Characterisation of *Burkholderia pseudomallei* type III secretion system III components

Puthayalai Treerat

B.Sc. (Medical Technology), M.Sc. (by research)

A Thesis presented for the degree of

Doctor of Philosophy

May 2014

Department of Microbiology
Monash University
Clayton Campus, Melbourne 3800
Australia
Notice 1

Under the Copyright Act 1968, this thesis must be used only under the normal conditions of scholarly fair dealing. In particular no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or in part without the written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis.

Notice 2

I certify that I have made all reasonable efforts to secure copyright permissions for third-party content included in this thesis and have not knowingly added copyright content to my work without the owner's permission.
“Strength does not come from physical capacity. It comes from an indomitable will”

- Mahatma Gandhi

“Do not go where the path may lead, go instead where there is no path and leave a trail”

- Ralph Waldo Emerson

“Our greatest glory is not in never failing, but in rising up every time we fail”

- Ralph Waldo Emerson

“Success consists of going from failure to failure without loss of enthusiasm”

- Winston Churchill
Table of contents

Table of contents
i
Summary
vi
General declaration
vii
Acknowledgements
viii
Publications and conference proceedings
x
Abbreviations and definitions
xi

Chapter 1: Introduction
1

1.1 Melioidosis
2

1.2 Burkholderia pseudomallei
3

1.3 Virulence factors of B. pseudomallei
4

1.3.1 Polysaccharides
5

1.3.2 Quorum sensing (QS)
5

1.3.3 Efflux pumps
6

1.3.4 Biofilm production
6

1.3.5 Flagella
7

1.3.6 Type III secretion system (TTSS)
8

1.3.7 B. pseudomallei and TTSS
9

1.3.8 The TTSS cluster 3 (TTSS3; bsaTTSS)
10

1.4 Analysis of the secretion of TTSS effectors
12

1.5 Scope and aim of this study
14

Chapter 2: Materials and methods
21

2.1 Bacterial strains, eukaryotic cell lines and primers
22

2.2 Growth media and conditions
22

2.3 Polymerase chain reaction
23

2.4 DNA sequencing
23

2.5 Agarose gel electrophoresis
23

2.6 DNA restriction endonuclease (RE) digestion
24

2.7 DNA ligation and transformation
24

2.8 Preparation of competent E. coli cells
24

2.9 Mutagenesis of TTSS3 genes
25

2.10 Conjugation between E. coli and B. pseudomallei
25

2.11 Minimum bactericidal concentration (MBC) assays
26
2.12 RNA extraction and reverse transcription-PCR (RT-PCR) 27
2.13 Quantitative real-time RT-PCR 28
2.14 *In vitro* growth curves 29
2.15 *In vivo* competitive growth assays 29
2.16 Mouse virulence trials 30
2.17 Cell invasion assays 30
2.18 Intracellular survival assays in murine macrophages cells 31
2.19 Immunofluorescence and confocal microscopy 32
 2.19.1 Bacterial co-localisation with GFP-LC3 32
 2.19.2 Visualisation of actin tails via immunofluorescent phalloidin labelling 33
 2.19.3 Confocal laser scanning microscopy 33
2.20 Cytokine assays 34
2.21 Sodium deoxycholate/trichloroacetic acid (DOC/TCA) 34
 precipitation of proteins
2.22 TC-FIAsh™-based fluorescence labelling 35
2.23 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 36
2.24 Western blotting and enhanced chemiluminescence (ECL) detection 36
2.25 Coomassie Brilliant Blue staining 37
2.26 Southern blotting 37
2.27 Statistical analysis 38

Chapter 3: Involvement of BapA, BapB and BapC in the *in vivo* growth and virulence of *B. pseudomallei*

3.1 Mutagenesis of *bapA, bapB* and *bapC* by double cross-over allelic exchange 50
3.2 The *in vitro* growth of the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains was indistinguishable from the wild-type strain 54
3.3 The K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains show reduced growth rate *in vivo* compared to the wild-type strain 54
3.4 Virulence trials in the BALB/c mouse infection model 54
3.5 Complementation of the *bap* mutant strains using pBHR1 55
3.6 *In vivo* growth of the complemented mutant strains 56
3.7 Complementation of the bap mutants using the site-specific transposon vector pUC18Tmini-Tn7T
3.8 Generation of independently derived bap mutant strains
3.9 Discussion
3.10 Conclusions

Chapter 4: In vitro analyses of BapA, BapB and BapC
4.1 BapA, BapB and BapC are not essential for bacterial invasion of the human lung epithelial cell line A549
4.2 BapA, BapB and BapC are not required for intracellular survival and replication of B. pseudomallei in the murine macrophage-like cell line RAW264.7
4.3 BapA, BapB and BapC do not play a role in bacterial escape from host phagosome and actin-based motility
4.4 Influence of BapA, BapB and BapC on host innate immune response
4.5 Stimulation of RAW264.7 macrophage-like cell antibacterial activity with interferon-gamma (IFN-γ)
 4.5.1 Intracellular survival of the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains within IFN-γ prestimulated RAW264.7 cells
 4.5.2 Prestimulation of RAW264.7 cells with IFN-γ promotes an increase in bacterial co-localisation with LC3-GFP
 4.5.3 Cytokine secretion from IFN-γ pre-treated RAW264.7 macrophage-like cells following infection by the K96243ΔbapA, ΔbapB, ΔbapC or ΔbapBC strain
4.6 Discussion
 4.6.1 BapA, BapB or BapC are not involved in B. pseudomallei invasion of cultured A549 cells
 4.6.2 BapA, BapB or BapC do not play a role in survival or replication of B. pseudomallei in RAW264.7 cells
 4.6.3 Inactivation of bapA, bapB or bapC does not affect escape from host endosomes or actin polymerisation
 4.6.4 BapA, BapB or BapC play a minor role in alteration of the host innate immune response to B. pseudomallei infection
4.7 Conclusions
Chapter 5: Analysis of the secretion of BapA, BapB and BapC

5.1 Investigation of the secretion of BapA, BapB and BapC using the TC-FlAsHTM-based fluorescence labelling

5.1.1 Generation of TC-tagged BopE
5.1.2 Generation of the TC-tagged BapA, BapB and BapC
5.1.3 Optimisation of the TC-FlAsHTM-based fluorescence labelling
 5.1.3.1 Visualisation of TC-tagged BopE and TC-tagged GspD
 5.1.3.2 Labelling conditions using a range of reducing agents
 5.1.3.3 Optimisation of the TC-FlAsHTM-based fluorescence labelling inside live bacterial cells

5.1.4 Investigation of the TC-FlAsHTM-based fluorescence labelling of the TC tagged-BapA, BapB and BapC constructs
 5.1.4.1 Live bacterial samples of TC tagged-BapA and BapC
 5.1.4.2 Precipitated protein samples of TC-tagged BapA and BapC
 5.1.4.3 The TC-FlAsHTM-based fluorescence labelling of TC-tagged BapB

5.1.5 Effect of sodium chloride (NaCl) and congo red on secretion of TTSS3 effectors

5.2 Role of BapA, BapB or BapC in regulation of the TTSS3 function
 5.2.1 BopE secretion and expression is increased in the K96243\textDelta bapB strain
 5.2.2 The transcription of \textit{bopE} is increased in the K96243\textDelta bapB strain

5.3 Discussion
 5.3.1 BapA and BapC are secreted by the TTSS3
 5.3.2 The \textit{B. pseudomallei} TTSS3 is not stimulated by congo red but is altered by high salt conditions
 5.3.3 An involvement of BapA, BapB and/or BapC in the \textit{B. pseudomallei} TTSS3 secretion

Chapter 6: General discussion and future directions

Bibliography
Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Formulation and preparation of cultural media</td>
<td>217</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Formulation and preparation of buffers</td>
<td>218</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Polymerase chain reaction (PCR) protocols and other reaction conditions</td>
<td>226</td>
</tr>
</tbody>
</table>
Summary

In many intracellular pathogens, the type III secretion system (TTSS) plays an important role in virulence by secreting effector molecules directly across the host cell membrane. These effectors subsequently interact with, and alter, host signalling pathways for the benefit of the pathogen. *Burkholderia pseudomallei*, an intracellular pathogen that is the causative agent of the potentially fatal disease melioidosis, utilises a TTSS for its survival and replication in both phagocytic and non-phagocytic cells. Although this pathogen contains three TTSS gene clusters, the Type III Secretion System 3 (TTSS3) is critical for bacterial infectivity and pathogenesis. However, to date, only BopE, BopA and BopC are characterised effectors of the TTSS-3. This research aimed to identify and characterise the putative TTSS3 proteins BapA, BapB and BapC with regard to their possible functions as bacterial effectors involved in either modulation of host cell functions for bacterial survival, replication or escape from host endosomal vacuoles, or the secretion of the other TTSS3 effectors. By using a double cross-over allelic exchange approach, *bapA*, *bapB*, *bapC* and double *bapBC* mutant strains were generated and assayed for their *in vivo* and *in vitro* phenotypes. Competitive growth assays in BALB/c mice showed reduced growth of each of the mutants compared to the wild-type. Furthermore, all showed reduced virulence in the acute mouse infection model, indicating possible roles in bacterial virulence. Complementation was attempted but was unsuccessful. Therefore, independent mutants were constructed. The independent mutants were all tested for virulence in the BALB/c acute model but only the *bapA_2* mutant showed reduced virulence compared to the wild-type strain. These data suggest that BapA likely plays a minor role in virulence, although successful complementation is required to conclusively prove this. To determine whether BapA, BapB and BapC were secreted effectors, the TC-FlAsH™ labelling technique was used to monitor the secretion of tetracysteine-tagged fusion proteins. It was demonstrated that BapA and BapC are secreted *in vitro*. These proteins were secreted in a TTSS3-dependant manner as they were not secreted by mutant *B. pseudomallei* expressing a non-functional TTSS3. To further investigate any potential involvement of BapA, BapB and BapC in the TTSS3 secretion process, the well-characterised TTSS3 effector BopE was used as a marker to examine TTSS secretion in each of the mutant strains compared to the wild-type and the *bopE* mutant. The level of transcription of *bopE* was also assessed in certain strains in order to determine if there was any difference in the transcriptional regulation of this gene. It was demonstrated that, although BapA, BapB and BapC are not required for TTSS function, BapB appears to be necessary for normal secretion of BopE. Therefore, this study defines BapA and BapC as *B. pseudomallei* TTSS-3 effectors, and BapB as
a possible regulator of BopE secretion that may play a role in the pathogenicity of
B. pseudomallei.
General declaration

In accordance with Monash University Doctorate Regulations, the following declarations are made:

I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma at any university or other institution and affirm that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

This thesis contains six chapters, compromising of Introduction (Chapter 1), Materials and methods (Chapter 2), three result chapters (Chapter 3, 4 and 5) and General discussion and future directions (Chapter 6) with unpublished data. The core theme of the thesis is characterising *Burkholderia pseudomallei* type III secretion system III components. The ideas, development and writing of the chapters in the thesis were the principal responsibility of me, the candidate, working within the Department of Microbiology under the supervision of Dr. John D. Boyce and Professor Ben Adler.

The inclusion of co-authors reflects the fact that the work came from active collaboration between researchers and acknowledges input into team-based research.

In the case of Chapters 3, 4 and 5, I was solely responsible for the collection of data. I was primarily responsible for data analysis and interpretation. A contribution to the conception of experimental questions and interpretation of data was made by Dr. John D. Boyce and Professor Ben Adler.

Signed:________________________

Date:__________________________

07/03/2014
Acknowledgements

Effective supervision is crucial in a student’s path to successful completion. I was very fortunate to have the great opportunity to work with two wonderful supervisors, Dr. John D. Boyce and Professor Ben Adler, which has been invaluable on an academic and a personal level. To John, there are no proper words to convey my deepest gratitude and respect. You have always been knowledgeable, patient, extremely supportive, tolerant, kind and encouraging. I deeply thank you for having faith in me and giving me the freedom to pursue various skills/techniques without objection. To Ben, I cannot thank you enough for your expertise, understanding, patience, caring and unconditional support.

It has been an honour to be a member of Adler/Boyce Laboratory. These amazing and brilliant friends and colleagues (former and current) have always inspired and immensely supported me, and contributed to making this journey a rewarding experience. To Dr. Meabh Cullinane, Dr. Rebekah Henry (my all-time lifesaver), Dr. Xenia Gatsos (my coffee buddy), Dr. Gerald Murray and Dr. Marina Harper, I sincerely thank you for being knowledgeable in just about everything, your invaluable comments and advice toward improving my work and helping me to shape and guide the direction of the work. To Vicki Vallance, Saw Eng Tan and Ian McPherson, I deeply thank you for your tremendous support, encouragement and positive attitudes. Special thanks must also go to my invaluable network of supportive, helpful, cheerful, generous and loving friends: Priya Alwis (my ‘partner in crime’), Amy King (my great officemate and attack buddy), Mark Edmunds (my coffee buddy with whom I can always talk about cars and motorcycles), Kate Rainczuk (my concert buddy), Rhys Dunstan (my heavy metal buddy), Alicia Shu-chin Lai (my lunch buddy), Jennifer Moffatt, Deanna Deveson, Dr. Elizabeth Alexander, Dr. Miranda Lo, Dr. Tim Witchell, Dr. Renee Marcisin-Rogers, Joy Tong Chen Ai, Dr. Kunkun Zhang, Desmond Gul, Nathalie Uwamahoro and Amrei Jaenicke. I am also grateful to my collaborators in the Department of Biochemistry: Professor Rodney Devenish, Dr. Mark Prescott, Dr. Lan Gong, Dr. Xuelei Li, for the assistance they provided at all levels of my project, scientific advice, knowledge and many insightful discussions. To the members of my PhD committee: Professor Brian Cooke, Dr. David Sheffield and Dr. Xiao Yan Han, for invaluable advice and support. My special appreciations must also go to my beloved (and gorgeous) Mrs. “Clooney” Young (my ROCK!) for her never ending efforts to assist me on everything before I even began my PhD. To Dr. Candida da Fonseca Pereira, I deeply thank you for your prompt responses and extremely helpful advice with the FlAsH work. To Irene Hatzinisiriou, for always being so helpful with

~ ix ~
imaging requests. To all members of Department of Microbiology, Micromon and SOBS Store, for invaluable support, help and advice. To all members of Monash Micro Imaging (MMI), for giving me the permission to use all required equipment and the necessary materials, being extremely helpful and knowledgeable (and for not kicking me out when I overbooked the FV1000!). To Dr. Jamuna Vadivelu, for generating the K96243ΔbapA strain. To Dr. Christopher French, for kindly sending the pBBR1 vector and invaluable advice. To Assistant Professor Jonathan Warawa, for kindly sending the pBHR1 vector. To Professor Mark Stevens, for kindly sending the BopE-specific antiserum. To Vicky Dimitriou, Liz Kemp, Jessica William, Rachel Cawsey and Jennifer Scott, for being so helpful with the administrative tasks necessary for completing my doctoral program. I would also like to express my heartfelt gratitude to ARC/NHMRC for funding the project and to MGS/MIPRS for the scholarships.

Friendship is not about whom you have known the longest, it's about who came, and never left your side. To my dearest friend Marietta John, I sincerely thank you for being extremely helpful, supportive, kind, and always standing beside me since I first arrived in Melbourne (best of luck for your PhD!). To Dr. Tanya D’Cruse, I deeply thank you for being so helpful, supportive, kind and friendly. To Dr. Miguel Shingu-Vazquez (my “mishin”), for always being my shadow buddy. Special thanks must also go to all my gym buddies for energy, friendship, joy and incredible fun: Shar, Teresa, Christelle, Kamil, Bianca, Thanh, Nazra, Jenny, May and Dini. Most importantly, to my dearest friend in Bangkok, Tomtam, I am truly grateful to have you as my like-minded buddy despite the distance.

Family is where life begins and love never ends, so last but not least, I am forever grateful to my parents for your unconditional love, never ending support and trust, and for never giving up on me. There are no words that can truly express the level of gratitude and appreciation I have for you, and I never could have come this far without you. To my beloved brother (my X-box buddy), who has always stood beside me despite the long distance between us and been my best friend since the day I was born. I will never truly be able to express my love to you and how much you mean to me. Thank you for your unwavering love and your faith in me, and for making me laugh and distracting me when I have been too focused.

~ x ~
Publications and conference proceedings

Journal publications:

Conference proceedings:

Abbreviations and definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>ACP</td>
<td>Acyl carrier protein</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>Amp<sup>R</sup></td>
<td>Ampicillin resistance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ASC</td>
<td>Apoptosis associated speck-like protein containing a caspase recruitment domain</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>B. mallei</td>
<td>Burkholderia mallei</td>
</tr>
<tr>
<td>B. pseudomallei</td>
<td>Burkholderia pseudomallei</td>
</tr>
<tr>
<td>B. thailandensis</td>
<td>Burkholderia thailandensis</td>
</tr>
<tr>
<td>BAL</td>
<td>2,3-dimercapto-1-propanol</td>
</tr>
<tr>
<td>Bap</td>
<td>Bsa associated protein</td>
</tr>
<tr>
<td>Bim</td>
<td>Burkholderia intracellular motility</td>
</tr>
<tr>
<td>Bip</td>
<td>Burkholderia invasion protein</td>
</tr>
<tr>
<td>BME</td>
<td>β-mercaptoethanol</td>
</tr>
<tr>
<td>Bop</td>
<td>Burkholderia outer protein</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>bsa</td>
<td>Burkholderia secretion apparatus</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
</tbody>
</table>

~ xii ~
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARD</td>
<td>Caspase activation and recruitment domain</td>
</tr>
<tr>
<td>Cat</td>
<td>Chloramphenicol acetyl transferase</td>
</tr>
<tr>
<td>CDC</td>
<td>the Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>Chl/ChlR</td>
<td>Chloramphenicol resistance</td>
</tr>
<tr>
<td>CI</td>
<td>Competitive index</td>
</tr>
<tr>
<td>CpG</td>
<td>Cytosine-phosphate-guanine</td>
</tr>
<tr>
<td>CT</td>
<td>Computerised tomography</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonate</td>
</tr>
<tr>
<td>dH$_2$O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>ddH$_2$O</td>
<td>Double-distilled water</td>
</tr>
<tr>
<td>DIC</td>
<td>Differential interference contrast</td>
</tr>
<tr>
<td>DIG</td>
<td>Digoxigenin</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNAse</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>DOC</td>
<td>Sodium deoxycholate</td>
</tr>
<tr>
<td>DTT</td>
<td>DL-Dithiothreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>ECL</td>
<td>Electrochemiluminescence</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EPEC</td>
<td>Enteropathogenic E. coli</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FlAsH</td>
<td>4',5'-bis(bis1,3,2-dithioarsolan-2-yl) fluorescein</td>
</tr>
<tr>
<td>g</td>
<td>Grams</td>
</tr>
<tr>
<td>GC</td>
<td>Guanine Cytosine</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>h</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>i.p.</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>Iag</td>
<td>Invasion-associated gene</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-gamma</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IM</td>
<td>Inner membrane</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible nitric oxide synthase</td>
</tr>
<tr>
<td>Inv</td>
<td>Invasion</td>
</tr>
<tr>
<td>Ipa</td>
<td>Invasion plasmid antigen</td>
</tr>
<tr>
<td>Ipg</td>
<td>Invasion plasmid gene</td>
</tr>
<tr>
<td>IRAK</td>
<td>Interleukin 1 receptor associated kinase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>IRAK-M</td>
<td>Interleukin 1 receptor associated kinase-like molecule</td>
</tr>
<tr>
<td>IRF-1</td>
<td>Interferon-regulatory factor 1</td>
</tr>
<tr>
<td>Kan/Kan<sup>R</sup></td>
<td>Kanamycin resistance</td>
</tr>
<tr>
<td>kDa</td>
<td>KiloDalton</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>Listeria monocytogenes</td>
</tr>
<tr>
<td>LAMP-1</td>
<td>Lysosomal associated membrane protein-1</td>
</tr>
<tr>
<td>LAP</td>
<td>LC3-associated phagocytosis</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani broth</td>
</tr>
<tr>
<td>LC3</td>
<td>Light chain 3</td>
</tr>
<tr>
<td>LD</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LT</td>
<td>Lytic transglycosylase</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>Mb</td>
<td>Mega base</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum bactericidal concentration</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple cloning site</td>
</tr>
<tr>
<td>min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MNGC</td>
<td>Multinucleated giant cell</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MTOC</td>
<td>Microtubule-organising centre</td>
</tr>
<tr>
<td>Mxi</td>
<td>Membrane expression of Ipa</td>
</tr>
<tr>
<td>MyD88</td>
<td>Myeloid differentiation factor 88</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor-kappa B</td>
</tr>
<tr>
<td>NK</td>
<td>Natural killer</td>
</tr>
<tr>
<td>NLR</td>
<td>NOD-like receptor</td>
</tr>
<tr>
<td>NLRC4</td>
<td>NOD-like receptor family, CARD domain containing 4</td>
</tr>
<tr>
<td>NLRP3</td>
<td>NOD-like receptor family, pyrin domain containing 3</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NOD</td>
<td>Nucleotide-binding oligomerisation domain</td>
</tr>
<tr>
<td>OD<sub>600</sub></td>
<td>Optical density at 600 nm</td>
</tr>
<tr>
<td>OM</td>
<td>Outer membrane</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen-associated molecular patterns</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>pg</td>
<td>Picograms</td>
</tr>
<tr>
<td>PG</td>
<td>Peptidoglycan</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>pH</td>
<td>Potential of hydrogen</td>
</tr>
<tr>
<td>p.i.</td>
<td>Post infection</td>
</tr>
<tr>
<td>PP</td>
<td>Pantetheine 4’ phosphate</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene difluoride</td>
</tr>
<tr>
<td>QS</td>
<td>Quorum sensing</td>
</tr>
<tr>
<td>RE</td>
<td>Restriction enzyme</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription - polymerase chain reaction</td>
</tr>
<tr>
<td>S. enterica</td>
<td>Salmonella enterica</td>
</tr>
<tr>
<td>S. flexneri</td>
<td>Shigella flexneri</td>
</tr>
<tr>
<td>S. typhi</td>
<td>Salmonella typhi</td>
</tr>
<tr>
<td>SCV</td>
<td>Salmonella containing vacuole</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>sec</td>
<td>Second(s)</td>
</tr>
<tr>
<td>Sip</td>
<td>Salmonella invasion protein</td>
</tr>
<tr>
<td>Sm<sup>R</sup></td>
<td>Streptomycin resistance</td>
</tr>
<tr>
<td>SOB</td>
<td>Super optimal broth</td>
</tr>
<tr>
<td>Sop</td>
<td>Salmonella outer protein</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SPI1</td>
<td>Salmonella pathogenicity island 1</td>
</tr>
<tr>
<td>SPI2</td>
<td>Salmonella pathogenicity island 2</td>
</tr>
<tr>
<td>Spa</td>
<td>Surface presentation of antigen</td>
</tr>
<tr>
<td>SSC</td>
<td>Saline-sodium citrate</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-buffered saline</td>
</tr>
<tr>
<td>TC</td>
<td>Tetracysteine</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TCEP</td>
<td>Tris(2-carboxyethyl) phosphine</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N,N'-tetramethylenediamine</td>
</tr>
<tr>
<td>Temp</td>
<td>Temperature</td>
</tr>
<tr>
<td>Tet/Tet<sup>R</sup></td>
<td>Tetracycline resistance</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>Tp<sup>R</sup></td>
<td>Trimethoprim resistance</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor-α</td>
</tr>
<tr>
<td>TREM-1</td>
<td>Triggering receptor expressed on myeloid cells-1</td>
</tr>
<tr>
<td>TRITC</td>
<td>Tetramethylrhodamine isothiocyanate</td>
</tr>
<tr>
<td>TTSS</td>
<td>Type III secretion system</td>
</tr>
<tr>
<td>TTSS1</td>
<td>Type III secretion system cluster 1</td>
</tr>
<tr>
<td>TTSS2</td>
<td>Type III secretion system cluster 2</td>
</tr>
<tr>
<td>TTSS3</td>
<td>Type III secretion system cluster 3</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume/volume</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>w/v</td>
<td>Mass/volume</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
<tr>
<td>X. campestris</td>
<td>Xanthomonas campestris</td>
</tr>
<tr>
<td>X. oryzae</td>
<td>Xanthomonas oryzae</td>
</tr>
<tr>
<td>Yop</td>
<td>Yersinia outer protein</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction
Chapter 1: Introduction

In this Chapter, information on the human pathogen *Burkholderia pseudomallei* is summarised with regard to the disease caused by this bacterium and pathogenicity. Some important virulence factors, especially the type III secretion system (TTSS), are described in more detail. Furthermore, the techniques employed for characterising the target genes in this study are also summarised and compared with other techniques.

1.1 Melioidosis

Melioidosis is an emerging infectious disease caused by the Gram-negative pathogen *B. pseudomallei*, that was first reported by Major Alfred Whitmore and Dr. C. S. Krishnaswami in 1912 (Whitmore, 1913). The disease is prevalent in tropical environments, especially Southeast Asia and Northern Australia (*Figure 1.1.1*), with increased numbers of cases reported after the rainy season (Meumann *et al.*, 2012). Cases have recently been reported in countries where they have not previously been recognised (Cheng & Currie, 2005). Clinical manifestations of melioidosis are diverse (*Figure 1.1.2*), due to a range of factors including the ability of the pathogen to disseminate and cause infection in almost any host tissue, and different presentations in hosts with underlying predisposing conditions (Currie *et al.*, 2004; Wiersinga *et al.*, 2012). Nonetheless, cutaneous, pneumonic and the often fatal septicaemic melioidosis are the three most common manifestations reported (Currie, 2003). Such diversity in manifestations can lead to misdiagnosis resulting in delayed, absent, and/or inappropriate treatments. Recurrent infection is common, possibly due to the ability of the bacterium to remain dormant within the host, and infection may reactivate later in life (Hayden *et al.*, 2012; Ngauy *et al.*, 2005). Direct cutaneous inoculation and inhalation are the two major transmission modes of melioidosis (Cheng & Currie, 2005). The incubation period also varies due mainly to the different routes of transmission and host health conditions – the longest incubation period reported is 62 years (Ngauy *et al.*, 2005). The mortality rate varies depending upon several factors, including the rapidity and accuracy of disease diagnosis and host underlying diseases (Wiersinga *et al.*, 2012). The overall mortality rates in endemic areas such as Thailand and Northern Australia are approximately 40% and 20%, respectively (Meumann *et al.*, 2012; Wiersinga *et al.*, 2006). Treatment of melioidosis and prevention of recurrent infections can be difficult due to misdiagnosis of melioidosis, intrinsic antibiotic resistance of the organism and inappropriate antibiotic treatment regimens that result in acquired-antibiotic resistance (Estes *et al.*, 2010; Wiersinga *et al.*, 2012). Intravenous administration of ceftazidime in combination with meropenem followed by oral administration of trimethoprim/sulamethoxazole appears to be the
most effective treatment regimen (Wuthiekanun & Peacock, 2006); however, ceftazidime resistance has been observed following ceftazidime chemotherapy (Sarovich et al., 2012). Vaccination has been extensively studied as a prevention strategy for melioidosis (Atkins et al., 2002a; Atkins et al., 2002b). However, there are currently no licensed vaccines and no experimental vaccines that can generate solid cross-protective immunity against multiple B. pseudomallei strains without causing adverse effects (Peacock et al., 2012).

1.2 Burkholderia pseudomallei

B. pseudomallei, the causative agent of melioidosis, is a Gram-negative, motile, saprophytic and non-spore forming bacillus found in tropical environments (Galyov et al., 2010; Peacock, 2006). The bacterium is classified in the Phylum Proteobacteria, Class Betaproteobacteria, Order Burkholderiales, Family Burkholderiaceae, Genus Burkholderia, Species group pseudomallei (Yabuuchi et al., 1992). It has been classified as a category B bioterrorism agent by the Centers for Disease Control and Prevention (CDC) (Atlas, 2003). The complete 7.25-megabase pair (Mb) genome of *B. pseudomallei* strain K96243, a clinical isolate from a diabetic patient in Thailand, is composed of two chromosomes of 4.07- and 3.17-Mb pairs. The large chromosome, or chromosome 1, encodes proteins primarily involved in the essential functions of central metabolism and cell growth while the small chromosome, or chromosome 2, encodes many proteins associated with accessory functions including bacterial virulence and adaptation and survival in different niches (Holden et al., 2004). This may explain why *B. pseudomallei* is capable of persisting in a range of niches including under anaerobic conditions (Hamad et al., 2011) or even in non-nutrient conditions such as distilled water (Moore et al., 2008; Pumpuang et al., 2011). In addition, such unique genotypes allow this bacterium to adapt and reside in many host cell types (Chieng et al., 2012; Jones et al., 1996; Pilatz et al., 2006) and also overcome antimicrobial mechanisms of the host (Galyov et al., 2010; Wiersinga et al., 2006). Key features of the intracellular lifestyle of *B. pseudomallei* and the host immune response to infection are summarised in *Figure 1.2.1*.

B. pseudomallei is a facultative intracellular pathogen that is capable of invading and replicating within many host cells, including non-phagocytic and phagocytic cells (Jones et al., 1996; Kespichayawattana et al., 2000). Once internalised in the host cells, *B. pseudomallei* utilises several mechanisms for lysing host endosomal membranes, resulting in the escape from the host endosomal vacuole into the cytoplasm (Chieng et al., 2012; Galyov et al., 2010). In addition, this bacterium is able to modulate actin polymerisation resulting in membrane protrusion,
intercellular migration, cell-to-cell fusion and multinucleated giant cell (MNGC) formation (Kespichayawattana et al., 2000; Stevens et al., 2006). In addition, to avoid bacterial clearance and promote bacterial persistence within the host, *B. pseudomallei* has evolved a number of strategies for suppression of host immune responses (Chieng et al., 2012; Gan, 2005). Intracellular *B. pseudomallei* can down-regulate key virulence genes, including those involved in synthesis of LPS and flagellin, in order to avoid stimulation of host innate immunity especially through toll-like receptors (TLRs), which are essential for the recognition of pathogens and initiation of the innate immune response (Chieng et al., 2012). Furthermore, failure to induce the production of IFN-β, resulting in reduced production of inducible nitric oxide synthase (iNOS), is a key bacterial defence against phagocytic killing, since both molecules are required for bacterial elimination by macrophages (Ceballos-Olvera et al., 2011; Tangsudjai et al., 2010). In addition, the ability to induce the expression of sterile-α and Armadillo motif (SARM) protein, a key negative regulator of the MyD88-independent pathway, in a time-dependent manner, appears to be another key bacterial factor for suppressing host immunity (Pudla et al., 2011). As well as suppression of the host immune response, *B. pseudomallei* is intrinsically multi-drug resistant and can acquire further antibiotic resistance following exposure to various antibiotics (Cheng & Currie, 2005; Godfrey et al., 1991; Sawasdidoln et al., 2010).

1.3 Virulence factors of *B. pseudomallei*

To fully understand bacterial pathogenesis, it is important to understand the virulence mechanisms of the aetiologic agents. Similar to most pathogenic bacteria, *B. pseudomallei* possesses a large number of virulence factors that are necessary for the ability of the bacterium to cause disease, to survive intracellularly during latent periods and to allow reactivation (Ernst et al., 1999; Galyov et al., 2010; Moore et al., 2004; Schroeder & Hilbi, 2008). By employing signature-tagged mutagenesis (STM), a number of genes required for bacterial pathogenicity have been identified, including those involved in capsular biosynthesis, DNA replication and repair, and aromatic amino acid biosynthesis (Cuccui et al., 2007). Moreover, several genes, including BPSS1539 encoding a hypothetical protein within the type III secretion system cluster 3 (TTSS3; bsaTTSS), have been found to play an important role in in vitro plaque formation, an indicator for intracellular survival and intercellular spreading of *B. pseudomallei* (Pilatz et al., 2006). A summary of key virulence factors of *B. pseudomallei* especially TTSS is provided below.
1.3.1 Polysaccharides

In contrast to other Gram-negative pathogens, *B. pseudomallei* LPS appears to stimulate a reduced host innate immune response, resulting in enhanced host immune evasion (Sarkar-Tyson *et al.*, 2007). The unique LPS structure, consisting of 3-hydroxyhexadecanoic acid, an amide-linked fatty acid, and an acid-stable structure attached to lipid A at the inner core region, helps the bacterium to suppress the host immune response (Kawahara *et al.*, 1992). In addition, the long chain fatty acid C$_{14:0}$(2-OH) and Ara4N-modified phosphate groups of the lipid A species identified in *B. pseudomallei* also play a key role in host immune evasion; these groups are absent in the avirulent strain *B. thailandensis* (Novem *et al.*, 2009). Characterisation of four gene clusters encoding type I, II, III and IV surface polysaccharides has shown an essential role for each in bacterial virulence and these polysaccharides have also been tested as vaccine candidates (DeShazer *et al.*, 1998; DeShazer *et al.*, 2001; Sarkar-Tyson *et al.*, 2007). The O-antigen polysaccharide moiety of *B. pseudomallei* has been shown to alter the host innate immune response, at least in part by suppressing interferon-regulatory factor 1 (IRF-1) expression, an essential transcription factor of iNOS, thereby interfering with the bactericidal activities of macrophages (Arjcharoen *et al.*, 2007). Thus, it is clear that *B. pseudomallei* uses its unique LPS as one of the key virulence factors mainly for host innate immune suppression contributing to long-term persistence in the host. In addition to LPS, capsular polysaccharide, another key virulence factor, enables the bacterium to resist phagocytosis and contributes to bacterial persistence by inhibiting the deposition of host complement factor C3b on the bacteria. Inactivation of capsular production directly affects bacterial survival and replication (Reckseidler-Zenteno *et al.*, 2005).

1.3.2 Quorum sensing (QS)

QS is also an important mechanism involved in bacterial pathogenicity (Galyov *et al.*, 2010). QS is a type of two-component system for the control of gene expression in response to cell density. In *B. pseudomallei* two main molecules, LuxR and LuxI, are responsible for transcriptional regulation and production of QS molecules (Poole, 2001). Inactivation of the *B. pseudomallei* QS networks results in a decrease in bacterial localisation in the lungs, but not in the liver and spleen, suggesting either an essential role of bacterial QS with regard to organ-specificity, or bacterial survival and multiplication, but not dissemination (Ulrich *et al.*, 2004). *B. pseudomallei* possesses at least five LuxR and three LuxI homologs which can produce up to seven QS molecules, including *N*-octanoyl-homoserine lactone (C8-HSL), *N*-(3-hydroxyoctanoyl)-L-homoserine lactone (3-hydroxy-C8-HSL), 3-oxo-C8-HSL, *N*-decanoyl-homoserine lactone...
(C10-HSL), 3-hydroxy-C10-HSL, 3-oxo-C10-HSL, 3-hydroxy-C12-HSL and 3-oxo-C14-HSL (Ulrich et al., 2004), indicating the complexity of the QS network of this bacterium.

1.3.3 Efflux pumps

Efflux pumps are also key factors contributing to the inherent and acquired aminoglycoside and macrolide antibiotic resistance observed in this bacterium (Poole, 2001) but also have direct role in virulence. These systems generally consist of at least three subunits: a cytoplasmic transporter protein, an outer membrane channel and a periplasmic linker protein, and function by excreting different molecules, including antibiotics, in a proton motive force-dependent manner (Nikaido, 1998). The *B. pseudomallei* AmrAB-OprA complex is specific for excreting aminoglycoside and macrolide antibiotics and shows significant similarity to multidrug efflux systems found in *P. aeruginosa* and *E. coli* (Moore et al., 1999). Another efflux pump in the same family, named BpeAB-OprB, has specificity for aminoglycosides, except for spectinomycin, and macrolides, except for clarithromycin (Chan et al., 2004). This suggests a possible synergistic activity between both efflux pumps, resulting in the high intrinsic resistance to aminoglycoside and macrolide antibiotics, and may be part of the reason why antibiotic combination regimens for treatment of melioidosis are often ineffective. The *B. pseudomallei* BpeAB-OprB efflux pump can also excrete some QS molecules (Chan et al., 2007). This efflux pump has been found to play an essential role in bacterial invasion, cytotoxicity, biofilm formation and siderophore and phospholipase production, possibly via the QS mechanism (Chan & Chua, 2005), suggesting how cross-talk between two different mechanisms can contribute to bacterial survival and virulence.

1.3.4 Biofilm production

The ability to form biofilms is an important virulence mechanism that is likely to be associated with chronic infections and/or avoidance of killing by the host immune response and by antibiotics (Joo & Otto, 2012). The formation and maturation of biofilms, including detachment from biofilm matrix, appears be regulated by QS systems (Ramli et al., 2012). This relationship demonstrates an important cross-talk between two virulence factors with regard to survival and multiplication of the bacteria within the host. In *B. pseudomallei*, there seems to be a significant correlation between ability to form biofilms and strain virulence, since biofilm formation has been found only in clinical isolates, and not in the non-pathogenic strain *B. thailandensis*. However, there seems to be no correlation between biofilm formation and virulence in the acute BALB/c mouse infection model (Taweechaisupapong et al., 2005). Given that biofilm formation
is more frequently associated with chronic infection, using the chronic mouse infection model may be more appropriate. Furthermore, it has been suggested that, instead of the biofilm itself, other factors activated and produced during or after biofilm formation may also play important roles in promoting acquired antibiotic resistance (Sawasdidoln et al., 2010).

1.3.5 Flagella

Many Gram-negative pathogens employ flagella as essential tools for bacterial motility and adhesion, thereby contributing to bacterial colonisation and dissemination of disease (Bucior et al., 2012; Ibarra & Steele-Mortimer, 2009; Kutsukake, 1997). B. pseudomallei possesses a number of proteins with similarity to flagellar structural and biosynthesis proteins, and both swimming motility and adhesion have been linked with virulence in vivo (Chua et al., 2003; Wiersinga et al., 2006; Yu et al., 2010a). A role has been reported for the B. pseudomallei FliC protein in bacterial virulence in the BALB/c mouse infection model even though this flagellin protein does not seem to be involved in bacterial invasion and intracellular replication in vitro (Chua et al., 2003). Moreover, post-translational processes, such as glycosylation, of flagellin proteins appear to be key factors in determining virulent and non-virulent strains of B. pseudomallei (Scott et al., 2011). The components of the flagella are closely related to type III secretion system (TTSS) components; indeed, flagella can be additionally employed for secretion of various proteins including those required for the biogenesis and operation of flagella, such as flagellin, and this system has been called the flagella-mediated TTSS (Büttner, 2012). The fundamental components of the flagella-mediated TTSS are illustrated in Figure 1.3.1. Several proteins are required for the formation and assembly of the flagellar structure, which crosses the bacterial inner membrane, periplasmic space and outer membrane (Homma et al., 1990; Minamino et al., 2000). Of these proteins, FlgJ is one of the key molecules required for efficient assembly since its C-terminal muramidase domain, also known as a soluble lytic transglycosylase, is involved in degradation of the peptidoglycan layer during the early stage of flagellar assembly and its N-terminal domain is involved in the formation of the basal body structure (de la Mora et al., 2007; Hirano et al., 2001; Nambu et al., 1999). In addition, flagella-specific chaperones are essential not only for preventing the premature degradation/aggregation of their cognate proteins in the cytoplasm, but are also involved in regulation of flagellar-associated gene expression during the assembly process (Aldridge et al., 2006; Bennett et al., 2001; Imada et al., 2010). After basal body formation, specific flagellar-associated proteins are activated or inactivated in order to control the flagellar hook length, ensure the completion of the assembly process or trigger flagellar function (Aldridge & Hughes, 2002). The expression of
various flagellar components is tightly regulated at both the transcriptional and translational level (Aldridge et al., 2006; Kutsukake, 1997; Kutsukake et al., 1990; McCarter, 2006).

Several flagellar components have been shown to be important for bacterial pathogenesis. Flagellin, the key structural protein which forms the major part of the filament body, plays important roles in bacterial motility and colonisation, but is also a target for the host innate and adaptive immune responses (Hayashi et al., 2001; Ramos et al., 2004). In addition to flagellin itself, some additional molecules resulting from the post-translational modification of flagellin, such as the glycans used to glycosylate flagellin appear to be involved in bacterial virulence and host immune interaction (Logan, 2006; Scott et al., 2011). Flagellin is a critical virulence factor, since all BALB/c mice infected with a *B. pseudomallei* fliC mutant survived and did not show any signs of infection, whereas all mice infected with the wild-type succumbed to disease (Chua et al., 2003). Moreover, flagellin-specific antiserum obtained from rabbits immunised with purified flagellin, confers passive protection against an intraperitoneal *B. pseudomallei* challenge in the diabetic rat melioidosis model (Brett et al., 1994). These results suggest that flagellin components may have potential as vaccine candidates for melioidosis prevention. However, conversely, the fliC mutant showed no difference in *B. pseudomallei* virulence in either the diabetic rat or Syrian hamster infection model (DeShazer et al., 1997). These contradictory results could result from the variation of using different bacterial strains, or the different importance of the flagella in the different animal models.

1.3.6 Type III secretion system (TTSS)

The type III secretion system (TTSS), evolved from the flagellar TTSS, is a key virulence factor required for delivering effector proteins from the bacterial cell directly into the eukaryotic cell cytosol (Abby & Rocha, 2012; Aizawa, 2001; Galan & Collmer, 1999; Gophna et al., 2003; Plano et al., 2001). These effectors subsequently interact with, and subvert, an array of host cell functions for the benefit of the bacteria (Coombes & Pilar, 2011; Dean, 2011). Similar to the flagellar TTSS, the core structure of TTSS consists of three main parts: the basal body spanning the bacterial inner and outer membranes; the needle-like apparatus or injectisome, which allows for the direct translocation of effectors; and the translocon, a set of proteins located at the tip of the injectisome that makes a direct connection with the host cell (Blocker et al., 2003; Cornelis, 2006; Galan & Wolf-Watz, 2006). Similar to bacterial flagella, the TTSS assembly and operation processes are required to be precisely regulated (Brutinel & Yahr, 2008; Deane et al., 2010; Deng et al., 2005). The components required for formation of the TTSS basal body appear to be
exported by the Sec secretion machinery, and the subsequent components are secreted by the TTSS itself (Blocker et al., 2003; He et al., 2004). Following the basal body formation, the injectisome is assembled as a conduit-like helical structure by polymerisation of several subunits of a single molecule, and its length is appropriately controlled by the translocon protein complex located at the tip of the injectisome (Fujii et al., 2012; Journet et al., 2003; Marlovits et al., 2004; Wagner et al., 2010; Worrall et al., 2011). After formation of the TTSS fundamental structure, there seem to be two distinct functional modes of TTSS secretion; the first involves the secretion of translocons for penetrating and forming the pore in the host cell membrane. Hence, these act as the tip complex and block secretion of bacterial effectors. The second involves the release of the tip complex and the secretion of effectors through the pore into the host cell (Deane et al., 2010; Galan & Wolf-Watz, 2006; Matteï et al., 2011; Mueller et al., 2008). Importantly, the TTSS structure proteins are well-conserved among different Gram-negative bacteria whereas the effector proteins are not (Arnold et al., 2009).

Upon receiving the appropriate TTSS stimulation signal, including the cholesterol-rich membrane of the host, the TTSS secretion is triggered to deliver destined effectors into the host cell cytosol for manipulation of host cell functions (Buchrieser et al., 2000; Coburn et al., 2007; Figueira & Holden, 2012; Ghosh, 2004). The secretion of effectors may follow a TTSS-specific chaperone-dependent pathway; the chaperones help to prevent the premature folding of the effectors, protect against unintentional interactions of the effectors, or ensure the efficient secretion of the effectors (Costa et al., 2012; Francis et al., 2001; Ho Lee & Galan, 2003; Ogawa et al., 2003; Parsot et al., 2003). However, some effectors are capable of being delivered into the target cells without any requirement for chaperone interaction (Johnson et al., 2007). Interestingly, some cross-talk between flagella-dependent motility and TTSS function has been reported as, in the absence of flagella, TTSS gene expression and secretion was increased, whereas a decrease in expression of flagellar genes was observed in a strain with overproduction of ExsA, a crucial protein required for regulation of TTSS transcription (Brutinel et al., 2009; Soscia et al., 2007). These data suggest that there is negative cross-regulation between both systems.

1.3.7 B. pseudomallei and TTSS
B. pseudomallei possesses three TTSS gene clusters, the third of these is designated TTSS3 and contains 35 genes (Holden et al., 2004; Wiersinga et al., 2006). The TTSS3 is closely related to the Inv/Mxi-Spa systems of Salmonella and Shigella, which are required for bacterial invasion
and virulence, indicating a role for this cluster in *B. pseudomallei* pathogenesis (Stevens *et al.*, 2002; Stevens *et al.*, 2004). Proteins encoded by the TTSS cluster 1 (TTSS1) and 2 (TTSS2) show significant similarity to TTSS proteins in the plant pathogens *Ralstonia solanacearum* and *Xanthomonas* spp., suggesting that these *B. pseudomallei* systems may also be involved in infection of plants even though no change in plant pathogenicity phenotype was observed for a *B. thailandensis* TTSS2 mutant (Attrée & Attree, 2001; Rainbow *et al.*, 2002; Winstanley *et al.*, 1999). Recently, the TTSS1 was shown to be important for *B. pseudomallei* virulence in the BALB/c mouse model (D'Cruze *et al.*, 2011). The TTSS1 is present only in *B. pseudomallei* while the TTSS2 and TTSS3 are present in *B. pseudomallei*, *B. mallei* and the avirulent strain *B. thailandensis* (Wiersinga *et al.*, 2006). Although *B. pseudomallei* and *B. thailandensis* possess both TTSS2 and TTSS3, transcription of TTSS3 genes in *B. thailandensis* is negatively regulated by L-arabinose. The genes responsible for arabinose assimilation are absent in *B. pseudomallei* (Moore *et al.*, 2004), suggesting a direct link between loss-of-function of this locus and virulence of *B. pseudomallei*.

1.3.8 **The TTSS cluster 3 (TTSS3; bsaTTSS)**

Sun and Gan (2010) proposed a putative structure for the *B. pseudomallei* TTSS3 complex (*Figure 1.3.2*) based on information obtained from well-characterised TTSS proteins in other organisms. The genetic organisation of the genes involved in TTSS3 biogenesis and their predicted function is illustrated in *Figure 1.3.3*. The expression of the genes encoding the TTSS3 structural proteins, translocons, effectors, chaperones and transcriptional regulators is precisely regulated; some chaperones may play additional roles, either direct or indirect, as transcription factors for regulating the expression of other TTSS components during infection (Büttner, 2012; Francis *et al.*, 2002). During *B. pseudomallei* pathogenesis, TTSS genes are expressed sequentially in order to allow for their specific functions (Sun & Gan, 2010; Sun *et al.*, 2010). The injectisome is composed of a two-helix bundle of polymerised BsaL which is stabilised by interhelix hydrophobic contacts (Zhang *et al.*, 2006). The basal body, consisting of the inner ring (BsaM and BsaJ), export apparatus (BsaQWXYZ), minor subunit (BsaK) and outer ring (BsaO), crosses the bacterial inner membrane, peptidoglycan and outer membrane (*Figure 1.3.2*). These export apparatus proteins, in collaboration with BsaY and BsaS proteins, are required for promoting effector secretion (Sun & Gan, 2010). In addition, the needle assembly proteins BsaU and BsaT have been suggested to be involved in regulation of the injectisome length and the secretory function, respectively (Muangsombut *et al.*, 2008; Sun & Gan, 2010). The complete TTSS comprises the needle tip complex, injectisome, basal body, cytoplasmic domain,
transcriptional regulators, chaperones and effectors (Sun & Gan, 2010). The needle tip complex is composed of three core proteins BipD, BipB and BipC; the homologous proteins in Salmonella are the translocons SipD, SipB and SipC, and these play a key role in forming the TTSS pore in the host cell membrane (Stevens et al., 2002). BipD, in addition, has been shown to be essential for a range of functions in vitro, including invasion of epithelial cells, survival and multiplication in macrophages, bacterial escape from host endosomes and actin-mediated motility. Furthermore, BipD is required for full bacterial virulence in the BALB/c and C57BL/6 mouse infection models (Stevens et al., 2002; Stevens et al., 2004). B. pseudomallei bipB mutants are also attenuated for virulence and show reduced MNGC formation and cell-to-cell spread, although these last two phenotypes are likely due specifically to the inability of the bipB mutant to escape from the endosome (Suparak et al., 2005).

Many studies have analysed the role of the B. pseudomallei TTSS3 or its components in pathogenesis (Burtnick et al., 2008; Cullinane et al., 2008; Druar et al., 2008; French et al., 2011; Gong et al., 2011; Muangman et al., 2011; Muangsombut et al., 2008; Stevens et al., 2002; Warawa & Woods, 2005). It was initially reported that the TTSS3 was associated with B. pseudomallei invasion of non-phagocytic cells (Stevens et al., 2003). However, it has been recently argued that the TTSS3 does not play a direct role in bacterial invasion (French et al., 2011). However, the TTSS3 promotes escape of the bacterium from the phagosomes of phagocytic cells and is therefore an essential prerequisite for replication within the cytoplasm of these cells (Stevens et al., 2002). Once in the cytoplasm, B. pseudomallei can move by actin-mediated motility; leading to intercellular and/or intracellular movement and the induction of multinucleated giant cell (MNGC) formation, which allows cell to cell spread without exposure to the host immune response (Kespichayawattana et al., 2000; Stevens et al., 2006; Suparak et al., 2005). Several genes in this cluster are required for full bacterial virulence. Furthermore, specific antibodies against some TTSS3 proteins can be detected in patient sera, confirming the expression of the TTSS3 in vivo (Felgner et al., 2009). TTSS3 components have also been shown to be specifically targeted by CD4+ and/or CD8+ T cell responses (Haque et al., 2006), indicating a role of TTSS3 in host adaptive immune response.

Following physical contact with the host cell, the TTSS3 effectors, with or without interaction of specific TTSS3 chaperones, are delivered into the host cytoplasm where there is a direct interaction between effectors and host cell proteins (Dean, 2011). To date, only three putative TTSS3 effectors, BopE, BopA and BopC, have been characterised (Cullinane et al., 2008; Gong...
et al., 2011; Muangman et al., 2011; Stevens et al., 2003). BopE was the first TTSS3 effector shown to be secreted in a TTSS3-dependent manner (Stevens et al., 2003). BopE is a guanine nucleotide exchange factor, which can activate two host cell molecules, Cdc42 and Rac1. Cdc42 and Rac1 are members of the Rho family of GTPase molecules, and induce rearrangement of actin in the host cell leading to membrane ruffling. Interestingly, the bopE mutant retains the ability to cause wild-type levels of disease, at least in the BALB/c mouse infection model (Stevens et al., 2004). Therefore, it is possible that BopE is not required for bacterial virulence, or that B. pseudomallei has functionally redundant proteins which can compensate for the absence of BopE.

