manner. This causes the network to act as a cooperative 
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computational entity and this capability allows a WSN to reduce the 

computational and communicational complexity of processing sensor nodes in 

the network. 

 The problem of event detection in WSNs can be addressed by utilising 

in-network pattern recognition techniques. A pattern is defined in this research 

as a set of raw sensory data that describes the main characteristics or attributes 

of an event. As discussed in Chapter 2, In-network pattern recognition 

techniques for WSNs include threshold-based, nearest neighbour, fuzzy logic, 

and neural networks. Existing pattern recognition schemes for WSNs are 

usually tailored to provide detection capabilities for specific applications or 

problem scenarios. However, these existing schemes may fulfil some pattern 

recognition requirements but fail to address WSN resource limitation issues. 

 As discussed in Chapter 2, Graph Neuron (GN) is a scheme that creates 

associative memory (AM) in a fully parallel-distributed manner over fine-

grained WSNs and provides lightweight, one-shot learning capabilities. These 

characteristics make GN a very good candidate for real-time pattern 

recognition applications in WSNs. However, the recognition accuracy of GN is 

affected by the limited perspective of each neuron, as each sensor node knows 

about its immediate neighbours only. HGN and DHGN provide higher 

accuracy levels by involving a hierarchal network structure. Communications 

in both schemes are maintained at low numbers by adopting parallel and 

distributed mechanisms. However, the scalability of HGN and DHGN schemes 

is not best suited for large-scale WSNs as the number of required nodes 
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increases exponentially with the increase of the problem (pattern) size. 

Moreover, HGN and DHGN schemes do not have the capability to correctly 

detect transformed patterns, which is one of the main objectives of this 

research. Thus, the first hypothesis presented in this chapter is that the 

development of a GN-based scheme that addresses the accuracy limitations of 

GN would be the best option for solving the problem of pattern transformation 

detection and pattern recognition in resource-constrained networks such as 

WSNs. 

 Furthermore, in some real-life applications, patterns and network nodes 

are subject to spatial and topological changes [175]. This means that a pattern 

can appear with a level of variations or transformations such as location 

change. For instance, a malicious intruder pattern of a WSN can change its 

location in the network [176]. Another instance can be seen in environmental 

surveillance systems where events such as forest fires and hurricanes may 

appear in different locations and at different magnitudes [177]. Such dynamics 

in pattern appearance can influence the accuracy of a recognition system. 

Dealing with such dynamics could require a great amount of information that 

need their patterns and possible dynamics to be stored in WSN in order to 

efficiently recognise the presence of these patterns. However, such an approach 

might not be feasible, for two main reasons. First, it would require a high 

amount of resources to store and search patterns. Second, in some applications, 

the amount of available information about patterns is limited, as discussed in 

Chapter 2. Therefore, a more efficient approach is required.  
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 Hence, in this chapter, we propose a pattern recognition scheme that is 

capable of detecting events, and transformed and noisy patterns while 

addressing the resource constraints of WSNs. The scheme will adopt an in-

network processing paradigm by including GN in its structure. Additionally, 

the scheme will address the crosstalk problem that affects GN accuracy by 

adopting network structures that allow certain nodes in the network to maintain 

more information about incoming patterns rather than being restricted to only 

adjacent nodes. Instead of storing pattern information locally on sensor nodes, 

the proposed scheme implements an adjacency-based relationships mechanism 

that searches the edges and boundaries of events and patterns. The second 

hypothesis in this chapter is that, by describing events and patterns using their 

main edges and boundaries, it is possible to achieve an efficient recognition 

scheme that can detect transformations that may occur in these events and 

patterns. The idea of using the edges and boundaries of pattern information to 

detect transformed patterns has also been successfully used and published in 

2012 by Alfehaid et al. in [178]. However, the proposed scheme in this chapter 

was first published and used as a method of detecting transformed patterns in 

2010 in [179]. The proposed scheme maintains limited communications and 

computations by involving local information exchange and reporting 

mechanisms that distribute resource consumption loads amongst the network’s 

nodes. Furthermore, the proposed network structure is designed to have the 

same network size as the GN network, which maintains the high scalability and 

the one-shot learning feature of GN. 
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The objectives of this chapter are as follows: 

1. To present and analyse existing transformation invariant pattern 

recognition schemes. 

2. To investigate how edge detection techniques are used in both image 

segmentation and WSNs. This also includes a discussion on the benefits 

that can be obtained from using edge detection techniques in WSNs for 

event detection.   

3. To propose a new pattern recognition scheme that is capable of 

detecting transformed and noisy patterns and addressing the resource 

constraints of WSNs. 

4. To perform an extensive evaluation and analysis of the complexity of 

the proposed scheme in terms of memory size, number of 

communications, and learning cycle time. Additionally, the proposed 

scheme will be compared with current pattern recognition schemes in 

these terms.  

5. To present simulation results of the proposed scheme in order to 

ascertain its strengths, especially when dealing with transformed and 

noisy patterns.    

The remainder of this chapter is organised as follows: Section 3.2 

contains an overview of existing transformation invariant pattern recognition 

schemes, and discusses the limitations of these schemes. Section 3.3 

investigates how edge detection techniques are used in both image 

segmentation and WSNs. A discussion of the benefits that can be obtained 
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from using edge detection techniques in WSNs for event detection will be 

presented at the end of this section. Section 3.4 presents a MOHA scheme 

structure for pattern recognition. In this section, there is a further description of 

the scheme and its associated components. Section 3.5 shows how the MOHA 

scheme receives incoming patterns. Section 3.6 presents the communicational 

requirements of the MOHA scheme and its network communication protocol. 

Section 3.7 provides an extensive review of the analyses that have been carried 

out on the MOHA algorithm. These analyses focus on both the complexity and 

scalability of the algorithm. The aim of these analyses is to validate the 

suitability of MOHA for use in WSN environments. A number of comparative 

analyses between MOHA and other existing pattern recognition algorithms are 

also conducted, and Section 3.8 presents a set of pattern recognition simulation 

studies that have been carried out using the MOHA algorithm for pattern 

detection and recognition. The section also presents the MOHA algorithm 

capabilities to handle transformed and noisy patterns. Section 3.9 provides an 

overall discussion of the MOHA scheme. 

3.2 Existing Transformation Invariant 

Recognition Approaches 

This section presents and analyses the most relevant research in the area of 

pattern transformation-invariant recognition. Le Cun et al. [180] proposes 

convolutional neural networks (ConvNets) that utilise multi-layer (deep 
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learning) neural networks to encode high-dimensional patterns into a one-

dimensional vector. This scheme allows feature selection by adopting local 

receptive fields, local weight-sharing, and down-sampling architectures [181-

184]. The local receptive fields allow for the detection of the visual features of 

a pattern, the down-sampling architecture reduces the dimensionality of the 

pattern, and the concept of weight-sharing allows for a level of shift and scale 

invariant detection [181]. ConvNets have mostly been utilised for visual 

pattern recognition such as facial and handwriting recognition applications 

[181-184]. Farabet et al. [185] propose a highly parallelised version of 

ConvNet on a Field Programmable Gate Array (FPGA) to support real-time 

applications [185, 186]. ConvNet takes advantage of the parallel nature of 

FPGA and achieved a greater speed in performance [185-187]. On the other 

hand, shock graphs [188] attempt to recognise visual objects by determining 

the object’s boundaries. This approach builds connected curves and points that 

describe certain patterns in a tree-like graph. Sebastian et al. [189] show that 

the use of shock patterns allows for 2-D object transformation-invariant 

recognition up to a certain level of transformation. The authors examined a set 

of pattern transformations such as articulation and deformation, illumination 

variations, and variations in the scale of objects. Alternatively, Map Seeking 

Circuits (MSC) [190] utilise the mathematical properties of pattern 

superpositions to perform template matching, which seeks a set of 

transformations of an input visual pattern for a set of stored templates. The 

purpose of the MSC approach is to reduce the growth in the computational 
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complexity of template matching by parallelising computations in the 

hardware. MSCs offer solutions for visual applications such as stereo vision, 

shape recognition, and other transformation-recognition problems that can be 

addressed using iterative processing and the decomposition of pattern 

transformations [191]. Moreover, Ahmed and Faouzi in [192] present a system 

for classifying images in order to classify people’s behaviours in the intelligent 

building by Scale Invariant Feature transform (SIFT) and SVM Lights. This 

system permits us to characterise the activity of people in a room. This 

information will be useful to the management system of the building which can 

then regulate the consumption of electrical energy in order to optimise 

(lighting, heating, etc...). SIFT is a good method for the parameterisation of 

images, robust to image rotation, scale, intensity change, and to moderate 

affine transformation [192, 193]. SIFT transforms an image into a large 

collection of local feature vectors, each of which is invariant to image 

translation, scaling, and rotation, and partially invariant to illumination changes 

and affine [194]. 

 Even with the transformation detection capabilities discussed above, 

these schemes involve computationally intensive (e.g. iterative) operations that 

are poorly suited to real-time sensory applications due to prolonged learning 

cycles, the requirement for large training datasets that are often not available, 

and dependence on specialised hardware (like FPGA). Additionally, based on a 

lattice algebra approach, morphological associative memories (MAM) [181, 

195] are capable of detecting pattern transformation in a single-step 
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convergence. MAM approaches utilise a morphological neural network 

structure that replaces multiplication and addition operations by addition and 

convergence maximisation. MAM approaches have been shown to be scalable 

in terms of pattern storage, and capable of detecting noisy patterns. However, 

the length of the MAM learning cycle cannot be fully estimated a priori, as it 

totally depends on the size and number of stored patterns [164]. Moreover, 

Iftekharuddin [196] proposes an online transformation scheme for automatic 

target recognition. This scheme resolves the issue of recognising rotation, 

translation, and scaling pattern translations in images by adopting adaptive 

circuit design, neural networks, and reinforcement learning. Even with the 

level of transformation recognition that this scheme is able to provide, it 

depends on conventional neural network structures such as feed-forward NNs. 

In this network structure, tightly coupled connectivity is needed between 

neuron nodes in each layer when FPGA is not used. Sensory information 

systems, such as WSNs, have limited communicational capabilities, which 

make it challenging to implement the tightly coupled connectivity structure 

[77]. 

 Additionally, Deng et al. [197] propose a transform-invariant PCA 

(TIPCA) technique intended to accurately characterise the intrinsic structures 

of the human face that are invariant to the in-plane transformations of the 

training images. The experimental results in [197] prove the significance of 

employing transform invariant basis (principal components in PCA) for face 

recognition tasks [197, 198]. However, the TIPCA framework cannot 
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guarantee the recognition rate as it is an unsupervised learning process [198]. 

Also, in order to obtain a good recognition rate, numerous iterations of TIPCA 

learning must be applied, which is not suitable for real-time and mission-

critical applications as no guarantees for time limits are available [197, 198]. 

Shen et al. [199] propose a Transformation Invariant Support Vector Machine 

(TISVM), which is able to infer critical transformations that can be applied to 

the existing samples to generate new training samples while simultaneously 

learning the large margin classifier. In [199], two experiments are conducted: 

one for the recognition of handwriting digits (numbers) and another one for 

face recognition. Both tests show that the TISVM outperforms the traditional 

SVM in terms of classification precision. However, in TISVM, the number of 

training samples increases rapidly as the scheme generates new training 

samples for every existing sample, which is not suitable for resource-

constrained environments like WSNs.                

Overall, the existing approaches can offer transformation-invariant 

detection capabilities for pattern recognition problems. However, these 

approaches have one or more significant limitations, especially if implemented 

in resource-constrained networks like WSNs. Iterative operations and tightly 

coupled connectivity structures are the main issues faced in these existing 

schemes as these requirements involve huge resource consumption, especially 

when implemented on large-scale networks. Some of these schemes need 

special centralised hardware settings in order to be functional. This 

requirement is not often feasible in resource-constrained systems and networks. 
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Furthermore, the reviewed schemes need a large database to store information 

about patterns in order to be able to provide transformation-invariant 

recognition capabilities. In WSN applications, the amount of information 

available about incoming patterns is often limited. Another main problem 

related to these approaches is the uncertainty in the learning cycle convergence 

period (the share time they take to be specified), which requires them to utilise 

special hardware like FPGA. This is due to the iterative operations and the 

duration of the learning cycle which depends on the amount of stored 

information. Such limitations affect the suitability of these approaches for 

implementation in real-time and mission-critical applications and high latency 

networks (like WSN) as no guarantees for time limits are available. Therefore, 

this chapter will present a lightweight pattern recognition scheme intended to 

address these limitations and provide transformation-invariant recognition 

capabilities. The proposed scheme minimises computations and 

communications by adopting an adjacency-based relationships mechanism in a 

single learning cycle. This will minimise resource consumption and increase 

the scheme’s scalability by avoiding iterative operations and limiting 

communications to adjacency sensor nodes. This also makes it possible to 

estimate the learning cycle duration. Moreover, the proposed scheme attempts 

to utilise minimal information to perform transformation recognition. By 

offering these features, the proposed scheme will be a lightweight, 

transformation-invariant, and scalable scheme that is suitable for real-time 

applications for resource-constrained systems and networks such as WSNs. 
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Alfehaid et al. [178] presented a scheme that adopts an adjacency-based 

relationships mechanism. They proposed a Cellular Weighted Pattern 

Recogniser (CWPR) for WSNs that provides for the storing and detecting of 

patterns with translation, dilation, or rotation. The input patterns are described 

in terms of their edges. This is achieved by computing the amount of variance 

between each pattern element’s value and its neighbours’ values. Once a 

pattern’s edges have been determined, each edge is described in terms of 

weights. This is done to minimise on the number of computations and 

communications steps required for storing and recognising patterns. The 

scheme proposed in [178] might provide a suitable solution in terms of 

reducing the number of computations and communication steps needed for 

pattern recognition; however, the way it determines edges and describes them 

as weights limits the scheme’s ability to offer high levels of recognition 

accuracies when dealing with pattern transformation. In [200], the simulation 

results indicate that CWPR was very good in detecting translated patterns at 

any level; however, it is capable of dealing with dilation levels only up to 26% 

and recognising rotated or even flipped rotated patterns up to 23 degrees in any 

direction. The scheme proposed in this chapter will utilise a mechanism for 

determining edges of an event based on a well-known edge detection 

technique. This is a more accurate means of determining edges, thereby 

producing better recognition accuracy. 

Before presenting the structure of our proposed scheme for event 

detection and pattern recognition, the next section will present an investigation 
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of edge detection techniques that are used in both image processing and WSNs. 

The outcome of this investigation will give us a better understanding of the 

feasibility of using edge detection methods in a recognition scheme for 

detecting events, and transformed and noisy patterns.       

3.3 Edge Detection 

This section will investigate how edge detection techniques are utilised in both 

image processing and WSNs. This will be followed by a sub-section that 

discusses the benefits of utilising edge detection techniques in WSNs. 

3.3.1 Edge detection in image processing 

The detection of object boundaries is an important part of the perception 

process [201, 202]. There is much psychological evidence, such as in our 

ability to understand and distinguish different objects in cartoons, that 

boundaries are sufficient for the perception of a broad class of objects [201, 

202]. In this section, the most commonly used techniques for detecting 

boundaries by aggregating evidence from local discontinuities, are described. 

The edge-detection techniques attempt to find local discontinuities in 

some image attribute, such as intensity or colour [203-207]. These 

discontinuities are of interest because they are likely to occur at the boundaries 

of objects. However, local edges may also occur due to variations in the 

surface characteristics of an object, changes in illumination and shadows, and 

so on [203-207]. An important process of perception is the organisation of the 
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local edges into aggregates that lead to a scene segmentation [208-211]. Thus, 

the process of edge detection may be viewed as one stage of extracting 

descriptions from the image data. 

Nevatia [202] defines an edge as a point in the image if some image 

attribute changes in value discontinuously at that point. Suman and Pawan 

[212] define an edge as a part of an image that contains significant variation. 

The edges provide important visual information since they correspond to major 

physical, photometrical or geometrical variations in a scene object [212].  

  Here we will discuss intensity edges, as edges in other attributes can 

be defined similarly [202, 204, 206, 207, 212]. An ideal edge, in one 

dimension, may be viewed as a step change in intensity. In real signals, the step 

change is likely to be mixed with "noise" caused by sensor, surface, or 

illumination variations, as shown schematically in Figure 3.1. In two 

dimensions, the ideal step occurs along a line of certain length, the intensity 

values on the two sides of the line being different.  

 

 

Figure 3.1: A one-dimensional edge [202]. 
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Figure 3.2: Examples of: (a) Step edge, (b) Step edge with noise, (c) First-

order derivative, and (d) Second-order derivative [206, 207]. 

 

Moreover, the most common edge types are steps, lines and junctions 

[202, 204, 206, 207, 212]. The step edges are mainly produced by a physical 

edge, an object hiding another, or a shadow on a surface. It generally occurs 

between two regions having almost constant, but different, grey levels. The 

step edges are the points at which the grey level discontinuity occurs, and 

localised at the inflection points. They can be detected by using the gradient of 

intensity function of the image. Step edges are localised as positive maxima or 

negative minima of the first-order derivative or as zero-crossings of the 

second-order derivative (Figure 3.2). It is more realistic to consider a step edge 

as a combination of several inflection points. The most commonly used edge 

model is the double step edge [206]. There are two types of double edges: the 

pulse and the staircase (Figure 3.3). 

 

 
Figure 3.3: Examples of: (a) Pulse and (b) Staircase step edges [206, 207]. 
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Figure 3.4: Examples of: (a) Line and (b) Junction edges [206, 207]. 

The line edges are often created by either a mutual illumination 

between two objects that are in contact or a thin object placed over a 

background [202, 204, 206, 207, 212]. Line edges correspond to local extremes 

in the intensity function. Lines correspond to local extrema of the image. They 

are localised as zero-crossings of the first derivative, or local maxima of the 

Laplacian, or local maxima of the grey level variance of the smoothed image. 

This type of edge is successfully used in remote sensing images for instance to 

detect roads and rivers [206, 213]. Finally, the junction edge is formed where 

two or more edges meet [202, 204, 206, 207, 212]. A physical corner is formed 

at the junction of at least two physical edges. Illumination effects or occlusion, 

in which an edge occludes another, can produce a junction edge. Figure 3.4 

depicts profiles of line and junction edges. The junction can be localised in 

various ways: e.g., a point with high curvature, or a point with great variation 

in gradient direction, or a zero-crossing of the Laplacian with high curvature or 

near an elliptic extremum. Though, some studies encompass the all types of 
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edges, but the majority of the reviewed literature is adapted to step edges, 

which are the most common [206, 207]. 

The edges extracted from a 2D image of a 3D scene can be classified as 

either viewpoint dependent or viewpoint independent [202, 206, 214]. A 

viewpoint independent edge typically reflects inherent properties of the 3D 

objects, such as surface markings and surface shape. A viewpoint dependent 

edge may change as the viewpoint changes, and typically reflects the geometry 

of the scene, such as objects occluding one another. Detection of ideal step 

edges, without noise, would be simple [202, 204, 206, 207, 212]. In real 

images, with noise and surface imperfections, a compromise must be achieved 

between maximising the detection of the desired edges and minimising the 

detection of the undesired noise edges. (Some of the "undesired" edges are due 

to legitimate surface variations, such as texture, and the local edge detection 

process is not intended to discriminate against them). 

In general, the edge detection methods incorporate three operations 

[206, 215]: image smoothing, detection, and edge localisation. Image 

smoothing reduces noise and regularises the numerical differentiation. The 

detection step involves extracting all edge points that are possible candidates to 

become edge points. Finally, the edge localisation step involves selecting from 

the candidate edge points only the points that are true members of a set of 

points comprising an edge. 

Edge detection techniques have been classified from different 

perspectives [206, 207]. From the technical perspective, the edge detection 
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methods can be grouped into two categories: search-based and zero-crossing 

based. The search-based methods detect the edges by first computing a 

measure of ‘edge strength’, such as magnitude of gradient of the image 

intensity function, and then searching for local maxima in a direction that 

matches with the ‘edge profile’, such as the gradient direction. The first-order 

derivative is regularly used to express the gradient. The zero-crossing methods 

search for zero crossings in a second-order derivative expression computed 

from the image in order to find edges, such as the Laplacian or a non-linear 

differential expression. In the perceptual perspective, the edge detection 

methods are categorized into contextual and non-contextual approaches. The 

non-contextual methods work autonomously without any prior knowledge 

about the scene and the edges. They are flexible in the sense that they are not 

limited to specific images. However, they are based on local processing 

focused on the area of neighbouring pixels. The contextual methods are guided 

by a priori knowledge about the edges or the scene. They perform accurately 

only in a precise context. It is clear that autonomous detectors are appropriate 

for general-purpose applications. However, contextual detectors are adapted to 

specific applications that always include images with same scenes or objects. 

In this section, we will discuss the main edge detection techniques in 

the literature. These techniques are classified as Gradient-based and Gaussian-

based methods. Figure 3.5 summarises these existing methods. 
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Figure 3.5: Classification of existing edge detection methods [204, 206, 211]. 

 

3.3.1.1 Gradient-based techniques 

Gradient-based techniques employ small convolution masks to approximate 

either the first derivative or the second derivative of an image [204, 211, 215, 

216]. They focus on the “edge enhancement” part of edge detection, with none 

or very little “smoothing”. A threshold is then applied to the output of these 

filters to identify the edge points. These filters, although easy to implement and 

generally with the advantage of speed over later edge detectors, provide very 

little control over smoothing and edge localisation, by means of which noise is 

reduced. Therefore, these filters are very noise-sensitive [204, 211, 215, 216]. 

 The Sobel operator [204, 211, 215, 217] performs a 2-D spatial gradient 

measurement on an image. It uses a pair of 3×3 convolution masks, one 

estimating the gradient in the x-direction (columns) and the other estimating 

the gradient in the y-direction (rows). A convolution mask is usually much 

smaller than the actual image. As a result, the mask is slid over the image, 
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manipulating a square of pixels at a time. The Sobel masks are shown below 

(Figure 3.6): 

 

 
Figure 3.6: Masks used by the Sobel operator. 

 These kernels are designed to respond maximally to edges running 

vertically and horizontally relative to the pixel grid, one kernel for each of the 

two perpendicular orientations. The kernels can be applied separately to the 

input image in order to produce separate measurements of the gradient 

component in each orientation (call these 𝐺𝑥 and 𝐺𝑦). These can then be 

combined to find the absolute magnitude of the gradient at each point and the 

orientation of that gradient. The gradient magnitude is given by: 

|𝐺| = √𝐺𝑥2 + 𝐺𝑦2                                                   (3.1) 

 Typically, an approximate magnitude is computed using: 

|𝐺| = |𝐺𝑥| + |𝐺𝑦|                                                    (3.2) 

 which is much faster to compute. The angle of orientation of the edge 

(relative to the pixel grid) giving rise to the spatial gradient is given by: 

𝜃 = arctan (
𝐺𝑦

𝐺𝑥
)                                                   (3.3) 
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  The Sobel operator is computationally cheap but it has the disadvantage 

of poor edge detection in the presence of noise. The operator highlights the 

noisy areas as edges, especially when the points are as large as a pixel. 

 The Prewitt filter [204, 211, 215] is very similar to the Sobel filter. The 

3x3 total convolution masks is used to detect gradient in the X, Y directions, as 

shown in Figure 3.7. The Prewitt filter is a fast method for edge detection. The 

difference with respect to the Sobel filter is the spectral response. It is suitable 

only for well-contrasted noiseless images. 

 

 
Figure 3.7: Masks used by the Prewitt operator. 

 The Robert operator [204, 211, 215, 216] is similar to Sobel and Prewitt 

and performs two-dimensional gradient measurements on an image. Therefore, 

it highlights the regions which are related to high spatial frequency of edges. 

The operator contains a pair of 2×2 convolution masks. These masks are 

prepared so that they give maximal response to edges which are at 45 degrees 

extending to the grid of the pixel. The common mask is given by 𝐺𝑥 and 𝐺𝑦, as 

shown in Figure 3.8. 
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Figure 3.8: Masks used by the Robert operator. 

The kernels can be applied separately to the input image to produce 

separate measurements of the gradient component in each orientation (𝐺𝑥 and 

𝐺𝑦). The gradient magnitude is given as: 

|𝐺| = √𝐺𝑥2 + 𝐺𝑦2                                                      (3.4) 

 Typically, an approximate magnitude is computed using: 

|𝐺| = |𝐺𝑥| + |𝐺𝑦|                                                       (3.5) 

 This is much faster to compute. The angle of orientation of the edge 

giving rise to the spatial gradient is given by: 

𝜃 = arctan (
𝐺𝑦

𝐺𝑥
) −

3𝜋

4
                                                (3.6) 

The advantages of gradient-based methods are that they are relatively 

simple, quick, and easy to compute. However, they have the following 

disadvantages [204, 208, 211, 218]: 

 Directional. 

 Sensitive to noise, because many small local maxima will be 

generated by noise. 

 Find only step-like edges. 
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 Corners are often missed due to the smallness of the1D gradient 

at the corners. 

 The response to a step edge is across several pixels, so post-

processing is needed for "edge thinning". 

 The selection of an appropriate threshold is critical and always 

difficult. 

3.3.1.2 Gaussian-based techniques 

Gaussian filters are the most widely-used filters in image processing and are 

extremely useful as detectors for edge detection. It is proven that they play a 

significant role in biological vision, particularly in a human vision system [206, 

211]. Gaussian-based edge detectors are developed based on several 

physiological observations and important properties of the Gaussian function 

that enable edge analysis to be performed in the scale space [206, 211]. 

 Marr and Hildreth [219] were the pioneers who proposed an edge 

detector based on the Gaussian filter. Their method had been a very popular 

one, before Canny released his detector [206, 211]. They originally pointed out 

the fact that the variation of image intensity (i.e. edge) occurs at different 

levels. This implied the need to smooth filters with different scales, since a 

single filter cannot be optimal for all possible levels. They suggested the 2D 

Gaussian function, defined in the following, as the smoothing operator. 

𝐺𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2
exp(−

𝑥2 + 𝑦2

2𝜎2
)                                   (3.7) 
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where 𝜎 is the standard deviation, and (𝑥, 𝑦) are the Cartesian coordinates of 

the image pixels. They showed that by applying Gaussian filters of different 

scales (i.e. 𝜎) to an image, a set of images with different levels of smoothing 

will be obtained. 

�̂�(𝑥, 𝑦, 𝜎) = 𝐺𝜎(𝑥, 𝑦) ∗ 𝑔(𝑥, 𝑦)                                     (3.8) 

 Then, to detect the edges in these images, they proposed to find the 

zero-crossings of their second derivatives. Marr and Hildreth achieved this by 

using the Laplacian of Gaussian (LOG) function as a filter. Since Laplacian is a 

scalar estimation of the second derivative, LOG is an orientation-independent 

filter (i.e. no information about the orientation) that breaks down at corners, 

curves, and at locations where image intensity function varies in a non-linear 

manner along an edge. As a result, it cannot detect edges at such positions. 

According to [219], the smoothing and differentiation operations can be 

implemented by a single operator consisting of the convolution of the image 

with the Laplacian of the Gaussian function. The final form of the filters, 

known as LOG with scale 𝜎, which should be convolved with the image is as 

follows: 

𝑓𝜎(𝑥, 𝑦) = ∇2𝐺𝜎 = −
1

𝜋𝜎4
(1 −

𝑥2 + 𝑦2

2𝜎2
) 𝑒𝑥𝑝 (−

𝑥2 + 𝑦2

2𝜎2
)          (3.9) 

 There are advantages of the Gaussian filter that make it unique and very 

important in edge detection. The first concerns its output. It is proven that 

when an image is smoothed by a Gaussian filter, the existing zero-crossings 

(i.e. detected edges) disappear as they move from fine-to-coarse scale, but new 
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ones are never created [206, 211, 220]. This unique property makes it possible 

to track zero-crossings (i.e. edges) over a range of scales, and allows them to 

be recovered at sufficiently small scales. 

 In spite of the unique features of the Gaussian function, the filter 

proposed by Marr and Hildreth had some deficiencies associated with the zero-

crossing approach which is reliable only for the location of edges if they are 

well separated and the signal-to-noise ratio (SNR) in the image is high. It is 

shown that for ideal step and ramp edges, the location of the zero-crossing is 

exactly at the location of the edge. However, the location shifts from the true 

edge location for the finite-width staircase steps. This shift is a function of the 

standard deviation of the Gaussian. The other problem is the detection of false 

edges. The reason is that zero-crossings correspond to local maxima and 

minima in the first derivative of an image function, whereas only local maxima 

indicate the presence of real edges. LOG filtered images also suffer from the 

problem of missing edges (i.e. edges in the original image may not have 

corresponding edges in a filtered image). 

 Canny [221, 222] proposed a method that was widely considered to be 

the standard edge detection algorithm in the industry. In regard to 

regularisation explained in image smoothing, Canny saw the edge detection as 

an optimisation problem [206, 211, 223]. He considered three desirable criteria 

for any edge detector: good detection, good localisation, and only one response 

to a single edge. Then he developed the optimal filter by maximising the 

product of two expressions corresponding to two former criteria (i.e. good 
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detection and localisation) while keeping the expression corresponding to 

uniqueness of the response constant and equal to a pre-defined value. The 

solution (i.e. optimal filter) was a rather complex exponential function, which 

by variations it could be well approximated by the first derivative of the 

Gaussian function. This implies the Gaussian function as the smoothing 

operator followed by the first derivative operator. Canny showed that for a 1D 

step edge, the derived optimal filter can be approximated by the first derivative 

of a Gaussian function with variance 𝜎 as follow: 

𝑓𝜎(𝑥) =
𝑑𝐺𝜎(𝑥)

𝑑𝑥
= −𝑘

𝑥

𝜎2
exp(−

𝑥2

𝜎2
)                         (3.10) 

 In 2D, Canny assumed that the image was affected by white noise, and 

proposed the use of two filters representing derivatives along the horizontal 

and vertical directions. In other words, the edge detection is performed by 

calculating the derivative along two directions of the image filtered by 

Gaussian function. The separability feature of the 2D Gaussian function allows 

us to decompose it into two 1D filters. 

𝑓𝜎(𝑥, 𝑦) = [𝑓𝜎(𝑥) × 𝐺𝜎(𝑦)     𝐺𝜎(𝑥) × 𝑓𝜎(𝑦)]                   (3.11) 

where 𝐺𝜎(. ) and 𝑓𝜎(. ) denotes the 1D Gaussian function and its derivative, 

respectively, and 𝑓𝜎(. , . )  denotes 2D optimal filter. The filter [224] shows that 

the filtering can be applied first to columns (rows) and then to rows (columns), 

reducing the computational burden. The optimal filter has rather an orientation 

perpendicular to the direction of the detected edge. The method proposed by 

Canny can be used for developing filters dedicated to a specific and arbitrary 
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edge profile. For step edges, Canny‘s optimal filter is similar to the LOG 

operator because the maxima in the output of a first derivative operator 

correspond to the zero-crossings in the Laplacian operator used by Marr and 

Hildreth. 

 Canny also proposed a scheme for combining the outputs from different 

scales. His strategy is fine-to-coarse and the method is called ‘feature 

synthesis’. It starts by marking all the edges detected by the smallest operators. 

It then takes the edges marked by the small operator in a specific direction and 

convolves them with a Gaussian normal to the edge direction of this operator 

so as to synthesise the large operator outputs. It then compares the actual 

operator outputs to the synthesised outputs. Additional edges are marked if the 

large operator detects a significantly greater number of edges than what is 

predicted by the synthesis. This process is then repeated to mark the edges 

from the second smallest scale that were not marked by the first, and then to 

mark the edges from the third scale that were not marked by either of the first 

two, and so on. In this way, it is possible to include edges that occur at 

different scales even if they do not spatially coincide [206, 211, 223]. 

 Canny’s edge detector looks for local maxima over the first derivative 

of the filtered image. It uses adaptive thresholding with hysteresis to eliminate 

streaking of edge contours. Two thresholds are involved, with the lower 

threshold being used for edge elements belonging to edge segments already 

having points above the higher threshold. The thresholds are set according to 



 

125 

 

the amount of noise in the image, which is determined by a noise estimation 

procedure. 

 The problem with Canny’s edge detection is that his algorithm marks a 

point as an edge if its amplitude is larger than that of its neighbours without 

checking that the differences between this point and its neighbours are higher 

than what is expected for random noise. His technique causes the algorithm to 

be slightly more sensitive to weak edges, but it also makes it more susceptible 

to spurious and unstable boundaries wherever there is an insignificant change 

in intensity (e.g., on smoothly shaded objects and on blurred boundaries) [206, 

211, 223]. Table 3.1 summarises the advantages and disadvantages of 

Gaussian-based techniques. 

Table 3.1:  Advantages and disadvantages of Gaussian-based methods [204, 

208, 225]. 

Gaussian Based 

Techniques 
Advantages Disadvantages 

(1) Laplacian of 

Gaussian 

1) Due to the approximation of 

gradient magnitude, the cross 

operation detection of edges and 

their orientation is simple. 

1) The edge magnitude degrades 

as noise increases due to 

detection of edges and their 

orientation. 

2) The characteristics are fixed in 

all directions. 

2) At the corners and curves, 

malfunctioning are varies. 

(2) Canny edge 

detection 

1) Signal-to-noise ratio is 

improved. 

1) Complex and time consuming 

computation. 

2) Better detection in noise 

condition. 
2) False zero-crossing 
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 In this sub-section, we have been investigated how edge detection 

techniques are utilised in image processing, which deal with high density pixel 

size images. In the next sub-section, we will study edge detection techniques in 

WSNs. One main challenge in applying these techniques in WSNs is the fact 

that sensor nodes might not be regularly placed and not placed with sufficient 

density. In particular, these techniques perform very well at high densities 

when each pixel contains a sensor node. A second challenge has to do with the 

notion of neighbourhood. In classical edge detection techniques, the 

neighbours of each pixel are the eight adjoining pixels; in the case of sensor 

nodes, the notion of neighbourhood is determined by the radio transmission 

power: each node can communicate locally with other nodes that lie within its 

effective radio range. 

 The inclusion of edge detection and determination capabilities from the 

image segmentation and processing field in the WSNs field will provide us 

with a mechanism for determining sensor nodes located at the edges of an 

event. This capability can reduce the communication and energy costs of event 

detection and extend the lifetime of the network by utilising only those sensors 

located at edges in the recognition procedure. 

3.3.2 Edge detection in WSNs 

The idea of edge detection has been utilised in different area of WSNs. In this 

section, we will investigate the utilising of edges in two different domains of 
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WSNs, namely, geometrically-representing sensed phenomena in WSN and 

visual sensor networks. 

3.3.2.1 Geometrically representing sensed phenomena in WSN 

The idea of reducing the overhead associated with data analysis via the 

geometric identification of sensed phenomena (event) within a WSN is broadly 

referenced in the literature as edge detection [226, 227]. A main advantage of 

identifying geometric representations of a sensed phenomenon is that it 

provides a more concise view than does the enumeration of all sensor nodes 

identifying a phenomenon or event, especially if the phenomenon is large 

[228]. A more concise view of sensed data can reduce the communication and 

energy costs of data analysis and extend the lifetime of the network. By 

geometrically identifying sensed phenomena, this also provides additional 

benefits such as the ability to map sensed phenomena onto known geographical 

features in the deployed region based on geometric shape and to coordinate 

sleep/wakeup cycles of sensor nodes contained within a sensed phenomena’s 

identified perimeter [226]. 

 Chintalapudi and Govindan [228] proposed three different approaches 

to identify the nodes within the edge of a sensed phenomenon inside a WSN, 

namely the statistical-based, the filter-based, and the classifier-based 

approaches. The authors define an edge as a region that intersects both the 

interior and exterior areas of an observed phenomenon. The authors 

demonstrate the techniques on networks with a single large-scale continuous 
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phenomenon. Nowak and Mitra [229] discuss a technique for detecting an 

estimated boundary between two regions of relatively homogeneous sensed 

data. The technique takes advantage of hierarchical quad-trees (QTs) in order 

to identify small clusters that estimate the regions in which the boundary 

between two sets of sensors with differing sensor readings passes. This 

technique builds upon Chintalapudi and Govindan’s results by considering the 

existence of multiple large-scale phenomena. Liao et al. [230] have proposed a 

technique, similar to that of the Chintalapudi and Govindan approaches, that 

not only identifies the nodes on the edge of a phenomenon, but also the nodes 

outside the phenomenon that border its edge. 

 Even with the edge detection of phenomena capabilities discussed 

above, these schemes involve computationally intensive (e.g. iterative) 

operations that are inappropriate for real-time sensory applications due to 

prolonged or inestimable learning cycles [230, 231].  

 Banerjee et al. [231] proposed a polynomial-based event region 

detection (PERD) scheme so that the occurrences of event and detection of the 

event boundary over the entire network could be efficiently recognised. In 

many applications in which the sensor readings admit a normal distribution 

within a bounded range, event recognition can be implemented by using a 

threshold-based scheme, which has a light computational overhead, rather than 

using fairly complicated schedules [116, 232]. PERD constructs a well-spread 

binary (each tree node having two children) query-tree (QT) covering the entire 

sensed region which produces faster dissemination of the information about the 
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event boundary and its span of area, from any sensor to the sink. PERD can 

detect a single event or multiple events simultaneously. Detection of multiple 

events by extended PERD does not degrade the performance, making PERD 

scalable. For a single event scenario, direct PERD can be employed as the final 

polynomial corresponding to the event at the root can give all the data values in 

that event region. For a multiple event scenario, extended PERD does not give 

the polynomial corresponding to an event, thereby incurring a 6% increase in 

event area approximation error. However, this minute increase in percentage 

error is negligible compared to more than 33% savings in the communication 

overhead obtained with extended PERD. Similar to Nowak and Mitra approach 

in [229], PERD requires iterative operations for the detection of events and 

their boundaries which involve huge resource consumption, especially when 

implemented on large-scale networks [231]. 

 Mallery and Medid [226] presented a distributed edge detection 

technique that identifies connected perimeters for sensed phenomena within 

WSN, without any unit disk communication graph assumptions. However, they 

assume that every sensor node knows its own position. Their approach is able 

to identify connected perimeters of convex shaped phenomena, irregularly 

shaped phenomena and phenomena that contain connectivity holes. The basis 

for their technique is for cooperating groups of location-aware nodes to 

identify their own outer perimeters using only connectivity information. 

Groups are comprised of connected nodes with similar sensed data values. 

Initially, each group that has not identified its own perimeter (i.e. a group 
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constructed from nodes not yet bound by any identified perimeter, or captured) 

cooperatively identifies the group’s convex hull in order to determine the nodes 

that must exist on the perimeter of the group. The well-known properties of 

convex hulls provide an intuitive correctness to their technique. The convex 

hull nodes then connect themselves together, using the paths within the original 

group of nodes. Since the process of connecting the identified convex hull 

nodes can leave some nodes uncaptured, the process is repeated on subgroups 

of uncaptured nodes until all nodes are captured by a perimeter. Once all nodes 

are captured, the perimeters are merged together to form a single connected 

perimeter for each group of nodes, one per sensed phenomena. Clearly, if 

sensed values are ignored, their technique is capable of identifying the outer 

boundary of an entire network. However, the proposed technique in [226] 

involves iterative operations and high communication costs in order to perform 

groups that are comprised of connected sensor nodes with similar sensed data 

values, which are not suitable for resource-constrained systems networks such 

as WSNs.    

3.3.2.2 Visual sensor networks 

Networks of visual sensors have recently emerged as a new type of sensor-

based intelligent system, with performance and complexity challenges that go 

far beyond those of existing wireless sensor networks (WSN) [233]. For many 

years now, networks of cameras have been used for surveillance and security 

[233-235]. These networked cameras, unable to process any data locally, 
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would send their individual streams to a centralised location and rely upon 

human vision and cognition to detect events and anomalies. Advances in 

computational technologies have allowed for much improvement in the 

hardware of these systems, such as better picture quality and motorisation 

capabilities [233]. Also, availability of low-cost CMOS cameras has created 

the opportunity to build low-cost Visual Sensor Network (VSN) platforms able 

to capture, process, and disseminate visual data collectively [233, 236]. 

However, only in the last few years have there been attempts to integrate the 

latest research developments in human and computer vision into current sensor 

technologies. The ultimate goal of VSN designers is to enable the cameras 

(nodes) to perform more advanced vision tasks locally, in a fully-automated 

way [233, 234]. When combined, these cameras would constitute an intelligent 

visual system capable of detecting not only objects within their range, but also 

the events created by these objects [233, 234]. 

 A VSN consists of a group of nodes, each equipped with a low power, 

embedded processor, energy source, image sensor, and some type of 

transceiver for communication. These nodes must also be capable of 

communication with the network base station or sink where the data is 

collected and further processed for end-user consumption. The ability of these 

nodes to communicate with each other creates the possibility for event and 

anomaly detection over a group of nodes known as a cluster [233-235]. 

 VSNs follow the three basic tenets of WSNs [233-235]: distributed 

sensing, low power hardware, and wireless networking. However, VSN nodes 
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differ from typical WSN nodes in that they have the ability to perceive the 

environment in three dimensions rather than in one [233, 234]. Most of the 

sensing components on board of a WSN node can observe only single-

dimension events. The image sensors on a VSN node contain photosensitive 

cells that provide two-dimensional data points, the typical flat picture humans 

observe on a display. The use of multiple nodes with varying perspectives, and 

knowledge of their positions, provides the third dimension, depth [233]. 

 Vision is the most important functionality provided by VSNs [233-

235]. Efficient and effective utilisation of visual data depends on the intelligent 

use of vision computing techniques, along with image compression and video 

coding [233, 234]. Because of energy efficiency considerations, VSN platforms 

are designed with limited hardware capabilities; hence, vision-computing in 

VSN platforms is highly constrained and very challenging. In the next 

paragraph, we provide an overview of coding and compression algorithms 

together with in-network processing techniques in the context of VSN 

platforms and applications. 

 Transform coding also known as intra-coding (e.g., Discrete Cosine 

Transform-DCT and Wavelet Transforms-DWT) is a method used for lossy 

compression of still images and video [233, 234]. Intra-coding typically 

achieves poor compression for video since it does not exploit temporal 

correlation although it is very robust [233, 234, 236]. For video compression, 

transform coding is combined with motion-compensated prediction (inter-

coding). One of the most commonly used techniques is the block-based 
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predictive motion compensation technique [233, 234, 236]. Inter-coding 

achieves high compression at the cost of high complexity. This means that one 

or more frames should be stored at the encoder and the decoder. Furthermore, 

predictive motion compensation [237] suffers from sensitivity to 

synchronisation between coder and decoder. Error-prone wireless channels 

often cause packet losses, thereby affecting the integrity of data and producing 

prediction mismatches. Thus, the use of predictive motion-compensated coding 

techniques requires powerful computation and ample storage capabilities, 

which are not well suited to VSN platforms [234]. A full-search block motion 

estimation algorithm incurs around 65,000 operations per pixel per second for a 

30 fps (frames per second) video as reported in [237]. To illustrate the 

communication and computation energy dissipation terms, we use the example 

presented in [238]: processing with QCIF (176×144) resolution and 8-bit/pixel 

coding would cost the energy equivalent of transmission of approximately 

4,400 Kb and processing with CIF (352×288) resolution and 8-bit/pixel coding 

would cost the energy equivalent of transmission of approximately 17,600 Kb. 

 Colour provides multiple measurements at a single pixel of the image 

[234, 236]. The 24-bit RGB encoding uses 3 bytes for each basic colour (red-

green-blue) enabling (28)3 colors. Other schemes use 15-bit RGB (5 bits for 

each color component) or 16-bit RGB with emphasised green sensitivity. 

YCbCr encoding, typically used in JPEG and MPEG coders, allows a better 

representation for image storage and transmission [233, 234]. The amount of 

data to be sent becomes larger as the color-coding technique becomes richer. 
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For example, a sensor using CIF (352×288) resolution with 512 KB FLASH 

memory can store 41.37 1-bit (black and white) frames, 5.17 8-bit colour 

frames or 2.58 16-bit colour frames. There is, thus, a clear trade-off between 

sensor capabilities (i.e., buffering, computation, and energy) and resolution, 

coding, compression, and video frame rate [233, 234, 236] (see Figure 3.9). 

 

 

 

Figure 3.9: Computation trade-offs between sensor capabilities (i.e., buffering, 

computation, and energy) and resolution, coding, compression, and video 

frame rate in VSNs [234]. 

 

Data processing in VSN is more computationally intensive than scalar 

sensors [233, 234, 236]. That makes energy dissipation for video 

coding/compression an important feature to be analysed and researched. In 

scalar sensors, there is a clear objective in analysing the connectivity energy 

consumption (transmission and reception) of individual sensors and global 

network lifetime in terms of protocol energy performance [233, 234]. 

Nevertheless, visual sensors consume more data processing energy than do 
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scalar sensors and, therefore, there is a need to optimise energy consumption 

for data processing in individual visual sensors [233, 234]. Hence, an analytical 

model [239] is introduced to characterise the relationship between encoding 

power consumption and its quality performance. The objective is to extend the 

traditional Rate-Distortion analysis to include energy constraints. Rate-

Distortion and Time-Distortion trade-offs also are evaluated in CITRIC [240], 

where it is shown that CS Time-Distortion tends to become zero while JPEG 

needs a residual computation time of 70 ms per image for the lowest distortion 

performance. The application of power consumption and rate distortion 

analysis to video sensors is a promising research avenue since most of the 

current studies related to video coders in VSNs use intra- and inter-frame 

compression techniques [233, 234]. The next paragraph is dedicated to in-

network vision computing mechanisms. 

Techniques intended to manipulate image content thereby allowing the 

transmission of a reduced amount of information, are generally termed in-

network processing techniques within the VSN domain [233, 234, 236]. Most 

of these techniques come from the vision-computing field. Vision-computing 

can reduce the amount of data to be sent to the sink [233-235]. Well-known 

visual computing techniques, such as object recognition or object tracking 

[241], can reduce the amount of raw data to be transmitted. Object/event 

detection can be done by using the identified features of the object. Object 

tracking can be done by means of localisation algorithms (e.g., active contour-

based, feature-based, and model-based). 
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Vision-computing techniques implemented in VSN platforms are 

summarised in Table 3.2 [233-235]. It is important to mention that most of 

these techniques require powerful processors and large memory resources if 

they are not customised for implementation in VSN platforms [233, 234]. 

Vision-computing techniques optimised for VSN platforms are implemented, 

tested and reported for most of the VSN platforms. Here, similar to what we 

have done for compression and coding, a general overview of vision computing 

in VSN platforms is provided [233-235]. 

Most of the platforms utilise background subtraction, frame 

differencing, and edge detection as the main in-network processing techniques 

[233-235]. Background subtraction consists of extracting the object of interest 

from the image and removing the background. It must be robust against 

changes in illumination and should avoid detecting non-stationary background 

objects (moving leaves, rain, snow, etc.) [233, 234]. Moving average filters 

smooth backgrounds with illumination changes or moving objects. Frame 

differencing detects changes between two consecutive frames. Differencing the 

current frame with a background frame averaged over past frames adds 

robustness against illumination changes [234]. For example, Meerkats, 

Cyclops, MeshEye, MicrelEye, and CITRIC perform background subtraction 

and frame differencing as object detection mechanisms [233-235]. MicrelEye 

[242] takes a fixed background frame at the beginning and then performs pixel-

by-pixel differencing between each frame and the background frame. Cyclops 

[243] uses moving average filters to smooth background changes. Firefly 
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Mosaic [244] uses a Gaussian Mixture Model (GMM) to separate foreground 

from background. GMM is able to detect objects even when the object is 

stationary. 

Table 3.2:  Compression/Coding techniques, In-network processing techniques, 

and Applications of VSN platforms [233, 234]. 

Platform 
Compression/ 

Coding techniques 

In-network processing (vision 

computing) techniques 

Targeted 

applications 

Cyclops 

[243] 
JPEG compression 

Matrix operation libraries 

Edge detection (Sobel algorithm) 

Background subtraction (Object 

detection) 

Coordinate conversion 

Object detection 

Hand posture 

recognition 

MeshEye 

[245] 
- 

Background subtraction (Object 

detection) 

Stereo matching algorithm (Object 

location) 

Object acquisition and extraction 

Distributed intelligent 

surveillance 

Panoptes 

[246] 

JPEG compression 

Differential JPEG 

compression 

Motion detection filtering 

algorithm 
Video surveillance 

Meerkats 

[247] 
JPEG compression 

Object/event detection based on 

background subtraction or frame 

differencing 

Moving body tracking 

FireFly 

Mosaic 

[244] 

JPEG compression 

Frame differencing, Color tracking, 

Convolution, Edge detection 

Connected component analysis, 

Face detection, etc. 

