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ABSTRACT

This thesis studies the feasibility of clusterirgsbd Near-Duplicate Video
Retrieval (NDVR), which makes use of clusteringhteiques to pre-process video
dataset into Near Duplicate Video (NDV) groups ammhducts NDVR on the
representatives of clusters. Content based NDVRbeas explored for decades.
Traditionally, researchers improve the NDVR perfanoe in terms of accuracy
and speed through: i) the video feature repredentat) matching approach; iii)

indexing structure.

The proposed clustering-based NDVR approach cowdckase retrieval speed
on one hand and achieves equivalent or even batmrracy compared to non-
clustering based NDVR on the other hand. The diffee of proposed clustering-
based approach from the traditional non-clusterbaged NDVR is that the
unsupervised clustering techniques are considesgdeaprior dataset process step
offline. By such a process, the dataset is welbbized into corresponding NDV
clusters. It then selects only one video or usetelucentroid (mean vector) to
represent the cluster. Instead of comparing theyquieleo to all videos in data
collections, it only has to compare to the clusemresentatives. All the videos in
the cluster will be retrieved when the query viddat is compared to the

representatives meet the specified threshold.

Theoretically, it is impossible to know that thafpemance of clustering-based
NDVR in terms of retrieval accuracy compared tot tbh non-clustering based
approach. Accordingly, this thesis evaluates thdopmance of clustering-based

NDVR compared to that of non-clustering based utlgeisame criteria.



The evaluation starts with analyzing the clusteatgprithms in literature with
illustrations as well as the experimental studygrat the impact of incorporating
these clustering algorithms to pre-cluster the sitaffline for NDVR. After that, a
novel clustering framework based on multiple segeealignment (MSA) is
proposed to process video dataset into NDV clustard NDVR is conducted on
formed clusters. Compared to the other clusterilggprahms in literature, the
proposed method caters to the variable length déorisequence representation.
Finally, it evaluates the MSA clustering-based NDMRusing ordinal, global, and
local features respectively. The empirical ressittew that incorporating clustering
algorithms for enhancing NDVR is promising and fbkes
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PREFACE

This thesis mainly studies the feasibility of ckratg-based near-duplicate video
retrieval. Rather than reducing the searching sghosugh indexing structures
online, the clustering algorithm is utilized to ias$n reducing the searching space
offline.

The purpose of this study is to encourage reseesdbeconsider pre-process
dataset into near duplicate video clusters befwadgular processing, which could

benefit the retrieval performance in terms of aacyrand speed.
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CHAPTER 1

INTRODUCTION

1.1. Introduction of the Problem

This section will introduce the problem through twepects: i) what is near-
duplicate video; ii) why is Near Duplicate Video tBetion (NDVD)/Near
Duplicate Video Retrieval (NDVR) important. In thigerature, there is no
discrimination between NDVD and NDVR. However, fromy perspective,
NDVD emphasizes the detection accuracy and is mmoneected to detecting the
copyright issues and commercial monitoring, whil©WR emphasizes the
scalability for search purpose. | will define ND\H#8 an extension of the NDVD.
In literature, NDVR is mentioned when it refers ttee retrieval in large-scale
dataset [97] [98] [99]. In some cases, it can agslNDVR as NDVD, for example
retrieve NDV from web video collections. Howeven, some cases, it does not
work. For example commercial video monitoring, whis called NDVD, and not
proper to be addressed as retrieval. However, NBMiing NDVD techniques as
well. When it refers to large-scale NDVR, indexirsfructures have to be
introduced to speed up the retrieval operation, levhin traditional NDVD
operations, indexing structures are not introducBdction 1.1.2 shows why
NDVD/NDVR is important.



1.1.1. What isNear-Duplicate Video?

Near-duplicate videos are videos that have simdlardentical frame content in
visual, but they are likely to appear differentlyued to diverse changes
introducedduring:i) video capturing e.g. differeszamera view angle,set camera
property  differently, under different lighting cdtidn, different
background/foreground view, etc.;ii) transformasioa.g. using different frame
format, scaling, rotation, frame rate, resolutighjfting, contrasting, brightness,
saturation, cropping, blurring, etc.; iii) editingperations e.g. adding frames,
borders insertion to frames, frames dropping, capsi logos insertion, re-ordering
frames, content modification etd.Min et. Al [105] compares different definitions

of near duplicate video clip (NDVC) in their reldte/ork as following:

Basic NDVC definitions:

» “The term copy is employed here for a documentiobthfrom an original
by the application of one or several transformaisuch as filtering,
cropping, scaling, insertion of logos or framegjliadn of noise, etc. There
Is significant diversity in the nature and amplgudf the encountered
transformation. If the copy is to have some interdgese transformations
must nevertheless preserve the main informatioveyed by the original
content. [111]"

» ‘“ldentical or approximately identical videos clogethe exact duplicate of
each other, but different in file formats, encodpeyameters, photometric
variations (color, lighting changes), editing openas (caption, logo, and
border insertion), different lengths, and certairodifications (frames
add/remove). [106]"

Extended NDVC definitions:



» “The definition of a near-duplicate image variespeleding on what
photometric and geometric variations are deemedpaable. This depends
on the application. In the case of exact duplicktection, no changes are
allowed. At the other extreme, a more general defmis to require that
images be of the same scene, but with possiblereift viewpoints and

illumination. [107]”

» “Videos of the same scene (e.g., a person ridibigge), varying viewpoints,
sizes, appearances, and camera motions. The sanaats8e concept can
occur under different illumination, appearance, andne settings, just to

name a few. [108]”

> “NDVCs are approximately identical videos that ntigliffer in encoding
parameters, photometric variations (color, lightimfpanges), editing
operations (captions, or logo insertion), or audicerlays. Conversely,
identical videos with relevant complementary infatran in any of them
(changing clip length or scenes) are not considasgdDVCs. Furthermore,
users perceive as near-duplicates videos that atrealike but that are
visually similar and semantically related. In theggleos, the same
semantic concept must occur without relevant aoldkti information (i.e.,

the same information is presented under differe@ns settings). [109]”

1.1.2. Why isContent-based Near-Duplicate Video
Detection/Retrieval | mportant?

Commercial Video Monitoring

The TV end users are always interested to recarespbV programs of interest for
the collection or material references purpose. Hanelue to the insertion of some

commercial advertisements and the exact broadgastime is not known, some



undesirable commercials or channel events migheberded. To avoid annoying
clips being recorded, an efficient and effectiveywa automatically locate the
program segments is needed in a recorded televitieam, for examplewe could
build an enhanced TV program guiding the precisatthns and locations of the
programs. Such a program will be used by an endugsginstitutions that collect
materialsfrom television and as well as channengeves who wants to monitor
what has been broadcasted. Another example is,aoagmaight contract TV
stations to broadcast their commercial advertiséffiban the companies would
like to know whether the commercials are broadchs$tdlowing the terms in
theircontracts e.g. when -before/after/during c¢ergaopular programs, and the
exact durations and times, etc. Similarly, someeottompanies may contract
survey companies to seek information about howr tbempetitors market their
commercials by monitoring competitors’ broadcas&lcbmmercials. Whilst the
same commercial broadcasted in different TV statiah will actually appear
differently with some variations, for example stats own broadcasting
parameters settings (e.g., frame rates, aspea eatd resolution), and some
insertions(e.g., station/company logos or contafdrmation). As a consequence,
various versions of the commercial video clips, chhére broadcasted on different
TV stations at different time, are likely to coviemgar content.Accordingly,
commercial monitoring is needed and content-bagsed duplicate video detection

couldbe a solution, though it still remains a okadle.

Content-based near-duplicate video detection has btudied for a decade in
solving problems such asTV broadcast monitoringew®icopyright enforcement,
video database purge, cross-modal divergence dmteeind have achieved some
good results, though it still remains a challenigethe literature, there are mainly

four steps for near-duplicate video detection: ijdee segmentation



(keyframeextraction); ii) video content summariaatiand representation (feature

extraction); iii) similarity measure/matching; ingar-duplicate video recognition.

Web Video Control and Management

Broadband internet access is increasingly commah thie rapid advancement of
technology. Especially, with the popularity of sdanedia in Web 2.0, videos that
carry the richest content for daily information aoomication are available on the
internet. They are spreading on the internet wikpoaential growth that brings
challenges for web video database control and nemegt. With the advances of
hardware, the cost of storage is dropping, andsusan obtain web videos easily
toredistribute them again with some changes bygugopular video edit software
which can be downloaded online for free. Usersoadlr the world are uploading
edited/non-edited videos and searching for videmsaadaily basis. Consequently,
online video collections are rapidly becoming layge no small part due to numerous
duplicate or near duplicate videos being collect®dh millions or even billions of
videos, collections are very difficult to controianage, maintain and search. Therefore,
investigation of effective content management agres plays an important role in
improving the management of large scale video cidles and also enhancing the
performance of content-based low level video regifieAutomatic video-content-based
clustering is one way to address this topical isRaitating organization to improve

the effectiveness and efficiency of video docunaexess.

In addition, broadband access tomedia isfaster emelaper, videos are
becoming very popular on the web. For example,@5ew videos are upload to
the video sharing website YouTube everydayand #ily dideo views are more
than 100 millions [1]. According to comScore [7]leaderin measuring the digital
world, reported that U.S.internet audiences viewenle than 9 billion online web

videos in July 2007 alone. The average online videwer consumed 68 videos



during the month which is more than 2 videos pey, gand the figure is still
expected to keep climbing. In July 2008, the Urfiernet audience viewed more
than 11.4 billion online web videos alone, andakierage online web video viewer
consumed 80 videos during the month[8]. YouTube idates online video
providing in the United States, with a market shafraround 43 percent and more
than 14 billion videos viewed in May 2010 [9]. YaulJe says that 35 hours of new
videos are uploaded to the site every minute, aodnal 75 percent of the material
comes from outside the U.S. Mostly, videos in ybetuare posted without
sufficient tags and managed effectively. Moreowame are even posted without
any tags or descriptions. Clearly, this shows us féct thatonline videos are
substantially growing rapidly with very similar dent [23].The recent online web
video view ranking released by comScore said, 180om US internet users
watched 36.6 billion online content videos in M&A42 [114]. In April 2013, 181.9
million Americans watched 38.8 billion online contevideos [115].From the
increasing figures in different years, it is cléarsee that the rapid advancein the
technology generation andgrowth of propagation dital videos in both
centralized video archives and distributed videspoeces on the Web has brought
us an urgent need for video search engines taesitlg retrieve relevant videos of
interest.

With the huge number of video uploaded throughirtkernet, the duplicate and
near duplicate videos are collected in the videtaltlse remain undetected by
current text annotation technology.Text annotai®rithe traditional solution for
search engines. This solution is inefficient areffective: 1) text tagging relies in
human’s subjective perspective view. However, ddifé people have different
perspective views on video semantic meaning, wknthcause the duplicate or

near-duplicate videos to be tagged differently frdifferent people and places



around the world and uploaded again. Due to humanited semantic description,

those duplicate/near-duplicate videos cannot beectesd and some maybe
overwhelmed when users search videos by typing sgenaneaning of video

which also has a different perspective and limieed description. 2) The dramatic
increasing number of videos makes manual text taggery tedious. With the

huge amount of videos uploaded every day, we cagime how much manpower
we need for the job of manual text tagging of thgéhamount of video collection,
which is rather time consuming and tedious. 3) Harautomatically categorize the
videos with tagged text, since tagged text doesfuly express the semantic
meaning of video. Therefore an automatic and efficivay to manage videos is
highly demanded. To avoid getting swamped by alna#sttical copies of the same
video while searching, efficient NDV detection aelimination is significant for

effective and efficient search, retrieval. Videasdification or annotation is an
open research problem. However, it still remainallehge and not robust enough

for applications.