BopA was the second putative effector identified, and while secretion has not experimentally been proved, BopA is clearly required for efficient escape of B. pseudomallei from host endosomes and avoidance of host LC3-associated phagocytosis (Cullinane et al., 2008; Gong et al., 2011). Moreover, bopA mutants show partial attenuation for virulence, indicating an involvement in bacterial pathogenesis (Stevens et al., 2004). Recently, a third TTSS3 effector, BopC, was shown to be secreted in vitro in a TTSS3-dependent manner (Muangman et al., 2011). The bopC (BPSS1516) gene is located beside the BPSS1517 gene predicted to encode its cognate chaperone. Disruption of bopC decreased invasion of B. pseudomallei into human lung epithelial cells in vitro, suggesting an important role of BopC in virulence (Muangman et al., 2011). Another B. pseudomallei effector CHBP has been shown to inhibit ubiquitination process by specifically targeting host glutamine Gln-40 in ubiquitin and NEDD8 (Cui et al., 2010). This effector is a cycle inhibiting factor (Cif) homolog that contains a conserved catalytic triad essential for inducing eukaryotic cell cycle arrest, thereby inactivation of the normal cell cycle progression (Yao et al., 2009). However, specific secretion of this effector by the TTSS has not been demonstrated.

1.4 Analysis of the secretion of TTSS effectors

Several techniques have been used to investigate the secretion and translocation of TTSS effectors in different Gram-negative pathogens (Bobard et al., 2011; Enninga & Rosenshine, 2009; Giepmans et al., 2006; Rodrigues & Enninga, 2010). Due to the fact that the inner diameter of TTSS needle-like apparatus is very narrow (approximately 2 nm), it is crucial that any technique being used should not impede the secretion process (Blocker et al., 2003; Ghosh, 2004). The use of antibodies directed against specific effectors, or the use of epitope-tagged effectors, are potential direct methods to monitor the secretion. However, both are limited in
their sensitivity (Jarvik & Telmer, 1998). Fusion of predicted effectors with fluorescent proteins, such as green fluorescent protein (GFP), appears to be another useful approach to investigate the secretion and localisation; however, the size of GFP itself can obstruct the TTSS secretion and/or interfere with effector function inside host cells (Bobard et al., 2011; Enninga & Rosenshine, 2009).

The β-lactamase reporter system has been extensively used to monitor the dynamic translocation of effectors into host cells, by using the catalytic domain of TEM-1 β-lactamase (blaM) as the reporter gene and the fluorescent β-lactamase substrate CCF2/AM as the detector (Charpentier & Oswald, 2004; McCann et al., 2007; Mills et al., 2008). Upon the translocation of an effector fused with β-lactamase into the host cell loaded with the substrate CCF2/AM, the lactamase enzyme hydrolyses the lactam ring in the substrate and undergoes an elimination reaction, resulting in the change of CCF2 fluorescence from green to blue (Charpentier & Oswald, 2004). By employing this technique, many TTSS effectors have been characterised, for instance, *E. coli* Cif, Tir, Map and EspF (Charpentier & Oswald, 2004), *Yersinia* YopH and YopE (Akopyan et al., 2011), *Vibrio* VopX (Alam et al., 2011) and *Salmonella* SteA, SlrP, SteC, and SseJ (Geddes et al., 2007). However, given that this technique is dependent upon both the detection of products in the host cells and the stability and half-life of the fused proteins, it is essential to know the time frame of protein secretion/translocation. This may limit the usefulness of employing this β-lactamase reporter system (Bobard et al., 2011; Briones et al., 2006).

Another approach is based on fusion of a tetracysteine (TC) motif to putative effectors so that the reaction with the fluorescent FlAsH substrate can be analysed to directly monitor the effector-secretion kinetics (Enninga et al., 2005). As the TC tag is very small, secretion efficiency is unlikely to be affected by the presence of the tag (Machleidt et al., 2006). The arsenic molecules of the FlAsH reagent form a covalent bond with the TC tag (Figure 1.3.4), leading to high affinity binding (Adams et al., 2002). This technique has been used to show that the two putative *S. flexneri* effectors, IpaB and IpaC, were secreted at approximately 240 seconds post infection (p.i.), and the entire pool of IpaB was secreted within 10 min p.i., indicating a role of these effectors at an early stage of infection (Enninga et al., 2005; Simpson et al., 2010). This technique has been also used with live cell imaging to show that the putative effector SopE2 of *S. enterica* serovar Typhimurium was secreted at 1 min p.i., and the entire pool accumulated in the HeLa epithelial cell line at 35 min p.i. (VanEngelenburg & Palmer, 2008). Moreover, data obtained from time course analysis of HeLa cells infected with *S. enterica* serovar Typhimurium
demonstrated that, after effector secretion, the bacterium caused host membrane ruffling, bacterial internalisation and host membrane restoration at 6, 15 and 21 min p.i. (VanEngelenburg & Palmer, 2008).

1.5 Scope and aim of this study
The TTSS is critical for B. pseudomallei virulence and appears to be involved at many stages of pathogenesis, including initial invasion, intracellular survival, multiplication, and cell-to-cell spread. Thus, structural and effector components of this system could be potential candidates for targets of antimicrobial therapy or as possible vaccine targets. However, many of the B. pseudomallei TTSS structural components, the proteins that regulate TTSS expression and many of the effector proteins have not yet been identified or fully characterised. Additionally, the mechanisms by which many injected effector molecules modulate host signalling pathways remains unclear. Therefore, characterising the function of other TTSS3 effectors and accessory proteins will advance the understanding of the molecular mechanisms of TTSS in relation to the pathogenicity of B. pseudomallei, and may give rise to new targets for therapeutic intervention.

In this study, three putative effectors of the B. pseudomallei TTSS3, namely BapA, BapB and BapC, were characterised with regard to their secretion, involvement in bacterial virulence and modulation of host cell functions. The bapA, bapB and bapC genes are located between bipD, which encodes a TTSS3 translocon component and bopE, which encodes a well-characterised TTSS3 effector (Figure 1.3.3). The bapA, bapB and bapC genes likely form an operon as the last bp of the bapA coding sequence overlaps the first bp of bapB and the last bp of the bapB coding sequence overlaps the first bp of bapC. This arrangement also suggests possible translational coupling. BapA (2,643 bp) is an 87.4-kDa hypothetical protein which currently has no predicted functional domains. However, BapB (9.6 kDa) contains a domain with homology to acyl carrier proteins (ACPs), based on its phosphopantetheine attachment site, which are generally required for transferring acyl molecules during fatty acid biosynthesis. It shares 33% identity to the TTSS acyl carrier protein IacP of Salmonella enterica serovar Typhimurium, which is involved in host actin modification resulting in facilitating bacterial invasion during infection (Kim et al., 2011), suggesting that BapB could play a similar role. BapC (20.2 kDa) contains a signal peptide domain at the N-terminal region, suggesting that it could be secreted, and a lytic transglycosylase domain, which is generally involved in cleavage of β-1,4-glycosidic bonds of bacterial peptidoglycan. It shares approximately 37% identity with the Salmonella TTSS protein IagB, which has been shown to be involved in bacterial invasion in cultured epithelial cells

- 14 -
In addition, \textit{bapC} has been shown to be up-regulated in infected hamster livers (Tuanyok \textit{et al.}, 2006). These data suggest that BapC could function as an effector during bacterial invasion, contributing to the virulence of \textit{B. pseudomallei}. However, based on \textit{in silico} analyses (http://gecco.org.chemie.uni-frankfurt.de and http://www.effectors.org) only BapA is strongly predicted to be a TTSS effector whereas BapB and BapC are not. However, it should be noted that these bioinformatic tools use similar prediction approaches and are unlikely to accurately predict all effectors (McDermott \textit{et al.}, 2011). Taken together, these data suggest that BapA, BapB and BapC could be TTSS3 effectors and/or play roles in \textit{B. pseudomallei} virulence.
Figure 1.1.1 Distribution of melioidosis. Southeast Asia and Northern Australia are highly endemic areas, with the highest incidence of cases observed following the rainy season (Wiersinga et al., 2012).

Figure 1.1.2 Clinical manifestations and major routes of transmission of melioidosis. Cutaneous infection (A), pneumonia (B) and a computed tomographic (CT) scan demonstrating lung abscesses (C), disseminated skin infection (D), spleen infection (E), aspirated pus obtained from a patient with peritonitis (F) and a CT scan displaying an accumulation of abscesses (G). Blue boxes represent major routes of disease transmission. Black boxes indicate latent, asymptomatic and/or history of infection. White boxes indicate the diverse clinical manifestations (Wiersinga et al., 2012).
After bacterial internalisation, *B. pseudomallei* escapes from the host endosome and begins to multiply, either emerging to become free-living in the host cytoplasm (1) or invading adjacent cells in an actin-based motility dependent manner (2). Toll-like receptors (TLRs) expressed on host cells are involved in bacterial invasion by sending the signal to nuclear factor-κB (NF-κB) for activating the immune response through the release of proinflammatory cytokines. This signalling pathway is tightly regulated by triggering receptor expressed on myeloid cells 1 (TREM-1), as an amplifier molecule, and interleukin 1 receptor associated kinase-like molecule (IRAK-M), as an inhibitor. Myeloid differentiation factor 88 (MyD88) functions as the central TLR adaptor molecule (3). The host inflammasome, mainly the nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) NLRC4 and NLRP3 (Ceballos-Olvera *et al.*, 2011), recognise various bacterial virulence factors and send a signal in a caspase 1-dependent manner for triggering the release of interleukin (IL)-1β and IL-18. In addition to pyroptosis, a caspase-dependent cell death specific for bacterial growth can stimulate the production of interferon (IFN)-γ. The apoptosis associated speck-like protein containing a caspase recruitment domain (ACS) acts as an NLR adaptor molecule (4). As a result, neutrophil accumulation and several innate immunity cascades are triggered (5). During progression of infection, host adaptive immunity cascades are also activated resulting in T-cell recruitment in response to IFN-γ production, as a cell-mediated immune response, and the production of antibodies by B cells, as a humoral immune response (6) (Wiersinga *et al.*, 2012).
Figure 1.3.1 Overview of the flagellar TTSS components. The entire apparatus is composed of the filament structure, the hook-basal body, the cytoplasmic C ring, the ATPase and the export apparatus. The hook-basal body consists of two outer membrane (OM) rings, namely the lipopolysaccharide (L) and periplasmic peptidoglycan (P) rings, which are connected via a distal and proximal rod to the inner membrane (IM) ring (MS ring). The MS ring is surrounded by 8 to 11 stator complexes containing proton-conducting channels which are responsible for converting the energy of the proton flux into a mechanical force, hence, driving flagellum rotation. In addition to these membrane-embedded stator complexes, the flagellar TTSS-associated ATPase is involved in providing the energy required for the secretion, especially the initial process. The export apparatus and cytoplasmic domain play a key role in docking flagella-associated proteins and chaperones during the secretion process (Büttner, 2012).
Figure 1.3.2 Proposed model of the TTSS3 needle-like apparatus. Components are illustrated based on their possible functions and colour coded with their identities on the right panel (Sun & Gan, 2010).

Figure 1.3.3 Organisation of B. pseudomallei TTSS3 gene cluster. Putative functions of the genes are colour-coded and indicated in the box on the right panel. Arrow directions indicate the orientation of the genes. The two sections shown are contiguous, as indicated by oblique double lines (Sun & Gan, 2010).
Figure 1.3.4 The tetracysteine-FlAsH labelling system. The protein of interest is genetically fused to a tetracysteine motif (CysCysProGlyCysCys) is bound and forms covalent bonds with the biarsenical molecules (As-As) of non-fluorescent, FlAsH compound (FlAsH-EDT$_2$), causing it to become the fluorescent protein complex. The level of fluorescence is measured immediately at 520 nm with an excitation at 488 nm (GFP/FITC filter set) (modified from Adams et al., 2002).
Chapter 2

Materials and methods
Chapter 2: Materials and methods

2.1 Bacterial strains, eukaryotic cell lines and primers

All bacterial strains and plasmids used in this study are described in Table 2.1. The *B. pseudomallei* wild-type strain K96243 (kindly provided by Dr. Brenda Govan, James Cook University, Townsville, Australia) was used as the parent strain for mutagenesis. This strain was originally isolated from a human melioidosis patient and its genome sequence has been determined and annotated (Holden *et al.*, 2004).

The *Escherichia coli* strain DH5α (Table 2.1) was primarily used for growth and amplification of plasmids. *E. coli* strain S17-1/λpir harbouring pDM4 or pBHR1 constructs and strain SM10/λpir harbouring pTNS3 or the mini-Tn7 constructs (Table 2.1) were used for mobilisation of DNA into *B. pseudomallei* by conjugation (Szpirer *et al.*, 2001).

The murine RAW264.7 macrophage-like cell line and the human respiratory epithelial A549 cell line were obtained from the American Type Culture Collection (Manassas, VA). The RAW264.7 cell line stably expressing GFP-LC3 was obtained as described previously (Cullinane *et al.*, 2008).

All primer sequences for generation and verification of constructs and for nucleotide sequencing used in this study are listed and described in Table 2.2, Table 2.3 and Table 2.4.

2.2 Growth media and conditions

All chemical reagents and solvents, unless otherwise stated, were purchased from Merck (Victoria, Australia). Bacterial culture media were purchased from Oxoid (Hampshire, UK) and autoclaved at 121°C, 405-506 kPa for 20 min. Agar plates were made by adding 1.5% (w/v) agar. All antibiotics were purchased from Sigma-Aldrich (MO, USA) and added to the culture medium after autoclaving, when it had cooled to 50°C. Unless otherwise indicated, *E. coli* was cultured in Luria-Bertani (LB) broth (*Appendix 1, A1.1*) with ampicillin (100 μg/mL), chloramphenicol (20 μg/mL), kanamycin (50 μg/mL) or tetracycline (12.5 μg/mL) added when required. *B. pseudomallei* was cultured in LB broth supplemented with gentamicin (8 μg/mL), chloramphenicol (50 or 100 μg/mL), kanamycin (1 mg/mL) or tetracycline (25 μg/mL) added when required. All bacterial cultures were grown at 37°C; broth cultures were incubated with
shaking at 200 rpm. For long-term storage, strains were kept in glycerol broth (Appendix 1, A1.2) and stored at -80°C.

RAW264.7 and RAW264.7 cells stably expressing GFP-LC3 (Cullinane et al., 2008; D'Cruze et al., 2011) were maintained at 37°C in 5% CO₂ without antibiotics in RPMI 1640 Medium (D'Cruze et al., 2011), GlutaMAX™, HEPES (GIBCO® Laboratories, Life Technologies™, USA) supplemented with 10% (v/v) heat-inactivated fetal calf serum (FCS) (GIBCO® Laboratories). A549 cells were maintained at 37°C in 5% CO₂ without antibiotics in Dulbecco's Modified Eagle Medium DMEM, High Glucose, GlutaMAX™, HEPES (GIBCO® Laboratories), supplemented with 10% (v/v) heat-inactivated FCS. For long-term storage, all cell lines were stored at -80°C in appropriate tissue culture media supplemented with 10% (v/v) tissue-culture grade dimethyl sulfoxide (DMSO; ≥99.9%) (Sigma-Aldrich, USA).

2.3 Polymerase chain reaction
Polymerase chain reaction (PCR), using Taq DNA polymerase (Appendix 3, Table A3.1) or Expand High Fidelity polymerase system (Roche Diagnostics Australia, NSW, Australia) (Appendix 3, Table A3.2) was carried out, according to the manufacturer's protocols. Gradient PCRs were carried out to identify the optimum annealing temperature for primer pairs. The KOD polymerase system (Novagen, Madison, USA) (Appendix 3, Table A3.3) was chosen to amplify the GC-rich template of B. pseudomallei genomic DNA.

2.4 DNA sequencing
Nucleotide sequencing was conducted using the Applied Biosystems BigDye Terminator mix (Life Technologies™, USA). The sequencing reaction protocol and clean-up procedures are available at: (https://platforms.monash.edu/micromon/). In brief, sequencing reactions were prepared and conducted as described in Appendix 3, Table A3.4. Reaction products were purified using the sodium acetate-ethanol method (Appendix 3, Table A3.5) prior to analysis on the Applied Biosystems 3730s Genetic Analyser (Life Technologies™, USA).

2.5 Agarose gel electrophoresis
DNA products, derived from PCR amplification, restriction enzyme digestion or purification processes, were separated by gel electrophoresis on 1% (w/v) agarose gel in 1X TAE (Appendix 2, A2.4). For DNA visualisation, SYBR® Safe DNA gel stain (Life Technologies™, USA) was used to stain DNA samples according to the manufacturer’s instructions. DNA standard size
markers (New England Biolabs®, USA) were used to estimate DNA size and concentration in unknown samples. Gels were run at 100 V for 30 min and visualised using a Fujifilm LAS-3000 Imager (SYBR Green filter). DNA fragments excised from agarose gels were purified using NucleoSpin® Gel and PCR Clean-up kits (MACHEREY-NAGEL, Düren, Germany), according to the manufacturer’s protocol.

2.6 DNA restriction endonuclease (RE) digestion

All restriction endonucleases were purchased from New England Biolabs® (MA, USA). Restriction endonuclease reactions were performed in appropriate buffers according to the manufacturer’s instructions. For cloning reactions, digested vector DNA was dephosphorylated with calf intestinal alkaline phosphatase (Promega, WI, USA) to prevent re-ligation. The dephosphorylation reactions were incubated at 37°C for 30 min and then the enzyme was inactivated by heating to 65°C for 10 min. The dephosphorylated DNA was then purified using NucleoSpin® Gel and PCR Clean-up kits according to the manufacturer’s protocol.

2.7 DNA ligation and transformation

Ligation reactions were carried out with T4 DNA ligase (Roche Diagnostics Australia, NSW, Australia) according to the manufacturer’s instructions with a vector-insert ratio of 1:3, if the insert was <1.5-kb or 1:5, if the insert was >1.5-kb. Ligation reactions were incubated at 4°C for 16 h and then introduced by transformation into competent *E. coli* DH5α (*Section 2.8*). In brief, 5-10 μL of each ligation reaction was incubated on ice for 1 h with 100 μL of competent *E. coli* DH5α cells. The mixture was then heat-shocked at 42°C for 1 min and then returned to ice for a further 5 min prior to addition of 1 mL of SOB broth (*Appendix 1, A1.3*). The cells were recovered at 37°C for 1 h, with shaking at 200 rpm. A 100 μL of aliquot of the transformed cells was then plated onto LB agar containing appropriate antibiotic(s) to select for colonies harbouring specific plasmids. Plates were incubated at 37°C, overnight.

2.8 Preparation of competent *E. coli* cells

E. coli DH5α, SM10/λpir and S17-1/λpir, were made competent using rubidium chloride treatment (Glover, 1985). In brief, *E. coli* cells were grown to an OD600 of approximately 0.3 in SOB medium prior to chilling on ice for 15 min. Cells were collected by centrifugation at 1,157 x g (3,000 rpm), for 15 min, at 4°C. Cells were gently resuspended with pre-chilled RF1 buffer (*Appendix 2, A2.25*) and incubated on ice for 1 h prior to harvesting by centrifugation again at
1,157 x g (3,000 rpm), for 15 min, at 4°C. Supernatant was discarded, and cells were resuspended with pre-chilled RF2 buffer (Appendix 2, A2.26) and incubated on ice for 15 min. The suspension was divided into 100 µL aliquots in pre-chilled microfuge tubes and immediately stored at -80°C.

2.9 Mutagenesis of TTSS3 genes

B. pseudomallei bapA, bapB, and bapC mutant strains were generated by double-crossover allelic exchange using the λ-pir dependent vector pDM4 (*Table 2.1*) which contains the sacB gene for counter selection (Milton et al., 1996). Specific primer pairs (*Table 2.2*) were used to amplify separate sequences upstream and downstream of the target genes. In brief, for bapA mutagenesis, the primers MC5532 and MC5533 were used to amplify the upstream fragment of bapA, and the primers MC5516 and MC5517 were used to amplify the downstream fragments encompassing the entire bapB and bapC genes. Both fragments were cloned into SpeI/XbaI-digested pDM4. For bapB mutagenesis, two sets of primer pairs, JT6156/JT6157 and JT6175/JT6176, were used to amplify the upstream and downstream fragments, and both fragments were cloned into SphI/SpeI-digested pDM4. For bapC mutagenesis, two primer pairs, JT6319/JT6320 and JT6179/JT6180, were used to amplify the upstream and downstream fragments which were cloned sequentially into SacI/XbaI-digested and SalI-digested pDM4. The tetracycline resistance gene tetA(C), recovered from pUTminiTn5Tc (de Lorenzo et al., 1990), was then ligated into the central BglII site of pDM4 in order to generate the mutant constructs pDM4::bapA::tetA(C), pDM4::bapB::tetA(C) and pDM4::bapC::tetA(C). The constructs were introduced by transformation into the conjugative donor strain *E. coli* S17-1/λpir, and then introduced into *B. pseudomallei* by conjugation. Each conjugation reaction was plated on LB agar containing 8 µg/mL gentamicin and 25 µg/mL tetracycline, and plates were incubated at 37°C for up to 2 days. To confirm that the transconjugants had the correct antibiotic profile, colonies were patched onto LB agar containing 8 µg/mL gentamicin and 25 µg/mL tetracycline. Any transconjugants showing tetracycline resistance were subsequently patched onto LB agar supplemented with 20% (w/v) sucrose in order to select for the loss of the suicide vector pDM4 as described previously (Logue et al., 2009), based on a sacB counter-selection protocol acting through the activation of the sacB gene of pDM4. The resulting colonies were characterised by PCR and sequence analysis using the primers flanking the mutated regions.

2.10 Conjugation between *E. coli* and *B. pseudomallei*
Overnight cultures of the donor strain *E. coli* SM10/λpir or S17-1/λpir, containing pDM4 or pBHR1 constructs, and the recipient strain *B. pseudomallei* K96243 were subcultured separately and incubated at 37°C with shaking at 200 rpm, to obtain an OD₆₀₀ of 0.6. Cells were collected by centrifugation at 4,293 x g (8,000 rpm) for 5 min, washed by resuspending in 1 mL of sterile 1X PBS, pH 7.4 (*Appendix 2, A2.8*) and then centrifuged at 4,293 x g (8,000 rpm) for 5 min to remove the antibiotic prior to resuspending in 1 mL of sterile PBS, pH 7.4. An equal amount of the donor (200 µL) and recipient (200 µL) suspensions was then mixed prior to spotting on LB agar plates. The conjugation reactions were incubated at 30°C for 2 days, resuspended in 2 mL of sterile PBS, pH 7.4 and then plated onto LB agar containing appropriate antibiotics. Plates were incubated at 37°C for up to 2 days. Transconjugants were subsequently verified for the presence of the appropriate construct by patching on LB agar containing appropriate antibiotics and characterised by PCR.

Complementation of the K96243ΔbapA, ΔbapB and ΔbapC strains was carried out by introduction of the appropriate genes cloned into the plasmid pBHR1 (*Table 2.1*). The empty pBHR1 plasmid was additionally introduced into each of the mutants and the wild-type strain as negative controls. Due to the instability of the plasmid pBHR1 (see *Chapter 3.6*), complementation using the mini-Tn7 vector was also carried out using triparental mating which requires the co-conjugation of the helper plasmid pTNS3, a crucial construct for integration of the transposon into the bacterial genome, and the appropriate complementation construct.

2.11 Minimum bactericidal concentration (MBC) assays

MBC assays were performed as described elsewhere (Treerat *et al.*, 2008). In brief, overnight cultures of *B. pseudomallei* strains were subcultured 1:50 into fresh LB broth containing appropriate antibiotics and grown to an OD₆₀₀ of 0.8 which was equivalent to 10⁸ CFU/mL. The cultures were then diluted 1 in 10 with fresh LB broth to give a culture of 10⁷ CFU/mL. The stock antibiotic solutions required for each experiment were freshly prepared and then serially diluted in LB broth as specified. Each of the antibiotic dilutions (100 µL) was added to sterile BD Falcon™, clear 96-well, flat bottom plates (BD Biosciences, Australia) prior to addition of 100 µL of bacterial cell suspension (10⁶ CFU). A well with cells but no antibiotic was used as a growth control and a well with medium but no cells was used as a negative control. The plates were incubated at 37°C on an orbital shaker (100 rpm) overnight. The lowest concentration of antibiotic that showed no visible bacterial growth was taken as the MBC. For verification of the MBC results, a culture from the well showing no visible growth was subsequently inoculated
into fresh LB broth and incubated at 37°C for up to 2 days. This assay was performed in technical triplicates on biological duplicates.

2.12 RNA extraction and reverse transcription-PCR (RT-PCR)

Total RNA was extracted using TRIzol® (Life Technologies™, USA), and cDNA was produced by reverse transcription using random hexamers as described previously (Lo et al., 2006). In brief, bacterial strains were cultured to the desired growth phase and cells harvested by centrifugation at 4,293 x g (8,000 rpm) for 5 min. The cell pellet was resuspended in 1 mL of pre-chilled TRIzol® reagent and incubated at 65°C with shaking at 1,000 rpm, for 15 min. RNase-free chloroform:isoamyl alcohol mix (24:1) was added in a ratio of 200 µL to 1 mL of TRIzol® reagent. The reaction was mixed vigorously for 15 sec and then incubated at room temperature for 10 min. The mixed emulsion was separated by centrifugation at 11,337 x g (13,000 rpm), for 15 min, at 4°C. The upper aqueous phase was carefully transferred, without disturbing the interface, to a new sterile tube containing 1 µL of Protector RNase Inhibitor (Roche Diagnostics Australia, Australia). RNA was precipitated by addition of RNase-free isopropanol (300 µL) and incubated for 10 min. The RNA was collected by centrifugation at 11,337 x g (13,000 rpm), for 10 min, at 4°C. The RNA pellet was washed twice in 500 µL of RNase-free 75% ethanol. The final RNA pellet was air-dried at room temperature for 30 min and then resuspended in 50 µL of nuclease-free DEPC-treated Ambion® water (Life Technologies™, USA) containing 2 µL of Protector RNase Inhibitor. Contaminating DNA was removed by treatment with the RNase-Free DNase Set (QIAGEN®, Australia) according to the manufacturer's instructions. The RNA was then purified using the RNeasy Mini Kit (QIAGEN®, Australia) according to the manufacturer's instructions, and the RNA was eluted by addition of 50 µL of nuclease-free DEPC-treated Ambion® water to the column and centrifugation at 11,337 x g (13,000 rpm) for 1 min. The elution step was repeated using 50 µL of the previous elution and a second centrifugation at 11,337 x g (13,000 rpm) for 1 min. The DNase digestion treatment and RNA purification steps were repeated a second time to obtain DNA-free RNA samples.

Reverse Transcription was performed with the SuperScript™ III Reverse Transcriptase (Life Technologies™, USA) according to the manufacturer's instructions. In brief, RNA samples were mixed with 2.5 µL of random hexamers (pdN6) (supplied by Micromon, Monash University), and 2 µL of Protector RNase Inhibitor. RNA concentration of each mutant sample (10 ng) was normalised to the wild-type concentration prior to adjusting the total volume of the reaction to 16
µL using nuclease-free DEPC-treated Ambion® water. The reactions were then incubated at 70°C, for 10 min followed by immediate cooling on ice for 10 min. Each reaction was then split in half, and one half used for a reverse transcription reaction (RT+), and the other (RT-) as a negative control. The RT reactions contained:

<table>
<thead>
<tr>
<th>RT+ (sample)</th>
<th>RT- (negative control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 µl</td>
<td>RNA/pdN6 mixture</td>
</tr>
<tr>
<td>0.5 µl</td>
<td>Protector RNase Inhibitor</td>
</tr>
<tr>
<td>2 µl</td>
<td>dNTP (10 mM)</td>
</tr>
<tr>
<td>4 µl</td>
<td>5X RTC buffer</td>
</tr>
<tr>
<td>2 µl</td>
<td>DTT (100 mM)</td>
</tr>
<tr>
<td>1.5 µl</td>
<td>SuperScript™ III Reverse Transcriptase</td>
</tr>
<tr>
<td>2 µl</td>
<td>Nuclease-free DEPC-treated Ambion® water</td>
</tr>
</tbody>
</table>

The reactions were subsequently incubated at 42°C for 2 h 30 min, and then the temperature increased to 70°C for 15 min. The synthesised cDNA (RT+) and the negative control reaction (RT-) were stored at -20°C. The RT reactions were used as the template for RT-PCR using the amplification protocol described in Appendix 3, Table A3.1 with a 58°C annealing temperature, and a 2 min extension time. Primers JT6073 and JT6321 (Table 2.2) were used to investigate co-transcription of bapA, bapB and bapC, and primers JT6640 and JT6180 (Table 2.2) were used to investigate the co-transcription of bapB and bapC. The primers JT6079 and JT6080 (Table 2.4) were used to investigate the transcription of bopE.

2.13 Quantitative real-time RT-PCR

Semi-quantitative real-time RT-PCR was conducted with the Mastercycler® ep realplex PCR system (Eppendorf South Pacific, Australia) using FastStart Universal SYBR Green Master mix (Rox) (Roche Diagnostics Australia, Australia). The primer pairs JT7472/JT7473 and JT7474/JT7475 (Table 2.4) were designed for the amplification of bopE and the internal control rpoA (BPSL3187), respectively, using the Primer3 primer design software (http://simgene.com/Primer3). These primer pairs amplified PCR products of 119 and 90 bp, respectively. Each bopE or rpoA real-time RT-PCR mixture was prepared by addition of 5 µL of 1:10 dilution of cDNA to 15 µL of PCR master mixture (10 µL of FastStart Universal SYBR Green Master mix (Rox), 0.2 µL of 100 µM of each primer and 4.6 µL of nuclease-free DEPC-treated Ambion® water). The genomic DNA of the *B. pseudomallei* wild-type K96243 and the
RT- sample were used as positive and negative controls, respectively. The cycling parameters for amplification were as follows: 1 cycle of polymerase activation at 95°C for 2 min, 40 cycles of 95°C for 15 sec and 60°C for 1 min. A final melting curve to check the specificity of amplified products was set up as follows: 95°C for 15 sec, 60°C for 15 sec, and then the temperature was increased to 95°C within 20 min, and held at 95°C for 15 sec before immediate cooling to 10°C. All real-time PCR was carried out in technical triplicates on biological duplicates.

2.14 \textit{In vitro} growth curves
The growth of the mutant and wild-type strains was assessed in LB broth. The optical density of overnight cultures of each of the strains was measured (OD$_{600}$) and diluted to give an OD$_{600}$ of 0.05 in 20 mL of LB broth. Broth cultures were subsequently incubated at 37°C with shaking at 200 rpm, and the absorbance of each of the cultures (OD$_{600}$) measured at 30 min time intervals for at least 12 h. The experiments were performed in technical and biological triplicates.

2.15 \textit{In vivo} competitive growth assays
\textit{In vivo} competitive growth assays were carried out in BALB/c mice, and the competitive index (CI) of each mutant was calculated as described previously (Auerbuch \textit{et al.}, 2001; D'Cruze \textit{et al.}, 2011; Harper \textit{et al.}, 2004) with minor modifications. Each of the mutant and the wild-type strains was cultured in LB with antibiotics as appropriate to obtain an OD$_{600}$ of 0.2 (corresponding to 2 x 108 CFU/mL). Bacterial cells were harvested by centrifugation at 4,293 x g (8,000 rpm) for 5 min. Pellets were subsequently washed in 1 mL of sterile PBS, pH 7.4 to remove antibiotics and centrifuged at 4,293 x g (8,000 rpm) for 5 min prior to resuspension in 1 mL of sterile PBS, pH 7.4. Equal volumes of the mutant and the wild-type cultures were combined and ten-fold serial dilutions of the combined mixture were prepared; the 10$^{-2}$ dilution was used for \textit{in vitro} growth analysis, and 100 μL of the 10$^{-5}$ dilution plated on LB agar. These plates represented the \textit{in vitro} and input samples, respectively.

For the \textit{in vitro} growth analysis, 10 μL of the 10$^{-2}$ dilution (corresponding to 4 x 104 CFU) was inoculated in LB broth and then incubated at 37°C, with shaking at 200 rpm for up to 20 h. Ten-fold serial dilutions were prepared, and 100 μL of appropriate dilutions plated on LB agar.

For the \textit{in vivo} growth analysis, each of the mixed cultures was inoculated intranasally into three to five, 6- to 8-week-old, female BALB/c mice. The infection was allowed to proceed for 20 h, and mice were then euthanised in an ethically approved manner (Monash University Animal
Ethics Committee approval #SOBS/M/2008/2). Spleens were removed aseptically, homogenised in 3 mL of sterile PBS, pH 7.4 and then plated onto LB agar.

Plates were incubated at 37°C for up to 2 days. One hundred colonies from the input and in vivo analyses were patched onto LB agar with or without 25 μg/mL tetracycline. The CI was defined as the ratio of mutant to wild-type bacteria in the output pool divided by the ratio of mutant to wild-type bacteria in the input pool. The statistical significance of a reduction in CI was determined by a one sided z-test, as used previously (Harper et al., 2003; Harper et al., 2004).

2.16 Mouse virulence trials

To investigate the role of bapA, bapB and bapC in virulence, each of the mutant strains was used in virulence trials in the BALB/c mouse acute infection model and compared with the wild-type strain as described previously (Leakey et al., 1998; Lever et al., 2009; Liu et al., 2002; Tan et al., 2008) with minor modifications. Overnight cultures of the mutant and the wild-type strains were grown in LB with or without antibiotics as appropriate, and then incubated at 37°C with shaking at 200 rpm to obtain an OD$_{600}$ of 0.8 (corresponding to approximately 5 x 108 CFU/mL). Cells were concentrated by centrifugation at 4,293 x g (8,000 rpm) for 5 min. Pellets were washed with 1 mL of sterile PBS, pH 7.4 and harvested by centrifugation at 4,293 x g (8,000 rpm) for 5 min prior to resuspension in 1 mL of sterile PBS, pH 7.4. Groups of seven mice were inoculated intranasally with 20 μL of 105 or 107 CFU of each of the mutants or the wild-type strain. All infected mice were monitored carefully for signs of infection (ruffled fur, reduced movement and responsiveness) for up to 10 days and euthanized when moribund, in accordance with animal ethics requirements (Monash University Animal Ethics Committee approval # SOBS/M/2008/2). The stability of the mutants was verified by patching mutant colonies recovered from the spleens of mutant-infected mice onto LB and LB containing 25 μg/mL tetracycline. DNA isolated from tetracycline resistant colonies was analysed by PCR for retention of the mutagenesis insert using the primers flanking the mutated regions.

2.17 Cell invasion assays

The ability of each of the mutant and the wild-type B. pseudomallei strains to invade human respiratory epithelial cell line A549 was determined as described previously (Jones et al., 1996; Kespichayawattana et al., 2000; Muangman et al., 2011; Muangsombut et al., 2008) with minor modifications. A549 cells were seeded in 24-well plates (5 x 105 cells per well) in DMEM supplemented with 10% (v/v) heat-inactivated FCS and grown at 37°C, 5% CO$_2$ overnight. Prior
to infection assays, the monolayers were washed twice with 500 μL of pre-warmed PBS, pH 7.4, and then covered with 300 μL of DMEM supplemented with 10% (v/v) heat-inactivated FCS.

For infections, overnight cultures of the mutants, the wild-type (the positive control) and E. coli DH5α (the negative control) were subcultured in appropriate antibiotics and then incubated at 37°C with shaking at 200 rpm, to obtain an OD₆₀₀ of 0.8 (corresponding to approximately 5 x 10⁸ CFU/mL). Cells were concentrated by centrifugation at 4,293 x g (8,000 rpm) for 5 min and then resuspended in 1 mL of DMEM supplemented with 10% (v/v) heat-inactivated FCS. The A549 monolayers were infected with each of the strains at an MOI of 100, and incubated for 2 h to allow for bacterial adherence and invasion. At 2 h p.i., the infected monolayers were washed four times with pre-warmed sterile PBS, pH 7.4 and then overlaid with fresh DMEM containing 900 μg/mL kanamycin and 90 μg/mL ceftazidime for 2 h to kill extracellular bacteria. The monolayers were lysed with 1X PBS/0.1% (v/v) Triton X-100 (Appendix 2, A2.9) to liberate the intracellular bacteria. The number of viable cells released from the lysed monolayers was determined by direct plating. The assays were performed in technical triplicates on three separate days for each strain.

2.18 Intracellular survival assays in murine macrophages cells

The ability of mutant and the wild-type strains to survive and replicate in murine macrophage-like RAW264.7 cells was determined as described previously (D'Cruze et al., 2011; Muangman et al., 2011; Stevens et al., 2002) with minor modifications. To ensure that intracellular bacteria were completely released, a range of saponin (Chieng et al., 2012) and Triton X-100 concentrations was first assessed for lysis of the infected monolayers. A 1X PBS/0.5% (w/v) saponin (Appendix 2, A2.10) wash solution showed the most effective lytic activity without having an impact on bacterial growth and survival (data not shown). The murine macrophage-like RAW264.7 cells were seeded in 24-well plates (5 x 10⁵ cells per well) in RPMI supplemented with 10% (v/v) heat-inactivated FCS and grown at 37°C, 5% CO₂ overnight. The monolayers were washed twice with 500 μL of pre-warmed sterile PBS, pH 7.4, and then covered with 300 μL of RPMI supplemented with 10% (v/v) heat-inactivated FCS before performing infections.

Overnight cultures of the mutants and the wild-type (the positive control) strain were subcultured in appropriate antibiotics and then incubated at 37°C with shaking at 200 rpm, to obtain an OD₆₀₀ of 0.8 (corresponding to approximately 5 x 10⁸ CFU/mL). Cells were concentrated by
centrifugation at 4,293 x g (8,000 rpm) for 5 min and then resuspended in 1 mL of RPMI supplemented with 10% (v/v) heat-inactivated FCS. The monolayers were subsequently infected with each of the mutants or the wild-type strain at an MOI of 10:1, and incubated for 1 h. The infected monolayers were then washed four times with pre-warmed sterile PBS, pH 7.4 and then overlaid with fresh RPMI containing 900 μg/mL kanamycin and 90 μg/mL ceftazidime to kill extracellular bacteria. At 2, 4 and 6 h post infection, wells were washed four times with 500 μL pre-warmed sterile PBS, pH 7.4 to remove any extracellular bacteria, and 50 μL of the final wash was plated on LB agar and incubated at 37°C for up to 2 days, designated as ‘wash’ plates. The infected RAW264.7 macrophages were incubated with 200 μL of pre-warmed 1X PBS/0.5% (w/v) saponin for 10 min at 37°C to release the intracellular bacteria. 100 μL of the lysate was plated on LB agar and grown at 37°C for up to 2 days, designated as ‘lysis’ plates. Numbers of bacterial colonies recovered from ‘wash’ and ‘lysis’ were tallied and statistically analysed using T-tests and one-way ANOVA. Assays were performed on at least three different days, each in technical triplicates.

2.19 Immunofluorescence and confocal microscopy

2.19.1 Bacterial co-localisation with GFP-LC3

Co-localisation of bacteria with the autophagy marker protein LC3 (Kuma et al., 2007) was conducted as described previously, with some alterations (Cullinane et al., 2008; D'Cruze et al., 2011; Gong et al., 2011). Mutant and wild-type *B. pseudomallei* strains were grown to an OD$_{600}$ of 0.8, and RAW264.7 cells expressing LC3-GFP were seeded and prepared in 24-well trays containing cover slips. The monolayers were infected for 1 h with bacterial strains at an MOI of 10:1. Infected monolayers were then washed and treated with antibiotics as described previously for intracellular survival assay (Chapter 2.18). At 2, 4 and 6 h post-infection, the monolayers were washed four times with pre-warmed sterile PBS, pH 7.4 to remove extracellular bacteria. The PBS was then replaced with 500 μL of 100% methanol and incubated at 37°C for 10 min in order to fix the cells. The infected monolayers on the cover slips were then analysed by immunofluorescence.

For IFN-γ stimulation, RAW264.7 or RAW264.7 cells stably transfected with LC3-GFP, were treated with 200 U/mL of recombinant mouse IFN-γ (ProSpec-Tany TechnoGene, Israel) for 3 h prior to infections.
For immunofluorescent labelling, antibody solutions and washes were prepared in 1X PBS/1% (w/v) BSA (Appendix 2, A2.11). Unless otherwise indicated, washing steps were performed at room temperature with shaking. The methanol-fixed monolayers were incubated with rabbit antiserum raised against \textit{B. pseudomallei} outer membrane proteins (Cullinane \textit{et al.}, 2008) at a dilution of 1:100 at 37°C for 1 h. The monolayers were washed four times with 1X PBS/1% (w/v) BSA for 10 min and then incubated with the secondary goat anti-rabbit IgG Texas Red® antiserum (Molecular Probes®, OR, USA) at a 1:250 dilution, for a further 1 h at room temperature. The monolayers were washed four times, as described above, prior to mounting the cover slips containing the infected macrophages on glass slides using PermaFluor™ Aqueous Mounting Medium (Thermo Fisher Scientific, CA, USA). Internalised \textit{B. pseudomallei} and cytoplasmic LC3 were visualised by confocal microscopy (see Chapter 2.19.3). The images were scored for the total number of internalised bacteria and the number of internalised bacteria that co-localised with LC3. The ratio of bacterial co-localisation, obtained from technical triplicate and biological triplicate experiments, was identified for the wild-type and mutant strains, and statistical significance of differences in co-localisation determined using Student’s \textit{t}-tests.

2.19.2 Visualisation of actin tails via immunofluorescent phalloidin labelling

Intracellular motility of the wild-type and the mutant strains was assessed in RAW264.7 cells by immunofluorescence as described in Chapter 2.19.1 with minor modifications. At 2, 4 and 6 h post-infection, the monolayers were washed four times with pre-warmed sterile PBS, pH 7.4, to remove extracellular bacteria. The PBS was replaced with 500 μL of 1X PBS/3.5% (v/v) paraformaldehyde (PFA; Appendix 2, A2.12) and incubated at 37°C for 15 min to fix the cells prior to permeabilising with 1X PBS/0.1% (v/v) Triton X-100 (Appendix 2, A2.9) at 37°C for 10 min. For immunofluorescent-labelling and actin staining, antibody solutions and washes were prepared in 1X PBS/1% (w/v) BSA. Unless otherwise indicated, all washing steps were performed at room temperature with shaking. The PFA-fixed monolayers were incubated with the primary and secondary antibodies as described in Chapter 2.19.1. Following immunofluorescent labelling, the monolayers were incubated with Alexa Fluor® 647 Phalloidin (Molecular Probes®, OR, USA) at a dilution of 1:250 for a further 1 h at RT to stain intracellular actin. The monolayers were washed and mounted on the cover slips as described previously. Actin-tail formation was visualised by confocal microscopy (see Chapter 2.19.3).

2.19.3 Confocal laser scanning microscopy
An Olympus FV-1000 confocal laser scanning fluorescence microscope (Monash Micro Imaging, Monash University, Australia) equipped with a 1.2 NA water immersion lens (Olympus 60X UPlanapo), was used for all fluorescent imaging. Image analysis and processing was performed using Olympus FV1000 Viewer software (Ver.2.0b) and the public domain software Fiji. Internalised *B. pseudomallei* and cytoplasmic LC3 were visualised using the red TRITC and green FITC channel, respectively. The far-red fluorescent Alexa Fluor® 647 dye (excitation/emission: 650/668 nm) was used to visualise intracellular actin in macrophage cells.

2.20 Cytokine assays

RAW264.7 cells, with or without IFN-γ pre-treatment, were infected with each of the mutants or the wild-type strain as described in *Chapter 2.18*. At the indicated time points, the mammalian cell culture supernatants were filtered using a 0.22 μm, 4 mm, Millex® syringe filter (Merck Millipore, USA). The cultured supernatants were used to determine the level of the proinflammatory cytokines TNF-α and IL-6 present in each supernatant by ELISA. The BD OptEIA™ mouse TNF and IL-6 ELISA Kits (BD Biosciences, USA) were used according to the manufacturer’s protocols. The data were obtained from technical triplicates and biological duplicates.

2.21 Sodium deoxycholate/trichloroacetic acid (DOC/TCA) precipitation of proteins

For precipitation of very low amounts of protein, DOC was used, in combination with TCA, to act as a co-precipitant to enhance the interaction between the protein and TCA through hydrophobic interactions (Arnold & Ulbrich-Hofmann, 1999; Chang, 1992; Chevallet *et al.*, 2007). Bacterial strains were grown to the appropriate growth phase and the cells removed by centrifugation at 4,293 x *g* (8,000 rpm) for 5 min. The supernatant was filtered through a sterile 0.45-μM syringe filter (Pall Life Science, USA) to eliminate bacterial cells. DOC was subsequently added and mixed with total culture and supernatant samples to obtain a final concentration of 0.02% (w/v), and incubated at room temperature for 15 min. Total protein was precipitated by incubation with 10% (w/v, final concentration) TCA overnight at 4°C. The precipitated protein was subsequently collected by centrifugation at 10,000 x *g* (8,819 rpm), for 20 min, at 4°C. The supernatant was discarded, and the pellet washed twice with 1 mL of ice-chilled methanol with 15 min incubation on ice prior to centrifugation at 10,000 x *g* (8,819 rpm), for 20 min, at 4°C. The precipitated proteins were air-dried to eliminate any methanol residue. Laemmli sample buffer (1X) was freshly prepared by diluting the 5X Laemmli sample buffer
(containing β-mercaptoethanol (BME)) (Appendix 2, A2.15) with 1 M Tris-HCl, pH 7.5 (Appendix 2, A2.1), and used to resuspend the air-dried protein pellet. The sample was subsequently denatured by boiling at 99°C for 10 min and cooled to room temperature before performing further experiments. Total protein in the samples was determined using the 2-D Quant Kit (GE Healthcare, NSW, Australia) according to the manufacturer’s instructions.
2.22 TC-FlAsH™-based fluorescence labelling

Live *B. pseudomallei* expressing TC-tagged BapA, BapB, BapC or BopE were visualised using FlAsH-labelling as described previously (Enninga *et al.*, 2005; Simpson *et al.*, 2010) with some modifications. *B. pseudomallei* strains were cultured in LB broth containing appropriate antibiotics, and grown at 37°C with shaking at 200 rpm to an OD₆₀₀ of 0.8. The FlAsH positive control DH5α[pJP117] strain (*Table 2.1*), which expresses a TC-tagged GspD, was induced for expression as described previously (Dunstan *et al.*, 2013). In brief, an overnight culture was subcultured (1:100 dilution) in fresh LB broth supplemented with 100 µg/mL ampicillin and incubated at 37°C with shaking at 200 rpm for 1 h. The expression of the TC-tagged GspD was induced by addition of arabinose (0.1% w/v, final concentration) and further incubation for another 2 h until the culture reached an OD₆₀₀ of 0.8. All exponential growth phase cultures (1 mL each) were harvested by centrifugation at 4,293 x g (8,000 rpm) for 5 min. Cells were washed with 1 mL of sterile PBS, pH 7.4 to remove the culture medium and antibiotics prior to resuspension in 50 µL of sterile PBS, pH 7.4. Stock FlAsH reagent, from the TC-FlAsH™ II In-Cell Tetracysteine Tag Detection Kit (Life Technologies™, USA), was added to the bacterial cell suspension to obtain a final concentration of 5 µM prior to incubation at 37°C with shaking at 1,000 rpm, for 1 h. Sample labelling was performed in the dark, and direct light contact was avoided during all later manipulations. During live cell labelling, sample buffer (1X) was freshly prepared by diluting the Laemmli sample buffer (without reducing agent) (*Appendix 2, A2.16*) 5-fold with 1 M Tris-HCl, pH 7.5. DL-Dithiothreitol (DTT; 10 mM, final concentration) was added to be used as the reducing agent, and this diluted sample buffer was kept on ice until use. Labelled samples were washed to remove unbound FlAsH reagent by addition of 1.5 mL of sterile PBS, pH 7.4, followed by centrifugation at 4,293 x g (8,000 rpm) for 5 min to concentrate the cells. Each of the pellets was resuspended in 30 µL of 1X sample buffer containing 10 mM DTT and heated at 99°C for 10 min, before cooling in the dark, at room temperature, for 5 min. Labelled samples (15 µL each) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as described in *Chapter 2.23*, and the level of fluorescence measured immediately at 520 nm with an excitation at 488 nm (GFP/FITC filter set) with the Typhoon Trio imager (Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia) using Image Quant software (GE Healthcare, NSW, Australia). Total proteins were visualised by SDS-PAGE (15 µL each) followed by staining with Coomassie Brilliant Blue (see *Chapter 2.25*).
For direct FlAsH visualisation of proteins, DOC/TCA-precipitated protein samples were labelled with FlAsH reagent as described in the manufacturer’s protocol, with minor modifications. In brief, each of the precipitated protein samples (15 μL) was transferred to a new, sterile 1.5 mL microcentrifuge tube, and FlAsH reagent added (20 μM, final concentration) and incubated at 70°C with shaking at 1,000 rpm, for 10 min. Samples were cooled to room temperature for 5 min and then separated by SDS-PAGE. Following electrophoresis, the fluorescence was immediately measured at 520 nm with excitation at 488 nm. Total protein in the samples was visualised by SDS-PAGE, using the remainder of the samples (15 μL each), followed by Coomassie Brilliant Blue staining as described above.

2.23 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins were separated by SDS-PAGE with polyacrylamide gels consisting of 10% resolving gels (containing 4.42 mL of ddH₂O, 2.5 mL of resolving gel buffer (Appendix 2, A2.13), 2.48 mL of ACRYL/BISTM 37.5:1 (30:0.8) 40% (w/v) solution (AMRESCO, USA), 50 μL of 10% (w/v) ammonium persulphate and 10 μL of N,N,N,N’-tetramethylenediamine (TEMED)) and 4% stacking gels (comprising 6.4 mL of ddH₂O, 2.5 mL of stacking gel buffer (Appendix 2, A2.14), 1 mL of ACRYL/BISTM 37.5:1, 40% (w/v) solution, 50 μL of 10% (w/v) ammonium persulphate and 10 μL of TEMED). Gels were run in 1X Tris-Glycine running buffer (Appendix 2, A2.17) at 150 V for 90 min. Gels were then used for further experiments, including detection of the FlAsH fluorescent complex, Western blot analysis or Coomassie Brilliant Blue staining.