Assisted living 

application 

Home activity 

clustering 

MicrelEye 

[242] 
- 

Background subtraction 

Feature extraction 

Classification algorithms 

Image classification 

People detection 

XYZ-

ALOHA 

[248] 

Address event 

representation 

Histogram reconstruction 

Motion, Edge and Centroid 

detection 

Pattern recognition 

(hand recognition, 

hand gesture 

recognition) 

CITRIC 

[240] 

Compressive sensing 

JPEG compression 

Background subtraction 

Frame differencing 

Object acquisition and extraction 

Markov chain Monte Carlo data 

association 

Single target tracking 

Camera localization 

using multi-target 

tracking 

Vision Mote 

[249] 
JPEG compression - 

Water conservation 

engineering 
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Edges could be considered as boundaries between dissimilar regions in 

an image. The computation of edges is fairly cheap and recognition of an 

object is easy since it provides strong visual clues; however, edge detection can 

be affected by the noise in an image [233, 234]. Although there are several 

different means of performing edge detection, generally they can be 

categorised into two classes [233, 234]: (a) gradient-based (e.g., Sobel 

algorithm) and (b) Laplacian-based. While the first one detects the edges by 

looking for the maximum and minimum in the first derivative of the image, the 

second one searches for zero crossings in the second derivative of the image in 

order to find edges. Cyclops supports Sobel libraries to perform edge detection 

[243]. Delay incurred by edge detection as a function of image size is 

investigated for XYZ platform [248]. For example, 8-bit Sobel edge detection 

lasts respectively 3,560 ms, 248 ms, 65 ms and 15 ms for 320×240, 256×64, 

64×64 and 32×32 resolutions. However, the use of an FPGA block can 

decrease delay at reasonable energy costs [234, 248]. 

The results reported on energy dissipation and efficiency of the vision 

algorithms suggest that vision-computing is an essential component of the VSN 

paradigm [233-235]. It is shown in [247] that processing energy dissipation is 

no longer negligible and is comparable to (even higher than) the energy 

dissipation for networking. Meerkats [247] performs object detection based on 

background subtraction that simply detects motion taken between two 

snapshots at different times. Nodes wake up periodically, perform object 

detection, and send a wake-up message to neighbours that, in response, start 
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taking pictures. This duty-cycle method consumes more batteries than does the 

use of the n-tier architecture, proposed in [250]. Power consumption and 

performance of object classification tasks are reported for MicrelEye [242]. 

The authors in [247] implement three hardware and software architectures 

(serial, parallelised and optimised) and demonstrate a power consumption of 

430 mW at 5 fps for the serial implementation, 500 mW at 9 fps for the parallel 

implementation and 500 mW at 15 fps for the optimised implementation, 

showing that simple in-network processing tasks can be performed at moderate 

frame rates [233, 234]. Energy consumption will be one of the main challenges 

in the design of future in-network processing techniques [233-235]. 

By exploiting the spatial correlation between the images obtained by 

neighbouring nodes, power consumption can be reduced [233, 234]. 

Collaborative image coding [251] computes the differences between neighbour 

camera frames and local frames. Then, using edge detection (e.g. Sobel 

operator), the dominant features that are to be sent to the sink are computed. 

Before initiating the process, it is necessary to obtain the background in order 

to later reconstruct the image, where synchronisation of the cameras is the 

critical part. Experiments in [251] are performed using an Intel StrongARM SA 

1100 as processor and LMX3162 as transceiver. An application in which, after 

an initial training phase, multiple overlapping cameras merge regions and 

collaborate in object activity detection is proposed for Firefly Mosaic platform 

[244]. However, the trade-off between the increase in signal processing for 

target detection and the transmission of data in lightweight sensors still remains 
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as an active research issue [233, 234]. Collaborative image coding is a 

promising technique for VSNs; however, it also has drawbacks [233, 234]. In 

networks with scalar sensor nodes, the sensing area and the transmitting node’s 

coverage area are basically the same [233, 234]. In visual sensor networks, 

sensing nodes are cameras with a FoV (Field of View) and a DoV (Depth of 

View) [233, 234]. FoV is the maximum volume visible from a camera, while 

DoV is the distance between the nearest and farthest objects that appear in an 

image [252]. Overlapping cameras can cover the same sensing area depending 

on the FoV and the DoV; however, if the transmission radius is not large 

enough, then VSN nodes with correlated data cannot directly reach each other 

[234]. In this situation, collaborative image coding needs specific sensor 

coordination algorithms in order to reach out of range nodes [234]. 

3.3.3 Discussion 

This section discussed how edge detection techniques are used in both image 

processing and WSNs. In WSNs, the idea of edge detection has been used in 

two different domains, namely, geometrically representing sensed phenomena 

in WSN and VSNs. In the geometrically representing sensed phenomena in 

WSN field, researchers use edge detection techniques, generally not based on 

edge detection techniques of image processing, to determine nodes within the 

edge of sensed phenomenon (i.e. event). They utilise different edge detection 

techniques to determine the edges of an event which are, for example, based on 

a hierarchical boundary estimation algorithm or a tree-based boundary 
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estimation algorithm. As discussed in sub-section 3.3.2.1, the existing edge 

detection approaches in WSNs are capable of edge detection of events. 

However, these approaches have one or more significant limitations, especially 

if implemented in resource-constrained networks such as WSNs. Iterative 

operations and high communication costs are the main issues faced in these 

existing schemes as such requirements involve huge resource consumption, 

especially when implemented in large-scale networks. The researchers in the 

field of VSNs use edge detection techniques of image processing; however, 

they are dealing with images data obtained from cameras which are types of 

data different from the data that concern this research. 

Detecting edges of events by utilising a technique that is based on an 

edge detection method of image processing will offer a way to detect edges 

with a single-cycle process and requiring only neighbours’ information, which 

reduces the computational and communication costs. Based on this section, the 

literature review and to the best of our knowledge, the scheme proposed in this 

chapter is the first pattern recognition scheme to utilise an edge determination 

mechanism based on the well-established edge detection technique of image 

segmentation in the recognition procedure, which can offer transformation-

invariant detection capabilities. 

The WSN nodes can detect events such as fire, gas leaks, chemical 

attacks, biological hazards etc., and report these to the sink for appropriate 

action. Detection of the event and the identification of the area affected by the 

event is a challenging task for Wireless Sensor Networks [253]. The event may 
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be spread over an area of irregular shape. In WSNs, events can be described as 

shapes (i.e. objects or boundaries) but not visual shapes. They can be described 

as sensory-based shapes. The knowledge obtained from edge detection 

techniques in image processing and segmentation can be utilised to recognise 

events that produce geometric shapes on the basis of the sensor readings. For 

example, a forest fire will have an edge at the fire front based on a temperature 

reading; a flood will have an edge based on moisture or pressure; and a tornado 

will have an edge based on pressure.  

The proposed scheme uses an edge detection mechanism to locate and 

determine the edges and the boundaries of an event. It utilises only those nodes 

located on the edges of an event in the recognition process, which minimises 

the number of sensor nodes and communications required for recognition. As 

mentioned previously, the second hypothesis in this chapter is that by 

describing events and patterns using their main edges and boundaries, it is 

possible to create an efficient recognition scheme that can detect 

transformations that may occur in these events and patterns. As discussed at the 

beginning of the section, edge detection techniques are generally classified as 

Gradient-based and Gaussian-based methods. Edge detection Gradient-based 

methods are relatively simple, quick, and easy in terms of computation, which 

make them suitable for use in resource-constrained environments like WSNs. 

On the other hand, Gaussian-based methods are usually complex and require 

time-consuming computations, which make them inappropriate to be utilised in 

WSNs. 
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3.4 Overview of MOHA Scheme 

This section describes the proposed Macroscopic Object Heuristics Algorithm 

(MOHA) scheme. Part of this section has been published in [179, 254]. The 

main aim of developing the MOHA scheme is to provide efficient pattern 

recognition for WSNs while minimising resource consumption and network 

size, which is capable of detecting events, transformed, and noisy patterns. The 

scheme allows a WSN to collaborate and act as an associative memory in order 

to memorise (store) and recognise patterns. This is achieved by creating a 

network of GN arrays and allows these arrays to communicate in order to 

conclude one result. This will allow the network to process and compute 

information in a distributed in-network paradigm. 

   The goal of the MOHA network structure is to allow sensor nodes to 

exchange information about an incoming pattern for storing and recalling 

operations using an in-network processing paradigm. Two goals that the 

structure is attempting to achieve are low scheme complexity and high pattern 

recognition accuracy. To achieve the low complexity, the MOHA network 

structure adopts a GN scheme, which is well-known for its low computational, 

communicational, and time complexity. The main reason for this is the 

dependency on adjacency communications and computations in its structure for 

pattern recognition operations. Therefore, the MOHA network structure 

consists of multiple GN arrays where each array is assigned to process a sub-

pattern of an incoming pattern. To achieve the high pattern recognition 
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accuracy, the proposed scheme is based on coding techniques. Olshausen and 

Field [255] define coding technique as reproducing an incoming pattern and 

using a small number of active nodes for processing at any given time. They 

state that coding techniques can reduce the use of resources and minimise the 

complexity of incoming patterns so that they can be easily processed. To 

achieve the intended level of detection and to minimise resource consumption, 

the MOHA implements local adjacency-based relationships mechanism for 

coding purposes in a fully distributed and parallel manner that is capable of 

detecting events, noisy patterns, and patterns transformation such as 

translation, scaling (i.e. dilation) and rotation with minimal computational and 

communication requirements. The MOHA uses this mechanism to locate and 

determine the edges and the boundaries of an incoming pattern. The MOHA 

utilises only those nodes located on the edges of a pattern in the recognition 

process, which minimises the number of sensor nodes required for recognition. 

An edge node is determined, locally and only once, based on the relationship 

between its neighbours’ values. A detailed discussion on how the proposed 

scheme can determines edge nodes will be provided in sub-section 3.4.2.1. 

These edge nodes report their location values to the base station in order to 

obtain a final decision about an incoming pattern.  The hypothesis behind this 

approach is that patterns can be efficiently recognised based on their boundary 

information. Since these boundaries are detected by local nodes’ computations, 

the number of communications and amount of resources required is minimised.       
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3.4.1 MOHA structure 

As seen in Figure 3.10, the MOHA scheme consists of two main parts: the 

MOHA network and the stimulator and interpreter (S&I). S&I is an external 

computational node that is responsible for organising the complete recognition 

procedures and to determine whether to memorise or recall the input pattern, 

which has been proposed by [164]. The two components, presented in Figure 

3.10, communicate with each other in order to conclude one decision within a 

predictable learning duration. The S&I sends commands to the network and the 

network replies with edge nodes’ locations. The S&I receives the edge nodes’ 

locations and utilises these nodes’ location to determine the final decision 

about an incoming pattern. A command that is sent by the S&I tells network 

nodes whether to memorise (store) a pattern or recall (search for) it. The 

command will also determine the method of obtaining the pattern (i.e. sense 

environment). 

 

 

Figure 3.10: The two main components of the MOHA scheme. 

  Moreover, before discussing the rules and the functions of each part of 

the MOHA scheme in details, we must define what is a pattern in this research: 
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Definition 3.1: (Pattern) Given a set of possible values 𝑣 =

{𝑎1, 𝑎2, … , 𝑎𝑣}, 𝑎𝑖 ∈ 𝑁, a pattern is a set of elements that represent sensory 

information (e.g. describing an event) that can be send from the S&I to each 

node in the network or sensed by a network’s nodes and can be described as 

follows: 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑆},         𝑝𝑖 ∈ 𝑣, 𝑆 ∈ ℕ                         (3.12) 

where 𝑝𝑖 is the 𝑖𝑡ℎ element of the pattern and 𝑆 is the number of elements and is 

called the pattern size. 

3.4.2 MOHA network 

The aim of the network structure is to have low pattern recognition scheme 

complexity, provide parallel processing, provide efficient recognition, and have 

a predetermined learning and recognition cycle duration. A low complexity 

scheme is achieved with a fully distributed structure that allows sensor nodes in 

the network to communicate only with adjacent nodes. The MOHA’s structure 

allows each sensor node to communicate with four adjacent nodes to determine 

whether it represents a pattern boundary (i.e. edge). In the MOHA scheme, 

only edge nodes’ information is utilised for pattern recognition. This minimises 

the number of sensor nodes required for recognition. Efficient recognition is 

provided by describing the patterns’ boundaries in order to provide a 

transformation-invariant recognition feature to the scheme. By using only edge 

nodes’ information in pattern recognition, this allows the detection of a 

particular pattern’s boundaries by any node in the network. In other words, the 
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detection of any desired pattern’s boundary is not associated with static nodes. 

Instead, any node in the network is expected to be able to determine whether it 

represents a pattern boundary for such boundary information. By using specific 

steps for determining edge nodes and reporting their locations, The MOHA 

will have a single learning and recognition time cycle that can be predicted and 

estimated. Once all edge nodes’ locations have been delivered to the S&I, the 

MOHA does not need further information from sensor nodes in order to declare 

the detection of a specific pattern (i.e. event). This feature reduces the need for 

communications between S&I and participant nodes in the network. Figure 

3.11 shows that communication within the MOHA scheme occurs in a single-

cycle environment, wherein each pattern is passed via the network only once. 

 

 

Figure 3.11: MOHA framework for pattern recognition. 

 The MOHA network consists of a set of GN networks. A GN network 

in the MOHA network structure is called a row and each row consists of a set 

of nodes that communicate with each other using the node’s exchange 

communications, as described below. In the MOHA scheme, based on the 
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received data from S&I or sensed data, each node is activated or de-activated 

according to activation criteria (e.g. high temperature or high pressure). Only 

activated nodes participate in the node’s exchange communications. An active 

node can be determined by examining its received value. If a node’s value 

complies with certain user-defined conditions, it becomes activated. One of 

these conditions is the attainment of a certain threshold. This is in order to 

maintain a limited use of node resources and to reduce the detection time by 

limiting the number of communicating nodes. An active node can be formally 

defined as follows: 

 

Definition 3.2: (Active node) Given a MOHA node 𝑁𝑖
𝑟𝑚 that is assigned to a 

value 𝑎 ∈ 𝑃, where 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑆}, 𝑝𝑖 ∈ 𝑣 is the incoming pattern, 𝑁𝑖
𝑟𝑚 is 

an active node if 𝑎 ≥ 𝜑. 

where 𝑖 is the node’s position in its row, 𝑚 is the node’s row number, 𝑝𝑖 is the 

𝑖𝑡ℎ element of the pattern 𝑃, 𝑣 is the set of possible values, and 𝜑 is the node 

activation threshold. 

 An activation of a node triggers the start of an exchange 

communication process for that node with its adjacent neighbours. 

 

Definition 3.3: (Network row) A MOHA network row (Row) is a GN network 

that consists of a set of nodes where each node communicates with its adjacent 

nodes in the same row and in the higher and lower rows. An MOHA row can 

be described as follows: 

𝑅𝑜𝑤𝑚 = {𝑁1
𝑟𝑚 , 𝑁2

𝑟𝑚 , … , 𝑁𝑖
𝑟𝑚},         𝑖 ∈ ℕ                          (3.13) 
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 where 𝑁𝑗
𝑟𝑚  is the 𝑗𝑡ℎ node in 𝑅𝑜𝑤𝑚. Each node 𝑁𝑖

𝑟𝑚  is responsible for sensing 

or receiving one element of an incoming pattern such that 𝑃𝑝,𝑁: 𝑝𝑖 → 𝑁𝑖
𝑟𝑚 , 𝑝 ∈

𝑣, 𝑖 ∈ ℕ, 𝑃𝑝,𝑁 is the assignment of an incoming pattern’s elements to the nodes 

(Ns) using Definition 3.1. 

 The network row of sensor nodes is derived from a composition of 

interconnected GNs. The size of the row depends on the sub-pattern size 

utilised in the system and the number of distinct elements in the sub-pattern. 

Hence, in order to determine the size of each row, we must consider the 

number of GNs 𝑁𝑔𝑛 required for a sub-pattern with size 𝑆𝑠𝑏 and 𝑣 different 

element (possible values) as given by the following equation: 

𝑁𝑔𝑛 = 𝑣 × 𝑆𝑠𝑏                                                    (3.14) 

However, the MOHA scheme uses a multi-value approach since each 

node is capable of handling different element values. As a result, the number of 

nodes (𝑁𝑛𝑜𝑑𝑒) required for a row (also a row size) is equal to the size of the 

sub-pattern 𝑆𝑠𝑏, as given by the following equation: 

𝑁𝑛𝑜𝑑𝑒 = 𝑆𝑠𝑏                                                    (3.15) 

The communications between active nodes in each row can be defined 

as follows: 

 

Definition 3.4: (The node exchange communications) Given a MOHA network 

row (Row) that consists of m nodes, exchange communications of an active 

node are mainly four direct connections between a node and its direct 

neighbours (adjacent), rather than two as in the simple GN scheme, illustrated 
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in Figures 3.12 and 3.13. The four adjacent nodes are two nodes in the same 

row: the previous (p) and the next (n) nodes (like GN) and two extra nodes: one 

being the adjacent node in the next higher row and another one being the 

adjacent node in the lower row, in the form: 𝑁𝑖
𝑟𝑚 → 𝑁𝑖−1

𝑟𝑚 : 𝑣, 𝑁𝑖
𝑟𝑚 →

𝑁𝑖+1
𝑟𝑚 : 𝑣, 𝑁𝑖

𝑟𝑚 → 𝑁𝑖
𝑟𝑚+1: 𝑣, and 𝑁𝑖

𝑟𝑚 → 𝑁𝑖
𝑟𝑚−1: 𝑣 respectively, where 𝑁𝑖

𝑟𝑚 is the 

communicating (activate) node in 𝑅𝑜𝑤𝑚 with a position number 𝑖 and 𝑣 is the 

value assigned to the 𝑁𝑖
𝑟𝑚 . 

 

 

Figure 3.12: An active sensor node and its neighbours performing a node’s 

exchange communications. 

 

Exchanging the values with two extra adjacent nodes (rather than only 

two in GN) will enable the proposed scheme to recognise transformed patterns, 

especially the rotated ones, as it will obtain a better description about the 

incoming pattern and its distribution. However, in the MOHA scheme, the 

actual number of adjacent nodes and exchange communications of an active 

node varies from two to four depending on its location or position in the row 
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and whether the row is located on the bottom, the middle, or the top of the 

network. The following relations describe the node’s exchange 

communications between active nodes within each MOHA row, see Figure 

3.13: 

 

 

Figure 3.13: The communications between active nodes at different network 

rows. 

 

 Bottom row: For active nodes at the edge of the bottom row, the 

number of communication messages exchanged is equal to two: one 

communication occurs between a node from the preceding or the 

succeeding columns (the previous (p) node or the next (n) node in the 

same row) and the other communication happens with the adjacent 

node at the next higher row. For non-edge active nodes, the 

communication is required between adjacent node in both the preceding 
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and the succeeding columns, as well as the adjacent node in the next 

higher row. In this context, the number of messages exchanged is three. 

The cumulative communication costs involved for each input 

recognition process for all nodes in the bottom row, based on the 

assumption that all the nodes are activated, is derived using the 

following equation: 

𝑁𝑟0
𝑚𝑠𝑔

= 3(𝑆𝑠𝑏 − 2) + 4                                    (3.16) 

where 𝑁𝑟0
𝑚𝑠𝑔

 is the total number of exchanged communications in the 

bottom row (𝑟0) and 𝑆𝑠𝑏 is the size of the sub-pattern that is assigned to 

this row.      

 Middle rows: For active nodes at the edge of the middle rows, the 

number of communications taking place is equal to three: one 

communication occurs with a node from the preceding or the 

succeeding columns and another two communications happen with the 

adjacent nodes in the higher and lower rows. For non-edge active 

nodes, communication is required between adjacent nodes in both the 

preceding and the succeeding columns, as well as the adjacent node at 

the next higher row and the adjacent node in the lower row. In this 

context, the number of exchanged messages is four. The cumulative 

communication costs involved for each input recognition process for all 

nodes in one middle row, based on the assumption that all the nodes are 

activated, is derived through the following equation: 
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𝑁𝑟𝑖
𝑚𝑠𝑔

= 4(𝑆𝑠𝑏 − 2) + 6                                  (3.17) 

where 𝑁𝑟𝑖
𝑚𝑠𝑔

 is the total number of exchanged communications in the 

𝑖𝑡ℎ row (𝑟𝑖) and 𝑆𝑠𝑏 is the size of the sub-pattern that is assigned to this 

row. 

Equation 3.18 presents the cumulative communication costs for 

all nodes in the all middle rows based on the assumption that all the 

nodes are activated: 

 𝑁
𝑟𝑖
𝑡𝑜𝑡𝑎𝑙
𝑚𝑠𝑔

= ∑ (4(𝑆𝑠𝑏 − 2) + 6)
𝑡𝑜𝑝−1
𝑖=1                      (3.18) 

where 𝑁
𝑟𝑖
𝑡𝑜𝑡𝑎𝑙
𝑚𝑠𝑔

 is the total number of exchanged communications in all 

middle rows (𝑟𝑖
𝑡𝑜𝑡𝑎𝑙) and 𝑆𝑠𝑏 is the size of the sub-pattern that is 

assigned to these rows based on the assumption that all the middle rows 

assigned with the same 𝑆𝑠𝑏. 

 Top row: For active nodes at the edge of the top row, the number of 

communication messages exchanged is equal to two: one 

communication occurs with a node from the preceding or the 

succeeding columns and another communication happens with the 

adjacent node in the lower row. For non-edge active nodes, a 

communication is required between adjacent nodes in both the 

preceding and the succeeding columns, as well as the adjacent node in 

the lower row. In this context, the number of messages exchanged is 

three. As a result, similar to the bottom row, the cumulative 

communication costs involved for each input recognition process for all 
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nodes in the top row, based on the assumption that all the nodes are 

activated, is derived from the following equation: 

𝑁𝑟𝑡𝑜𝑝
𝑚𝑠𝑔

= 3(𝑆𝑠𝑏 − 2) + 4                               (3.19) 

where 𝑁𝑟𝑡𝑜𝑝
𝑚𝑠𝑔

 is the total number of exchanged communications in the 

top row (𝑟𝑡𝑜𝑝) and 𝑆𝑠𝑏 is the size of the sub-pattern that is assigned to 

this row. 

 The MOHA network is designed in a multi-row structure containing 

multiple rows. The multiple rows in the network structure allow the parallel 

processing and information exchange of incoming data. This is achieved by 

allowing each row to perform a set of recognition operations on a sub-pattern 

in parallel with other rows. In other words, the MOHA adds a clustering 

mechanism in pattern recognition, by dividing and distributing patterns into 

sub-patterns and assigning each sub-pattern to a row. Furthermore, this 

structure enables the network to deal with multi-dimensional data types as each 

row will be assigned to process one dimension.  

    In order for the MOHA scheme to perform pattern recognition, the 

network topology must be generated or deployed. The network deployment 

process involves the construction of a collection of MOHA rows. The size of 

the MOHA row depends on the sub-pattern size utilised in the system 

(determined according to the system user or the WSN application 

requirements). Given an incoming pattern 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑆} of size 𝑆𝑝, and 
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sub-pattern length  (size) 𝑆𝑠𝑏, the number of MOHA rows 𝑁𝑅𝑜𝑤 that are to be 

deployed is determined by following equation: 

𝑁𝑅𝑜𝑤 =
𝑆𝑝

𝑆𝑠𝑏
,    𝑆𝑠𝑏 ≤ 𝑆𝑝                                       (3.20)     

 The deployment of the network begins by implementing a number of 

nodes in the first row equal to the sub-pattern size (𝑆𝑠𝑏), according to Equation 

3.15. Then, start implementing the second row nodes (equal to 𝑆𝑠𝑏) and so on 

until all nodes in all rows have been deployed in the network. The MOHA 

network contains many sensor nodes distributed in the field of interest in a 

certain multi-row manner (see Figure 3.14). It is important to highlight that 

node deployment in this sub-section is a logical deployment method. In other 

words, deployment can be implemented by assigning each node to its row and 

its position in this row. These numbers will be used to define the tasks that 

each node will perform, as will be described in the network operations sub-

section later in this chapter. Algorithm 3.1 depicts the network deployment 

process.  

 

 

Figure 3.14: An example of MOHA network consisting of 3 rows and 

assigned with a 9-bit size pattern. 
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Algorithm 3.1: MOHA network deployment 

1. NetworkSize = PatternSize 

2. RowNumber = 1 

3. RowSize = SubpatternSize 

4. DeployedNode = 0 

5. While (NetworkSize > 0) 

6.    Deploy a node in Row(RowNumber) 

7.    NetworkSize-- 

8.    DeployedNode++ 

9.    If (DeployedNode ≥ RowSize) 

10.          RowNumber++ 

11.    End if 

12. End While           

 

 One of the aims of providing the MOHA network with a multi-row 

structure is to offer each node in the network 4 adjacent nodes with which to 

exchange information. This enables a node to have an extended view of the 

incoming pattern, which allows it to determine whether or not it represents a 

pattern boundary (i.e. edge). An activation of a node triggers the start of an 

exchange communication process for that node with its adjacent neighbours, as 

described in Definition 3.4. After receiving information from all adjacent 

nodes, the activated node determines whether it represents a pattern edge 

according to Equation 3.29. Based on the resulting node type, it either de-

activates or goes for the second level of activation called ‘edge node activation’ 

(active edge node), which can be described as follows: 

 

Definition 3.5: (the active edge node) Given an active node 𝑁𝑖
𝑟𝑚  and its four 

adjacent nodes 𝑁𝑖−1
𝑟𝑚 , 𝑁𝑖+1

𝑟𝑚 , 𝑁𝑖
𝑟𝑚+1, and 𝑁𝑖

𝑟𝑚−1, the node will be activated as an 

edge node if its node type is 𝑒𝑑𝑔𝑒 (𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 = 𝑒𝑑𝑔𝑒). 
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where 𝑖 is the node’s position in its row, 𝑚 is the node’s row number, and 

𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 is the node’s type, which is determined according to Equation 3.29. 

The procedure used to determine a node’s type is explained in detail in the next 

sub-section. Edge-activated nodes are the only nodes that participate in the 

reporting communication described in Definition 3.6.   

 In the MOHA scheme, only activated edge nodes’ information are used 

for pattern recognition. Thus, all edge nodes in the network are required to 

send their information (i.e. location values) to the S&I for further analysis and 

recognition. Here, we assume that every sensor node in the network knows its 

location in terms of (x,y) coordinate in space (i.e. WSN's field). Sensor nodes 

can also use their row numbers (x) and their position numbers (y) in the 

network as their locations. The communications between the MOHA network’s 

edge nodes and the S&I are called report communications and can be described 

as follows: 

 

Definition 3.6: (Report communications) Given a MOHA network that 

consists of m nodes, a report communication of an active edge node is the 

message (connection) between an edge node in the network and the S&I that 

contains the edge node’s location information (i.e. its location in terms of (x,y) 

coordinate in space), in the form: 𝐸𝑁𝑖
𝑟𝑚 → 𝑆𝐼: {𝑥, 𝑦}. 

where 𝐸𝑁𝑖
𝑟𝑚 is the communicating (activate) edge node in a row number 𝑚 

with a position number 𝑖 and 𝑆𝐼 is the stimulator and interpreter (S&I). Figure 
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3.11 shows the report communications occurring between four edge-activated 

nodes and the S&I.  

 In report communications, in regards to the communication cost, the 

total number of messages communicated from edge nodes to the S&I, 𝑁𝑒𝑑𝑔𝑒→𝑆𝐼
𝑚𝑠𝑔

 

is equivalent to the number of activated edge nodes, 𝑁𝑒𝑑𝑔𝑒, as given by the 

following equation: 

 𝑁𝑒𝑑𝑔𝑒→𝑆𝐼
𝑚𝑠𝑔

= 𝑁𝑒𝑑𝑔𝑒                                             (3.21) 

3.4.2.1 The activated edge nodes determination (pattern edge 

search) 

The MOHA scheme represents patterns of events in terms of compositions of 

values, which are the sequence numbers of the activated edge nodes and the 

MOHA value (𝑀𝑉) that represents the relationship between these activated 

edge nodes. The main goals of the proposed approach are to reduce the overall 

computational complexity of the scheme recognition process and to enable the 

detection of pattern transformation (e.g. rotation, displaced positions 

(translation), and scaling (dilation)). To achieve these goals, the MOHA 

scheme searches for edges in the pattern’s data domain to determine its 

boundaries. We assume that sensor nodes are deployed in a grid-like structure 

in the field of interest to obtain sensory information. As been discussed in sub-

section 3.3.3, the proposed scheme will utilise an edge detection Gradient-

based mechanism to locate and determine the edges and the boundaries of an 

event. The main reason for this choice is that edge detection Gradient-based 
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methods are relatively simple, quick, and easy in terms of computation, which 

make them suitable to be used in resource-constrained environments like 

WSNs. To be more specific, the proposed scheme will utilise the Sobel edge 

detection operator which is one of the widely-used, Gradient-based methods. 

 Before discussing the proposed new and current technique for the 

activated edge nodes determination that is based on an edge detection method 

of image processing, the proposed scheme’s initial technique for the activated 

edge nodes determination will be presented, which has been published in [179]. 

The initial technique for the activated edge nodes determination 

The previous technique had been proposed at the beginning of our PhD 

research period as a result of our goal to create a technique that is simple, light, 

and fast for edge nodes determination, which makes it a suitable technique for 

resource-constrained WSNs. 

 In the initial technique, an active node type is determined according to 

its own value and the values received from its adjacent nodes using the node’s 

exchange communications (see Definition 3.4). The node type is 𝑒𝑑𝑔𝑒 when a 

node’s value (𝑁𝑖
𝑟𝑚(𝑣)) is equal to the values of only two adjacent nodes, the 

value of the next node in its row (𝑁𝑖+1
𝑟𝑚 (𝑣)) is not equal to the value of the 

previous node in its row (𝑁𝑖−1
𝑟𝑚 (𝑣)), and the value of the adjacent node in the 

next higher row (𝑁𝑖
𝑟𝑚+1(𝑣)) is not equal to the value of the adjacent node in the 

lower row (𝑁𝑖
𝑟𝑚−1(𝑣)), or when a node’s value is equal to the value of only one 

adjacent node; otherwise, the node type will be 𝑛𝑜𝑛𝑒 and will be deactivated. 
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Now, we will present several examples which cover all types of nodes 

using the initial approach for determining the activated edge nodes. For 

example, suppose that we have a binary pattern (100011011) of 9 elements that 

has to be divided into 3 sub-patterns of 3 elements and each sub-pattern is 

assigned to a different MOHA row as in Figure 3.14. In this example, the 

middle element in the pattern (assigned to the middle node in the second row) 

is considered to be an 𝑒𝑑𝑔𝑒 as it its value is equal to the values of only two 

adjacent elements (i.e. nodes). In another example, for the pattern 

(100010001), the middle element in the pattern is described as 𝑛𝑜𝑛𝑒, as its 

value does not equal the values of any adjacent elements (i.e. nodes).       

 The main problem with this technique to determine the activated edge 

nodes is that it can correctly determine activated edge nodes only in binary 

patterns, which is not practical for events detection and a variety of WSN 

applications. It is worth noting here that all of the simulations and tests 

conducted for this thesis are based on the new technique for determining the 

activated edge nodes, which will be discussed in the next paragraph.      

The current technique for the activated edge nodes determination     

Our new and more practical technique for determining the activated 

edge nodes is based on an edge detection method of image processing, which 

utilises an edge detection Gradient-based mechanism to locate and determine 

the edges and the boundaries of an event. The Sobel operator consists of a pair 

of 3×3 convolution masks (kernels), one estimating the gradient in the x-

direction (𝐺𝑥) and the other estimating the gradient in the y-direction (𝐺𝑦), as 
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shown in Figure 3.6. The kernels can be combined to find the absolute 

magnitude of the gradient at each sub-pattern node's value. Consider a 3×3 

neighbourhood of a certain node, say 𝑁𝑐, with intensity values (e.g. 

temperature or pressure readings) as shown in Figure 3.15. The gradient 

magnitude of 𝑁𝑐 can be calculated using the following equations [202, 207, 

256]: 

|𝐺(𝑁𝑐)| = √𝐺𝑥(𝑁𝑐)
2 + 𝐺𝑦(𝑁𝑐)

2                               (3.22) 

where, 

𝐺𝑥(𝑁𝑐) = (𝑁3(𝑣) + 2𝑁4(𝑣) + 𝑁5(𝑣)) − (𝑁1(𝑣) + 2𝑁8(𝑣) + 𝑁7(𝑣))  (3.23) 

𝐺𝑦(𝑁𝑐) = (𝑁1(𝑣) + 2𝑁2(𝑣) + 𝑁3(𝑣)) − (𝑁7(𝑣) + 2𝑁6(𝑣) + 𝑁5(𝑣))  (3.24) 

 Typically, in real implementation, an approximate magnitude of 𝑁𝑐 is 

computed using the following equation: 

|𝐺(𝑁𝑐)| = |𝐺𝑥(𝑁𝑐)| + |𝐺𝑦(𝑁𝑐)|                              (3.25)   

which is much faster to compute. 

 

 

Figure 3.15: A particular node and its eight neighbours. 
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 In the MOHA scheme, there are typically only 4 adjacent nodes (i.e. 

neighbours) for every sensor node in the network. Hence, the Sobel masks 

cannot be directly applied, which means that Equations 3.22-3.25 cannot be 

used directly for determining whether a sensor node lies on an edge of an event 

or not. To resolve this issue, Divya and Bhaskar [257] suggest that in a case 

where nodes may not have neighbours that fall into a particular sector of the 

mask, the values for nodes in those sectors are assigned the value of the node 

that is computing the edge, which is the central node. This will eliminate the 

effects of these sectors on the edge determination process. 

 

Proposition 3.1: Given an active node 𝑁𝑖
𝑟𝑚  in MOHA network and its four 

adjacent nodes 𝑁𝑖−1
𝑟𝑚 , 𝑁𝑖+1

𝑟𝑚 , 𝑁𝑖
𝑟𝑚+1, and 𝑁𝑖

𝑟𝑚−1, the gradient magnitude in the x-

direction (𝐺𝑥) of the active node is calculated as follows: 

𝐺𝑥(𝑁𝑖
𝑟𝑚) = 2𝑁𝑖+1

𝑟𝑚 (𝑣) − 2𝑁𝑖−1
𝑟𝑚 (𝑣)                              (3.26) 

Proof: From Equation 3.23, the gradient magnitude in the x-direction (𝐺𝑥) of a 

certain node 𝑁𝑐 is calculated as 𝐺𝑥(𝑁𝑐) = (𝑁3(𝑣) + 2𝑁4(𝑣) + 𝑁5(𝑣)) −

(𝑁1(𝑣) + 2𝑁8(𝑣) + 𝑁7(𝑣)), where 𝑁𝑖(𝑣) is a value of a neighbour node in 

sector 𝑖. Also, [257] suggests assigning the value of the central node that is 

computing the edge to sectors of the mask that do not have nodes located on 

them. 

From Equation 3.23: 

𝐺𝑥(𝑁𝑐) = (𝑁3(𝑣) + 2𝑁4(𝑣) + 𝑁5(𝑣)) − (𝑁1(𝑣) + 2𝑁8(𝑣) + 𝑁7(𝑣)) 

After applying the [257] suggestion 𝑁𝑐(𝑣) = 𝑁1(𝑣), 𝑁3(𝑣),𝑁5(𝑣), 𝑎𝑛𝑑 𝑁7(𝑣): 
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𝐺𝑥(𝑁𝑐) = (𝑁𝑐(𝑣) + 2𝑁4(𝑣) + 𝑁𝑐(𝑣)) − (𝑁𝑐(𝑣) + 2𝑁8(𝑣) + 𝑁𝑐(𝑣)) 

𝐺𝑥(𝑁𝑐) = 𝑁𝑐(𝑣) + 2𝑁4(𝑣) + 𝑁𝑐(𝑣) − 𝑁𝑐(𝑣) − 2𝑁8(𝑣) − 𝑁𝑐(𝑣) 

𝐺𝑥(𝑁𝑐) = 2𝑁4(𝑣) − 2𝑁8(𝑣) 

After using the MOHA scheme symbols: 

𝐺𝑥(𝑁𝑖
𝑟𝑚) = 2𝑁𝑖+1

𝑟𝑚 (𝑣) − 2𝑁𝑖−1
𝑟𝑚 (𝑣) 

 The gradient magnitude in the y-direction (𝐺y) of the active node in 

MOHA network is calculated as follows: 

𝐺𝑦(𝑁𝑖
𝑟𝑚) = 2𝑁𝑖

𝑟𝑚+1(𝑣) − 2𝑁𝑖
𝑟𝑚−1(𝑣)                            (3.27) 

 This equation can be proofed in the same way that the 𝐺𝑥(𝑁𝑖
𝑟𝑚) is 

proofed in Proposition 3.1. Every active sensor node in the MOHA network 

determines the values of both x and y gradients by using Equations 3.26 and 

3.27. Then, it can calculate the magnitude of its gradient |𝐺(𝑁𝑖
𝑟𝑚)| by utilising 

Equation 3.25. 

 Also, we can combine the previous Equations 3.25, 3.26, and 3.27 into 

one single equation in order to calculate the gradient magnitude of an active 

node |𝐺(𝑁𝑖
𝑟𝑚)| in a single step: 

|𝐺(𝑁𝑖
𝑟𝑚)| = |2𝑁𝑖+1

𝑟𝑚 (𝑣) − 2𝑁𝑖−1
𝑟𝑚 (𝑣)| + |2𝑁𝑖

𝑟𝑚+1(𝑣) − 2𝑁𝑖
𝑟𝑚−1(𝑣)| (3.28)     

If the gradient magnitude of the active node is greater than a certain 

threshold value (𝜑), which is called the threshold value for edge determination, 

the sensor node determines and activates itself as an edge node (𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 =

𝑒𝑑𝑔𝑒); otherwise, the node type will be 𝑛𝑜𝑛𝑒 and will be deactivated. 
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The active node type determination can be described as a function of 

the values of the node and its adjacent nodes in the form of 𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒  =

 𝑓(𝑁𝑖
𝑟𝑚(𝑣), 𝑁𝑖+1

𝑟𝑚 (𝑣),𝑁𝑖
𝑟𝑚+1(𝑣),𝑁𝑖−1

𝑟𝑚 (𝑣), 𝑁𝑖
𝑟𝑚−1(𝑣)). This relationship can be 

described as the following piecewise function: 

𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 = {
𝑒𝑑𝑔𝑒,        𝑖𝑓|𝐺(𝑁𝑖

𝑟𝑚)| > 𝜑 

𝑛𝑜𝑛𝑒,        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
                           (3.29) 

 We now give several examples which cover all types of nodes. 

Consider a pattern 𝑃1 = {300,400,350,400,300,200,350,300,400} of 9 

elements that has be divided into 3 sub-patterns of 3 elements and each sub-

pattern is assigned to a different MOHA row (see Figure 3.14) and the 

threshold value for edge determination is set to 500 (𝜑 = 500). In this 

example, the middle element in the pattern (assigned to the middle node in the 

second row) is considered an 𝑒𝑑𝑔𝑒 as its gradient magnitude is equal to 600, 

which is greater than the threshold value (|𝐺(𝑁𝑖
𝑟𝑚)| > 𝜑). In another example, 

for the pattern 𝑃2 = {350,400,500,400,350,400,300,200,250}, the middle 

element in the pattern is considered a 𝑛𝑜𝑛𝑒, as its gradient magnitude is equal 

to 400, which is less than the threshold value (|𝐺(𝑁𝑖
𝑟𝑚)| < 𝜑). 

3.4.3 MOHA network operations 

Figure 3.16 shows the steps that each node in the network performs in the 

learning process. These steps are as follows: 

1. Receive command: The node receives the broadcasted command 

from S&I that contains the operation (memorise or recall) and the 
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method for obtaining the pattern element (direct receive or sense). 

Further details about this command message will be presented in 

Section 3.5. 

2. Obtain pattern element: Based on the command message, each node 

begins to receive its assigned pattern element 𝑝𝑖. Each node sets its 

value (v) according to the pattern element received. If a node’s value 

complies with certain user-defined conditions (e.g. reaching a certain 

threshold), it becomes activated, according to Definition 3.2. 

3. Exchange communications: Each activated node performs exchange 

communications with its neighbouring nodes, as described in 

Definition 3.4. Then, the activated node determines whether it 

represents a pattern edge according to Equation 3.29. Based on the 

equation result, it is either de-activated or activated as an edge node, 

as described in Definition 3.5. 

4. Report communications: Each activated edge node in the network 

reports its location information (i.e. its location in terms of (x,y) 

coordinate in space) to the S&I, as described in Definition 3.6. 
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Figure 3.16: MOHA network node operations. 

3.4.4 Stimulator and interpreter (S&I) 

This component is responsible for sending commands to the MOHA network, 

receiving the locations of the activated edge nodes and making the final 

decision about an incoming pattern. The pattern-obtaining method that is 

utilised by MOHA scheme will be discussed in Section 3.5. MOHA network 

nodes process the S&I command and respond with the locations of the 

activated edge nodes. The S&I uses this location information, containing the 
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locations of the activated edge nodes in the network in terms of (x,y) coordinate 

in space, to calculate the MOHA value (𝑀𝑉) of a sensed or received pattern. In 

fact, this location information (of the activated edge nodes) indicates the 

pattern’s boundaries (i.e. a pattern edges). The S&I uses the calculated 𝑀𝑉 of a 

sensed or received pattern with the number of activated edge nodes to 

memorise or recall the pattern. In order to calculate the 𝑀𝑉 of a pattern, S&I 

must perform two procedures, namely the longest distance determination and 

the critical point determination, illustrated in Figure 3.17. The first procedure 

is the longest distance determination process that is formally defined as 

follows: 

 

Definition 3.7: (The longest distance determination) Given a set of locations of 

the activated edge nodes in the network {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, the 

longest distance determination process is the process of calculating the longest 

distance between the edge nodes’ locations and determining the locations of 

the two edge nodes that have the longest distance between them, which can be 

described as follows: 

𝐿𝑜𝑛𝑔𝐷𝑙1→𝑙2 = 𝑎𝑟𝑔𝑚𝑎𝑥 (√(𝑥𝑗+1 − 𝑥𝑗)
2 + (𝑦𝑗+1 − 𝑦𝑗)

2) , 𝑗 = (1,… , 𝑛 − 1)(3.30) 

 where 𝐿𝑜𝑛𝑔𝐷𝑙1→𝑙2 is the longest distance between the edge nodes’ locations, 

which is between the edge nodes’ locations number 𝑙1 and 𝑙2, 𝑥𝑗 is the x 

coordinate location of edge node number 𝑗, 𝑦𝑗 is the y coordinate location of 

edge node number 𝑗, and 𝑛 is the number of activated edge nodes. 
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 The total number of times (𝑁𝑡𝑖𝑚𝑒𝑠) the distance between the locations of 

activate edge nodes should be calculated in order to determine the locations of 

the two edge nodes that have the longest distance between them, can be 

determined by the number of edge nodes (𝑛) using the following equation: 

𝑁𝑡𝑖𝑚𝑒𝑠 = 𝑛(𝑛 − 1) ÷ 2                                           (3.31) 

The second procedure is the critical point determination, which is 

defined as follows: 

 

Definition 3.8: (The critical point determination) Given the locations of the 

two activated edge nodes that have the longest distance between them 

{(𝑥𝑙1, 𝑦𝑙1), (𝑥𝑙2, 𝑦𝑙2)}, the critical point (𝐶𝑃) is the midpoint between these two 

activated edge nodes, which can be described as follows: 

𝐶𝑃 = (
𝑥𝑙1 + 𝑥𝑙2

2
,
𝑦𝑙1 + 𝑦𝑙2

2
)                                  (3.32) 

 where 𝑙1 and 𝑙2 are the locations numbers of the two activated edge nodes that 

have the longest distance between them, 𝑥𝑗 is the x coordinate location of edge 

node number or location 𝑗, and 𝑦𝑗 is the y coordinate location of edge node 

number or location 𝑗. 

The next step for S&I is to calculate the MV of a sensed or received 

pattern, illustrated in Figure 3.17, which is defined as follows: 

 

Definition 3.9: (The MOHA value) Given a set of locations of the activated 

edge nodes in the network {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, the longest distance 

between the edge nodes’ locations (𝐿𝑜𝑛𝑔𝐷𝑙1→𝑙2), and the critical point (𝐶𝑃) 
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{𝑥𝐶𝑃, 𝑦𝐶𝑃), the MOHA value (MV) is equal to the total distances between the 

locations of activated edge nodes and the location of the critical point divided 

by the longest distance between the edge nodes’ locations, which can be 

described and calculated as follows:  

𝑀𝑉 =
∑ √(𝑥𝑗 − 𝑥𝑐𝑝)2 + (𝑦𝑗 − 𝑦𝑐𝑝)2
𝑛
𝑗=1

𝐿𝑜𝑛𝑔𝐷𝑙1→𝑙2
                         (3.33) 

 

 
Figure 3.17: Example of the proposed scheme’s recognition procedures for two 

different types of patterns: (a) a child shape, (b) a star map. 
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 The main reason for dividing the 𝑀𝑉 by 𝐿𝑜𝑛𝑔𝐷𝑙1→𝑙2 is to enable the 

MOHA scheme to recognise scaled patterns that are types of transformed 

patterns. After the S&I has calculated the 𝑀𝑉 of a sensed or received pattern, it 

begins the process of memorising or recalling this pattern. During 

memorisation, the S&I assigns a unique index number to the pattern, associates 

this number with the total number of activated edge nodes and the resulting 

𝑀𝑉, and stores the index number and the associated number of activated edge 

nodes and 𝑀𝑉 in its memory. This results in a set of patterns being stored in a 

vector that can be described as follows: 

 

Definition 3.10: (Pattern vector) Given a set of patterns {𝑃1, 𝑃2, … , 𝑃𝑡}, the S&I 

memorises these patterns by obtaining each pattern’s total number of activated 

edge nodes from a MOHA network (𝑛𝑖), calculating its MOHA value (𝑀𝑉𝑖), 

assigning a unique index number (𝐼𝑖) to each pattern, and storing the 

associations of patterns, the numbers of activated edge nodes, and the MOHA 

values as a pattern vector in the S&I in the following form: 

�⃗� = {(𝐼1, 𝑛1, 𝑀𝑉1), (𝐼2, 𝑛2, 𝑀𝑉2),… , (𝐼𝑡, 𝑛𝑡, 𝑀𝑉𝑡)}, 𝐼𝑖, 𝑛𝑖 ∈ ℕ,𝑀𝑉𝑖 ∈ ℝ (3.34) 

 In recall, the S&I searches the pattern vector to find a match. To match 

the input pattern, the distances between the input pattern and each of the stored 

patterns need to be computed. For instance, a distance measurement called the 

Hamming measurement counts the locations at which patterns differ [258]. 

