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Abstract

This thesis presents newly developed propagation-based phase contrast x-ray (PB-PCX) imaging-

based methods for studying lung form and function. The structure of the lungs is highly complex

and arguably even more so its respiratory behavior. Whilst many imaging-based advances have

been made to provide insight into the structure and mechanics of the lung, none have yet possessed

the capabilities to render highly detailed images of the lungs and provide real-time tracking of

its behavior. Achieving greater insight into the structure-function relationship of the lungs can

potentially lead to more accurate and sensitive diagnostic tools for respiratory diseases. Moreover,

it can help design safer and more effective ventilation strategies for patients in respiratory distress.

PB-PCX imaging provides strong soft tissue contrast to enable the fine features of the lungs

visible, including the intricate network of the airways, and provide real-time imaging. The radiation

dose per image is no more and potentially less than conventional x-ray imaging. These properties

motivate the work presented here in utilizing PB-PCX imaging for developing methods to study

the lungs. In many other lung imaging techniques, a contrast agent or a large radiation dose are

often required to visualize lung tissue.

Chapter 3 presents a method that involves aligning two PB-PCX chest images to segment the

bony anatomy and isolate the lungs before applying the single image phase retrieval algorithm

(SIPRA) to regionally measure the relative change in lung air volume. This expands on a previous

method that utilizes only SIPRA, which was found to be accurate only for measuring regional lung

air volume across large areas of the lungs. From PB-PCX chest images of rabbit kittens being

ventilated while immersed in a water-filled tube (this is required to implement SIPRA), regional lung

air volume is found to be less accurately measured using the previous method (SIPRA only) than the

improved method (bone segmentation and SIPRA). This justifies the importance of segmenting the

bones to perform local measures of lung air volume and validates the bone segmentation algorithm

developed here. Applying the improved method to a mechanically ventilating rabbit, volumetric

maps show lung aeration can be highly heterogeneous.

The drawback of the new method described above is that as the lung air volume increases,

the bones are less accurately aligned and segmented, resulting in errors in regional lung volume

measures. A different approach is taken by representing the PB-PCX chest image in Fourier space.
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Since the bones and airways of the lungs are of different length scales, the latter being much

smaller in dimensions than the former, they occupy different bands of spatial frequencies. The

signal corresponding to the airways is known as lung speckle since they appear as a spatially

random distribution of bright and dark intensity spots in PB-PCX chest images. Focusing only on

the spatial frequencies belonging to the lung, chapter 4 presents a theoretical model of the lung

speckle power spectrum based on the solution to Helmholtz equation while treating the lung as a

random distribution of spherical voids embedded in soft tissue. This model is validated in simulated

PB-PCX lung images using the angular spectrum formulation of scalar diffraction integrals. It

shows that the integral over the domain of spatial frequencies occupied by the lung is dependent

on lung air volume. This fact has enabled a relationship to be determined between these two

parameters by calibrating them using PB-PCX images of mechanically ventilated rabbit kittens

in water-filled tubes. The calibration curve is used to measure lung air volumes from PB-PCX

chest images of rabbit kittens without having to immerse the animals in water-filled tubes, and

shows strong agreement with that measured from a gold standard technique (flowmeter). Besides

avoiding needing to align the bones to segment them from the lungs, a higher signal-to-noise ratio

is achieved due to removing x-ray attenuation from water in the tube.

In a final study, this thesis shows that the integral of the lung speckle power spectrum encodes

information about the number and size of alveoli in the lung. Chapter 5 presents a method that

extracts this information based on the theoretical model developed in chapter 4. That model

assumes the alveoli are uniformly randomly distributed, but at increasing lung air volume the

alveoli become closely packed and give rise to short-range ordering; hence the underlying theory

is generalized to account for short-range-ordering. However, additional information on the radial

distribution of the alveoli is required to adopt this more general theoretical model into this method.

To determine whether it was necessary to account for short-range-ordering, PB-PCX imaging

experiments were performed on samples of glass microspheres of known size. It is shown that the

method using the original model is robust against the effects of short-range-ordering, thereby it can

be used to accurately measure the number and dimensions of alveoli in the lungs over a large range

of lung air volumes. The reason is found to be that short-range-order affects the shape of the lung

speckle power spectrum but not its integral, thus avoiding needing to use the theoretical model that

accounts for short-range-order. This method is applied to rabbit kittens and shows the presence

of alveolar recruitment/de-recruitment, highlighting that alveoli may open/collapse instead of just

varying in size to accommodate the flow of air. Findings such as this will help shape how diagnosis

respiratory diseases and ventilation strategies are improved.
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Introduction 1

1.1 Motivation

The principal function of the lung is to supply the human cells with oxygen and remove byproducts

of cellular activity, such as carbon dioxide1. The lung is often described as a balloon that expands

to draw air in, where gases such as oxygen and carbon dioxide are exchanged between the lung

and cardiovascular system, then deflates to push air back out (Fig. 1.1(a)). More realistically,

however, the lung is much more complex as it is made up of many tiny “balloons” (instead of

one big balloon), known as alveoli, which are connected by small airways, in order to increase

the total surface area over which gas exchange can take place (Fig. 1.1(b)). It is at the alveolar

level that the behavior of the lung is poorly understood. Specifically, it is not well known how air

distributes itself to each alveolus, how each of the alveoli behaves, and how they affect each other

during respiration. This lack of understanding is due to the complexity of the alveolar structure and

mechanics together with limited imaging capabilities.

The highly complex structure and behavior of the lung have attracted interest from biomedical

engineers, physicists and mathematicians (Bates, 2009). Their common interest is fundamentally

to understand how the mechanical processes of the lung make breathing almost effortless. Study-

ing alveolar behavior and air ventilation (flow rate of air) during breathing would help towards

understanding the mechanics of the lungs. Considering that the alveolar size is on the order of

tens of microns and is rapidly changing in time with breathing, an imaging system with both

high spatial and temporal resolution is required to study the lung at the alveolar level in vivo

(Daly et al., 1975; Ochs et al., 2004). Tomographic modalities, namely, computed tomography

(CT), positron emission tomography (PET) and magnetic resonance imaging (MRI), are able to

provide lung ventilation mappings but require contrast agents and/or high radiation doses (Simon,
1The lungs also play an important role in maintaining the blood pH, participating in heat exchange and fluid balance

in the body (Serikov et al., 1992).
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2 Introduction

Air

(a)

Air

(b)

Figure 1.1: In its most simplistic form, the lung can be considered as a balloon as shown in (a),
but a more realistic depiction is given in (b) as a network of small airways and small balloons
(alveoli); each of which behave slightly differently in response to changing air pressure and
volume.

2000; Wellman et al., 2010; Kyriazis et al., 2012). Contrast agents are expensive and carry with

it potential health risks associated with the inhalation of them (Segen and Wade, 2002; Buch,

2010). These tomographic modalities for measuring ventilation will be described in chapter 2.

In studying alveolar mechanics, tomographic imaging systems generally have insufficient spatial

resolution to differentiate individual alveoli. Not to mention it would be even more difficult to

detect differential changes in size since these changes are generally smaller than the alveolar size.

In comparison to tomography, optical imaging techniques such as optical coherence tomography

and confocal laser scanning microscopy have superior spatial and temporal resolution that enables

the alveolar behavior to be tracked (Gaertner et al., 2012). However, the lack of penetrative depth

and field-of-view limits to only a few hundred alveoli being analyzed at any one time. Ultrasound

is also a viable option to imaging the lungs but it lacks the required spatial resolution to resolve

alveoli and is contaminated by artefacts (Lichtenstein, 2014). However, the backscattered sound

waves encode information on alveolar shape and size (Insana et al., 1990). Ultrasound and optical

microscopes are discussed in greater detail in section 5.2.

Phase contrast x-ray (PCX) imaging is an emerging medical tool for studying biological objects

with high spatial and contrast resolution (Momose et al., 1996; Briedis et al., 2005; Liu et al.,

2006; Shinohara et al., 2008; Coan et al., 2010; Ismail et al., 2010; Zhang et al., 2011). It can

produce highly detailed images by exploiting both the differential attenuation and deviation (phase
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(a)

Figure 1.2: A conventional x-ray image (left) and PB-PCX chest image at 3 m ODD (right) of a
rabbit kitten. These 19.8×24.4 mm2 (inset: 6.1×5.8 mm2) images were recorded at 24 keV.

shift) of x-rays upon transmission through an object (Zhou and Brahme, 2008). In comparison,

conventional x-ray imaging is based only on the former property, making imaging of the bone

ideal as it is highly attenuating relative to soft tissues at diagnostic x-ray energies. While this is

similarly true for soft tissue against air, the majority of the airway are of the order of tens of microns

in size. Consequently, the attenuation contrast of the airways are often masked by image noise.

PCX imaging is able to render differential phase shifts into intensity modulations (phase contrast),

which add to the attenuation contrast. These intensity modulations are prevalent along air-tissue

interfaces and are much stronger than its counterpart attenuation contrast (Zhou and Brahme, 2008).

Consequently, it is often able to overcome image noise and reveal the entire lung’s highly intricate

network of airways and alveoli. To demonstrate this, Fig. 1.2 compares a conventional x-ray image

and a particular type of PCX image (namely propagation-based phase contrast x-ray (PB-PCX)

imaging; see section 1.7.1) of a rabbit kitten’s chest. The PCX image of the chest shows finer details

of the bone and enhanced edge contrast of the airways compared to that seen in the conventional

x-ray image. Furthermore, PCX lung imaging can be done in real-time as only single projections

are required. It does not require any contrast agents or large radiation doses, at least no more than

conventional x-ray imaging, which makes it a viable option for imaging humans.
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Better understanding of the intricacy of lung mechanics using PCX imaging can lead to deeper

insight into lung development, mechanical ventilation and respiratory diseases. During early

infancy, the mechanical stress imparted along the airway walls during respiration have been found

to play an important role in lung development through signaling of cellular function (Chess et al.,

2000; Garcia et al., 2006; Trepat et al., 2007). Understanding the types of mechanical stress that

is important in the maturation of the lung will have important ramifications on how mechanical

ventilators are used to resuscitate or maintain respiratory function in newborn infants. Improper

ventilation can hamper lung development and risk causing ventilation-induced lung injury (VILI).

Studies have shown that it takes only a few damaging breaths to cause VILI through over-distension

of the alveolar walls (Jackson et al., 1991; Hillman et al., 2007).

Respiratory diseases such as lung cancer and emphysema are some of the most common

causes of death globally (Wolrld Health Organization, 2008; Cancer Research UK, 2014). Early

diagnosis of these diseases underpins more successful and less aggressive treatments. The onset of

respiratory diseases begins on a cellular level by altering cell behavior that is not apparent using

current diagnostic tools, namely static medical images and global pulmonary tests. However, these

alterations may be evident through changes in lung mechanics at the alveolar level (Kauczor and

Bankier, 2004).

While PCX imaging of the lung is highly detailed, the images formed are only two-dimensional

(2D) projections of the tissues. Consequently, the small airways overlap and cannot easily be

visualized individually, making it difficult to study lung ventilation and alveolar behavior. Regard-

less, there have been many studies that have proven the usefulness of PCX imaging for studying

lung function2 and lung development (Lewis et al., 2005; Hooper et al., 2009; Fouras et al., 2012).

Kitchen et al. (2008, 2011) demonstrated that PCX images can be used to accurately measure

regional lung aeration to assess regional lung function, which has assisted in developing safer meth-

ods of resuscitating infants at birth (Hooper et al., 2009, 2011). However, extracting quantitative

lung information at the alveolar scale from PCX images is still only in its infancy, leaving many

novel developments and improvements yet to be discovered. This thesis focuses on what and how

other quantitative information of the lungs can be extracted from PCX images. In the remainder of

this chapter, the relevant theoretical background of PCX imaging is laid. In particular, the classical

electrodynamic description of how x-rays are generated and interact with matter that lead to the

formation of phase contrast is outlined. Understanding the link between phase contrast and the

structural properties of matter is important towards the work presented herein.

2In this thesis, lung function refers to the dynamic changes in lung volume and structure.
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Figure 1.3: Electromagnetic spectrum for a range of wavelengths (bottom) and energies (top)
(Gomez et al., 2009).

1.2 Classical Electrodynamic Description of X-rays

X-rays are a form of electromagnetic (EM) radiation that cover a large part of the energy spectrum

from kilo-electron volt (eV) to mega-electron volt (MeV) energies (as shown in Fig. 1.3). The

ability to generate x-rays of a range of wavelengths enable materials of different length scales to be

studied, from microscopic objects like viruses to macroscopic objects like volcanic rock (Polacci

et al., 2010; Shtykova et al., 2013). Also, x-rays can penetrate deep within objects, enabling their

internal structures to be imaged. This is particularly beneficial in studying encapsulated objects

such as the bones and organs.

Broadly speaking, x-rays are made of electric (E) and magnetic (B) vector fields. These fields

can be explained within the framework of classical electrodynamics, which is governed by the four

Maxwell equations in free space (Maxwell, 1865)3:

∇ · E(r, t) = 0, (1.1)

∇ · B(r, t) = 0, (1.2)

∇ × E(r, t) +
∂

∂t
B(r, t) = 0, (1.3)

∇ × B(r, t) − εoµo
∂

∂t
E(r, t) = 0. (1.4)

3Maxwell’s equations were formulated by James Clark Maxwell, but the formulation was built on previous works,
which is delved into thoroughly by Sengupta and Sarkar (2003).
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Here, ∇,∇· and ∇× are the three-dimensional gradient, divergence and curl operators, re-

spectively. r = (x, y, z) are Cartesian coordinates, t is time and 0 is the zero length vector. εo

and µo denote the electrical permittivity and magnetic permeability of free space, respectively.

Maxwell’s equations can be manipulated into second order differential wave equations known as

the d’Alembert wave equations for the E and B fields:

(
∂2

∂t2 −
1

εoµo
∇2

)
E(r, t) = 0, (1.5)

(
∂2

∂t2 −
1

εoµo
∇2

)
B(r, t) = 0. (1.6)

Equation 1.5 is derived by first taking the curl of Eq. 1.3 and using the vector identity ∇ × [∇ ×

A(r)] = ∇[∇ · A(r)] − ∇2A(r) for a well-behaved vector field A(r). Combining this with Eqs. 1.1

and 1.4 gives Eq. 1.5. Similar steps are taken to derive Eq. 1.6.

The simplest non-trivial solution to Eqs. 1.5 and 1.6 is the monochromatic plane wave, defined

as A exp [i(k · r − ωt)], where A is a real non-zero constant polarization vector. The plane wave

describes a sinusoidally varying function with amplitude |A| and wavelength, λ = 2π
|k| , defined as

the number of unit lengths per wave, and angular frequency, ω, with units of radians per second

(see Fig. 1.4)4. The parallel planes, or wavefronts, extending out to infinity in Fig. 1.4 represent

surfaces of constant phase defined at constant = k · r − ωt. These wavefronts propagate with

velocity vp =
∣∣∣ dr

dt

∣∣∣
ϕ

= ω/|k|= 1/
√
εoµo in the direction k, where vp is known as the phase velocity.

The subscript ϕ means it is treated as a constant when taking the absolute derivative. Comparing

the expression for vp, it can be seen that vp is the square root of the negative value of the coefficient

in front of the Laplacian operator ∇2 in Eqs. 1.5 and 1.6.

Without any loss of generality, consider an E-field plane wave traveling along the positive

z-direction in free space and rewrite Eqs. 1.3 and 1.4 into its scalar components:

∂Ey

∂z
= −

∂Bx

∂t
, (1.7a)

∂Ex

∂z
= −

∂By

∂t
, (1.7b)

∂By

∂z
= −εoµo

∂Ex

∂t
, (1.7c)

4While A cos (k · r − ωt) or A sin (k · r − ωt) are the real solutions to the wave equation, the complex notation is
conventionally used to simplify mathematical manipulations. The real part of the final solution is then taken to extract
the real-valued solution.
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Figure 1.4: A schematic depiction of a plane wave at an instant of time with wavelength
λ traveling in the direction k. A corresponding one-dimensional diagram can be drawn of a
sinusoidal wave at an instant in space over time with λ replaced by f = ω

2π , defined in units of
cycles per unit of time.

∂Bx

∂z
= −εoµo

∂Ey

∂t
. (1.7d)

In arriving at these equations, note for a E-field plane wave traveling in the z-direction, Ez = 0

and that Ex and Ey are only functions of z. According to Eqs. 1.7c and 1.7d, each E-field

vector component in (x,y) will induce a B-field vector component in the perpendicular direction

propagating also along z with a sinusoidally varying amplitude that is in phase with E. This

culminates into a B-field plane wave. Similarly, Eqs. 1.7a and 1.7b shows that a B-field plane wave

will induce an E-field plane wave traveling along z. E and B can therefore coexist indefinitely

in vacuum as an EM plane wave field through self-perpetuation. X-rays, and all forms of light,

can also travel indefinitely in vacuum. The decisive proof that EM-fields are light and therefore

x-rays came when the values of εo and µo, first measured by Weber and Kohlrausch (1856), was

substituted into vp = 1/
√
εoµo to find that the propagation speed of EM-fields is almost equal to

that of light measured separately by Fizeau (1849) in free space.
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Figure 1.5: Electric field lines terminating on a charge that is stationary (left), uniformly moving
(middle), and accelerating (right) to the right.

Having established the classical description of how either E- and B-field plane waves manifest

into EM-fields (that is x-rays), it has not yet been made clear where the E-field or B-field plane

waves originated. The answer is from the acceleration of charged particles. Electrons are predomi-

nantly used in the medical field as more radiation power can be generated because of its low mass

compared to other charges (Paganin, 2006, p. 140). An electron at rest emanates a uniform radially

distributed E-field, but in motion the field lines become concentrated perpendicular to the velocity

vector (see Fig. 1.5). Since only a constant B-field is induced, it does not lead to a self-perpetuating

EM-field. But an accelerating electron does emit x-rays. The E-field continuously realigns with

the electron as it accelerates; however, E-fields have a finite propagation speed of c in vacuum.

Thus, the E-field closest to the electron is aligned to its current position but those on the outer are

still aligned to where it was sometime before (see Fig. 1.5). According to Gauss’ law, these two

fields must be connected. If they were not, a closed surface enclosing the ends of one of the field

lines would result in a non-zero net electric flux through the closed surface. This violates Gauss’

law, which states that any closed surface enclosing no charge must have a net electric flux of zero.

Consequently, the electric field connecting the two fields forms a kink (see Fig. 1.5). It can be

viewed as an E-field pulse, which is shown in section 1.7.1 to be re-expressible as a sum of E-field

plane waves with a range of k and ω values. Since the d’Alembert wave equations are linear, the

E-field pulse is a solution and each E-field plane wave leads to an EM-field.

Quantum electrodynamics represents a more powerful formalism for describing x-rays, where

it treats x-rays as photons rather than EM-fields and their behavior is probabilistic rather than

deterministic. Classical electrodynamics is an adequate formalism for dealing with problems

such as elastic scattering (see section 1.4) and the refractive index of materials (see section 1.5).
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Conversely, it cannot describe all processes such as those that occur over short time scales in the

order of the atomic electron orbital period or inelastic scattering (Compton, 1923; Slowik and

Santra, 2013)5. These require the formalism of quantum electrodynamics to accurately account for

these events. The work done herein focuses on recovering the refractive index of materials from

images recorded using information only from elastic scattering. Classical electrodynamics is then

an adequate formalism to describe this work.

1.3 Production and Properties of X-rays for Phase Contrast

X-ray Imaging

The classical understanding of the origin of x-rays has led to the development of two types of

x-ray generator: x-ray tubes and synchrotrons. Both have completely different designs but their

mechanism is fundamentally identical in generating x-rays by accelerating electrons.

In x-ray tubes, electrons ionized from heating metal are accelerated by a potential difference

that are then rapidly decelerated when they collide with a metallic material (anode) to induce

x-ray emission (Bushberg et al., 2012). The emission spectrum from a typical x-ray tube is shown

in Fig. 1.6. The broad ‘Bremsstrahlung’ spectrum corresponds to x-rays emitted from electrons

decelerated by the deflective force of the anode. The sharp peaks are known as characteristic

x-rays that exist at certain energies corresponding to the differences between electron shell energy

levels of the anode. The energy quantization of characteristic x-rays falls under the formalism of

quantum electrodynamics but the mechanism can still be partially described by classical mechanics.

Electrons with energy E = h̄c|k|, where h̄ is the reduced Planck constant, can cause bound electrons

to oscillate (i.e. accelerate) between electron shell energy levels whose energy difference equals

that of the electrons, and which emit an EM-field of the same energy. The origin of the discrete

energy levels, however, falls outside the domain of classical electrodynamics.

Unlike x-ray tubes, synchrotrons accelerate electrons to relativistic speeds and instead of using

a metal anode, electrons are de-accelerated by magnetic dipoles to induce x-ray emission. There

are three types of magnetic dipoles that produce different x-ray spectra: bending magnets, wigglers

and undulators. A bending magnet comprises a single magnetic dipole where electrons are deviated

once to produce a large frequency bandwidth of x-rays. Wigglers are made up of n magnetic

dipoles, each producing a pulse of light that add up incoherently to be n times brighter than that

5Studies have shown the scattering pattern of orbiting electrons over a few femtoseconds by a pulse of light is
inadequately described using classical electrodynamic theory and instead requires a quantum electrodynamic treatment
(Dixit et al., 2013; Slowik and Santra, 2013)
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Figure 1.6: A typical spectrum of characteristic (red) and Bremsstrahlung (blue) x-rays. Adapted
from Bushberg et al. (2012, p.176).

from a bending magnet. Undulators are also made up of multiple dipole magnets but the magnetic

field is sufficiently weak for all the pulses of light to be emitted in the same direction and interfere

coherently. The light emitted is many orders brighter with a narrow frequency bandwidth.

To compare the properties of x-rays emitted from synchrotrons and x-ray tubes, wavefield

coherence is first introduced. It is introduced also because it is an important requirement for PCX

imaging. Here, x-rays will be treated as a complex scalar wavefield Ψ(r, t) that satisfies the wave

equation given in Eq. 1.5, rather than vectors E =(Ex,Ey,Ez) and B = (Bx,By,Bz). This is a valid

transition when working in free space as there is no coupling between vector components (Green

and Wolf, 1953; Paganin, 2006). It is also valid in matter if the charge and current density is slowly

varying over length scales comparable to the x-ray wavelength, which is certainly true for the

vast majority of biological tissues studied in this thesis. The coherence of a scalar wavefield is a

measure of the correlation of the wavefield over space-time. A common parameter that represents

the wavefield coherence is the mutual coherence function, Γ, of the scalar wavefield at two space

points, r1 and r2 (Paganin, 2006):

Γ(r1, r2, τ) =
〈
Ψ(r1, t)Ψ∗(r2, t + τ)

〉
, (1.8)

where τ is the time delay between Ψ(r1, t) and Ψ(r1, t + τ) and the angular brackets 〈〉 denotes

the time average. A physical interpretation of Eq. 1.8 will be given by deriving it in the context

of Young’s interference pattern. Consider a completely absorbing screen with two pierced small
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rD
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Figure 1.7: A two-dimensional black screen with two pinholes at r1 and r2 illuminated by an
arbitrary scalar wavefield. The visibility of the interference pattern produced by the two pinholes
is determined at rD.

pinholes located at r1 and r2 (Fig. 1.7). The wavefield at some point rD downstream of the

absorbing screen is given by:

Ψ(rD, t) = K1Ψ(r1, t + τ) + K2Ψ(r2, t), (1.9)

where τ is the time difference (or delay) between the wavefields in reaching rD. The transfer

function that propagates the wavefields, Ψ(r1, t +τ) and Ψ(r2, t), from the pinhole to the observation

point rD is denoted by K1 and K2, respectively. The observed intensity is given by the magnitude

squared time averaged value of Eq. 1.9:

I(rD) =
〈
|K1Ψ(r1, t + τ) + K2Ψ(r2, t)|2

〉
=

〈
|K1Ψ(r1, t + τ)|2

〉
+

〈
|K2Ψ(r2, t)|2

〉
+ 2 |K1K2|Re

{〈
Ψ(r1, t + τ)Ψ∗(r2, t)

〉}
.

(1.10)

Note that K1K∗2 is positive and real, which allowed it to be brought outside the brackets.

The first two terms on the second line of Eq. 1.10 represent the intensity contribution from

each pinhole individually, which are denoted as I1(rD) =< |K1Ψ(r1, t + τ)|2> and I2(rD) =<

|K2Ψ(r2, t)|2>. These terms represent the intensity which would have been observed at rD if the
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other pinhole was blocked. The third term represents the correlation between the wavefields from

each pinhole at the plane of the pinholes and can be seen to be equal to the real part of the mutual

coherence function. Equation 1.10 therefore becomes:

I(rD) = I1(rD) + I2(rD) + 2 |K1K2|Re {Γ(r1, r2, τ)} . (1.11)

To study the dependency between the mutual coherence function and the intensity downstream,

consider Ψ(r, t) to be a monochromatic wavefield exp(i[φ(r) − ωt]), where ϕ(r) is a real-valued

arbitrary function describing the wavefront over space. Substituting this wavefield into Eq. 1.11

gives:

I(rD) = 2{1 + cos[φ(r1) − φ(r2) − ωτ]}. (1.12)

Equation 1.12 shows that the mutual coherence function (cosine) term is responsible for

oscillating the intensity between 0 and 4. These oscillating intensities are known as interference

fringes. The visibility of these fringes is defined by:

V =
Imax − Imin

Imax + Imin
. (1.13)

Substituting the expressions for the maximum (Imax) and minimum (Imin) intensity of Eq. 1.12

into Eq. 1.13, the fringe visibility for a monochromatic wavefield is V = 1. These fringes represent

the phase contrast seen in PCX imaging and are responsible for increasing image contrast. To

generalize V for any wavefield, Eq. 1.11 is substituted into Eq. 1.13 and assuming equal intensity

from both pinholes (that is, I1(rD) = I2(rD)):

V = |γ(r1, r2, τ)|. (1.14)

where

γ(r1, r2, τ) =
Γ(r1, r2, τ)

√
Γ(r1, r1, 0)Γ(r2, r2, 0)

, (1.15)

is known as the complex degree of coherence representing the normalized mutual coherence

function.

Equation 1.14 shows that fringe visibility is directly proportional to the magnitude of the

complex degree of coherence. Using the Schwarz inequality, it can be shown that |γ(r1, r2, τ)|≤ 1

and therefore V ≤ 1 (Paganin, 2006, p. 43). This shows fringe visibility is maximal when the

complex degree of coherence is maximal, which only occurs when the wavefield is fully coherent.
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While as the wavefield coherence decreases so too does the fringe visibility. Hence why PCX

imaging requires a sufficiently coherent wavefield to produce phase contrast (fringes). Even though

Eq 1.14 was derived by considering a two-pinhole screen, the screen need not be there, Eq 1.14

can be generalized to describing the fringe visibility at rD resulting from a wavefield at a point in

space-time interfering with another at some other point in space-time.

Realistically, x-ray tubes and synchrotrons do not emit perfectly coherent wavefields because

of the stochastic process of x-ray emission. Electrons are accelerated at random intervals and emit

plane waves of finite length (wavetrains). The overall wavefield is then partially coherent.

For a quantifiable analysis of the effects of partially coherent wavefields on fringe visibility,

coherence is divided into two classes: temporal and spatial coherence. The degree of temporal

coherence is defined as γ(r1, r1, τ), that is, the correlation of a wavefield at fixed position r1 delayed

by τ. The degree of spatial coherence is defined as γ(r1, r2, 0), which is the correlation between

two points of a wavefield with zero time lag. Each electron accelerated from a synchrotron or x-ray

tube emits a wavetrain described by the plane wave e−i[k·r−ωt] modulated by the amplitude function
√

I(r, t) and a phase factor e−iϕ:

Ψ(r, t) =
√

I(r, t)e−i(k·r−ωt)e−iϕ. (1.16)

The phase ϕ remains constant over the time period Tc =
Lc
c , where Lc is the length of the wavetrain,

and randomly changes for x-rays emitted from another accelerated electron. With this setup,

temporal coherence can be expressed as (Loudon, 2000):

γ(r1, r1, τ) =

〈{∑v
i=1
√

Ii(r1, t)e−i(k·r1−ωit)eiϕi
} {∑v

i=1
√

Ii(r1, t + τ)e−i[k·r1−ωi(t+τ)]e−iϕi
}〉〈{∑v

i=1
√

Ii(r1, t)e−i(k·r1−ωit)eiϕi
} {∑v

i=1
√

Ii(r1, t)e−i[k·r1−ωi(t)]e−iϕi
}〉 , (1.17)

where i = 1...v represents the different wavetrains.

Expanding the brackets in Eq. 1.17, the phase values of the wavetrains emitted from different

electrons are statistically independent with random phase values and amplitudes, consequently,

their cross terms sum to cancel out. The remaining terms are:

γ(r1, r1, τ) =

∑v
i=1

〈√
Ii(r1, t)Ii(r1, t + τ)e−iωiτ

〉∑v
i=1 〈Ii(r1, t)〉

=

∑v
i=1 Γi(r1, r1, τ)∑v
i=1 Γi(r1, r1, 0)

.

(1.18)

The temporal coherence of the beam is thus the sum of that of the individual wavetrains

normalized against the total time averaged intensities of the individual wavetrains. It can be seen
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that the temporal coherence of the beam correspond to that of the average wavetrain. Hence,

it would remain appreciably above zero over the average time delay 〈τ〉 = 〈Tc〉. Thus, having

longer wavetrains on average (that is, larger 〈Lc〉) increases 〈τ〉 over which temporal coherence

and therefore fringe visibility remains high. Consider the double pinhole setup again in Fig. 1.7

with a light source emitting a wavetrain with average length 〈Lc〉 illuminating the two pinholes.

At increasing distance, in the direction parallel to the screen, away from the pinholes, the fringe

visibility gradually decreases as the average time delay of the wavefields emanating from the two

pinholes increases beyond Tc. Alternatively, the average 〈Lc〉 can be expressed as:

〈Lc〉 =

〈
λ2

∆λ

〉
. (1.19)

To derive Eq. 1.19, the following two pieces of information were used: (1) the equation vp = c = fλ,

where the x-ray frequency f = ω
2π is differentiated with respect to λ to give ∆ f

∆λ = − c
λ2 (the negative

sign is dropped when arriving at Eq. 1.19), and (2) the optical uncertainty principle ∆ f ∆t ≈ 1,

where ∆t = τ. The optical uncertainty principle can be interpreted as stating that the longer the

wavetrain the more certainty there is in the frequency. From hereon, the ensemble average operation

will be dropped for notational simplicity but implicitly assumed.

Equation 1.19 shows that Lc, and therefore temporal coherence, is inversely proportional

to the wavelength bandwidth ∆λ.6 A wavetrain can therefore be viewed instead as a band of

monochromatic wavefields, which enables temporal coherence to be more easily quantified. To

understand how an increase in ∆λ leads to a decrease in fringe visibility, consider the two-pinhole

screen (Fig. 1.7) again illuminated by a partially temporally coherent wavefield having a broad

band of wavelengths. Each wavelength produces its own fringe pattern downstream of the screen.

Summing the individual fringe patterns gives the overall fringe pattern of the partially coherent

wavefield source. Since the fringe patterns from each wavelength are slightly different in fringe

period, the overall fringe pattern has a reduced visibility.

In keeping with the model of an x-ray source having source size S comprised of electrons

emitting wavetrains, spatial coherence at the source plane would be close to zero as there is

little correlation between wavetrains at any given time. However, spatial coherence improves at

increasing distance away from the extended incoherent source, as proven from the formula given

by the van Cittert Zernike theorem (Zernike, 1938; Sharma, 2006):

6As mentioned in the main text, the x-rays emitted from each magnetic dipole in a undulator add coherently. This
means the wavetrains superimpose to form a longer wavetrain. This leads to an increase in Lc and from Eq. 1.19 a
narrower bandwidth. This is why their energy spectrum of an undulator exhibits a sharp peak (Margaritondo, 2002, p.
37).
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|γ(r1, r2, 0)|=

∣∣∣∣∣∣∣
∫

I(r) exp[ik · (r1 − r2)]dr∫
I(r)dr

∣∣∣∣∣∣∣ . (1.20)

This expression represents the spatial coherence of an incoherent source, which depends only on

the intensity distribution of the incoherent source. It is derived by propagating the spatial coherence

of the incoherent source away from the source plane at a distance much larger than the source size.

This is well satisfied in synchrotrons and x-ray tubes. There are a number of ways in which spatial

coherence can be propagated, one of which is the angular spectrum formulation of scalar diffraction

integrals described in section 1.7.1. For a complete derivation of Eq. 1.20, see Paganin (2006, sec.

1.9).

To examine Eq. 1.20 explicitly, consider a planar incoherent circular source I(r) of size S and

uniform intensity Io. At a sufficiently large distance away from the source, Eq. 1.20 and therefore

the spatial coherence can be expressed as (Agarwal et al., 2004):

|γ(r1, r2, 0)|=
∣∣∣∣∣ J1(S q/2Dλ)

(S q/2Dλ)

∣∣∣∣∣ , (1.21)

where D is the source-to-object distance (SOD) and q is the transverse distance from the center of

the observation plane. J1 denotes the Bessel function of the first kind of order 1.

With the aim of interpreting Eq. 1.21, it is plotted in Fig. 1.8 with the parameters D = 210 m,

S = 150 µm and λ = 5.167 × 10−11 m, which were the same parameters set for recording the

phase contrast images presented in Fig. 1.2 and similarly for all other such images presented in this

thesis. It shows that fringe visibility reduces to zero at q ≈ 0.55 mm. Hence, within the area of

π(0.55)2 = 0.95 mm2 centered at the center of the observation plane, known as the coherence area,

spatial coherence is high. Beyond the coherence area spatial coherence oscillates with a damped

amplitude. The coherence area can be increased by decreasing the source size or increasing the

SOD7. However, the PCX images presented throughout this thesis such as that in Fig. 1.2 show the

calculated coherence area of 0.95 mm2 is adequate to achieve strong fringes.

To achieve both highly spatially and temporally coherent x-rays for PCX imaging, both a

small source size/large SOD and monochomator are required. Monochromators are detailed in

section 1.7.2. In x-ray tubes, electrons convert most of their kinetic energy into heat as they collide

7To understand how fringe visibility is affected by source size, consider again the double pinhole setup illustrated in
Fig. 1.7. Assuming that the wavefield emitted from an electron behind the screen is coherent, the wavefield illuminates
both pinholes to produce a fringe pattern downfield of the screen. Increasing the source size by including more
independent electron emitters and spacing them further apart reduces the fringe visibility since each emitter produces
their own fringe pattern downfield of the screen that are slightly displaced from one another. Hence they add to form a
resultant fringe pattern with reduced visibility.
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Figure 1.8: Visibility plotted against the transverse distance from the center of the observation
plane. The shaded region up to the first minimum represents a quarter slice through the coherence
area.

with the anode. While a small source size can be set to achieve high spatial coherence, x-ray flux is

severely limited to avoid overheating of the anode. Several designs have been introduced to improve

the efficiency in dissipating the heat, such as: immersing the anode in a heat sink, and rotating the

anode to spread the heat over a larger surface area (Bushberg et al., 2012, p.180-182,189). However,

the brightness of x-ray beams achievable from x-ray tubes is still insufficient for real-time or even

static PCX lung imaging as impractically long exposure times are required (Gundogdu et al., 2007;

Vine et al., 2007; Marenzana et al., 2014). Furthermore, as shown in Fig. 1.6, x-rays emitted by

x-ray tubes are broadband polychromatic; in order to achieve a higher degree of temporal coherence,

a monochromator is required. This further reduces the x-ray source brightness. However, not all

PCX imaging modalities require high temporal coherence. For example, PB-PCX imaging is much

more sensitive to spatial rather than temporal coherence, as described in section 1.7.1.

Synchrotrons are able to produce extremely bright x-rays. Bending magnets produce the least

bright x-ray sources compared to wigglers and undulators. However, they are capable of producing

x-rays with at least 4 orders-of-magnitude more brightness than that from x-ray tubes with a

non-rotating anode even after being filtered by a monochromator (Goto et al., 2001; Bushberg et al.,

2012). The main reason is that in synchrotrons, electrons are accelerated to relativistic speeds. This

results in more photons emitted per electron over a narrow angular range. This can be understood
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by referring back to Fig. 1.5 and comparing the spread of electric field lines between the stationary

and moving charge. The electric lines bunch closer in the direction perpendicular to its direction of

motion and continue to do so at increasing speeds. Synchrotron source sizes are actually similar to

that of x-ray tubes but are able to achieve high spatial coherence because of large SODs. There are

ongoing improvements in the manufacturing of x-ray tubes to achieve smaller spot sizes with high

brightness. The most promising work has been the introduction of liquid-metal-jet anodes, which

increases both the conversion efficiency of electrons to x-rays and the heat capacity (Hemberg et al.,

2003; Tuohimaa et al., 2007; Garson et al., 2013). Together with the development of detectors

with better signal-to-noise ratio (SNR) characteristics, these advancements are helping bring PCX

imaging outside the synchrotron and closer to clinical application.

1.4 X-ray Interactions with Matter

Bulk matter comprises many x-ray scatterers and absorbers, which include atomic electrons,

nucleons, photons and mesons (Muecke et al., 1999; Macovei, 2010; Bushberg et al., 2012).

In the medical diagnostic x-ray range (10-150 keV), x-ray interaction with the latter three are

negligible and thus will not be discussed herein (Hubbell, 1969). Limiting discussion to x-ray

interactions with free and bounded electrons, these interactions can be broadly categorized as

scattering and absorbing. While x-rays were described as waves in the previous section, x-ray-

electron interactions are generally a quantum effect, as such they are treated as particles known as

photons with a well-defined indivisible quantum of energy that is proportional to its wavelength8.

In photon absorption, a photon is absorbed by a bound electron if the photon’s energy is greater

than the binding energy of that electron. The bound electron is ejected with kinetic energy equal to

the difference between the incident photon energy and the binding energy, leaving behind a vacant

electron shell. Photon absorption can also occur when the photon has energy equal to the difference

in binding energy between electron shells, causing an electron from the lower energy shell to excite

to the higher energy shell if there is vacancy. In both cases, the vacant electron shell will be filled

by an outer electron and emit a photon in a random direction with energy equal to the difference in

binding energy between electron shells involved in the transition (Fig. 1.9(a)).

In the event of scattering, an incoming x-ray photon collides with an electron that is assumed

8Treating photons as particles implies that they are spatially localized, yet they have a well-defined wavelength,
which requires complete spatial de-localization. This ambiguous pictorial of a photon is due to its wave-particle duality.
For the curious reader, treatments in the field of quantum electrodynamics investigating the properties of photons can be
found in Weinberg (1996).
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Figure 1.9: Interaction of x-rays with matter. (a) Photon absorption involves a bound electron
absorbing an x-ray with sufficient energy to eject from the shell, with the vacancy left behind
being filled by an electron from a higher energy shell and a lower energy photon being emitted.
X-rays may undergo (b) inelastic scattering where energy (E) and momentum (p) is lost to the
electron, or (c) elastic scattering where no energy is lost. Elastic scattering can be described by (b)
for the special case of Ei

γ = E f
γ and

∣∣∣pi
γ

∣∣∣ =
∣∣∣∣p f
γ

∣∣∣∣ but instead the corresponding classical description
is given in (c) of an oscillating dipole to aid in explaining subsequent sections.

to be stationary9. The photon imparts a proportion of its momentum and kinetic energy to the

electron. This is known as Compton scattering, also referred to as inelastic scattering (Fig. 1.9(b))

(Compton, 1923). The total momentum and energy of this closed system is conserved, which leads

to a relation between the ratio of the photon energy after (E f
γ ) and before (Ei

γ) the collision took

place to the scattering angle (θ) (Paganin, 2006):

E f
γ

Ei
γ

=

1 +
2Ei

γsin2(θ/2)

mec2

−1

, (1.22)

where me is the mass of the electron.

Equation 1.22 shows that the ratio of the final and initial energy of the scattered photon is a

9Collision of a photon with a non-stationary electron can result in inverse Compton scattering, where energy is
transferred from the electron to the photon.
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function of its initial energy. When Ei
γ << mec2, the second term in the square brackets of Eq. 1.22

becomes negligible, resulting in E f
γ

Ei
γ
≈ 1. That is, if the initial photon energy is significantly less

than the rest mass energy of the electron, the energy of the scattered photon remains unchanged and

the scattering is considered to be elastic (Jauch and Rohrlich, 1955, sec. 11.1). Elastic scattering

was observed in plasmas10 by British physicist J. J. Thomson before Compton scattering was

formalized (Thomson, 1906). Thus, elastic scattering of x-rays from free electrons was known as

Thomson scattering. A classical description provided by Thomson, before quantum mechanics was

well established, could adequately describe the mechanism of elastic scattering. There the electric

field component of an EM-field plane wave imparts a Lorentz force with alternating direction to

cause the electron to oscillate. The electron becomes an accelerating charge and re-radiates an

outgoing x-ray wavefield with the same frequency in all directions but with zero amplitude along

the direction of oscillation (Fig. 1.9(c))11. For electrons that are not free or loosely bound, but

instead have high binding energy, me in Eq. 1.22 is re-defined as the atomic mass (or molecular

mass) as the entire atom takes part in the collision (Khare, 2006, sec. 2.5). For this case, scattering

is again considered elastic when Ei
γ << mec2, and is then classified as Rayleigh scattering12. Elastic

scattering (Rayleigh and Thomson) is coherent as the scattered and unscattered wavefields are

of the same frequency and maintain a fixed phase relationship between one another. Conversely,

inelastic (Compton) scattering is incoherent as the scattered wavefields are of different wavelength

and therefore have no fixed phase relationship between them (Cremer, 2012).

Thus far in this section, the mechanism for scattering and absorption have been described,

but the probability of these processes occurring has yet to be quantified. The likelihood of a

photon interaction depends on many parameters such as its energy and the scatterer type, and to

accurately quantify the interaction likelihood a quantum treatment must continue to be adopted. A

full derivation of such a treatment will not be presented here. Instead, their relative contribution to

the total number of interactions will be numerically compared for the object of interest in our study,

namely lung tissue. The parameter that represents the probability of a type of photon-electron

interaction event occurring is the total cross-section given in any direction in 4π steradians. Strictly

speaking, if there are N scatterers in a given sample per unit area illuminated by Io photons per

10Plasmas are one of the four states of matter (the others being gas, liquid and solid) that comprise of ionized particles
and free electrons. This state arises when sufficient energy is imparted from, for example, high temperature or a high
external electric field, which separates matter into ionized particles and free electrons.

11The outgoing wavefield is approximately spherical when far from the oscillating electron (Hecht, 2002, sec. 3.4.3).
12In this thesis, Rayleigh scattering is defined as elastic scattering between a photon and an atomic bound electron.

In many studies, its definition is slightly more restrictive in that it includes the above definition but the wavelength of
photon must be much larger than the atomic size of the atom that the electron the photon scatters off is bound to (Young,
1982).
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Figure 1.10: Cross-sections of lung tissue for photoelectric absorption, coherent scattering
(Rayleigh scattering) and incoherent scattering (Compton Scattering), normalized against mass.
The total cross-section (attenuation) is the sum of the aforementioned cross-sections (NIST, 2014).

second, the total cross-section, σ, is defined as:

σ =
Number of scatter/absorption events per second

IoN
. (1.23)

Figure 1.10 shows cross-sections in the photon energy range of 10-1000 keV for the different

types of photon-electron interactions in lung tissue (NIST, 2014). The cross-section for Compton

(incoherent) scattering was computed using the Klein-Nishina formula (Klein and Nishina, 1929)

and the impulse approximation to account for atomic binding effects. The coherent scattering cross-

section was computed using the Thomson cross-section formula, together with the atomic form

factor (explained in detail in section 1.5), to account for interference between photons scattered by

bound electrons (Storm and Israel, 1970). The photoelectric cross-section was semi-empirically

determined by subtracting the total cross-section obtained experimentally using a narrow beam

source from the total (coherent and incoherent) scattering cross-sections computed as outlined

earlier in this paragraph. The sum of the absorption and scattering cross-section gives the total cross-

section (attenuation). Hubbell (1969) explains these methods for calculating the cross-sections in

more detail.

Coherent scattering is the underlying mechanism in the enhancement of soft tissue contrast
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in PCX imaging, as will be elaborated upon in the next section. However, Fig. 1.10 shows that a

significant proportion of scattering events are due to incoherent scattering. Fortunately, incoherently

scattered x-rays distribute spatially evenly in the recorded intensity image and have random phases.

Such scattered x-rays essentially act as noise and reduce the SNR with increasing energy from

10-100 keV (Paganin, 2006). Despite this, PCX imaging at higher energies is more beneficial

to the patient; as Fig. 1.10 shows at increasing energy the absorption cross-section decreases.

This reduces the radiation dose and while the coherent scattering cross-section also decreases at

increasing energy, it is at a slower rate than that of absorption, hence phase contrast effects can

potentially be still quite strong even at high energies.

1.5 Macroscopic Manifestation of X-ray Interactions with

Matter

In the previous section, the different types of x-ray interaction with scatterers were explored

individually. In matter, x-rays encounter and interact with many scattering bodies, from free

electrons and atoms to long-chained molecules. The wavefields produced from each interaction

superimpose to form an overall wavefield. Accounting for the individual x-ray interactions with

matter is inherently complex, but it can be simplified by macroscopically averaging over a number

of interactions in space. Incoherent scattering will be ignored and considered as a source of image

noise, as justified at the end of the previous section. Thus, macroscopically, these interactions can

be described by the complex refractive index, n:

n = 1 − δ + iβ, (1.24)

where δ and β are the refractive index decrement and the attenuation index, respectively.

The derivation and physical interpretation of n will be presented soon, but first the real part

of the complex refractive index is defined as Re{n} = c/vp, where vp is the phase velocity of light

traveling through some medium and c is the speed of light in free space13. In free space, the

wavefield travels at vp = c (i.e. n = 1). But in other media that contain scatterers, vp can be greater

or less than c (i.e. n 6= 1). A classical derivation of n, from the perspective of wave optics, will now

be presented, which follows from that given by Cremer Jnr (2013). However, the derivation will be

heuristic, highlighting the salient steps, in order to provide a physical interpretation of the complex

refractive index. See Cremer Jnr (2013) for the complete derivation.

13In this thesis, the real part of the complex refractive index will be referred to simply as the refractive index.
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To begin deriving the complex refractive index, the wave equation for an electric wavefield in a

scattering medium is introduced14:

(
∂2

∂t2 − c2∇2
)

E(r, t) = −
1
εo

∂J(r, t)
∂t

−
c2

ε0
∇ρ(r, t). (1.25)

This is the form Eq. 1.5 takes in the presence of scatterers, where E(r, t) is the sum of the incident

and scattered wavefields. Two source terms appear in the form of the current density J(r, t) and

charge density ρ(r, t). The magnitude of the current density J(r, t) is proportional to the number of

electric charges passing through any given point per unit time and unit area. The charge density

ρ(r, t) is the number of scatterers per unit volume in space and is here assumed to be slowly varying

over length scales of the order of the wavelength of E(r, t) such that ∇ρ(r, t) is negligible. This is

true for x-rays as they have very short wavelengths over which ρ(r, t) does not vary appreciably.

Consequently, the second term on the right hand side of Eq. 1.25 can be ignored. The current

density

J(r, t) = −e
Q∑

q=1

nq

Z∑
h=1

vh,q(r, t), (1.26)

where e is the elementary electric charge, nq is the number of atoms of type q per unit area, and

vh,q(r, t) is the velocity of an electron occupying shell h of atom type q.

While electrons are constantly in motion orbiting the central nucleus, their velocity vectors

point in random directions and therefore the net electron velocity is zero. However, x-rays drive

electrons to oscillate around their equilibrium position in the direction of the electric field. Electrons

will oscillate less randomly and produce a net electron velocity, vh,q(r, t) =
∂xh,q(r,t)

∂t , where the

displacement of each electron from its resting equilibrium position is denoted by xh,q(r, t). To

determine an explicit form for vh,q(r, t) in Eq. 1.26, the following second-order non-homogeneous

differential equation defining the net force acting on the bounded electrons is written as:

− eE(r, t) − meω
2
h,qxh,q(r, t) − meγq

dxh,q(r, t)
dt

= me
d2xh,q(r, t)

dt2 , (1.27)

where me is the electron mass. The explicit dependency of xh,q(r, t) and vh,q(r, t) on r and t will

now be dropped for notational simplicity.

On the left hand side of Eq. 1.27, the first term represents the driving force induced by the

electric field E(r, t), which is opposed respectively by the restoring and dissipative forces denoted

14The magnetic field component of x-rays also interacts with atomic electrons but is negligible compared to that
by E. Although textbooks often depict EM-fields comprising of E and B components being of equal amplitudes, the
amplitude of B is actually |E|/c (Hecht, 2002, ch. 3).
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by the second and third terms. The former is proportional to the imaginary spring constant kh,q,

which is redefined as the resonant frequency ωh,q =

√
kh,q
me

.15 The latter assumes the dissipation

force is sufficiently small that it can be linearized with respect to the electron velocity vh,q and

has an amplitude proportional to the damping factor γ16. The term on the right hand side is from

Newton’s second law of motion, which expresses the applied net force on an electron as a product

of its mass and acceleration.

Assuming that the electrons oscillate in the same direction as E(r, t), this enables xh,q to be

analytically solved from Eq. 1.27. Differentiating xh,q with respect to time t then gives:

vh,q =
dxe

dt
=
−e
me

 gh,q

ω2 − ω2
h,q − iγqω

 dE(r, t)
dt

. (1.28)

Here, gh,q are known as oscillator strengths, which can be viewed as weighting factors for each

electron shell. Atomic electrons that respond more strongly to an external field are given more

weighting17.

By substituting Eqs. 1.28 and 1.26 into 1.25, and performing some rudimentary manipulations,

the following equation is obtained:

 ∂2

∂t2 − c2

1 − e2

εome

Q∑
q=1

nq

Z∑
h=1

 gh,q

ω2 − ω2
h,q − iγqω



−1

∇2

 E(r, t) = 0. (1.29)

As mentioned in section 1.2, the coefficient in front of ∇2 of a wave equation is equal to v2
p.

Therefore, from Eq. 1.29, vp of E(r, t) is known and, since Re{n} = c/vp, the complex refractive

index is given by:

n =

√
1 −

e2

εomeω2 f 0(ω), (1.30)

where f 0(ω) is the atomic scattering in the forward direction defined as:

f 0(ω) = ω2
Q∑

q=1

nq

Z∑
h=1

 gh,q

ω2 − ω2
s,q − iγqω

 . (1.31)

15From the quantum electrodynamics viewpoint, the resonant frequency corresponds to the difference in frequency
of the electron shells between which the electron is oscillating.

16If there was no dissipative force, the electron would continue to oscillate even after the x-ray has passed through
and continuously generated an EM-field. However, the energy is carried away in the form of photons and phonons.

17As mentioned in the main text, from the viewpoint of quantum electrodynamics, electrons oscillate between
electron shells in the presence of an external EM-field. Low oscillator strength values are assigned to electrons most
tightly bound as they respond more weakly to an external EM-field than those weakly bounded. This is due to the density
of electron energy states increasing with decreasing binding energy. Also, very low oscillator strength values are given
to forbidden atomic transitions.
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The phrase ‘forward direction’ means only those photons scattered at θ � 1 radian with respect

to the direction of the incident field contribute to n and therefore the phase velocity. This is true

at x-ray energies as they deviate away from their original direction at very small angles. For

x-rays, the second term in Eq 1.30 is many orders-of-magnitude smaller than unity, thus n can be

binomially expanded to first order, and separated into real and imaginary terms:

n = 1 −
e2

2εomeω2

{
Re[ f 0(ω)] + Im[ f 0(ω)]

}
. (1.32)

Referring back to the original definition of n in Eq. 1.24, the refractive index decrement (δ) and

absorptive index (β) can be equated to Eq. 1.32 to give:

δ =
e2

2εomeω2

Q∑
q=1

nq

Z∑
h=1

gh,qω
2(ω2 − ω2

h,q)

(ω2 − ω2
h,q)2 + ω2γ2

q
, (1.33a)

β = −
e2

2εomeω2

Q∑
q=1

nq

Z∑
h=1

gh,qω
3

(ω2 − ω2
h,q)2 + ω2γ2

q
. (1.33b)

Equations 1.33a and 1.33b were computed from the National Institute of Standards and Tech-

nology (NIST) to calculate n in this thesis18. For a physical interpretation of these terms, Eq. 1.29

is solved for a homogeneous material, for which the simplest non-trivial solution is the plane wave.

Consider the plane wave to be traveling along z and only its x-component amplitude is non-zero,

the solution is then:

Ex(z, t) = A exp (−kβz) exp [−i (kz − ωt − kδz)] . (1.34)

Compared to the plane wave in free space, A exp[−i(kz − ωt)], the plane wave in the homoge-

neous material has its amplitude decreased by exp(−kβz) and its phase shifted by ∆ϕ = −kδz (see

Fig. 1.11). The latter of these is equivalent to a change in the phase velocity19. These expressions

show the attenuation index (β) and refractive index decrement (δ) are responsible for attenuating the

amplitude and shifting the phase of the wavefield, respectively. It is the latter which PCX imaging

takes advantage of to enhance the contrast along the boundaries of materials. These enhancements

18Equations 1.33a and 1.33b were derived assuming that the electrons were bounded. However, the corresponding
equations for free electrons can easily be determined. At increasing x-ray energy, the bound electrons essentially
become free. Consequently, the driving force ω is much larger than the resonant frequency ωh,q and damping factor γq.
Equations. 1.33a and 1.33b reduce to δ =

e2QZ
2εomeω2 ∝

1
ω2 and β = −

e2QZ
2εomeω3 ∝

1
ω3 [sec. 2.2](Spiller, 1994).

19The phase velocity of Eq. 1.34 can be determined from the equation vp =
∣∣∣ dr

dt

∣∣∣
ϕ

that was introduced in section 1.2.
This gives vp = c/(1 − δ). For x-rays, since ω � ωs, then (1 − δ) < 1, which means x-rays have a phase velocity faster
than c. While it seems to violate Einstein’s law of special relativity that information cannot travel faster than c, the phase
velocity does not carry any information (Einstein, 1920).
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Aexp(-kβz)

Re{exp[-i(kz-ωt-kδz)]}

z

x

Figure 1.11: The x-component of an electric field propagating along z in some scattering material
with complex refractive index n = 1 − δ + iβ. This shows β is responsible for attenuation and δ
alters the phase velocity. Modified from Feynman et al. (2013, sec. 32-4).

arise from the different δ’s across the boundaries, which produce non-zero phase shift gradients

that lead to refraction and diffraction.

Refraction is commonly observed in our daily lives, such as the illusion of distorting objects at

the bottom of a pond. These distortions arise from alterations in the direction of the rays or, from a

wave optics perspective, phase gradients in the wavefield due to variations in the surface height

of the pond. To explain this effect, refer back to Thomson’s description of elastic scattering (see

section 1.4). An incident plane wave propagating in material n1 drives the scatterers to oscillate

and emit approximately outgoing spherical waves. These spherical waves add to form the next

wavefront of the plane wave. The vector normal to the wavefront represents the direction of the

rays. When the wavefield encounters a surface of material n2 (n1 < n2) at angle θ1 from the plane

normal to the surface (see Fig. 1.12(a)), it also cause scatterers within that material to emit outgoing

spherical waves. However, these waves travel at phase velocity v2 = c/n2 whereas in material n1,

the waves travel at v1 = c/n1. This causes the wavefront to change direction, that is, refract, to

now travel at angle θ2 from the plane normal to the surface. These parameters are governed by

Snell’s law: n1 sin θ1 = n2 sin θ2 (Hecht, 2002, sec. 4.4.1). For light scattered back out to material
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n1, their wavefronts add constructively at angle −θ1 + π from its incident direction. This is known

as reflection and is mentioned for completeness but is not relevant to PCX imaging.

Consider a more complex surface between materials n1 and n2. An incoming wavefield refracts,

causing distortion of its wavefront or change in direction of the rays as shown in Fig. 1.12(b). These

distortions give rise to non-zero phase shift gradients along the x-direction. At regions where rays

converge, there is an associated increase in intensity downfield, while the converse occurs for those

that diverge, as illustrated in Fig. 1.12(b).

Diffraction arises from scattering at edges. A simple example of diffraction is depicted in

Fig. 1.12(c). An incoming plane wave incident on a half-plane opaque screen results in an outgoing

spherical wave originating from the edge. Beyond the edge and towards the half-plane, the wavefield

is completely absorbed and is therefore zero. There the phase is undefined. The outgoing spherical

wave interferes with the unscattered incident plane wave and constructively interferes at certain

directions and destructively interferes in other directions. The resultant intensity is a series of

bright and dark fringes. To explain this from a ray optics perspective, consider again the half-plane

opaque screen redrawn in Fig. 1.12(d), where it shows the discontinuity in the exit surface phase at

the edge. The rays at the edge diffract in all directions and those diffracted forward interfere with

the unscattered rays downfield to form bright and dark fringes20.

1.6 The Projection Approximation

For an arbitrarily shaped multi-material object, an incident wavefield undergoes absorption, refrac-

tion and diffraction many times, resulting in the wavefield evolving in a highly complex fashion

as it traverses the object. For this study, biological objects are considered to be weakly interact-

ing in the diagnostic x-ray regime. That is, from the perspective of geometrical optics, the rays

do not deviate from their unscattered path in the presence of scatterers. While in the previous

section, rays alter their trajectory when undergoing refraction or diffraction, biological objects do

not possess hard edges for diffraction to occur and given that the refractive index of biological

materials in the diagnostic x-ray regime are extremely close to unity, the refraction angle according

to Snell’s law is extremely small. Consequently, the phase shift and attenuated intensity of the

wavefield become greatly simplified as they can be approximated to be the integral of the com-

plex refractive index along the unscattered path of the x-ray. This simplification is known as the

20The use of rays to explain diffraction comes from the geometrical theory of diffraction. It was developed by Keller
(1962) as an extension to geometrical optics to account for diffraction. The diffracted rays are assigned phase, computed
from their optical path length, and amplitude to ensure the total energy is conserved before and after diffraction.
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Figure 1.12: Special cases of elastic x-ray scattering. (a) In refraction, an incident plane wave
(red) propagating in material n1 encounters the surface of material n2. Outgoing spherical waves,
produced by oscillating scatterers, manifests into refracted (blue) and reflected (green) waves.
In (b), a more complex object than the simple straight interface in (a) shows that refraction
causes distortions in the resultant wavefield that lead to intensity modulations because of rays
converging and diverging. (c) In diffraction, an opaque material illuminated by an incident plane
wave produces scattered outgoing spherical waves that interfere with the incident plane wave to
produce bright and dark fringes during constructive and destructive interference, respectively. In
(d), the same edge as in (c) showing diffraction produces a discontinuity in the resultant wavefield
at the edge. Under the geometrical theory of diffraction, the rays at that discontinuity diffract in
all directions. Only those that will interfere with the unscattered rays downfield are shown.
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projection approximation, which is an increasingly better approximation at higher x-ray energies

since refractive index approaches unity as energy increases (see Eq. 1.33a). If the initial x-ray

wavefield is monochromatic, paraxial (i.e., the beam divergence is small) and is traveling along

the z-axis from the entrance surface z = −T to the exit surface z = 0 of an object, then under the

projection approximation the expressions for the phase shift ∆ϕ(r⊥, z = 0) and attenuated intensity

I(r⊥, z = 0) = |Ψ(r⊥, t)|2 of the wavefield at the exit surface z = 0 are21:

∆ϕ(r⊥, z = 0) = −k
∫ 0

−T
δ(r)dz (1.35a)

and

I(r⊥, z = 0) = I(r⊥, z = −T ) exp
[
−2k

∫ 0

−T
β(r)dz

]
, (1.35b)

where r⊥ = (x, y). Equation 1.35b is the well known Beer-Lambert law. A more rigorous

derivation of the projection approximation can be found in Paganin (2006, p. 71-76). The projection

approximation is assumed for all the objects in the work presented in this thesis. The ∆ symbol

from ∆ϕ(r⊥, z = 0) that indicates the phase relative to the free space phase will be dropped from

here on for notational simplicity.