2.24 Western blotting and enhanced chemiluminescence (ECL) detection

Following SDS-PAGE, proteins were transferred to PVDF membranes (Merck Millipore, USA) by electroblotting at 100 V, for 1 h, at 4°C in Transblot buffer (Appendix 2, A2.19). All antibody solutions and washes were prepared in 1X TBS/0.1% (v/v) Tween-20 buffer (Appendix 2, A2.21). Washing steps, unless otherwise indicated, were performed at room temperature with shaking. Membranes were blocked in Blocking buffer (Appendix 2, A2.22) at 4°C for 16 h with shaking and washed twice with 1X TBS/0.1% (v/v) Tween-20 buffer for 5 min prior to incubation with a 1:1,000 dilution of the rabbit polyclonal anti-BopE78-261 antiserum (Stevens et al., 2003) at 37°C for 1 h with shaking. The membranes were then washed four times for 10 min and incubated with a 1:5,000 dilution of the secondary goat anti-rabbit IgG antibody, HRP-conjugate (Merck Millipore, Australia) at room temperature for 1 h with shaking. Membranes
were washed as described earlier and antibody binding was analysed with the Amersham ECL Western Blotting Detection Reagent (GE Healthcare, NSW, Australia), and visualised by expose to X-ray film (Kodak, NY, USA).

2.25 Coomassie Brilliant Blue staining

To visualise total proteins following separation by SDS-PAGE, gels were stained with Coomassie Brilliant Blue solution (Appendix 2, A2.23) at room temperature for 16 h with shaking at approximately 100 rpm. Gels were subsequently destained with Destaining solution (Appendix 2, A2.24) until excess stain was removed, and the stained gels were then scanned with an Epson Perfection 4990 Photo Scanner for further analysis.

2.26 Southern blotting

Bacterial genomic DNA samples from either *E. coli* or *B. pseudomallei* strains were purified using a HiYield™ Genomic DNA Mini Kit (Real Biotech Corporation, Taipei, Taiwan) according to the manufacturer’s instructions. Genomic DNA was digested at 37°C, overnight, with the appropriate restriction enzyme(s) in a total volume of 20 μL (per reaction) as described below:

- Genomic DNA (10 μg) 10 μL
- Restriction buffer 2 μL
- Restriction enzyme (10 U/μL) 1 μL
- ddH₂O 7 μL

Digested DNA samples were separated by agarose gel electrophoresis together with a sample of the Digoxigenin (DIG)-labelled (Roche Diagnostics Australia, NSW, Australia) DNA molecular weight standard marker II, a 1:10 dilution of DIG-labelled PCR product, as a positive control, and a non DIG-labelled PCR product, as a negative control. DNA samples were visualised as described in Chapter 2.5. Gels were then incubated in depurination solution (Appendix 2, A2.27) at room temperature for 15 min with shaking prior to rinsing in ddH₂O. The gel was then incubated in denaturation solution (Appendix 2, A2.28) at room temperature for 30 min with shaking and washed briefly with ddH₂O prior to incubation in neutralisation solution (Appendix 2, A2.29) at room temperature for at least 30 min with shaking. Denaturation and neutralisation steps were repeated, if required, before Southern capillary transfer of DNA.
DIG-labelled DNA probes were prepared by PCR with the addition of DIG-labelled dNTPs (Roche Diagnostics Australia, NSW, Australia) (Appendix 3, Table A3.6). The PCR products were visualised following agarose electrophoresis in 1% (w/v) gels in 1X TAE buffer at 100 V, for 30 min. PCR products (DIG-labelled and non DIG-labelled) were excised and purified using QIAquick Gel Extraction Kit (QIAGEN®, Australia). The DIG-labelled probe was added to 20 mL of pre-hybridisation solution (Appendix 2, A2.33), boiled for 10 min and the solution immediately chilled on ice for 10 min.

Following DNA transfer, membranes were rinsed briefly in 2X SCC solution (Appendix 2, A2.31) prior to drying between Whatman™ 3 MM filter paper at room temperature for 10 min. DNA was cross-linked to the membrane for 3 min using a UVILink CL508 Crosslinker (UVItec Limited, Cambridge, United Kingdom). The membrane was then incubated in pre-hybridisation solution for at least 3 h at 65°C. The pre-hydridisation solution was then replaced with the DIG-labelled DNA probe solution (see above) and hybridised at 65°C, overnight. Following hybridisation, the membrane was washed twice in 2X Wash solution (Appendix 2, A2.34) at room temperature for 5 min. The membrane was subsequently washed twice with 0.2X Wash solution (Appendix 2, A2.35) at 65°C for 15 min prior to rinsing in Washing buffer (Appendix 2, A2.37) at room temperature for 5 min. The membrane was then incubated in Blocking buffer (Appendix 2, A2.38) at room temperature for at least 30 min with shaking. Following blocking, the membrane was incubated with a 1:10,000 dilution of anti-DIG-alkaline phosphatase conjugate (Roche Diagnostics Australia, NSW, Australia) in Blocking buffer at room temperature for 30 min with shaking. The membrane was then washed twice in Washing solution at room temperature for 15 min prior to incubation in Detection solution (Appendix 2, A2.39) at room temperature for 5 min. The hybridising bands were visualised by addition of a 1:100 dilution of CDP-Star (Roche Diagnostics Australia, NSW, Australia) in Detection solution and the membrane exposed to X-ray film (Kodak, NY, USA) for an appropriate time.

2.27 Statistical analysis

Differences in survival of mice infected with the wild-type strain or mutant *B. pseudomallei* strains were assessed using Fisher’s exact test. Kaplan–Meier survival curves were used to display time-to-death data for virulence trials and the curves for different strains compared using Log-rank (Mantel-Cox) test. Two-way ANOVA was used to analyse intracellular survival assays, and Student’s unpaired *t*-test was used to compare means between each mutant and the
wild-type strain. A P value of less than 0.05 was accepted as indicating a statistically significant difference between samples.
Table 2.1 Strains and plasmids used in this study.

<table>
<thead>
<tr>
<th>Strains or plasmids</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. pseudomallei strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K96243</td>
<td>Wild-type, clinical isolate from Thailand</td>
<td>(Holden et al., 2004)</td>
</tr>
<tr>
<td>K96243_bapA</td>
<td>K96243 derivative with a 1,565-bp deletion within bapA replaced by a 1.3-kb tetracycline resistance cassette derived from pUTminiTn5Tc, Tet<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapA<sub>2</sub></td>
<td>The independently derived K96243_bapA strain</td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapB</td>
<td>K96243 derivative with a central fragment of bapB replaced by a 1.3-kb tetracycline resistance cassette derived from pUTminiTn5Tc, Tet<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapB<sub>2</sub></td>
<td>The independently derived K96243_bapB strain</td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapC</td>
<td>K96243 derivative with a central fragment of bapC replaced by a 1.3-kb tetracycline resistance cassette derived from pUTminiTn5Tc, Tet<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapC<sub>2</sub></td>
<td>The independently derived K96243_bapC strain</td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapBC</td>
<td>K96243 derivative with a 510-bp deletion encompassing the 3’-end of bapB and the 5’-end of bapC replaced by a 1.3-kb tetracycline resistance cassette derived from pUTminiTn5Tc, Tet<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapA_bapA</td>
<td>The K96243_bapA strain complemented with the pUC18Tmini-Tn7::cat::P<sub>glmS2</sub>::bapA construct, Tet<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapB_bapABC</td>
<td>The K96243_bapB strain complemented with the pUC18Tmini-Tn7::cat::P<sub>glmS2</sub>::bapABC construct, Tet<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapC_bapABC</td>
<td>The K96243_bapC strain complemented with the pUC18Tmini-Tn7::cat::P<sub>glmS2</sub>::bapABC construct, Tet<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapBC_bapABC</td>
<td>The K96243_bapBC strain complemented with the pUC18Tmini-Tn7::cat::P<sub>glmS2</sub>::bapABC construct, Tet<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapA[pBHR]</td>
<td>The K96243_bapA strain complemented with the pBHR::bapA construct, Tet<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapB[pBHR]</td>
<td>The K96243_bapB strain complemented with the pBHR::bapB construct, Tet<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapC[pBHR]</td>
<td>The K96243_bapC strain complemented with the pBHR::bapC construct, Tet<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapA[pBHR1]</td>
<td>The K96243_bapA strain harbouring empty pBHR1 vector, Tet<sup>R</sup>, Kan<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243_bapB[pBHR1]</td>
<td>The K96243_bapB strain harbouring empty pBHR1 vector, Tet<sup>R</sup>, Kan<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
</tbody>
</table>
Table 2.1 Strains and plasmids used in this study (cont.).

<table>
<thead>
<tr>
<th>Strains or plasmids</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K96243ΔbapC[pBHR1]</td>
<td>The K96243ΔbapC strain harbouring empty pBHR1 vector, Tet<sup>R</sup>, Kan<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243[pBHR1]</td>
<td>K96243 derivative harbouring empty pBHR1 vector, Kan<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243bopETC</td>
<td>K96243 derivative with a tetracysteine (TC) tagged bopE. Insertion of the pUC18Tmini-Tn7::tetA(C):: P<sub>glmS2</sub>::bopETC construct into the bacterial genome at a site other than the glmS1, glmS2 and glmS3 downstream regions, Tet<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243[bopETC]</td>
<td>K96243 derivative harbouring the pBHR1::P<sub>glmS2</sub>::bopETC construct, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243[bapATC]</td>
<td>K96243 derivative harbouring the pBHR1::bapATC construct, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243[bapBTC]</td>
<td>K96243 derivative harbouring the pBHR1::bapBTC construct, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243[bapCTC]</td>
<td>K96243 derivative harbouring the pBHR1::bapCTC construct, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243AbsaS</td>
<td>K96243 derivative with a central fragment of bsaS replaced by a 1.3-kb tetracycline resistance cassette derived from pUTminiTn5Tc, Tet<sup>R</sup></td>
<td>Gong et al., manuscript in preparation</td>
</tr>
<tr>
<td>K96243AbsaS[bopETC]</td>
<td>K96243AbsaS derivative harbouring the pBHR1::P<sub>glmS2</sub>::bopETC construct, Tet<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243AbsaS[bapATC]</td>
<td>K96243AbsaS derivative harbouring the pBHR1::bapATC construct, Tet<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243AbsaS[bapBTC]</td>
<td>K96243AbsaS derivative harbouring the pBHR1::bapBTC construct, Tet<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243AbsaS[bapCTC]</td>
<td>K96243AbsaS derivative harbouring the pBHR1::bapCTC construct, Tet<sup>R</sup>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243AbsaS[pBHR1]</td>
<td>K96243AbsaS derivative harbouring empty pBHR1 vector, Kan<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>K96243AbopE::pDM4</td>
<td>K96243 derivative harbouring the pDM4::bopE construct, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
</tbody>
</table>

E. coli strains

<table>
<thead>
<tr>
<th>Strains</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S17-1<sup>λpir</sup></td>
<td>Strain for propagation of pDM4 and pBHR1, contains RP4 transfer genes integrated into the chromosome, expresses <sup>λpir</sup> replication protein: recA, thi, pro, hsdR-M<sup>RP4</sup>: 2-Tc:Mu: Km, Tn7, <sup>λpir</sup>,Tp<sup>R</sup>, Sm<sup>R</sup></td>
<td>(Simon et al., 1983)</td>
</tr>
<tr>
<td>SM10<sup>λpir</sup></td>
<td>Strain for propagation of pUC18Tmini-Tn7T constructs and pTNS3, expresses <sup>λpir</sup> replication protein: thi-1, thr, leu, tonA, lacY, supE, recA::RP4-2-Tc::Mu, <sup>λpir</sup>, Kan<sup>R</sup></td>
<td>(Simon et al., 1983)</td>
</tr>
</tbody>
</table>
Table 2.1 Strains and plasmids used in this study (cont.).

<table>
<thead>
<tr>
<th>Strains or plasmids</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5α</td>
<td>General E. coli strain used for plasmid amplification, transformation and storage: F, ø80dlacZΔM15, Δ(lacZYA-argF)U169, recA1, endA1, hsdR17(rK+, mK+), pohA, supE44, λ−, thi-1, deoR, gyrA96, relA1</td>
<td>(Grant et al., 1990)</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pDM4</td>
<td>λpir-dependent replication, suicide vector in B. pseudomallei, oriR6K, mobRP4, sacBR, CmR</td>
<td>(Milton et al., 1996)</td>
</tr>
<tr>
<td>pDM4::bapA::tetA(C)</td>
<td>pDM4 containing a 918-bp fragment harbouring the 5’ region of bapA, tetracycline resistance cassette and a 1,241-bp fragment encompassing the 3’ region of bapA and the entire bapB and bapC genes, CmR, TetR</td>
<td>This study</td>
</tr>
<tr>
<td>pDM4::bapB::tetA(C)</td>
<td>pDM4 containing a 1,093-bp fragment encompassing the 3’ region of bapA and the 5’ region of bapB, tetracycline resistance cassette and a 662-bp fragment containing the 3’ region of bapB and the entire bapC gene, CmR, TetR</td>
<td>This study</td>
</tr>
<tr>
<td>pDM4::bapC::tetA(C)</td>
<td>pDM4 containing a 753-bp fragment encompassing the 3’ region of bapA, the entire bapB and the 5’ region of bapC, tetracycline resistance cassette and a 755-bp fragment containing the 3’ region of bapC and the downstream region, CmR, TetR</td>
<td>This study</td>
</tr>
<tr>
<td>pDM4::bapBC::tetA(C)</td>
<td>pDM4 containing a 448-bp fragment encompassing the 3’ region of bapA and the 5’ region of bapB, tetracycline resistance cassette and a 775-bp fragment containing the 3’ region and downstream region of bapC, CmR, TetR</td>
<td>This study</td>
</tr>
<tr>
<td>pDM4::bopE</td>
<td>pDM4 containing a 367-bp internal fragment of bopE derived from B. pseudomallei strain 10276 for generating the K96243AbopE::pDM4 strain, CmR</td>
<td>(Stevens et al., 2002)</td>
</tr>
<tr>
<td>pUTminiTn5Tc</td>
<td>Mini-Tn5Tc in plasmid pUT, AmpR TetR</td>
<td>(de Lorenzo et al., 1990)</td>
</tr>
<tr>
<td>pUC18Tmini-Tn7T</td>
<td>Mini-Tn7 based broad-host-range transposon vector, AmpR</td>
<td>(Choi et al., 2005)</td>
</tr>
<tr>
<td>pUC18Tmini-Tn7T::P_{glmS2}</td>
<td>pUC18Tmini-Tn7T containing glmS2 promoter derived from B. pseudomallei strain K96243, AmpR</td>
<td>Alwis et al. unpublished data</td>
</tr>
<tr>
<td>pUC18Tmini-Tn7T::tetA(C)::P_{glmS2}</td>
<td>pUC18Tmini-Tn7T containing tetracycline resistance cassette derived from pUTminiTn5 Tc and glmS2 promoter, AmpR, TetR</td>
<td>Alwis et al. unpublished data</td>
</tr>
<tr>
<td>Strains or plasmids</td>
<td>Description</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>pUC18Tmini-Tn7T::P<sub>glmS2</sub>:bapA</td>
<td>pUC18Tmini-Tn7T containing glmS2 promoter and the full length bapA gene derived from B. pseudomallei strain K96243, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pUC18Tmini-Tn7T::P<sub>glmS2</sub>:bapABC</td>
<td>pUC18Tmini-Tn7T containing glmS2 promoter and the full length bapA, bapB and bapC genes derived from B. pseudomallei strain K96243, Amp<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pUC18Tmini-Tn7T::cat::P<sub>glmS2</sub>:bapA</td>
<td>pUC18Tmini-Tn7T containing the chloramphenicol acetyl transferase (cat) gene derived from pDM4, glmS2 promoter and the full length bapA derived from B. pseudomallei strain K96243, Amp<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pUC18Tmini-Tn7T::cat::P<sub>glmS2</sub>:bapABC</td>
<td>pUC18Tmini-Tn7T containing the chloramphenicol acetyl transferase (cat) gene derived from pDM4, glmS2 promoter and the full length bapA, bapB and bapC genes derived from B. pseudomallei strain K96243, Amp<sup>R</sup>, Cm<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pUC18Tmini-Tn7T::tetA(C)::P<sub>glmS2</sub>:bopE</td>
<td>pUC18Tmini-Tn7T containing tetracycline resistance cassette derived from pUTminiTn5Tc, glmS2 promoter and the full length bopE derived from B. pseudomallei strain K96243, Amp<sup>R</sup>, Tet<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pUC18Tmini-Tn7T::tetA(C)::P<sub>glmS2</sub>:bopETC</td>
<td>pUC18Tmini-Tn7T containing tetracycline resistance cassette derived from pUTminiTn5Tc, glmS2 promoter and the full length bopE derived from B. pseudomallei strain K96243 and fused with the TC motif, Amp<sup>R</sup>, Tet<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pTNS3</td>
<td>A helper plasmid for mini-Tn7 transposition vector contains Tn7 transposase gene, Amp<sup>R</sup></td>
<td>(Choi et al., 2005)</td>
</tr>
<tr>
<td>pBHR1</td>
<td>A mobilisable B. pseudomallei and E. coli shuttle vector: the genotype: mob, rep, Cm<sup>R</sup>, Kan<sup>R</sup></td>
<td>(Szpirer et al., 2001)</td>
</tr>
<tr>
<td>pBHR1::bapA</td>
<td>pBHR1 containing full length bapA derived from B. pseudomallei strain K96243, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pBHR1::bapB</td>
<td>pBHR1 containing full length bapB derived from B. pseudomallei strain K96243, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pBHR1::bapC</td>
<td>pBHR1 containing full length bapC derived from B. pseudomallei strain K96243, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pBHR1::P<sub>glmS2</sub>:bopETC</td>
<td>pBHR1 containing a 1,411-bp fragment, derived from B. pseudomallei strain K96243 bopETC, harbouring glmS2 promoter, full length bopE tagged with the TC motif and two transcriptional terminators T<sub>0</sub> and T<sub>1</sub>, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pBHR1::bapATC</td>
<td>pBHR1 containing full length bapA, derived from B. pseudomallei strain K96243, and fused with the TC motif, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pBHR1::bapBTC</td>
<td>pBHR1 containing full length bapB, derived from B. pseudomallei strain K96243, and fused with the TC motif, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
</tbody>
</table>
Table 2.1 Strains and plasmids used in this study (cont.).

<table>
<thead>
<tr>
<th>Strains or plasmids</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBHR1::bapCTC</td>
<td>pBHR1 containing full length bapC, derived from B. pseudomallei strain K96243, and fused with the TC motif, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pJP117</td>
<td>pBAD24 containing the araBAD promoter and full length gspD, derived from E. coli enteropathogenic strain E2348/69, and fused with the TC motif, Amp<sup>R</sup></td>
<td>(Dunstan et al., 2013)</td>
</tr>
</tbody>
</table>

Table 2.2 Mutagenesis primers used to generate the K96243ΔbapA, K96243ΔbapB, K96243ΔbapC and K96243ΔbapBC strains.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5' – 3')*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC5532</td>
<td>GGGCCC[ACTAGTCGATCCGAA GCAACCGACAAGA</td>
<td>Forward primer for amplification of the 5' region of bapA, specifying a SpeI site</td>
</tr>
<tr>
<td>MC5533</td>
<td>GGGCCCAGATCTACCATGTCGA CGAGATTCGCT</td>
<td>Reverse primer for amplification of the 5' region of bapA, specifying a BglII site</td>
</tr>
<tr>
<td>MC5516</td>
<td>GGGCCCAGATCTCCATTATCCGC TCGTCGACGATGCTT</td>
<td>Forward primer for amplification of the 3' region of bapA and the entire bapB and bapC genes, specifying a BglII site</td>
</tr>
<tr>
<td>MC5517</td>
<td>GGGCCTCTAGATTGGCGTATT GGCGTATTGGCGTA</td>
<td>Reverse primer for amplification of the 3' region of bapA and the entire bapB and bapC genes, specifying an XbaI site</td>
</tr>
<tr>
<td>JT6156</td>
<td>CGGCTGACGCAATCGCG</td>
<td>Forward primer for amplification of the 1,093 bp 3' region of bapA and the 5' region of bapB, containing a native SphI site</td>
</tr>
<tr>
<td>JT6157</td>
<td>ATCCATGCCCAGGGCTCGCA</td>
<td>Reverse primer for amplification of the 1,093 bp 3' region of bapA and the 5' region of bapB, containing a native SphI site</td>
</tr>
<tr>
<td>JT6175</td>
<td>GGGCC[ACTAGTCGATCGC GC]CGCCGCA</td>
<td>Forward primer for amplification of the 662 bp 3' region of bapB and the entire bapC gene, specifying a SpeI site</td>
</tr>
<tr>
<td>JT6176</td>
<td>GGGCCC[ACTAGTGGGCCGCGCG ACATAGA]</td>
<td>Reverse primer for amplification of the 662 bp 3' region of bapB and the entire bapC gene, specifying a SpeI site</td>
</tr>
<tr>
<td>JT6319</td>
<td>GGGCCC[CCCAGGGTCACATCGA AC]CGTCGCGTCA</td>
<td>Forward primer for amplification of the 753 bp 3' region of bapA, the entire bapB and the 5' region of bapC, specifying an XmaI site</td>
</tr>
<tr>
<td>JT6320</td>
<td>GGGCCGAGCTCCCGCGCGGATA GCATGCGGAT</td>
<td>Reverse primer for amplification of the 753 bp 3' region of bapA, the entire bapB and the 5' region of bapC, specifying a SacI site</td>
</tr>
</tbody>
</table>

Underlined sequences indicate added restriction sites.
Table 2.2 Mutagenesis primers used to generate the K96243ΔbapA, K96243ΔbapB, K96243ΔbapC and K96243ΔbapBC strains (cont.).

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’ – 3’)*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT6179</td>
<td>TATTACGAGTCGGGGCTGAATCCGC</td>
<td>Forward primer for amplification of the 775-bp 3’ downstream region of bapC, containing a native Sall site</td>
</tr>
<tr>
<td>JT6180</td>
<td>GGGCCCGTGCAGGGATCGCTGGTGAATTCTGTTTC</td>
<td>Reverse primer for amplification of the 775-bp 3’ downstream region of bapC, specifying a Sall site</td>
</tr>
<tr>
<td>JT6177</td>
<td>GGGCCCGCATGCCTGCACATCGAACGTTCG</td>
<td>Forward primer for amplification of the 448-bp 3’ region of bapA and the 5’ region of bapB, specifying an SphI site</td>
</tr>
<tr>
<td>JT6074</td>
<td>CGATCGAAATCGTCCAGCCG</td>
<td>Reverse primer for amplification of the 448-bp 3’ region of bapA and the 5’ region of bapB, containing a native SphI site</td>
</tr>
<tr>
<td>JT6279</td>
<td>CTTCTGTTTTCTATCAGCTGTCGCTTCG</td>
<td>Forward primer for amplification of the MCS of the pDM4 vector</td>
</tr>
<tr>
<td>JT6280</td>
<td>TGTGGAATTTGTGAGCGGATAA</td>
<td>Reverse primer for amplification of the MCS of the pDM4 vector</td>
</tr>
<tr>
<td>MC3325</td>
<td>CGGCCTTAGATCTAGGTCTGGTAGTCG</td>
<td>Forward primer at the 5’ end of tetA(C) cassette derived from pUTminiTn5Tc</td>
</tr>
<tr>
<td>MC4629</td>
<td>TCCAACAGATCATTTTGGCCAGCTACCTTGGTG</td>
<td>Reverse primer at the 3’ end of tetA(C) cassette derived from pUTminiTn5Tc</td>
</tr>
<tr>
<td>NA5116</td>
<td>ATCAGGGACAGCCTTCAAGGA</td>
<td>Primer for amplification out of the 3’ end of tetA(C) cassette</td>
</tr>
<tr>
<td>NA5424</td>
<td>GCTGTCGGAATGGACGATAT</td>
<td>Primer for amplification out of the 5’ end of tetA(C) cassette</td>
</tr>
<tr>
<td>JT6376</td>
<td>GGGCCCGCCGGAACCTTGCTGAGTCGACTCGAGCCTTGGA</td>
<td>Forward primer for amplification of the 5’ region of bapA, specifying an Xmal site</td>
</tr>
<tr>
<td>JT6073</td>
<td>ATGCGGGTGATGCAGGGTGAT</td>
<td>Forward primer at the 3’ end of bapA</td>
</tr>
<tr>
<td>JT6321</td>
<td>GGGCCCGCCGGAAGATCGTGCCGATCGGAACGCGC</td>
<td>Reverse primer at the 5’ end of bapC, specifying an Xmal site</td>
</tr>
<tr>
<td>JT6640</td>
<td>GGGCCCGAGATCTGATGGATTGCTCGACCTAAGCAG</td>
<td>Forward primer in the middle of bapB, specifying a BglII site</td>
</tr>
</tbody>
</table>

*Underlined sequences indicate added restriction sites.
Table 2.3 Primers used to generate complementation constructs in the *B. pseudomallei* plasmid pBHR1 and the site-specific transposon containing vector pUC18Tmini-Tn7T.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’ – 3’)*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT6100</td>
<td>GGGCCCGTACCACAGCTGATA GAAACAGAAGCCACT</td>
<td>Forward primer for amplification across the chloramphenicol acetyltransferase (cat) gene conferring chloramphenicol resistance, specifying a KpnI site</td>
</tr>
<tr>
<td>JT6101</td>
<td>GGGCCCGTACCATCATTATTC AGGCGTAGCAACCA</td>
<td>Reverse primer for amplification across the chloramphenicol acetyltransferase (cat) gene conferring chloramphenicol resistance, specifying a KpnI site</td>
</tr>
<tr>
<td>JT6102</td>
<td>GGGCCCTCGAGGACGTCACG GACACCGC</td>
<td>Forward primer for amplification of the full length bapA gene together with the predicted native promoter, specifying a PstI site</td>
</tr>
<tr>
<td>JT6104</td>
<td>GGGCCCACTAGTGCAGGCGTCGCT CAGATGC</td>
<td>Reverse primer for amplification of the full length bapA gene together with the predicted native promoter, specifying a SpeI site</td>
</tr>
<tr>
<td>JT6105</td>
<td>CTGCAGACGCTACGGACACCG C</td>
<td>Forward primer for amplification of the full length bapA, bapB and bapC, specifying a PstI site</td>
</tr>
<tr>
<td>JT6106</td>
<td>GGGCCACTAGTTCCTCGTCACCC GCTCAC</td>
<td>Reverse primer for amplification of the full length bapA, bapB and bapC, specifying a SpeI site</td>
</tr>
<tr>
<td>JT6071</td>
<td>CCGCCGTCCATTCACCGAACTT</td>
<td>Forward primer for amplification of a 634-bp section of the 5’ end of bapA</td>
</tr>
<tr>
<td>JT6072</td>
<td>TGGCGTAACCTTTGGCCCTC</td>
<td>Reverse primer for amplification of a 634-bp section of the 5’ end of bapA</td>
</tr>
<tr>
<td>JT6077</td>
<td>CGTTCGCGATCGGACATCGTA</td>
<td>Forward primer for amplification of a 478-bp section of bapC</td>
</tr>
<tr>
<td>JT6078</td>
<td>TCCTCGATACGAGCCCGG</td>
<td>Reverse primer for amplification of a 478-bp section of bapC</td>
</tr>
<tr>
<td>JT6183</td>
<td>TTTGCTGAGGTCCAGGACCCCAT</td>
<td>Forward primer used for nucleotide sequencing of bapA</td>
</tr>
<tr>
<td>JT6184</td>
<td>TCGTTCCACTGCGAGGCTT</td>
<td>Reverse primer used for nucleotide sequencing of bapA</td>
</tr>
<tr>
<td>JT6185</td>
<td>TCGTCAGGACCACCGAGGT</td>
<td>Forward primer used for nucleotide sequencing of bapA</td>
</tr>
<tr>
<td>JT7065</td>
<td>GGGCCGAATTTCGATCCGA AGCAACCAGCAAG</td>
<td>Forward primer used for amplification of the full length bapA including the predicted native promoter, specifying an EcoRI site</td>
</tr>
<tr>
<td>JT7066</td>
<td>GGGCCCAAGTTCGCTGCGTGTCG TGTCGTCGTCGTCG</td>
<td>Reverse primer used for amplification of the full length bapA including the predicted native promoter, specifying an AclI site</td>
</tr>
</tbody>
</table>

Underlined sequences indicate added restriction sites.
Table 2.3 Primers used to generate complementation constructs in the \textit{B. pseudomallei} plasmid pBHR1 and the site-specific transposon vector pUC18Tmini-Tn7T (cont.).

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’ – 3’)*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT7171</td>
<td>GGGCCCGAATTCCGGCAGCA GCGATGACGGCCGCCC</td>
<td>Forward primer used for amplification of the full length \textit{bapB}, specifying an \textit{EcoRI} site</td>
</tr>
<tr>
<td>JT7172</td>
<td>GGGCCCAACGTGTCGCTCCCC GAATCGTCCG</td>
<td>Reverse primer used for amplification of the full length \textit{bapB}, specifying an \textit{AcII} site</td>
</tr>
<tr>
<td>JT7173</td>
<td>GGGCCCGAATTCCGGCAGCA GCGGACGATTCCGGGAGG</td>
<td>Forward primer used for amplification of the full length \textit{bapC}, specifying an \textit{EcoRI} site</td>
</tr>
<tr>
<td>JT7174</td>
<td>GGGCCCAACGTGTCGCTCCCC GCCTCCTCGATCAGCGCCC</td>
<td>Reverse primer used for amplification of the full length \textit{bapC}, specifying an \textit{AcII} site</td>
</tr>
<tr>
<td>JT7080</td>
<td>GGGCCCATAAACTGCTTAAAAA AATTA</td>
<td>Forward primer for amplification of the chloramphenicol resistance gene of pBHR1</td>
</tr>
<tr>
<td>JT7081</td>
<td>GGGCCGATATTTTTTGAGTTAT CGAGAT</td>
<td>Reverse primer for amplification of the chloramphenicol resistance gene of pBHR1</td>
</tr>
<tr>
<td>MC6028</td>
<td>GGGGCAAGCTTCTTTTCGAGGCA GCGGGTTGAAATT</td>
<td>Forward primer upstream of the \textit{glmS2} promoter of pUC18Tmini-Tn7T::\textit{cat}::\textit{P}_{glmS2}:: \textit{bapA}, specifying a \textit{HindIII} site</td>
</tr>
<tr>
<td>PA6067</td>
<td>AGTAGGACAATAATCGCCCGCT</td>
<td>Forward primer outside of the pUC18Tmini-Tn7T MCS</td>
</tr>
<tr>
<td>PA6068</td>
<td>ATCTGGTTGGCCTGCAAGGC</td>
<td>Reverse primer outside of the pUC18Tmini-Tn7T MCS</td>
</tr>
<tr>
<td>PA6211</td>
<td>GAATGCACGTGTCGACTTCAT</td>
<td>Forward primer for amplification of downstream region of \textit{B. pseudomallei glmS2}</td>
</tr>
<tr>
<td>PA6212</td>
<td>CAGAACCAGCGAGCCCGTGTGT</td>
<td>Reverse primer for amplification of downstream region of \textit{B. pseudomallei glmS2}</td>
</tr>
<tr>
<td>PA6271</td>
<td>GGGCTGACTATCCGATCTC</td>
<td>Forward primer for amplification of downstream region of \textit{B. pseudomallei glmS1}</td>
</tr>
<tr>
<td>PA6272</td>
<td>AGAGTGGGTCGAGCGACAAC</td>
<td>Reverse primer for amplification of downstream region of \textit{B. pseudomallei glmS1}</td>
</tr>
<tr>
<td>PA6273</td>
<td>GCTCGCGTCTCTGACGATAA</td>
<td>Forward primer for amplification of downstream region of \textit{B. pseudomallei glmS3}</td>
</tr>
<tr>
<td>PA6274</td>
<td>CGATCACGCTGCTTGGCTG</td>
<td>Reverse primer for amplification of downstream region of \textit{B. pseudomallei glmS3}</td>
</tr>
<tr>
<td>PA6229</td>
<td>ATATCGTGCGAAAAAGGATGG ATAT</td>
<td>Forward primer for amplification of a section surrounding the mini-Tn7 \textit{oriT}</td>
</tr>
<tr>
<td>PA6230</td>
<td>TGGTTTGTGTTGCCGGATCAA</td>
<td>Reverse primer for amplification of a section surrounding the mini-Tn7 \textit{oriT}</td>
</tr>
</tbody>
</table>

*Underlined sequences indicate added restriction sites.
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’ – 3’)*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT6929</td>
<td>GGGCCCCCCTGGCCGGACCTCCTTCCCCTTCAACCAG</td>
<td>Forward primer for amplification of bopE, specifying an XmaI site</td>
</tr>
<tr>
<td>JT6930</td>
<td>GGGCCCACTAGTGCAGCCGTCCGCCGGTTTCGT</td>
<td>Reverse primer for amplification of bopE, specifying an SpeI site</td>
</tr>
<tr>
<td>JT6931</td>
<td>CTAGTTGCGGCGAGCCTCTCTGAAAATGTGCTCAGCATGCCGACCTGCCGAGGTCATGGAGCCGGGCGGCGCTGAAA</td>
<td>Forward primer for generating the TC motif, and for cloning at an SpeI site</td>
</tr>
<tr>
<td>JT6932</td>
<td>CTAGTTAGCGGCGCCGGCTCCATGCAGCAGCCCAGCGAGCAGTGTCAGGAAAGCTGCGGCTGGA</td>
<td>Reverse primer for generating the TC motif, and for cloning at an SpeI site</td>
</tr>
<tr>
<td>JT7063</td>
<td>GGGCCCAACGTGGACCTCCTTCCCCTTCAACCAG</td>
<td>Forward primer for amplification of the full length bopE, specifying an AccI site</td>
</tr>
<tr>
<td>JT7064</td>
<td>GGGCCCCCCATGGCGCCGCTCCGCCGGTTTCGT</td>
<td>Reverse primer for amplification of the full length bopE, specifying an NcoI site</td>
</tr>
<tr>
<td>MC6028</td>
<td>GGGCCCATGGACCTCCTTGGCGCAAGCGGGTGAAATT</td>
<td>Forward primer upstream of the glmS2 promoter of pUC18Tmini-Tn7::tetA(C)::P glmS2::bopE, specifying a HindIII site</td>
</tr>
<tr>
<td>MC6029</td>
<td>GGGCCGAATTCGCGCGATGGTAGGAAT</td>
<td>Reverse primer upstream of the glmS2 promoter of pUC18Tmini-Tn7::tetA(C)::P glmS2::bopE, specifying an EcoRI site</td>
</tr>
<tr>
<td>JT7125</td>
<td>GGGCCCAACGTGGATAGCAATTTACTGGTACCG</td>
<td>Forward primer for amplification of the fragment containing the glmS2 promoter, bopE tagged with TC motif and two terminators, from the mini-Tn7 construct, specifying an AccI site</td>
</tr>
<tr>
<td>JT7126</td>
<td>GGGCCCCCATAGGATCGATAGCTTAAATT</td>
<td>Reverse primer for amplification of the fragment containing the glmS2 promoter, bopE tagged with TC motif and two terminators, from the mini-Tn7 construct, specifying an NcoI site</td>
</tr>
<tr>
<td>JT7147</td>
<td>CGTTGCCGGCGAGCCTCTGAAACTGCTGAGATCAGCATGAAAGGGCGGCGCGCTGAAATT</td>
<td>Forward primer for generating the TC tag, and for cloning at an AccI site</td>
</tr>
<tr>
<td>JT7241</td>
<td>CGTTTTAGCGGCGCCGGCGGCTCCATGCAGCAGCCCAGCGAGCAGTGTCAGGAAAGCTGCGGCTGGAAGGCGGCGGCGCTGAAATT</td>
<td>Reverse primer for generating the TC tag, and for cloning at an AccI site</td>
</tr>
<tr>
<td>JT6079</td>
<td>CGGTATGTGGGTCTCTCCGAGCCT</td>
<td>Forward primer for amplification of bopE fragment</td>
</tr>
<tr>
<td>JT6080</td>
<td>CGAAACGCTCGGGCAACTG</td>
<td>Reverse primer for amplification of bopE fragment</td>
</tr>
</tbody>
</table>

Underline indicates nucleotides specifying restriction sites.
Table 2.4 Primers used to generate constructs for FlAsH experiments (cont.).

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’ – 3’)*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT7472</td>
<td>TGACCTTACACCCCGAGAATCG</td>
<td>Forward primer specific for amplification of \textit{bopE} for real-time RT-PCR</td>
</tr>
<tr>
<td>JT7473</td>
<td>GATGCGCTTGATCTGTGTG</td>
<td>Reverse primer specific for amplification of \textit{bopE} for real-time RT-PCR</td>
</tr>
<tr>
<td>JT7474</td>
<td>CACGATTGCGAAGTCATCAA</td>
<td>Forward primer specific for amplification of \textit{rpoA} for real-time RT-PCR</td>
</tr>
<tr>
<td>JT7475</td>
<td>GCCCTTTTCCACCTTGATCT</td>
<td>Reverse primer specific for amplification of \textit{rpoA} for real-time RT-PCR</td>
</tr>
</tbody>
</table>

*Underline indicates nucleotides specifying restriction sites.
Chapter 3

Involvement of BapA, BapB and BapC in the *in vivo* growth and virulence of *B. pseudomallei*
This chapter focuses on characterisation of the \textit{B. pseudomallei} genes \textit{bapA}, \textit{bapB} and \textit{bapC}, and analysis of their role in \textit{B. pseudomallei} growth \textit{in vivo} and virulence. The genes \textit{bapA}, \textit{bapB} and \textit{bapC} are located in the TTSS3 (\textit{bsa}TTSS) locus between \textit{bopE} and \textit{bipD}. The \textit{bopE} and \textit{bipD} genes encode the well-characterised TTSS3 effector and translocon proteins, respectively. Thus, the location of \textit{bapA}, \textit{bapB} and \textit{bapC} strongly suggests a role in \textit{B. pseudomallei} TTSS3 and therefore pathogenesis. Warawa and Woods (2005) reported an involvement of the TTSS3 in full virulence of \textit{B. pseudomallei} strain 1026b. However, the predicted TTSS3 effector genes \textit{bopA}, \textit{bopE}, \textit{bapA} and \textit{bapC} did not contribute to bacterial virulence in the hamster melioidosis model. Stevens and colleagues (2004), nonetheless, demonstrated partial attenuation of a \textit{B. pseudomallei} \textit{bopA} mutant in the BALB/c mouse melioidosis model. Thus host-specific and/or strain-specific factors contribute to bacterial virulence and disease outcome (Forbes \textit{et al.}, 2008; Gieseler \textit{et al.}, 2005). Therefore it was decided to further characterise the function of the TTSS3 genes \textit{bapA}, \textit{bapB} and \textit{bapC} with regard to the pathogenesis of \textit{B. pseudomallei} in the mouse model and define their role as possible TTSS3 effectors.

\section{Mutagenesis of \textit{bapA}, \textit{bapB} and \textit{bapC} by double cross-over allelic exchange}

In order to characterise \textit{bapA}, \textit{bapB} and \textit{bapC}, each of the genes was disrupted using double cross-over allelic exchange. The \textit{\lambda}-\textit{pir} dependent vector pDM4, which contains the \textit{sacB} gene for negative selection (Milton \textit{et al.}, 1996), was used to generate the mutagenesis constructs in \textit{E. coli} S17-1/\textit{\lambda}pir. Genomic DNA from \textit{B. pseudomallei} K96243 was amplified using specific primer pairs (Chapter 2, Table 2.2) to generate all DNA sections upstream and downstream of the target genes. For \textit{bapA} mutagenesis, a 1,565-bp internal fragment, located from base pair 890 to 2409, was removed in the mutant and replaced by the \textit{tetA}(C) gene. To generate the mutant construct, the primers MC5532 and MC5533 were used to amplify a 918-bp fragment from the 5’ region of \textit{bapA}, and MC5516 and MC5517 were used to amplify a 1,241-bp fragment encompassing the 3’ region of \textit{bapA} and the entire \textit{bapB} and \textit{bapC} genes. Both fragments were cloned into \textit{SpeI}/\textit{XbaI}-digested pDM4. For selection, the tetracycline resistance gene \textit{tetA}(C) was amplified from pUTminiTn5Tc using the primers MC3325 and NA4639 (Chapter 2, Table 2.2) and ligated into the \textit{BglII} site between the \textit{bapA} gene segments to generate the mutagenesis construct pDM4::\textit{bapA}::\textit{tetA}(C) (Figure 3.1.1). The mutagenesis construct was moved into
B. pseudomallei K96243 by conjugation, and tetracycline and sucrose resistant, and chloramphenicol sensitive colonies selected as potential double-crossover bapA mutants. Genetic verification of bapA mutagenesis was performed by PCR using three sets of primers (Figure 3.1.2). Two primer pairs JT6376/NA5424 and NA5116/JT6180 (Chapter 2, Table 2.2) were used to verify the insertion of tetA(C) within bapA. The first primer pair JT6376/NA5424 amplified the expected 1.8-kb fragment from the putative bapA mutant (Figure 3.1.2C, lane 2), but amplified no product from the wild-type strain (Figure 3.1.2C, lane 3). Similarly, the primers NA5116 and JT6180 produced the expected 1.6-kb fragment from the putative bapA mutant (Figure 3.1.2C, lane 5), but amplified no product from the wild-type strain (Figure 3.1.2C, lane 6) or the reaction with no DNA added (Figure 3.1.2C, lane 7). The deletion within bapA was confirmed using the primer pair JT6185/JT6104. PCR using these primers amplified the expected fragment from the wild-type strain (Figure 3.1.2C, lane 10), but not the putative bapA mutant (Figure 3.1.2C, lane 9). The identity of each of the amplified PCR products was confirmed by nucleotide sequencing (data not shown). Therefore, these analyses confirmed the presence of tetA(C) within bapA and this mutant strain was designated as K96243ΔbapA (Chapter 2, Table 2.1).

In a similar manner, B. pseudomallei bapB and bapC mutants were generated using double-crossover allelic exchange. For bapB mutagenesis (Figure 3.1.3A), the tetA(C) gene was inserted at base pair 132 of bapB. To generate the mutant construct, the primers JT6156 and JT6157 (Chapter 2, Table 2.2) were used to amplify an upstream 1,093-bp product, encompassing the 3’ region of bapA and the 5’ region of bapB. This upstream fragment, containing native SphI sites, was ligated into SphI-digested pDM4. Clones were screened for insertion of the upstream fragment by PCR and then confirmed by nucleotide sequencing using the primers JT6279 and JT6280 (Chapter 2, Table 2.2) specific for amplification of the MCS of pDM4 vector (data not shown). A downstream 662-bp fragment, containing the 3’ region of bapB and the entire bapC gene, was amplified using the primers JT6175 and JT6176 (Chapter 2, Table 2.2) and subsequently ligated into SpeI-digested pDM4 containing the verified upstream fragment. Clones were screened and then verified for fragment insertion as described earlier (data not shown). For selection, as described in bapA mutagenesis, the tetA(C) gene was ligated into the central BglII site of pDM4 in order to generate pDM4::bapB::tetA(C) (Chapter 2, Table 2.1). This mutant construct was introduced by transformation into E. coli S17-1/λpir (Chapter 2.7) and then into B. pseudomallei strain K96243 by conjugation (Chapter 2.10). To verify the disruption of bapB, tetracycline and sucrose resistant, and chloramphenicol sensitive transconjugants were selected.
to perform PCR using two sets of primer pairs, JT6185/NA5116 and NA5424/JT6078 (Chapter 2, Table 2.2 and 2.3), which amplify from the middle of bapA to tetA(C) and from tetA(C) to the 3’end of bapC respectively. As expected, a fragment of 1.4-kb was amplified using genomic DNA of the bapB mutant with the primers JT6185/NA5116 (Figure 3.1.4A, lane 2), but not using genomic DNA of the wild-type strain (Figure 3.1.4A, lane 3) or from no DNA added control reaction (Figure 3.1.4A, lane 4). Similarly, a fragment of 977-bp was amplified with primers NA5424/JT6078 using the bapB mutant genomic DNA (Figure 3.1.4A, lane 5), but not using genomic DNA of the wild-type strain (Figure 3.1.4A, lane 6) or in the no DNA control (Figure 3.1.4A, lane 7). The minor products of 1.5-kb observed in both the bapB mutant and the wild-type strain were likely the result of non-specific amplification rather than contamination as there was no PCR product present in the no DNA control. The PCR products were verified by nucleotide sequencing (data not shown). Therefore, the bapB double cross-over mutant was confirmed and designated K96243ΔbapB (Chapter 2, Table 2.1).

For bapC mutagenesis (Figure 3.1.3B), the tetA(C) gene was inserted at base pair 90 of bapC. To generate the mutant construct, the primers JT6319 and JT6320 (Chapter 2, Table 2.2) were used to amplify an upstream 753-bp product, encompassing the 3’ region of bapA, the entire bapB and the 5’ region of bapC. This upstream fragment was then ligated into XmaI/SacI-digested pDM4. Clones were screened and then verified for fragment insertion as described above (data not shown). A downstream 775-bp fragment, containing native (5’ end) and additional (3’ end) SalI sites, respectively, was amplified using the primers JT6179 and JT6180 (Chapter 2, Table 2.2) and subsequently ligated into SalI-digested pDM4 containing the verified upstream fragment. Clones were screened and then verified for fragment insertion as described above (data not shown). The tetA(C) gene was subsequently ligated into the central BglII site in order to generate pDM4::bapC::tetA(C) (Chapter 2, Table 2.1). This mutant construct was introduced by transformation into E. coli S17-1/λpir (Chapter 2.7) and then into B. pseudomallei wild-type by conjugation (Chapter 2.10). Two sets of primer pairs, JT6185/NA5424 and NA5116/JT6080 (Chapter 2, Table 2.2, 2.3 and 2.4), were used for verifying the disruption of bapC in tetracycline and sucrose resistant, and chloramphenicol sensitive transconjugants. A fragment of 1.7-kb product was amplified from the middle of bapA to tetA(C) using genomic DNA of the bapC mutant with the primers JT6185/NA5424 (Figure 3.1.4B, lane 2), but not using genomic DNA of the wild-type strain (Figure 3.1.4B, lane 3) or in the no DNA control reaction (Figure 3.1.4B, lane 4). Similarly, a fragment of 1.6-kb was amplified from tetA(C) to downstream of bapC with primers NA5116/JT6080 using the bapC mutant genomic DNA (Figure 3.1.4B, lane
5), but not using genomic DNA of the wild-type strain (Figure 3.1.4B, lane 6) or in the no DNA control reaction (Figure 3.1.4B, lane 7). The PCR products were verified by nucleotide sequencing (data not shown). These PCR results also indicated that the tetA(C) gene orientation in this mutant was similar to the tetA(C) gene orientation in the K96243ΔbapA, but in an opposite direction to the K96243ΔbapB strain. The bapC double cross-over mutant was thus confirmed and designated K96243ΔbapC (Chapter 2, Table 2.1).

In addition to mutagenesis of bapA, bapB and bapC, a double bapB/bapC mutant was generated by double cross-over allelic exchange (Figure 3.1.5). The primers JT6177 and JT6074 (Chapter 2, Table 2.2) were used to amplify a 448-bp fragment encompassing the 3’end of bapA and the 5’end of bapB. This upstream fragment, containing additional (5’ end) and native SphI (3’ end) sites, was ligated into SphI-digested pDM4. Clones were screened and then verified for the presence of this fragment as described above (data not shown). The primers JT6179 and JT6180, containing native (5’ end) and additional (3’ end) SalI sites, were used to generate a 775-bp downstream fragment containing the 3’ end and downstream region of bapC. This fragment was subsequently cloned into SalI-digested pDM4 containing the verified upstream fragment. Clones were screened and then verified for fragment insertion as described above (data not shown). The tetA(C) gene was subsequently ligated into the central BglII site in order to generate pDM4::bapBC::tetA(C) (Chapter 2, Table 2.1). This mutant construct was introduced into E. coli S17-1/λpir and then into B. pseudomallei wild-type by conjugation (Chapter 2.10). Two sets of primer pairs, JT6185/NA5424 and NA5116/JT6080 (Chapter 2, Table 2.2, 2.3 and 2.4), were used for verifying the disruption of bapB/bapC in tetracycline and sucrose resistant, and chloramphenicol sensitive transconjugants (Figure 3.1.6). A 1.4-kb product was amplified from the middle of bapA to tetA(C) using genomic DNA of the bapBC mutant with the primers JT6185/NA5424 (Figure 3.1.6, lane 2), but not using genomic DNA of the wild-type strain (Figure 3.1.6, lane 3) or with the no DNA control (Figure 3.1.6, lane 4). Similarly, a fragment of 1.6-kb was amplified from tetA(C) to region downstream of bapC with the primers NA5116/ JT6080 using the bapBC mutant genomic DNA (Figure 3.1.6, lane 5), but not using genomic DNA of the wild-type strain (Figure 3.1.6, lane 6) or with the no DNA control (Figure 3.1.6, lane 7). The PCR products were verified by nucleotide sequencing (data not shown). Therefore, the double bapBC mutant was confirmed and designated K96243ΔbapBC (Chapter 2, Table 2.1).
3.2 The in vitro growth of the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains was indistinguishable from the wild-type strain

To investigate whether disruption of the target genes had affected the growth of B. pseudomallei, the in vitro growth rate of the mutants and the wild-type strain was determined in LB broth. There was no significant difference between the growth of any of the mutants and the wild-type strain (Figure 3.2.1).

3.3 The K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains show reduced growth rate in vivo compared to the wild-type strain

To examine the importance of bapA, bapB and bapC for the in vivo growth of B. pseudomallei, competitive growth assays were conducted in the BALB/c mouse infection model (Chapter 2.15). In brief, an equal amount of each of the mutants was mixed with the wild-type strain before intranasal inoculation into mice. The infection was allowed to proceed for 20 h at which time the mice were euthanised and spleens removed and homogenised before plating on LB agar. The competitive index (CI) was defined as the ratio of mutant to wild-type strains as determined by patching recovered bacteria onto LB with or without 25 μg/mL tetracycline. An average CI of less than 0.5 indicates a role for the inactivated gene in growth in vivo. The CI of the K96243ΔbapA strain was 0.31 ± 0.13, indicating partial attenuation (Figure 3.3.1). Similarly, the CI values for the K96243ΔbapB, K96243ΔbapC and K96243ΔbapBC strains were 0.17 ± 0.05, 0.28 ± 0.03 and 0.38 ± 0.15, respectively. These data indicate that these genes play a role in in vivo growth of B. pseudomallei.