Other distance measurement alternatives include Euclidean distance, City-

Block distance, and Canberra distance [258]. The MOHA algorithm utilises the 
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Euclidean distance measurement, which is defined as the absolute value of the 

numerical difference of the associated values of the input pattern and other 

associated values of the stored patterns in the pattern vector, in order to match 

the input pattern to its nearest stored pattern. Thus, the declaration that a 

pattern has been detected depends on the total differences between the MOHA 

network’s activated edge nodes number and the activated edge nodes numbers 

stored in the pattern vector and the pattern’s 𝑀𝑉 and the 𝑀𝑉𝑠 stored in the 

pattern vector as follows: 

 

Definition 3.11: (Recalled pattern) Given a number of activated edge nodes 

determined by the MOHA network (𝑛𝑐), a MOHA value calculated by the S&I 

(𝑀𝑉𝑐), and a pattern vector, the recalled pattern (𝑅𝑃) will be the index number 

with the smallest differences between the determined edge nodes number and 

the set of edge nodes numbers stored in the pattern vector and the calculated 

MV and the set of MVs stored in the pattern vector as follows: 

𝑅𝑃 = 𝐼[min(∆𝑛1𝑐 + ∆𝑀𝑉1𝑐, ∆𝑛2𝑐 + ∆𝑀𝑉2𝑐, … , ∆𝑛𝑡𝑐 + ∆𝑀𝑉𝑡𝑐)]    (3.35) 

where ∆𝑛𝑖𝑐 is the difference between the 𝑖𝑡ℎ stored pattern number of activated 

edge nodes and the number of activated edge nodes determined by the MOHA 

network for an incoming pattern (current pattern) and ∆𝑀𝑉𝑖𝑐 is the difference 

between the 𝑖𝑡ℎ stored pattern MOHA value and the MOHA value calculated 

by the S&I for an incoming pattern. 

        Moreover, it is clearly shown in this sub-section and in the MOHA 

network sub-section that all pattern information is stored on the S&I’s pattern 
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vector. Therefore, there is no need to store any pattern information in the 

network nodes (like GN, DHGN, and most other pattern recognition schemes), 

and this successfully addresses the issue of the sensor nodes’ memory 

limitation in WSNs. From this perspective, the MOHA scheme offers 

significantly higher storage efficiency compared to other pattern recognition 

approaches. Additionally, the main reason for giving the S&I the power to 

determine the final decision about an incoming pattern is that it has an 

overview of an incoming pattern, which makes it capable of overcoming the 

crosstalk issue and handling transformed patterns.     

3.4.5 S&I operations 

Figure 3.18 illustrates the S&I operations. These operations can be summarised 

as follows: 

1. Send command: The S&I initiates the MOHA learning process by 

sending a command to the MOHA network’s nodes. This command 

contains the operation type (memorise or recall) and the pattern-

obtaining method (direct receive or sense). Further details about this 

command message will be presented in Section 3.5. 

2. Receive the edge nodes’ locations: The S&I receives the information 

regarding the locations of the activated edge nodes in the MOHA 

network. 

3. Determine the longest distance between the edge nodes’ locations: 

S&I calculates the longest distance between the edge nodes’ locations 
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and determines the locations of the two edge nodes that have the 

longest distance between them, as described in Definition 3.7. 

4. Determine the critical point: S&I determines the critical point (CP) 

as the midpoint between the two edge nodes that have the longest 

distance between them, as described in Definition 3.8. 

5. Calculate the MOHA value: S&I calculates the MOHA value (𝑀𝑉) 

of a pattern as equal to the total distances between the locations of 

activated edge nodes and the location of the critical point divided by 

the longest distance between the edge nodes’ locations, as described in 

Definition 3.9. 

6. Memorise or recall: If the operation is to memorise the incoming 

pattern, the S&I creates a unique number, associates this index number 

with the number of activated edge nodes and the 𝑀𝑉 of the pattern, 

and stores this association in its pattern vector. However, if the 

operation is to recall the incoming pattern, the S&I searches for the 

closest number of activated edge nodes and 𝑀𝑉 in its pattern vector to 

the incoming pattern’s number of activated edge node and 𝑀𝑉 and 

declares its associated pattern as 𝑅𝑃.     
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Figure 3.18: S&I operations for memorising and recalling patterns. 

3.5 Obtaining the Patterns’ Data 

To perform pattern recognition operations, the pattern-obtaining operations of 

the MOHA network are discussed in this section. The MOHA scheme has two 

types of operations, namely, memorisation (storing) and recall. The MOHA 



 

175 

 

adopts the supervised pattern recognition manner. This means that a MOHA 

network will be presented with a set of patterns to store and will then recall 

other patterns in accordance with the stored ones. These patterns can be 

imposed by the S&I (in a cluster head or a base station) or obtained by sensor 

readings. These operations are initiated by the S&I sending command 

messages to sensor nodes in the network. The command message from the S&I 

takes the form {𝐶, 𝑃}, which means command (“𝐶”= ‘command’) and pattern 

(“𝑃”= ‘pattern’). S&I divides an incoming pattern into sub-patterns where each 

sub-pattern is managed by one MOHA row (GN array). 

 The memorisation or training operation should always be initiated by 

the S&I. The S&I sends a command message to each node in the network of 

two parts {𝑀, 𝑃},  which means memorise (“𝑀”=‘memorise’) pattern element 

(“𝑃”=pattern element). The pattern element part in the message can be 

provided by the S&I. Alternatively, the S&I will set the second part to “𝑆”, 

meaning that the node should take its sensory information as the incoming 

pattern element (“𝑆”= sense). Figure 3.19 shows an example of sending the 

pattern (𝑃 = {350,400,500,400,350,400,300,200,250}) to be stored in a 9-

neuron (node) positions size MOHA network. The S&I will break the pattern 

into 3 sub-patterns (350,400,500), (400,350,400), and (300,200,250) and 

send these sub-patterns to rows 1, 2, and 3 respectively. The S&I will send the 

command {𝑀, 𝑝} to each node position in the row based on the value 

assigned to the position.  Alternatively, if the existing pattern (for an event) in 

the sensed environment (for example, temperature, Infrared (IR), Ultrasound, 
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or pressure readings) is to be stored, the S&I will send the command {𝑀, 𝑆} 

to all network nodes. 

  

 

Figure 3.19: S&I divides a 9 size pattern into 3 sub-patterns and sends each 

sub-pattern to a MOHA row for memorisation. 

 

 The recall (recognition) operation, on the other hand, can be initiated 

automatically in a periodic manner or by the S&I. In a periodic recall 

operation, sensor nodes are given a time cycle where every sensor should 

take its readings as the incoming pattern. This suits automated and 

monitoring applications that require continuous recognition over the field of 

interest. S&I initiated recall operations are obtained by sending a command 

message of the form {𝑅, 𝑃} to all network nodes, meaning recall (“𝑅”= recall) 

pattern element. Similar to memorised commands, the pattern element part 

of the message can be provided by the S&I or requested to be sensed by 

sensor nodes. S&I initiated recall commands suit applications that require 

recognition at a certain point of time such as query-driven applications. 
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Table 3.3 summarises the possible command messages that can be sent from 

the S&I to network nodes. 

Table 3.3: Command messages from S&I to network nodes. 

Command Description 

{𝑴,𝒑} 
Memorise (store) the value 𝑝, where 𝑝 is a value of 

a given pattern element by the S&I. 

{𝑴, 𝑺} Memorise the sensory information 

{𝑹, 𝒑} 
Recall the value 𝑝, where 𝑝 is a value of a 

given pattern element by S&I. 

{𝑹, 𝑺} Recall the sensory information 

 

3.6 MOHA Communication Requirements and 

Protocol 

In this section, the communication requirements and protocol of a MOHA 

network are described. To perform MOHA network node communications, this 

study assumes that a medium access control (MAC) protocol is present and 

available to support the network. MAC protocols control the communications 

of a network by setting the rules and steps for sending information amongst the 

network’s sensor nodes so as to share the available medium. In WSNs, the 

efficiency of a MAC protocol will affect the sensor nodes’ lifetime by reducing 

transmission collisions, which reduces the number of retransmissions of 

packets [19]. In WSNs, sensor nodes conserve energy resources by alternating 

between low power sleep mode and active mode. MAC protocols conserve 

energy resources for WSN nodes by determining timeslots for sleep and active 
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modes. Moreover, when utilising MAC protocols, each sensor node can have a 

unique MAC address that differentiates it from other sensor nodes, allowing 

direct communication between two sensor nodes. For a MOHA scheme, the 

choice of a MAC protocol must take into account the special requirements and 

steps of the network’s communications. 

 During the initialisation of a MOHA network, each sensor node should 

be provided with a row number and a position number that it will work on. 

This allows the sensor node to determine its communication process. For 

example, a sensor node in the top or the bottom rows will send its information 

to two or three adjacent nodes (depending on its position in that row), receive 

adjacent nodes’ information, and report its location to the S&I if it is been 

activated as an edge node. A sensor node in middle rows performs the same 

steps except that it will exchange information with three or four adjacent nodes 

depending on its position in these rows. A sensor node’s row and position can 

be determined statically or automatically during the initialisation phase of the 

MOHA network. Static row and position determination means that each sensor 

node is provided with information about its row, position, and adjacent nodes 

with which to exchange information. This initialisation would be less complex 

in terms of computations and communications. However, there will be limited 

flexibility in terms of adding new sensor nodes to the network or adopting 

dynamic changes such as mobile nodes or clusters. Automatic row and position 

determination can be achieved by allowing each sensor node to communicate 

with its neighbouring nodes and allowing the S&I (in the base station) to 
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determine its row, position, and adjacent nodes after the deployment of the 

network. This approach will provide more network flexibility, thereby enabling 

adaptation to changes that may be required in the network design. However, 

this will lead to an increase in the number of communications in the network. It 

is also important to take into account the distance between sensor nodes and 

the communication ranges of sensor nodes when determining the row size. 

 To ensure the functionality of the MOHA network, each sensor node 

should be fed with sufficient information about how to react to failures or de-

activated neighbouring sensor nodes. In WSNs, it is common to have failure 

sensor nodes that can no longer communicate due to depleted energy or 

physical damage. To overcome the effect of such phenomena on recognition, 

each sensor node should take into account the steps for dealing with 

unavailable sensor nodes. For adjacent sensor nodes (i.e. previous and next 

adjacent nodes in the same row and the adjacent nodes at the lower and higher 

rows), a sensor node should assume the value of a failed communicating node 

to be equal to its own value. This is in order to avoid an interruption to the 

recognition process and eliminate the effects of these failed nodes on the edge 

determination process. 

 The MOHA communication protocol describes the main steps of 

MOHA network communications. By completing this protocol, a MOHA 

network will memorise or recall an incoming pattern. The protocol consists of 

three main steps as follows: 

 



 

180 

 

Step 1: 𝑺&𝑰       𝑵𝟏, 𝑵𝟐, … , 𝑵𝒎: (𝐶𝑖 , 𝑃𝑖) {(𝐶1, 𝑃1), (𝐶2, 𝑃2),… , (𝐶𝑚, 𝑃𝑚)} 

In the first step of the communication, the S&I (in the base station) 

sends the command 𝐶𝑖 and the pattern elements 𝑃𝑖 to each sensor node in the 

network. As explained in section 3.5, a command can be either to memorise 

(M) or recall (R) and the pattern element can be a value to use for training, or 

(S) to initiate sensors to use the sensory information. Each sensor node receives 

only one element of the pattern. For instance, if the pattern is (2,5,8,6), the S&I 

will send the values 2, 5, 8, and 6 to the sensor nodes 1, 2, 3, and 4 as pattern 

elements respectively. There are two methods for obtaining sensory 

information. In the first scenario, the S&I sends a ‘memorise’ or ‘recall’ 

command to sensor nodes in order to start obtaining sensory information and 

continue the communication steps. In the second scenario, the sensor nodes are 

programmed to obtain information periodically. 

Step 2: 𝑵𝒊
𝒓𝒎       𝑵𝒊−𝟏

𝒓𝒎 , 𝑵𝒊+𝟏
𝒓𝒎 , 𝑵𝒊

𝒓𝒎+𝟏 , 𝑵𝒊
𝒓𝒎−𝟏: 𝑣𝑖 

Each activated sensor node in the network 𝑁𝑖
𝑟𝑚 starts the information 

exchange process with adjacent sensor nodes. After receiving or obtaining the 

pattern element information, each activated sensor node sends its value 𝑣𝑖 to 

four adjacent sensor nodes: previous node in its row 𝑁𝑖−1
𝑟𝑚 , next node in its row 

𝑁𝑖+1
𝑟𝑚 , adjacent node in the next higher row 𝑁𝑖

𝑟𝑚+1, and adjacent node in the 

lower row 𝑁𝑖
𝑟𝑚−1. The main aim of this step is to allow each sensor node to 

determine whether it represents a pattern edge according to Equation 3.29. 

Based on the equation result, it is either de-activated or activated as an edge 
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node, as described in Definition 3.5. After completing this step, each sensor 

node will receive four values from its adjacent nodes representing the pattern 

elements by which a sensor node should be able to determine whether or not it 

will be activated as an edge node. 

Step 3: 𝑬𝑵𝒄      𝑺&𝑰: 𝑥𝑐, 𝑦𝑐 

 Each activated edge node 𝐸𝑁𝑐 reports its location information (i.e. its 

location in terms of (x,y) coordinate in space) to the S&I (in the base station) in 

order to store or recall the pattern. The S&I utilises the information received 

about locations in order to calculate the MOHA value (𝑀𝑉) of the pattern. The 

S&I retains a database of trained patterns associated with their total number of 

activated edge nodes and their 𝑀𝑉 values. If the pattern needs to be 

memorised, the S&I assigns it a new index number and associates this index 

number with the total number of activated edge nodes obtained by the network 

and its 𝑀𝑉 value. If the pattern is to be recalled, the S&I searches its database 

to find the value closest to the total number of activated edge nodes given by 

the MOHA network with the 𝑀𝑉 of the pattern and declares it as the recalled 

pattern. 

3.7 Qualitative Performance Analysis 

One of the main aims of the proposed scheme here is to provide real-time 

recognition capacities while maintaining a low level of resource use to suit 

WSNs. Therefore, in this section, a series of analyses and evaluations for the 

MOHA implementation were conducted, to study the complexity of the 
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MOHA algorithm in terms of computations, learning cycle time, and number 

of communications. For such evaluations, we assume that all network nodes 

are activated as edge nodes by a given pattern to estimate the maximum 

computations, time, or communications required to learn or recall an incoming 

pattern. Additionally, the complexity study in term of memory is not presented 

because the MOHA does not require storing any pattern information in the 

network nodes, and this successfully addresses the issue of sensor nodes having 

a limited memory in WSNs. The following sub-sections provide the 

aforementioned analysis. 

3.7.1 Computational complexity evaluation 

To analyse the computational complexity of the MOHA algorithm, Big-O 

analysis has been considered as the computational complexity indicator. It is 

mainly used as the computational complexity measurement tool to describe 

how the input data affects an algorithm’s usage of computational resources. 

Big-O analysis can be defined as a theoretical measure of the algorithm’s 

resource usage during execution, mostly the time or memory required, given 

the problem size 𝑛, which is usually the number of items [259]. Informally, if 

an equation is 𝑓(𝑛) = 𝑂(𝑔(𝑛)) this means that it is less than a constant 

multiple of 𝑔(𝑛). In this sub-section, a comparison is made with Hopfield 

network, which is presented in Chapter 2. Other comparisons, with Self-

Organising Map (SOM) and Distributed Hierarchical Graph Neuron (DHGN), 

can be found in Appendix A. It is best to note, however, that the comparative 
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study that has been carried out does not intend to outweigh the capabilities of 

these algorithms. Rather, it indicates that the operations associated with the 

MOHA have a significantly low computational complexity. In this sub-section, 

we present only one comparison, as this is adequate to show the quality of the 

MOHA. 

In order to determine the computational complexity of the MOHA and 

Hopfield network schemes, a 2-stage process was implemented to emulate the 

network generation (i.e. deployment) and recognition stages of the two 

approaches. 

3.7.1.1 Network generation stage 

This stage involves the formation of a network that comprises computing 

elements known as neurons (i.e. nodes). It is worth noting that this stage needs 

to be done only once, which makes it less important than the recognition stage 

in terms of determining the computational complexity. The number of nodes 

generated (also known as a network size) is totally dependent on the algorithm 

being implemented. 

In the MOHA scheme implementation, the number of nodes generated 

(i.e. network size), 𝐺𝑀𝑂𝐻𝐴 depends on the number of nodes required for each 

row (𝑁𝑛𝑜𝑑𝑒) and the total number of rows (𝑁𝑅𝑜𝑤), 𝐺𝑀𝑂𝐻𝐴 is given as follows: 

𝐺𝑀𝑂𝐻𝐴 = 𝑁𝑛𝑜𝑑𝑒 ×𝑁𝑅𝑜𝑤                                      (3.36) 

 According to Equation 3.15, the number of nodes (𝑁𝑛𝑜𝑑𝑒) required for 

a row is equal to the size of the sub-pattern 𝑆𝑠𝑏 and according to Equation 3.20, 
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the total number of rows (𝑁𝑅𝑜𝑤) is equal to the size of a pattern (𝑆𝑝) divided by 

the size of the sub-pattern 𝑆𝑠𝑏. As a result, 𝐺𝑀𝑂𝐻𝐴 will be equal to: 

𝐺𝑀𝑂𝐻𝐴 = 𝑁𝑛𝑜𝑑𝑒 × 𝑁𝑅𝑜𝑤 = 𝑆𝑠𝑏 ×
𝑆𝑝

𝑆𝑠𝑏
= 𝑆𝑝                       (3.37) 

 On the other hand, the number of neurons generated, 𝐺𝐻𝑜𝑝𝑓 in a 

Hopfield network implementation (presented at Chapter 2) is equivalent to the 

pattern size [260], 𝑆𝑝: 

𝐺𝐻𝑜𝑝𝑓 = 𝑆𝑝                                              (3.38) 

 The details of the Big-O notation derived for the MOHA and Hopfield 

network implementations are shown in Table 3.4. The estimated time derived 

is based on the assumption that the instruction speed used is 1 microsecond 

(μs) per instruction. 

Table 3.4: Big-O notations for Hopfield network and MOHA implementation 

in network generation stage. 

Algorithm Big-O Efficiency Iteration (n) Estimated Time (in seconds) 

MOHA 𝑂(𝑛) Linear 𝐺𝑀𝑂𝐻𝐴 𝐺𝑀𝑂𝐻𝐴 × 0.000001 

Hopfield 𝑂(𝑛) Linear 𝐺𝐻𝑜𝑝𝑓 𝐺𝐻𝑜𝑝𝑓 × 0.000001 

 

The results show that both the MOHA and Hopfield networks have 

identical computational complexity for the network generation stage. However, 

if parallelism is taken into account, for each MOHA row, the number of nodes 

generated for each row is less than the overall node initialisation within the 

network. Therefore, the estimated time for network generation in the MOHA is 

lower than in the Hopfield network implementation. 
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3.7.1.2 Recognition stage 

This stage is the main process for the pattern recognition algorithm. Every 

pattern recognition algorithm has a different approach for doing so. In the 

Hopfield network, the recognition stage involves three sub-processes [260], 

which are weight accumulation, weight determination for the whole network, 

and network propagation to derive optimum solution. On the other hand, the 

MOHA algorithm demands only a single-cycle process of recognition within 

this recognition stage. This process of recognition involves five sub-processes, 

as presented in Section 3.4, which are: activated nodes determination, activated 

edge nodes determination, the longest distance determination between the 

locations of activated edge nodes, the critical point determination, and the 

MOHA value determination. Only the first two sub-processes are performed by 

the MOHA network and the rest of these sub-processes are handled by the S&I 

(e.g. the base station).  

Table 3.5 shows the Big-O notations derived from the analysis on the 

Hopfield network recognition process. As stated previously, the estimated time 

derived is based on the assumption that the instruction speed used is 1 

microsecond (μs) per instruction. 

Table 3.5: Big-O notations for Hopfield network in recognition stage. 

Process Big-O Efficiency Iteration (n) Estimated Time (in seconds) 

Weight 

Accumulation 
𝑂(𝑛) Linear 𝑆𝑝 𝑆𝑝 × 0.000001 

Weight 

Determination 
𝑂(𝑛2) Quadratic 𝐺𝐻𝑜𝑝𝑓

2  In minutes 

Network 

Propagation 
𝑂(𝑛𝑘) Polynomial 𝐺𝐻𝑜𝑝𝑓

𝑘  In hours 
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The Hopfield network incurs a considerably high computational 

complexity, as indicated in Table 3.5 with respect to its weight determination 

and network propagation processes. Figure 3.20 shows the computational 

complexity for these three processes during the recognition stage utilising the 

Hopfield network implementation. Note that for the network propagation 

process, the value 𝑘 = 3 was utilised for polynomial representation. 

 

 

Figure 3.20: Big-O notation comparisons for processes within the Hopfield 

network recognition stage. 

 

 Table 3.6 shows the Big-O notations derived from the analysis on the 

MOHA recognition process. This is based on the assumption that all network 

nodes are activated as edge nodes by a given pattern in order to estimate the 

maximum computations required for pattern recognition. The estimated time 

derived is based on the assumption that the instruction speed used is 1 

microsecond (μs) per instruction. 
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Table 3.6: Big-O notations for MOHA implementation in recognition stage. 

Process Big-O Efficiency Iteration (n) Estimated Time (in seconds) 

Activated 

Nodes 

Determination 

𝑂(𝑛) Linear 𝐺𝑀𝑂𝐻𝐴 = 𝑆𝑝 𝑆𝑝 × 0.000001 

Activated 

Edge Nodes 

Determination 

𝑂(𝑛) Linear 𝐺𝑀𝑂𝐻𝐴 = 𝑆𝑝 𝑆𝑝 × 0.000001 

The Longest 

Distance 

Determination 

𝑂(𝑛) Linear 
(𝑁𝐸𝐷(𝑁𝐸𝐷 − 1)

÷ 2) + 1 

((𝑁𝐸𝐷(𝑁𝐸𝐷 − 1) ÷ 2) + 1)

× 0.000001 

The Critical 

Point 

Determination 

𝑂(1) Linear 1 0.000001 

The MOHA 

Value 

Determination 

𝑂(1) Linear 1 0.000001 

 

where 𝑁𝐸𝐷 is the number of activated edge nodes in the network. In other 

words, it is the number of the received locations information from the activated 

edge nodes. 

The MOHA algorithm suffers a very slightly high computational 

complexity, as indicated in Table 3.6 with respect to the process that 

determines its longest distances, which is handled by the S&I (e.g. the base 

station) only without the MOHA network. On the other hand, the 

computational complexity associated with determining the critical point and 

the MOHA value is almost neglected. Figure 3.21 shows the computational 

complexity for these five processes in the recognition stage utilising the 

MOHA. Note that the computational complexity of the MOHA is based on the 

assumption that 100% of the network nodes are activated as edge nodes, which 

is a worst case scenario for the algorithm and rarely occurs. 
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Figure 3.21: Big-O notation comparisons for processes within MOHA 

recognition stage. 

 

It is clearly shown from the analysis that the MOHA implementation 

incurs less computational complexity during the pattern recognition process 

compared with that of the Hopfield network. For example, the total 

computational complexity (i.e. the number of instructions) for MOHA 

algorithm utilising 35 nodes is 668 during the recognition process. However, it 

is 44135 in the Hopfield network implementation for the recognition stage with 

the same number of nodes. This is mainly a result of employing a simple nearly 

linear function using the MOHA algorithm, whereas the Hopfield network 

employs expensive polynomial and quadratic functions. 
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3.7.2 Scalability analysis 

As mentioned earlier, one of the goals of the MOHA scheme is to provide 

learning capabilities in resource-constrained WSNs while maintaining the high 

scalability and speed of a GN scheme. The scalability factor for the MOHA 

pattern recognition scheme could be determined from two different 

perspectives: the time analysis and the communication efficiency. Table 3.7 

represents the various terms used when estimating the complexity of the 

MOHA algorithm. 

Table 3.7: Symbols and terms for complexity estimation. 

Symbol Terms Name Terms meaning 

𝑇𝑟𝑒𝑐
 

Pattern Receiving 

Time 

The time required by a MOHA network to obtain an 

incoming pattern including the S&I command 

𝑇𝐿𝑜𝑛𝑔𝐷 
Longest Distance 

Determination Time 

The time required by the S&I to determine the longest 

distance between the edge nodes’ locations 

𝑇𝑠𝑒𝑛𝑠𝑒  Sense Time The time required by a node to obtain sensory information 

𝑇𝑐ℎ𝑒𝑐𝑘 Checking Time 
The time required by a node to check whether it represents a 

pattern edge according to Equation 3.29. 

𝑇𝑒𝑥𝑐ℎ Exchange Time 
The time required by nodes to perform exchange 

communications 

𝑇𝑠𝑒𝑛𝑑 Send Time 
The time required to send a message from one node to 

another 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 Report Time 
The time required by the network to conduct report 

communications 

𝑁𝑡𝑖𝑚𝑒𝑠 
The Number of 

Times 

The number of times the distance between the locations of 

activate edge nodes should be calculated in order to 

determine the locations of the two edge nodes that have the 

longest distance between each other. 

𝑇𝑎𝑑𝑑 Addition Time 
Time for the node or the S&I to complete an addition 

operation 

𝑇𝑠𝑢𝑏 Subtraction Time 
Time for the node or the S&I to complete an subtraction 

operation 

𝑇𝑝𝑤 Power Time Time for the S&I to complete an exponent (power) operation 

𝑇𝑟𝑜𝑜𝑡 Square Root Time Time for the S&I to complete a square root operation 

𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 Compare Time The time required by the S&I to compare two values 

𝑁𝐸𝐷 

Number of 

Activated edge 

nodes 

The number of activated edge nodes in the network 

𝑇𝑑𝑖𝑣 Division Time Time for the S&I to complete a division operation 
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𝑇𝑀𝑉 MOHA Value Time 
The time required by the S&I to calculate the MOHA value 

of an incoming pattern 

𝑇𝑟𝑒𝑐𝑎𝑙𝑙 Recalling Time 
The time required by the MOHA network to recall an 

incoming pattern 

𝑇𝑟𝑒𝑎𝑑 Reading Time 
The time required by the S&I to read a single pattern’s 

stored data 

𝑀𝑝 Memorised Patterns The number of memorised patterns in the S&I 

𝑇𝑡𝑜𝑡𝑎𝑙 Total Network Time 
The time required by the MOHA network to perform PR 

operations 

𝑇𝐶𝑃 Critical Point Time The time required by the S&I to determine the critical point 

𝑇𝑚𝑒𝑚 Memorisation Time 
The time required by the MOHA network to memorise an 

incomming pattern 

𝑇𝑤𝑟𝑖𝑡𝑒 Writing Time 
The time required by the S&I to write (store) an incoming  

pattern’s information in ths S&I’s pattern vector 

 

3.7.2.1 Time analysis 

In order to estimate the learning cycle or the recall time of the MOHA 

algorithm, we estimate the time taken by each of its recognition steps, and then 

add them together to estimate the total time needed by the algorithm. For such 

estimation, we assume that all network nodes are activated as edge nodes by a 

given pattern to estimate the maximum time required to learn or recall an 

incoming pattern. 

 The first step is the pattern-receiving step. This step involves 

broadcasting the command message by the S&I and sensing the pattern by the 

nodes. The estimation time for the first step can be calculated using the 

following equation: 

𝑇𝑟𝑒𝑐 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒                                             (3.39) 

 The second step is the node’s exchange of sensory information step. We 

assume that each node has the maximum number of adjacent nodes (4 adjacent 
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nodes) with which to exchange information. Taking parallelism into account, 

the time estimate can be described as follows: 

𝑇𝑒𝑥𝑐ℎ = 4𝑇𝑠𝑒𝑛𝑑                                                 (3.40) 

This is followed by checking whether each node is activated as an edge 

node based on its adjacent nodes’ values, according to Equations 3.28 and 3.29. 

Each activated edge node in the network reports its location information to the 

S&I. Taking parallelism into account, the time estimate can be described as 

follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑇𝑎𝑑𝑑 + 2𝑇𝑠𝑢𝑏 + 𝑇𝑐ℎ𝑒𝑐𝑘 + 𝑇𝑠𝑒𝑛𝑑                         (3.41) 

 Once the activated edge nodes’ location information is reported to the 

S&I, the S&I calculates the longest distance between the edge nodes’ locations 

and determines the locations of the two edge nodes that have the longest 

distance between them. As shown in the previous sub-section, this step is 

considered to have the highest computational complexity in the MOHA 

scheme. 𝑁𝑡𝑖𝑚𝑒𝑠 is the number of times the distance between the locations of 

activate edge nodes should be calculated in order to determine the locations of 

the two edge nodes that have the longest distance between them. Thus, the 

estimation time for this step can be calculated using this equation: 

 𝑇𝐿𝑜𝑛𝑔𝐷 = 𝑁𝑡𝑖𝑚𝑒𝑠 × (3𝑇𝑎𝑑𝑑 + 2𝑇𝑝𝑤 + 𝑇𝑟𝑜𝑜𝑡) + 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒             (3.42) 

According to Equation 3.31, the number of times (𝑁𝑡𝑖𝑚𝑒𝑠) can be 

determined by the number of activated edge nodes (𝑁𝐸𝐷) using the following 

equation: 

𝑁𝑡𝑖𝑚𝑒𝑠 = 𝑁𝐸𝐷(𝑁𝐸𝐷 − 1) ÷ 2                                      (3.43) 
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As a result, 𝑇𝐿𝑜𝑛𝑔𝐷 will be equal to: 

𝑇𝐿𝑜𝑛𝑔𝐷 = (𝑁𝐸𝐷(𝑁𝐸𝐷 − 1) ÷ 2)× (3𝑇𝑎𝑑𝑑 + 2𝑇𝑝𝑤 + 𝑇𝑟𝑜𝑜𝑡) + 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒    (3.44) 

 This is followed by determining the critical point, which is the midpoint 

between the two edge nodes that have the longest distance between them. The 

estimation time for this step can be calculated using this equation: 

𝑇𝐶𝑃 = 2𝑇𝑎𝑑𝑑 + 2𝑇𝑑𝑖𝑣                                            (3.45)  

 In the next step, S&I calculates the MOHA value (𝑀𝑉) of a pattern as 

equal to the total distances between the locations of activated edge nodes and 

the location of the critical point divided by the longest distance between the 

edge nodes’ locations. The estimation time for this step can be calculated using 

this equation: 

𝑇𝑀𝑉 = 𝑁𝐸𝐷 × (3𝑇𝑎𝑑𝑑 + 2𝑇𝑝𝑤 + 𝑇𝑟𝑜𝑜𝑡) + 𝑇𝑑𝑖𝑣                     (3.46) 

 Finally, S&I utilises the number of activated edge nodes and the 𝑀𝑉 of 

the incoming pattern in order to store or recall the pattern. In cases of 

memorisation, the S&I memorising time (𝑇𝑚𝑒𝑚) will be equal to 𝑇𝑤𝑟𝑖𝑡𝑒. However, 

assuming that S&I performs a binary search to find the associated pattern, its recall 

time can be estimated as follows: 

𝑇𝑟𝑒𝑐𝑎𝑙𝑙 = (𝑇𝑟𝑒𝑎𝑑 + 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒) × log2𝑀𝑝                         (3.47) 

On the basis of previous equations, we can now construct the equation 

for calculating the total time taken for all steps of the MOHA for 

memorisation: 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑟𝑒𝑐 + 𝑇𝑒𝑥𝑐ℎ + 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 + 𝑇𝐿𝑜𝑛𝑔𝐷 + 𝑇𝐶𝑃 + 𝑇𝑀𝑉 + 𝑇𝑚𝑒𝑚       (3.48) 
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𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 + 4𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑎𝑑𝑑 + 2𝑇𝑠𝑢𝑏 + 𝑇𝑐ℎ𝑒𝑐𝑘 + 𝑇𝑠𝑒𝑛𝑑

+ (𝑁𝐸𝐷(𝑁𝐸𝐷 − 1) ÷ 2)× (3𝑇𝑎𝑑𝑑 + 2𝑇𝑝𝑤 + 𝑇𝑟𝑜𝑜𝑡) + 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒

+ 2𝑇𝑎𝑑𝑑 + 2𝑇𝑑𝑖𝑣 + 𝑁𝐸𝐷 × (3𝑇𝑎𝑑𝑑 + 2𝑇𝑝𝑤 + 𝑇𝑟𝑜𝑜𝑡) + 𝑇𝑑𝑖𝑣

+ 𝑇𝑚𝑒𝑚                                                                                           (3.49) 

𝑇𝑡𝑜𝑡𝑎𝑙 = 6𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 + 𝑇𝑐ℎ𝑒𝑐𝑘 + (
1

2
𝑁
𝐸𝐷

2

+
1

2
𝑁
𝐸𝐷

)× (3𝑇𝑎𝑑𝑑 + 2𝑇𝑝𝑤 + 𝑇𝑟𝑜𝑜𝑡)

+ 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 3𝑇𝑎𝑑𝑑 + 2𝑇𝑠𝑢𝑏 + 3𝑇𝑑𝑖𝑣 + 𝑇𝑤𝑟𝑖𝑡𝑒                         (3.50) 

 In recall, the total network time required for recall can be estimated as 

follows: 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑟𝑒𝑐 + 𝑇𝑒𝑥𝑐ℎ + 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 + 𝑇𝐿𝑜𝑛𝑔𝐷 + 𝑇𝐶𝑃 + 𝑇𝑀𝑉 + 𝑇𝑟𝑒𝑐𝑎𝑙𝑙       (3.51) 

𝑇𝑡𝑜𝑡𝑎𝑙 = 6𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 + 𝑇𝑐ℎ𝑒𝑐𝑘 + (
1

2
𝑁
𝐸𝐷

2

+
1

2
𝑁
𝐸𝐷

)× (3𝑇𝑎𝑑𝑑 + 2𝑇𝑝𝑤 + 𝑇𝑟𝑜𝑜𝑡)

+ 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 3𝑇𝑎𝑑𝑑 + 2𝑇𝑠𝑢𝑏 + 3𝑇𝑑𝑖𝑣 + (𝑇𝑟𝑒𝑎𝑑 + 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒)

× log
2
𝑀𝑝                                                                                                (3.52) 

 To simplify these calculations, we assume that communicational 

operations times (𝑇𝑠𝑒𝑛𝑑, 𝑇𝑠𝑒𝑛𝑠𝑒) are equal and denoted as (𝑇1). Similarly, 

computational operations times (𝑇𝑎𝑑𝑑,𝑇𝑠𝑢𝑏, 𝑇𝑐ℎ𝑒𝑐𝑘, 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒, 𝑇𝑝𝑤, 𝑇𝑟𝑜𝑜𝑡,𝑇𝑑𝑖𝑣, 

 𝑇𝑟𝑒𝑎𝑑, 𝑇𝑤𝑟𝑖𝑡𝑒) are assumed to be equal, and we denote them as (𝑇2). 

Accordingly, substituting 𝑇1 and 𝑇2 into (3.50) can provide an estimate of the 

total network time required for memorisation. 

𝑇𝑡𝑜𝑡𝑎𝑙 = 7𝑇1 + 11𝑇2+ (
1

2
𝑁
𝐸𝐷

2

+
1

2
𝑁
𝐸𝐷

)× 6𝑇2                    (3.53) 

On the other hand, substituting 𝑇1 and 𝑇2 into (3.52) can provide an 

estimate of the total network time required for recalling. 
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𝑇𝑡𝑜𝑡𝑎𝑙 = 7𝑇1 + 10𝑇2+ (
1

2
𝑁
𝐸𝐷

2

+
1

2
𝑁
𝐸𝐷

)× 6𝑇2 + 2𝑇2 × log
2
𝑀𝑝   (3.54) 

 According to these equations, the total number of nodes (the network 

size) in the wireless sensor network and the pattern size (𝑆𝑝) do not have any 

influence on the total time taken, 𝑇𝑡𝑜𝑡𝑎𝑙. As a result, the MOHA algorithm can 

be effectively scaled to support any number of nodes in the wireless sensor 

network. The MOHA network’s response time is proportional to the number of 

activated edge nodes (𝑁𝐸𝐷) in the network, which is generally less than the 

pattern size, 𝑁𝐸𝐷 < 𝑆𝑝. This minimises the effect of pattern size increase and 

provides the scheme with a high level of scalability. Moreover, the number of 

activated edge nodes 𝑁𝐸𝐷 does not have a significant influence on the total time 

𝑇𝑡𝑜𝑡𝑎𝑙 as it is multiplied by 𝑇2, which refers to the computational operations 

time that is dependent on the processing capability of the S&I (e.g. the base 

station). The S&I has often been deployed in the base station, which makes its 

processing capability very high. This makes the proposed algorithm capable of 

handling an increasing number of activated edge nodes with a minimal 

corresponding increase in the total time taken. From the analysis of the MOHA 

scheme, it can be concluded that the MOHA network is capable of maintaining 

the high scalability feature of the GN network. Furthermore, the analysis shows 

that the scheme is capable of performing learning operations in predictable 

time while restricting the learning cycle so that it is proportional to the number 

of activated edge nodes 𝑁𝐸𝐷. These features make the scheme appropriate for 

tackling large-scale, real-time problems. To sum up, in an ideal wireless sensor 
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network scenario in which all communications can occur simultaneously, the 

MOHA algorithm demonstrates that it is highly scalable and produces only a 

marginal increase in the total time required for pattern recognition. 

3.7.2.2 Communication complexity analysis 

As described in Chapter 2, communication operations are one of the most 

important factors for energy consumption in WSNs. Therefore, the number of 

communications involved in performing pattern recognition using the MOHA 

can be used as the second aspect of scalability determination. High 

communication costs will incur additional overhead for the network to support 

the core functions of the algorithm. Hence, the intention is to minimise the 

communication costs within MOHA. The two MOHA operation types 

(memorise or recall) must be considered when estimating the number of 

communications in a MOHA network. Both memorisation and recall 

operations involve the exchange of communications where each activated node 

sends its information to its adjacent nodes. For such estimation, we assume that 

all network nodes are activated by a given pattern to estimate the maximum 

number of communications required to learn or recall an incoming pattern. In 

the MOHA scheme, normally each activated node has four adjacent nodes, and 

it exchanges information with them. However, the actual number of adjacent 

nodes and exchange communications of an active node varies from two to four 

based on its location or position in the row and whether the row is located at 

the bottom, the middle, or the top of the network, as follows: 
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Bottom row: According to Equation 3.16, the cumulative communication 

costs involved for each input recognition process for all nodes in the bottom 

row, based on the assumption that all the nodes are activated, is derived 

through the following equation: 

𝐶𝑟0 = 3(𝑆𝑠𝑏 − 2) + 4                                            (3.55) 

where 𝐶𝑟0 is the total number of exchanged communications in the bottom row 

(𝑟0) and 𝑆𝑠𝑏 is the size of the sub-pattern that is assigned to this row.      

Middle rows: According to Equation 3.18, the cumulative communication 

costs for all nodes in the all middle rows, based on the assumption that all the 

nodes are activated, is derived through the following equation: 

 𝐶𝑟𝑖
𝑡𝑜𝑡𝑎𝑙 = ∑ (4(𝑆𝑠𝑏 − 2) + 6)

𝑡𝑜𝑝−1
𝑖=1                            (3.56) 

where 𝐶𝑟𝑖
𝑡𝑜𝑡𝑎𝑙 is the total number of exchanged communications in all middle 

rows and 𝑆𝑠𝑏 is the size of the sub-pattern that is assigned to these rows based 

on the assumption that all the middle rows assigned with the same 𝑆𝑠𝑏. 

Top row: According to Equation 3.19, the cumulative communication costs 

involved for each input recognition process for all nodes in the top row, based 

on the assumption that all the nodes are activated, is derived from the following 

equation: 

𝐶𝑟𝑡𝑜𝑝 = 3(𝑆𝑠𝑏 − 2) + 4                                          (3.57) 

where 𝐶𝑟𝑡𝑜𝑝  is the total number of exchanged communications in the top row 

(𝑟𝑡𝑜𝑝) and 𝑆𝑠𝑏 is the size of the sub-pattern that is assigned to this row. 



 

197 

 

 Each activated edge node in the network is required to give one report 

to the S&I. Therefore, the number of report communications can be estimated 

as follows: 

𝐶𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑁𝐸𝐷                                               (3.58) 

where 𝐶𝑟𝑒𝑝𝑜𝑟𝑡 is the total number of report communications to the S&I and 𝑁𝐸𝐷 

is the number of activated edge nodes in the network. 

 The total communication costs for MOHA network in memorisation or 

recalling operations could be derived as follows: 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑟0 + 𝐶𝑟𝑖
𝑡𝑜𝑡𝑎𝑙 + 𝐶𝑟𝑡𝑜𝑝 + 𝑁𝐸𝐷                              (3.59)   

 In order to evaluate the complexity of the proposed scheme’s 

communication process, it will be compared with that of the DHGN algorithm. 

The DHGN algorithm has been selected because it is one of pattern recognition 

schemes for WSNs that offers low communication cost, as discussed in 

Chapter 2. Table 3.8 and Figure 3.22 show the comparison of the 

communication costs for DHGN and MOHA. The MOHA’s total 

communication is based on the assumption that 100% of the network nodes are 

activated as edge nodes. The total communication messages of both algorithms 

are based on the assumption that the sub-pattern size (𝑆𝑠𝑏) is equal to 5. 

From the comparison results, it can be concluded that on average, the 

implementation of the MOHA achieves a saving of 26.1% for message 

passaging when compared to DHGN. As discussed in section 2.5, the number 

of nodes required in DHGN increases exponentially with the increase of the 
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problem (pattern) size, which will lead to an increase in the number of 

messages communicated. 

Table 3.8: Comparison between DHGN and MOHA implementations with 

regards to the number of messages communicated per pattern size (𝑆𝑝). 

𝑺𝒑 𝑪𝒕𝒐𝒕𝒂𝒍
𝑫𝑯𝑮𝑵 𝑪𝒕𝒐𝒕𝒂𝒍

𝑴𝑶𝑯𝑨 

5 28 18 

15 84 59 

25 140 105 

35 196 151 

45 252 197 

55 308 243 

  

 

Figure 3.22: A comparison of communication costs of DHGN and MOHA 

schemes. 

 

 The analyses that have been carried out indicate that the MOHA 

provides high scalability with increasing sizes of patterns through the use of 

smart distributed approaches within a single-cycle learning environment. 

Furthermore, the MOHA has been proven to have less complexity compared to 

Hopfield network, in regards to its processing requirements. Moreover, this 
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section shows that the MOHA scheme offers pattern recognition without 

requiring overly large numbers of message exchanges, which makes it suitable 

for deployment in wireless sensor networks. Clearly, reducing the amount of 

communication between sensor nodes will lead to an increase in the overall 

energy-efficiency of the network. 

 In order to evaluate the MOHA scheme’s capabilities as a pattern 

recognition algorithm, a series of simulations will be analysed in the next 

section. 

3.8 Simulations and Results Analysis 

In this section, a series of tests have been conducted on the MOHA scheme. 

These tests were applied to examine the performance of our proposed 

algorithm and its accuracy as a pattern recognition scheme. The main aim of 

these tests is to prove the capabilities of the MOHA scheme in dealing with 

transformed and noisy patterns. To perform these tests, we constructed a 

database called MPEG7 CE Shape-1 Part B dataset (shapes dataset) that 

consisted of 1400 binary shape images for training and testing [261]. A set of 

these binary images was tested and discussed through these simulations. Inter-

node communications and S&I communications were implemented utilising 

the MPICH-2 library for the message passing interface (MPI) [262]. The 

simulator itself was written in the C/C++ Integrated Development 

Environment. 
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3.8.1 Recognition test on binary images 

This test was used to examine the proposed scheme’s ability to detect noisy 

patterns and provide high classification and recall accuracy. The training 

dataset was constructed by creating and utilising ten shapes modelled as a 

binary image of size 100-by-100 pixels, as shown in Figure 3.23. These images 

were presented to the MOHA network for memorisation (storing). In this test, 

we ran a simulated MOHA network of 10000 nodes assuming that nodes are 

distributed as a grid and each node detects one pixel reading. We also assumed 

that MOHA network is divided into 100 rows and each one of these rows is 

utilised to handle 100-bit binary sub-patterns and the threshold values for node 

activation and edge determination are set to 1 (𝜑 = 1). 

 

 

Figure 3.23: Binary images patterns used in the recognition test. 

This recognition test consisted of two parts. The first part involved the 

recognition of the distorted image “apple” against 10 binary images previously 

stored in the S&I. We applied different levels of noise to the “apple” image 

(from 1% to 30%). The results of this test are shown in Figure 3.24. The 

second part used a similar configuration; however, this part involved the 
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recognition of a variety of shapes of “apple” images to determine the 

classification and recall accuracy of the MOHA algorithm. Figure 3.25 shows 

the results for the second part of the recognition test. 

 

 

Figure 3.24: Results of image recognition test with 5 noisy images. 

 
Figure 3.25: Results of image recognition test with 5 different shapes of an 

image. 

 

 The test results show that the MOHA pattern recognition scheme is 

capable of providing high recall accuracy for noisy binary image recognition 
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(up to 30%). It is also capable of offering high classification accuracy for 

different shapes of the same image. 

3.8.2 Capability of handling pattern transformations 

MOHA achieves invariant recognition mainly by using MOHA values (𝑀𝑉𝑠) 

rather than storing the pattern’s information as is done in standard GN. The 

patterns’ 𝑀𝑉𝑠 are stored in the S&I of a MOHA network as a vector, according 

to Definition 3.10. There are three types of pattern transformations, namely 

displaced positions (also known as translation), scaling (also known as 

dilation), and rotation. In order to show the effects of these types of pattern 

transformations in the pattern recognition schemes, we utilised an example of a 

binary “table” image, shown in Figure 3.26. At the top of the figure, there is an 

image of a table and its corresponding binary pattern, which is stored in the 

system. The bottom of the figure illustrates the three pattern transformations 

types and how these affect pattern representation in a system. The figure 

clearly shows that the change in vantage point or characteristics of the pattern 

can make the pattern look completely different to the pattern recognition 

algorithms, which makes it very hard for them to recognise and classify these 

accurately. 
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Figure 3.26: A variety of pattern transformations. 

 

Figure 3.27: A set of binary images patterns used to check the capacities of 

handling pattern transformations. 

 

 A study has been conducted on MOHA’s performance with respect to 

its ability to deal with transformed patterns. Similar to the previous test, the 

training dataset was constructed by randomly creating and utilising five shapes 

modelled as a binary image of size 100-by-100 pixels, as shown in Figure 3.27. 

These images were presented to the MOHA network for memorisation 

(storing). In this test, we ran a simulated MOHA network of 10000 nodes 

assuming that nodes are distributed as a grid and each node detects one pixel 

reading. We also assume that the MOHA network is divided into 100 rows, 

each of which is utilised to handle 100-bit binary sub-patterns and the threshold 

values for node activation and edge determination are set to 1 (𝜑 = 1). In this 
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test, the MOHA’s performance was compared with those of three well-known 

classifiers, namely Naive Bayes, K-Nearest Neighbours algorithm (KNN) with 

(k=1), and Support Vector Machine (SVM). The Weka tool [263, 264] was 

utilised to simulate these three schemes. In this test, Naive Bayes (one of the 

statistical approaches) and SVM have been chosen because of their capabilities 

in recognising transformations in patterns, as discussed in Section 2.5. 

Moreover, KNN has been chosen because it is one of the well-known 

classification methods that has been widely used in many application domains. 

However, KNN generally experiences high computational complexity due to 

calculating k number of distances. In this test, the k value was set to 1 (k=1). 

The main reason for this choice is that we want to compare the proposed 

schemes with the lowest version of the KNN scheme in terms of computational 

complexity. Having a lightweight scheme in terms of computational 

complexity is one of the thesis requirements. As discussed in sub-section 2.3.3, 

the KNN computational complexity increases for large k values [265]. On the 

other hand, setting the k value to 1 might not provide the scheme with optimal 

performance in terms of accuracy. 
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Figure 3.28: The training images and different samples of the testing images: 

(a) the training images, (b) a sample of rotated images, (c) a sample of scaled 

images, and (d) a sample of translated images. 

 

3.8.2.1 Pattern rotation 

After storing the original binary images patterns, given in Figure 3.28 (a), on 

the S&I of the MOHA network, each one of these images patterns was rotated, 

from 1 to 360 degrees with five degrees for each rotation level, and tested to 

see whether or not the MOHA algorithm was capable of correctly recognising 

these, see Figure 3.28 (b). Figure 3.29 shows the percentage of perfect recalls 

within each rotation degree for the MOHA, Naive Bayes, KNN (k=1), and 

SVM algorithms. The same rotated samples of the images were used for all 

schemes. The accuracy of the schemes is calculated as the total number of 

correctly recalled patterns as a percentage of the number of altered tested 

images. The higher the percentage, the higher the accuracy. 
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Figure 3.29: Comparison on the capability of handling rotated patterns between 

MOHA, Naive Bayes, KNN, and SVM. 