To justify the projection approximation, a generalized expression for its domain of validity is

presented. Consider a plane wave encountering an arbitrarily shaped pure phase object (negligible

attenuation), causing its wavefront to distort like that in Fig. 1.12(b). The angle θ between the

wavevector k (represented by the rays) and the optic axis z at the object exit surface z = 0 can be

expressed for small angles (θ � 1 radian) as:

θ(r⊥, z = 0) ≈
|∇⊥ϕ(r⊥, z = 0)|

|k|
, (1.36)

where |∇⊥ϕ(r⊥, z = 0)| is the transverse magnitude of the phase gradient, and ∇⊥ = ( ∂∂x ,
∂
∂y ).22

Omitting the explicit dependency of ϕ on r⊥ and z = 0 for the sake of notational simplicity,

the projection approximation is valid when the maximum transverse deviation, Tθ (where T is the

object thickness) of the rays is less than some value ∆x at the exit surface plane z = 0, that is:
21The intensity, I, is related to E and B via the following expression: I = c2ε0 < E × B >t. This expression draws on

the concept of EM-field as energy propagating through space, described by the Poynting vector, c2ε0E × B. Intensity is
the time averaged energy per unit time and space, and is why the Poynting vector is time averaged, as represented by
<>t. A great introduction on treating vector electromagnetic wavefields in terms of energy flow can be found in Born
and Wolf (1999, sec. 1.1.4).

22To derive the expression θ(r⊥, z = 0) ≈ |∇⊥ϕ(r⊥ ,z=0)|
|k| , consider an arbitrary time-independent wavefield whose phase

value at any localized point can be approximated by a plane wave: ϕ(r) = k · r. The wavevector k points in the direction
normal to the tangent plane of the wavefront at that localized phase value. An expression relating k to its transverse
component, k⊥, is sin(θ) = |k⊥ |

|k| . Under the small angle approximation, θ ≈ |k⊥ |
|k| . Since |k⊥|= |∇⊥ϕ(r)|, then θ ≈ |∇⊥ϕ(r)|

|k| .
Hence for any point r⊥ along the plane z = T , θ(r⊥, z = 0) ≈ |∇⊥ϕ(r⊥ ,z=0)|

|k| as required.
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|∇⊥ϕ|maxTλ
2π

< ∆x. (1.37)

The value set for ∆x is equal to the detector pixel size. Having larger pixel sizes requires

lesser stringency imposed on the projection approximation as rays scattered by less than a pixel

will not be observed to deflect from the direct beam. Morgan et al. (2010b) compared the PCX

image simulated at diagnostic energies using the projection approximation and the exact solution

for a polymethyl methacrylate object, which have similar complex refractive index to biological

materials. They showed the former was a valid approximation except at extremely small ODDs.

1.7 Phase Contrast X-ray Imaging

In the previous section it was described how an object both attenuates the intensity and shifts the

phase of an incident wavefield. These are exploited to form an image of an object. In conventional

x-ray imaging, objects are rendered visible based on variability in attenuation only. This provides

excellent contrast of bone with soft tissue due to the large difference in their β values. In imaging

the airways of the lungs, the attenuation contrast of air with soft tissue is poor. This can be seen in

Fig. 1.2(a) by the lack of visible airways due to its attenuation contrast being typically comparable

to and/or less than image noise. Conversely, the bones can be clearly seen owing to the combined

effects of the β values between bone and soft tissue being much larger than that between air and soft

tissue in the diagnostic x-ray regime, and the dimensions of bone being many orders-of-magnitude

greater than that of the smaller airways.

Alternatively, objects can be resolved based on object-induced phase gradients rather than

variability in attenuation. However, due to the limited temporal resolution of detectors, phase

gradients cannot be directly measured. PCX imaging represents a class of techniques to render

phase gradients visible as intensity variations. This section describes three of the most commonly

used PCX imaging techniques: PB-PCX imaging, analyzer-based phase contrast x-ray (AB-PCX)

imaging and interferometric-based phase contrast x-ray (IB-PCX) imaging. This thesis focuses

primarily on PB-PCX imaging, since it is utilized for all the work as presented in chapters 3-5.

Hence a detailed mathematical description is provided of the image formation process for this

technique only.

As mentioned in section 1.3, all forms of PCX imaging require that the wavefield illuminating

the object is at least partially coherent. That is, there is some form of a fixed or predictable phase

relationship. The type of coherence (i.e. spatial or temporal) and the level required is technique
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dependent. Conversely, there are no coherence requirements for conventional x-ray imaging, which

exploits only amplitude and not phase gradients to the wavefield imparted by the sample. A fixed

or predictable phase relationship allows PCX imaging to render phase gradients into phase-induced

intensity variations. These phase gradients are prominent along object boundaries, resulting in

an edge-enhancing effect. The wavefront profile of an incoherent wavefield varies randomly,

producing no fixed object-induced transverse phase gradients. Consequently, no discernible phase

contrast appears (i.e. fringe visibility is close to zero). Coherence is one of the limiting factors

preventing the use of a standard lab-based x-ray source to perform PCX imaging. However, the

proceeding subsections will show methods recently developed that allow the use of an incoherent

source without applying excessive filtration to the x-ray beam.

1.7.1 Propagation-based Phase Contrast X-ray Imaging

PB-PCX imaging, also known as propagation-based imaging (PBI), has a very similar experimental

setup to that of conventional x-ray imaging. In both setups x-rays transmitted through an object are

recorded using some type of spatially resolved area detector (see Fig. 1.13). Whereas the detector

is placed at or very close to the object exit surface plane in conventional x-ray imaging, the ODD

is extended in PB-PCX imaging. PB-PCX imaging also requires a moderate degree of spatial

coherence, but not temporal coherence. Wilkins et al. (1996) first derived theoretically and proved

experimentally that strong phase contrast is maintained even when temporal coherence is relaxed.

Under the projection approximation, the monochromatic paraxial exit surface scalar wavefield

Ψ(r⊥, z = 0, t) = Ψ(r⊥, z = −T, t) exp
{
−k

∫ 0
−T [β(r) + iδ(r)]dz

}
exp{−iωt}. At the exit surface

plane (z = 0), where attenuation-based x-ray imaging is usually performed, the intensity is

I(r⊥, z = 0) = |ψ(r⊥, z = T )|2= exp
[
−2k

∫
β(r)dz

]
. Since this equation is independent of δ it can

be seen that there is no phase contrast at that plane. However, at increasing ODD phase-induced

Coherent source Object
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surface plane
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Phase contrast 
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x
z

y
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Figure 1.13: Schematic of a PB-PCX imaging setup.
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intensity changes arise from refraction and diffraction as shown in Fig. 1.12. This is the basis of

how PB-PCX imaging renders similarly absorbing objects visible, such as the boundaries between

soft tissue and air. The remainder of this section is used to derive an expression for the image

intensity downstream of the object in terms of its exit surface wavefield by making use of the

angular spectrum formulation of scalar diffraction integrals. The following derivation follows from

that given by Paganin (2006, sec. 1.2).

To begin, the reader is reminded of the wave equation given in Eq. 1.5 for the complex scalar

wavefield traveling in free space:

(
∂2

∂t2 −
1

εoµo
∇2

)
Ψ(r, t) = 0, (1.38)

for which the simplest solution is the plane wave. Since Eq. 1.38 is a linear partial differential

equation, any linear combination of plane waves are also solutions. Consequently, any arbitrary

three-dimensional (3D) wavefield can be described by a linear combination of 3D planes waves,

hence a generalized solution to Eq. 1.38, assuming a monochromatic wavefield, can be expressed

as:

Ψ(r, t) =

∫
k

Ψ̃(k) exp(ik · r)dke−iωt

= ψω(r)e−iωt,

(1.39)

where Ψ̃(k) is a weighting factor for each wavevector k and is assumed to be non-zero only when

k = |k|= ω
c . The ω subscript is a reminder that the time-independent scalar wavefield ψω(r) has

functional dependance on this quantity.

Substituting Eq. 1.39 into Eq. 1.38 gives:

[
∇2 +

ω2

c2

]
e−iωt = 0, (1.40)

remembering that c = 1√
εoµo

. Since the harmonic time factor e−iωt is non-zero, the quantity in

square brackets must equal zero. This gives the well known Helmholtz equation governing the

spatial evolution of the time-independent scalar monochromatic wavefield:

[
∇2 + k2

]
ψω(r) = 0. (1.41)

Next a solution is sought for ψω(r⊥) at the phase contrast plane z = L in terms of the exit

surface plane of the object at z = 0, after which the intensity distribution at the phase contrast plane

can be determined directly from the relation: I(r⊥) = |ψ(r⊥)|2.
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Consider first the simplest non-trivial solution to the Helmholtz equation given in Eq. 1.41 to

be one of the elementary time-independent plane waves:

ψω(r) = exp (2πik · r). (1.42)

This plane wave equation at z = 0 is:

ψω(r⊥, z = 0) = exp(2πik⊥ · r⊥) (1.43)

and given that k2 = k2
x + k2

y + k2
z ⇒ kz =

√
k2 − k2

⊥ where k2
⊥ = k2

x + k2
y , the plane wave equation at

z = L ≥ 0 is:

ψω(r⊥, z = L) = exp (2πik⊥ · r⊥) exp
(
2πiL

√
k2 − k2

⊥

)
. (1.44)

Equations 1.43 and 1.44 can be equated to give:

ψω(r⊥, z = L) = ψω(r⊥, z = 0) exp
(
2πiL

√
k2 − k2

⊥

)
, (1.45)

which is still a solution to the Helmholtz equation.

Equation 1.45 shows that if the plane wave at z = 0 is known, then multiplying it by

exp
(
2πiL

√
k2 − k2

⊥

)
(angular spectrum propagation term) gives the wavefield at z = L. This

approach can be generalized to determining the 2D wavefield at z = L from any arbitrary time-

independent monochromatic 2D wavefield at z = 0. To show how, remember that any 3D wavefield

can be written as a weighted sum of 3D plane waves. Similarly, 2D wavefields can be written

as a weighted sum of 2D plane waves. Therefore, any 2D wavefield can be decompose into its

constituent 2D plane waves, where each plane wave is propagated using the angular spectrum

propagation term then summed to form the wavefield at z = L. This can be expressed as:

ψω(r⊥, z = L) =

∫
k⊥
ψ̃ω(k⊥, z = 0) exp (2πik⊥ · r⊥) exp

(
2πiL

√
k2 − k2

⊥

)
dk⊥. (1.46)

Equation 1.46 is known as the angular spectrum representation of the propagated wavefield. It

can be expressed in operator form by introducing the operator forms of the 2D Fourier transform

pairs, F−1 and F , denoted as the inverse Fourier and Fourier transforms, respectively. The following

Fourier transform convention is adopted throughout this thesis, where for a function f (r⊥), its

Fourier transform is:
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f̃ (k⊥) =

∫
f (r⊥) exp(−i2πk⊥ · r⊥)dr⊥ = F { f (r⊥)} , (1.47)

and its inverse Fourier transform is:

f (r⊥) =

∫
f̃ (k⊥) exp(i2πk⊥ · r⊥)dk⊥ = F−1

{
f̃ (k⊥)

}
. (1.48)

The 2D Fourier transform decomposes any 2D function into 2D plane waves of amplitude f̃ (k⊥).

The 2D inverse Fourier transform recovers any function from its Fourier transform by summing

over their weighted 2D plane waves. These Fourier transform pairs can easily be numerically

computed with minimal computation time by using the fast Fourier transform (FFT) (Rao et al.,

2011). Therefore, Eq. 1.46 in operator form is:

ψω(r⊥, z = L) = F−1 exp
(
2πiL

√
k2 − k2

⊥

)
Fψω(r⊥, z = 0). (1.49)

Given that synchrotron radiation is exclusively used for the work presented in this thesis, the

wavefield is inherently collimated (Margaritondo, 2002) and continues to be so after traversing the

object whence the projection approximation is valid. Consequently, the paraxial approximation

can be made, which is equivalent to approximating k⊥ � k. This allows the terms inside the

exponential of the angular spectrum propagation term to undergo Taylor expansion truncated up to

first order. Then, Eq. 1.49 reduces to what is known as the Fresnel propagator equation:

ψω(r⊥, z = L) = eikzF−1 exp
[
−iLk2

⊥

2k

]
Fψω(r⊥, z = 0) (1.50)

If:

∣∣∣∣∣∣Lk2
⊥

2k

∣∣∣∣∣∣ � 1, (1.51)

then Eq. 1.50 can be further simplified by having its exponential term Taylor expanded up to first

order:

exp
[
−iLk2

⊥

2k

]
≈ 1 −

iLk2
⊥

2k
. (1.52)

The propagated wavefield now simplifies to:

ψω(r⊥, z = L) = eikzF−1
[
1 −

iLk2
⊥

2k

]
Fψω(r⊥, z = 0). (1.53)

By bringing the propagation term inside F and using the Fourier derivative theorem (Paganin,

2006, sec. A.4), the Fourier transform pair cancels to give:
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ψω(r⊥, z = L) = eikz
[
1 +

iL∇2
⊥

2k

]
ψω(r⊥, z = 0). (1.54)

To reiterate, the propagated intensity is the center of interest of this study, thus:

Iω(r⊥, z = L) = |ψω(r⊥, z = L)|2

= ψω(r⊥, z = L)ψ∗ω(r⊥, z = L)

= Iω(r⊥, z = 0) −
L
k
∇⊥ · [Iω(r⊥, z = 0)∇⊥ϕω(r⊥, z = 0)],

(1.55)

where ∗ represents the complex conjugate23. Equation 1.55 is hereafter termed the near-field

intensity equation (NFIE). Also, ω will be dropped from Eq. 1.55 for notational simplicity.

In going from line 2 to 3 of Eq. 1.55 the complex wavefield ψ(r⊥, z = 0) was replaced by its

polar form
√

I(r⊥, z = 0) exp[iϕ(r⊥, z = 0)] and terms quadratic with L were discarded as they are

at least L
k multiplicative factor smaller than the other terms, which for x-rays typically imaged at

L v 1 m is v 10−11. At the attenuation plane z = 0, Eq. 1.55 reduces to only the first term that if the

projection approximation is satisfied, becomes the Beer-Lambert law. At increasing L, the second

term of Eq. 1.55 introduces intensity variations proportional to the Laplacian of ϕ(r⊥, z = 0). This

equation provides the underlying mathematical description to how phase gradients give rise to

propagation-induced intensity variations shown in Fig. 1.12. For instance, consider ϕ(r⊥, z = 0) to

be a step function created from illuminating a half-plane edge. The Laplacian of the step function

is a pair of bright and dark intensity fringes. From Fig. 1.12(c) this is as expected; however, it

shows there should be more than one pair of bright/dark intensity fringes. Equation 1.55 fails to

account for these due to the inequality requirement in Eq. 1.51 being made.

The inequality in Eq. 1.51 can be manipulated into a more useful form by approximating

k⊥ = 2π
a , where a is the characteristic length scale of the object, and substituting k = 2π

λ , to arrive

at:

a2

Lλ
� π. (1.56)

The left hand side of Eq. 1.56 is the well known Fresnel number NF , where for NFIE (Eq. 1.55) to

hold NF must be much greater than π. This is known as the near-field condition and the ODD (L)

over which this condition is valid is known as the near-field regime. However, since this near-field

23Equation 1.55 can also be derived by making the finite difference approximation to the transport-of-intensity
equation (TIE): −k ∂I(r)

∂z = ∇⊥ · [I(r)∇⊥φ(r)] (Reed Teague, 1983). The finite difference approximation is made on the
LHS of the TIE to arrive at Eq. 1.55. This approximation is valid when the second order derivative or higher of I(r) is
less than unity. However, this is not easily quantifiable and therefore difficult to determine when the approximation is
valid. Conversely, the derivation presented in the main text gives a more quantifiable condition in the form of Eq. 1.51.
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condition is an approximation of Eq. 1.51 it does not guarantee that NFIE will hold. To understand

why, refer back to Eq. 1.51. That equation states that the propagation term given in Eq. 1.52

can only accurately propagate plane waves with transverse wavevectors k2
⊥ �

2k
L (cf. Eq. 1.51)

over a propagation distance of L. Therefore, only for wavefields whose spectral power presides

predominantly within the disc of spatial frequencies k2
⊥ �

2k
L can Eq. 1.56 accurately describe their

intensity field at L. Determining the maximum value k⊥ of the unpropagated wavefield to check

if it is less than 2k
L for NFIE to be valid is difficult without knowing the unpropagated wavefield.

Often, the maximum value of k⊥ is approximated to be equal to 2π
a , where the characteristic length

a of the object can be measured. This approximation makes sense, since a large object (i.e. large a)

would have most of its power concentrated in the lower transverse wavevectors, and vice versa.

However, the complex refractive index also affects the distribution of the power in the unpropagated

wavefield. Increasing values of β or δ produce larger phase and intensity gradients in the wavefield,

respectively, resulting in the plane waves scattering at larger angles, and therefore redistributes

more of the power to larger k⊥. Gureyev et al. (2008) incorporated δ into the NF to generalize the

near-field condition to be NF � max{π, |ϕ(r⊥, z = 0)|max} where |ϕ(r⊥, z = 0)|max is the maximum

transverse phase shift over some length σ at the plane z = 0 of the initial wavefield. However,

this near-field condition is considered too stringent and is relaxed to NF ≥ max{π, |ϕ|max}.
24 The

explicit dependance of ϕ on r⊥ and z was omitted for the sake of notational simplicity and will

continue to be from hereon.

NFIE is central to achieving the main objective of this thesis: to study the form and function

of the lungs. If the PB-PCX image I(r⊥, z = L) of the lungs is recorded, then this equation

enables the exit surface phase ϕ(r⊥, z = 0) and amplitude
√

I(r⊥, z = 0) to be recovered, from

which important information about the lungs can be extracted. The recovery of both of these is

known as phase-amplitude retrieval (or simply phase retrieval), where many such techniques have

been developed. The technique adopted for this thesis is called the single image phase retrieval

algorithm (SIPRA) that involves solving NFIE. Section 1.8 details how SIPRA is derived along

24In other works (Mayo et al., 2002, 2003), the near-field condition was relaxed in this way, yet no justification was
provided there or in other published work. However, after correspondence with Prof. David Paganin, the following
qualitative argument was made on why NF � max{π, |ϕ|max} is too conservative. The near-field condition originates from
the first order Taylor approximation of the exponential term in the Fresnel propagator equation (Eq. 1.50). Generally,
the first order approximation of a function is valid only when the total sum of the higher order terms is� 1. This is
approximately equivalent to stating that the magnitude of the second order term is� 1, this being the leading order of
the higher order terms, which is the basis on how the near-field approximation was derived. However, the exponential
term is a complex function. In the complex plane, each higher order term represents a vector with a given direction and
magnitude. Even if the magnitude of the second order term is close to or ≥ 1, that of the vector sum of the higher order
terms may be� 1, causing the first order Taylor approximation to be still valid. Consequently, the near-field condition
NF � max{π, |ϕ|max} can underestimate the validity range. Based on these arguments, this justifies why it is possible the
near-field condition can be relaxed to NF ≥ max{π, |ϕ|max}.
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with a broad literature review of some of the other alternative phase retrieval techniques. In the

following chapters, various PB-PCX imaging-based techniques developed for extracting structural

information of the lung is based around using SIPRA. While phase retrieval can be done to extract

lung information with other PCX imaging modalities, PB-PCX imaging requires no post-object

optics and the requirement for high temporal coherence can be significantly relaxed (Wilkins et al.,

1996). Consequently, compared to other PCX modalities, PB-PCX imaging has the simplest setup,

and makes fuller use of the x-ray source brightness as a monochromator is not required. This is a

favorable trait for dynamic imaging utilizing standard laboratory-based x-ray sources as it can be

performed with relatively short exposure times with relatively comparable SNRs.

1.7.2 Analyzer-based Phase Contrast X-ray Imaging

AB-PCX imaging utilizes a crystal analyzer placed between the object and detector in the setup

shown in Fig. 1.13 (Davis et al., 1995; Ingal and Beliaevskaya, 1995; Rigon et al., 2003, 2008;

Zhou and Brahme, 2008). The intensity of x-rays diffracted off a crystal analyzer is dependent on

changes in the x-ray direction that arise from phase shifts imparted by the object.

The periodic arrangement of atomic scatterers in a crystal analyzer causes x-rays undergoing

elastic scattering to constructively interfere and form strong peaks in reflectivity at certain angles

with the atomic planes of the crystal. These are known as Bragg peaks, named after son and father

William Lawrence Bragg and William Henry Bragg, respectively, who developed the geometrical

interpretation of x-ray diffraction from crystals (Bragg, 1913). Under this interpretation, the

Bragg peaks are infinitely thin, but this is only true for infinitely large and perfect crystals in

the presence of monochromatic plane wave illumination. Realistic crystals are of finite size and

contain structural imperfections, resulting in an increase in the Bragg peak width to the order

of microradians (Ewald, 1969)25. This angularly dependent reflectivity function is known as a

Darwin reflectivity curve or more commonly a rocking curve as one must rotate (rock) the crystal to

measure this effect. In the diagnostic energy range, biological tissues typically refract/diffract x-rays

on the order of microradians. So by placing an analyzer crystal in the beam downstream of the

sample, and aligning the crystal at an angle close to or exactly at a Bragg peak, phase-shift-sensitive

intensity images can be recorded. The sensitivity (width) of the rocking curve is dependent on

many parameters including: crystal type/size/orientation/thickness and x-ray beam divergence and

25The relationship between the Bragg peak shape and the aforementioned parameters in the main text are accounted
for in the Dynamical theory of diffraction as first developed by Darwin (1914) and further developed by others such as
Friedrich (1922) and Ewald (1969). It accounts for the imperfectness of a crystal and the effects of multiple scattering
between the incident and diffracted wavefield to provide a more complete description of the Bragg peaks compared that
to given by Bragg (1913) using geometrical optics.
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Figure 1.14: The rocking curve of an analyzer crystal is shown with reflectivity of R = 1 at the
Bragg angle (θB) situated at the rocking angle θ=0 µrad. The analyzer crystal can be orientated
at different angles to alter the image phase contrast. In the middle panel (peak reflection), the
analyzer is orientated for unscattered rays to undergo 100% reflectivity. The image produced is
dominated by attenuation contrast with dark bands appearing along the edge of the cylinder due to
large diffraction/refraction. Alternatively, the crystal may be rotated below (low angle) or above
(high angle) the Bragg peak such that rays refracted can have increased and decreased reflectivity.
Note that areas receiving more photons appear brighter than those that receive less photons (Zhou
and Brahme, 2008).

energy (Mittemeijer, 2010, ch. 5). These parameters can be adjusted to cater for specific AB-PCX

imaging experiments.

As an illustrative example of the working principle of AB-PCX imaging, consider Fig. 1.14,

which shows a plane wave represented by rays illuminating a cylinder and undergoing refraction.

An analyzer crystal can be orientated at different angles to achieve different contrast images. Three

such orientations are shown in Fig. 1.14. Aligning the rocking curve half way up on either side of

the peak with the direction of the incident wavefield creates an intensity gradient across the width

of the cylinder due to refraction. Rays illuminating one side of the cylinder along its width refract

higher up on the rocking curve and therefore scatter off the analyzer with greater intensity than

those illuminating on the other side of the cylinder. Aligning the top of the rocking curve with

the direction of the unscattered ray causes all refracted rays to scatter off the crystal with reduced

intensity. Thus, the image contrast is dominated by that of attenuation.
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AB-PCX imaging possesses many advantages over PB-PCX imaging. Crystal analyzers are

able to reject inelastically scattered light because they scatter at angles greater than the width

of the rocking curve. As mentioned in section 1.4, inelastic scattering contributes to the overall

noise of the image, hence, AB-PCX imaging can produce images with better SNR than PB-PCX

imaging. Furthermore, attenuation, refraction and ultra small angle x-ray scattering (USAXS) can

be extracted from AB-PCX images as three separate images (this will be discussed in more detail

in section 2.2.2). In a refraction image, each pixel represents a small part of the object where the

x-rays have refracted at a well-defined angle. That is, the x-rays have sampled only one part of

the rocking curve at each pixel. USAXS data are recordings of x-rays having sampled multiple

parts of the rocking curve per pixel (Rigon et al., 2003). For example, at the edge of the cylinder in

Fig. 1.14 the x-rays would scatter at high angles and converge with x-rays scattered at different

angles from other parts of the cylinder towards the same pixel. Consequently each pixel contains

x-rays refracted at different angles. Each has shown to provide useful diagnostic information, for

example, an image only of USAXS gives details about small sized structures (Arfelli et al., 2013).

Despite the benefits of AB-PCX imaging, there are several drawbacks. The inclusion of a

highly sensitive analyzer crystal makes it experimentally more challenging to align and maintain

its position over time (Connor et al., 2012). Unlike PB-PCX imaging, AB-PCX imaging requires a

high temporally, but not spatially, coherent collimated x-ray beam. Also, since the analyzer can only

be rotated in one direction, phase contrast is only present parallel to that direction. The acquisition

time can be as long or even longer than PB-PCX imaging to record a single image depending on

the mode of recording. The two modes are the full x-ray beam and slot scanning approach (Nesch

et al., 2009; Parham et al., 2009). The slot scanning approach utilizes only a thin slice of the

x-ray beam and scans across the sample. The individual images are then stitched together during

post-processing. The advantages of this approach is it reduces beam divergence and maintains a

narrow frequency bandwidth at high energies when passing through a monochromator. However,

scanning time significantly increases the total acquisition time, making dynamic imaging currently

unfeasible. Using the full x-ray beam instead reduces the total acquisition time but requires a large

beam of low divergence, which is difficult to achieve with high flux for dynamic imaging.

1.7.3 Interferometry-based Phase Contrast X-ray Imaging

IB-PCX imaging defines a class of techniques that renders phase-induced intensity modulations by

superimposing two or more coherent or partially coherent wavefields. The first x-ray interferometer

was the Bonse-Hart interferometer (Bonse and Hart, 1965), as depicted in Fig. 1.15. There are
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Figure 1.15: A schematic diagram of a Bonse-Hart interferometer with the beam propagating
towards the detector. The x-ray beam is split in two by diffracting off two different atomic planes,
which are sketched within the three crystals.

three identical Laue crystals26, the first crystal splits the beam into a transmitted and diffracted

beam27, where a sample is placed in front of and distorts the phase of one of the beams. The

second crystal redirects the beams towards the third crystal to recombine the beams. The output

image shows phase-sensitive intensity variation, from which the exit surface phase can be retrieved

using the method developed by Takeda et al. (1982). Theirs was a Fourier-based method that

recovers phase constrained to the interval [0, 2π), consequently it returns accurate phase maps only

of wavefields with slowly-varying phase. For objects that induce large phase shifts in the wavefield,

phase unwrapping can be performed during post processing to recover the correct exit surface

phase map (Momose, 2002). Alternatively, multiple output images can be recorded, where for each

image the reference beam is phase retarded to a different degree by a phase shifter (for example, a

kapton wedge) to solve for the exit surface phase map (Paganin, 2006, pp. 312).

One major setback to the Bonse-Hart interferometer is it requires both a highly spatially and

temporally coherent x-ray source. These stringent requirements are relaxed in grating-based

interferometry (David et al., 2002; Momose et al., 2003; Bech et al., 2013; Wen et al., 2013),

where Laue crystals are replaced with gratings, as shown in Fig. 1.16. The gratings are made up

of regularly spaced elongated elements. The elements for the first grating (source grating) are

26X-ray scattering from crystals may occur either in reflection (Bragg crystal) or transmission (Laue crystal). The
analyzer crystals depicted in Fig. 1.14 are examples of a Bragg crystal.

27X-rays transmitted and diffracted through a Laue crystal do not suffer much significant loss in intensity. There is an
increase in the transparency of crystals at Bragg angles even if they are sufficiently thick to absorb all radiation. This is
known as the Borrmann effect. For further reading, refer to Saccocio and Zajac (1965); Cowley (1995).
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Figure 1.16: A schematic diagram of a Grating interferometer with the beam propagating towards
the detector. The three fringe patterns that are in phase at the detector plane correspond to the
three line sources labeled as A, B and C.

absorbing, and it converts an incoherent x-ray source into a periodic line of mutually independent

spatially coherent sources. The second grating acts as a phase mask, where each element imparts

only a phase shift. This imprints a periodic phase modulation on the beam. In the region satisfied

by the Fresnel diffraction integral given by the Fresnel propagator equation (Eq. 1.50) the periodic

phase modulations reappear as fringes, of the same period as the second grating, at periodic

propagation distance intervals. This is known as the Talbot effect. Each line source (labeled as A,

B and C in Fig. 1.16) from the first grating produces its own set of fringes. By carefully designing

the periodicity of the first grating, these fringes coherently interfere at the detector (phase lock).

The fringe spacings are however too small to be resolved by most detectors, thus a third grating

with identical periodicity to the second grating, but which is absorbing, is positioned at one of the

Talbot distances. The intensity at each pixel is recorded as the third grating is translated along

the direction of the fringes (phase stepping). This traces out a peak as the third grating will go

from completely blocking the fringes to allowing them all through. The shift in the peak with and

without the object represents the refraction angle, from which the phase can be determined via

spatial integration (see Eq. 1.36). Similar to AB-PCX imaging, phase contrast could initially only

be achieved along one direction – perpendicular to the elements of the gratings. But one of the

many advancements in IB-PCX imaging listed in the next paragraph shows 2D phase contrast is

now possible.

IB-PCX imaging is considered the most sensitive out of the three discussed PCX imaging
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techniques as the fringe spacings is inversely proportional to the refraction angle (Zhou and Brahme,

2008). Many extensions have been made to the grating interferometry such as, conducting phase

measurements in two directions (Kottler et al., 2007), performing tomography (Wang et al., 2013),

and using a multi-line x-ray source instead of a source grating (Du et al., 2012). However, recording

multiple images is needed to retrieve the phase through phase stepping, which for live dynamic lung

imaging, is disadvantageous. Ge et al. (2014) developed a step-like grating for the third grating to

avoid the need to perform phase stepping but this is traded-off with spatial resolution.

1.8 Phase Retrieval from PB-PCX images

It was shown in section 1.7.1 how the wavefield at the exit surface plane evolves with propagation

and forms PB-PCX images downfield of the sample. This will help recover the exit surface

wavefield from PB-PCX images in order to extract information about the sample.

Phase retrieval has provided a rich field of study that extends from electron microscopy to x-ray

crystallography (Millane, 1990; Hüe et al., 2010). Many methods for recovering the exit surface

phase have been developed such as the multiple isomorphous replacement method (Taylor, 2010),

the multi-wavelength anomalous diffraction (Son et al., 2011), the Gerchberg-Saxton algorithm

(Gerchberg and Saxton, 1971, 1972), and a neural network-based method (Burian et al., 2000).

These methods are designed to recover the exit surface wavefield from far-field images rather than

from near-field images (PB-PCX image) and therefore are not directly applicable for the work done

here.

Several methods exist for recovering the exit surface wavefield from the near-field intensity

(PB-PCX) images through solving NFIE. These include methods based on the full multigrid

algorithm (Gureyev et al., 1999; Allen and Oxley, 2001), the orthogonal-series-expansion based

method (Gureyev and Nugent, 1996), the Green-function method (Reed Teague, 1983), and the

fast-Fourier-transform-based method (Paganin and Nugent, 1998; Schmalz et al., 2011). The main

drawback to these methods is that they require at least two PB-PCX images at different ODDs.

For a moving object such as the chest, these images must be recorded almost simultaneously to

accurately recover the exit surface wavefield. However, a successful method of achieving this has

yet to be developed as issues such as image alignment and low frequency noise amplification are

difficult to overcome.

Paganin et al. (2002) developed a SIPRA that requires only a single PB-PCX image to recover

the exit surface wavefield, but assumes the object is made of a single material. Despite the object

studied in this thesis being the chest, which is a multi-material object, SIPRA is still applicable for
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the work done here as will be made apparent in later chapters. The derivation of SIPRA will now

be presented by first rewriting the NFIE (Eq. 1.55) with all terms as originally defined:

I(r⊥, z = L) = I(r⊥, z = 0) −
L
k
∇⊥ · [I(r⊥, z = 0)∇⊥ϕ(r⊥, z = 0)]. (1.57)

Here, the wavefield is still assumed monochromatic but the ω subscript has been dropped for

notational simplicity.

Under the projection approximation (section 1.6) for a homogeneous material with complex

refractive index n = 1−δ+ iβ and projected thickness T (r⊥), the phase shift and attenuated intensity

of a wavefield traveling along axis z can be written as:

∆ϕ(r⊥, z = 0) = −kδT (r⊥) (1.58a)

and

I(r⊥, z = 0) = I(r⊥, z = −T ) exp
[
−2kβT (r⊥)

]
, (1.58b)

respectively, and substituted into Eq. 1.57 to give:

I(r⊥, z = L) = Ioe−µT (r⊥) + Lδ∇⊥ ·
[
Ioe−µT (r⊥)∇⊥T (r⊥)

]
. (1.59)

Here, Io = I(r⊥, z = 0) denotes the incident intensity and the substitution µ = 2kβ was made, where

µ is known as the linear attenuation coefficient.

By recognizing that ∇⊥e−µT = −µe−µT∇⊥T , and making use of the Fourier derivative theorem,

T (r⊥) is made the subject:

T (r⊥) = −
1
µ

ln
[
F−1

{F {I(r⊥, z = L)/Io}

1 + (Lδ/µ)k2
⊥

}]
. (1.60)

Finally, by substituting Eq. 1.60 into Eqs. 1.58a and 1.58b, an expression respectively for the exit

surface phase and intensity of a homogeneous material are respectively derived:

∆ϕ(r⊥, z = 0) =
kδ
µ

ln
[
F−1

{F {I(r⊥, z = L)/Io}

1 + (Lδ/µ)k2
⊥

}]
(1.61a)

and

I(r⊥, z = 0) = IoF−1
{F {I(r⊥, z = L)/Io}

1 + (Lδ/µ)k2
⊥

}
. (1.61b)

Equation 1.60 shows that SIPRA multiplies the PB-PCX image in Fourier space by a low pass

filter to remove the high frequency phase-induced fringes and recover the exit surface wavefield.
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There are other phase retrieval algorithms, which require only a single PB-PCX image, that also

utilize a low pass filter (Burvall et al., 2011). However, the denominator of their low pass filters

contain zeroes whereas that of SIPRA never does. This makes SIPRA far more stable since there is

no division by zero.

1.9 Numerical Simulations using the Angular Spectrum

Formalism

Many of the advances in PB-PCX imaging of the lungs made in this thesis are aided by numerical

simulation. Therefore, a brief detour is now taken to describe the mathematical framework

upon which these simulations are formed. The method adopted employs the angular spectrum

representation of propagated wavefields introduced in section 1.7.1. Specifically, Eq. 1.49 is used

to propagate a scalar wavefield at one plane to yield its propagated wavefield in another plane.

To correctly simulate PB-PCX images utilizing Eq. 1.49, it is important that both the initial

wavefield (ψ(r⊥, z = 0)) and the angular spectrum propagation term
(
exp

(
2πiL

√
k2 − k2

⊥

))
are

sufficiently finely sampled. In addressing the former, consider that it is sampled over an N × N

Cartesian grid with pixel size ∆x and that it is frequency bandlimited. That is, its Fourier transform

is non-zero up to a certain spatial frequency28 defined as the Nyquist frequency fN . According to

the Shannon-Nyquist sampling theorem, a bandlimited signal is adequately sampled when the pixel

size ∆x ≤ 1
2 fN

.

Herein this thesis, the projection approximation is used to calculate the intensity I(r⊥, z = 0) and

phase φ(r⊥, z = 0) to determine the initial wavefield ψ(r⊥, z = 0) =
√

I(r⊥, z = 0) exp[iφ(r⊥, z = 0)].

To determine how finely sampled the intensity and phase must be so that the initial wavefield is

sufficiently finely sampled at ∆x ≤ 1
2 fN

, notice that the product of the two functions,
√

I(r⊥, z = 0)

and exp[iφ(r⊥, z = 0)], to form ψ(r⊥, z = 0) is equivalent to their convolution in Fourier space.

Verbeek (1985) showed that the convolution of two bandlimited function limits the resultant product

to the sum of their bandwidths. Hence, considering that ψ(r⊥, z = 0) is bandlimited at fN , the two

functions are also bandlimited at 2 fN , this is assuming that both have equal bandwidths (Verbeek,

1985). They must then be sampled with pixel size ∆x ≤ 1
4 fN

. Since
√

I(r⊥, z = 0) must be sampled

at ∆x ≤ 1
4 fN

, then I(r⊥, z = 0) must also be approximately sampled at ∆x ≤ 1
4 fN

(Marks II, 2008,

pp. 239-241). For exp[iφ(r⊥, z = 0)] to be adequately sampled at ∆x = 1
4 fN

, the pixel size chosen

for φ(r⊥, z = 0) must be such that the magnitude of its gradient is less than π
2 per pixel across every

28The terms spatial frequency and transverse wavevector will be utilized interchangeably throughout this thesis.
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pixel29.

Turning now to the issue of adequately sampling the angular spectrum propagation term in

Eq. 1.49, its discrete form can be written as:

exp (iφ) = exp

2πiL
(

1
λ2 −

i2 + j2

N2(∆x)2

) 1
2
 . (1.62)

For it to be adequately sampled, the magnitude of the phase gradient must also be less than π
2

per pixel30. Since the phase is proportional to i2 + j2, the maximum phase gradient occurs at

r =
√

i2 + j2 = N/
√

2 where i = j = N/2. Hence,

∣∣∣∣∣dφdr

∣∣∣∣∣
r=N/

√
2

=

∣∣∣∣∣∣∣∣ d
dr

2πL
[

1
λ2 −

r2

N2(∆x)2

] 1
2

∣∣∣∣∣∣∣∣
r=N/

√
2

<
π

2
. (1.63)

Evaluating Eq. 1.63 and rearranging to make ∆x the subject gives (Barty, 2000, ch. 9):

∆x >

λ2

4

1 +

√
1 −

128L2

N2λ2


1
2

. (1.64)

In summary, there is both a lower and an upper limit on the pixel size in order for the initial

wavefield and angular spectrum propagator term to be adequately sampled, respectively. Interest-

ingly, the upper limit of the pixel size corresponds to an upper limit to the propagation distance

L through rearrangement of Eq. 1.64. Hence, it is seen that the discretisation effectively places a

lower bound on the Fresnel number NF (see Eq. 1.56) that can be achieved via numerical simulation.

These conditions were met for all numerical simulations presented in this thesis, to ensure the

simulated PB-PCX images were accurately simulated.

1.10 Concluding Remarks and Thesis Overview

This chapter focused on how the different types of x-ray interactions with matter, namely absorption

and elastic/inelastic scattering, manifested into the measurable observables of interest: attenuation

and phase gradients of the x-ray wavefield. In the x-ray regime, different biological materials have

similar attenuation strength but can impart large phase gradients between different materials. This

led to major developments in PCX imaging for biomedical imaging applications, which represents

29To understand why the phase gradient must be less than π
2 per pixel, remember that the complex exponential term

is, according to Euler’s formula, exp(iφ) = cos(φ) + i sin(φ). Usually to adequately sample the sine and cosine function
their phase must be sufficiently sampled such that the phase gradient is less than π per pixel. However, since exp(iφ) is
part of a product to form the initial wavefield, the phase gradient must instead be less than π

2 per pixel.
30Since the angular spectrum propagator term is multiplied by the Fourier transform of the initial wavefield, the

magnitude of the phase gradient must be less than π
2 per pixel, and not π per pixel, for adequate sampling of the

propagated wavefield.
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a broad class of techniques that renders object-induced phase gradients as visible intensity changes.

Three PCX imaging techniques were covered in this chapter: PB-PCX imaging, AB-PCX imaging

and IB-PCX imaging. Each of these imaging modalities have demonstrated significant increase in

soft tissue contrast. However, beyond the aesthetic improvements that PCX imaging brings, they

can also provide greater quantitative information about biological objects than is possible with

attenuation contrast alone. The aim of this thesis is to develop PB-PCX imaging-based techniques

for extracting dynamic quantitative information of the lung. PB-PCX imaging represents the

most suitable imaging modality because of its simple optics setup and the fact that quantitative

information about an object can be robustly recovered from a single image.

Chapter 2 provides an overview of some of the common clinically available imaging-based

techniques for measuring lung air volume (VL) regionally. VL is one of the most important

parameters for assessing lung functionality. However, these methods generally have poor spatial

resolution and require a high dose of x-ray radiation or contrast agents. Furthermore, many of

them have inadequate temporal resolution to measure VL in real-time on a breath-by-breath basis to

determine lung ventilation, which is another important parameter of lung function. To that end,

chapters 3 and 4 present two PB-PCX imaging-based techniques that provide highly localized

measures of VL in real-time.

Chapter 3 introduces a PB-PCX imaging-based technique for measuring regional ventilation

that is now published by the author and co-workers in Medical Physics (see Leong et al. (2013a)).

This is an extension to the PB-PCX volumetric imaging method developed by Kitchen et al. (2008).

They developed a phase retrieval-based method to recover the change in VL between two PB-PCX

chest images, but their method was restricted to large areas of the lung due to the differential

movement of the bone. This chapter provides a method to remove the bone through aligning two

PB-PCX images using a cross-correlation-based approach before applying the phase retrieval-based

method. Success of this approach enables the projected VL to be measured in real-time on a

pixel-by-pixel basis.

The difficulty associated with the techniques described in chapter 3 is that they require the

subject to be immersed in water. This would be prohibitive if the techniques were to be used for

human imaging. A further limitation to these techniques is that they largely utilize attenuation

contrast to measure VL. As such, they require the beam intensity to be highly stable during image

acquisition. This susceptibility is exposed in synchrotrons and lab x-ray sources that do fluctuate

in intensity due to movement of the beam and heating/cooling of various optics and metals that

encounter the beam. Moreover, only changes in relative VL can be calculated unless an image
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of the fluid-filled lung is available. Chapter 4 proposes a new method of measuring absolute VL

from PB-PCX images. This new method performs such measurements by calibrating the speckled

intensity pattern (lung speckle) contrast in PB-PCX chest images that arise from the many alveoli

to known lung volumes. On live animals the lung speckle-volume calibration curve is found to be

accurate in measuring absolute volumes of air in the lungs by comparing it to that measured using

a gold standard technique. The bulk of this work has been published by the author and co-workers

in Optics Express (see Leong et al. (2013b)).

From the investigation in chapter 4, it is shown that lung speckle encodes more than just VL

information. Alveolar size and population can also be measured from lung speckle. One of the

important reasons for measuring alveolar size and population was highlighted in section 1.1, in that

it can improve the limited understanding of alveolar mechanics. Chapter 5 introduces a method that

combines the volumetric technique developed by Kitchen et al. (2008) and the derivation presented

in chapter 4 to measure alveolar size and population. This is tested on glass particles of similar

size to alveoli and is shown to be in excellent agreement. In animals, the calculated alveolar sizes

and populations over a single breath is measured and is shown to compare well with that measured

from CT images. This work has been publish by the author and co-workers in Biomedical Optics

Express (see Leong et al. (2014)).

Chapter 6 discusses possible future directions for research arising as a result of these studies

and provides a conclusion embodying the bulk of this thesis.
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In this chapter, clinically available imaging-based techniques for measuring regional lung ventilation

are compared. As will be shown, each have limitations that serve as a prelude to two new

propagation-based phase contrast x-ray (PB-PCX) imaging-based methods that remove some of

these restrictions. These new methods form the basis of chapters 3 and 4.

2.1 Current Clinical Lung Ventilation Imaging Techniques

One of the first tools for measuring lung ventilation were spirometers (Khandpur, 2003, ch. 13).

These exist in many different forms that include measuring the flow of air (ventilation) through:

(1) the pressure it exerts on a fixed laminar flow element (pneumotachometers); (2) the drop in

temperature of a wire heated by an electric current (hot wire anemometers); and (3), the change

in resistance of an electrical current applied to the chest (impedance pneumography). While

spirometers have unquestionable benefits in clinical settings, they only provide a global lung

function test. Local measures of air distribution can increase sensitivity and localization to early

onset acute respiratory diseases and lung injuries. This section covers some of the standard

imaging-based approaches for measuring the distribution and local flow of air in the lungs.

2.1.1 Computed Tomography

Analyzing lung air volume (VL) from two-dimensional (2D) x-ray images is complicated by the

superposition of the heart, diaphragm and bones (see for example Fig. 1.2 in section 1.1). Computed

tomography (CT) is the reconstruction of three-dimensional (3D) linear attenuation coefficient

maps (µ(x, y, z)) from multiple projected 2D x-ray images of objects recorded at different angles.

It separates these components spatially to isolate the lungs. Since the concept of CT was first

introduced during the 1940’s, the procedure for 3D image reconstruction has evolved dramatically

47



48 LocalizedMeasures of Lung Ventilation

x

y

                     Image plane

θ

r

Source plane

Figure 2.1: A schematic diagram of x-ray CT.

to encompass different classes of both iterative and non-iterative reconstruction techniques (Liu and

Huang, 2008). Here, a non-iterative reconstruction technique referred to as filtered backprojection

is described Jähne (2005, sec. 8.6.3). This was used to reconstruct experimental tomograms shown

in this thesis.

Consider a sample uniformly illuminated by a parallel x-ray beam of intensity (Io) subtending

an angle (θ) with the x-axis (see Fig. 2.1). The logarithm of the projected x-ray image (I(x, y)) at

the image plane is the line integral of the linear attenuation coefficient map along the direction of

the beam. This is equivalent to Beer-Lambert’s law given in Eq. 1.35b, which was integrated along

the z-direction. Eq. 1.35b can be generalized to be along any direction:

loge

{
I(x, y, z)

Io

}
=

∫ ∫ ∫
µ(x, y, z)δ(r − x cos(θ) − y sin(θ))δ(z − z0)dxdydz, (2.1)

where r is the distance normal to the direction of the ray from the origin. δ is the Dirac delta

function that is zero everywhere except at its origin and its integral over R3 is unity. δ(z − z0)

represents a slice through the object along the xy-plane at z = z0. By inversion of the Radon

transform it is possible to reconstruct the 3D map of µ(x, y, z). To begin solving for µ(x, y, z),
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Eq. 2.1 is Fourier transformed with respect to r. Then, using the Fourier sifting property (Paganin,

2006, sec. A.5), Eq. 2.1 becomes:

Fr

{
loge

{
I(x, y, z)

Io

}}
=

∫ ∫ ∫
µ(x, y, z) exp

[
−i2πk⊥(x cos(θ) + y sin(θ))

]
δ(z − z0)dxdydz,

(2.2)

where k⊥ is the transverse spatial frequency corresponding to r in Fourier space. By making the

following changes of variable, u = k⊥ cos(θ) and v = k⊥ sin(θ), an important theorem, namely the

Fourier slice theorem, for reconstructing tomograms is derived:

Fr

{
loge

{
I(x, y, z)

Io

}}
=

∫ ∫ ∫
µ(x, y, z)dz exp

[
−i2π(ux + vy)

]
δ(z − z0)dxdydz. (2.3)

Equation 2.3 shows that the Fourier transform of a logarithmic projection image at angle θ

is equivalent to that of a slice through µ(x, y, z) at angle θ crossing u = v = 0. Thus, a complete

Fourier transform of µ(x, y, z), denoted as µ̃(u, v, z), can be constructed from 2D projection images

at a range of θ. While the inverse Fourier transform can then be performed to recover µ(x, y, z) using

Eq. 1.48, it is natural to perform the transform in polar (k⊥, θ) coordinates. This is because each

point on the projection image falls on a polar grid as shown in Fig. 2.1. First, the inverse Fourier

transform given in Eq. 1.48 is rewritten with f (r⊥) = µ(x, y, z = z0) and f̃ (k⊥) = ũ(u, v, z = z0) for

a slice along the xy-plane at z = z0:

µ(x, y, z = z0) =

∫
u

∫
v
µ̃(u, v, z = z0) exp(i2πk⊥ · r⊥)dudv, (2.4)

then the Cartesian coordinates in Fourier space are converted into polar coordinates using the

relations u = k⊥ cos(θ) and v = k⊥ sin(θ) to give:

µ(x, y, z = z0) =

∫
k⊥

∫
θ

P̃(k⊥, θ) exp(i2πk⊥[x cos(θ) + y sin θ])|k⊥|dk⊥dθ

=

∫
θ

∫
k⊥

[
P̃(k⊥, θ)|k⊥|

]
exp(i2πk⊥r′⊥)dk⊥dθ,

(2.5)

where r′⊥ = x cos(θ) + y sin(θ), dudv =

∣∣∣∣∣∣∣∣∣
∂u
∂k⊥

∂u
∂θ

∂v
∂k⊥

∂v
∂θ

∣∣∣∣∣∣∣∣∣ dk⊥dθ = |k⊥|dk⊥dθ and µ̃(k⊥, θ) = P̃(k⊥, θ)|k⊥|

(cf. Eq. 2.4).

Finally, by making use of the convolution theorem, F−1{AB} = F−1{A} ∗ F−1{B}, applied to

two well-behaved functions A and B, where ∗ is the symbol for the convolution operator, Eq. 2.5

can be written as:
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µ(x, y, z = z0) =

∫
θ
[P(r′⊥, θ) ∗ K(r′⊥)]dθ, (2.6)

where P(r′⊥, θ) = F−1
{
P̃(k⊥, θ)

}
is known as the sinogram and K(r′⊥) = F−1 {|k⊥|} is referred to

as a ramp filter. This shows that µ(x, y, z = z0) can be reconstructed by collating the projection

images to construct a sinogram, convolved with a ramp filter, then integrated over θ.1 The ramp

filter can be seen as assigning greater weighting to high frequencies as they are more sparsely

sampled. Without the filter, the image would appear blurred. However, this has an undesirable

effect of enhancing image noise. There are modified filters that correctly reconstruct the image

while reducing image noise (Lyra and Ploussi, 2011).

Regional VL can be quantified at each voxel in a CT image based on the values of µ(x, y, z) since

air will have a distinctly different range of values compared to surrounding tissues (Simon, 2000;

Yamamoto et al., 2011). To study ventilation, multiple CT images in a single breath are required.

This has been achieved through a number of means: recording a small number of projections using

a multi-row detector (Law et al., 2001; van Daatselaar et al., 2004; Moser et al., 2014), gating the

projection images to the phase of the respiratory cycle (Suga et al., 2004; Callahan et al., 2014),

and injecting the contrast gas agent xenon into the lungs and measuring its volume at the end of

each breath (Porra et al., 2004; Chae et al., 2008; Kim et al., 2012). However, these approaches

share a number of drawbacks in that they impart large radiation doses, can only reconstruct a small

number of CT images per breath, and can only achieve volumetric resolutions of the order of

sub-millimeters. Minimizing radiation dose is particularly critical when imaging infants as they

are more susceptible to radiation-induced illness (Thome et al., 1998; Arad et al., 2009). Studying

ventilation from a small number of time points over a single breath does not entirely capture its

highly dynamical process. Recent developments of iterative reconstruction techniques have the

capacity to achieve relatively high spatial and/or contrast resolution from limited projections but

require a priori knowledge of object geometry and x-ray beam characteristics such as its energy

spectrum (Beister et al., 2012).

2.1.2 Nuclear Lung Imaging

Three nuclear lung imaging modalities currently utilized in clinics are: scintigraphy, single photon

emission computed tomography (SPECT) and positron emission tomography (PET).

1Integrating over θ means the relative intensity at any point (x, y) on the tomogram is calculated by summing over
every point (r′⊥, θ) in the sinogram, whose projection line it represents intercept the point in (x, y) of the tomogram.
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Figure 2.2: Schematic of 2D scintigraphy. A transverse section of a patient injected with a
radioactive tracer that emits photons in all directions. Photons not traveling parallel to the direction
of the detector are absorbed by the collimator. NaI(Tl) crystal, an example of a scintillator, converts
those that travel parallel the collimator into lower energy visible light. These are amplified and
digitized using an analog-to-digital convertor (ADC) (Cherry et al., 2012, p. 195).

A schematic example of scintigraphy is shown in Fig. 2.2. Photons are emitted in all directions

from a gamma emitting radioactive tracer placed in the patient. γ-ray detectors positioned at an

image plane collect the emitted photons to record a 2D image. These detectors are comprised of:

(1) absorptive collimators that allow through only photons whose direction is perpendicular to the

projected plane (otherwise the angle of incidence will not be known), and (2) a material that can

convert photons directly/indirectly into an electrical signal; such examples include certain gases,

semiconductors and scintillators (Cherry et al., 2012). The material is part of the photomultiplier

(PM) tube that amplifies the photon number before the photons are converted into an electrical

signal.

In SPECT, a 3D image of the tracer density is reconstructed from multiple projections of

2D scintigraphy images utilizing algorithms such as the filtered backprojection described in

section 2.1.1. PET can also produce 3D tracer density maps but is achieved using a different

approach. The tracers utilized for PET undergo β+ decay and emit positrons (first postulated by
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Dirac (1928)). The positrons travel 1-2 mm in the patient, scattering and losing kinetic energy until

they collide with an electron; a process known as positron-electron annihilation (Blokland et al.,

2002). This causes the emission of two photons and, because the electron and positron collide

with almost zero kinetic energy, both of the emitted γ-rays have energy close to 511 keV, which is

the rest mass energy of an electron/positron. They also collide with almost zero net momentum,

hence the γ-rays travel in opposite directions to conserve the total momentum. A pair of detectors

positioned at opposite sides of the object detects these two photons. The location of the annihilation

event can be pinpointed somewhere along the ‘coincidence’ line connecting the detected pair. Time

and energy are gated to only register photons that enter the detectors almost simultaneously and

having energies close to 511 keV. This filters out scattered and random coincidence photons. A

sinogram representing the total density of tracers along the coincidence line at different angles can

be constructed and converted to a 3D image using filtered backprojection (described in the previous

section).

Similar to CT, lung volumes can be measured based on the tracer density value of the recon-

structed 3D image, however, there are several major drawbacks. γ-rays emitted from the center

of the patient attenuate more than those emitted at the periphery. Consequently, images require

attenuation correction before quantifying VL. This correction procedure requires additional doses of

radiation (Zwijnenburg et al., 1988). The intensity signal from tracers is significantly weaker than

that of x-ray sources, thus nuclear lung imaging require longer exposures and consequently has

poorer temporal resolution than CT (Rahmim and Zaidi, 2008; Bushberg et al., 2012). Moreover,

the images will suffer from greater motion blur. Alternatively, inhalation and exhalation of the

tracer 13N-nitrogen while taking breath holds at the end of each breath to record an image reduces

motion blur and enables ventilation analysis (Rhodes et al., 1989a,b; Richard et al., 2005). This is

similar to the method developed by Porra et al. (2004) that was described in the previous section

using CT. The spatial resolution of nuclear lung imaging is limited by many factors such as the

dimensions of the detector collimator and scintillator thicknesses (Cherry et al., 2012). The latest

spatial resolution achievable is of the order of millimeters (Beltrame et al., 2011; Bushberg et al.,

2012). This makes it inferior to CT as images are recorded directly on the detector without requiring

a collimator (Rahmim and Zaidi, 2008; Moses, 2011; Xie et al., 2013). Tracers are expensive to

produce and store, but an upside is that they can be bonded to compounds of biological importance

such as therapeutic drugs to monitor their uptake in the lungs (Conway, 2012).
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2.1.3 Magnetic Resonance Imaging

Unlike CT and nuclear imaging, magnetic resonance imaging (MRI) does not require any ionizing

radiation to reconstruct 3D images. It operates on the principle of nuclear magnetic resonance

(NMR). A brief description of NMR will be provided and how this is utilized in MRI to provide

structural information about the lungs.

Neutrons and protons exist in pairs in the atomic nucleus. In each pair the net magnetic moment

is zero. For atoms made up of an odd number of neutrons or protons, for example 1H and 3Li,

the net magnetic moment is non-zero. In the presence of an external magnetic field (Bo), the

magnetic moment of the atom aligns either parallel or anti-parallel to Bo (Kuperman, 2000, ch. 1).

However, they do not align exactly, but precess around Bo with a frequency, known as the Larmor

frequency, that is dependent on the strength of the magnetic moment and Bo. This is a consequence

of the Heisenberg uncertainty principle, which allows only one component of the orbital angular

momentum to be known exactly; in this case, the component in the direction of Bo (Edmonds, 1996,

sec. 2.4).

Consider a homogeneous material made of identical atoms with non-zero magnetic moments.

A uniform external magnetic field will induce the atoms to align either parallel or anti-parallel

to it, precessing all at the same Larmor frequency. This causes a split in the energy levels, with

atoms aligned parallel to Bo being the lower energy state than those anti-parallel. An incoming

photon source with frequency equal to the Larmor frequency is absorbed by atoms occupying the

lower energy state, elevating them to that of the higher energy state. The photons will be re-emitted

as the atoms revert back to the lower energy state. This process of absorption and re-emission of

photons of the same energy (resonance) from the nucleus is where the term NMR originated. The

Larmor frequency, and hence the energy of the photon emitted, will depend on the type of atom

and its surrounding molecular bonds, but is often in the radio wave range (see Fig. 1.3). Therefore,

materials can be characterized by the energy and intensity of emitted photons. This led to the

development of MRI to differentiate materials made of different atoms and molecular structure

with non-zero spin states. Soft tissues have similar x-ray attenuation properties, which provides

only weak contrast in CT, but they have an abundance of 1H, whose density is dependent on the

type of soft tissue, making MRI ideal for providing strong contrast of soft tissue (Bushberg et al.,

2012, sec. 1.2).

A 3D MRI image is constructed by applying external magnetic field gradients in three di-

mensions to determine the origins of the emitted photons. Ventilation measurements have been

performed by calibrating the MRI signal to the volume of air in the lungs (Mahieu-Caputo et al.,
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2001; Bauman et al., 2009; Wild, 2009; Kyriazis et al., 2012). However, MRI of the lungs is

highly challenging. H1 density in the lung airspaces is low and when imaging at high spatial

resolution, each voxel has very few H1 to emit a signal. Hyperpolarized 3He is often inhaled to

increase the MRI signal, which can reduce the acquisition time to 80 ms (Kyriazis et al., 2012). The

quality of the reconstructed image suffers from inhomogeneity of the externally applied magnetic

field gradients and magnetic moment-induced internal magnetic field gradients (Hashemi et al.,

2012; Poustchi-Amin et al., 2013). The former limits the spatial resolution achievable to ~1 mm

(Mahieu-Caputo et al., 2001; Uecker et al., 2010; Kyriazis et al., 2012). The latter is a major

problem for lung imaging as there are many air-tissue interfaces. Air and tissue have different

magnetic moments, consequently the internal magnetic field induced between them is different.

This creates a local magnetic field gradient across their interface that distorts the externally applied

magnetic field gradients. This results in artefacts in the MRI due to a loss of signal and image

distortion. Injection of a superparamagnetic contrast agent intravenously, which perfuses into lung

tissue, can alter its magnetic moment to match that of air. This removes the local magnetic field

gradients (Vignaud et al., 2005). However, MRI contrast agents in general are expensive and,

moreover, MRI itself is expensive to operate. Consequently, it is not readily availability everywhere

in clinics (Ginde et al., 2008; Biederer, 2009). Furthermore, patients with metallic implants such as

hip replacement joints and pacemakers cannot have an MRI scan.