3.4 Virulence trials in the BALB/c mouse infection model

To further examine the role of bapA, bapB and bapC in regards to B. pseudomallei pathogenesis, virulence trials were carried out in female BALB/c mice (Chapter 2.16). All mice infected with 10⁵ CFU of the wild-type B. pseudomallei were required to be euthanised within 80 h post infection (p.i.). In contrast, all but one of the seven mice infected with a similar dose of the K96243ΔbapB strain survived until the end of the experiment (240 h) (Figure 3.4.1A; P < 0.0001). Groups infected with the K96243ΔbapA, K96243ΔbapC and K96243ΔbapBC strains showed no difference in the total number of surviving mice (P > 0.05), but all showed a significant increase in time to death (Figure 3.4.1A; P < 0.05). Interestingly, the overall survival of mice infected with the K96243ΔbapB strain was significantly different from that of mice infected with the K96243ΔbapC or K96243ΔbapBC strains (Figure 3.4.1A; P < 0.05), whereas...
there was no significant difference between survival of mice infected with the K96243ΔbapC and K96243ΔbapBC strains (P > 0.05), indicating phenotypic similarity of both mutants as observed in the in vivo competitive growth assay (Figure 3.3.1). PCR analyses of colonies recovered from the K96243ΔbapA-infected mice using the primer pairs JT6376/NA5424 and NA5116/JT6180 (Figure 3.1.2) confirmed that the recovered colonies still contained the tetA(C) insertion in bapA (Figure 3.4.2A and Figure 3.4.2B). Moreover, PCR amplification of the bapA deletion region in the K96243ΔbapA strain using the primer pair JT6185/JT6104 (Figure 3.4.2C, lane 11) confirmed the deletion within bapA. Therefore, the K96243ΔbapA strain was still able to cause disease in the BALB/c mouse model, although at a slower rate than the wild-type strain. Similarly, PCR analyses from output colonies recovered from mice infected with the K96243ΔbapB (Figure 3.4.3), K96243ΔbapC (Figure 3.4.4) and K96243ΔbapBC (Figure 3.4.5) strains using the primer pairs as illustrated in Figure 3.1.4 and Figure 3.1.6 confirmed the retention of the tetA(C) insertion in these strains.

A similar pattern was seen with the mice infected with 10^7 CFU of the wild-type or the mutant strains (Figure 3.4.1B). All mice infected with the wild-type strain at this dose were euthanised within 42 h p.i., whereas groups infected with the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains showed a significant delay in time to death (P < 0.05). These data show that while each of the K96243ΔbapA, ΔbapB and ΔbapC strains can still cause disease, they do so less efficiently than the wild-type strain at either a medium (10^5 CFU) or high infectious dose (10^7 CFU). Furthermore, at a dose of 10^5 CFU the K96243ΔbapB strain showed significantly reduced lethality; the mutant also showed the lowest in vivo growth by competitive growth assay (Figure 3.3.1). Taken together, these data suggest that the TTSS3 genes bapA, bapB and bapC may play a minor role in B. pseudomallei virulence and in vivo survival.

3.5 Complementation of the bap mutant strains using pBHR1

To confirm that the reduced in vivo growth and attenuation of the K96243ΔbapA, ΔbapB and ΔbapC strains was due specifically to inactivation of the bap genes, each of the mutants was complemented with the full-length version of the appropriate gene cloned into the B. pseudomallei plasmid pBHR1 (Szpirer et al., 2001). Each of the complemented strains was then tested for restoration of in vivo growth or virulence by performing competitive growth assays and/or direct virulence trials in the BALB/c mouse infection model.
To generate the complementation constructs, the primers JT7065/JT7066 (bapA), JT7171/JT7172 (bapB) and JT7173/JT7174 (bapC) (Chapter 2, Table 2.3) were used to amplify fragments containing each of the full length wild-type genes from genomic DNA of the wild-type *B. pseudomallei*. KOD DNA polymerase was used for these PCRs (Appendix 3, Table A3.3). PCR products were digested with *Eco*RI/AclI and cloned into *Eco*RI/AclI-digested pBHR1, which are located in the *cat* gene of the pBHR1 (Figure 3.5.1A). Each of the *bap* genes was cloned with a native ribosomal binding site and are predicted to be transcribed from the *cat* promoter present in the vector. Correct constructs were identified by restriction digest analysis and confirmed by nucleotide sequencing (data not shown). Each of the complementation constructs was then transferred to the appropriate *B. pseudomallei* mutant strain by conjugation from *E. coli* S17-1/λpir. Tetracycline and kanamycin resistant, and chloramphenicol sensitive colonies were analysed for the presence of the complementing plasmid using PCR with the primer pair JT7080/JT7081 (Chapter 2, Table 2.3). These primers are specific for the chloramphenicol resistance cassette in pBHR1 and would amplify fragments of 3,400-, 1,000- and 1,300-bp, respectively, from pBHR1 containing *bapA*, *bapB* and *bapC* (Figure 3.5.1B). Eleven K96243Δ*bapA* colonies contained the *bapA* complementation plasmid (Figure 3.5.2, lane 2 to 12) and the clone in lane 9, designated K96243Δ*bapA*[bapA] (Chapter 2, Table 2.1), was chosen for further characterisation. Ten K96243Δ*bapB* colonies contained the *bapB* complementation plasmid (Figure 3.5.3, lane 2 to 11) and the clone in lane 6, designated K96243Δ*bapB*[bapB] (Chapter 2, Table 2.1), was chosen for further characterisation. Ten K96243Δ*bapC* mutant colonies contained the *bapC* complementation plasmid (Figure 3.5.4, lane 2 to 11) and the clone in lane 6, designated K96243Δ*bapC*[bapC] (Chapter 2, Table 2.1), was chosen for further characterisation. As a control, the empty plasmid pBHR1 was also transferred into the K96243Δ*bapA*, Δ*bapB* and Δ*bapC* strains, and the wild-type strain by conjugation, and again all analysed colonies contained the empty pBHR1. The clones in lane 4 (Figure 3.5.5), 4 and 9 (Figure 3.5.6), and 2 (Figure 3.5.7) were chosen for further experiments. These strains were designated K96243Δ*bapA*[pBHR1], K96243Δ*bapB*[pBHR1], K96243Δ*bapC*[pBHR1], and K96243[pBHR1] (Chapter 2, Table 2.1), respectively.

3.6 In vivo growth of the complemented mutant strains

To examine the importance of *bapA*, *bapB* and *bapC* for the *in vivo* growth of *B. pseudomallei*, competitive growth assays were conducted in the BALB/c mouse infection model (Chapter 2.15). In brief, an equal amount of each of the mutants was mixed with the wild-type strain before intranasal inoculation into mice. The infection was allowed to proceed for 20 h at which
time the mice were euthanised and spleens removed and homogenised before plating on LB agar. The ratio of mutant to wild-type was determined by patching one hundred recovered colonies onto LB with or without 25 μg/mL tetracycline, and the CI was defined as the ratio of mutant to wild-type bacteria in the output pool divided by the ratio of mutant to wild-type bacteria in the input pool. A CI value of less than 1.0, indicates that the mutant has a reduced ability to survive or replicate in vivo, suggesting that inactivation of the gene affects in vivo growth of the bacteria. The CI of the K96243ΔbapA strain was 0.31 ± 0.13, and, similarly, the CI values for the K96243ΔbapB, ΔbapC and ΔbapBC strains were 0.17 ± 0.05, 0.28 ± 0.03 and 0.38 ± 0.15, respectively (Figure 3.3.1). These data indicate that these genes play a minor role in the in vivo growth of B. pseudomallei.

Of the four mutant strains, the K96243ΔbapB strain had shown the lowest CI, suggesting the highest degree of involvement in bacterial growth (Chapter 3.3). Thus, the K96243ΔbapB[papB] strain was first used in a competitive growth assay with the wild-type strain versus the wild-type strain to determine whether the wild-type in vivo growth had been restored. The average CI of the K96243ΔbapB strain was 0.26 ± 0.07 (Figure 3.6.1A) which was not significantly different from the result obtained previously (0.17 ± 0.05; Chapter 3.3) (P > 0.05). The average CI of the K96243ΔbapB[pBHR1] strain was 0.41 ± 0.08 (Figure 3.6.1A), which was not statistically different from the original the K96243ΔbapB strain (P > 0.05). However, the average CI of the K96243ΔbapB[papB] strain was 0.87 ± 0.22 (Figure 3.6.1A), indicating at least partial restoration of the wild-type phenotype. There was a significant difference between the CIs of the K96243ΔbapB strain and those of the K96243ΔbapB[papB] strain (P = 0.0088). Although there was no significant difference between the CI of the K96243ΔbapB[pBHR1] strain and the K96243ΔbapB[papB] strain (P > 0.05), these data suggest partial restoration of the wild-type phenotype. For the K96243ΔbapC strain, the average CIs of the K96243ΔbapC, K96243ΔbapC[pBHR1] and K96243ΔbapC[papC] strains were 0.45 ± 0.08, 0.12 ± 0.03 and 0.40 ± 0.11, respectively (Figure 3.6.1B). Although the K96243ΔbapC strain showed no statistical difference from the K96243ΔbapC[papC] strain (P > 0.05), there was a significant difference when comparing the K96243ΔbapC[pBHR1] to the K96243ΔbapC[papC] strains (P < 0.05), indicating some level of wild-type phenotype restoration. In addition, the K96243ΔbapC strain showed a statistically significant difference from the K96243ΔbapC[pBHR1] strain which was opposite to what was found in the K96243ΔbapB strain. These in vivo growth data suggested that there may be some level of plasmid instability.
To determine whether the pBHR1 plasmid constructs used for complementation were stable, the level of plasmid loss was tested during growth in vitro. Overnight cultures of the bap mutants, the bap mutants harbouring pBHR1 and the complemented mutant strains were grown to an O.D.₆₀₀ of 0.6. Each of the strains was then inoculated into fresh LB broth without antibiotics and incubated at 37°C for 12 h and 20 h. At each time point, dilutions of the cultures were plated onto LB without antibiotics, and one hundred colonies were patched onto LB, LB containing 25 μg/mL tetracycline, and LB containing 25 μg/mL tetracycline and 1 mg/mL kanamycin. The percentage plasmid retention at each of the two different time points was calculated (Figure 3.6.2). For the K96243ΔbapB[pBHR1] strain, 64% of cells retained the plasmid after 12 h and 23% after 20 h. However, for the K96243ΔbapB[bapB] strain, only 9% of cells retained the plasmid after 20 h. The rate of plasmid retention for the K96243ΔbapC[bapC] and K96243ΔbapA[bapA] strains was even lower, with no retention of complementation plasmid at 20 h p.i. Therefore, these data suggest that the pBHR1-based plasmids are not stable in the absence of antibiotic selection, and plasmid loss would have negatively affected the in vivo competitive growth assays carried out with the K96243ΔbapB[bapB] and K96243ΔbapC[bapC] strains. Accordingly, the K96243ΔbapA[bapA] strain was not tested further. Moreover, low plasmid stability meant that these complemented strains could not be tested in virulence assays as these assays take up to 10 days. Complementation of the mutants with the integrative transposon vector pUC18Tmini-Tn7 (Choi et al., 2005) was therefore chosen as an alternative option (see Chapter 3.7).

3.7 Complementation of the bap mutants using the site-specific transposon vector pUC18Tmini-Tn7T

Due to the instability of pBHR1 in the absence of selection, the bapA, bapB and bapC genes were individually cloned into the site-specific transposon-containing vector pUC18Tmini-Tn7T as an alternative complementation approach (Figure 3.7.1). The mini-Tn7 transposon is known to insert into the B. pseudomallei chromosome downstream of one of the three glmS genes (Choi & Kim, 2009; Choi et al., 2006; Choi et al., 2005; Choi et al., 2008). The primer pairs JT6102/JT6104 and JT6105/JT6106 (Chapter 2, Table 2.3) were used to amplify the full length bapA or a fragment containing the entire bapA, bapB and bapC genes, respectively from the B. pseudomallei wild-type strain K96243. To optimise amplification of these long gene fragments, DMSO and betaine were added to the PCR reactions (Frey et al., 2008; Henke et al., 1997; Jensen et al., 2010). The optimum concentrations of DMSO and betaine were determined as 5% (v/v) and 2.5 M, respectively (data not shown). The amplified DNA fragments were then
ligated into a modified version of pUC18Tmini-Tn7T designated pUC18Tmini-Tn7T::P$	ext{glmS2}$ (Chapter 2, Table 2.1). This modified pUC18Tmini-Tn7T contains a strong B. pseudomallei promoter, P_{glmS2}, upstream of the multiple cloning site (MCS). Positive transformants were identified by PCR using the primer pair JT6071/JT6072 (Chapter 2, Table 2.3) which should amplify a 634-bp fragment from the 5’ end of bapA. A positive clone containing the bapA gene cloned in pUC18Tmini-Tn7T::P$	ext{glmS2}$ was selected (Figure 3.7.2, lane 17), and the nucleotide sequence of the insert determined (data not shown). The nucleotide sequence of the fragment was identical to the wild-type bapA sequence. Similarly, the primer pair JT6077/JT6078 (Chapter 2, Table 2.3), amplifying a 478-bp fragment of bapC, was used to screen for recombinant plasmids containing the entire bapA, bapB and bapC fragment. A positive clone containing this DNA fragment was identified (Figure 3.7.3, lane 20), and the insert was confirmed by nucleotide sequencing (data not shown). For selection in B. pseudomallei, the chloramphenicol acetyl transferase (cat) gene derived from the plasmid pDM4 was inserted into each of the complementation constructs. The cat gene was amplified using the primers JT6100 and JT6101 (Chapter 2, Table 2.3) and ligated into KpnI-digested pUC18Tmini-Tn7T::P$	ext{glmS2}$::bapA and pUC18Tmini-Tn7T::P$	ext{glmS2}$::bapABC (Chapter 2, Table 2.1). Colonies generated from this transformation were screened by patching onto LB agar containing 20 µg/mL chloramphenicol to verify their antibiotic resistance profiles. Chloramphenicol resistant colonies were confirmed as containing the chloramphenicol resistance gene by PCR using the primers JT6100/6101 (Chapter 2, Table 2.3). Plasmids which amplified the correct PCR product were selected (Figure 3.7.4A and Figure 3.7.4B) and then transferred into E. coli SM10/λpir. The, E. coli SM10/λpir strain and the E. coli SM10/λpir containing the helper plasmid pTNS3 (Chapter 2, Table 2.1) were added together in a three way conjugation (Chapter 2.10). Each of the conjugation mixtures was spotted on LB agar and incubated at 30°C for 2 days. The bacteria were then resuspended in 1 mL of sterile PBS, pH 7.4 and plated on LB agar containing 25 µg/mL tetracycline and 50 µg/mL chloramphenicol. However, in the first attempt, there was some bacterial growth on one of the negative control plates, so the minimum bactericidal concentration (MBC) for each antibiotic was determined using the broth microdilution technique (Chapter 2.11). The MBC for chloramphenicol against the wild-type B. pseudomallei was determined as 50 µg/mL; hence, the chloramphenicol selection was increased from 40 to 100 µg/mL. The conjugations were repeated, and transconjugants were selected on LB agar containing 25 µg/mL tetracycline and 100 µg/mL chloramphenicol. All transconjugants were patched to confirm their antibiotic resistance profile, and colonies with the correct profile. To verify the presence of the cat gene and confirm the integration of the mini-Tn7 into the genome
of *B. pseudomallei*, transconjugants were first analysed by PCR using the primers JT6100/JT6101 (Chapter 2, Table 2.3). All of the potential K96243\(\Delta\)bapA-bapA (Chapter 2, Table 2.1) transconjugants (Figure 3.7.6, lane 2 to 12) amplified PCR products identical to the positive control (Figure 3.7.6, lane 15), confirming the presence of the *cat* gene in *B. pseudomallei*. The mini-Tn7 vector can insert downstream of any of the *glmS* genes, but we have observed that the most common integration site is downstream of *glmS2* (Alwis *et al.* unpublished data). Therefore, we screened for insertion downstream of *glmS2* using two sets of primer pairs PA6211/PA6212 and JT6185/PA6212 (Chapter 2, Table 2.3; Figure 3.7.5). However, PCR products from all transconjugants were identical to those amplified from the wild-type strain (Figure 3.7.7), indicating that there was no insertion downstream of *glmS2*. PCR using the primer pair JT6185/PA6212 (Figure 3.7.5), amplifying an approximately 2,400-bp fragment, was additionally performed, and again all transconjugants (Figure 3.7.8, lane 2 to 12) showed a similar result to the K96243\(\Delta\)bapA strain (Figure 3.7.8, lane 13), confirming that there was no transposon integration after *glmS2*. The minor products of approximately 1,300- and 1,800-bp observed in both the potential K96243\(\Delta\)bapA-bapA transconjugants and the K96243\(\Delta\)bapA strain were likely the result of non-specific amplification rather than contamination as there was no PCR product amplification in the *E. coli* SM10/\(\lambda\)pir strain harbouring the modified mini-Tn7 construct (Figure 3.7.8, lane 14) or the no DNA control reaction (Figure 3.7.8, lane 15).

As *B. pseudomallei* contains three paralogous copies of *glmS*, names *glmS1, glmS2* and *glmS3*, the putative K96243\(\Delta\)bapA-bapA transconjugants were analysed using the oligonucleotides PA6271/PA6272 and PA6273/PA6274 (Chapter 2, Table 2.3; Figure 3.7.5A) to identify if the mini-Tn7 insertion had occurred downstream of *glmS1* (Figure 3.7.9) or *glmS3* (Figure 3.7.10), respectively. However, all of the transconjugants amplified PCR products identical to the wild-type and the K96243\(\Delta\)bapA strain, indicating that there was no insertion after either *glmS1* or *glmS3*. To confirm integration in the bacterial genome, Southern blotting (Chapter 2.26) was used to assess the putative K96243\(\Delta\)bapA-bapA transconjugants using a DIG-labelled probe specific for the deletion within *bapA*. The restriction endonuclease AclI was used to digest genomic DNA from the potential transconjugants. If transposon integration into the genome had occurred, a single hybridising fragment larger than approximately 3.3 Kbp should be detected (Figure 3.7.11A). Alternatively, if free plasmid was present a single band of 4.5 Kbp should be observed (the size of the hybridising AclI fragment in the pUC18Tmini-Tn7T::*P*\(_{glmS2}\)::bapA construct). However, all six tested clones demonstrated two hybridising bands of approximately
3,300- and 8,000-bp (Figure 3.7.11B, lane 1 to 6), which were absent in the K96243ΔbapA strain (Figure 3.7.11B, lane 7). These data clearly indicate that the transconjugants contained the complementing bapA fragment but the fragment sizes did not correlate precisely with either free plasmid or integrated transposon. Based on the sizes of the hybridising fragments, it is possible that the larger fragment corresponds to integrated transposon and the smaller fragment to either, a second site of genomic insertion or a free plasmid with a deletion in the hybridising AclI fragment. However, there was no evidence for mini-Tn7 insertion after glmS1, glmS2 or glmS3, clearly showing that no integration of the transposon had taken place at these sites. Taken together, these data suggested insertion of the complemented constructs into the genome but at sites other than those glmS downstream regions. Complementation of the K96243ΔbapB, K96243ΔbapC or K96243ΔbapBC strain using a mini-Tn7 construct was also attempted. Based on the bioinformatic data (Chapter 1, Figure 1.3.3) and the reverse transcription PCR (data not shown), bapA, bapB and bapC are co-transcribed. Thus, it was decided to complement each of the mutant strains with the pUC18Tmini-Tn7T::cat::PglmS2::bapABC construct (Chapter 2, Table 2.1) by conjugation as described earlier. All of the potential K96243ΔbapB-bapABC, K96243ΔbapC-bapABC and K96243ΔbapBC-bapABC transconjugants with the correct antibiotic profile were analysed by PCR using primers specific for the proposed regions of the mini-Tn7 insertion following glmS1, glmS2 and glmS3, previously for the putative K96243ΔbapA-bapA transconjugants. However, again all transconjugants amplified PCR fragments identical to the wild-type strain (data not shown), indicating that there was no insertion of the transposon after glmS1, glmS2 or glmS3 gene. However, PCR using the primer pair MC6229/MC6230 (Chapter 2, Table 2.3), which amplifies a section surrounding the pUC18Tmini-Tn7T oriT, amplified the correct sized product (Figure 3.7.12), indicating that the pUC18Tmini-Tn7T constructs were present in the B. pseudomallei recipient but possibly as non-integrated plasmids since oriT is generally not part of the transposon integration. Therefore, it was decided not to pursue any further attempts at complementation but rather to construct independent bapA, bapB, bapC and bapBC mutant strains and test their phenotypes in vivo (see Chapter 3.8).

3.8 Generation of independently derived bap mutant strains

Since complementation using either the replicating plasmid pBHR1 or the transposon vector pUC18Tmini-Tn7T was unsuccessful, it was decided to generate independently derived mutants and compare the phenotypes with the original mutants. Accordingly, mutants of B. pseudomallei were generated as described previously (Chapter 3.1). PCR analysis confirmed the independent
construction of double cross-over mutants (Chapter 2, Table 2.2). The primer pairs JT6376/NA5424 and NA5116/JT6180 (Figure 3.1.2A) were used to verify the tetA(C) insertion within bapA (Figure 3.8.1). The primer pairs JT6185/NA5116 and NA5424/JT6078 (Figure 3.1.4A) were used to confirm the tetA(C) insertion within bapB (Figure 3.8.2, left panel) and the tetA(C) insertion within bapC was confirmed using the primer pairs, JT6185/NA5424 and NA5116/JT6080 (Figure 3.1.4B; Figure 3.8.2, right panel). The independently derived K96243ΔbapA, K96243ΔbapB and K96243ΔbapC strains were designated K96243ΔbapA_2, K96243ΔbapB_2 and K96243ΔbapC_2 strains, respectively (Chapter 2, Table 2.1). The in vivo phenotypes of each of these mutants were then analysed using the BALB/c mouse infection model as described previously (Chapter 3.4).

All but one of the seven mice infected with 10^5 CFU of the wild-type strain were euthanised within 81 h p.i., which was consistent with the previous result (Chapter 3.4). Mice infected with 10^5 CFU of either the original K96243ΔbapA or K96243ΔbapA_2 strain showed a significant increase in time to death compared to the wild-type (Figure 3.8.3A; P = 0.0011). When comparing the survival of mice infected with the original K96243ΔbapA strain to mice infected with the K96243ΔbapA_2 strain, there was no significant difference (P > 0.05). PCR analyses from output colonies recovered from mice infected with either mutant using the primer pairs, as described earlier, revealed the retention of the tetA(C) insertion in these strains (data not shown). Therefore, these data strongly suggest that BapA plays a role in B. pseudomallei virulence but is not essential for virulence. Complementation is required to unequivocally confirm this.

In contrast, mice infected with 10^5 CFU of the K96243ΔbapB strain or K96243ΔbapB_2 strain exhibited no significant difference in survival time compared to the survival time of the wild-type infected mice (Figure 3.8.3B; P > 0.05). This result was different from the result obtained in the first animal trial with the K96243ΔbapB strain (Chapter 3.4). Colonies recovered from infected mice were analysed by PCR to determine whether there was any reversion of either mutant during the time course of the experiments. Two sets of primer pairs JT6185/NA5116 and NA5424/JT6078 (Chapter 2, Table 2.2 and 2.3) were used for PCR verification of the double cross-over mutagenesis, as described in Chapter 3.1, in the K96243ΔbapB and K96243ΔbapB_2 strains. All recovered colonies from mice infected with the K96243ΔbapB_2 (Figure 3.8.5A) or K96243ΔbapB (Figure 3.8.5B) still contained the bapB mutation since 1.4-kb products were amplified using the primers JT6185/NA5116. Similarly, 977-bp products were amplified with
primers NA5424/JT6078 from colonies recovered from mice infected with the K96243ΔbapB_2 (Figure 3.8.6A) or K96243ΔbapB (Figure 3.8.6B) strain.

Similar to the data obtained from the K96243ΔbapB strain, the time to death of mice infected with 10^5 CFU of the K96243ΔbapC strain or K96243ΔbapC_2 strain exhibited no significant difference from that of mice infected with the wild-type (Figure 3.8.3C; P > 0.05). PCR analyses of colonies recovered from infected mice using the primer pairs JT6185/NA5424 (Figure 3.8.7) and NA5116/JT6080 (Figure 3.8.8) confirmed that these output colonies remained genetically identical to the original K96243ΔbapC strain.

A similar pattern was observed with the mice infected with 10^7 CFU of the wild-type or mutant strains (Figure 3.8.4). Although two mice infected with the wild-type showed a delay in the time to death, the median survival of wild-type infected mice was similar to the data obtained from the previous trials (see Chapter 3.4). Mice infected with either the original K96243ΔbapA or the K96243ΔbapA_2 strain showed a delay in the time to death compared to mice infected the wild-type (Figure 3.8.4A; P = 0.0010), confirming the partial attenuation observed in these strains was likely due to inactivation of bapA or downstream gene. The time to death of mice infected with the original K96243ΔbapB or the K96243ΔbapB_2, nonetheless, exhibited no difference compared to mice infected with the wild-type strain (Figure 3.8.4B; P > 0.05). Groups of mice infected with the original K96243ΔbapC, the K96243ΔbapC_2 or the wild-type strain showed no significant difference in time to death (Figure 3.8.4C; P > 0.05). Taken together, these data indicate that bapA plays a role in the virulence of B. pseudomallei. However, the virulence trials carried out with the K96243ΔbapB and K96243ΔbapB_2 strains and the K96243ΔbapC and K96243ΔbapC_2 strains indicate that BapB and BapC do not play a clear role in virulence. These data were not in accordance with the original virulence trials on the K96243ΔbapB and K96243ΔbapC strains (Chapter 3.4). However, the PCR amplification of the strains from these second virulence trials confirmed that all the mutants were genetically correct. These data suggest that BapB and BapC are unnecessary for bacterial virulence.

3.9 Discussion

The TTSS3 (bsaTTSS) of B. pseudomallei is known to be required for full virulence of the bacterium, but only a small number of effectors have been characterised in any detail and shown to play a role in bacterial pathogenesis. In this chapter, the genes bapA, bapB and bapC,
encoding putative effectors of the TTSS3, were inactivated by insertional mutagenesis using a double cross-over allelic exchange approach and characterised for their function with regard to bacterial in vivo growth and virulence. By employing a BALB/c mouse model of acute B. pseudomallei infection, it was observed that two independently-derived bapA mutants showed reduced virulence as mice infected with these strains showed a slightly increased time to death. Several attempts to complement the bapA mutant strain, using two different approaches, were unsuccessful, but the similar attenuation of both independently derived bapA mutants strongly suggests that BapA plays a minor role in virulence. However, given that the last four bp of the bapA gene overlap with the first four bp of the bapB gene, it is possible that these genes may be translationally coupled and that inactivation of bapA may have polar effects resulting in altered production of BapB and/or BapC. Therefore, to confirm the importance of BapA in virulence the absence of downstream effects on BapB and BapC should be confirmed.

In contrast to BapA, BapB and BapC appear to play a minor role in B. pseudomallei growth in vivo, but their role in bacterial virulence remains inconclusive. The original K96243ΔbapB and ΔbapC strains exhibited different levels of attenuation in different virulence trials. In addition, the independently derived K96243ΔbapB_2 and ΔbapC_2 strains showed no attenuation. It is unclear why the original and independently derived mutant strains exhibited different attenuation levels. Two possible explanations for this are that additional mutations occurred outside the regions subjected to mutagenesis and/or different susceptibility to B. pseudomallei infection of mice in each of the virulence trials. The first virulence trials displayed a clear role for BapA, BapB and BapC in bacterial virulence when either medium (10^5 CFU) or high (10^7 CFU) infectious doses were used. The independently derived K96243ΔbapB_2 and ΔbapC_2 strains showed no attenuation but still showed reduced in vivo competitive growth. This suggests that the different levels of attenuation observed between trials may have been due to different susceptibility of the BALB/c mice used. Alternatively, it is possible that the mutant strains contained different secondary mutations that affected their virulence phenotypes. The presence of secondary mutations should be assessed by whole genome sequencing in future work.

Thus, in this study, the K96243ΔbapA, K96243ΔbapB and K96243ΔbapC strains showed an involvement in the in vivo growth of B. pseudomallei, and only the K96243ΔbapA showed a minor role in bacterial virulence. The BapA attenuation supports the notion that susceptibility to B. pseudomallei infection is different between different route of infections (Liu et al., 2002; Tan et al., 2008; Titball et al., 2008)
Several attempts were made to confirm that the altered virulence of the mutants was specifically due to inactivation of the specific bap genes; complementation was attempted using two different approaches. Although each of the plasmid-based complementation constructs was successfully generated, these complementation constructs were rapidly lost in the absence of antibiotic selection. Each of the mutants carrying an introduced intact gene was tested for in vivo growth in the BALB/c mouse model, and the K96243 ΔbapB[bapB] and ΔbapC[bapC] strains showed some restoration of in vivo growth phenotype. However, the virulence of the strains could not be tested properly due to the high rate of plasmid loss. Previous successful complementation using this plasmid (D'Cruze et al., 2011) has been restricted to in vitro studies, thus, allowing the maintenance of antibiotic selection. Complementation using the transposon integration vector pUC18Tmini-Tn7T was then attempted in order to overcome the instability of the pBHR1 constructs. However, despite being able to construct the complementation constructs within pUC18Tmini-Tn7T, the modified transposons did not integrate downstream of any of the three B. pseudomallei glmS genes as expected. Therefore, these studies were not pursued further.

BapB shares 36.84% identity to the acyl carrier protein AcpP from Saccharopolyspora erythraea (formerly known as Streptomyces erythraeus), a bacterium that produces erythromycin. Acp is an enzyme essential for transferring an acyl molecule during fatty acid biosynthesis (Byers & Gong, 2007; De Lay & Cronan, 2007). As fatty acids are essential components of lipopolysaccharide in Gram-negative bacteria, there may be an association of Acp with bacterial growth and membrane integrity. Thus, inactivation of Acp may affect growth and virulence of the bacteria. This could explain an association of bapB with the growth in vivo, and possibly virulence, of B. pseudomallei. In addition, BapB shares 33% identity to the TTSS acyl carrier protein IacP of Salmonella enterica serovar Typhimurium. IacP, encoded by Salmonella Pathogenicity Island 1 (SPI1), plays a role in bacterial virulence at least in part by modifying host actin for facilitating bacterial invasion during infection. Mice infected with the iacP mutant showed a delay in time to death, indicating a role of iacP in S. enterica serovar Typhimurium virulence (Kim et al., 2011) and perhaps a role of the TTSS acyl carrier proteins in bacterial virulence.

BapC shares 42% identity to the Salmonella typhi invasion protein IagB and both contain a lytic transglycosylase (LT) domain. IagB has been experimentally shown to have peptidoglycanase activity through zymogram analyses, but is not required for virulence in S. typhi (Zahrl et al., 2005). Specialised lytic transglycosylases (LTs) are known to have roles in promoting the
assembly of the needle-like apparatus of TTSS and the insertion through the bacterial peptidoglycan layer (Blackburn & Clarke, 2001; Yu et al., 2010b). However, the specialised bacterial LTs are sometimes redundant; thus, inactivation of a single LT is unlikely to affect bacterial virulence.

Warawa and Woods (2005) reported an important role for the TTSS3 in the virulence of *B. pseudomallei*. They assessed several putative effector genes, including *bopA*, *bopE*, *bapA* and *bapC*, by generating deletion mutants and then conducting virulence trials using a Syrian golden hamster model. The hamsters were infected intraperitoneally, the infection was allowed to continue for 2 days, and the LD$_{50}$ was then calculated. They found that none of the tested genes was required for bacterial virulence. However, Stevens *et al.* (2004) demonstrated an association of *bopA* with *B. pseudomallei* virulence using the BALB/c mouse model. Our previous study (Cullinane *et al.*, unpublished data) also supported the result of Stevens *et al.* (2004) that *bopA* can contribute to *B. pseudomallei* virulence in the BALB/c acute model. While there were some differences between the studies of Stevens *et al.* (2004) and Cullinane *et al.* (unpublished data), including the mutagenesis method, strains and infectious doses, the mutants from both studies exhibited similar degrees of attenuation. Therefore, there is precedence for different virulence levels between the Syrian golden hamster and BALB/c mouse melioidosis models. In addition, the outcome would clearly be affected by the route of infection. Intraperitoneal injection of the *bapA* mutant strain, as used by Warawa and Woods (2005), would bypass any interactions between the bacteria and the host mucosal surface, whereas the intranasal inoculation route used in this study does not. Thus, in this study, the two independently derived K96243Δ*bapA* strains showed reduced virulence in the BALB/c mouse model, supporting the notion that susceptibility to bacterial infection in each animal model and route of infection is different (Liu *et al.*, 2002; Tan *et al.*, 2008; Titball *et al.*, 2008). However, without complementation the possibility of secondary mutations in these Δ*bapA* strains cannot be entirely ruled out.

3.10 Conclusions

In this chapter, the *B. pseudomallei* genes *bapA*, *bapB* and *bapC* predicted to encode TTSS3 effector proteins were inactivated, and their roles in virulence and growth *in vivo* were assessed. Double cross-over allelic exchange was employed to generate mutants in each gene, and the mutants were then analysed by competitive growth assays and virulence trials in the BALB/c mouse infection model. In initial trials, all mutants showed an *in vivo* growth reduction and attenuation of virulence, indicating an involvement of the genes in both functions. Attempts were
made to complement each of the mutants; however, neither complementation using constructs in the replicating plasmid pBHR1 nor the transposon integration vector pUC18Tmini-Tn7T was successful. The pBHR1 constructs were unstable and were lost rapidly from the cells in the absence of antibiotic selection, while the mini-Tn7 constructs did not integrate into the genome at the expected sites. Thus, independently derived mutants were generated and the virulence trials repeated. Both the K96243\textit{ΔbapA} and \textit{ΔbapA}_2 strains showed significant attenuation, strongly suggesting an involvement of BapA in bacterial virulence. However, both K96243\textit{ΔbapB}_2 and K96243\textit{ΔbapC}_2 strains behaved differently from the original mutants, suggesting the presence of other mutations in these mutants or variation in bacterial susceptibility of the BALB/c mice in the different virulence trials. Further experiments should be conducted in order to prove these hypotheses. Sequencing and analysis of the genomes of the original mutant compared to the independent-derived mutant strains could help to identify if there was any difference in the genotypes of the bacterial strains which may contribute to the attenuation of bacterial virulence. Regenerating independent-derived K96243\textit{ΔbapB} and K96243\textit{ΔbapC} strains and then conducting the virulence trial in comparison to the original and the second independent-derived mutant strains could additionally test the hypothesis.
Figure 3.1.1 Generation of the *bapA* double-crossover mutagenesis construct in the suicide vector pDM4. The mutagenesis construct pDM4::*bapA::tetA*(C) was constructed by amplifying the upstream fragment (labelled ①) of *bapA* using the primer pair MC5532, containing a *Spe*II site, and MC5533, containing a *Bgl*II site. The downstream fragment encompassing the 3’ region of *bapA* and the entire *bapB* and *bapC* (labelled ②) was amplified using the primer pair MC5516, containing a *Bgl*II site, and MC5533, containing an *Xba*I site. Both fragments were cloned into pDM4, and *tetA*(C) was then inserted at the central *Bgl*II site. The mutated *bapA* gene is highlighted in blue. Arrows indicate the orientation of the genes and primers. Arrows designating oligonucleotides are not shown to scale.
Figure 3.1.2 Genetic organisation of the *bapA*, *bapB* and *bapC* region in the K96243Δ*bapA* (A) and wild-type (B) strains, and PCR analysis of the K96243Δ*bapA* strain (C). Panel A: The position of the *tetA*(C) insertion is shown in *bapA* and the *tetA*(C)-specific primers (NA5424 and NA5116) and *bapA*-specific (JT6376) and *bapC*-specific (JT6180) primers are shown above the genes together with the predicted sizes of PCR products. Panel B: Arrows show the position and length of the genes *bapA*, *bapB* and *bapC*, and the *bapA*-specific primers JT6185 and JT6104 together with the predicted size of the PCR product shown above the gene. Panel C: Gel electrophoresis of PCR products amplified using either K96243Δ*bapA* genomic DNA, wild-type genomic DNA or no DNA as template. Two primer pairs JT6376/NA5424 and NA5116/JT6180 (right panel) were used to verify the insertion of *tetA*(C) within *bapA*, and the primers JT6185 and JT6104 (left panel) were used to confirm the deletion within *bapA*. The gel image has been cut between lanes 9 and 10 to remove unnecessary lanes. Lane 1 and 8, DNA size markers; lane 2, 5 and 9, PCR products generated using three primer pairs as indicated and the K96243Δ*bapA* genomic DNA; lane 3, 6 and 10, PCR amplification generated using three primer pairs as indicated and the wild-type genomic DNA; lane 4, 7 and 11, no DNA controls. The mutated *bapA* gene is highlighted in blue. Arrows indicate the orientation of the genes and primers. Arrows designating oligonucleotides are not shown to scale. Different features are indicated: Δ*bapA*, the K96243Δ*bapA* strain; WT, the wild-type strain.
Figure 3.1.3 Generation of the bapB and bapC double-crossover mutagenesis constructs in the suicide vector pDM4. (A) The mutagenesis construct pDM4::bapB::tetA(C) was constructed by amplifying the upstream fragment (labelled ①) from the middle of bapA to the 5’ region of bapB using the primer pair JT6156 and JT6157, both containing native SphI sites. The downstream fragment encompassing the 3’ region of bapB and the entire bapC (labelled ②) was amplified using the primer pair JT6175 and JT6176, both containing SpeI sites. (B) The mutagenesis construct pDM4::bapC::tetA(C) was constructed by amplifying the upstream fragment (labelled ①) from the 3’ region of bapA encompassing the entire bapB and the 5’ region of bapC using the primer pair JT6319 and JT6320, both containing SacI sites. The downstream fragment (labelled ②) was amplified using the primer pair JT6179 and JT6180, containing native (5’ end) and additional (3’ end) SalI site. Upstream and downstream fragments of each of the constructs were cloned into pDM4, and tetA(C) was then inserted at the central BglII site. Mutated genes are highlighted in blue. Arrows indicate the orientation of the genes and primers. Arrows designating oligonucleotides are not shown to scale.
Figure 3.1.4 Genetic organisation of the bapA, bapB and bapC region in the K96243ΔbapB (A) and K96243ΔbapC (B) strains. The position of the tetA(C) insertion is shown and the tetA(C)-specific (NA5116 and NA5424), bapA-specific (JT6185), bapC-specific (JT6078) and bapC downstream-specific (JT6080) primers are shown above the genes together with the predicted sizes of PCR products. Gel electrophoresis of PCR products amplified using either K96243ΔbapB, K96243ΔbapC genomic DNA, wild-type genomic DNA or no DNA template. Lane 1, DNA size markers; lane 2 and 5, PCR products generated using the primer pairs as indicated and genomic DNA of both mutant strains; lane 3 and 6, PCR amplification generated using the primer pairs as indicated and the wild-type genomic DNA; lane 4 and 7, no DNA controls. Mutated genes are highlighted in blue. Arrows indicate the orientation of the genes and primers. Arrows designating oligonucleotides are not shown to scale. ΔbapB denotes the K96243ΔbapB strain; ΔbapC denotes the K96243ΔbapC strain and WT denotes the wild-type strain.
Figure 3.1.5 Generation of the double bapBC mutagenesis construct in the suicide vector pDM4. The mutagenesis construct pDM4::bapBC::tetA(C) was generated by amplifying the upstream fragment (labelled ①) from the middle of bapA to the 5' region of bapB using the primer pair JT6177 and JT6074, containing additional (5' end) and native (3' end) SphI site. The downstream fragment (labelled ②) was amplified using the primer pair JT6179 and JT6180, containing native (5' end) and additional (3' end) SalI site. Upstream and downstream fragments were cloned into pDM4, and tetA(C) was then inserted at the central BglII site. Mutated genes are highlighted in blue. Arrows indicate the orientation of the genes and primers. Arrows designating oligonucleotides are not shown to scale.

Figure 3.1.6 Genetic organisation of the bapA, bapB and bapC region in the K96243\(_\)bapBC strain. The position of the tetA(C) insertion is shown and the tetA(C)-specific (NA5116 and NA5424), bapA-specific (JT6185) and bapC downstream-specific (JT6080) primers are shown above the genes together with the predicted sizes of the PCR products. Gel electrophoresis of PCR products amplified using either K96243\(_\)bapBC genomic DNA, wild-type genomic DNA or no DNA control. Lane 1, DNA size markers; lane 2 and 5, PCR products generated using the primer pairs as indicated and genomic DNA of K96243\(_\)bapBC; lane 3 and 6, PCR amplification generated using the primer pairs as indicated and the wild-type genomic DNA; lane 4 and 7, no DNA controls. Mutated genes are highlighted in blue. Arrows indicate the orientation of the genes and primers. Arrows designating oligonucleotides are not shown to scale. \(_\)bapBC denotes the K96243\(_\)bapBC strain and WT denotes the wild-type strain.
Figure 3.2.1 Growth curves for the K96243 \(\Delta bapA \) (A), \(\Delta bapB \) (B), \(\Delta bapC \) (C) and \(\Delta bapBC \) (D) strains compared with the wild-type strain. Error bars represent the SEM from three independent experiments. \(\Delta bapA \) denotes the K96243 \(\Delta bapA \) strain; \(\Delta bapB \) denotes the K96243 \(\Delta bapB \) strain; \(\Delta bapC \) denotes the K96243 \(\Delta bapC \) strain; \(\Delta bapBC \) denotes the K96243 \(\Delta bapBC \) strain and WT denotes the wild-type strain.
Figure 3.3.1 Competitive in vivo growth indices for each of the mutant strains. Groups of seven mice were intranasally infected with an equal amount of the mutant mixed with the wild-type strain, which served as the input pool. Spleens were removed for recovery of bacteria which served as the output pool. The ratio of the mutant to the wild-type strain in input and output pools was analysed and used to calculate the CI. Each point on the graph indicates the competitive index (CI) measured in a single mouse. The horizontal marks show the average CI ± 1 SEM. ΔbapA denotes the K96243ΔbapA strain; ΔbapB denotes the K96243ΔbapB strain; ΔbapC denotes the K96243ΔbapC strain and ΔbapBC denotes the K96243ΔbapBC strain.
Figure 3.4.1 Kaplan-Meier survival curves of BALB/c mice infected intranasally with 10^5 CFU (A) or 10^7 CFU (B) of *B. pseudomallei* wild-type or each of the mutant strains. There was a significant difference in the time to death for mice infected with each of the mutant strains in comparison to the wild-type with either 10^5 or 10^7 CFU ($P < 0.05$). *$P < 0.05$, **$P < 0.001$. Δ*bapA* denotes the K96243 Δ*bapA* strain; Δ*bapB* denotes the K96243 Δ*bapB* strain; Δ*bapC* denotes the K96243 Δ*bapC* strain; Δ*bapBC* denotes the K96243 Δ*bapBC* strain and WT denotes the wild-type strain.
Figure 3.4.2 Representative PCR analyses of colonies recovered from mice infected with 10^5 CFU of the K96243ΔbapA strain using the primer pairs JT6376/NA5424 (A), NA5116/JT6180 (B) and JT6185/JT6104 (C). Lane 1, DNA size markers (bp); lane 2 to 10, PCR using genomic DNA from colonies recovered from three mice (3 colonies per mouse); lane 11, K96243ΔbapA genomic DNA; lane 12, wild-type genomic DNA; lane 13, no DNA control.
Figure 3.4.3 Representative PCR analyses of colonies recovered from mice infected with 10^5 CFU of the K96243ΔbapB strain using the primer pairs JT6185/NA5116 (A) and NA5424/JT6078 (B). Lane 1, DNA size markers (bp); lane 2 to 10, PCR using genomic DNA from colonies recovered from three mice (3 colonies per mouse); lane 11, K96243ΔbapB genomic DNA; lane 12, wild-type genomic DNA; lane 13, no DNA control.
Figure 3.4.4 Representative PCR analyses of colonies recovered from mice infected with 10^5 CFU of the K96243ΔbapC strain using the primer pairs JT6185/NA5424 (A) and NA5116/JT6080 (B). Lane 1, DNA size markers (bp); lane 2 to 10, PCR using genomic DNA from colonies recovered from three mice (3 colonies per mouse); lane 11, K96243ΔbapC genomic DNA; lane 12, wild-type genomic DNA; lane 13, no DNA control.
Figure 3.4.5 Representative PCR analyses of colonies recovered from mice infected with 10^5 CFU of the K96243 ΔabpBC strain using the primer pairs JT6185/NA5424 (A) and NA5116/JT6080 (B). Lane 1, DNA size markers (bp); lane 2 to 10, PCR using genomic DNA from colonies recovered from three mice (3 colonies per mouse); lane 11, wild-type genomic DNA; lane 12, K96243 ΔabpBC genomic DNA; lane 13, no DNA control.
Figure 3.5.1 Plasmid maps illustrating the empty pBHR1 vector (A) and the K96243 \(\Delta bapA[bapA] \) strain (B). Full length \(bapA \), derived from the \(B.\) pseudomallei wild-type strain, was cloned at the \(EcoRI \) (5') and \(AclI \) (3') sites. The primers JT7080/JT7081 were used for verification of the cloning. Full length \(bapB \) or \(bapC \), derived from the \(B.\) pseudomallei wild-type strain, were cloned into the same restriction sites in order to generate the K96243 \(\Delta bapB[bapB] \) or K96243 \(\Delta bapC[bapC] \) strains. Different features are indicated: Rep and Mob, \(rep \) and \(mob \) genes required for replication and mobilisation of pBHR1, respectively; Cat, chloramphenicol acetyl transferase gene; Kan, kanamycin resistance gene. Arrows indicate gene orientation.
Figure 3.5.2 PCR screening of potential K96243_\textit{bapA}[\textit{bapA}] using the primer pair JT7080/JT7081 to amplify the region flanking the \textit{EcoRI}/\textit{AclI} cloning sites of pBHR1. Lane 1, DNA size markers; lane 2 to 12, PCR products generated using genomic DNA of potential K96243_\textit{bapA}[\textit{bapA}] clones; lane 13, genomic DNA of \textit{E. coli} S17-1/\textit{pir} harbouring pBHR1::\textit{bapA} as the positive control; lane 14, genomic DNA of the K96243_\textit{bapA} strain; lane 15, genomic DNA of \textit{E. coli} S17-1/\textit{pir} harbouring empty pBHR1 vector; lane 16, no DNA control. The clone indicated by the black box in lane 9 was selected for further experiments.

Figure 3.5.3 PCR screening of potential K96243_\textit{bapB}[\textit{bapB}] using the primer pair JT7080/JT7081 to amplify the region flanking the \textit{EcoRI}/\textit{AclI} cloning sites of pBHR1. Lane 1, DNA size markers; lane 2 to 11, PCR products generated using genomic DNA of potential K96243_\textit{bapB}[\textit{bapB}] clones; lane 12, genomic DNA of \textit{E. coli} S17-1/\textit{pir} harbouring pBHR1::\textit{bapB} as the positive control; lane 13, genomic DNA of the K96243_\textit{bapB} strain; lane 14, no DNA control. The clone indicated by the black box in lane 6 was selected for further experiments.
Figure 3.5.4 PCR screening of potential K96243ΔbapC[ΔbapC] using the primer pair JT7080/JT7081 to amplify the region flanking the EcoRI/AcII cloning sites of pBHR1. Lane 1, DNA size markers; lane 2 to 11, PCR products generated using genomic DNA of potential K96243ΔbapC[ΔbapC] clones; lane 12, genomic DNA of E. coli S17-1/λpir harbouring pBHR1::ΔbapC as the positive control; lane 13, genomic DNA of the K96243ΔbapC strain; lane 14, no DNA control. The clone indicated by the black box in lane 6 was selected for further experiments.

Figure 3.5.5 PCR screening of potential K96243ΔbapA[pBHR1] using the primer pair JT7080/JT7081 to amplify a 700-bp product of the chloramphenicol resistance cassette of pBHR1. Lane 1, DNA size markers; lane 2 to 6, PCR products generated using genomic DNA of putative K96243ΔbapA[pBHR1] clones; lane 7, genomic DNA of the K96243ΔbapA strain; lane 8, E. coli S17-1/λpir containing pBHR1; lane 9, no DNA control. The clone indicated by the black box in lane 4 was selected for further experiments.
Figure 3.5.6 PCR screening of potential K96243\textit{AbapB}[pBHR1] clones and K96243\textit{AbapC}[pBHR1] clones using the primer pair JT7080/JT7081 to amplify a 700-bp product of the chloramphenicol resistance cassette of pBHR1. Lane 1, DNA size markers; lane 2 to 4 and 7 to 9, PCR products generated using genomic DNA of putative K96243\textit{AbapB}[pBHR1] and K96243\textit{AbapC}[pBHR1] clones, respectively; lane 5 and 10, \textit{E. coli} S17-1/\textit{pir} containing pBHR1; lane 6 and 11, genomic DNA of the K96243\textit{AbapB} and K96243\textit{AbapC} strains. The clones indicated by the black box in lane 4 and 9 were chosen for further experiments.

Figure 3.5.7 PCR screening of potential K96243[pBHR1] clones using the primer pair JT7080/JT7081 to amplify a 700-bp product of the chloramphenicol resistance cassette of pBHR1. Lane 1, DNA size markers; lane 2 to 11, PCR products generated using genomic DNA of the putative K96243[pBHR1] strains; lane 12, genomic DNA of the wild-type strain; lane 13, \textit{E. coli} S17-1/\textit{pir} containing pBHR1; lane 14, no DNA control. The clone indicated by the black box in lane 2 was selected for further experiments.
Figure 3.6.1 Competitive in vivo growth indices for the K96243ΔbapB[ΔbapB] (A) and K96243ΔbapC[ΔbapC] (B) mutants. Groups of seven mice were intranasally infected with an equal amount of the mutant mixed with the wild-type strain, which served as the input pool. Spleens were removed for recovery of bacteria which served as the output pool. The ratio of the mutant to the wild-type strain in input and output pools was analysed and used to calculate the CI. Each point on the graph indicates the competitive index (CI) measured in a single mouse. The horizontal marks show average CI ± 1 SEM. *P < 0.05. ΔbapB denotes the K96243ΔbapB strain; ΔbapB[pBHR1] denotes the K96243ΔbapB[pBHR1] strain; ΔbapB[ΔbapB] denotes the K96243ΔbapB[ΔbapB] strain; ΔbapC denotes the K96243ΔbapC strain; ΔbapC[pBHR1] denotes the K96243ΔbapC[pBHR1] strain; ΔbapC[ΔbapC], the K96243ΔbapC[ΔbapC] strain.