The uploaded duplicate or near-duplicate videostegas large amount of
storage space, increases the storage expense &ed database management and
control more complicated and difficult. Submittingtext query, the web video
search engines tend to return a list of rankedckesssults according to their
relevance scores. Sometimes retrieved relevantniaioon items that meet user’s
requirements are ranked topmost, while sometimes ridevant information is
retrieved, which does not meet to users’ requirgmdoreover the topmost search
results mostly contain a great deal of redundantlai videos.Based on a sample
of 24 popular queries from YouTube [3], Google \Gd&] and Yahoo! Video [4],
on average there are 27% redundant videos thatugnlecates or nearly duplicates

to the most popular version of a video in the deaesults [44]. This statistics of



redundant videos information was stated in 2007thWhe rapid video uploading
and consuming as the figures in year 2007, 20082&€® shown above, we can
imagine that the online redundant video informatrah increase.Banking on this
observation, the need to develop tools to idem&sgr-duplicate videos becomes more

important.

Therefore, an important problem now faced by thadeo sharing sites is how
to automatically perform accurate and fast sintyasearch for an incoming video
clip against its huge database, to avoid copyriglofation. Meanwhile, the
retrieval efficiency will be hampered if there adarge number of search results
returned almost identicalcontent; accordingly, das® purges also contributes to
high-quality ranking to improve the video retrievasults [44]. The traditional way
to protect copyright by using embedded watermaidx ideos. However, not every
video has a copyright watermark embedded, thisgbrins to the difficulty to
monitor whether the videos are distributed by athegally e.g. where and how
they redistribute the videos. Also, a watermarkinsfficient due to manually

embedding the copyright information which is tediauork.

1.2. Motivations

NDV retrieval has been explored for a number ofrye@he goal of this study is to
maximize the retrieval accuracy in minimum retriev@me. Traditionally,
researchers attempted to approach the goal thr@ughspects: i) the video
representation; ii) matching scheme iii) indexingusture. These 3 aspects have

been thoroughly and extensively studied in theditae.

Therefore, it is significant to seek for the impeavent in other aspects. Since it
is retrieving videos that are near duplicate, wiot arganize and group near

duplicates together in the same cluster offlingt firefore online retrieval? In such a



way, it will be easier to access and directly redtlee online retrieval searching
space through offline pre-processing. Instead oéssing all videos, it only has to
access the cluster representatives. Theoretididlgn see that the access time is
reduced by such an offline process. Meanwhile, Wighaccess time being reduced,
if the retrieval accuracy is enhanced or at leaghtained, then pre-process dataset
offline will be a great assistance in the enhanacgro€NDV retrieval performance.

Moreover, improving NDVR in such a way has not bstrdied and explored yet.

1.3. Research Questions & Objectives

This section will pose some research questions r@search objectives. The
unsupervised clustering techniques have not be@fored in order to improve
retrieval performance in terms of accuracy and @p@&be main task is to explore
whether clustering techniques is feasible to agsisimproving NDV retrieval
performance.

1.3.1. Resear ch Questions

In the literature, the indexing scheme is the nfastor to reduce the searching
space for achieving the fast retrieval speed, wischulfilled on-fly. However,is
there such a way that could reduce the searchiagesthrough offline process to
further increase the retrieval speed? The purpbdd¥ retrieval is to retrieve all
NDV of the query video from the database, then tgetbat, why not preprocess
the database offline by using clustering algorittongroup NDVs in the same
cluster to reduce the searching space and faeildatessing and indexing. With
this assumption, the following Research Questidt)(and Research Objectives
(RO) have been identified.

RQ1: Are clustering algorithms from the literatigeod for preprocessing NDVs?



RQ2: What is the impact of various clustering algons from the literature on
NDV retrieval?

RQ3: Since video is always represented as a seguendrame’s descriptor in the
order of time, how to develop a clustering techrighat caters to the video

sequence descriptor?

RQ4: What is the impact of various video featuresdifal, global and local

features) impact on MSA clustering-based NDV resii@

RQ5: What is the performance of MSA clustering-dd$BV retrieval?

1.3.2. Resear ch Objectives

In this thesis, the objective is to study whethersifeasible and promising to
improve NDV retrieval performance through offlinatdset process, which could
be achieved by utilizing unsupervised clusterirghteques. The processed dataset
will be clusters with NDVs grouped in the same t@us The grouping is
approximately depending on how the clustering dtlgors perform.The ideal case
is that all related NDVs are exactly grouped in $hene cluster without any noise.
However, there is no such clustering algorithm tteat achieve that yet. After the
clustering, the retrieval operation will be condtbn the processed dataset, which
are clusters. The objective is to take advantagth@fpre-processing dataset by
using clustering algorithms to benefit the retrievperation in terms of retrieval

accuracy and speed.

RO1:To study various clustering algorithms from titerature, and analyze with

illustrations.

RO2: Experimental study the impact of various drteg algorithms from the

literature on NDV retrieval compared to the naivenrclustering based NDV
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retrieval. Through the empirical results, it wihew the knowledge of which pre-

process clustering algorithm is better for NDV retwal.

RO3: To propose a novel MSA-based clustering allgathat caters to video
sequence signature representation, since the clogtalgorithms are good for

data points input only that are single vectors wite same length.

RO4:To evaluate the MSA clustering based NDV nedtién terms of retrieval
accuracy and speed compared to that of non-clusjeoased naive NDV retrieval

and also against other clustering methods in litera.

ROS5: To experimental study how various video featna@presentations (ordinal,

global and local features) impact on MSA-clusterraged NDVs retrieval.

1.4. Contributions

To achieve the objectives, this thesis has evalueltestering-based NDV retrieval,
and the empirical results show whether the clusgebased NDVs retrieval is

feasible and promising. The contributions are disie following:

* The impact of various clustering algorithms inrtteeire on clustering-based

NDV retrieval is experimentally studied.

This thesis analyzes the clustering techniquegarature with illustrations.
Then it processes video into 24-dimensional veetwd apply K-means,
DBSCAN, BIRCH, CURE, PROCLUS and EM clustering alton

respectively to form clusters. The quality of carst affects the retrieval
performance. The experimental result shows how ethetustering

algorithms impact the retrieval performance.
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e This thesis proposes a novel clustering algorithased on Multiple
Sequence Alignment (MSA), which could preserve eideemporal
information during the clustering operation to #olthe problem that
existing clustering algorithms which caters to th@&eo sequence

representation cannot be found in literature.

Video is processed into a sequence of alphabdii&-like representation,
and then apply MSA clustering method to group NDM® clusters that,

the cluster assembles similar videos.

e This thesisevaluates the effectiveness ofNDVR iporating clusters
formed by MSA clustering method. The evaluationvehdhe impact of

various video feature representations on MSA ctusiebased NDVR.

In this evaluation, it considersordinal featurepbgll feature (the color,
texture) and local feature (SIFT) for clusteringg®@ NDVR. The
experimental results show that both retrieval amcyiand speed are greatly
enhanced by using color and texture for clustebaged NDVR compared
to that of non-clustering based approach undefainecomparison criteria.
The same as SIFT feature, the retrieval speed amatically increased
while the retrieval accuracy maintains no droppiBg. using the ordinal
feature, besides comparing to non-clustering methetd dynamic
programming and n-gram methods, it also compargakedd\DV retrieval

which incorporates various clustering algorithmgiteprocess the dataset.

1.5. Thesis Organization

Chapter 1 introduces why content-based near dighaedeo retrieval is important and

what motivations, objectives, and contributionstlut thesis are.Videos carry the
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richest content information, and have become thst popular media to spread the
information and share the information. The numberideos uploaded to websites is
increasing exponentially, and a huge number of-deplicates are collected. Thus, to

investigate an efficient and effective way to eaté near-duplicates is important.

Chapter 2 gives a review of how researchers impretveval accuracy and speed
through video features, matching methods and imdestructures. Then several recent
remarkable retrieval frameworks which are verified a large-scale dataset are
introduced. The retrieval accuracy is not the oatjirement, but also retrieval speed.
In recent decades, retrieval accuracy draws mtaetan than speed.

Chapter 3 gives the clustering-based NDV evaludtiamework, and then goes
through the clustering techniques by illustratingghwreal video features. The
advantages and disadvantages of each clusterihgiqee are analyzed as well.
Finally, the experiment is studied of the impacvafiousclustering techniques on the

clustering-based NDV retrieval.

Chapter 4proposes the novel clustering framewodedban multiple sequence
alignment. The proposed framework caters to theovigature representation in the

form of sequence with various lengthsin video torder.

Chapter 5 makes use of the formed clusters by usit®A clustering
framework proposed in Chapter 4 for clustering-das®V retrieval evaluation.
Instead of comparing a query video to all candidateos in database, the
clustering-based framework compares to the reptathem or centroid of each
cluster only. The different features may affect thestering-based NDV retrieval
as well. Therefore, an empirical study ofMSA clusstg-based NDV retrieval by
usingordinalfeature, global features (color andue®) and local feature (SIFT) is

conductedrespectively and compared to that of mastering based naive NDV
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retrieval method. The results show that even bygquglifferent features, MSA
clustering-based NDV retrieval outperforms thanoh-clustering based under the
same criteria.Moreover, by using ordinal featur&MR with MSA clustering

method incorporated is also compared to that ofouar clustering algorithms

incorporated for pre-processing the dataset.

Chapter 6 makes the conclusion of the overall shasd future works.

1.6. Summary

In this chapter, the research problemwas identifléen it showed the motivations
and objectives of this thesis, as well as the emstiructure of this thesis.In the next
chapter, the related works and recent critical outions to the near-duplicate

video retrieval in large-scale database will belsd.
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CHAPTER 2

RELATED WORK AND RECENT
PROGRESS

Traditionally, NDV retrieval is improved using m&in3 aspects as shown in fig
2.1: i) Video representation. ii) similarity/distan measurement. iii) Indexing
structure. Section 2.1 gives a literature reviewNOIV retrieval in these 3 aspects

respectively.

Offline 7 -~ ~"~"~"""""""" !

1

1 I !

i ! Keyframes .

| 1 Extraction |

1 1

1 I !

I = ' Video feature K
1

= %": process |

: 1 !

1 : :

| | |

1 1

1 1

1

I

Query video YV ,
Video . Online
representation ——
Similarity
___________________________ measure
__________________________________________ ‘

Return all

retrieved

Indexing videos of
video interest

3
Video feature descriptors !
process process
Video
representaion

Figue 2.1. Traditional NDVR framework
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2.1. Related Work

2.1.1. Video Features

As we know, video consists of a sequence of fragmeages) in time series order.
Hence, a variety of image features have been stutbedescribe the video
representation and compute the similarity betweieleos, e.g. color histograms
[41][18][52], motion [35][52], intensity histogram¢$l8], texture, and shape.
However, the high-dimensional nature of the reprg®n is always the concern
of computing complexity. Kobla et al.[24] addresdbeé issue by exploring to
represent the video descriptor in low-dimension&niyl other works have been
contributed to the field study.