 

 The results presented in Figure 3.29 clearly show that MOHA 

algorithm provides more accurate recognition for rotated patterns than do the 

Naive Bayes, KNN (k=1), and SVM algorithms. The results also show that the 

MOHA offers an average of 312% better recognition accuracy than that 

achieved by the Naive Bayes, KNN, and SVM algorithms. The main reasons 

for these results are the small number of training instances (only one trained 

sample for each image) and the capability of each scheme to deal with these 

types of transformations. As discussed in Chapter 2, when the Naive Bayes 

scheme is used to perform pattern recognition, it attempts to build a 

probabilistic relationship between the training samples and input variables. 
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Since the number of training samples is very limited, the created probabilistic 

relationships cannot efficiently describe each pattern [96, 103]. The SVM 

scheme also requires a large number of training samples in order to create 

separating hyperplanes between classes and correctly classify patterns, as 

discussed in section 2.5. Chapter 2 discussions show that KNN does not have 

the capability of dealing with transformed patterns. Moreover, the results show 

that the MOHA scheme provides excellent accuracy levels (100% accuracy 

level) on 90, 180, 270, and 360 degrees rotation and around them. The main 

reason for this is the limited capability of each node to receive information 

only from four adjacent neighbours. Thus, by increasing the number of 

neighbours that each node interacts with, from 4 to 8 or to 16 neighbours, this 

will enhance the accuracy of the scheme in handling rotated patterns. On the 

other hand, this increasing number of neighbours will require a greater number 

of communication exchanges, which will add to the complexity of the MOHA 

algorithm. 

3.8.2.2 Pattern scaling or dilation 

This test utilises the same training patterns as those shown in Figure 3.28 (a). 

In this test, each one of these image patterns was scaled, from 1% to 100% 

scaling percentages in 5% steps, and tested to see whether or not the MOHA 

algorithm was capable of correctly recognising these, see Figure 3.28 (c). 

Figure 3.30 shows the percentage of perfect recalls for each scaled degree for 
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the MOHA, Naive Bayes, KNN (k=1), and SVM algorithms. The same scaled 

samples of the images were used with all schemes. 

 

 

Figure 3.30: Comparison on the capability of handling scaled patterns between 

MOHA, Naive Bayes, KNN, and SVM. 

 

 The results presented in Figure 3.30 clearly show that the MOHA 

algorithm can provide 100% recognition accuracy in regard to scaled patterns. 

Thus, the MOHA scheme can correctly recognise different sizes of patterns 

(scaled patterns) for the same event. The way the 𝑀𝑉 is calculated in the 

MOHA algorithm, as the relative distance between all edge nodes (to the 

critical point) to the distance of the farthest two edge nodes from each other, is 

the main reason for having this capability to deal with scaled patterns. As been 

discussed in the previous sub-section, the main reasons for the low results 

produced by Naive Bayes, KNN, and SVM are the small number of training 

instances and the capability of each scheme to deal with these types of 
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transformations. Moreover, the results show that KNN and SVM offer 

reasonable accuracy levels until the patterns are scaled by 50% and then their 

ability to provide accurate recognition is reduced. 

3.8.2.3 Pattern displaced positions or translation 

This test also used the same training pattern as the one illustrated in Figure 

3.28 (a). In this simulation, each one of these image patterns was randomly 

translated (displaced) 10 times by shifting the pattern’s location, and tested to 

see whether or not the MOHA algorithm was capable of correctly recognising 

these, see Figure 3.28 (d). Figure 3.31 shows the percentage of perfect recalls 

within each translated pattern’s location for MOHA, Naive Bayes, KNN (k=1), 

and SVM algorithms. The same translated samples of the images were 

presented to all schemes. 

 

 

Figure 3.31: Comparison of the capability of handling pattern translation 

between MOHA, Naive Bayes, KNN, and SVM. 
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 It is clearly seen from Figure 3.31 that the MOHA algorithm can 

provide 100% recognition accuracy even in the presence of translation issues 

with the pattern positions. As a result, the scheme provides very high accuracy 

levels regardless of the positions of patterns in the network. The S&I is 

responsible for controlling the entire recognition process, making the final 

decision regarding the patterns and storing the trained patterns. Thus, wherever 

the patterns appear on the network, the S&I will receive its information and 

recognise it. The figure also shows that Naive Bayes, KNN, and SVM 

algorithms have very low accuracy levels when they deal with translated 

patterns. As discussed in sub-section 3.8.2.1, the main reasons for these low 

results are the small numbers of training instances and the capability of each 

scheme to deal with these types of transformations. 

3.9 Conclusions 

This chapter has presented our proposed approach for pattern recognition, 

namely, the Macroscopic Object Heuristics Algorithm (MOHA). MOHA 

implements a divide-and-distribute approach on MOHA networks. Owing to its 

single-cycle learning and the in-network processing features of GN-based 

algorithms, MOHA is able to offer efficient recognition of patterns with high 

recall accuracy. Furthermore, MOHA’s pattern recognition scheme operates 

with low and stable recognition time, due to its ability to provide high 

recognition accuracy by utilising only the information from the activated edge 

nodes for recognition. 
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 With regards to algorithmic complexity, MOHA has proven to yield a 

low-level complexity for its computation tasks. It performs fast recognition 

incurring single-cycle learning overhead, and takes a highly efficient divide-

and-distribute approach. Comparisons with other pattern recognition 

algorithms including the Hopfield network and DHGN were conducted in order 

to measure the complexity. 

 In terms of scalability, two computational factors, time analysis and 

communication efficiency, were considered. The time analysis of MOHA 

shows that the MOHA algorithm can be effectively scaled to support any 

number of nodes in the network without having a noticeable influence on the 

time required for pattern recognition. In an ideal wireless sensor network 

scenario in which all communication can occur simultaneously, the MOHA 

algorithm is highly scalable while introducing a tiny increase in the total time 

required for pattern recognition. The analysis of the MOHA scheme also shows 

that the MOHA network is capable of maintaining the high scalability 

characteristic of the GN network. Furthermore, the analysis shows that the 

scheme is capable of performing learning operations in predictable time while 

restricting the learning cycle to be proportional to the number of the activated 

edge nodes 𝑁𝐸𝐷. Such features make the scheme a good candidate for 

addressing large-scale, real-time problems. Moreover, a comparison has been 

made between the DHGN approach and our proposed scheme. The results 

showed that the MOHA could provide, on average, message exchange savings 

of 26.1% in comparison with DHGN. 
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 A series of recognition tests were conducted on 100-by-100 bit binary 

images. However, it should be noted that there is no restriction on the overall 

size of the images being used. Furthermore, the results of the tests have shown 

that the MOHA algorithm is capable of providing high recall accuracy for 

noisy binary image recognition. Moreover, it is capable of offering high 

classification accuracies for varying shapes of the same image. The proposed 

scheme has been tested to check its ability to handle three different types of 

pattern transformations. In these tests, the performance of the proposed scheme 

was compared with those of three well-known classifiers, namely Naive Bayes, 

KNN, and SVM. The results show that MOHA offers on average 312% better 

recognition accuracy than Naive Bayes, KNN, and SVM algorithms for the 

recognition of rotated patterns. The results also show that the MOHA algorithm 

can provide excellent recognition accuracy in regard to scaled patterns. 

Furthermore, the MOHA algorithm can provide 100% recognition accuracy for 

translated patterns. 

 The computational complexity analysis of the MOHA algorithm shows 

that it has a very slightly high computational complexity, as indicated in Table 

3.6 with respect to the process of determining its longest distances, which is 

handled by the S&I. It is worth noting that the overall computational 

complexity of MOHA is less than other existing schemes, like Hopfield 

network. As a result, a light version of MOHA scheme, known as Light 

Macroscopic Object Heuristics Algorithm (LMOHA), will be introduced in the 

next chapter. The main aim of this new version is to reduce the computational 
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complexity of the S&I for pattern recognition. We shall also provide a series of 

analyses, evaluations and simulations for LMOHA implementation in addition 

to comparing the new algorithm with the MOHA algorithm. 
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Chapter 4 

4 Light Macroscopic Object Heuristics 

Algorithm (LMOHA) 

 

4.1 Preamble 

In the previous chapter, the MOHA scheme was presented as a lightweight and 

distributed pattern recognition scheme that involves a limited number of 

communications and computations. Such features suit resource-constrained 

systems and networks such as WSNs. It has been shown experimentally that 

MOHA is capable of dealing with noisy and transformed patterns. 

Furthermore, MOHA’s pattern recognition scheme operates with low and 

stable recognition time, compared with other pattern recognition algorithms, 

due to its ability to provide high recognition accuracy by utilising only the 

activated edge nodes information for recognition. 

 However, an analysis of the computational complexity of the MOHA 

algorithm shows that it has a slightly higher computational complexity with 

respect to its determination of longest distances, which is handled by the 

stimulator and interpreter (S&I) (as shown in sub-section 3.7.1). It is worth 
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noting that the overall computational complexity of MOHA is still less than 

those of other existing schemes, as discussed in sub-section 3.7.1. In this 

chapter, a lighter version of the MOHA scheme, namely, the Light 

Macroscopic Object Heuristics Algorithm (LMOHA), will be presented. The 

main aim of this scheme is to reduce the computational complexity of the 

MOHA’s S&I for event detection and pattern recognition, which will reduce 

the overall computational complexity of the MOHA scheme. Moreover, the 

LMOHA scheme offers the same capabilities as the MOHA scheme in dealing 

with noisy and transformed patterns. As shown with the MOHA in sub-section 

3.4.2, the scheme adopts the GN approach to maintain minimal 

communicational and computational requirements in order to provide a 

lightweight pattern recognition scheme that suits resource-constrained systems 

and networks such as WSNs. Instead of using the information about the edges 

of the pattern for recognition as does the MOHA, the LMOHA searches for the 

sensory-based shapes of patterns. These sensory-based shapes will be 

explained in detail in the next section. The main hypothesis in this chapter is 

that by describing events and patterns using their sensory-based shapes, it is 

possible to achieve an efficient recognition scheme that has a very low 

computational complexity and can detect transformed and noisy patterns. The 

scheme maintains limited communications and computations by involving 

local information exchange and reporting mechanisms that distribute resource 

consumption loads amongst the network’s nodes. In achieving efficient 

recognition and fast reporting and by limiting resource consumption, the 
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LMOHA scheme has demonstrated its suitability for real-life applications that 

deal with complex problems in resource-constrained networks such as WSNs. 

This chapter also presents descriptions of the protocols that are required in 

order to make the proposed scheme applicable for implementation in network 

environments. Furthermore, a series of analyses, evaluations and simulations 

for LMOHA implementation is provided along with a comparison between it 

and MOHA scheme.              

The objectives of this chapter are as follows: 

1. To propose a lighter version of the MOHA pattern recognition scheme, 

which is capable of reducing the S&I’s computational complexity and 

detecting transformed and noisy patterns. 

2. To perform extensive evaluation and analysis of the complexity of the 

LMOHA scheme in terms of computations and number of 

communications. Additionally, the LMOHA scheme will be compared 

with the MOHA scheme in these terms.  

3. To present simulation results of the MOHA and LMOHA schemes in 

order to ascertain their strengths and limits of tolerance using different 

types of patterns, especially those that deal with transformed and noisy 

patterns.    

The remainder of this chapter is organised as follows: Section 4.2 

discusses the detection of patterns’ shapes, focusing on the philosophical 

grounds for this type of pattern detection. Section 4.3 presents a LMOHA 

scheme structure for pattern recognition. In this section, the scheme together 
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with its associated components will be described in more detail. Section 4.4 

discusses the communicational requirements of the LMOHA scheme and its 

network communication protocol. Section 4.5 provides an extensive review of 

the analyses that have been carried out on the LMOHA algorithm. These 

analyses focus on the complexity of the algorithm and are intended to validate 

the suitability of the LMOHA for use in WSN environments. A comparative 

analysis of the LMOHA and MOHA pattern recognition algorithms is also 

conducted. In Section 4.6, a series of tests conducted on the LMOHA and 

MOHA schemes are described. The main aims of these tests are to compare the 

recognition accuracy of the LMOHA and MOHA schemes and to estimate the 

limits of tolerance of both schemes to transformed and noisy patterns. Section 

4.7 provides an overall discussion of the LMOHA scheme. 

4.2 The Philosophical Grounds of Patterns’ 

Shapes Detection 

Pattern recognition and image processing applications are typically used to 

recognise and classify objects based on their shape [266-268]. Usually, a 

fundamental step in the automatic detection and classification of the objects is 

to discover an object in an image utilising the features related to its shape [266-

269]. Hence, shape detection plays an important role and can be used 

extensively in a variety of applications. As discussed previously in Chapter 3 

sub-section 3.3.3, events in WSN can be described as shapes (i.e. objects or 
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boundaries) but not visual shapes. They can be described as sensory-based 

shapes. The pattern sensory-based shape referred to in this thesis can be 

described as follows: 

 

Definition 4.1: (the pattern sensory-based shape) Given an active node 𝑁𝑖
𝑟𝑚  

and its four adjacent nodes 𝑁𝑖−1
𝑟𝑚 , 𝑁𝑖+1

𝑟𝑚 , 𝑁𝑖
𝑟𝑚+1, and 𝑁𝑖

𝑟𝑚−1, the pattern sensory-

based shape is a description of the relationships between the sensory-based 

values of the active node's 4 adjacent nodes, which is creating a sensory-based 

like shape (see Figure 4.1). It is a part of an event’s overall sensory-based 

shape, which can be described as a complex edge. 

where 𝑖 is the node’s position in its row and 𝑚 is the node’s row number. 

Figure 4.1 shows the difference between the MOHA’s proposed 

technique for edges determination and the new scheme proposed in this chapter 

(i.e. LMOHA) which is as technique used to determine sensory-based shapes 

for two binary character patterns (A and E). As shown in Figure 4.1, the latter 

technique provides extra information about the distribution of the sensory-

based values of patterns or events (between the nodes or in the sensed field) 

compared with the edges determination technique proposed in Chapter 3. This 

extra information can be used to recognise events and patterns without the need 

to calculate the distances between the edges of patterns during the recognition 

procedure (like that of MOHA), which will reduce the computational 

complexity of the MOHA’s S&I and lead to a reduction of the overall 

computational complexity of the MOHA scheme.            
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Similar to the MOHA, the knowledge obtained from edge detection 

techniques in image processing and segmentation will be utilised to recognise 

events that produce sensory-based shapes on the basis of the sensor readings. 

The sensory-based shapes that can be created from the relationships between 

the four adjacent nodes’ values are: plus, T, corner, and edge shapes (as shown 

in Figure 4.1). As a result, the event can be identified by knowing the total 

appearances of each of these four sensory-based shapes in the complete pattern. 

 

 

Figure 4.1: Two-binary character patterns with their activated edges in 

MOHA and their activated shapes in LMOHA. 

 

 A pattern is divided into sub-patterns and then the sensory-based shapes 

of these sub-patterns are derived and stored for subsequent recognition. Thus, 

by identifying the frequency of occurrences on a pattern of each of these 

sensory-based shapes, the pattern recognition algorithm will be capable of 

recognising the entire pattern without requiring a huge amount of processing 
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power. The main hypothesis in this chapter is that by describing events and 

patterns using their sensory-based shapes, it is possible to achieve an efficient 

recognition scheme that has a very low computational complexity and can 

detect transformed and noisy patterns. Sub-section 4.3.2 provides a detailed 

discussion of the way in which the proposed scheme can determine these 

sensory-based shapes in events or patterns. 

4.3 Overview of Light Macroscopic Object 

Heuristics Algorithm (LMOHA) 

This section describes the structure of the LMOHA and the outcomes that can 

be expected from such architecture. Similar to the MOHA, the main goal of 

developing the LMOHA scheme is to provide efficient pattern recognition for 

WSNs while minimising resource consumption and network size, which is 

capable of detecting events, transformed, and noisy patterns. Moreover, similar 

to the MOHA, the LMOHA scheme is based on coding techniques, which are 

defined in [255] as reproducing an incoming pattern and using a small number 

of active nodes for processing at any given time. To achieve the intended level 

of detection and minimise resource consumption, the LMOHA implements a 

local adjacency-based relationships mechanism for coding purposes in a fully 

distributed and parallel manner that is capable of detecting events, noisy 

patterns, and pattern transformations such as translation, scaling (i.e. dilation) 

and rotation with minimal computational and communication requirements. 
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The LMOHA utilises this mechanism to locate and determine the sensory-

based shapes of an incoming pattern. The LMOHA utilises only those nodes 

located on the locations of the sensory-based shapes (i.e. plus, T, corner and 

edge shapes) of a pattern in the recognition process, which minimises the 

number of sensor nodes required for recognition. Plus, T, corner and edge 

nodes are determined locally and only once, based on the relationship between 

their neighbours’ values. A detailed discussion of the way in which the 

proposed scheme can determine these types of nodes will be provided in sub-

section 4.3.2. These nodes report their type information to the S&I in order to 

obtain a final decision about an incoming pattern. The hypothesis underlying 

this approach is that events and patterns can be efficiently recognised based on 

information about their sensory-based shapes. Since these shapes are detected 

by local nodes’ computations, the number of communications and amount of 

resources required is minimised. 

 Figure 4.2 illustrates the LMOHA model. Similar to the MOHA, this 

model consists of two main entities: the LMOHA network and the stimulator 

and interpreter (S&I). The S&I is responsible for sending commands to the 

LMOHA network. It receives the nodes’ types information, from nodes located 

on the locations of the sensory-based shapes (i.e. plus, T, corner and edge 

shapes) of a pattern, and makes a final decision about an incoming pattern. A 

command message can be to either memorise or recall a pattern. It also 

includes information about the pattern, or commands the network to obtain 

sensory information. The LMOHA network nodes process the S&I command 
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and reply with information about the nodes’ types. The S&I uses this 

information to memorise or recall the sensed or sent pattern. 

 

 

Figure 4.2: The LMOHA communication model. 

4.3.1 LMOHA network 

The LMOHA network structure is similar to that of the MOHA network which 

is presented in Chapter 3. The aim of the network structure is to: have a scheme 

with low pattern recognition complexity, provide parallel processing, provide 

efficient recognition, and have a predetermined duration for the learning and 

recognition cycle. A fully distributed structure will produce a scheme with low 

complexity that allows sensor nodes in the network to communicate only with 

adjacent nodes. The LMOHA’s structure allows each node to communicate 

with four adjacent nodes in order to determine whether it represents a pattern 

sensory-based shape (i.e. plus, T, corner or edge). In the LMOHA scheme, only 

plus, T, corner and edge nodes’ information are utilised for pattern recognition. 

This minimises the number of sensor nodes required for recognition. Efficient 

recognition is provided by describing the patterns’ sensory-based shapes in 

order to provide the scheme with a transformation-invariant recognition 

feature. The purpose of using plus, T, corner and edge nodes types information 
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is to allow the detection of any particular pattern’s sensory-based shapes by 

any node in the network. In other words, the detection of any desired pattern’s 

shapes is not associated with static nodes. Instead, any node in the network is 

expected to be able to determine the same sensory-based shape’s type (i.e. node 

type) based on its adjacent nodes’ values. By using specific steps to determine 

plus, T, corner and edge nodes and reporting information about their types, the 

LMOHA will have a single learning and recognition time cycle that can be 

predicted and estimated. Once all the information about plus, T, corner and 

edge node types has been delivered to S&I, the LMOHA does not need further 

information from sensor nodes in order to declare the detection of a specific 

event or pattern. This feature reduces the need for communications between 

S&I and participant nodes in the network. Figure 4.3 shows that 

communication within the LMOHA scheme occurs in a single-cycle 

environment, wherein, each pattern is passed via the network only once. 

 Similar to the MOHA, the network structure depends on the size of the 

problem pattern and the size of the sub-pattern (determined according to the 

system user or the WSN application requirements). The deployment of the 

network uses the deployment algorithm described in Algorithm 3.1. The 

deployment of the network begins by implementing a number of nodes in the 

first row equal to the sub-pattern size (𝑆𝑠𝑏), according to Equation 3.15. Then, 

the second row nodes (equal to 𝑆𝑠𝑏) are implemented and so on until all nodes 

in all rows have been deployed in the network. The LMOHA network contains 

many sensor nodes distributed in the field of interest in a certain multi-row 
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manner as shown in Figure 4.4. It is important to highlight that node 

deployment in this sub-section is a logical deployment method. In other words, 

deployment can be implemented by assigning each node to its row and its 

position in this row. 

 

 

Figure 4.3: LMOHA framework for pattern recognition. 

 

Figure 4.4: An example of an LMOHA network consisting of 3 rows and 

assigned with a 9-bit pattern size. 
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 The network structure consists of multiple rows. A row is a GN array 

that consists of a set of nodes of the form (𝑆𝑖 = 𝑆𝑠𝑏), where 𝑆𝑖 is the size of the 

row number 𝑖 (i.e. the number of nodes in row 𝑖). As discussed in Chapter 3, by 

involving multiple rows in the network structure, this enables parallel 

processing and information exchange of incoming data by dividing the pattern 

into a set of sub-patterns. This will also allow the network to deal with 

different pattern types that require multi-dimensional processing.  

 The network row according to Definition 3.3 is a GN network that 

consists of a set of nodes where each node communicates with its adjacent 

nodes in the same row and in the higher and lower rows. The communications 

between nodes in rows are called exchange communications (Definition 3.4). 

Similar to the MOHA, normally each node has four adjacent nodes with which 

it communicates. However, the actual number of adjacent nodes and the 

communication exchanges of a node vary from two to four based on its 

location or position in the row and whether the row is located at the base, the 

middle, or the top of the network, as discussed in sub-section 3.4.2. The main 

purpose of having four adjacent nodes is to enable the scheme to recognise 

transformed patterns, especially the rotated ones, as the scheme will obtain a 

better description about the incoming pattern and its distribution. 

 Each node in the LMOHA network receives its assigned command and 

pattern element, exchanges information with adjacent nodes, determines its 

type, and sends its type information to the S&I. The four commands, {𝑀, 𝑝}, 

{𝑀, 𝑆}, {𝑅, 𝑝}, and {𝑅, 𝑆} described in Table 3.3 are used to train the LMOHA 
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network and recognise patterns. Similar to the MOHA, based on data sensed or 

received from S&I, each node is activated or de-activated according to the 

activation criteria stated in Definition 3.2. Another round of the activation 

process is performed by each node after exchanging communications. Based on 

the values received from the adjacent nodes, a node can decide whether or not 

to be activated. If the node obtains a pattern’s sensory-based shape values, it is 

activated. Only activated nodes participate in the pattern detection process so 

as to limit the use of node resources and to reduce the detection time by 

limiting the number of communicating nodes. 

 One of the reasons for having a multi-row structure in the LMOHA 

network is to provide each node in the network with four adjacent nodes with 

which it can exchange information. This enables a node to have an extended 

view of the incoming pattern, which allows it to determine whether or not it 

represents a pattern sensory-based shape (i.e. plus, T, corner or edge). The 

activation of a node (Definition 3.2) triggers the start of an exchange 

communication process for that node with its adjacent neighbours, as stated in 

Definition 3.4. After receiving information from all adjacent nodes, the 

activated node determines whether it represents a pattern sensory-based shape 

according to Equation 4.3. Based on the resulting node type, it either de-

activates or goes for the second level of activation called ‘node types 

activation’. There are four types of node activations in LMOHA 

implementation, namely active plus node, active T node, active corner node, 
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and active edge node. These node activation types are presented in the 

following: 

 

Definition 4.2: (the active plus node) Given an active node 𝑁𝑖
𝑟𝑚  and its four 

adjacent nodes 𝑁𝑖−1
𝑟𝑚 , 𝑁𝑖+1

𝑟𝑚 , 𝑁𝑖
𝑟𝑚+1, and 𝑁𝑖

𝑟𝑚−1, the node will be activated as a 

plus node if its node type is 𝑝𝑙𝑢𝑠 (𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 = 𝑝𝑙𝑢𝑠). 

where 𝑖 is the node’s position in its row, 𝑚 is the node’s row number, and 

𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 is the node’s type, which is determined according to Equation 4.3. 

The procedure to determine a node’s type is explained in detail in the next sub-

section. 

 

Definition 4.3: (the active T node) Given an active node 𝑁𝑖
𝑟𝑚 and its four 

adjacent nodes 𝑁𝑖−1
𝑟𝑚 , 𝑁𝑖+1

𝑟𝑚 , 𝑁𝑖
𝑟𝑚+1, and 𝑁𝑖

𝑟𝑚−1, the node will be activated as a T 

node if its node type is 𝑇 (𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 = 𝑇). 

where 𝑖 is the node’s position in its row, 𝑚 is the node’s row number, and 

𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 is the node’s type, which is determined according to Equation 4.3. 

 

Definition 4.4: (the active corner node) Given an active node 𝑁𝑖
𝑟𝑚 and its four 

adjacent nodes 𝑁𝑖−1
𝑟𝑚 , 𝑁𝑖+1

𝑟𝑚 , 𝑁𝑖
𝑟𝑚+1, and 𝑁𝑖

𝑟𝑚−1, the node will be activated as a 

corner node if its node type is 𝑐𝑜𝑟𝑛𝑒𝑟 (𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑟𝑛𝑒𝑟). 

where 𝑖 is the node’s position in its row, 𝑚 is the node’s row number, and 

𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 is the node’s type, which is determined according to Equation 4.3. 
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Definition 4.5: (the active edge node) Given an active node 𝑁𝑖
𝑟𝑚  and its four 

adjacent nodes 𝑁𝑖−1
𝑟𝑚 , 𝑁𝑖+1

𝑟𝑚 , 𝑁𝑖
𝑟𝑚+1, and 𝑁𝑖

𝑟𝑚−1, the node will be activated as an 

edge node if its node type is 𝑒𝑑𝑔𝑒 (𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 = 𝑒𝑑𝑔𝑒). 

where 𝑖 is the node’s position in its row, 𝑚 is the node’s row number, and 

𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 is the node’s type, which is determined according to Equation 4.3. 

 In the LMOHA scheme, only the information about activated plus, T, 

corner and edge nodes is used for pattern recognition. Therefore, all plus, T, 

corner and edge nodes in the network are required to send their types 

information to the S&I for further analysis and recognition. The 

communications between the LMOHA network’s plus, T, corner and edge 

nodes and the S&I are called report communications and can be described as 

follows: 

 

Definition 4.6: (Report communications) Given a LMOHA network that 

consists of m nodes, a report communication of an active plus, T, corner, or 

edge node is the message (connection) between a plus, T, corner, or edge node 

in the network and the S&I that contains the node’s type information, in the 

form: 𝑃𝑁𝑖
𝑟𝑚 → 𝑆𝐼: {𝑡𝑦𝑝𝑒}, 𝑇𝑁𝑖

𝑟𝑚 → 𝑆𝐼: {𝑡𝑦𝑝𝑒}, 𝐶𝑁𝑖
𝑟𝑚 → 𝑆𝐼: {𝑡𝑦𝑝𝑒}, or 

𝐸𝑁𝑖
𝑟𝑚 → 𝑆𝐼: {𝑡𝑦𝑝𝑒}. 

where 𝑃𝑁𝑖
𝑟𝑚  is the communicating (activate) plus node in a row number 𝑚 

with a position number 𝑖, 𝑇𝑁𝑖
𝑟𝑚  is the communicating (activate) T node in a 

row number 𝑚 with a position number 𝑖, 𝐶𝑁𝑖
𝑟𝑚 is the communicating (activate) 

corner node in a row number 𝑚 with a position number 𝑖, 𝐸𝑁𝑖
𝑟𝑚 is the 
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communicating (activate) edge node in a row number 𝑚 with a position 

number 𝑖, 𝑆𝐼 is the stimulator and interpreter (S&I), and 𝑡𝑦𝑝𝑒 is the node’s 

type information. Figure 4.3 shows the report communications occurring 

between 6 activated nodes, 1 plus, 1 T, 2 corner, and 2 edge nodes, and the 

S&I. 

 In report communications, in regards to the communication cost, the 

total number of messages communicated from plus, T, corner and edge nodes 

to the S&I, 𝑁𝑟𝑒𝑝𝑜𝑟𝑡
𝑚𝑠𝑔

 is equivalent to the number of activated plus, T, corner and 

edge nodes, 𝑁𝑝𝑙𝑢𝑠, 𝑁𝑇, 𝑁𝑐𝑜𝑟𝑛𝑒𝑟, and 𝑁𝑒𝑑𝑔𝑒, as given by the following equation: 

 𝑁𝑟𝑒𝑝𝑜𝑟𝑡
𝑚𝑠𝑔

= 𝑁𝑝𝑙𝑢𝑠 + 𝑁𝑇 +𝑁𝑐𝑜𝑟𝑛𝑒𝑟 + 𝑁𝑒𝑑𝑔𝑒                         (4.1) 

  Figure 4.5 shows the steps that each node in the network performs in 

the learning process. It is worth noting that nodes in both the MOHA and the 

LMOHA networks perform the same first three steps. These steps are: 

1. Receive command: The node receives the broadcasted command 

from S&I that contains the operation (memorise or recall) and the 

pattern element obtaining method (direct receive or sense). Further 

details about this command message are presented in section 3.5. 

2. Obtain pattern element: Based on the command message, each node 

begins to receive its assigned pattern element 𝑝𝑖. Each node sets its 

value (v) according to the obtained pattern element. If a node’s value 

complies with certain user-defined conditions (e.g. reaching a certain 

threshold), it is activated, according to Definition 3.2. 
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3. Exchange communications: Each activated node performs exchange 

communications with its neighbouring nodes, as described in 

Definition 3.4. Then, the activated node determines whether it 

represents a pattern sensory-based shape according to Equation 4.3. 

Based on the equation result, it either de-activated or activated as a 

plus, T, corner or edge node, as described in Definitions 4.2-4.5. 

4. Report communications: Each activated plus, T, corner and edge 

node in the network reports its type information to the S&I, as 

described in Definition 4.6. 

 

Communication
starts

Receive 
command

Sense or 
received 
pattern?

Get sensory 
information

Exchange adjacent 
nodes information

Active node?

Active plus, T, 
corner, or edge 

node?

Report its type 
information to S&I

Communication
ends

Sense

Received

No

Yes

No

Yes

 

Figure 4.5: LMOHA network node operations. 
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4.3.2 Determining the activated node type (pattern shape 

search) 

The LMOHA scheme represents patterns in terms of compositions of values, 

which are the sequence numbers of each activated node type. The main goals 

of the proposed approach are to reduce the overall computational complexity of 

the scheme recognition process and to enable the detection of pattern 

transformation (e.g. rotation, displaced positions (translation), and scaling 

(dilation)). To achieve these goals, the LMOHA scheme searches for plus, T, 

corner, and edge shapes in the pattern’s data domain. An active node type is 

determined according to the values received from its adjacent nodes using the 

node’s exchange communications (see Definition 3.4). The LMOHA scheme 

describes the relationships between the sensory-based values received from the 

active node's 4 adjacent nodes as sensory-based shapes (see Figure 4.1). 

Similar to the MOHA, the knowledge obtained from edge detection techniques 

in image processing and segmentation, based on the Sobel edge detection 

operator to be more specific, will be utilised to recognise events that produce 

sensory-based shapes on the basis of the sensor readings. 

There are five types of active nodes: the active plus node (𝑝𝑙𝑢𝑠), where 

an active node’s gradient magnitude (|𝐺(𝑁𝑖
𝑟𝑚)|) is almost equal zero 

(|𝐺(𝑁𝑖
𝑟𝑚)| ≈ 0). The active node’s gradient magnitude can be calculated using 

Equation 3.28 in the previous chapter. This happens only when the sensory-

based values of the active node's four adjacent nodes are almost identical, 
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which creates a sensory-based plus-like shape (see Figure 4.1); the active T 

node (𝑇), where an active node’s gradient magnitude is greater than zero and 

equal or less than the threshold value for edge determination (𝜑), 0 <

|𝐺(𝑁𝑖
𝑟𝑚)| ≤ 𝜑, and the angle of orientation of the edge (relative to LMOHA 

network structure) is equal to 0 degree (𝜃 (𝐺(𝑁𝑖
𝑟𝑚)) = 0°). This happens only 

when the sensory-based values of the three adjacent nodes are almost identical, 

which creates a sensory-based T like shape (see Figure 4.1); the active corner 

node (𝑐𝑜𝑟𝑛𝑒𝑟), where an active node’s gradient magnitude is greater than the 

threshold value for edge determination (|𝐺(𝑁𝑖
𝑟𝑚)| > 𝜑) and the angle of 

orientation of the edge is equal to 45 degrees (𝜃 (𝐺(𝑁𝑖
𝑟𝑚)) = 45°). This 

happens when the active node’s gradients of both orientations (x,y) have high 

and equal values, which create a sensory-based corner-like shape (see Figure 

4.1); and the active edge node (𝑒𝑑𝑔𝑒), where an active node’s gradient 

magnitude is greater than the threshold value for edge determination 

(|𝐺(𝑁𝑖
𝑟𝑚)| > 𝜑) and the angle of orientation of the edge is equal to 0 degree 

(𝜃 (𝐺(𝑁𝑖
𝑟𝑚)) = 0°). This happens when only one orientation (x or y) of the 

active node's gradients have a highly noticeable value, which creates a sensory-

based edge-like shape (see Figure 4.1); otherwise the node type will be set to 

𝑛𝑜𝑛𝑒 and deactivated. 
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The angle of orientation of the edge (relative to LMOHA network 

structure) 𝜃 (𝐺(𝑁𝑖
𝑟𝑚)), can be calculated using the following equation or 

piecewise function [202, 207, 256]: 

   𝜃 (𝐺(𝑁𝑖
𝑟𝑚)) = {

arctan (
𝐺𝑦(𝑁𝑖

𝑟𝑚)

𝐺𝑥(𝑁
𝑖
𝑟𝑚)
) ,   𝑖𝑓 𝐺𝑥(𝑁𝑖

𝑟𝑚) > 0  

0,                                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
                 (4.2) 

 An active node type is determined by the following function of the node 

value and adjacent node values: 𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 = 𝑓(𝑁𝑖
𝑟𝑚(𝑣), 𝑁𝑖+1

𝑟𝑚 (𝑣),𝑁𝑖−1
𝑟𝑚 (𝑣), 

𝑁𝑖
𝑟𝑚+1(𝑣), 𝑁𝑖

𝑟𝑚−1(𝑣)), where 𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 is the active node type, 𝑁𝑖
𝑟𝑚(𝑣) is the 

value of the current node, 𝑁𝑖+1
𝑟𝑚 (𝑣) is the value of the next node in the same 

row, 𝑁𝑖−1
𝑟𝑚 (𝑣) is the value of the previous node in the same row, 𝑁𝑖

𝑟𝑚+1(𝑣) is 

the value of the adjacent node in the next higher row, and 𝑁𝑖
𝑟𝑚−1(𝑣) is the 

value of the adjacent node in the lower row. This relationship can be described 

through the following piecewise function: 

𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 =

{
 
 
 

 
 
 
𝑝𝑙𝑢𝑠,        𝑖𝑓 |𝐺(𝑁𝑖

𝑟𝑚)| ≈ 0                                                    

𝑇,              𝑖𝑓 0 < |𝐺(𝑁𝑖
𝑟𝑚)| ≤ 𝜑 𝑎𝑛𝑑 𝜃 (𝐺(𝑁𝑖

𝑟𝑚)) = 0°

𝑐𝑜𝑟𝑛𝑒𝑟,   𝑖𝑓 |𝐺(𝑁𝑖
𝑟𝑚)| > 𝜑 𝑎𝑛𝑑 𝜃 (𝐺(𝑁𝑖

𝑟𝑚)) = 45°       

𝑒𝑑𝑔𝑒,       𝑖𝑓 |𝐺(𝑁𝑖
𝑟𝑚)| > 𝜑 𝑎𝑛𝑑 𝜃 (𝐺(𝑁𝑖

𝑟𝑚)) = 0°          

𝑛𝑜𝑛𝑒,      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                

   (4.3) 

 Now, we will present some examples which cover all node types and 

corresponding pattern distributions.  

Example 1: In pattern 𝑃1 = {300,400,350,400,300,400,350,400,450}, 9 

elements have to be split into 3 sub-patterns of 3 elements with each sub-

pattern assigned to a different LMOHA row (see Figure 4.4) and the threshold 
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value for edge determination is set to 500 (𝜑 = 500). In this example, the 

middle node in the second row is categorised as a 𝑝𝑙𝑢𝑠, as its gradient is equal 

to zero (|𝐺(𝑁𝑖
𝑟𝑚)| = 0). This means that the values of its adjacent nodes are 

identical.  

Example 2: In pattern 𝑃2 = {500,300,350,400,300,400,500,400,350}, the 

middle node in the second row is categorised as a 𝑇, as its gradient is equal to 

200 (less than the threshold value for edge determination 𝜑 = 500) and the 

angle of orientation of the edge is equal to zero degree, |𝐺(𝑁𝑖
𝑟𝑚)| =

200 𝑎𝑛𝑑 𝜃 (𝐺(𝑁𝑖
𝑟𝑚)) = 0°. This means that the sensory-based values of only 

3 adjacent nodes are identical.  

Example 3: In pattern 𝑃3 = {500,350,350,500,300,350,400,500,350}, the 

middle node in the second row is categorised as a 𝑐𝑜𝑟𝑛𝑒𝑟, as its gradient is 

equal to 600 (greater than the threshold value for edge determination 𝜑 = 500) 

and the angle of orientation of the edge is equal to 45 degrees, |𝐺(𝑁𝑖
𝑟𝑚)| =

600 𝑎𝑛𝑑 𝜃 (𝐺(𝑁𝑖
𝑟𝑚)) = 45°. This means that the gradients of both 

orientations (x,y) have high and equal values.  

Example 4: In pattern 𝑃4 = {500,400,350,500,300,200,500,400,350}, the 

middle node in the second row is categorised as an 𝑒𝑑𝑔𝑒, as its gradient is 

equal to 600 (greater than the threshold value for edge determination 𝜑 = 500) 

and the angle of orientation of the edge is equal to 0 degree, |𝐺(𝑁𝑖
𝑟𝑚)| =
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600 𝑎𝑛𝑑 𝜃 (𝐺(𝑁𝑖
𝑟𝑚)) = 0°. This means that only one orientation (x or y) of 

the node' gradients has highly noticeable value.  

Example 5: In pattern 𝑃5 = {400,400,400,400,350,300,450,300,400}, the 

middle node in the second row is categorised as a 𝑛𝑜𝑛𝑒, as its gradient is equal 

to 400 (less than the threshold value for edge determination 𝜑 = 500) and the 

angle of orientation of the edge is equal to 45 degrees, |𝐺(𝑁𝑖
𝑟𝑚)| =

400 𝑎𝑛𝑑 𝜃 (𝐺(𝑁𝑖
𝑟𝑚)) = 45°. This means that its values do not meet the 

criteria for any of the defined node type conditions. 

4.3.3 Stimulator and interpreter (S&I) 

The main objective of the second version of the proposed scheme is to reduce 

the computational complexity of the S&I for pattern recognition, which will 

lead to a reduction of the overall computational complexity of the scheme. The 

S&I component is responsible for sending commands to the LMOHA network, 

receiving the types information of the activated nodes, and making the final 

decision about an incoming pattern. The LMOHA uses the same pattern 

obtaining method as MOHA, as described in section 3.5. Hence, the four 

commands, {𝑀, 𝑝}, {𝑀, 𝑆}, {𝑅, 𝑝}, and {𝑅, 𝑆}, described in Table 3.3 are used 

to train a LMOHA network and recognise patterns. The LMOHA network 

nodes process the S&I command and respond with information about the 

activated node types. This information about the activated node types indicates 

the pattern’s sensory-based shapes. The method used to determine the activated 
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node type was discussed previously in sub-section 4.3.2. The S&I uses the 

information about the activated node types to memorise or recall the sensed or 

received patterns. After the S&I receives this information from the LMOHA 

network, it begins the process of memorising or recalling a pattern. In 

memorisation, the S&I assigns a unique index number to the pattern, associates 

this number with the total received numbers of each types of activated nodes 

(sensory-based shapes), and stores the index number and the associated total 

numbers of each type of activated node in its memory. This results in a set of 

patterns stored in a vector that can be described as follows: 

 

Definition 4.7: (Pattern vector) Given a set of patterns {𝑃1, 𝑃2, … , 𝑃𝑡}, the S&I 

memorises these patterns by obtaining each pattern’s total numbers of activated 

plus nodes (𝑃𝑁𝑖), activated T nodes (𝑇𝑁𝑖), activated corner nodes (𝐶𝑁𝑖), and 

activated edge nodes (𝐸𝑁𝑖) from a LMOHA network, assigning a unique index 

number (𝐼𝑖) to each pattern, and storing the associations of patterns, the total 

numbers of activated plus nodes, activated T nodes, activated corner nodes, and 

activated edge nodes as a pattern vector in the S&I in the following form: 

�⃗� = {(𝐼1, 𝑃𝑁1, 𝑇𝑁1, 𝐶𝑁1, 𝐸𝑁1), (𝐼2, 𝑃𝑁2, 𝑇𝑁2, 𝐶𝑁2, 𝐸𝑁2), … , (𝐼𝑡 , 𝑃𝑁𝑡 , 𝑇𝑁𝑡 , 𝐶𝑁𝑡 , 𝐸𝑁𝑡)} 

, 𝐼𝑖, 𝑃𝑁𝑖 , 𝑇𝑁𝑖, 𝐶𝑁𝑖𝐸𝑁𝑖 ∈ ℕ                                           (4.4) 

 In recall, the S&I searches the pattern vector to find a match. The 

declaration that a pattern has been detected depends on the total differences 

between the LMOHA network’s activated plus, T, corner, and edge nodes 
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numbers and the activated plus, T, corner, and edges nodes numbers stored in 

the pattern vector as follows: 

 

Definition 4.8: (Recalled pattern) Given numbers of activated plus, T, corner, 

and edge nodes determined by the LMOHA network (𝑃𝑁𝑐 , 𝑇𝑁𝑐 , 𝐶𝑁𝑐 , 𝐸𝑁𝑐), and a 

pattern vector, the recalled pattern (𝑅𝑃) will be the index number with the 

smallest differences between the determined plus, T, corner, and edge nodes 

numbers and the set of plus, T, corner, and edge nodes numbers stored in the 

pattern vector as follows: 

𝑅𝑃 = 𝐼[min(∆𝑃𝑁1𝑐 + ∆𝑇𝑁1𝑐 + ∆𝐶𝑁1𝑐 + ∆𝐸𝑁1𝑐, ∆𝑃𝑁2𝑐 + ∆𝑇𝑁2𝑐 + ∆𝐶𝑁2𝑐

+ ∆𝐸𝑁2𝑐, … , ∆𝑃𝑁𝑡𝑐 + ∆𝑇𝑁𝑡𝑐 + ∆𝐶𝑁𝑡𝑐 + ∆𝐸𝑁𝑡𝑐)]                (4.5) 

where ∆𝑃𝑁𝑖𝑐 is the difference between the 𝑖𝑡ℎ stored pattern number of 

activated plus nodes and the number of activated plus nodes determined by the 

LMOHA network for an incoming pattern (current pattern), ∆𝑇𝑁𝑖𝑐 is the 

difference between the 𝑖𝑡ℎ stored pattern number of activated T nodes and the 

number of activated T nodes determined by the LMOHA network for an 

incoming pattern, ∆𝐶𝑁𝑖𝑐 is the difference between the 𝑖𝑡ℎ stored pattern 

number of activated corner nodes and the number of activated corner nodes 

determined by the LMOHA network for an incoming pattern, and ∆𝐸𝑁𝑖𝑐 is the 

difference between the 𝑖𝑡ℎ stored pattern number of activated edge nodes and 

the number of activated edge nodes determined by the LMOHA network for an 

incoming pattern. 
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 Moreover, it is clearly shown from this sub-section that the LMOHA 

completely removes the need to use the MOHA’s distance measurements for 

pattern recognition, which is the main reason for the MOHA’s slightly high 

computational complexity. Moreover, utilising distance measurements for 

pattern recognition (as in MOHA and KNN) is not recommended as it might 

lead to inaccurate classification, as discussed in Chapter 2.    

 Figure 4.6 illustrates the S&I operations which can be summarised as 

follows:  

1. Send command: The S&I initiates the LMOHA learning process by 

sending a command to the LMOHA network’s nodes. This command 

contains the operation type (memorise or recall) and the pattern 

obtaining method (direct receive or sense), as discussed in Section 3.5. 

2. Receive the node type information: The S&I receives the types 

information of the activated nodes from the LMOHA network. 

3. Memorise or recall: If the operation is to memorise the incoming 

pattern, the S&I creates a unique number, associates this index number 

with the total received numbers of activated plus, T, corner, and edge 

nodes, and stores this association in its pattern vector. However, if the 

operation is to recall the incoming pattern, the S&I searches for the 

closest numbers of activated plus, T, corner, and edge nodes in its 

pattern vector to the incoming pattern’s numbers of activated plus, T, 

corner, and edge nodes and declares its associated pattern as 𝑅𝑃. 
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Figure 4.6: S&I operations for memorising and recalling patterns. 

4.4 LMOHA Communication Requirements and 

Protocol 

In this section, the communication requirements and protocol of the LMOHA 

network are described. To perform LMOHA network node communications, 

this study assumes that a medium access control (MAC) protocol is present and 

available to support the network. By using MAC protocols, each sensor node 

can have a unique MAC address that differentiates it from other sensor nodes, 

allowing direct communication between two sensor nodes. 
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 Similar to the MOHA, during the initialisation of an LMOHA network, 

each sensor node should be provided with a row number and a position number 

on which it will work. This allows the sensor node to determine its 

communication process. Determining a sensor node’s row and position can be 

performed statically or automatically during the initialisation phase of the 

LMOHA network. Static row and position determination means that each 

sensor node is provided with information about its row, position, and adjacent 

nodes with which to exchange information. This initialisation would be less 

complex in terms of computations and communications. However, the 

flexibility of adding new sensor nodes to the network or adopting dynamic 

changes such as mobile nodes or clusters will be limited. Automatic row and 

position determination can be achieved by allowing each sensor node to 

communicate with its neighbouring nodes and allowing the S&I (in the base 

station) to determine its row, position, and adjacent nodes after the deployment 

of the network. This approach will provide more network flexibility, allowing 

it to adapt to changes that may be required in the network design. However, 

this will lead to an increase in the number of communications in the network. 

 To ensure the functionality of the LMOHA network, each sensor node 

should be fed with sufficient information about how to react to failures or de-

activated neighbouring sensor nodes. For adjacent sensor nodes, a sensor node 

should assume the value of a failed communicating node to be equal to its own 

value. This is to avoid interruption of the recognition process and eliminate the 

effects of these failed nodes on the process of determining the node type. 
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 The LMOHA communication protocol describes the main steps of 

LMOHA network communications. By adhering to this protocol, the LMOHA 

network will memorise or recall an incoming pattern. The protocol consists of 

three main steps as follows: 

Step 1: 𝑺&𝑰       𝑵𝟏, 𝑵𝟐, … , 𝑵𝒎: (𝐶𝑖 , 𝑃𝑖) {(𝐶1, 𝑃1), (𝐶2, 𝑃2),… , (𝐶𝑚, 𝑃𝑚)} 

In the first step of the communication, the S&I (in the base station) 

sends the command 𝐶𝑖 and the pattern elements 𝑃𝑖 to each sensor node in the 

network. As explained in section 3.5, a command can be either to memorise 

(M) or recall (R) and the pattern element can be a value to use for training, or 

(S) to initiate sensors to use the sensory information. Each sensor node receives 

only one element of the pattern. For instance, if the pattern is (2,5,8,6), the S&I 

will send the values 2, 5, 8, and 6 to the sensor nodes 1, 2, 3, and 4 as pattern 

elements respectively. Sensory information can be obtained by two methods. In 

the first scenario, the S&I sends a memorise or recall command to the sensor 

nodes in order to start obtaining sensory information and continue the 

communication steps. In the second scenario, the sensor nodes are programmed 

to obtain information periodically. 