<table>
<thead>
<tr>
<th>Strains</th>
<th>% Plasmid retention (12 h p.i.)*</th>
<th>% Plasmid retention (20 h p.i.)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>K96243ΔbapA[ΔbapA]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K96243ΔbapA[pBHR1]</td>
<td>71</td>
<td>51</td>
</tr>
<tr>
<td>K96243ΔbapB[ΔbapB]</td>
<td>56</td>
<td>9</td>
</tr>
<tr>
<td>K96243ΔbapB[pBHR1]</td>
<td>64</td>
<td>23</td>
</tr>
<tr>
<td>K96243ΔbapC[ΔbapC]</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>K96243ΔbapC[pBHR1]</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

*p.i. = post inoculation.

Figure 3.6.2 %Plasmid retention at 12 and 20 hours post inoculation of the mutant strains containing appropriate complementation constructs or the empty plasmid pBHR1.
Figure 3.7.1 Plasmid maps illustrating the empty pUC18Tmini-Tn7T vector (A) and the complemented bapA mutant construct in pUC18Tmini-Tn7T (B). The primers PA6067/PA6068 amplifying the region flanking the cloning sites were used for screening and nucleotide sequencing. Different features are indicated: Tn7L and Tn7R, left and right end of Tn7; Cat, chloramphenicol acetyl transferase gene derived from pDM4 and cloned at the KpnI site; P\textsubscript{glmS2}, \textit{glmS2} promoter derived from the wild-type \textit{B. pseudomallei} strain and cloned at the HindIII (5') and EcoRI (3') sites; bapA, full length bapA derived from the wild-type strain and cloned at the PstI (5') and SpeI (3') sites; oriT, origin of conjugative transfer; T\textsubscript{1}T\textsubscript{0}, transcriptional terminators T\textsubscript{1} and T\textsubscript{0} from bacteriophage \textit{\lambda} and \textit{E. coli} \textit{rrnB} operon, respectively. Arrows indicate gene orientation.
Figure 3.7.2 PCR screening for *E. coli* DH5α harbouring pUC18Tmini-Tn7T::P_{glmS2}::bapA using the primer pair JT6071/JT6072. Lane 1, DNA size markers (bp); lane 2 to 21, PCR products generated using the primers JT6071 and JT6072 and plasmid DNA of *E. coli* DH5α strains harbouring putative pUC18Tmini-Tn7T::cat::P_{glmS2}::bapA clones; lane 22, genomic DNA from wild-type *B. pseudomallei* as the positive control; lane 23, no DNA control. The clone indicated by the black box in lane 17 was selected for further experiments.

Figure 3.7.3 PCR screening for *E. coli* DH5α harbouring pUC18Tmini-Tn7T::P_{glmS2}::bapABC using the primer pair JT6077/JT6078. Lane 1, DNA size markers (bp); lane 2 to 20, PCR products generated using the primers JT6077 and JT6078 and plasmid DNA of *E. coli* DH5α strains harbouring pUC18T mini-Tn7T::cat::P_{glmS2}::bapABC clones; lane 21, genomic DNA from wild-type *B. pseudomallei* as the positive control; lane 22, no DNA control. The clone indicated by the black box in lane 20 was selected for further experiments.
Figure 3.7.4 Gel electrophoresis of PCR products used to identify the insertion of the chloramphenicol acetyl transferase (cat) gene from pDM4 into the pUC18Tmini-Tn7T vector to generate the pUC18Tmini-Tn7T::cat::P glmS2::bapA (A) and pUC18Tmini-Tn7T::cat::P glmS2::bapABC (B). The primer pair JT6100/ JT6101 was used for this screening. Lane 1: DNA size markers (bp); lane 2 to 21, PCR products generated using the primers JT6100/JT6101 and plasmid DNA from E. coli DH5α harbouring putative pUC18Tmini-Tn7T::cat::P glmS2::bapA (A) or pUC18Tmini-Tn7T::cat::P glmS2::bapABC (B) plasmids; lane 22, plasmid DNA of pDM4 as a positive control; lane 23, no DNA control. The clones indicated by the black box were selected for further experiments.

Figure 3.7.5 Primers used for identification of the position of the Tn7 insertion in the putative K96243 ΔbapA-bapA strain after conjugation. Tn7 is proposed to insert following one of the B. pseudomallei glmS genes so primers downstream of each glmS gene were used. The primary site of insertions is generally following glmS2 (Choi et al., 2006). (A) Schematic representation of the wild-type gene glmS2 (BPSL1312) and its adjacent gene BPSL1313, wild-type glmS1 (BPSLO312) and its adjacent gene BPSLO311, and wild-type glmS3. The primer pairs PA6211/PA6212, PA6271/PA6272 and PA6273/PA6274 were used to identify if there was an insertion after glmS2, glmS1 or glmS3, respectively. (B) Schematic representation of the expected integration of the pUC18Tmini-Tn7T::cat::P glmS2::bapA construct into the bacterial chromosome after the glmS2 gene. Different features are indicated: Tn7L and Tn7R, left and right end of Tn7; cat, the chloramphenicol acetyl transferase gene; P glmS2, glmS2 promoter derived from the wild-type strain and cloned at HindIII (5’) and EcoRI (3’) sites; bapA, the bapA gene derived from the wild-type strain and cloned at PstI (5’) and SpeI (3’) sites; T1, T0, transcriptional terminators from bacteriophage λ, and E. coli rRNA operon, respectively. Two sets of primer pairs (PA6211/PA6212 and JT6185/PA6212) were used for screening the clones. Arrows indicate the orientation of primers. Arrows designating oligonucleotides are not shown to scale.
Figure 3.7.6 Gel electrophoresis of PCR products used to identify the presence of the chloramphenicol acetyl transferase (cat) gene in B. pseudomallei using the primer pair JT6100/JT6101. Lane 1: DNA size markers (bp); lane 2 to 12, PCR products using genomic DNA from the putative K96243ΔbapA-bapA transconjugants as template; lane 13, genomic DNA from the wild-type strain; lane 14, genomic DNA from the K96243ΔbapA strain; lane 15, genomic DNA from the E. coli SM10/λpir strain harbouring the modified mini-Tn7 construct as the positive control; lane 16, no DNA control.

Figure 3.7.7 Gel electrophoresis of PCR products used to identify the presence of the pUC18Tmini-Tn7T::cat::PglmS2::bapA insertion downstream of glmS2. The primers PA6211 and PA6212, amplifying a 1,100-bp fragment of the region between glmS2 (BPSL1312) and BPSL1313 genes, were used to determine if there was a transposon integration in that region. Lane 1: DNA size markers (bp); lane 2 to 12, PCR products using genomic DNA from the potential K96243ΔbapA-bapA transconjugants as template; lane 13, genomic DNA from the K96243ΔbapA strain; lane 14, genomic DNA from the wild-type strain; lane 15, no DNA control.
Figure 3.7.8 Gel electrophoresis of PCR products used to identify the presence of the pUC18Tmini-Tn7T::cat::P\textsubscript{glmS2}::bapA insertion downstream of \textit{glmS2}. The primers JT6185 and PA6212 were used to determine if there was a transposon integration in that region. Lane 1: DNA size markers (bp); lane 2 to 12, PCR products using genomic DNA from the potential K96243\textit{bapA-bapA} transconjugants as template; lane 13, genomic DNA from the K96243\textit{bapA} strain; lane 14, plasmid DNA from the \textit{E. coli} SM10/pir strain harbouring the pUC18Tmini-Tn7T::cat::P\textsubscript{glmS2}::bapA construct as the negative control; lane 15, no DNA control.

Figure 3.7.9 Gel electrophoresis of PCR products used to identify the presence of the pUC18Tmini-Tn7T::cat::P\textsubscript{glmS2}::bapA insertion downstream of \textit{glmS1}. The primers PA6271 and PA6272, amplifying an approximate 700-bp fragment of the region between \textit{glmS1} (BPSL0312) and its adjacent gene BPSL0311, were used to determine if there was a transposon integration in that region. Lane 1: DNA size markers (bp); lane 2 to 12, PCR products using genomic DNA from the potential K96243\textit{bapA-bapA} transconjugants as template; lane 13, genomic DNA from the K96243\textit{bapA} strain; lane 14, genomic DNA from the wild-type strain; lane 15, no DNA control.
Figure 3.7.10 Gel electrophoresis of PCR products used to identify the presence of the pUC18Tmini-Tn7T::cat::P$_{glmS2}$::bapA insertion downstream of $glmS3$. The primers PA6273 and PA6274, amplifying an approximate 700-bp fragment, were used to determine if there was a transposon integration in that region. Lane 1: DNA size markers (bp); lane 2 to 12, PCR products using genomic DNA from the potential K96243ΔbapA-bapA transconjugants as template; lane 13, genomic DNA from the K96243ΔbapA strain; lane 14, genomic DNA from the wild-type strain; lane 15, no DNA control.

Figure 3.7.11 Southern blot analysis of the putative K96243ΔbapA-bapA transconjugants. The primer pair JT6185/JT6104 amplifying the deletion fragment within bapA was used to generate a DIG-labelled probe for hybridising with AclI-digested genomic DNA from the potential transconjugants. (A) Schematic illustration showing where the deletion fragment is located in the K96243ΔbapA strain. The position of the DIG-labelled probe is shown above the bapA gene. (B) Southern blot. Lane 1 to 6, genomic DNA from the potential K96243ΔbapA-bapA transconjugants; lane 7, genomic DNA from the K96243ΔbapA strain as the negative control; lane 8, the DIG-labelled DNA size markers (bp); lane 9, DIG-labelled probe generated using the primers JT6185/JT6104 as the positive control. Arrows indicate the orientation of primers and genes. Arrows designating oligonucleotides are not shown to scale.
Figure 3.7.12 Gel electrophoresis of PCR products used to identify the presence of the oriT region of the pUC18Tmini-Tn7T::cat::P_glmS2::bapA construct using the primer pair MC6229/MC6230. Lane 1: DNA size markers (bp); lane 2 to 5, 6 to 9 and 10 to 13, PCR products using genomic DNA from the putative K96243 ΔbapB-bapABC, ΔbapC-bapABC and ΔbapBC-bapABC transconjugants, respectively; lane 14, genomic DNA from the K96243 ΔbapB strain; lane 15, genomic DNA from the K96243 ΔbapC strain; lane 16, genomic DNA from the K96243 ΔbapBC strain; lane 17, genomic DNA from the wild-type strain; lane 18, plasmid DNA from the E. coli SM10/λpir strain harbouring the empty mini-Tn7 vector as the positive control; lane 19, no DNA control.
Figure 3.8.1 Electrophoretic separation of PCR analyses of the K96243ΔbapA_2 clones. The primer pairs JT6376/NA5424 (left) and NA5116/JT6180 (right) were used to verify the disruption of \(bapA \) by the insertion of the tetracycline resistance gene \(\text{tet}A(C) \). Lane 1, DNA size markers (bp); lane 2 to 3 and 7 to 8, genomic DNA from two potential K96243ΔbapA_2 clones; lane 4 and 9, genomic DNA from the original K96243ΔbapA strain; lane 5 and 10, genomic DNA from the wild-type strain; lane 6 and 11, no DNA controls. The clone indicated by the black boxes in lane 2 and 7 was selected for further experiments.

Figure 3.8.2 Electrophoretic separation of PCR analyses of the K96243ΔbapB_2 (lane 2 to 9) and ΔbapC_2 (lane 10 to 17) clones. The primers, as indicated, were used to verify the disruption of \(bapB \) and \(bapC \) by the insertion of the tetracycline resistance gene \(\text{tet}A(C) \). Lane 1, DNA size markers (bp); lane 2 to 3 and lane 6 to 7, genomic DNA from two potential K96243ΔbapB_2 clones; lane 4 and 8, genomic DNA from the original K96243ΔbapB strain; lane 5 and 9, genomic DNA from the wild-type strain; lane 10 to 11 and lane 14 to 15, genomic DNA from two potential K96243ΔbapC_2 clones; lane 12 and 16, genomic DNA from the original K96243ΔbapC strain; lane 13 and 17, genomic DNA from the wild-type strain. The clones indicated by the black boxes in lane 3 and 7, and lane 10 and 14 were selected for further experiments.
Figure 3.8.3 Kaplan-Meier survival curves of BALB/c mice infected intranasally with 10^5 CFU of the K96243ΔbapA (A), ΔbapB (B), ΔbapC (C) or the wild-type strain. There was a significant difference in the time to death for mice infected with the bapA mutant and the K96243ΔbapA_2 strains in comparison to the wild-type with ($P < 0.05$). Mice infected with other mutants showed no difference in the time to death compared to mice infected the wild-type ($P > 0.05$). ΔbapA denotes the K96243ΔbapA strain; ΔbapA_2 denotes the K96243ΔbapA_2 strain; ΔbapB denotes the K96243ΔbapB strain; ΔbapB_2 denotes the K96243ΔbapB_2 strain; ΔbapC denotes the K96243ΔbapC strain; ΔbapC_2 denotes the K96243ΔbapC_2 strain; WT denotes the wild-type strain.
Figure 3.8.4 Kaplan-Meier survival curves of BALB/c mice infected intranasally with 10^7 CFU of the K96243ΔbapA (A), ΔbapB (B), ΔbapC (C) or the wild-type strain. There was a significant difference in the time to death for mice infected with the bapA mutant and the K96243ΔbapA_2 strains in comparison to the wild-type with ($P < 0.05$). Mice infected with other mutants showed no difference in the time to death compared to mice infected the wild-type ($P > 0.05$). ΔbapA denotes the K96243ΔbapA strain; ΔbapA_2 denotes the K96243ΔbapA_2 strain; ΔbapB denotes the K96243ΔbapB strain; ΔbapB_2 denotes the K96243ΔbapB_2 strain; ΔbapC denotes the K96243ΔbapC strain; ΔbapC_2 denotes the K96243ΔbapC_2 strain; WT denotes the wild-type strain.
Figure 3.8.5 Electrophoretic separation of representative PCR analyses of colonies recovered from mice infected with 10^5 CFU of the K96243ΔbapB 2 strain (A) or the original K96243ΔbapB (B) strain using the primer pair JT6185/NA5116. Lane 1, DNA size markers (bp); lane 2 to 10, PCR using genomic DNA from colonies recovered from three mice (3 colonies per mouse); lane 11, the original K96243ΔbapB as the positive control; lane 12, the wild-type strain; lane 13, no DNA control.

Figure 3.8.6 Electrophoretic separation of representative PCR analyses of colonies recovered from mice infected with 10^5 CFU of the K96243ΔbapB 2 strain (A) or the original K96243ΔbapB (B) strain using the primer pair NA5424/JT6078. Lane 1, DNA size markers (bp); lane 2 to 10, PCR using genomic DNA from colonies recovered from three mice (3 colonies per mouse); lane 11, the original K96243ΔbapB strain as the positive control; lane 12, the wild-type strain; lane 13, no DNA control.
Figure 3.8.7 Electrophoretic separation of representative PCR analyses of colonies recovered from mice infected with 10^5 CFU of the K96243ΔbapC-2 strain (A) or the original K96243ΔbapC (B) strain using the primer pair JT6185/NA5424. Lane 1, DNA size markers (bp); lane 2 to 10, PCR using genomic DNA from colonies recovered from three mice (3 colonies per mouse); lane 11, the original K96243ΔbapC strain as the positive control; lane 12, the wild-type strain; lane 13, no DNA control.

Figure 3.8.8 Electrophoretic separation of representative PCR analyses of colonies recovered from mice infected with 10^5 CFU of the K96243ΔbapC-2 strain (A) or the original K96243ΔbapC (B) strain using the primer pair NA5116/JT6080. Lane 1, DNA size markers (bp); lane 2 to 10, PCR using genomic DNA from colonies recovered from three mice (3 colonies per mouse); lane 11, the original K96243ΔbapC as the positive control; lane 12, the wild-type strain; lane 13, no DNA control.
Chapter 4

In vitro analyses of

BapA, BapB and BapC
Chapter 4: *In vitro* analyses of BapA, BapB and BapC

The TTSS3 plays an important role in *B. pseudomallei* pathogenesis, specifically intracellular survival and replication, and escape from the host endosome/phagosome (French et al., 2011). Upon activation of the TTSS3, the needle-like apparatus directly injects bacterial effector proteins into the host cell; these effectors modulate host cell function (Mota & Cornelis, 2005; Sun & Gan, 2010). So far, the proteins BopE, BopA and BopC are the only characterised effectors of *B. pseudomallei* and are known to play important roles in phagosome escape and intracellular survival (Cullinane et al., 2008; Gong et al., 2011; Muangman et al., 2011). Given that bapA, bapB and bapC are located in the same locus as bopE, bopA and bopC, indeed bapC is adjacent to bopE (Chapter 1, Figure 1.4.1), bapA, bapB and bapC are likely to be associated with TTSS3 function and may encode novel effector proteins. In this chapter, the protein products of these three genes were characterised using a range of *in vitro* phenotypic assays, specific for previous known TTSS3 functions (Cullinane et al., 2008; D'Cruze et al., 2011; Gong et al., 2011; Jones et al., 1996; Kespichayawattana et al., 2000; Muangsombut et al., 2008; Stevens et al., 2003; Stevens et al., 2002). The experiments in this chapter were carried out with the original K96243ΔbapA, K96243ΔbapB, K96243ΔbapC and K96243ΔbapBC strains. The experiments were performed prior to generation of the independently derived mutant strains.

4.1 BapA, BapB and BapC are not essential for bacterial invasion of the human lung epithelial cell line A549

Inhalation is a major route of infection by *B. pseudomallei* and the bacterium is able to invade respiratory epithelial cells (Jones et al., 1996; Muangman et al., 2011; Muangsombut et al., 2008; Stevens et al., 2002; Suparak et al., 2005). In addition, bioinformatic analysis of BapC indicated that it may function as a cell invasion protein. Thus, the lung epithelial cell line A549 was used to investigate the ability of the K96243ΔbapA, K96243ΔbapB and K96243ΔbapC strains to invade epithelial cells (*Chapter 2.17*). To ensure that the antibiotic combinations used for killing extracellular bacteria in all the *in vitro* assays were appropriate, the minimum bactericidal concentration (MBC) for each antibiotic was determined using the broth microdilution technique (*Chapter 2.11*). The MBC of kanamycin in combination with ceftazidime against all the mutants and the wild-type *B. pseudomallei* was 900 and 90 μg/mL, respectively (data not shown). Thus, this antibiotic combination was used for all further experiments.
The A549 monolayers were infected with each of the mutants, the wild-type strain or *E. coli* DH5α, as the negative control. After allowing the invasion to proceed for 2 h, extracellular bacteria were killed by antibiotic treatment and intracellular bacteria were liberated with Triton X-100 and enumerated. The average number of intracellular bacteria recovered from infection with the wild-type strain was 4.6 x 10⁴ CFU/mL, whereas no bacterial colonies were recovered from the *E. coli* DH5α infected cells, indicating clearly that the wild-type *B. pseudomallei* can invade A549 cells (*Figure 4.1.1; P = 0.0029*). The average number of intracellular bacteria recovered from K96243Δ*bapA*, Δ*bapB*, Δ*bapC* and Δ*bapBC* strain-infected A549 monolayers was 1.7, 2.5, 3.0 and 2.6 x 10⁴ CFU/mL, respectively. Among the four mutant strains, it is important to note that the K96243Δ*bapA* exhibited a 2.7-fold reduction of intracellular bacteria compared to the wild-type. However, due to the variability between experiments there was no statistical difference to that observed for the wild-type strain (*Figure 4.1.1; P > 0.05*). Thus, it is unlikely that the TTSS3 genes *bapB* and *bapC* play a role in invasion of non-phagocytic cells. However, *bapA* may play a minor role in this function and further intracellular survival experiments may be warranted to elaborate this possible role.

4.2 BapA, BapB and BapC are not required for intracellular survival and replication of *B. pseudomallei* in the murine macrophage-like cell line RAW264.7

Given that TTSS3 plays a role in the intracellular survival and replication of *B. pseudomallei* (*Burtnick et al., 2008; Stevens et al., 2002*), it was hypothesised that the *bap* genes might also be specifically involved in this function. To test this hypothesis, the wild-type and mutant strains were used to infect macrophage-like RAW264.7 cells for 2, 4 or 6 h. There was a significant increase in the number of wild-type, K96243Δ*bapB* and Δ*bapBC* bacteria recovered at 4 h p.i. compared to the number recovered at 2 h p.i. (*Figure 4.2.1; P < 0.05*). Similarly, the number of these strains recovered at 6 h p.i. was significantly greater than that observed at 2 h p.i. (*Figure 4.2.1; P < 0.05*). However, the K96243Δ*bapA* and Δ*bapC* strains did not show an increase in the number of intracellular bacteria either from 2 to 4 h p.i. or from 2 to 6 h p.i. (*Figure 4.2.1; P > 0.05*). Moreover, between 4 and 6 h p.i. the number of K96243Δ*bapA* and Δ*bapC* strains showed only a marginal increase whereas the K96243Δ*bapB* and Δ*bapBC* strains and the wild-type showed approximately a two-fold increase. Nevertheless, at 4 and 6 h p.i., there was no statistically significant difference in the number of intracellular bacteria recovered from the monolayers infected with the mutants compared to those infected with the wild-type. Therefore,
bapA, bapB and bapC do not appear to be required for intracellular survival, or bapA and bapC may indirectly be involved in this function.

4.3 BapA, BapB and BapC do not play a role in bacterial escape from host phagosome and actin-based motility

After internalisation, B. pseudomallei uses a variety of mechanisms to promote survival, including escape from host endosomal compartments into the host cytoplasm for replication, and polymerisation of host actin filaments for bacterial actin-mediated motility (Allwood et al., 2011; Galyov et al., 2010; Stevens et al., 2006). In addition, B. pseudomallei induces host cell fusion and multinucleated giant cell (MNGC) formation, thereby facilitating cell-to-cell spread without triggering any host immune response (Kespichayawattana et al., 2000). The TTSS3 is necessary for endosomal escape (Muangsombut et al., 2008) and thus also necessary for actin tail formation and MNGC formation (Burtnick et al., 2008; French et al., 2011; Suparak et al., 2005). The genes bipD and bopA, adjacent to bapA, bapB and bapC, have been shown to play a role in bacterial avoidance of killing by LC3-associated phagocytosis (LAP) and promoting bacterial escape from the phagosome (Cullinane et al., 2008; Gong et al., 2011). Furthermore, B. pseudomallei bipD and bsaZ mutants are unable to form host membrane protrusions and actin tails (Stevens et al., 2002) although these phenotypes are likely due to reduced phagosomal escape and lack of access to the cytoplasm. Thus, it was hypothesised that the TTSS3 genes bapA, bapB and bapC might also be involved in these functions. To test this hypothesis, a role in bacterial avoidance of LAP and/or susceptibility to canonical autophagy was determined by measuring bacterial co-localisation with LC3-GFP, a marker specific for LC3-associated phagocytosis (LAP) and canonical autophagy. Murine macrophage-like RAW264.7 cells stably expressing LC3-GFP were infected with the K96243ΔbapA, ΔbapB, ΔbapC, ΔbapBC or the wild-type strain as described previously (Chapter 2.19.1). Infected monolayers were fixed, stained and analysed for co-localisation of the bacteria with LC3-GFP (Figure 4.3.1A). Over the 6 h of infection, the wild-type strain showed a decrease in percentage of bacterial co-localisation with LC3-GFP puncta from 8% at 2 h p.i. to 3% at 6 h p.i. (Figure 4.3.1B), confirming that the wild-type strain can escape host phagosomes/autophagosomes. Similar to the wild-type, each of the mutants exhibited a decrease in percentage of bacterial co-localisation with LC3-GFP from 2 to 6 h p.i. (Figure 4.3.1B), indicating that each of the mutants was able to escape into the host cytoplasm. Therefore, BapA, BapB and BapC do not appear to play a role in endosomal escape of avoidance of LAP or canonical autophagy. At 6 h p.i., MNGC formation was also observed in RAW264.7 cells infected with each of the mutants or the wild-type strain (Figure 4.3.2). This
indicates that \textit{bapA}, \textit{bapB} and \textit{bapC} are not required for host cell fusion and MNGC formation by \textit{B. pseudomallei}. To further investigate any association of BapA, BapB and BapC with bacterial actin-based motility, RAW264.7 cells were infected with each of the mutants or the wild-type strain for 2, 4 and 6 h, and actin filaments of infected cells labelled with Alexa Fluor® 647-conjugated phalloidin (Chapter 2.19.2). At 6 h p.i., each of the mutant strains was able to form actin tails similar to the wild-type strain (Figure 4.3.3). Thus, it was concluded that \textit{bapA}, \textit{bapB} and \textit{bapC} do not play a role in actin-mediated motility of \textit{B. pseudomallei}.

4.4 Influence of BapA, BapB and BapC on host innate immune response

\textit{B. pseudomallei} possesses a number of strategies for altering host immune responses during infection, including suppression of nuclear factor-kappa B (NF-κB), a nuclear transcription factor controlling the expression of downstream molecules including cytokines and inducible nitric oxide synthase (iNOS) (Breitbach \textit{et al.}, 2006; Ulett \textit{et al.}, 2005; Wiersinga \\& van der Poll, 2009). The TTSS molecules of pathogenic bacteria have been shown to be both targets of and modulators of the host innate immune responses (Miao \\& Warren, 2010; Tan \textit{et al.}, 2010). The \textit{B. pseudomallei} TTSS3 has been suggested to function in regulating the secretion of TssM, which is an important virulence factor involved in NF-κB suppression (Tan \textit{et al.}, 2010). It is important to note that the kinetics of IL-6 and TNF-α produced by RAW264.7 cells infected with \textit{B. pseudomallei} has been previously shown to be \textit{bsaZ}-independent (Burtnick \textit{et al.}, 2008). Thus, in this study, \textit{bapA}, \textit{bapB} and \textit{bapC} were investigated a possible role in modulating the host immune response. To test this hypothesis, the production of two essential cytokines, tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which are produced during early and late stage responses to \textit{B. pseudomallei} infection (Ulett \textit{et al.}, 2000), were analysed following infection of RAW264.7 cells with either the mutant or wild-type strains. The levels of each cytokine secreted from infected cells at 2, 4 and 6 h p.i. were determined by ELISA (Figure 4.4.1). At 2 h p.i., the amount of TNF-α secreted from cells infected with the K96243\textit{A}bapB or K96243\textit{A}bapC strain was increased approximately two-fold higher than that secreted from cells infected with the wild-type strain (\(P < 0.05\)). However, cells infected with the K96243\textit{A}bapA strain showed no difference in TNF-α secretion from cells infected with the wild-type strain (\(P > 0.05\)). At 4 h p.i., only cells infected with the K96243\textit{A}bapBC strain showed a significant decrease in TNF-α secretion (2-fold) compared to cells infected with the wild-type strain (\(P < 0.05\)), whereas cells infected with each of other mutant strains showed no significant difference (\(P > 0.05\)). Similar to the result observed at 4 h p.i., at 6 h p.i., cells infected with the K96243\textit{A}bapBC strain again showed a decrease (2-fold) in TNF-α secretion compared to cells
infected with the wild-type strain \((P < 0.001)\), whereas cells infected with each of the other mutant strains showed similar TNF-\(\alpha\) secretion to cells infected with the wild-type strain \((P > 0.05)\). These data indicate that BapA does not play a role in stimulation of TNF-\(\alpha\) from RAW264.7 cells. However, they suggest that the combination of BapB and BapC may play a role early in infection and their combined loss results in decreased secretion levels at 4 and 6 h p.i.

The pattern of IL-6 secretion from cells infected with each of the mutants or the wild-type strain was also assessed \((\text{Figure 4.4.2})\). There was no difference in the amount of IL-6 secretion from cells infected with any of the mutant strains or uninfected cells at 2 h p.i. \((P > 0.05)\). However, at 4 h p.i., cells infected with the K96243\(\Delta\)bapBC strain exhibited an approximately two-fold lower decrease in IL-6 secretion than those infected with the wild-type strain \((P < 0.05)\) whereas cells infected with each of the other mutants showed similar IL-6 secretion to cells infected with the wild-type strain \((P > 0.05)\). At 6 h p.i., the amount of IL-6 secreted from cells infected with the K96243\(\Delta\)bapA, \(\Delta\)bapB or wild-type strain was similar \((P > 0.05)\). However, cells infected with the K96243\(\Delta\)bapBC strain again exhibited a decrease of approximately two-fold in IL-6 secretion compared to those infected with the wild-type strain \((P < 0.05)\) and the K96243\(\Delta\)bapC strain showed increased IL-6 production \((P < 0.05)\). From 2 to 4 h p.i. \((P < 0.05)\), a moderate increase of approximately five- to eight-fold was observed in the amount of IL-6 secreted from cells infected with the wild-type, K96243\(\Delta\)bapA, \(\Delta\)bapB or \(\Delta\)bapC strain while cells infected with the K96243\(\Delta\)bapBC strain showed a much smaller increase. However, a dramatic increase in IL-6 production was observed between 4 and 6 h p.i. \((P < 0.001)\) in all cells infected with the mutants or wild-type strain. Uninfected cells, as the negative control, showed no significant difference in IL-6 production from 2 to 6 h p.i. \((P > 0.05)\). Taken together, the alteration in secretion of both cytokines TNF-\(\alpha\) and IL-6 observed in cells infected with the K96243\(\Delta\)bapB, K96243\(\Delta\)bapC or K96243\(\Delta\)bapBC strain suggests that combined inactivation of bapB and bapC results in reduced stimulation of host innate immune response. The gene bapA, however, does not seem to play a major role in inducing host immune response as the cytokine secretion from cells infected with this mutant was indistinguishable from the wild-type strain at all time points.

4.5 Stimulation of RAW264.7 macrophage-like cell antibacterial activity with interferon-gamma (IFN-\(\gamma\))
The pro-inflammatory cytokine IFN-γ is associated with enhancing phagocytic and bactericidal activity of macrophages (Ellis & Beaman, 2004; Herbst et al., 2011; Schroder et al., 2004). During the early stage of *B. pseudomallei* infection, this cytokine appears to play an important role in inhibiting bacterial growth and enhancing the bactericidal activity of macrophages (Breitbach et al., 2006; Utaisincharoen et al., 2003; Utaisincharoen et al., 2004). IFN-γ can also stimulate autophagosome formation, thereby enhancing the ability to trap the bacteria within autophagosomal vacuoles during infection (Cullinane et al., 2008). Thus, colocalisation of the K96243ΔbapA, K96243ΔbapB, K96243ΔbapC and K96243ΔbapBC strains, and the wild-type strain with LC3-GFP following IFN-γ stimulation was assessed. Three-hour IFN-γ treatment of RAW264.7 cells before infection resulted in the highest bactericidal activity (data not shown). Therefore, these conditions were used to activate mouse macrophage-like RAW264.7 cells.

4.5.1 Intracellular survival of the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains within IFN-γ prestimulated RAW264.7 cells

IFN-γ prestimulated RAW264.7 macrophage-like cells were infected with each of the mutants or the wild-type strain. Intracellular bacteria were enumerated at 2, 4 and 6 h.p.i as described previously. The infecting doses of the mutant and the wild-type strains were similar. Cells infected with the K96243ΔbapC strain at 2 h, 4 h and 6 h.p.i. exhibited a decrease of approximately four-fold (*P* < 0.05), three-fold (*P* < 0.05) and eleven-fold (*P* < 0.0001) in the recovered CFU numbers compared to those infected with the wild-type strain (*Figure 4.5.1*). However, cells infected with each of other mutant strains showed no significant difference in the CFU numbers from those infected with the wild-type strain at all time points (*P* > 0.05). Although the number of wild-type bacteria continued to increase between 4 and 6 h.p.i., while the mutant strains did not, except for the K96243ΔbapC strain, there was no statistical difference in the number of intracellular bacteria recovered from RAW264.7 cells infected with each of the mutants compared to those infected with the wild-type strain at all time points. These data suggest that BapC plays a role in intracellular survival and replication in IFN-γ stimulated cells while BapA and BapB are not required for this function.

4.5.2 Prestimulation of RAW264.7 cells with IFN-γ promotes an increase in bacterial co-localisation with LC3-GFP

The proinflammatory cytokine IFN-γ functions as an autophagy inducer by, at least in part, enhancing LC3 production, supporting an important role of this cytokine in eliminating intracellular bacteria (Alonso et al., 2007; Cullinane et al., 2008). Indeed, IFN-γ can stimulate...
bacterial co-localisation with LC3-GFP (Cullinane et al., 2008), and recent evidence suggests that this is due to LC3 recruitment to *B. pseudomallei*-containing phagosomes and plays an important role in killing of intracellular *B. pseudomallei* (Gong et al., 2011). The TTSS3 proteins BipD and BopA have been demonstrated to delay this LAP process (Gong et al., 2011). Thus, in this study, IFN-γ was used to enhance LC3-GFP formation in murine macrophage-like RAW264.7 cells. The IFN-γ-pretreated cells were infected with the wild-type or mutant strains, and the co-localisation of intracellular bacteria with LC3-GFP was then determined by confocal laser scanning microscopy. The localisation of bacteria with LC3 at all time points examined was higher than observed in RAW264.7 cells without IFN-γ prestimulation, confirming that IFN-γ induces increased bacterial localisation with LC3, probably through increased LAP (compare Figure 4.5.2 with Figure 4.3.1). However, the level of bacterial co-localisation with GFP-LC3 at each of the time points was indistinguishable across all strains, indicating that these mutants retain the ability to evade host LAP and/or canonical autophagy, even under IFN-γ activation (Figure 4.5.2). Furthermore, supporting the previous results (see Chapter 4.3, Figure 4.3.3), all of the mutant and wild-type strains formed actin tails, confirming that they were able to escape from host phagosome and move by actin-mediated motility even in the IFN-γ-pretreated cells (data not shown). Finally, all strains were still able to form MNGCs by 6 h p.i., indicating that the mutants retain the ability to induce host cell fusion and cell-to-cell spread, even following IFN-γ stimulation (data not shown).

4.5.3 Cytokine secretion from IFN-γ pre-treated RAW264.7 macrophage-like cells following infection by the K96243ΔbapA, ΔbapB, ΔbapC or ΔbapBC strain

B. pseudomallei is capable of suppressing the host immune responses and therefore reducing the clearance of the bacteria. The proinflammatory cytokine IFN-γ, however, can activate bactericidal activity of phagocytic cells. Thus, to examine whether BapA, BapB or BapC were involved in the host immune suppression following IFN-γ stimulation, the production of TNF-α and IL-6 was analysed from IFN-γ-stimulated RAW264.7 cells that had been infected with the wild-type or mutant strains. The amounts of TNF-α (pg/mL) secreted at 2, 4 and 6 h p.i. were analysed by ELISA (Figure 4.5.3). All strains showed increased levels of TNF-α secretion, approximately 3- to 5-fold, at 4 h p.i. compared to 2 h p.i. (*P* < 0.05), but there was no difference in TNF-α secretion for any of the mutant strains in comparison with the wild-type strain (*P* > 0.05). At 4 h and 6 h p.i. again there was no difference in TNF-α secretion from cells infected
with any of the mutants or the wild-type strain ($P > 0.05$). These data may suggest that BapA, BapB and/or BapC do not have a role in TNF-α secretion following IFN-γ.

In contrast to TNF-α secretion, the expression of IL-6 revealed a different pattern (Figure 4.5.4). At 4 h p.i., the K96243ΔbapA, K96243ΔbapC and K96243ΔbapBC strain-infected, IFN-γ-stimulated, RAW264.7 cells displayed a slight decrease in IL-6 production compared to the cells infected with the wild type ($P < 0.05$). However, there was no difference in the level of IL-6 secretion from cells infected with the wild-type strain from that of cells infected with the K96243ΔbapB strain ($P > 0.05$). There was no significant difference in IL-6 secretion from IFN-γ-stimulated cells infected with any of the mutant or the wild-type strain at 6 h p.i. ($P > 0.05$).

All strains showed a moderate increase in levels of IL-6 production (approximately 6- to 12-fold) at 4 h p.i. compared to 2 h p.i. ($P < 0.05$) and a more substantial increase in IL-6 secretion at 6 h p.i. compared to 4 h p.i. (approximately 10- to 20-fold; $P < 0.05$). When compared to the data at 4 h p.i. obtained from untreated RAW264.7 cells (Chapter 4.4), IFN-γ-stimulated RAW264.7 cells infected with the wild-type ($P < 0.001$), K96243ΔbapA, ΔbapC or ΔbapBC ($P < 0.05$) strain produced more IL-6, at least a two-fold increase, than non IFN-γ-pretreated cells infected with any of these strains. However, there was no statistically significant difference between IFN-γ-pretreated and untreated cells infected with the K96243ΔbapB strain ($P > 0.05$).

4.6 Discussion

The TTSS3 of *B. pseudomallei* is essential for intracellular survival and persistence within the host. To understand the molecular mechanism(s) underlying the TTSS3 functions, it is essential to identify TTSS3 effector molecules and characterise their roles in modulation of host cell functions. In this chapter, the protein products of the TTSS3 genes *bapA, bapB* and *bapC* were investigated using several in vitro assays specific for known TTSS3 functions.

4.6.1 BapA, BapB or BapC are not involved in *B. pseudomallei* invasion of cultured A549 cells

To be able to cause infection, *B. pseudomallei* has evolved mechanisms for invading and surviving within many different host cell types (Jones et al., 1996; Wiersinga et al., 2006). The TTSS3 is a key mechanism required for full virulence of this bacterium as it plays a role in bacterial invasion, survival and replication within host cells, bacterial cell-to-cell spread and escape from host endosomes (Burtnick et al., 2008; D’Cruze et al., 2011; French et al., 2011; Gong et al., 2011; Muangman et al., 2011; Suparak et al., 2005). Two TTSS3 effectors BopE
and BipD of *B. pseudomallei* are involved in promoting bacterial internalisation, survival and replication within the host cells, and also bacterial escape into the host cytoplasm (Stevens *et al.*, 2002). Suparak *et al.* (2005) demonstrated a role for the TTSS3 translocon BipB in bacterial invasion of a human lung epithelial cell line A549. Recently, another *B. pseudomallei* TTSS3 effector molecule BopC, was shown to play a role in invasion of A549 cells (Muangman *et al.*, 2011). Furthermore, analysis of the gene expression profile of *B. pseudomallei* following infection of the human macrophage-like cell line U937 supported an involvement of the TTSS3 genes in early stages of the intracellular life cycle of this bacterium, including bacterial cell invasion (Chieng *et al.*, 2012). Thus, it was hypothesised that bapA, bapB and bapC, located in the TTSS3 locus, may be involved in cell invasion. To investigate this hypothesis, the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains were assessed for their ability to invade A549 cells. However, the K96243ΔbapB, ΔbapC and ΔbapBC strains were still able to invade A549 cells as efficiently as the wild-type strain, whereas invasion of the K96243ΔbapA strain was approximately 40% of the level of the wild-type; however, this difference was not statistically significant. Further experiments may be warranted to confirm or exclude this effect of BapA. Previous studies done by Stevens *et al.* (2003) and Muangman *et al.* (2011) reported reduced bacterial invasion to some extent when bipD and bsaQ, respectively, have been inactivated. These findings are similar to what was observed in the K96243ΔbapA strain, suggesting a similar pattern of the TTSS3 genes with regard to bacterial invasion even though it is important to state that bipD and bsaQ encode TTSS3 translocon and structural components respectively, whereas bapA is predicted to encode a putative effector. This indicates that bapB and bapC are not required for bacterial invasion whereas bapA may play a minor role.

Given that the TTSS of Gram-negative pathogens, such as *Salmonella*, *Shigella* and *B. pseudomallei* share significant similarities (Büttner, 2012; Tampakaki *et al.*, 2004), the functions of individual components should be comparable. The *Salmonella* TTSS protein IagB shares approximately 37% identity with BapC of *B. pseudomallei* and both contain a lytic transglycosylase (LT) domain (Koraimann, 2003); thus, it is possible that they play a similar role. However, the *Salmonella* iagB mutant showed a significant reduction in invasion efficiency in cultured epithelial cells (Blackburn & Clarke, 2001; Koraimann, 2003; Miras *et al.*, 1995; Zahrl *et al.*, 2005), whereas the K96243ΔbapC strain retained the ability to invade non-phagocytic cells. Such differences may be due to different survival strategies after internalisation of *B. pseudomallei* and *Salmonella* (Hybiske & Stephens, 2008; Justice *et al.*, 2008). After being internalised, *B. pseudomallei* employs, at least in part, the TTSS3 for escaping from host
endosomal vacuoles into the host cytoplasm (Burtnick et al., 2008; Gong et al., 2011). Salmonella, in contrast, employs a second TTSS, named the Salmonella Pathogenicity Island 2 (SPI2), for biogenesis and maintenance of a modified host endosome called Salmonella Containing Vacuole (SCV) (Ibarra & Steele-Mortimer, 2009). In addition, B. pseudomallei can suppress host innate immunity by stimulating less host reactive oxygen and nitrogen species which consequently allows the bacteria to persist within the host (Utaisincharoen et al., 2001). Similarly, the Salmonella SPI2 is required for suppression of host antimicrobial activity (Eriksson et al., 2003; Ibarra & Steele-Mortimer, 2009). Therefore, the role of their TTSSs with regard to bacterial pathogenesis has some clear differences. Importantly, B. pseudomallei has a putative BapC paralogue BPSL0006 protein encoded on its genome, whereas Salmonella has only one. Thus, these BapC proteins may be functionally redundant, and inactivation of a single bapC may be insufficient to show a reduction in invasion phenotype. Another possibility arises from the recent report that bacterial invasion can occur independently of the TTSS3 activity (French et al., 2011). This may support the data obtained in this study. BapC also shares 36% identity with the S. flexneri TTSS protein IpgF. As observed here following inactivation of the B. pseudomallei bapC, inactivation of the S. flexneri ipgF showed similar invasion efficiency to the wild-type strain (Allaoui et al., 1993; Zahrle et al., 2005), indicating that IpgF does not play a role in S. flexneri invasion. Indeed, S. flexneri and B. pseudomallei appear to have similar strategies for escaping from host endosomal vacuoles during infection (Hybiske & Stephens, 2008; Johnson et al., 2007; Ray et al., 2009). This also suggests a similarity in the TTSS mechanisms of both pathogens. As proteins with an LT domain are generally involved in cleavage of β-1,4-glycosidic bonds of bacterial peptidoglycan, further experiments should focus on determining the LT enzyme activity of Salmonella IagB, S. flexneri IpgF and B. pseudomallei BapC.

4.6.2 BapA, BapB or BapC do not play a role in survival or replication of B. pseudomallei in RAW264.7 cells

The TTSS3 of B. pseudomallei has been shown to play a role in survival and replication within phagocytic cells (Galyov et al., 2010). A TTSS3 translocon BipD and a TTSS3 structural component BsaZ are required for bacterial survival and replication in macrophages during early stages of infection (Stevens et al., 2002). BsaZ is likely to also be required for intracellular survival and replication during late stages of infection (Burtnick et al., 2008). Given that each of the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains showed reduce in vivo growth by competitive growth assay (Chapter 3.3), it was hypothesised that they may also be involved in
intracellular survival and replication. The K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains were assessed for their ability to survive and replicate within mouse macrophage-like RAW264.7 cells. As observed previously for B. pseudomallei (Burtnick et al., 2008; Stevens et al., 2002), the wild-type strain was able to survive and replicate over the 6 h infection period. All the mutants, however, retained the ability to replicate intracellularly, and no differences were observed in the final number of bacteria recovered at any of the time points analysed. Therefore, it appears that these genes do not influence intracellular survival and replication.

Hii et al. (2008) reported that a B. pseudomallei bsaQ mutant was also unimpaired for invasion and replication in cultured human embryonic kidney (HEK293T) cells. Although several factors need to be taken into consideration, including strain- and cultured cell line-specific events, and different functions of the TTSS3 components, the K96243ΔbapA, K96243ΔbapB, K96243ΔbapC and K96243ΔbapBC strains showed similar in vitro phenotypes to the bsaQ mutant, in contrast to the data obtained from previous studies (Pilatz et al., 2006; Stevens et al., 2003; Stevens et al., 2002). Differences in bacterial growth conditions used to perform the infection may be another factor contributing to the discrepancy of these studies, since mid-log-phase bacteria were used in this study and the study of Hii et al. (2008), whereas stationary phase cultures were used in the previous three studies. Moreover, the use of different macrophage-like cell lines may be another factor. Stevens et al. (2002) showed that the bipD and bsaZ mutant strains were reduced for intracellular replication in a macrophage-like cell line J774.2 derived from a J774A.1 cell line. However, cultured RAW264.7 cells were used in this study. Indeed, a difference in the rate of Bacillus anthracis spore uptake between J774A.1 and RAW264.7 has been demonstrated (Stojkovic et al., 2008). In addition, the signalling mechanisms responsible for ATP-induced release of pro-IL-1, a major contributor to the inflammatory response, is also different between these two cell lines (Pelegrin et al., 2008). Future experiments should include analysis of the intracellular survival of the mutants in J774A.1 cells to determine if there are differences in the host response mechanisms. Moreover, repeating the assays using stationary phase cultures may help in determining whether these in vitro phenotypes are correlated with bacterial growth phases or not.

The proinflammatory cytokine IFN-γ is a potent macrophage activator, as it enhances the bactericidal activity of macrophages, by, at least in part, regulating growth and maturation of macrophages, and LC3 production leading to enhanced LAP (Cullinane et al., 2008; Ellis & Beaman, 2004; Gordon et al., 2005; Schroder et al., 2004; Gong et al., 2011). IFN-γ can
stimulate the production of nitric oxide (NO) and ROS (MacMicking et al., 1997; Paludan, 2000). Thus, intracellular survival of the B. pseudomallei mutant strains following IFN-γ pre-treatment of the RAW264.7 cells was analysed. As expected, there was a slight decrease in the replication of the wild-type B. pseudomallei in IFN-γ stimulated cells up to 6 h p.i. compared to that of the wild-type strain in untreated RAW264.7 cells, suggesting that there was additional effect of IFN-γ on bactericidal activity against B. pseudomallei. However, the CFU numbers of the wild-type strain recovered from 2 h to 6 h p.i. continued to increase, indicating that the wild-type strain was still able to survive and replicate even following IFN-γ prestimulation. Interestingly, the K96243ΔbapC strain exhibited a dramatic decrease in the intracellular survival compared with the wild-type strain at all time points. The numbers of recovered K96243ΔbapC strain at all time points were almost identical, indicating that there was little replication of this mutant from 2 h to 6 h p.i. In addition to the K96243ΔbapC strain, the numbers of each of other mutant strains showed no significant increase from 4 h to 6 h p.i., indicating that IFN-γ may reduce the replication at these times. Taken together, these data suggest a direct role of BapC and indirect role of BapA and BapB in intracellular survival of this bacterium under IFN-γ stimulation but the mechanism(s) involved remains unresolved.

Given that B. pseudomallei can suppress the production of inducible nitric oxide synthase (iNOS), thereby facilitating bacterial survival and replication within macrophages (Utaisincharoen et al., 2001; Utaisincharoen et al., 2003), using IFN-γ as a single macrophage stimulant may be insufficient to effectively enhance the killing of intracellular B. pseudomallei. Several lines of evidence have previously demonstrated that IFN-γ alone was not capable of enhancing bacteriostatic and/or bactericidal activity against intracellular Listeria monocytogenes and S. typhimurium either in vitro or in vivo (Higginbotham et al., 1992; Langermans et al., 1990; Langermans et al., 1991; van Dissel et al., 1987). These findings support the observation that B. pseudomallei wild-type and most mutant strains, except for the K96243ΔbapC strain, can still replicate in IFN-γ pretreated macrophages. However, the difference in survival for the K96243ΔbapC strain indicates an involvement of the TTSS mechanism in defending against host immune responses in B. pseudomallei as has been observed in L. monocytogenes and S. typhimurium. Future experiments should further determine whether this decrease in survival of the K96243ΔbapC strain continues at later time points post infection, at other infectious doses and/or in the presence of other macrophage stimulants. A TNF receptor family member CD40L, for instance, enhances antimicrobial activity of human monocytes against intracellular
Mycobacterium tuberculosis, and this molecule appears to have a synergistic effect with IFN-γ with regard to antimicrobial activity (Klug-Micu et al., 2013). Leukotriene, in addition, is associated with enhancing bactericidal activity of alveolar macrophages against Klebsiella pneumoniae (Bailie et al., 1996; Serezani et al., 2005). Myeloperoxidase has been also found to increase phagocytic and antimicrobial activity of mature macrophages against E. coli (Lincoln et al., 1995). Given that the K96243ΔbapC strain showed a significant decrease in survival at all time points under IFN-γ pre-treatment, intracellular survival assay should be conducted to compare ability to survive and replicate in IFN-γ-pre-stimulated macrophages of the complemented strain K96243ΔbapC[bapC], the independently derived strain K96243ΔbapC_2, the original mutant and the wild-type strains.

4.6.3 Inactivation of bapA, bapB or bapC does not affect escape from host endosomes or actin polymerisation

After entering host cells, B. pseudomallei can modulate host actin polymerisation by expression of BimA resulting in actin-associated membrane protrusion, MNGC formation and intercellular spread (Jones et al., 1996; Kespichayawattana et al., 2000; Suparak et al., 2005). This allows the bacteria to enter neighbouring cells without entering the extracellular environment and therefore without encountering extracellular host immune defence mechanisms (Stevens et al., 2006; Stevens et al., 2005a; Stevens et al., 2005b). Several studies have proved that the TTSS3 plays an important role in host endosomal escape and this is a prerequisite for actin-mediated motility, MNGC formation and bacterial cell-to-cell spread (Attree & Attree, 2001; Burtnick et al., 2008; French et al., 2011; Pilatz et al., 2006; Stevens et al., 2003). In this study, endosomal escape and avoidance of LAP of the mutants was analysed through bacterial co-localisation with LC3-GFP. Furthermore, to see if there was an association of BapA, BapB or BapC with bacterial actin-mediated motility, fluorescence microscopy using Alexa Fluor® 647-labelled phalloidin was used. No differences were observed between mutant and the wild-type strains and each of the mutants was capable of polymerising host actin in order to form actin tails as efficiently as the wild-type strain. Therefore, BapA, BapB and BapC do not play a significant role in escape into the host cytoplasm and actin-mediated motility. A hallmark of B. pseudomallei infection is MNGC formation, and again each of the mutants was capable of inducing host cell fusion and cell-to-cell spread.