In this section, a brief review of features thatddeen studied in literature is
given. Although a variety of features have beerestigated to represent a video,
there is still no feature in literaturethat canresent and describe the information
of a video sufficiently and thoroughly without amformation loss. To solve this
problem, some researchers overcome the drawbaclksimg a single feature by
fusion of different features. However, differentexgorizations of videos require
thefusion of different features, which brings amotproblem that, which fusion is
the best to fit the categorization of videos?Theranu techniques are still very
limited to address all the problems such as compabustness, low-dimensions
etc to represent the video. Therefore, to have mpeat feature sufficiently

representing the video still remains a challenge.

Color

This section will present how color was applied KDV retrieval and detection.
Color is one of the most popular and importantifess used to analyze the frame,

though it is not fairly discriminated. Lienhart a&f[25] uses the color coherence
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vector as the video fingerprint, which is a colastbgram. However, besides
computing the number of pixels of the certain coibalso differentiates pixels of
the same color depending on whether they belorthdsame region as coherent
and otherwise as incoherent. In [48],Cheung &Zaghditions the individual
frame into four quadrants which incorporates spaitdormation, and then
represents each individual frame by using four kir$- color histograms in the
HSV color space resulting in 712 dimensions inlttdadescribe the single frame.
Hoad&Zobel[49] uses a sequence of values to repteke video signature, which
is based on frame color-shift. Either Manhattartasicse or Euclidean distance
could be applied to compute the color distance betwtwo adjacent frames and
form a sequence of numerical distance values tresept the video.Li et al. [50]
present a binary sequence representation basedodndtyr incorporating the
techniques of ordinal and color measurements. Regathe color representation,
each individual frame is quantized into a fixed tw@mof colors, and each color
element is represented by a 3-bins binary stringchvitorresponding to the
percentage range of pixels dominant the color eem&u et al. [44]filter out the
near-duplicate video using a hierarchical approacthe initial coarse filtering, the
global color histogram feature is employed to fillgoise in a fast process.
Although the color histogram is easy and fast taé&eved, it lacks discrimination.
Therefore only when a video cannot be clearly ifiedtas novel or near-duplicate
by using global signatures, the authors apply aenexpensive local feature for
near-duplicate video retrievalin the fine measunmeinpéiase. Since a local feature is
rather expensive to compute and difficult to belestdor NDV retrieval in real-
time in large-scale databases, the introdutionlabaj feature for coarse filtering
directly reduces the searching space and usesfleatalres to search candidates in
a small dataset. The global color histogram laa#dressing the spatial character

within frame, and is fragile to frame transformatiaolor distortion etc. Color
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feature such as RGB, HSV, color histogram etchigasy way to describe frame
information. It is infeasible to detect when thentmt has only slight color
difference as well as too much noise will incretisedetection difficulty and affect
the detection accuracy.Sometimes there are margretit objects or scenesbut

described by the same color, in such a case, belmmes indiscriminate.

Ordinal

This section will show ordinal feature used in titerature for NDV retrieval and
detection. The ordinal features construct the fiaspatial relationships. The frame
is usually partitioned into NxN blocks and thenlw# ranked based on the average
feature value of each block.Thus, it is insensitite the ranking
distortion.Bhat&Nayar[51]are the first who proposediinal signature for stereo
correspondence. Hampapur et al. [52] comparedeffenmance of video sequence
matching by using ordinal feature, motion featunel @olor feature respectively.
They concluded that ordinal feature performed bekten two other features. Li et
al. [50] presented a binary signature based medtlyocbmbining the techniques of
ordinal and color measurements.Regarding ordinatiufes, the authors partition
the frame into NxN windows. The average intensitythe window is computed
and then ranked. In [53], Hua et al. proposed ahglobal visual feature which
combines the spatial-temporal and the color rang@mation representing in 144
dimensions space.Hua et al. partition the frame B®3 blocks and the rank is
assigned to each block according the average gra}.lYuan et al. [32] propose a
fast video descriptor representation based on akrdaieasure of re-sampled video
frames, which is robust to compression formats ghancompression ratios, frame
sizes and rates. Ordinal measures have been ptovee robust to change in
brightness, compression formats and compressioosfad]. Compared to local

interest point descriptor, ordinal signature ouipreens in terms of complexity and
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produce promising resultsthat are robust to sormadrcharacter changes. Ordinal
features operate on NxN equal partitioned blockthefframe. The feature of each
block is extracted and ranked for further matchifigs method is evaluated having
a better accuracy performance than that of glodatiufes such as color. Although
local interest points still outperforms ordinal tie@ regarding to variations in

frame such as scaling, editing, crop etc, ordieakure outperforms local interest
points in terms of complexity and storage. In addit its detection accuracy

improved compared to global color feature.

Video Temporal Information

This section will introduce how video temporal infation is preserved for NDV

retrieval and detection. It is the unique inforroatbf video that the image doesn’t
have. Being aware of preserving spatial charactedmage is not sufficient for

video, many papers represent videos by preserviagtémporal information of

video. Adjeroh et al. [57][58], Chang & Lee [56]¢hryazdani&Ozsoyoglu[55]

have directly coded the temporal information byatiey the video data in its
natural form of a sequence of ordered frames. Démeet. al. [59] describes how
to use video strands to create spatio-temporalriggiens to represent a video
stream. Muneesawang& Guan[60] make use of tempdmmation to propose the
template-frequency model. In [61], Kim et al. fudee ordinal and temporal
information together for sequence matching to eobahe video retrieval speed.
Many other papers have made use of temporal infitomao represent video
seeking for retrieval accuracy enhancement. Tenhdeedure characterizes the
nature of video frames in an event happening oael conserves the temporal
information, which makes videos more discriminakbus temporal information

plays an important role to describe a video.

Fusion of Different Features
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The work of fusion of multiple features will be st in this section. Analyzing the
video with a single feature has been seen its daak# of description with

insufficient information. Therefore the combinatiamith multiple features is

studied. In [53][59], the authors combined bothtigph@nd temporal information to
describe the video. Wang & Ngo [62] explore a vgr@ visual and audio analysis
techniques in selecting the most representativeeovicclips for rushes

summarization at TRECVID 2007. The random combaraf multiple features

might not bring better results than a single featubifferent categorization of

videos has different characteristics. Thereforantestigate and analyze different
group of videos is important to the selection ofltiple features to represent a
single video.

Local Interest Points Descriptor

This section will introduce the work on local irgst points descriptor. Local

interest point descriptor is the most robust fegtuvhich is invariant to various

transformation, scale, or editionetc. of the imddewever, each image could have
thousands of interest points with high dimensiotecked, which is costly for

comparison and storage of large amount of pointsefich frame in a video.

Therefore, some index strategies are employechftexing points to accelerate the
retrieval, while some others combine the cheapabajlfeature together with more
expensive local interest point descriptor. Jolalef63] detected the local interest
point and compute the20-dimension descriptor frormi[64], the authors made a
conclusion that local descriptor performs betteanthordinal measure to

discriminate videos when there are captions inde@&um et al. [65]proposes and
compares two novel schemes for near duplicate imadevideo-shot detection and
retrieval. The first scheme applies global hierarx@hicolor histograms, and

theLocality Sensitive Hashing (LSH) is used to mdéatures for fast retrieval. The
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second scheme uses local feature descriptors ($dF Detter video identification
and the min-Hash algorithm is exploitedfor retrietechniques which has been
applied to compute approximate set intersectionsvden documents in the
information retrieval community. Local interest pts descriptor such as SIFT,
SURF etc. are the most robust feature. The dravgbadkthis feature is the
difficulty to index and store the large set of mat& points detected in one frame
which are up to the amount of thousands. To compareiderable number of
interest points of single frame description, it urgs exhaustive computational
complexity. The most recent work is to use Bag-aif&/ (BoW) method [44],
which construct the visual words code book and tmap each local point to the
visual words. A video is then represented by a bhgisual words. The high
dimensional points are then converted to the textsch is easier and faster for

retrieval.

Other Features

Some video feature summarization techniques aensixtely investigated. Due to
robustness and complexity limitations of above noer@d signatures, researchers
have tried many approaches to summarize the feaaged on model or pattern in
order to obtain a compact signature that is efficand effective for locating NDVs
in large-scale database.Cheung &Zakhor[48]sampkdadl set of frames and then
summarizes each video according to the sample;tbthad is called the video
signature (ViSig). Again in 2005, Cheung &ZakhoiG8esents how to use the
ViSig method torepresent the video as the high-dsmal feature vectors and
propose a novel nonlinear feature extraction teghaion arbitrary metric spaces
that incorporate the triangle inequality and thassical Principal Component
Analysis (PCA) techniques. There are also otheewidummarization techniques

for similarity measurement such as density paramzeteon[67] based techniqueor
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producing keyframesby using k-means or k-medoiderdhm [68].Compared to
these techniques, ViSigperforms better in termscofputational complexity
thatthe only a single pass of a video sequenceotapate its signature requires
much lower computational complexity.Zhou & Zhan@]Gepresented video as
normalized chromaticity histogram which is illumiiza-invariant. In [70], the
authors compute image signatures from the low faqy coéficients of the
Discrete Cosine Transformwhich is an integer valle authors in [71] introduced
a graph-based method, which detects objects in #aaofe of thevideo, and the
moving objects of each frame are then indexed R&Index method in the time
series order. Shen et al. [73] outlines a systenmdébecting near-duplicate videos
by using a novel statistical method to summarizedibntent features for each clip.
In [74], a new system for video summarization chlféNear-Lossless Video
Summarization” is developed. The system is abkutomarize a video stream with
the least information loss by using an extremelyalsipiece of metadata. The
summary consists of a set of synthesized mosaitgepresentative keyframes, a
compressed audio stream, as well as the metadaith \ddeo structure and motion.
Although at a very low compression ratio (i.e.,0L(# H.264 baseline in average,
where traditional compression techniques like H.26Hlto preserve the fidelity),
the summary still can be used to reconstruct thginal video (with the same

duration) nearly without semantic information loss.

2.1.2. Video Matching

This section will introduce the work on video siamity/distance measurement
methods. The frame-based approach is the simptesirest exhaustive method
for video similarity measure. The method compareerye individual frame
between two video clips in order to identify thesedpuence of frames that are
consistent orsimilar[13][25][43][40][36]. Cheung &Khor [48]introduced an
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efficient similarity detection algorithm for theuideo signature. The video clip
signature is computed by selecting a small sktit® frames that are most
similar to a set of random seed images samflbe statistical pruning

algorithm is then introduced for fast near dupkeadeo detection/retrieval in very
large databases. Euclidean distance and sequegnenaht are the most common
and widely appliedfor measuring distance betweelagen vectors and video
sequences respectively. However, they do not tateny feature. Therefore many

other measurement methods are proposed to fitdkgirfeature distance measure.

Hausdorff Distance

This section will present the work on HausdorfftArece for distance measurement
between videos. In [68], the authors proposed tasme the maximal dissimilarity
between shots. Kim & Park [75] proposed the novataming algorithm which
reduces the computational complexity by usingthdifiel Hausdorff distance.
Moreover, the novel approach of computation of thiilarity between
keyframeswas proposed to improve the performanderins of the accuracy. The
hausdorff distance is usually applied on the sSEt$s distance measure method is

not broadly applied on video analysis.