Step 2: 𝑵𝒊
𝒓𝒎       𝑵𝒊−𝟏

𝒓𝒎 , 𝑵𝒊+𝟏
𝒓𝒎 , 𝑵𝒊

𝒓𝒎+𝟏 , 𝑵𝒊
𝒓𝒎−𝟏: 𝑣𝑖 

Each activated sensor node in the network 𝑁𝑖
𝑟𝑚 starts the information 

exchange process with adjacent sensor nodes. After receiving or obtaining the 

pattern element information, each activated sensor node sends its value 𝑣𝑖 to 

four adjacent sensor nodes: previous node in its row 𝑁𝑖−1
𝑟𝑚 , next node in its row 
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𝑁𝑖+1
𝑟𝑚 , adjacent node in the next higher row 𝑁𝑖

𝑟𝑚+1, and adjacent node in the 

lower row 𝑁𝑖
𝑟𝑚−1. The main aim of this step is to allow each sensor node to 

determine whether it represents a pattern sensory-based shape according to 

Equation 4.3. Based on the equation result, it either de-activated or activated as 

a plus, T, corner, or edge node, as described in Definitions 4.2-4.5. After 

completing this step, each sensor node will receive four values from its 

adjacent nodes representing the pattern elements by which a sensor node 

should be able to determine whether it will be activated as plus, T, corner, or 

edge node or not. 

Step 3: 𝑷𝑵𝒄, 𝑻𝑵𝒄, 𝑪𝑵𝒄, 𝑬𝑵𝒄      𝑺&𝑰: 𝑡𝑦𝑝𝑒𝑐 

 Each activated plus, T, corner, and edge node (𝑃𝑁𝑐, 𝑇𝑁𝑐, 𝐶𝑁𝑐, 𝐸𝑁𝑐) 

reports its type information to the S&I (in the base station) in order to store or 

recall the pattern. The S&I holds a database of trained patterns associated with 

their total numbers of activated plus, T, corner, and edge nodes. If the pattern 

needs to be memorised, the S&I assigns a new index number to it and 

associates this index number with the total numbers of activated plus, T, 

corner, and edge nodes obtained by the network. If the pattern is to be recalled, 

the S&I searches its database to find the closest value to the total numbers of 

activated plus, T, corner, and edge nodes given by the LMOHA network and 

declares it as the recalled pattern. 
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4.5 LMOHA Complexity Analysis 

The main aim of the proposed scheme here is to reduce the computational 

complexity of the MOHA’s S&I for pattern recognition, which will lead to a 

reduction of the overall computational complexity of the MOHA scheme. 

Therefore, a series of analyses and evaluations of the LMOHA implementation 

were conducted in order to study the complexity of the LMOHA algorithm in 

terms of computations and number of communications. These are described in 

this section which also includes comparisons that have been made with a 

MOHA scheme in order to demonstrate that the LMOHA has significantly low 

computational complexity and number of communications associated with its 

operations. The evaluations of the MOHA’s complexity, presented in section 

3.7, show that the MOHA scheme has a low computational complexity 

compared with the Hopfield network. The evaluations also show that the 

MOHA scheme requires fewer communications for pattern recognition 

compared with the DHGN. For such evaluations, we assume that all network 

nodes in LMOHA scheme are activated as plus, T, corner, or edge nodes by a 

given pattern to estimate the maximum computations or communications 

required for learning or recalling an incoming pattern. We also assume that all 

network nodes in the MOHA scheme are activated as edge nodes by a given 

pattern. The following sub-sections provide the aforementioned analysis. 
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4.5.1 Computational complexity evaluation 

To analyse the computational complexity of the LMOHA algorithm, Big-O 

analysis has been considered as the indicator of computational complexity. In 

this sub-section, comparisons have mainly been made with the MOHA 

algorithm to examine whether the LMOHA algorithm has less computational 

complexity associated with its operations. 

 In order to analyse and compare the LMOHA and MOHA algorithms, 

the notations for network generation (i.e. deployment) and recognition stages 

within the implementation have been derived. 

4.5.1.1 Network generation stage 

This stage involves the formation of a network that comprises computing 

elements known as neurons (i.e. nodes). It is worth noting that this stage needs 

to be done only once, which makes it less important than the recognition stage 

in terms of determining computational complexity. The number of nodes (also 

known as a network size) generated is totally dependent on the algorithm being 

implemented. 

Like the MOHA algorithm, the number of nodes generated (i.e. 

network size) by the LMOHA scheme, 𝐺𝐿𝑀𝑂𝐻𝐴 depends on the number of 

nodes required for each row (𝑁𝑛𝑜𝑑𝑒) and the total number of rows (𝑁𝑅𝑜𝑤), 

𝐺𝐿𝑀𝑂𝐻𝐴 is derived using the following equation: 

𝐺𝐿𝑀𝑂𝐻𝐴 = 𝑁𝑛𝑜𝑑𝑒 × 𝑁𝑅𝑜𝑤                                      (4.6) 
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 According to Equation 3.15, the number of nodes (𝑁𝑛𝑜𝑑𝑒) required for 

a row is equal to the size of the sub-pattern 𝑆𝑠𝑏 and according to Equation 3.20, 

the total number of rows (𝑁𝑅𝑜𝑤) is equal to the size of a pattern (𝑆𝑝) divided by 

the size of the sub-pattern 𝑆𝑠𝑏. Therefore, 𝐺𝐿𝑀𝑂𝐻𝐴 will be equal to: 

𝐺𝐿𝑀𝑂𝐻𝐴 = 𝑁𝑛𝑜𝑑𝑒 × 𝑁𝑅𝑜𝑤 = 𝑆𝑠𝑏 ×
𝑆𝑝

𝑆𝑠𝑏
= 𝑆𝑝                        (4.7) 

 On the other hand, as shown in Equation 3.37, the number of nodes 

generated by the MOHA scheme is equal to the pattern size (𝑆𝑝), 𝐺𝑀𝑂𝐻𝐴 = 𝑆𝑝. 

As a result, the LMOHA scheme does not provide any changes to the original 

MOHA scheme with regards to its technique for network generation or 

deployment. 

 The details of the Big-O notation derived for the LMOHA and MOHA 

network implementations are shown in Table 4.1. The estimated time derived 

is based on the assumption that the instruction execution speed of the 

underlying processor is 1 microsecond (μs) per instruction. 

Table 4.1: Big-O notations for LMOHA and MOHA implementation in 

network generation stage. 

Algorithm Big-O Efficiency Iteration (n) Estimated Time (in seconds) 

LMOHA 𝑂(𝑛) Linear 𝐺𝐿𝑀𝑂𝐻𝐴 𝐺𝑀𝑂𝐻𝐴 × 0.000001 

MOHA 𝑂(𝑛) Linear 𝐺𝑀𝑂𝐻𝐴 𝐺𝑀𝑂𝐻𝐴 × 0.000001 

 

 The results show that both LMOHA and MOHA algorithms have 

identical computational complexity for the network generation stage. It is 

clearly shown in sub-section 3.7.1 that the MOHA scheme, in regards to the 
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network generation stage, provides lower computational complexity than the 

Hopfield network. Thus, the LMOHA, which is another version of the MOHA 

algorithm, also offers a significantly low computational complexity at this 

stage. 

4.5.1.2 Recognition stage 

The pattern recognition stage is the core phase for any pattern recognition 

algorithm. As shown in sub-section 3.7.1, the MOHA recognition stage 

involves five sub-processes to determine: activated nodes, activated edge 

nodes, the longest distance between the locations of activated edge nodes, the 

critical point, and the MOHA value. Only the first two sub-processes are 

performed by the MOHA network and the remaining sub-processes are handled 

by the S&I. Table 3.6 shows the Big-O notations derived from the analysis of 

the MOHA recognition process. This is based on the assumption that all 

network nodes are activated as edge nodes by a given pattern in order to 

estimate the maximum computations required for pattern recognition. Figure 

3.21 shows the computational complexity for the MOHA scheme in the 

recognition stage, which is also based on the assumption that all network nodes 

are activated as edge nodes. 

 Similar to the MOHA scheme, the LMOHA scheme involves a single-

cycle process in which each input pattern will be passed through the LMOHA 

network once and the storing or recall process will be activated according to 

the instruction given. This process of recognition involves only two sub-
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processes, as presented in section 4.3: determination of activated nodes and 

determination of activated plus, T, corner, and edge nodes. Both of these sub-

processes are performed by the LMOHA network. Therefore, the 

computational complexity of the MOHA’s S&I is completely reduced and 

removed. 

 Table 4.2 shows the Big-O notations derived from the analysis of the 

LMOHA recognition process. This is based on the assumption that all network 

nodes are activated as plus, T, corner, or edge nodes by a given pattern in order 

to estimate the maximum computations required for pattern recognition. 

Similar to the previous analysis, the estimated time derived is based on the 

assumption that the instruction speed used is 1 microsecond (μs) per 

instruction.    

Table 4.2: Computational complexity of the LMOHA implementation’s 

recognition stage. 

Process Big-O Efficiency Iteration (n) Estimated Time (in 

seconds) 

Activated 

Nodes 

Determination 

𝑂(𝑛) Linear 𝐺𝐿𝑀𝑂𝐻𝐴 = 𝑆𝑝 𝑆𝑝 × 0.000001 

Activated 

Plus, T, 

Corner, and 

Edge Nodes 

Determination 

𝑂(𝑛) Linear 𝐺𝐿𝑀𝑂𝐻𝐴 = 𝑆𝑝 𝑆𝑝 × 0.000001 

 

Figure 4.7 shows the computational complexity for these two processes 

in the recognition stage utilising the LMOHA implementation. Note that the 

LMOHA computational complexity is based on the assumption that 100% of 
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the network nodes are activated as plus, T, corner, or edge nodes, which is 

reflecting the worst case for the algorithm that occurs very rarely. 

 

 

 

Figure 4.7: Big-O notation comparisons for processes within LMOHA 

recognition stage. 

 

Figures 3.21 and 4.7 clearly show that the LMOHA incurs less 

computational complexity during the pattern recognition process compared 

with the MOHA scheme. For instance, the total computational complexity (i.e. 

the number of instructions) for the LMOHA algorithm utilising 35 nodes is 70 

in the recognition process. However, it is 668 in the MOHA implementation 

for the recognition stage with the same number of nodes. This is mainly a 

result of reducing the computational complexity of the S&I. Furthermore, 

based on the numerical results, we can conclude that the time taken for the 

LMOHA recognition process is far less than for the MOHA.   
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 The analysis clearly demonstrates that the LMOHA incurs less 

computational complexity for its pattern recognition processes compared with 

the MOHA implementation, and is therefore an appropriate solution for 

resource-constrained networks. 

4.5.2 Communication complexity analysis 

In this sub-section, we compare the communication complexities of the MOHA 

and the LMOHA schemes. In conducting an analysis of the communication 

costs, all the recognition steps in the pattern recognition scheme that require 

communications have been considered. Table 4.3 presents the definitions of the 

various terms used when estimating the communication complexity of the 

LMOHA and MOHA algorithms. 

 The two LMOHA operation types (memorise or recall) must be 

considered when estimating the number of communications in a LMOHA 

network. Both memorisation and recall operations involve an exchange of 

communications whereby each activated node sends its information to its 

adjacent nodes. For such estimation, we assume that all network nodes are 

activated as plus, T, corner, or edge nodes by a given pattern in order to 

estimate the maximum number of communications required to learn or recall 

an incoming pattern. Similar to the MOHA scheme, normally each activated 

node in the LMOHA network has four adjacent nodes with which it exchanges 

information. However, the actual number of adjacent nodes and exchange 

communications of an active node varies from two to four based on its location 
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or position in the row and whether the row is located at the base, in the middle, 

or at top of the network, as follows: 

Table 4.3:  Symbols and terms for complexity estimation. 

Symbol Terms Name Terms meaning 

𝑆𝑝 
Pattern Size The size of the pattern 

𝑆𝑠𝑏 Sub-pattern Size The size of the sub-pattern 

𝐶𝑟0 
Bottom Layer 

Communications  

The total number of exchanged communications 

in the bottom row 

𝐶𝑟𝑖
𝑡𝑜𝑡𝑎𝑙 

Middle layers 

Communications 

The total number of exchanged communications 

in all middle rows 

𝐶𝑟𝑡𝑜𝑝 
Top layer 

Communications 

The total number of exchanged communications 

in the top row 

𝐶𝑟𝑒𝑝𝑜𝑟𝑡 
Report 

Communications 

The total number of report communications to the 

S&I 

𝑁𝐸𝐷
𝑀𝑂𝐻𝐴 

MOHA’s Edge 

Nodes 

The number of activated edge nodes in MOHA 

network 

𝑁𝑃𝐿
𝐿𝑀𝑂𝐻𝐴 

LMOHA’s Plus 

Nodes 

The number of activated plus nodes in LMOHA 

network 

𝑁𝑇
𝐿𝑀𝑂𝐻𝐴 

LMOHA’s T 

Nodes 

The number of activated T nodes in LMOHA 

network 

𝑁𝐶𝑂
𝐿𝑀𝑂𝐻𝐴 

LMOHA’s 

Corner Nodes 

The number of activated corner nodes in 

LMOHA network 

𝑁𝐸𝐷
𝐿𝑀𝑂𝐻𝐴 

LMOHA’s Edge 

Nodes 

The number of activated edge nodes in LMOHA 

network 

𝐶𝑡𝑜𝑡𝑎𝑙
𝑀𝑂𝐻𝐴 

MOHA 

Communications 

The total number of MOHA communications 

𝐶𝑡𝑜𝑡𝑎𝑙
𝐿𝑀𝑂𝐻𝐴 

LMOHA 

Communications 

The total number of LMOHA communications 

 

Bottom row: According to Equation 3.16, the cumulative communication 

costs involved for each input recognition process for all nodes in the bottom 

row is derived through the following equation: 

𝐶𝑟0 = 3(𝑆𝑠𝑏 − 2) + 4                                              (4.8) 
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Middle rows: According to Equation 3.18, the cumulative communication cost 

for all nodes in the all middle rows is derived through the following equation: 

 𝐶𝑟𝑖
𝑡𝑜𝑡𝑎𝑙 = ∑ (4(𝑆𝑠𝑏 − 2) + 6)

𝑡𝑜𝑝−1
𝑖=1                               (4.9) 

Top row: According to Equation 3.19, the cumulative communication costs 

involved for each input recognition process for all nodes in the top row is 

derived from the following equation: 

𝐶𝑟𝑡𝑜𝑝 = 3(𝑆𝑠𝑏 − 2) + 4                                          (4.10) 

Up to this stage, the local communication cost of the LMOHA scheme 

is identical to that of the MOHA scheme. However, the total communication 

costs are different because the MOHA scheme utilises only the edge nodes for 

report communications to the S&I whereas the LMOHA scheme uses plus, T, 

corner, and edge nodes for report communications to the S&I, as shown in 

Equation 4.1. According to Equation 3.59, the total communication costs for 

the MOHA network in memorisation or recalling operations can be derived as 

follows: 

𝐶𝑡𝑜𝑡𝑎𝑙
𝑀𝑂𝐻𝐴 = 𝐶𝑟0 + 𝐶𝑟𝑖

𝑡𝑜𝑡𝑎𝑙 + 𝐶𝑟𝑡𝑜𝑝 + 𝑁𝐸𝐷
𝑀𝑂𝐻𝐴                          (4.11)   

On the other hand, the total communication costs for LMOHA network 

in memorisation or recalling operations can be derived with: 

𝐶𝑡𝑜𝑡𝑎𝑙
𝐿𝑀𝑂𝐻𝐴 = 𝐶𝑟0 + 𝐶𝑟𝑖

𝑡𝑜𝑡𝑎𝑙 + 𝐶𝑟𝑡𝑜𝑝 + 𝑁𝑃𝐿
𝐿𝑀𝑂𝐻𝐴 + 𝑁𝑇

𝐿𝑀𝑂𝐻𝐴 + 𝑁𝐶𝑂
𝐿𝑀𝑂𝐻𝐴 + 𝑁𝐸𝐷

𝐿𝑀𝑂𝐻𝐴(4.12) 

Note that in Equations 3.29 and 4.3, the number of activated edge nodes 

in the MOHA implementation is equal to the number of activated edge nodes 
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in the LMOHA implementation plus the number of activated corner nodes, as 

follows: 

𝑁𝐸𝐷
𝑀𝑂𝐻𝐴 = 𝑁𝐶𝑂

𝐿𝑀𝑂𝐻𝐴 + 𝑁𝐸𝐷
𝐿𝑀𝑂𝐻𝐴                                 (4.13) 

Table 4.4 and Figure 4.8 show the comparison of communication costs 

for DHGN, MOHA and LMOHA. Overall communication required for 

LMOHA is based on the assumption that 100% of the network nodes are 

activated as plus, T, corner, or edge nodes, which is the worst case scenario for 

the algorithm; the overall communication required by the MOHA is based on 

the assumption that 50% and 100% of the network nodes are activated as edge 

nodes, respectively. 

Table 4.4:  Comparison between DHGN, MOHA, and LMOHA 

implementations with regards to the number of messages communicated per 

pattern of given size. 

𝑺𝒑 𝑪𝒕𝒐𝒕𝒂𝒍
𝑫𝑯𝑮𝑵 𝑪𝒕𝒐𝒕𝒂𝒍

𝑴𝑶𝑯𝑨 

100% 𝑵𝑬𝑫
𝑴𝑶𝑯𝑨 

𝑪𝒕𝒐𝒕𝒂𝒍
𝑴𝑶𝑯𝑨 

50% 𝑵𝑬𝑫
𝑴𝑶𝑯𝑨 

𝑪𝒕𝒐𝒕𝒂𝒍
𝑳𝑴𝑶𝑯𝑨 

5 28 18 16 18 

15 84 59 52 59 

25 140 105 93 105 

35 196 151 134 151 

45 252 197 175 197 

55 308 243 216 243 

 

The results given in Table 4.4 and Figure 4.8 show that, on average, 

LMOHA and MOHA implementations in comparison to DHGN have achieved 

message-passing savings of 26.1%. As discussed in section 2.5, the number of 

nodes required in DHGN increases exponentially with the increase of the 

problem (pattern) size, which will lead to an increase in the number of 



 

253 

 

messages communicated. The number of messages communicated in both the 

LMOHA and MOHA implementations are identical when it comes to the 

worst-case scenarios of both schemes (when 100% of the network nodes are 

activated as edge nodes in MOHA and when 100% of the network nodes are 

activated as plus, T, corner, or edge nodes in LMOHA). However, it has 

previously been described in Equation 4.13 that 𝑁𝐸𝐷
𝑀𝑂𝐻𝐴 = 𝑁𝐶𝑂

𝐿𝑀𝑂𝐻𝐴 + 𝑁𝐸𝐷
𝐿𝑀𝑂𝐻𝐴 

and based on this fact we can state that: (𝑁𝑃𝐿
𝐿𝑀𝑂𝐻𝐴 + 𝑁𝑇

𝐿𝑀𝑂𝐻𝐴 + 𝑁𝐶𝑂
𝐿𝑀𝑂𝐻𝐴 +

𝑁𝐸𝐷
𝐿𝑀𝑂𝐻𝐴) ≥ 𝑁𝐸𝐷

𝑀𝑂𝐻𝐴. As a result, in most scenarios, the cumulative 

communication costs for the MOHA network will be less than the total 

communication costs for the LMOHA network, (𝐶𝑡𝑜𝑡𝑎𝑙
𝑀𝑂𝐻𝐴 < 𝐶𝑡𝑜𝑡𝑎𝑙

𝐿𝑀𝑂𝐻𝐴). Table 4.4 

and Figure 4.8 also illustrate that when only 50% of the network nodes are 

activated as edge nodes in the MOHA scheme, on average, there will be a mere 

11% saving in communication cost compared with that of the LMOHA scheme 

(worst scenario). 

 

Figure 4.8: A comparison of communication costs for LMOHA, DHGN and 

MOHA. 
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We have therefore shown that the LMOHA scheme operates with less 

complexity when compared with the MOHA algorithm in terms of processing 

power consumption. Moreover, this section shows that the LMOHA scheme 

offers pattern recognition without requiring an excessive number of 

communication messages, when compared with the MOHA scheme, which 

makes it suitable for ready deployment on wireless sensor networks. 

 In order to evaluate the capabilities of the LMOHA scheme as a pattern 

recognition algorithm, a simulation study is presented in the next section, for 

subsequent comparison with the accuracy of the MOHA scheme. 

4.6 Simulations and Results Analysis 

In this section, a series of tests have been conducted on the LMOHA and 

MOHA schemes. The main aims of these tests are to compare the recognition 

accuracy of LMOHA and MOHA schemes and to estimate the limits of 

tolerance of both schemes to transformed and noisy patterns. Two types of 

pattern datasets were selected for these tests. One pattern dataset consists of 

uniform shape patterns and another pattern dataset consists of non-uniform 

patterns. The main reason for selecting different types of pattern datasets is to 

examine whether the proposed schemes accuracies are affected by the types of 

patterns with which they are dealing. In these tests, inter-node communications 

and S&I communications were implemented utilising the MPICH-2 library for 

the message passing interface (MPI) [262]. The simulator itself was written in 

the C/C++ Integrated Development Environment. 
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4.6.1  LMOHA and MOHA accuracy test using uniform 

patterns (shapes dataset)        

The aims of this test were to compare the recognition accuracy of LMOHA and 

MOHA schemes and to estimate the limits of tolerance of the LMOHA and 

MOHA schemes to transformed and noisy patterns for uniform patterns. To 

perform this test, we constructed a database called MPEG7 CE Shape-1 Part B  

(shapes dataset) that consisted of 1400 binary shape images for training and 

testing [261]. 

 The training dataset was constructed by creating and utilising five 

shapes modelled as a binary image of size 100-by-100 pixels, as shown in 

Figure 4.9 (a). These images were presented to the LMOHA and MOHA 

networks for memorisation (storing). To construct the testing dataset, a variety 

of shapes associated with these images and altered versions of these images 

were produced for recognition operations. In the first set, a variety of shapes 

for each image were tested (20 different shapes for each image). In the second 

test, each image was rotated counter-clockwise from 1 to 360, with five 

degrees for each rotation level. In the third set, each image was randomly 

translated 100 times by shifting the pattern’s location. In the fourth set, each 

image was spatially dilated by scaling the object size utilising 50 scaling levels. 

That is, the images were scaled from 1% to 100% scaling percentages in 2% 

steps (increments). In the fifth set, the images were distorted by applying 

different levels of noise to them (from 5% to 100% in 5% steps). Figure 4.9 (b 
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to f) shows a sample of different shapes of images and altered images utilising 

displaced positions (translation), scaling (dilation), rotation, and noise effects. 

In this test, the total number of test images is 282: 40 shapes for an image, 72 

rotated images, 100 translated images, 50 scaled images, and 20 noisy 

(distorted) images for each original trained binary image. These images were 

utilised for testing to determine the recognition accuracy and the boundaries of 

the LMOHA’s and MOHA’s distortion and invariant recognition capabilities. 

 In the recognition test, we ran simulated LMOHA and MOHA 

networks of 10000 nodes assuming that nodes are distributed as a grid and each 

node detects one pixel reading. We also assume that each LMOHA and MOHA 

network is divided into 100 rows and each one of these rows is utilised to 

handle 100-bit binary sub-patterns and the threshold values for node activation 

and edge determination are set to 1 (𝜑 = 1). We first trained the networks 

utilising the constructed training dataset. Then, we presented testing datasets 

for recall. 

Figure 4.10 shows the accuracy of the LMOHA and MOHA schemes in 

recalling different type of images. The accuracy of the networks in Figure 4.10 

is calculated as the total number of correctly classified patterns as a percentage 

of the number of tested images. The higher the percentage, the higher is the 

accuracy. The results shown in Figure 4.10 indicate that, on average, the 

overall recognition accuracy of the LMOHA and MOHA schemes is almost 

identical for the presented testing datasets. However, in order to estimate the 

limits of tolerance of the LMOHA and MOHA schemes to each type of 
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presented testing dataset, we examined the performance of these schemes when 

dealing with these datasets individually. 

 

 

Figure 4.9: The training dataset and different samples of the testing dataset: (a) 

the training images, (b) a sample of different shapes of images, (c) a sample of 

rotated images, (d) a sample of translated images, (e) a sample of scaled 

images, and (f) a sample of noisy images. 
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Figure 4.10: The results of the accuracy test for both the LMOHA and MOHA 

schemes for shapes dataset. 

 

 The first set of recall images is a variety of shapes for each trained 

image. The main aim of this test is to examine the classification capabilities of 

the proposed schemes. Figure 4.10 shows the accuracy of the LMOHA and 

MOHA schemes in recalling these types of images. It is clearly shown in 

Figure 4.10 that the LMOHA scheme has a higher (78%) level of accuracy 

when dealing with a variety of shapes for each trained image compared with 

the MOHA scheme, which achieved an accuracy level of a mere 69%. The 

main reason for this poorer result is that the number of activated nodes 

participating in the recalling process for the LMOHA implementation is 

usually more than the number of activated nodes of the MOHA recalling 

procedure, as shown in previous sub-section. The LMOHA scheme uses the 

plus, T, corner, and edge nodes in the recognition process; however, the 

MOHA scheme utilises only edge nodes for recognition. 
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Figure 4.11: Comparison on the capability of handling pattern rotation variants 

between the LMOHA and MOHA schemes. 

 

 

 

Figure 4.12: Comparison on the capability of handling pattern scaling variants 

between LMOHA and MOHA schemes. 
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 The second set of the training images is the rotated samples. Figure 

4.11 shows each rotation angle and the number of correctly recognised patterns 

at that angle. It is important to note that all five samples were presented per 

rotational angle. Figures 4.10 and 4.11 clearly show that the LMOHA scheme 

achieves more accurate recognition of rotated images than does the MOHA 

scheme. Similar to the previous dataset tested, the main reason for the higher 

accuracies is that the number of activated nodes participating in the recalling 

process for the LMOHA implementation is usually more than the number of 

activated nodes of the MOHA recalling procedure. Moreover, Figure 4.11 

shows that the MOHA scheme is highly accurate (five correctly classified 

samples) in five rotational regions. The first region is between 0 and 4 degrees, 

the second region is between 86 and 94 degrees, the third region is between 

176 and 184 degrees, the region where patterns are horizontally flipped or 

nearly flipped, the fourth region is between 266 and 274 degrees, and the fifth 

region is between 356 and 360 degrees. On the other hand, Figure 4.11 also 

shows that the LMOHA scheme is highly accurate in five rotational regions. 

The first area is between 0 and 29 degrees, the second area is between 61 and 

119 degrees, the third area is between 161 and 199 degrees, the forth area is 

between 251 and 289 degrees, and the area region is between 341 and 360 

degrees. In other words, the MOHA and LMOHA schemes are capable of 

efficiently detecting patterns rotated within these ranges, and could possibly 

detect higher rotational degrees. 
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 The third set of recall images is the displaced (translated) samples. 

Figure 4.10 shows that both the LMOHA and MOHA schemes successfully 

recognise all translated patterns correctly, which confirms their capabilities of 

dealing with translation. The fourth set of the training images were the set of 

scaled (dilated) images. Figure 4.12 shows the recall accuracy of this set (250 

training samples were presented for this test). The graph shows the number of 

correctly recalled patterns for each level of spatial scaling (dilation). Five 

samples were presented at each scaling level. Figures 4.10 and 4.12 clearly 

show that the MOHA scheme achieves more accurate recognition of scaled 

images than does the LMOHA scheme. Figure 4.12 also shows that the 

LMOHA scheme is capable of offering perfect recognition accuracy (5 

correctly classified patterns) for scaling levels up to 16%. The LMOHA is also 

capable of correctly classifying four patterns for scaling levels up to 32%. Note 

that increasing the level of scaling results in a decrease in recognition accuracy. 

This is due to the increase in the number of activated plus, T, corner, and edge 

nodes in the same area, which leads to false recall. On the other hand, the 

results presented in Figure 4.12 clearly indicate that the MOHA algorithm can 

provide perfect recognition accuracy for all tested scaled patterns. The way in 

which the MOHA value (𝑀𝑉) is calculated in the MOHA scheme, as the 

relative distance between all activated edge nodes (to the critical point) to the 

distance of the farthest two activated edge nodes from each other, is the main 

reason for the MOHA’s ability to deal with scaled patterns. 
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Figure 4.13: Comparison on the capability of handling distorted patterns 

between LMOHA and MOHA schemes. 

 

 The fifth set of recall images is the distorted (noisy) images. Figure 

4.13 displays the recall accuracy of this set (100 training samples were 

presented for this test). The figure shows the number of correctly recognised 

patterns for each level of distortion (noise). Five samples were presented at 

each distortion level. Figures 4.10 and 4.13 show that the LMOHA scheme 

achieves more accurate recognition of noisy images than does the MOHA 

scheme. Similar to the first and second datasets tested, the main reason for the 

higher accuracies is that the number of activated nodes participating in the 

recalling process for the LMOHA implementation is usually more than the 

number of activated nodes of the MOHA recalling procedure. Moreover, 

Figure 4.13 shows that the LMOHA scheme is capable of offering perfect 

recognition accuracy (five correctly classified patterns) for distortion levels up 
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to 35%. The LMOHA is also capable of correctly classifying four patterns for 

distortion levels up to 50%. On the other hand, Figure 4.13 shows that the 

MOHA scheme is capable of offering perfect recognition accuracy for 

distortion levels up to 25%. The MOHA is also capable of correctly classifying 

four patterns for distortion levels up to 45%. Note that increasing the level of 

distortion results in a decrease in recognition accuracy. This is due to the 

increase in the number of activated nodes in the pattern, which leads to false 

recall. 

4.6.2 LMOHA and MOHA Accuracy Test using non-uniform 

patterns (star dataset) 

This test aimed to compare the recognition accuracy of LMOHA and MOHA 

schemes and estimate the limits of tolerance of the LMOHA and MOHA 

schemes to transformed and noisy patterns for non-uniform patterns. In all 

previous experiments of MOHA and LMOHA schemes, MPEG7 CE Shape-1 

Part B dataset (shapes dataset) has been utilised which consists uniform shape 

patterns. As a result, we perform this test to check the recognition accuracy of 

proposed schemes for these types of patterns. For this purpose, we constructed 

a database called stars dataset that has training and testing datasets. We 

generated a training dataset of star maps. We chose five star map images from 

[270]. The size of each star map is 150 × 150 pixels. These maps were 

transformed into binary star map images in order to mark the brightest pixels 

(stars) on these maps. Figure 4.14 (a) shows an example of one star map that 
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has been transformed into a binary star map. Figure 4.14 (b) presents the 

remaining resultant binary star maps performing the same operation. To 

construct the testing dataset, we generated 72 rotated star maps (rotating from 1 

to 360 degrees with five degrees for each rotation level), 100 randomly 

translated star maps, 50 scaled star maps (from 1% to 100% in 2% steps), and 

20 distorted (noisy) star maps (from 5% to 100% in 5% steps) for each training 

star map as four testing datasets. A total of 1210 test star maps were generated 

for recall. In this test, we ran simulated LMOHA and MOHA networks of 

22500 nodes assuming that nodes are distributed as a grid and each node 

detects one pixel reading. We also assume that each LMOHA and MOHA 

network is divided into 150 rows and each one of these rows is utilised to 

handle 150-bit binary sub-patterns and the threshold values for node activation 

and edge determination are set to 1 (𝜑 = 1). The accuracy of the MOHA and 

LMOHA are calculated as the total number of correctly recalled patterns as a 

proportion of the number of altered star maps tested. 

 

 

Figure 4.14: The training dataset: (a) Binary transformation of the star map, (b) 

the rest of the binary training patterns. 
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Figure 4.15: Comparison on the capability of handling rotated patterns between 

LMOHA and MOHA schemes for non-uniform patterns. 
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five samples were presented per rotational angle. Similar to the rotation test 

conducted on the dataset of shapes, the results presented in Figure 4.15 show 

that the LMOHA scheme offers more accurate recognition for rotated samples 

than the MOHA scheme. The main reason for this is that the number of 

activated nodes participating in the recalling process in the LMOHA 

implementation is usually more than the number of activated nodes utilised by 

the MOHA recalling procedure. Moreover, results presented in Figure 4.15 

show that the MOHA scheme is highly accurate (five correctly classified 

samples) in five rotational regions. The first region is between 0 and 9 degrees, 

the second region is between 81 and 94 degrees, the third region is between 
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176 and 189 degrees, the region where patterns are horizontally flipped or 

nearly flipped, the forth region is between 261 and 279 degrees, and the fifth 

region is between 351 and 360 degrees. On the other hand, results presented in 

Figure 4.15 also show that the LMOHA scheme is highly accurate in five 

rotational regions. The first area is between 0 and 39 degrees, the second area 

is between 56 and 119 degrees, the third area is between 146 and 194 degrees, 

the forth area is between 256 and 284 degrees, and the fifth area is between 346 

and 360 degrees. In other words, the MOHA and LMOHA schemes are capable 

of efficiently detecting patterns rotated within these ranges, and could possibly 

detect higher rotational degrees. Additionally, Figures 4.11 and 4.15 show that 

the recognition accuracy of LMOHA and MOHA schemes for rotated patterns 

is higher for the stars dataset compared with the shapes dataset. This indicates 

that non-uniform patterns are less sensitive to rotation effects than uniform 

patterns. This also indicates that a lower number of activated nodes change 

their types in non-uniform patterns. 

 The second set of recall star maps is the displaced (translated) samples. 

The results of this test show that both the LMOHA and MOHA schemes 

successfully recognised all translated patterns correctly, which confirm their 

capabilities of dealing with translation. The third set of the training star maps 

was the set of scaled (dilated) samples. Figure 4.16 shows the recall accuracy 

of this set (250 training samples were presented for this test). The graph shows 

the number of correctly recalled patterns for each level of spatial scaling 

(dilation). Five samples were presented at each scaling level. Similar to the 
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rotation test conducted on shapes dataset, results presented in Figure 4.16 

clearly show that the MOHA scheme provides more accurate recognition for 

scaled patterns than does the LMOHA scheme. Figure 4.16 shows that the 

LMOHA scheme is capable of offering perfect recognition accuracy (five 

correctly classified patterns) for scaling levels up to 16%. The LMOHA is also 

capable of correctly classifying 4 patterns for scaling levels up to 30%. Note 

that increasing the level of scaling results in a decrease in recognition accuracy. 

This is due to the increase in the number of activated plus, T, corner, and edge 

nodes in the same area, which leads to false recall. On the other hand, results 

shown in Figure 4.16 clearly indicate that the MOHA scheme is capable of 

offering perfect recognition accuracy (five correctly classified patterns) for 

scaling levels up to 60%. The MOHA is also capable of correctly classifying 

four patterns for scaling levels up to 80%. The way in which the 𝑀𝑉 is 

calculated in the MOHA scheme, as the relative distance between all activated 

edge nodes (to the critical point) to the distance of the farthest two activated 

edge nodes from each other, is the main reason for having this impressive 

ability to deal with scaled patterns. On the other hand, Figures 4.12 and 4.16 

show that the recognition accuracy of the LMOHA and MOHA schemes for 

scaled patterns is lower for the stars dataset compared with the shapes dataset. 

This indicates that non-uniform patterns are more sensitive to dilation effects 

than are the uniform patterns. This also indicates that a higher number of 

activated nodes change their types in non-uniform patterns. 
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Figure 4.16: Comparison on the capability of handling pattern scaling variants 

between LMOHA and MOHA schemes for non-uniform patterns. 

 

 

 

Figure 4.17: Comparison on the capability of handling pattern distortion 

(noise) between LMOHA and MOHA schemes for non-uniform patterns. 
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 The third set of recall star maps is the distorted (noisy) images. Figure 

4.17 displays the recall accuracy of this set (100 training samples were 

presented for this test). The figure shows the number of correctly recognised 

patterns for each level of distortion (noise). Five samples were presented at 

each distortion level. Figure 4.17 shows that the LMOHA scheme provides 

more accurate recognition for noisy images than does the MOHA scheme. 

Figure 4.17 also shows that the LMOHA scheme is capable of offering perfect 

recognition accuracy (5 correctly classified patterns) for distortion levels up to 

25%. The LMOHA is also capable of correctly classifying four patterns for 

distortion levels up to 40%. On the other hand, Figure 4.17 shows that the 

MOHA scheme is capable of offering perfect recognition accuracy for 

distortion levels up to 15%. The MOHA is also capable of correctly classifying 

four patterns for distortion levels up to 35%. Note that increasing the level of 

distortion results in a decrease in recognition accuracy. This is due to the 

increase in the number of activated nodes in the pattern, which leads to false 

recall. Additionally, Figures 4.13 and 4.17 show that the recognition accuracy 

of LMOHA and MOHA schemes for distorted (noisy) patterns is lower for the 

stars dataset compared with the shapes dataset. Similar to the previous dataset 

tested, this indicates that non-uniform patterns are more sensitive to distortion 

(noise) effects than uniform patterns. This also indicates that a higher number 

of activated nodes change their types in non-uniform patterns. 
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4.7 Conclusions 

This chapter has presented the second proposed approach for pattern 

recognition, known as the Light Macroscopic Object Heuristics Algorithm 

(LMOHA). LMOHA aims to reduce the computational complexity of the 

MOHA’s S&I for pattern recognition, which will lead to reduction of the 

overall computational complexity of the MOHA scheme. Instead of using the 

pattern edge information for recognition (as does the MOHA), the LMOHA 

implements a mechanism that searches for the sensory-based shapes of 

patterns. This chapter showed that by describing patterns using their sensory-

based shapes, it is possible to achieve an efficient recognition scheme that has a 

very low computational complexity and can detect transformed and noisy 

patterns. 

 With regards to the algorithmic complexity, it has been proven that the 

LMOHA has less complexity compared with that of the MOHA algorithm. 

Moreover, the analysis conducted in the chapter also shows that the LMOHA 

scheme does pattern recognition without requiring excessive message 

exchanges, when compared with the MOHA scheme. 

 Accuracy tests were conducted on the proposed schemes. These tests 

provided results used to compare the recognition accuracy of the LMOHA and 

MOHA schemes and to estimate the limits of tolerance of the LMOHA and 

MOHA schemes to transformed and noisy patterns. Two types of pattern 

datasets were selected for these tests. One pattern dataset consists of uniform 
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shape patterns and another pattern dataset consists of non-uniform patterns. 

Furthermore, the results of the tests have shown that the LMOHA and MOHA 

algorithms are capable of yielding high recall accuracy for transformed and 

noisy patterns. Moreover, the results show that the LMOHA scheme offers 

better recognition accuracy than does the MOHA scheme for recognition of 

different shapes of images, rotated images and distorted (noisy) images. On the 

other hand, the MOHA algorithm provides better recognition accuracy for 

scaled images. Thus, we can conclude that the LMOHA is the better choice for 

pattern recognition applications as it provides a higher accuracy level for most 

types of patterns without incurring excessive communication overhead when 

compared with the MOHA scheme. However, when dealing with scaled 

patterns for WSN applications, the MOHA scheme proved to be a better 

choice. 

 In order to analyse the influence of MAC protocols on LMOHA and 

MOHA schemes, different types of existing MAC protocols will be presented 

in the next chapter (Chapter 5); moreover, in this chapter, MAC message 

exchange models for the MOHA and LMOHA schemes to function over these 

protocols will be proposed. These models will help to estimate the time and 

resource requirements imposed by the MOHA and LMOHA schemes on the 

underlying sensor network. This analysis will present different sequence 

models and possible scenarios for each model while analysing the time 

overhead for each scenario. Moreover, the analysis will show the limits of 

communication time overhead estimates for each MOHA and LMOHA scheme 
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message sequence model. Moreover, experimental analysis on the proposed 

four sequence models will be conducted in the next chapter to evaluate the 

communication overhead of MOHA and LMOHA networks for each model 

using different types of patterns. 

 In Chapter 6, a series of analyses, evaluations and simulations for 

MOHA and LMOHA schemes will be conducted. Alongside, a comparison 

between the two proposed schemes and other well-known pattern recognition 

schemes will be provided. Moreover, Chapter 6 will describe a series of tests 

used to examine the capabilities of both the proposed schemes to be utilised in 

real-life scenarios. 
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Chapter 5 

5 Medium Access Control Protocols 

Influence on MOHA and LMOHA 

 

5.1 Preamble 

In the previous chapters, the MOHA and LMOHA schemes were proposed as 

lightweight and distributed pattern recognition schemes that involve limited 

numbers of communications and computations. These features suit resource-

constrained systems and networks such as WSNs. It has been shown through 

experiments that the MOHA and LMOHA are significantly capable of dealing 

with noisy and transformed patterns. However, each one of them presented 

different limits of tolerance to noisy patterns and different types of transformed 

patterns. Moreover, both schemes operate with low and stable recognition time, 

compared with other pattern recognition algorithms. 

 In this chapter, different types of existing MAC protocols will be 

presented, and MAC message exchange models for the MOHA and LMOHA 

schemes to function over these protocols will be proposed. The proposal of 

these models will help in estimating the time and resource requirements of the 
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MOHA and LMOHA schemes in terms of the communication overhead 

imposed on the underlying network of wireless sensors. Additionally, this 

chapter presents an experimentally evaluation of MOHA and LMOHA 

schemes’ communicational overhead in terms of time and energy requirements. 

As discussed in Chapter 2, network communications are considered to be the 

most time and energy consuming tasks in WSNs. Therefore, this chapter 

presents the experiments used to estimate the MOHA and LMOHA networks’ 

learning time cycle duration and energy consumption based on 

communicational requirements. The main objective of these experiments is to 

estimate the lifetime and execution duration of the networks utilising the 

communicational models (MAC protocols) present in the beginning of this 

chapter. 

 Finally, this chapter will be concluded by an overall comparison of 

MOHA and LMOHA schemes in terms of network structure, pattern matching 

criteria, handling noisy and transformed patterns, number of nodes 

participating in recognition, node utilisation, and network’s lifetime. 

The objectives of this chapter are as follows: 

1. To propose different types of message sequence models for the 

proposed schemes based on different types of MAC protocols.   

2. To perform an extensive experiment-based evaluation of the MOHA 

and LMOHA schemes’ communicational overhead in terms of time and 

energy requirements.  
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3. To perform an overall comparison of both versions of the MOHA 

algorithms. 

The remainder of this chapter is organised as follows: Section 5.2 

provides different types of existing MAC protocols, and proposes MAC 

message exchange models for the MOHA and LMOHA schemes to function 

over these protocols. Section 5.3 provides an extensive experiment-based 

evaluation of the MOHA and LMOHA schemes’ communicational overhead in 

terms of time and energy requirements. This section begins with analysing the 

effects of the nodes activation technique on communications in the network 

and then it presents a time and energy analysis, and section 5.4 presents an 

overall comparison of the proposed schemes in terms of network structure, 

pattern matching criteria, handling noisy and transformed patterns, number of 

nodes participating in recognition, node utilisation, and network’s lifetime. 

Finally, section 5.5 provides an overview of the chapter. 

5.2 MOHA and LMOHA Message Sequence 

Models 

The message exchange protocol followed by both the MOHA and LMOHA 

helps achieve message exchange between the active nodes, at the MAC layer. 

In addition, the proposed models for communication attempt to minimise 

communicational overheads by setting a timing sequence for network nodes to 

exchange and report messages for pattern reconstruction i.e., recognition. This 
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section will use the abbreviations listed in Table 5.1 when estimating 

communicational overheads associated with message exchange at the MAC 

layer for both the MOHA and LMOHA schemes.    

Table 5.1:  Symbols and terms for communicational overheads estimation. 

Symbol Terms Name Terms meaning 

𝑛𝑖
𝑟𝑚

 
Active Node 

An active node located at row m with position 

number i 

𝑤𝑡 Wait Time 

The time that a node should wait before 

performing other computations or 

communications 

𝑝𝑡 Preamble Time The time required to send a full preamble field 

∆𝑡 
Error Delay 

Time 

The error delay time that may occur in every 

message exchanged between two nodes due to 

physical factors 

𝑇𝑒𝑥𝑐ℎ Exchange Time 
The time required by two nodes to perform 

message exchange  

𝑇𝑠𝑒𝑛𝑑 Send Time 
The time required to send a message from one 

node to another 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 Report Time 
The time required by the network to conduct 

report communications 

𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴 

MOHA 

Communication 

Time 

The total communication time for MOHA 

scheme 

𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴 

LMOHA 

Communication 

Time 

The total communication time for LMOHA 

scheme 

 

Sub-section 2.2.3.4 discussed the significance of MAC protocols in 

WSN communications. In addition, it highlighted the fact that traditional 

protocols allow a single communicational channel for each node, while new 

research presents multi-channel protocols to support multi-task operations. In 

this section, the different types of existing MAC protocols will be presented, 

and MAC message exchange models for the MOHA and LMOHA schemes 
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which function using these protocols will be proposed. These models will help 

to estimate the time and resource requirements of the MOHA and LMOHA 

schemes in terms of the communication overhead imposed on the underlying 

network of wireless sensors. The section will present different sequence 

models and possible scenarios for each model, and analyse the delay overhead 

for each scenario. 

One of the earlier works to examine the influence of MAC protocols on 

a pattern recognition scheme’s performance and the energy consumption of its 

network was done by Baqer in [271]. Baqer examined the influence of only 

contention-based and schedule-based MAC protocols in his proposed pattern 

recognition schemes. However, we will examine, in this section, the influence 

of a variety of MAC protocols in our proposed schemes, which cover most of 

the existing MAC protocol types.       

 MAC protocols use the term frame to describe a message from a node 

in the network to another node in the data-link layer. A MAC frame is a 

sequence of bits that contains the necessary information to deliver a message 

from one node to another [89, 272]. Figure 5.1 shows a general example of a 

MAC frame. However, different protocols may have different frame structures 

and bit lengths for each field. The frame shown in Figure 5.1 contains six 

fields. The Preamble field contains a set of bits that occupy the channel. A 

receiver will listen to a preamble bit sequence in order to identify the inception 

of an incoming message. In the MOHA and LMOHA communication models, 

there are two types of preambles, namely, sending, and not sending. The 
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sending preamble indicates that a node is going to send a full frame to the 

receiver. The not sending preamble indicates that a node will have no frames to 

send. In the MOHA scheme, the not sending preamble will be used in reporting 

communications in order to allow an active node to inform the S&I that it is 

not activated as an edge node and that it will not send its location information. 

On the other hand, in the LMOHA scheme, the not sending preamble will be 

used for reporting so as to allow an active node to inform the S&I that it is not 

activated as a plus, T, corner, or edge node and that it will not send any type 

information to the S&I. The Address field is used to determine source and 

destination MAC addresses. The Control field is used for control purposes such 

as message sequences and acknowledgements. The Checksum field is used for 

error detection and correction purposes. The Flag field is used to indicate the 

end of message transmission. 

 

 

Figure 5.1: A general example of the MAC protocol frame structure. 

 WSN MAC protocols can be generally divided into [94]: frame-slotted 

synchronous (FS-Sync), frame-slotted asynchronous (FS-Async), Multi-

channel synchronous (MC-Sync), and Multi-channel asynchronous (MC-

Async). Table 5.2 summarises these models and the abbreviations for each one 

that will be utilised throughout the rest of the chapter.  
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Table 5.2:  A Summary of existing MAC protocol types for WSNs [94]. 

MAC 

protocol type 
Abbreviation Description 

Frame-slotted 

asynchronous 
(FS-Async) 

Uses one MAC channel to send or 

receive a message in an asynchronous 

mode 

Frame-slotted 

synchronous 
(FS-Sync) 

Uses one MAC channel to send or 

receive a message in a synchronous 

mode 

Multi-channel 

asynchronous 
(MC-Async) 

Divides the MAC channel into several 

channels and sends or receives 

multiple messages at the same time in 

an asynchronous mode 

Multi-channel 

synchronous 
(MC-Sync) 

Divides the MAC channel into several 

channels and sends or receives 

multiple messages at the same time in 

a synchronous mode 

 

5.2.1 Frame-slotted asynchronous MOHA and LMOHA 

models 

In this model, each node is allowed to send or receive one frame at any point in 

time. The sending node starts by sending the preamble. A receiving node 

senses the channel. In message exchanges for the MOHA/LMOHA schemes, 

an active node (as described in Definition 3.4) will send a MAC frame that has 

a sending preamble with its value (v) in the data field to its next node in its 

row. The next node will be sensing the channel. Once a preamble is received, it 

starts receiving the rest of the frame. After the sending node finishes sending 

the frame, it starts listening for the sending preamble from the next node. If no 

preamble is received, it starts sending to its previous node in its row. Then, the 

sending node will perform the same steps with the adjacent node in the next 

higher row and the adjacent node in the lower row. Figure 5.2 and Figure 5.3 
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show the communication sequence scenarios for an active node (𝑛𝑖
𝑟𝑚) and its 

neighbouring nodes.  