It has been shown that increased co-localisation of bacteria with LC3-GFP can be observed following IFN-γ stimulation of RAW246.7 cells (Cullinane et al., 2008). Initially, this was
thought to be due to increased uptake of bacteria into autophagosomes. However, later work strongly suggests that B. pseudomallei is targeted by LAP and not canonical autophagy (Gong et al., 2011). Thus, it is likely that IFN-γ treatment stimulates more rapid LC3 accumulation at the phagosome membrane or reduced escape of B. pseudomallei from the phagosome. It was therefore decided to analyse the co-localisation of LC3-GFP with the mutant strains in IFN-γ stimulated macrophage cells. As expected, IFN-γ stimulation resulted in an increase in LC3-GFP labelled structures. Moreover, the total number of wild-type bacteria observed to co-localise with GFP-LC3 was higher than that observed in untreated RAW246.7 cells. However, the level of co-localisation with LC3-GFP for the mutants was indistinguishable from that of the wild-type. Thus, it was concluded that the TTSS3 genes bapA, bapB and bapC do not play a significant role in B. pseudomallei avoidance of LAP and/or canonical autophagy.

4.6.4 BapA, BapB or BapC play a minor role in alteration of the host innate immune response to B. pseudomallei infection

During infection, B. pseudomallei uses a number of virulence factors to alter host immune responses for bacterial benefit (Wiersinga & van der Poll, 2009; Wiersinga et al., 2006). One role of TTSS3 appears to be associated with alteration of the innate immune response. Burtnick et al. (2008) demonstrated a role for BsaZ, a TTSS3 structural protein, in inflammatory cytokine activation. They assessed the production of proinflammatory cytokines, including TNF-α and IL-6, from cells infected with the bsaZ mutant compared to those infected with the wild-type strain. They found that there was no significant difference in TNF-α and IL-6 secretion from cells infected with the bsaZ mutant compared to the wild-type strain. However, based on the differences in LD50 production and IL-1β secretion observed in cells infected with the mutant compared to the wild-type strain, they suggested that the mutant and the wild-type strains use different mechanisms to stimulate the host innate immune responses. Likewise, Miao et al. (2010) showed a role for BsaK, the minor subunit of the TTSS3 injectisome, in activation of the macrophage caspase 1 pathway via NLRC4, which is one of the host pattern recognition receptors (PRRs) responsible for detecting microbial components during infection. BsaQ, an export apparatus protein of the TTSS3 injectisome, and BsaU, a protein required for the TTSS3 injectisome assembly, play important roles in induction of IL-8, a key chemokine responsible for confronting bacterial invasion by recruiting phagocytes from the bloodstream into the tissue site (Hii et al., 2008). Haque et al. (2006) demonstrated a role for BopE- and BipB-specific T-cells in host immunity to B. pseudomallei following immunisation with a live attenuated strain, again indicating an interaction of the TTSS3 and its effectors with the host immune system. Moreover,
Tan *et al.* (2010) demonstrated an involvement of the TTSS3 in transcriptional regulation of TssM (BPSS1512) expression, which is a virulence factor responsible for suppressing NF-κB and type I IFN mechanism by, at least in part, interfering with ubiquitination of molecules involved in these pathways. These data suggest an interaction of the TTSS3 molecules with the host innate immune response. Thus, the expression of two essential cytokines TNF-α and IL-6, markers of early and late stages of bacterial infection, from RAW264.7 cells infected with each of the mutants or the wild-type was analysed to determine whether *bapA*, *bapB* or *bapC* were involved in modulation of the innate immune response. In comparison to wild-type infected RAW264.7 cells, only RAW264.7 cells infected with the K96243Δ*bapBC* strain showed reduced expression of TNF-α at 4 h and at 6 h p.i. Similarly, only cells infected with the K96243Δ*bapBC* strain exhibited a significant reduction in IL-6 production at 4 h and 6 h p.i. When RAW264.7 cells were pre-stimulated with IFN-γ, cells infected with any of the mutants showed similar TNF-α production compared to the wild-type at all time points. IFN-γ-activated cells infected with the K96243Δ*bapA*, K96243Δ*bapC* or K96243Δ*bapBC* strain showed a significant decrease in IL-6 expression at 4 h p.i. compared to the wild-type strain while cells infected with any of the mutants at 2 h and 6 h p.i. showed no difference. These data suggest that, in untreated RAW264.7 cells, combined inactivation of BapB and BapC results in modulation of TNF-α and IL-6 secretion. Similarly, following IFN-γ pretreatment of RAW264.7 cells at 4 h p.i., IL-6 expression from cells infected with the K96243Δ*bapA*, K96243Δ*bapC* or K96243Δ*bapBC* strain exhibited a significant decrease from the wild-type infected cells.

Although TNF-α and IL-6 are produced during infection, they seem to be triggered at different stages of infection; indeed, TNF-α requires IFN-γ activity in order to induce the production of IL-6 (Sanseau *et al.*, 1991). The IL-6 data obtained from this study suggest a combined involvement of BapB and BapC in modulation of host immune responses, and this is likely to be affected by IFN-γ. Inactivation of *bsaZ*, encoding a TTSS3 structural component, results in a delay in TNF-α stimulation at 12 h p.i., with no secretion of either IL-1α and IL-1β cytokines or the release of cytoplasmic enzyme lactate dehydrogenase (LDH₅₀) from 6 to 18 h p.i. (Burtnick *et al.*, 2008). Thus, future experiments at both early (30 min, 60 min and 90 min p.i.) and later (6, 12 and 18 h p.i.) time points should be conducted to assess the secretion of these cytokines from cells infected with each of the mutant or the wild-type strains. In addition, analysing other cytokines which could differentiate TNF-α from IL-6 secretion mechanisms, such as IL-8, IL-1β and IL-10 (Alciato *et al.*, 2010; Burtnick *et al.*, 2008; Smith *et al.*, 2011), could help in clarifying
the TNF-\(\alpha\) and IL-6 data obtained from this study. Cytotoxicity assays, assessed by measuring the level of lactate dehydrogenase release (Smith et al., 2011) should also be carried out along with \textit{in vitro} infection assays in order to verify that there are no unintentional effects due to loss of cell integrity (Burtnick et al., 2008). These experiments may also shed light on whether BapA, BapB and/or BapC play a role in host cell damage/death.

4.7 Conclusions

The TTSS3 is essential for pathogenesis of \textit{B. pseudomallei} as it is required for bacterial survival and replication within the host cells and intercellular spread of this bacterium. In this chapter the potential roles of the TTSS3 proteins BapA, BapB and BapC were investigated with respect to their functions based on the previous TTSS3 studies. There was no statistically significant difference between any of the mutants and the wild-type strain in cell invasion, intracellular survival, actin-mediated motility and escape from host endosomal vacuoles. However, RAW264.7 cells infected with the K96243\textsubscript{AbapBC} strain showed altered expression of TNF-\(\alpha\) and IL-6. Furthermore, in RAW264.7 cells pretreated with IFN-\(\gamma\), there were minor changes in IL-6 secretion from the K96243\textsubscript{AbapA}, K96243\textsubscript{AbapC} and K96243\textsubscript{AbapBC} strain. Importantly, BapC was found to play a role in intracellular survival and replication of \textit{B. pseudomallei} under IFN-\(\gamma\) stimulation. Taken together, it can be concluded that BapA, BapB and BapC do not play a role in bacterial invasion in non-phagocytic cells, escape from host phagosome, actin-mediated motility and formation of MNGCs. However, they may play a role in alteration of the host immune responses to \textit{B. pseudomallei} and a minor role in bacterial survival and replication in phagocytic cells.
Figure 4.1.1 Ability of *B. pseudomallei* wild-type (WT) and the K96243Δ*bapA* (Δ*bapA*), K96243 Δ*bapB* (Δ*bapB*), K96243Δ*bapC* (Δ*bapC*) and K96243Δ*bapBC* (Δ*bapBC*) strains to invade the human lung epithelial cell line A549. *E. coli* DH5α (DH5α) was included as the negative control. The experiment was performed in biological triplicate, and each was performed in technical triplicate. Data are present as the mean ± SEM.

Figure 4.2.1 Recovery of *B. pseudomallei* strains from murine macrophage-like RAW264.7 cells at 2, 4 and 6 h p.i. Data are presented as the mean ± SEM of at least three biological replicates. The strains used were: Δ*bapA*, the K96243Δ*bapA* strain; Δ*bapB*, the K96243Δ*bapB* strain; Δ*bapC*, the K96243Δ*bapC* strain; Δ*bapBC*, the K96243Δ*bapBC* strain; WT, the wild-type strain.
Figure 4.3.1 Bacterial co-localisation with LC3-GFP at 2, 4 and 6 h p.i. (A) Representative confocal micrographs with differential interference contrast (DIC) images of RAW264.7 cells stably expressing LC3-GFP (green) infected with *B. pseudomallei* (red) at 2 h p.i and the merged images of bacteria associated with LC3-GFP (yellow) as indicated by the white boxes. (B) Quantitative analysis of bacterial co-localisation with LC3-GFP at 2, 4 and 6 h p.i. Data are presented as the mean ± SEM of at least three biological replicates. The strains used were: Δ*bapA*, the K96243Δ*bapA* strain; Δ*bapB*, the K96243Δ*bapB* strain; Δ*bapC*, the K96243Δ*bapC* strain; Δ*bapBC*, the K96243Δ*bapBC* strain; WT, the wild-type strain. Scale bar = 5 μm.
Figure 4.3.2 B. pseudomallei-associated host cell membrane protrusions and MNGC formation. Representative confocal micrographs illustrating MNGC formation of RAW264.7 cells stably expressing LC3-GFP (green) infected with the wild-type (WT) strain, the K96243ΔbapA, K96243ΔbapB, K96243ΔbapC or the K96243ΔbapBC strain at 6 h p.i. Bacteria were stained red. Scale bar = 5 μm.
Figure 4.3.3 Ability of *B. pseudomallei* strains to form actin tails. Representative confocal micrographs of RAW264.7 cells stably expressing LC3-GFP infected with the K96243ΔbapA, K96243ΔbapB, K96243ΔbapC, or K96243ΔbapBC, or the wild-type (WT) strain for 6 h p.i. Bacteria were stained in red. Due to the similar spectral qualities of Alexa Fluor®-647-phalloidin and Texas Red®-X, the emitted fluorescence associated with actin tails was presented in green. Eukaryotic nuclei were stained in blue with DAPI. Bacteria have actin tails protruding at one pole. White arrows indicate clear evidence of actin tail formation. Scale bar = 5 μm.
Figure 4.4.1 TNF-α secretion by RAW264.7 cells infected with each of the mutants or the wild-type strain. Supernatant samples collected from infected cells at 2, 4 and 6 h p.i. were analysed for the amount of TNF-α (pg/mL). Data are presented as the mean ± SEM of at least three biological replicates. The strains used were: ΔbapA, the K96243ΔbapA strain; ΔbapB, the K96243ΔbapB strain; ΔbapC, the K96243ΔbapC strain; ΔbapBC, the K96243ΔbapBC strain; WT, the wild-type strain. *P < 0.05; **P < 0.001.

Figure 4.4.2 IL-6 secretion by RAW264.7 cells infected with each of the mutants or the wild-type strain. Supernatant samples collected from infected cells at 2, 4 and 6 h p.i. were analysed for the amount of IL-6 (pg/mL). Data are presented as the mean ± SEM of at least three biological replicates. The strains used were: ΔbapA, the K96243ΔbapA strain; ΔbapB, the K96243ΔbapB strain; ΔbapC, the K96243ΔbapC strain; ΔbapBC, the K96243ΔbapBC strain; WT, the wild-type strain. *P < 0.05; **P < 0.001.
Figure 4.5.1 Recovery of *B. pseudomallei* wild-type and mutant strains from IFN-γ stimulated RAW264.7 cells at 2, 4 and 6 h p.i. Macrophage-like RAW264.7 cells were pretreated with IFN-γ before infection with *B. pseudomallei* strains. Data are presented as the mean ± SEM of at least three biological replicates. The strains used were: Δ*bap*A, the K96243Δ*bap*A strain; Δ*bap*B, the K96243Δ*bap*B strain; Δ*bap*C, the K96243Δ*bap*C strain; Δ*bap*BC, the K96243Δ*bap*BC strain; WT, the wild-type strain. *P < 0.05; **P < 0.001.

Figure 4.5.2 Bacterial co-localisation with LC3-GFP at 2, 4 and 6 h p.i. following IFN-γ prestimulation. RAW264.7 macrophage-like cells were pretreated with IFN-γ before infection with *B. pseudomallei* strains. Quantitative analysis of bacterial co-localisation with LC3-GFP of each of the mutants compared to the wild-type strain at 2, 4 and 6 h p.i. Data are presented as the mean ± SEM of at least three biological replicates. The strains used were: Δ*bap*A, the K96243Δ*bap*A strain; Δ*bap*B, the K96243Δ*bap*B strain; Δ*bap*C, the K96243Δ*bap*C strain; Δ*bap*BC, the K96243Δ*bap*BC strain; WT, the wild-type strain.
Figure 4.5.3 TNF-α secretion by IFN-γ-stimulated RAW264.7 cells infected with each of the mutants, or the wild-type strain. Macrophage-like RAW264.7 cells were pretreated with IFN-γ before infection with *B. pseudomallei* strains. Supernatant samples collected from infected cells at 2, 4 and 6 h p.i. were analysed for the amount of TNF-α (pg/mL). Data are presented as the mean ± SEM of three biological replicates. The strains used were: Δ*bapA*, the K96243Δ*bapA* strain; Δ*bapB*, the K96243Δ*bapB* strain; Δ*bapC*, the K96243Δ*bapC* strain; Δ*bapBC*, the K96243Δ*bapBC* strain; WT, denotes the wild-type strain. *P < 0.05.*

Figure 4.5.4 IL-6 secretion by IFN-γ-stimulated RAW264.7 cells infected with each of the mutants or the wild-type strain. Macrophage-like RAW264.7 cells were pretreated with IFN-γ before infection with *B. pseudomallei* strains. Supernatant samples collected from infected cells at 2, 4 and 6 h p.i. were analysed for the amount of IL-6 (pg/mL). Data are presented as the mean ± SEM of at least three biological replicates. The strains used were: Δ*bapA*, the K96243Δ*bapA* strain; Δ*bapB*, the K96243Δ*bapB* strain; Δ*bapC*, the K96243Δ*bapC* strain; Δ*bapBC*, the K96243Δ*bapBC* strain; WT, the wild-type strain. *P < 0.05; **P < 0.001.*
Chapter 5

Analysis of the secretion of BapA, BapB and BapC
Chapter 5: Analysis of the secretion of BapA, BapB and BapC

The type III secretion system (TTSS) is a key virulence factor of many Gram-negative pathogens and is responsible for subverting host signalling pathways, thereby, promoting bacterial survival within the host (Coburn et al., 2007; Galan & Collmer, 1999). Of all the TTSS molecules, the effector proteins are the molecules directly delivered into host cells and are responsible for the modulation of host cell functions; these effectors are critical for bacterial pathogenesis (Dean, 2011; Haglund & Welch, 2011; Ham et al., 2011). In this chapter, the putative TTSS3 effectors BapA, BapB and BapC were specifically characterised for their secretion. Each of the proteins BapA, BapB and BapC was expressed with the tetracysteine (TC) tag and their secretion assessed by using the TC-FlAsH™ labelling technique (Hoffmann et al., 2010; Machleidt et al., 2006; Simpson et al., 2010). Several conditions known to stimulate the TTSS of other Gram-negative bacteria (Bahrani et al., 1997; Kane et al., 2002; Pumirat et al., 2010; Rietsch & Mekalanos, 2006; Walker & Miller, 2004) were tested to determine if they also affected the secretion of BapA, BapB or BapC. To further investigate any potential involvement of these proteins in TTSS3 assembly, the well-characterised TTSS3 effector BopE (Hii et al., 2008; Stevens et al., 2003) was used as the marker of the TTSS function to examine TTSS activity in the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains compared to the wild-type and K96243ΔbopE::pDM4 strains. The transcription of bopE was also assessed in each of the strains to determine whether levels of bopE transcription were different in any of the mutant strains.

5.1 Investigation of the secretion of BapA, BapB and BapC using the TC-FlAsH™-based fluorescence labelling

In Chapter 4, the importance of BapA, BapB and BapC was assessed in a range of in vitro assays specific for known TTSS3 functions. Although BapA, BapB and BapC have been predicted as TTSS3 effectors, this has never been tested and only BopE and BopC have been experimentally shown to be secreted in a TTSS-dependent manner. In order to analyse the secretion, each of the proteins was fused with a tetracysteine (TC) tag at the C-terminal region, proteins or whole cells were directly labelled with the membrane-permeant 4’’,5’’-bis(bis1,3,2-dithioarsolan-2-yl) fluorescein (FlAsH) (Adams et al., 2002; Griffin et al., 1998; Machleidt et al., 2006) and then secretion measured by fluorescence. The binding between the biarsenical molecules of FlAsH and TC is a stable interaction via four covalent bonds; therefore, the fluorescent signal is stable...
for detection by various techniques, including standard SDS-PAGE analysis (Adams et al., 2002; Copeland et al., 2010; Enninga et al., 2005; Griffin et al., 1998).

5.1.1 Generation of TC-tagged BopE

As the direct TC-FIAsH™ labelling technique has never been used previously for labelling proteins in *B. pseudomallei*, optimisation of all steps was carried out using the characterised TTSS effector BopE prior to experimentation on BapA, BapB and BapC. Given that the transposon vector pUC18Tmini-Tn7T gives single site stable insertions in *B. pseudomallei* (Choi et al., 2006; Choi et al., 2005), a TC-tagged version of BopE was constructed in this vector (Figure 5.1.1B). The primers JT6929 and JT6930 (Chapter 2, Table 2.4) were used to amplify a 813-bp fragment of the full length *bopE* using KOD polymerase PCR (Appendix 3, Table A3.3). The amplified DNA fragments were ligated into XmaI-/SpeI-digested pUC18Tmini-Tn7T::tetA(C)::PglmS2 (Chapter 2, Table 2.1) and introduced by transformation into *E. coli* DH5α (Chapter 2.7).

The primers PA6067 and PA6068 (Chapter 2, Table 2.3), amplifying the MCS of the mini-Tn7 vector, were used to screen for recombinant clones with *bopE* insertions. These primers should generate a 2,000-bp product if there has been an insertion of *bopE* at the XmaI (5’ end) and SpeI (3’ end) sites of pUC18Tmini-Tn7T::tetA(C)::PglmS2 vector (Figure 5.1.2, lane 4, 5, 7, 8 and 11), but a 1,200-bp product if there has been no *bopE* insertion (Figure 5.1.2, lane 3, 10, 13 and 15). A clone with the correct sized insert (Figure 5.1.2, lane 4) was selected for further study and the nucleotide sequence of *bopE* in this clone verified (data not shown). The TC tag was then cloned in-frame at the 3’ end of the *bopE* gene. The modified TC tag, encoding proline (CCG) and glycine (GGC) as spacers between four cysteine codons (TGC) (Simpson et al., 2010) and a stop codon (TAA) (Figure 5.1.3A), was generated by annealing the primers JT6931 and JT6932 (Chapter 2, Table 2.4) and ligating the double-stranded product into SpeI-digested pUC18Tmini-Tn7T::tetA(C)::PglmS2::bopE (Chapter 2, Table 2.1). Clones containing TC-tagged *bopE* were identified by nucleotide sequencing using the primer PA6068 (Chapter 2, Table 2.3). One clone containing the correct TC sequence at the 3’ end of *bopE* (Figure 5.1.3B) was then introduced by transformation into *E. coli* SM10/λpir (Chapter 2.7) and then by conjugation into the *B. pseudomallei* wild-type strain (Chapter 2.10). Transconjugants were selected on 25 μg/mL tetracycline and 8 μg/mL gentamicin and then patched to confirm the antibiotic profile prior to performing PCR analyses for verification of genomic integration of the pUC18Tmini-Tn7T::tetA(C)::PglmS2::bopETC construct (Chapter 2, Table 2.1). The primers PA6211 and PA6212
(Chapter 2, Table 2.3) were first used to screen potential transconjugants for genomic integration downstream of \(glmS2 \), the most common insertion site of the mini-Tn7 vector. PCR amplification of the wild-type \(B.\) \textit{pseudomallei} DNA template with this primer pair should produce a 1,100-bp fragment (Figure 5.1.4A) while, following integration of the transposon after \(glmS2 \), these primers should generate an approximate 4,000-bp fragment (Figure 5.1.4B). PCR using DNA from all potential transconjugants (Figure 5.1.5, lane 2 to 8) yielded similar PCR products to that amplified when DNA from the wild-type strain was used (Figure 5.1.5, lane 9). Therefore, these data suggest that there was no integration of the mini-Tn7 construct downstream of \(glmS2 \).

As these potential clones displayed the correct antibiotic profile, suggesting successful integration of the mini-Tn7 construct into the bacterial genome, further analyses using the primer pair combinations PA6067/MC6029, MC6028/PA6068 and MC6028/PA6212 (Figure 5.1.4B) were conducted. These three primer combinations should produce an approximate 1,500-, 1,200- and 1,700-bp products, respectively, if the transposon is present. A 1,500-bp product was produced when DNA from almost all of the potential transconjugants was used as the template for PCR together with the primers PA6067 and MC6029 (Figure 5.1.6A, lane 2 to 8). This product was absent when DNA from the wild-type strain (Figure 5.1.6A, lane 9) was used or when no DNA was added (Figure 5.1.6A, lane 11). In addition, PCR using the primers MC6028 and PA6068 produced approximate 1,200-bp fragments when the transconjugant DNA was used as the template (Figure 5.1.6B, lane 3 to 8) and a 1,000-bp fragment when the positive control was used as the template (Figure 5.1.6B, lane 10). Again, no product was observed when DNA from the wild-type strain was used as the template (Figure 5.1.6B, lane 9). Therefore, these data confirmed the presence of the pUC18Tmini-Tn7T::\(\text{tetA}(C)::P_{glmS2}::\text{bopETC} \) construct in \(B.\) \textit{pseudomallei}. However, PCR using the primers MC6028 and PA6212 produced an approximately 2,500-bp fragment when DNA from the transconjugants (Figure 5.1.6C, lane 2 to 8) and DNA from the wild-type strain (Figure 5.1.6C, lane 9) was used, suggesting that the transposon integration did not occur after \(glmS2 \). More transconjugants were screened but all showed similar results to the clones described above (data not shown). Since \(B.\) \textit{pseudomallei} contains three paralogous copies of \(glmS \), it is possible that the mini-Tn7 construct was integrated after any of these \(glmS \) even though the integration has been suggested to occur preferentially after \(glmS2 \). In \(B.\) \textit{mallei}, the insertions of the mini-Tn7 have been shown to occur after \(glmS1, glmS2 \) or both \(glmS1 \) and \(glmS2 \) (Choi \textit{et al.}, 2006). Therefore, PCR using the primer pairs amplifying the downstream regions of either \(glmS1 \) (PA6271/PA6272) or \(glmS3 \)
(PA6273/PA6274) (Chapter 2, Table 2.3) was carried out. However, PCR products using the potential conjugant DNA templates showed similar size to the wild-type (data not shown), indicating that there was no transposon integration after either glmS1 or glmS3. PCR using the primer pair MC6229/MC6230 (Chapter 2, Table 2.3) for amplification of a section surrounding the mini-Tn7 oriT was also carried out, and it appears that there was freely replicating plasmid present in these potential transconjugants (Figure 5.1.7, lane 2 to 8). Taken together, these data indicate that the pUC18Tmini-Tn7T::tetA(C)::P(glmS2::bopETC construct is present in B. pseudomallei but at it was not integrated in the genome. Freely replicating plasmid was also observed when using the mini-Tn7 vector for complementation (see Chapter 3.7). However, the clone in lane 3 was designated K96243bopETC (Chapter 2, Table 2.1) and used in further experiments.

An additional TC-tagged bopE was also generated in the replicating vector pBHR1. The bopE gene with 3’ TC tag sequence was amplified from the sequence-verified pUC18Tmini-Tn7T::tetA(C)::P(glmS2::bopETC and cloned into the chloramphenicol resistance gene of pBHR1 (Figure 5.1.8B). The primers JT7125 and JT7126 (Chapter 2, Table 2.4) were used to amplify approximately a 1,200-bp fragment containing the glmS2 promoter, bopE, the TC tag, and the two terminator sequences (T$_1$ and T$_0$) from the plasmid pUC18Tmini-Tn7T::tetA(C)::P(glmS2::bopETC. The PCR fragment was verified by nucleotide sequencing (data not shown) prior to cloning into AclI/NcoI-digested pBHR1, which are located in the cat gene of the pBHR1 (Figure 3.5.1A). The bopE gene was cloned with a native ribosomal binding site and is predicted to be transcribed from the cat promoter present in the vector. The ligation reaction was transformed into E. coli DH5α and putative transformants screened by patching onto LB agar containing either 50 µg/mL kanamycin or 20 µg/mL chloramphenicol. Only kanamycin resistance and chloramphenicol sensitive clones were selected for further characterisation. Plasmid DNA was analysed by AclI/NcoI restriction digestion. Digestion of a correctly assembled construct should give a 1,500-bp fragment containing the P(glmS2::bopETC DNA and a 5,000-bp vector fragment (Figure 5.1.9, lane 3 to 5). The nucleotide sequencing of one clone showing the appropriate profile (Figure 5.1.9, lane 3) was determined and the correct sequence confirmed (data not shown). The recombinant plasmid was used to transform E. coli S17-1/λpir and then moved into the B. pseudomallei wild-type strain by conjugation. Transconjugants were selected on LB agar containing 8 µg/mL gentamicin and 1 mg/mL kanamycin and verified for the presence of the pBHR1::P(glmS2::bopETC plasmid by PCR using the primers JT7080/JT7081 (Chapter 2, Table 2.3). PCR using these primers should amplify a 1,400-bp fragment containing
the chloramphenicol resistance cassette of pBHR1 and the cloned $P_{\text{glmS2}}::\text{bopETC}$ fragment. PCR from a number of the potential transconjugants (Figure 5.1.10, lane 2, 4, and 5) amplified fragments of the expected size (1,400-bp), indicating the presence of the pBHR1::$P_{\text{glmS2}}::\text{bopETC}$ plasmid. Furthermore, PCR using DNA from the strains containing the empty vector pBHR1 produced an 800-bp PCR fragment (Figure 5.1.10, lane 9) as expected, and no PCR product was observed when genomic DNA from the wild-type strain was used (Figure 5.1.10, lane 8). One clone containing the correct plasmid (Figure 5.1.10, lane 2) was designated K96243[bopETC] (Chapter 2, Table 2.1) and used for further experiments.

In order to show that any secretion of TC tagged BopE was TTSS-dependent, the pBHR1::$P_{\text{glmS2}}::\text{bopETC}$ construct was also transferred into a $B.\text{pseudomallei}$ bsaS mutant (Gong et al., manuscript in preparation), designated K96243ΔbsaS (Chapter 2, Table 2.1), by conjugation. BsaS encodes the TTSS3 ATPase and is essential for TTSS function, and loss-of-function of BsaS has been found to affect the secretion of BopE (Gong et al., manuscript in preparation). Transconjugants were selected on LB agar containing 25 µg/mL tetracycline and 1 mg/mL kanamycin and clones were screened for the presence of the pBHR1::$P_{\text{glmS2}}::\text{bopETC}$ by PCR using the primers JT7080/JT7081 (Chapter 2, Table 2.3). As described above, PCR using these primers should amplify a 1,400-bp fragment from the pBHR1::$P_{\text{glmS2}}::\text{bopETC}$ plasmid. All clones tested showed the presence of the correct fragment (Figure 5.1.11, lane 2 to 4) and, as expected, no PCR product was observed when DNA from the K96243ΔbsaS strain was used as the template (Figure 5.1.11, lane 6). One clone (Figure 5.1.11, lane 3) was designated K96243ΔbsaS[bopETC] (Chapter 2, Table 2.1) and selected for further experiments.

5.1.2 Generation of the TC-tagged BapA, BapB and BapC

Following generation of the TC-tagged bopE constructs, further constructs expressing TC-tagged BapA, BapB and BapC were generated. As the genomic insertion site of the TC-tagged bopE construct in mini-Tn7 could not be identified, it was decided to generate the TC-tagged BapA, BapB and BapC in pBHR1. Since pBHR1 constructs containing the full-length bapA, bapB and bapC had already been generated and nucleotide-sequence confirmed during complementation (see Chapter 3.5), the TC encoding sequence was cloned separately into each of these constructs. In each case, the TC tag was generated by annealing the primers JT7147 and JT7241 (Chapter 2, Table 2.4) prior to ligation into AcII-digested pBHR1::bapA (Figure 5.1.12A), pBHR1::bapB (Figure 5.1.12B) or pBHR1::bapC (Figure 5.1.12C). Potential pBHR1::bapATC, pBHR1::bapBTC and pBHR1::bapCTC (Chapter 2, Table 2.1) recombinant plasmids were screened for
the presence of the TC motif by nucleotide sequencing using the primer JT7080 (data not shown). A single correct plasmid representing each construct was then transformed into *E. coli* S17-1/λpir and introduced into the *B. pseudomallei* wild-type strain by conjugation. Colonies were selected on LB agar containing 8 µg/mL gentamicin and 1 mg/mL kanamycin and putative transconjugants were screened for the presence of the TC-tagged *bapA*, *bapB* and *bapC* sequences by PCR using the primers JT7080 and JT7081. PCR using this primer pair should amplify a 3,400-, 1,000- or 1,300-bp fragment in correct pBHR1::*bapA*TC, pBHR1::*bapB*TC or pBHR1::*bapC*TC constructs, respectively. Single pBHR1::*bapATC* (Figure 5.1.13A, lane 2), pBHR1::*bapBTC* (Figure 5.1.13B, lane 4) and pBHR1::*bapCTC* (Figure 5.1.13C, lane 2) containing strains were identified and designated K96243[*bapATC*], K96243[*bapBTC*] and K96243[*bapCTC*], respectively (*Chapter 2, Table 2.1*). The pBHR1::*bapATC*, pBHR1::*bapBTC* and pBHR1::*bapCTC* constructs were also introduced into the K96243-bsaS strain by conjugation. Transconjugants that grew on LB agar containing 25 µg/mL tetracycline and 1 mg/mL kanamycin were screened for the presence of the pBHR1 constructs by PCR using the primers JT7080 and JT7081 as described previously. PCR using genomic DNA from strains putatively containing pBHR1::*bapATC* (Figure 5.1.14A, lane 2), pBHR1::*bapBTC* (Figure 5.1.14B, lane 4) and pBHR1::*bapCTC* (Figure 5.1.14C, lane 4) generated the expected fragments of 3,400-, 1,000- and 1,300-bp, respectively. Thus, three clones were designated K96243-bsaS[*bapATC*], K96243-bsaS[*bapBTC*] and K96243-bsaS[*bapCTC*] (*Chapter 2, Table 2.1*), respectively, and selected for further experiments.

5.1.3 Optimisation of the TC-FlAsH™-based fluorescence labelling

5.1.3.1 Visualisation of TC-tagged BopE and TC-tagged GspD

The arsenic molecules of the membrane-permeant fluorophore FlAsH can form covalent bonds with a TC motif and produce the fluorescent FlAsH-peptide complex (*Adams et al.*, 2002; *Griffin et al.*, 1998; *Madani et al.*, 2009). Following generation of the TC-tagged BopE, *BapA*, *BapB* and *BapC* constructs in *B. pseudomallei*, the TC-tagged BopE expressed constructs, both from the mini-Tn7 (K96243*bopETC*) and pBHR1 (K96243*[bopETC]*) were tested first as a positive control to allow optimisation of the FlAsH labelling and to identify whether the arsenic molecules of FlAsH were able to access and bind to the TC tag. As another positive control for FlAsH labelling, an *E. coli* GspD tagged with TC, designated DH5α[pJP117] (*Chapter 2, Table 2.1*), was used since this had been characterised previously for FlAsH labelling (*Dunstan et al.*, 2013). Indeed, the TC-tagged GspD had been confirmed to fluoresce in the presence of FlAsH both following SDS-PAGE analysis and TCA/methanol precipitation (*Dunstan et al.*, 2013).
The strains DH5α[pJP117], K96243bopETC and K96243[bopETC] were grown in LB and cells were harvested at early- (OD$_{600} = 0.3$), mid- (OD$_{600} = 0.6$) and late- (OD$_{600} = 1.0$) exponential growth phase. Expression of TC-tagged GspD in the DH5α[pJP117] strain was induced by addition of arabinose as described previously (Chapter 2.22). Total proteins from each culture were precipitated with DOC/TCA (Chapter 2.21). Each of the protein samples (40-60 μg) was labelled with FlAsH (Chapter 2.22), the proteins were separated using SDS-PAGE (Chapter 2.23) and then the fluorescence measured immediately at 520 nm with an excitation at 488 nm with the GE Typhoon Trio™ imager (GE Healthcare, NSW, Australia). In addition, unlabelled samples were run on a separate gel for Coomassie Brilliant Blue staining (Chapter 2.25) in order to visualise and compare the amount of total protein on the gels. As expected, total protein samples recovered from the DH5α[pJP117] cultures, harvested at mid- (Figure 5.1.15A, lane 3) or late-exponential (Figure 5.1.15A, lane 4) phase, showed a strongly fluorescent protein of approximately 75-kDa, corresponding to the expected size of GspD. Therefore, sample preparation and FlAsH labelling conditions were appropriate for visualisation of TC-labelled GspD. However, a fluorescent signal at the expected size of the TC-tagged BopE was only detected in protein samples derived from cultures of the K96243[bopETC] strain (Figure 5.1.15E, lane 3 and 4), but not protein samples derived from the K96243bopETC strain (Figure 5.1.15C, lane 3 and 4). Putative TC-tagged BopE was observed in whole protein samples derived from both mid- (Figure 5.1.15E, lane 3) and late- (Figure 5.1.15E, lane 4) exponential phase cultures, but not early-exponential phase culture (Figure 5.1.15E, lane 2). Therefore, the TC-tagged BopE expressed from the replicating pBHR1 vector was accessible for formation of a fluorescent complex with the FlAsH compound. A non-specific fluorescent signal of an approximate 30-kDa was also observed in the positive control DH5α[pJP117] (Figure 5.1.15A, lane 2 to 4), K96243bopETC (Figure 5.1.15C, lane 2 to 4) and K96243[bopETC] (Figure 5.1.15E, lane 2 to 4) strains.

To confirm that this fluorescent protein (~ 33-kDa) was indeed TC-tagged BopE, protein samples from the K96243[bopETC] cultures were compared with proteins from the E. coli S17-1/λpir[pBHR1::P$_{glmS2}$::bopETC] cultures (Chapter 2, Table 2.1). DOC/TCA was used to precipitate total proteins from mid log phase cultures of each strain and these proteins labelled with the FlAsH compound and separated by SDS-PAGE. A fluorescent protein of an approximate 75-kDa was observed in the positive control DH5α[pJP117] strain (Figure 5.1.16A, lane 7). Both the K96243[bopETC] and E. coli S17-1/λpir[pBHR1::P$_{glmS2}$::bopETC] total
protein samples contained a fluorescent protein of an approximate 33-kDa as expected for TC-tagged BopE (Figure 5.1.16A, lane 2 and 5, respectively). Importantly, FlAsH labelling of total protein samples from the K96243[pBHR1] and wild-type K96243 strains (Figure 5.1.16A, lane 3 and 4, respectively), did not identify any fluorescent proteins at 33 kDa, indicating that the TC-tagged BopE could form a fluorescent complex with FlAsH but the endogenous BopE (with no TC motif) could not. However, fluorescent proteins of approximated 22 (Figure 5.1.16A, lane 2 to 5), 30 (Figure 5.1.16A, lane 2, 4, 5, 6 and 7), 45 (Figure 5.1.16A, lane 5 and 6) and 51 (Figure 5.1.16A, lane 5) kDa were observed indicating that some native proteins could form a fluorescent complex with the FlAsH compound.

5.1.3.2 Labelling conditions using a range of reducing agents

In order to optimise the labelling of TC-tagged BopE, a range of different reducing agents (Enninga et al., 2005; Getz et al., 1999; Hearps et al., 2007; Hoffmann et al., 2010; Langhorst et al., 2006; Stroffekova et al., 2001) were tested to improve the signal-to-noise ratio of the TC-tagged BopE-FlAsH complex. Two commonly-used reducing agents tris(2-carboxyethyl)phosphine (TCEP) and 2,3-dimercapto-1-propanol (BAL) were compared with β-mercaptoethanol (BME). DOC/TCA precipitated total protein samples were prepared from the K96243bopETC, K96243[bopETC], K96243[pBHR1] and DH5α[pJP117] cultures as described previously. Each of the samples was resuspended in 1X sample buffer containing either BME (14.4 mM final concentration), TCEP (10 mM final concentration) or BAL (0.25 mM final concentration), prior to heating at 99°C for 10 min and FlAsH labelling as described previously. Labelled samples were subjected to SDS-PAGE and the fluorescent signal visualised. The amount of protein loaded in each lane was evaluated by SDS-PAGE analysis of unlabelled samples and visualisation using Coomassie Brilliant Blue staining. As expected, the fluorescent signal from TC-tagged BopE derived from the K96243[bopETC] strain (Figure 5.1.17A, lane 5) was stronger than the signal from the K96243bopETC strain (Figure 5.1.17A, lane 2), confirming the previous results. This is likely due to the increased copy number of the pBHR1 construct compared to the mini-Tn7 construct. Comparison of the effectiveness of the three reducing agents showed that resuspension in sample buffer containing TCEP (Figure 5.1.17A, lane 3 and 6) or BAL (Figure 5.1.17A, lane 4 and 7) gave no fluorescent signal from the TC-tagged BopE-FlAsH complex in either the mini-Tn7 (Figure 5.1.17A, lane 3 and 4) or pBHR1 (Figure 5.1.17A, lane 6 and 7) constructs, suggesting that both reducing agents were incompatible with the FlAsH labelling conditions used in this study. Simultaneously, fluorescence from TC-tagged GspD was not observed when BAL was used as the reducing agent.
Figure 5.1.17C, lane 7), and a stronger non-specific fluorescent fragment was observed when TCEP was used (Figure 5.1.17C, lane 6). The BME-treated sample gave a strong GspD fluorescent signal and low non-specific fluorescence (Figure 5.1.17C, lane 5). Almost no fluorescence was observed in the negative control K96243[pBHR1] samples when the DOC/TCA precipitated proteins were labelled with either BME, TCEP or BAL (Figure 5.1.17C, lane 2, 3 or 4, respectively). Taken together, it was decided that BME be used as the reducing agent for all further FlAsH labelling experiments.

Given that BopE is a known TTSS3 effector that is secreted in vitro (Stevens et al., 2003), following FlAsH labelling optimisation, the in vitro secretion of BopE was assessed. The K96243[bopETC] and K96243[pBHR1] strains were grown to mid exponential phase. Total culture and supernatant samples were precipitated with DOC/TCA and labelled with FlAsH using BME as the reducing agent. Samples were separated by SDS-PAGE and the fluorescence measured. The separated proteins were also transferred to PVDF membrane and used in Western immunoblotting experiments with BopE-specific antiserum (Chapter 2.24). Protein samples were also assessed for total proteins by SDS-PAGE and Coomassie Brilliant Blue staining. A fluorescently labelled protein of the expected size of the TC-tagged BopE was observed on total proteins derived from either whole culture or supernatant of the K96243[bopETC] (Figure 5.1.18A, lane 2 or 3, respectively). This was confirmed by the presence of an extra BopE-specific protein identified by Western immunoblotting (Figure 5.1.18B, lanes 2 and 3) in the K96243[bopETC] strain, one corresponding to the wild-type BopE and one corresponding to the TC-tagged version expressed from the pBHR1::P glmS2::bopETC construct, indicating both wild-type and TC-tagged BopE were secreted. However, only a single BopE-specific band was observed in supernatant samples derived from the K96243[pBHR1] strain (Figure 5.1.18B, lane 5), indicating normal secretion of the chromosomally encoded BopE in the presence of pBHR1. Thus, the presence of TC-tagged BopE does not interfere with normal TTSS function and FlAsH can be used to assess effector protein secretion.

5.1.3.3 Optimisation of the TC-FlAsH™-based fluorescence labelling inside live bacterial cells

In addition to the use of FlAsH-labelling of DOC/TCA precipitated protein samples, the FlAsH labelling technique can be used to label TC-tagged proteins inside live bacterial cells (Enninga et al., 2005). In an attempt to verify the secretion of TC-tagged BopE from the pBHR1 construct, live cell labelling was conducted. Mid exponential phase cultures of the K96243[bopETC],
K96243[pBHR1] and DH5α[pJP117] strains were incubated with the FlAsH compound, and then proteins separated by SDS-PAGE. Three commonly-used reducing agents for live FlAsH labelling (DTT, TCEP and Lumio™ Gel Sample Buffer) were tested to optimise the signal-to-noise ratio of the fluorescent signal since no TC-tagged BopE protein was detected when BME was used as the reducing agent (data not shown). Lumio™ Gel Sample Buffer (1X), taken from the Lumio™ Green Detection Kit (catalogue number T34561, Life Technologies™, USA), was also tested as this buffer was specifically designed for FlAsH labelling. Interestingly, the best labelling was observed when DTT was used as the reducing agent as the labelling of TC-tagged BopE (Figure 5.1.19A, lane 2) and GspD (Figure 5.1.19A, lane 8) was most specific and sensitive in the presence of DTT. As expected, no fluorescent signal was observed in the K96243[pBHR1] samples (Figure 5.1.19A, lane 5 to 7). Thus, live cell labelling followed by denaturation in DTT-containing sample buffer was used for further experiments on the TC-tagged BapA, BapB and BapC.

5.1.4 Investigation of the TC-FlAsH™-based fluorescence labelling of TC-tagged BapA, BapB and BapC constructs

5.1.4.1 Live bacterial samples of TC-tagged BapA and BapC

Following optimisation of FlAsH labelling conditions, TC-tagged BopE could be detected following the labelling of either live bacterial cells or DOC/TCA precipitated proteins. Therefore, TC-tagged BapA, BapB and BapC constructs were generated in both the B. pseudomallei wild-type strain and the TTSS-defective bsaS mutant (see Chapter 5.1.2). Live cell labelling was first used to verify the ability of the TC-tagged BapA, BapB and BapC to associate with the FlAsH compound and to form a fluorescent complex. Mid exponential growth phase cultures of the K96243[bapATC], K96243[bapCTC], K96243[bopETC] and K96243[pBHR1] were labelled with FlAsH (Chapter 2.22) and the fluorescent complex detected following SDS-PAGE (Chapter 2.23). As expected, a fluorescent position of 33 kDa corresponding to TC-tagged BopE was observed in the K96243[bopETC] samples (Figure 5.1.20A, lane 4) but not in the K96243[pBHR1] samples (Figure 5.1.20A, lane 5). In samples derived from the K96243[bapATC], a strongly fluorescent signal at approximately 120 kDa was observed (Figure 5.1.20A, lane 2). This 120 kDa band was predicted to be TC-tagged BapA. The size of BapA is predicted to be 88 kDa, but no fluorescent proteins were observed in the K96243[pBHR1] negative control, indicating that there may be some protein-protein interactions of BapA with another protein, possibly a chaperone. In samples derived from the K96243[bapCTC] strain, a fluorescent protein of approximately 23 kDa was observed; this is at
the predicted size for BapC (Figure 5.1.20A, lane 3). Therefore, both TC-tagged BapA and BapC were able to form a fluorescent complex with the FlAsH reagent.

5.1.4.2 Precipitated protein samples of TC-tagged BapA and BapC

As BapA and BapC are located in the same putative operon as BopE (Chapter 1.3.8, Figure 1.3.3), it was hypothesised that both BapA and BapC should be expressed during in vitro growth of B. pseudomallei and may be secreted in a similar manner to BopE. To prove both hypotheses, the K96243[bapATC] and K96243[bapCTC] strains were investigated for secretion of TC-tagged BapA and BapC using FlAsH labelling. As done previously for TC-tagged BopE, strains were grown to mid exponential phase, supernatant samples collected, proteins precipitated with DOC/TCA and then labelled with the FlAsH reagent. As expected, a fluorescent signal corresponding to TC-tagged BopE was detected in the DOC/TCA precipitated proteins from the supernatant of the K96243[bopETC] strain (Figure 5.1.21A, lane 6) but no fluorescent proteins identified in the supernatant samples from K96243[pBHR1] cultures (Figure 5.1.21A, lane 8), confirming in vitro secretion of BopE. In the DOC/TCA precipitated supernatant samples of the K96243[bapATC] strain (Figure 5.1.21A, lane 2), a fluorescent protein of approximately 120 kDa was observed. This is the same size as identified previously for TC-tagged BapA (see Figure 5.1.20A, lane 2). Therefore, BapA is secreted during in vitro growth of B. pseudomallei. Similarly, in the supernatant samples derived from the DOC/TCA precipitated supernatant samples of the K96243[bapCTC] strain (Figure 5.1.21A, lane 4), a strongly fluorescent band of 23 kDa was observed which corresponds to TC-tagged BapC, as identified previously (see Figure 5.1.20A, lane 3). Thus, TC-tagged BapC is also secreted by B. pseudomallei during in vitro growth.

As hypothesised both TC-tagged BapA and BapC exhibited in vitro secretion. In order to show that BapA and BapC are secreted in a TTSS3-dependent manner, as is the use for BopE, the supernatant samples from the K96243_absaS[bapATC] and K96243_absaS[bapCTC] strains (Chapter 2, Table 2.1) were analysed for the secretion of TC-tagged BapA and BapC, respectively. Proteins in supernatant samples from mid exponential growth phase cultures of the K96243_absaS[bapATC], K96243_absaS[bapCTC], K96243_absaS[bopETC] and K96243_absaS[pBHR1] strains were precipitated with DOC/TCA, labelled with the FlAsH reagent, separated by SDS-PAGE and then fluorescence measured. Importantly, no fluorescent bands corresponding to BapA (120 kDa) or BapC (23 kDa) were observed in the supernatant samples derived from the appropriate K96243_absaS strains (Figure 5.1.21A, lane 3 and 5,
respectively). Similarly, as observed previously, no fluorescent band corresponding to BopE was observed in the K96243ΔbsaS[bpopETC] strain supernatant samples. Therefore, TC-tagged BapA and BapC are secreted during in vitro growth in a TTSS3-dependent manner and are likely TTSS3 effectors.

5.1.4.3 The TC-FlAsH™-based fluorescence labelling of TC-tagged BapB

Following the demonstration that BapA and BapC are secreted in a TTSS3-dependent manner using the TC-FlAsH™-based labelling technique, BapB was also analysed in order to determine whether it is secreted in a similar manner. The TC-tagged BapB construct was mobilised into both the B. pseudomallei wild-type K96243 and the K96243ΔbsaS strains as described in Chapter 5.1.2. Proteins in both supernatant and total cultures from mid exponential phase cultures of either the K96243bpapBTC, K96243[pBHR1], K96243ΔbsaS[bpapBTC] or K96243ΔbsaS[pBHR1] strain were precipitated by DOC/TCA precipitation, labelled with the FlAsH reagent, separated by SDS-PAGE and fluorescence measured as described previously. No fluorescent proteins were identified either in the DOC/TCA precipitated supernatant samples (Figure 5.1.22A, lane 2) or in total culture samples (Figure 5.1.22A, lane 6), suggesting that there was no formation of the TC-tagged BapB-FlAsH complex. Several attempts were conducted to optimise the BapB visualisation, including Tris-glycine and Tris-Tricine gradient SDS-PAGE, however no fluorescent signals corresponding to BapB were detected. Further analysis of BapB was not pursued.

5.1.5 Effect of sodium chloride (NaCl) and congo red on secretion of TTSS3 effectors

Pumirat et al. (2010) demonstrated an effect of high salt concentration on the B. pseudomallei TTSS3 effector genes. Indeed, a significant increase in both transcription and translation of BopE was observed when bacteria were cultured in 320 mM NaCl for 3 h. Given that the TTSS3 genes bapA, bapB and bapC are located downstream of bopE, and BapA and BapC are secreted effectors (see Chapter 5.1.4), it was hypothesised that expression of BapA, BapB and/or BapC would be increased when bacteria were grown in high salt concentrations (Pumirat et al., 2010). Firstly, BopE expression was analysed in the K96243bpopETC and K96243[pBHR1] strains grown under high (320 mM) and normal (85.6 mM) NaCl conditions using both FlAsH labelling and Western blotting. Both bacterial strains were grown overnight in LB without additional NaCl. Strains were then subcultured in LB supplemented with either 85.6 mM or 320 mM NaCl
for 3 ½ to 4 h to mid exponential growth phase. Total cultures (1 mL) and filtered supernatant samples were collected. Total proteins in each sample were precipitated with DOC/TCA, FlAsH labelled and separated by SDS-PAGE. After measuring the fluorescent signal, proteins were transferred to PVDF membranes in order to perform Western blotting with BopE-specific antiserum. Total proteins were also visualised by SDS-PAGE followed by Coomassie Brilliant Blue staining. Although, to our knowledge, the effect of high NaCl concentration on the expression of *E. coli* type II secretion system molecules has never been reported, it was decided to additionally test the effect of growth in high salt conditions on the secretion of GspD from the DH5α[pJP117] strain.

DOC/TCA precipitated proteins from total culture and supernatant samples of the K96243[\(\text{bopETC}\)] grown in normal LB exhibited a fluorescent TC-tagged BopE-FlAsH band (Figure 5.1.23A, lane 2 and 3, respectively), and showed two BopE-specific proteins when probed with the BopE-specific antiserum (Figure 5.1.23B, lane 2 and 3, respectively). No fluorescent signal was detected in any of DOC/TCA precipitated total culture and supernatant samples of the negative control K96243[pBHR1] (Figure 5.1.23A, lane 6 to 9) but a single wild-type BopE band was observed (Figure 5.1.23B, lane 6 to 9). The fluorescent signal corresponding to TC-tagged GspD (75 kDa) from the FlAsH positive control DH5α[pJP117] showed no substantial increase when the strain was cultured in media containing 320 mM NaCl (Figure 5.1.24A, lane 3) compared with 85.6 mM NaCl (Figure 5.1.24A, lane 2), suggesting that high NaCl does not stimulate GspD expression in *E. coli*. The level of BopE expression and secretion after 3 h of incubation in media containing 320 mM NaCl, measured by either FlAsH labelling (Figure 5.1.23A, lane 4 and 5, respectively) or Western blotting (Figure 5.1.23B and Figure 5.1.23C, lane 4 and 5, respectively) was increased slightly from growth in normal media, measured by FlAsH labelling (Figure 5.1.23A, lane 2 and 3, respectively) or Western blotting (Figure 5.1.23B and Figure 5.1.23C, lane 2 and 3, respectively). However, the level of BopE expression and secretion following 3 h growth in 320 mM NaCl for the K96243[pBHR1] strain showed an increase of approximately two-fold (Figure 5.1.23C, lane 8; \(P < 0.05\)) and three-fold (Figure 5.1.23C, lane 9; \(P < 0.05\)), respectively, compared with the strain grown in media with normal levels of NaCl (Figure 5.1.23C, lane 6 and 7, respectively). These data indicate and confirm that 3 h incubation of 320 mM NaCl can enhance BopE expression and secretion.