2.2 Volumetric Phase Contrast Lung X-ray Imaging Techniques

The latest forefront for image-based lung volumetric analysis is phase contrast x-ray (PCX)

imaging. Two such techniques, that use PB-PCX and analyzer-based phase contrast x-ray (AB-

PCX) imaging, are described in this section. The ability to extract VL from PCX images, combined

with the associated enhancement of tissue contrast, simultaneously provides both anatomical and

physiological information of the lung at high spatial resolution. PCX imaging can also be done

in real-time, which allows subtle changes in lung function to be studied. While PCX imaging

only provides volumetric information in 2D, whereas some of the other volumetric techniques

that were described in the previous section achieve this in 3D, it has superior spatial and temporal

resolution over those techniques. Moreover, lung volumetric information in 2D can still help

towards understanding lung behavior and possibly serve as a complementary diagnostic tool for

lung diseases.
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Figure 2.3: The PB-PCX imaging setup for acquiring chest images at L m from the object. The
distance from the x-ray source to the sample is denoted by D. Note that the water column is not
within the path of the x-ray beam and PT=pressure transducer (Leong et al., 2013a).

2.2.1 PB-PCX imaging-based Volumetric Technique

A technique for measuring changes in VL using PB-PCX chest images was developed by Kitchen

et al. (2008). By adapting the PB-PCX imaging setup, the subject is placed in a tightly sealed

water-filled polymethyl methacrylate (PMMA) sample holder as shown in Fig. 2.3. Since soft

tissue shares approximately the same complex refractive index as water in the diagnostic x-ray

range (10-150 keV), there are effectively three types of materials present within the sample holder:

water, bone and PMMA. Air is not counted as a material since x-rays in that energy range only

interact weakly with air. During breathing the lungs inflate with air, pushing water out of the

sample holder and into the water column, and vice versa upon deflation. By restricting the imaging

region-of-interest (ROI) to the sample holder containing the chest, the total change in volume

enclosed within the sample holder over time (∆VAB) can be calculated from between two N × M

pixel sized PB-PCX images of that ROI, in image A and image B:

∆VAB =

N∑
i

M∑
j

(∆x)2[TA(i∆x, j∆x) − TB(i∆x, j∆x)], (2.7)

where ∆x is the pixel size and T is the total projected thickness of all three materials within the

sample holder at each pixel location (i∆x, j∆x). If the ROI enclosed is sufficiently large to include

the entire chest in both images, ∆VAB would equal the volume of water displaced as the volume of

bone and PMMA remain constant between images and consequently cancel out. Since the volume

of water displaced is equal to the volume of air entering the lungs, −∆VAB is equal to the change in

VL.

To calculate ∆VAB, T can be determined using the single image phase retrieval algorithm

(SIPRA) given in Eq. 1.60. However, it assumes a single material, which is not the case for the

chest that is comprised of water and bone. Kitchen et al. (2008) assumed that the chest was made
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of water only and therefore the input parameters for SIPRA, δ and µ, were substituted in for water.

Beltran et al. (2010) showed that for such a case the projected thickness image of water is correctly

reconstructed while that of bone is not, particularly along the interface where the phase-induced

fringes are not properly smoothed out. Despite this, Kitchen et al. (2008) demonstrated that the

degree of error in the reconstructed projected thickness image of the bone is approximately constant

between recorded chest images of an aerating lung. Therefore, by having a sufficiently large

detector ROI such that ROI A and B enclose the same volume of bone, ∆VAB is largely that of water.

By ensuring this condition is satisfied, Kitchen et al. (2008) showed VL as small as 25 µL could

be accurately measured by comparing it to a plethysmograph2 attached to the sample holder (see

Fig. 2.3). Herein lies the major limitation to this technique, namely that the minimum area of the

detector ROI from which the change in VL can be accurately calculated is limited by the degree of

bone motion. Whilst breathing, the bony rib cage can move out of and into the detector ROI. Thus,

only from relatively large areas of the lungs does the bone volume remain constant within the ROI.

The work presented in chapter 3 addresses this issue.

2.2.2 AB-PCX imaging-based Volumetric Technique

From AB-PCX imaging, three separate images containing attenuation, refraction angle (defined

in Eq. 1.36), and ultra small angle x-ray scattering (USAXS) information of the object can be

recovered (Hu et al., 2009; Yang et al., 2014). USAXS will dominate in small structured objects

that have many large phase gradients within the object. Larger structured objects produce slowly

varying phase gradients, for which these are encoded in the refraction angle map. The exit surface

phase can be retrieved from the refraction angle map of the object using Eq. 1.36. Together with

the attenuation map, Eqs. 1.35a and 1.35b can be used to solve for T of an object made of up to

two different materials, provided the projection approximation is valid. For the chest, this means T

can be calculated for bone and water/soft tissue (remember that water and soft tissue have similar

complex refractive indices). By immersing the chest in a water bath, the projected thickness of

water/soft tissue can be calculated for two images, from which the change in VL between them

can be calculated using Eq. 2.7. The advantage of this technique over the PB-PCX imaging-based

volumetric technique, described in section 2.2.1, is that the separation of bone and water allows the

minimum region of interest, over which the change in VL can be accurately measured, to be equal

2The plethysmograph utilized for that study was water-based. During respiration, the flow of air forces water in and
out of the water column, which are proportional to the pressure changes in the water column. These pressure changes,
measured using a pressure transducer, can be calibrated to measure VL by injecting known volumes of water into the
water column.
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Figure 2.4: The AB-PCX imaging setup is almost identical to that of the PB-PCX setup displayed
in Fig. 2.3 but an analyzer (Laue) crystal is placed between the sample and camera to split the
x-ray beam and acquire diffraction (ID) and transmitted (IT) images.

to the detector spatial resolution.

Two common methods of simultaneously recovering the attenuation, refraction angle and

USAXS information are: multiple image radiography (MIR) (Wernick et al., 2003) and Laue

dual-image phase retrieval (LDIPR) (Kitchen et al., 2011). MIR records the rocking curve at each

pixel of the detector with and without the sample present by rotating the analyzer over several

micron-radians about the Bragg peak. The attenuation and refraction angle can be extracted from

the decrease in area and shift in the position of the rocking curve, respectively, while deconvolving

the object rocking curve with the intrinsic rocking curve (without object) recovers the USAXS

information. The lengthy time required to record the object rocking curve makes it unsuitable for

dynamic imaging. Conversely, LDIPR requires multiple exposures to record the intrinsic rocking

curve but only a single exposure of the object to extract all three images (i.e. attenuation, refraction

and USAXS). From this single exposure, the x-ray beam traverses the object and is split in two by

a Laue crystal to form a diffracted and transmitted beam. The diffracted and transmitted beam arise

from the x-ray beam that reflected from one of the Bragg planes and propagated straight through

the Laue crystal, respectively (Fig. 2.4).

While image acquisition time is significantly lessened in LDIPR in comparison to MIR, post-

image processing is more arduous as LDIPR is a semi-iterative process. By having only two images,

that of the diffracted and transmitted intensity, to recover three lots of information (attenuation,

refraction angle and USAXS), the USAXS information is first iteratively determined to allow the

other two be analytically solved. A priori knowledge of the USAXS strength as a function of

the projected scatterer thickness (scatterer refers to the small structured objects with large phase

gradients) is required to initiate the iterative algorithm. Thereafter, the iterative process may take

on the order of hours to converge to within a set limit of a cost function. LDIPR is also prone to
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Figure 2.5: Montage of 16.2×14.4 mm2 chest images consisting of the recovered information
possible using LDIPR (Kitchen et al., 2011).

low frequency noise because of integrating the refraction angle map to recover the phase map3.

Calculated projected thickness maps may then contain low frequency artefacts and consequently

erroneous VL values. Figure 2.5 shows a montage of images recorded and determined using LDIPR.

The low frequency trends from integrating the refraction angle map have been removed by applying

a high pass filter4.

2.3 Concluding Remarks

In this chapter, clinically available imaging-based methods for measuring lung air volumes were

surveyed, namely scintigraphy, CT, SPECT, PET and MRI. The latter four can measure ventilation

by recording multiple sets of projection images to reconstruct multiple tomographs in a single

breath. This is challenging to achieve with high spatial resolution. One way of overcoming this

challenge is by inhaling a contrast agent and reconstruct only one tomograph per breath. The

3Integration in real space is equivalent in Fourier space to dividing the function by the spatial frequency. That is, for
a 1D function G(x), F

{∫
G(x)dx

}
=

F {G(x)}
i2πkx

(Kumar, 2013). It can be seen then that any low frequency noise present in
G(x)} will be significantly increased.

4A high pass filter is a function multiplied in Fourier space by a function designed to attenuate amplitudes at lower
frequencies and to leave untouched those at higher frequencies.
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change in concentration of the contrast agent over multiple breaths can be related to ventilation.

However, this represents the average ventilation over an entire breathing cycle. Much information

is left unknown about the high temporal variation in ventilation during a single breath. Scintigraphy

records only single projections and therefore offers better temporal resolution than SPECT at the

cost of only providing regional ventilation maps in 2D. Regardless, nuclear lung imaging techniques

in general have inferior spatial and temporal resolution compared to CT and are more suited to

studying uptake of pharmaceutical drugs. All of these imaging-based methods, except MRI, require

the use of contrast agents and radioactive tracers but are expensive and hazardous to human health.

While MRI does not involve any radioactive contrast agents, it does suffer from image artifacts.

PCX imaging-based volumetric techniques have the potential to offer a safer and/or more

effective alternative than the clinically available imaging-based techniques. They do not require any

contrast agents, making them cheap, and impart low radiation dose by utilizing relatively higher

energy x-rays since strong phase contrast can still be maintained (Zhou and Brahme, 2008). Two

PCX imaging-based techniques were described that measure lung volumes directly from x-ray

phase contrast signals. With the phase contrast signal being much stronger than that given by other

imaging modalities, it enables shorter exposures times while still being sensitive to small volumetric

changes. However, in the PB-PCX imaging-based volumetric technique, the size of the region over

which VL can be accurately measured is limited by the movement of bone. While the AB-PCX

imaging-based volumetric technique can measure VL over a single pixel, the post-processing time

is long and prone to artefacts. The original research presented in chapters 3 and 4 shows two new

techniques that were developed specifically to overcome these limitations.
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In the previous chapter a technique developed by Kitchen et al. (2008) was introduced for perform-

ing regional volumetric measurements of lung aeration. This was a huge improvement from current

clinical lung imaging-based volumetric techniques with respect to the high temporal resolution and

low radiation dose, allowing ventilation to be studied in real-time while simultaneously rendering a

highly detailed image of the chest. However, the differential movement of the bones making up

the thoracic cage with respect to the lung tissue limited the minimum region-of-interest (ROI) size

from which lung air volume (VL) could be accurately measured. This problem is elaborated upon

in section 3.1.

In this chapter, a method is presented to counteract the movement of the thoracic cage through

segmentation of the image of the lungs from that of the bony structures. This is achieved by

capturing an image of the thorax with fluid-filled (non-aerated) lungs, then aligning and subtracting

the bony structures from images of the subsequently air-filled thorax. Section 3.2 defines and

explains image alignment and surveys common methods applied on medical images. Section 3.2.4

presents the testing of different image alignment methods to determine which is most suitable for

aligning the bony anatomy of the thoracic cage between propagation-based phase contrast x-ray

(PB-PCX) chest images. Based on the findings, two approaches to aligning the thoracic cage were

developed and tested on images of newborn rabbit kittens, the outcomes of which are presented in

sections 3.3 and 3.4. This chapter expands on the work published in Medical Physics (Leong et al.,

2013a).

3.1 Importance of Bone Segmentation

When measuring changes in VL utilizing the technique developed by Kitchen et al. (2008), seg-

mentation of bone is important for accurate measures of regional VL. Consider the panel of

61
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images in Fig. 3.1. The spherical object can be considered a pocket of air within lung tissue and

the rectangular object as a piece of bone. The PB-PCX images were produced by generating a

1000 × 1000 pixel projected thickness map of the objects, from which their exit surface wavefields

were computed using the projection approximation (section 1.6). Then, their wavefields were

numerically propagated (described in section 1.9) forward by 3 m with the pixel size set to 4.05 µm.

The µ and δ values assigned for bone were µb = 461.1 m−1 and δb = 7.145 × 10−7. For lung tissue,

µw = 13.983 m−1 and δw = 3.99 × 10−7. These values were calculated from the National Institute

of Standards and Technology (NIST) database corresponding to a 24 keV source (NIST, 2014).

(a)

(b) (c)

(d) (e)

Figure 3.1: Simulated images to demonstrate the necessity of segmenting bone for measuring
regional lung air volumes. (a) A PB-PCX image enclosing two objects, namely a hollow sphere
(simulating an air bubble) and a cuboid (simulating bone tissue), projected onto one another and
immersed in water. In (b) and (d) the PB-PCX image of only the bone (i.e. with no air bubble)
is respectively misaligned and aligned with that in (a). Each image underwent phase retrieval
using SIPRA and subtraction was performed of their projected thickness between (a) and (b) and
(a) and (d) to yield the change in projected thickness at each pixel. These results are shown in
(c) and (e), respectively. The change in air volume due to the sphere was calculated from these
subtracted images using the entire field-of-view and using just the small ROI within the white
border to demonstrate the need for image alignment for regional volume measurements.

To measure the change in VL, the total projected thickness (Ttot) of the sample, which is

assumed to comprise of water only, is calculated at each pixel denoted by the indices i, j over the

N × M pixel size image using the single image phase retrieval algorithm (SIPRA). Since the chest
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is a two-material sample, bone (Tb) and water (Tw), SIPRA returns:

T ∗tot =

N∑
i

M∑
j

Tw +
µb

µw

N∑
i

M∑
j

T ∗b . (3.1)

The symbol * indicates that the projected thickness returned by SIPRA is blurred due to assuming

a water only object (Beltran et al., 2010).

Consider an image, as shown in Fig. 3.1(b), containing only the bone displaced relative to

that in Fig. 3.1(a) towards the top right corner of the image. This is to mimic what occurs during

respiration. Directly subtracting Fig. 3.1(a) from Fig. 3.1(b) after performing SIPRA (again

assuming the sample is comprised of water only) shows the bones do not perfectly align as shown

in Fig. 3.1(c). If the field-of-view (FOV) is sufficiently large, for example the FOV being the entire

image, to encompass both the bone and alveoli, then the total change in the projected thickness

(∆Ttot) is:

∆Ttot = ∆Tw = −∆Tair, (3.2)

since the total thickness of bone and their degree of blurring remains approximately constant

between images. The volume of the sphere was calculated, using Eq. 2.7, as 2.218 µl in comparison

to the known volume of 2.226 µl. This demonstrates that the technique developed by Kitchen et al.

(2008) is accurate in measuring the total change in VL without needing to align the bones when

the FOV is sufficiently large. The slight discrepancy of just < 1% (8 nL) is likely attributed to the

slight difference in the degree of smoothing of the bone between the images. That is, ∆T ∗air ' ∆Tair.

When the FOV was restricted to a smaller region, as shown by the white border in Fig. 3.1, the

volume of bone within the smaller region in Figs. 3.1(a) and 3.1(b) is different. ∆Ttot then becomes:

∆T ∗tot = ∆Tw + τ

[
µb

µw
∆T ∗b

]
6= −∆Tair, (3.3)

where 0 ≤ τ ≤ 1 is the fraction of bone not removed after subtraction. The change in regional

water volume calculated between Figs. 3.1(a) and 3.1(b) gave an air volume of just 1.688 µl;

approximately a 32% error. If the bones were aligned prior to subtraction (Fig. 3.1(d)), their

contribution can be canceled out when the projected thickness maps are subtracted, as shown in

Fig. 3.1(e). The calculated VL then was 2.186 µl; approximately only a 2% error (32 nL). Ergo,

this demonstrates the importance of aligning the bones to segment them from the lungs in order to

accurately measure VL locally utilizing the technique developed by Kitchen et al. (2008). In the
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next section, an overview of image alignment is introduced and different alignment techniques are

explored for possible alignment of the bony anatomy of the thoracic cage from PB-PCX images.

3.2 Image Alignment

The process of aligning images begins with identifying matching features (image registration) and

transforming the images (image transformation) to align those features. There are many scenarios

where image alignment or just image registration is important in medical imaging. For patients

with a cancerous lung nodule, alignment of chest images recorded before and after treatment is

important in accurately tracking the position and comparing the size of the nodule (Crum et al.,

2004). Radiation therapy involves irradiating cancerous tissue with x-rays. During treatment,

breathing and other movements made by the patient displaces the cancerous tissue from its initial

position. Tracking its motion using image registration can guide the x-ray beam during treatment

(Gao et al., 2006). Images of different modalities are also often aligned. For example, positron

emission tomography (PET) images depicting a physiological event are aligned to computed

tomography (CT) images to put it into anatomical context. These are just some of the many

examples of when image alignment is needed.

The aim of this section is not to give a detailed account of all the possible image alignment

techniques but to provide an overview of the general problems and approaches associated with

aligning chest images. This section is divided into introducing the mathematical overview of image

alignment, then discussing image registration and transformation in the context of lung imaging.

3.2.1 Mathematical Notation, Definition and Terminology

While there are a plethora of image alignment techniques, there are four fundamental factors to

consider when aligning images:

1. The features to be matched.

2. The algorithm that best matches these features.

3. The method that most accurately transforms the image to align those features.

4. The method of evaluation that best gauges the accuracy of the alignment.

These fundamental factors are affected by the type of images being matched (i.e. two-dimensional

(2D) or three-dimensional (3D)), the image modality used (CT, magnetic resonance imaging (MRI),
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PET, radiography, PCX imaging) and whether the images being aligned are of the same (intramodal)

or different (intermodal) modalities. In the remainder of this section, the mathematical notations

will be introduced for aligning 2D images, since the images aligned in this thesis are 2D only.

Let two images be defined by image A and image B, where {Ai} ∈ r⊥ are the set of coordinates

(control points) relating to M features in image A and {Bi} ∈ r′⊥ be a set of coordinates found

in image B corresponding to the same features as in image A, both in Euclidean space where

i ∈ 1, 2...M. Here, the objective is to align image B to image A. A number of image registration

methods have been developed in determining pairs of control points between image A and image

B. They can be categorized into feature- and intensity-based image registrations, both are which

the topics of interest in the next subsections. The main difference is that the former uses higher

level features such as lines and corners whereas the latter uses pixel intensity directly for matching

purposes.

After performing image registration to determine the pairs of control points, the next step is to

decide the transformation function T̂ to fit to the control points in order to map the coordinates

from image B to image A. That is:

T̂ : r′⊥ 7→ r⊥ ⇐⇒ T̂ (r′⊥) = r⊥. (3.4)

Note that T̂ maps the coordinates, and not the intensity, of image B to image A. That is, it does

not make image B look like image A by giving a position in the transformed image B, which is

denoted BT̂ (r⊥), the same intensity as A(r⊥). Instead, F̂ is designated to be the function that maps

the intensity values between the two images. If the two images are taken from the same modality,

then F̂ will be an identity function (i.e. F̂[BT̂ (r⊥)] = BT̂ (r⊥)).

The ideal transformation model to use depends on the complexity of the coordinate mapping

between the two images. These can range from: the simple rigid-body transformation (rotation,

reflection and translation); the slightly more general affine transforms (scaling, homothety, sim-

ilarity transformation, shear mapping in addition to the rigid body transformation); to the more

sophisticated non-rigid transformation (examples of which include multi-resolution multi-quadric

elastic transformation (Zhang, 2006; Bentoutou et al., 2007)).

The final process of image alignment is evaluating how accurately image A and image BT̂

overlap. In medical imaging, a gold standard technique is often used that is believed to be the

best in the particular application area or for the given image type. For the removal of bones in the

chest, dual-energy subtraction (DES) is considered the most accurate. It takes the recording of two

images at different x-ray energies and exploits the energy dependence of the attenuation coefficient
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of constituent materials to separate bone and lung tissue (Ishigaki et al., 1986; Carnibella et al.,

2012a). However, DES has yet to be successfully used in dynamic PB-PCX imaging. Without a

gold standard technique, accuracy of alignment must instead be performed by visually assessing the

subtracted images of image A and image BT̂ to detect the degree of structural artefacts. Although

this approach is subjective, it is easy to visually determine when the image alignment has not

worked satisfactorily, particularly when using edge-enhanced PB-PCX images.

3.2.2 Image Registration

Image registration can be generalized into two broad approaches: feature- and area-based image

registration. The former involves identifying and matching higher order features such as shapes

and lines, while the latter is based on pixel intensities. These two approaches are elaborated in

section 3.2.2.1 and 3.2.2.2.

3.2.2.1 Feature-based Image Registration

Feature-based image registration utilizes salient and unique features that are found consistently

between images to help serve as control points and align the images accurately. In some applications

of medical imaging there are clearly defined features that can easily be identified visually. These

distinct features can either originate extrinsically (i.e. external markers attached to the patient) or

intrinsically (i.e. belonging to the patient). An example of the former is the use of a stereotactic

frame screwed onto the patient’s skull to align CT, PET and MRI images of the brain (Karger et al.,

2003). Alternatively, skin attached markers present a less invasive procedure; however, it carries a

greater risk of misregistration caused by the skin moving independently to the head between image

acquisitions (Grunert et al., 1998). Extrinsic markers are also used in image guided surgery and

radiation therapy to track the movement of tumors (Lunsford et al., 1990; West et al., 1997; DiMaio

et al., 2010). For the latter, the success of matching features originating from within the patient

depends on the signal strength of those features. The types of intrinsic features that provide strong

signals in the human body vary from corners, lines or curves of the bones, to blood vessels, nerves,

and brain tissue (Hill et al., 1991; Xie et al., 2009).

In aligning the bony anatomy of the chest from images, extrinsic markers cannot be placed

on the chest skin as it moves independently to the bones and inserting markers on the bones is

highly invasive. Alternatively, the bones are highly visible in some parts of a chest radiograph. An

automated algorithm can then be utilized to delineate and outline the shape of the ribs. One of the

earliest works on rib detection was reported by Toriwaki et al. (1973). Their software system was
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able to automatically identify the ribs as well as that of other structures including the heart and

thorax only after the position of the ribs were marked by the user. However, it broke down where

the signal strength along the edges of the ribs were weak, such as the ventral ribs and those ribs

that were poorly calcified. There the signal of the ribs is obscured by image noise, geometrical

distortions introduced by the detector system and overlapping structures such as the diaphragm,

tumors and lung lesions. Moreover, the need to manually identify the rib positions to initiate the

software system is time consuming.

Numerous researchers have since worked to expand and improve upon the work of Toriwaki

et al. (1973). Most rib segmentation algorithms developed so far are quite elaborate but do share a

common framework. They begin with some form of image processing. For example, they typically

employ Fourier filtering to suppress lower frequency components and enhance the edges of bone,

or take the logarithm of the image to expand the lower valued intensities over a wider range of

intensity bins (Wechsler and Fu, 1978). This step is followed by applying edge detector operators

such as the Laplacian and Sobel operators to detect bone edges (Toriwaki et al., 1973; Persson,

1976; Wechsler and Fu, 1978; Staal et al., 2007). These edges are filtered to retain those that make

up part of the bone from those associated with other structures. However, those edges retained

often do not make up the entire bony anatomy of the chest, leaving many gaps where edges of the

bone have not been detected. These gaps are filled by imposing separate models on the ribs and

vertebral column. Examples of such models that have been tried include the parabolic function

fitted using the Hough transform and deformable models such as spline fitting (Wechsler and Fu,

1978; Yue et al., 1995; Zagorchev et al., 2007).

Despite the improvement made on the work of Toriwaki et al. (1973) there has yet to be a truly

robust automatic algorithm for detecting the rib borders, particularly for the top and bottom ribs

where they are poorly defined in chest radiographs. The algorithm developed by Plourde et al.

(2006) is considered to be the most proficient to date. This involves the user identifying four points

on each rib; these are used as starting points in a rib detection algorithm that outlines the boundaries

of the rib. However, given that it is a semi-automatic approach, it may become laborious when

multiple images are analyzed, particularly for dynamic imaging sequences. In light of the frailty

and susceptibility of these algorithms against noise and overlapping structures, feature-based image

registration may fail in aligning PB-PCX chest images. Although PB-PCX imaging can boost the

bone signal, these are also masked by the increased signal of the lungs. In section 3.4, an image

alignment method that uses feature-based image registration is developed and tested on aligning

the bones of PB-PCX chest images of newborn rabbit kittens.
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3.2.2.2 Area-based Image Registration

Area-based image registration involves calculating the degree of similarity between two images

directly from their pixel values (or voxel values when using 3D images). The algorithm used to

match the features is known as a similarity measure. Small regions of predetermined size in image

B are selected and scanned through areas of predefined size in image A to find its closest match.

Herein, the small regions in image B are named kernels, which are equal or smaller in size than

areas in image A that are termed search areas.

For complex transformations, a main trade-off for area-based image registration is between ker-

nel size and alignment accuracy. This is illustrated in Fig. 3.2 for registering images of the thoracic

cage. A decrease in kernel size allows complex transformations to be more accurately mapped,

with the downside of reducing the amount of structural information that it holds. Consequently,

there is a high probability that the kernel will enclose a non-unique area and subsequently will

likely match with multiple regions within the search area. Conversely, increasing the kernel size

would elevate its uniqueness to allow a higher chance of a significant match, but loses information

on local transformation. Kernels can translate within the search area while also rotating and scaling

its size to find its closest matching feature. However, these multiple degrees of freedom require

very long computation time and would increase the risk of misregistration. For aligning the chest,

it is usually sufficient to translate the kernels only to find its corresponding matching feature in the

search area. As will be shown later in section 3.3, this is adequate to produce accurate alignments

of chest images.

The following sections will cover three similarity measures: (i) sum of squared differences

(SSD); (ii) cross correlation (CC) and; (iii) mutual information (MI). These are by no means the

complete repertoire of techniques. For a complete review of intensity-based image registration

techniques, please refer to Hill et al. (2001) and Zitová and Jan (2003), as starting points.

Sum of Squared Differences

One of the simplest similarity measures is the SSD between the kernel B′ of image B and the search

area A′ of image A. For N pixels in the region of overlap between A′ and B′ (or domain ΩA′,B′),

S S D(r′⊥) =
1
N

∑
r⊥∈ΩA′ ,B′

|A′(r⊥) − B′(r⊥ − r′⊥)|2. (3.5)

With the center of A′ and B′ both located at the origin r⊥ = (0, 0), the SSD is computed within

the overlapping region of A′ and B′ as B′ is translated across A′ by displacement vector r′⊥ pixels.
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Image A

Search Area A'Kernel B'

Image B

Registering using a
similarity measure 

(B' overlapping region A'' of A')

(a)

Image A

Search Area A'Kernel B'

Image B

Registering using a
similarity measure 

(B' overlapping multiple regions A'' of A')

(b)

Figure 3.2: Drawbacks of area-based image registration. In these chest images, the bones have
undertaken a highly localized expansion transformation. In this situation (a) shows the difficulties
in attempting to perfectly match a kernel in image B within a search area in image A, by translating
the kernel only, due to localized movements of the ribs within the kernel. (b) To overcome the
difficulty in (a), the kernel size is reduced. This is traded-off by the loss of structural detail
resulting in multiple regions with which the kernel could be registered.

The vector r′⊥ where SSD is minimized represents the coordinate with respect to the origin in A′

where it best matches to B′ as the total difference between their intensities within ΩA′,B′ is smallest.

The pair of control points recorded would then be the coordinate of B′ in image B and that of A′

in image A plus the vector r′⊥ where SSD is minimized. Due to the presence of the squared term

in Eq. 3.5, differences in pixel intensities between the images due to noise are over-represented

and can exaggerate the total difference; instead, the squared term can be removed. Consequently,

this similarity measure becomes the sum of absolute differences (SAD). Both SSD and SAD are

simple to implement, but for registering inter-modal images, they are not ideal as it intrinsically

assumes the intensity values between image A and image B are proportional to one another. That

is, it assumes F̂ is an identity function and is therefore only applicable to registering intramodal

images (see section 3.2.1). SAD has been chosen as one of the similarity measures to be tested on

illustrated chest images shown in section 3.2.4.

Cross-Correlation

CC is commonly used in medical image registration for its superior processing time and insensitivity

to noise. With the same definitions of the parameters introduced for SSD, the normalized CC

(NCC) is defined as (Kano et al., 1994):
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NCC(r′⊥) =
1
N

∑
r⊥∈ΩA′ ,B′

[A(r⊥) − A′][B′(r⊥ − r′⊥) − B′]
σA′σB′

, (3.6)

where

A′ =
1
N

∑
r⊥∈ΩA′ ,B′

A′(r⊥), (3.7)

B′ =
1
N

∑
r⊥∈ΩA′ ,B′

B′(r⊥ − r′⊥), (3.8)

σA′ =
1
N

∑
r⊥∈ΩA′ ,B′

[A′(r⊥) − A′], (3.9)

and

σB′ =
1
N

∑
r⊥∈ΩA′ ,B′

[B′(r⊥ − r′⊥) − B′]. (3.10)

Both A′ and B′ are subtracted from the mean value within ΩA′,B′ of A′ and B′, denoted A′

and B′ to respectively suppress differences in background intensity values, and are subsequently

cross-correlated (i.e. summing the products of their intensities). The correlation value is normalized

through dividing both by the total number of pixels, N, in ΩA′,B′ and the standard deviations, σA′

and σB′ , of A′ and B′, respectively. The NCC varies from -1 to 1, with 1 representing perfect and 0

completely imperfect match, while <0 represents anti-correlation within ΩA′,B′ of A′ and B′.

Normalizing the correlation value by σA′σB′ is important in making it less susceptible to

matching regions simply because they have large intensities. For example, consider a kernel

enclosing a unique feature and the corresponding exact same feature in the search area situated at

some coordinate. Elsewhere, suppose there is a region with a large intensity spike. The correlation

value will form a stronger match to the large intensity spike rather than the feature as the sum of

the product of their intensities is greater. However, since the standard deviation of A′ containing

the intensity spike is significantly higher than that of the region containing the feature, dividing by

σA′ will reduce the correlation value at the spike and make the kernel match to the feature.

Direct computation of the NCC using Eq. 3.6 is computationally more expensive than SAD

(Mori and Kashino, 2010), but the unnormalized CC (CC = σA′σB′NCC) can be computed in

Fourier space via the convolution theorem:

CC(r′⊥) = F−1
[
F

{
A′(r⊥) − A′

}
× F∗

{
B′(r⊥) − B′

}]
, (3.11)
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where F∗ is the complex conjugate of F . If the size of B′ is not equal to that of A′, then B′ is

zero-padded. Equation 3.11 allows the high numerical computational efficiency of the Fast Fourier

transform to be exploited. There is no simple frequency domain expression to incorporate σA′σB′

into Eq. 3.11 and calculate NCC. Lewis (1995) developed a fast NCC by pre-computing σA′σB′

and applying it to each correlation value calculated using Eq. 3.11. However, since large intensity

spikes present in chest images are predominantly attenuation-induced, a method is developed in

sections 3.3 and 3.4 to remove attenuation-induced regions of large intensities to offset the need to

normalize against σA′σB′ before performing CC.

Mutual Information

The MI method is an information theoretic approach to image registration. MI falls under the field

of information theory that quantifies the amount of information contained within a data set. Before

explaining how this is applied to image registration, information (H) is first defined. Consider an

alphabet containing s letters. A one-letter word has s possible letters, hence it contains s quanta

of information. Generalizing, an n letter word has sn quanta of information. With increasing n,

the amount of information increases exponentially. However, this is unrealistic in linguistics since

there are syntactic rules that specify which combination of letters are permitted. Hartley (1928)

imposed a set of conditions, those being that information increases linearly with word length (i.e.

H ∝ n) and that the amount of information is equal if sn1
1 =sn2

2 , for two given words of length n1 and

n2 containing s1 and s2 letters, respectively. The only function that satisfies these conditions is:

H = ln sn. (3.12)

Equation 3.12 shows that when there is only one letter in the alphabet (ln 1 = 0), no information

is gained because the outcome is already known. It is also a measure of entropy, which is defined as

the degree of uncertainty. The more possibilities (information) the greater the uncertainty (entropy).

A restrictive condition of Eq. 3.12 is it assumes that all words have an equal occurrence probability.

Shannon (1948) uplifted this restriction and expressed information as a sum of all the different

possible combinations (i) of letters making up a word, with each combination having occurrence

probability pi:

H = −
∑

i

pi ln pi. (3.13)

Equation 3.131 can be redefined in the context of grayscale images. The entropy H is defined

1Equation 3.12 can be seen as a special case of Eq. 3.13, where each possible combination of s letters making up
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as the amount of information each image contains where p(i) is the probability distribution of their

grayscale values (i), which can be approximated by computing their image histogram and dividing

by the total number of pixels. The joint entropy is also introduced, where p(i, j) is defined as the

joint probability distribution. It represents the likelihood in which a pixel has grayscale intensity

value of i in one image and that of j in the corresponding pixel in another image. This can be

computed from a 2D joint histogram where two of the axes correspond to the dynamic intensity

range of the two images, and the third axis is the frequency of their intensities appearing at the

same pixel divided by the total number of pixels. If the images are exactly the same, that is they

are perfectly aligned, then their joint histogram will form a sharp line (Fig. 3.3(a)). This indicates

no new information is gained between them, hence their joint entropy (uncertainty) is minimal.

Conversely, misaligned images form a scattered histogram, consequently increasing their joint

entropy (Fig. 3.3(b)). With these definitions, the expression for MI is introduced for a given kernel

B′ and region A′′ within the search area A′ of image A (Viola and Wells, 1995):

MI(A′′, B′) = H(A′′) + H(B′) − H(A′′, B′), (3.14)

where

H(A′′) = −
∑

i

pA′′(i) ln[pA′′(i)], (3.15)

H(B′) = −
∑

j

pB′( j) ln[pB′( j)], (3.16)

and

H(A′′, B′) = −
∑
i, j

pA′′B′(i, j) ln[pA′′B′(i, j)]. (3.17)

Here, H(A′′) and H(B′) are the entropy of regions A′′ and B′, respectively, and H(A′′, B′) is their

joint entropy.

Two regions are most similar when their joint entropy is minimal and consequently their MI

would be maximal. Complete misregistrations may still produce small joint entropy values such

as two images with uniform background. This is why the first two terms of Eq. 3.14, which are

the individual entropy of the two images, are important in differentiating the registering of two

images with anatomical structures from those with uniform intensity backgrounds. While in the

a n letter word have equal probability. The total number of possible combinations is sn. Therefore, each combination
have an equal probability p = 1/sn. Substituting this into Eq. 3.13, H = −

∑
i pi ln pi = −

∑
i

1
sn ln 1

sn = ln sn, which gives
Eq. 3.12.
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Figure 3.3: Examples of 2D joint histograms showing two identical images when they are: (a)
aligned and (b) misaligned when one of them is rotated by 2◦ (Pluim et al., 2003).

latter their joint histogram will produce a strong peak, and consequently their joint entropy value

will be low, the individual entropy of the two regions are low, hence offsetting the low joint entropy

and producing a low MI value.

The presence of noise in medical images causes the joint histogram of pA′′,B′(i, j) to disperse.

However, as long as the noise is approximately uniform across the image and less than the structural

signal enclosed by both images, the maximal MI value will still correspond to the kernel registering

with the matching structure.

The main benefit of MI is its ability for inter-modality image registration, in which the registered

images would not necessarily correspond to a linear joint histogram (pA′′,B′(i, j)) but more generally

a curve. When the images are not registered, a cluster of non-zero probabilities will appear around

the curve. Registration by MI can, therefore, be thought of as trying to maximize the sharpness of

the histogram. This is the main reason why MI is ideal for inter-modal registration as it does not

assume any relationship of the intensities between the images.

3.2.3 Image Transformation

To determine the transformation function defined in Eq. 3.4, it is necessary to have some prior

knowledge of the form of distortion that image B has undergone from image A. For simple

transformations that include rotation and translation, the transformation can be determined through

solving the Orthogonal Procrustes problem (Hurley and Cattell, 2007). This problem determines
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the rotation (R) and translation (t) matrices that minimizes the residual error Σ2, which is given by:

Σ2 =
∑

r⊥∈ΩA,B

‖Bi − (RAi + t)‖2 , (3.18)

where Ai and Bi, the control points corresponding to image A and image B, respectively, are

represented as column vectors. R and t are respectively represented by 2-by-2 rotation and

translation matrices.

Equation 3.18 was first solved by Schönemann (1966) for the solutions to R and t. This

approach is ideal for aligning images of the head as it acts as a rigid object undergoing only rigid

transformation. Consequently, it has been useful in multi-modality medical image registration of

the head for image guided surgery (Habets et al., 2009). However, for complex distortions beyond

the rigid or affine transformation, namely the chest, a transformation function with a higher number

of degrees of freedom is needed to model such complicated and localized deformations. Two

such functions are the 2D polynomial and 2D spline interpolation functions. In both cases, their

functions are fitted to the coordinate relationships between image A and image B:

u1 = T1(v1, v2) (3.19)

and

u2 = T2(v1, v2), (3.20)

where (u1, u2) and (v1, v2) are the Euclidean coordinates of image A and image B, respectively. T1

and T2 are the functions with which either the polynomial or spline functions will be fitted. How

these interpolation functions are solved will be discussed in the following subsections as they will

be utilized in transforming PB-PCX images of the thoracic cage.

3.2.3.1 Polynomial interpolation

Polynomial interpolation approximates T1 and T2, appearing in Eqs. 3.19 and 3.20, to be in the

form of a polynomial:

u1 =

N∑
i=0

N∑
j=0

K1
i jv

i
1v j

2 (3.21)

and

u2 =

N∑
i=0

N∑
j=0

K2
i jv

i
1v j

2, (3.22)
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where K1 and K2 are the polynomial coefficients for an Nth order polynomial.

From here on the following steps for solving the polynomial coefficient will only be shown for

K1 as similar steps can be made for K2. Using the M known control point pairs, Ai → (u1i, u2i)

and Bi → (v1i, v2i) where i = 1, 2...,M, these are substituted into Eq. 3.21 and expressed in matrix

form between u1 and (v1, v2):



u11

u12
...

u1M


=



V ′21 v11V ′21 v2
11V ′21 · · · vN

11V ′21

V ′22 v12V ′22 v2
12V ′22 · · · vN

12V ′22
...

...
...

. . .
...

V ′2M v1MV ′2M v2
1MV ′21 · · · vN

1MV ′2M





K1
0

K1
1
...

K1
N


, (3.23)

where

V ′2i = (1, v2i, v2
2i, · · · , v

N
2i) (3.24)

and

K1
i = (K1

i0,K
1
i1, · · · ,K

1
iN). (3.25)

This presents a system of linear equations, and in order to obtain a unique solution for K1 the

number of control point pairs should be equal to or greater than the number of unknown polynomial

coefficients. In the above matrix, there are (N + 1)2 unknown polynomial coefficients K1
i , thus there

must be at least M ≥ (N + 1)2 control points. Equation 3.23 can be rewritten in shorthand notation

as:

u1 = VK1. (3.26)

To solve for the coefficients K1
i j that best fit to the points (v1i, v2i, u1i), the method of least

squares is adapted. The coefficients K1
i j that are chosen return the minimal absolute squared

difference between the observed and fitted points, known as the residual error Σ2. In this case:

Σ2 =

M∑
i=1

|u1 − T1(Bi)|2

=
∥∥∥u1 − VK1

∥∥∥2
,

(3.27)

where the coefficients are found through minimizing Σ2. This is equivalent to finding the zero

gradient of Σ2 with respect to each coefficient K1
i j. Thus, Σ2 is differentiated in terms of each

coefficient K1
i j and set to zero to solve for K1

i j. Starting from Eq. 3.27:
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Σ2 = (u1 − VK1) · (u1 − VK1)

= (u1 − VK1)ᵀ(u1 − VK1)

= u1
ᵀu1 −K1ᵀVᵀu1 − u1

ᵀVK1 + K1ᵀVᵀVK1

= u1
ᵀu1 − 2K1ᵀVᵀu1 + K1ᵀVᵀVK1

∇K1(Σ2) = −2Vᵀu1 + 2VᵀVK1

= 0,

K1 = (VᵀV)−1Vᵀu1.

(3.28)

Here, the matrix transpose is denoted by ᵀ. In going from the 3rd to 4th line of Eq. 3.28, notice that

u1
ᵀVK1 = (K1ᵀVᵀu1)ᵀ, and since it is a scalar2, (K1ᵀVᵀu1)ᵀ = K1ᵀVᵀu1. If VᵀV is invertible,

then the coefficients K1 of the polynomial function T1 can be solved. The expression (VᵀV)−1Vᵀ is

known as the pseudoinverse of V in the case of an over-determined system. Pseudoinverse matrices

are a generalization of the inverse square matrix for non-square matrices (Penrose and Todd, 1955).

When the similarity measure SSD was introduced earlier in this section, the importance of

the residual error being the absolute difference rather than the absolute squared difference was

highlighted to avoid giving disproportionate weighting to large differences in intensity due to noise.

In the context of fitting a function, giving greater weighting to larger residual errors can cause

over-fitting. This is particularly problematic when using higher order polynomials. Instead of just

fitting to the trend of the points, the minor fluctuations due, for example, to misregistrations, are

also fitted. Consequently, coordinates between control points will be poorly transformed. However,

for polynomial fitting the residual error must be squared, as performed in Eq. 3.27, so that it is

continuously differentiable with respect to K1 everywhere in order to solve for the minima3.

3.2.3.2 2D spline interpolation

An alternative to using large order polynomials is dividing the coordinate transform maps, (v1, v2, u1)

and (v1, v2, u2), into piecewise polynomials of lower order to map complex transformations. For

2K1ᵀ is a row matrix, Vᵀ is a N × M matrix, and u1 is a column matrix. The product of their matrices K1ᵀVᵀu1,
therefore returns a scalar quantity.

3Consider a differentiable function u with independent variable x and that it crosses the x-axis at x = h. The minima
of |u| and |u|2 will then both occur at x = h. In the context of polynomial fitting, x = h represents the polynomial
coefficient that minimizes the residual error |u|2. This is determined by differentiating |u|2 and solving for x at d|u|2

dx = 0.
It will be shown that |u| cannot instead be defined as the residual error since it is non-differentiable at x = h. The proof
is as follows: at |u|6= 0, d

dx |u|=
d
dx (u2)1/2 = u

|u|
du
dx and therefore is differentiable. However, at x = h, d|u|

dx is indeterminate
(= 0

0 ). Instead, the limit can be computed: limx→h+
|u|−0

h = |u|
h and limx→h−

|u|−0
h = −|u|

h . Since the limits do not converge to

the same value, |u| is non-differentiable at x = h. Conversely, the limit of d|u|2

dx exists and therefore |u|2 is differentiable at
x = h.
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this thesis, Delaunay triangulation is employed to divide the coordinate transform maps into

triangles, where the control points form the vertices, until maximal planar subdivision (MPS) is

achieved (Delaunay, 1934; de Berg et al., 2008). This occurs when adding additional edges (lines

linking the vertices) will destroy planarity (crossing of edges). Then the coordinates within each

triangle are interpolated to construct the transformation map. Linear interpolation can be employed

but so can higher order polynomials. In comparison to the former, the latter returns a smoother

transformation function and consequently so too the warped image. This is due to the condition

imposed when fitting that higher order polynomials between triangles have equal derivatives. The

main disadvantage is it is more time consuming.

An important attribute of Delaunay triangulation is that, although there are multiple ways of

achieving MPS, it is able to determine which MPS will return the most accurate transformation

map. To demonstrate how this is achieved, consider the set of control points shown in Figure 3.4

that can be triangulated in two different ways to achieve MPS. Looking at the point marked by q,

its value is interpolated differently in Figs. 3.4(a) and 3.4(b). In general, the further apart control

points used to interpolate are, the greater uncertainty there is about the value at point q, and thus a

greater likelihood its interpolated value will return a large error. It can be seen in Fig. 3.4(a) that

the triangle MNF (or EMN) formed by the shorter edge MN would likely return a more accurate

interpolated value than the triangle EFM (or EFN) formed by the longer edge EF in Fig. 3.4(b).

The shorter edge is known as a legal edge as opposed to an illegal edge that formed the skinnier

triangle. Delaunay triangulation detects these illegal edges and corrects for them by flipping the

edges to form legal edges such as in Fig. 3.4. In reference to Fig. 3.4(a), it detects illegal edges by

constructing a circle through the control points in contact with the edge through q (i.e. points M

and N) and either E or F. If the fourth control point lies in the interior of the circle then it is an

illegal edge, otherwise it is a legal edge (de Berg et al., 2008).

Spline interpolation is generally more stable than polynomial interpolation when fitting to

complex transformation maps since it avoids the problem of overfitting and introducing large

unwanted oscillations around the edges of the image due to the Runge phenomenon (Runge, 1901).

Also, control points that are not accurately registered only affect the alignment accuracy around

those control points since the transformation map is independently interpolated in each Delaunay

triangle.
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Figure 3.4: Delaunay triangulation. (a) and (b) shows the two possible ways of achieving MPS
of the control points (filled circles). (a) is more accurate in interpolating point q than (b) because
the line used to interpolate is shorter.

3.2.4 Image Alignment of the Thoracic Cage

Based on the success of previous studies in aligning chest x-ray images utilizing either area- or

feature-based image registration, it was considered that the former would likely be more accurate

and robust against a weak signal-to-noise ratio (SNR). An appropriate combination of similarity

measure and transformation function was then required to provide a high level of accuracy for

aligning the thoracic cage without heavy computation constraints. The latter point is important

since dynamic imaging returns numerous images, each requiring alignment. Both the similarity

measure and transformation function are evaluated together by calculating the relative difference in

total intensity (RDTI) between the transformed image BT̂ and image A:

RDT I =

1 −
∑N

i=1
∑M

j=1 |B(i, j)T̂ − A(i, j)| −
∑N

i=1
∑M

j=1 |B(i, j)T̂ − B(i, j)|∑N
i=1

∑M
j=1 |B(i, j) − A(i, j)|

 × 100. (3.29)

Non-rigid warping does not conserve the total image intensity. Hence, the absolute difference

in the total intensity of B and BT̂ was subtracted from the subtracted images of BT̂ and A so that

the value of RDTI represented the difference due to misalignment only. A value of 0% means the
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alignment of the images has not improved whereas at 100%, the total intensity of the subtracted

image is 0, meaning perfect alignment. Negative RDTI indicates worsening of the alignment.

In order to select the most appropriate similarity measure and transformation function for

thoracic imaging, tests were performed on an artist’s impression of a rib cage, as shown in Fig. 3.5.

Figure 3.5(a) shows the original depiction of a chest that was transformed using a barrel distortion

to mimic the motion of the ribs during inspiration as shown in Fig. 3.5(b). This was achieved by

assigning a number of control points, Ai, equally spaced 25 pixels apart in Fig. 3.5(a). The position

of these control points is shown in Fig. 3.5(c). Each column of control points was altered to follow

an arc of a circle where the left and right half of the control points followed the left and right arc of

a circle, respectively. These are denoted as Bi. To begin, the outermost column of control points

was mapped out to a circle of radius 5000 pixels. Each subsequent column of control points traced

out a circle of radius 27 pixels less than the previous one such that the curvature of these columns

of control points increased gradually towards the center of the image. The final result is shown

in Fig. 3.5(d). The image in Fig. 3.5(a) was then transformed from Ai to Bi using a 3rd order 2D

polynomial to obtain the barrel distorted image shown in Fig. 3.5(b), which increased its size from

764 × 804 pixels to 807 × 782 pixels.

Various combinations of similarity measures and transformation function were tested on the

barrel distorted image in Fig. 3.5(b) to see how well it aligned back to Fig. 3.5(a). The Interactive

Data Language (IDL 7.1) was used to run all in-built and custom-developed similarity measures

and transformation functions as well as all other image processing algorithms in the remaining

chapters. The in-built functions used here were: polywarp.pro, poly_2D.pro and warp_tri.pro. IDL

7.1 was operated on a PC using an Intel R©CoreTM2 Duo, 3.32GHz CPU with 4 GB of RAM.

For each similarity measure, which are CC, SAD and MI, the kernel and search area size were

64 × 64 pixel and 128 × 128 pixel, respectively. Beginning at the top left corner of Figs. 3.5(a) and

3.5(b), a search area and kernel was chosen, respectively, where the initial coordinates of the kernel

coincided with the center of the search area. The search area and kernel were then translated in

increments of 16 pixels across and 16 pixels down. At each interval the similarity measure was

applied to determine the region within the search area that best matched with the kernel. A pair of

control point sets, Ai and Bi, was thus obtained. Bi represents the coordinates of the central pixel of

each kernel in the barrel distorted chest image and Ai represents the coordinates where the central

pixel of each kernel produced the best fit within the search area of the original chest image.

Before fitting a transformation function to the pair of control point sets, certain pairs of control

points were removed to ensure the alignment was optimally smooth and accurate. Each pair of
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(a) (b)

(c) (d)

Figure 3.5: An illustration of a chest (a) before and (b) after undergoing a barrel distortion to
resemble the movement made during inspiration. While these images look very similar, they can
clearly be differentiated from the degree of curvature at the edge of the images. (c) and (d) show
the control points used to distort (a) using a 3rd order 2D polynomial function.

control points describes a shift vector, defined as the vector Ai-Bi. Based on knowing what the

direction and magnitude of the shift vectors should be, those pointing more than 10o away from

the expected direction and having a magnitude exceeding the known maximum magnitude were

discarded. Those that remained will be known as filtered control points. For each similarity

measure, the filtered control points were used to transform the chest with different orders of 2D

polynomials and spline functions.

Figure 3.6 shows the performance of the different area-based alignment techniques. Overall,

the SAD method presented the most quantitatively accurate result with MI surprisingly returning

the worst results; this latter finding may be due to the use of small kernel sizes. Whilst small
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Figure 3.6: Comparison of different combinations of similarity measures and transformation
functions in terms of the RDTI values (%) and average time taken (mins) to align the images in
Figs. 3.5(a) and 3.5(b). An RDTI value of 100% represents perfect alignment. The RDTI values
calculated for the 7th order 2D polynomial transformation function returned negative values due
to over-fitting of control points (not plotted).

kernel sizes affect the performance of all the similarity measures it seems MI has been affected to a

larger extent. Unlike the other two similarity measures, MI does not assume a linear relationship

between the intensities of the two images. This is a useful property to have when implemented in

inter-modality image registration; however, it also increases the probability for a misregistration

to occur. For example, if a kernel overlaps a region of the search area that does not resemble the

kernel, but as long as there is a strong one-to-one function between the intensities of the images, MI

will return a high value since the joint histogram will form a sharp curve and that both the kernel

and search area enclose anatomical structures. Misregistration could be minimized using smaller

bin sizes for the histogram, but this increases computation time considerably.
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The time taken to perform each combination of similarity measures and transformation functions

was computed and averaged over the transformation functions (see Fig. 3.6). They were averaged

because the time required to perform any of the transformation functions was negligible compared

to that of the similarity measures. The SAD method took 20 mins to register all the kernels while

CC was completed in less than a minute as a consequence of using the fast Fourier transform (FFT).

The MI method required 1624 mins (~27 hours) to align a single image with most of the time spent

plotting an intensity histogram for each kernel/search area pair. This time could have been reduced

by increasing the histogram bin size, but that was found to significantly decrease the accuracy of

the alignment.

Polynomial interpolation provided better alignment compared to spline interpolation for all

three similarity measures. This is not surprising as the barrel distortion was generated using

a polynomial function. Beyond the 5th order 2D polynomial the alignment accuracy quickly

deteriorated due to over-fitting of control points (Runge’s phenomenon). Spline interpolation was

not as accurate, but still had RDTI values > 60%. Interestingly, biquintic spline interpolation

performed much worse than bilinear spline interpolation. This may be due to the former imposing

that the transformation function is smooth while sacrificing alignment accuracy.

Considering that the motion of the lung will not follow a perfectly polynomial-shaped distortion

in 2D, spline interpolation would be more stable against more elaborate movements. CC is only

marginally less accurate but exhibits far greater computational efficiency. Therefore, CC and

bilinear spline interpolation were chosen for their time efficiency and robustness while retaining

high accuracy. This combination of similarity measure and transformation function was also found

to be most accurate in correcting spatial distortions in images recorded for this thesis using x-ray

cameras coupled to a tapered fiber optic element (Islam et al., 2010).

3.3 Area-Based Image Alignment Approach

The work presented in this section is based upon that by Leong et al. (2013a). This section describes

an area-based (AB) alignment method for segmenting bone from sequences of PB-PCX chest

images of breathing rabbit kittens (section 3.3.1). By isolating the image of the lungs from that

of the bones, these segmented images enable the calculation of changes in air volume in highly

localized regions of the lung. The results showing the accuracy of the alignment and the calculated

volumes are presented in section 3.3.2. A discussion on the implications of these results is provided

in section 3.3.3.
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3.3.1 Methodology

Image acquisition

Imaging experiments were performed in Hutch 3 of beamline 20B2 at the SPring-8 synchrotron

radiation source, Japan (Goto et al., 2001). A Si (111) double-bounce monochromator was tuned to

24 keV, which has been shown to provide optimum SNR and bone/soft-tissue contrast for imaging

rabbit kittens on this beamline (Kitchen et al., 2008). The relative energy width was ∆E/E~10−4

and the photon flux density was ~2 × 108 photons/s/mm2. The PB-PCX imaging setup was adapted

(see Fig. 2.3) with the subject placed approximately D = 210 m downstream of the source and the

detector positioned a further L = 3 m downstream. Newborn rabbit kittens were imaged as part of

two experiments. The first group were imaged live at a frame rate of 3 Hz, with a respiratory cycle

of 2.5 s. Images were recorded with an exposure time of 40 ms using a high resolution detector

comprised of a fiber optic (FOP) taper bonded between the 4000 × 2672 pixel Hamamatsu CCD

camera (C9300-124F21) and a 20 µm thick gadolinium oxysulfide (Gd2O2S:Tb+;P43) phosphor.

The effective pixel size was 16.2 µm based on the taper ratio of 1.8:1 and a native pixel size of

9 µm. Kittens in the second group were humanely killed via anaesthetic overdose prior to imaging.

These kittens were imaged at a frame rate of 1 Hz and exposure time of 40 ms, with a respiratory

cycle of ∼10 mins, using a 25 µm thick gadolinium oxysulfide phosphor-coupled CCD camera

(Hamamatsu, C4742-95HR). A tandem lens system provided an effective pixel size of 22.47 µm

(after 2×2 pixel binning).

Sample preparation

All procedures involving animals were approved by the Monash University Animal Ethics Com-

mittee and the SPring-8 Animal Care and Use Committee. Pregnant New Zealand white rabbits

at 31 days of gestation were anaesthetized by an intravenous injection of propofol (Rapinovet;

12 mg kg−1 bolus, 40 mg h−1 infusion). Rabbit kittens were delivered by caesarean section, se-

dated and surgically intubated. The umbilical cord was then cut and the kittens were placed in a

water-filled cylindrical polymethyl methacrylate (PMMA) container, with their heads out of the

container and sealed by a rubber diaphragm surrounding their necks. A custom-made remotely

controlled mechanical ventilator was connected to the endotracheal tube (Kitchen et al., 2010a). At

birth and before breathing began for the first time, the lungs are filled with fluid. Several images

were recorded of the lungs in their fluid-filled (non-aerated) state before ventilating. Rabbits and

rabbit kittens imaged in vivo were humanely killed via anaesthetic overdose at the end of each
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experiment.

Image processing

For quantitative volumetric analysis, the dark current arising from the detector was subtracted from

the images, which were subsequently normalized against the incident beam intensity. This was

achieved by first averaging 20 dark field images with the shutter closed and 20 flat field images

with the shutter reopened and the object absent at the end of each imaging sequence. Nonlinear

spatial distortions arising from the FOP camera, as a result of imperfect alignment of the fiber

bundles at each end of the taper, were corrected by the use of Delaunay triangulation with bilinear

spline interpolation (Islam et al., 2010). Low frequency trends were then removed to aid the cross

correlation process since it is highly sensitive to large transverse gradients in the background

intensity (remember that Eq. 3.11 is used to compute CC, which is not normalized against σA′σB′

and therefore does not correct for such gradients) and their removal reduced the occurrence of

misregistrations. These trends included: (i) the parabolic profile produced by the cylindrical

container; (ii) the high energy (harmonic) x-rays reflected by the crystal monochromators creating

a narrow horizontal band across the image; and (iii) the low frequency components of the air-filled

lungs (which was added back when performing the lung volume analysis). To correct for the

parabolic profile, a horizontal rectangular ROI below the lungs was selected along the container,

averaged vertically, smoothed, then least-squares fitted with a 6th order one-dimensional (1D)

polynomial. The polynomial curve was extruded vertically and subtracted from the images. The

higher harmonic contaminants were corrected in the same manner but without polynomial fitting.

The low frequency components of the aerated lungs were removed by subtracting a 200 × 200 pixel

boxcar smoothed image of the lungs.

During sequence acquisition the beam intensity was prone to fluctuation due, for example,

to the loss and top-up of electrons in the synchrotron storage ring and thermal drifting of the

monochromator crystals. This was corrected by rescaling each image to a chosen reference frame

using the average intensity in a uniform region somewhere away from the moving kitten.

Image registration

A suitable non-aerated image was selected as the reference image, which was then registered and

warped to each aerated image. This was achieved in two steps, where images were corrected

first for globally- then locally-induced bone misalignments. The former arise from the movement

relating to the kitten floating in the container. Kitchen et al. (2008) corrected for this by tracking

the movement of a single vertebra using CC (Eq. 3.11). Here, that approach was extended to
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tracking multiple vertebrae as it was found that each moved slightly independently to one another.

The sizes and coordinates of the kernels enclosing each vertebra in the non-aerated image were

specified by the user. The corresponding search areas were automatically centered at the same

coordinates and enlarged by 10%. Each pair of control points was calculated using CC (Eq. 3.11),

which were then replicated horizontally to both edges of the image, allowing the images to be

transformed in its entirety. This aligned the vertebral column of the two images and enabled the

coordinates of regions where the ribs articulated with the vertebra, which will be written in short

form as vertebra-rib (VR) points, to be fixed between images when locally aligning the bones to

correct for respiratory-related motion, that is, locally-induced bone misalignments (described next).

The thoracic cavity was then partitioned into three regions: left/right lungs and the vertebral

column. A series of 64 × 64 pixel kernels were selected at a sample rate of 32 pixels for the left

and right lungs and correlated using CC (Eq. 3.11) with their corresponding 128 × 128 pixel search

areas. This corrected for localized movements associated with the expansion of the thoracic cage.

A kernel of this size was chosen as it was sufficiently large to enclose a small segment of at most a

single rib as each moves independently. The size of the search area was chosen to account for the

largest likely rib displacement. Both the kernel and search area sizes can easily be modified if the

parameters of the imaging system, such as magnification and pixel size, are changed.

The pair of control points determined for the left/right lungs underwent a filtration process to

remove unrealistic shift vectors. Control points were kept if all three of the following criteria were

met: (i) the CC value was above a given threshold value (Keane and Adrian, 1990); (ii) the absolute

difference between the angle of the shift vector and average angle of the adjacent shift vectors was

less than 20◦; and (iii) the absolute difference between the magnitude of the shift vector and average

magnitude of the adjacent shift vectors was less than 5 pixels (81 µm). Image noise introduces

noise in the CC output images. A threshold value was applied to ensure that only matched regions

with CC values significantly greater than that returned by purely noisy regions were accepted. This

threshold value was chosen to equal the CC peak value returned when a pair of water-only 64 × 64

pixel ROIs chosen outside the rabbit, but within the container, were cross-correlated. The angle of

20◦ and magnitude 5 pixels were selected based on a trial and error approach. These values were

found to optimize the ratio of realistic to unrealistic shift vectors for chest images with various

degrees of movement, yielding comparatively smooth transformations and one-to-one mapping

of the coordinates. The left and right lungs of the non-aerated image were transformed using the

filtered control points and recombined together with the vertebral column to construct the registered

image. To minimize the computation time required to perform image alignment and phase retrieval,
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the region outside the chest, which includes the forelimbs, was masked out.