Sequence Alignment

This section will show the work on sequence aligntrfer distance measurement
between videos. Sequence alignment methods hawenidely utilized to measure
the distance between two videos. A video is a serpief images, it can be easily
represented by a sequence of string/value or aeseguf symbols, which consist
of a sequence of consecutive image representafiansneasure distance of such
sequences (two videos), sequence alignment methsagdsh as dynamic

programming, edit distance, local alignment etdnéeesively studied. In [57],
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local alignment was used to identify relevant regiovithin large video clips. In
[49], Matching is processed by applying local afigant forlocating sequences with
similar values between video clips. Tan et al. [gG}poses a distance measure to
evaluate the video similarity by aligning the frasvad two video sequences. In [69],
authors applied Dynamic Programming (DP)on videotstho find the optimal
nonlinear mapping between video sequences. Edstarie for video
similarity/distance measure has been widely stydied was initially proposed in
[79]. In [78], Bertini et al.measure similarity beten videos by using an edit
distance. The purpose of edit distance is appbeodbtain high similarity between
videos that have difference in some subsequenoesye essentially related to the
identical visual content. Guimaraes et al. [80]pmse Boyer-Moore-Horspool,
which is a modified fastest exact string matchiigpathm to compute video clip
repetitions for similarity measure. In [79] [81hely used the longest common
substring algorithm by using dynamic programmingod et al. [82] proposes a
new similarity measure, named as Video Edit Distanwhich adopts a
complementary information compensation scheme basdte visual features and
sequence context of videos. Though dynamic progtiagnme a costly algorithm, it
has a good performance to measure distance betiveenvideo sequences.
Sequence alignment distance measure method issesbn studied for video
distance measure due to the nature of video tll@bovcan be easily represented as
a sequence of string. Dynamic programming showsoa gerformance in terms of

accuracy. However, it is fairly expensive to congput

Some Other Novel Matching Techniques
There are many well-known distance measure metlobdsatisfied by the high
dimension video features due to thecomputationadptexity and poor scalability.

Many novel distance measures are proposed to fdemlievant videos in large
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scale database as well as tackle the problem ofovidomparing in high-
dimensional space. In [43], the authors measur@irvideo similarity in large-
scale video database by giving the intersectiommel between voronoi cells of
similar clusters.Similarly, Video Triplet is anotheideo similarity extraction
framework, which models the similarity as a composi of position, radius, and
density for a cluster with a tightly bounded hygphere [72]. In [83], stage starts
from acoustic matches and validates the hypothésmatches using the visual
channel. Finally, the precise segmentation usegrai@- acoustic match poles to

determine start and end-points.

2.1.3. IndexingStructure

This section will present the work on indexing stuwe for the purpose of
achieving fast retrieval speed. Numerous smartximgestructures and searching
schemes have been proposed in order to efficidotdgte targets in the high-
dimensional spaces [37] [32].Kashino et al. [4%jgwses a fastsearching method to
search similarity-based signals for fast locating uery that is represented in the
form of a specific audio and visual signal.The pmgralgorithm plays an important
role in accelerating the retrieval. Through thengmg, the searching time could be
reduced up to hundreds of times compared to thawstive searching. To detect or
retrieve near duplicate videos in a large-scaletimatliia database, the indexing
structure is a major factor to guide the searching reduce the searching space for
assisting in locating the target in a fast fasiBome well-performing approaches
such as Locality-Sensitive Hashing (LSH)are widabplied for indexing vectors.

Also inverted File is intensively explored to ind8¥T bag of words features.

File Structure
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This section will introduce the work on file struo¢ for indexing. File structure
has been extensively studied for video corpus imdexFor example Lu et al.
[84]address the problem of content-based videoximgeby proposing the Ordered
VA-File (OVA-File) based on the VA-file. Shang ek §85] leverages relative
gray-level intensity distribution in a frame andnggoral information of videos
along frame sequence. The new index structureoisgsed utilizing an inverted file
for fast histogram intersection computation betwegaeos. The file indexing
stores the mapping from content to its locationéileraddresses in database. The
structure is usually applied for document retrie\ald it is easy to index large-
scale databases.

Hashing

This section will introduce hashing indexing stwres. Hashing is another
commonly used scheme for indexing. For example @est et al. [86]Jused a
lookup table to store features which are basecheraverage of luminance of the
frame blocks. Pua et al. [87]proposed a hashingcsire to index color moment
vectors for efficient retrieval of repeated viddps. This isthe same as Naturel
&Gros[70] who use hash table to store the featemrasentations.Ke et al. [88]
andYang et al. [89]employ LSH to index the locasat@tors. Zhao et al. [90]use
LSH to index color feature and visual keywords. LiSkhe most efficient indexing

structure that is often applied to index large dase with vectors. In hashing
indexing structure, the hashing function is the keydetermine the indexing

accuracy. Videos that have the same hashing valubersent to the same hashing
bin. The accuracy of the hash function determihesefffectiveness and efficiency

of the hashing indexing.

Tree
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Tree indexing scheme will be shown in this sect\arious trees have been widely
applied for indexing high dimensional features nidev to reduce the searching
space. For example Lu et al.[91] review some eandyks on clustering methods
and multidimensional indexing structures, such -aknkensional tree, R-tree, and
Telescopic-Vector-tree, etc. Park & Chu [92] praposuffix tree indexing

techniques for video and image sequence matchingeps. Zhou et al. [82]

propose a compact video representation summarigedsingthe global feature.

Each video in a database is mapped into a digitadgéa series of cluster id).

Optimal B+-tree is employedto identify similar dess and an inverted list is
attached for quickly locating potentially similardeos. In [93], the frames in a
video are ranked according to their similarity twe distribution of salient points
and color values. Then, a tree based approacledstosseek for the repetitions of a
video sequence. There are many different hieraathiees available for indexing
purposes. The tree guides searching in one ofltipessible paths by selecting one
of tree branches. However, the implementation @édris complicated; especially
when there are more than 2 branches for each wee. Besides, it is rather

memory consuming to construct a large tree.

Filtering Scheme

This section will present the work on filtering sohe. Besides those smart
indexing algorithm and scheme, a two step coardewo filtering strategy is
another option to accelerate locating similar targdeos. The less expensive
global feature is usually utilized for roughly &éling out a large portion of
unrelated videos information in the coarse phasd, ia thefine step, the more
expensive or more robust local features are emgléyethe comparison. E.g. Hoi
et al. [94] propose a two-step filter-and-refine apph based on nearest feature

trajectories. Hua et al. [53] developed a coarsknt® signature comparison
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scheme. In the coarse searching step, roughlyhmatpositions are determined
based on Sequence Shape Similarity, while in the &earching step, dynamic
programming is applied to handle similarity matchin the cases of losing frames
and temporal editing processes are employed onatiget video. Zhu et al. [95]
suggest anféective multi-level ranking scheme that filters cu trrelevant results
in a coarse-to-fine manner. The two step coarsexrofiltering scheme is efficient,
because the coarse filtering roughly filters outstmaf theirrelevant information.
The less expensive global feature is applied is $itaige for speeding up filtering.
In such a way, the searching space will be dramliticeduced in the first filtering.
When there are fewer candidates left, the fineriiig helps locate the target in an

accurate manner.

Novel Indexing Scheme

Meanwhile, researchers have proposed other noveéxing schemes, for

exampleValle et al. [96] introduce multicurves, ewmnscheme for indexing high

dimensional descriptors. This technique, based lwm gimultaneous use of
moderate-dimensional space-filling curves, hassamain advantages the ability to
handle high-dimensional data (100 dimensions andr)puo allow the easy

maintenance of the indexes (inclusion and deletibdata), and to adapt well to

secondary storage, thus providing scalability tgehdatabases (millions, or even
thousands of millions of descriptors). To improtie effectiveness of the indexing
structure, novel indexing structures such as mugs are introduced to adapt the
different feature descriptors for better locatirayget candidate videos in the
searching space. Compared to traditional indexamgmes, novel indexing is less

flexible in that is only adapted to specific degtwi structure or data.

28



2.2. Recent Progress

NDV retrieval has been investigated for decadedevVifeatures, distance measure
between two videos and indexing structures have bgensively studied in order
to enhance the retrieval accuracy and speed. Howig\sill remains a challenge.

This section, introduces several real-time retli@vadels in recent years.

Huang et al. [97] proposed a Bounded CoordinatdefyYBCS) to search
videos clips in real-time.Given a video cKg={x1 X2 ...,%}, wheren is the length of
the video. The Bounded Coordinate Sys@@s(X)0,® 1, &, ...,d ), where d
is the number of dimensions and> d, O (the origin of the coordinate system)
describes the mean &, and® denotes the segment of the line bounded by two
furthest projected points by using PCA principléem the rotation, translation and
scaling operations are applied to measure the amityil between twoBCS
coordinate systems. To scale up, the authors exteadS-tree to index two
distance values andnameidistance TransformatioBDT). TheBCS represent
the video in a simple and compact way. Howevenyilt lose most of video

information by projecting points to the new cooatamsystem.

Shang et al. [98] proposedCE-based spatiotempestufe and LBP-based
spatiotemporal feature for real-time large-scalar+triplicate web video retrieval.
Both methods are using binary, which preservespagiotemporal information, in
order to achieve the real-time video retrieval.plred by the traditional ordinal
method that ranks the intensity of frame partitibocks,CE-based spatiotemporal
featureconcludes 36 relations between 9 blocks. @meopy formula is then
applied to select and sample the subset of feathedscarries most information.
The LBP-based spatiotemporal feature also usediomda between blocks.
However, the relation is separated into centralioreg and marginal regions.
According to the central and marginal mapping fiorgta frame is represented by
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an eight bits binarystring which describes the @r@nd marginal region relations.
Then the inverted file indexing structure is apglte speed up filtering candidate
videos, and the intersection kernelis introducetheasure the similarity between
two videos. Since the proposed features are usmay\bbits, it costs less memory

for indexing and computing similarities and alssslstorage space.

Song et al. [99]proposed Multiple Features HaslkiMBH) for real-time large-
scale near-duplicate video retrieval. In this papes authors trained two features,
global and local feature.The proposed MFH methoohmtses two phases. The
first phase is processed offline, which proposesMiFrH algorithm to learn a series
of s hash functions to hash the video keyframe featntressized hash codes. In
the second phase which is an online processingjubgey video is processed in the
same manner by mapping keyframe features-$tzed hash codes vis hash
functions. The efficient XOR operation on the haeldes could then be efficiently

performed to measure the similarity between videos.

Cai et al. [122] applies K-Mean algorithms to céusthe sample keyframes of
videos by using colorcorrelogram feature, whichstarcts the spatial relationship
between colors. The keyframes of the Video are thapped to the closest cluster
to describe the video. As a result, the video sesented by BoW. Aninverted File
is introduced to index BoW. The authors reportedt tless than a second is
consumed to locate a single query video in a mmlliodeos database that is
collected by themselves and the biggest databaseteelso far.