In addition to high NaCl as a stimulating condition for the TTSS3 expression, congo red has been widely used as an inducer of *Shigella* TTSS effector secretion (Bahrani *et al.*, 1997;
Enninga et al., 2005; Firdausi Qadri et al., 1988; Simpson et al., 2010). Given that there is significant similarity between some of the TTSS effectors of *Shigella* and *B. pseudomallei* (Sun & Gan, 2010), it was hypothesised that the expression of the *B. pseudomallei* TTSS effectors might also be upregulated by treating the bacteria with congo red. To examine this hypothesis, the level of BopE expression in the K96243[bopETC] and K96243[pBHR1] strains was tested after congo red stimulation. In a similar manner to high salt concentration experiment, the FlAsH positive control DH5α[pJP117] was also tested even though, to our knowledge, the effect of congo red on the stimulation of *E. coli* type II secretion system has never been reported. In addition, sucrose was added to the congo red solution to analyse whether it enhanced the effect of congo red as sucrose (5% w/v) has been reported to enhance uptake of congo red in *Staphylococcus* spp. (Freeman et al., 1989). In brief, overnight cultures were subcultured into either LB, LB supplemented with 5% (w/v) sucrose, LB supplemented with 0.08% (w/v) congo red or LB supplemented with 5% (w/v) sucrose and 0.08% (w/v) congo red, and grown to mid exponential growth phase. Live bacterial cultures were incubated with the FlAsH reagent and proteins separated by SDS-PAGE analysis. Analysis of the levels of fluorescent BopE indicated no significant difference in BopE expression from cells grown in the presence of sucrose (5% w/v) and/or congo red (0.08% w/v) (Figure 5.1.25). Similarly, there was no difference in the levels of GspD expression from the DH5α[pJP117] under any of the conditions tested (data not shown). Interestingly, growth of *B. pseudomallei* cultures in the presence of congo red caused significant obstruction of the fluorescent signal of the TC-tagged BopE (Figure 5.1.25A, lane 4 and 5), but not that of the GspD-FlAsH (data not shown), suggesting that *B. pseudomallei* can bind or take up the congo red dye. Extra rounds of cell washing before SDS-PAGE failed to remove this congo red from *B. pseudomallei* (data not shown). Thus, BopE secretion in the presence of congo red was assessed by Western immunoblotting. Strains were grown to mid exponential phase in either LB or LB supplemented with 0.08% (w/v) congo red. Proteins from either total cultures or supernatants were precipitated by DOC/TCA, labelled with the FlAsH reagent and separated by SDS-PAGE. The fluorescence was measured and proteins transferred to PVDF membranes for Western immunoblotting using BopE-specific antiserum. A fluorescent band corresponding to TC-tagged BopE was observed in protein samples derived from total culture and supernatant of the K96243[bopETC] strain grown in the absence of congo red (Figure 5.1.26A, lane 2 and 3, respectively), but not in the presence of congo red, due to obstruction of the fluorescent signal, and as expected no signal was observed in any of the K96243[pBHR1] samples (Figure 5.1.26A, lane 6 to 9). However, Western blot analysis indicated that BopE expression was indistinguishable in the presence or absence of congo red.
Similarly, there was no difference in BopE secretion and expression for the K96243[pBHR1] strain grown with or without congo red (Figure 5.1.27). These data indicate that it is unlikely that congo red functions as an inducer of \textit{B. pseudomallei} TTSS effector secretion.

5.2 Role of BapA, BapB or BapC in regulation of the TTSS3 function

The TTSS is a highly complex secretion system and the expression of structural and effector proteins must be tightly regulated (Cornelis & Van Gijsegem, 2000; Deane et al., 2010; Ham \textit{et al}., 2011). Following host cell contact, the tip complex proteins of the needle-like apparatus form a pore through the host cell membrane, allowing the secretion of appropriate effectors into the host (Deane \textit{et al}., 2006; Matteï \textit{et al}., 2011; Mueller \textit{et al}., 2008) although in \textit{B. pseudomallei} secretion of BopE, BapA and BapC also occur \textit{in vitro}. To determine whether BapA, BapB or BapC play a role in regulating TTSS expression and/or function, the \textit{in vitro} secretion of BopE was assessed in each of the K96243\textit{ΔbapA}, K96243\textit{ΔbapB}, K96243\textit{ΔbapC} and K96243\textit{ΔbapBC} strains. Furthermore, the transcription of \textit{bopE} in each of the mutants was additionally evaluated using reverse transcription PCR (RT-PCR).

5.2.1 BopE secretion and expression is increased in the K96243\textit{ΔbapB} strain

To analyse the secretion of BopE in each of the mutant strains, Western immunoblotting using BopE-specific antiserum was conducted on culture supernatants. As a negative control, a \textit{bopE} single-crossover mutant was constructed by allelic exchange using the pDM4::\textit{bopE} mutagenesis vector constructed by Stevens \textit{et al}., (2002). This construct was mobilised into \textit{B. pseudomallei} by conjugation (\textit{Chapter 2.9}) and transconjugants selected on LB agar containing 8 \textmu g/mL of gentamicin and 40 \textmu g/mL of chloramphenicol. Putative single-crossover mutants were screened by PCR using the primer pair JT6100/JT6101 (\textit{Chapter 2, Table 2.3}) specific for the chloramphenicol acety transferase (\textit{cat}) gene of pDM4 (Figure 5.2.1A). Seven clones (Figure 5.2.1B, lane 2 to 8) displayed the appropriate size of PCR product compared to the positive control (Figure 5.2.1B, lane 9), indicating the presence of the \textit{bopE} single-crossover mutant construct. Following PCR screening, three potential K96243\textit{ΔbopE::pDM4} strains (Figure 5.2.1B, lane 4 to 6) were selected for Western immunoblotting using the BopE-specific antiserum. Protein samples from supernatant (Figure 5.2.2A, lane 6) or total culture (Figure 5.2.2C, lane 6) of the wild-type strain showed a BopE-specific band at 33 kDa. This band was also observed in protein samples from supernatant (Figure 5.2.2A, lane 2) or total culture (Figure 5.2.2C, lane 2) of the K96243\textit{ΔbapC} strain. However, no BopE-specific band was
observed in supernatant or total culture samples derived from the putative single-crossover mutants. Therefore, the K96243ΔbopE::pDM4 (Chapter 2, Table 2.1) shown in Figure 5.2.2, lane 4 was used for further experiments.

Following generation of the K96243ΔbopE::pDM4 strain, the in vitro secretion and expression of BopE was investigated in each of the K96243ΔbapA, K96243ΔbapB, K96243ΔbapC and K96243ΔbapBC strains. Furthermore, BopE secretion was analysed at three distinct growth phases (early, mid and late exponential) for each of the bacterial strains. Both total culture and supernatant samples were used for assessing the BopE expression and secretion, respectively, and the same cultures were used for RNA extraction for transcriptional analyses (see Chapter 5.2.2). Protein samples were normalised using 2-D Quant Kit (GE Healthcare, Australia) according to the manufacturer’s instruction prior to SDS-PAGE (Chapter 2.21).

In early-exponential phase culture supernatants (Figure 5.2.3), as expected, the K96243ΔbopE::pDM4 strain showed no expression of full length BopE although a truncated BopE was observed. The wild-type, K96243ΔbapA and K96243ΔbapC strains showed similar levels of secreted BopE, but the K96243ΔbapB strain showed a substantial increase of approximately 30-fold compared to the wild-type (P < 0.05). The K96243ΔbapBC strain also exhibited a 7-fold increase in secreted BopE (P < 0.05). A significant increase of approximately 30-fold (P < 0.05) and 10-fold (P < 0.05) in BopE production was also observed in total culture samples derived from the K96243ΔbapB and K96243ΔbapC strains, respectively (Figure 5.2.3D and F). However, total culture samples derived from the K96243ΔbapA, K96243ΔbapBC and K96243ΔbopE::pDM4 strains exhibited no significant difference in BopE production compared to the wild-type strain. Analysis of BopE secretion from mid-exponential phase cultures (Figure 5.2.4A and C) indicated that only the K96243ΔbapB strain exhibited a statistically significant increase of approximately 2-fold (P < 0.05) in secreted BopE, whereas the K96243ΔbapA strain showed a slight decrease of approximately 1.5-fold (P < 0.05) in secreted BopE. The K96243ΔbapC and K96243ΔbapBC strains showed a similar level of BopE production to that of the wild-type strain. A slight decrease of approximately 2-fold (P < 0.05) in BopE production was also observed in total culture samples derived from the K96243ΔbapA strain (Figure 5.2.4D and F). In late-exponential phase culture supernatants (Figure 5.2.5A and C), the K96243ΔbapB strain again showed a significant increase in secreted BopE (4-fold, P < 0.05). The K96243ΔbapA strain also exhibited a slight increase of approximately 2-fold (P < 0.05) in
secreted BopE while there was no difference in BopE secretion observed in the K96243ΔbapC and K96243ΔbapBC strains. Surprisingly, in late exponential phase total culture samples there was no difference in BopE production observed in the K96243ΔbapA, K96243ΔbapB, K96243ΔbapC or K96243ΔbapBC strains compared to the wild-type strain (Figure 5.2.5D and F).

5.2.2 The transcription of bopE is increased in the K96243ΔbapB strain

Given the substantial increase in both BopE secretion observed in the K96243ΔbapB strain, it was decided to further investigate whether there was altered transcription of bopE in any of the mutant strains using reverse transcription PCR (RT-PCR). Total RNA was harvested from each of the mutant strains and cDNA generated as described (Chapter 2.12). The transcription of bopE was first assessed by semi-quantitative RT-PCR (Chapter 2.12) using cDNA samples derived from the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains together with the primers JT6079 and JT6080 (Chapter 2, Table 2.4; Figure 5.2.6). A PCR product corresponding to the bopE transcript was observed using cDNA derived from all of the strains and no products were observed in the RT- negative controls (Figure 5.2.7A). A weak bopE-specific PCR product was observed when cDNA from the K96243ΔbapA, ΔbapC and ΔbapBC and wild-type strains was used, whereas significantly more product was amplified when cDNA from the K96243ΔbapB strain was used as the template (Figure 5.2.7A, lane 4). These data suggest that transcription of bopE was increased in the K96243ΔbapB strain. This result was verified by using quantitative real-time RT-PCR (Chapter 2.13).

The primers JT7472 and JT7473 (Chapter 2, Table 2.4; Figure 5.2.6) were specifically designed for amplification of bopE for real-time RT-PCR. For normalisation of the real-time RT-PCR data, the oligonucleotide primers JT7474 and JT7475 (Chapter 2, Table 2.4; Figure 5.2.6) were specifically designed to amplify a portion of the housekeeping gene rpoA. The rpoA gene was chosen as the normaliser based on the high stability of rpoA transcription under various conditions (Lipscomb & Schell, 2011; Ritz et al., 2009). The transcription of bopE was assessed in early-, mid- and late-exponential phase cultures of the K96243ΔbapA and ΔbapB strains in comparison to that of the wild-type strain. At early-exponential growth phase, the transcription of bopE in the wild-type and K96243ΔbapA strains was indistinguishable but bopE transcription in the K96243ΔbapB strain was approximately 5-fold (P < 0.05) higher than that in the wild-type strain (Figure 5.2.7B). At mid-exponential growth phase (Figure 5.2.8A), bopE transcription was significantly increased (3-fold; P < 0.0001) in the K96243ΔbapB strain whereas the transcription
of bopE was decreased in the K96243ΔbapA strain (3-fold; \(P < 0.001 \)). Interestingly, for late exponential growth phase samples (Figure 5.2.8B), bopE transcription was also increased approximately 3-fold in the K96243ΔbapB strain compared to the wild-type strain (\(P < 0.0001 \)) but there was a 3-fold decrease in transcription in the K96243ΔbapA strain (\(P < 0.001 \)). Therefore, bopE transcription was increased between 3- and 5-fold in the K96243ΔbapB strain during all three exponential growth phases (early, mid and late).

5.3 Discussion

Following the characterisation of the role of the putative TTSS3 effectors BapA, BapB and BapC in B. pseudomallei virulence and in a range of in vitro assays (see Chapters 3 and 4), fluorescent-labelling of the proteins BapA, BapB and BapC were used to determine whether they were truly TTSS3-dependent secreted effectors.

5.3.1 BapA and BapC are secreted by the TTSS3

The TTSS is a special structure produced by many Gram-negative pathogens that allows the direct transfer of bacterial effector proteins from the bacteria to host cells (Coburn et al., 2007; Deane et al., 2006; Galan & Collmer, 1999). These bacterial effectors are essentially responsible for interacting with and modulating host cell functions (Dean, 2011). However, only two B. pseudomallei proteins, namely BopE and BopC, are known to be specifically secreted by the TTSS3. In order to identify novel effector proteins, fluorescent-tagging of putative effectors has been widely used in other species (Enninga & Rosenshine, 2009; Giepmans et al., 2006). In this study, the putative effectors BapA, BapB and BapC were fused with a TC tag and the location of the fusion proteins assessed by FlAsH labelling. This technique has been successfully used to investigate secretion of TTSS effectors in S. flexneri, Enteropathogenic E. coli (EPEC) and S. enterica serovar Typhimurium (Enninga et al., 2005; Simpson et al., 2010; VanEngelenburg & Palmer, 2008). Stevens et al. (2003) first proved that BopE was secreted in a TTSS3-dependent manner, by Western blot analysis using BopE-specific antiserum, and also characterised the major role of this effector in facilitating bacterial invasion by modifying host actin. Thus, this well-characterised TTSS3 effector was chosen as the test protein for optimisation of FlAsH labelling conditions. The TC-tagged BopE was first constructed in the mini-Tn7 vector and used for integration into the bacterial genome (Choi et al., 2006; Choi et al., 2005). As had been observed previously for complementation of the various bap mutants (see Chapter 3.7), the location of transposon integration in the bacterial genome could not be determined. In addition, when labelled with the FlAsH compound, the TC-tagged BopE...
fluorescent signal in the mini-Tn7 construct was undetectable whereas there was a detectable signal from the BopE-pBHR1 construct. Therefore, TC-tagged BapA, BapB and BapC were generated only in the pBHR1 vector. After several rounds of optimisation, BME and DTT were chosen as the best reducing agents for FLAsH labelling in DOC/TCA precipitated samples and live bacterial cells, respectively, since the signal-to-noise ratio was highest. When using the optimum labelling conditions to investigate the in vitro secretion of the TC-tagged BapA, BapB and BapC, BapA and BapC were clearly shown to be secreted in a TTSS3-dependent manner since the expected bands of the BapA and BapC fluorescent complex were detected only in the K96243[bapATC] and the K96243[bapCTC] strains, but were absent in the K96243_~bsaS[bapATC] and K96243_~bsaS[bapCTC] strains. To our knowledge, this is the first time FLAsH labelling has been used to investigate the secretion of B. pseudomallei TTSS molecules and the first direct demonstration that BapA and BapC as TTSS3-secreted effectors.

In contrast to what was observed for BapA and BapC, the labelling of the TC-tagged BapB could not be demonstrated either in total cultures or supernatants using the optimum FLAsH labelling conditions even when high percentage polyacrylamide gels were used for protein separation. Identification of the labelled TC-tagged BapB was attempted under a range of conditions specific for small proteins, including 4-20% gradient Tris-glycine or Tris-Tricine SDS-PAGE gels (data not shown). Nonetheless, we were unable to measure any fluorescent signal even in the total culture samples. The possible explanations for this could be that, firstly, the localisation of the TC tag, in the BapB structure, was not accessible for the FLAsH compound to bind. Secondly, based on the bioinformatic data of BapB, it is possible that this small, acidic pI protein functions as a TTSS3 chaperone. The predicted functional domain of BapB is a 4'-phosphopantetheine prosthetic group which generally functions as a ‘swinging arm’ for transferring an acyl molecule during fatty acid biosynthesis (Byers & Gong, 2007; Chan & Vogel, 2010). This suggests a high conformational flexibility of BapB in order to properly transfer the acyl protein from one molecule to another. Given that the distance between the two pairs of cysteines in the TC fused protein has to be properly matched to the spacing of the bi-arsenic molecules of the FLAsH compound (Griffin et al., 1998), such conformational flexibility may inhibit the TC-FLAsH interaction (Hoffmann et al., 2010; Machleidt et al., 2006). Thirdly, the TC-tag at the C-terminal end of BapB may alter the conformation and/or function of the protein resulting in the formation of a non-functional BapB which is rapidly degraded within the cell. Fourthly, the expression level of BapB could possibly be too low to be measured by the FLAsH labelling technique. Finally, given that the K96243_~bapB strain showed a significant decrease in in vivo growth (see
Chapter 3.3), it is possible that BapB is only maximally expressed *in vivo*. This specificity for expression in the host has been demonstrated for some effectors secreted by the SPI2 of *Salmonella*, with expression only triggered after internalisation of the bacteria (Geddes *et al.*, 2007). In addition, secretion of the *Bordetella* TTSS effector Bsp22 can only be detected in clinical samples and not from cells grown in *in vitro* culture medium (Fennelly *et al.*, 2008; Gaillard *et al.*, 2011). Thus, it is possible that BapB, unlike BapA, BapC and BopE, is not secreted under normal *in vitro* growth conditions. Investigation of BapB expression in sera from *B. pseudomallei*-infected mice and/or from melioidosis patients should be further conducted to prove this hypothesis. Nevertheless, given the current data, it is not possible to determine whether BapB is a TTSS3 effector.

5.3.2 The *B. pseudomallei* TTSS3 is not stimulated by congo red but is altered by high salt conditions

Upon contact of the bacteria with the host cell, the TTSS3 would be activated, and the appropriate effectors subsequently secreted (Hayes *et al.*, 2010). This suggests that TTSS3 secretion will be regulated by host conditions, such as the temperature and/or cholesterol in plasma membrane. However, in other bacterial species e.g. *Shigella*, *Salmonella* and *P. aeruginosa*, several artificial conditions have been used to trigger TTSS activities, including congo red (Bahrani *et al.*, 1997; Qadri *et al.*, 1988), acidic conditions (Markham *et al.*, 2008; Rappl *et al.*, 2003), calcium depletion (Kim *et al.*, 2005) and reduced oxygen (O’Callaghan *et al.*, 2011; Sturm *et al.*, 2011) conditions. In this study, two possible TTSS stimulation conditions were tested.

Growth of *B. pseudomallei* in *in vitro* culture medium supplemented with 320 mM NaCl has been demonstrated to increase production and secretion of BipD and BopE after 3 and 6 h incubation (Pumirat *et al.*, 2010). Similarly, in this study, a small increase in expression and secretion of BopE was observed when the K96243[pBHR1] strain was grown in LB supplemented with 320 mM NaCl for 3 h. In addition, Pumirat *et al.* (2010) additionally stated that the upregulation of several TTSS3 genes occurred in a time-dependent manner as the level of gene expression was greater in the cultures treated with high salt condition for 6 h as compared with those treated for 3 h. They also showed that the expression of BipD and BopE was increased only at 6 h of incubation using Western blot analysis. This could explain why we observed only a marginal increase in BopE secretion in cells grown in high salt for 3 h. In contrast to the K96243[pBHR1] strain, the fluorescent signal corresponding to TC-tagged BopE
in the K96243[\textit{bopETC}] strain showed no difference when bacteria was grown in LB supplemented with 320 mM NaCl for 3 h. One possible explanation for this is that such high NaCl condition only stimulates native BopE in the bacterial genome. In addition, the \textit{bopE} gene in the K96243[\textit{bopETC}] strain contained 30 bp upstream of the ATG translation start codon, which almost certainly does not contain the native promoter; hence, the TC-tagged BopE in a replicating plasmid pBHR1 would be highly unlikely to respond to any environmental signals. A more detailed time-course experiment of BopE expression in high salt incubation, for instance, 3, 6 and 9 h time points, should be further conducted in order to prove this hypothesis. Moreover, the TC-tagged BopE, BapA and BapC constructs with a native \textit{B. pseudomallei} TTSS3 promoter should be generated and used to compare the fluorescent signal in the strains grown under high NaCl condition to the signal under normal condition.

Congo red has been widely used as a stimulant of \textit{Shigella} TTSS activity (Bahrani \textit{et al}., 1997; Enninga \textit{et al}., 2005; Simpson \textit{et al}., 2010). Although the mechanism by which this dye functions with regard to TTSS stimulation has not yet been described, there appears to be a direct correlation between congo red uptake and pathogenicity (Qadri \textit{et al}., 1988). In this study, the same congo red treatment conditions known to stimulate the TTSS secretion in \textit{Shigella} (Enninga \textit{et al}., 2005; Freeman \textit{et al}., 1989) were analysed for their effect on TTSS3 function in \textit{B. pseudomallei}. In contrast to the high salt concentration conditions tested, there was no substantial increase observed in either the expression or secretion of BopE, suggesting that congo red does not stimulate the TTSS in \textit{B. pseudomallei}. The survival mechanisms of different Gram-negative pathogens following host cell internalisation are different and it is likely that different factors stimulate the TTSS (Allwood \textit{et al}., 2011; Galyov \textit{et al}., 2010; Schroeder & Hilbi, 2008). This may explain the specificity of certain TTSS stimulants, which only activate TTSS function in particular pathogenic bacteria, for example, acidic conditions (Rappl \textit{et al}., 2003) or a low-calcium environment (Kim \textit{et al}., 2005) activate the \textit{Salmonella} or \textit{P. aeruginosa} TTSSs, respectively. Nonetheless, it remains possible that further optimisation of congo red stimulation conditions, including different concentrations and longer incubation times, could identify a condition that would stimulate \textit{B. pseudomallei} TTSS3 activity.

5.3.3 An involvement of BapA, BapB and/or BapC in the \textit{B. pseudomallei} TTSS3 secretion

While BapA and BapC are clearly secreted in a TTSS3-dependent manner, indicating their role as TTSS3 effectors, it is also possible that both proteins, and perhaps BapB, may play a role in
the TTSS3 secretion process. Therefore, to test whether loss of BapA, BapB or BapC affected the activity of the TTSS3, expression of the effector BopE, as the marker of the TTSS activity, was analysed in the K96243ΔbapA, ΔbapB, ΔbapC, ΔbapBC strains in comparison to the wild-type strain, at early, mid and late exponential growth phase. BopE secretion in the K96243ΔbapA strain was similar to that of the wild-type strain at early exponential growth phase, but showed a slight decrease and then increase at mid and late exponential growth phase, respectively. Surprisingly, transcription of bopE in the K96243ΔbapA strain was decreased at both mid and late growth phase. These data clearly indicate that BapA is not required for TTSS3 secretion, but indicate that loss of BapA may play a minor or indirect role in regulation of TTSS activity.

The level of BopE secretion was significantly increased in the K96243ΔbapB strain at all three-growth phases tested. The total production of BopE was also significantly higher in the K96243ΔbapB strain at early, but not mid and late growth phase. Furthermore, there was significantly increased transcription of the bopE gene in the K96243ΔbapB strain at all growth phases. These data suggest that BapB negatively regulates the transcription of bopE either directly or indirectly. Based on the bioinformatic analysis, the only functional domain of BapB is a predicted phosphopantetheine (pantetheine 4' phosphate; PP) group of acyl carrier protein (ACP). The BapB protein displays most similarity to the TTSS acyl carrier protein IacP of S. enterica serovar Typhimurium (approximately 33%; Figure 5.3.1). The Salmonella IacP is involved in invasion of S. enterica serovar Typhimurium into non-phagocytic cells and modulation of host actin. A S. enterica serovar Typhimurium iacP mutant demonstrated a significant decrease in the in vitro secretion of some effector proteins (Kim et al., 2011). However, on the contrary, the K96243ΔbapB strain showed increased effector secretion. Furthermore, BapB does not appear to play a role in invasion, at least of A549 cells, thus both proteins are unlikely to have identical functions.

While the protein with the highest amino acid identity is IacP, other features of BapB, such as acidic pI and the size, suggest it may function as a TTSS3 chaperone. In general, TTSS chaperones are essential not only for preventing the degradation and/or misfolding of bacterial effectors prior to secretion into the host, but they also play important roles in preventing undesirable interactions of the effectors with other TTSS components (Büttner & He, 2009; Dasgupta et al., 2004; Francis et al., 2001; Yip et al., 2005). Moreover, some TTSS chaperones have exhibited a role in regulation of TTSS gene transcription under TTSS activation, resulting in transcription of a set of genes encoding effectors (Büttner, 2012; Parsot et al., 2003). In Salmonella, for instance, a TTSS chaperone SicA, in association with InvF, regulates
transcription of several TTSS genes encoding effectors (Darwin & Miller, 1999). These correlate with and support what had been observed in the K96243ΔbapB strain. TTSS chaperones can broadly be divided into different groups (class IA, IB, II and III; Figure 5.3.2) according to their substrate specificities (Parsot et al., 2003). Class IA and IB chaperones are discriminated on the number of effector interaction (one for IA; several for IB) and the location of the chaperone and effector substrate genes on the chromosome (adjacent for IA; disseminated for IB). However, class II and III chaperones are those that interact with translocons and flagellar-related TTSS molecules, respectively (Costa et al., 2012; Parsot et al., 2003). Alignment of the BapB amino acid sequence with representative TTSS chaperone classes from Yersinia, Shigella and Salmonella spp. showed no significant identities to class IA, IB and II (Figure 5.3.2). However, BapB showed significant similarities to the class III chaperones (22% identity; Figure 5.3.3). Among the class III chaperones, FliS functions as a negative regulator of the flagellar biosynthesis operon of Salmonella (Chilcott & Hughes, 2000; Fraser et al., 2003). Thus, this perhaps suggests a possible function of BapB as a TTSS3 chaperone with a negative regulatory function.

Bioinformatic analysis of BapC indicated that it contains a TTSS-associated lytic transglycosylase (LT) domain. LTs generally function by cleaving the β-1,4 glycosidic bond between N-acetylmuramoyl and N-acetylglucosaminyl residues of bacterial peptidoglycan (PG) for the recycling of PG, cell division and insertion of either flagellar or secretion systems including the TTSS (Blackburn & Clarke, 2001; Koraimann, 2003; Scheurwater et al., 2008; Scheurwater & Burrows, 2011). Alignment of the amino acid sequence of BapC with other TTSS proteins that contain LT domains (Blackburn & Clarke, 2001; Koraimann, 2003) indicated that the two TTSS-associated LTs HpaH and Hpa2 from plant pathogens Xanthomonas campestris pv. vesicatoria and X. oryzae pv. oryzae, respectively displayed the highest identity (approximately 39%; Figure 5.3.4). HpaH plays a role in promoting TTSS assembly and secretion of other TTSS proteins by, at least in part, remodelling bacterial peptidoglycan (Noël et al., 2002). However, the secretion of HpaH, as a TTSS effector, has not been yet verified. The X. oryzae Hpa2 is likely to function as a translocon by interacting and forming the translocon complex with another translocon HrpF in order to bind to host cell membrane, promoting pathogenicity of this plant pathogen (Zhu et al., 2000). Based on the BapC data in this study, BapC may function differently from HpaH and Hpa2 even though these three proteins shared three conserved motifs of the LT domains (Figure 5.3.5A). Alignment of the amino acid of BapC with other putative TTSS effectors indicated that the Salmonella IagB and the Shigella effector
IpgF showed the highest identity (approximately 36%). Although both putative effectors IagB and IpgF shared the three conserved motifs of the LT domains with BapC (Figure 5.3.5B), they play a role in bacterial invasion but not in virulence. In addition, IagB and IpgF have been shown to cleave bacterial peptidoglycan, indicating a proof for their function as LT containing proteins (Bernadsky et al., 1994; Koraimann, 2003; Zahrl et al., 2005). This should be further tested for BapC in order to confirm and verify its LT function. Since the end product of PG digestion by LT enzymes is a non-reducible 1,6-anhydro-N-acetylMuramyl residue, this could be assayed using this specific end product as a marker (Blackburn & Clarke, 2000). Furthermore, the region from 50 to 90 amino acid sequence of BapC displayed approximately 59% identity (Figure 5.3.6) to amino acid residues involved in the conformational stability and folding of human lysozyme. Lysozyme in humans is generally abundant in a number of secretions, such as mucous and saliva, and is also present in cytoplasmic granules of neutrophils. This amino acid identity may suggest a possible role of BapC in interaction with host immune responses (see Chapter 4.4).

Several lines of evidence have shown similarities in the structure and function of TTSSs and flagella in several Gram-negative bacteria (Abby & Rocha, 2012; Blocker et al., 2003; Gophna et al., 2003; Pallen et al., 2005; Saier, 2004). Indeed, comparison of TTSS proteins with flagella components may be an alternative approach for defining the possible function of uncharacterised TTSS proteins (Galan & Collmer, 1999; Galan & Wolf-Watz, 2006; Soschia et al., 2007). Both flagellar and TTSS components must be expressed in a regulated manner for appropriate action of secreted proteins since, at least in part, the expression of both virulence factors can be disadvantageous to bacterial growth and survival under some circumstances (Pallen & Gophna, 2007; Sturm et al., 2011). The regulation of flagellar gene expression is controlled by three major operons, designated early, middle and late, based on the order of gene transcription during the flagellar assembly (McCarter, 2006). The middle operon encodes several essential proteins required for biosynthesis and assembly of the flagellar hook-basal body, including the muramidase proteins that facilitate the protrusion and expansion of the flagellar structure through the bacterial PG layer (Chilcott & Hughes, 2000; Nambu et al., 1999). Moreover, this operon contains the negative regulatory protein complex that regulates transcription factors required for the late operon, preventing premature transcription (Aldridge et al., 2006; Yokoseki et al., 1996). The results in this Chapter strongly suggest that BapA and BapC are secreted, and that BapB may play a role in controlling the transcription of BopE and perhaps other TTSS genes. These proteins may act in concert during the assembly of the TTSS3 injectisome; BapC could be
secreted first and facilitate injectisome protrusion and expansion through the bacterial peptidoglycan, BapB may act both as a chaperone and a negative regulator that prevents premature secretion of the TTSS3 effectors. However, neither BapB nor BapC is absolutely required for TTSS function as the K96243ΔbapB and K96243ΔbapC strains are still capable of BopE secretion.
Figure 5.1.1 Plasmid maps of the empty pUC18T-miniTn7T vector (A) and the TC-tagged bopE construct in pUC18T-miniTn7T (B). The primer pair PA6067 and PA6068, amplifying a fragment containing the MCS of the plasmid, was used for verification of gene insertion and nucleotide sequencing. The following features are indicated: Tn7L and Tn7R, left and right end of Tn7, respectively; tetA(C), tetracycline resistance cassette derived from pUTminiTn5Tc vector and cloned into the KpnI site; P_glmS2, glmS2 promoter derived from the wild-type strain and cloned at the HindIII (5') and EcoRI (3') sites; bopE, full length bopE derived from the wild-type K96243 strain and cloned at the Xmal (5') and SpeI (3') sites; TC motif, tetracysteine motif cloned at a SpeI site; oriT, origin of conjugative transfer; T1T0, transcriptional terminators T1 and T0 from bacteriophage λ, and E. coli rrnB operon, respectively. Arrows indicate gene orientation.
Figure 5.1.2 PCR analysis of potential *E. coli* SM10/pir clones harbouring pUC18Tmini-Tn7T::tetA(C)::*glmS2::bopETC* using the primer pair PA6067/PA6068. Lane 1, DNA size markers; lane 2 to 14, PCR products using plasmid DNA of potential *E. coli* SM10/pir clones; lane 15, PCR product using pUC18Tmini-Tn7T::tetA(C)::*glmS2* plasmid DNA; lane 16, PCR product using pUC18Tmini-Tn7T plasmid DNA; lane 17, no DNA control. The clone indicated by the black box in lane 4 was selected for further experiments.

![PCR gel](image)

Figure 5.1.3
Nucleotide and deduced amino acid sequence of the modified TC tag with proline (Pro) and glycine (Gly), as spacers, and the stop codon TAA (*) (A). The modified TC tag (black underline) was cloned at a SpeI site (blue underline) and inserted at the 3' region of *bopE* of the pUC18Tmini-Tn7T::tetA(C)::*glmS2::bopETC* construct (B). The core TC tag is indicated by black boxes.
Figure 5.1.4 Primers used for confirmation of the site of genomic integration of pUC18Tmini-Tn7T::tetA(C)::P_{glmS2}::bopETC. (A) Schematic representation of the wild-type gene glmS2 (BPSL1312) and its adjacent gene BPSL1313, glmS1 (BPSL0312) and its adjacent gene BPSL0311, and glmS3. The primer pairs PA6211/PA6212, PA6271/PA6272 and PA6273/6274 were used to identify if there was an insertion after glmS2, glmS1 and glmS3, respectively. (B) Schematic representation of the wild-type glmS2 and BPSL1313 after the expected integration of pUC18Tmini-Tn7T::tetA(C)::P_{glmS2}::bopETC construct into the chromosome. The primer pair combinations PA6067/MC6029, MC6028/PA6068 and MC6028/PA6212 were used for further analyses. The following features are indicated: Tn7L and Tn7R, left and right end of Tn7; tetA(C), tetracycline resistance cassette cloned at the KpnI site; P_{glmS2}, glmS2 promoter derived from the wild-type strain and cloned at HindIII (5’) and EcoRI (3’); bopE, full length bopE derived from the wild-type strain and cloned at XmaI (5’) and SpeI (3’) sites; TC, tetracysteine tag cloned at the SpeI site; T1, T0, transcriptional terminators T1 and T0 from bacteriophage λ and E. coli rrnB operon, respectively. Arrows indicate the orientation of primers. Arrows designating oligonucleotides are not shown to scale.

Figure 5.1.5 PCR screening of potential transconjugants for integration of the pUC18Tmini-Tn7T::tetA(C)::P_{glmS2}::bopETC. The primers PA6211 and PA6212, which amplify the section between glmS2 (BPSL1312) and its adjacent gene BPSL1313, were used for verification of transposon integration. Lane 1, DNA size markers; lane 2 to 8, PCR products derived from transconjugant DNA templates; lane 9, genomic DNA of the wild-type as the negative control; lane 10, no DNA control.
Figure 5.1.6 PCR screening of potential *B. pseudomallei* transconjugants for integration of pUC18T mini-Tn7T::tet(A)::*glmS2*:bopETC. Three sets of primer combinations, PA6067/MC6029 (A), MC6028/PA6068 (B) and MC6028/PA6212 (C), were used for verification of the mini-Tn7 integration downstream of *glmS2*. Lane 1, DNA size markers; lane 2 to 8, PCR products derived from transconjugant DNA templates; lane 9, genomic DNA of the wild-type as the negative control; lane 10, no DNA control. The clone indicated by the black box in lane 3 was selected for further experiments.
Figure 5.1.7 PCR screening of potential *B. pseudomallei* transconjugants for integration of pUC18T mini-Tn7T::tetA(C)::*P*glmS2::bopETC. The primers MC6229 and MC6230 were used to examine if there was free replicating construct presence in the transconjugants. Lane 1, DNA size markers; lane 2 to 8, PCR products derived from transconjugant DNA templates; lane 9, genomic DNA of the wild-type as the negative control; lane 10, PCR product derived from plasmid DNA of *E. coli* DH5α harbouring pUC18T mini-Tn7T::tetA(C)::*P*glmS2::bopETC, as a positive control; lane 11, PCR product derived from plasmid DNA of *E. coli* DH5α harbouring pUC18Tmini-Tn7T, as another positive control; lane 12, no DNA control. The clone indicated by the black box in lane 3 was selected for further experiments.
Figure 5.1.8 Schematic representation of the plasmid pBHR1 (A) and pBHR1::P$_{glmS2}$::bopETC, containing the P$_{glmS2}$::bopETC fragment cloned into the AcI/NcoI sites of pBHR1 (B). Features are indicated as follows: Rep and Mob, rep and mob genes required for replication and mobilisation of pBHR1 respectively; Cat, chloramphenicol acetyl transferase gene; Kan, kanamycin resistance gene; P$_{glmS2}$, glmS2 promoter; bopE, full length bopE; TC motif, tetracycline motif; T$_1$,T$_0$, transcriptional terminators T$_1$ and T$_0$ from bacteriophage λ and E. coli rrnB operon, respectively. Arrows indicate gene orientation. JT7080 and JT7081 are primers used for PCR screening of recombinant clones and nucleotide sequencing, and are denoted by arrows.
Figure 5.1.9 Electrophoretic separation of restriction enzyme digests of plasmid DNA isolated from putative *E. coli* DH5α harbouring pBHR1::*P*$_{glmS2}$::*bopE*TC clones. Lane 1, DNA size markers; lane 2 to 5, plasmid DNA from putative recombinant clones digested with *AclI* and *NcoI*. The recombinant plasmid indicated by the black box in lane 3 was selected for further experiments.

Figure 5.1.10 Electrophoretic separation of PCR fragments generated from putative *B. pseudomallei* transconjugants containing pBHR1::*P*$_{glmS2}$::*bopETC*. The primer pair JT7080/JT7081 was used to verify the presence of the pBHR1::*P*$_{glmS2}$::*bopETC* construct. Lane 1, DNA size markers; lane 2 to 6, genomic DNA from putative transconjugants as template PCR; lane 7, plasmid DNA derived from *E. coli* DH5α harbouring pBHR1::*P*$_{glmS2}$::*bopETC* as the positive control; lane 8, genomic DNA from the wild-type strain as the negative control; lane 9, genomic DNA from the wild-type strain harbouring empty pBHR1 vector; lane 10, genomic DNA of *E. coli* DH5α harbouring empty pBHR1 vector; lane 11, no DNA control. The clone indicated by the black box in lane 2 was selected for further experiments.
Figure 5.1.11 Electrophoretic separation of PCR fragments generated from genomic DNA of potential K96243ΔbsaS transconjugants following introduction of pBHR1::PglnS2::bopETC. The primer pair JT7080/JT7081 was used to verify the presence of the pBHR1::PglnS2::bopETC construct. Lane 1, DNA size markers; Lane 2 to 4, PCR products derived from transconjugant DNA templates; lane 5, PCR product derived from plasmid DNA of E. coli S17-1/λpir harbouring the pBHR1::PglnS2::bopETC construct as a positive control; lane 6, genomic DNA from the K96243ΔbsaS strain as the negative control; lane 7, no DNA control. The clone indicated by the black box in lane 3 was selected for further experiments.
Figure 5.1.12 Schematic representation of the pBHR1 construct containing bapA (A), bapB (B) and bapC (C) tagged with the TC motif. Different features are indicated as follows: Rep and Mob, rep and mob genes required for replication and mobilisation of pBHR1 respectively; Cat, chloramphenicol acetyl transferase gene; Kan, kanamycin resistance gene; TC motif, tetracysteine motif. Arrows indicate gene orientation. The primers JT7080 and JT7081 are denoted by arrows.
Figure 5.1.13 Electrophoretic separation of PCR fragments generated from putative *B. pseudomallei* transconjugants containing pBHR1::*bapATC* (A), pBHR1::*bapBTC* (B) or pBHR1::*bapCTC* (C). The primer pair JT7080/JT7081 was used to verify the presence of the pBHR1::*bapATC*, pBHR1::*bapBTC* or pBHR1::*bapCTC* constructs, respectively. Lane 1, DNA size markers; lane 2 to 4 (A), 2 to 5 (B), and 2 to 5 (C), genomic DNA from putative transconjugants as template PCR; lane 5 (A), 6 (B), and 6 (C), plasmid DNA derived from *E. coli* DH5α harbouring pBHR1::*bapATC*, pBHR1::*bapBTC*, and pBHR1::*bapCTC*, respectively, as the positive controls; lane 6 (A), 7 (B) and 7 (C), genomic DNA from the wild-type as the negative control; lane 7 (A), 8 (B) and 8 (C), no DNA control. The clones indicated by the black boxes in lane 2 (A), 4 (B) and 2 (C) were selected for further experiments.
Figure 5.1.14 Electrophoretic separation of PCR fragments generated from putative K96243_absaS transconjugants containing pBHR1::bapATC (A), pBHR1::bapBTC (B) or pBHR1::bapCTC (C). The primer pair JT7080/JT7081 was used to verify the presence of the pBHR1::bapATC, pBHR1::bapBTC or pBHR1::bapCTC constructs, respectively. Lane 1, DNA size markers; lane 2 (A), 2 to 11 (B), and 2 to 5 (C), genomic DNA from putative transconjugants as template PCR; lane 3 (A), 12 (B), and 6 (C), plasmid DNA derived from E. coli DH5α harbouring pBHR1::bapATC, pBHR1::bapBTC, and pBHR1::bapCTC, respectively, as the positive controls; lane 4 (A), 13 (B) and 7 (C), genomic DNA from the K96243_absaS strain as the negative control; lane 5 (A), 14 (B) and 8 (C), no DNA control. The clones indicated by the black boxes in lane 2 (A), 4 (B) and 4 (C) were selected for further experiments.
Figure 5.1.15 FlAsH labelling and Coomassie Brilliant Blue staining of DOC/TCA precipitated total protein samples taken at three growth phases (early-, mid- and late-exponential) of the DH5α[pJP117] (A and B), K96243bopETC (C and D) and K96243[bopETC] (E and F) strains. Lane 1: SeeBlue® Plus2 pre-stained protein markers (Life Technologies™, USA); lane 2, total proteins from early exponential phase culture; lane 3, total proteins from mid exponential phase culture; lane 4, total proteins from late exponential phase culture. The expected size of TC-tagged GspD (75 kDa, A) and BopE (33 kDa, C and E) is indicated by the blue boxes.
Figure 5.1.16 SDS-PAGE separation of total proteins from *E. coli* and *B. pseudomallei* strains. Proteins were visualised by (A) FlAsH-labelling or (B) Coomassie Brilliant Blue staining. Proteins in mid exponential phase cultures were precipitated with DOC/TCA and labelled with FlAsH reagent (A) or left untreated (B). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2, total proteins from the K96243[bopETC] strain; lane 3, total proteins from the K96243[pBHR1] strain; lane 4, total proteins from *B. pseudomallei* K96243 strain; lane 5, total proteins from *E. coli* S17-1/λpir[pBHR1::P*glmS2::bopETC*]; lane 6, total proteins from *E. coli* S17-1/λpir[pBHR1]; lane 7, total proteins from the DH5α[pJP117] strain. The expected size of TC-tagged GspD (75 kDa, lane 7) and BopE (33 kDa, lane 2 and 5) is indicated by the blue boxes.
Figure 5.1.17 Effect of reducing agents on FLAsH labelling of DOC/TCA precipitated proteins from the K96243\textit{bopETC} (lanes 2A to 4A), K96243[\textit{bopETC}] (lanes 5A to 7A), K96243[pBHR1] (lanes 2C to 4C) and DH5\textalpha[pJP117] (lanes 5C to 7C). Total cultures were harvested at mid exponential growth phase, protein precipitated with DOC/TCA and then labelled with FLAsH compound using three different thiol reducing agents: \textit{\beta}-mercaptoethanol (BME; lane 2A, 5A, 2C and 5C), tris(2-carboxyethyl) phosphine (TCEP; lane 3A, 6A, 3C and 6C) and 2,3-dimercapto-1-propanol (BAL; lane 4A, 7A, 4C and 7C). Labelled samples were separated using SDS-PAGE and the fluorescence measured. Unlabelled samples were separated by SDS-PAGE and visualised with Coomassie Brilliant Blue staining (B and D). Lane 1: SeeBlue\textregistered Plus2 pre-stained protein markers. The expected size of TC-tagged BopE (33 kDa) and GspD (75 kDa) is indicated by the blue boxes.
Figure 5.1.18 Analysis of the *in vitro* secretion of BopE using the FlAsH labelling technique. Total culture and supernatant protein samples from the K96243[\textit{bopETC}] (lane 2 and 3) and K96243[pBHR1] (lane 4 and 5) strains were precipitated with DOC/TCA and labelled with FlAsH using BME as the reducing agent. Labelled samples were separated using SDS-PAGE and fluorescence measured (A). Proteins were transferred to PVDF membranes and used in Western immunoblotting using BopE-specific antiserum (B). Unlabelled samples were separated by SDS-PAGE and visualised by Coomassie Brilliant Blue staining (C). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2 and 3, total culture and supernatant, respectively, proteins from the K96243[\textit{bopETC}] strain; lane 4 and 5, total culture and supernatant, respectively, proteins from the K96243[pBHR1] strain. The expected size of TC-tagged BopE (33 kDa) is indicated by the blue box.
Figure 5.1.19 Efficacy of different reducing agents on FlAsH labelling of live cells expressing TC-tagged proteins. Live bacterial cells were incubated with FlAsH compound prior to denaturation in 1X sample buffer containing either dithiothreitol (DTT; lane 2, 5 and 8), TCEP (lane 3, 6 and 9), or Lumio™ Gel Sample Buffer (lane 4, 7 and 10). Labelled samples were separated by SDS-PAGE and the fluorescence measured (A). Unlabelled samples were separated by SDS-PAGE and visualised by Coomassie Brilliant Blue staining (B). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2 to 4, the K96243[bopETC] strain; lane 5 to 7, the K96243[pBHR1] strain; lane 8 to 10, the DH5α[pJP117] strain. The expected size of TC-tagged BopE (33 kDa) and GspD (75 kDa) is indicated by the blue boxes.
Figure 5.1.20 Identification of TC-tagged BapA and BapC by FlAsH labelling of live *B. pseudomallei*. Bacterial cells were incubated with the FlAsH reagent prior to killing and protein denaturation using 1X sample buffer containing dithiothreitol (DTT). Labelled samples were separated by 10% SDS-PAGE and fluorescence measured (A). Unlabelled samples were separated by SDS-PAGE and visualised with Coomassie Brilliant Blue staining (B). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2, the K96243[bapATC] strain; lane 3, the K96243[bapCTC] strain; lane 4, the K96243[bopETC] strain; lane 5, the K96243[pBHR1] strain. Protein bands at or near the expected size of TC-tagged BapA (120 kDa), BapC (23 kDa) and BopE (33 kDa) are indicated by the blue boxes.
Figure 5.1.21 BapA and BapC are secreted in a TTSS3-dependent manner. Proteins in supernatant samples from mid exponential growth phase cultures of *B. pseudomallei* wild-type or the K96243ΔbsaS strain were precipitated using DOC/TCA and labeled with the FlAsH reagent using BME as the reducing agent. Labelled samples were separated by 10% SDS-PAGE and the fluorescence measured (A). Unlabelled samples were separated by SDS-PAGE and visualised with Coomassie Brilliant Blue staining (B). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2, the K96243[bapATC] strain; lane 3, the K96243ΔbsaS[bapCTC] strain; lane 4, the K96243[bapCTC] strain; lane 5, the K96243ΔbsaS[bapCTC] strain; lane 6, the K96243[bopETC] strain; lane 7, the K96243ΔbsaS[bopETC] strain; lane 8, the K96243[pBHR1] strain; lane 9, the K96243ΔbsaS[pBHR1] strain. Protein bands at or near the expected size of TC-tagged BapA (120 kDa), BapC (23 kDa) and BopE (33 kDa) are indicated by the blue boxes.
Figure 5.1.22 Analysis of in vitro secretion of BapB using the FlAsH labelling technique. Total proteins from supernatant (lane 2 to 5) or total culture (lane 6 to 9) samples of mid exponential growth phase B. pseudomallei strains were precipitated with DOC/TCA and labeled with FlAsH using BME as the reducing agent. Labelled samples were separated by 16% SDS-PAGE and the fluorescence measured (A). Unlabelled samples were separated by SDS-PAGE and visualised with Coomassie Brilliant Blue staining (B). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2 and 6, the K96243[bapBTC] strain; lane 3 and 7, the K96243ΔbsaS[bapBTC] strain; lane 4 and 8, the K96243[pBHR1] strain; lane 5 and 9, the K96243ΔbsaS[pBHR1] strain. The expected size of TC-tagged BapB (10 kDa) is indicated by the blue box.
Figure 5.1.23 Effect of salt concentration on secretion and expression of BopE. Total proteins from cultures or filtered supernatants from mid exponential growth phase cultures of *B. pseudomallei* grown in LB supplemented with high salt (320 mM NaCl, lane 4, 5, 8 and 9) or normal salt (85.6 mM NaCl, lane 2, 3, 6 and 7) concentration were precipitated with DOC/TCA, labelled with the FLAsH reagent using BME as the reducing agent. Labelled samples were separated using SDS-PAGE and the fluorescence measured (A). Western blot analysis using BopE-specific antiserum was subsequently conducted (B). Intensities of protein bands corresponding to BopE were measured (C) and normalised to the 60 kDa bands, indicated by black arrows, on the Coomassie Brilliant Blue stained gel (D). Data are presented as the mean ± SEM of three biological replicates. *P < 0.05. Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2 and 4, total culture proteins from the K96243[*bopETC*] strain; lane 3 and 5, supernatant proteins from the K96243[*bopETC*] strain; lane 6 and 8, total culture proteins from the K96243[pBHR1]; lane 7 and 9, supernatant proteins from the K96243[pBHR1] strain. The expected size of TC-tagged BopE (33 kDa) is indicated by the blue box.
Figure 5.1.24 *E. coli* GspD expression during growth in medium supplemented with high (320 mM) or normal (85.6 mM) NaCl levels. Total proteins from mid exponential growth phase cultures of the DH5α[pJP117] strain were precipitated with DOC/TCA and labelled with the FlAsH compound using BME as the reducing agent. Labelled samples were separated using SDS-PAGE and the fluorescence measured (A). Unlabelled samples were separated by SDS-PAGE and visualised by Coomassie Brilliant Blue staining (C). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2, total proteins from the DH5α[pJP117] strain after growth in LB supplemented with 85.6 mM NaCl for 3 h; lane 3, total proteins from the DH5α[pJP117] strain after growth in LB supplemented with 320 mM NaCl for 3 h. The expected size of TC-tagged GspD (75 kDa) is indicated by the blue box.
Figure 5.1.25 Effect of congo red treatment on BopE expression. The K96243[bopETC] and K96243 [pBHR1] strains were cultured in either LB (lane 2 and 6), LB supplemented with 5% (w/v) sucrose (lane 3 and 7), LB supplemented with 0.08% (w/v) congo red (lane 4 and 8) or LB supplemented with 5% (w/v) sucrose and 0.08% (w/v) congo red (lane 5 and 9) and grown to mid exponential growth phase. Live bacterial cells were incubated with FlAsH prior to denaturation with 1X sample buffer containing dithiothreitol (DTT) as the reducing agent for live cell labelling. Labelled samples were separated using SDS-PAGE and the fluorescence measured (A). Unlabelled samples were separated by SDS-PAGE and visualised with Coomassie Brilliant Blue staining (B). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lanes 2 to 5, the K96243[bopETC] strain; lanes 6 to 9, the K96243[pBHR1] strain. The expected size of TC-tagged BopE (33 kDa) is indicated by the blue box.
Figure 5.1.26 Effect of Congo Red treatment on secretion and expression of BopE. The K96243[bopETC] and K96243[pBHR1] strains were cultured in either LB (lane 2, 3, 6 and 7) or LB supplemented with 0.08% (w/v) congo red (lane 4, 5, 8 and 9) and grown to mid exponential growth phase. Total proteins from cultures or filtered supernatants from mid exponential growth phase cultures were precipitated with DOC/TCA and labelled with the FlAsH reagent using BME as the reducing agent. Labelled samples were separated using SDS-PAGE and the fluorescence measured (A). Unlabelled samples were separated by SDS-PAGE and visualised by Coomassie Brilliant Blue staining (B). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lanes 2 and 4, total culture proteins from the K96243[bopETC] strain; lanes 3 and 5, supernatant proteins from the K96243[bopETC] strain; lanes 6 and 8, total culture proteins from the K96243[pBHR1] strain; lanes 7 and 9, supernatant proteins from the K96243[pBHR1] strain. The expected size of TC-tagged BopE (33 kDa) is indicated by the blue box.
Figure 5.1.27 Effect of congo red treatment on secretion and expression of BopE. (A) After measuring the fluorescent signal (see Figure 5.1.26), proteins were transferred to PVDF membranes in order to perform Western immunoblotting with BopE-specific antiserum. (B) Intensities of protein bands corresponding to BopE were measured and normalised to the 60 kDa bands, indicated by black arrows, on the Coomassie Brilliant Blue stained gel in Figure 5.1.26B. Data are presented as the mean ± SEM of three biological replicates. T, total culture; S, supernatant; CR, congo red stimulation condition.
Figure 5.2.1 Construct for bopE single-crossover mutagenesis using the suicide vector pDM4. (A) The mutagenesis construct pDM4::bopE was constructed by amplifying a 367-bp internal fragment of bopE (highlighted in blue) and cloning into BglII/XhoI-cut pDM4 as described previously (Stevens et al., 2002). The wild-type bopE gene is highlighted in black and the putative final genomic organisation is shown. The primer pair JT6100/JT6101 amplifying the chloramphenicol acetyl transferase (cat) gene was used for screening potential transconjugants. Arrows indicate the orientation of genes and primers. Arrows designating oligonucleotides are not shown to scale. (B) PCR screening of potential K96243ΔbopE::pDM4 strains using the primer pair JT6100/JT6101. Lane 1, DNA size markers; lanes 2 to 8, PCR products derived from potential K96243ΔbopE::pDM4 genomic DNA templates; lane 9, genomic DNA of E. coli S17-1/ppir harbouring pDM4::bopE as the positive control; lane 10, genomic DNA of the wild-type strain; lane 11, no DNA control. Clones indicated by the black box were selected for further experiments.
Figure 5.2.2 BopE secretion and expression from putative K96243ΔbopE::pDM4 strains. Total proteins (C, D) from cultures or filtered supernatants (A, B) from mid exponential growth phase cultures were precipitated with DOC/TCA, separated by SDS-PAGE and Western immunoblotting using BopE-specific antiserum was subsequently conducted (A, C). DOC/TCA precipitated supernatant (B) and total culture (D) samples were separated by SDS-PAGE and visualised by Coomassie Brilliant Blue staining. Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2, the K96243ΔbopC strain; lanes 3 and 5, putative K96243ΔbopE::pDM4 strains; lane 6, the wild-type strain. The clone in lane 4 as indicated by the blue box was selected for further experiments.
Figure 5.2.3 BopE secretion is increased in the K96243ΔbapB and K96243ΔbapBC strains during early-exponential growth phase. Proteins from supernatant samples (A, B and C) and total cultures (D, E and F) were precipitated using DOC/TCA, separated by SDS-PAGE and either transferred to PVDF membranes for Western immunoblotting using BopE-specific antiserum (A, D) or visualised directly by Coomassie Brilliant Blue staining (B, E). BopE-specific bands in the Western immunoblots were quantified by densitometry using ImageJ (http://rsbweb.nih.gov/ij/). The relative secretion levels, normalised against the wild-type secretion, were presented as the mean ± SEM of three biological replicates (C, F). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2, the K96243ΔbapA strain; lane 3, the K96243ΔbapB strain; lane 4, the K96243ΔbapC strain; lane 5, the K96243ΔbapBC strain; lane 6, the K96243ΔbopE::pDM4 strain; lane 7, the wild-type strain. *P < 0.05.
Figure 5.2.4 BopE secretion is increased in the K96243ΔbapB strain during mid-exponential growth phase. Proteins from supernatant samples (A, B and C) and total cultures (D, E and F) were precipitated using DOC/TCA, separated by SDS-PAGE and either transferred to PVDF membranes for Western immunoblotting using BopE-specific antiserum (A, D) or visualised directly by Coomassie Brilliant Blue staining (B, E). BopE-specific bands in the Western immunoblots were quantified by densitometry using ImageJ. The relative secretion levels, normalised against the wild-type secretion, were presented as the mean ± SEM of three biological replicates (C, F). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2, the K96243ΔbapA strain; lane 3, the K96243ΔbapB strain; lane 4, the K96243ΔbapC strain; lane 5, the K96243ΔbapBC strain; lane 6, the K96243ΔbopE::pDM4 strain; lane 7, the wild-type strain. *P < 0.05, ***P < 0.0001.
Figure 5.2.5 BopE expression is increased in the K96243ΔbapA and K96243ΔbapB strains during late-exponential growth phase. Proteins from supernatant samples (A, B and C) and total cultures (D, E and F) were precipitated using DOC/TCA, separated by SDS-PAGE and either transferred to PVDF membranes for Western immunoblotting using BopE-specific antiserum (A, D) or visualised directly by Coomassie Brilliant Blue staining (B, E). BopE-specific bands in the Western immunoblots were quantified by densitometry using ImageJ. The relative expression levels, normalised against the wild-type expression, were presented as the mean ± SEM of three biological replicates (C, F). Lane 1: SeeBlue® Plus2 pre-stained protein markers; lane 2, the K96243ΔbapA strain; lane 3, the K96243ΔbapB strain; lane 4, the K96243ΔbapC strain; lane 5, the K96243ΔbapBC strain; lane 6, the K96243ΔbopE::pDM4 strain; lane 7, the wild-type strain. *P < 0.05, ***P < 0.0001.
Figure 5.2.6 Location of oligonucleotide primers used for analysis of bopE gene expression by RT-PCR. Arrows indicate the orientation of primers and bopE. Arrows designating oligonucleotides and bopE are not shown to scale.
Figure 5.2.7 Transcription of bopE is increased in the K96243ΔbapB strain during early exponential growth phase. Total RNA from B. pseudomallei strains was extracted and used for reverse transcription PCR (RT-PCR). RT-PCR was carried out using the primer pair JT6079/JT6080 for amplification of bopE (A). Lane 1, DNA size markers; lane 2 and 3, RT+ and RT-, respectively, of the K96243ΔbapA strain; lane 4 and 5, RT+ and RT- of the K96243ΔbapB strain; lane 6 and 7, RT+ and RT- of the K96243ΔbapC strain; lane 8 and 9, RT+ and RT- of the K96243ΔbapBC strain; lane 10 and 11, RT+ and RT- of the K96243ΔbopE::pDM4 strain; lane 12 and 13, RT+ and RT- of the wild-type strain; lane 14, genomic DNA of the wild-type strain as the positive control; lane 15, no DNA control. Quantitative real-time RT-PCR was subsequently conducted on cDNA from the K96243ΔbapA (ΔbapA), K96243ΔbapB (ΔbapB) strains and the wild-type (WT) strain (B). The level of bopE transcription in each sample was normalised to the housekeeping gene rpoA expression. Data are expressed as mean ± SEM. Error bars represent the SEM from three technical replicates of biological duplicates (n = 2). *P < 0.05.
Figure 5.2.8 Transcription of \textit{bopE} is increased in the K96243\textit{ΔbapB} strain during mid (A) and late (B) exponential growth phase. Quantitative real-time RT-PCR was conducted on cDNA from the K96243\textit{ΔbapA} (\textit{ΔbapA}), K96243\textit{ΔbapB} (\textit{ΔbapB}) strains and the wild-type (WT) strain. The level of \textit{bopE} transcription in each sample was normalised to the housekeeping gene \textit{rpoA} expression. Data are expressed as mean ± SEM. Error bars represent the SEM from three technical replicates of biological duplicates (n = 2). **\textit{P} < 0.001, ***\textit{P} < 0.0001.
Figure 5.3.1 Amino acid sequence alignment of the *B. pseudomallei* BapB and the *Salmonella* IacP. Sequence similarity is shown with ‘:’ or ‘.' to designate amino acids with strongly and weakly conserved properties, respectively. Sequence identity is shown with ‘*’ to designate identical amino acids.