Image analysis

After aligning the PB-PCX images, SIPRA was used to determine the change in their projected

thickness and subsequently that of their VL utilizing Eq. 2.7. The attenuation coefficient (µ) and

refractive index decrement (δ) of water are required as input to SIPRA. The latter was calculated

earlier in section 3.1 to be 3.991 × 10−1 (24 keV), while the former was calibrated by isolating a

large section of 20 PB-PCX images that contained the water-filled container only. The inner and

outer diameter of the container was measured to be 32.0 ± 0.1 mm and 39.0 ± 0.1 mm, respectively.

Using the Beer–Lambert law (Eq. 1.35b), the attenuation coefficient of PMMA (µPMMA=48.91 m−1)

obtained from the NIST database (NIST, 2014) and its thickness (7 mm), the attenuation signal of

the container was removed. µ was then calculated to be 54.64 ± 0.01 m−1 using the Beer–Lambert

attenuation law. This is similar to the value 54.735 m−1 (24 keV) for water obtained from the NIST

database (NIST, 2014). The absolute uncertainty of the measured VL was determined by measuring

the standard deviation (σ) of the volume difference in a water-only ROI between the reference

and the set of 2252 aerated images against the ROI size (N × M pixels). The points were fitted

with a rational exponent function (3.543 × 10−7 × [N ×M]3/4 + 3.654 × 10−6) from which σ can

be calculated for any sized ROI4.

Because of the non-linear dependence between the PB-PCX image intensity and projected

material thickness, phase retrieval was performed on the individual images first before subtracting

them. The direct subtraction of PB-PCX images shown in the results section (section 3.3.2) are

only to display how successfully the images were aligned.

3.3.2 Results

Chest Segmentation

The AB alignment method was successfully tested on several sets of PB-PCX images of rabbit

kitten chests during mechanical ventilation. A non-aerated image was chosen as the reference image

to have its thoracic cage aligned with that of each image recorded during ventilation. Figure 3.7(a)

shows the non-aerated lungs of the reference image from one such dataset. The remaining sequence

of images, Fig. 3.7(b-f), shows the lungs during one respiratory cycle. The speckle pattern seen in

4It was found that the intensity values between pixels had some degree of correlation. This may arise from crosstalk
between pixels. Consequently, the uncertainty of the measured volume in a region is not the quadrature sum of that
of the individual pixels within the region. If this was done, the uncertainty in the intensity of a given region would be
overestimated. The method described in the main text for calculating the uncertainty in any size region accounts for the
intensity correlation between pixels.
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the aerated chest images is created by x-rays converging as a consequence of the alveoli mimicking

aberrated compound refractive lenses (Kitchen et al., 2004). This will be explained in greater detail

in chapter 4. As a consequence of utilizing a non-aerated image, the calculated volume difference

is approximately equal to the total VL in the aerated image; thus, the absolute rather than relative

VL can be measured. Furthermore, the lack of speckles in the non-aerated image means the kernel

can treat the speckles in the search area as high frequency noise, against which CC is robust, hence

only the bone is registered.

(a) (b) (c)

(d) (e) (f)

Figure 3.7: A series of 24×21 mm2 PB-PCX chest images of a newborn rabbit kitten recorded at
3 Hz with (a) fluid-filled lungs and (b-f) over one respiratory cycle, beginning mid-inspiration.
The x-ray beam energy was set to 24 keV and the images were recorded at 3 m ODD.

Figure 3.8(a) shows the direct subtraction of Fig. 3.7(a) from Fig. 3.7(c). Due to the expansion

of the thoracic cage as the lung fills with air and the movement of the kitten, the bones do not

exactly overlap and therefore bone artefacts appear in the subtracted image. The images were then

registered to correct for global movement. Here ends the similarity between the AB alignment

technique developed herein and preceding work by Kitchen et al. (2008). While in both cases

the vertebral column is aligned, the AB alignment technique proceeds to align the ribs, thus

forming a fully registered image. Images whose vertebral column only was aligned are denoted

as unregistered images. Figure 3.8(b) displays the images subtracted after global correction. This



88 High Spatiotemporal ResolutionMeasurement of Regional Lung Air Volumes

shows the vertebral column aligned accurately whilst each rib appears to rotate about the side of

the connected vertebra. This highlights the assumption made earlier on the VR points being fixed

to be a good approximation when aligning the ribs.

Local shift vectors were next calculated for each lung to correct for the rib movement and

screened for unrealistic vectors. Figure 3.8(c) shows the resultant shift vectors. Note that only one

tenth of the vectors are displayed for clarity. The zero magnitude shift vectors at the VR points are

not visible. A histogram showing the distribution of the magnitude of the resultant shift vectors

is presented in Fig. 3.8(d). This shows a majority of the magnitudes are realistic since they are

approximately consistent with the extent of displacement of the ribs. A small minority of unrealistic

shift vectors remain. Although the selection criteria could be altered to become more stringent, too

many realistic shift vectors would also be filtered out, thereby adversely affecting accuracy of the

alignment.

Using the filtered control points, the reference image was transformed and subtracted from

the aerated image, as shown in Fig. 3.8(e). Only small misalignment errors can be seen as faint

artefacts predominantly along the outer borders of the chest. Since alignment was restricted to

within the chest, strong artefacts are visible outside the chest. The total time taken to perform

the image alignment was approximately 7 seconds on the aforementioned PC (see section 3.2.4).

Figure 3.8(f) reveals the subtracted phase-retrieved images yielding the projected thickness of air.

A ROI of at least a single pixel in size and of any shape could then be chosen from Fig. 3.8(f)

to calculate the regional VL enclosed within it. As stated in the previous section, phase retrieval

cannot be performed on Fig. 3.8(e) where the images have already been directly subtracted due to

the nonlinear dependence between the intensity and projected material thickness (see Eq. 1.58b).

Lung volume calculations

Figure 3.9(a) shows total VL calculated using the registered and unregistered reference images

during mechanical ventilation of the kitten. That is, the technique developed here is compared

to that of Kitchen et al. (2008). Both techniques return almost identical total VL with the small

discrepancies attributed to non-conservation of the total intensity of the image after non-rigid

warping of the non-aerated image (as discussed in section 3.2.4). The small discrepancies are well

within the uncertainties of both techniques, demonstrating there is negligible detrimental effect of

the non-rigid transformation on altering the total volume of the non-aerated image.

The ability of the techniques to measure VL on a pixel-by-pixel basis was compared. For 1000

sequential PB-PCX images of the same kitten in Fig. 3.8, the VL was computed at each pixel using
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Image Alignment. (a) The direct subtraction of the non-aerated (Fig. 3.7(a)) and
an aerated (Fig. 3.7(c)) image show the relative movement of the bony structures during image
acquisition. (b) Subtraction after alignment of the vertebrae in the non-aerated image with that
of the aerated image. (c) After correlating the entire thoracic cage the control point pairs are
represented by shift vectors (∼ one tenth of the vectors are shown), which enabled the non-
aerated image to be transformed using bilinear spline interpolation. (d) A histogram showing
the distribution of the magnitude of the shift vectors (the zero magnitude shift vectors have been
suppressed). (e) Subtraction of the transformed image from that of the aerated image leaving only
the signal due to the air in the lungs (plus artefacts). (f) To perform lung volume analysis, the
registered images underwent phase retrieval before subtraction, yielding the change in projected
thickness of water at each pixel. Image size: 24×21 mm2.

the two techniques. The percentage difference in the calculated VL between the two techniques was

calculated at each pixel for the 1000 images and represented as a histogram, as shown in Fig. 3.9(b).

The shaded region in Fig. 3.9(b) shows that on average 16% of pixels within the lungs have a

volume difference greater than 20%, and given that the fractional uncertainty of the measured

change in VL in each pixel is only ∼1%, these differences are significant. The majority of these

differences occurred around where the bones were not aligned, as evidenced in Figs. 3.9(c) and

3.9(d). These results show that the bones have a detrimental effect when performing regional VL

analysis and the AB alignment technique is able to effectively remove the bones to accurately

measure the VL on a pixel-by-pixel basis.

A set of PB-PCX chest images attained from the second group (slow inflation rates; ∼10 mins)

was used to generate an image sequence whose pixel values show the percentage of its maximum
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Figure 3.9: Lung air volume analysis. (a) The total VL was determined over several respiratory
cycles, beginning at t=11 mins after initiation of mechanical ventilation, using the misaligned
(unregistered) and aligned (registered) non-aerated images. The absolute % volume difference
in the calculated pixel-by-pixel VL from 1000 aerated images using misaligned and aligned
non-aerated images are represented in a (b) histogram and as a (c) image of half a lung. The
greatest differences are seen at the edge of the chest where the movement of the ribs is largest, as
demonstrated in (d), which shows a plot of the line profile indicated by the thick white horizontal
line in (c).

VL capacity. Each aerated image was aligned to the reference (non-aerated) image of the sequence

and the change in VL was computed from each pixel. The volumetric images were stacked to

determine the time when each pixel within the lungs reached its maximum air volume. Figure 3.10

shows maps of the time taken for each region of the lungs to reach 10%, 50% and 80% of its

maximum air volume, on a pixel-by-pixel basis. It can be seen that the major airways aerated first,

as expected, followed by an otherwise relatively uniform aeration up to 10% of maximum volume

(Fig. 3.10(a)). However, the left lung (left side of image) then aerated towards 50% maximum air

volume more slowly in comparison to the right lung (Fig. 3.10(b)). The peripheral regions of the

lungs are also seen to more slowly ventilate during the latter stages of the inspiratory period. At the

end of inspiration the lungs asymptoted toward their maximum air volume more uniformly as the

applied airway pressure also reached its plateau (Fig. 3.10(c)). Therefore, the combined panels in

Fig. 3.10 show that the time constant of aeration is highly localized.
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(a) (b) (c)

Figure 3.10: Non-uniform lung aeration. A series of maps were produced showing the time
taken for each pixel of the lung to reach (a) 10%, (b) 50% and (c) 80% of their maximum air
volume. Image size: 24×21 mm2.

3.3.3 Discussion

This work demonstrates that the technique for measuring VL, developed by Kitchen et al. (2008),

can be extended to more accurately measure regional VL using the AB alignment method. This

method has been able to accurately align PB-PCX chest images with minimal computational cost,

primarily by exploiting the use of FFT-based CC. Other similarity measures were investigated,

namely MI and SAD on illustrative chest images (see section 3.2.4), and the resultant subtracted

images at best showed a marginal improvement compared to CC, based on the visual inspection of

artefacts and the calculated RDTI; however, this coincided with a large increase in computation

time. These similarity measures were also tested on PB-PCX chest images (not shown) and

similarly showed no significant improvement compared to CC in alignment from the resultant

subtracted images. Polynomial interpolation was also considered as an alternative to bilinear spline

interpolation since it has the ability to produce a smooth transformation; however, the complexity

in the motion of the chest requires a higher order polynomial, but is prone to suffering Runge’s

phenomenon.

Figure 3.10 shows the distribution of gas can be inhomogeneous across the lung. The AB

alignment-based volumetric method developed herein can help determine whether this is the norm

for healthy lungs and how it differs from lung-related diseases. With the development of high-

powered laboratory-based x-ray sources capable of performing PB-PCX imaging, this technique

can become a cheap, fast and potentially readily accessible diagnostic tool that can recognize and

localize lung-related diseases earlier than conventional x-ray imaging and global lung function tests
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(see chapter 2). The ability to study the homogeneity of lung aeration can also be highly beneficial

to reducing ventilation-induced lung injury (Hooper et al., 2007). This is particularly important for

preterm infant resuscitation. By first using this technique to gain insight into the crucial but transient

period of achieving lung aeration at birth, ventilation strategies can be optimized accordingly.

Compared to conventional x-ray imaging, PB-PCX images of the chest can enhance the edges

of the conducting zone that contains the trachea, bronchi and bronchioles, and the respiratory zone,

which includes the alveoli (Kitchen et al., 2005). This is most prominent from the alveoli, which

produces a speckle signal (see Fig. 3.7). However, in aligning the bones, the signals from these

structures weaken that of the bone. Consequently, during image registration the kernels selected

in those parts of the lungs enclosing strong phase contrast from these structures either weakly

correlated or misregistered. This resulted in a moderate portion of shift vectors rejected in the

central areas of the lungs where a majority of those structure resided, as shown in Fig. 3.8(c) by

the lack of shift vectors. Despite this, the movement of the medial segment of the ribs during

breathing is closely restricted to rotating around their corresponding VR point. This was adequately

accounted for by the piecewise bilinear spline interpolation between the zero magnitude VR points

and their closest lateral control point.

At increasing differential movement of the chest, the AB alignment method became decreasingly

accurate. This was attributed to two factors: the increasingly inaccurate assumption that the medial

segment of the ribs is just rotating around their corresponding VR point, and the increasing angular

rotation of the ribs in the sagittal plane (i.e., the plane perpendicular to that of the PB-PCX chest

image). The latter causes the degree of overlap of the ribs between images to change, which cannot

be account for by the AB alignment method, since it assumes a one-to-one coordinate mapping.

The latter is also responsible for attributing to the former factor. A measurable indicator of the

degree of differential movement was the VL change. It was found, on average, that for total VL

changes less than 0.60 ml, the alignment was quite accurate but gradually deteriorated beyond this

volume as the movement of the thoracic cage became overly complex (see CD attached to this

thesis). Given that the average weight of a rabbit kitten was 30 g, the maximum volume change per

unit mass of 0.60/.03=20 ml/kg, which is considered to be a large volume change (Wilson et al.,

2012). Therefore, this technique could be applied to measure a range of VL in patients.

A non-aerated reference image may not always be available or possible to obtain in some

studies. Alternatively, an aerated PB-PCX chest image could be used as a reference image. While

this will instead provide relative volumetric measurements, which still carries much important

respiratory information, a more problematic issue is that cross-correlating ROIs that have speckles
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present in both is likely to increase the prevalence of misregistrations as the speckles weaken the

signal intensity of the bone. Moreover, the speckles may correlate more strongly with each other

than the bones themselves. Consequently, the AB alignment method may not be as robust in using

an aerated chest image as a reference image to measure relative changes in VL.

Regardless of whether the reference image is an aerated or non-aerated chest image, the

maximum accurately measurable volume change could be increased either through modifying the

method or image acquisition process. More shift vectors could be retained by correcting rather

than rejecting them. These corrections could be made based on preserving the continuity and

smoothness of the transformation (see e.g. Li et al. (2000)). Smaller sized kernels were trialled

to better handle the localized lung movement, but the structural information it enclosed was less

unique and became more prone to misregistrations. Shortening the object-to-detector propagation

distance to reduce or remove the phase contrast could improve the bone contrast relative to the

speckle contrast to reduce the occurrence of misregistrations. Finally, if the reference image was an

aerated PB-PCX chest image, then it could be chosen to be the image with the least lung aeration

(i.e. least speckle contrast).

3.4 Feature and Area-Based Hybrid Image Alignment

Approach

The AB alignment method presented in the previous section is completely automated and requires

no a priori knowledge about the structure of the chest. The kernels are sampled evenly throughout

the image and correlated within their respective search areas. However, many of the shift vectors

are rejected for being unrealistic and not all of those that are accepted by the filter are realistic.

Herein, a feature and area-based hybrid (FAH) alignment method is described in section 3.4.1 that

is more selective in which kernels are used to perform CC and the shift vectors are corrected based

on a priori knowledge of the thoracic cage. It was hypothesized that this would significantly reduce

the computation time and improve the alignment, particularly at high lung volumes. The results

showing the accuracy of the alignment and how it compares with the AB alignment method are

presented in section 3.4.2. A discussion on its drawbacks and possible improvements is provided in

section 3.4.3.
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3.4.1 Methodology

Consider a non-aerated and aerated PB-PCX chest image of the lung such as those seen in Fig. 3.7.

The steps outlined below are applied after the images are pre-processed and their vertebral column

are aligned as described in section 3.3.1. These steps are designed to track each rib in those images

to help guide the selection of kernels (in the non-aerate image) and search areas (in the aerated

image). This process considerably reduces the computation time since the number of kernels to be

registered is notably reduced. The steps outlined below are demonstrated on the aerated image in

Fig. 3.7(c) and displayed in Fig. 3.11.

1. A threshold is applied to isolate the signal of the bone and create a binary image (Fig. 3.11(a)).

2. The binary image undergoes morphological ‘opening’5 using a structure element with

dimensions comparable to the known width of the ribs to fill any gaps between segments that

are part of the same rib and remove any signals that are not that of bone (Fig. 3.11(b)).

3. A small horizontal rectangle is created for each rib with one end positioned at the VR

point that is provided by the user during alignment of the vertebral column. The other end

protrudes away from the vertebrae and is rotated until it overlaps with the rib. The degree of

overlap is measured by implementing CC between the rectangle and rib in polar coordinates

(Fig. 3.11(c)).

4. A 32 × 32 pixel box is then created at each of the VR coordinates and moved away at

intervals of 32 pixels from the vertebrae along their respective ribs in the direction at which

the horizontal rectangle is angled. At every interval, the central coordinate of the box is

recorded and stored as a control point for that rib. The direction is adjusted whenever it

moves away from the rib, which is indicated by a significant change in the mean intensity of

the pixels enclosed in the box. Since the ribs overlap, there is the possibility that the box

may track one rib and continue onto the rib below it. To avoid this, the lowest rib in the chest

is tracked first. There a 2nd order 1D polynomial is fitted to the control points of that rib

as a lower bound for tracking the rib above. An upper bound is also set. Since the ribs are

slanted downwards, the upper bound for each rib is set to equal the y-coordinate of their

corresponding VR point (Fig. 3.11(d)).

5Morphological operators alter the structures within a given image utilizing a structure element. The structure
element is an image shape that probes the given image. In morphological opening, the structure element acts to reduce
the size of and remove any structures smaller than its size. It then expands those remaining structures to restore their size.
It can be realized then that morphological opening is useful in removing noisy signals and small structures from images.
More details are provided in section 5.10 on morphological operators. See Shih (2009) for a more detailed description of
morphological operators.
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(a) (b)

(c) (d)

Figure 3.11: Tracking of the ribs was done in the following order: (a) creating a binary image of
the bones; (b) applying the morphological operator ‘open’ to enhance signal of bone and remove
signals not of bone (for example, lung speckle); (c) determining the initial direction of each rib
from the VR point; and (d) applying an upper (blue) and lower (red) boundary for tracking each
rib. Images: 24.4 × 20.9 mm2.

Kernels of size 64 × 64 pixels were created at each control point of the rib that were tracked in

the non-aerated image and cross-correlated (Eq. 3.11) with their corresponding 128× 128 pixel size

search area located at the control points tracked in the aerated image. For each control point the

returned shift vector was replicated twice, once above and once below it, in the direction normal to

the tangent line of the 2nd order 1D polynomial function (fitted during step 4 outlined above) at the

control point. These replicated shift vectors can be seen in Fig. 3.12(c) as a trio of shift vectors.

Each of these span the width of the ribs to ensure each rib is independently warped. That is, each

rib warped is not influenced by those adjacent to it.
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The set of shift vectors for each rib underwent a correction phase. It is assumed that the rib

movement is purely rotation-based (i.e., it rotates around its corresponding VR point) and that the

curvature of the ribs is approximately quadratic. Thus, the amplitude and angle of each set of shift

vectors should increase quadratically and remain constant, respectively, along the rib away from

the VR point. To enforce this, the amplitudes of the shift vectors along each rib were weighted

fitted with a 2nd order 1D polynomial . Those shift vectors whose amplitude differ more than three

standard deviations from that of the fitted polynomial was replaced by that of the polynomial. The

weighting assigned to the control points was proportional to the distance between the position of

the shift vectors and the VR point. More weighting was provided to those furthest away from the

VR point as the bone signal is not masked by lung speckle and is therefore most likely to return

correct shift vectors. Constraining the angle of the shift vectors to be constant is not an entirely

accurate assumption. While the rib movement is rotation-based, it rotates three dimensionally.

Consequently, its 2D projected image would not necessarily show the angle of the shift vectors

to be constant along a rib. Instead, the angles of the shift vectors were smoothed using a four

pixel boxcar average to ensure smoothness of the transformation. Finally, the non-aerated image is

transformed to align with the aerated image using bilinear spline interpolation.

3.4.2 Results

Figure 3.12 demonstrates the FAH alignment method applied to the same pair of images aligned

using the AB method in Fig. 3.8 (i.e. Figs. 3.7(a) and 3.7(c)). The FAH alignment method took

place after their vertebral columns were aligned, as shown in Fig. 3.8(b). Both images were

thresholded to create a binary image, then underwent morphological opening to remove non-bony

signals and to fill in the gaps between segments that were part of the same rib. The resultant

binary images are shown in Fig. 3.11(b) and Fig. 3.12(a) for the aerated and non-aerated images,

respectively. Both images show the bones successfully isolated and, importantly, that the lung

speckle signal was removed from the aerated image. The ribs at the bottom of the image could

not be entirely recovered as they were only partially calcified. Before calcification, bone is made

of cartilage tissue that have similar complex refractive indices to lung tissue (Gilbert, 2010, ch.

14). Consequently the signal of partially calcified bone cannot be differentiated from that of lung

tissue. However, the remaining ribs were successfully isolated and tracked. This is shown for

the non-aerated image in Fig. 3.12(a) with white markers overlaid on top of the binary image

representing the control points of the ribs. The aerated lungs also had its ribs successfully isolated

and tracked (not shown). The shift vectors generated after image registration are presented in
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(a)

(b) (c)

Figure 3.12: Feature and area-based hybrid alignment method. (a) Using the steps demonstrated
in Fig. 3.11, the ribs were tracked in both images, but only that of the non-aerated lungs is shown.
(b) After correlating the entire thoracic cage the control point pairs are represented by shift vectors,
which enabled the non-aerated image to be transformed using bilinear spline interpolation. (c)
The transformed image is subtracted from the air-filled image, thus isolating the signal of water.
Images: 24.4 × 20.9 mm2.

Fig. 3.12(b). After applying the bilinear spline transformation function to the non-aerated chest

image, this was subtracted from the aerated image as shown in Fig. 3.12(c).

The total time taken to run the FAH alignment method on a 1480 × 1296 pixel image pair was

~7 seconds using a PC with identical specifications as that used to run the AB alignment method.

The computation time is similar to that of the AB method, which also took ~7 seconds to align the

same pair of images. The amount of time saved by reducing the number of kernels was offset by

the time taken to track the ribs. However, this time includes tracking both images. This only needs
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to be done once on the non-aerated image, after which only the aerated images are tracked. The

total computation time where one image is tracked was then reduced to ~5 seconds.

To compare the accuracy of the AB and FAH alignment techniques, a panel of subtracted

images is presented in Fig. 3.13. At low VL, there is small differential bone movement and both

techniques accurately align the ribs, as shown in Fig. 3.13(a) and 3.13(b). At a higher air volume

where there was larger differential bone movement the FAH alignment method produced more

bone artefacts in the subtracted image (Fig. 3.13(c)) than the AB alignment method (Fig. 3.13(d)).

A video clip comparing the two techniques for an image sequence showing the ventilation of a

newborn rabbit kitten in the CD accompanying this thesis.

3.4.3 Discussion

In section 3.3 an AB alignment method was presented that involved kernels and search areas being

evenly sampled across two images for image registration. It was found to be highly accurate in

aligning PB-PCX chest images over a large range of VL. A drawback to this method was that a

large number of shift vectors returned were deemed unrealistic and were therefore rejected. This

prompted the development of a FAH alignment method that isolates the bony signal beforehand

then performing image registration only of the bony signal, where realistic shift vectors are most

likely returned. The aim was to reduce the computation time and improve the alignment accuracy.

Since there are only a small number of shift vectors per selected rib, filtering them based on their

surrounding shift vectors would likely detrimentally affect the alignment accuracy than improve it.

Instead, the ribs were modeled using 2nd order 1D polynomials to correct the size and direction

of shift vectors that are considered unrealistic. Both the AB and FAH algorithms worked well at

low VL, but the former was more accurate than the latter at high VL. It is likely that, in the FAH

alignment method, modeling the amplitude of the shift vectors as a 2nd order 1D polynomial was

overly simplistic at high VL. Higher order polynomials were trialled but were found to produce

unwanted oscillations along a rib after warping due to over-fitting. Alternatively, 2D splines can be

fitted. Whilst this would provide a greater degree of freedom for fitting to the control points, it was

found to cause non-smooth warping of the ribs (data not shown).

Even at low VL where modeling the amplitude of the shift vectors as a 2nd order 2D polynomial

appeared sufficient, bone artefacts still appeared at times. This is likely due to the over-reliance on

too few realistic shift vectors. That is, fitting a polynomial function on only a few control points

can become heavily influenced by one or two unrealistic control points. Consequently, the entire

rib can become inaccurately aligned. Conversely, unrealistic shift vectors in the AB alignment
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(a) (b)

(c) (d)

Figure 3.13: Two aerated PB-PCX chest images, at low and high lung air volume, are aligned
and subtracted from a non-aerated PB-PCX chest image using the AB [(a) and (c)] and FAH [(b)
and (d)] alignment algorithms. The top and bottom panel of images correspond to the lungs at
low and high air volumes, respectively. Images: 24.4 × 20.9 mm2.
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method only affect a small region of the chest. Since the AB alignment method was found to be

more robust than the FAH alignment method, only the results of the AB alignment method were

reported in the paper by Leong et al. (2013a).

3.5 Concluding Remarks

Accurately measuring the homogeneity of lung aeration is likely to be highly beneficial to studying

and diagnosing child and adult lung-related disease and for optimizing mechanical ventilation

strategies for preterm infants. Herein, two alignment algorithms were developed to segment the

bony anatomy from 2D PB-PCX images of the chest to isolate the lungs. Then, using SIPRA, the

change in air volumes between localized regions of the lung, down to the micron scale pixel size,

could be measured. However, since the FAH alignment method was found to be less robust than the

AB alignment method and was accurate over smaller changes in lung volumes, the AB alignment

method was chosen to perform localized VL measurements.

The total VL measured with and without segmenting the bones using the AB alignment method

agreed. This showed that the total volume in the non-aerated chest image after image warping

with a non-rigid transformation function was negligibly altered compared to the uncertainty in

the total volume. In analyzing the VL regionally, there was significant improvement compared to

images that were not aligned, primarily in areas where there was large differential movement of

the bones. However, when the differential movement of the bones becomes overly complex the

alignment accuracy reduced. Therefore, the AB alignment method is capable of isolating the lungs

and providing high spatiotemporal resolution measures of lung aeration from 2D PB-PCX images,

without the use of contrast agents that are required in other image-based volumetric techniques.



Measurement of Absolute Regional
Lung Air Volumes from Near-Field
X-ray Speckles

4

4.1 Introduction

In chapter 3 a method for performing regional measurements of lung air volume (VL) was introduced.

To reiterate, that method aligns the bony anatomy between two propagation-based phase contrast x-

ray (PB-PCX) chest images to remove the bones and isolate the image of lungs before applying the

single image phase retrieval algorithm (SIPRA) to measure changes in VL between them. Removal

of the bones is what enables accurate volumetric analysis on small regions of the lungs. However,

perfect alignment of the bones is impossible to achieve because the chest moves three-dimensionally

while alignment is performed on the two-dimensional (2D) projection. The ribs appear to move

relative to one another and the amount of overlap between them can change from one image to the

next. The transformation function utilized for warping the chest images is one-to-one and does not

account for such complex motion. While image transformation functions need not be one-to-one, it

is necessary to avoid unrealistic transformation of the chest such as shearing and folding (Samant

et al., 2013). This shortcoming is pronounced when the differential movement of the bones is large,

particularly at high volumes, which limits regional measurement of VL to low volumes.

Another major drawback to the method in chapter 3, and the other phase contrast x-ray (PCX)

imaging-based techniques described in section 2.2, is that the chest must be immersed in water.

This considerably complicates the experimental setup and greatly reduces the signal-to-noise ratio

(SNR) due to extra attenuation of the x-rays by the water bath. Whilst SNR can be improved

by increasing the intensity of the x-ray source, a concomitant increase in radiation dose ensues.

Moreover, that technique is limited to measuring changes in VL, rather than absolute VL, unless an

image of a non-aerated lung is available; this is not always easily obtained. The functional residual

capacity (FRC)1 for example, is an important physiological parameter that can only be determined

1The total lung air volume at the end of passive expiration.
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from measures of absolute VL.

Notice that in Fig. 3.7, PB-PCX chest images have the appearance of a speckle pattern,

characterized by bright and dark intensity variation, whose contrast appears synchronized with

the volume of air in the lungs. Figure 4.1 zooms in on Fig. 3.7(f) to show the lung speckles in

more detail. In this chapter, a novel approach for measuring regional VL from PB-PCX images is

described that relates lung speckle contrast directly to VL. As lung speckle is made of intensity

peaks and troughs that vary randomly over a given range of length scales, representing it in

Fourier space by taking the magnitude of its Fourier transform (power spectrum) produces peaks

revealing the dominant band of spatial frequencies (length scales) of the speckle. The area (optical

power) contained under those peaks is how speckle contrast will be quantified. A generalized

overview of the current literature on the origin and characteristics of speckle patterns is provided in

section 4.2, followed by a derivation relating the area under the power spectra of lung speckle to

VL in sections 4.3-4.5. This method is tested and validated on simulated lung tissue (section 4.6)

and then on the lungs of rabbit kittens (section 4.7). The results and discussion are presented in

sections 4.6 and 4.7 with concluding remarks given in section 4.8. This chapter is an expanded

version of the work published in Optics Express (Leong et al., 2013b).

4.2 The Origin of Lung X-ray Speckles

Spatially random samples such as particles suspended in liquid (colloids) and optically rough

surfaces of textured materials contain rapid spatial fluctuations in complex refractive index (Giglio

et al., 2001; Fricke-Begemann and Hinsch, 2004; Kirkpatrick et al., 2007; Mishchenko, 2008;

Goodman, 2010; Carnibella et al., 2012b). The phase of an incident wavefield is randomly altered

as it traverses through or reflects off such an object (Goodman, 2010). For a partially coherent

wavefield, the intensity downstream of the exit surface of the object exhibits bright and dark spots,

known as speckles, formed by constructive and destructive interference of coherently scattered

electromagnetic waves. The speckles can be viewed as many Fresnel fringes arising from multiple

interferences between the incident and scattered waves. This highlights that a non-zero degree

of spatial coherence is required for speckles to manifest since Fresnel fringes also require such

coherence. However, this is not the case for temporal coherence as Wilkins et al. (1996) shows

a high degree of temporal coherence is not required to produce Fresnel fringes and therefore to

produce speckle.

Given the conditions for the formation of speckle provided above, namely sufficient spatial
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Figure 4.1: A PB-PCX aerated chest image, as was shown in Fig. 3.7(d), with a small part of the
chest magnified (inset image size: 6.48 × 6.48 mm2) to show the speckled pattern of the lung in
greater detail.

coherence and scattering from a rough structure, it is not surprising that speckle is observed in

PB-PCX images of the lungs. First, PB-PCX imaging utilizes a partially spatially coherent x-ray

source with a coherence area of several microns, enough to form Fresnel fringes (see section 1.3).

Second, the lung is a spatially random medium that contains many air-filled alveoli that are

uniformly pseudo-randomly distributed and enclosed by thin regions of tissue. This forms many

tissue-air interfaces that cause x-rays to coherently scatter in many directions, dictated by the laws

of refraction and diffraction, and interfere with the incident wavefield to form bright and dark

intensity variations (i.e., speckles).

Yagi et al. (1999) were one of the first to encounter lung speckle, which was observed using

PB-PCX chest images of a mouse. They hypothesized that speckles formed as a consequence of

alveoli being present in the lungs since the speckles were of similar size to the alveoli. Suzuki et al.

(2002) also observed lung speckle and attributed it to refraction off multiple alveoli superimposed

in an image. They found that the object-to-detector propagation distance (ODD) and x-ray energy

can be optimized to achieve maximal lung speckle contrast by providing sufficient refraction for
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edge enhancement but not too much such that it blurs the image. Kitchen et al. (2004) investigated

the origin of these speckles by simulating PB-PCX images of lung tissue. Here they modeled lung

tissue as voids randomly embedded in water. PB-PCX images were generated by first calculating

the wavefield at the exit plane utilizing the projection approximation. Second, the exit plane

wavefield was numerically propagated to the detector plane using the angular spectrum formalism

of scalar wave optics, as described in section 1.9. Speckles similar to those seen in PB-PCX chest

images of a rabbit kitten were observed. They hypothesized that alveoli act locally as aberrated

compound refractive lenses, causing rays to gradually become more focused and form bright

intensity spots as part of the speckle pattern.

An additional feature seen in simulated lung speckle, as performed by Kitchen et al. (2004), was

the appearance of screw-type singularities in the wavefield phase beyond the near-field regime. In

accordance with the work by Berry and Dennis (2000), random phase screens (which lungs can be

categorized as) do lead to a type of singularity known as phase vortices. These are characterized as

having points of zero intensity around which the phase changes by an integer multiple of 2π. That

is, a closed line integral over the phase map that encloses the zero intensity pixel is non-zero. This

necessarily means the phase around the vortex is discontinuous, exhibiting a screw-type character.

Therefore, beyond the near-field regime, the speckled intensity field due to x-ray scattering from

the lungs will have zero intensities associated with phase vortices. Within the near-field regime

and under the projection approximation no phase vortices should appear (Schmalz et al., 2011),

provided that there are no structural vortices such as a spiral staircase phase plate, which in general

will hold true for imaging the lungs (Kitchen et al., 2004). It is possible then that the presence (or

lack of) phase vortices could help determine if the lung is imaged within the near-field regime. The

PB-PCX chest images recorded for this thesis possess no phase singularities but this fact does not

necessarily mean it was recorded within the near-field regime. The spatial resolution may have

been insufficient to resolve the zero intensities2 or that phase singularities did not manifest. Kitchen

et al. (2004) demonstrated the effects of spatial resolution on phase vortices by observing that they

appear in simulated sub-micron pixel size PB-PCX lung tissue images but disappeared when the

images were binned to a pixel size of the order of microns.

2If spatial resolution is sufficiently low such that diffraction effects can be ignored and therefore operate within
the formalism of geometrical optics, phase vortices (or more generally phase singularities) do not appear and instead
one has infinite intensities known as caustics. For example, consider parallel rays illuminating a lens. According to
geometrical optics, these rays will converge to the focal point of the lens where it predicts there is infinite intensity, but
no phase singularities. Scalar wave optics instead predicts an Airy disk of peaked but non-infinite intensity that softens
the caustics. Airy disks produce phase singularities in the form of concentric rings with zero intensities and associated
discontinuous phase jumps of π (Basistiy et al., 1995). Phase vortices in lung speckles can therefore be seen if there is
sufficient spatial resolution to resolve the intensity minima.
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4.3 Structural Dependency Between Scatterer and its Speckle

Pattern

Speckle possesses statistical properties that depend upon that of the scattering object within the

near-field regime. An example of such dependency is discussed by Goodman (2010, sec 4.5.5),

where an expression is derived relating speckle contrast, defined as the ratio between the standard

deviation and mean of the speckle intensity, to surface roughness (standard deviation of surface

height). This is further developed by Tchvialeva et al. (2010) and Jeyapoovan et al. (2012). The

importance of measuring surface roughness ranges from designing commercial products (for

example, touchpads (Mizuhara et al., 2013)) to studying geological materials (for example, soil

erosion (Zheng et al., 2014)).

Brogioli (2009) and Cerbino et al. (2008) expanded the work by Goodman (2010) for colloids.

Cerbino et al. (2008) showed that the scattered intensity distribution depends on the particle sizes

present in colloidal samples. Brogioli (2009) was able to extract size distribution and relative

concentrations of particles in colloids encoded in the scattered intensity distribution. This was

achieved iteratively by generating scattered intensity distributions using Mie theory3 for a range

of simulated colloidal samples until they converged to that experimentally attained. Similarly,

Carnibella et al. (2012b) developed an iterative method for measuring size distribution and relative

concentrations of particles from colloidal samples, but from the autocorrelation function4 of

speckled intensity patterns. Autocorrelation functions of colloidal samples were simulated utilizing

the angular spectrum formalism described in section 1.9.

All the methods, including that by Cerbino et al. (2008), Brogioli (2009) and Goodman (2010),

developed thus far on relating speckle patterns to the object are valid only in the near-field regime.

However, the definition of their near-field regime differs from that defined here towards the end

of section 1.7.1. Their definition defines the regime to be where the properties of the speckled

intensity downstream of the object depends only on that of the random object. Beyond this regime

(i.e. for larger ODDs), the properties of the speckled wavefield become altered due to the finite

source size from which the incident wavefield was generated. The near-field regime defined in

this thesis is the regime over which near-field intensity equation (NFIE) (Eq. 1.55) is valid. This

3Mie theory gives exact solutions to Maxwell’s equations (Eqs. 1.1-1.4) for wavefields scattering off a sphere (Mie,
1908). Although, the solutions are non-trivial and take the form of an infinite series of basis functions. Consequently, it
would be difficult to directly extract structural information of the particles from the scattered intensity using Mie theory.

4For a given 2D image I(r⊥), its autocorrelation (A) is defined as A(∆r⊥) =
∫

I(r⊥)I(r⊥ + ∆r⊥)dr⊥. Alternatively,
the autocorrelation of I(r⊥) can be calculated by taking the inverse Fourier transform of its power spectrum. The
autocorrelation function encodes much structurally-dependent information such as the arrangement of particles and their
sizes.
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equation breaks down well before the finite source size affects the wavefield and therefore the

near-field regime defined in this thesis is far more stringent than the other. The method developed by

Carnibella et al. (2012b) is, however, valid beyond both near-field regimes as speckle images were

simulated beyond those regimes and were successfully used to determine particle size distributions

of colloidal samples from their experimentally recorded speckles.

The colloidal samples studied by Brogioli (2009) and Cerbino et al. (2008) contain suspended

particles of sizes that range from nanometers to a few microns, which are comparable to the

wavelength of the incident wavefield, hence justifying utilizing the Mie theory to accurately model

the scattered intensity of the particles and therefore extract its size and concentration. However,

alveolar sizes are typically many orders larger than the wavelength (~0.1Å) of the incident x-ray

wavefield, ranging from 100-200 µm. In this case, simpler alternatives to Mie theory can be

employed, as is the focus of the next section, where a mathematical model is developed to relate

the lung speckle contrast from PB-PCX images in the near-field regime to the structural properties

of the lung. In this chapter, the mathematical method is applied to measure VL and, in chapter 5, to

measure the dominant alveolar size and number.

4.4 Power spectrum of a near-field 2D intensity map of a 3D

random distribution of identical voids

Consider a medium composed of a single material of projected thickness T (r⊥) enclosing N non-

absorbing voids (i.e. βvoid = δvoid = 0) of radius R, as shown in Fig. 4.2. The void sizes that

are of interest to this study (i.e., the alveolus) are around six order of magnitude larger than the

wavelength and impart relatively weak phase gradients. These facts culminate in allowing the

projection approximation to be made where it neglects the effects of transverse scattering within

the sample (see Eq. 1.37). Hence, for a paraxial monochromatic wavefield propagating along the z

direction, the transmitted intensity (I(r⊥, z = 0)) and phase shift (ϕ(r⊥, z = 0)) at the exit surface of

the homogeneous medium are:

I(r⊥, z = 0) = exp[−2kβT (r⊥)] (4.1)

and

ϕ(r⊥, z = 0) = −kδT (r⊥). (4.2)
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In the near-field regime (NF ≥ max{1, |ϕ|max}), NFIE was provided in Eq. 1.55. Substituting

Eqs. 4.1 and 4.2 into Eq. 1.55 gives:

I(r⊥, z = L)
I(r⊥, z = 0)

− 1 = Lδ
[
∇2
⊥T (r⊥) − µ |∇⊥T (r⊥)|2

]
, (4.3)

with all terms as originally defined and µ = 2kβ. Note that ω has been dropped from Eq. 1.55 for

notational simplicity.

The two approximations, namely the projection approximation and the near-field condition,

made to derive the last equation have similar conditions governing their validity range. For the

near-field condition, it is NF ≥ max{π, |ϕ|max}, and for the projection approximation it is Eq. 1.37.

If in Eq. 1.37, the following substitutions are made, |∇⊥ϕ|max'
|ϕ|max

a and ∆x ' a, then it can be

seen that if the near-field condition holds then generally so does the projection approximation,

provided that T < L. This inequality is true for all the phase contrast imaging data shown in this

thesis, and therefore ensured that the projection approximation was always satisfied whenever the

images were recorded within the near-field regime.

To remove any dependency on attenuation in Eq. 4.3, the second term on the RHS can be

neglected if µ |∇⊥T (r⊥)|2 �
∣∣∣∇2
⊥T (r⊥)

∣∣∣. This was justified by Paganin (2006, p. 297) by stating

that this was possible if the ‘transverse intensity gradient and/or transverse phase gradient is

not too strong’. Here, it is explicitly shown when this is true. The following substitutions are

made: |∇⊥T | ' |∆T | /a where |∆T | is the maximum magnitude of the difference in projected

thickness across the characteristic length a over which T varies appreciably in the r⊥ plane, and∣∣∣∇2
⊥T

∣∣∣ ' |∆T | /a2. This simplifies the inequality to µ|∆T (r⊥)|� 1. The lung tissue projected

Coherent 
x-ray source

Object
PB-PCX 

lung speckled 
image

L
z

x

y

Figure 4.2: Alveoli in lung tissue, modeled by voids uniformly randomly embedded within an
absorbing medium, are illuminated by a coherent x-ray source and a speckled PB-PCX image is
recorded a distance L from the exit surface of the object.
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thickness in rabbit kittens varies on average ~1 mm between adjacent pixels and as all lung imaging

was done at 24 keV, µ = 54.7 m−1 (NIST, 2014), thus µ|∆T (r⊥)|≈ 0.055. Consequently, the second

term on the RHS of Eq. 4.3 can be ignored, hence the absolute square of the Fourier transform of

Eq. 4.3 gives the power spectrum:

∣∣∣∣∣∣F
{

I(r⊥, z = L)
I(r⊥, z = 0)

− 1
}∣∣∣∣∣∣2 = L2δ2k4

⊥ |F {T (r⊥)}|2 . (4.4)

Here the Fourier derivative theorem was utilized to replace the Fourier transform of ∇2
⊥ with

−k2
⊥ = −(k2

x + k2
y ) (Paganin, 2006, sec. A.4). Returning to the object of interest, for a uniformly

random distribution of N air-filled spherical voids with radius R, each described by the object

function G̃(r) where G̃(r) = 1 for |r|≤ R and G̃(r) = 0 elsewhere, embedded in an absorbing

medium (V(r) is equal to unity everywhere in the volume and zero everywhere else), the object can

be expressed as a sum of convolutions:

T̃ (r) = V(r) −
N∑

n=0

δ(r − rn) ⊗ G̃(r), (4.5)

where δ’s are Dirac delta functions and rn represents the random position of the nth void within the

dimensions of the absorbing medium. The integral of the modeled lung T̃ (r) along the optic axis z

gives the projected thickness T (r⊥). For simplicity, the first term on the RHS of Eq. 4.5 will be

dropped as it affects only the zero spatial frequency in its corresponding power spectrum, which is

unimportant for the analysis performed in this thesis. Generally, the random positions of the voids

are unknown but the expectation value of the power spectrum of T̃ (r) can be evaluated without

this information. Since the voids are uniformly randomly distributed, any coordinate within the

absorbing medium has an equal probability of a void being found there. Thus, the expectation

value of the power spectrum of T̃ (r) is (Talbot, 1966):

〈∣∣∣∣F {
T̃ (r)

}∣∣∣∣2〉 =
[
N2δ̂(0, 0, 0) + N

] ∣∣∣∣F {
G̃(r)

}∣∣∣∣2 , (4.6)

where δ̂(0, 0, 0) has a value of unity at (0,0,0) and zero elsewhere (Kronecker delta). The expectation

value operation will be dropped for notational simplicity and the first term inside the square brackets

of Eq. 4.6 will also be dropped as it too only affects the zero spatial frequency. It can then be seen

that the power spectrum of the random distribution of voids is N times the power spectrum of a

single void for k⊥ 6= 0. This remains valid if the voids are uniformly randomly positioned and do

not overlap with neighboring voids (Talbot, 1966).
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To determine T (r⊥) =
∫

z T̃ (r)dz, the Fourier slice theorem is employed (Hseigh, 2003, sec.

3.5):

∣∣∣∣F {
T̃ (r)

}∣∣∣∣2 (k⊥, 0) =

∣∣∣∣∣∣∣∣∣F

∫
z

T̃ (r)dz


∣∣∣∣∣∣∣∣∣
2

(k⊥) = |F {T (r⊥)}|2 (k⊥), (4.7)

with a similar conclusion made for |F {G(r⊥)}|2. The 2D vectors in Fourier space are presented

by k⊥ = (kx, ky). If T̃ (r) is rotationally symmetric then T (r⊥) is independent of the orientation of

T̃ (r). For T̃ (r) to be rotationally symmetric, so too must be G̃(r) (i.e. for spherical particles). If

G̃(r) is not symmetric, but is randomly orientated, then
〈∣∣∣∣F {

T̃ (r)
}∣∣∣∣2〉 is approximately rotationally

symmetric with
∣∣∣∣F {

G̃(r)
}∣∣∣∣2 being the azimuthal and polar average of the power spectrum of a single

void extruded in the azimuthal and polar directions. Thus, Eq. (4.6) can be reduced to 2D:

|F {T (r⊥)}|2 = N |F {G(r⊥)}|2 , (4.8)

which is independent of object orientation.

Equation 4.8 shows that even though increasing the number of voids results in an increase in

the amount of overlap seen between them in the projected thickness image, the power spectrum

only changes by a multiplicative factor. This may seem counter-intuitive as the more voids there are

the shorter the characteristic length scale of the image, which would be expected to preferentially

amplify high spatial frequencies in the image. However, this is untrue so long as there is no physical

overlap between neighboring voids in three-dimensional (3D) space and the positions of the voids

are sufficiently random.

To determine |F {G(r⊥)}|2, the power spectrum of a 2D projected image of a sphere of radius R,

the following integral was solved:

∣∣∣∣F {
G̃(r)

}∣∣∣∣2 =

∣∣∣∣∣∫
V

G̃(r) exp(−2πik · r)dr
∣∣∣∣∣2 , (4.9)

where k = (kx, ky, kz) are 3D vectors in Fourier space. The evaluation of Eq. 4.9 is simplified

by the rotational invariance of G̃(r), which effectively reduces it to a one dimensional problem.

The integral in Eq. 4.9 can then be expressed analytically by first expanding then evaluating the

exponential term as a Taylor series to give an exact solution (Sykora, 2008):

∣∣∣∣F {
G̃(r)

}∣∣∣∣2 =

∣∣∣∣∣∣V 3
(kR)2

[
sin(kR)

kR
− cos(kR)

]∣∣∣∣∣∣2 , (4.10)

where k = |k|=
√

k2
x + k2

y + k2
z and V = 4

3πR3 is the volume of a sphere.
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Again, utilizing the Fourier slice theorem, the 2D power spectrum of a projected sphere is a

slice of its 3D power spectrum through the origin. Since the 3D power spectrum is rotationally

symmetric, the equation of the 2D power spectrum is identical to Eq. (4.10) but the z-coordinate is

dropped and k is redefined as k⊥.

The 2D version of Eq. 4.10, Eq. 4.8 and Eq. 4.4 are combined to arrive at the power spectrum

of the near-field 2D intensity map of a 3D random distribution of identical voids normalized against

its attenuation image5:

∣∣∣∣∣∣F
{

I(x, y, z = L)
I(x, y, z = 0)

− 1
}∣∣∣∣∣∣2 = L2δ2k4

⊥N

∣∣∣∣∣∣V 3
(k⊥R)2

[
sin(k⊥R)

k⊥R
− cos(k⊥R)

]∣∣∣∣∣∣2 . (4.11)

Here, I(r⊥, z = 0) can be recovered using SIPRA given in Eq. 1.60.

4.5 Determination of Lung Air Volume from Near-Field X-ray

Speckle

Hooper et al. (2007) showed a prominent peak could be seen in azimuthally averaged PB-PCX

power spectra of aerated rabbit kitten lungs and that the area (optical power) under the peak showed

a dependence on VL. The appearance of a prominent peak is consistent with Eq. 4.11 as it is a

damped oscillator function. The observed dependance between the prominent peak and VL is now

not surprising as both Eq. 4.11 and VL depend on the number and size of alveoli. The objective

of this section is to quantify this dependence, starting with Eq. 4.11. To determine the area under

the power spectrum (PSArea), Eq. 4.11 is integrated over a select band of radial spatial frequencies,

k⊥0 ≤ |k⊥| ≤ k⊥N , and over the azimuthal angles [0, 2π), then ξ = k⊥R is substituted to give:

PS Area = 16π2L2δ2NR
∫ ξN/R

ξ0/R

∣∣∣∣∣∣
[
sin(ξ)
ξ
− cos(ξ)

]∣∣∣∣∣∣2 dξ. (4.12)

The limits of the integral in Eq. 4.12 are dependent on R. However, under experimental

conditions, the higher order peaks of the oscillatory function inside the integral are suppressed by

the detector point spread function (PSF) and penumbral blurring, which explains why only a single

peak was seen by Hooper et al. (2007)6. Consequently, the measured PSArea will be dominated

5The derivation presented here also holds for absorbing particles in a non-absorbing medium. In this case, δ in
Eq. 4.4 will correspond to the absorbing particle. To see this, the power spectrum of a near-field 2D intensity map of a
3D random distribution of identical voids was shown in Eq. 1.50 to be dependent on its Fraunhofer diffraction pattern (i.e.
Fourier transform of its object function). Babinet’s principle states that the Fraunhofer diffraction pattern from an opaque
body is identical to that of an aperture of the same shape, except the zero frequency component, which is not relevant to
our analysis (Born and Wolf, 2000, sec. 8.3.2). Hence, their power spectra in the near-field will also be identical.

6The detector PSF indicates the degree of blurring of the image caused by the detector. The detectors utilized in this
thesis are scintillator-based where x-rays are converted into visible light by a material that absorbs x-rays and re-emits
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by the lowest order peak. This effect is demonstrated using simulated data in the results section

(Fig. 4.4(a)). Therefore, the limits of the integral from experimental images can be fixed so long as

it includes the first order peak. The area under it is equal to the integral of Eq. 4.12 over its first

order peak, bounded by the minima at ξ = 0 and ξ = 4.493 (these are the first two positive solutions

to Eq. 4.12), yielding:

PS Area = 34π2L2δ2NR. (4.13)

There are additional factors that have not entirely been accounted for in deriving Eq. 4.13,

namely penumbral blurring, the detector PSF and asymmetrically shaped alveoli. These factors

affect the area under all peaks in the power spectra. If the imaging setup remains unchanged

between recordings over time, then the power spectra are equally affected by penumbral blurring

and the detector PSF. While alveoli are not perfectly spherical, but more resemble polyhedra, they

are uniformly randomly positioned and oriented. Consequently, the derivation above is still valid

and PSArea maintains its proportionality with R. For polyhedra, R holds a different definition to

that of a sphere as will be revealed in the following proof. To prove PSArea is proportional to R for

any arbitrarily-shaped voids, Eq. 4.9 is generalized for a polyhedron with a value of unity in the

domain Ω(r) of its shape function and 0 elsewhere:

∣∣∣∣F {
G̃(x, y, z)

}∣∣∣∣2 =

∣∣∣∣∣∣
∫

Ω(r)
exp(−2πik · r)dr

∣∣∣∣∣∣2 . (4.14)

For simplicity, Eq. 4.14 is re-defined in spherical coordinates:

∣∣∣∣F {
G̃(r, θr, ϕr)

}
(k, θk, ϕk)

∣∣∣∣2 =

∣∣∣∣∣∣
∫

r

∫
θr

∫
ϕr

exp(−2πik · r) sin θrr2drdθrdϕr

∣∣∣∣∣∣2 , (4.15)

where (r,θr,φr) and (k,θk,φk) are the spherical coordinates of r and k, respectively. Note that

the subscripts do not indicate dependence on them; they serve to differentiate which angles are

associated with which coordinate space. To determine the spherical form of the exponential term in

Eq. 4.15, note that it is a plane wave and is a solution to the wave equation defined in Eq. 1.5. By

re-expressing the wave equation in spherical coordinates and then solving it to obtain the plane

wave solution, the spherical form of the exponential term is (Qang et al., 2008):

them as visible light. The visible light is re-emitted with angular divergence that increases with scintillator thickness,
causing blurring of the image. In addition, penumbral blurring arises from the finite x-ray source size and is related to
the degree of spatial coherence described in section 1.3. In footnote 7 of chapter 1, an analogy was given of Young’s
double slit where an increasing source size gradually blurred the fringe contrast until it was completely washed out,
which in Fourier space is equivalent to applying a low-pass filter.
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exp(−i2πk · r) = (2π)3
∞∑

l=0

l∑
m=−l

(−1)l jl(kr)Ym
l (θk, ϕk)Ym

l (θr, ϕr), (4.16)

where jl(kr) are spherical Bessel functions of order l, Ym
l (θk, φk) are spherical harmonic functions

of degree l and order m, and the overline represents the complex conjugate.

Substituting Eq. 4.16 into Eq. 4.15 gives:

∣∣∣∣F {
G̃(r, θr, ϕr)

}
(k, θk, ϕk)

∣∣∣∣2 =∣∣∣∣∣∣∣
∫

r

∫
θr

∫
ϕr

(2π)3
∞∑

l=0

l∑
m=−l

(−1)l jl(kr)Ym
l (θk, ϕk)Ym

l (θr, ϕr) sin(θr)r2drdθrdϕr

∣∣∣∣∣∣∣
2

. (4.17)

Equation 4.17 is first integrated with respect to r as it is implicitly dependent on θr and ϕr. This

can be seen by rewriting r = RG(θr, ϕr), where R is defined as the inradius that corresponds to the

radius of the largest circle that can be drawn within Ω(r) of the polyhedron. G(θr, ϕr) is an arbitrary

function defined the shape of the void. Thus, integrating the terms that include r:

A(r) =

∫
r

jl(kr)r2dr. (4.18)

A change of variables is made to bring out k by letting a = kr:

A(a) =
1
k3

∫
a

jl(a)a2da

=
1
k3 B(a)

=
1
k3 B(kRG(θr, ϕr)),

(4.19)

where B(a) =
∫

a jl(a)a2da. The exact form of B(a) is not important in this proof.

Substituting Eqs. 4.19, 4.17 and 4.8 into Eq. 1.50, the power spectrum of a near-field 2D image,

normalized against its attenuation image, of a 3D random distribution of identical arbitrarily shaped

polyhedron voids is attained:

∣∣∣∣∣∣F
{

I(x, y, z = L)
I(x, y, z = 0)

− 1
}∣∣∣∣∣∣2 = L2δ2k4

⊥

×

∣∣∣∣∣∣∣ 1
k3
⊥

∫
θr

∫
ϕr

(2π)3
∞∑

l=0

l∑
m=−l

(−1)lYm
l (θk, ϕk)Ym

l (θr, ϕr)dB(k⊥RG(θr, ϕr))θrdϕr

∣∣∣∣∣∣∣
2

. (4.20)

Here, the Fourier slice theorem was again utilized where the 2D power spectrum of an arbitrarily

shaped void is a slice of its 3D power spectrum through its origin, this is assuming that the voids



4.5 Determination of Lung Air Volume from Near-Field X-ray Speckle 113

are uniformly randomly distributed and orientated for its 3D power spectrum to be rotationally

symmetric. To determine PSArea, Eq. 4.20 is integrated over the first order peak and ξ = k⊥R is

substituted to give:

PS Area = L2δ2NR×∫
ξ

∣∣∣∣∣∣∣
∫
θr

∫
ϕr

(2π)3
∞∑

l=0

l∑
m=−l

(−1)lYm
l (θk, ϕk)Ym

l (θr, ϕr)B(ξG(θr, ϕr))dθrdϕr

∣∣∣∣∣∣∣
2

dξ. (4.21)

Equation 4.21 shows that for any arbitrarily shaped polyhedron voids, which are uniformly

randomly distributed and orientated, the area under the 2D power spectrum of its near-field image,

normalized against its attenuation image, is proportional to R. Evaluation of the triple integral term

in Eq. 4.21 would equal different values for different shaped polyhedra. For a sphere, it would equal

to 34π2 and therefore Eq. 4.21 reduces to Eq. 4.13. The alveoli were modeled as spheres because a

simple analytic solution for Eq. 4.10 exists. If the overall shape of the alveoli is non-spherical and

is known then an exact solution for PSArea can be solved.

Returning to the main objective of this section in relating PSArea to VL, since 90% of VL can

be accounted for in the alveoli, the remainder being the volume of the airways of the lungs (this

includes the trachea, bronchi and bronchioles) (Weibel, 1963), VL can be expressed as:

VL ∝ NR3. (4.22)

This expression is true for any arbitrarily shaped polyhedra7.

The relationship between VL and PSArea will depend on how N and R vary with time (t). That is,

if N and R were parametrized by N = atn and R = btr, respectively8, where n, r, a, b are constants,

and substituted in Eqs 4.13 and 4.22 it is easy to show that:

VL ∝ PS
n+3r
n+r

Area. (4.23)

7To prove Eq. 4.22 is true for all polyhedra, the following triple integral is written to determine the total volume
of N arbitrarily shaped polyhedra: V = N

∫
Ω(r)

dr, where Ω(r) is the domain of its shape function. This integral is

converted into spherical coordinates, i.e. V = N
∫

r

∫
θ

∫
ϕ

sin(θ)r2dr, and as was similarly argued just after Eq. 4.17, r
can be expressed as r = RG(θ, ϕ). Substituting this expression into the integral and integrating over R, the following
expression is obtained: V = 1

3 NR3
∫
θ

∫
ϕ

sin(θ)G3(θ, ϕ)dθdϕ. This proves that V ∝ NR3 as required. If the polyhedron was
assumed to be a sphere, then G(θ, ϕ) would be independent of θ and ϕ, and be equal to unity. This reduces the expression
for V to that of N spheres, V = 4

3 NR3.
8These ad hoc parametrization with respect to time of the alveolar number and size as a power law are supported by

other studies (Suki et al., 1994; Barabási et al., 1996). Many of the possible physiological events that take place in the
lung can be adequately described by a power law relationship. For instance, the beginning of inspiration can be marked
by t = 0, making a and b represent the initial number and size of alveoli. During inspiration, n and r can take on some
non-zero value to signify recruitment of alveoli and increase in their size. Then, during expiration, n and r can take on
some negative value along with different values for a and b to signify de-recruitment and decrease in size.
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In section 4.6, the expression given for PSArea (Eq. 4.13) is first validated from simulations

of PB-PCX images of colloids. Directly measuring VL from PSArea using Eq. 4.23 is not possible

unless the alveolar shape, detector PSF and penumbral blurring are accounted for, and that n, r,

a, and b are known. Instead, in section 4.7, PS Area will be calibrated against known values of VL

to account for these factors, which is then used to measure unknown values of VL from PB-PCX

chest images. The known VL values were calculated utilizing the method described in section 2.2.1

(Kitchen et al., 2008).