Figure 5.2 shows the normal message sequence when all neighbouring 

nodes are active. Figure 5.3 shows the scenarios when nodes adjacent to the 

sending one are inactive. Four different scenarios involving active/inactive 

nodes were studied. Figure 5.3 (a) shows the sequence when three nodes (the 

next node in its row: 𝑛𝑖+1
𝑟𝑚 ,  the previous node in its row: 𝑛𝑖−1

𝑟𝑚  and the adjacent 

node in the next higher row: 𝑛𝑖
𝑟𝑚+1) are active and the adjacent node in the 

lower row: 𝑛𝑖
𝑟𝑚−1 is inactive. Figure 5.3 (b) shows the sequence when two 

nodes (the next node in its row: 𝑛𝑖+1
𝑟𝑚  and the previous node in its row: 𝑛𝑖−1

𝑟𝑚 ) 

are active and the other nodes (the adjacent node in the next higher row: 𝑛𝑖
𝑟𝑚+1 

and the adjacent node in the lower row: 𝑛𝑖
𝑟𝑚−1) are inactive. Figure 5.3 (c) 

shows the sequence when one node (the next node in its row: 𝑛𝑖+1
𝑟𝑚 ) is active 

and the other nodes (the previous node in its row: 𝑛𝑖−1
𝑟𝑚 , the adjacent node in the 

next higher row: 𝑛𝑖
𝑟𝑚+1 and the adjacent node in the lower row: 𝑛𝑖

𝑟𝑚−1) are 

inactive. Figure 5.3 (d) shows the sequence when all neighbouring nodes to 

node 𝑛𝑖
𝑟𝑚 are inactive, 𝑤𝑡 is the time that a node should wait before performing 

other computations or communications, 𝑝𝑡 is the time required to send a full 

preamble field, and ∆𝑡 is the error delay time that may occur in every 

communication between two nodes due to physical factors. 
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Figure 5.2: MOHA and LMOHA FS-Async message sequence model. 

In the normal scenario shown in Figure 5.2, the exchange time for the 

node (𝑛𝑖
𝑟𝑚) can be estimated as 8𝑇𝑠𝑒𝑛𝑑 + 8∆𝑡, as it will send four frames and 

receive four messages, where 𝑇𝑠𝑒𝑛𝑑 is the time required to send one frame, and 

∆𝑡 is the error delay time that may occur in every communication between two 

nodes due to physical factors of the network. In the scenario shown in Figure 

5.3 (a), the adjacent node in the lower row (𝑛𝑖
𝑟𝑚−1) is inactive. In this scenario, 

the node 𝑛𝑖
𝑟𝑚 will wait for a fixed amount of time (𝑤𝑡) that is equal to the time 

required to send a full preamble field (𝑝𝑡) in addition to the ∆𝑡. Hence, the time 

estimation in such a scenario will be 7𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 8∆𝑡. The same will be 

applicable if any node is de-activated and other nodes are active. The next 
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scenario described in Figure 5.3 (b) is when two neighbouring nodes to 𝑛𝑖
𝑟𝑚 are 

de-activated. In this scenario, the time estimation will be 6𝑇𝑠𝑒𝑛𝑑 + 2𝑝𝑡 + 8∆𝑡. 

The next scenario described in Figure 5.3 (c) is when three neighbouring nodes 

to 𝑛𝑖
𝑟𝑚 are de-activated. In this scenario, the time estimation will be 5𝑇𝑠𝑒𝑛𝑑 +

3𝑝𝑡 + 8∆𝑡. The last scenario described in Figure 5.3 (d) is when all 

neighbouring nodes to 𝑛𝑖
𝑟𝑚 are de-activated. In such a scenario the time 

estimation will be 4𝑇𝑠𝑒𝑛𝑑 + 4𝑝𝑡 + 8∆𝑡. It can be concluded that the maximum 

time required for a node’s exchange communications for the two proposed 

schemes is: 

𝑇𝑒𝑥𝑐ℎ = 8𝑇𝑠𝑒𝑛𝑑 + 8∆𝑡                                           (5.1) 

𝑝𝑡 is smaller in length than 𝑇𝑠𝑒𝑛𝑑 as the 𝑝𝑡 is involved in sending only a 

sub-part of the whole frame. The minimum exchange time for a node can be 

estimated as follows: 

𝑇𝑒𝑥𝑐ℎ = 4𝑇𝑠𝑒𝑛𝑑 + 4𝑝𝑡 + 8∆𝑡                                       (5.2) 

Taking the parallelism of design for the MOHA and LMOHA networks 

into account, these limits can be used to estimate the entire network’s 

maximum and minimum exchange times as all the network’s nodes perform 

exchange communications simultaneously. 
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Figure 5.3: MOHA and LMOHA FS-Async message sequence model scenarios: (a) One adjacent node is inactive. (b) Two 

adjacent nodes are inactive. (c) Three adjacent nodes are inactive. (d) All adjacent nodes are inactive. 
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 In the MOHA implementation, in order to perform the MOHA’s report 

communications, an activated edge node (as described in Definition 3.6) will 

send a MAC frame that has a sending preamble, with its location 

(𝑛𝑜𝑑𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) in the data field to the S&I. Once a preamble is received, it 

starts receiving the rest of the frame. If the active node is not activated as an 

edge node, the node sends a not sending preamble. This is to minimise the 

waiting time for the S&I since the preamble sending time is less than the frame 

sending time. Figure 5.4 shows the two possible scenarios of a communication 

process for an active node (𝑛𝑖
𝑟𝑚) and the S&I (𝑆&𝐼), where i is the node’s 

position in its row and m is the node’s row number. Figure 5.4 (a) shows the 

communication sequence if the active node is activated as an edge node and 

Figure 5.4 (b) shows the sequence when it is inactive as an edge node. 

 

 

Figure 5.4: MOHA’s edge nodes communication phase for FS-Async message 

sequence model scenarios. 
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Figure 5.5: LMOHA’s plus, T, corner, and edge nodes communication phase 

for FS-Async message sequence model scenarios. 

 

In the first scenario, the report communication time for the activated 

edge node (𝑛𝑖
𝑟𝑚) can be estimated as 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡, as each active edge node will 

send one frame including its location information to the S&I (𝑆&𝐼). Since each 

active edge node will send a frame to the S&I, the maximum report 

communication time for the network can be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑁𝑒𝑑𝑔𝑒(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)                                   (5.3) 

𝑁𝑒𝑑𝑔𝑒  represents the number of activated edge nodes in the network. The 

minimum communication time can be estimated using the second scenario. In 

this scenario, if the active node 𝑛𝑖
𝑟𝑚 is inactive as an edge node, the waiting 

time for the S&I can be estimated as 𝑤𝑡 = 𝑝𝑡 + ∆𝑡. And the minimum report 

communication time for the entire network can be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑁𝑎𝑐𝑡𝑖𝑣𝑒(𝑝𝑡 + ∆𝑡)                                       (5.4) 
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𝑁𝑎𝑐𝑡𝑖𝑣𝑒 represents the number of active nodes in the network. The total 

communication time (𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴) of the network can be calculated as the 

summation of 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 and 𝑇𝑒𝑥𝑐ℎ. Accordingly, the maximum total 

communication time in such a model for the MOHA scheme can be estimated 

as follows: 

𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴 = (𝑁𝑒𝑑𝑔𝑒 + 8)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)                              (5.5) 

And the minimum total communication for the MOHA scheme can be 

estimated as follows: 

𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴 = (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 4)𝑝𝑡 + (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 8)∆𝑡 + 4𝑇𝑠𝑒𝑛𝑑           (5.6) 

On the other hand, in the LMOHA implementation, in order to perform 

the LMOHA’s report communications, an activated plus, T, corner, and edge 

node (as described in Definition 4.6) will send a MAC frame that has a sending 

preamble, with its type information (𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒) in the data field to the S&I. 

Once a preamble is received, the S&I starts receiving the rest of the frame. If 

the active node is not activated as a plus, T, corner, or edge node, the node 

sends a not sending preamble. This is to minimise the waiting time for the S&I 

as preamble sending time is less than the frame sending time. Figure 5.5 shows 

the two possible scenarios of a communication process for an active node 

(𝑛𝑖
𝑟𝑚) and the S&I (𝑆&𝐼), where i is the node’s position in its row and m is the 

node’s row number. Figure 5.5 (a) shows the communication sequence if the 

active node is activated as a plus, T, corner, or edge node and Figure 5.5 (b) 

shows the sequence when it is inactive as a plus, T, corner, or edge node. 
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In the first scenario, the report communication time for the activated 

plus, T, corner, and edge node (𝑛𝑖
𝑟𝑚) can be estimated as 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡 as each 

active plus, T, corner, and edge node will send one frame including its type 

information to the S&I (𝑆&𝐼). Since every active plus, T, corner, and edge 

node will send a frame to the S&I, the maximum report communication time 

for the network in LMOHA scheme can be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = (𝑁𝑝𝑙𝑢𝑠+𝑁𝑇 + 𝑁𝑐𝑜𝑟𝑛𝑒𝑟 + 𝑁𝑒𝑑𝑔𝑒)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)         (5.7) 

𝑁𝑝𝑙𝑢𝑠 represents the number of activated plus nodes in the network, 

𝑁𝑇 represents the number of activated T nodes in the network, 

𝑁𝑐𝑜𝑟𝑛𝑒𝑟 represents the number of activated corner nodes in the network, and 

𝑁𝑒𝑑𝑔𝑒  represents the number of activated edge nodes in the network. The 

minimum report communication time can be estimated using the second 

scenario. In this scenario, if the active node 𝑛𝑖
𝑟𝑚 is inactive as a plus, T, corner, 

or edge node, the waiting time for the S&I can be estimated as 𝑤𝑡 = 𝑝𝑡 + ∆𝑡. 

And the minimum report communication time for the entire network can be 

estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑁𝑎𝑐𝑡𝑖𝑣𝑒(𝑝𝑡 + ∆𝑡)                                  (5.8) 

𝑁𝑎𝑐𝑡𝑖𝑣𝑒 represents the number of active nodes in the network. The total 

communication time (𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴) of the network can be calculated as the 

summation of 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 and 𝑇𝑒𝑥𝑐ℎ. Accordingly, the maximum total 

communication time in such a model for the LMOHA scheme can be estimated 

as follows: 



 

288 

𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴 = (𝑁𝑝𝑙𝑢𝑠+𝑁𝑇 + 𝑁𝑐𝑜𝑟𝑛𝑒𝑟 + 𝑁𝑒𝑑𝑔𝑒 + 8)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)    (5.9) 

And the minimum total communication for the LMOHA scheme can be 

estimated as follows: 

𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴 = (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 4)𝑝𝑡 + (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 8)∆𝑡 + 4𝑇𝑠𝑒𝑛𝑑          (5.10) 

5.2.2 Frame-slotted synchronous MOHA and LMOHA models    

A synchronous communication model is intended to guarantee message 

delivery using acknowledgement (𝐴𝑐𝑘) messages. After sending a frame, a 

sending node waits a period of time to receive an 𝐴𝑐𝑘 from the receiving node. 

If no 𝐴𝑐𝑘 is received, the sending node retransmits the message assuming that 

the sent message was lost. In this sub-section, we discuss the synchronous 

model in terms of sending frames and acknowledgements without dealing with 

the retransmission process as it requires further discussion and research that 

may include the physical level of the network. Similar to the FS-Async model 

described in the previous sub-section, an active node starts to exchange 

communications by sending its value (v) in a MAC frame to its next node in its 

row. After receiving the frame, the next node replies with an acknowledgement 

frame. Then it sends its own value frame if it is active. If not, the next node 

sends a not sending preamble. This is to inform the communicating node that 

there is no value to be sent, and to allow it to finalise the information exchange 

process. After an activate node performs a successful communication exchange 

with its next neighbour, it performs the same steps with its previous node in its 

row, its adjacent node in the next higher row, and the adjacent node in the 
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lower row. Figure 5.6 shows the sequence when all nodes are active. Figure 5.7 

shows four possible scenarios for an active node and its adjacent nodes: (a) the 

adjacent node in the lower row (𝑛𝑖
𝑟𝑚−1) is inactive, (b) the adjacent node in the 

next higher row (𝑛𝑖
𝑟𝑚+1) and the adjacent node in the lower row (𝑛𝑖

𝑟𝑚−1) are 

inactive, (c) the previous node in its row (𝑛𝑖−1
𝑟𝑚 ), the adjacent node in the next 

higher row (𝑛𝑖
𝑟𝑚+1), and the adjacent node in the lower row (𝑛𝑖

𝑟𝑚−1) are 

inactive, and (d) all adjacent nodes to node 𝑛𝑖
𝑟𝑚 are inactive. 

 

 

Figure 5.6: MOHA and LMOHA FS-Sync message sequence model. 
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Figure 5.7: MOHA and LMOHA FS-Sync message sequence model scenarios. (a) One adjacent node is inactive. (b) Two 

adjacent nodes are inactive. (c) Three adjacent nodes are inactive. (d) All adjacent nodes are inactive. 
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 From Figure 5.6 it can be seen that a full communication exchange of 

an active node will involve sending and receiving 16 frames. This excludes 

retransmissions due to errors and/or lost messages. Hence, the total exchange 

time for a node in such a scenario can be estimated as 𝑇𝑒𝑥𝑐ℎ = 16𝑇𝑠𝑒𝑛𝑑 +

16∆𝑡. In the scenario shown in Figure 5.7 (a) the adjacent node in the lower 

row is inactive. Hence, node 𝑛𝑖
𝑟𝑚 will either receive a not sending preamble 

from 𝑛𝑖
𝑟𝑚−1 or wait for 𝑝𝑡 to retransmit the sent frame. Consequently, the time 

required for such an exchange scenario will be 𝑇𝑒𝑥𝑐ℎ = 13𝑇𝑠𝑒𝑛𝑑 + 14∆𝑡 + 𝑝𝑡. 

The same applies if any node is inactive and other nodes are active. The next 

scenario described in Figure 5.7 (b) is when two adjacent nodes to 𝑛𝑖
𝑟𝑚 are de-

activated. In such a scenario, the time estimate is given by: 𝑇𝑒𝑥𝑐ℎ = 10𝑇𝑠𝑒𝑛𝑑 +

12∆𝑡 + 2𝑝𝑡. The next scenario described in Figure 5.7 (c) is when three 

adjacent nodes to 𝑛𝑖
𝑟𝑚 are de-activated. In such a scenario the time estimate 

will be 𝑇𝑒𝑥𝑐ℎ = 7𝑇𝑠𝑒𝑛𝑑 + 10∆𝑡 + 3𝑝𝑡. The last scenario shown in Figure 5.7 

(d) requires all inactive adjacent nodes to send a not sending preamble to allow 

𝑛𝑖
𝑟𝑚, to complete the exchange transmission process. In this case, the time 

estimate will be 𝑇𝑒𝑥𝑐ℎ = 4𝑇𝑠𝑒𝑛𝑑 + 8∆𝑡 + 4𝑝𝑡. Since 𝑝𝑡 is less than 𝑇𝑠𝑒𝑛𝑑, and 

all messages are communicated in parallel, the maximum exchange time for a 

network that runs a FS-Sync model for the MOHA and LMOHA schemes can 

be estimated as follows: 

𝑇𝑒𝑥𝑐ℎ = 16𝑇𝑠𝑒𝑛𝑑 + 16∆𝑡                                   (5.11) 

And the minimum time will be as follows: 
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𝑇𝑒𝑥𝑐ℎ = 4𝑇𝑠𝑒𝑛𝑑 + 8∆𝑡 + 4𝑝𝑡                                (5.12) 

Assuming that there is at least one active node in the entire network. 

 In the MOHA implementation, in order to perform the MOHA’s report 

communications, an activated edge node (as described in Definition 3.6) will 

send a MAC frame that has a sending preamble, with its location information 

(𝑛𝑜𝑑𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) in the data field to the S&I, and receives an 𝐴𝑐𝑘 to mark 

completion of communication. If the active node is not activated as an edge 

node, the active node sends a not sending preamble. This is to minimise the 

waiting time for the S&I as the preamble sending time is less than the frame 

sending time. Figure 5.8 shows the two possible scenarios of a communication 

process for an active node (𝑛𝑖
𝑟𝑚) and the S&I (𝑆&𝐼), where i is the node’s 

position in its row and m is the node’s row number. Figure 5.8 (a) shows the 

communication sequence if the active node is activated as an edge node and 

Figure 5.8 (b) shows the sequence when it is inactive as an edge node. 

 

 

Figure 5.8: MOHA’s edge nodes communication phase for FS-Sync message 

sequence model scenarios. 
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Figure 5.9: LMOHA’s plus, T, corner, and edge nodes communication phase 

for FS-Sync message sequence model scenarios. 

 

 In the first scenario, the communication time for the activated edge 

node (𝑛𝑖
𝑟𝑚) can be estimated in a similar way to the first communication 

scenario presented for the FS-Async model in the previous sub-section. Taking 

the 𝐴𝑐𝑘 frames into account, the maximum report communication time for the 

network can be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 2𝑁𝑒𝑑𝑔𝑒(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)                           (5.13) 

 The minimum communication time can be estimated using the second 

scenario. In this scenario, if the active node 𝑛𝑖
𝑟𝑚 is inactive as an edge node, the 

minimum report communication time of this MAC model will be similar to the 

minimum report communication time of the FS-Async model that was 

estimated based on Equation 5.4. The total communication time (𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴) of the 

network can be calculated as the summation of 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 and 𝑇𝑒𝑥𝑐ℎ. Accordingly, 
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the maximum total communication time of such a model for the MOHA 

scheme can be estimated as follows: 

𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴 = 2(𝑁𝑒𝑑𝑔𝑒 + 8)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)                          (5.14) 

This is twice the maximum time of the FS-Async communication time 

for the MOHA scheme presented in Equation 5.5. However, the minimum 

communication time for both models remains the same as that derived using 

Equation 5.6. 

 On the other hand, in the LMOHA implementation, to perform the 

LMOHA’s report communications, an activated plus, T, corner, and edge node 

(as described in Definition 4.6) will send a MAC frame that has a sending 

preamble, with its type information (𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒) in the data field to the S&I and 

receives an 𝐴𝑐𝑘 to end the communication. If the active node is not activated 

as a plus, T, corner, or edge node, the active node sends a not sending 

preamble. This is to minimise the waiting time for the S&I as the preamble 

sending time is less than the frame sending time. Figure 5.9 shows the two 

possible scenarios of a communication process for an active node (𝑛𝑖
𝑟𝑚) and 

the S&I (𝑆&𝐼), where i is the node’s position in its row and m is the node’s row 

number. Figure 5.9 (a) shows the communication sequence if the active node is 

activated as a plus, T, corner, or edge node and Figure 5.9 (b) shows the 

sequence when it is inactive as a plus, T, corner, or edge node. 

In the first scenario, the report communication time for the activated 

plus, T, corner, or edge node (𝑛𝑖
𝑟𝑚) can be estimated in a similar manner as that 
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for the first communication scenario presented for FS-Async in the previous 

sub-section. Taking the 𝐴𝑐𝑘 frames into account, the maximum report 

communication time for the network in the LMOHA scheme can be estimated 

as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 2(𝑁𝑝𝑙𝑢𝑠+𝑁𝑇 + 𝑁𝑐𝑜𝑟𝑛𝑒𝑟 + 𝑁𝑒𝑑𝑔𝑒)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)     (5.15) 

 The minimum report communication time can be estimated using the 

second scenario. In this scenario, if the active node 𝑛𝑖
𝑟𝑚 is inactive as a plus, T, 

corner, or edge node, the minimum report communication time of this MAC 

model will be similar to the minimum report communication time of the FS-

Async model that has been estimated according to Equation 5.8. The total 

communication time (𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴) of the network can be calculated as the 

summation of 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 and 𝑇𝑒𝑥𝑐ℎ. Accordingly, the maximum total 

communication time in such a model for the LMOHA scheme can be estimated 

as follows: 

𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴 = 2(𝑁𝑝𝑙𝑢𝑠+𝑁𝑇 + 𝑁𝑐𝑜𝑟𝑛𝑒𝑟 + 𝑁𝑒𝑑𝑔𝑒 + 8)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)   (5.16) 

 This is twice the maximum time of the FS-Async communication time 

for the LMOHA scheme presented in Equation 5.9. However, the minimum 

communication time for both models remains the same as that derived in 

Equation 5.10. 

5.2.3 Multi-channel MOHA and LMOHA models 

In multi-channel (MC) models, a node is capable of handling multiple 

communications simultaneously. Similar to the frame-slotted models, MC can 
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work on asynchronous and synchronous modes. Figure 5.10 shows MC-Async 

exchange communications when all nodes are activated. Figure 5.11 shows 

four possible scenarios: (a) the adjacent node in the lower row (𝑛𝑖
𝑟𝑚−1) is 

inactive, (b) the adjacent node in the next higher row (𝑛𝑖
𝑟𝑚+1) and the adjacent 

node in the lower row (𝑛𝑖
𝑟𝑚−1) are inactive, (c) the previous node in its row 

(𝑛𝑖−1
𝑟𝑚 ), the adjacent node in the next higher row (𝑛𝑖

𝑟𝑚+1), and the adjacent node 

in the lower row (𝑛𝑖
𝑟𝑚−1) are inactive, and (d) all nodes adjacent to node 𝑛𝑖

𝑟𝑚 

are inactive. 

 

 

Figure 5.10: MOHA and LMOHA MC-Async message sequence model. 



 

297 

 

Figure 5.11: MOHA and LMOHA MC-Async message sequence model scenarios. (a) One adjacent node is inactive. (b) Two 

adjacent nodes are inactive. (c) Three adjacent nodes are inactive. (d) All adjacent nodes are inactive. 
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 From Figure 5.10, if all nodes are active, all nodes will exchange 

frames at the same time and the time estimate can be determined as 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡. 

However, when there is an inactive node such as the ones presented in Figures 

5.11 (a), (b), (c) and (d), the time estimate is 𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 2∆𝑡. This can be 

considered as the maximum exchange time as it is higher than the time 

estimate for the first scenario. In MOHA’s report communications, the report 

communication time for the MC-Async model can be estimated in a similar 

way to the FS-Async mode (see Figure 5.4). Since all activated edge nodes will 

simultaneously report their locations information to the S&I, the maximum 

report communication time for the network can be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡                                        (5.17) 

 The minimum communication time can be estimated using the second 

scenario in Figure 5.4. In this scenario, if the active node 𝑛𝑖
𝑟𝑚 is inactive as an 

edge node, the waiting time for the S&I can be estimated as 𝑤𝑡 = 𝑝𝑡 + ∆𝑡. 

Since all active nodes will communicate with the S&I at the same time, the 

minimum report communication time for the entire network can be estimated 

as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑝𝑡 + ∆𝑡                                        (5.18) 

Thus, the maximum communication time for a network running the 

MC-Async for the MOHA scheme can be estimated as follows: 

𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴 = 2𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 3∆𝑡                              (5.19) 
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And the minimum time for the MOHA scheme can be estimated as 

follows: 

𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴 = 𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 2∆𝑡                               (5.20) 

 On other hand, Like in the MOHA’s report communications, the 

LMOHA’s report communication time for the MC-Async model can be 

estimated in a similar way to the FS-Async mode (see Figure 5.5). Since all 

activated plus, T, corner, and edge nodes will simultaneously report their types 

information to the S&I, the maximum report communication time for the 

network can be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡                                        (5.21) 

 The minimum communication time can be estimated using the second 

scenario in Figure 5.5. In this scenario, if the active node 𝑛𝑖
𝑟𝑚 is inactive as a 

plus, T, corner, or edge node, the waiting time for the S&I can be estimated as 

𝑤𝑡 = 𝑝𝑡 + ∆𝑡. Since all active nodes will communicate with the S&I at the 

same time, the minimum report communication time for the entire network can 

be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑝𝑡 + ∆𝑡                                        (5.22) 

Thus, the maximum communication time for a network running the 

MC-Async for the LMOHA scheme can be estimated as follows: 

𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴 = 2𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 3∆𝑡                              (5.23) 

And minimum time for LMOHA scheme can be estimated as follows: 

𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴 = 𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 2∆𝑡                               (5.24) 
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 Equations 5.19, 5.20, 5.23, and 5.24 show that both proposed schemes 

have identical minimum and maximum communication times. The main reason 

for this is the nodes’ ability, provided by the MC-Async model, to handle 

multiple communications simultaneously. 

 In synchronous communication, each receiving node is expected to 

reply to the sending node with an 𝐴𝑐𝑘 frame to confirm the receipt of the 

message. Figure 5.12 shows the exchange communication sequence in an MC-

Sync model. Figure 5.13 shows four possible scenarios: (a) one adjacent node 

is inactive, (b) two adjacent nodes are inactive, (c) three adjacent nodes are 

inactive and (d) all adjacent nodes are inactive. 

 

 

Figure 5.12: MOHA and LMOHA MC-Sync message sequence model. 
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Figure 5.13: MOHA and LMOHA MC-Sync message sequence model scenarios. (a) One adjacent node is inactive. (b) Two 

adjacent nodes are inactive. (c) Three adjacent nodes are inactive. (d) All adjacent nodes are inactive.
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  From Figure 5.12, the message exchange time can be estimated as 

2(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡). This estimate includes 𝐴𝑐𝑘 frames. The same estimate can be 

applied to the first, second and third scenarios shown in Figure 5.13 (a), (b) 

and (c) as the waiting time for responses from inactive nodes overlaps with the 

exchange time for active nodes. In the fourth scenario shown in Figure 5.13 

(d), time estimate will be 𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 2∆𝑡 as active node 𝑛𝑖
𝑟𝑚 will be waiting 

for a not sending preamble. In the MOHA’s report communications, the report 

communication time for the MC-Sync model can be estimated in a similar way 

to the FS-Sync mode (see Figure 5.8). Since all activated edge nodes will 

report their locations information to the S&I simultaneously, the maximum 

report communication time for the network can be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 2(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)                                        (5.25) 

 The minimum communication time can be estimated using the second 

scenario in Figure 5.8. In this scenario, if the active node 𝑛𝑖
𝑟𝑚 is inactive as an 

edge node, the waiting time for the S&I can be estimated as 𝑤𝑡 = 𝑝𝑡 + ∆𝑡. 

Since all active nodes will communicate with the S&I at the same time, the 

minimum report communication time for the entire network can be estimated 

as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑝𝑡 + ∆𝑡                                        (5.26) 

Thus, the maximum communication time for a network running MC-

Sync for MOHA scheme can be estimated as follows: 

𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴 = 4(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)                                     (5.27) 
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And the minimum time for the MOHA scheme can be estimated as 

follows: 

𝑇𝑐𝑜𝑚𝑚
𝑀𝑂𝐻𝐴 = 𝑇𝑠𝑒𝑛𝑑 + 2𝑝𝑡 + 3∆𝑡                                 (5.28) 

 On other hand, similar to the MOHA’s report communications, the 

LMOHA’s report communication time for the MC-Sync model can be 

estimated in a similar way to the FS-Sync mode (see Figure 5.9). Since all 

activated plus, T, corner, and edge nodes will report their types information to 

the S&I at the same time, the maximum report communication time for the 

network can be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 2(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)                                        (5.29) 

 The minimum communication time can be estimated using the second 

scenario in Figure 5.9. In this scenario, if the active node 𝑛𝑖
𝑟𝑚 is inactive as a 

plus, T, corner, or edge node, the waiting time for the S&I can be estimated as 

𝑤𝑡 = 𝑝𝑡 + ∆𝑡. Since all active nodes will simultaneously communicate with 

the S&I, the minimum report communication time for the entire network can 

be estimated as follows: 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑝𝑡 + ∆𝑡                                        (5.30) 

Thus, the maximum communication time for a network running the 

MC-Sync for the LMOHA scheme can be estimated as follows: 

𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴 = 4(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)                              (5.31) 

And the minimum time for LMOHA scheme can be estimated as 

follows: 
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𝑇𝑐𝑜𝑚𝑚
𝐿𝑀𝑂𝐻𝐴 = 𝑇𝑠𝑒𝑛𝑑 + 2𝑝𝑡 + 3∆𝑡                               (5.32) 

 Equations 5.27, 5.28, 5.31, and 5.32 show that both proposed schemes 

have identical minimum and maximum communication times. The main reason 

for this is the nodes’ ability to handle multiple communications simultaneously 

provided by the MC-Sync model. 

 Table 5.3 summarises the limits of communication time overhead for 

the message sequence models of both schemes. The analysis of the experiment 

results from the four sequence models will be conducted in the next section to 

evaluate the communication overhead of the MOHA and LMOHA networks 

for each model using different pattern types. 

Table 5.3:  Summary of communication time overhead (𝑇𝑐𝑜𝑚𝑚) limit estimates 

for each MOHA and LMOHA message sequence model. 

Model Scheme Minimum time estimation 
Maximum time 

estimation 

FS-Async 

MOHA 
(𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 4)𝑝𝑡 + (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 8)∆𝑡

+ 4𝑇𝑠𝑒𝑛𝑑 
(𝑁𝑒𝑑𝑔𝑒 + 8)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) 

LMOHA 
(𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 4)𝑝𝑡 + (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 8)∆𝑡

+ 4𝑇𝑠𝑒𝑛𝑑  

(𝑁𝑝𝑙𝑢𝑠+𝑁𝑇 + 𝑁𝑐𝑜𝑟𝑛𝑒𝑟
+𝑁𝑒𝑑𝑔𝑒 + 8)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) 

FS-Sync 

MOHA 
(𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 4)𝑝𝑡 + (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 8)∆𝑡

+ 4𝑇𝑠𝑒𝑛𝑑 
2(𝑁𝑒𝑑𝑔𝑒 + 8)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) 

LMOHA 
(𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 4)𝑝𝑡 + (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 8)∆𝑡

+ 4𝑇𝑠𝑒𝑛𝑑 

2(𝑁𝑝𝑙𝑢𝑠+𝑁𝑇 + 𝑁𝑐𝑜𝑟𝑛𝑒𝑟
+𝑁𝑒𝑑𝑔𝑒 + 8)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) 

MC-

Async 

MOHA 𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 2∆𝑡 2𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 3∆𝑡 

LMOHA 𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 2∆𝑡 2𝑇𝑠𝑒𝑛𝑑 + 𝑝𝑡 + 3∆𝑡 

MC-Sync 
MOHA 𝑇𝑠𝑒𝑛𝑑 + 2𝑝𝑡 + 3∆𝑡 4(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) 

LMOHA 𝑇𝑠𝑒𝑛𝑑 + 2𝑝𝑡 + 3∆𝑡 4(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) 
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5.3 MOHA and LMOHA Communicational 

Overhead Analysis 

This section presents an experimentally-derived evaluation of the MOHA and 

LMOHA schemes’ communicational overhead in terms of time and energy 

requirements. As discussed in Chapter 2, network communications are 

considered to be the most time and energy consuming tasks in WSNs. 

Therefore, through experiments, we estimate the MOHA and LMOHA 

networks’ learning time cycle durations and energy consumption based on 

communicational requirements. This section begins with an analysis of the 

effects of the nodes activation technique on communications in the network 

and then it presents a time and energy analysis. 

5.3.1 Node activation analysis 

The nodes activation techniques of the MOHA and LMOHA schemes were 

discussed in sections 3.4.2 and 4.3.1 respectively. In the MOHA scheme, this 

technique or process involves two types of activations, namely, node and edge 

node activations, which are described in Definitions 3.2 and 3.5 respectively. 

The LMOHA scheme also has mainly two types of activations, namely, node 

and node types activations. However, the node types activation in the LMOHA 

scheme is divided into four types: plus node, T node, corner node, and edge 

node activations. These activation types were described in Definitions 4.2, 4.3, 

4.4, and 4.5 respectively. The nodes activation technique determines the total 
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number of the network’s communications, as only the activated nodes in the 

network participate in the learning process. This sub-section utilises the shapes 

and stars datasets presented in the previous chapter (Chapter 4) to estimate the 

number of activated nodes for each dataset. 

 Figure 5.14 shows two examples of nodes activation. Figure 5.14 (a) 

shows the activation technique of a binary pattern taken from the shapes 

dataset. The pattern size 𝑃𝑠𝑖𝑧𝑒 = 65536 and the threshold value for node 

activation was set to 1 (𝜑 = 1). The nodes are assumed to be deployed in a 

grid to sense the pattern space. We also assume that the network is divided into 

256 rows, each of which is utilised to handle 256-bit binary sub-patterns. Since 

the pattern is binary, activated nodes will form the same shape that appears in 

the pattern. The number of activated nodes in this example is 4783 nodes out 

of 65536. Please note that both schemes have an equal number of activated 

nodes, which is the result of using the same first step to activate the nodes. In 

Figure 5.14 (b), a grey scale star map is taken from the stars dataset as the 

pattern. The possible value of each element in this pattern is 𝑣 =

{0,1,2, … ,255}. In this instance, the pattern size 𝑃𝑠𝑖𝑧𝑒 = 40000 and the 

threshold value for node activation was set to 150 (𝜑 = 150). We assume that 

the network is divided into 200 rows, each of which is utilised to handle 200 

sub-patterns. The number of activated nodes in this example is 99. It can be 

clearly seen from the examples shown in Figure 5.14 that the number of nodes 

that conduct exchange communications has been reduced from the pattern size 

to 4783 in the first example and to 99 in the second one instead of involving all 
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of the network’s nodes in the process (65536 nodes for the first example and 

40000 for the second one).  

 Figure 5.14 also presents the MOHA’s activated edge nodes and the 

LMOHA’s activated plus, T, corner, and edge nodes. The threshold value for 

edge determination was set to 1 (𝜑 = 1) for the shapes dataset example and 

150 (𝜑 = 150) for the example of stars dataset. In the MOHA scheme, the 

total number of activated edge nodes in Figure 5.14 (a) is 263 nodes, whereas it 

is 42 nodes for the example shown in Figure 5.14 (b). On the other hand, in the 

LMOHA scheme, the total number of activated plus, T, corner, and edge nodes 

for the shapes dataset example was 4783 nodes, whereas it was 87 nodes for 

the example of stars dataset, shown in Figure 5.14 (a) and (b) respectively. 

Since the pattern in the first example is binary, each activated node will be 

activated as plus, T, corner, or edge node. These techniques limit the number 

of reporting nodes (to the S&I) in the network to the activated edge nodes in 

the MOHA implementation and the activated plus, T, corner, and edge nodes 

in the LMOHA implementation and relieves the rest of activated nodes from 

sending report messages. This reduces the resource consumption of these 

nodes.  
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Figure 5.14: Example of the proposed schemes’ nodes activation technique for: 

(a) shapes dataset, (b) stars dataset. 

 

Table 5.4:  Average number of activated nodes for MOHA scheme. 

Dataset 
Nodes 

(Network size) 

Average 

activated nodes 

Average activated 

edge nodes 

Shapes 65536 4883 291 

Stars 
40000 213 31 

 

 

Table 5.5:  Average number of activated nodes for LMOHA scheme. 

Dataset 
Nodes 

(Network size) 

Average 

activated nodes 

Average activated 

plus, T, corner, 

and edge nodes 

Shapes 65536 4883 4883 

Stars 
40000 213 119 
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Table 5.4 and 5.5 summarises the average number of activated nodes 

for both datasets using the proposed schemes. Both tables clearly show that the 

number of activated nodes that will conduct the node’s exchange 

communications is small compared to the total number of nodes. Moreover, the 

total number of activated nodes represents only 25.67% of the total number of 

nodes for the shapes dataset and 0.53% for the stars dataset. Table 5.4 shows 

that in MOHA implementation, the number of activated edge nodes that will 

participate in report communications represents only 0.74% of the network size 

for the shapes dataset and 0.08% for the stars dataset. On the other hand, Table 

5.5 shows that in the LMOHA implementation, the total number of activated 

plus, T, corner, and edge nodes that will participate in report communications 

represents only 25.67% of the network size for the shapes dataset and 0.30% 

for the stars dataset. This reflects the amount of reduction in communicational 

overhead that can be achieved by using the proposed schemes. Moreover, 

Tables 5.4 and 5.5 clearly show that in the LMOHA implementation, the 

average number of activated nodes participating in the learning process is 

higher compared with the average number of activated nodes in the MOHA 

implementation. This is mainly because the number of activated nodes that 

participate in report communications is lower in the MOHA approach 

compared with that in the LMOHA approach.    



 

310 

5.3.2 Energy and Time Analysis 

In this sub-section, we analyse the MOHA and LMOHA schemes from a 

practical perspective. The main objective is to estimate the lifetime and 

execution duration of the networks utilising the communicational models 

(MAC protocols) presented in the beginning of this chapter. To achieve this 

goal, we ran a simulation program that creates and runs MOHA and LMOHA 

networks on sensor nodes and obtains energy and time readings. As discussed 

previously, data transmission is the most time and energy consuming process 

in WSNs. Therefore, the simulation evaluates these parameters based on the 

communications involved in running the network. 

Table 5.6:  The assumptions utilised in the energy and time analysis. 

Sensor type Mica 2 

Communication data rate 128 Kbps 

Frame size 49 Bytes 

Time to send or receive a full frame (𝑻𝒔𝒆𝒏𝒅) 3.0625 ms 

Preamble field size 8 bytes 

Time to send a one preamble 0.5 ms 

Energy required to send a full frame 2.9 mJ 

Energy required to receive a full frame 1.4 mJ 

Error rate (∆𝒕) 32 μs 

Battery capacity 324 joules 

 

 We ran the simulation on sensor nodes based on the following 

assumptions, which are summarised in Table 5.6 [273-275]: 

1. The sensor nodes are Mica 2 type. 
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2. The size of the frame is 49 bytes, which includes preamble, addresses, 

control, data checksum, flag, and other fields. 

3. The size of the preamble field is 8 bytes. 

4. Communication data rate is 128 Kbps, which means that sending a full 

frame takes 3.0625 ms (milliseconds) and sending a one preamble takes 

0.5 ms. 

5. Transmitting one byte costs 59.2 μJ (micro joules) and receiving one 

byte costs 28.6 μJ, which means that sending a full frame costs 

(49X59.2 μJ) 2.9 mJ (milli joules) and receiving a full frame costs 1.4 

mJ. 

6. The maximum error is transmission is equal to a clock cycle and the 

clock cycle takes 32 μs (microseconds), which means that ∆𝑡 = 32 𝜇𝑠. 

7. Each sensor is equipped with 3V (volts) 30mAh battery. This battery is 

chosen as it is one of smallest commercial batteries available. As a 

result, the capacity of a full sensor battery is 324 joules.  

To run the simulations, we utilised the shapes and stars datasets 

presented in sub-sections 4.6.1 and 4.6.2. The first dataset represents binary 

shape patterns of size 256×256 pixels. This shapes dataset, represents uniform 

patterns. For the second dataset, the stars dataset, we chose grey scale star 

maps of size 200×200 pixels, representing a non-uniform pattern type. We 

assume that the sensor nodes are deployed in a grid, where each node obtains a 

pixel value. This requires 65536 nodes to represent the first network and 40000 

nodes to represent the second. Four networks for each dataset were created for 
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each proposed scheme. The total number of simulated networks is sixteen (8 

for each proposed scheme). Each network runs in one of the models discussed 

in section 5.2: FS-Async, FS-Sync, MC-Async, or MC-Sync. We presented 

each dataset to its associated network to perform a learning process. Each 

dataset contains both original and altered patterns (instances). The altered 

patterns can be a result of the original patterns being rotated, scaled, or 

translated. The total number of instances for the first dataset is 1310 patterns 

and the second is 1110 patterns.       

 To evaluate the proposed schemes’ communicational and energy 

overhead, we implemented the parallel KNN presented in [96] for comparison. 

This scheme is selected because of its simplicity in its computations and time 

complexity. Figure 5.15 depicts a parallel KNN network. In a parallel KNN 

network, each node communicates directly with a central unit (i.e. base 

station). During memorisation, each node stores its associated input value. In 

recall, each node computes the nearest stored value to the incoming value and 

reports the difference to the base station, which determines the final decision. 

Figure 5.16 shows the average number of communications involved in 

performing the learning cycle for each communicational type (frame slotted 

and multi-channel) for the shapes and stars datasets for the proposed schemes. 

Moreover, Figure 5.17 shows the number of communications required to 

implement parallel KNN for both datasets. 
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Figure 5.15: Example of a simple parallel KNN network. 

 

Figure 5.16: Average number of communications for the proposed schemes’ 

Async and Sync for shapes and stars datasets. 
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Figure 5.17: Average number of communications for the parallel KNN for 

shapes and stars datasets. 

 

 Figure 5.15 shows that parallel KNN requires each node to conduct one 

communication to the base station. As a result, the average number of its 

communications is equal to the pattern size (𝑃𝑠𝑖𝑧𝑒), as shown in Figure 5.17. 

Moreover, Figure 5.16 shows that the average number of communications 

reflects the size of the networks and the number of activated nodes. For 

instance, in the MOHA implementation, the Async network involves 19823 

communications for the 4883 activated nodes and 291 edge nodes for the 

shapes dataset, which includes both MOHA’s node’s exchange and report 

communications. This is only 30.25% of the network size and the total 

communication required by parallel KNN. The Sync network in MOHA 

implementation involves 39355 communications for the same number of 

activated nodes for shapes dataset, which is 60.05% of the network size and 

the total communication required by parallel KNN and almost double the 

average number of communications for the Async communication model. For 
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the stars dataset, in the MOHA implementation, the Async network recorded 

an average of 883 communications, which represents only 2.21% of the 

network size. The Sync network for the same dataset recorded an average of 

1735 communications. This is 4.34% of the network size. On the other hand, in 

the LMOHA implementation, the Async network involves 24415 

communications for the 4883 activated nodes and 4883 activated plus, T, 

corner, and edge nodes for the shapes dataset, which includes both LMOHA’s 

node’s exchange and report communications. This is only 37.25% of the 

network size and the total communication required by parallel KNN. The Sync 

network in the LMOHA implementation involves 43947 communications for 

the same number of activated nodes for shapes dataset, which is 67.06% of the 

network size and the total communication required by parallel KNN and 

almost double the average number of communications for the Async 

communication model. For the stars dataset, in the LMOHA implementation, 

the Async network recorded an average of 971 communications, which 

represents only 2.43% of the network size. The Sync network for the same 

dataset recorded an average of 1823 communications. This is 4.56% of the 

network size. Figure 5.16 also shows that there are no big different on the 

average communications numbers recorded by utilising the MOHA and 

LMOHA schemes. This is due to the fact that most of the communications 

occur in the node’s exchange phase whereas only few occur in the report phase 

in both schemes. 
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 The average number of communications is expected to have 

implications for the communicational overhead in terms of energy and time. 

Figure 5.18 shows the average energy consumption obtained by the simulation 

for each network type and each dataset using the proposed schemes. The 

average energy consumption obtained by the simulation for parallel KNN is 

shown in 5.19. Figure 5.20 shows the average obtained from using both 

datasets. This is applied for both multi-channel and frame-slotted models, with 

the assumption that both models require the same amount of energy for each 

communication. The average values shown in Figures 5.18 and 5.20 represent 

the average energy required by a node to perform a full learning operation and 

include the energy consumption when sending and receiving. 

 

 

Figure 5.18: Average energy consumption for each of proposed schemes’ 

network for each dataset in mJ, which represents the average energy required 

by a node to perform a full learning operation. 
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Figure 5.19: Average energy consumption for the parallel KNN for shapes 

and stars datasets. 

 

Figure 5.18 confirms that the number of communications has 
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shows the average lifetime in days for each network based on the assumption 

that the network receives one pattern per minute. 

 

 

Figure 5.20: Average energy consumption for each of the proposed schemes’ 

networks for both datasets in mJ, which represents the average energy required 

by a node to perform a full learning operation. 

 

 

Figure 5.21: Average lifetime for each of the proposed schemes and the 

parallel KNN. 
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 Figure 5.21 shows that a MOHA Async network can theoretically last 

for more than ten months if it is used to obtain one pattern per minute using a 

small 3V 30mAh battery (324 Joules). Under the same conditions, the 

LMOHA Async network can last for more than eight months. However, other 

factors may affect that figure, such as physical sensory faults. Figure 5.21 also 

shows that a MOHA Sync network could last for more than five months and a 

LMOHA Sync network could last for more than four months. On the other 

hand, a parallel KNN will last for less than three months under similar 

conditions. According to Tanenbaum [53], a short WSN lifetime is almost six 

months. This analysis of a MOHA network shows that a large-scale network 

can last for almost six months or one year. The analysis also shows that a 

LMOHA network can last for almost five or nine months. These reflect the 

amount of reduction in communicational overhead that can be achieved by 

using the proposed schemes. The analysis also shows that the average lifetimes 

of LMOHA networks are lower than the average lifetimes of MOHA networks. 

This is mainly because LMOHA requires, on average, a higher number of 

communications compared with the MOHA, which leads to the consumption 

of more energy, thus reducing the network lifetime (see Figure 5.16).      

 So far, this analysis has shown that in terms of average energy 

consumption, all sensor nodes are expected to encounter the same amount of 

communicational overhead. However, the network structure and the type of 

incoming patterns could affect the behaviour of the network and present 

different loads to its sensor nodes. Evaluating the networks’ behaviour of the 
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proposed schemes, Figure 5.22 presents the distribution of available energy in 

each sensor utilised in the simulation for Async and Sync communicational 

models for the shapes dataset using the MOHA and LMOHA schemes. Figure 

5.23 shows the distribution for the stars dataset. 

 From Figures 5.22 and 5.23, it can be observed that pattern shape 

(Apple for the shapes dataset and a star map for stars dataset) can be easily 

seen through the energy distribution when presenting a small number of 

instances. However, energy distribution becomes more distributed in the field 

after being presented with a large number of patterns. This reflects the multi-

row structure of the proposed schemes. Both the Async and Sync models have 

similar energy distribution but with more consumption in the Sync model. 

Furthermore, it can be observed that the energy distribution in the stars dataset 

is more scattered in the field, while it is concentrated in the middle rows for the 

shapes dataset, which is mainly caused by the non-uniform pattern distribution 

of the stars dataset compared to the shapes dataset. Finally, both figures show 

that energy consumption and distribution of MOHA and LMOHA is almost 

identical, which is due to the network structure and the fact that the node’s 

exchange communications process consumes the most energy, and this is 

identical for both proposed schemes.  
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Figure 5.22: Available energy for each node in each one of the proposed schemes’ networks dealing with the shapes dataset (in 

joules). (a) Network applying Async model and (b) Network applying Sync model. The nodes are distributed in the field as a grid, 

where each pixel depicts one node’s available energy. The colours are in the range between dark red and dark blue. Dark red 

indicates more energy resources left in the node. Dark blue indicates less energy available. Colours in between (such as yellow 

and green) indicate energy levels between dark red and dark blue. Colour bars show exact energy figures. 
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Figure 5.23: Available energy for each node in each one of the proposed schemes’ networks dealing with the stars dataset (in 

joules). (a) Network applying Async model and (b) Network applying Sync model. The nodes are distributed in the field as a grid, 

where each pixel depicts one node’s available energy. The colours are in the range between dark red and dark blue. Dark red 

indicates more energy resources left in the node. Dark blue indicates less energy available. Colours in between (such as yellow 

and green) indicate energy levels between dark red and dark blue. Colour bars show exact energy figures. 
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 The second factor related to the communications overhead to be 

analysed in this sub-section is network time. Learning cycle time 

(memorisation or recall operations) can be estimated in terms of computations 

and communications. However, the network times for the proposed schemes in 

terms of computations have been discussed previously in sub-sections 3.7.1 

and 4.5.1. Unlike energy analysis, the choice of communicational model (FS or 

MC) is expected to have an influence on cycle time. Figure 5.24 shows the 

average learning cycle time in milliseconds (ms) that was obtained from the 

simulation run for MOHA scheme. Figure 5.25 presents the average learning 

cycle time in ms that was obtained from the simulation run for LMOHA 

scheme. 