2.3. Summary

This chapter surveyed the solutions proposed twestiie content-based NDV
retrieval problem. Several well-known models pragb$o retrieve NDVs in large-

scale database are also introduced. Through tlg,stus known that traditionally,
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improvement of NDV retrieval through Video featyr@satching, indexing have
been extensively studied. Thus, it is a challemgseek for enhancement on these
three aspects in a deeper manner.In the next chapteater to the nature of
variable video sequence feature representatioayel lustering framework ofnear
duplicate videos will be proposed to seek for thastbility of clustering-based
NDV retrieval compared to that of non-clusteringsé&é methods under the same
fair criteria e.g. using the same feature, samecha methods, and same
threshold.
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CHAPTER 3

STUDYING THE IMPACT OF
CLUSTERING TECHNIQUESIN
LITERATURE ON NEAR-DUPLICATE
VIDEO RETRIEVAL

This chapter will study the impact of clusteringtiriques in literature on NDV
retrieval. With clustering, the retrieval speedlwi reduced without any doubt (c.f.
Section 3.1). The experiment will show the clustgtbased retrieval accuracy with
various clustering algorithm incorporated compawethat of non-clustering based
naive retrieval method. Before the experiment, éhaluation framework will be
presented in Section 3.1, and the clustering teckasi in literature will be analyzed

with illustrations in Section 3.2.

3.1. Evaluation Framework

Fig 3.1 presents the evaluation framework. Fits, tideo dataset is processedfor
video feature extraction. Second, it will apply tblestering techniques to pre-

classify the dataset into clusters, and computeliiter centroid or representative
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video to represent each cluster. Third, it will lexade NDVR with the clustered
dataset and compared to that of non-clustering doamgproach. Instead of
comparing a query video to all video candidatethendataset sequentially (NDVR
without clusters), it only has to compare to thpresentation (centroid) of each
cluster (NDVR with clusters). Hence, it is necegsao conduct the fully

experimental study to obtain the prior-knowledgehofv the different clustering

techniques impact the retrieval performance.

1 Video feature
process

[
[ Tl et
" Similarity
______________ !
____________________________ measure

I |

Retrieve
. i H # clusters
Keyframes i Video cluster [l Cluster P!
Extraction Cluster . 1 I‘. representation 1 |
1
oo videos using [ ! | " R.eturn ?"
Video feature clusteringtec ‘. ‘: 1 videos in
press hniques ! e ! retrieved
1 1 ! I
i Video cluster | Cluster |
: ,‘: representation k
[ I

clusters
__________ |

Figue 3.1. Clustering-based NDVR evaluation framework

It is believed that the proposed clustering-baseulieval is feasible and
effective, since the clustering methods have thmesaffect as the retrieval
operations; both are using some similarity measargno decide whether they are
NDV copies. The difference is that the clusteriagoperated offline, while NDV

retrieval operation is online. Thus, this chaptdreonsider incorporating various
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clustering algorithms in literature to pre-processaset offline and evaluate what

their impacts on NDV retrieval compared to thatnoin-clustering based naive

retrieval framework.

3.2.

Clustering techniques presentation and analysis
with illustrations

This section will brief the concept of six well-kmo clustering algorithms. There

are six categorizations of clustering algorithms:

>

Center-based clustering: construct various panttiand then evaluate them
by some criterion. E.g. K-means clustering algonittc.

Hierarchical clustering: create a hierarchical aegosition of the set of

data using some criterion. There is an agglomeratproach and divisive
approach. E.g. birch, cure clustering algorithm etc

Density-based clustering: based on connectivity @ity functions. E.g.

dbscan clustering algorithm etc.

Grid based clustering: based on a multiple-levahgtarity structure. E.g.

cligue clustering algorithm etc.

Model-based clustering: a model is hypothesizedetch of the clusters
and the idea is to find the best fit of that motteleach other. E.g. EM

clustering algorithm etc.

Subspace-based clustering: this method is suitabl@gh dimensional data,
which projects high dimensions into lower dimensidar clustering. E.g.

Proclus clustering algorithm etc.

Before analyzing the clustering algorithms, thenepke videos (table 3.1) will be

used in illustration and how their feature arepssee will be presented (c.f. fig

3.2).
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Videos Video clip keyframes
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22 11041
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18 9324
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Table 3.1. Video signature representation

The videos are then processed for feature extratid. fig 3.2). Each keyframe of
the video will be partitioned into 2x2 blocks. Téreerage intensity of each block is
computed, and the blocks are ranked according deetlaverage intensity value.
With 4 blocks of the keyframe, there are 4!=24 gadesrankings by permutations.
The 24 possible rankings will be regarded as thdig4 of the video histogram.

Each bin is the percentage of keyframes in theovidding in the corresponding

bin.

Spatial ordinal
Gray scale feature representation Block spatial ranking

pattern distribution

6 21 1 )
Rank block P Histogram

lh H H

9 00 Ordinal 2 Caleulation [ ﬁ

v

Individual key frame
v 41 = 4x3x2x1=24 possible 12 ... 24
patterns

Figure 3.2. Video spatial pattern histogram processing

The extracted 24-dimensional video histogram festare shown in table 3.2.

videos Video signature
145 .0.0.0.0.0.0.0.0.1667.0.5.0.0.0.M.M.0.0.0.0.0833 .25
13 .0769.0.0.0.0.0.0.0769 .1538 .0 .1538 .07/®9 .0 .0.0.0.0.0.0.0.0 .461
5

22 11041 {0.00.00.00.00.0.0.0.0.0.0.066%.0.0.0.0.3333.0

22 11042 | 0.25.00.00.0.0.25.00.0.0.0.6.m..0.0.0.0.0.0

18 9324 | .1633 .0408 .0612 .1224 .0816 .0 .0 .0612 .0 .080@408 .0204 .0816 .0 .0 .0
12 .0204 .0204 .102 .0 .0612 .0 .0204

O

Table 3.2. Video signature representation
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3.2.1. K-MEANS

K-means [21] algorithm is one of the most classaatl simplest unsupervised
learning algorithms that solve the clustering peotol The algorithm introduces a
simple way to classify a given dataset into a aema@amber of clusters, k clusters,

which is given as the parameter. The algorithnofed the following steps:

[1] Choose k cluster centers to coincide with k rangoohlosen patterns or k
randomly defined points inside the hyper volumetaiming the pattern set.

[2] Assign each pattern to the closest cluster center.

[3] Recomputed the cluster centers using the currasterl memberships.

[4] If a convergence criterion is not met, go to stepr'ypical convergence
criteria are: no (or minimal) reassignment of paseto new cluster centers,

or minimal decrease in squared error.

lllustration

In this section, it takes an example to go throtighalgorithm. Five real videos are
selected from the dataset (c.f. table 3.1), anditheo signatures are shown in table
3.2. There are 3 classes in this dataset. Grougel\._45 and video 1_3), group2
(video 22_11041 and video 22_11042) and groupd=(vil8 9324).

Iteration 1

In the initial stage of the algorithm, k is set3pand then sample patterns are
randomly selected. In this example, k sample patteare simply selected
sequentially which are video 1 45 as cluster 1, 4s ®luster 2 and 22_11041 as
cluster 3. Then there are 3 clusters (table 3.8l the cluster centroid shown in
table 3.4.

37



Cluster 1

Cluster 2

Cluster 3

M ember videos

1 45

13

2211041

Table 3.3. Cluster result in iteration 1

Centroid
Cluster 1 | .0.0.0.0.0.0.0.0.1667 .0.5.0.0.0.M.M .0.0.0.0.0833 .25
Cluster 2 | .0769.0.0.0.0.0.0.0769 .1538 .0 .1538 .0769 .0.0.0.0.0.0.0.0.0 .46[15
Cluster 3 | .0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.66668 .0.0.0.0.3333.0

Table 3.4. Cluster centroid in iteration 1

The distance of all videos are computed to all sgter centroids and obtain

the results in table 3.5.

145 13 22 11041 22 11042 18 9324
Cluster 1 | .0 4325 9204 7993 619
Cluster 2 | .4325 0 913 759 5354
Cluster 3 | .9204 913 0 5137 7489

Table 3.5.Video distance to cluster centroids in iteration 1

Secondly, assign the rest of the videos to theesloduster based on Euclidean
distance between the video and cluster centroidcoiling to the Euclidian
distance table, video 22 11042 is closest to dlBtevhere the distance is .5137.
Video 22_11042is assigned to cluster 3 then. Insdrae way, video 18 9324 is
assigned to cluster 2. Then all the assignmentsdare, and cluster 1 (video
members 1_45), cluster 2 (video members 1_3 an@38l), and cluster 3 (video
members 22_11041 and 22_11042) are obtained ashsimotable 3.6. After the

assignments, the center of each cluster has tedoenputed.
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Cluster 1 Cluster 2 Cluster 3
Member videos 145 1 3,18 9324 22 11041, 22 11042

Table 3.6. Reassign videos to clusters

Continue to repeat the operation in iteration liluhtreaches the specified
number of iterations or it converges. In this cdlsere are two iterations only, and

have the final converged cluster result in table 3.

Cluster 1 Cluster 2 Cluster 3
M ember videos 145 1 3,18 9324 22 11041, 22 11042

Table 3.7. Final clustering result

In iteration 2, the cluster result is the samehas of in iteration 1, which means
the centroid and video memberships are not movimgmare. The iteration is
terminated. The cluster result in iteration 2 is fimal results.

3.2.2. BIRCH

Birch [19] consists of two key phases: 1) scansddi@base to build an in-memory
tree. 2) Applies the clustering algorithm to cludiee leaf nodes. There are four
steps required for inserting an entry into a cluste feature (CF) tree. CF
information of the cluster is defined as a triple=C(N, LS,S3, where N is the
number of data points (videos) in the clusteg is the linear sum of the N data

points (video vectors), and SS is the square sunth@fN data points (video
vectors). Given entry “Ent”, it proceeds as below:
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[1] Identifying the appropriate leaf: Starting from theot, according to a
chosen distance metric DO to D4 (c.f. appendix A formulas), it
recursively descends the CF tree by choosing theest child node.

[2] Modifying the leaf: When it reaches a leaf noddjnds the closest leaf
entry, and tests whether the node can absorb howit violating the
threshold condition.

[3] Modifying the path to the leaf: After inserting i into a leaf, the CF
information must be updated for each non-leaf eotryhe path to the leaf.

[4] Merging Refinement: In the presence of skewed ohgtat order, split can
affect the clustering quality, and also reduce spaiilization. A simple
additional merging often helps ameliorate theseblpras: suppose the
propagation of one split stops at some non-leafendy i.e., N can
accommodate the additional entry resulting fromgié.

[llustration

To keep the consistency and convenience of analysssame videos 1_45, 1 3,
2211041, 22_11042 and 18 9324are chosen as exaggte(c.f. table 3.1, 3.2).