4.6 Validation of the Power Spectrum of a Random 3D

Distribution of Identical Voids

4.6.1 Methodology

To validate the relationship between the PSArea with N and R in Eq. 4.13, simulations were

performed with conditions set similarly to that of imaging real lung tissue. First the lung tissue

was simulated by creating a projected thickness image of uniformly randomly positioned spherical

voids within a uniform slab of tissue. Next the projection approximation was used to calculate

the amplitude and phase shift at the exit surface using Eqs. 1.35a and 1.35b to form the exit

surface wavefield. This was propagated using the angular spectrum formalism of scalar wave optics

described in section 1.9 to obtain the PB-PCX image. These steps are described in detail below and

the specific conditions for these simulations are summarized in Table 4.1.

Projected lung thickness images of size 11.8 × 11.8 mm2, with pixel size 0.59µm, were

produced by first creating a projected thickness map with a positive constant value set across the

image to represent the lung thickness. The position of each void was created using the Box-Muller

method to generate random 2D coordinates (Wilks, 2011). If including the void into the image

resulted in the maximum thickness of voids at any one pixel exceeding that of the lungs, then

an alternate coordinate would be generated until this was not the case. Due to the images being

discretely sampled, they were convolved with a Gaussian kernel, with full width half max (FWHM)

B=16µm to soften the jagged edges of the discretely sampled voids. This served to minimize the

number of pixels with |∇⊥ϕ| > π
2 radians per pixel so that the phase map at the exit surface was

sufficiently sampled.

Three different sets of projected thickness lung samples were generated. The range of void sizes

chosen for the lung samples corresponded to that of the alveoli observed in computed tomography

(CT) reconstructions of rabbit kitten lungs (see section 5.4, Figs 5.7(c) and 5.7(d)) and also in
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Pixel size (µm) 0.59
Mean alveolar radius (µm) 30, 35, 40, 45, 50, 55, 60, 65, 70, 75

Alveolar radius standard deviation (µm) 5.9
SOD (m; D) ∞

ODD (m; L) 1, 3
Attenuation coefficient (µw(NIST, 2014)) 54.735 m−1 (at 24 keV)

Refractive index decrement (δw(NIST, 2014)) 3.99×10−7 (at 24 keV)
Maximum volume packing fraction (%) 75

Lung thickness (mm) 10

Table 4.1: Parameters used for simulating PB-PCX images of lung tissue.

other studies (Kovar et al., 2002; Hooper et al., 2007; Bickenbach et al., 2009). Also, from the CT

reconstructions of rabbit kitten lungs, the volume packing density of alveoli was measured to be as

high as 76% and on average 54%. In the first set, 65 µm radius voids were uniformly randomly

packed in a 10 mm thick sample at 54% volume packing density. Several PB-PCX images were

simulated from this sample at different ODD to determine the optimal ODD at which to image the

kittens for calibrating VL against PSArea in section 4.7. In the second set of samples, the same lung

sample was generated as in the first set but with a 1 mm thick sample. Several such samples were

generated and stacked to achieve different sample thicknesses. This was to simulate lung tissue

with varying N while R was fixed. In the third set of samples, for each of the different mean sized

voids, 5900 voids were suspended in a 10 mm thick sample. In contrast to the first set, this was to

simulate lung tissue with varying R while keeping N fixed. A maximum volume packing fraction

of 75% was achieved from the sample with the largest mean radius void (75µm).

All simulated PB-PCX images were convolved with a Gaussian PSF of FWHM B = S L/D to

account for penumbral blurring (Gureyev et al., 2009). The source size S was set to 150×10 µm2 and

the source-to-object distance (SOD) D = 210 m. These parameters were those of the synchrotron

beamline used for experimental studies reported in section 4.7.1. The detector PSF was accounted

for by increasing the FWHM of the Gaussian PSF by 20µm. The value of 20µm was determined

from measuring the PSF of the detectors used to image kittens in section 4.7. PSArea was calculated

by integrating their power spectra from ko = 0.85 mm−1 (this was the smallest non-zero spatial

frequency sampled) to kN =Nyquist frequency.

4.6.2 Results

Before quantitatively validating the theory presented in section 4.4, simulated lung speckles were

qualitatively compared with experimental lung speckles in both real and reciprocal space. The
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experimental lung speckles are from a rabbit kitten imaged at 24 keV, 3 m ODD and with a pixel

size of 16.2 µm (see section 4.7.1 for details of the experimental conditions). The simulated lung

speckles were from the first sample set whose PB-PCX images was produced under those same

experimental conditions. The real and simulated speckles respectively shown in Fig. 4.3(a) and

4.3(b) appear very similar. This is reflected in their azimuthally averaged power spectra shown

in Fig. 4.3(c) and Fig. 4.3(d), respectively, with a dominant peak over a similar band of spatial

frequencies. This shows that modeling lung tissue as voids randomly embedded in an absorbing

material to be a highly accurate model.

While very similar, there were slight discrepancies between the real and simulated speckle

image. The intensity contrast of real speckles shown in Fig. 4.3(a) is lower than that of simulated

speckles in Fig. 4.3(b). This is reflected in their azimuthally averaged power spectra, where

for real lungs (Fig. 4.3(c)) the peak is broader and weaker than that of simulated lungs (Fig.

4.3(d)). There are a number of possible reasons: (1) the lung samples are not exactly the same in

regards to the alveoli/void shape, size distribution and volume packing density, (2) the detector

PSF and penumbral blurring were inaccurately accounted for, (3) there was incoherent scattering

by lung tissue and air between the object and detector, (4) the alveoli are closely packed rather

than uniformly randomly distributed (the effect of close packing on lung speckle will be discussed

in section 5.4), and (5) the projection approximation is enforced in simulations, but this may be

significantly violated in real experiments. The term significant was used as there will always be

some transverse scattering within the lungs that results in the exit surface wavefield deviating from

that predicted by the projection approximation.

Next, to verify the theory presented in section 4.4, namely Eq. 4.11, the power spectrum of

a simulated lung speckle image, normalized against its attenuation image, was plotted with that

expected using Eq. 4.11 (see Fig. 4.4(a)). The speckled image corresponded to voids with mean

radius 65 µm that were packed uniformly randomly in a 1 mm water-filled container at 1 m ODD.

Both power spectra show similar first order peaks. The position of their first order peaks are not

exactly aligned because the lung speckles were simulated from a Gaussian distribution of different

sized voids while the analytic solution assumed single sized voids equal to the mean size. Also,

the detector PSF and penumbral blurring was applied only to the simulated lung speckle, causing

its peak to shift to lower spatial frequencies. These are also responsible for partially suppressing

its second order peak and completely suppressing the remaining higher order peaks. In summary,

the similarity between the power spectra in Fig. 4.4(a) validates Eq. 4.11 up to the first order peak,

which is what the power spectrum is integrated over to calculate PSArea (see Eqs. 4.12 and 4.13).
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(a) (b)

(c) (d)

Figure 4.3: PB-PCX images of a ∼10 mm thick sample (a) of real and (b) simulated (mean radius
of 65 µm) lung tissue normalized by their phase retrieved attenuation image (image dimensions:
3.24 × 3.24 mm2). Their corresponding power spectra are shown in (c) and (d), respectively.

To verify the linear relationship between PSArea and N, as predicted by Eq. 4.11, PSArea

(normalized against the ODD) was plotted against the sample thickness of simulated lung tissue

from the second sample set at 1 m and 3 m ODD (see Fig. 4.4(b)). The sample thickness is

essentially proportional to N since the total volume fraction was made approximately constant

throughout the sample. At 1 m ODD, PSArea was directly proportional to N for all lung thicknesses.

However, at 3 m ODD, Fig. 4.4(a) shows N at first varies linearly with PSArea but begins to break

down at N = 3000 as NF approached, then became less than, max{1, |ϕ|max}.

The dependence between R and PSArea was investigated by plotting PSArea ( normalized against

the ODD) against R of simulated lung tissue from the third sample set at 1 m and 3 m ODD, as

shown in Fig. 4.4(c). As predicted by Eq. 4.11, PSArea varies linearly with R. Surprisingly, this is
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(a) (b)

(c) (d)

Figure 4.4: (a) Comparison of simulated power spectra of lung tissue, normalized against their
attenuation images, versus that given by Eq. 4.11, for voids of 65 µm radius at 1 m ODD. Plots
of PSArea, normalized against the ODD, of simulated lung tissue versus (b) number of voids, of
radius 65 µm, and (c) void radius with a maximum volume packing density of 75%; all at an
energy of 24 keV, and at 1 m and 3 m ODD. (d) A plot displaying the PSArea of 65 µm radius
voids packed in a 10 mm thick water-filled container against ODD compared with that calculated
from Eq. 4.11.

true even at 3 m ODD when NF is less than max{1, |ϕ|max}.

Figure 4.4(d) compares the PSArea calculated from the power spectra of simulated PB-PCX

images from the third sample set, normalized against their attenuation images, and that expected

using Eq. 4.13 over a range of ODD values. Setting an upper limit on the discrepancy between the

PSArea values at 10%, the near-field regime was found to extend at up to ∼2.7 m ODD (marked in

Fig. 4.4(d)). The maximum ODD within the near-field regime calculated from NF = max{1, |ϕ|max}

was found to be 0.83 m. Here, |ϕ|max represented the average phase excursion of the exit surface

wavefield instead of the maximum phase excursion to form a better statistical representation of

whether the PB-PCX image was within the near-field regime. The lack of agreement between

the maximum ODDs is likely due to the discrepancy threshold being set to 10%. Reducing

the discrepancy threshold would result in better agreement. However, a 10% error in PSArea is

sufficiently accurate for the work presented in this thesis. PB-PCX images of rabbit kittens in
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section 4.7 were therefore recorded at 3 m ODD. While choosing the ODD to be less than 2.7 m

would ensure the near-field condition was well satisfied, it was found that the contrast-to-noise

ratio (CNR) ratio of lung speckles was small and weakened the correlation between VL and PSArea.

This is elaborated upon in section 4.7.3.

4.6.3 Discussion

The theory presented in section 4.4 that relates speckle contrast to the size and number of voids

uniformly randomly distributed in water from simulations of their PB-PCX images has been

validated. The concentration and size of voids were chosen to resemble that of alveoli to determine

the optimal experimental conditions for imaging lungs under which the theory is approximately

valid.

The simulations performed herein employed the projection approximation to calculate exit

surface wavefields before determining the validity range of the near-field condition. In real

experiments, however, x-rays undergo transverse scattering within the sample and hence the

projection approximation is not always satisfied. Possible future work in addressing this issue is

provided in section 6.2.

The tissue thickness chosen to simulate lungs was similar to that of newborn rabbits. Human

lungs are, however, significantly thicker than that of rabbits with similar sized alveoli of 90-104 µm

in radius and there are many times more of them (Ochs et al., 2004). To remain within the validity of

the projection approximation and near-field condition, the x-ray source energy could be increased.

This is possible because, as shown in Fig. 1.10, high refractive index decrement values, and

therefore strong phase contrast, can be maintained at high energies relative to attenuation contrast.

Alternatively, an analytical relationship between speckle contrast and the structural properties of the

lungs could be derived beyond the validity of the projection approximation and near-field condition,

but the relationship will unlikely be simple.

4.7 Measuring Lung Air Volume from Near-field X-ray Speckle

4.7.1 Methodology

To reiterate from section 4.5, the theory presented does not allow VL to be measured directly from

PSArea unless the detector PSF, penumbral blurring, alveolar shape and the coefficients introduced

in Eq. 4.23 are known. While the former two can easily be measured and incorporated into the

theory, this is not so for the latter two factors. The theory assumes that the alveoli are spherically
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shaped, which from CT reconstructions of the lungs is not correct (they are more like polyhedrons).

Moreover, they exist in a range of shapes and sizes. Determining the coefficients introduced in

Eq. 4.23 requires understanding of alveolar mechanics. While it is currently a topic of high interest,

and is explored in chapter 5, these coefficients are difficult to measure since they would be different

between animals and experiment settings. In this section, all these factors are accounted for by

measuring the PSArea and VL simultaneously using PB-PCX images of rabbit kittens to create a

calibration curve. This curve would enable regional measures of PSArea to be converted into VL.

The image acquisition, sample preparation and image processing are similar to that described

in section 3.3.1, However, there are sufficient differences that it is necessary to describe most of the

methods here in full.

Image acquisition and sample preparation

All imaging experiments took place in Hutch 3 of beamline 20B2 at the SPring-8 synchrotron in

Japan with a Si (111) double-bounce monochromator tuned to 24 keV (Goto et al., 2001). The

x-ray SOD was set at D = 210 m. All animal procedures were conducted in accordance with the

protocol approved by the Monash University Animal Ethics Committee and the SPring-8 Animal

Care and Use Committee. At 31 days of gestation, pregnant New Zealand white rabbits were

anesthetized initially by an intravenous injection (Rapinovet [Schering-Plough Animal Health,

USA]; 12 mg kg−1 bolus, 40 mg h−1 infusion) and anaesthesia was maintained via isoflurane

inhalation (1.5– 4%; Isoflurane, Delvet Pty. Ltd., Australia).

Kittens were delivered by caesarean section, sedated and surgically intubated. Those in the first

group (Group-Water, n = 15) were immersed in a water-filled cylindrical poly-methyl methacrylate

container (plethysmograph) with their head out and the chamber sealed with a rubber diaphragm

enclosing their necks. See Fig. 2.3 in chapter 2 for a schematic diagram of the setup. The lungs

in their fluid-filled state were required to calculate absolute VL using the volumetric technique

developed by Kitchen et al. (2008), and so imaging was performed immediately after birth when

the lungs are initially non-aerated. The kittens were humanely killed at the end of each experiment

via anesthetic overdose of Nembutal (Abbott Laboratories, USA, 100 mg/kg). Kittens in the second

group (Group-Air, n=3) were humanely killed immediately after birth via anesthetic overdose. The

deceased kittens were supported in an upright position and connected to a pneumotach (flowmeter)

to measure differential airflow at the mouth opening throughout each respiratory cycle.

Two different detectors were used to acquire PB-PCX images: (i) a large format (4000×2672

pixels) Hamamatsu CCD camera (C9300-124F21) with a tapered fiber optic (FOP) coupling the
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sensor to a 20 µm thick gadolinium oxysulfide (Gd2O2S:Tb+; P43) phosphor (this is the same

detector utilized for the work shown in section 3.3), and (ii) a tandem lens-coupled scientific-CMOS

(sCMOS) imaging sensor coupled to a 25 µm thick gadolinium oxysulfide (Gd2O2S:Tb+; P43)

phosphor (pco.edge; 2560×2160 pixels). The effective pixel sizes for these two detectors were

16.2 µm, based on the taper ratio of 1.8:1, and 15.23 µm, respectively. In both groups, imaging

sequences were respiratory gated, with timing controlled by a custom-designed pressure-controlled

ventilator (as used for the work shown in section 3.3) (Kitchen et al., 2010b) with a respiratory

cycle of 2.5 s and exposure time of 40 ms. In Group-Water, the kittens were immersed in water and

imaged at a frame rate of 3 Hz using both detectors while for those in Group-Air only the sCMOS

camera was used and imaged at a frame rate of 10 Hz.

Image processing and analysis

All PB-PCX images were flat and dark field corrected and distortion corrected as described in

section 3.3.1.

In constructing the calibration curve, each PB-PCX chest image of the kittens from Group-

Water was divided into quadrants. Quadrants were created by partitioning the chest along the

spinal column to separate the left and right lungs and also partitioning along the seventh rib down

from the neck to separate the apical and basal lobes. This increased the number of (VL, PSArea)

points and also helped ensure that variability in the lung thickness between quadrants did not

affect the calibration curve. VL was calculated utilizing the technique developed by Kitchen et al.

(2008). PSArea was calculated using the LHS of Eq. 4.11 and integrating from ko = 2 mm−1 to

kN =Nyquist frequency. Given the experimental conditions it was found that this ko value optimized

the correlation strength of the PS Area − VL curves between kittens and quadrants. Evidence for this

can be seen in section 4.7.2 (Fig. 4.6(c)), which shows low frequency components up to 2 mm−1

being noticeably contaminated by remnant low frequency trends arising predominately from the

bone and skin signal. For those kittens from Group-Air a flowmeter (pneumotach), which measures

the rate of air flowing in and out of the lungs, was employed to validate the calibration curve.

Both PSArea and VL were normalized against the number of pixels so that PSArea measured from a

region-of-interest (ROI) of any size can be directly converted to VL.

From Eq. 4.11, the attenuation image (I(x, y, z = 0)) is required to calculate PSArea. This was

estimated using SIPRA given in Eq. 1.60 with µ = 54.74 m−1 and δ = 3.99 × 10−7 set for water at

24 keV as given in section 3.3.1. As demonstrated in section 2.2.1, and by Beltran et al. (2011),

SIPRA will accurately reverse the lung tissue-induced phase contrast, but will over-smooth regions
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where there is bone. Therefore, dividing PB-PCX chest images by their attenuation image (using

SIPRA) will accurately remove the attenuation contrast of lung tissue but not entirely in regions

where there is bone, particularly along the edges of the bone. Nevertheless, its contribution to the

power spectra is small compared to the lung speckle signal.

4.7.2 Results

A PS Area − VL calibration curve was generated from the 15 newborn rabbit kittens in Group-Water.

Two cameras were used that had slightly dissimilar spatial frequency responses, or modulation

transfer functions (MTFs). The MTF is the power spectrum of the detector PSF. It represents the

ability of the detector to accurately preserve the amplitudes of each of the spatial frequencies in an

image and this depends on its design. Two distinct calibration curves were measured for the different

cameras, which differed by a multiplicative factor of 3.35. Such a difference is not surprising given

the different phosphor thicknesses and optical coupling systems. PSArea measurements calculated

using the sCMOS camera were multiplied by 3.35 to align with the calibration curve attained from

the FOP camera. While this highlights the need to produce a calibration curve for each of the

detectors, a calibration curve would also be needed for different experimental configurations. This

includes different types of animals due to variability in lung morphology and the choice of x-ray

energy and ODD since the power spectrum of the speckle produced would be affected by such

factors. A direct plot of VL against PSArea showed a non-linear relationship. It was found that

raising VL to the power n+r
n+3r = 3

4 best linearized the curve based on the chi-square goodness-of-fit

test.

A linearized PS Area − VL calibration curve is plotted, of which 10% of the data points are

shown in Fig. 4.5(a). A weighted linear trend (V3/4
L = a × PS Area + b) was fitted with coefficients

a = (1.345± 0.001)× 10−4 and b = (−6.84± 0.02)× 10−7. The uncertainty in V3/4
L was determined

using the rational exponent function derived in section 3.3.1 that relates the uncertainty in VL to the

ROI size. The uncertainty in PSArea was determined from the standard deviation of PSArea values

measured from several water-only ROIs selected from PB-PCX images. A PS Area − VL curve from

the quadrants from one of the kittens used for Fig. 4.5(a) is plotted in Fig. 4.5(b). This shows the

PS Area − VL curve from the quadrants diverge slightly from each other at large VL. This divergence

was observed in other kittens at different VL that depended on their total lung capacity. The possible

causes for this are discussed in section 4.7.3. While there would be a slight reduction in accuracy,

the curve fits the majority of points extremely well overall, as Fig. 4.5(a) shows and also that the

Pearson product-moment correlation coefficient R2= 0.97 for the fitted curve.



4.7 Measuring Lung Air Volume from Near-field X-ray Speckle 123

(a) (b)

Figure 4.5: A calibration curve between VL and the PSArea from PB-PCX chest images divided
into quadrants showing data from (a) 15 kittens, with only a subset of points (∼ 10%) displayed
for clarity, and (b) a single kitten. A weighted linear fit was performed on the entire set of points
on the calibration curve and is shown in (a) as a red line.

The PB-PCX images of a kitten immersed in water and air after dividing by their attenuation

image are displayed in Figs. 4.6(a) and 4.6(b), respectively. These show how the attenuation-

induced intensity trends are removed. Their corresponding power spectra in Fig. 4.6(c) reveal a

large spike between frequencies 0 mm−1 and 2 mm−1. For the kitten in water, this is attributed

predominantly to the phase contrast of bone. An even larger spike between those frequencies is

seen for the kitten in air due to the enhanced boundary of the skin and bone. To show that the

amplitude between those frequencies are dominated by bone and/or skin, the power spectra are

subtracted from that of the same kitten but with no lung aeration. Figure 4.6(d) shows the resultant

power spectra and the disappearance of the large spike between spatial frequencies 0 mm−1 and

2 mm−1. Beyond the frequency 2 mm−1, the power is dominated by that arising from the high

contrast lung speckle, which was the range over which PSArea was calculated. However, the power

spectra correspond to very similar changes in lung air volume (water: 0.272 ml and air: 0.274 ml),

yet their PSArea are evidently different. A number of possible reasons are suggested and discussed

in section 4.7.3. Nonetheless, it was found that the power spectra in air and water consistently

differed by a multiplicative factor of 5.37 when using the same detector, which enables volumetric

measures to be made by simply accounting for this factor.

The calibration curve in Fig. 4.5(a) generated from kittens imaged in water was multiplied

by the factor of 5.37 before measuring the total change in VL of three kittens imaged in air. This

was then compared with that measured using a flowmeter (see Fig. 4.7(a)). A straight line was

fitted to Fig. 4.7(a) with a gradient of 1.06±0.06 (R2= 0.978). This shows the calibration curve to

be a highly accurate tool for determining the total change in VL without needing to immerse the
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(a) (b)

(c) (d)

Figure 4.6: A pair of 24 × 21 mm2 PB-PCX chest images of a newborn rabbit kitten in (a) a
water-filled tube and in (b) air. (c) shows their respective power spectra after dividing by their
attenuation image reconstructed using phase retrieval. (d) shows the power spectra in (c) after
subtracting from that of their corresponding non-aerated PB-PCX image.

animal in water and, moreover not requiring a PB-PCX image of the lungs in their fluid-filled state.

This gives confidence the calibration curve can be used for retrieving accurate regional volumetric

information.

A quadrant-based analysis of a single kitten imaged in air (Fig. 4.7) reveals non-uniform lung

aeration. Figure 4.6(b) shows how the quadrants were delineated, indicated by the white lines. As

expected, the volumetric curves of each quadrant oscillate in phase with the mechanical ventilation

cycle. However, there are subtle but important physiological differences between quadrants. The

lower quadrants show a larger increase in tidal volume9 than in the upper quadrants, while the

upper right quadrant is the only quadrant showing a significant increase in FRC from its initial FRC.

These differences could be attributed to inhomogeneous lung compliance and airway resistance,

9The difference in lung air volume at end-inspiration and end-expiration during normal breathing



4.7 Measuring Lung Air Volume from Near-field X-ray Speckle 125

(a) (b)

Figure 4.7: (a) A representation of the accuracy of using the calibration curve to measure the
change in total VL of kittens imaged in air in comparison to using a flowmeter. The red line is the
line of best fit. (b) Regional VL measurements from a lung image sequence after partitioning the
images into quadrants. Note that the lower quadrant curves have been offset by 0.1 ml to better
distinguish them from the upper quadrant curves.

which are related to lung tissue structure. This quantification of non-uniform aeration using regional

analysis is critical for assessing the efficacy of resuscitation strategies for newborn infants and

detecting local abnormalities in the lungs (Pillow et al., 2006; Kitchen et al., 2014; Tingay et al.,

2014).

Next, the ability of the technique developed herein to build a pixel-by-pixel map of VL is

demonstrated using 128 x 128 pixel ROIs to measure VL from the speckle texture. The calibration

curve (Fig. 4.5(a)) was used to convert PSArea measured from the speckle pattern into VL in each

ROI. This was performed on pairs of images where each pair was a PB-PCX chest image of a

kitten recorded at end-inspiration and at end-expiration. A volumetric map was constructed for

each image of each pair and the difference was taken between them to give the tidal volume at

each pixel. At a low tidal volume, Fig. 4.8(a) shows lung aeration to be highly localized where the

greatest change in VL is at the bifurcation of the left/right main bronchi into tertiary bronchi. As

the tidal volume increased (see Figs. 4.8(b) and 4.8(c)), the flow of air became more apparent at the

peripheral regions where lung expansion occurred. Summation of the pixels in Fig. 4.8 gave the

total change in VL (Fig. 4.8(a): 0.15 ml, Fig. 4.8(b): 0.27 ml, Fig. 4.8(c): 0.37 ml), which agreed

closely with that from calculating PSArea of the total lung (Fig. 4.8(a): 0.12 ml, Fig. 4.8(b): 0.24 ml,

Fig. 4.8(c): 0.36 ml). These values respectively correspond to a percentage difference of 4.6%,

2.7% and 1.3%. These small differences predominantly arise due to having a discrete frequency

domain for the power spectrum analysis. Since different sized ROIs sample the frequency domain

differently, a small error is introduced into VL. Accuracy can be improved by interpolating the
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(a) (b) (c)

Figure 4.8: Regional volumetric maps of dimensions 14.6×14.6 mm2 from a mechanically
ventilated rabbit kitten in air ventilated using three different tidal volumes: (a) 0.12 ml, (b) 0.24 ml
and (c) 0.35 ml. These maps of regional tidal volumes demonstrate the distribution of air when it
enters the lung.

discrete spatial frequencies.

4.7.3 Discussion

The technique outlined here presents a novel approach to measuring VL regionally from PB-PCX

chest images without requiring the use of a contrast agent. Imaging modalities such as positron

emission tomography (PET) or magnetic resonance imaging (MRI) require a medium to be injected

inside the lungs with which to measure VL while water acts as a contrast agent for previously

developed techniques that use PCX modalities. Here, no such contrast agent was required. Instead,

the air inside the lungs, combined with their complex structure, served to provide a speckle pattern

whose statistical properties are directly related to the airway morphology, thereby enabling VL to

be measured non-invasively from 2D projections.

There are three limitations that can be foreseen in this technique: (i) motion blur, (ii) the

multi-valued relationship between PSArea and VL, and (iii) the minimum size of the region from

which VL can be measured. The motion of the chest wall causes blurring of the images, which

results in a reduction in PSArea (Goodman, 2010, sec. 4.6). The zero spatial frequency is, however,

largely unchanged, which is why those techniques previously discussed that measure VL from

the intensity of pixels are minimally affected by motion blur. Reducing the exposure time can

reduce the degree of motion blur, but this coincides with a decrease in SNR. This can be offset

by improvements in detector technology that have greater quantum efficiency and produce less
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noisy images. Alternatively, there are techniques that could measure and correct for motion blur

(Wang et al., 2005). However, respiratory-induced motion blur is non-linear and difficult to correct.

Motion blur can also be avoided through patient breath holds or taking measurements towards the

end of inspiration/expiration when there is minimal chest motion.

The relationship between VL and PSArea was introduced in Eq. 4.23 as a power law relationship:

VL ∝ PS
n+3r
n+r

Area. The calibration curve in Fig. 4.5(a) showed PSArea was approximately proportional

to V3/4
L and therefore the exponent n+3r

n+r = 4
3 . For the exponent to be > 1, both n and r must be > 0

during inspiration and < 0 during expiration. This means alveoli are being recruited and increasing

in size during inspiration, and vice versa during expiration. However, the study of PS Area − VL

curves of a single rabbit kitten lungs during ventilation displayed subtle deviations in the exponent

away from the value 4
3 during breathing (see Fig. 4.5(b)). This effect was masked in the calibration

curve as it was made up of multiple single breath curves from kittens mechanically ventilated

with different positive inspiratory and positive end-expiratory pressures. This allowed a single

calibration curve to approximate VL. Furthermore, at large volumes (≥10 ml/kg), the exponent

between quadrants sometimes diverged, as seen in Fig. 4.5(b). These deviations in the exponent

may be due to the variable relationship between VLand PSArea. That is, the constants making up the

exponent may not be a constant, which means the lungs behave differently, over space or time. This

is investigated in greater detail in chapter 5. Alternatively, the variable exponent may be caused

by the break down of the near-field condition. As the lungs respire, the alveolar size and number

change and therefore the Fresnel number NF may decrease towards or below unity. Across the

lungs, the average projected thickness between quadrants is different in that the apical region of the

lungs is thinner than that adjacent to the diaphragm. Thus, the phase gradients and consequently

NF would also be different between quadrants.

When performing regional VL analysis, the region must be large enough to sufficiently sample

the spatial frequencies of a power spectrum. As detector technology continues to improve, it is

expected that detectors with larger numbers of pixels producing lower noise coupled with better

detector spatial resolution will become available. Hence VL will be able to be measured in smaller

ROIs in the future. Another major benefit of having lower noise level detectors is a reduced ODD.

The ODD was set at up to 3 m to produce a sufficiently strong speckle SNR, but this distance was

found to be at the edge of the near-field regime (section 4.6.2). Hence, PB-PCX chest images were

also recorded at 1.5 m ODD but were not included in this thesis because VL weakly correlated

with PSArea due to the weak CNR of the speckle. Thus, a lower detector noise level will allow

PB-PCX images to be recorded at shorter ODD while still having a short exposure time to minimize
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chest-induced motion blur.

Since the technique presented herein does not require the subject to be immersed in water

like the techniques described in chapter 3, the improved SNR allows significant reduction in the

exposure time and avoids the practical difficulty of imaging animals in water. The SNR of an image

of a rabbit kitten imaged in air was measured to be ∼ 1.4× larger than a kitten imaged in water.

The region chosen in calculating SNR was at the thickest (central) portion of the body below the

lungs. This improvement in SNR will be important for translating this research for use with lower

powered laboratory-based x-ray machines (Tuohimaa et al., 2007; Ewald et al., 2011; Garson et al.,

2013).

Despite reducing the SNR, immersing the chest in water may be important in removing the

skin-air interface, which can reduce lung speckle contrast. The loss of speckle contrast in air was

accounted for empirically in this work by comparing the power spectra of rabbit kittens imaged

in air and water at different VL. It would be interesting in future work to determine the source of

this reduction. The skin may act as a random phase diffuser that causes a reduction in speckle

contrast. This was initially argued to be due to a loss of coherence in the x-ray beam resulting in

this effect to be labeled as ‘decoherence’ (Robinson et al., 2003; Vartanyants and Robinson, 2003;

Han et al., 2004; Xiao and Voelz, 2006). However, Nugent et al. (2003) highlighted that according

to Liouville’s theorem, coherence cannot be destroyed and that decoherence in this context is a

misnomer. The apparent loss in coherence, and therefore the reduction in speckle contrast, may be

attributed to the limited spatial resolution of the detector to resolve the small variations in the skin.

This leads to blurring of speckles, which mimics what would occur if the x-ray source actually

lost coherence. Nesterets (2008) simulated objects comprised of features that a detector can and

cannot resolve, and showed the contrast of the resolvable features degraded. Using wave-optics,

they showed the unresolvable features acted as a damping factor that attenuates the contrast of

resolvable features. Results from preliminary investigations into decoherence are presented in

section 6.2.

4.8 Concluding remarks

This chapter describes an entirely novel approach to measuring VL regionally by generating a

calibration curve between lung speckle, quantified by the area under its power spectrum, and lung

air volume. This approach is a significant improvement over other imaging-based volumetric

techniques that require either a large radiation dose (e.g. CT), potentially harmful contrast agents

(e.g. SPECT, PET and MRI), or alignment of bone (chapter 3). While PB-PCX imaging does
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involve the use of radiation, the associated dose is minimal compared to CT and can be performed

in real-time.

Unlike the previous PB-PCX imaging-based techniques of measuring VL from two-dimensional

images, the subject does not need to be immersed in water, which significantly boosts the SNR of

the image and makes this technique more practical to implement. This has a two-fold advantage;

the exposure time can be reduced to minimize both motion blur and radiation dose. Also, an image

of a lung in its fluid-filled state is not required to perform absolute measurement of VL. The theory

underlying this method was first tested on simulated lung tissues and was found to be accurate and

robust against a range of lung tissue thicknesses and particle sizes. Then, the method was tested

on several newborn rabbit kittens for measuring both the total and regional changes in VL, and

successfully validated against other proven techniques.
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Measuring alveolar population and size would allow the lung mechanics of a healthy lung to be

directly studied, which is currently poorly understood. Better understanding of this would lead to

abnormalities in the lung being more readily recognized and for optimizing mechanical ventilators

to minimize the risk of ventilation-induced lung injury (VILI). The importance of studying the

dynamics of alveolar morphology is elaborated in section 5.1. A review of techniques for imaging

alveoli and their drawbacks is presented in section 5.2. Some of the image processing techniques

utilized for studying alveolar morphology are described in section 5.3.

In the previous chapter, a generalized theory was introduced relating lung speckle contrast

in the near-field regime, which was quantified by the area under the power spectrum (PSArea), to

alveolar population and size for the purpose of measuring lung air volume (VL). That theory was

validated on simulated lung tissue. This chapter (sections 5.4 and 5.5) presents a novel technique

for measuring alveolar population and size utilizing that theory and is an expansion on the paper

published in Biomedical Optics Express (Leong et al., 2014).

5.1 The Importance of Studying the Dynamics of Alveolar

Morphology

The dynamics of alveolar morphology are not yet very well understood, partly due to the inherently

complicated interconnecting nature of alveoli, but also because previous studies used different

experimental techniques, animal subjects and techniques for morphometric analysis (Carney et al.,

1999; Escolar and Escolar, 2004). Understanding how alveoli change in shape and size during

respiration can help in the recognition of abnormal behaviors and appearances that lead to VILI

and other diseases of the lung. To elaborate, studies have proposed that over-distension of alveoli

and continual collapsing and re-inflating of alveoli when under mechanical ventilation induce shear

131
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stress along the alveolar wall leading to VILI (Muscedere et al., 1994; Hubmayr, 2002). Lung

related diseases such as emphysema can alter the molecular structure of the lungs and have been

shown to affect the mechanical behaviour of the alveoli (Faffe and Zin, 2009).

Lung pressure-volume (PV) curves have been an important tool for describing the behavior of

the alveoli during respiration. These are a plot of the transpulmonary (for spontaneously breathing)

or airway (for mechanical ventilation) pressure against the total volume change of air in the lungs

during a single respiration cycle. A typical PV curve of a healthy lung is shown in Fig. 5.1(a),

which shows a hysteresis between the inspiration and expiration curves. This hysteresis represents

the difference in energy required to inflate and deflate the lungs. The reason for this discrepancy in

energy is still under debate. For a long time it was believed that the lungs accommodated the flow

of air from the total isotropic expansion and contraction of individual alveoli. This was supported

by direct visualization of the alveoli that showed their total surface area varied with VL raised to

the power 2
3 (Dunnill, 1967; Forrest, 1970; D’Angelo, 1972). The hysteresis is then the sum of that

of the individual alveoli, which may arise from their viscoelastic properties1 (Sugihara et al., 1972).

Alternatively, or also, concentration of surfactant may differ during inspiration and expiration2

(Hellmuth and Lima, 2012). However, inflating the lungs with saline to remove the air-liquid

interface (i.e., surface tension) significantly reduces the hysteresis (see Fig. 5.1(b)). Hence, the

viscoelastic property of the alveoli only makes a small contribution to the hysteresis of the PV

curve. Figure 5.1(b) also shows that the hysteresis size remains largely unchanged after inflating

the lungs with air without the presence of surfactant. The only significant change is that lung

compliance (∆V
∆P ) is reduced as expected since surface tension is increased.

There have been studies that have shown the hysteresis in the PV curve may be instead due

to the sequential recruitment/derecruitment of alveoli (Smaldone et al., 1983; Carney et al., 1999;

Brancazio et al., 2001; Frazer et al., 2004). At the beginning of inspiration, Fig. 5.1(a) shows that

lung compliance is poor, suggesting that many of the alveoli may be inflated from a collapsed

1Materials that revert to their original state after being deformed are elastic and do not dissipate energy. Those that
form a resistance to deformation are viscous. Therefore, a viscoelastic material subjected to deformation will resist but
eventually alter to the final state that it would have reached if it was elastic. This resistance is what causes energy to
dissipate. The alveoli are a viscoelastic material such that when air enters them they do not immediately respond by
inflating. Similarly, when air exits they deflate back to their original size but in a delayed manner. This viscoelastic
property lies in the arrangement of the molecular bonds changing to accommodate the deforming material but encounters
resistive forces such as friction between molecules. The energy lost from resistive forces contributes to the hysteresis in
lung PV curves.

2Surfactant lowers the surface tension created by the air-liquid interface lining the inner layer of the alveolus.
Surface tension greatly affects the internal pressure of the lung and therefore the lung PV curve. During respiration,
surfactant is dynamically secreted and absorbed. This may cause the concentration of surfactant to be uneven during
inspiration and expiration, thereby contributing to the hysteresis in the lung PV curve.
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Figure 5.1: (a) A typical PV curve of the lung during inspiration and expiration and (b) several
PV curves of the lung under different conditions during breathing (Orgeig et al., 2014).

state3 to overcome the opposing force from surface tension. This is known as alveolar recruitment.

As the alveoli increase in size, the same increase in pressure produces larger increases in volume.

The expiration curve follows a different path to that during inspiration because the inflated alveoli

simply decrease in size together. In other words it is believed that during expiration there will be

more alveoli open, but they will be smaller in size than at an equivalent volume during inspiration.

Towards the end of expiration, some alveoli collapse, or de-recruit. One opposing argument against

alveolar recruitment/derecruitment is that the apparent change in the number of alveoli may be due

to alveoli becoming filled with fluid instead of collapsing (Hubmayr, 2002).

Despite the ambiguity about the information lung PV curves convey, they have been useful in

optimizing mechanical ventilators. Mechanical ventilators assist in breathing by creating a pressure

gradient across the lung to draw air into the lungs for gas exchange. A pressure gradient can be

created by lowering the internal pressure of the lung (negative pressure mechanical ventilator) or

raising the pressure at the opening airway above that of the lung (positive pressure mechanical

ventilator) to draw air in. It is important that the pressure gradient set is not too steep so as to

over-distend the alveoli or inflate too rapidly. That pressure gradient is reversed to push air out of

the lungs by either lowering or raising the pressure at the opening airway or the lungs, respectively.

However, setting the internal pressure back to atmospheric for certain individuals can cause alveoli

to collapse and injure the lung. For example, the alveoli of premature infants are prone to collapsing

since they lack surfactant to lower surface tension. To prevent this, the internal pressure of the

lungs are set slightly higher than normal by the mechanical ventilator. Particular features of the PV

curve, such as the knee point along the inflation curve in Fig. 5.1(a), have been used to help set the

3Consider a balloon. From everyday experiences, more work is required to blow into the balloon, i.e., it has low
compliance, initially than when it is at a larger size. This effect was proven and quantified by James and Guth (1996).
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lower and upper pressure limits to avoid alveolar collapse and over-distension, respectively (Lu

and Rouby, 2000).

Although lung PV curves are not commonly utilized clinically these days for many reasons

such as a lack of a standardized procedure to measure it, it can help diagnose and establish severity

of chronic obstructive pulmonary disease such as asthma and emphysema (Harris, 2005). Salazar

and Knowles (1964) developed an exponential-based model to fit to lung PV curves, which Greaves

and Colebatch (1980) utilized and found one of the factors in that model was significantly different

between healthy and emphysematous lungs. This factor was found to correlate with the average

alveolar size, the difference in the factor showing emphysema patients exhibit larger than average

alveolar sizes, which is in agreement with what is known about emphysema (Smith et al., 2012).

The interpretation of lung PV curves can often be muddled by the methodology adopted.

For example, the supersyringe (Matamis, 1984), constant flow (Suratt et al., 1980) and multiple-

occlusion (Goetz et al., 2001) methods can produce different PV curves of the same lung (Harris,

2005). This makes it less reliable in inferring the structure and behavior of the lungs. Furthermore,

lung PV curves provide only global insight of the lung and not regional mechanical differences,

which can be very beneficial to clinicians. Regardless, lung PV curves have indicated that alveolar

mechanics is rather complicated but may be a more sensitive indicator to respiratory diseases than

static chest x-ray images and pulmonary tests, and help reduce the risk of VILI. These underlie the

motivation for directly measuring the morphology of the lung and its mechanics locally. In the next

section, different imaging-based techniques that directly study the behavior of alveoli are surveyed.

5.2 Current Techniques for Imaging Alveoli

Directly studying lung structure at the alveolar scale can be performed ex vivo through histological

imaging. There the lungs are inflated and immediately fixed chemically or frozen to preserve

their structural integrity. They are then cut into thin slices for viewing under a light microscope

(Braber et al., 2010; Arab et al., 2011; Schwenninger et al., 2011). Histological images have high

spatial resolution to resolve the alveoli and its supporting features, but their main advantage is the

ability to stain particular features of interest such as the alveolar walls. This has proven useful in

correlating alveolar structure to different lung conditions that are associated with disease or aging.

For example, aging was found to be associated with enlargement of the alveoli as elastin, which

is responsible for maintaining shape, is gradually lost (Yamamoto et al., 2003). Kyphoscoliosis

describes an abnormal curvature of the spine that hampers the alveolar development during the

early stages of birth. Consequently, these patients have fewer but larger alveoli (Berend and Marlin,
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1979).

While lung histology provides highly detailed images of the lungs ex vivo, it is limited to

postmortem and biopsy studies. It is also highly invasive and localized, which makes it unsuitable

as a first choice diagnostic tool for live subjects. Tomographic-based imaging modalities provide

a non-invasive and more global approach to studying alveolar mechanics. Section 5.4 provides

such results in an animal model using synchrotron radiation, as seen in Figs. 5.7(c) and 5.7(d).

Alveolar analysis using computed tomography (CT) has also been demonstrated elsewhere (Watz

et al., 2005; Roth-Kleiner et al., 2014). A major drawback to CT of the chest is the high exposure

to ionizing x-ray radiation (Bushberg et al., 2012, p. 399). Diffusion magnetic resonance imaging

(MRI) has insufficient spatial resolution to resolve alveoli but can infer their size by exploiting the

material-dependent diffusion of the contrast agent 3He that is administered before imaging (Fichele

et al., 2004). The acquisition times for both of these modalities are long compared to the length of

a single spontaneous breathing cycle, which makes dynamic imaging of the alveoli in real-time

unfeasible due to motion artefacts. Although there has been progress towards improving the

imaging acquisition frame rate, this is traded-off against poor spatial resolution and signal-to-noise

ratio (SNR) to resolve the alveoli (Li et al., 2007; Tsao, 2010). Alternatively, prospectively gating,

where projections (CT) or pulsed signals (MRI) from similar time points in the respiratory cycle are

grouped together during post-processing, allows multiple reconstructions per respiratory cycle with

comparable temporal resolution to x-ray imaging, but requires relatively consistent simultaneous

measures of VL for sorting (Low et al., 2003; Nieman et al., 2009; Dubsky et al., 2012).

To overcome the poor temporal resolution of tomographic-based imaging, investigation of

lung structure at the alveolar scale in real-time has been done via several other lung imaging

techniques that do not use ionizing radiation, including optical coherence tomography (OCT),

confocal laser scanning microscopy (CLSM) and ultrasound (Ossant et al., 2001; Bickenbach et al.,

2009; Meissner et al., 2009; Unglert et al., 2012; Chang et al., 2013). OCT uses a partially coherent

visible light source and a Michelson interferometer to produce three-dimensional (3D) images (see

Fig. 5.2). A Michelson interferometer works on a similar principle to the Bonse-Hart interferometer

shown in Fig. 1.15. The light source is split into two arms, the reference and sample arm, by a

beam splitter, where each are reflected off a mirror, and recombined to form a fringe pattern at

the detector. A fringe pattern forms from a low coherence light source only when the optical path

difference between the two arms is less than the coherence length of the source (see section 1.3);

essentially the two arms must be close to having equal optical path lengths. By replacing one of the

mirrors with a sample, light is reflected off the interfaces (as shown in Fig. 5.2) within the object
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Figure 5.2: A schematic diagram of an OCT setup. BS=Beam splitter. M=Mirror. S=Sample.
(Fujimoto et al., 2000).

and recombined with the beam from the reference path. Since a fringe pattern only forms when the

two arms have almost equal optical path length, the depth of the interfaces can be deduced. A 3D

map of the sample can be constructed with the intensity values representing the maximum fringe

amplitude. In turn, the fringe amplitude represents that of the reflected wave that is dependent on

the refraction index gradient across the interface. The reconstructed 3D image is then similar to

a PCX image with enhanced edges along the boundaries. This makes OCT ideal for imaging the

alveoli, which are air-filled cavities surrounded by tissue, that produces strong refractive index

gradients. However, OCT has a depth of focus of several millimeters that is insufficient to penetrate

the skin and into the lungs (Raffel et al., 2007). Invasive maneuvers must then be performed to

image alveoli. For example, fiber optic cameras can be inserted via tracheal intubation (McLaughlin

et al., 2012; Kirsten et al., 2013).

In CLSM, a visible light source is reduced to a small point using a pinhole and, with a lens, is

focused onto a plane within the sample as shown in Fig. 5.3. A second lens is positioned with its

focal point coinciding with the focused plane. The light scattered from the sample is refocused by

the second lens. A pinhole is positioned at the focal point of the second lens to reject light scattered

from unfocused planes and remove diffraction rings. Diffraction rings arise from the finite size of
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Figure 5.3: A schematic diagram of a CLSM setup.

the lens, which reduces the spatial resolution (Hecht, 2002, secs. 10.2.5-6). Shifting the position

of the lens along the optic axis allows imaging of different planes within the object to build a 3D

image. Similar to OCT, it renders highly detailed images of alveoli but has limited penetrative

power due to visible light being highly scattering in soft tissue (Namati et al., 2008). To overcome

this limitation, CLSM has been engineered into an endoscope and inserted into the airways to

directly visualize the alveoli (Schwenninger et al., 2008). However, that was shown to alter the

intraplueral pressure and subsequently artificially changed the alveolar morphology (Unglert et al.,

2012). Unlike OCT, CLSM can provide fluorescence imaging when the lungs are stained with a

fluorescent dye, which increases the contrast of the alveoli (Gaertner et al., 2012). While using a

single pinhole to scan across the object is very slow, the latest microscopes have multiple pinholes

that increase the frame rate to as much as 100 Hz. However, this technology is still restricted to a

field-of-view (FOV) of the order tens of microns (Sisan et al., 2006; McAllister et al., 2008).

Ultrasound produces 3D images using pulsed ultrasonic waves. It works under a very similar

principle to OCT, but because sound waves travel significantly slower than light its phase can be

directly measured; hence there is no need to interfere with a reference wave to recover the phase.

Sound waves are generated from a piezoelectric crystal, which converts an electrical current into

pulsed sound waves, illuminates the object, and reflects off the interfaces. A piezoelectric crystal

working in reverse converts the reflected sound waves into an electric signal to construct an image

that, like PCX images, reveal the boundaries of the materials. Depth information is recovered from

the time taken for the pulsed sound wave to reflect from the object. While the spatial resolution

(typically on the order of mm) of ultrasound is insufficient to directly visualize the alveoli, the

distribution of the scattered sound waves could potentially be used to recover alveolar size. Insana

et al. (1990) developed a technique to measure particle sizes by relating the scattered sound waves
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to a model based on the first Born approximation4 and assumes a uniformly random distribution

of spheres/voids. The model is very similar to that in section 4.4 but theirs was derived in the

context of the interactions between sound waves and matter, which not only depends on the density

(i.e., the refractive index) but also the compressibility of the medium. This technique has only

been tested on glass particles and tumors from which their sizes were accurately recovered (Insana

et al., 1990; Chen et al., 1998; Anderson et al., 2010). Application of this technique has yet to be

trialled on animal models, but the images obtained from ultrasound would encode scattering sizes

of structures other than the lung airways such as bone and collagen (Insana et al., 1990). A method

to delineate these components may then need to be developed.

The aforementioned alveolar imaging techniques provide either only a snapshot (poor temporal

resolution) and/or a small 3D region (small FOV and/or penetrative depth) of how alveoli behave

during breathing. In section 5.4, a novel technique is introduced that can measure both the number

of alveoli and their average size regionally across from speckled propagation-based phase contrast

x-ray (PB-PCX) chest images. This technique is validated using a morphometric alveolar analysis

technique on CT images. Two such morphemtric analysis techniques that were employed are

presented and compared below before introducing the novel technique in section 5.4.

5.3 Morphometric Alveolar Dimensional Analysis Techniques

5.3.1 Granulometry

Granulometry is a particle sizing technique that utilizes the morphological opening operator, which

is the erosion followed by dilation of an image ( f ) with a structure element (S ). Granulometry

can be performed on any n-dimensional image f . A structure element is an n-dimensional image

of an object of a certain size and shape used to probe for similar objects in f . Mathematically,

granulometry is defined as a function representing the relative frequency (RelF) of objects with

size R:

RelF(R) =
d

dR
[ f 	 S (R)] ⊕ S (R), (5.1)

where the morphological erosion operator is represented by:

4The first Born approximation provides a solution to the reflected wavefield. It expresses the reflected wavefield
as the sum of the incident wavefield and the wavefield that results from single scattering events between the incident
wavefield and point scatterers within the medium. The first Born approximation and the Fresnel propagation equation
(Eq. 1.50) converge to the same expressions for the reflected wavefield, when both assume wavefield paraxiality and a
weakly scattering object (Giewekemeyer, 2011, sec. 3.2.5).
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[ f 	 S ](r) = min
r′∈S
{ f (r + r′)}, (5.2)

and the morphological dilation operator is represented by:

[ f ⊕ S ](r) = max
r′∈S
{ f (r + r′)}. (5.3)

To understand Eq. 5.1, Eqs. 5.2 and 5.3 are first explained. In erosion and dilation, the center

of the structure element S is defined as the origin in coordinate space r′. It is centered at each point

in r of the image f and the value of that point is replaced by the minimum (erosion) or maximum

(dilation) value of f coincident with S .

To demonstrate how granulometry measures object sizes, consider the following panel of

images in Fig. 5.4. Figure 5.4(a) encloses three different sized circular particles. In granulometry,

circular structure elements of differing sizes are cycled through; for each structure element, erosion

is first completed followed by dilation. First consider the structure element size to be less than the

smallest sized particle in Fig. 5.4(a). As can be seen from Fig 5.4(b), erosion acts to reduce the

size of the particles by the size of the structure element. Utilizing the same size structure element,

Fig. 5.4(b) undergoes dilation to restore the particles to their original sizes as shown in Fig. 5.4(c).

If the structure element size is increased to be just greater than the smallest particle in Fig. 5.4(a),

the smallest particle becomes completely eroded as shown in Fig. 5.4(d). Therefore, it cannot

be restored when Fig. 5.4(d) undergoes dilation, as shown in Fig. 5.4(e). The total intensity of

Fig. 5.4(e) is reduced, in comparison to Fig. 5.4(a), but when the structure element size was less

than that of the smallest particle the total image intensity (Fig. 5.4(c)) remained unchanged. After

cycling through different size structure elements and measuring the resulting total image intensity,

the derivative of the total image intensity with respect to the structure element size (in this case

defined to be the radius) is computed. This will be known as a granulometry plot. Figure 5.4(f)

reveals sudden changes in the total intensity, where the radius corresponding to those sudden

changes equal that of the particles. Note that the amplitudes do not represent the relative number of

particles of that size, rather they represent the total intensity enclosed by the particles of that size.

Figure 5.4 demonstrates the principle of granulometry on an image with particles being the

same shape as that of the structure element. However, alveoli have a range of shapes and some

are linked together by a common airway (see Fig. 5.5). Consequently, alveoli are not completely

bounded. Despite this, granulometry is still able to identify and measure the alveolar size. The
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(a)

(b) (c)

(d) (e)

(f)

Figure 5.4: Principle of granulometry. The morphological opening operator is applied on
image (a) to determine the radius of the three circular particles enclosed within, using a range
of differently sized circular structure elements. (b) and (c) show (a) after erosion then dilation,
respectively, using a structure element of radius less than the smallest circle in (a). Similarly, (d)
and (e) are images of (b) and (c), respectively, but having used a structure element just larger than
the smallest particle. Note that circular outlines are drawn in (b) and (d) to help compare the size
of the particles with their original sizes before erosion. (f) represents a granulometry plot, which
is the derivative of the total intensity of (a) after having undergone erosion then dilation against
the structure element radius.
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(a)

Figure 5.5: Transaxial 17.7 × 15.3 µm2 CT slice of the lungs of a rabbit kitten highlighting some
of the alveoli (outlined in red). Some alveoli are part of a common airway (outlined in blue).

measured sizes correspond to their inradius, highlighted as red circles in Fig. 5.55. The following

panel of images in Fig. 5.6 demonstrate this by showing the same CT slice as in Fig. 5.5 after

applying the morphological opening operator with different size circular structure elements. Note

that the CT slices displayed are thresholded to make the airways easier to discern. Accompanying

the CT slices are plots showing the dominant sizes of the airways represented as peaks. The

sequence of panels shows that the sizes of the individual alveoli protruding from the small airways

are able to be measured. Note, however, that the first prominent peak at diameter of 8 pixels is due

to noisy pixels around the edges of the airways. Attached to the CD accompanying this thesis is a

complete video clip of Fig. 5.6.

5As an example, consider an alveolus shaped as a cuboid and with a spherical structure element being employed
for granulometry. As explained, granulometry uses the morphological opening operator and cycles through structure
elements of increasing size and the size that causes a change in the total intensity would correspond to that of the alveolus.
By the definition provided for the morphological erosion operator, the structure element would first completely erode the
cuboid alveolus when its radius is just greater than the inradius of the alveolus, since the structure element of that size
begins to include the background. Therefore, the alveolus is not restored after dilation and a change in the total intensity
occurs.
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(a) 0 pixels

(b) 8 pixels

(c) 76 pixels
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(d) 88 pixels

(e) 100 pixels

Figure 5.6: Image of a CT slice displayed in Fig. 5.5 after morphological opening with a spherical

structure element with diameter (a) 0 pixels, (b) 8 pixels, (c) 76 pixels, (d) 88 pixels, and (e) 100

pixels. The original outlines of the airways are over-plotted on each image as a way to show

which parts of the airway have been measured. A scale bar is provided indicating the diameter

of the structure element. A granulometry plot accompanies each image to show which peaks

correspond to which parts of the airways.

5.3.2 Watershedding and its Comparison Against Granulometry

Watershedding is another particle sizing technique that offers a greater number of degrees of

freedom in detecting and sorting particle sizes than granulometry. Particles are located using a local

maximum search algorithm followed by expanding the maxima (akin to filling a series of valleys

with water) until it hits an adjacent maximum or a predefined minimum threshold intensity value

to form blobs. Parameters can be defined to control how far maxima are expanded (i.e. the blob

size), which maxima are significant and, for those that are not, whether they should be discarded or
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merged with an adjacent blob.

The flexibility provided by watershedding in allowing different parameters to be set makes

it prone to noise, intensity changes in the image background and particles with poorly defined

boundaries. The presence of noise results in the detection of many irrelevant local maxima, which

also significantly increases computation time. Noise can be smoothed but over-smoothing expands

the boundaries of the particles and leads to overestimating their size. Careful setting of the minimum

threshold intensity value is important to correctly measure the particle size. This is difficult to set

with a varying background intensity. Particles packed closely may appear partially merged together,

namely because of finite sampling and the detector point spread function (PSF). Furthermore, as

previously mentioned, some alveoli do not have an entirely defined boundary because they are

linked together by a small airway (see Fig. 5.5). Watershedding is unable to delineate such alveoli

or particles.

The main advantages of watershedding over granulometry are: computational speed; ability

to measure the number of particles; provision of information on the particle shape; and provision

of subpixel measurements of particle size. Granulometry is significantly slower since at each

coordinate of the image the pixel values enclosed by the structure element are sorted to determine

the maximum and minimum value when dilating and eroding, respectively. Also, granulometry

cannot return the total number of particles as it only calculates the total change in intensity, and

since the structure element is of a set shape, no information is returned on the true shape of

the particles. Furthermore, the structure element size can only grow in increments of the pixel

size, hence the relative size increments will depend upon how well the image space is sampled.

Although the image can be expanded to improve sampling, there is a large concomitant increase in

computation time. Conversely, in watershedding, particle size can be measured from that of the

blob, for example its mean chord length, with subpixel accuracy. Alternatively, a simplified way

of measuring their size is to impose spherical model on the blobs. The formula for the volume

of a sphere can be used to determine the radius of the blob with subpixel accuracy from the total

volume enclosed within it.

After rigorous testing of both particle sizing techniques on CT slices of lung alveoli, granu-

lomtery was found to be more robust against variability in background intensity across the image

and conjoining alveoli. Despite watershedding providing more information about the alveoli, it was

found to be less robust as parameters optimized for one CT lung image were regularly sub-optimal

for others. The lower computation time required for watershedding in comparison to granulometry

was offset by the time taken to optimize the watershedding parameters for each CT lung image set.
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In light of these findings, granulometry was employed as a gold standard for a newly developed

technique to particle sizing and counting that is presented in section 5.4.

5.4 A Theory for Extracting Lung Morphology from Near-Field

X-ray Speckles

This section shows how the alveolar size and population can be determined from lung speckle

patterns in PB-PCX chest images if the VL is known. This derivation closely follows that developed

in section 4.4, but in that derivation alveoli were assumed to be uniformly randomly distributed,

which may not always be true. For instance, two PB-PCX chest images were recorded at low

(Fig. 5.7(a)) and high (Fig. 5.7(b)) VL, which is clearly evidenced by the amount of air seen in

their corresponding CT chest slices, shown in Figs. 5.7(c) and 5.7(d), respectively. At the larger

volume, it can be seen that the alveoli become more closely packed and less uniformly randomly

distributed. The following subsections reveal how short-range-order (SRO) arising from close

packing can significantly alter the power spectra of particulate images6. Hence this section modifies

the derivation in section 4.4 to account for SRO. As was shown in section 4.4, for a single material

object the power spectrum of its PB-PCX image (I(r⊥, z = L)) normalized against its attenuation

image (I(r⊥, z = 0)) can be expressed as:

∣∣∣∣∣∣F
{

I(r⊥, z = L)
I(r⊥, z = 0)

− 1
}∣∣∣∣∣∣2 = L2δ2k4

⊥ |F {T (r⊥)}|2 , (5.4)

where all the symbols are as defined in section 4.4.

The functional form of a distribution of voids G̃(r) enclosed in V(r) is also reintroduced from

section 4.4:

T̃ (r) = V(r) −
N∑

n=0

δ(r − rn) ⊗ G̃(r), (5.5)

where all the symbols are as defined in section 4.4. In that section, its power spectrum was

evaluated to be N times
∣∣∣∣F {

G̃(r)
}∣∣∣∣2 for non-zero spatial frequencies by assuming G̃(r) to be

6The degree of order refers to the distance over which the correlation between particles remains significantly above
zero (zero representing no correlation). Crystals have long-range-order since they are made up of atoms arranged
in a periodic manner over a large region. This means the position of one particle can be used to determine that of
another from afar. SRO refers to when the correlation is high only between adjacent alveoli. That is, the position of one
particle can accurately predict the position of another particle close to it. SRO occurs when the particles are randomly
closely packed (Kachan and Ponyavina, 2002). In the lungs, the alveoli are quite closely packed and may therefore
exhibit SRO. Medium-range-order describes objects with properties between that of short- and long-range-order. One
example is powdered crystals. However, there has yet to be clear boundary defined separating short-, medium- and
long-range-ordering.
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(a) (b)

(c) (d)

Figure 5.7: PB-PCX image of the chest at (a) low and (b) high lung air volume of the same
rabbit kitten (image size: 19.8×22.8 mm2). These PB-PCX images were one of 1800 projections
used to reconstruct 27.6×26.4 mm2 CT slices as shown in (c) and (d), respectively. Note that the
bones appear black in the projection image since the image represents the attenuated intensity and
white in the CT slices since the slice represents the linear attenuation coefficient. ODD = 1 m.
Energy = 24 keV. Exposure time per projection = 50 ms.
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uniformly randomly distributed. However, it will be shown herein that this expression is incorrect

for closely packed spheres by first explicitly expressing
∣∣∣∣F {

T̃ (r)
}∣∣∣∣2 as:

∣∣∣∣F{
T̃ (r)

}∣∣∣∣2 =

∣∣∣∣∣∫
V

T̃ (r) exp(−i2πk · r)dr
∣∣∣∣∣2 , (5.6)

where k = (kx, ky, kz) are vectors in 3D Fourier space.