Figure 5.3.2 Phylogenetic tree analysis of representative different classes of TTSS chaperones (Parsot *et al.*, 2003) based on ClustalW alignment (www.genome.jp/tools/clustalw). BapB is highlighted in a box.
Figure 5.3.3 Phylogenetic tree analysis of representative TTSS chaperone class III (A) and amino acid sequence alignment of the *B. pseudomallei* BapB and the *Salmonella* FliS (B). BapB is highlighted in a box. Sequence similarity is shown with ‘:’ or ‘.’ to designate amino acids with strongly and weakly conserved properties, respectively. Sequence identity is shown with ‘*’ to designate identical amino acids.

Figure 5.3.4 Phylogenetic relationship of TTSS-associated lytic transglycosylase enzymes from animal- and plant-pathogenic bacteria based on ClustalW alignment. The *B. pseudomallei* BapC is highlighted in a box.
Figure 5.3.5 Amino acid sequence alignment of the *B. pseudomallei* BapC and the *X. campestris* pv. vesicatoria HpaH and *X. oryzae* pv. oryzae Hpa2 (A), and the IagB of *Salmonella* and IpgF of *Shigella* (B). Three conserved motifs of the LT domains are indicated by the boxes. Regions 1 and 3 are predictably to form α-helices and 2 is predictably to form the β-sheet. Residue E in α-helix regions (boxed) is the typical catalytic glutamate residue which is responsible for cleaving β-1,4 glycosidic bonds of bacterial peptidoglycan. Sequence similarity is shown with ‘:’ or ‘,’ to designate amino acids with strongly and weakly conserved properties, respectively. Sequence identity is shown with ‘*’ to designate identical amino acids.
Figure 5.3.6 Amino acid sequence alignment of the *B. pseudomallei* BapC and amino acid residues involved in the conformational stability and folding of human lysozyme. (A) Sequence similarity is shown with ‘:’ or ‘.’ to designate amino acids with strongly conserved or weakly conserved properties, respectively. Identified amino acids are shown with ‘*’. Three conserved motifs of the LT domains are indicated by the blue boxes. Number 1 and 3 are part of α-helices and 2 is the β-sheet. The residue in α-helix 1 (boxed) is the typical catalytic glutamate residue which is responsible for cleaving β-1,4 glycosidic bonds of bacterial peptidoglycan. (B) Locations of amino acid sequence identity to human lysozyme of BapC are highlighted in blue.
Chapter 6

General discussion and future directions
Chapter 6: General discussion and future directions

The *B. pseudomallei* TTSS3 is a key virulence factor that consists of a structural injectisome, translocons, chaperones and effectors. Of all these TTSS3 molecules, the secreted effectors play direct roles in host cell interactions and modification of host cell functions in order to aid bacterial survival and replication within the host. In this study, the putative effectors BapA, BapB and BapC, encoded within the TTSS3 locus, were characterised with regard to their role as effectors and their importance in *B. pseudomallei* virulence.

In Chapter 3, the K96243ΔbapA, ΔbapB and ΔbapC strains, and a K96243ΔbapBC strain were generated by double cross-over allelic exchange. These mutant strains were characterised in order to identify the importance of these genes in bacterial pathogenesis. All mutants displayed reduced *in vivo* survival compared to the wild-type strain, and in initial trials all showed reduced virulence as infected mice displayed an increased time to death, suggesting that BapA, BapB and BapC may play a role in, but are not essential for, bacterial growth and virulence. In order to verify that the observed phenotypes were specifically due to inactivation of the *bap* genes, complementation was initially attempted using the replicating pBHR1 plasmid. All pBHR1 constructs showed low stability in *B. pseudomallei* with between 0% and 56% of the recombinant plasmids retained over 12 h in the absence of selection. The K96243ΔbapB[ΔbapB] strain was the most stable and this construct partially restored the wild-type *in vivo* survival phenotype of the K96243ΔbapB strain. By using the same complementation approach, D’Cruze *et al.* (2011) also showed partial restoration of the wild-type phenotype of a *BPSL1394* mutant using *in vitro* macrophage infection assays. Due to the low stability of the pBHR1 constructs, complementation with this approach was not tested further. Instead, another complementation approach was attempted by using the transposon mini-Tn7 vector. Although these complementation constructs were able to be mobilised into *B. pseudomallei*, no integration site could be definitely determined. Therefore, as complementation was not successful, four independently derived strains, K96243ΔbapA_2, ΔbapB_2, ΔbapC_2 and ΔbapBC_2, were generated as an alternative and these independent mutants used in direct virulence trials. The K96243ΔbapA_2 strain showed similar attenuation to the original mutant, indicating that the attenuation observed for the original mutant was likely due to inactivation of *bapA*. Thus, it can be concluded that *bapA* likely plays a role, either direct or indirect, in virulence of *B. pseudomallei*. Although we cannot rule out the possibility that both mutants have other mutations outside *bapA*, this should be the focus of future work. In contrast, the other
independent mutants revealed different attenuation levels from the corresponding original mutant, suggesting that BapB and BapC do not play a significant role in bacterial virulence in the BALB/c mouse model. However, it remains unclear why the original mutants behaved differently in the first animal experiments. The variable virulence trial data suggest that there may be additional mutations outside the regions subjected to mutagenesis and/or different susceptibility to B. pseudomallei infection of mice in each of the virulence trials. Accordingly, several additional experiments should be conducted. Complementation is the most complete method to assess the specific role of inactivated genes in generating a given phenotype(s). Therefore, further work should be done with the mini-Tn7 complementation constructs in order to identify and confirm the integration positions of the mini-Tn7 complemented mutant strains, for instance, by full genome sequencing. If each construct is shown to contain the appropriate integration then these strains should be used for competitive growth assays and virulence trials. The stability of the constructs would also need to be assessed by growth in the absence of antibiotics for up to 10 days (the normal duration of the mouse virulence trials). Alternatively, complementation could be achieved by generating complementation constructs in the pDM4 vector in such a way that they would be integrated into the genome.

In addition to further attempts at complementation, genome sequencing could be conducted on both the independently derived mutants and the original mutants to determine if there was any secondary mutation(s) in any of the strains. Another set of independently derived K96243ΔbapB and K96243ΔbapC strains could also be generated for assessing attenuation in comparison to the previous two mutants and the wild-type strain. In addition to the K96243ΔbapBC strain already generated, the K96243ΔbapAB and K96243ΔbapABC strains, could be generated and characterised in order to investigate the virulence of the bacteria when bapAB or bapABC have been inactivated.

In Chapter 4, the original K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains were further characterised for their possible function(s) in regards to subverting host cell functions. Several in vitro phenotypic assays were conducted based on previous TTSS studies. Disruption of bapA, bapB, bapC or even bapBC did not affect any of the following: bacterial invasion of the cultured lung epithelial cell line A549, bacterial survival and replication in the macrophage-like cell line RAW264.7, ability of bacteria to escape from host phagosomes, actin-mediated motility or MNGC formation. Thus, unlike other members of previously characterised TTSS3 genes (Cullinane et al., 2008; D'Cruze et al., 2011; Gong et al., 2011), these genes do not play a role in
these functions. However, the K96243ΔbapB and K96243ΔbapC strains stimulated a statistically significant increase in TNF-α secretion from macrophage-like cells at 2 h p.i. whereas the K96243ΔbapBC strain stimulated a reduced TNF-α secretion at 4 and 6 h p.i., suggesting a possible role for bapB and bapC in stimulating the host immune systems which has been previously reported (Burtnick et al., 2008; Hii et al., 2008; Miao & Warren, 2010).

Pretreatment of RAW264.7 cells with IFN-γ prior to infection augments the antimicrobial activity of macrophages. The intracellular survival and replication of the K96243ΔbapC strain was significantly reduced in IFN-γ pre-treated RAW264.7 cells, suggesting that BapC may play a role in avoiding IFN-γ stimulation. The K96243ΔbapC strain, as well as the K96243ΔbapA and ΔbapBC strains, showed reduced IL-6 secretion from IFN-γ stimulated RAW264.7 cells, but only at 2 h p.i. However, all mutant strains stimulated a similar level of TNF-α secretion from IFN-γ pre-treated RAW264.7 cells as did the wild-type strain. To confirm and extend these results, several additional experiments should be carried out. All of the in vitro assays carried out in this study were performed in RAW264.7 cells, however previous TTSS3 studies (Burtnick et al., 2008; Stevens et al., 2002) have used another murine macrophage-like cell line J774.2 to perform the phenotypic assays. Thus, the intracellular survival and replication assays could be repeated in this cell line in order to identify if there are any differences in cellular behaviour from RAW264.7 cells. Furthermore, as the K96243ΔbapC strain showed altered intracellular replication in IFN-γ stimulated RAW264.7 cells, the K96243ΔbapC, K96243ΔbapC_2 and K96243ΔbapC[bapC] strains should also be tested in both normal and IFN-γ pre-treated macrophages. In addition, time-course experiments longer than 6 h p.i. should be conducted, based on previous studies showing that some TTSS3 mutants exhibit delayed phenotypes (Burtnick et al., 2008). Importantly, the TNF-α and IL-6 secretion experiments should be repeated using the K96243ΔbapC, K96243ΔbapC_2 and K96243ΔbapC[bapC] strain, and the K96243ΔbapBC and K96243ΔbapBC_2 strains in both normal untreated macrophages and IFN-γ pre-treated macrophages. Based on the TNF-α and IL-6 assay results, other cytokines, for instance, IL-8, IL-1β and IL-10 (Alciato et al., 2010; Burtnick et al., 2008), should be assessed. The levels of IL-8 (Hii et al., 2008) and IFN-γ (Paludan, 2000) secreted from infected phagocytic cells are likely to correlate with that of TNF-α. Furthermore, RAW264.7 cell cytotoxicity assays, measured by assessing the level of LDH release (Smith et al., 2011), should also be carried out along with in vitro infection in order to verify that there was no unintentional effects from the
loss of cell integrity (Burtnick et al., 2008). These assays could also show whether BapA, BapB and/or BapC play a role in causing host cell damage/death.

In Chapter 5, the function of BapA, BapB and BapC as TTSS3-dependent secreted effectors was assessed by following the secretion of TC-tagged proteins using the TC-FIAsH™-based fluorescence labelling technique. The FIAsH-labelling system was optimised for *B. pseudomallei* using the well characterised TTSS3 effector BopE, prior to testing of the TC-tagged BapA, BapB and BapC in whole samples or supernatants. In a similar manner to the positive control BopE, both BapA and BapC were observed to be secreted in a TTSS3-dependent manner, confirming that they are indeed true TTSS3 effectors. These data showed for the first time that BapA and BapC are TTSS3 effector proteins. However, no TC-tagged BapB could be detected either in whole cell or supernatant samples. It is possible that tagging of BapB at the C-terminal end altered the conformation of the protein and hindered the binding of the TC motif to the FIAsH compound. Alternatively, it is possible that BapB is not expressed under the conditions tested.

Two possible TTSS stimulation conditions, congo red and high salt concentration (320 mM NaCl), which have been previously reported to stimulate the TTSS activity in *Shigella* (Bahrani et al., 1997; Enninga et al., 2005; Simpson et al., 2010) and *B. pseudomallei* respectively (Pumirat et al., 2010), were tested to see if they enhanced TTSS3 secretion via analysis of BopE secretion. High salt concentration increased the secretion of BopE whereas the addition of congo red did not.

Further experiments should be carried out to investigate the secretion of BapB. Firstly, the protein should be tagged at the N-terminal end and then FIAsH labelling used to analyse secretion. In addition, optimisation with regard to the generation of this construct could be considered, including adding or removing the linkers of the TC tag and/or using tandem repeat TC tags, for instance, CCPGCCPGCCPGCC, in order to help increase the flexibility and/or intensity of fluorescent complex formation as demonstrated elsewhere (Simpson et al., 2010; VanEngelenburg & Palmer, 2008). Although the N-terminal region of almost all TTSS effectors is essentially required for the secretion/translocation, some effectors appear to have their functional domains at either the C-terminal or both N- and C-terminal regions, depending upon the interaction required during pathogenesis (Brown et al., 2006; Diacovich et al., 2009; Harrington et al., 2003; Kim et al., 2007; Myeni & Zhou, 2010; Terry et al., 2008). Since amino acids 10 to 30 and 50 to 100 of TTSS effectors are predicted to be the location of secretion signal and chaperone/translocation binding sites, respectively (Löwer & Schneider, 2009), it would be important to characterise these regions of the newly identified effectors BapA and BapC.
Deletion or substitution variants within (made by site-directed mutagenesis) each of those regions in C-terminal TC-tag fusions should be constructed and subsequently analysed by FlAsH labelling to determine if these regions are required for the secretion/function of these two effectors. Moreover, the fluorescent secretion and production of the TC-tagged BapA and BapC should be assessed in other TTSS3 mutants (e.g. the bipD mutant) in order to confirm that BapA and BapC are secreted in a TTSS3-dependent manner. Alternatively, other reporter systems, for instance, the β-lactamase reporter system (Charpentier & Oswald, 2004), should be also used to investigate the translocation of BapA, BapB and/or BapC into host cells. This reporter system has been used successfully to monitor the translocation of effectors in many Gram-negative pathogens (Charpentier & Oswald, 2004; McCann et al., 2007; Mills et al., 2008). Moreover, direct FlAsH labelling of TC-tagged BapA, BapC and BopE should be carried out to monitor the secretion of these effectors in real-time throughout the bacterial infection process, since this approach has been successfully used in monitoring the secretion of Shigella and Salmonella effectors during bacterial invasion (Enninga et al., 2005; Hoffmann et al., 2010; VanEngelenburg & Palmer, 2008). This would allow direct visualisation of when and where these effectors are secreted during infection.

In order to determine if BapA, BapB and BapC were essential for the function of the TTSS3 system, the secretion of the effector BopE was analysed in each of the K96243ΔbapA, ΔbapB, ΔbapC and ΔbapBC strains. BapA, BapB and BapC were not essential for TTSS function as BopE was secreted from each of the mutant strains. However, the secretion and expression of BopE was substantially increased in the K96243ΔbapB strain, suggesting that BapB plays a role in regulation of the TTSS3 secretion machinery or in a direct interaction with BopE. Stevens et al. (2004) demonstrated that BopE does not play a role in virulence, intracellular replication and escape from host endosomes of B. pseudomallei. In this study, BopE secretion was altered in the K96243ΔbapB strain, but the mutant strain showed unaltered bacterial virulence, intracellular replication and escape from host endosomal vacuoles; this is in accordance with the results of Stevens et al. (2004) with respect to altered production of BopE. Bioinformatic analysis suggests that BapB may act as a TTSS3 chaperone preventing the premature secretion of one or more effectors. In this case, mutation of bapB would lead to premature secretion of BopE. Several TTSS chaperones in other Gram-negative bacteria have been reported to play a role in preventing premature secretion of their cognate effectors (Büttner, 2012; Parsot et al., 2003). Indeed, Shigella IpgA and IpgE interact, stabilise and regulate the secretion of their cognate effectors IcsB and IpgD, respectively (Niebuhr et al., 2000; Ogawa et al., 2003). Moreover,
some chaperones can regulate multiple effectors, for example, *Salmonella* chaperone InvB regulates and stabilises its cognate effectors SopE2 and SipA, and also prevents the secretion of another effector SopE (Büttner, 2012; Parsot et al., 2003). In contrast to the K96243ΔbapB strain, BopE secretion in the K96243ΔbapA strain exhibited a slight decrease in mid and late exponential growth phase, and *bopE* transcription was decreased in this mutant at both growth phases, suggesting that BapA may also interact with BopE, or BapA may play a minor or indirect role in transcription and/or secretion of BopE. To further investigate the function of BapA, BapB and BapC, and identify putative protein-protein interactions, especially between BapB and BopE, several experiments using different approaches should be carried out. Protein co-immunoprecipitation (Deng et al., 2005) using bacterial supernatant samples, followed by normal or 2D SDS-PAGE and then Western immunoblotting or mass spectrometry would potentially identify the binding partners of each of the proteins (Ishidate et al., 1986; Lara-Tejero et al., 2011; Schraidt et al., 2010). To further determine if BapA, BapB and BapC are expressed in a growth-dependent manner, both supernatant and whole cell lysate samples should be prepared from cells at different growth phases, proteins labelled with the FliAsH compound and then detected by fluorescence following separation by SDS-PAGE as described previously. Moreover, blue native-PAGE (Ehrbar et al., 2003; Lara-Tejero et al., 2011) could be used to determine native protein masses of BapA, BapB and BapC and to identify if they exist as part of larger protein complexes. Alternatively, BapA-, BapB- and BapC-specific antisera could be produced for analysing the localisation and interaction of any of these proteins using Western immunoblotting. Apart from protein-protein interaction assays, assays specific for functional characterisation of the ACP and LT domain of BapB and BapC, respectively, should be conducted. Amino acid residues in BapB contributing to its three-dimensional structure and interactions with various enzymes should be identified using site-direct mutagenesis followed by acyl-ACP synthetase assay as described previously (Flaman et al., 2001). Muramidase activity assays (de la Mora et al., 2007; Laible & Germaine, 1985) and zymogram analyses (Kohler et al., 2007; Zahrn et al., 2005) should also be carried out to determine the peptidoglycan degrading activity of BapC. Moreover, as *bopE* transcription was specifically increased in the K96243ΔbapB strain and slightly decreased in the K96243ΔbapA strain, *bopE* transcription should be assessed in either other mutants, including the K96243ΔbapC and ΔbapBC, the pBHR1 or the mini-Tn7 complemented strains.

In summary, three *B. pseudomallei* TTSS3 proteins, namely BapA, BapB and BapC, were characterised in this study. BapA and BapC were shown to be secreted in a TTSS3-dependent
manner and are therefore new TTSS3 effector proteins. Also, BapB and possibly BapA appear to play a role in regulation of the BopE expression and secretion, suggesting that BapB may be a chaperone that controls BopE release. Furthermore, each of the proteins showed a minor role in \textit{in vivo} growth of this bacterium, and BapA showed a possible role in bacterial virulence as two independently derived mutants both showed reduced virulence in the BALB/c mouse model. However, without successful complementation, the possibility that the tested \textit{bapA} mutants might contain secondary mutations that play a role in the observed virulence reduction cannot be ruled out. Finally, BapB and BapC exhibited an involvement in stimulating host innate immune responses while BapA did not seem to be required for this function. Again, confirmation of these phenotypes by analysis of the independently derived mutants and/or complementation is required.
Bibliography
Bibliography

Cullinane, M., Gong, L., Li, X., Adler, N.-L., Tra, T., Wolvetang, E., Prescott, M., Boyce, J. D., Devenish, R. J. & other authors (unpublished data). Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines.

- 216 -

Appendices
Appendices

Appendix 1: Formulation and preparation of culture media

Cultural media were prepared, autoclaved and, unless otherwise indicated, stored at room temperature.

A1.1 Protocol for preparation of Luria-Bertani (LB) broth – 100 mL

- Tryptone 1 g
- Yeast extract 0.5 g
- NaCl 0.5 g
- dH₂O up to 100 mL

* Supplemented with ampicillin (100 µg/mL), chloramphenicol (20, 50 or 100 µg/mL), kanamycin (50 µg/mL or 1 mg/mL) or tetracycline (12.5 or 25 µg/mL) as required, after autoclaving.
* Supplemented with 5% (w/v) sucrose and/or 0.08% (w/v) congo red as required before autoclaving.
* Supplemented with 320 mM NaCl as required before autoclaving.

A1.2 Protocol for preparation of glycerol broth – 100 mL

- Heart infusion 3.7 g
- Glycerol 30 mL
- dH₂O up to 100 mL

A1.3 Protocol for preparation of super optimal broth (SOB) – 100 mL

- Tryptone 2 g
- Yeast extract 0.5 g
- NaCl 0.05 g
- KCl 0.02 g
- dH₂O up to 100 mL
Appendix 2: Formulation and preparation of buffers

Buffer solutions were prepared and, unless otherwise indicated, stored at room temperature.

A2.1 1 M Tris-hydrochloric acid (Tris-HCl), pH 7.5

- Tris base: 121.14 g
- ddH₂O: up to 1 L

Tris base (AMRESCO®, OH, USA) was dissolved in 700 mL of ddH₂O. The stock solution was adjusted to pH 7.5 with 37% (v/v) HCl. The final volume was brought to 1 L with ddH₂O.

A2.2 0.5 M Tris-hydrochloric acid (Tris-HCl), pH 6.8

- Tris base: 60.57 g
- ddH₂O: up to 1 L

Tris base was dissolved in 700 mL of ddH₂O. The stock solution was adjusted to pH 6.8 with 37% (v/v) HCl. The final volume was brought to 1 L with ddH₂O.

A2.3 50X Tris-acetate-EDTA (TAE)

- Tris base: 242 g
- 50 mM EDTA, pH 8.0: 100 mL
- Glacial acetic acid: 57.1 mL
- ddH₂O: up to 1 L

Tris base and EDTA were mixed and dissolved in 500 mL of ddH₂O. Glacial acetic acid was then added prior to bringing the final volume to 1 L with ddH₂O.

A2.4 1X TAE running buffer

- 50X TAE: 20 mL
- ddH₂O: up to 1 L

A2.5 10x DNA loading buffer

- 50X TAE: 20 mL
- Sucrose: 40 g
- Bromophenol blue: 10 mg
- ddH₂O: up to 100 mL

Bromophenol blue was purchased from Bio-Rad Laboratories (NSW, Australia). The loading buffer was prepared and stored at 4°C.
A2.6 3 M sodium acetate (NaAc)

- sodium acetate (NaAc) 40.81 g
- ddH₂O up to 100 mL

NaAc was dissolved in 70 mL of ddH₂O. The pH was adjusted to pH 5.2 with glacial acetic acid. The final volume was brought to 100 mL with ddH₂O prior to autoclaving.

A2.7 10X Phosphate-buffered saline (PBS), pH 7.4

- NaCl 80 g
- KCl 2 g
- Na₂HPO₄ 14.4 g
- KH₂PO₄ 2.4 g
- ddH₂O up to 1 L

NaCl, KCl, Na₂HPO₄ and KH₂PO₄ were mixed and dissolved in 700 mL of ddH₂O. The pH was adjusted to 7.4 with 37% (v/v) HCl. The final volume was brought to 1 L with ddH₂O prior to autoclaving.

A2.8 1X PBS buffer, pH 7.4

- 10X PBS, pH 7.4 100 mL
- ddH₂O up to 1 L

The buffer was prepared and autoclaved before use.

A2.9 1X PBS/0.1% (v/v) Triton X-100

- 10X PBS, pH 7.4 100 mL
- Triton X-100 1 mL
- ddH₂O up to 1 L

The buffer was prepared and filtered through a 0.20 μM filter (Pall Life Science, NY, USA). The washing buffer was pre-warmed at 37°C before use.

A2.10 1X PBS/0.5% (w/v) saponin

- 10X PBS, pH 7.4 100 mL
- Saponin 5 g
- ddH₂O up to 1 L

Saponin was purchased from Sigma-Aldrich (MO, USA). The buffer was prepared and filtered through a 0.20 μM filter. The washing buffer was pre-warmed at 37°C before use.
A2.11 1X PBS/1% (w/v) bovine serum albumin (BSA)
- 10X PBS, pH 7.4 100 mL
- BSA 10 g
- ddH$_2$O up to 1 L

BSA (\geq 96%) was purchased from Sigma-Aldrich (MO, USA). The buffer was prepared and filtered through a 0.20 µM filter. The washing buffer was pre-warmed at 37°C before use.

A2.12 1X PBS/3.5% (w/v) paraformaldehyde (PFA)
- 16% (w/v) PFA 21.88 mL
- 10X PBS, pH 7.4 10 mL
- ddH$_2$O up to 100 mL

PFA (16% stock solution per ampoule, EM grade) was purchased from Electron Microscopy Sciences, Inc. (PA, USA). The buffer was prepared and filtered through a 0.20 µM filter prior to storing at -20°C until use.

A2.13 Resolving gel buffer, pH 8.8 (for SDS-PAGE analysis)
- Tris base 181.65 g
- Sodium dodecyl sulfate (SDS) 4 g
- ddH$_2$O up to 1 L

Tris base and SDS (AMRESCO®, OH, USA) were dissolved in 700 mL of ddH$_2$O. The stock solution was adjusted to pH 8.8 with 37% (v/v) HCl. The final volume was brought to 1 L with ddH$_2$O.

A2.14 Stacking gel buffer, pH 6.8 (for SDS-PAGE analysis)
- Tris base 60 g
- SDS 4 g
- ddH$_2$O up to 1 L

Tris base and SDS were dissolved in 700 mL of ddH$_2$O. The stock solution was adjusted to pH 6.8 with 37% (v/v) HCl. The final volume was brought to 1 L with ddH$_2$O.

A2.15 5X Laemmli sample buffer with β-mercaptoethanol (BME)
- 0.5 M Tris-HCl, pH 6.8 2.4 mL
- glycerol 2.5 mL
- 10% (w/v) SDS 2 mL
- 1% (w/v) bromophenol blue 1 mL
- BME 10 µL
- ddH$_2$O 1.1 mL
BME (14.3 M, the stock solution) was purchased from Sigma-Aldrich (MO, USA). This stock solution was prepared and stored at -20°C.

A2.16 5X Laemmli sample buffer (no reducing agent)
- 0.5 M Tris-HCl, pH 6.8 2.4 mL
- glycerol 2.5 mL
- 10% (w/v) SDS 2 mL
- 1% (w/v) bromophenol blue 1 mL
- ddH₂O 1.1 mL
The stock solution was prepared and stored at -20°C. Reducing agents were added before use as indicated.

A2.17 5X Tris-glycine running buffer (for SDS-PAGE analysis)
- Tris base 15 g
- Glycine 72 g
- SDS 5 g
- ddH₂O up to 1 L

A2.18 10X Transblot buffer (for Western blotting)
- Tris base 30.3 g
- Glycine 144.1 g
- ddH₂O up to 1 L

A2.19 1X Transblot buffer, working solution (for Western blotting)
- 10X Transblot buffer 100 mL
- Methanol 100 mL
- ddH₂O 800 mL
This working solution was prepared and kept in at 4°C until use, and was reused up to three times.

A2.20 10X Tris-buffered saline (TBS), pH 7.4
- Tris base 121.2 g
- NaCl 175.4 g
- ddH₂O up to 1 L
Tris base and NaCl were dissolved in 700 mL of ddH₂O. The stock solution was adjusted to pH 7.4 with 37% (v/v) HCl. The final volume was brought to 1 L with ddH₂O.
A2.21 1X TBS/0.1% (v/v) Tween-20 buffer
- 10X TBS 100 mL
- Tween-20 1 mL
- ddH₂O up to 1 L

A2.22 Blocking buffer (for Western blotting)
- 1X TBS/0.1% Tween-20 20 mL
- Skim milk powder 1 g

The buffer was freshly prepared on the day of experiment.

A2.23 Coomassie Brilliant Blue staining
- Coomassie Brilliant Blue R-250 1 g
- Glacial acetic acid 100 mL
- Absolute ethanol 400 mL
- ddH₂O up to 1 L

Coomassie Brilliant Blue R-250 was purchased from Bio-Rad Laboratories (NSW, Australia).

A2.24 Destaining solution (for SDS-PAGE analysis)
- Glacial acetic acid 70 mL
- Absolute ethanol 400 mL
- ddH₂O up to 1 L

A2.25 RF1 buffer – 40 mL
- RbCl 0.48 g
- MnCl₂ 0.40 g
- 30 mM potassium acetate, pH 7.5 1.2 mL
- CaCl₂·2H₂O 0.06 g
- glycerol 6 mL

The buffer was prepared freshly on the day of experiment and carefully adjusted to pH 5.8 with 0.2 M acetic acid. The final volume was brought to 40 mL with ddH₂O prior to filter sterilisation using 0.20 μM filter (Pall Life Science, NY, USA). The buffer was placed on ice before use.

A2.26 RF2 buffer – 20 mL
- RbCl 0.02 g
- MOPS 0.4 mL
CaCl₂·2H₂O 0.22 g
glycerol 3 mL

The buffer was prepared freshly on the day of experiment and carefully adjusted to pH 6.8 with 0.1 M NaOH. The final volume was brought to 20 mL with ddH₂O prior to filter sterilisation using 0.20 μM filter. The buffer was placed on ice before use.

A2.27 Depurination solution – 50 mL

- 5 M HCl 2.5 mL
- ddH₂O up to 50 mL

5 M HCl was prepared by diluting stock HCl (37% w/w; 12 M) with ddH₂O e.g. 50 mL of stock HCl in 70 mL of ddH₂O.

A2.28 Denaturation solution

- 2 M NaOH 100 mL
- 5 M NaCl 120 mL
- ddH₂O up to 1 L

2 M NaOH was prepared by dissolving 80 g of NaOH in 1 L of ddH₂O. 5 M NaCl was prepared by dissolving 292.2 g of NaCl in 1 L of ddH₂O.

A2.29 Neutralisation solution

- Tris base 121.2 g
- NaCl 87.7 g
- ddH₂O up to 1 L

Tris base and NaCl were dissolved in 700 mL of ddH₂O. The stock solution was adjusted to pH 7.5 with 37% (v/v) HCl. The final volume was brought to 1 L with ddH₂O.

A2.30 20X Saline sodium citrate (SCC) buffer

- NaCl 175.3 g
- Sodium citrate 83.3 g
- ddH₂O up to 1 L

Sodium citrate and NaCl were dissolved in 700 mL of ddH₂O. The stock solution was adjusted to pH 7.0 with 37% (v/v) HCl. The final volume was brought to 1 L with ddH₂O.

A2.31 2X SCC solution

- 20X SCC 10 mL
- ddH₂O up to 100 mL

The buffer was freshly prepared before use.
A2.32 10X SCC solution

- 20X SCC 50 mL
- ddH₂O up to 100 mL

The buffer was freshly prepared before use.

A2.33 Pre-hybridisation solution (for Southern blotting)

- 20X SCC 7.5 mL
- Skim milk powder 0.5 g
- 10% (w/v) N-lauroylsarcosine 0.3 mL
- 10% (w/v) SDS 0.06 mL
- ddH₂O 22.14 mL

The buffer was prepared and incubated at 65°C for 45 min to completely dissolve the skim milk powder. The buffer was stored at -20°C until use.

A2.34 2X Wash solution (for Southern blotting)

- 20X SCC 100 mL
- 10% (w/v) SDS 10 mL
- ddH₂O up to 1 L

A2.35 0.2X Wash solution (for Southern blotting)

- 20X SCC 10 mL
- 10% (w/v) SDS 10 mL
- ddH₂O up to 1 L

A2.36 5X Maleic acid buffer, pH 7.5

- Maleic acid 58.04 g
- NaCl 43.82 g
- ddH₂O up to 1 L

Maleic acid and NaCl were dissolved in 500 mL of ddH₂O. The stock solution was adjusted to pH 7.5 with NaOH pellets. The final volume was brought to 1 L with ddH₂O. The stock solution was autoclaved before use.

A2.37 Washing buffer (for Southern blotting)

- 5X Maleic acid buffer, pH 7.5 100 mL
- Tween 20 1.5 mL
- ddH₂O up to 500 mL
A2.38 Blocking buffer (for Southern blotting)

- Washing buffer 200 mL
- Skim milk powder 2 g

The buffer was freshly prepared on the day of experiment.

A2.39 Detection solution (for Southern blotting)

- Tris base 12.1 g
- NaCl 5.85 g
- ddH₂O up to 1 L

Tris-base and NaCl were dissolved in 700 mL of ddH₂O. The stock solution was adjusted to pH 9.5 with 37% (v/v) HCl. The final volume was brought to 1 L with ddH₂O.
Appendix 3: Polymerase chain reaction (PCR) protocols and other reaction conditions

Table A3.1 Standard protocol for the preparation of PCR using Taq polymerase

<table>
<thead>
<tr>
<th>PCR mixture</th>
<th>1 reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 10X PCR reaction buffer* (with 25 mM Mg\textsubscript{2}Cl)</td>
<td>2 µL</td>
</tr>
<tr>
<td>• DMSO</td>
<td>2 µL</td>
</tr>
<tr>
<td>• Forward primer (10 µM)</td>
<td>2 µL</td>
</tr>
<tr>
<td>• Reverse primer (10 µM)</td>
<td>2 µL</td>
</tr>
<tr>
<td>• 10 mM dNTPs</td>
<td>0.4 µL</td>
</tr>
<tr>
<td>• Taq polymerase</td>
<td>0.2 µL</td>
</tr>
<tr>
<td>• Sterile double distilled water</td>
<td>10.9 µL</td>
</tr>
<tr>
<td>• DNA template (10-500 pg)</td>
<td>0.5 µL</td>
</tr>
<tr>
<td>Total</td>
<td>20 µL</td>
</tr>
</tbody>
</table>

*100 mM Tris-HCl, 500 mM KCl; pH 8.3

PCR cycling condition

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Temp</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94°C</td>
<td>10 min</td>
</tr>
<tr>
<td></td>
<td>94°C</td>
<td>30 sec</td>
</tr>
<tr>
<td>35</td>
<td>X*°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>X# min</td>
</tr>
<tr>
<td>1</td>
<td>72°C</td>
<td>7 min</td>
</tr>
<tr>
<td></td>
<td>10°C</td>
<td>hold</td>
</tr>
</tbody>
</table>

X* = 58°C when DNA templates were extracted from *E. coli* strains, or 60°C when the templates were extracted from *B. pseudomallei* strains.

X# = extension time depending on the expected size of DNA fragments, generally, 60 sec per 1 kilobase.
Table A3.2 Standard protocol for the preparation of PCR using Expand High Fidelity PCR system

<table>
<thead>
<tr>
<th>PCR mixture</th>
<th>1 reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X Expand High Fidelity PCR buffer (no Mg<sub>2</sub>Cl)</td>
<td>2 µL</td>
</tr>
<tr>
<td>25 mM Mg<sub>2</sub>Cl</td>
<td>4 µL</td>
</tr>
<tr>
<td>DMSO</td>
<td>2 µL</td>
</tr>
<tr>
<td>Forward primer (10 µM)</td>
<td>2 µL</td>
</tr>
<tr>
<td>Reverse primer (10 µM)</td>
<td>2 µL</td>
</tr>
<tr>
<td>10 mM dNTPs</td>
<td>0.4 µL</td>
</tr>
<tr>
<td>Expand High Fidelity Taq polymerase</td>
<td>0.2 µL</td>
</tr>
<tr>
<td>Sterile double distilled water</td>
<td>6.9 µL</td>
</tr>
<tr>
<td>DNA template (10-500 pg)</td>
<td>0.5 µL</td>
</tr>
<tr>
<td>Total</td>
<td>20 µL</td>
</tr>
</tbody>
</table>

PCR cycling condition

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Temp</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94ºC</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>94ºC</td>
<td>30 sec</td>
</tr>
<tr>
<td>35</td>
<td>52-62ºC</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72ºC</td>
<td>2 min</td>
</tr>
<tr>
<td>1</td>
<td>72ºC</td>
<td>X° min</td>
</tr>
</tbody>
</table>

X° = extension time depending on the expected size of DNA fragments, generally, 60 sec per 1 kilobase.

- 230 -
Table A3.3 Standard protocol for the preparation of PCR using KOD polymerase

<table>
<thead>
<tr>
<th>PCR mixture</th>
<th>1 reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 10X KOD PCR buffer*</td>
<td>2.5 µL</td>
</tr>
<tr>
<td>• KOD 25 mM MgSO₄</td>
<td>1 µL</td>
</tr>
<tr>
<td>• DMSO</td>
<td>1.25 µL</td>
</tr>
<tr>
<td>• Betaine** (5 M)</td>
<td>12.5 µL</td>
</tr>
<tr>
<td>• Forward primer (10 µM)</td>
<td>1.5 µL</td>
</tr>
<tr>
<td>• Reverse primer (10 µM)</td>
<td>1.5 µL</td>
</tr>
<tr>
<td>• KOD dNTP mix</td>
<td>2.5 µL</td>
</tr>
<tr>
<td>• KOD polymerase</td>
<td>0.5 µL</td>
</tr>
<tr>
<td>• Sterile double distilled water</td>
<td>1.25 µL</td>
</tr>
<tr>
<td>• DNA template (10-500 pg)</td>
<td>0.5 µL</td>
</tr>
<tr>
<td>Total</td>
<td>25 µL</td>
</tr>
</tbody>
</table>

*1.2 M Tris-HCl, 100 mM KCl, 60 mM (NH₄)₂SO₄, 1% Triton X-100, 0.01% BSA, pH 8.0.

Betaine was purchased from Sigma-Aldrich (MO, USA).

PCR cycling condition

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Temp</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93ºC</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>93ºC</td>
<td>20 sec</td>
</tr>
<tr>
<td>35</td>
<td>58ºC</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>70ºC</td>
<td>X# min</td>
</tr>
<tr>
<td>1</td>
<td>72ºC</td>
<td>7 min</td>
</tr>
<tr>
<td></td>
<td>10ºC</td>
<td>hold</td>
</tr>
</tbody>
</table>

X# = extension time depending on the expected size of DNA fragments, generally, 60 sec per 1 kilobase.
Table A3.4 Standard protocol for the preparation of nucleotide sequencing

<table>
<thead>
<tr>
<th>PCR mixture</th>
<th>1 reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigDye premix*</td>
<td>2 µL</td>
</tr>
<tr>
<td>DMSO</td>
<td>2 µL</td>
</tr>
<tr>
<td>Forward or reverse primer (10 µM)</td>
<td>1 µL</td>
</tr>
<tr>
<td>10X PCR buffer**</td>
<td>1 µL</td>
</tr>
<tr>
<td>Sterile double distilled water</td>
<td>9-12 µL</td>
</tr>
<tr>
<td>DNA template (10-500 pg)</td>
<td>2-5 µL</td>
</tr>
<tr>
<td>Total</td>
<td>20 µL</td>
</tr>
</tbody>
</table>

* Applied Biosystems PRISM BigDye Terminator Mix v 3.1 (Life Technologies, Victoria, Australia)

**100 mM Tris-HCl, 500 mM KCl, pH 8.3.

PCR cycling condition

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Temp</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96ºC</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td>96ºC</td>
<td>10 sec</td>
</tr>
<tr>
<td>30</td>
<td>55ºC</td>
<td>5 sec</td>
</tr>
<tr>
<td></td>
<td>60ºC</td>
<td>4 min</td>
</tr>
<tr>
<td>1</td>
<td>4ºC</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>10ºC</td>
<td>hold</td>
</tr>
</tbody>
</table>

- 232 -
Table A3.5 Standard protocol for sequencing reaction clean-up using sodium acetate-ethanol method

In a standard 1.5 mL microfuge tube:

Sequencing clean-up mixture 1 reaction

- 3 M Sodium acetate, pH 5.2 (*Appendix 2, A2.6*) 3 µL
- 96% (v/v) ethanol 62.5 µL
- Sterile double distilled water 14.5 µL

The sequencing clean-up mixture solution was freshly prepared before mixing with 20 µL of cycle sequencing reaction and incubating at room temperature for 15 min. The reaction mixture was centrifuged at 11,337 x g (13,000 rpm) for 30 min, and the supernatant was discarded. Washing step was performed in 70% (v/v) ethanol, and the pellet was dried (with the lid open) at 70-90°C for 1 min. The microfuge tube was allowed to cool prior to dropping off at Micromon (Monash University, Australia) for further analysis.
Table A3.6 PCR protocol for the preparation of DIG-labelled DNA probes using Taq polymerase

<table>
<thead>
<tr>
<th>PCR mixture</th>
<th>DIG-labelled (1 reaction)</th>
<th>Non DIG-labelled (1 reaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X PCR reaction buffer*</td>
<td>5 µL</td>
<td>5 µL</td>
</tr>
<tr>
<td>(with 25 mM Mg_{2}Cl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>5 µL</td>
<td>5 µL</td>
</tr>
<tr>
<td>Forward primer (10 µM)</td>
<td>2 µL</td>
<td>2 µL</td>
</tr>
<tr>
<td>Reverse primer (10 µM)</td>
<td>2 µL</td>
<td>2 µL</td>
</tr>
<tr>
<td>10 mM dNTPs</td>
<td>2 µL</td>
<td>2 µL</td>
</tr>
<tr>
<td>10 mM DIG-labelled dNTPs</td>
<td>2 µL</td>
<td>-</td>
</tr>
<tr>
<td>Taq polymerase</td>
<td>0.5 µL</td>
<td>0.5 µL</td>
</tr>
<tr>
<td>Sterile double distilled water</td>
<td>30.5 µL</td>
<td>32.5 µL</td>
</tr>
<tr>
<td>DNA template (10-500 pg)</td>
<td>1 µL</td>
<td>1 µL</td>
</tr>
<tr>
<td>Total</td>
<td>50 µL</td>
<td>50 µL</td>
</tr>
</tbody>
</table>

*100 mM Tris-HCl, 500 mM KCl; pH 8.3

PCR cycling condition

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Temp</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94°C</td>
<td>10 min</td>
</tr>
<tr>
<td></td>
<td>94°C</td>
<td>30 sec</td>
</tr>
<tr>
<td>35</td>
<td>60°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>X^# min</td>
</tr>
<tr>
<td>1</td>
<td>72°C</td>
<td>7 min</td>
</tr>
<tr>
<td></td>
<td>10°C</td>
<td>hold</td>
</tr>
</tbody>
</table>

X^# = extension time depending on the expected size of DNA fragments, generally, 60 sec per 1 kilobase.