The non-leaf branching fact®=4. A leaf node contains at most L=3 entries.
The diameter T=0.5. The branching facB»3, video 1_45 is randomly picked to
initialize the CF tree. Now it has the initial gn€F1 in root. The root node in this
moment is the leaf node as well, since it is thig ande in the tree at the moment.
Then the rest of videos are inserted starting fthenroot, according to distance
metric D2, and recursively descends the CF treehopsing the closest child node
(fig 3.3).
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Figure 3.3. Video 1_45
is inserted into the root

It starts to build the root with entry CF1 (tabl8.3,CF1= (1,L§U S9)

|_§1 .0.0.0.0.0.0.0.0.1667 .0.5.0.0.0.M.M .0.0.0.0.0833 .25

S§ [ .0.0.0.0.0.0.0.0.0278.0.25.0.0.®.1..0.0.0.0.0.0069 .0625

Table 3.8.LS and SS information in CF1 tree node

Now it shows how to insert video 1_3. Starting frtime root, it measures the
distance between 1_3 and all other CF entriesenrdlot and chooses the closest
entry. The D2 distance between 1_3 and CF1 is @.4BBere are only 2 videos in
the cluster, hence the diameter is equal to them@®ics of two videos, which
doesn't violate the parameter condition T, therefadeo 1_3 is absorbed by CF1
(fig. 3.4).

-~ ~~,

N -
.......

Figure 3.4. Insert video to CF1
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After absorbing one more video, The CF1 informatias to be updated by the
linear addition of the two video vectors and theasg sum.

After that, it has to update the CF informationtiig path (table 3.9),

CF1=(2,LS, S9)

LS .0768 .0.0.0.0.0.0.0769 .3205 .0 .6538 .0769 .0 .0.0.0.0.0.0.0.0833 .7115

S§ | .0059.0.0.0.0.0.0.0059 .0515.0.2737 .0089 .0.0.0.0.0.0.0.0.0069 .2755

Table 3.9. Update CF1 information after insertion

In the same way, it descends the video 22_1104héertion from the root to
the leaf node. There is only one CF node, thudésdiot have to search for the
closest entry. It only has to check whether video12041 could be absorbed by
leaf node CF1 by comparing diameter=0.7562 tohheshold T=0.5, which violate
the threshold condition and cannot be absorbed BY éntry. The number of
entries in leaf node hasn’t reached the L condiyien Thus a new entry is created
in leaf node called CF02 and video 2211041 is rddesbby entry CF02 (fig 3.5).

-----------
,,,,,,,

s
\\\\\
................

Figure 3.5. Create CF2 and
insert videos into tree
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And update the CF02 information (table 3.10), CEIZ,:L§Z, S9)

LS .0.000.00.0.0.0.0.0.0.0.0.0.660.0.0.0.0.3333.0

S$ [0000000.00.00.00.0.0M2.0.0.0.0.0.1111.0

Table 3.10. Update CF2 information

Video 2211041 is inserted into the tree in thees$ashion, and the result tree

is shown in fig 3.6.

______________
~. -~

~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 3.6. Create CF3 and insert videos

Figure 3.7. Split tree result

43



Finally, it inserts the last video 18 9324. It cahbe absorbed by any entry,
since it is violating threshold T in all clustemhere is no space for creating a new
entry in leaf node as well. The node has to bdtedlby choosing the farthest pair
of entries as seeds, and redistributing the remgientries based on the closest
criteria. After splitting, the initial CF tree idtained as shown in fig 3.7.

The CF vector information is updated again as:CFECFL= (2, L§_L, S9),
CF2=(1,LS,, S9), CF3=(1,LS,, SS), CF5=(2,LS,+ LS,, S$+ SS).

Now it descends video 18 9324 from the root tb meale based on the closest,

absorbing criteria resulting in the final CF trég.(3.8)

root

leaf

Figure 3.8. Final initial CF tree result

The clusters are formed in the leaf. So far, thenéul clusters are sensitive to
the order of the video insertion. The optional staguld improve the clustering
results. Any clustering algorithm such as k-meaosldt be applied to the leaf
entries directly to group entries. In paper [19he tauthors adapted an

agglomerative hierarchical clustering algorithm dpplying it directly to the sub
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clusters represented by their CF vectors. It usesatcurate distance metric D2 or
D4, which can be calculated from the CF vectorsindguthe whole clustering and

has a complexity of O ().

3.23. CURE
CURE [16] can identify both spherical and non-spdarclusters. It chooses a

number of well scattered points as representat¥ése cluster instead of one point,
which is the centroid. To speed up clustering, camdsampling and partitioning
methods are introduced. The clustering procedures kaiefly described as

following:

[1] Draw a random sample, S, of the original objects.

[2] Partition sample S into a set of partitions.

[3] Partially cluster each patrtition.

[4] Eliminate outliers by random sampling. If a clusggmows too slowly,
remove it.

[5] Cluster the partial clusters. The representativiatpdalling in each newly
formed cluster are “shrinking factor”,a. These points then represent and
capture the shape of the cluster.

[6] Mark the data with the corresponding cluster labels

lllustration

The same illustration dataset will be used as showable 3.1 and table 3.2. To
reduce the complexity, the algorithm utilizes twadalstructures, kd-tree and heap,
to store the data information. The kd-tree is usedtore the representative data
points in every cluster, and the heap stores th&tedl in ascending order based on

the distance between the cluster and its closestesl Since the example dataset is
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small, the illustration of how videos are storedl wot be shown. It will only go

through the key of the cure clustering algorithm.

The selection of representative points is done yosing the point farthest
from the mean as the first scattered point, anch thepoint farthest from the
previous scattered point is chosen until reachntmmber of ¢ (parameter of the
number of representative points). The points aea ghrunk toward the mean by a

fractiona.

It will present how to partition the dataset inte3kclusters with c=2 representative

points for each cluster. Initially, each videonsated as a separate cluster “u”, and
computes u.closest for each cluster u. In the el@rtige result is presented in table

3.11.

Iteration 1:
Cluster u label 1 2 3 4 5
Video member 145 13 2211041 22 1104p 18 9324
(u.closest, distance)] (2, .432p) (1, .4325) (43M™1 (3, .5137) (2, .5354)

Table 3.11. Compute closest cluster for each cluster

After u.closest is computed, It is supposed torina# clusters into heap in
increasing order according to the distance betweerluster u and u.closest. Here
it is not using any data structure, only the keywaspt of the algorithms is
presented.

Besides tracking u.closest, it has to maintain dluster’'s representative data
pointsu.rep as well. In this moment, u.rep of edcister is only the videos so far

have itself, since there is only one video in egadter in initial pass.
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After the data points are initialized into kd-tfE@nd heap Q, the closest pair of
clusters that on the top of Q are removed and ndeagea new cluster “w” and the
representative data points of the new cluster gemputed in each iteration until
there are only k clusters left. In this case, @ust and 2 are merged as a new
cluster 1. The new u.closest will be computed as [dast distance between
representative points of cluster w to all thatlokter u. Meanwhile, it has to shrink
the new representative points of cluster w withtdaof o toward the mean by
formula pHe*(w.mean-p) where p is the representative pointcdgkding to the
authors’ conclusion a good range value dp10.2-0.7,a is set to 0.5. The cluster

information is updated as following after firstraéion of merge:

Mean of cluster 1 after merging is:
.0384 .0.0.0.0.0.0.0384 .1602 .0 .3268 .0384 .0 .0 .0 .0 .0 .0 .0 .0 .0416 .35
57

Applying the shrink formula pe#*(w.mean-p) to all representative points of
clusterl, a new value is obtained for 1_45 and ds 3hown in table 3.12. The

closest cluster information is recomputed and shiomiable 3.13.

145 | .0192.0.0.0.0.0.0.0192 .1634 .0 .4038.0192.0.0.0.0.0.0.0.0.0625 .3029
13 | .0576.0.0.0.0.0.0.0576 .157 .0 .2408 .0576 .0.0.0.0.0.0.0.0.0208 .4086

Table 3.12. The representative points after applying shrunk operation

Cluster u label 1 3 4 5
Representative 145,13 22 11041 22 11042 18 9324
(u.closest, distance) (5, .5248) (4, .5137 (33H1 (1, .5248)

Table 3.13. Update the closest cluster information of each cluster
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Iteration 2:

The closest clusters are merged in the same faflyioapeating the operations in
iteration 1. Cluster 3 and 4 are merged, since Hreythe closest clusters. After
merging, there are three clusters meeting the kn8liition. Then the iteration stops
and the final clusters are formed as 1 _45 and 5 8ne cluster, 22 11041 and
22 11042 as the second cluster, and 18 9324 amgheluster. The clustering

result is the same as the ground truth.

3.24. DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applioas) [17] is a density
based clustering algorithm. Two parameters areimedjlby this algorithm. The
parameter Eps&) and MinPts are the distance metric and minimumimer of
points within the specified distance metric (radliEps. The cluster is formed by
meeting the requirement of MinPts within the radid® present the idea of

DBSCAN, there are a number of definitions involved:

» The neighborhood within a radiusof a given object is called the-
neighbor hood of the object.

» If the e-neighborhood of an object contains at least a mim number,
MinPts, of objects, and then the object is calledra obj ect.

» The object is calletorder point if it lies on the border of clusters, and has
£-neighborhood less than MinPts

» Given a set of objects, D, it says that an objeds plirectly density-
reachable from object q if p is within the -neighborhood of g, and g is a
core object.

» Density-reachable is an extension of directly density-reachable. Aneot

p is density-reachable from object q with respectand MinPts in a set of
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objects, D, if there is a chain of objects.p,p,, where p=qand p=p
such that p+ 1 is directly density-reachable from with respect taand
MinPts, for 1<i<n, pUD.

Algorithm:
[1] Arbitrary select a poinp
[2] Retrieve all points density-reachable frpmrtEps andMinPts
[3] If pis a core point, a cluster is formed.
[4] If pis a border point, no points are density-reachfbla p and DBSCAN
visits the next point of the database.

[5] Continue the process until all of the points haserbprocessed

[llustration
145 13 22 11041 | 22 11042 | 18 9324
145 0.0
13 0.4325 0.0
22 11041 0.9204 0.913 0.0
22 11042 0.7993 0.759 0.5137 0.0
18 9324 0.619 0.5354 0.7489 0.6167 0.0

Table 3.14. Distance matrix

The same dataset (table 3.2) is used. The parasraeseEps=0.5 andMinPts=1,

and video pairwise distance matrix is constructedl shown in table 3.14
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Figure 3.9. Number of videos within the radius

It starts to select the point video 1_45 as poirfhe ¢ -neighborhood of video
1 45 is 1_3 only, no others wrt to tlgs=0.5. There is only one density-
reachable point from video 1_45, which is video .1V@rt to MinPts=1 and
Eps=0.5, video 1_45 is a core point (fig 3.9), it retes all points density-
reachable from it and form the cluster with vided3 and 1_3 as membership.

Continuing in this way, it processes next videonpoiRegarding to the
definitions, there are no other core points detectéence, withEps=0.5 and
MinPts=1, the dataset is classified into 2 clusters, clustél_45 and 1_3) and the
remaining form the cluster 2. However, the groundht is video22 11041 and

2211042 are supposed in one cluster, while vid®324 in another cluster.

3.25. PROCLUS

PROCLUS (PROjectedCLUStering) [12] is a typical dimsion-reduction subspace
clustering method. It finds the best set of meddigsa hill-climbing process, but
generalized to deal with projected clustering. Byll“climbing”, the process
successively improves a set of medoids, which seagethe anchor points of the

clusters. The Proclus algorithm consists of thilezsps:
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[1] In the initialization phase, it employs the greeadiyorithm to select a set of
initial medoids that are far apart from each otb@ras to ensure that each
cluster is represented by at least one object ensiected set. A set of
points of cardinality a few times larger than kivaié picked, where k is the
number of clusters expected. After that, it firsboses a random sample of
data points proportional to the number of clustsqgsected, and applies the
greedy algorithm to obtain an even smaller finddssi for the next phase.