The first term of Eq. 5.5 is a constant function and so contributes only to the zero spatial

frequency. The zero frequency, however, is not relevant to this study and will be ignored hereafter.

To derive an analytic solution to the integral in Eq. 5.6, and hence obtain explicit dependence on N

and R, Eq. 5.5 (minus V(r)) is substituted into Eq. 5.6. Then after making use of the convolution

theorem and the sifting property of the unit impulse, the following expression is yielded (Guinier,

1994):

∣∣∣∣F {
T̃ (r)

}∣∣∣∣2 =
∣∣∣∣F {

G̃(r)
}∣∣∣∣2 N +

m6=n∑
m=1

∑
n=1

cos(2πk · Dmn)

 , (5.7)

where Dmn is the vector from the center of sphere m to the center of sphere n. The voids are

assumed to be macroscopically isotropic7, much like alveoli, making their power spectra rotationally

symmetric. Thus, both |F {G(r)}|2 and the cosine term in Eq. 5.7 can be rotationally averaged.

This is done for the cosine term by averaging over the polar angle defined between k = |k| and

Dmn = |Dmn|, and the azimuthal angle formed by the plane containing k and Dmn with an arbitrary

plane. Thus, Eq. 5.7 reduces into one-dimensional (1D) form with independent variable k and

distance Dmn, to give a result equivalent to the Debye scattering formula, which was derived for

predicting the diffraction patterns of gases and liquids (Debye, 1915):

∣∣∣∣F {
T̃ (r)

}∣∣∣∣2 =
∣∣∣∣F {

G̃(r)
}∣∣∣∣2 N +

m 6=n∑
m=1

∑
n=1

sin(2πkDmn)
2πkDmn

 . (5.8)

The overbar represents the rotational average, which hereafter will be dropped for notational

simplicity. According to the Fourier slice theorem,
∣∣∣∣F {

T̃ (r)
}∣∣∣∣2 (k⊥, 0) =

∣∣∣∣F {∫
z T̃ (r)dz

}∣∣∣∣2 (k⊥) =

|F {T (r⊥)}|2 (k⊥). This is also true for |F {G(r)}|2 and therefore allows k to be replaced with k⊥

in Eq. 5.8 to give an expression for the power spectrum of the projected object thickness T (r⊥).

Substituting this 1D form of Eq. 5.8 into Eq. 5.4, and with |F {G(r)} |2 assumed to be the power

spectrum of a sphere, which is given in Eq. 4.10, gives the main equation of this chapter, the

PB-PCX speckle image power spectrum with SRO:

7That is, the voids are randomly orientated and the degree of order in their spatial distribution is similar in all
directions.
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∣∣∣∣∣∣F
{

I(r⊥, z = L)
I(r⊥, z = 0)

− 1
}∣∣∣∣∣∣2 = L2δ2k4

⊥N

∣∣∣∣∣∣ 4πR3

(k⊥R)2

[
sin(k⊥R)

k⊥R
− cos(k⊥R)

]∣∣∣∣∣∣2
×

[
1 +

∫
V
ρ(D)

sin (2πk⊥D)
2πk⊥D

dV
]
. (5.9)

Here, the summation term in Eq. 5.8 has been rewritten as an integral, over the volume V(r),

weighted by the function ρ(D) that is defined as the occurrence frequency of alveoli separated by

distance D. The area under the power spectrum of Eq. 5.9 (PS Area−order) over its first order peak

bounded by the same adjacent minima as defined for Eq. 4.12 is given by:

PS Area−order = L2δ2N

34π2R +

∫
k⊥

∣∣∣∣∣∣4πR
[
sin(k⊥R)

k⊥R
− cos(k⊥R)

]∣∣∣∣∣∣2
×

∫
V
ρ(D)

sin(2πk⊥D)
2πk⊥D

dVdk⊥

}
. (5.10)

It can be shown that Eq. 5.10 reduces to Eq. 4.12 if there is no SRO, that is, the alveoli are uniformly

randomly distributed. This occurs when ρ(D) = constant, which means there is equal probability

within V(r) that an alveolus will be separated by any distance D from another. The integral over V

in Eq. 5.10 becomes the Fourier transform of V(r) (as shown by Guinier (1994, sec. 2.5)). If the

ratio of the sphere size G(r) to the dimension of V(r) is much less than unity then the dominant

spatial frequencies of the integral term is confined towards k⊥ = 0 and away from the first order

peak. The second term in the curly brackets of Eq. 5.10 vanishes, hence Eq. 5.10 reduces to

Eq. 4.12.

As mentioned in section 4.5, since 90% of the volume corresponding to VL can be accounted

for in the alveoli, each of which is approximated as N isolated spheres of radius R, then:

VL =
4
3
πNR3. (5.11)

If VL and the PS Area−order are known, Eqs. 5.10 and 5.11 can be used to simultaneously solve

for N and R. This method will hereon be labeled as the speckle-based alveolar analysis method

(SAAM). However, to use Eq. 5.10, ρ(D) must be known, which is difficult to determine for alveoli.

Therefore, SAAM was first tested under the assumption that the alveoli were uniformly randomly

distributed by utilizing Eq. 4.12, instead of Eq. 5.10, together with Eq. 5.11 to measure N and

R. This method is much simpler to employ as only δ needs to be known, which can be readily

calculated for a given material at a given x-ray energy using the National Institute of Standards and

Technology (NIST) database (NIST, 2014).
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An alternative method is using the position of the first order peak in the power spectrum (PSPeak)

where, under the assumption that the alveoli is uniformly distributed, it is located at PS Peak = 2.74
R

(this is solved from Eq. 4.11) to calculate R. N could then be calculated from the measured PSArea

or VL, but in section 5.5, VL was utilized.

Both SAAM and the alternative method assume the alveoli are uniformly randomly distributed,

but Figs 5.7(c) and 5.7(d) indicate that the alveoli may have some significant degree of packing

order at increasing VL. Consequently, both methods may not be sufficiently accurate to calculate

N and R of alveoli in those images. To realize this, observe that both Eq. 5.9 and Eq. 4.11 are

oscillatory functions in Fourier space. As the packing fraction increases, their first order peaks

differ in position as does the area under the peaks. In the next section, the effect of ordering on the

accuracy of SAAM and using PS Peak is explored by testing them on PB-PCX images of soda lime

glass (SLG) microspheres, uniformly randomly arranged and closely packed, and comparing the

measured values of N and R with their known values. As will be shown, the alternative method

was found to be less robust to SRO compared to SAAM.

5.5 Measure of Glass Particle and Alveolar Morphology

SAAM is validated using colloidal SLG microspheres, which closely resemble alveoli in size and

shape, and is then applied to rabbit kittens to measure alveolar dimensions. These measurements

are then compared with a gold standard measurement of alveolar size from high-resolution CT

images (see section 5.5.1 for details). The results and analysis from both microspheres and rabbit

lungs is presented in section 5.5.2. The prospect of applying this work to human patients forms

part of the discussion in section 5.5.3.

5.5.1 Methodology

Image acquisition

PB-PCX images were acquired, flat field corrected and, for long image sequences (>2 mins), the

intensity of each frame was normalized to the first frame, as described in section 3.3.1.

Two detectors were used in this study: a 2560×2160 pixel scientific (sCMOS) tandem lens-

coupled scientific-CMOS (sCMOS) imaging sensor (pco.edge; PCO AG, Germany) coupled to

a 25 µm thick gadolinium oxysulfide (Gd2O2S:Tb;P43) powdered phosphor (this was the same

detector utilized for the work presented in section 4.7), and a 2040×2040 pixel sCMOS imaging

sensor (ORCA-Flash4.0; Hamamatsu, Japan) with a direct fiber optic coupling the sensor to a
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150 µm thick columnar CsI scintillator. Their effective pixel sizes were 15.23 µm and 6.38 µm,

respectively.

Glass particles

SLG microspheres (Whitehouse Scientific, Ltd.) were imaged at 30 keV using both detectors

to test the robustness of SAAM for extracting their average R and N against detection system.

150-180 µm sized microspheres were sprinkled onto a cover slip to produce a sparse random

distribution and then sealed with another cover slip placed on top. A hollow step-wedge made

of polymethyl methacrylate was designed with the depth (i.e. thickness) of the steps at 1 mm,

2 mm, 5 mm, 10 mm and 20 mm. The hollow step-wedge was separately filled with closely packed

microspheres of sizes 43-55 µm, 63-75 µm, 75-90 µm, 90-106 µm, 106-125 µm, 150-180 µm,

180-212 µm and 250-300 µm.

Rabbit kittens

All animal experiments performed were approved by the Monash University Animal Ethics Com-

mittee and the SPring-8 Animal Care and Use Committee. Pregnant New Zealand white rabbits

(27-30 days of gestation, term=31-32 days; n=4) were anaesthetized initially using propofol (i.v;

12 mg/kg bolus, 150-500 mg/h infusion), then via inhalation following intubation (Isoflurane

1.5-4%). Rabbit kittens (n=10) were delivered by caesarean section, then humanely killed using an

overdose of sodium pentabarbitone (>100 mg/kg i.p.). The experimental setup shown in Fig. 2.3

was employed here. Before ventilation, several non-aerated images of the chest were recorded.

Thereafter ventilation was initiated with an airway pressure (AP) of 16 cmH2O. AP was then

gradually increased to 27 cmH2O and decreased back to 16 cmH2O via 1 cmH2O increments,

each of which was held for 5 s. The images were recorded at 24 keV with a frame rate of 20 Hz,

40 ms exposure time, and 1 m ODD. Only the pco.edge detector was used because, of the detectors

available at the time of experiments, only it had a sufficiently large FOV to image the entire chest

of a rabbit kitten in a single exposure. The ODD of 1 m seems to contradict what was found in

chapter 4, in that with the same detector and exposure time employed, the contrast-to-noise ratio

(CNR) of lung speckle at 1.5 m ODD was too weak to accurately quantify lung structure. Fortu-

nately, it was discovered that the pco.edge detector, being a lens-based system, was not optimally

focused at that time. Rectifying this significantly boosted the lung speckle CNR sufficiently to

allow imaging at 1 m ODD and consequently be well within the near-field regime.

The ventilator was disconnected with AP last set at 2 cmH2O. High resolution CT images

(1800 projections from 0◦-180◦ with 50 ms exposures and 1 m ODD) were then acquired for a
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gold standard comparison. Additional CT images were then recorded after the kitten’s lungs were

filled with 100% N2 at 29 cmH2O AP with the intubation tube then tied off to prevent lung collapse.

Each rabbit kitten was fixed in a test tube filled with 2% agarose solution to reduce motion blur.

PB-PCX images of a rabbit kitten were also recorded at different ODDs to measure the degree of

validity of Eq. 5.4 at increasing ODD.

Image analysis

The power spectrum of a speckled PB-PCX lung image given by Eq. 4.11 does not account for the

detector PSF and penumbral blurring. Given that the synchrotron source size of the beamline used

for this study was 150×10 µm2, the source-to-object distance was D =210 m, and the maximum

ODD set was 3 m, penumbral blurring is less than a pixel width for both detectors (see e.g.

Gureyev et al. (2009) for method to calculate penumbral blur). However, the detector PSF varies

significantly between detectors, and was therefore measured and corrected for each PB-PCX image

before subsequent image analysis. The detector PSF was determined by first having the edge

spread function (ESF) measured both vertically and horizontally using a 5.25 mm thick lead block.

The spatial derivatives of the ESFs were averaged, extruded azimuthally to construct the detector

PSF, and fitted with a 2D Pearson type VII distribution function (PVII) (Hall Jnr et al., 1977).

The Wiener deconvolution algorithm was used to deconvolve the PB-PCX images with the fitted

detector PSF (Stewart, 2006). This algorithm is most stable against the input parameter, the SNR of

the deconvolved image, at low spatial frequencies where the first order peak of the power spectrum

of lung speckle presides, thus it need not be known exactly. An optimal SNR value of 500 was

found to provide consistent values of N and R for microspheres and alveoli. Wiener deconvolution

amplifies high frequency noise but the degree of noise amplification is similar between frames

of the same animal. To suppress this effect, the power spectra of images without speckle (e.g.

the non-aerated lung images) were subtracted from that of the speckled image (e.g. aerated lung

images).

As is required to calculate PS Area, PB-PCX images were divided by their attenuation image

using the single image phase retrieval algorithm (SIPRA), which requires µ and δ as inputs for the

filter. These were for SLG microspheres (30 keV), µS LG = 197 m−1 and δS LG = 5.09 × 10−7, and

for lung tissue (24 keV), µLT = 54.74 m−1 and δLT = 3.99× 10−7 (as determined previously for the

work in section 4.7).

To summarize, PSArea was calculated using the following sequence of steps applied to the

PB-PCX lung speckle image: (i) deconvolving the detector PSF, (ii) dividing by its attenuation
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image, (iii) computing its azimuthally averaged power spectrum, (iv) subtracting from that of its

non-aerated PB-PCX image, and (v) integrating between 2 mm−1 and the Nyquist frequency. As

justified in section 4.6.2, the spatial frequencies above 2 mm−1 includes the first order peak and

those below are contaminated by bone and skin.

3D granulometry (described in section 5.3.1) was chosen as the ‘gold standard’ to evaluate the

accuracy of SAAM for measuring alveolar dimensions. Spheres of various sizes were created as

structure elements to survey the lung for alveoli of similar size using the morphological opening

operator on 7.5 mm3 CT volumes of rabbit kitten lungs. The CT volumes were magnified by a

factor of 4 and bilinearly interpolated beforehand to increase the spatial sampling rate. Alveolar

dimensions were calculated using SAAM from one of the corresponding CT projection images. VL

was calculated, as required to use SAAM, by intensity thresholding the CT images to segment the

airways before counting the total voxels within them.

5.5.2 Results

Three types of 150-180 µm microsphere samples were investigated: single and multiple micro-

spheres uniformly randomly dispersed between cover slips, and a hollow step-wedge filled with

microspheres. These samples were recorded at 15 cm ODD using the pco.edge detector and are

shown in Figs. 5.8(a-c). Both N and R were calculated using Eqs. 5.11 and 4.13. N and R were also

determined from the position of the first order peak in the speckle power spectrum, that is, PSPeak.

The calculated values of N and R along with their expected values are presented in Table 5.1.

Table 5.1: The number and mean radius of SLG microspheres calculated from the propagation-
based phase contrast x-ray images in Fig. 5.8(a-c) and compared with the expected values shown
in brackets.

Number Radius (µm)
Microspheres PSArea PSPeak PSArea PSPeak

Single (Fig. 5.8a) 0.67±.03(1) 2.7±0.1 96±4(83±8) 59.55±0.01
Multiple (Fig. 5.8b) 52±3(59) 59.63±0.08 87±4(83±8) 83.47±0.08
Packed (Fig. 5.8c) 3732±460(3600±800) 7500±1600 82±9(83±8) 64.90±0.01

For single and multiple microspheres placed between cover slips, VL was calculated using

Eq. 5.11 with N and an average value for R measured directly from their images. The calculated

and expected values of N and R for a single microsphere agree poorly because the image noise

masked its signal (see Fig. 5.8(d)). However, as the number of microspheres increased, a clear peak

in the power spectrum became evident above the noise in Fig. 5.8(d). This resulted in excellent
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Figure 5.8: Propagation-based phase contrast x-ray images of 150-180 µm sized microspheres,
showing (a) a single glass particle, (b) multiple glass particles and (c) a 1 mm thick container of
glass particles with volume packing density ≈ 55% (Image dimensions: 3.83×3.83 mm2). (d)
shows the corresponding power spectra of (a)-(c), after deconvolving to remove the detector point
spread function, dividing by their attenuation contrast image, normalizing against the total pixels
in the image and the number of microspheres. ODD = 15 cm. Energy = 30 keV. Exposure time =

1 s.

agreement between the calculated and expected values of N and R using both the PSArea and PSPeak

(Table 5.1). The uncertainties in N and R calculated from PSArea and PSPeak were propagated from

the uncertainty in VL, which is the difference in VL calculated from using the mean R and the mean

of R plus one standard deviation measured manually from the images. However, the uncertainty in

R calculated from PSPeak was determined differently and was based upon fitting a PVII function

to the centroid. Comparing the uncertainties in N and R, at low packing fraction, they are more

precisely measured from PSPeak than from PSArea as PSPeak does not depend on how precisely VL is

measured.

Microspheres poured into a container inevitably stack on top of one another to produce some

SRO. VL was determined using SIPRA to calculate the projected thickness of glass at each pixel

then summed and multiplied by the pixel area (Paganin et al., 2002). Surprisingly, the presence
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of SRO did not adversely affect the calculation of N and R using PSArea. Their uncertainty was

propagated from that of VL, which was determined using the rational exponent function derived in

section 3.3.1 that relates the uncertainty in VL to the region-of-interest (ROI) size (Leong et al.,

2013a). Conversely, PSPeak shifted to higher frequencies (see Fig. 5.8(d)), thereby underestimating

R and overestimating N. Again, the uncertainty of the former was determined from weighted fitting

of a PVII function to the centroid while that of the latter was determined in a similar manner to N

that was calculated from PSArea. Two important and consequential points arise from these findings:

(1) there is SRO in closely packed particles as indicated by the shift in PSPeak, and (2) despite this,

Eqs. 4.22 and 4.13 can still accurately calculate N and R. Figure 5.8(d) provides a clue to why

Eqs. 5.11 and 4.13 remain valid. There we see that the shape and position of the first order peak is

altered by SRO, but the area under the curve remains virtually unchanged. This presents a favorable

outcome, since the packing density of alveoli will vary during respiration.

PB-PCX images of the 1 mm thick region of the step-wedge, each containing different sized

microspheres, were recorded using the ORCA detector to better resolve the smaller sized mi-

crospheres. N and R were calculated for each and are plotted in Fig. 5.9(a), which show that

they are in close agreement with the expected values. However, at increasing sample thickness

(that is, at increasing |ϕ|max) and ODD, large errors accumulated in the calculation of R as NF

reduces below max {1, |ϕ|max}. This is shown in Fig. 5.9(b). A similar trend (not shown) was

found when plotting N as a function of ODD. The accuracy of calculating R of a single layer of

particles also decreases despite the fact that NF ≥ max {1, |ϕ|max} for up to 2 m ODD (R ≈ 165 µm,

|ϕ|max= |−kδS LG2R|= 13.5, L = 2 m, a = 2R, NF = 61.6). The consistent overestimation of PSArea

with respect to that obtained experimentally, which is denoted in this thesis as the large-distance

error, could be due to a number of possible effects. A complete study of these competing effects is

warranted, but was beyond the scope of this thesis. Nevertheless, an extended discussion on these

effects is given in section 5.5.3.

Considering that the typical alveolar radius and projected thickness of a fully aerated lung of a

rabbit kitten are 75 µm and 10 mm, respectively, and given that the ODD used in these experiments

was 1 m, NF = 435 and |ϕ|max= |−kδS LG2R|= 363. Since NF ≥ max {1, |ϕ|max}, this shows the

PB-PCX lung images recorded in this study satisfy the near-field condition. However, as was shown

for SLG microspheres, there exists an increasing large-distance error at increasing ODD. From

Fig. 5.9(b), the degree of the large-distance error is similar at 1 m ODD for increasing projected

thickness of up to 10 mm. Therefore, a single factor can be applied to the images to account for

the large-distance error. To determine this factor for the lungs, many rabbit kittens were aerated to
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Figure 5.9: Evaluating the accuracy of calculating the number and mean radius of microspheres
from propagation-based phase contrast x-ray images of (a) a 1 mm thick container filled separately
with different sized microspheres at 15 cm ODD and (b) containers of variable thickness filled
with 150-180 µm sized microspheres at various ODDs. Energy = 30 keV. Exposure time = 1.2 s.

various VL and imaged at different ODDs. The PSArea was calculated at each ODD and compared

with the expected PSArea, which was determined by assuming the calculated PSArea at the lowest

ODD of 15 cm was accurate and subsequent PSArea were extrapolated to larger ODD using Eq. 5.4.

This was done for several rabbit kittens at 1 m ODD and on average their calculated PSArea differed

by a factor of 2.3±0.6 from the expected value. This factor was accounted for in all PB-PCX rabbit

kitten images recorded at 1 m to give a more reliable measure of the alveolar dimensions and

population.

3D granulometry was utilized to test the accuracy of measuring alveolar dimensions from PSArea

and PSPeak, although it does not yield their number, N. Figure 5.10(a) shows typical granulometry

curves that correspond to a 7.5 mm3 ROI that includes the CT slices shown in Figs. 5.7(c) and

5.7(d). The maximum value represents the dominant alveolar dimension. 3D granulometry was

performed on several more rabbit kittens and compared with PSArea and PSPeak (see Fig. 5.10(b)).

The uncertainty in R measured from 3D granulometry was determined by the width of the flat top

of the peak while that measured from PSArea was propagated from the largest source of uncertainty,

that being the factor, 2.3±0.6, used to correct for the large-distance error. The uncertainty in PSPeak,

determined from weighted fitting to the PVII function was negligible (< 1 µm). The gradients for

PSArea and PSPeak against 3D granulometry were 0.9±0.3 (Pearson product-moment correlation

coefficient R2= 0.6) and 0.2±0.1 (R2= 0.3), respectively. The gradient of the latter indicates the

insensitivity of PSPeak with R, which is likely caused by short-range-ordering of alveoli affecting

the measured size (see section 5.4), while the former shows a strong positive correlation. From the

results of the SLG microspheres, this further demonstrates the fact that utilizing PSArea is immune

to short-range-ordering effects.
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Figure 5.10: (a) Distribution of alveolar dimensions determined from regions centered about the
two CT slices in Figs. 5.7(c) and 5.7(d), respectively, using 3D granulometry. (b) The average
alveolus size was measured both from PSArea and PSPeak and was compared with that measured
from 3D granulometry for several rabbit kittens. (c) The alveolar number was approximated by
manually counting the number of alveolar surface profiles from one transaxial slice per CT of a
ventilating kitten and plotted against the total lung air volume determined by intensity thresholding
the entire CT reconstruction.

To demonstrate the presence of alveolar recruitment and de-recruitment, the number of alveoli

was manually counted from a transaxial slice for each CT (similar to those shown in Fig. 5.7(c)

and 5.7(d)) recorded of a kitten at different stages of respiration, which in stereology shows that

it is approximately proportional to the alveolar number in 3D (Miyomoto, 1994). The transaxial

slices were chosen to be approximately at the same axial position in the lung for each animal.

Figure 5.10(c) shows alveolar number correlates with the total VL of the entire CT.

The ability of the technique presented herein to dynamically measure N and R during ventilation

is demonstrated in Fig. 5.11; from the first breath of the rabbit kitten to several respiratory cycles

later. From the first breath (Fig. 5.11(a)) N (calculated from PSArea) was measured to first increase

before reaching a plateau after t = 5 s as Fig. 5.11(b) shows. This increase in N coincides with

the clearing of fetal lung liquid and consequent recruitment of aerated alveoli. An increase in R,

computed from PSArea, follows the same trend as VL. Conversely, R that was derived from PSPeak
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Figure 5.11: Lung air volumes from PB-PCX chest images of a kitten mechanically ventilated
(a) from its first breath, and (c) over a single respiratory cycle several breaths after its first.
The corresponding calculation of number and mean radius of alveoli are shown in (b) and (d),
respectively.

remains largely unchanged, which may be caused by alveoli becoming more closely packed. At

t ≥ 27 s, a sudden drop in VL sees R decreasing (calculated from PSArea), but interestingly N

concomitantly increased. The increase in N may be caused by the trapping of air as the airways

collapse to produce the appearance of additional alveoli in the form of air bubbles. During a

respiratory cycle of a well-ventilated lung (Fig. 5.11(c)), the independent calculations of R shown

in Fig. 5.11(d) initially closely agree, but after t ≥ 6 s they diverge again. This is likely due to

effects of SRO affecting peak position. N (calculated from PSArea) remains approximately constant

throughout except at the beginning and end of the respiratory cycle. This shows evidence of alveolar

recruitment followed by de-recruitment.

The same two respiratory cycles plotted in Figs. 5.11(a) and 5.11(c) are plotted against airway

pressure (AP) to present their pressure-volume (PV) curves given in Figs. 5.12(a) and 5.12(b),

respectively. In section 5.1, it was suggested that the hysteresis between the inspiration and
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expiration curve was caused by alveolar recruitment and de-recruitment occurring at different

pressures. These results support this hypothesis that the hysteresis is caused by differences in

alveolar structure during inspiration and expiration. In Fig. 5.12(a), a large degree of hysteresis can

be seen, which is reflected in the alveolar number and radius not being equal at the same AP during

inspiration and expiration. Note that this is expected for an infant taking its very first breath, during

which lung fluid is cleared and alveoli are recruited for the first time to increase the functional

residual capacity (FRC). Several breaths later, when the lungs are well aerated, Fig. 5.12(b) shows

the hysteresis remains; albeit, to a smaller extent. This is reflected also in the smaller differences in

alveolar morphology between inspiration and expiration.
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Figure 5.12: AP is plotted with total lung air volume, alveolar number and radius from (a) first

breath (the same as in Fig. 5.11(a)) and (b) over a single respiratory cycle several breaths after

its first (the same as in Fig. 5.11(c)). The blue and red curves represent points corresponding to

inspiration and expiration, respectively.
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5.5.3 Discussion

The structural and functional complexity of the lung makes it both intriguing to understand yet

difficult to study. Many lung imaging techniques are limited to studying only small regions of the

lungs accessible to invasive instruments, or lungs that are effectively motionless, thereby precluding

the extraction of functional information. Here, the theoretical derivations developed in section 5.4

were applied to measure the number (N) and radius (R) of alveoli from the speckle patterns of

PB-PCX ventilated chest images. Highly spatially resolved PB-PCX images can be recorded in

real-time during a respiratory cycle by using intense and coherent synchrotron light coupled with

detectors having high spatial resolution and quantum efficiency. This technique can therefore

provide valuable insight into the structural lung changes during respiration.

In this study, N and R were measured for the whole lungs. However, a key benefit of this

technique is its ability to also measure N and R locally, which requires PSArea and VL to also be

regionally measured. The minimum size of the ROI that VL can be measured from, using the

technique adopted in this study (i.e., Kitchen et al. (2008)), is limited by the differential movement

of the bone. However, the technique developed in chapter 3 can be utilized here to measure VL on a

pixel-by-pixel basis (Leong et al., 2013a). For calculating PSArea, the ROI must be large enough

to adequately sample the power spectrum. Given the detector pixel size of 15.23 µm and typical

alveolar size of 150 µm, N and R can be calculated from a ROI as small as ~0.5 mm2 compared

to that of the entire lung being ~230 mm2. This would be important in optimizing ventilation

strategies to ensure all parts of the lung are adequately aerated without over-distending the alveoli

that can lead to conditions such as ventilation-induced lung injury and bronchopulmonary dysplasia.

Diagnosis and treatment of respiratory diseases including emphysema could also benefit by better

localizing and targeting the diseased region.

Non-aerated PB-PCX images of the lungs are required for the technique presented herein but

are not always accessible, particularly for studying subjects that are not newborn. One alternative

is intensity thresholding a low dose chest CT image reconstructed from phase retrieved PB-PCX

images (using SIPRA) to remove the aerated alveoli, with the resulting image Radon-transformed

then propagated using the angular spectrum described in section 1.9 to obtain the non-aerated

PB-PCX chest image. While CT can provide information on N and R, the technique presented

herein can achieve this using single projections. Consequently, the temporal resolution of this

technique is far superior in allowing dynamic measures at a significantly lower radiation dose than

CT. Similarity in anatomical structure of the chest within a species should also make it possible

to use a non-aerated PB-PCX image for different subjects of the same species. This would avoid
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doing CT and imparting unnecessary radiation dose to every subject.

The large-distance error was associated with the loss of speckle contrast at large ODDs despite

remaining within the near-field regime and was accounted for empirically in this work by imaging

rabbit kittens at different ODDs. It would be interesting in future work to determine the source

of this large-distance error. It could be due to the partial coherence of the x-ray source, which

blurs speckle contrast. Synchrotron x-rays, however, are extremely coherent as the use of a crystal

monochromator produces a small frequency bandwidth and the source size was shown to be

sufficiently small that it did not adversely affect the speckle contrast at the ODD employed. Another

possible reason for the reduction in speckle contrast is decoherence, which was introduced in

section 4.7.3. While the rabbit kittens were imaged in water, there are objects other than the skin

that possess random unresolvable small-scaled defects that cause a reduction in speckle contrast.

These include optical elements such as beryllium windows and features within the chest8.

5.6 Concluding Remarks

This chapter has highlighted the many alveolar imaging techniques with their associated advantages

and disadvantages. For dynamically studying the mechanical behavior of lung alveoli in vivo, these

imaging techniques are not feasible due to either their insufficient temporal resolution, FOV or

penetrative depth. A non-invasive low dose in situ PB-PCX imaging-based technique was herein

introduced that was able to accurately quantify the number and average size of alveoli in real-time.

This technique was first tested on lung phantoms that were made of microspheres. It was shown to

accurately calculate the size and number of microspheres, of various sizes and filled in containers

of different thicknesses, from recordings of their PB-PCX images. Then the technique was applied

on rabbit kittens undergoing mechanical ventilation, which robustly produced dynamic quantitative

information on the alveolar number and their average size. This revealed the recruitment and

de-recruitment of alveoli. 3D grayscale granulometry was employed as a gold standard for alveolar

dimensions and agreed well with our technique. The number of alveoli counted from CT slices of

different degrees of aeration confirmed the presence of recruitment/de-recruitment.

The technique presented herein does not require any contrast agents or radionuclides and,

because planar imaging is performed, subjects are exposed to much less radiation than from

8For the lungs, some of these unresolvable features may include tiny capillaries and the overall aperiodic arrangement
of the individual components of the lung such as collagen. For microspheres, it is not so apparent what the unresolvable
features are. However, PB-PCX imaging of the same samples of microspheres as used for the work presented in this
chapter was performed at beamline Bl20XU, at submicron resolution. The images (not shown here) revealed that the
microspheres were contaminated by tiny air pockets and water droplets within the micropheres.
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high resolution CT imaging. As well as furthering the conceptual understanding of the structural

behaviour of the lung, this technique has potential to be performed with a laboratory-based x-ray

source and consequently applied to clinical diagnosis of respiratory diseases, evaluating the effect

of therapeutic treatments, and monitoring of assisted ventilation.
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This thesis has described theoretical developments in propagation-based phase contrast x-ray

(PB-PCX) imaging of the lungs that were implemented towards performing quantitative lung

measurements. A summary of the key results regarding three such developments described in this

thesis is presented in section 6.1, along with ideas for improving their performance and employing

them outside of synchrotrons in section 6.2.

6.1 Summary of Work

Chapter 3 described a phase retrieval-based method for measuring regional changes in lung air

volumes from PB-PCX chest images involving alignment then segmentation of the bones. Image

alignment is certainly not new and has long been employed in aligning medical images recorded

at different time points and from different imaging modalities. However, to the knowledge of

this author, this was the first time image alignment for segmentation purposes was performed on

PB-PCX chest images. Two image alignment algorithms were developed: area-based (AB) and

feature- and area-based hybrid algorithms. While slightly computationally less efficient, the former

was found to be more robust and accurate than the latter, particularly at large lung air volumes. This

was attributed to the latter being over-reliant on too few realistic translation vectors and imposing a

model on the lungs that became over-simplistic at high lung air volumes. Adopting the area-based

approach, changes in lung air volume (VL) were accurately measured from regions as small as the

detector pixel size. It was also found that the non-conservation of the total intensity, caused by

the employment of a non-rigid transformation function, negligibly affected the accuracy of the

measured VL. The main advantage discovered in aligning PB-PCX chest images was that the added

phase contrast on top of the absorption contrast of the bones significantly decreased the rate of

misregistrations.

The focus of this thesis then shifted to the study of lung speckle observed in PB-PCX chest

163
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images of an aerated lung. An analytic expression for the power spectrum of lung speckle within

the near-field regime was derived in the first half of chapter 4 by modeling the lungs as a uniformly

random distribution of spherical voids embedded in lung tissue. This was validated with PB-PCX

lung images simulated utilizing the angular spectrum formalism. Simulations revealed that many

properties of the lungs were encoded in the area under the power spectrum (PSArea) of the speckled

image. One of the advantages of studying lung speckle in Fourier space was that the bone and lung

speckle signals dominated different spatial frequencies and hence lung speckle could be exclusively

studied.

One aspect of the lung deciphered from PSArea was VL. This was tested in the second half of

chapter 4, where lung speckle power spectra were computed from recorded PB-PCX chest images

of rabbit kittens immersed in water and calibrated against VL, which was measured separately

utilizing a phase retrieval-based method. A one-to-one correlation between the two parameters was

found, thereby validating their relationship. The fact that the relationship was one-to-one alleviated

a potential problem in that the relationship may have varied significantly between rabbit kittens and

breathing/ventilation strategy (for e.g. small and large tidal volumes). This calibration curve was

successfully utilized to measure total changes in VL from PB-PCX chest images of rabbit kittens

immersed in air. The results agreed well with those measured using a flowmeter. The advantage

of this method is that the bone and lung signal are separated in Fourier space and consequently

allow absolute measures of VL. To achieve this utilizing the method described in chapter 3, both

the chest immersed in water and a PB-PCX non-aerated chest image are required. Consequently,

the signal-to-noise ratio (SNR) is significantly boosted, which becomes important when working

with lower powered laboratory-based x-ray sources.

Another aspect lung speckle encodes is the alveolar population and their average size. In

chapter 5, a method was developed, called the speckle-based alveolar analysis method (SAAM),

for extracting these structural parameters based on the theory developed in chapter 4. This was

tested on lung phantoms, constructed using microspheres, and was capable of accurately measuring

their size and number provided that the near-field condition was satisfied. Microspheres uniformly

randomly distributed and closely packed were also tested and SAAM was found to be accurate

for both. This is despite the fact that SAAM assumes uniformly randomly arranged particles. It

was found that the power spectrum of speckled images of particles randomly arranged and closely

packed differed in shape but negligibly under their area. This was an important result as the alveoli

become closely packed at high VL. Applying this method to imaging the aerating lungs of newborn

rabbit kittens revealed the presence of recruitment and de-recruitment of alveoli, which provides
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an explanation for the presence of the hysteresis seen in lung pressure-volume (PV) curves. 3D

granulometry was employed as a gold standard for measuring the alveolar dimensions and agreed

well with the method presented, while the number of alveoli counted from computed tomography

(CT) slices confirmed the presence of recruitment/de-recruitment. The topic of how alveoli behave

and how this relates to the shape of PV curves has been of great interest in the literature. The

method developed here should prove to be a decisive tool towards addressing this highly debated

topic.

6.2 Future Work on Quantitative Phase Contrast X-ray

Imaging

This section will begin with possible ways of addressing individual limitations of each quantitative

PB-PCX imaging-based method summarized above. Subsequently, a discussion on what areas of

additional investigation are required to successfully employ these methods using lab-based x-ray

sources is given and what currently available clinical methods with which it could be combined.

In chapter 3, the AB alignment algorithm developed for measuring regional changes in VL

was accurate at up to a volume change per unit mass of around 20 mL/kg. This was due to the

increasing complexity in the motion of the chest and differential degree of overlapping of ribs

between chest images caused by the angular rotation of the ribs perpendicular to that of the x-ray

chest image plane. However, many of the animals ventilated in our studies surpass 20 mL/kg.

Moreover, compared to newborn rabbits, the ribs of matured chests are completely calcified along

their entire segment, potentially resulting in greater differences in the degree of bone overlapping

between chest images. A means to increase the range over which VL can be measured accurately

from this method could be to offset the angle of the chest in the sagittal plane before recording. This

would reduce the degree of rib movement and the amount of overlapping bones remains unchanged

between chest images. As an extreme example, viewing a hand waving in the plane perpendicular

to the line of sight has more differential movement than viewing it along the plane that the hand is

waving in.

Another cause for the decrease in accuracy of the AB alignment algorithm is the use of a

non-rigid transformation function. While it was shown that this had a negligible effect on the

measured total change in VL, that may not be true for local measures of VL. To ascertain the extent

to which the non-conserving volume contributes regionally, the AB alignment algorithm could be

compared with other regional volumetric techniques discussed in chapter 2, such as CT and the
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analyzer-based phase contrast x-ray (AB-PCX)-based technique developed by Kitchen et al. (2011).

If the transformation function was found to have a significant effect, calculating the Jacobian of the

transformation function could be used to locally correct for the intensity of the transformed image1.

In chapters 4 and 5, the methods developed for extracting structural and functional information

from lung speckle are based on the theory developed in section 4.4. It was found that theory

broke down by incorrectly predicting the lung speckle contrast at increasing object-to-detector

propagation distance (ODD) despite remaining within the near-field regime. One reason given in

section 4.7.3 was the limited detector spatial resolution (decoherence). A preliminary investigation

into decoherence (not performed in chapter 5) was performed using two detectors, with pixel size

15.23 µm (pco.edge) and 6.38 µm (ORCA Flash) (their features were described in section 5.5.1).

A stepwedge packed with 150-180 µm microspheres was imaged using the two detectors under the

same experimental conditions. The area under the power spectra (PS Area) (defined in Eq. 4.13) was

computed from each detector at different ODDs and is shown in Fig. 6.1(a). Their uncertainties

were determined by calculating the standard deviation of PSArea from multiple recordings of the

stepwedge. This is plotted with the results presented in Fig. 6.1, but since the fractional uncertainty

was ~0.01%, this uncertainty is too small to be seen. At 15 cm ODD, PSArea measured by the

ORCA Flash is in close agreement with the expected values, but not so using the pco.edge due to

lung speckle contrast decreasing (Fig. 6.1(a)). The expected values were calculated by assuming

the PSArea value from the 1 mm thick part of the stepwedge imaged at 15 cm ODD was accurate,

and subsequent PSArea values at increasing thickness were extrapolated using Eq. 5.4. Hence,

Fig. 6.1(a) supports the notion that decreasing spatial resolution reduces the visibility of phase

contrast.

Repeating the experiments described above for studying decoherence but at 1 m ODD, the

PSArea measured using ORCA Flash does not agree with the expected value (Fig. 6.1(b)). This

is inconsistent with the proof given by Nesterets (2008) in that the degree of decoherence is

independent of ODD. It is possible that the lack of agreement in the PSArea is due instead to

the breakdown of the near-field condition. Even though according to NF ≥ max{1, |ϕ|max}, the

near-field condition at 1 m ODD is satisfied, it was relaxed from the more stringent condition,

NF � max{1, |ϕ|max} defined by Gureyev et al. (2008). This may be have been incorrect to do so

in the first place. Alternatively, |ϕ|max may have been underestimated. This may be due to the

1Transformation functions map the coordinate system of one image onto another. This may involve shrinking,
expanding, etc. between the coordinate systems. The Jacobian of the transformation function represents these changes
by taking the absolute value of the determinant of the matrix of partial derivatives of the coordinates of one system with
respect to the other system. Transforming coordinate systems alters the local intensity. The Jacobian represents the
degree of change in the intensity between transformed images.
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(a) (b)

Figure 6.1: A stepwedge packed with 150-180 µm microspheres is imaged using the ORCA
Flash and pco.edge detector at (a) 15 cm and (b) 1 m ODD.

discrete sampling of the wavefield, which inevitably smoothes the wavefield. It could also be

due to |ϕ|max being computed from the projected phase map when it should be computed from its

three-dimensional phase map. Consequently, the maximum ODD of ∼2.7 m determined for lung

tissue may have been overestimated. A deeper investigation into the near-field condition could be

performed to better define the near-field regime.

The lack of agreement between the PS Area shown in Fig. 6.1(a) could also arise from the

breakdown of the projection approximation. In this study it was approximated that if the near-

field condition (NF ≥ max{1, |ϕ|max}) was satisfied then so too is the projection approximation

(Eq. 1.37) since T < L and ∆x ≈ a. However, ∆x is equal to the pixel size, which is generally much

smaller than a, this being the characteristic length scale of the object imaged. Consequently, the

validity range of the projection approximation may be more narrow than the near-field condition.

Simulation and experimental studies on the validity of the projection approximation have only

been performed for simple objects such as a single cylinder and millimeter sized object (Martz, Jr.

et al., 2007; Morgan et al., 2010a,b). For more complex micron-sized objects such as the alveoli, a

generalized scattering formalism, such as the multi-slice approximation2, can be incorporated into

the simulations presented in chapter 4 to study the validity range of the projection approximation

and how it affects lung speckle contrast.

2In the multi-slice approximation an object is divided into slices of thickness ∆z. The projection approximation is
used to relate the wavefield at the planes z0 to that at z0 + ∆z. Since the projection approximation ignores free-space
propagation, the angular spectrum formulation of scalar diffraction integrals is utilized to propagate the wavefield having
undergone phase and amplitude shifts under the projection approximation from planes z0 to z0 + ∆z. These steps are
applied recursively to propagate the resultant wavefield from plane z0 + ∆z to z0 + 2∆z, and so forth until arriving at
the exit surface of the object (Cowley, 1995; Paganin, 2006). The multi-slice approximation provides a more accurate
representation of the exit-surface wavefield compared to that given by the projection approximation as it accounts for
scattering within the object.
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All three of the quantitative methods developed in this thesis are capable of performing local

measures of lung function. To correctly do this, the expansion and deflation of the lungs should

be taken into account rather than using a fixed sized region of interest in a two-dimensional (2D)

image. Christensen et al. (2007) showed that lungs do not expand or relax uniformly but in a local

manner. Fouras et al. (2012) developed a particle image velocimetry-based algorithm that is able

to measure regional expansion of the lungs by tracking the motion of the lung-induced speckles.

Future studies could be performed by adapting some of their work to further increase the accuracy

of the techniques developed here.

It would be ideal if the three quantitative methods can be employed utilizing laboratory-based

x-ray generators so that they become more widely accessible for researchers and for clinicians to

test on humans. Since such generators are typically orders of magnitude lower powered than syn-

chrotrons, filtering the beam to make it monochromatic is ill-afforded. However, these quantitative

methods are valid only with monochromatic x-rays and consequently would need to be generalized

for a polychromatic source. Gureyev and Wilkins (1998) showed that the near-field intensity

equation (NFIE) (Eq. 1.55), the underlying equation for all three of the quantitative methods, can

be generalized for a polychromatic x-ray source so long as the projection approximation remains

valid across the x-ray energy spectrum. Typical spectra from laboratory-based x-ray sources range

from 15-70 keV, which for lung tissue of small animals is sufficiently weakly scattering for the

projection approximation to remain valid within this energy range (Hemberg, 2004). For larger

animals this may not be true at lower energies. In that case the x-rays can be beam hardened to

filter out the lower energies. Additional information is required in order to use the generalized form

of NFIE, namely the x-ray beam intensity profile and its energy spectrum. These can be measured

by imaging the direct beam profile and utilizing an energy sensitive detector.

Partial spatial coherence may also need to be accounted for when utilizing lower powered

laboratory-based x-ray generators as the source-to-object distance (SOD) will most likely be much

less than that in a synchrotron. Consequently, it has a significant blurring affect on recorded

PB-PCX images. For all the work performed in this thesis, the blurring effect was quantified using

the method described by Gureyev et al. (2009). However, this method may not be applicable for

lab-based x-ray sources since it assumes that the x-rays at the source plane are delta correlated.

While this assumption is mostly true for synchrotron sources, even if the x-rays at the source plane

are not delta correlated, the large ODDs allows the wavefield to evolve to what it would be if

the x-rays were delta correlated (Cerbino, 2007). Therefore for lab-based x-ray sources, a more

rigorous derivation incorporating partial spatial coherence may be needed to accurately recover
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lung information. Some leads into studying the blurring effects of partially coherent x-rays can be

found in Gureyev et al. (2006) and Petruccelli et al. (2013).

If the quantitative techniques become successful using lab-based sources, then they could be

tested on humans. In regards to the exposure of x-ray radiation dose humans would receive, in

this work, the skin entrance radiation dose of x-rays measured on the animals was ~1 mGy per

PB-PCX image while the SNR (mean/standard deviation of image intensity) was ~10. The latter

was measured from several regions that were away from the rabbit kitten but within the water-filled

cylinder. This radiation dose is only slightly more than the standard chest x-ray image, but the

spatial resolution is significantly higher and is still much lower than a standard chest CT (Bushberg

et al., 2012, Ch. 11). However, the same SNR may not be achievable with human lungs under the

same experimental conditions as they are much larger and consequently more attenuating than that

of rabbit kittens. The SNR could be improved by increasing the x-ray energy to reduce the degree

of attenuation while achieving high phase contrast since it decreases less rapidly. How much the

x-ray energy would need to be increased by must also be determined.

The volumetric techniques (described in chapters 3 and 4) can potentially be combined with

perfusion tests to measure gas exchange efficiency3. Currently, ventilation and perfusion tests

are done separately through SPECT and angiography4, respectively. Combining the techniques

described herein with angiography, which has successfully been performed using PB-PCX imaging

(Lang et al., 2014), allows ventilation/perfusion test to be done simultaneously and potentially

better resolve regions with poor gas exchange.

The work done in this thesis proves that phase contrast x-ray (PCX) imaging provides much

more than enhancing soft tissue contrast to produce aesthetically pleasing images. PCX imaging-

based quantitative techniques were developed and gave insight into the dynamics of lung mechanics.

From fundamental research regarding the energy proficiency of the lungs to matters of clinical

significance such as detecting respiratory diseases in their early stage where treatment is more

efficacious, the techniques developed herein can lend important contribution to addressing these

issues and more.

3For an animal to function normally, it requires a sufficient supply of oxygen (ventilation) met with a sufficient
blood supply (perfusion) to take up the oxygen. Deviation from the norm is indicated by a mismatch in ventilation and
perfusion. This is measured clinically using scintigraphy and is commonly referred to as a ventilation/perfusion scan.

4Angiography is an imaging technique where a radioactive isotope or contrast agent (for example, Technetiumand
(Zöphel et al., 2009) and iodine (Sarnelli et al., 2005), respectively) is injected into the pulmonary circulatory system
from which its activity can be quantified.
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Purpose: Described herein is a new technique for measuring regional lung air volumes from two-
dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal
resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric recon-
struction technique quantifies dynamic changes in respiratory function. These methods can be used
for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for
preterm infants using animal models.
Methods: The volumetric reconstruction combines the algorithms of temporal subtraction and single
image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to
measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected
thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ∼16.2 μm). The technique has been
validated using numerical simulation and compared results of measuring regional lung air volumes
with and without the use of temporal subtraction for removing the thoracic cage. To test this approach,
a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was
employed.
Results: Regional lung air volumes measured from PBI images of newborn rabbit pups showed on
average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that
measured without the use of temporal subtraction. The majority of pixels that showed an improvement
was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI
images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous.
Conclusions: This paper presents an image segmentation technique based on temporal subtraction
that has successfully been used to isolate the lungs from PBI chest images, allowing the change
in lung air volume to be measured over regions as small as the pixel size. Using this technique,
it is possible to measure changes in regional lung volume at high spatial and temporal resolution
during breathing at much lower x-ray dose than would be required using computed tomography.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4794926]

Key words: phase contrast x-ray imaging, regional lung volume, image registration, thoracic cage
segmentation, temporal subtraction

I. INTRODUCTION

Dynamic changes in regional lung air volumes and their
derivatives (e.g., regional lung air flow and time constant) are
key measures of regional lung mechanics and may indicate lo-
calized regions of disease well before the pathogenic changes
are sufficient to cause global changes in lung function.1 Con-
sequently, many techniques have been developed to analyze
regional lung volumes using various types of tomography-
based imaging modalities (see, e.g., Refs. 2–4). Although

these modalities provide regional lung volume measures, they
are limited by a low temporal or spatial resolution or may re-
quire a large radiation dose for dynamic studies. We have pre-
viously developed a technique to measure regional changes in
lung air volume between a pair of two-dimensional (2D) im-
ages recorded using propagation-based phase contrast x-ray
imaging (PBI).5 PBI (explained in more detail in Sec. I.B)
produces phase-induced intensity variations between the
boundary of materials exhibiting different refractive indices.
The lung is ideal for PBI as it consists of conducting

041909-1 Med. Phys. 40 (4), April 2013 © 2013 Am. Assoc. Phys. Med. 041909-10094-2405/2013/40(4)/041909/11/$30.00
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airways and tiny air-filled alveoli that are surrounded by thin
regions of tissue. The changes in refractive indices, between
air and tissue, experienced by the x-ray as it traverses the
lung either highlights single airways in projection or pro-
duces a speckle pattern when the x-ray passes through mul-
tiple airways6 (see Sec. III). Combined with our phase re-
trieval analysis technique,5 these images can simultaneously
provide both higher order structural (i.e., alveolar regions seen
as lung speckle) and regional volumetric information in real-
time from 2D images. This approach avoids the use of a con-
trast agent, which is required in other volumetric techniques,
to quantify lung volume.2, 4, 7

The presence and differential movement of the thoracic
cage in relation to the lung during breathing limits the ac-
curacy of the regional lung air volumes measured using our
phase retrieval analysis.5 As a result, our aim was to develop
an algorithm to segment the ribs from PBI images of the chest
before applying our analysis to measure changes in regional
lung air volume. Segmentation of bones from chest images
is a common radiography processing tool for isolating the
lung to improve the detection of diseases. Techniques that
are commonly employed include artificial neural networks
(ANN), dual-energy subtraction (DES), and temporal subtrac-
tion (TS). DES involves imaging at two different x-ray ener-
gies to separate two materials by exploiting the difference in
their energy-dependent attenuation coefficients and perform-
ing a weighted logarithmic subtraction.8 This technique can
be highly accurate in removing bone when the images are si-
multaneously recorded at two different x-ray energies.9, 10 TS
facilitates visualization of pathological changes by subtract-
ing an image from one previously captured, following align-
ment of the images. This has commonly been used to improve
the visibility of lung lesions within chest radiographs, which
has helped improve the sensitivity and specificity of lung tu-
mor detection and monitoring.11 Unlike DES, alignment of
the images is required to correct for differential movement
of the thoracic cage, which will likely introducing bone arti-
facts into the subtracted image. ANN can be trained to remove
bone and once optimized can be easily utilized clinically, but
the initial training of the network can be arduous. DES im-
ages have been used to train the network, but the ANN can,
therefore, only at most be equally and not more accurate than
DES.12

Carnibella, Fouras, and Kitchen10 recently developed a sin-
gle exposure DES technique using synchrotron radiation. De-
spite the images being recorded at finite distances between ob-
ject and detector, the algorithm formulated assumes they are
purely absorption-based images. If this technique was applied
to measuring regional lung air volume, the prevalent phase-
induced intensity variation in the lungs could lead to large
errors. TS and ANN have yet not been developed for removal
of bone from PBI images. Hence, in this paper we describe a
novel TS-based algorithm to remove the bones from PBI chest
images by first aligning the bones, then applying our phase
retrieval analysis to remove the phase-induced intensity vari-
ations followed by subtraction of the images. This enabled us
to measure changes in regional lung air volumes with much
greater spatial resolution than previously possible. In Sec. I.A,

we introduce our approach to phase contrast TS and briefly
describe our lung volume analysis technique in Sec. I.C. A
description of the algorithm and its implementation follows
in Sec. II. In Sec. III, we evaluate the accuracy and robustness
of the TS algorithm by examining the subtracted images and
calculated lung air volumes. Some directions for future work
are provided in Sec. IV and we conclude with Sec. V.

I.A. Temporal subtraction

Temporal subtraction of chest images require careful im-
age alignment, or registration, to correct for movement of the
thoracic cage during breathing and shifting of subject pose.
Medical image registration is a well-established field with
an exhaustive range of techniques, each with their own pro-
ponents, but they essentially follow a common framework.
The process of aligning two images involves: (i) selecting
and matching salient (control) points between the images and
(ii) applying a transformation function to establish a point-
by-point correspondence between them. Early work on TS
by Kano et al.13 developed a nonrigid area-based registra-
tion algorithm and showed it improved the discernibility of
metastatic lung nodules in radiographs. This prompted the
development of other registration techniques that have im-
proved upon the accuracy and robustness against more elabo-
rate chest movements. An excellent review on similarity mea-
sures and interpolation functions applied in medical image
registration is provided by Zitová and Flusser.14

Here, we employ the standard approach of Kano et al.13 for
the purposes of measuring regional lung air volume using 2D
PBI images by adapting the cross correlation (CC) similarity
measure to locally match regions-of-interest (ROIs) between
two images, denoted A and B. The CC can be computed effi-
ciently using fast Fourier transforms via the relation

CC = F−1[F{ā} × F∗{b̄}], (1)

where ā and b̄ are the mean subtracted ROI from image A
(kernel) and the ROI from image B (search area), respectively,
while F and F−1 are the Fourier and inverse Fourier transform
pairs, respectively. F∗{b} is the complex conjugate of F{b̄}.

Ideally, the peak in each CC matrix describes the represen-
tative translation vector for each ROI pair. In x-ray imaging
of the chest however, multiple peaks often appear due to the
repetitive structure of the ribs in the chest. Consequently, the
kernel and search area are selected in close vicinity of one an-
other and their sizes are carefully chosen. The endpoints of
each representative translation vector are defined as a pair of
control points (i), (xA, i, yA, i) ⊆ A and (xB, i, yB, i) ⊆ B. CC has
been employed in a wide variety of medical imaging research
including the study of lung motion and blood flow, which
can potentially be used for early diseases detection and with
greater precision.15, 16

To apply a transformation matrix on image A to align
with image B we employ Delaunay triangulation. It returns
a highly accurate interpolation as the total distance between
control points from which coordinates are interpolated is
minimized.17
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The main problem with image registration is that radio-
graphs are 2D projections of three-dimensional (3D) objects.
This complicates the alignment as structures moving inde-
pendently of one another in 3D may be overlaid in the pro-
jected image, thereby limiting the accuracy of the registration.
A chest encompasses several independently moving parts in-
cluding the ribs, heart, and lungs. Thus, most registration
techniques are restricted to correcting for small movements
in the projected plane.

Evaluating the registration accuracy is not straightforward
as there is often no gold standard that exemplifies perfect
alignment. Most registration evaluation is done by visually
inspecting for artifacts present in the subtracted image and/or
by computing multiple metrics such as the squared intensity
error and reverse consistency error.18

I.B. Phase contrast x-ray imaging

Conventional x-ray imaging struggles to differentiate be-
tween soft biological tissues without the use of contrast
agents.19 Phase contrast x-ray imaging (PCXI) is able to en-
hance the boundaries of soft tissue by exploiting the differ-
ences in their refractive indices.20 Many PCXI techniques
have been developed that are suitable for biomedical stud-
ies, namely, PBI, analyzer-based phase contrast x-ray imag-
ing and grating interferometry.21 The improved contrast can
be traded against a reduction in x-ray dose. Also, since the
real part of the complex refractive index decreases with in-
creasing x-ray energy at a much slower rate than the imag-
inary (absorptive) part, the dose can be decreased by em-
ploying higher x-ray energy.21 Currently, PCXI is predomi-
nantly done using synchrotron radiation as it requires suffi-
cient spatial coherence to induce edge enhancements. Despite
this, there has been much success in performing PCXI imag-
ing using laboratory-based x-ray sources.22, 23 PBI allows a
simple setup as it does not require any postobject optics. Es-
sentially, a spatially coherent source and a sufficient object-
to-detector propagation distance are all that is required. The
nonzero object-to-detector propagation distance enables re-
fracted rays to produce interference/diffraction fringes.

I.C. Lung air volume analysis

Our work builds on that of Kitchen et al.5 to determine
the change in regional lung air volume between a pair of 2D
PBI images for studying rapid changes in lung aeration. There

the subject’s thorax was immersed in a container of water
and positioned between a partially coherent x-ray synchrotron
source and detector. The change in the volume of air inside the
lungs was equal to that of the water displaced from the main
(sealed) chamber into the attached reservoir (water column;
see Fig. 1). Determining the displaced water volume can be
achieved by calculating the difference in the total volume en-
closed between two images

�V =
⎧⎨
⎩

M∑
i

N∑
j

t(xi, yi)(�x)2

⎫⎬
⎭

A

−
⎧⎨
⎩

M∑
i

N∑
j

t(xi, yi)(�x)2

⎫⎬
⎭

B

, (2)

where t is the projected thickness of water, i and j are discrete
indices of the M × N pixels in a Cartesian grid, and �x is the
pixel size.5

For absorption-contrast radiographs, t can easily be
determined by rearranging the Beer–Lambert law as
t = −1/μw log(IE), where IE is the normalized intensity at
the exit surface and μw is the attenuation coefficient of wa-
ter for a monochromatic source. However, when using PBI to
visualize the airways, the effects of propagation-based phase
contrast must first be removed for volumetric analysis. Pa-
ganin et al.24 showed that the projected thickness of a single-
material object can be determined from a single PBI image
using

T (x, y) = − 1

μω

log

(
F−1

{
F[IR(x, y, z = �)]

1 + (δω�/μω) |k⊥|2
})

, (3)

where IR is the normalized intensity at the detector, � is the
object-to-detector propagation distance, δw is the refractive
index decrement of water, and k⊥ represents the spatial fre-
quency components corresponding to (x,y).

The total volume in chest images includes contributions
from all materials, including bone, soft tissue, and water.
Kitchen et al.5 were able to accurately calculate the total
change in lung air volume by ensuring the ROI chosen en-
closed the entire thoracic cage such that the volume of ma-
terials other than water cancelled out when applying Eq. (2)
(a proof is provided in the Appendix). They also performed
a quadrant analysis whereby the chest was partitioned into
four regions and the lung air volume enclosed in each was
measured. This method has been utilized in several research

FIG. 1. A schematic of the PBI system used to acquire chest images of rabbit pups. Note that the water column is not within the path of the x-ray beam and PT
= pressure transducer.
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FIG. 2. Simulated images to demonstrate the necessity of aligning bone for
measuring regional lung air volume. (a) A PBI image enclosing two objects,
namely, a sphere (simulating an air bubble) and a cuboid (simulating bone
tissue), projected onto one another and immersed in water. In (b) and (d),
the PBI image of only the bone (i.e., with no air bubble) is, respectively,
misaligned and aligned with that in (a). Each image underwent phase retrieval
and subtraction was performed between (a) and (b) and (a) and (d) to yield the
change in projected thickness at each pixel. The results are shown in (c) and
(d), respectively. The change in air volume due to the sphere was calculated
from these subtracted images using the entire field-of-view and using just
the small ROI within the white border to demonstrate the need for image
registration for regional volume measurements.

studies investigating different mechanical ventilation strate-
gies for preterm infants, using a rabbit pup model, providing
insight into the homogeneity of lung aeration at birth.25, 26 Al-
though the bone attenuation will vary in each of the four re-
gions, only small bone fragments will move in or out of the
regions between frames, hence their movement will have little
effect on the calculated lung air volumes. However, for more
localized regions of the lungs, movement induced variation in
the projected volume of bone can lead to large errors in lung
air volumes. Our TS method corrects for this by first segment-
ing out the thoracic cage from the images.