 

 

Figure 5.24: Average time of learning cycle in ms for a MOHA network that 

runs different communicational models. 
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Figure 5.25: Average time of learning cycle in ms for a LMOHA network that 

runs different communicational models. 
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(in the base station), which means more reporting time. Moreover, it can be 

clearly observed from Figures 5.24 and 5.25 that the average network time of 

the LMOHA scheme utilising FS models is higher compared with the average 

network time of the MOHA scheme using the same models. This is mainly 

because the LMOHA requires, on average, a higher number of communications 

compared with the MOHA, which requires more processing time (see Figure 

5.16). It can also be clearly observed from Figures 5.24 and 5.25 that the 

learning cycle of a stars dataset requires less time compared with a shapes 

dataset when frame-slotted models are utilised. This is the result of two main 

factors. The first factor is the difference in network size utilised for each 

dataset. The second factor is the type of dataset. The shapes dataset represents 

uniform objects that usually cover a large area of the field compared to a star 

map. This causes more nodes to be activated and involves a greater number of 

exchanging and reporting times. Conversely, the stars dataset contains non-

uniform patterns that are scattered all over the field. This will activate fewer 

nodes and will involve fewer exchanging and reporting times. 

 Another important observation that can be made from Figures 5.24 and 

5.25 along with Table 5.3 is that there is a huge difference between the time 

requirement of the frame-slotted models and that of the multi-channel models. 

In both proposed schemes, the use of the MC model will speed up the 

exchanging and reporting times by removing the effects of the number of 

activated nodes in the network and the size of the network in the learning cycle 

time, which makes the average network time of both the proposed schemes 
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identical. This is because the MC model enables the network to perform its 

communications in parallel. 

 This section presented a simulation analysis of the proposed schemes’ 

network communications, including energy and time analysis. The energy 

analysis showed that both proposed schemes are capable of limiting the 

number of communications, thereby limiting the use of energy resources. It 

was shown that the network can have a lifetime of one year with the MOHA 

scheme and nine months with the LMOHA scheme using one of the smallest 

batteries in terms of capacity (30 mAh). These are 4 and 3 times higher than 

other schemes, such as parallel KNN. The time analysis shows that a MOHA 

network can scale up, while having the ability to converge within a time range 

between 5.17 ms and 2231.39 ms or a sample rate between a pattern per 2 

seconds and 193 patterns per second. On the other hand, the LMOHA network 

can scale up, while having the ability to converge within a time range between 

5.17 ms and 16441.33 ms or a sample rate between a pattern per 16 seconds 

and 193 patterns per second. These results were obtained by implementing the 

proposed schemes using different message sequence models and in accordance 

with the assumptions made in the beginning of the section. These results show 

that both proposed schemes minimise the communicational overhead, enabling 

WSNs to scale up efficiently and provide real-time learning capabilities. 

 The next section will provide a comparison between the two proposed 

schemes, demonstrating the capabilities of each scheme.  
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5.4 MOHA and LMOHA Comparison 

The MOHA and LMOHA approaches are proposed for resource-constrained 

sensor nodes and utilise patterns to recognise the occurrence of events of 

interest in the physical environment. The characteristics and features of the 

approaches are summarised in Table 5.7. 

Table 5.7:  Comparison of the features of the MOHA approach and LMOHA 

approach. 

Characteristic MOHA LMOHA 

Network's Structure Multi-row Multi-row 

Pattern storage In S&I (in the base station) In S&I (in the base station) 

Pattern matching 𝑁𝑒𝑑𝑔𝑒 ,𝑀𝑉 𝑁𝑝𝑙𝑢𝑠 , 𝑁𝑇 , 𝑁𝑐𝑜𝑟𝑛𝑒𝑟 , 𝑁𝑒𝑑𝑔𝑒 

Node collaboration   

Dealing with distorted (noisy) 

patterns 



For uniform patterns, 

100% recognition accuracy 

for distortion levels up to 

25% and 80% accuracy level 

for distortion levels up to 

45%. 

For non-uniform patterns, 
100% recognition accuracy 

for distortion levels up to 

15% and 80% accuracy level 

for distortion levels up to 

35%.



For uniform patterns, 100% 

recognition accuracy for 

distortion levels up to 35% 

and 80% accuracy level for 

distortion levels up to 50%. 

For non-uniform patterns, 
100% recognition accuracy 

for distortion levels up to 

25% and 80% accuracy level 

for distortion levels up to 

40%.

Dealing with transformed patterns   

Dealing with translated patterns 
100% recognition accuracy 

for uniform and non-uniform 

patterns. 

100% recognition accuracy 

for uniform and non-uniform 

patterns. 

Dealing with scaled patterns 

For uniform patterns, 

100% recognition accuracy 

for all tested samples. 

For non-uniform patterns, 
100% recognition accuracy 

for scaling levels up to 60% 

and 80% recognition 

accuracy for scaling levels 

up to 80%. 

For uniform patterns, 100% 

recognition accuracy for 

scaling levels up to 16% and 

80% recognition accuracy for 

scaling levels up to 32%. 

For non-uniform patterns, 
100% recognition accuracy 

for scaling levels up to 16% 

and 80% recognition accuracy 

for scaling levels up to 30%. 
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Dealing with rotated patterns 

For uniform patterns, 
100% accuracy level in five 

rotational regions (Between 

0 and 4 degrees, 86 and 94 

degrees, 176 and 184 

degrees, between 266 and 

274 degrees, and 356 and 

360 degrees). 

For non-uniform patterns, 
100% accuracy level in five 

rotational regions (Between 

0 and 9 degrees, 81 and 94 

degrees, 176 and 189 

degrees, 261 and 279 

degrees, and 351 and 360 

degrees). 

For uniform patterns, 100% 

accuracy level in five 

rotational regions (Between 0 

and 29 degrees, 61 and 119 

degrees, 161 and 199 degrees, 

251 and 289 degrees, and 341 

and 360 degrees). 

For non-uniform patterns, 
100% accuracy level in five 

rotational regions (Between 0 

and 39 degrees, 56 and 119 

degrees, 146 and 194 degrees, 

256 and 284 degrees, and 346 

and 360 degrees). 

Number of nodes performing 

learning cycle 

Dynamic (only active 

nodes): only 25.67% of the 

network size for the uniform 

patterns dataset and 0.53% 

for the non-uniform patterns 

dataset. 

Dynamic (only active nodes): 

only 25.67% of the network 

size for the uniform patterns 

dataset and 0.53% for the 

non-uniform patterns dataset. 

Node utilisation (Energy 

distribution) 

For uniform patterns 

dataset, the energy 

distribution is balanced and 

concentrated in the middle 

layers. 

For non-uniform patterns 

dataset, the energy 

distribution is balanced and 

more scattered in the field. 

For uniform patterns 

dataset, the energy 

distribution is balanced and 

concentrated in the middle 

layers. 

For non-uniform patterns 

dataset, the energy 

distribution is balanced and 

more scattered in the field. 

Network's lifetime 

(Utilising 30 mAh battery) 
1 year for Async network 

6 months for Sync network 

9 months for Async network 

5 months for Sync network 

 

5.4.1 Common Design Aspects 

Both proposed approaches distribute pattern matching by comparing input 

patterns with a set of reference patterns. The approaches add a clustering 

mechanism in pattern recognition, by dividing and distributing patterns into 

sub-patterns. The approaches’ networks are designed in a multi-row structure 

containing multiple rows. The multiple rows in the network structure are 

intended to enable parallel processing and information exchange of incoming 

data. This is achieved by allowing each row to perform a set of recognition 

operations on a sub-pattern in parallel with other rows. Moreover, all pattern 
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data will be stored in the S&I’s pattern vector (in the base station). As a result, 

there is no need to store any pattern data in the sensor nodes, and this will 

address the nodes’ limited memory issue. In both approaches, only the active 

nodes are used for pattern recognition, in order to conserve the nodes’ 

resources and to reduce the detection time by limiting the number of 

communicating nodes. Each active node exchanges its own pattern value with 

its four adjacent nodes, two nodes in the preceding and the succeeding columns 

in the same row, one being the adjacent node at the next higher row, and one 

being the adjacent node at the lower row.    

5.4.2 Pattern Matching Criteria 

 The MOHA approach reaches a decision about the input pattern by utilising 

the location information of the activated edge nodes. After each active node in 

the network exchanges its value with its adjacent nodes, it determines whether 

it represents a pattern edge. Then, all activated edge nodes send their location 

information to the S&I for further analysis and recognition. S&I calculates the 

MOHA value (𝑀𝑉) of the input pattern and utilises it with the number of 

activated edge nodes to compare it and match it with the stored patterns. On the 

other hand, the LMOHA approach reaches a decision about the pattern by 

using the activated plus, T, corner, and edge nodes. After each active node in 

the network exchanges its value with its adjacent nodes, it determines whether 

it represents a pattern sensory-based plus, T, corner, or edge shapes. Then, all 

activated plus, T, corner, and edge nodes send their types information to the 



 

330 

S&I for further analysis and recognition. S&I counts the number of activated 

plus nodes, the number of activated T nodes, the number of activated corner 

nodes, and the number of activated edge nodes and uses this information by 

comparing them and matching them with the stored patterns.      

5.4.3 Handling Distorted and Transformed Patterns 

In chapter 4, both approaches showed very significant capabilities to handle 

distorted and transformed patterns. However, each one of them presented 

different limits of tolerance to distorted patterns and different types of 

transformed patterns. Sub-section 4.6.1 showed that MOHA approach can 

provided 100% recognition accuracy for distortion levels up to 25% and 80% 

recognition accuracy for distortion levels up to 45% for distorted patterns 

obtained from a shapes dataset that contains uniform patterns. Additionally, 

sub-section 4.6.2 results showed that MOHA scheme is capable of offering 

100% recognition accuracy for distortion levels up to 15% and 80% 

recognition accuracy for distortion levels up to 35% for distorted patterns 

obtained from a stars dataset that contains non-uniform patterns. On the other 

hand, sub-section 4.6.1 showed that LMOHA scheme is capable of offering 

100% recognition accuracy for distortion levels up to 35% and 80% 

recognition accuracy for distortion levels up to 50% for a shapes dataset. Sub-

section 4.6.2 results showed that LMOHA scheme is capable of offering 100% 

recognition accuracy for distortion levels up to 25% and 80% recognition 

accuracy for distortion levels up to 40% for a stars dataset. In conclusion, the 
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previous results show that the LMOHA scheme provides more accurate 

recognition for distorted patterns than does the MOHA scheme. The results 

also show that the recognition accuracy of the LMOHA and MOHA schemes 

for distorted (noisy) patterns is lower for the stars dataset compared to the 

shapes dataset. 

In terms of dealing with transformed patterns, both proposed 

approached showed 100% recognition accuracy when faced with translated 

patterns. However, each proposed approach showed different capabilities when 

dealing with scaled and rotated patterns. Sub-section 4.6.1 showed that the 

MOHA approach can provide 100% recognition accuracy for all tested scaled 

patterns obtained from shapes dataset that contains uniform patterns. 

Additionally, results presented in sub-section 4.6.2 showed that MOHA 

scheme is capable of offering perfect recognition accuracy (100% accuracy 

level) for scaling levels up to 60% for a stars dataset that contains non-uniform 

patterns. The sub-section results also showed that the MOHA is capable of 

offering 80% recognition accuracy level for scaling levels up to 80% for the 

same dataset. On the other hand, sub-section 4.6.1 showed that the LMOHA 

scheme is capable of offering perfect recognition accuracy (100% accuracy 

level) for scaling levels up to 16% for shapes dataset. The section also showed 

that the LMOHA is capable of offering 80% recognition accuracy level for 

scaling levels up to 32% for the uniform patterns. Moreover, sub-section 4.6.2 

results showed that the LMOHA scheme is capable of offering perfect 

recognition accuracy (100% accuracy level) for scaling levels up to 16% for 
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stars dataset. The sub-section results also showed that the LMOHA is capable 

of offering an 80% recognition accuracy level for scaling levels up to 30% for 

the non-uniform patterns. To sum up, the previous results clearly show that the 

MOHA scheme provides more accurate recognition for scaled patterns than 

does the LMOHA scheme. 

Sub-section 4.6.1 showed that the MOHA approach provided high 

accuracy percentages (100% accuracy level) in five rotational regions for 

shapes dataset that contains uniform patterns. The first region is between 0 and 

4 degrees, the second region is between 86 and 94 degrees, the third region is 

between 176 and 184 degrees, the region where patterns are horizontally 

flipped or nearly flipped, the forth region is between 266 and 274 degrees, and 

the fifth region is between 356 and 360 degrees. Moreover, sub-section 4.6.2 

showed that MOHA approach provided high accuracy percentages in five 

rotational regions for stars dataset that contains non-uniform patterns. The first 

region is between 0 and 9 degrees, the second region is between 81 and 94 

degrees, the third region is between 176 and 189 degrees, the forth region is 

between 261 and 279 degrees, and the fifth region is between 351 and 360 

degrees. On the other hand, sub-section 4.6.1 showed that LMOHA approach 

provided high accuracy percentages in five rotational regions for shapes 

dataset. The first area is between 0 and 29 degrees, the second area is between 

61 and 119 degrees, the third area is between 161 and 199 degrees, the forth 

area is between 251 and 289 degrees, and the fifth area is between 341 and 360 

degrees. Sub-section 4.6.2 showed that the LMOHA approach provided high 
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accuracy percentages in five rotational regions for stars dataset that contains 

non-uniform patterns. The first area is between 0 and 39 degrees, the second 

area is between 56 and 119 degrees, the third area is between 146 and 194 

degrees, the forth area is between 256 and 284 degrees, and the fifth area is 

between 346 and 360 degrees. In conclusion, the previous results show that the 

recognition accuracy of proposed schemes for rotated patterns is higher for the 

stars dataset compared to the shapes dataset. They also show that the LMOHA 

scheme provides more accurate recognition for rotated patterns than the 

MOHA scheme. 

In order to evaluate the capabilities of the proposed schemes in 

handling the transformed patterns, the next chapter will provide a comparison 

between the proposed schemes and other well-known pattern recognition 

schemes utilising transformed uniform and non-uniform patterns.   

5.4.4 Number of Nodes Performing Recognition 

In both proposed approaches, only the activated nodes in the network 

participate in the learning process. This is to conserve the nodes’ resources and 

to reduce the detection time by limiting the number of communicating nodes. 

Results given in section 5.3.1 showed that, on average, the total number of 

activated nodes represents only 25.67% of the total number of nodes (the 

network size) for the shapes dataset (uniform patterns) and 0.53% for the stars 

dataset (non-uniform patterns). Additionally, the results presented in this 

section showed that in the MOHA implementation, the number of activated 
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edge nodes that will participate in report communications represents only 

0.74% of the network size for the shapes dataset and 0.08% for the stars 

dataset. On the other hand, in the LMOHA implementation, the total number of 

activated plus, T, corner, and edge nodes that will participate in report 

communications represents only 25.67% of the network size for the shapes 

dataset and 0.30% for the stars dataset. This reflects the amount of 

communicational overhead reduction that can be achieved by using the 

proposed approaches and shows that the number of activated nodes that will 

participate in report communications is lower in the MOHA approach 

compared to the LMOHA approach.   

5.4.5 Node Utilisation 

The previous sub-section (sub-section 5.3.2) shows that node utilisation and 

energy consumption and distribution of MOHA and LMOHA are almost 

identical. This is due to the network structure and the fact that the node’s 

exchange communications process consumes the most energy, which is 

identical for both proposed schemes. Sub-section 5.3.2 shows that, in both 

proposed scheme, both Async and Sync models have similar energy 

distribution but with more consumption in the Sync model. Results given in the 

sub-section also show that the energy distribution in the stars dataset (non-

uniform patterns) is more scattered in the field, whereas it is concentrated in 

the middle layers for the shapes dataset (uniform patterns). This is caused 
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mainly by the non-uniform pattern distribution of the stars dataset compared 

with the shapes dataset.  

5.4.6 Network's Lifetime 

Sub-section 5.3.2 shows that a MOHA Async network can theoretically last for 

almost one year if it is used to obtain one pattern per minute using a small 3V 

30mAh battery. Under the same conditions, LMOHA Async network can last 

for almost nine months. The sub-section also shows that a MOHA Sync 

network could last for almost six months and a LMOHA Sync network could 

last for almost five months. On the other hand, a parallel KNN will last for less 

than three months under similar conditions. These reflect the amount of 

communicational overhead reduction that can be achieved by using the 

proposed approaches and shows that the MOHA network has an average of 2 

months more lifetime than LMOHA network. In both approaches, the use of 

the Async model increases the network’s lifetime compared with the Sync 

model.  

5.4.7 MOHA and LMOHA Scenarios 

In conclusion, both proposed approaches showed very significant capabilities 

when performing pattern recognition in WSNs as they showed very good 

capabilities to handle distorted and transformed patterns and limiting the 

number of communications, thereby limiting the use of energy resources. 

Moreover, the MOHA approach requires less communication (fewer activated 
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nodes participate in reporting communications) and hence is able to conserve 

more energy compared with the LMOHA approach. The MOHA approach also 

offers more accurate recognition for scaled patterns than does LMOHA 

scheme. As a result, the MOHA approach is recommended for WSN 

applications that require huge reductions in terms of communications and 

energy consumption and deal with scaled patterns that are scaled more than 

16%. On the other hand, the LMOHA approach provides more accurate 

recognition for distorted and rotated patterns than does the MOHA scheme. 

The LMOHA approach also significantly reduces the processing power 

required by the S&I to analyse and finally match the input pattern compared 

with the MOHA approach. As a result, the LMOHA approach is recommended 

for WSN applications that require the S&I to be implemented in a typical 

sensor node (with limited processing power) and deal mainly with distorted 

and rotated patterns. 

In order to evaluate the capabilities of the proposed schemes in 

performing pattern recognition in real scenarios, the next chapter will provide a 

comparison between the proposed schemes and other well-known pattern 

recognition schemes utilising patterns obtained from real datasets.            

5.5 Conclusions 

This chapter has presented different types of message sequence models for the 

MOHA and LMOHA schemes based on different types of MAC protocols, 

namely, frame-slotted synchronous (FS-Sync), frame-slotted asynchronous 
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(FS-Async), Multi-channel synchronous (MC-Sync), and Multi-channel 

asynchronous (MC-Async). It analyses the MOHA and LMOHA schemes from 

a practical perspective and estimates the lifetime and execution duration of the 

networks utilising the communicational models (MAC protocols) presented at 

the beginning of the chapter.  

This analysis begins by determining the effects of the nodes activation 

technique on communications in the network. In both proposed approaches, 

only the activated nodes in the network participate in the learning process. This 

is done to limit the consumption of the nodes’ resources and to reduce the 

detection time by limiting the number of communicating nodes. Results 

presented in sub-section 5.3.1 showed that on average the total number of 

activated nodes represents only 25.67% of the total number of nodes (the 

network size) for the shapes dataset (uniform patterns) and 0.53% for the stars 

dataset (non-uniform patterns). Additionally, the results presented in the sub-

section showed that in the MOHA implementation, the number of activated 

edge nodes that will participate in report communications represents only 

0.74% of the network size for the shapes dataset and 0.08% for the stars 

dataset. On the other hand, in the LMOHA implementation, the total number of 

activated plus, T, corner, and edge nodes that will participate in report 

communications represents only 25.67% of the network size for the shapes 

dataset and 0.30% for the stars dataset. This reflects the amount of reduction in 

communicational overhead that can be achieved by using the proposed 

approaches, and shows that the number of activated nodes that will participate 
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in report communications is lower in the MOHA approach compared with the 

LMOHA approach. 

 Moreover, this chapter presented a simulation analysis of the proposed 

schemes’ network communications, including energy and time analysis. The 

energy analysis showed that both proposed schemes are capable of limiting the 

number of communications, thereby limiting the consumption of energy 

resources. It was shown that the network can have a lifetime of one year with 

the MOHA scheme and nine months with LMOHA scheme using one of the 

smallest batteries in terms of capacity (30 mAh). These are four and three times 

higher than other schemes, such as parallel KNN. The time analysis shows that 

a MOHA network can scale up, while having the ability to converge within a 

time range between 5.17 ms and 2231.39 ms or a sample rate between a pattern 

per 2 seconds and 193 patterns per second. On the other hand, a LMOHA 

network can scale up, while having the ability to converge within a time range 

between 5.17 ms and 16441.33 ms or a sample rate between a pattern per 16 

seconds and 193 patterns per second. These results show that both proposed 

schemes minimise the communicational overhead, enabling WSNs to scale up 

efficiently and provide real-time learning capabilities. These results also show 

a huge difference between the time requirements of the frame-slotted models 

and those of the multi-channel models. In both proposed schemes, the MC 

model will speed up the exchanging and reporting times by removing the 

effects of the number of activated nodes in the network and the size of the 
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network in the learning cycle time. This is because the MC model is able to 

perform its communications in parallel.    

Finally, this chapter presented an overall comparison between both 

versions of MOHA algorithms. This comparison shows that both proposed 

approaches showed very significant capabilities when performing pattern 

recognition in WSNs particularly in handling the distorted and transformed 

patterns and limiting the number of communications, thereby limiting the use 

of energy resources. Moreover, the MOHA approach requires less 

communication (since fewer activated nodes participate in reporting 

communications) and hence it is able to conserve more energy compared with 

the LMOHA approach. The MOHA also offers more accurate recognition for 

scaled patterns than LMOHA scheme. As a result, the MOHA approach is 

recommended for WSN applications that require huge reductions in terms of 

communications and energy and deal with scaled patterns that are scaled more 

than 16%. On the other hand, the LMOHA approach provides more accurate 

recognition for distorted and rotated patterns than does the MOHA scheme. 

LMOHA approach also significantly reduces the processing power required by 

the S&I to analyse and finally match the input pattern compared to MOHA 

approach. As a result, the LMOHA approach is recommended for WSN 

applications that require the S&I to be implemented in typical sensor node 

(with limited processing power) and mainly deal with distorted and rotated 

patterns. 



 

340 

In the next chapter, a series of simulations for the MOHA and LMOHA 

schemes will be conducted. Furthermore, a comparison between the two 

proposed schemes and other well-known pattern recognition schemes will be 

provided. Chapter 6 also will describe a series of tests used to determine 

whether the capabilities of both the proposed schemes will enable them to be 

utilised in real-life scenarios. 
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Chapter 6 

6 Evaluating the Performance of MOHA 

and LMOHA Schemes 

 

6.1 Preamble 

Both the MOHA and LMOHA schemes were proposed as lightweight and 

distributed pattern recognition schemes that involve limited numbers of 

communications and computations. Experiments have shown that the proposed 

schemes are significantly capable of dealing with noisy and transformed 

patterns. However, each one of them presented different limits of tolerance to 

noisy patterns and different types of transformed patterns. The proposed 

schemes operate with low and stable recognition time, compared with other 

pattern recognition algorithms. In both proposed schemes, only the activated 

nodes in the network participate in the learning process. This is in order to 

conserve the nodes’ resources and to reduce the detection time by limiting the 

number of communicating nodes.  

The energy analysis showed that both proposed schemes are capable of 

limiting the number of communications, thereby limiting the use of energy 
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resources. It was shown that the network can have a lifetime of one year with 

the MOHA scheme and nine months with the LMOHA scheme using one of 

the smallest batteries in terms of capacity (30 mAh). These are four and three 

times higher than other schemes such as parallel KNN. The time analysis 

results show that both proposed schemes minimise communicational overhead, 

enabling WSNs to scale up efficiently and provide real-time learning 

capabilities. 

In this chapter, a series of simulations for both proposed schemes will 

be conducted. Moreover, the proposed schemes will be compared with other 

well-known pattern recognition schemes. Three tests will be presented and 

discussed in this chapter. The first test compares the accuracy of the proposed 

schemes with well-known existing schemes in dealing with transformation 

patterns. Both the shapes and the stars datasets will be utilised in this test, 

which consist of uniform and non-uniform patterns, respectively. The second 

test is used to demonstrate the ability of the MOHA and LMOHA schemes to 

deal with complex and real-life problems. This test will be on handwritten 

character recognition. This test will show that both proposed schemes are 

capable of performing a recognition operation using a minimal number of 

training samples while still maintaining a high level of accuracy compared 

with other schemes. In accomplishing this goal, the MOHA and LMOHA 

networks are capable of addressing the problem of WSN randomness discussed 

in Chapter 2. The third and final test is intended to prove whether the proposed 

schemes can be applied to real classification problems. A well-known 
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application that can be utilised for this purpose is human activity recognition. 

In this test, the proposed schemes will be compared with other existing 

techniques using a limited amount of collected data to demonstrate the 

capability of the scheme in addressing activity recognition problems using two 

different types of datasets, namely, vision-based and sensor-based. 

The objectives of this chapter are as follows: 

1. To compare the accuracy of the proposed schemes with well-known 

existing schemes in dealing with transformation patterns using uniform 

and non-uniform patterns.   

2. To ascertain the capability of the proposed schemes in dealing with 

complex and real-life problems.  

3. To ascertain the capability of the proposed schemes in performing a 

recognition operation using a minimal number of training samples 

while still maintaining a high level of accuracy compared with other 

schemes. 

4. To check the possibility of using the proposed schemes for real 

classification problems and different application domains. 

The remainder of this chapter is organised as follows: Section 6.2 

provides a comparison between MOHA and LMOHA schemes and other 

existing schemes in dealing with transformation patterns using the shapes and 

stars datasets. Section 6.3 presents the handwritten character recognition test. 

This test will show that both proposed schemes are capable of performing a 

recognition operation using a minimal number of training samples while still 
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maintaining a high level of accuracy compared with other schemes. Section 6.4 

discusses the possibility of using the proposed schemes for real classification 

problems. Human activity recognition systems will be presented and discussed 

in the section. The vision-based human activity recognition will be discussed in 

sub-section 6.4.1 and the sensor-based human activity recognition will be 

discussed in sub-section 6.4.2. Finally, section 6.5 provides an overall 

discussion about the chapter. 

6.2 Comparing LMOHA and MOHA Accuracy 

with Other Schemes in Dealing with 

Transformation Patterns 

This test was used to compare the accuracy of the LMOHA and MOHA 

schemes with well-known existing schemes in dealing with transformation 

patterns using the shapes and the stars datasets [261, 270], which consist of 

uniform and non-uniform patterns, respectively. The training dataset was 

constructed by creating and utilising five shapes (from the shapes dataset) and 

five star map images (from the stars datasets) modelled as a binary image of 

size 200-by-200 pixels, as shown in Figure 6.1. To construct the testing 

dataset, we generated 180 rotated samples (rotating from 1 to 360 degrees with 

two degrees for each rotation level), 200 randomly translated samples, and 100 

scaled samples (from 1% to 100% in 1% steps) for each training shape and star 

map as three testing datasets. A total of 4800 test samples were generated for 
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recall. In this test, we ran simulated LMOHA and MOHA networks of 40000 

nodes assuming that nodes are distributed as a grid and the each node detects 

one pixel reading. We also assume that each LMOHA and MOHA network is 

divided into 200 rows and each one of these rows is utilised to handle 200-bit 

binary sub-patterns; the threshold values for node activation and edge 

determination are set to 1 (𝜑 = 1). In order to compare the proposed schemes 

with other schemes, the Weka tool [263, 264] was utilised to construct KNN 

(k=1), Naive Bayes, and SVM to memorise and recall patterns. For this test, 

Naive Bayes and SVM have been chosen because of their ability to recognise 

transformations in patterns as discussed in section 2.5. Moreover, KNN has 

been chosen because it is one of well-known classification methods that have 

been widely used in many application domains. However, KNN generally 

experiences high computational complexity due to calculating k number of 

distances. In this test, the k value was set to 1 (k=1). The main reason for this 

choice is that we want to compare the proposed schemes with the lowest 

version of the KNN scheme in terms of computational complexity. Having a 

lightweight scheme in terms of computational complexity is one of the thesis 

requirements. As discussed in sub-section 2.3.3, the KNN computational 

complexity increases for large k values [265]. On the other hand, setting k 

value to 1 might not provide the optimal performance of the scheme in terms of 

accuracy. The accuracy of the schemes is calculated as the total number of 

correctly recalled patterns as a percentage of the number of altered tested 

samples. The higher the percentage means the higher the accuracy.  
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Figure 6.1: The training dataset: (a) Five shapes, (b) Five star maps. 

Table 6.1:  Recognition accuracy results of different schemes for the shapes 

and the stars datasets. 

Scheme 

Rotated Patterns Translated Patterns Scaled Patterns Overall 

Shapes 

Dataset 

Stars 

Dataset 

Shapes 

Dataset 

Stars 

Dataset 

Shapes 

Dataset 

Stars 

Dataset 

Shapes 

Dataset 

Stars 

Dataset 
Both 

MOHA 67.78% 59.39% 100% 100% 98.20% 88.30% 88.66% 82.56% 85.61% 

LMOHA 82.22% 84.50% 100% 100% 53.70% 59.65% 78.64% 81.38% 80.01% 

Naive 

Bayes 
41.11% 43.89% 30.65% 29.85% 60.90% 58.90% 44.22% 44.21% 44.22% 

KNN 

(k=1) 
47.78% 49.44% 33.40% 31.65% 85.60% 77.90% 55.60% 53% 54.30% 

SVM 47.28% 50.56 32.45% 30.70% 87.10% 86.60% 55.61% 55.95% 55.78% 

 

 Table 6.1 shows the percentage of accurate results obtained by the 

MOHA, LMOHA, and other schemes. The table clearly shows that the MOHA 

and LMOHA schemes have a very high accuracy when dealing with 

transformed patterns compared to other schemes. However, this does not 

necessarily mean that the proposed schemes are better than the other schemes, 

as this test was intended to determine the accuracy of the proposed schemes in 

this particular case only. As discussed in sub-section 3.8.2.1, the main reasons 
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for the results of other schemes are the small numbers of training instances 

(only one trained sample for each image) and the capability of each scheme to 

deal with these types of transformations. When the Naive Bayes scheme is 

used to perform pattern recognition, it attempts to build a probabilistic 

relationship between the training samples and input variables. Since the 

number of training samples is very limited, the created probabilistic 

relationships cannot efficiently describe each pattern [96, 103]. The SVM 

scheme also requires a large number of training samples in order to create 

separating hyperplanes between classes and correctly classify patterns, as 

discussed in section 2.5. The KNN’s inability to deal with transformed patterns 

was discussed in Chapter 2. Table 6.1 also shows that the MOHA scheme 

offers higher recognition accuracy than does the LMOHA scheme. The main 

reason for this is that the MOHA scheme has an excellent ability to handle 

scaled patterns. On the other hand, the LMOHA scheme offers better 

recognition accuracy than does the MOHA scheme for rotated patterns. Figure 

6.2 shows the receiver operating characteristic (ROC) space and the plots for 

the two tested datasets (the shapes and the stars datasets) for the MOHA, 

LMOHA, Naive Bayes, KNN, and SVM schemes. A ROC graph describes the 

performance of each network based on the false positive rate (FPR) and true 

positive rate (TPR). The figure shows that, in dealing with transformation 

patterns, the MOHA and LMOHA schemes have higher detection accuracy and 

lower error rates compared with the other schemes. 
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Figure 6.2: The ROC space and the plots for the two tested datasets for 

MOHA, LMOHA, Naive Bayes, KNN, and SVM schemes. 

 

6.3 Handwritten Character Recognition Test 

This test was used to demonstrate the ability of the MOHA and LMOHA 

schemes to deal with complex and real-life problems. It also aimed to compare 

the MOHA’s and LMOHA’s accuracy with those of existing pattern 

recognition schemes. For this purpose, we chose a handwritten character 

recognition problem as such problems require the memorisation of a great 

amount of training information. This test showed that both MOHA and 

LMOHA schemes are capable of performing a recognition operation using a 

minimal amount of training information (i.e. one sample for each class) while 

still maintaining a high level of accuracy compared with other schemes. In 

accomplishing this aim, MOHA and LMOHA networks are capable of 
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addressing the problem of WSN randomness discussed in Chapter 2. The test 

used the dataset provided by [276, 277]. The dataset contains 1593 handwritten 

patterns for numbers from 0 to 9. Each number was represented as a 16 ×  16 

binary pattern. Each pattern was produced by scanning and pre-processing 

numbers handwritten by 80 different people. The dataset has 10 classes, each 

class representing one number. 

 To construct MOHA and LMOHA networks that are capable of 

adopting such patterns, 256 nodes distributed among 16 rows were generated. 

The threshold values for node activation and edge determination were set to 1 

(𝜑 = 1). The selected classes for comparison were classes representing 

numbers from 0 to 5 as these numbers were distinguished in the handwritten 

representation. One pattern was selected randomly from each class for 

memorisation. This resulted in six memorised patterns to represent numbers 

from 0 to 5. The rest of the patterns in each class were used for recognition. 

This resulted in 955 recognition patterns. Figure 6.3 shows the six 

memorisation patterns and a sample of six recognition patterns. 

 The proposed schemes are compared with Naive Bayes and back 

propagation neural networks. Using a Weka tool [263, 264], Naive Bayes and 

back propagation neural networks were generated to perform storing and 

recognition operations. These schemes have been chosen because they are two 

of the best-known classification schemes for their ability to recognise 

transformations in patterns as discussed in section 2.5. This ability is very 

helpful for this type of dataset that consists of handwritten patterns for 
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numbers, which usually vary in size, location and rotation angels. Figure 6.4 

shows the average recognition accuracy of the proposed schemes compared 

with the Naive Bayes and back propagation NN schemes. The percentage of 

accuracy is calculated as the number of correctly recognised patterns to the 

total number of recognition patterns. In order  for a comparison to be made 

with back propagation NN (BP), three BP implementations were used, 

generating a BP with a single hidden layer, generating a BP with two hidden 

layers, and generating a BP with three hidden layers. The number of learning 

iterations of each structure was set to ranges between 1 (single cycle) and 500 

iterations. The best result was obtained with the implementation of BP with 

three hidden layers and 200 iterations. The results shown in Figure 6.4 for the 

BP NN are based on that structure. 

 

 

Figure 6.3: The training patterns and samples of testing patterns for the 

handwritten character recognition test. 
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Figure 6.4: Average accuracy levels obtained by MOHA, LMOHA, Naive 

Bayes, and back propagation networks. 

 

 Figure 6.4 shows that MOHA and LMOHA can provide pattern 

recognition capabilities with better accuracy results than Naive Bayes and BP 

NN schemes. These results were achieved by using only one pattern for each 

class for memorisation. Similar to the previous test, the main reason that the 

Naive Bayes and BP NN schemes have lower recognition accuracies compared 

with the proposed schemes is their small numbers of training instances. When 

the Naive Bayes scheme is used to perform pattern recognition, it attempts to 

build a probabilistic relationship between the training samples and input 

variables. Since the number of training samples is very limited, the created 

probabilistic relationships cannot efficiently describe each pattern [96, 103]. 

As discussed in section 2.5, BP NN requires a large number of training samples 

in order to correctly classify incoming patterns. Additionally, the MOHA and 

0%

10%

20%

30%

40%

50%

60%

LMOHA MOHA Naive Bayes Back
Propagation

A
cc

u
ra

cy
 L

ev
el

Handwritten Character Recognition Test for 
MOHA, LMOHA, Naive Bayes, and back 

propagation networks



 

352 

LMOHA schemes are capable of performing pattern recognition operations in 

a single cycle with the number of neurons (i.e. nodes) equal to the pattern size. 

The results also show that the LMOHA offers higher recognition accuracy 

when dealing with handwritten character recognition problem than does the 

MOHA. The main reason for this is the LMOHA scheme’s excellent ability to 

handle rotated patterns that are the most common issues in handwritten 

character recognition. Compared to the back propagation setting for this 

example, the proposed schemes reduced the number of participating nodes, 

communications and iterations needed to perform pattern recognition while 

maintaining higher accuracy levels. This is because the back propagation 

networks involve more neurons to build the multi-layer structure, requiring 

tightly coupled connectivity between layers, and requiring 200 iterations to 

perform recognition operations. This test demonstrates the capability of the 

proposed schemes’ networks to perform complex and real-life recognition 

problems by using a minimal amount of training information. This addresses 

the problem of the randomness associated with WSNs. 

6.4 Human Activity Recognition Case Studies 

This section discusses the feasibility of utilising the MOHA and LMOHA 

schemes for real classification problems and different application domains. 

MOHA and LMOHA models will be introduced that translate attributes into 

patterns and then utilise these patterns to address the classification problems. 

This section will show that such models are capable of performing pattern 
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recognition and classification using a limited number of training instances with 

a high level of accuracy compared with some of the current well-known 

classification methods such as KNN (k=1), Naive Bayes, and Multi-layer 

neural networks. In this test, the k value for KNN was set to 1 (k=1). The main 

reason for this choice is that we want to compare the proposed schemes with 

the lowest version of the KNN scheme in terms of computational complexity. 

Having a lightweight scheme in terms of computational complexity is one of 

the aims of this thesis. 

 One of the well-known applications that can be utilised for this purpose 

is the human activity recognition system. In the last decade, human activity 

recognition has become one of the most significant emerging fields of research 

within context-aware systems [278]. Physical activity can be defined as “any 

bodily movement produced by skeletal muscles result in energy expenditure 

above resting level” [279]. The aim of an activity recognition system is to 

analyse the physical behaviours of individuals in order to interpret the actual 

state, action or activity a human is performing at any given time [278, 280]. 

Human activity recognition systems are useful in numerous types of 

applications such as habitat monitoring, medical monitoring, security, sports, 

and so on. Activity recognition systems are usually categorised in terms of the 

type of sensor that is used for activity monitoring: vision-based and sensor-

based activity recognition [280, 281]. The first uses visual sensing facilities, 

such as video cameras, to monitor an actor’s behaviour and environmental 

changes [282, 283]. The generated sensor data are video sequences or digitised 
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visual data. The approaches in this category exploit computer vision 

techniques, including feature extraction, structural modelling, movement 

segmentation, action extraction, and movement tracking to analyse visual 

observations for pattern recognition [284, 285]. The second category uses 

emerging sensor network technologies for activity monitoring. The generated 

sensor data from sensor-based monitoring are mainly time series of state 

changes and/or various parameter values that are usually processed through 

data fusion, probabilistic, or statistical analysis methods and formal knowledge 

technologies for activity recognition. In these approaches, sensors can be 

attached to an actor under observation - namely wearable sensors or smart 

phones, or objects that constitute the activity environment - namely dense 

sensing. Wearable sensors often utilise inertial measurement units and radio 

frequency identification (RFID) tags to gather information about an actor’s 

behaviour [286]. This approach is effective in recognising physical movements 

such as physical exercises [287]. In contrast, dense sensing infers activities by 

monitoring human-object interactions through the usage of multiple 

multimodal miniaturised sensors [280, 281, 288]. The main focus of this 

section is on vision-based and sensor-based activity recognition systems as 

case studies for pattern recognition using the MOHA and LMOHA schemes. 

Many researches in the literature have attempted to address the issue of 

human activity recognition. For instance, Christian et al. [289] demonstrated 

that human action recognition can be achieved by combining local features 

with an SVM classifier. Zhu and Weihua [290] utilise both Markov models and 
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neural networks to analyse wearable sensor readings in order to produce a 

human-robot interaction approach for elderly and disabled people. Parakka et 

al. [291] utilise PDAs and sensor devices to perform online daily life activity 

recognition based on a decision tree classifier. Zhang and Sawchuk [292] 

present a sparse representation approach which leads to reduce human activity 

recognition complexity utilising wearable sensor devices. Generally, 

classification methods like neural networks, KNN, SVM, and Naive Bayes are 

commonly used in addressing activity recognition problems in WSNs [280, 

291]. However, no single classification method has proven to be superior to 

others in dealing with this issue [291]. These methods could utilise 

probabilistic approaches such as Naive Bayesian networks. However, such 

methods require huge amounts of data to be available and a great deal of 

analysis is required. Alternatively, other classification methods such as nearest 

neighbour can be utilised to create a model of relationships between collected 

data. 

 The issue of human activity recognition using sensor networks 

encounters several challenges that limit the capabilities of such systems. These 

challenges are generally associated with human behaviour or technical issues 

[278]. Human behaviour is one of the most important challenges to be 

addressed. Several difficulties related to human behaviour emerge in 

conducting activities. For instance, a person may perform multiple actions or 

activities at the same time. Here, research needs to address the question of the 

means of distinguishing between one activity and another. Additionally, the 
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behaviour of targeted monitored objects differs from person to person. For 

instance, a person may perform a set of sequenced actions in order to complete 

an activity while another person may carry out a different sequence when 

performing the same activity. Other challenges are related to technical issues 

which include those pertaining to the design of sensor networks and the way 

these sensors are physically deployed. Activity recognition systems regularly 

require small wearable devices that are attached to a target or mounted on 

surrounding objects. The main challenge in this case is to conserve battery 

consumption and reduce memory requirements [278]. 

 It has been shown in previous chapters that the MOHA and LMOHA 

schemes reduce the number of communications required for performing pattern 

recognition. Additionally, it has been shown that the proposed schemes 

perform learning operations with no memory requirements placed on the 

sensor nodes. Therefore, the MOHA and LMOHA schemes are good 

candidates for dealing with the issue of activity recognition as they deal with 

the major technical challenges that may be encountered in such applications. In 

this section, the MOHA and LMOHA schemes will be compared with other 

existing techniques using limited collected data to demonstrate the capability 

of the scheme in addressing activity recognition problems using vision-based 

and sensor-based datasets. 
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6.4.1 Vision-based human activity recognition 

This sub-section will ascertain the ability of the MOHA and LMOHA 

algorithms to perform human activity recognition using a dataset recorded with 

video cameras. Firstly, a detailed description of the vision-based dataset will be 

presented. Then, the MOHA and LMOHA vision-based human activity 

recognition systems will be proposed and the simulation results will be 

discussed. The results obtained from the proposed schemes will be compared 

with those obtained by using three well-known classification methods, namely: 

KNN, Naive Bayes, and Multi-layer NN. 

6.4.1.1 Action dataset        

An action dataset [289] is a video database containing six types of human 

actions (walking, jogging, running, boxing, hand waving and hand clapping) 

performed four times (sequences) performed by 25 subjects (people) in four 

different scenarios: outdoors s1, outdoors with scale variation s2, outdoors with 

different clothes s3 and indoors s4 (see Figure 6.5). In total, the database 

contains 2391 sequences. Each action is repeated four times by each subject, 

and for the cases of “walking”, “jogging” and “running”, there are two 

sequences where the subject is moving leftwards and two sequences with the 

subject moving rightwards. All sequences were taken over homogeneous 

backgrounds with a static camera with 25fps frame rate. The sequences were 

downsampled to the spatial resolution of 160 × 120 pixels and have a length 

of four seconds on average. 
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Figure 6.5: Action dataset [289]. 

 This case study attempted to classify the six human actions based on 

the recorded actions. Every action is repeated four times by each person and is 

been labelled in terms start-frame and end-frame.  

6.4.1.2 MOHA and LMOHA schemes for vision-based activity 

recognition     

An action dataset was used in this case study to solve the issue of human 

activity recognition using the MOHA and LMOHA schemes. The first step in 

this case study was handling the dataset in order to present valid readings to the 

network. The dataset provided a video recording as a series of images based on 

action sequences in terms of start-frame (starting of the action) and end-frame 

(ending the action). Each data instance represents one recorded frame (image) 

of the performed action. The spatial resolution of each frame or image is 
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160 × 120 pixels. Thus, in this case study, the proposed schemes’ networks 

are made up of 19200 nodes in order to handle the 160 × 120 pixels of the 

recorded images. We assume that nodes are distributed as a grid and that each 

node detects one pixel reading. We also assume that each LMOHA and 

MOHA network is divided into 160 rows and each one of these rows is utilised 

to handle 120 sub-patterns. In this case study, the threshold values for node 

activation and edge determination are set to 70 (𝜑 = 70). Figure 6.6 shows the 

transformation of an image into the corresponding MOHA’s activated edge 

nodes and LMOHA’s activated plus, T, corner, and edge nodes. 

 

 

Figure 6.6: An example of image transformation into the MOHA’s activated 

edge nodes and the LMOHA’s activated plus, T, corner, and edge nodes. 

 

 The second step was to address the action’s time in activity recognition. 

MOHA and LMOHA are capable of detecting the action for a specific time. 

However, when it comes to activity recognition systems, then the system 
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should be able to recognise the activity which takes a period of time 

{𝑡1, 𝑡2, … , 𝑡𝑛}. Therefore, in order to give this capability to the proposed 

schemes, we add the capabilities to the S&I (in the base station) to perform 

majority voting technique [293]. In this case study, majority voting is used as a 

means of obtaining a combined decision on the recalls made by the proposed 

schemes within specific time period 𝑡𝑛. As a result, the stored class (i.e. action) 

that received the highest recall over a specific time period 𝑡𝑛 will be 

recognised as the performed action.  

 The third step was to ascertain the relationship between sensors and the 

S&I in the MOHA and LMOHA networks. In this case study, firstly, the S&I 

(in the base station) received the 160 × 120 pixels frame or image which 

represent an action in specific time. Then, it assigns the image to the network. 

After that, the S&I received the recognition results from the network over a 

period of time. In this case study, the recognition period of time was set to 50 

frames or images which are almost the average time needed to perform one 

action sequence in this dataset. Finally, the S&I performs the majority voting 

in order to recognise the action that received most recalls. The proposed 

schemes were trained using one action sequence for each type of action (class). 

These are 75 data instances for walking, 50 data instances for jogging, 35 data 

instances for running, 95 data instances for boxing, 102 data instances for hand 

waving, and 112 data instances for hand clapping. To compare the proposed 

schemes with other schemes, the Weka tool [263, 264] was utilised to simulate 

three different schemes: KNN (k=1), Naive Bayes, and Multi-layer NN. Figure 
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6.7 shows the receiver operating characteristic (ROC) space and the plots for 

the six activity classes for the MOHA, LMOHA, KNN (k=1), Naive Bayes, 

and Multi-layer NN schemes. A ROC graph describes the performance of each 

scheme based on the false positive rate (FPR) and true positive rate (TPR). 

Table 6.2 shows the details of the MOHA, LMOHA and other schemes’ 

recognition accuracy levels obtained for each action class. Accuracy in the 

table is calculated as the total number of correctly classified instances 

(patterns) to the total number of instances in that class. Overall accuracy is 

calculated as the total number of correctly classified instances compared to the 

total number of testing instances. The same training and testing datasets were 

used for all schemes. 

Table 6.2:  Recognition accuracy results of action dataset for different 

schemes. 

Class Walking Jogging Running Boxing 
Hand 

clapping 

Hand 

waving 
Overall 

Training 

instances 
75 50 35 95 112 102 469 

Testing 

instances 

68625 40175 39500 39625 43650 51750 283325 

MOHA 
78.93% 70.68% 63.41% 67.72% 64.34% 59.26% 67.39% 

LMOHA 
77.19% 73.09% 65.34% 68.92% 63.72% 61.12% 68.23% 

Naive 

Bayes 

89.49% 62.33% 42.77% 48.02% 40.61% 49.82% 55.51% 

KNN 

(k=1) 

53.43% 41.18% 46.59% 74.51% 41.79% 41.06% 49.76% 

Multi-

layer NN 

99.31% 55.65% 48.34% 42.65% 40.20% 40.28% 54.41% 
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Figure 6.7: The ROC space and the plots for the action dataset for MOHA, LMOHA, Naive Bayes, KNN, and Multi-layer NN 

schemes.
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 Table 6.2 clearly shows that the MOHA and LMOHA schemes have 

higher recognition accuracy compared with that of other schemes. The table 

also shows that the LMOHA scheme offers slightly higher recognition 

accuracy than does the MOHA scheme. This is because only 25% of the testing 

dataset is affected by the scaling issue (scaled patterns), which is the main 

weakness of the LMOHA scheme. Figure 6.7 shows that the MOHA and 

LMOHA schemes have higher detection accuracy and lower error rates 

compared with those of the other schemes. The main reason for the latter’s low 

recognition accuracy is the small number of training samples that might not 

provide enough information for them to achieve a high accuracy level. Further 

discussion about the other schemes’ performance will be provided at the end of 

the next sub-section.  