[2] The iteration phase selects a random set of k rdedoym this reduced set
of medoids, and replaces “bad” medoids with rangorthosen new
medoids if the clustering is improved. Two probleare solved in this
phase: finding the appropriate set of dimensions dach medoid and
forming the clustering corresponding to each medGitven the medoids
and their associated sets of dimensions, the pa@rgsassigned to the
medoids using a single pass over the dataset bywomy the manhattan
segmental distance between the point and the méaldadm clusters.

[3] The refinement phase computes new dimensions tr eeedoid based on

the clusters found, reassigns points to medoidsramoves outliers.

lllustration

The same 5 videos (c.f. table 3.1, 3.2) are chasean example and go through the
algorithm phase by phase. There are three phastssimlgorithm: initialization
phase, iteration phase and refinement phase. Tinbatftan segmental distance that
is defined relative to some set of dimensi@hss used to compute the distance

between any two videos.

I nitialization phase:
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The greedy algorithm is utilized to initialize at s medoids. There are two
parameters for greedy algorithm: a set of samplatp&® and the number of
medoids. The size @ will be A times larger thak (Ak). The number of medoids
will be B-k. Bis a small constant. The final set of medoidse siZBk, is selected

from the random sample points §diy greedy algorithm as following:

For example there are 5 video points in Sst {1_45, 1 3, 2211041,
2211042, 18 9324}. Video 1_45 is randomly seleeiedirst medoid mfrom the
setS then compute distance betweepamd other videos (table 3.15)

13 22_11041 22_11042 18_9324
145 0.0368 0.0763 0.0694 0.0782

Table 3.15. Distance of videos to the medoid m1

The video that is far from the first medoid 1_45lvie chosen as second
medoidm, which is 18 9324 in this case with distance 020 ™ow it updates the

distance table for pand the rest videos in sample (table 3.16)

13 22 11041 | 22 11042
18_9324 0.0603 0.0782 0.0748

Table 3.16. Distance of videos to the medoid m2

According to the greedy algorithm, the third medom will be 22 11041,
since it has the most distance from last medoid Repeating the process in the
same fashion until there aBkvideos are chosen from sample video Sef size

Ak, whereB is a small constant amdis a larger constant.
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It is hard to give the illustration with a largetaset showind® and A times
points/medoids set. However, it has demonstrated teochoose medoids from
sample set above. Next, it assumes that medoideasebbtained &= {1_45,
22 11041, 1_3, 22_11042, 18 9324} with sizeBd, where sets k=3 to keep
consistency with the k in other algorithms illustvas. With the set oMmedoids,

it continues the illustration of iteration phase.

| terative phase:

In iteration phase, it will randomly choode medoids from theM set and
progressively improve the quality of medoids byratevely replacing the bad
medoids in current set with new medoids frfrset. Meanwhile, clusters will be

formed during the process. The illustration isadetl as following:

As the need of illustration, other videos are aditeithe small example dataset,
10_4547,10_4562, 15_6653, 1_110, and 1_120.

Firstly, it randomly selecks3medoids from the setM as
Mcurrentz{m 122_11041, m18_9324, I’§I1_45}.

my.22_11041 m,1_45 ms18_ 9324
2211041

145 0.0763
18_9324 0.0782 0.0782

Table 3.17. Minimum distance between the medoid and
other medoids in current medoids set
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Secondly, it has to compute the locality kefL,, ...,L}, it setk=3, therefore
the setL={L,, L, ,L3}. Each L; is a set of video points in sphere centered at
corresponding medoid;nwith radiusg;, d; is the minimum distance betweenand
all other medoids iMcyrrens 1.€.8i = minxd(mi, my). Thus it hass={ 6,=0.0763,
8,=0.0763 635=0.0782} as shown in table 3.17 according to tistagice table 3.18.

1 45| 1 3 |22 1104122 1104218 932410 454710 45615 661 110{1 12
2 53 0

145
1.3 |0.0368
22 110410.07630.0833
22 110470.06940.0705 0.0416
18 9324| 0.078.0603 0.0782 | 0.0748
10_4547| 0.0648.0591 0.0698 | 0.0685| 0.0393
10_4562| 0.064H.0591 0.0698 | 0.0685| 0.0393 0.0
15 6653| 0.0540.0514 0.0602 | 0.0656| 0.0474 0.0325 0.0325
1 110 | 0.026{0.0228 0.0833 | 0.0714| 0.0765 0.0631 0.06BI0558
1 120 | 0.069/€0.0705 0.0833 | 0.0625| 0.0816 0.0725 0.072507620.0595

Table 3.18. Video pairwise distance table

Assigning points td; it is not necessary to cover all video pointshia tlataset
that is some videos may not be assigned to anyitpc®t. Moreover, one video
may be assigned to more than one locality, whidmes too. The locality sets are
not necessary to be disjoint. Wikhk3medoids seMcurens Cluster set is produced

as in table 3.19 according to the distance tali8.3.
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Ly, 8,=0.0763, m=22_11041| 22 11042, 10_4547, 10_4562, 15_6653

L,,8,=0.0763, =1 45 | 1 3,22 11042, 10_4547, 10 4562, 1_110,1 120

Ls, 5;=0.0782, ig=18_9324 | 1_3, 22 11042, 10_4547, 10_4562, 15_6658,0

Table 3.19. The locality set computed according to video
pairwise distance table

After obtaining the locality, it has to find dimeass for each locality set.

Firstly, it computes the average distantg from the points inL; to medoid m

d
ijlxl’j

along each dimensignand then compute= , Where d is the total number

of dimensions of 24 in this case and obtain thaltegjual 0.0604. In same fashion,
it compute¥>= 0.0553, and/3=0.0563.

2
. .. Z Xi P
Secondly, it computes the standard deviatipa M of the values
Xi,j -Y

G

Xij and z; ; = which indicates how thg-dimensional average distance

associated with the medoid; 8 related to the average Manhattan segmental
distance associated with the same medoid. The domgpresults are listing in
Table 3.20.

01 G2 03

0.0985 0.09 0.0487

Table 3.20. The standard deviation
of average distance X
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Z3,10 Z3,16 Z3,21 23,6 23,19 Z3,15 23,13 Z2,13 ZZ,lO Z3,7

-1.119 -0.9733] -0.9342 -0.8624 -0.848 -0.8075 -@17]7-0.6144| -0.6144 -0.6057

7110 VARE: 733 Zy3 Zy4 Z519 7515 7516 VARP: 7119

-0.5857| -0.5857| -0.568Y -0.5544 -0.5544 -0.5544 5544 | -0.5544| -0.5309 -0.5309

Z13 Z5 50 Zy51 VARTS Z1 1 7515 7315 Z3g Zy, Z14
-0.5045| -0.4944 -0.4944 -0.47711 -0.4487 -0.43554291 | -0.4229 -0.4122 -0.3959

Zig Z Zy7 Z32» Zi, Zig Z1 50 Zy14 Zy 15 Zrg
-0.3949| -0.3755 -0.375% -0.3615 -0.3421 -0.3401 31®7| -0.3137| -0.3137 -0.2922

Z2,14 Z2,5 Zl,22 Z1,7 Z3,18 Zl,ll Zl,18 Z3,14 ZZ,G 23,3
-0.2922| -0.2555 -0.2314 -0.205 -0.1827 -0.1302 5@21 -0.1478 -0.1244 -0.0451

Z3s Zis5 Z, Z3; 2523 Zi Zig Z; 18 224 Z311
-0.0431| -0.0406/ -0.0322 0.036P 0.1322 0.1857 0.21210.26 0.336 0.4127

Z320 217 Zrg Z3g Z3y Z3, Z317 Zy04 Zy 53 Z3 o4

0.5359 0.73 0.9077 09738 1.0657 15687 1.6016 11.46 2.336 | 2.8911

Z1,17 Z2,11

3.7999 3.8877

Table 3.21. Sorted Z values in increasing order

All the Z values are sorted in increasing order and liste@iable 3.21. After
having sorted Z values for eathset, it will select dimensions associated to each
set according to the Z value greedily. The origidahensionality is 24, the

projected average number of dimensionis set to 12. Then
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kx|=3x12=3&imensions should be chosen for all 3 sets. Intmagliat least two
dimensions have to be associated to eachZses,Z1 132213, Z2.10, Z3,10,Z316 @re
selected in the initial stage, since they are itts¢ fiwo least value in each set. Then
the restkxl-2k=30 dimensions will be chosen in increasing order Isin@g the
greedy algorithm according to the sorted Table 221 7321, Zg, Z319, Z315,
2313, L7, B23, L3, La, Lae, L2, Las, L2, L9, 43, L20, L2t
2116, 212122152312, 38, Zo1s Zaay Zigy 2222, Z27,2322,211, Z1 8}

The associated dimensions to each set is sumrdagsshown in Table 3.22

D, Associated dimensions to each cluster

D; | 1,3,4,6,8,12, 16,19, 21
D, | 1,3,4,7,12,15, 16, 19, 20, 21, 22
D; | 6,7,12,13, 15, 19, 21, 22, 23

Table 3.22. Associated dimensions to each cluster

After finding the dimensions associated to each aitkdall video points are
assigned to medoids by a single pass over the al#afhe Manhattan segmental
distance between all video points and medoids amepated in corresponding
subspace. The video points are assigned to thestlasedoid to form the clusters.

In the example, it forms the clusters as shownahl&@ 3.23.

Cluster id Cluster members
Cluster1 | 22 11041

Cluster2 | 1 45,1 3,15 6653,1_110,1 120

Cluster 3 | 18 9324, 22 11042, 10_4547,10_4562

Table 3.23. Assign videos to clusters

57



After that, it has to evaluate the quality of ckrst by computingy;;, the

average distance of points @ito centroid ofC; along dimension . The cluster

L Y3t Y :
quality is evaluated by computlggJN'ﬂ, wherew, = i . If the evaluation

D]

result is better than tHgestObjectiveThe evaluation result is set BestObjective

and Mcyrrent tOMpes: The medoid of the cluster with least number afea points
assigned is defined as a bad medoid. In additioa,nedoid of any cluster with
less than (N/k)minDeviationpoints is defined as the bad medoid too. The astho
choose minDeviation=0.1 in their most experiments, while it
chooseminDeviation=0.3 in the demonstration. Thus
(N/k)xminDeviation=(10/3)x0.3=1According to the definition of bad medoid, the
first medoid22_11041 is bad. The first medoid lmbe¢ replaced by another new
medoid in medoids sé#l, and repeat processes again until all medoidd iare

processed. The iterative process will be repeatéitimeet termination criterion.

Refinement Phase;

Getting the best medoids set and clusters from itrative, the dimensions
associated to each medoid will be recomputed andrpe the single pass over to

assign the points to the closest medoid in reldieensions space.

3.26. EM

EM (Expectation-Maximization) [11] is an iterativeethod for finding maximum
likelihood or maximum a posteriori (MAP) estimatef parameters in statistical
models, where the model depends on unobserved heiables. There are two

steps for finding the optimism parameters:
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[1] Make an initial guess of the parameter vector: Tihigwlves randomly
selecting k objects to represent the cluster meamgnters (as in k-means

partitioning), as well as making guesses for thditahal parameters.