To illustrate the benefit of segmenting out the thoracic
cage, consider the PBI image consisting of two objects shown
in Fig. 2(a). The spherical object can be considered as a
pocket of air within lung tissue and the rectangular object
as a bone. The PBI image was produced by generating a
1000 × 1000 pixel projected thickness map of the objects
and using the angular spectrum formulation of scalar diffrac-
tion integrals to propagate the absorption-based image for-
ward by 3 m with the pixel size set at 4.05 μm.24 The δ and μ

assigned for bone were 7.145 × 10−7 and 461.1 m−1, respec-
tively. For tissue, δ and μ were equal to 3.991 × 10−7 and
13.983 m−1, respectively. These values were calculated from
the NIST database27 corresponding to a 24 keV source. Us-
ing the nonaerated PBI image shown in Fig. 2(b), the volume
of the lung was determined using Eqs. (2) and (3). The change
in projected thicknesses between the two images is shown in
Fig. 2(c) and although the bones are not aligned, as long
as they are both entirely within the field-of-view of the im-
ages, they will cancel each other out when the total change
in volume is calculated, thus accurately yielding the air vol-

ume. The volume of the sphere was calculated as 2.218 μl in
comparison to the known volume of 2.226 μl. This demon-
strates that the technique developed by Kitchen et al.5 is ac-
curate in measuring the total lung air volume without needing
to align the bones. However, when the field-of-view was re-
stricted to a smaller region, as shown by the white border in
Figs. 2(a)–2(e), the volume of bone within the smaller region
in Figs. 2(a) and 2(b) is different. The change in volume calcu-
lated between these two subimages gave an air volume of just
1.688 μl—approximately a 32% error. By aligning the bones
prior to subtraction [Fig. 2(d)], their effect can be eliminated
when the images are subtracted, as shown in Fig. 2(e). The
calculated lung air volume then was 2.186 μl—approximately
only a 2% error.

II. MATERIALS AND METHODS

II.A. Image acquisition

Imaging experiments were performed in Hutch 3 of beam-
line 20B2 at the SPring-8 synchrotron radiation source,
Japan.28 A Si (111) double-bounce monochromator was tuned
to 24 keV, which has been shown to provide optimum signal-
to-noise ratio and bone/soft-tissue contrast for imaging rab-
bit pups on this beamline.5 The PBI setup was adapted with
the subject placed approximately 210 m downstream of the
source with the detector positioned a further 3 m downstream
(Fig. 1). Newborn rabbit pups were imaged as part of two ex-
periments. The first group were imaged live at a frame rate of
3 Hz, with a respiratory cycle of 2.5 s, to study the efficacy
of different ventilation strategies. Images were recorded with
an exposure time of 40 ms using a high resolution detector
composed of a tapered fiber optic bonded between the 4000
× 2672 pixel Hamamatsu CCD camera (C4742-95HR) and a
20 μm thick gadolinium oxysulfide (Gd2O2S :Tb+; P43)
phosphor. The effective pixel size was 16.2 μm based on the
taper ratio of 1.8:1. Pups in the second group were humanely
killed via anesthetic overdose prior to imaging for studying
the pressure–volume characteristics of newborn lungs. These
pups were imaged at a frame rate of 1 Hz, with a respiratory
cycle of ∼10 min, using a 25 μm thick gadolinium oxysulfide
phosphor-coupled CCD camera (Hamamatsu, C4742-95HR).
A tandem lens system provided an effective pixel size of
22.47 μm (2 × 2 pixel binning).

II.B. Sample preparation

All animal experiments were originally performed for
studying lung aeration at birth.26 Here, we have utilized the
images recorded from those experiments for our study. All
procedures involving animals were approved by the Monash
University Animal Ethics Committee and the SPring-8 Ani-
mal Care and Use Committee. Pregnant New Zealand white
rabbits at 31 days of gestation were anesthetized by an
intravenous injection of propofol (Rapinovet; 12 mg kg−1

bolus, 40 mg h−1 infusion). Rabbit pups were delivered
by caesarean section, sedated and surgically intubated. The
umbilical cord was then cut and the pups were placed in
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a water-filled cylindrical poly-methyl methacrylate (PMMA)
container, with their heads out of the container and sealed by
a rubber diaphragm surrounding their necks. A custom-made
remotely controlled mechanical ventilator was connected to
the endotracheal tube.29 Ventilation began after several im-
ages were recorded of the lungs in their fluid-filled state. Rab-
bits and rabbit pups were humanely killed at the end of each
experiment via anesthetic overdose.

II.C. Image processing

For quantitative volumetric analysis, the dark current aris-
ing from the detector was subtracted from the images, which
were subsequently normalized against the incident beam in-
tensity. This was achieved by first averaging 20 dark field
images with the shutter closed and 20 flat field images with
the shutter reopened and the object absent, at the end of each
sequence. Nonlinear spatial distortions arising from the fiber
optic camera, as a result of imperfect alignment of the fiber
bundles at each end of the taper, were corrected by the use
of Delaunay triangulation with bilinear interpolation.17 Low-
frequency trends were then removed to aid the cross correla-
tion process since it is highly sensitive to large transverse gra-
dients in the background intensity and their removal reduced
the occurrence of misregistrations. These trends included: (i)
the parabolic profile produced by the cylindrical container;
(ii) the high energy (harmonic) x-rays reflected by the crys-
tal monochromators creating a narrow horizontal band across
the image; and (iii) the low frequency components of the
air-filled lungs (which was added back when performing the
lung volume analysis). To correct for the polynomial trend,
a horizontal rectangular ROI below the lungs was selected
along the container, averaged vertically, smoothed, then least-
squares fitted with a 6th order polynomial. The polynomial
curve was extruded vertically and subtracted from the images.
The higher harmonic contaminants were corrected in the same
manner but without polynomial fitting. The low frequency
components of the aerated lungs were removed by subtract-
ing a 200 × 200 pixel boxcar smoothed image of the lungs.

During the sequence acquisition the beam intensity was
prone to fluctuation due, for example, to the loss and top-
up of electrons in the synchrotron storage ring and thermal
drifting of the monochromator crystals. This was corrected by
rescaling each image to the reference frame using the average
intensity in a region away from the moving pup. The Interac-
tive Data Language (IDL 7.1) was used to run all custom-
developed image processing algorithms on a PC using an
Intel R©CoreTM2 Duo, 3.32 GHZ CPU with 4 GB of RAM.

II.D. Image registration

A suitable fetal image with no lung aeration was selected
as the reference image, which was then registered to each aer-
ated image. This was achieved in two steps, where images
were corrected first for global then local distortions. Each im-
age pair was initially globally aligned to correct for the move-
ment relating to the pup floating in the container. Kitchen
et al.5 achieved this by tracking the movement of a single ver-

tebras using Eq. (1). Here, we have extended this approach to
tracking multiple vertebras as it was found that each moved
slightly independently to one another. The sizes and coordi-
nates of the kernels enclosing each vertebras in the fetal (non-
aerated) image were specified by the user. The correspond-
ing search areas were automatically centerd at the same co-
ordinates and enlarged by 10%. Each pair of control points
were determined using Eq. (1), which were then replicated
horizontally to both edges of the image, allowing the images
to be interpolated in their entirety. This aligned the vertebral
column of the two images and transformed the chest accord-
ingly. This enabled the coordinates of regions where the ribs
articulated with the vertebra (VR points) to be fixed between
images for application of the localized distortion correction
algorithm (described next).

The thoracic cavity was then partitioned into three regions:
left/right lungs and the vertebral column. A series of 64 × 64
pixel kernels were selected at a sample rate of 32 pixels for
the left and right lungs and correlated with their correspond-
ing 128 × 128 pixel search areas. This corrected for local-
ized movements associated with the expansion of the thoracic
cage. This particular kernel size was chosen as it was suffi-
ciently large to enclose a small segment of at most a single rib
as each moves independently. The search area size was cho-
sen to account for the largest likely rib displacements. These
sizes can easily be modified if the parameters of the imaging
system, such as magnification and pixel size, are changed.

The control points determined using Eq. (1) underwent a
filtration process to remove unrealistic vectors. Control points
were kept if all three of the following criteria were met: (i) the
CC value was above a given threshold value;30 (ii) the abso-
lute difference between the angle of the shift vector and av-
erage angle of the adjacent shift vectors was less than 20◦;
and (iii) the absolute difference between the magnitude of the
shift vector and average magnitude of the adjacent shift vec-
tors was less than 81 μm (5 pixels). Image noise causes noise
to also be present in the CC. A threshold value was applied to
ensure matched regions with CC values significantly greater
than that returned by a purely noisy region was accepted only.
This threshold value was chosen to equal the average CC
value returned when a pair of water-only 64 × 64 pixel ROIs
chosen outside the rabbit, but within the container, were cor-
related. The angle 20◦ and magnitude 81 μm were selected
based on a trial and error approach. These values were found
to optimize the ratio of realistic to unrealistic shift vectors
for chest images with various degrees of movement, yield-
ing comparatively smooth transformations. The left and right
lungs were transformed using the filtered control points and
recombined together with the vertebral column to construct
the registered image. To minimize the computation time re-
quired to perform temporal subtraction and phase retrieval,
the region outside the chest, which includes the forelimbs,
were masked out.

II.E. Image analysis

For the lung volume calculations, only the attenuation
coefficient (μw) and refractive index decrement (δw) of
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water were required. The latter was calculated from the NIST
database27 to be 3.99 × 10−7 (24 keV), while the former
was calibrated by isolating a large section of 20 PBI images
that contained water only. The lack of phase-induced intensity
variations within these sections makes phase retrieval unnec-
essary, which allows them to be approximated as absorption-
based images. The inner and outer diameter of the tube was
measured to be 32.0 ± 0.1 and 39.0 ± 0.1 mm, respec-
tively. Using the Beer–Lambert attenuation law, the attenu-
ation coefficient of PMMA (μPMMA = 48.91 m−1) obtained
from the NIST database27 and its thickness (7 mm), the at-
tenuation signal of the tube was removed. μw was then mea-
sured to be 54.64 ± 0.01 m−1 using the Beer–Lambert law.
The absolute uncertainty of the net water volume was then
determined by measuring the standard deviation (σ ) of the
volume difference in a water-only ROI between the refer-
ence and set of 2252 aerated images against the ROI size (N
× M pixels). The points were fitted with a rational exponent
function (3.543 × 10−7 × [N × M]3/4 + 3.654 × 10−6) from
which we can calculate σ for any sized ROI.

III. RESULTS AND ANALYSIS

III.A. Chest segmentation

We successfully tested our TS algorithm on several sets of
PBI images of rabbit pup chests during mechanical ventila-
tion. A fetal image with fluid-filled lungs and no lung aeration
(reference image) was chosen and temporally subtracted from
each image recorded during ventilation. Figure 3(a) shows
the fluid-filled lungs of the reference image from one such
dataset. The remaining sequence of images, Figs. 3(b)–3(e),
shows the chest in motion during one respiratory cycle. The
speckle pattern seen in the aerated chest images is created by
x-rays converging as a consequence of the alveoli mimick-

ing aberrated compound refractive lenses.6 As a consequence
of utilizing a nonaerated image, the calculated volume differ-
ence is approximately equal to the total lung air volume in the
aerated image; thus, we can measure absolute rather than rel-
ative lung air volumes. Furthermore, the lack of speckles in
the nonaerated image means the kernel can treat the speckles
in the search area as high frequency noise, against which CC
is robust, hence only the bone is tracked.

Figure 4(a) shows the direct subtraction of Figs. 3(a) and
3(c). Due to the expansion of the thoracic cage as the lung fills
with air and movement of the pup, the bones do not exactly
overlap and therefore bone artifacts appear in the subtracted
image. The images were then registered to correct for global
movement. Here ends the similarity between our technique
and that of Kitchen et al.5 While in both cases the vertebral
column is aligned, our technique proceeds to align the ribs,
thus forming a fully registered image. Images whose verte-
bral column is only aligned are denoted as unregistered im-
ages. Figure 4(b) displays the images subtracted after global
correction. This shows the vertebral column aligned accu-
rately, while each rib appears to rotate about the side of the
connected vertebra. This highlights our assumption made ear-
lier on the VR points being fixed to be a good approximation
when aligning the ribs.

Local translation vectors were next derived for each lung
to correct for the rib movement, and screened for unrealis-
tic vectors. Approximately one tenth of the resultant transla-
tion vectors are displayed in Fig. 4(c) for clarity. The zero
magnitude translation vectors at the VR points are not visi-
ble. A histogram showing the distribution of the magnitude
of the resultant translation vectors is presented in Fig. 4(d).
This shows a majority of the magnitudes are realistic since
they are approximately consistent with the extent of displace-
ment of the ribs. A small minority of unrealistic transla-
tional vectors remain. Although we could alter our selection

FIG. 3. A series of 24 ×21 mm2 PBI chest images of a newborn rabbit pup recorded at 3 Hz in a (a) fluid-filled fetal state and (b)–(f) over one respiratory cycle,
beginning midinspiration.
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FIG. 4. Temporal subtraction. (a) The direct subtraction of the nonaerated [Fig. 3(a)] and an aerated [Fig. 3(c)] image shows the relative movement of the
bony structures during image acquisition. (b) Subtraction after alignment of the vertebras in the nonaerated image with that of the aerated. (c) After correlating
the entire thoracic cage, the control point pairs are represented by translational vectors (∼one tenth of the vectors are shown), which enabled the nonaerated
image to be transformed using bilinear interpolation. (d) A histogram showing the distribution of the magnitude of the translational vectors (the zero magnitude
translation vectors have been suppressed). (e) Subtraction of the transformed image from that of the aerated image leaving only the signal due to the air (plus
artifacts). (f) To perform lung volume analysis, the registered images underwent phase retrieval before subtraction, yielding the change in projected thickness at
each pixel. Image size: 24 × 21 mm2.

criteria to become more stringent, too many realistic trans-
lational vectors would also be filtered out, thereby adversely
affecting accuracy of the alignment.

Using the control points, the reference image was trans-
formed and subtracted from the aerated image, as shown in
Fig. 4(e). Only small misalignment errors can be seen as faint
artifacts predominantly along the outer borders of the chest.
Since alignment was restricted to within the chest, strong ar-
tifacts are visible outside the chest. The total time taken to
perform the TS was approximately 7 s on the aforementioned
PC (see Sec. II.C). Figure 4(f) reveals the subtracted phase-
retrieved images yielding the projected thickness of air. Note
that these images underwent phase retrieval before subtrac-
tion due to the nonlinear dependence between the intensity
and projected material thickness. A ROI of any size or shape
could then be chosen from Fig. 4(f) to calculate the lung air
volume enclosed within it.

III.B. Lung volume calculations

Figure 5(a) shows total lung air volumes calculated us-
ing the registered and unregistered reference images during
mechanical ventilation of the pup. That is, we compared our
technique to that of Kitchen et al.5 Both techniques return
almost identical total lung air volumes with the small discrep-
ancies attributed to the rescaling of the fluid-filled nonaerated
image when it was registered. The small discrepancies are

well within the uncertainties of both techniques, demonstrat-
ing there is negligible detrimental effect of image registration
on altering the total volume of the nonaerated image.

We proceeded to compare the ability of the two techniques
to measure lung air volume on a pixel-by-pixel basis. For
1000 sequential PBI images of the same pup in Fig. 4, the
lung air volume was computed at each pixel using the two
techniques. The percentage difference in the calculated lung
air volume between the two techniques was calculated at each
pixel for the 1000 images. A histogram was computed, as
shown in Fig. 5(b), which shows the distribution of the per-
centage difference in the calculated lung air volume averaged
over all of the images. The shaded region in Fig. 5(b) shows
that on average 16% of pixels within the lungs have a volume
difference greater than 20%, and given that the fractional un-
certainty of the measured change in lung air volume in each
pixel is only ∼1%, these differences are significant. The ma-
jority of these differences occurred around where the bones
were not aligned, as evidenced in Figs. 5(c)–5(d) . These num-
bers show that the bones have a detrimental effect when per-
forming regional lung air volume analysis and our technique
is able to effectively remove the bones to accurately measure
the lung air volume on a pixel-by-pixel basis.

A set of PBI chest images attained from the second group
(slow inflation rates; ∼10 min) was used to determine the
percentage of regional lung aeration over time. Each aer-
ated image was aligned to the first (nonaerated) image of the
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FIG. 5. Lung air volume analysis. (a) The total lung air volume was determined over several respiratory cycles beginning at t = 11 min, after initiation of
mechanical ventilation, using the misaligned (unregistered) and aligned (registered) nonaerated images. (b) A histogram, averaged over 1000 aerated images,
representing the absolute % volume difference in the calculated pixel-by-pixel lung air volume using misaligned and aligned nonaerated images. The shaded
area under the plot shows the percentage of pixels with a volume difference greater than 20%. (c) An image of half a lung whose values represent the percentage
difference of the lung air volume calculated between the two techniques. (d) A plot of the line profile indicated by the thick white horizontal line in (c).

sequence and underwent phase retrieval. The phase retrieved
images were stacked to determine the time when each pixel
within the lungs reached its maximum air volume. Figure 6
shows maps of the time taken for each region of the lungs to
reach 10%, 50%, and 80% of its maximum air volume, on
a pixel-by-pixel basis. We see that the major airways aerated
first, as expected, followed by an otherwise relatively uniform

aeration up to 10% of maximum volume [Fig. 6(a)]. However,
the left lung (left side of image) then aerated more quickly in
comparison to the right lung [Fig. 6(b)]. The peripheral re-
gions of the lungs are also seen to more slowly ventilate dur-
ing the latter stages of the inspiratory period. At the end of
inspiration, the lungs asymptoted toward their maximum air
volume more uniformly as the applied airway pressure also

FIG. 6. Nonuniform lung aeration. A series of maps were produced showing the time taken for each pixel of the lung to reach (a) 10%, (b) 50%, and (c) 80%
of their maximum air volume. Image size: 24 × 21 mm2.
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reached its plateau [Fig. 6(c)]. The combined panels in Fig. 6
show that the time constant of aeration is highly localized.

IV. DISCUSSION

This study demonstrates that the technique for measur-
ing lung air volume, developed by Kitchen et al.,5 can be
extended to more accurately measure regional lung air vol-
umes using TS. The image registration method adapted here
has been able to accurately align PBI chest images with mini-
mal computational cost, primarily by exploiting the use of fast
Fourier transform-based CC. Other similarity measures were
investigated, namely, mutual information and sums of abso-
lute differences,14 and the resultant subtracted images at best
showed a marginal improvement, based on the visual inspec-
tion of artifacts, coinciding with a large increase in compu-
tation time. Polynomial interpolation was also considered as
an alternative to bilinear interpolation since it has the ability
to produce a smooth transformation; however, the complexity
in the motion of the chest requires a higher order polynomial
that can introduce large and unwanted oscillations around the
edges of the image by the Runge phenomenon.31

Figure 6 shows the distribution of gas is often inhomoge-
neous across the lung. Hence, a regional mapping of lung aer-
ation can reveal abnormally ventilated regions of the lung that
would otherwise be undetected in global pulmonary tests. The
ability to study the homogeneity of lung aeration can be ben-
eficial in animal research studies. For example, greater under-
standing can be gained into lung related diseases and studying
which mechanical ventilation strategies are most likely to re-
duce ventilator-induced lung injury (for example, for preterm
infant resuscitation26). Our technique can also gain insight
into the crucial but transient period of achieving lung aera-
tion from birth. High-powered laboratory-based x-ray sources
are being developed that enable PBI, and therefore our
technique, to be performed in clinics. This presents various
potential medical applications such as diagnosing respiratory
related diseases earlier and with greater precision than con-
ventional x-ray imaging and global pulmonary tests.

Compared to absorption-based x-ray imaging, PBI of the
chest can provide additional structural information regard-
ing the morphology of the conducting zone that contains the
trachea, bronchi, and bronchioles, and the respiratory zone
which includes the alveoli.32 However, the signal intensity
from the bone is weakened by that of the alveolar speckles.
Consequently, during image registration the kernels selected
in those parts of the lungs either weakly correlated, or mis-
registered, to regions enclosing strongly speckled intensity.
This resulted in a moderate portion of translation vectors re-
jected in the central areas of the lungs, as shown in Fig. 4(c) by
the lack of translation vectors. Despite this, the movement of
the medial segment of the ribs during breathing is closely re-
stricted to a rigid type transformation. This can be adequately
accounted for by the piecewise linear interpolation between
the zero magnitude VR points and their laterally closest trans-
lation vector.

The accuracy of the assumption that the medial segment
of the ribs undergoes a rigid type transformation, and there-

fore that of alignment, depended on the amount of differential
movement of the chest. A measurable indicator of the degree
of motion was the volume change (the difference in volume
between an aerated and nonaerated lung). It was found on av-
erage at a volume change of 0.60 ml the alignment was quite
accurate but gradually deteriorated beyond this volume as the
movement of the thoracic cage became overly complex (see
the supplementary material for online movie).37 Given that
the average weight of a rabbit pup is 30 g, the maximum vol-
ume change per unit mass of 20 ml/kg is considered to be
a large volume change.33 Therefore, this technique could be
applied to measure a range of lung air volumes in patients.

A nonaerated reference image may not always be avail-
able or possible to obtain in some studies. Alternatively, an
aerated PBI chest image could be used as a reference im-
age. While this will instead provide relative volumetric mea-
surements, which still carries much important respiratory in-
formation, a more problematic issue is that cross-correlating
ROIs that have speckles present in both is likely to increase
the prevalence of misregistrations as the speckles weaken the
signal intensity of the bone. Moreover, the speckles may cor-
relate more strongly with each other than the bones them-
selves. Consequently, measuring relative changes in lung air
volume by using an aerated chest image as a reference image
decreases the maximum volume change per unit mass that our
technique can measure.

Regardless of whether the reference image is an aerated
or nonaerated chest image, the maximum measurable volume
change could be increased either through modifying the algo-
rithm or image acquisition process. More translation vectors
could be retained by correcting rather than rejecting them.
These corrections could be made based on preserving the
continuity and smoothness of the transformation (see, e.g.,
Ref. 34). We also attempted using a smaller sized kernel to
better handle the localized lung movement. This increased the
number of degrees of freedom, but the structural information
it enclosed was less unique and became more prone to mis-
registrations. Shortening the propagation distance to reduce
or remove the phase contrast could improve the bone contrast
relative to the speckle contrast to reduce the occurrence of
misregistrations. If the reference image was an aerated PBI
chest image, then it could be chosen to be the image with the
least lung aeration. We have also discovered that the degree
of chest wall movement is dependent on the angle between
the vertebral column and the horizontal axis along the sagittal
plane. We are currently attempting to optimize this orienta-
tion to enable accurate alignment at volume changes up to
40 ml/kg.

The total lung air volume was expected to remain un-
changed before and after temporal subtraction considering
that all the anatomical structure remained within the detec-
tor field-of-view. Due to the nonconservation of the total in-
tensity when performing a nonrigid type transformation, there
would inevitably be a small deviation. To ascertain the extent
at which the nonconserving volume contributes regionally, the
calculated lung air volume using temporal subtraction could
be compared with that using other bone removal techniques.
One example is the technique developed by Kitchen et al.35
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that utilizes a Laue crystal to split the x-ray beam to create
two unique images. These have been used to segment chest
images to enable isolation of bony anatomy and soft tissue and
regional lung volume measurement. Although that technique
does not require anatomical registration, it is experimentally
more challenging, the image reconstruction is also more time
consuming and somewhat susceptible to low frequency noise.
Nonetheless, it presents as an ideal technique with which to
compare our calculated regional lung air volumes.

Throughout, we have employed a fixed sized ROI to mea-
sure lung aeration. To correctly assess regional volumes, the
expansion and deflation of the lungs should be taken into ac-
count. Christensen et al.36 showed that lungs do not expand
or relax uniformly but in a local manner. Fouras et al.15 de-
veloped a particle image velocimetry-based algorithm that is
able to measure regional expansion of the lungs by tracking
the motion of the lung-induced speckles. Thus, we will look
to adapt the work of Fouras et al.15 into our method to mea-
sure regional air volume of the entire lung by deforming the
ROI in accordance with the movement of the speckles.

V. CONCLUSIONS

Accurately measuring the heterogeneity of lung aeration is
likely to be highly beneficial to studying and treating child and
adult lung disease and for optimizing mechanical ventilation
strategies for preterm infants. Herein, a temporal subtraction
algorithm was developed to remove the bony anatomy from
two-dimensional propagation-based phase contrast x-ray im-
ages of the chest to isolate the lungs. Using a single image
phase retrieval algorithm the change in air volumes between
localized regions of the lung, down to the micron scale pixel
size, could be measured. By comparing the total lung air vol-
ume measured using a registered and unregistered nonaerated
image, we found that the variability in the total intensity in-
troduced in the nonaerated chest image of preterm rabbit pups
after image registration is small compared to the uncertainty
in our measured change in lung air volume. In analyzing the
lung air volume regionally, we showed a significant improve-
ment, compared to images that were not registered, primarily
in areas where the bones were poorly aligned. Therefore, we
have demonstrated that our technique can isolate the lungs
and provide high spatiotemporal resolution measures of lung
aeration, without the requirement of contrast agents.
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APPENDIX: MEASURING THE CHANGE IN
VOLUME OF A SINGLE MATERIAL FROM A
HETEROGENEOUS OBJECT

Consider a multimaterial object where the volume of only
one of the materials is changing over time. If a sequence of
absorption-based images were recorded of that object, the
change in volume of that material can be measured between
the recorded images. Here, we will demonstrate this by first
considering two M × N pixel absorption-based images (I1, I2)
at the exit surface plane of the object at time points 1 and 2.
The intensity can be related to the projected thickness of the
materials given by Beer–Lambert’s law,

I (x, y) = exp[−∑
mμm(xi, yj )tm(xi, yj )], (A1)

where μm and tm are the attenuation coefficient and projected
thickness of material m, respectively. i and j are discrete in-
dices of the M × N pixels in a Cartesian grid.

The projected thickness (tw) corresponding to the material
with a changing volume can be isolated from Eq. (A1) by
assuming the other materials are also made entirely of that
material to give

tw(xi, yi) +
∑
m

t ′m(xi, yi) = − 1

μw

loge[I (xi, yi)], (A2)

where t ′m = μw/μmtm, which shows the projected thickness
of each material rescaled to separate μ from t. tw can be iso-
lated by taking the difference in the projected thicknesses of
I1 and I2, and summing over (xi, yj) to give

�tw =
M∑
i

N∑
j

[tw,1(xi, yi) − tw,2(xi, yi)]

=
M∑
i

N∑
j

{
1

μw

[loge[I2(xi, yi)] − loge[I1(xi, yi)]]

}
.

(A3)

Since the total projected thickness of the other materials
remain constant, the second term on the left-hand side of
Eq. (A2) cancel out, thus correctly giving the change in
the total projected thickness of material w. By multiplying
Eq. (A3) with the pixel area, we arrive at Eq. (2). For our
work, the changing volume we are measuring is air, although
it cannot be directly measured due to its low attenuating
strength. Instead, the lungs are immersed in a tube of wa-
ter where the volume of water displaced during breathing is
equivalent to that of air.

In our work, we recorded PBI images, thus the single-
image phase retrieval algorithm is applied before using the
steps above. This algorithm convolves the PBI image with
a radially dependant low-pass filter function to obtain the
absorption-based image, effectively smoothing out the phase
induced intensity variations. As a consequence of using
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Eq. (3) on an inhomogeneous object such as the chest,
materials with a ratio μ/δ different to that of the mate-
rial of interest will be over/undersmoothed. The degree of
over/undersmoothing varies with lung aeration. Despite this,
the work done by Kitchen et al.5 shows that the change
in lung air volume calculated using their technique corre-
lates well with that measured from a plethysmograph for
numerous preterm rabbit pups over a large range of lung
air volumes. This demonstrates the error introduced, from
over/undersmoothed materials, into the measured change in
lung air volume is small relative to its uncertainty.
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Abstract: Propagation-based phase contrast x-ray (PBX) imaging
yields high contrast images of the lung where airways that overlap in
projection coherently scatter the x-rays, giving rise to a speckled intensity
due to interference effects. Our previous works have shown that total and
regional changes in lung air volumes can be accurately measured from
two-dimensional (2D) absorption or phase contrast images when the subject
is immersed in a water-filled container. In this paper we demonstrate how
the phase contrast speckle patterns can be used to directly measure absolute
regional lung air volumes from 2D PBX images without the need for a
water-filled container. We justify this technique analytically and via simu-
lation using the transport-of-intensity equation and calibrate the technique
using our existing methods for measuring lung air volume. Finally, we show
the full capabilities of this technique for measuring regional differences in
lung aeration.

© 2013 Optical Society of America
OCIS codes: (340.7440) X-ray imaging; (110.6150) Speckle imaging; (100.5070) Phase re-
trieval; (170.3660) Light propagation in tissues; (170.3880) Medical and biological imaging;
(290.5850) Scattering, particles.
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1. Introduction

X-ray imaging is commonly used to reveal the internal structure of the chest, differentiating
materials such as soft tissue and bone by their densities. Lung diseases in their early stages, such
as emphysema, cystic fibrosis and cancer are difficult to detect in a conventional x-ray image
[1]. Since early diagnosis of lung disease is a critical factor for patient prognosis, improved
diagnostic methods during the early stages underpins advances in the treatment of these diseases
[1]. Lung functional x-ray imaging is more sensitive for detecting lung diseases than anatomical
imaging, making it a prospective complementary diagnostic tool to x-ray imaging [2].

Pulmonary functional tests, such as the forced oscillation and spirometry techniques, are
performed in clinical diagnostics of respiratory diseases together with x-ray imaging [3–5].
However, these tests give limited information on the location and extent of the abnormality.
The need to detect regional lung pathology has produced many different tomographic-based
volumetric techniques [6–8]. Some of these techniques have been combined with k-edge sub-
traction to help resolve small airways [9, 10]. However, they require inhalation of a contrast
agent to assess regional lung ventilation except when using computed tomography (CT). Yet,
CT imparts a relatively large dose of radiation particularly when several three-dimensional (3D)
images need to be reconstructed from many projections in order to measure regional lung air
volume (VL) over time. The length of time involved in recording the projected images to recon-
struct a three-dimensional (3D) image of the chest reduces temporal resolution significantly and
so, to minimize motion blurring, breath holds or gated imaging is required. Although CT and
magnetic resonance imaging (MRI) techniques can acquire and reconstruct images in real-time
on the order of milliseconds, the spatial resolution achievable is only of the order of millimeters,
which is insufficient to resolve the minor airway structures [11, 12].

Regional volumetric analysis techniques using two-dimensional (2D) phase contrast x-ray
(PCX) imaging from a synchrotron x-ray source have emerged to offer superior temporal res-
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olution over those that use tomography [13–15]. PCX is a class of imaging modalities that
produce phase-induced intensity variations between the boundary of materials exhibiting dif-
ferent complex refractive indices. With a sufficiently spatially coherent x-ray source they pro-
vide high contrast images of soft tissues. When employed to image the chest, the boundaries
of the conducting airways and alveoli are rendered highly visible (see Fig. 6). Thus, perform-
ing volumetric analysis on 2D PCX images simultaneously provides a detailed image of the
chest and information on regional lung aeration with high spatial and temporal resolution. One
major benefit of this is allowing mechanical ventilators to be adjusted in real time and on a
breath-by-breath basis to avoid lung injury [16–18].

Kitchen et al. [13] developed a technique to measure changes in VL from 2D propagation-
based phase contrast x-ray (PBX) images using a single image phase retrieval algorithm
(SIPRA) [19]. PBX imaging is the simplest of the PCX modalities as only a partially coherent
source and a sufficiently large object-to-detector propagation distance (ODD) is required [20].
In that technique the animal is immersed upright in water and it is assumed that only the volume
of air/water changes within the field of view of the detector. This is an accurate assumption for
measuring the total change in VL as the volume of all other materials, namely bone, can be made
to remain constant by choosing a sufficiently large region of interest (ROI) to encompass the
entire chest. Reducing the size of the ROI to measure regional changes in VL can result in bone
moving inside and outside the ROI leading to incorrect measures of VL. Thus, that technique
was shown to accurately measure changes in VL over areas as small as one quarter of the lung,
where the change in volume of air was not significantly affected by relative displacement of
bones. Leong et al. [15] improved on this by removing the bone using a temporal subtraction-
based algorithm to measure VL on a pixel-by-pixel basis of micron-scale spatial resolution. That
technique, however, is prone to misregistrations when the differential motion of the chest be-
comes overly complex at large VL. Regional VL has also been measured from analyzer-based
phase contrast x-ray images [14]. A Laue crystal was used to split the x-ray beam to produce
two complementary images that were used to create separate images of bone and soft tissue,
thus enabling regional VL measurement. That technique does not require anatomical registra-
tion, but it is experimentally more challenging and also requires the chest to be immersed in
water for VL extraction [14].

The planar imaging-type volumetric techniques described above work only when the chest
is upright and enclosed in water. Moreover, these techniques are limited to measuring changes
in VL unless an image of a non-aerated lung is available, which is not always easily attainable.
This restricts the type of studies that can be performed, for example, it would not be possible
to analyze VL if the animal was ventilated in a supine/prone position or determining its func-
tional residual capacity (FRC; the volume of air at end-expiration). The attenuating medium
also reduces the signal-to-noise ratio (SNR). Whilst SNR can be improved by increasing the
intensity of the x-ray source, a concomitant increase in radiation dose ensues. In this study, we
developed a novel approach for measuring regional VL of PBX chest images without needing
to immerse the object in a water bath. This technique relates the power spectra of lung speckle
patterns directly to VL.

1.1. Lung speckle

Spatially random samples such as particles suspended in liquid and optically rough surfaces of
textured materials produce rapid complex refractive index fluctuations [21–26]. The phase of an
incident wavefield is randomly altered as it traverses through or reflects off such an object [22].
Downstream of the exit surface of the object, the intensity of the randomized wavefield exhibits
bright and dark spots, known as speckles, formed by constructive and destructive interferences,
respectively. This is the most likely explanation, for the origin of lung speckle observed using
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PBX imaging, as the lung contains many air-filled alveoli that are pseudo-randomly distributed
and enclosed by thin regions of tissue.

Yagi et al. [27] were one of the first to encounter lung speckle, which was observed using
PBX imaging, in a mouse model. They hypothesized that speckles formed as a consequence
of alveoli present in the lungs. Kitchen et al. [28] investigated the origin of these speckles
by simulating projected PBX images of lung tissue. Here they modeled the alveoli as spheres
and generated synthetic PBX images of a lung by numerically propagating the wavefield at
the contact plane to the detector surface using the angular spectrum formalism of scalar wave
optics. Speckles similar to those seen in PBX chest images of a rabbit pup were observed, and
it was shown that this was because the alveoli acted locally as aberrated compound refractive
lenses.

Speckle possesses statistical properties that depend on that of the scattering object. The space
intensity correlation function, or in Fourier space the power spectrum, is a second order statisti-
cal measure that has been used in studying spatially random objects from their speckle pattern;
for our study it is the alveoli [22, 23, 29]. Approximately 90% of the total VL can be accounted
for in the alveoli [30]; the remainder is the volume of the airways of the lungs (this includes the
trachea, bronchi and bronchioles). Thus, measuring the volume of air in the alveoli is a good
approximation of VL. Herein, we develop a mathematical model to show how lung speckle is
related to VL. In our study, lung speckle is quantified by the integral of its power spectrum
between certain radial spatial frequencies, as explained in section 1.2.

1.2. Theory

Fig. 1. Alveoli in lung tissue, modeled by voids randomly embedded within an absorbing
medium, is illuminated by a coherent x-ray source and a PBX image is recorded a distance
L from the exit surface of the object.

Consider a lung being made of non-overlapping air-filled voids, where the projected thickness
of each void with radius R is described by the object function G(x,y) = 2

√
R− x2 − y2 , em-

bedded randomly in soft tissue (or equivalently in water), as shown in Fig. 1. We assume that
the x-rays follow a straight path from the x-ray source to the exit surface of the object. This is
known as the projection approximation and it is used to fully describe the phase and intensity
changes of the x-ray wave traversing the lung at the exit surface [19]. Using Monte Carlo sim-
ulations, Kitchen et al. [28] showed that for the lungs of a mouse the projection approximation
was valid at diagnostic x-ray energies (i.e. >6 keV). In the near-field regime, the altered x-ray
wave produces a speckled PBX image (I(x,y,z = L)) whose power spectrum can be described
as (see Appendix A):
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∣∣∣∣F
{

I(x,y,z = L)

I(x,y,z = 0)
−1

}∣∣∣∣
2

= L2δ 2
T k4

⊥N |F{G(x,y)}|2 , (1)

where I(x,y,z = 0) is the absorption contrast image, T (x,y) is the projected thickness of the ob-

ject function, δT is the refractive index decrement of lung tissue, L is the ODD, k⊥ =
√

k2
x + k2

y

is the transverse wavenumber in the (x,y) plane, N is the number of voids, and F is the Fourier
transform with respect to x and y. I(x,y,z = 0) was recovered using SIPRA [19]:

I(x,y,z = 0) = F−1

⎧
⎨
⎩

F [I(x,y,z = L)]

1+( δlT L
μlT

)k2
⊥

⎫
⎬
⎭ , (2)

where F−1 is the inverse Fourier transform with respect to x and y, and μT is the absorption co-
efficient of lung tissue. μT and δT were set to 54.7 m−1 and 3.99×10−7(24 keV), respectively.
The former was calculated using the National Institute of Standards and Technology database
(NIST) [31] and the latter was calculated using [32]:

δ =
reλ 2

2π ∑
i

ni( f1)i, (3)

where re is the classical electron radius, ni is the concentration of type i atoms per unit volume
and f1 is the real part of the atomic scattering factor in the forward direction provided by
NIST [31].

The definition of what is considered near-field depends on multiple factors. These can be
succinctly summarized by the Fresnel number (NF ) [33]:

NF =
a

Lλ |∇⊥ϕ|max
, (4)

where a is a characteristic length scale of the object over which the intensity changes appre-
ciably and |∇⊥ϕ|max is the maximum phase gradient transverse to the direction of propagation.
The near-field regime is defined to be at Lmax < a

λ |∇⊥ϕ|max
.

The alveoli were modeled as spheres with radius R. To determine the 2D power spectrum of
its PBX image, the following integral was solved:

∣∣F
{

G̃(x,y,z)
}∣∣2 =

∣∣∣∣
∫

G̃(x,y,z)exp(2πik · r)dr

∣∣∣∣
2

, (5)

where k = (kx,ky,kz) and r = (x,y,z) are 3D vectors in Fourier and real space, respectively. The
shape function G̃(x,y,z) = 1 for R ≤ 1 and G̃(x,y,z) = 0 elsewhere. The evaluation of Eq. (5) is
simplified by the radial symmetry of G̃(x,y,z), which effectively reduces it to a one-dimensional
problem. The integral in Eq. (5) can then be expressed analytically by first expanding then
evaluating the exponential term as a Taylor series to give an exact solution [34]:

|F{G(x,y,z)}|2 =

∣∣∣∣V
3

(kR)2

[
sin(kR)

kR
− cos(kR)

]∣∣∣∣
2

, (6)

where k = |k| =
√

k2
x + k2

y + k2
z and V = 4πR3

3 is the volume of a sphere.

According to the Fourier slice theorem, the 2D power spectrum of a projected sphere is a
slice of its 3D power spectrum through the origin. Since the 3D power spectrum is radially
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(a) (b)

Fig. 2. Lung speckle simulations. (a) Azimuthally averaged power spectra of a random dis-
tribution of 45 µm air-filled voids simulated within a 10 mm thick water-filled container
with a volume packing density of 54%. Under ideal conditions (black), the power spec-
trum is a damped oscillatory function. To mimic our experimental conditions, ODD was
increased from 0.1 m to 2 m, the PBX image was convolved with a Gaussian function,
with FWHM=20 um, to simulate the PSF of a detector, and white noise was added, with a
standard deviation (σnoise) of 0.1 intensity. This yielded an image with SNR ≈ 10, which
was determined from taking the ratio of the mean intensity of the image and σnoise. This
results in only one prominent peak in the power spectrum (red). (b) A plot displaying the
PSArea of the same sample, but with mean void size of 130 µm, against ODD. (for details
on the simulation of lung speckles, see section 2.1)

symmetric, the equation of the 2D power spectrum is identical to Eq. (6) but the z-coordinate

is dropped and k is redefined as k⊥ =
√

k2
x + k2

y .

The 2D version of Eq. (6) is combined with Eq. (1) to give:

∣∣∣∣F
{

I(x,y,z = L)

I(x,y,z = 0)
−1

}∣∣∣∣
2

= L2δ 2
wk4

⊥N

∣∣∣∣
4πR3

(k⊥R)2

[
sin(k⊥R)

k⊥R
− cos(k⊥R)

]∣∣∣∣
2

. (7)

Equation (7) assumes there is only one alveolus size whereas a realistic lung model would
have a distribution of sizes typically with a coefficient of variation as large as 0.6; however,
the error introduced in assuming an average alveolus size is small (< 5%) [35]. To determine
the area under the power spectrum (PSArea), Eq. (7) is integrated over a select domain of radial
frequencies, k⊥0 ≤ |k⊥| ≤ k⊥N , then ξ = k⊥R is substituted to give:

PSArea = 16π2L2δ 2
wNR

∫ ξN/R

ξ0/R

∣∣∣∣
[

sin(ξ )

ξ
− cos(ξ )

]∣∣∣∣
2

dξ . (8)

The limits of the integral in Eq. (8) are dependent on R. However, under experimental con-
ditions, the higher order peaks of the oscillatory function in the integral are suppressed by the
detector point spread function (PSF) and penumbral blurring. Consequently, PSArea is dom-
inated by the lowest order peak (see Fig. 2(a)). This means the limits can be fixed, and be
independent of R, so long as it includes the first peak. The area under the first peak bounded by
the minimas ξ = 0 and ξ = 4.493 (these are the first two solutions to ( sin(ξ )

ξ − cos(ξ ) = 0) is
2.141. Hence, the integral is approximately 2.141, and Eq. (8) can be simplified to:

PSArea = 34π2L2δ 2
wNR. (9)

There are additional factors that we have not entirely accounted for in deriving Eq. (9):
penumbral blurring, detector PSF and asymmetrically shaped alveoli. If the imaging setup re-
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mains unchanged between recordings over time then the power spectra are equally affected by
penumbral blurring and the detector PSF. While alveoli are not perfectly spherical, but resemble
more like polyhedra, they are randomly positioned and oriented. Consequently, the derivations
above is still valid and the only aspect altered is the solution for Eq. (8). The alveoli were mod-
elled as spheres because a simple analytic solution for Eq. (8) exists. Unless these factors are
accounted for, Eq. (9) cannot be directly used to measure VL. Instead, PSArea can be calibrated
against known VL values as described in section 2.3. As well as accounting for the factors listed
above, the calibration curve would also account for the alveoli changing shape during respira-
tion.

The relationship between VL and PSArea will depend on how N and R vary over time (t). That
is, if N and R were parameterized to N ∝ tn and R ∝ tr, respectively, where n and r are constants,
then,

VL ∝ PS
n+3r
n+r

Area (10)

Having presented the theoretical background of near-field lung speckle and how it relates
to VL in this section, we test this model by simulating lung tissue in section 2 and present the
results and analysis in section 3. Also in section 3, we evaluate how accurately our model can
measure changes in VL in a rabbit pup model. Some directions for future work are provided in
section 4 and we conclude with section 5.

2. Methodology

2.1. Simulated lung tissue

To directly validate our theory, simulations were performed with conditions set similarly to
that of imaging real lung tissue. The conditions for our simulations are summarized in Table 1.
11.8 mm × 11.8 mm projected lung thickness images, with pixel size 0.59μm, were simulated
for two different sets of samples. The pixel size was chosen to adequately sample the phase
map of the exit surface and propagated wavefield (that is, the maximum wavefield phase gradi-
ent is less than π

2 radians per pixel). In the first set of samples, spherical voids of mean radius
65μm were randomly suspended in a rectangular water-filled volume of thickness 1mm. Sev-
eral non-identical 1mm thick samples were generated and stacked to achieve different sample
thicknesses. This was to simulate lung tissue with varying N while R was fixed. In the second
set of samples, for each of the different mean sized voids, 5900 voids were suspended in a rect-
angular water-filled volume of thickness 10mm. In contrast to the first set, this was to simulate
lung tissue with varying R while N was fixed. A maximum volume packing fraction of 75%
was achieved from the largest mean size void (70μm).

In both sample sets, the position of each void was created using the Box-Muller method to
generate random coordinates [36]. If the void’s volume space intersected with that of a void
already in the volume then a new coordinate would be generated until an unoccupied location
was found. The samples were summed along the axis of propagation to produce the projected
thickness images. Despite choosing a small pixel size, |∇⊥ϕ|max was greater than π

2 radians per
pixel in some parts of the images. The images were therefore filtered with a Gaussian kernel,
which at a Full-Width Half-Maximum (FWHM) of 16μm, was sufficient to reduce |∇⊥ϕ|max to
less than π

2 radians per pixel. Using the projection approximation, the wavefunction at the exit
surface of the sample was calculated from the projected thickness image, and forward propa-
gated using the angular spectrum method [19]. Penumbral blurring was effected by convolving
the PBX sample images with a Gaussian PSF of FWHM = DR2/R1 (where D is the x-ray source
size). D was set to 150 μm ×10 μm, which was the x-ray source size of the beamline used. The
detector PSF was accounted for by increasing the FWHM of the Gaussian PSF by 20μm. PSArea
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was calculated by integrating their power spectrums from ko = 0.85 (since the zero frequency
is a Dirac delta function this value is the next closest to the zero frequency) to kN =Nyquist
frequency.

Table 1. Parameters used for simulating PBX images of lung tissue.

Pixel size (μm) 0.59
Mean alveolar radius (μm) 30, 35, 40, 45, 50, 55, 60, 65, 70

Alveolar radius standard deviation (μm) 3
4×alveolar diameter

Source-to-detector distance (m; R1) ∞
Sample-to-detector distances (m; R2) 3

Attenuation coefficient (μw [31]) 54.735 m−1 (at 24 keV)
Refractive index decrement (δw [31]) 3.99 (at 24 keV)
Maximum volume packing fraction 75%

Lung thickness (mm) 10

2.2. Rabbit pup lungs

All imaging experiments took place in Hutch 3 of beamline 20B2 at the SPring-8 synchrotron
in Japan [37] with a Si (111) double-bounce monochromator tuned to 24 keV. The x-ray source-
to-sample distance was set at 210 m. All animal procedures were conducted in accordance with
the protocol approved by the Monash University Animal Ethics Committee and the SPring-8
Animal Care and Use Committee. At 31 days of gestation, pregnant New Zealand white rabbits
were anesthetized initially by an intravenous injection (Rapinovet [Schering-Plough Animal
Health, USA]; 12 mg kg−1 bolus, 40 mg h−1 infusion) and anesthesia was maintained via
isoflurane inhalation (1.5– 4%; Isoflurane, Delvet Pty. Ltd., Australia). Pups were delivered by
caesarean section, sedated and surgically intubated. Pups in the first group (Group-Water, n =
15) were immersed in a water-filled cylindrical poly-methyl methacrylate container (plethys-
mograph) with their head out and the chamber sealed with a rubber diaphragm enclosing their
necks. The plethysmograph is routinely used for VL measurement. At birth, the lungs of the
newborn are completely liquid-filled and so imaging the lungs in their fluid-filled state was per-
formed as soon as possible after the pup’s delivery. Two different detectors were used to acquire
PBX images: (i) a large format (4000×2672 pixels) Hamamatsu CCD camera (C9300-124F21)
with a tapered fiber optic (FOP) coupling the sensor to a 20 μm thick gadolinium oxysulfide
(Gd2O2S : Tb+;P43) phosphor, and (ii) a tandem lens-coupled scientific-CMOS imaging sen-
sor coupled to a 50 μm thick gadolinium oxysulfide (Gd2O2S : Tb+;P43) phosphor (pco.edge;
2560×2160 pixels). The effective pixel sizes were for these two detectors 16.2 μm, based on the
taper ratio of 1.8:1, and 15.23 μm, respectively. Imaging sequences were respiratory gated, with
timing controlled by a custom-designed pressure-controlled ventilator [38] at a frame rate of
3 Hz, with a respiratory cycle of 2.5 s and exposure time of 40 ms. All animals were humanely
killed at the end of each experiment via anesthetic overdose of Nembutal (Abbott Laboratories,
USA, 100 mg/kg).

Pups in the second group (Group-Air, n=3) were initially used for studying the effect of
different mechanical ventilation strategies on lung aeration and humanely killed via anesthetic
overdose at the end of experiment. The deceased pups were supported in an upright position and
connected to a pneumotach (flowmeter) to measure differential airflow at the mouth opening
throughout each respiratory cycle. The pups were imaged in air under identical conditions to
the first group imaged in water but at a frame rate of 10 Hz, using only the sCMOS camera.

The optimal ODD to image the pups was determined by modeling a 10 mm thick container
packed with 130 µm sized voids. The size of the void and container thickness corresponds
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closely to that of an alveolus [39] and a rabbit pup’s lung, measured from a lateral PBX image
of the chest, respectively. Using the steps and conditions as described in section 2.1, several
PBX images were simulated from the model at different ODD. Figure 2(b) shows, based on
Eq. (9), the near-field regime extends up to ∼3 m but not beyond 5 m. Lmax was computed to
be 2.7 m. This is consistent with Fig. 2(b). PBX images of pups were therefore recorded at a
propagation distance 3 m. While choosing propagation distances much less than 2.7 m would
ensure the TIE approximation was well satisfied, the contrast-to-noise ratio of lung speckles
would be small and weaken the correlation between VL and PSArea.

2.3. Image processing and analysis

Immediately before imaging each pup, multiple dark field (no x-rays) and flat field (x-rays;
no sample) images were recorded then averaged to correct for the detector dark current and to
normalize against the incident beam intensity, respectively. Nonlinear spatial distortions arising
from the FOP camera, as a result of imperfect alignment of the fiber bundles at each end of the
taper, were corrected by the use of Delaunay triangulation with bilinear interpolation [40].

Pups from Group-Water were used to generate a PSArea −VL calibration curve. Each PBX
chest image was divided into quadrants. Quadrants were created by partitioning the chest along
the spinal column to separate the left and right lungs and the seventh rib down from the neck
to separate the apical and basal lobes. This increased the number of points and also helped
determine whether variability in the lung thickness between quadrants affected the calibration
curve. PSArea was calculated using the LHS of Eq. (1) and integrated from ko = 2mm−1 to
kN =Nyquist frequency. Given our experimental conditions we found this ko value optimized
the correlation strength of the PSArea −VL curves between pups and quadrants. This is supported
by Figs. 6(c) and 6(d), which shows low frequency components at up to 2mm−1 are notably
contaminated by remnant low frequency trends arising predominately from the bones. The tech-
nique developed by Kitchen et al. [13] was used to calculate VL for pups from Group-Water.
For those from Group-Air a flowmeter (pneumotach), measuring the rate of air flowing in and
out of the lungs, was employed to validate our technique. Both PSArea and VL were normalized
against the number of pixels so that PSArea measured from a ROI of any size can be directly
converted to VL.

3. Results & analysis

3.1. Validation of theory using simulated lung tissue

Before validating our theory, simulated lung speckles were qualitatively compared with real
lung speckles in real and reciprocal space. The intensity contrast of real speckles in Fig. 3(a) is
lower than that of simulated speckles in Fig. 3(b). This is reflected in their azimuthally averaged
power spectra, where for real lungs (see Fig. 3(c)) the peak is broader and weaker than that of
simulated lungs (see Fig. 3(d)). We believe this could be due to incoherent scattering from the
alveoli and in air between the object and detector, and that in real lungs, the alveoli are closely
packed rather than randomly positioned as in our simulated lung tissue.

To verify the linear relationship between N and PSArea, PSArea was plotted against the sample
thickness of simulated lung tissue from the first sample set at 1 m and 3 m ODD (see Fig. 4(a)).
The sample thickness is essentially proportional to N as the total volume fraction was made
approximately constant throughout the sample. At 3 m ODD, Fig. 4(a) shows N at first varies
linearly with PSArea but begins to breakdown at N = 3000 as |∇⊥ϕ|max increases, resulting in
NF approaching and then being less than unity. Pogany et al. [41] showed that phase contrast
decreases beyond the near-field region, which is reflected in reduction of the rate of increase of
PSArea in Fig. 4(a) with respect to N. At 1 m ODD, NF remained >1 for all sample thickness,
thus PSArea was proportional to N throughout. The dependance between R and PSArea was
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(a) (b)

(c) (d)

Fig. 3. 3.24 mm × 3.24 mm PBX images of a ∼10 mm thick sample (a) of real and (b)
simulated (mean diameter of 130 µm) lung tissue normalized against their phase retrieved
absorption image. Their corresponding power spectra are shown in (c) and (d), respectively.

investigated by plotting PSArea against R of simulated lung tissue from the second sample set
packed in a 10 mm thick container at 3 m ODD, as shown in Fig. 4(b). As predicted by Eq. (9),
PSArea varies linearly with R even at this large ODD.

3.2. Regional lung air volume measurements

A PSArea −VL calibration curve was generated from the 15 newborn rabbit pups in Group-
Water. Since for each pup a PBX image of its lung in a fluid-filled state was recorded, PSArea

was calibrated against absolute VL. Two cameras were used that had slightly dissimilar spa-
tial frequency responses, or modulation transfer functions (MTFs). The MTF represents the
camera’s ability to accurately preserve the amplitudes of each of the spatial frequencies in an
image and this depends on the design of the camera. This resulted in two distinct calibration
curves originating from the two cameras, which differed by a multiplicative factor of 3.35. This
is likely due to the different phosphor thicknesses coupled to the two detectors. Thus, PSArea

calculated from using the sCMOS camera was multiplied by 3.35 to align with the calibration
curve attained from the FOP camera. While this highlights the need to produce a calibration
curve for each of the detectors, a calibration curve would also be needed for other different
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(a) (b)

Fig. 4. Plots of PSArea of simulated lung tissue versus (a) number of voids, of size 130 µm
(at 1 m and 3 m ODD), and (b) radius of voids with a maximum volume packing density
of 75% (at 3 m), all at energy 24 keV.

experimental configurations. This includes different types of animals due to variability in lung
morphology and imaging setups since the power spectrum of the speckle produced would be
affected by factors such as beam characteristics. A direct plot of VL against PSArea showed a
non-linear relationship. It was found that raising VL to the power 3

4 best linearized the curve
based on the chi-square goodness-of-fit test.

Figure 5(a) shows the linearized PSArea − VL calibration curve. A weighted linear trend

(V 3/4
L = a × PSArea + b) was fitted with coefficients a = (1.345 ± 0.001) × 10−4 and b =

(−6.84 ± 0.02) × 10−7. The uncertainty in V 3/4
L was determined by measuring the standard

deviation (σ ) of the volume change over time of a water-only ROI against the ROI size (N ×M
pixel). A rational exponent function was fitted to give σ = 3.5×10−7 × [N ×M]3/4 +3.7×10−6

(see [15, section IIE]). The same ROIs were used to measure σ of PSArea to determine its un-
certainty. A PSArea −VL curve from the quadrants from one of the pups used for Fig. 5(a) is
plotted in Fig. 5(b). This shows the PSArea −VL curve from the quadrants diverge from each
other at large VL. This divergence was observed in other pups at different VL that depended on
their total lung capacity. However, this degree of divergence is comparable to that of the points
in Fig. 5(a).

The phase gradient across the interface between water and tissue is considerably smaller
than between air and tissue. When the PBX chest images of rabbit pups were divided by their
absorption images to remove the absorption-induced intensity trends, the boundary of the skin
was enhanced for pups imaged in air (see Fig. 6(a)) compared to those imaged in water (see
Fig. 6(b)). Consequently, the azimuthally averaged power spectra of pups imaged in air showed
a larger amplitude between frequencies 0 mm−1 and 2 mm−1 compared to that of pups imaged
in water (see Fig. 6(c)). Beyond the frequency 2 mm−1, the shape of the power spectra were
of similar magnitude, which was the range PSArea is calculated in. Thus, the calibration curve
in Fig. 5(a) generated from pups imaged in water was used to measure the total change in VL

of 3 pups imaged in air and then compared with the volume measured using a flowmeter (see
Fig. 7(a)). A straight line was fitted to Fig. 7(a) with a gradient of 1.06 ±0.06 (R2= 0.978).
This shows the calibration curve to be a highly accurate tool for determining the total change
in VL without needing to immerse the animal in water. This gives us confidence for retrieving
accurate regional volumetric information.

A quadrant-based analysis of a single pup imaged in air (see Fig. 7(b)) reveals non-uniform
lung aeration. Figure 6(a) shows how the quadrants were delineated. As expected, the volumet-
ric curves of each quadrant oscillates in phase with the mechanical ventilator. However, there
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(a) (b)

Fig. 5. (a) A calibration curve between VL and the PSarea from PBX chest images divided
into quadrants consisting of (a) a subset of points (∼ 10%) from multiple pups and (b) a
single pup. A weighted linear fit was performed on (a) and is shown as a red line.

are subtle but important physiological differences between quadrants. The upper left quadrant
shows a lack of increase in tidal volume (i.e. volume of air entering the lungs) despite the
increasing volume of air supplied by the ventilator, while the upper right quadrant is the only
quadrant showing a significant increase in FRC. This quantification of non-uniform aeration us-
ing regional analysis is critical for assessing the efficacy of resuscitation strategies for newborn
infants.

Next we demonstrate the ability of our technique to build a pixel-by-pixel map of VL using
128 x 128 pixel sized ROIs to measure the volume from the speckle pattern. The calibration
curve was used to convert PSArea measured from the speckle pattern into VL in each ROI. This
was performed on pairs of images where each pair was a PBX chest image of a pup recorded
at end-inspiration and at end-expiration. A volumetric map was constructed for each image of
each pair and the difference was taken between them to give the tidal volume at each pixel.
At a low tidal volume, Fig. 8(a) shows lung aeration to be highly localized where the greatest
change in VL is at the bifurcation of the left/right main bronchi into tertiary bronchi. As the
tidal volume increased (see Figs. 8(b) and 8(c)), the flow of air became more apparent at the
peripheral regions where lung expansion occurred. Summation of the pixels in Fig. 8 gave
the total VL (Fig. 8(a): 0.15 ml, Fig. 8(b): 0.27 ml, Fig. 8(c): 0.37 ml), which agreed closely
with that from calculating PSArea of the total lung (Fig. 8(a): 0.12 ml, Fig. 8(b): 0.24 ml, Fig.
8(c): 0.36 ml). These values respectively correspond to a percentage difference of 4.6%, 2.7%
and 1.3%. This was predominantly attributed to having a discrete frequency domain. Since
different sized ROI sample the frequency domain differently, a small error is introduced into
VL. Accuracy can be improved by interpolating the discrete spatial frequencies.

4. Discussion

The technique outlined here presents a novel approach to measuring absolute lung air volume
(VL) regionally from PBX chest images without requiring the use of a contrast agent. Imaging
modalities such as positron emission tomography or MRI require a medium to be injected inside
the lungs with which to measure VL while water acts as a contrast agent for techniques that use
PCX modalities. Here, no such contrast agent was required as speckle is an inherent feature of
PBX images of the lung that was related to the properties of the airway morphology to measure
VL.

There are three limitations that we foresee in our technique: (i) motion blur, (ii) the multi-
valued relationship between PSArea and VL, and (iii) the minimum size of the region from which
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(a) (b)

(c)

Fig. 6. A pair of 24 mm × 21 mm PCX chest images of a newborn rabbit pup in (a) a
water-filled tube and in (b) air. (c) shows their respective power spectra after dividing by
their absorption image reconstructed using phase retrieval.