 It can clearly be seen that the MOHA and LMOHA schemes are able to 

offer higher recognition accuracy levels for the action dataset with small 

number of training samples compared with those of other well-known 

schemes. Moreover, this case study proves that the proposed schemes are able 

to address activity recognition problems using a vision-based dataset. In the 

next sub-section, we will examine the proposed schemes’ capabilities when 

addressing activity recognition problems using a sensor-based dataset; this will 

indicate whether they will be capable of dealing with all kinds of activity 

datasets. 
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6.4.2 Sensor-based human activity recognition 

This sub-section will determine whether the MOHA and LMOHA algorithms 

are able to perform human activity recognition using a dataset recorded by 

means of ambient and wearable sensors. In recent research, sensor-based 

activity recognition systems have become a more attractive solution for human 

activity recognition compared with vision-based systems [278]. The utilisation 

of camera systems is acceptable and practical when activities are confined to a 

limited area (e.g. parts of a house or office); however, when the human activity 

involves going from place to place, then sensor-based systems will be the 

better option [46]. Moreover, one of the advantages of sensor-based activity 

recognition systems is that they do not interfere with the human or user privacy 

as is the case with vision-based systems [46].  

There are several types of sensors which are capable of collecting 

different types of measurements. For example, accelerometer sensors measure 

the acceleration of an object while gyroscope sensors measure the orientation 

[294]. These types of sensors can be wearable devices that are attached to a 

user’s body. On the other hand, other types of sensors can be attached to 

physical objects such as doors and drawers. These sensors provide sensory 

information for analytical and pattern recognition systems which transform 

measures and readings into activities. Moreover, different sensors measure 

different readings which can be utilised for analysis and recognition. For 

instance, accelerometer sensors measure the acceleration rates of an object 

while gyroscope sensors measure orientation based on momentum [294]. 
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Firstly in this sub-section, a detailed description of the sensor-based 

dataset will be presented. Then, the MOHA and LMOHA sensor-based human 

activity recognition systems will be proposed, and this is followed by a 

discussion of the simulation results. The result obtained from the proposed 

schemes will be compared against three well-known classification methods, 

namely: KNN, Naive Bayes, and Multi-layer NN. 

6.4.2.1 Opportunity dataset        

An opportunity dataset [45, 295] is a rich database of collected information 

from sensor devices that record the human activities of different subjects. 

These sensors are deployed on the body and on surrounding objects. The 

sensors deployed include inertial, accelerometer, and compass sensors. The 

sensors deployed on the body form a WSN and the ones deployed on objects 

form a wired network. The challenge dataset presented in [296] contains the 

reading measures of deployed sensors for four subjects, which is a part of the 

data collected in the opportunity dataset. The main focus in this case study was 

on the body-worn sensors that represent the WSN part of the setting. In this 

case study, 39 sensors were worn that contained information about subjects’ 

activities. These sensors were deployed in different parts of each subject’s 

body. The types of sensors were as follows: 12 accelerometer sensors, 7 

inertial sensors, and 2 compasses. Each one of the accelerometer sensors 

provided 3D readings (x, y and z). Five inertial sensors were deployed on the 

upper part of the body, each one containing three 3D readings, namely: 
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acceleration, orientation, and magnetic field. The other two inertial sensors 

were deployed on the shoes (left and right) and each one obtained five 3D 

readings, namely: acceleration, orientation, magnetic field, rate of turn, and 

angular velocity. Each of the two compasses provided a single reading that 

gave the direction of the object. This came to 113 attributes for each data 

instance. 

 The recorded activities were manually labelled. Two types of activities 

were targeted, namely, locomotion and gestures. The locomotion activities 

included four types of activities: standing, walking, sitting, and lying down, 

labelled as 101, 102, 104, and 105 respectively. Gestures included detailed 

activities such as opening or closing a drawer. In this case study, locomotion 

activities were studied as gesture activities, relying on the wired objects’ 

mounted sensors. This case study attempted to classify the four locomotion 

activities based only on the measures provided by the body-worn sensors. This 

means that the time stamp of when an activity occurred was also neglected. 

This is to demonstrate the capability of the MOHA and LMOHA schemes in 

classifying activities without recording the historical information about a 

subject’s behaviour. This is intended to minimise memory requirements so as 

to meet WSN resource constraints. 
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6.4.2.2 MOHA and LMOHA schemes for sensor-based activity 

recognition     

A challenge dataset (a part of the data collected in the opportunity dataset) is 

utilised in this case study to address the issue of human activity recognition 

using MOHA and LMOHA schemes. The first step in this case study was to 

handle the dataset in order to present a valid reading to the network. The 

sensory measures in this dataset are based on time. Each data instance 

represents the sensory measures at a specific time. Moreover, some instances 

in this dataset contain faulty readings which are labelled as (NaN). In this case 

study, the instances containing more than three invalid readings were removed. 

  The second step was to address the action’s time in activity 

recognition. In this case study, we utilise the same technique as for the vision-

based activity recognition to solve this issue. In this case study, we used the 

majority voting technique as a means of obtaining a combined decision on the 

recalls made by the proposed schemes within specific time period 𝑡𝑛. 

Therefore, the stored class (i.e. action) that received the highest recall over a 

specific time period 𝑡𝑛 will be recognised as the performed action. 

 The third step was to ascertain the relationship between sensors and the 

S&I in the MOHA and LMOHA networks. Since the sensors provide readings 

in 3D format, each sensor exchanges information with its adjacent sensors. In 

this case study, the network is made up of 37 sensor nodes that offer the 3D 

readings. The two compass readings (1D) send information directly to the S&I 
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(in the base station) without exchanging. Each sensor node in the network 

senses or obtains three values. Each value represents a value in a certain 

dimension. Each value in a certain dimension is considered to be adjacent to 

the neighbour’s value of the same dimension. For example, the value of x in 

the first sensor is adjacent to the value of x in the second sensor. Figure 6.8 

shows the connectivity relationship between adjacent sensor nodes in the 

MOHA and LMOHA networks. In the MOHA scheme, after receiving all 

adjacent neighbours’ values in all dimensions, each sensor node will determine 

whether or not it represents a pattern edge in each dimension, according to 

Equation 3.29. Each activated edge node in each dimension sends a message 

that contains its location information and its dimension number to the S&I (in 

the base station). After that, the S&I receives all messages from all activated 

edge nodes in the network along with compass sensors’ readings. The S&I 

calculates the MOHA value (𝑀𝑉) for each dimension. In this case study, the 

𝑀𝑉 for a pattern is a function of the number of dimensions and the value of 

compass sensors as follows: 

𝑀𝑉 =
𝑀𝑉𝑑1+𝑀𝑉𝑑2+𝑀𝑉𝑑3

𝐶1∗𝐶2∗3
                                            (6.1)       

where 𝑀𝑉 is the MOHA value of a pattern, 𝑀𝑉𝑑1 is the MOHA value for the 

first dimension, 𝑀𝑉𝑑2 is the MOHA value for the second dimension, 𝑀𝑉𝑑3 is 

the MOHA value for the third dimension, 𝐶1 is compass one sensor’s value, 

and  𝐶2 is compass two sensor’s value. 
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Figure 6.8: Connectivity between adjacent nodes in a 3-D MOHA and 

LMOHA networks. 

 

 On the other hand, in the LMOHA scheme, after receiving the values of 

all adjacent nodes in all dimensions, the node will determine whether or not it 

represents a pattern sensory-based shape in each dimension, according to 

Equation 4.3. Each activated plus, T, corner, and edge nodes in each dimension 

sends a message containing its type information and dimension number to the 

S&I. After that, the S&I (in the base station) receives all messages from all 

activated plus, T, corner, and edge nodes in the network along with compass 

sensors’ reading. In this case study, a pattern vector is a combination of the 

average number of activated plus nodes of all dimensions (
𝑁𝑝𝑙𝑢𝑠

3
), the average 

number of activated T nodes of all dimensions (
𝑁𝑇

3
), the average number of 

activated corner nodes of all dimensions (
𝑁𝑐𝑜𝑟𝑛𝑒𝑟

3
), the average number of 
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activated edge nodes of all dimensions (
𝑁𝑒𝑑𝑔𝑒

3
), and the value of compass 

sensors, �⃗� (
𝑁𝑝𝑙𝑢𝑠

3
,
𝑁𝑇
3
,
𝑁𝑐𝑜𝑟𝑛𝑒𝑟
3

,
𝑁𝑒𝑑𝑔𝑒

3
, 𝐶1, 𝐶2), which is utilised for recognition. 

In this case study, the recognition period of time was set to 10 instances 

and each of the LMOHA and MOHA networks was divided into 6 rows each 

of which contained 7 nodes except for the higher row that contained only two 

nodes. The threshold value for edge determination was set to 500 (𝜑 = 500). 

The proposed schemes were trained using 30 randomly selected data instances 

for each locomotion or action class. To compare the proposed schemes with 

other schemes, the Weka tool [263, 264] was utilised to simulate three different 

schemes: KNN (k=1), Naive Bayes, and Multi-layer NN. Figure 6.9 shows the 

receiver operating characteristic (ROC) space and the plots for the four activity 

classes for the MOHA, LMOHA, KNN (k=1), Naive Bayes, and Multi-layer 

NN schemes. Table 6.3 shows the details of MOHA, LMOHA and other 

schemes’ recognition accuracy levels obtained for each locomotion class. The 

same training and testing datasets were used for all schemes. 

Table 6.3 clearly shows that the MOHA and LMOHA schemes have an 

overall higher accuracy level compared with that of other schemes. The table 

also shows that the MOHA scheme offers slightly higher recognition accuracy 

than does the LMOHA scheme. This might be due to the way the MOHA 

scheme handles the sensors’ 3D readings and calculates the MOHA values for 

them. Figure 6.9 also shows that the MOHA and LMOHA schemes have 
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overall higher detection accuracy and lower error rates compared with those of 

the other schemes.  

Table 6.3 and Figure 6.9 show that the Naive Bayes scheme recorded 

the lowest overall recognition accuracy compared with that of other schemes, 

and recorded most of the testing instances as pattern 102 (Walking). The main 

reason for this result is the small number of training instances. In order for the 

Naive Bayes scheme to perform pattern recognition, it needs to build a 

probabilistic relationship between the training instances and input variables. 

Since the number of training instances is limited, the created probabilistic 

relationships cannot efficiently describe each pattern [96, 103]. 

Table 6.3:  Recognition accuracy results of challenge dataset for different 

schemes. 

Class 
101 

(Standing) 

102 

(Walking) 

104 

(Sitting) 

105 

(Lying down) 
Overall 

Training 

instances 
30 30 30 30 120 

Testing 

instances 

145951 80215 79982 18113 324261 

MOHA 
46.61% 49.42% 94.81% 42.70% 58.98% 

LMOHA 
47.20% 46.93% 91.88% 40.88% 57.80% 

Naive Bayes 
3.81% 98.01% 6.12% 12.22% 28.15% 

KNN (k=1) 
46.77% 34.55% 96.11% 39.98% 55.54% 

Multi-layer 

NN 

39.31% 43.66% 97.34% 40.64% 54.77% 
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Figure 6.9: The ROC space and the plots for the challenge dataset for MOHA, LMOHA, Naive Bayes, KNN, and Multi-layer NN 

schemes. 
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 Both the KNN and multi-layer NN schemes’ scores on recognition 

accuracy are to some extent comparable to those of the proposed schemes. 

However, both of them have their own requirements in order to reach these 

accuracy levels. In the KNN (k=1) scheme, each node in the network saves the 

input values of the training data samples and then compares the incoming 

pattern values with the stored information. After calculating the distances, the 

nodes report directly to the base station, which also holds information about 

training samples. This process requires the memory resources available in each 

node in the network to store such information. By increasing the number of 

training instances, the memory requirements and the time required to calculate 

distances for each node increase. On the other hand, the nodes in the proposed 

schemes’ networks do not store any information about training instances. 

Instead, each one of them reports its location or type information to the S&I (in 

the base station). This alleviates the requirement for memory resources in each 

node. Therefore, no search time is required by nodes in order to match patterns. 

 The multi-layer NN scheme involves a greater number of 

communications and iterations compared to that of the KNN (k=1) scheme. In 

this case study, multi-layer NN involved input layers, a hidden layer that 

contained 71 nodes, and a four-node output layer. The network structure 

required each node in each layer to communicate with each node in the higher 

layer. This means that each node in the input and the output layers had 71 

connections to the hidden layer. Since the input layer contained 113 nodes (the 

pattern size) and the output layer contained four nodes, each node in the hidden 
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layer had 117 connections to the input and output layers’ nodes. Similarly, each 

node in the output layer required four connections to the hidden layers’ nodes. 

The total number of connections in this case study was 16950. Moreover, the 

network required 500 iterations for each incoming pattern in order to converge. 

On the other hand, each node in the proposed schemes involves only four 

connections to its adjacent nodes with a one connection to the S&I (if it reaches 

the second level of activations). Since the compass sensors report directly to 

the S&I, each one of these nodes requires only one communication to the base 

station. Therefore, in the proposed schemes, the total number of 

communications for the worst-case scenarios (when all nodes are activated as 

edge nodes in MOHA scheme and when all nodes are activated as plus, T, 

corner, or edge nodes in LMOHA scheme) was 557. Moreover, both MOHA 

and LMOHA networks involve a single cycle in order to converge. This 

reduction in the number of communications and iterations has ramifications for 

the performance of the network in terms of resource consumption (e.g. energy) 

and convergence time. 

 It can clearly be seen that, compared with other well-known schemes, 

the MOHA and LMOHA schemes can offer higher recognition accuracy levels 

when dealing with challenge dataset with limited requirements in terms of the 

number of training instances, number of communications, and convergence 

time. Moreover, this case study proves that the proposed schemes have the 

capabilities to address activity recognition problems using sensor-based 

datasets. The issue of human activity recognition could involve more 
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complicated means such as physical analysis and filters, which could improve 

accuracy. The presented case studies show that the MOHA and LMOHA 

schemes are capable of addressing human activity recognition issues in 

resource-constrained environments (such as WSN) as they score respectable 

accuracy levels with a small amount of resource consumption.     

6.5  Conclusions 

This chapter has presented and discussed several simulations for both proposed 

schemes. The results of these simulations show that the MOHA and LMOHA 

schemes have a very high level of accuracy when dealing with transformed 

patterns compared with that of other schemes. The results also show that the 

proposed schemes’ networks are capable of addressing complex and real-life 

recognition problems by using a minimal amount of training information. They 

also show the feasibility of utilising the proposed schemes in real scenarios and 

different application domains.  

 The first test was used to compare the accuracy of the proposed 

schemes with that of well-known existing schemes when dealing with 

transformed patterns using the shapes and the stars datasets, which consist of 

uniform and non-uniform patterns, respectively. The results of this test show 

that the MOHA and LMOHA schemes have a very high accuracy rate when 

dealing with transformed patterns compared with that of other existing 

schemes. The results also show that, overall, the MOHA scheme offers higher 

recognition accuracy than does the LMOHA scheme when dealing with 
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transformed patterns. The main reason for this is the MOHA scheme’s 

excellent ability to handle scaled patterns. The ROC graph in this test shows 

that the MOHA and LMOHA schemes have higher detection accuracy and 

lower error rates compared with the other schemes when dealing with 

transformation patterns. 

  The second test involved a handwritten character recognition test. The 

results of this test show that the MOHA and LMOHA schemes have pattern 

recognition capabilities that produce better accuracy results than do the Naive 

Bayes and BP NN schemes. The results also show that the LMOHA offers 

higher recognition accuracy when dealing with the problem of handwritten 

character recognition than does the MOHA. The main reason for this is the 

LMOHA scheme’s excellent ability to handle rotated patterns that are the most 

comment issues in handwritten character recognition. Finally, this test 

demonstrated that the proposed schemes’ networks are capable of performing 

complex and real-life recognition by using a minimal amount of training 

information, which resolves the issue of randomness associated with WSNs. 

  The final test discussed the possibility of using the proposed schemes in 

human activity recognition systems. In this test, the proposed schemes were 

compared with other existing techniques using a limited amount of collected 

data to demonstrate the capability of the schemes in addressing activity 

recognition problems using vision-based and sensor-based datasets. The results 

of this test show that both proposed schemes are capable of offering higher 

recognition accuracy levels for vision-based and sensor-based datasets with 
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limited requirements in terms of the number of training instances, number of 

communications, and convergence time compared with other well-known 

schemes. Moreover, this case study proved that the proposed schemes are 

capable of resolving activity recognition problems using vision-based and 

sensor-based datasets. In conclusion, the presented case studies showed the 

capabilities of the MOHA and LMOHA schemes in addressing human activity 

recognition issues in resource-constrained environments (such as WSN) as they 

score respectable accuracy levels with a small amount of resource 

consumption. 

The next chapter will provide an overall discussion of the thesis and its 

limitations, in addition to possible future research directions. 
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Chapter 7 

7 Conclusions and Future Work 

 

7.1 Summary of the Research 

This research proposes two distributed and parallel pattern recognition schemes 

for event detection that are capable of detecting transformed and noisy patterns 

using a minimal amount of available information about patterns while 

addressing the resource constraints of WSNs. 

 This research reviewed existing pattern recognition schemes for 

resource-constrained WSNs. In order to achieve a scalable scheme that meets 

the requirements of such networks, the scheme must combine limited 

communications and computations with using minimal memory resources. 

Additionally, the scheme must also involve low time complexity in order to 

serve online recognition applications. To deal with the real-life sensory 

problems of WSNs, one expects a good recognition scheme to be capable of 

dealing with complex, transformed and noisy patterns with minimal available 

information. These requirements for good schemes are derived from the 

challenges posed by WSN applications. Existing recognition schemes for 
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WSNs have several limitations in terms of these challenges such as iterative 

and fully-centralised processing. 

 This research proposed two novel collaborative in-network pattern 

recognition-based event detection schemes which are lightweight and scalable 

and well-suited to resource-constrained networks such as WSNs. In this 

research, two pattern recognition schemes were proposed: the Macroscopic 

Object Heuristics Algorithm (MOHA) and the Light Macroscopic Object 

Heuristics Algorithm (LMOHA). The computational complexity analysis of 

MOHA algorithm shows that it suffers a very slightly high computational 

complexity with respect to its longest distances determination process, which is 

handled by the S&I (as been shown in sub-section 3.7.1). However, the overall 

computational complexity of MOHA is still less than that of other existing 

schemes, as discussed in sub-section 3.7.1. Therefore, the research proposed 

the LMOHA algorithm to reduce the computational complexity of the 

MOHA’s S&I for event detection and pattern recognition, which will lead to a 

reduction of the overall computational complexity of the MOHA scheme. Both 

proposed schemes adopt the distributed parallel recognition mechanisms of 

Graph Neuron (GN) to minimise recognition computations and 

communications and thus will lead to maintaining low levels of consumption 

of the limited resources. The distributed network structure of the proposed 

schemes results in a loosely coupled connectivity between a network’s nodes 

and avoids iterative learning. The proposed schemes also adopt a two-step 

activation process to reduce the number of participating nodes in the 
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recognition process so as to minimise communicational overheads and to 

increase network scalability. Therefore, the proposed schemes perform 

recognition operations in a single learning cycle of predictable duration, which 

make them good candidates for implementation of large-scale, real-time 

problems. 

In order to have a high level of recognition accuracy, the pattern 

recognition scheme for event detection in WSNs should be able to identify 

dynamic and continuous changes in patterns and deal with limited prior 

knowledge of events. Thus, the first proposed scheme (i.e. MOHA) implements 

an edge detection gradient-based mechanism that searches the edges and 

boundaries of patterns. The second proposed scheme (i.e. LMOHA) 

implements a similar mechanism as MOHA; however, its mechanism searches 

for the sensory-based shapes of patterns. These mechanisms allow the 

proposed schemes to identify dynamic and continuous changes in patterns. 

Thus, the proposed schemes are capable of detecting different types of pattern 

transformation such as translation, rotation, and dilation. The presented 

mechanisms depend only on the change rate between the active node's four 

adjacent nodes to minimise communications and computations. Moreover, the 

proposed schemes are capable of performing recognition operations in dynamic 

environments and also provide a high level of detection accuracy using a 

minimal amount of available information about patterns. The protocols 

required for performing the schemes’ operations were also presented and 

discussed. 
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This research presented theoretical and experimental analysis and 

evaluation of both proposed schemes. The evaluation includes time 

complexity, recognition accuracy, communicational and computational 

overhead, energy consumption and lifetime analysis. The schemes’ 

performance is also compared with that of existing recognition schemes. This 

shows that the proposed schemes are capable of minimising computational and 

communicational overheads in resource-constrained networks, enabling those 

networks to perform efficient recognition activities for patterns that involve 

transformations within a single learning cycle while maintaining a high level of 

scalability and accuracy. The results show that a network that implements mica 

2 motes and requires 3.0625 milliseconds to send a single message can perform 

recognition operations within a single learning cycle duration, ranging between 

5.17 and 2231.39 milliseconds using the MOHA scheme and 5.17 and 

16,441.33 milliseconds using the LMOHA scheme, for 40,000- and 65,536-

node network settings, respectively. The results also show that using a multi-

channel MAC message exchange model in both proposed schemes will 

considerably reduce the network’s learning cycle time. The results also show 

that energy requirements can be decreased by up to 75.86% using the MOHA 

scheme and by 70.69% using the LMOHA scheme, in comparison with other 

recognition techniques. In terms of efficiency, theoretical and experimental 

analyses show that both proposed schemes are highly capable of dealing with 

noisy and transformed patterns with a high level of accuracy. However, each 

presented different limits of tolerance to noisy patterns and different types of 
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transformed patterns. The results show that the MOHA scheme offers more 

accurate recognition for scaled patterns than does the LMOHA scheme. 

However, the LMOHA scheme provides more accurate recognition for noisy 

and rotated patterns than does the MOHA scheme. In conclusion, both 

proposed schemes showed a very significant capability of performing pattern 

recognition in WSNs, as they showed a very good capability of handling noisy 

and transformed patterns and limiting the number of communications, thereby 

limiting the consumption of energy resources. 

Finally, the research presented and discussed several simulations for the 

proposed schemes. The results of these simulations showed that the proposed 

schemes achieve very high accuracy when dealing with transformed patterns 

compared to that of other existing schemes. The results also showed the 

capability of the proposed schemes’ networks of performing complex and real-

life recognition problems by using a minimal amount of training information. 

They also show the feasibility of utilising the proposed schemes in real 

scenarios and different application domains such as handwritten character 

recognition and human activity recognition systems. The results of these 

simulations showed that the proposed pattern-recognition-based approaches 

can perform better than existing classifiers. 

7.2 Research Contributions and Outcomes 

The outcomes of this research contribute mainly to the field of pattern 

recognition in networks and systems such as WSNs that have limited resource. 
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More specifically, this research presents schemes that are capable of 

performing efficient online pattern recognition while maintaining minimal 

resource requirements that suit such limited systems. The significance of this 

research can be encapsulated as four major contributions: lightweight network 

design, online recognition performance, noisy, and transformation-invariant 

recognition, and adaptability to real scenarios and different application 

domains. 

 The design of lightweight and distributed schemes is the first key 

contribution of this research. This design ensures high network scalability and 

increases its lifetime. The lightweight scheme design has been achieved by 

using distributed communicational and computational mechanisms, along with 

a multi-row network design that minimises information exchange overheads. 

The network design of the schemes limits the number of messages required for 

each node to typically four exchange and one report messages. This relieves 

the network nodes of the tightly coupled connectivity requirements found in 

other schemes such as neural networks. Moreover, the designs of the proposed 

schemes networks adopt activation mechanisms that minimise the number of 

network nodes participating in the recognition process. This leads to further 

minimisation in the schemes’ complexity, increases the network’s lifetime, and 

increases network scalability. Experiments conducted on the MOHA and 

LMOHA schemes (in sub-section 5.3.1) show that the proposed activation 

process involved a range of only 0.53% to 25.67% of the total number of the 

network’s nodes in the information exchange process. The same experiments 
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showed that a range of only 0.08% to 0.74% of nodes for MOHA scheme and 

0.30% to 25.67% of nodes for the LMOHA scheme were involved in the 

reporting process (see sub-section 5.3.1). In terms of communicational 

requirements, the experimental tests in sub-section 5.3.2 show that the 

communications required for a MOHA network of size 65536 nodes ranges 

between 19823 and 39355 depending on the message sequence model. This is a 

range between 30.25% and 60.05% of the network size and of the number of 

communications required by parallel KNN. On the other hand, it was shown 

experimentally that the communications required for a LMOHA network of 

size 65536 nodes ranges between 24415 and 43947 depending on the message 

sequence model. This is a range between 37.25% and 67.06% of the network 

size and of the number of communications required by parallel KNN. 

Moreover, it was shown experimentally that the number of communications 

required for a MOHA network of size 40000 nodes ranged between 883 and 

1735. That is a range between 2.21% and 4.34% of the network size, and of the 

required communications of other schemes (see sub-section 5.3.2). On the 

other hand, the experimental tests show that the number of required 

communications for a LMOHA network of size 40000 nodes ranged between 

971 and 1823. This is a range between 2.43% and 4.56% of the network size, 

and of the communications required by other schemes.   

 This minimisation of the number of participating nodes also extends the 

lifetime of the network. The tests conducted in this research in sub-section 

5.3.2 show that the average energy consumption ranged between 0.70 and 1.39 
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mJ for the MOHA scheme and between 0.85 and 1.54 mJ for the LMOHA 

scheme depending on the sequence model involved. Other schemes such as 

parallel KNN scored an average energy consumption of 2.9 mJ. An analysis of 

these results shows that a MOHA network can have a lifetime of one year with 

one of the smallest batteries in terms of capacity (i.e. 30 mAh or 324 joules). 

That is four times higher than other schemes such as parallel KNN (see sub-

section 5.3.2). On the other hand, the results show that a LMOHA network can 

have a lifetime of nine months with 30 mAh batteries. That is three times 

higher than the lifetimes of other schemes such as parallel KNN. 

  The second significant contribution of this research is that it 

demonstrates that pattern recognition can be achieved within a predictable 

single learning cycle time frame and with low computational complexity. This 

capability allows the scheme to support online and real-time applications. The 

time complexity analysis of the proposed schemes in sub-section 3.7.2.1 shows 

that the total number of nodes (the network size) in the wireless sensor network 

and the pattern size (𝑆𝑝) do not have any influence on the total time taken for 

learning process. As a result, the schemes can be effectively scaled to support 

any number of nodes in the wireless sensor network. This time complexity of 

the proposed schemes has been estimated for a worst-case scenario. That is 

when all nodes are activated and participate in the learning process. The 

proposed schemes’ networks response times are proportional to the number of 

activated nodes in the networks, which are generally less than the pattern size. 

These minimise the effect of pattern size increase and provide the schemes 
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with a high level of scalability. Furthermore, the analysis shows that the 

schemes are capable of performing learning operations within a predictable 

time while restricting the learning cycle so that they are proportional to the 

number of activated nodes (typically less than the pattern size). These features 

make the schemes appropriate for tackling large-scale, real-time problems. The 

computational complexity analysis of the proposed scheme in sub-section 3.7.1 

shows that the overall computational complexity of MOHA is less than that of 

other existing schemes such as the Hopfield network. For example, the total 

computational complexity for the MOHA algorithm utilising 35 nodes is 668 

during the recognition process. However, it is 44135 in the Hopfield network 

implementation for the recognition stage with the same number of nodes. The 

computational complexity analysis of the MOHA algorithm in sub-section 

3.7.1 shows that it has slightly high computational complexity with respect to 

its recognition process. As a result, LMOHA scheme is proposed to reduce the 

computational complexity of the MOHA scheme. The computational 

complexity analysis of the LMOHA algorithm in sub-section 4.5.1 shows that 

the LMOHA incurs less computational complexity during the pattern 

recognition process compared with the MOHA scheme. For instance, the total 

computational complexity for LMOHA algorithm utilising 35 nodes is 70 in 

recognition process. However, it is 668 in the MOHA implementation for the 

recognition stage with the same number of nodes as shown previously. It is 

clearly shown from the analysis that the MOHA and LMOHA schemes incur 

lesser computational complexity for their pattern recognition processes 
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compared with other existing schemes such as the Hopfield network, and are 

therefore an appropriate solution for resource-constrained networks, online and 

real-time applications. LMOHA provide even less computational complexity 

compared with the MOHA, making it even more suitable for these types of 

networks and applications. 

 The third significant contribution of this research is efficient pattern 

recognition capabilities for noisy and transformed patterns. The MOHA and 

LMOHA schemes presented in Chapters 3 and 4 are designed to deal mainly 

with noisy and transformed patterns. The proposed schemes use an edge 

detection mechanism to locate and determine the edges and the boundaries of 

an event. By describing events and patterns using their main edges and 

boundaries, it is possible to achieve an efficient recognition scheme that can 

detect transformations that may occur in these events and patterns. To the best 

of our knowledge, the schemes proposed in this research are the first pattern 

recognition schemes to utilise edge determination mechanisms based on a well-

established edge detection technique of image segmentation in the recognition 

process, which can offer transformation-invariant detection capabilities. The 

first proposed scheme in this research implements an edge detection gradient-

based mechanism that searches the edges and boundaries of patterns and 

replaces traditional local information-storing methods. The second proposed 

scheme implements a mechanism similar to the first one; however, its 

mechanism searches for the sensory-based shapes of patterns. These 

mechanisms allow the proposed schemes to identify dynamic and continuous 
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changes in patterns. Experimental analyses of the schemes presented in section 

4.6 show their ability to deal with translation, rotation, and dilation pattern 

transformation types. In section 4.6, both approaches showed very significant 

ability to handle distorted (noisy) and transformed patterns. However, each one 

of them presented different limits of tolerance to distorted patterns and 

different types of transformed patterns. 

Sub-section 4.6.1 showed that the MOHA approach can provide 100% 

recognition accuracy (five correctly classified patterns) for distortion levels up 

to 25% and 80% recognition accuracy (four correctly classified patterns) for 

distortion levels up to 45% for distorted patterns obtained from the shapes 

dataset that contains uniform patterns. Additionally, results presented in sub-

section 4.6.2 showed that MOHA scheme is capable of achieving 100% 

recognition accuracy for distortion levels up to 15% and 80% recognition 

accuracy for distortion levels up to 35% for distorted patterns obtained from 

stars dataset that contains non-uniform patterns. On the other hand, sub-section 

4.6.1 showed that the LMOHA scheme is capable of offering 100% recognition 

accuracy (five correctly classified patterns) for distortion levels up to 35% and 

80% recognition accuracy (four correctly classified patterns) for distortion 

levels up to 50% for the shapes dataset. Results presented in sub-section 4.6.2 

showed that LMOHA scheme is capable of offering 100% recognition 

accuracy for distortion levels up to 25% and 80% recognition accuracy for 

distortion levels up to 40% for the stars dataset. The previous results clearly 
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show that the LMOHA scheme provides more accurate recognition for 

distorted patterns than does the MOHA scheme. 

For transformed patterns, both proposed approaches showed 100% 

recognition accuracy when they deal with translated patterns. However, each 

proposed approach had different capabilities when dealing with scaled and 

rotated patterns. Sub-section 4.6.1 showed that the MOHA approach can 

provided 100% recognition accuracy (five correctly classified patterns) for all 

tested scaled patterns obtained from the shapes dataset that contains uniform 

patterns. Additionally, sub-section 4.6.2 results showed that MOHA scheme is 

capable of offering perfect recognition accuracy (100% accuracy level - five 

correctly classified patterns) for scaling levels up to 60% for the stars dataset 

that contains non-uniform patterns. The sub-section results also showed that 

the MOHA is capable of achieving 80% recognition accuracy (four correctly 

classified patterns) level for scaling levels up to 80% for the same dataset. On 

the other hand, sub-section 4.6.1 showed that the LMOHA scheme is capable 

of offering perfect recognition accuracy (100% accuracy level - five correctly 

classified patterns) for scaling levels up to 16% for the shapes dataset. The sub-

section also showed that the LMOHA is capable of achieving 80% recognition 

accuracy (four correctly classified patterns) level for scaling levels up to 32% 

for the uniform patterns. Moreover, sub-section 4.6.2 results showed that 

LMOHA scheme is capable of achieving perfect recognition accuracy (100% 

accuracy level) for scaling levels up to 16% for stars dataset. The sub-section 

results also showed that the LMOHA is capable of offering 80% recognition 
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accuracy level for scaling levels up to 30% for the non-uniform patterns. The 

previous results clearly show that the MOHA scheme provides more accurate 

recognition for scaled patterns than does the LMOHA scheme. 

Sub-section 4.6.1 showed that that MOHA approach provided high 

accuracy percentages (100% accuracy level - five correctly classified patterns) 

in five rotational regions for a shapes dataset that contains uniform patterns. 

The first region is between 0 and 4 degrees, the second region is between 86 

and 94 degrees, the third region is between 176 and 184 degrees, the region 

where patterns are horizontally flipped or nearly flipped, the fourth region is 

between 266 and 274 degrees, and the fifth region is between 356 and 360 

degrees. Moreover, sub-section 4.6.2 showed that MOHA approach provided 

high accuracy percentages in five rotational regions for stars dataset that 

contains non-uniform patterns. The first region is between 0 and 9 degrees, the 

second region is between 81 and 94 degrees, the third region is between 176 

and 189 degrees, the fourth region is between 261 and 279 degrees, and the 

fifth region is between 351 and 360 degrees. On the other hand, sub-section 

4.6.1 showed that LMOHA approach provided high accuracy percentages 

(100% accuracy level - 5 correctly classified patterns) in five rotational regions 

for shapes dataset. The first area is between 0 and 29 degrees, the second area 

is between 61 and 119 degrees, the third area is between 161 and 199 degrees, 

the fourth area is between 251 and 289 degrees, and the fifth area is between 

341 and 360 degrees. Sub-section 4.6.2 showed that the LMOHA approach 

provided high accuracy percentages in five rotational regions for the stars 
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dataset that contains non-uniform patterns. The first area is between 0 and 39 

degrees, the second area is between 56 and 119 degrees, the third area is 

between 146 and 194 degrees, the fourth area is between 256 and 284 degrees, 

and the fifth area is between 346 and 360 degrees. The previous results show 

that the LMOHA scheme provides more accurate recognition for rotated 

patterns than does the MOHA scheme. 

 The fourth contribution of this research is that it demonstrates the 

advantages of using pattern-recognition-based techniques in dealing with real 

scenarios and different application domains such as handwritten character 

recognition and human activity recognition systems. In Chapter 6, MOHA and 

LMOHA classification models were presented to deal with complex 

classification problems. The results of these simulations showed that the 

proposed pattern recognition-based approaches can perform better than do the 

existing classifiers. Such models show the ability of the schemes to perform 

classification tasks with minimal resource requirements using pattern 

recognition capabilities while maintaining high accuracy compared with other 

classification schemes. The examples presented in Chapter 6 show the 

capability of the proposed schemes to adapt to different types of complex 

learning applications and systems. 

 In general, the one of the main goals of the schemes presented in this 

thesis is to provide efficient pattern recognition capabilities. Both the MOHA 

and LMOHA schemes were compared with other schemes in terms of 

accuracy. In Chapter 6, a series of simulations for both proposed schemes were 
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conducted. The performance of the proposed schemes was compared with 

those of other well-known pattern recognition schemes. Three tests were 

described and discussed in this chapter. The first test aimed to compare the 

accuracy of the proposed schemes with that of KNN, Naive Bayes, and SVM 

schemes in dealing with transformation patterns. The test results show that 

MOHA and LMOHA schemes have a very high accuracy in dealing with 

transformed patterns compared to other schemes. The MOHA scheme was 

capable of achieving high an accuracy level of 85.61% and LMOHA scheme 

was capable of achieving a higher accuracy level of 80.01% compared with 

those of other schemes that scored accuracy levels ranging between 44.22% 

and 55.78%. The previous results show that the MOHA scheme achieves 

higher recognition accuracy than does the LMOHA scheme. The main reason 

for this is the MOHA scheme’s superior ability to handle scaled patterns. The 

second test was intended to demonstrate whether the MOHA and LMOHA 

schemes are able to deal with complex and real-life problems. It also aimed to 

compare the MOHA’s and LMOHA’s accuracy with that of the Naive Bayes 

and back propagation networks using a complex handwritten recognition 

problem. The test results showed that the proposed schemes are capable of 

dealing with the problem while providing higher accuracy levels compared 

with those of other schemes. The results also show that the LMOHA offers 

higher recognition accuracy when dealing with handwritten character 

recognition problem than does the MOHA. The main reason for this is the 

LMOHA scheme’s excellent ability to handle rotated patterns that are the most 
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common issues in handwritten character recognition. The final test examined 

the possibility of using the proposed schemes in human activity recognition 

systems. In this test, the proposed schemes were compared with KNN, Naive 

Bayes and Multi-layer neural networks using a limited amount of collected 

data to demonstrate the capability of the schemes in addressing activity 

recognition problems using vision-based and sensor-based datasets. The results 

of this test show that both proposed schemes are capable of achieving higher 

recognition accuracy levels for vision-based and sensor-based datasets with 

limited requirements in terms of the number of training instances, number of 

communications, and convergence time compared with those of other well-

known schemes. Moreover, this case study proved the capabilities of the 

proposed schemes in addressing activity recognition problems using vision-

based and sensor-based datasets. In conclusion, the presented case studies 

showed that the MOHA and LMOHA schemes are capable of resolving human 

activity recognition issues in resource-constrained environments (such as 

WSN) as they achieve respectable accuracy levels with a small amount of 

resource consumption. 

7.3 Future Work 

This research has presented schemes mainly intended to provide online and 

efficient pattern recognition capabilities for large-scale and resource-

constrained networks such as WSNs. The features of the proposed schemes 
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pave the way for further enhancements and research opportunities. A useful 

extension of this research and further studies could involve the following: 

1. Edge detection mechanisms: The proposed schemes use an edge 

detection mechanism to locate and determine the edges and the 

boundaries of an event. By describing events and patterns using their 

main edges and boundaries, it is possible to achieve an efficient 

recognition scheme that can detect transformations that may occur in 

these events and patterns. The proposed schemes in this research 

implement an edge detection gradient-based mechanism that searches 

the edges and boundaries of patterns. The presented mechanism 

depends only on the change rate between the active node's four 

adjacent nodes. This mechanism dealt with transformations of patterns 

such as translation, rotation, and dilation. A good extension of the 

research in this context would be to implement different edge detection 

mechanisms that could lead to higher levels of detection accuracy and 

could deal with other types of transformations and problems. The 

trade-offs between implementing more complex edge detection 

mechanisms and network performance would be a rich research area as 

more complex mechanisms could lead to greater costs in terms of 

resource consumption and speed. The type of application and available 

resources are expected to be the main criteria that drive such trade-offs. 

Also, determining the best threshold values for edge determination can 

be a difficult task in some WSN applications. In this research, we 
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found that setting the threshold values for edge determination to the 

average values range provides very good results in most cases. Thus, 

further research could be undertaken to investigate the best way to 

determine the threshold values for edge determination in WSNs.     

2. Multi-dimensional design: The proposed schemes in this thesis were 

modelled and designed to deal with 1-D to 3-D problems. For example, 

the human activity classification model presented in sub-section 6.4.2.2 

deals with a 3-D problem space. However, other problems may involve 

a greater number of dimensionality requirements. This research 

proposed the use of multi-row network structures with multi-

dimensional levels to deal with multi-dimensional problems. However, 

the design constraints of the network structure of the proposed schemes 

can be challenging. Hence, designing and analysing multi-dimensional 

network structures based upon the schemes proposed in this thesis 

would be a good extension of the research. New research would focus 

on design capabilities and prediction of the behaviour and performance 

of these schemes when dealing with multi-dimensional patterns. 

3. The influence of different WSNs layers: The impact of MAC 

protocols was explored in this thesis. In sensor networks, however, all 

WSNs layers need to be co-designed in order to attain optimal 

performance whilst conserving the network's resources. 

Communication is considered to be the highest consumer of the energy 

of sensor nodes. Investing in the improvement of the various aspects of 
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communication and the network layer would result in a significant 

improvement of the overall performance of the network. In addition, 

understanding the various proposed mechanisms employed to route 

and process sensory data would enhance the node collaboration and the 

event recognition, and prolong the longevity of the network. 

4. Adaptation to different application domains: The lightweight 

capabilities of the schemes proposed in this research can also be used 

in different types of application domains. Chapter 6 discussed the ways 

in which the recognition capabilities of the MOHA and LMOHA 

schemes can be used to solve classification problems. These indicate 

further research opportunities that incorporate lightweight pattern 

recognition-based techniques such as the MOHA and LMOHA in the 

steps and processes involved in solving complex real-life problems. 

This could open up a wide area of research in fields such as artificial 

intelligence, optimisation, system security and network management. 
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Appendix A 

8 Extended Computational Complexity 

Analysis 

 

A.1 Preamble 

This section presents an extended analysis of the computational complexity of 

the MOHA algorithm. In Chapter 3, the computational complexity of the 

MOHA algorithm was compared with the Hopfield network. The analysis 

results show that the MOHA implementation incurs less computational 

complexity during the pattern recognition process compared with that of the 

Hopfield network. In this section, the computational complexity of the MOHA 

algorithm will be compared with the Self-Organising Map (SOM) and 

Distributed Hierarchical Graph Neuron (DHGN). It is best to note, however, 

that the comparative study that has been carried out does not intend to 

outweigh the capabilities of these algorithms. Rather, it indicates that the 

operations associated with the MOHA have a significantly low computational 

complexity. 
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A.1.1 MOHA vs. SOM 

The Big-O notations for both the SOM and MOHA have been estimated in 

order to study their complexity levels. The supervised SOM (presented at 

Chapter 2) consists of three essential stages [297]: (i) weight initialisation, (ii) 

best-matching unit (BMU) calculation, and (iii) weight adjustment. In the 

weight initialisation stage, nodes are created with randomly assigned weights. 

At this stage, the computational complexity depends heavily on the number of 

created nodes. Hence, for a given weight initialisation process 𝑤, the 

complexity of 𝑛 nodes can be simplified as 𝑓(𝑤) = 𝑂(𝑛3). Figure A.1 shows 

the estimated time taken to initialise up to 100,000 nodes. The estimated time 

derived is based on the assumption that the instruction speed used is 1 

microsecond (μs) per instruction. 

 

 

Figure A.1: Complexity measurement of SOM’s weight initialisation process. 
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In the BMU calculation stage, the complexity depends heavily on the 

number of iterations during training as well as the number of input vectors. 

Therefore, for a given BMU calculation process 𝑚, the complexity of 𝑛 

training iterations can be simplified as 𝑓(𝑚) = 𝑂(𝑛4). The estimated time 

taken to perform up to 100,000 iterations of calculating the Euclidean distance 

between the input values and all neurons (i.e. nodes) in this stage is given in 

Figure A.2. 

 

 

Figure A.2: Complexity measurement of SOM’s BMU calculation process. 

In the last stage, the weight adjustments are provided not only for the 

winning neuron (node) but also for its neighbours in a certain neighbourhood. 

The degree of adjustment depends on the degree of similarity between the 

neuron and the input. As a result of weight adjustment, a group of neurons is 

obtained to form a cluster. The Big-O for the weight adjustment is similar to 

the BMU calculation (refer to Figure A.2) and is therefore not provided. 
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The initialisation stage of the MOHA, as discussed in Chapter 3, is a 

low-computational process, and therefore requires less computational time 

compared with the SOM’s weight initialisation process. Figure A.3 shows the 

estimated time for this process. A similar speed assumption of 1 microsecond 

(μs) per instruction is applied in this analysis. It can be seen that the time taken 

in the MOHA initialisation process is far less than for the SOM. For instance, 

the MOHA takes only 0.02 seconds while the SOM takes about 0.8 × 107 

seconds (see Figure A.1) to initialise 20,000 nodes. 

 

 

Figure A.3: Complexity measurement of MOHA’s network generation process. 

 In the MOHA algorithm, only activated nodes and activated edge nodes 

are utilised in the classification process and the total number of active nodes 

𝑁𝑎𝑐𝑡𝑖𝑣𝑒 and edge nodes 𝑁𝐸𝐷 is usually less than the total number of generated 

nodes (network size) 𝐺𝑀𝑂𝐻𝐴, 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑁𝐸𝐷 < 𝐺𝑀𝑂𝐻𝐴. Figure A.4 shows the 

time taken for classification by the MOHA algorithm based on the assumption 

that 100% of the network nodes are activated as edge nodes. The figure shows 
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that the MOHA’s classification process requires less computational complexity 

compared with the SOM’s BMU calculation and weight adjustment activities. 

For example, the time taken for classification by the MOHA in a network of 

50,000 nodes, if 100% of the nodes are activated as edge nodes, is less than 

1.2 × 103 seconds as shown in Figure A.4, while the SOM’s BMU calculation 

process alone takes about 6 × 1012 seconds to complete (see Figure A.2), and 

with a similar amount of time needed to perform weight adjustment. 

 

 

Figure A.4: Complexity measurement of MOHA’s network classification 

process. 

 

This proves that the MOHA provides an efficient, lightweight, and fast 

algorithm, comparable to SOM implementation. 
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A.1.2 MOHA vs. DHGN 

In order to analyse and compare the MOHA and DHGN algorithms, the 

notations for network generation and recognition stages within the 

implementation have been derived. 

A.1.2.1 Network generation stage 

In the DHGN implementation, the number of neurons (nodes) generated, 

𝐺𝐷𝐻𝐺𝑁 with number of different elements within the pattern 𝑣, a pattern size 

(𝑆𝑝), and a number of DHGN subnets (𝑁𝐷𝐻𝐺𝑁), 𝐺𝐷𝐻𝐺𝑁 is given as follows [260]: 

𝐺𝐷𝐻𝐺𝑁 = 𝑣(

𝑆𝑝
𝑁𝐷𝐻𝐺𝑁

+ 1

2
)2 × 𝑁𝐷𝐻𝐺𝑁                              (A. 1) 

On the other hand, as shown in Equation 3.37, the number of nodes 

generated, 𝐺𝑀𝑂𝐻𝐴 in MOHA implementation is: 𝐺𝑀𝑂𝐻𝐴 = 𝑆𝑝. Table A.1 shows 

the details of the Big-O notation derived for the MOHA and DHGN 

implementations. 

Table A.1: Big-O notations for MOHA and DHGN implementation in network 

generation stage. 

Algorithm Big-O Efficiency Iteration (n) Estimated Time (in seconds) 

MOHA 𝑂(𝑛) Linear 𝐺𝑀𝑂𝐻𝐴 𝐺𝑀𝑂𝐻𝐴 × 0.000001 

DHGN 𝑂(𝑛) Linear 𝐺𝐷𝐻𝐺𝑁 𝐺𝐷𝐻𝐺𝑁 × 0.000001 

 

The results show that both the MOHA and DHGN have comparable 

computational complexity. However, in regards to the number of nodes 
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generated at this stage, the DHGN incurs higher complexity since 

𝐺𝐷𝐻𝐺𝑁 > 𝐺𝑀𝑂𝐻𝐴. 

A.1.2.2 Recognition stage 

Similar to the MOHA scheme, the DHGN algorithm involves a single-cycle 

process in which each input pattern will be passed through the DHGN subnets 

once and the store or recall process will be activated according to the 

instruction given. Table A.2 shows the Big-O notation for the recognition stage 

using the DHGN algorithm. The Big-O notations derived from the analysis of 

the MOHA recognition process are presented in Table 3.6. 

Table A.2: Big-O notations for DHGN implementation in recognition stage. 

Algorithm Big-O Efficiency Iteration (n) Estimated Time (in seconds) 

DHGN 𝑂(𝑛) Linear 𝐺𝐷𝐻𝐺𝑁 𝐺𝐷𝐻𝐺𝑁 × 0.000001 

 

 

Figure A.5: Complexity measurement of DHGN’s and MOHA’s 

recognition process. 
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Table 3.6, Table A.2, and Figure A.5 show the comparison of 

computational complexity for the DHGN and MOHA. The MOHA’s 

computational complexity is based on the assumption that 100% of the network 

nodes are activated as edge nodes and it has 10 MOHA rows. The DHGN’s 

computational complexity is based on the assumption that it has 10 DHGN 

subnets. It is clearly shown from the analysis that the MOHA incurs slightly 

less computational complexity in the pattern recognition process compared 

with the DHGN implementation. 