VL can be measured. The motion of the chest wall causes blurring in images; which results in
a reduction in PSArea [22]. The zero spatial frequency is however largely unchanged, which is
why those techniques previously discussed that measure VL from the intensity of pixels/voxels
are unaffected by motion blur. Reducing the exposure time can reduce the degree of motion
blur but this coincides with a decrease in SNR. There are techniques that could measure and
correct the degree of motion blur [42]. However, respiratory-induced motion blur is non-linear
and difficult to correct. Motion blur can also be avoided through patient breath holds or taking
measurements towards the end of inspiration/expiration when there is minimal chest motion.

The difference in the dependance of R and N with VL and PSArea means a dynamic rela-
tionship exists between VL and PSArea. The calibration curve in Fig. 5(a) showed PSArea was

approximately proportional to V 3/4
L . From Eq. (10), the exponent ( 4

3 ) is close to 1, which in-
dicates the lungs accommodated the flow of air by changing the number of alveoli. This is
expected since we are imaging the lungs from an non-aerated state, hence new alveoli are being
recruited as the lungs fill with air, thereby increasing N It was found, however, a PSArea −VL

curve of a single breath showed subtle changes in the exponent (other than 4
3 ). This was masked

in the calibration curve as it was made up of multiple single breath curves from pups mechan-
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(a) (b)

Fig. 7. (a) A representation of the accuracy of using the calibration curve to measure the
change in total VL of pups imaged in air in comparison to using a flowmeter. The red line
is the line of best fit. (b) Regional lung volume measurements from a lung image sequence
after partitioning the images into quadrants. Note that the lower quadrant curves have been
offset by 0.1 ml to better distinguish them from the upper quadrant curves.

(a) (b) (c)

Fig. 8. 14.6 mm ×14.6 mm regional volumetric maps from a mechanically ventilated rabbit
pup in air ventilated using three different tidal volumes: (a) 0.12 ml, (b) 0.24 ml and (c)
0.35 ml. Map demonstrate the distribution of air when it enters the lung.
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ically ventilated with different positive inspiratory and positive end-expiratory pressures. This
allowed a single calibration curve to approximate VL. At large volumes (≥10 ml/kg) however, a
slight divergence in the calibration curve between quadrants appears (see Fig. 5(b)). This may
either be the variable relationship between VL and PSArea or the breakdown of the TIE approxi-
mation. The average projected thickness between quadrants is different in that the apical region
the lungs is thinner than that adjacent to the diaphragm. Thus, the TIE approximation may
breakdown sooner for the lower quadrants at large volumes as the lungs increase in thickness.

When performing regional VL analysis, the region must be large enough to sufficiently sample
the spatial frequencies of a power spectrum. As detector technology continues to improve, we
expect that detectors with larger numbers of pixels producing lower noise levels coupled with
better detector spatial resolution to be available. Hence we anticipate being able to measure
VL in smaller ROIs in the future. Another major benefit of having lower noise level detectors
is a reduced ODD. In our study, the ODD was set at 3 m to produce a sufficiently strong
speckle contrast-to-noise ratio (CNR), but this distance was found to be at the edge of the near-
field regime. To that end, PBX chest images were also recorded at 1.5 m ODD but were not
included in this manuscript because VL weakly correlated with PSArea due to the weak CNR of
the speckle. Thus, a lower noise level will allow PBX images to be recorded at shorter ODD
while still having a short exposure time to minimize chest-induced motion blur.

Since our technique does not require the subject to be immersed in water, the much improved
SNR allows significant reduction in the exposure time. The SNR of an image of a pup imaged in
air was measured to be ∼ 1.4× larger than a pup imaged in water. The region chosen in calculat-
ing SNR was at the thickest (central) portion of the body below the lungs. This improvement in
SNR will be important for translating this research for use with lower power laboratory-based
x-ray machines [43–45].

5. Conclusions

Propagation-based phase contrast x-ray (PBX) images, of lungs modeled as a random distribu-
tion of hollow spheres, were simulated. The speckle pattern observed from the PBX image was
quantified by the area under its power spectrum (PSArea), and was found to be dependent on the
absolute lung air volume (VL). Herein we developed a simple method for measuring VL region-
ally from the speckle patterns commonly seen in PBX images of the chest. This can be a useful
measure of lung disease and injury. Unlike our previous techniques of measuring VL from two-
dimensional images, the subject does not need to be immersed in water, which significantly
boosts the signal-to-noise ratio of the image. This has a two-fold advantage; the exposure time
can be reduced to minimize both motion blur and radiation dose. Importantly, our technique is
able to perform absolute measurements of VL in select ROI; this was previously only possible
if we were able to image the lungs starting from a fluid-filled state. We successfully tested this
method in measuring both the total and regional changes in VL of several newborn rabbit pups,
and validated it against other proven techniques.

Appendix A: Power spectrum of a near-field 2D intensity map of a 3D random distribution
of identical voids

Consider N voids randomly embedded in an absorbing medium, as shown in Fig. 1. We assume
the path of the rays within the object is unperturbed, this is known as the projection approxima-
tion, and it allows the absorption (I(x,y,z = 0)) and phase shift (ϕ(x,y,z = 0)) induced by the
object up to its exit surface to be considered projections through, respectively, the absorption
index (β ) and refractive index decrement (δ ) with:
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IA(x,y,z = 0) = exp[−2k
∫

β (x,y,z)dz] (11)

and

ϕ(x,y,z = 0) = −k
∫

δ (x,y,z)dz. (12)

Here, k = 2π/λ is the wavenumber and λ is the wavelength of the source illuminating the object
along the z direction. We assume the medium is composed of a single material of projected
thickness T(x,y) along the z direction, and since any voids are non-absorbing (i.e. βvoid = δvoid =
0), Eqs. (11) and (12) reduce to:

I(x,y,z = 0) = exp[−2kβT (x,y)] (13)

and

ϕ(x,y,z = 0) = −kδT (x,y), (14)

where μ = 2kβ is the linear attenuation coefficient of the medium. At short distances (L) along
the z direction from the exit surface of the object, the free space evolution of the intensity
distribution can be described by the transport-of-intensity equation (TIE) [46]:

−k
∂ I(x,y,z)

∂ z
= ∇⊥ · [I(x,y,z = 0)∇⊥ϕ(x,y,z = 0)], (15)

where ∇⊥ = x̂ ∂
∂x + ŷ ∂

∂y .

The TIE assumes paraxial wave propagation (i.e. k �
√

k2
x + k2

y where (kx,ky,kz) is the x,

y, z components of the wavevector k). The validity of the TIE is given by the Fresnel number
when, NF = a

Lλ |∇⊥ϕ|max
≥ 1 [33]. Here, a is the characteristic length scale over which the object

changes appreciably and |∇⊥ϕ|max is the maximum absolute transverse phase gradient. This

form of NF is very similar to another commonly used condition a2

Lλ ≥ 1, but this condition does
not consider |∇⊥ϕ|max. From the ray optics perspective, the degree of deflection of the rays
depends on both a and |∇⊥ϕ|max. The importance of this in the context of lung imaging is
that NF can be overestimated if |∇⊥ϕ|max > 1 radians per unit length was not considered, thus
unknowingly imaging outside the near-field region.

To remove any dependency on absorption in Eq. (15), we begin with a finite difference ap-
proximation on the left hand side, dI(x,y)

dz ≈ I(x,y,z=L)−I(x,y,z=0)
L , while the the right hand side

(RHS) is expanded, with Eqs. (13) and (14) substituted into Eq. (15), to give:

I(x,y,z = L)

I(x,y,z = 0)
−1 = Lδ [∇2

⊥T (x,y)− μ |∇⊥T (x,y)| 2], (16)

where ∇2
⊥ = ∂ 2

∂x2 + ∂ 2

∂y2 denotes the Laplacian, respectively, in the xy plane. The second, and

only, term on the RHS of Eq. (16) is dependent on μ but can be neglected if μ |∇⊥T (x,y)| 2 	∣∣∇2
⊥T (x,y)

∣∣. To explicitly show when this is true, we make the substitutions |∇⊥T | ≤ |ΔT |/a
where |ΔT | is the maximum magnitude of the difference in projected thickness across the length
a, and

∣∣∇2
⊥T

∣∣ ≤ |ΔT |/a2. This simplifies the inequality to μΔT (x,y) 	 1, that is, the object is
weakly absorbing [47]. The lung tissue thickness in rabbit pups is typically on average 6 mm
and at 24 keV, μ = 54.7 m−1 for lung tissue, thus μ |ΔT (x,y)| ≤ 0.328. Consequently, the
second term on the RHS of Eq. (16) can be ignored, hence the absolute square of the Fourier
transform of Eq. (16) gives the power spectrum:
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∣∣∣∣F
{

I(x,y,z = L)

I(x,y,z = 0)
−1

}∣∣∣∣
2

= L2δ 2k4
⊥ |F{T (x,y)}|2 . (17)

Here we have made use of the Fourier derivative theorem to replace ∇2
⊥ with k2

⊥ =
(kx)

2 + (ky)
2. Returning to our object of interest, for a random distribution of N air-filled

voids, described by the object function G̃(x,y,z) where G̃(x,y,z) = 1 for
√

x2 + y2 + z2 ≤ R
and G̃(x,y,z) = 0 elsewhere, embedded in an absorbing medium (V (x,y,z) = 1 everywhere),
the object can be expressed as a sum of convolutions:

T̃ (x,y,z) = V (x,y,z)−
N

∑
n=0

δ (x− xn)δ (y− yn)δ (z− zn)⊗ G̃(x,y,z), (18)

where δ ’s are the unit impulse functions and (xn,yn,zn) represents the random position of the nth

void within the dimensions of the medium. For simplicity, the first term on the RHS of Eq. (18)
will be dropped as it affects only the zero frequency in its corresponding power spectrum,
which is unimportant for our analysis. Generally the random positions of the voids are unknown
but the expectation value of the power spectrum of T̃ (x,y,z) can be evaluated without this
information [48]. With equal probability of finding a void within the medium, we have for the
expectation value of the power spectrum of T̃ (x,y,z):

〈∣∣F
{

T̃ (x,y,z)
}∣∣2

〉
=

[
N2δ̂ (0,0,0)+N

]∣∣F
{

G̃(x,y,z)
}∣∣2 , (19)

where δ̂ (0,0,0) has a value of unity at (0,0,0) and zero elsewhere (Kronecker delta). The ex-
pected value operator will be dropped for notational simplicity and the first term inside the
square brackets of Eq. (19) will also be dropped as it only affects the zero frequency. It can
then be seen that the power spectrum of the random distribution of voids is N times the power
spectrum of a single void for k⊥ �= 0. This remains valid if the voids are randomly positioned
and do not overlap with neighboring voids [48].

To determine T (x,y) =
∫

z T̃ (x,y,z)dz, we make use of the Fourier slice theorem [49],

∣∣F
{

T̃ (x,y,z)
}∣∣2 (kx,ky,0) =

∣∣∣∣∣∣
F

⎧
⎨
⎩

∫

z

T̃ (x,y,z)dz

⎫
⎬
⎭

∣∣∣∣∣∣

2

(kx,ky) = |F{T (x,y)}|2 (kx,ky), (20)

with a similar conclusion made for |F{G(x,y)}|2. If G̃(x,y,z) is azimuthally symmetric (i.e.
spherical) then G(x,y) is independent of the orientation of G̃(x,y,z). However, if G̃(x,y,z) is

not azimuthally symmetric, but randomly orientated, like the alveoli, then
〈∣∣F

{
T̃ (x,y,z)

}∣∣2
〉

is approximately azimuthally symmetric with
∣∣F

{
G̃(x,y,z)

}∣∣2 being the azimuthal average of
the power spectrum of a single void replicated azimuthally. Thus, Eq. (19) can be reduced to
2D,

|F{T (x,y)}|2 = N |F{G(x,y)}|2 . (21)

This shows that even though increasing the number of voids results in an increase in the
amount of overlap between them seen in the projected thickness image, the power spectrum
only changes by a factor. This may seem counter-intuitive as the more voids there are the
shorter the characteristic length scale of the image, which would shift the peaks in the power
spectra to higher frequencies. But this is untrue as long as there is no physical overlap between
neighboring voids and the positions of the voids are sufficiently random.
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Finally, substituting Eq. (21) into Eq. (17) we arrive at the power spectrum of the near-field
intensity map of a 3-dimensional random distribution of identical voids normalized against its
absorption image:

∣∣∣∣F
{

I(x,y,z = L)

I(x,y,z = 0)
−1

}∣∣∣∣
2

= L2δ 2k4
⊥N |F{G(x,y)}|2 . (22)
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Real-time measurement of alveolar size and 
population using phase contrast x-ray imaging 
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Abstract: Herein a propagation-based phase contrast x-ray imaging 
technique for measuring particle size and number is presented. This is 
achieved with an algorithm that utilizes the Fourier space signature of the 
speckle pattern associated with the images of particles. We validate this 
algorithm using soda-lime glass particles, demonstrating its effectiveness on 
random and non-randomly packed particles. This technique is then applied to 
characterise lung alveoli, which are difficult to measure dynamically in vivo 
with current imaging modalities due to inadequate temporal resolution and/or 
depth of penetration and field-of-view. We obtain an important result in that 
our algorithm is able to measure changes in alveolar size on the micron scale 
during ventilation and shows the presence of alveolar 
recruitment/de-recruitment in newborn rabbit kittens. This technique will be 
useful for ventilation management and lung diagnostic procedures. 

© 2014 Optical Society of America 

OCIS codes: (340.7440) X-ray imaging; (110.6150) Speckle imaging; (100.5070) Phase 
retrieval; (170.3660) Light propagation in tissues; (170.3880) Medical and biological imaging; 
(290.5850) Scattering, particles. 

References and links 

1. M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray 
phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004). 

2. S. P. Albert, J. DiRocco, G. B. Allen, J. H. T. Bates, R. Lafollette, B. D. Kubiak, J. Fischer, S. Maroney, and G. F. 
Nieman, “The role of time and pressure on alveolar recruitment,” J. Appl. Physiol. 106(3), 757–765 (2009). 

3. S. Meissner, L. Knels, M. Mertens, M. Wendel, A. Tabuchi, W. M. Kuebler, T. Koch, and E. Koch,J. Sloten, P. 
Verdonck, M. Nyssen, and J. Haueisen, eds., “Three-dimensional Imaging of subpleural Alveoli by Fourier 
Domain Optical Coherence Tomography,” in 4th European Conference of the International Federation for 
Medical and Biological Engineering, J. Sloten, P. Verdonck, M. Nyssen, and J. Haueisen, eds. (Springer Berlin 
Heidelberg, 2009), pp. 2035–2039. 

4. E. Namati, J. Thiesse, J. de Ryk, and G. McLennan, “Alveolar dynamics during respiration: are the pores of Kohn 
a pathway to recruitment?” Am. J. Respir. Cell Mol. Biol. 38(5), 572–578 (2008). 

5. D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital 
microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt. 16(4), 046002 (2011). 

6. H. Liu, H. Runck, M. Schneider, X. Tong, and C. A. Stahl, “Morphometry of subpleural alveoli may be greatly 
biased by local pressure changes induced by the microscopic device,” Respir. Physiol. Neurobiol. 178(2), 283–289 
(2011). 

7. F. Ossant, M. Lebertre, L. Pourcelot, and F. Patat, “Ultrasonic characterization of maturation of fetal lung 
microstructure: an animal study,” Ultrasound Med. Biol. 27(2), 157–169 (2001). 

8. S. Chang, N. Kwon, B. M. Weon, J. Kim, C. K. Rhee, H. S. Choi, Y. Kohmura, M. Yamamoto, T. Ishikawa, and J. 
H. Je, “Tracking x-ray microscopy for alveolar dynamics in live intact mice,” Sci. Rep. 3, 1304 (2013). 

9. J. Tsao, “Ultrafast imaging: principles, pitfalls, solutions, and applications,” J. Magn. Reson. Imaging 32(2), 
252–266 (2010). 

10. S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Synchrotron-based dynamic computed tomography of 
tissue motion for regional lung function measurement,” J. R. Soc. Interface 9(74), 2213–2224 (2012). 

11. S. Fichele, N. Woodhouse, A. J. Swift, Z. Said, M. N. J. Paley, L. Kasuboski, G. H. Mills, E. J. R. van Beek, and J. 
M. Wild, “MRI of helium-3 gas in healthy lungs: posture related variations of alveolar size,” J. Magn. Reson. 
Imaging 20(2), 331–335 (2004). 

#222268 - $15.00 USD Received 2 Sep 2014; revised 16 Oct 2014; accepted 18 Oct 2014; published 24 Oct 2014
(C) 2014 OSA 1 November 2014 | Vol. 5,  No. 11 | DOI:10.1364/BOE.5.004024 | BIOMEDICAL OPTICS EXPRESS  4024

238 Appendix C



12. T. J. Wellman, T. Winkler, E. L. V. Costa, G. Musch, R. S. Harris, J. G. Venegas, and M. F. V. Melo, 
“Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen,” J. 
Nucl. Med. 51(4), 646–653 (2010). 

13. J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential Physics of Medical Imaging (Wolters 
Kluwer Health, 2011). 

14. T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. 
Wilkins, “Refracting Röntgen’s rays: propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. 
Phys. 105(10), 102005 (2009). 

15. R. P. Carnibella, M. J. Kitchen, and A. Fouras, “Determining particle size distributions from a single projection 
image,” Opt. Express 20(14), 15962–15968 (2012). 

16. R. P. Carnibella, M. J. Kitchen, and A. Fouras, “Decoding the structure of granular and porous materials from 
speckled phase contrast x-ray images,” Opt. Express 21(16), 19153–19162 (2013). 

17. R. Cerbino, L. Peverini, M. A. C. Potenza, A. Robert, P. Bösecke, and M. Giglio, “X-ray-scattering information 
obtained from near-field speckle,” Nat. Phys. 4(3), 238–243 (2008). 

18. J. D. Escolar and A. Escolar, “Lung hysteresis: a morphological view,” Histol. Histopathol. 19(1), 159–166 (2004). 
19. L. Brancazio, G. N. Franz, E. L. Petsonk, and D. G. Frazer, “Lung area--volume models in relation to the 

recruitment--derecruitment of individual lung units,” Ann. Biomed. Eng. 29(3), 252–262 (2001). 
20. S. B. Hooper, M. J. Kitchen, M. J. Wallace, N. Yagi, K. Uesugi, M. J. Morgan, C. Hall, K. K. W. Siu, I. M. 

Williams, M. Siew, S. C. Irvine, K. Pavlov, and R. A. Lewis, “Imaging lung aeration and lung liquid clearance at 
birth,” FASEB J. 21(12), 3329–3337 (2007). 

21. A. F. T. Leong, D. M. Paganin, S. B. Hooper, M. L. Siew, and M. J. Kitchen, “Measurement of absolute regional 
lung air volumes from near-field x-ray speckles,” Opt. Express 21(23), 27905–27923 (2013). 

22. T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules 
for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 
3223–3241 (2008). 

23. H. Itoh, M. Nishino, and H. Hatabu, “Architecture of the lung: morphology and function,” J. Thorac. Imaging 
19(4), 221–227 (2004). 

24. P. Debye, “Zerstreuung von Röntgenstrahlen,” Annalen der Physik 351(6), 809–823 (1915). 
25. S. Sykora, “K-space images of n-dimensional spheres and generalized sinc functions” (February 19, 2008, 

2/19/2008), retrieved May 1, 2014, http://www.ebyte.it/library/docs/math07/SincN.html. 
26. M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, 

K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” 
Phys. Med. Biol. 53(21), 6065–6077 (2008). 

27. M. J. Kitchen, D. M. Paganin, K. Uesugi, B. J. Allison, R. A. Lewis, S. B. Hooper, and K. M. Pavlov, “Phase 
contrast image segmentation using a Laue analyser crystal,” Phys. Med. Biol. 56(3), 515–534 (2011). 

28. A. F. T. Leong, A. Fouras, M. S. Islam, M. J. Wallace, S. B. Hooper, and M. J. Kitchen, “High spatiotemporal 
resolution measurement of regional lung air volumes from 2D phase contrast x-ray images,” Med. Phys. 40(4), 
041909 (2013). 

29. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude 
extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002). 

30. M. J. Kitchen, A. Habib, A. Fouras, S. Dubsky, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “A new design for 
high stability pressure-controlled ventilation for small animal lung imaging,” J. Instrum. 5(02), T02002 (2010). 

31. M. M. Hall, Jnr., V. G. Veeraraghavan, H. Rubin, and P. G. Winchell, “The approximation of symmetric x-ray 
peaks by Pearson type VII distributions,” J. Appl. Cryst. 10(1), 66–68 (1977). 

32. M. Stewart, “Signal processing,” in Handbook of Linear Algebra, L. Hogben, ed. (CRC Press, Boca Raton, FL, 
2006), pp. 10–12. 

33. NIST Physical Reference Data” (US Department of Commerce, 1st May, 2014), retrieved 
http://www.nist.gov/pml/data/. 

34. J. Serra, Image Analysis and Mathematical Morphology (Academic Press, Inc., Orlando, FL, 1983). 
35. S. Goto, K. Takeshita, Y. Suzuki, H. Ohashi, Y. Asano, H. Kimura, T. Matsushita, N. Yagi, M. Isshiki, H. 

Yamazaki, Y. Yoneda, K. Umetani, and T. Ishikawa, “Construction and commissioning of a 215-m-long beamline 
at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468(Part 1), 682–685 (2001). 

36. K. Nugent, C. Tran, and A. Roberts, “Coherence transport through imperfect x-ray optical systems,” Opt. Express 
11(19), 2323–2328 (2003). 

37. K. Miyomoto, “Particle number and sizes estimated from sections,” in Research of Pattern Formation, R. Takaki, 
ed. (KTK Scientific Publishers, 1994), pp. 507–516. 

38. L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” 
IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991). 

39. A. B. Garson 3rd, E. W. Izaguirre, S. G. Price, and M. A. Anastasio, “Characterization of speckle in lung images 
acquired with a benchtop in-line x-ray phase-contrast system,” Phys. Med. Biol. 58(12), 4237–4253 (2013). 

40. T. E. Gureyev and S. W. Wilkins, “On x-ray phase retrieval from polychromatic images,” Opt. Commun. 147(4-6), 
229–232 (1998). 

#222268 - $15.00 USD Received 2 Sep 2014; revised 16 Oct 2014; accepted 18 Oct 2014; published 24 Oct 2014
(C) 2014 OSA 1 November 2014 | Vol. 5,  No. 11 | DOI:10.1364/BOE.5.004024 | BIOMEDICAL OPTICS EXPRESS  4025

239



1. Introduction 

The lung is comprised of bifurcating hollow branches that carry air to the terminal airways 
(alveoli) where gas exchange takes place. Lung injury and diseases, such as ventilation-induced 
lung injury and emphysema, compromise the structure of the alveoli and consequently their 
function. Here we present a non-invasive phase contrast x-ray (PCX) imaging technique to 
measure the size and population of alveoli in situ. To do this we exploit the image texture 
associated with the speckle pattern that results from propagation-based phase contrast x-ray 
(PB-PCX) imaging of the lungs [1]. Repeating this measure over several time points during 
breathing provides functional information regarding the changing morphology of lung tissue. 
This has potential benefit for the diagnosis and treatment of lung diseases and the development 
of safer ventilation strategies to reduce the incidence of ventilation-induced lung injury [2]. 

Previous investigation of lung structure at the alveolar scale have been done using imaging 
techniques that include; optical coherence tomography (OPCT), confocal laser scanning 
microscopy (CLSM) and endoscopy microscopy [3–5]. These techniques provide highly 
spatially-resolved images of individual alveoli that are used to assess alveolar structure during 
respiration. However, they have short penetrative depth even after invasive manoeuvres to 
bypass the skin. Endoscopy microscopy is relatively non-invasive as it places an endoscope in 
the pleura visceralis. However, that was shown to alter the intrapleural pressure, which 
artificially changes the alveolar morphology [6]. Ultrasound measures scatterer sizes in the 
lungs from backscattered sound waves, but has yet to be proven to be that of alveolar sacs [7]. 
The deep penetrative power of synchrotron x-rays has previously enabled non-invasive imaging 
of the alveoli but was still restricted to less concentrated regions of alveoli that undergo 
minimal movement to accurately track them individually [8]. 

Tomographic-based imaging modalities provide insight into alveolar mechanics of the 
entire lung. However, the acquisition time for these modalities are long compared to the length 
of a single spontaneous breathing cycle, which makes dynamic imaging of the alveoli in 
real-time unfeasible because of motion artefacts. Although there has been progress towards 
improving the imaging acquisition frame rate, there is always a trade-off against poor spatial 
resolution and signal-to-noise ratio (SNR) to resolve the alveoli [9]. Alternatively, post-hoc 
respiratory gating, where projections from similar time points in the respiratory cycle are 
grouped together during post-processing, allows multiple reconstructions per respiratory cycle 
with comparable temporal resolution to x-ray imaging, but requires stable ventilation [10]. 
Another drawback to these modalities is the high exposure to ionizing radiation, either in the 
form of a radionuclide contrast agent in positron emission tomography [11, 12], or an x-ray 
source in x-ray computed tomography (CT) [13]. 

PCX imaging converts changes in the phase of an x-ray wavefield into visible intensity 
modulations [14]. The air-tissue interfaces of the lung are ideal for PCX imaging as they yield 
significant phase shifts [1]. This markedly increases the contrast of tissue compared to that seen 
in absorption-based x-ray images. PB-PCX imaging has the simplest PCX experimental setup. 
It requires only a sufficiently spatially coherent x-ray source and a detector placed some 
distance behind the sample. The boundary between materials with different refractive index 
decrements becomes enhanced by Fresnel interference fringes upon free space propagation. 
The Fresnel fringes arising from many alveoli are projected onto the imaging plane to form a 
speckled pattern (Figs. 1(a) and 1(b)) [1]. Roughly textured materials and spatially random 
samples, such as colloidal glass particles, also produce speckled images. The parameters of 
speckle patterns (for example, size, intensity and contrast) have been shown to depend on the 
structural properties of the illuminated object [15–17]. Here, we devise a way to extract 
structural properties of the alveoli, specifically their size and population from PB-PCX lung 
speckle images, which is quantified via analysis in the Fourier domain. 
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Fig. 1. 19.8 × 22.8 mm2 2D propagation-based phase contrast x-ray (PB-PCX) image of the 
chest at (a) low and (b) high lung air volumes of the same rabbit kitten. These PB-PCX images 
were one of 1800 projections used to reconstruct 27.6 × 26.4 mm2 CT slices as shown in (c) and 
(d), respectively. ODD = 1 m. Energy = 24 keV. Exposure time per projection = 50 ms. (See 
section 3 for further experimental details). 

Previous evidence on how human alveoli behave during respiration has been inconclusive, 
partly due to the inherently complicated interconnecting nature of alveoli, but also because 
previous studies used different experimental techniques, animal subjects and morphemetrics 
techniques [18]. While it was initially believed alveolar size varied monotonically with lung 
volume, there has been some evidence of alveoli opening and closing during respiration [19]. 
This is often termed alveolar recruitment/de-recruitment although, in the neonatal lung, 
aeration and reflooding may be more accurate terminology [20]. 

The theoretical basis of our work is presented in section 2. This is validated using colloidal 
soda-lime glass (SLG) microspheres, which closely resemble alveoli in size and shape, then 
applied to newborn rabbit kittens to measure alveolar size and compared with a gold standard 
using high-resolution CT images (see section 3 for details). The results and analysis from both 
microspheres and rabbit lungs is presented in section 4. The prospect of applying our work to 
human patients forms part of our discussion in section 5. We conclude with section 6. 

2. Background theory 

Here we show how the alveolar size and population can be determined from lung speckled 
PB-PCX chest images if the lung air volume is known. This derivation follows closely to that 
developed in Leong et al. [21], but in that derivation alveoli were assumed to be randomly 
distributed. In Figs. 1(c) and 1(d) we see that the alveoli become relatively closely packed and 
therefore less randomly ordered at increasing volume. Herein, we take into account potential 
short-range ordering associated with close packing. 

Consider an object comprised of a single material with complex refractive index, n = 1-δ + 
iβ, where δ and β are the refractive index decrement and attenuation index, respectively. The 
imaginary number is denoted by i. The power spectrum of its PB-PCX image ( ( , )I r z L⊥ =

) in 

the plane ( , )r x y⊥ =  that is normalized against its contact image ( ( , 0)I r z⊥ =
), at 
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object-to-detector propagation distance (ODD) L, along the optic axis z can be expressed as 
[21]: 

 ( ){ }
2 2( , ) 2 2 41 .

( , 0)

I r z L
L k T r

I r z
δ⊥

⊥

 =
− =  ⊥ ⊥= 

F F
 
  (1) 

Here, ( )T r⊥


 is the projected thickness of the object, F  is the Fourier transform with 

respect to spatial variables x and y, 2 2
x yk k k⊥ = +  is the transverse wavenumber in r⊥


 where 

( , )x yk k are vectors in two-dimensional (2D) Fourier space. The technique employed to 

determine ( , 0)I r z⊥ =
 is detailed in section 3.4. 

In deriving Eq. (1), two assumptions were made regarding the object: (1) lateral 
displacement of the x-ray beam at the exit surface due to scattering within the object must be 
less than the detector spatial resolution, and (2) it weakly absorbs (i.e., µT<1 where µ is the 
attenuation coefficient of the object). These assumptions have been shown to be valid when 
imaging the thorax of a newborn rabbit kitten using 24 keV x-rays [21]. Equation (1) is 
restricted to the near-field regime, which is where the Fresnel number, NF, defined by, 

 
2

,F

a
N

Lλ
=  (2) 

to be such that NF ≥ max{1,|φ|max} [22]. Here, a is the characteristic length scale of the object 
over which ( , 0)I r z⊥ =

 varies appreciably, λ is the incident wavelength, and the maximum 

magnitude of the phase gradient in r⊥


 is defined by |φ|max. Note that the reciprocal of ‘a’ in the 

near-field condition quantifies the area of the 2D Fourier support. 
To determine the form of Eq. (1) for lungs, the lung is modeled as N air-filled spherical 

cavities of radius R (representing alveoli) that are randomly distributed in lung tissue volume 
with refractive index decrement δ. This model provides a simple analytic solution to Eq. (1) for 
the lungs. Highly magnified images of the alveoli show they resemble pseudo-randomly 
orientated dodecahedrons, which for our purpose are sufficiently close to being spherical [23]. 
To that end, the object function of the modeled lung can be expressed as a sum of convolutions: 

 ( ) ( ) ( ) ( ) ,
0 r

N
T r V r r r G r dr

n
n

δ= − −
=


       (3) 

where ( )rδ 
 is the unit impulse function and ( , , )n n n nr x y z=  is a vector in 3D Cartesian space 

representing the random position of the nth alveoli in the volume ( )V r


, where ( )V r


 is the 

object function of lung tissue and is equal to unity everywhere in the volume and zero 

everywhere else. The integral of the modeled lung ( )T r
  along the optic axis z gives the 

projected thickness ( )T r⊥


. The object function of a sphere is represented by ( )G r


 where G = 

1 for r R≤  and G = 0 everywhere else. The power spectrum of Eq. (3) is written as: 

 { } 22 2( ) ( ) ,i k r

V
T r T r e drπ− ⋅= F

      (4) 

where ( ), ,x y zk k k k=


 are vectors in 3D Fourier space. 

The first term of Eq. (3) is a constant function and so contributes only to the zero (DC) 
frequency. The DC frequency, however, is not relevant to our analysis and will be ignored 
hereafter. To derive an analytic solution of the integral in Eq. (4), and hence obtain explicit 
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dependence on N and R, Eq. (3) (minus ( )V r


) is substituted into Eq. (4), and making use of the 

convolution theorem and the sifting property of the unit impulse, we arrive at, 

 ( ){ } ( ){ } ( )2 2

1 1

cos 2 ,
n m

nm
n m

T r G r N k Dπ
≠

= =

 = + ⋅ 
 

F F
    (5) 

where ( ){ } 2
G rF


 is the power spectrum of a sphere and nmD


 is the vector from sphere n to 

m. The arrangement of alveoli is macroscopically isotropic making their power spectrum 
rotationally symmetric. Thus, the sum in Eq. (5) is averaged over the polar angle defined 

between k


 and nmD


, and the azimuthal angle formed by the plane containing k


 and nmD


 

with an arbitrary plane. Furthermore, the power spectrum of a sphere is also rotationally 
symmetric. Thus, Eq. (5) can be simplified into one-dimensional form with independent 

variable k


, to give a result equivalent to the Debye scattering formula, which was derived for 

predicting the diffraction patterns of gases and liquids [24]: 
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The overbar represents the rotational average of ( ){ } 2

T rF
 , hereafter the overbar will be 

dropped for notational simplicity. According to the Fourier slice 

theorem, ( ){ } ( ) ( ){ } ( )
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therefore allows k


 to be replaced with k k⊥ ⊥=


 in Eq. (6) to give an expression for the 

power spectrum of ( )T r⊥


. Substituting this 2D form of Eq. (6) into Eq. (1), and given that the 

power spectrum of a sphere is ( ){ }
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 [25], we arrive 

at the main equation of this study, the PB-PCX speckle image power spectrum, 
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Here, the summation term in Eq. (6) has been rewritten as an integral, over the volume 

( )V r


, weighted by the function ρ(D) that is defined as the frequency of occurrence of alveoli 

separated by distance D D=


. For randomly distributed alveoli, ρ(D)≈constant. 

Consequently, the integral in Eq. (7) becomes the Fourier transform of ( )V r


 (remember that 

the sinc term is the polar and azimuthal average of the exponential term in Fourier space). If the 
ratio of the sphere size ( )G r


 to the dimension of ( )V r


 is much less than unity then the 

integral tends to zero everywhere except at 0k⊥ = , and given the DC frequency is irrelevant 

for our analysis, this reduces Eq. (7) to the expression first derived by Leong et al. [21]: 
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Leong et al. [21] showed that the area under the first peak in the spectrum, which is bounded 
by adjacent minima k⊥R = 0 and k⊥R = 4.493, is given by, 

 2 2 234 .AreaPS L NRπ δ=  (9) 

This is approximately equivalent to integrating over all k⊥ , except at 0k⊥ = , of 

experimentally measured power spectra as the higher order peaks are suppressed by the 
detector point spread function (d-PSF) and penumbral blurring. If the total lung air volume (VL) 
within the alveoli is known, which is approximated under the assumption of N isolated spheres 
of radius R, 

 34
,

3LV NR=  (10) 

then N and R can be solved, given if δ is known, which can be readily calculated for a given 
material at a given x-ray energy using the National Institute of Standards and Technology 
(NIST) database, as described in section 3.4. An alternative method to calculating R from PSArea 
is using the position of the maximum value of the first order peak (PSPeak) defined by PSPeakR = 
2.74 (see Eq. (8)). N could then be calculated from either the known VL or PSArea, but in this 
study, VL was used. However, as is apparent from Figs. 1(c) and 1(d), at increasing VL, alveoli 
exhibit short-range order as the alveoli become more closely packed. Equation (7) accounts for 
this reduction in randomness. Comparing Eqs. (7) and (8), it can be shown that both are 
oscillatory functions in Fourier space. As the packing fraction increases, their first order peaks 
differ in position as do the area under their curves. Calculating R from the position of the first 
order peak using Eq. (8) would become less accurate for increasing alveolar density. A more 
accurate expression for PSPeak and PSArea can be derived from Eq. (7); however, ρ(D) will likely 
vary during breathing and is difficult to determine exactly. To test the effect of short-range 
ordering, SLG microspheres, randomly arranged and closely packed, were imaged. Equations 
(9) and (10) were then used to measure N and R and compared with their known values (see 
section 4). This would indicate if Eq. (9) provides sufficiently accurate measures of N and R for 
closely packed alveoli. 

Our team has devised several methods to calculate VL from 2D images [21, 26–28]. Here we 
employ the algorithm of Kitchen et al. [26], that is simple, accurate and robust for this type of 
imaging. It measures the change in regional lung air volumes between pairs of PB-PCX images 
by using a single image phase retrieval algorithm (SIPR) [29]. Having an image of non-aerated 
lungs enables us to calculate absolute regional lung air volumes [26]. VL represents the lung air 
volume within the alveoli while the volumetric technique employed measures the previously 
mentioned volume plus the volume of air in the airway branches. Nevertheless, given that 
approximately 90% of the total lung air volume resides in the alveoli, the algorithm by Kitchen 
et al. [26] can be used to adequately approximate VL. 

3. Methodology 

3.1 Image acquisition 

The Medical and Imaging centre of beamline 20B2 (Hutch 3) at the SPring-8 synchrotron 
radiation source in Japan was used for all imaging experiments. A Si (111) non-dispersive 
monochromator was tuned to different energies for imaging glass particles and rabbit kittens 
with relative energy width of ΔE/E~10−4 and photon flux density ~2 × 108 photons/s/mm2. 
Images were flat field corrected using flat and dark field images recorded at the beginning of 
each image sequence to normalize against the incident intensity of the x-ray beam and to offset 
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the intrinsic detector noise, respectively. For long image sequences (>2 mins), the intensity of 
each frame was rescaled to the first frame. This corrected for synchrotron beam fluctuations 
caused by periodic injections of electrons into the storage ring, and heating/cooling of optical 
elements. 

Two detectors were used in this study: a 2560 × 2160 pixel tandem lens-coupled 
scientific-CMOS (sCMOS) imaging sensor (pco.edge; PCO AG, Germany) coupled to a 25 µm 
thick gadolinium oxysulfide (Gd2O2S:Tb+;P43) powdered phosphor, and a 2048 × 2048 pixel 
sCMOS imaging sensor (ORCA-Flash4.0; Hamamatsu, Japan) with a direct fiber optic 
coupling the sensor to a 150 µm thick columnar CsI scintillator. Their effective pixel sizes were 
15.23 µm and 6.38 µm, respectively. 

3.2 Glass particles 

SLG microspheres (Whitehouse Scientific Ltd.) were used to test and validate our theory. They 
are a good model for alveoli and their average size and population are accurately known. Both 
detectors were used for imaging microspheres to test the robustness of our technique against 
detector types. Microspheres were imaged at 30 keV and with an exposure time of 1.2 s. 
150-180 µm sized microspheres were sprinkled onto a cover slip to produce a sparse random 
distribution and then sealed with another cover slip placed on top. A hollow step-wedge made 
of polymethylmethacrylate was designed with the height (i.e. thickness) of the steps at 1 mm, 2 
mm, 5 mm, 10 mm and 20 mm. The hollow step-wedge was separately filled with closely 
packed microspheres of sizes 43-55 µm, 63-75 µm, 75-90 µm, 90-106 µm, 106-125 µm, 
150-180 µm, 180-212 µm and 250-300 µm. 

3.3 Rabbit kittens 

All animal experiments performed were approved by the Monash University Animal Ethics 
Committee and the SPring-8 Animal Care and Use Committee. Pregnant New Zealand white 
rabbits (27-30 days of gestation, term = 31-32 days; n = 4) were anaesthetized initially using 
propofol (i.v; 12 mg/kg bolus, 150-500 mg/h infusion), then via inhalation following intubation 
(Isoflurane 1.5-4%). Rabbit kittens (n = 10) were delivered by caesarean section, then 
humanely killed using an overdose of sodium pentabarbitone (>100 mg/kg i.p.). Immediately 
after euthanasia, they were surgically intubated before being placed upright in a water-filled 
cylinder with their head out and supported by a rubber diaphragm around their necks. A 
custom-built mechanical ventilator was connected to the endotracheal tubes, which were 
inserted into the trachea of the rabbit kittens, and sent out trigger signals for gated imaging [30]. 
Before ventilation several non-aerated images of the chest were recorded. Thereafter 
ventilation was initiated with an initial airway pressure (AP) of 16 cmH2O. AP was then 
gradually increased to 27 cmH2O and decreased back to 16 cmH2O via 1 cmH2O increments, 
each of which was held for 5 s. The images were recorded at 24 keV with a frame rate of 20 Hz, 
40 ms exposure time, and 1 m ODD. This amounts to an absorbed radiation dose per PB-PCX 
image of ~1 mGy. While this is more than the standard chest x-ray image, the spatial resolution 
is significantly higher and the dose is still much lower than a standard chest CT [13]. 
Furthermore, the SNR was measured to be ~10 from several regions that were away from the 
rabbit kitten but within the water-filled cylinder. 

The ventilator was disconnected with AP last set at 2 cmH2O. High resolution CT images 
(1800 projections from 0 to 180° with 50 ms exposures and 1 m ODD) were then acquired for a 
gold standard comparison. Additional CT images were recorded after the kitten’s lungs were 
filled with 100% N2 (to prevent absorption of gas into the pulmonary capillaries) at 29 cmH2O 
AP with the intubation tube then tied off to prevent lung collapse. Each rabbit kitten was fixed 
in a test tube filled with agar to reduce motion blur. PB-PCX images of the same animal were 
also recorded at different ODDs to measure the degree of validity of Eq. (1) at large ODD. The 
pco.edge detector was used because only it had a sufficiently large field of view to image the 
entire chest of a rabbit kitten in a single exposure. 
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3.4 Image analysis 

Equation (8) does not account for the d-PSF and penumbral blurring. Given that the 
synchrotron source size of the beamline used for this study was 150 µm × 10 µm, the 
source-to-object distance was 210 m, and the maximum ODD set was 2 m, the degree of 
penumbral blurring is less than a pixel width for both detectors [14]. However, the d-PSF alters 
the power spectrum significantly, and was therefore measured and corrected for each PB-PCX 
image before subsequent image analysis. The edge spread function was measured both 
vertically and horizontally using a 5.25 mm thick lead block. The transverse spatial derivatives 
of the resulting images were averaged over many pixels, extruded azimuthally to construct the 
d-PSF, and fitted with a 2D Pearson type VII distribution function (PVII) [31]. The Wiener 
deconvolution algorithm was used to deconvolve the PB-PCX images with the fitted d-PSF 
[32]. This algorithm is stable against the input parameter, the SNR of the deconvolved image, 
particularly at low spatial frequencies where the first order peak of the power spectrum of lung 
speckle presides, thus it need not be known exactly. An optimal SNR value of 500 was found to 
provide consistent values of N and R for microspheres and alveoli. Wiener deconvolution 
amplifies high frequency noise but the degree of noise amplification is similar between frames 
of the same animal. To suppress this effect, the power spectra of images without speckle (e.g. 
the non-aerated lung images) were subtracted from that of the speckled image (e.g. aerated lung 
images). 

The contact (absorption) image ( ( ), 0I r z⊥ =
) is required to calculate PSArea. This was 

estimated using SIPR [29]. It requires both µ and δ as inputs for the filter, which were 
calculated from the NIST database [33]. For SLG microspheres (30 keV), µSLG = 197 m−1 and 
δSLG = 5.09 × 10−7, and for lung tissue (24 keV), µLT = 54.74 m−1 and δLT = 3.99 × 10−7. SIPR 
assumes a single-material object, but the chest comprises of bone and soft tissue. Setting the 
parameters of SIPR for lung tissue will accurately reverse the lung tissue-induced phase 
contrast but over-smooth that of the bone [28]. To that end, dividing PB-PCX chest images by 
their contact image (using SIPR) will accurately remove the absorption contrast of lung tissue 
but not entirely that of the bone, particularly along the edges of the bone. Nevertheless, its 
contribution to the power spectra is small compared to the lung speckle signal. 

To summarize, PSArea was calculated using the following sequence of steps applied to the 
PB-PCX lung speckle image: (i) deconvolving the d-PSF, (ii) dividing by its contact image, (iii) 
computing its azimuthally averaged power spectrum, (iv) subtracting from that of its 
non-aerated PB-PCX image, and (v) integrating between 2 mm−1 and the Nyquist frequency. 
The lower limit was chosen to exclude the peak at the origin of Fourier space but still included 
the first order peak. 

Grayscale 3D granulometry [34] was considered the ‘gold standard’ for our technique for 
measuring alveolar dimensions. Spheres of various sizes were created as structural elements to 
survey the lung for alveoli of similar size using the morphological opening operator on 7.5 mm3 
CT volumes of rabbit kitten lungs. The CT volumes were magnified by a factor of 4 and 
bilinearly interpolated beforehand to increase the spatial sampling rate. Alveolar dimensions 
were measured from our technique by calculating PSArea from one of the CT projection images. 
For this data set VL was calculated by intensity thresholding the CT images to segment the 
airways before counting the total voxels within them. 

4. Results 

Three types of 150-180 µm microsphere samples were investigated: single and multiple 
particles randomly dispersed between cover slips, and a hollow step-wedge filled with particles. 
These samples were recorded at 15 cm ODD using the pco.edge detector and are shown in Figs. 
2(a-c). Both N and R were calculated using Eqs. (9) and (10). N and R were also determined 
from the position of the first order peak in the speckle power spectrum, that is, PSPeak. The 
calculated values of N and R along with their expected values are presented in Table 1. 
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Fig. 2. 3.83 × 3.83 mm2 propagation-based phase contrast x-ray images of 150-180 µm sized (a) 
single glass particle, (b) multiple glass particles and (c) a 1 mm thick container of glass particles 
with volume packing density 55%≈ . (d) shows the corresponding power spectra of (a)-(c), 
after deconvolving to remove the detector point spread function, dividing by their contact image, 
normalizing against the total pixels in the image and the number of microspheres. ODD = 15 cm. 
Energy = 30 keV. Exposure time = 1 s. 

For single and multiple particles placed between cover slips, VL was calculated using Eq. 
(10) with N and an average value for R measured directly from their images for comparison 
with our technique. The calculated and expected values of N and R for a single microsphere 
agree poorly because the image noise masked its signal (Fig. 2(d)). However, as the number of 
microspheres increased, a clear peak in the power spectrum becomes evident above the noise in 
Fig. 2(d). This resulted in excellent agreement between the calculated and expected values of N 
and R using both the PSArea and PSPeak (Table 1). The uncertainties in N and R were propagated 
from the uncertainty in VL, which was the difference in using the average rather than the 
distribution of R, except for R calculated from PSPeak which was determined from weighted 
fitting a PVII function to the centroid. Comparing the uncertainties in N and R, at low packing 
fraction, they are more precisely measured from PSPeak than from PSArea as PSPeak does not 
depend on how precisely VL is measured. 

Table 1. The number and mean radius of glass particles calculated from the 
propagation-based phase contrast x-ray images in Figs. 2(a)-2(c) compared with the 

expected values shown in brackets. 

 
 

Number Radius (µm) 

Microspheres PSArea PSPeak PSArea PSPeak 

Single (Fig. 2(a)) 0.67±0.03(1) 2.7 ± 0.1 96 ± 4(83 ± 8) 59.55 ± 0.01 

Multiple (Fig. 2(b)) 52 ± 3(59) 59.63 ± 0.08 87 ± 4(83 ± 8) 83.47 ± 0.08 

Packed (Fig. 2(c)) 3730 ± 460(3600 ± 800) 7500 ± 1600 82 ± 9(83 ± 8) 64.90±0.01 

Microspheres poured into a container inevitably stack on top of one another to produce 
some short-range order. VL was determined using SIPR to calculate the projected thickness of 
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glass at each pixel then summed and multiplied by the pixel area [29]. Surprisingly, the 
presence of short-range order did not adversely affect the calculation of N and R using PSArea. 
The uncertainty was propagated from that of VL, which was determined using a calibration 
curve that plots the uncertainty in VL against the image size, developed by Leong et al. [28]. 
Conversely, PSPeak shifted to higher frequencies (Fig. 2(d)), thereby underestimating R and 
overestimating N. Again, the uncertainty of the former was determined from weighted fitting a 
PVII function to the centroid while that of the latter was determined in a similar manner to N 
that was calculated from PSArea. Two important and consequential points arise from these 
findings: (1) there is short-range order in closely packed particles, as indicated by the shift in 
PSPeak, and (2) despite this, Eqs. (9) and (10) can still accurately calculate N and R. Figure 2(d) 
provides a clue to why Eqs. (9) and (10) remain valid. There we see that the shape and position 
of the first order peak is altered by short-range order, but the area under the curve remains 
virtually unchanged. This presents a favourable outcome, since the packing density of alveoli 
will vary during respiration. 

PB-PCX images of the 1 mm thick region of the step-wedge, each containing different sized 
microspheres, were recorded using the ORCA detector to better resolve the smaller sized 
microspheres. N and R were calculated from PSArea for each and are plotted in Fig. 3(a) and are 
in close agreement with the expected values. However, at increasing sample thickness (that is, 
at increasing |φ|max) and ODD, large errors accumulated in the calculation of R as NF reduces 
below max{1,|φ|max}. This is shown in Fig. 3(b). A similar trend (not shown) was found when 
plotting N as a function of ODD. The accuracy of calculating R  of a single layer of 
microspheres also decreases despite NF ≥ max{1,|φ|max} of up to 2 m ODD (R≈165 µm, |φ|max = 
|-kδSLG2R| = 13.5, L = 2 m, a = 2R, NF = 61.6). The consistent overestimation of PSArea with 
respect to that obtained experimentally, which we denote as large distance error, could be due to 
a number of possible effects. While partial coherence (penumbral blurring) was deemed 
negligible based on the source size given by Goto et al. [35], the effects on speckle contrast may 
be larger than expected. Our group has also found discrepancies between simulated lung 
speckle contrast using the projection approximation and the more rigorous multi-slice 
diffraction method, which may also account for the differences. Finally, Nugent et al. [36] 
showed a loss of contrast from imaging random phase screens (akin to the lungs) can be caused 
by limited spatial resolution. A complete study of these competing effects is warranted, but is 
beyond the scope of this paper. 

 

Fig. 3. Evaluating the accuracy of calculating the number and mean radius of microspheres from 
propagation-based phase contrast x-ray images of (a) 1 mm thick container filled separately with 
different sized microspheres at 15 cm object-to-detector distance (ODD) and (b) containers with 
variable thickness filled with 150-180 µm sized microspheres, and a single layer of 150-180 um 
microspheres, at various ODDs. 

Considering that the typical alveolar radius and projected thickness of a fully aerated lung of 
a rabbit kitten are 75 µm and 10 mm, respectively, and given that the ODD used in our 
experiments was 1 m, NF = 435 and |φ|max = |-kδSLG2R| = 363. Since NF ≥ max{1,|φ|max}, this 
shows the PB-PCX lung images recorded in this study satisfy the near-field condition. To 
account for the large distance error for the lungs, images of sets of lungs aerated to various 
degrees of the same rabbit kitten were acquired at multiple ODDs. The PSArea was calculated at 
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each ODD and compared with the expected PSArea, which was determined by assuming the 
calculated PSArea at the lowest ODD of 15 cm was accurate and subsequent PSArea were 
extrapolated to larger ODD using Eq. (1). This was done for several rabbit kittens at 1 m ODD, 
and on average their calculated PSArea differed by a factor of 2.3 ± 0.6 from the expected value. 
This factor was accounted for in all PB-PCX rabbit kitten images recorded at 1 m to give a more 
reliable measure of the alveolar dimensions and number. 

3D granulometry was utilized to test the accuracy of measuring alveolar dimensions from 
PSArea and PSPeak, although it does not yield their number, N. Figure 4(a) shows typical 
granulometry curves that correspond to a 7.5 mm3 cube region-of-interest (ROI) in Figs. 1(c) 
and 1(d). The maximum value represents the dominant alveolar dimension. 3D granulometry 
was performed on several more rabbit kittens and compared with PSArea and PSPeak (Fig. 4(b)). 
The uncertainty in R measured from 3D granulometry was determined by the width of the flat 
top of the peak while that measured from PSArea was propagated from the uncertainty in the 
factor, 2.3 ± 0.6, used to correct for the large distance error. The uncertainty in PSPeak, 
determined from weighted fitting to the PVII function, was negligible (<1 µm). The gradients 
for PSArea and PSPeak against 3D granulometry were 0.9 ± 0.3 (Pearson product-moment 
correlation coefficient ρ = 0.6) and 0.2 ± 0.1 (ρ = 0.3), respectively. The gradient of the latter 
indicates the insensitivity of PSPeak with R, which is likely caused by short-range ordering of 
alveoli affecting the measured size (see section 2), while the former shows a strong positive 
correlation. From the results of the SLG microspheres, this further demonstrates our technique 
is immune to short-range ordering effects. 

To demonstrate the presence of alveolar recruitment and de-recruitment, the number of 
alveoli was manually counted from a transaxial slice for each CT recorded of a rabbit kitten at 
different stages of respiration, which in stereology shows that it is approximately proportional 
to the alveolar number in 3D (see section 5 for automated methods trialled as gold standards for 
validating N) [37]. The transaxial slices were chosen to be approximately at the same axial 
position in the lung. Figure 4(c) shows alveolar number correlated with the total lung volume of 
the entire CT. 

 

Fig. 4. (a) Distribution of alveolar dimensions determined from 7.5 mm3 regions centred about 
the two CT slices in Figs. 1(c) and 1(d), respectively, using 3D granulometry. (b) The average 
alveoli size was measured both from PSArea and PSPeak and was compared with that measured 
from 3D granulometry for several rabbit kittens. (c) The alveolar number was approximated by 
manually counting the number of alveoli surface profiles from one transaxial slice per CT of a 
ventilating kitten and plotted against the total lung air volume determined by intensity 
thresholding the entire CT. 
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The ability of our technique to dynamically measure N and R during ventilation is 
demonstrated in Fig. 5; from the first breath and several respiratory cycles later. From the first 
breath (Fig. 5(a)), Fig. 5(b) shows that N (calculated from PSArea) first increases then plateaus 
after t = 5 s. This increase in N coincides with the clearing of fetal lung liquid and consequent 
recruitment of alveoli [20]. An increase in R, computed from PSArea, follows the same trend as 
VL. Conversely, R that was derived from PSPeak, remains largely unchanged, which may be 
caused by alveoli becoming more closely packed. At t≥27 s, a sudden drop in VL sees R 
decreasing (calculated from PSArea), but interestingly N concomitantly increased. The increase 
in N may be caused by the trapping of air as the airways collapse to produce the appearance of 
additional alveoli in the form of air bubbles. During a second respiratory cycle of the partially 
aerated lung (Fig. 5(c)), the independent calculations of R shown in Fig. 5(d) closely agree, but 
after t≥8 s they diverge. This is likely due to effects of short-range order affecting peak position. 
N (calculated from PSArea) remains approximately constant throughout except at the beginning 
and end of the respiratory cycle. This shows evidence of alveolar opening/recruitment followed 
by flooding/de-recruitment. 

5. Discussion 

The structural and functional complexity of the lung makes it both intriguing to understand yet 
difficult to study. Many lung imaging techniques are limited to studying only small regions of 
the lungs accessible to invasive instruments, or lungs that are effectively stable which therefore 
precludes the extraction of dynamic information. Here, the method developed by Leong et al. 
[21] was applied, after accounting for the large distance error and d-PSF, to measure the N and 
R of alveoli from the speckle patterns of PB-PCX ventilated chest images. Highly spatially 
resolved PB-PCX images can be recorded in real-time during a respiratory cycle by using 
intense and coherent synchrotron light coupled with detectors with high spatial resolution and 
quantum efficiency. Our technique can therefore provide valuable insight into the structural 
lung changes during respiration, which could prove useful for developing safe ventilation 
strategies or studying lung diseases. 

 

Fig. 5. Lung air volumes from PB-PCX chest images of a kitten mechanically ventilated (a) from 
its first breath, and (c) over a single respiratory cycle several breaths after its first. The 
corresponding calculation of number and mean radius of alveoli are shown in (b) and (d). 
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In this study, N and R were measured for the whole lungs. However, a key benefit of this 
technique is its ability to also measure N and R locally, if PSArea and VL are regionally measured. 
The minimum size of the ROI from which that VL can be measured, using the technique adapted 
in this study, is limited by the differential movement of the bone. Previously, Leong et al. [28] 
developed a cross correlation-based technique that aligned the bones between two PB-PCX 
chest images, which effectively removes the bone, before applying the volumetric analysis of 
Kitchen et al. [26] to calculate VL on a pixel-by-pixel basis. For calculating PSArea, the ROI must 
be large enough to adequately sample the power spectrum. Given the detector pixel size of 
15.23 µm and typical alveolar size of 150 µm, N and R can be calculated from a ROI as small as 
~0.5 mm2 compared to that of the entire lung being 230 mm2. This would be important in 
optimizing ventilation strategies to ensure all parts of the lung are adequately aerated without 
over-distending the alveoli leading to conditions such as ventilation-induced lung injury and 
bronchopulmonary dysplasia. Diagnosis and treatment of respiratory diseases including 
emphysema could also benefit by better localizing and targeting the diseased region. 

Non-aerated PB-PCX images of the lungs are required for our technique but are not always 
accessible, particularly for studying subjects that are not newborn. One alternative is intensity 
thresholding a low dose chest CT image reconstructed from phase retrieved PB-PCX images 
(using SIPR) to remove the aerated alveoli, with the resulting image being Radon-transformed 
then propagated using Eq. (1) to obtain the non-aerated PB-PCX chest image. While CT can 
provide information on N and R, our technique can achieve this using single projections. 
Consequently, the temporal resolution of our technique is far superior in allowing dynamic 
measures at a significantly lower radiation dose than CT. Similarity in anatomical structure of 
the chest within a species should also make it possible to use a non-aerated PB-PCX image for 
different subjects of the same species. This would avoid doing CT and imparting unnecessary 
radiation dose to every subject. 

Grayscale 3D granulometry cannot be used to measure the number of alveoli from CT 
images. To that end, an automated algorithm, watershedding [38], was tried in this study on the 
CT images. This image processing technique can measure both N from the number of local 
minima and R from the size of the valleys centring those minima. However, watershedding was 
found to be unstable against image noise as the dominant spatial frequency of the noise was 
comparable to that of the alveoli. 

The success of translating our technique for clinical use will depend on achieving adequate 
SNR at short exposure times. This would be important for in vivo imaging of the rapid rate of 
spontaneous breathing as opposed to controlled ventilation that was performed in our study. 
Moreover, human lungs are significantly larger than those of the rabbit kittens used in this 
study. While this lowers the image signal from an increase in attenuation, the x-ray energy can 
be increased without significant loss in phase contrast [14]. There is potential for synchrotron 
imaging of human patients, but the cost and limited availability of synchrotrons makes this 
unfeasible. Lower powered laboratory-based x-ray sources have been shown to produce well 
defined lung speckle in mice [39]. The challenge here will be optimizing the x-ray source spot 
size and ODD first for imaging animals and then human patients to produce speckles minimally 
affected by penumbral or motion blur. Also, while laboratory x-rays sources are polychromatic 
and the technique presented herein has only been developed for quasi-monochromatic sources, 
it has been shown that the transport-of-intensity equation, from which Eq. (1) was derived, can 
be generalized for a polychromatic source given the projection approximation is valid across 
the x-ray energy spectra [40]. For larger lungs, higher x-ray energies may be required to ensure 
the projection approximation holds. 

6. Conclusions 

We have demonstrated a novel non-invasive in situ imaging-based technique that is able to 
quantify the number and average size of densely packed particles and cavities. We have applied 
this technology to measure the same parameters of alveoli in the lungs. This information is 
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encoded in the speckle pattern seen in propagation-based phase contrast x-ray images in which 
multiple particles and cavities overlap in projection. The morphological parameters were 
extracted by calculating the area under the image power spectrum of the speckled images and 
by simultaneously measuring the particulate volume from the image. Our technique revealed 
recruitment and de-recruitment of alveoli in mechanically ventilating newborn rabbit kittens. 
3D grayscale granulometry was employed as a gold standard for alveolar dimensions and 
agreed well with our technique. As well as furthering our conceptual understanding of the 
structural behaviour of the lung, our technique has potential to be performed with a 
laboratory-based x-ray source and consequently applied to clinical diagnosis of respiratory 
diseases, evaluating the effect of therapeutic treatments, and monitoring of assisted ventilation. 
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