[2] lteratively refine the parameters (or clusters)eldaen the following two

steps:

a) Expectation Step: Assign each object to cluster with the
probability(c.f. formula 3.1)

— _p(G) %[ Q)
P(x[C)= = 3.1
(x0G)=HGI X 0(%) (CHY

Where p(x|G)=N(m, E(x) follows the normal (i.e., Gaussian)

distribution around mean, with expectatiort, .

b) Maximization Step: Use the probability estimates from above to re-
estimate (or refine) the model parameters. For @kafequation 3.2),

_1a xP(x0G) G

M niy,; P(x0G)

[llustration

In this illustration, the same five videos (c.bl@a4.1) are used as example data. It
will initialize parameter k=3 and cluster the datdo 3 clusters. The prior

probability of each cluster is set equally, whish1Y3 in initial. In addition, the
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mean vector and covariance of each cluster gaussaitel has to be initialized
randomly as well. Three video vectors 1_45, 22 11Ghd 18 9324 will be
randomly chosen as the mean vectors of 3 clusesgectively, center points in

other words. The covariance matrix 24x24 is inized with diagonal equal 0.1.

Expectation step:

In expectation step, it will compute the probabilaf i" video belonging to &

cluster. By Baysian rule in formula (3.3)

P(x | G)IP(G)
P(x) &

R.=P(GI|x)=

WhereP(X) is the probability of thé'ivideo, it is computed by theformula (3.4)
k Al

R=2 P(C)[R(x| G) (3.4

P(%|C;) is computed by the Gaussian distribution with kean vector m and

covariance matrig x as formula (3.5):

1

1
. p!—— S 35 (X 4 3.
(Zil)d/2|2k|ﬂ2 s 2 b ) K A )} (

P(x1G)=
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Where Y| is the determinant of the covariance matbix—(«) ' is the transpose
vector of & — w), and Y is the inverse covariance matrix Of. After
understanding all components in formula, it willngoute the probability of all

these 5 videos belonging to clusters.

First, it computes the probability of video i giveluster k. In the example, it
computes the probability of video i given clustemkich k=1, 2, 3 and obtain the
result in Table 3.24.

Cluster 1 Cluster 2 Cluster 3

145 0.8224 0.0144 0.1631
13 0.6979 0.0184 0.2836
22 11041 0.0163 0.9275 0.0561
22 11042 0.1127 0.5693 0.3179
18 9324 0.1575 0.048 0.7943

Table 3.24. The probability of videos belong to clusters

Maximization step:

In maximization, the prior probability, mean vectand covariance matrix will be
updated for each cluster. According to the TabRt 3it can see that video 1_45
and 1_3 are assigned to cluster 1. Video 22_1104128 11042 are assigned to
cluster 2 and cluster 3 has the video 18 _9324.dwrimmization, it will update the
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prior probability, mean vector, and covariance mafor these new formed 3
clusters by using formula 3.1 3.2, 3.5 respectivAlyer updating, it will repeat the
Expectation step and then Maximization step agatil it converges. The result is

the same to the ground truth.
3.3. Analysis

K-MEANS
K-MEANS is the most traditional unsupervised clusig method. The algorithm

is simple and easy to implement. Its time compjeis O (kl), where n is the
dataset sizek is the number of clusters, ahds the number iterations for the
algorithm to converge. The number of clustérdias to be pre-defined. The
algorithm is not sensitive to the order of datdsput. The metric, measures the
distance between two data points, plays an importda deciding the quality of
clustering. The most frequent used metric is Eeelid distance; however, other
metrics can be employed properly according to theine of data. Besides, the
initial of the cluster center is the key determitias quality of clusters as well. K-
MEANS is easy and simple to implement, only oneapeeterk is specified to pre-

define the number of clusters to produce.

DBSCAN

Dbscan clustering algorithmis density based, thesférmed clusters are separated
by the regions with low density. It has to spedfparameters radigsand MinPts,
though it does not require pre-defining the numifezxpected clusters as Kmeans
does. Fig.3.9 shows that video 1_3 is within thdius, which video 1_45 is the
core point. The parameter radigswill limit the shape of formed clusters to be

spherical. To cluster the 5 videos by DBSCAN, gpecifiesMinPts greater than 1,
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there will be no more core points, no clusters fednin other words. All videos
will be treated as noise. Therefore, it is difficta find the proper parameters for
and MinPts. If the parameters are set improperlystnof videos will be treated as
noise. In this algorithm, the order of core poititat we picked for forming the
clusters is arbitrary. Hence, the formed clusteessansitive to the order of picking
the core points. The core points picked in a d#férorder might result in different
clustering results. Regarding to the complexitystarts with the construction of
distance matrix for gathering the neighbors, heéhtms the complexity of O(fn
n)/2). The operation of obtaining neighbors is ldasa distance (generally the
Euclidean distance), thus it may cause the cursknoénsionality issue. When the
dataset is large scale, the construction of thedi® matrix is rather consuming
the main memory. In summary, DBSCAN has the follayiadvantages and
disadvantages:

Advantages:
« ltis partially insensitive to the order of datadatabase.
e It does not have to specify the number of clustegior.
* Have ability of handling noises.

* Choose the sample points that are well scattered.

Disadvantages:
*« Consumes memories for construction of the distamaeix.

* Not be able to find clusters in arbitrary shapes.

BIRCH

Birch algorithm is designed to solve the problesin the case of large scale

datasets, the main memory is limited to fit theadat in for processing. 2) Thescan
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times ofdataset is not focused. 3) 1/O costs arg Righ. It has complexity aD(n),
where n is the number of data objects to be cledter database. Three parameters
are required: non-leaf branching contains at rBoshtries; a leaf node contains at
most L entries and diameter/radius T of leaf ndglé-tree is the key of the birch
algorithm. When the branch/leaf node is violatihg factor, the node will be split
into 2 and a new node is created as the parerteset2 branches. The CF node
summarizes all the information needed to compute tlifference distance
metric/diameter in a compact fashion. In the illason, it can see that, clusters are
almost formed in leaf node. Each branch is onectugier. Since the ability of how
many videos may absorb of leaf node is boundedeyddius T, thus the formed
clusters will not be arbitrary shaped. In the exEmpesides video 22_11041 and
2211042, others are all correctly grouped in @eétrVideo 22_ 11041 and
2211042 are two near duplicate videos; howeveralgorithm did not descend
them into the same leaf node entry due to the tmwlaof diameter T caused video
2211041 is absorbed by leaf entry CF2. Both CE&4meBirch and distance matrix
in Dbscan are trying to find the nearest neighbuvkilst CF-tree finds nearest
neighbors by descend the video over the tree, wiscimuch less memory
consumed compared to distance matrix construchtmreover, the complexity of
constructing CF-tree i® (N), which is one scan of the database only. However,
searching the nearest neighbors in a CF-tree fashisensitive to the order of data
scanned. Regarding to the input order issue, ttt@eiproposed phase 3 of global
clustering that each sub cluster is representedthiegy centroid and existing
clustering algorithm such as agglomerative hietiaethclustering algorithm is
applied directly to the sub clusters. Although gh8smay help group similar sub
clusters, the input order issue inherits from ®ndgta object still residents in sub
clusters. Hence, it can only say the proposed pisasely solving the input order

issue partially. In summary, Birch has the follog/imdvantages and disadvantages.
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Advantage:
* Low memory consumes.
* Low I/O cost.
* One scan of database only.
« Scalable to large scale dataset.

» CF-tree contains most information needed for colurt.

Disadvantage:
* The input order issue is partially solved only.
» 3 parameters have to be re-adjusting frequentlettcCF-tree fit into the
memory.
« Difficult in forming arbitrary shaped clusters, eait uses the notion of

radius/diameter.

CURE

Curehas the worst complexity 6f(n’log n). 3 parameters are required: 1) the size
of sample datasef. 2) the number of clusterk. 3) the shrinking factow.
Parameters are always required by the clusteriggrithm. There has not been
such a clustering algorithm that does not requimg @arameter yet. Therefore, it
cannot say that the drawback of this algorithm hat tusers have to specify
parameters. However, more parameters introducddow/ia drawback that, it will
bring users in difficulty to adjust all parametdos collaborating and producing
“best clustering results”. The optimization techregmay assistance in finding the
best parameters combination. However, optimizatemimniques are always easily
trapped in the local optimization and worse resalts likely produced. In the
CURE algorithm, there is an important operation ckhcannot be found in any

other clustering algorithm, shrinking represent&tideo vector point toward to the
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centroid of the cluster by a factar The shrinking operation will help eliminate
outliers, since representative videos will be pdsbieser toward to the centroid
and more densely distributed toward to the centioicCF-tree of Birch algorithm,
video 22_11041 and 22_11042 are located in twaensigespectively, while they
could be grouped into the same cluster by Cure imgrgperation through the
manually running the algorithm by using the sameideos as illustrated in
BIRCH. Because the leaf node of CF-tree is bounaedhe radius which may
make two videos separated if the boundary is setaw. Although this issue may
be solved by later global sub clusters groupinghase 3 of BIRCH, the videos
which do not belong to the sub cluster may be dwlse to the cluster and cause
the deviation of the centroid summarized by thev@€tor that, affects the global
clustering. However, in Cure clustering, the sassiédoes not exist, since only
the nearest neighbor cluster or video will be mérged it does not have to concern
of the bounded radius is set too high or too low.summary, Cure has the

following advantages and drawbacks.

Advantages:
* Be able to discover clusters of arbitrary shapesgest is not use any notion
of radius.
* More robust with respect to outliers.
* Be able to cluster a large scale dataset due &tetlng on a smaller set of
samples, and using data structures heap and kdetréast data access and
search.

* Only one scan of the dataset is required.

Disadvantages:
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e Users have to specify 3 parameters: 1) the numbetustersk. 2) the
number of representative data poiat8) the shrinking facta.

* How large the sample shall be drawn will produeelibst clustering result?

* The application of clustering on sample datasetilt®sn some clusters

missing.

PROCLUS

The Proclus clustering algorithm [16] requires 4apaeters: 1) the number of
clustersk. 2) constanB. 3) factorA, which is the number of times larger lof4)
average associated number of dimensibn§he algorithm starts with greedily
selecting the set of medoids by using hill climbargd end with assigning the data
points to the closest medoid form the clusters. iost complicated step is to
compute the reduced dimensions associated to tiaditioset. The computation of
projected dimensions for each locality set may esdhe “curse of high dimension”
problem; however, it will cause the unknown infotima loss at the same time. In
the illustration, videos 22_11041 and 22_11042saggposed to be grouped in the
same cluster, but not. It might be caused Mgnhattan segmental distance
employed instead of Euclidean distance. It alsdccte the information loss by
reducing the associated dimensions to each locabty In summary, Proclus

clustering algorithm has the following advantaged disadvantages.

Advantages:
* The algorithm is good for high dimension, since thestering happens in
subspace.

* Reduce the dimensions.

Disdvantages:
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* Have to specify many parameters.
» Hard to determine the average associated numigimansions that, might
produce the best effect.

* Information loss regarding to clustering in the Spdce.

EM

EM clustering algorithm is sensitive to the init@nfiguration and usually gets
stuck at local maxima. The algorithm is similarkmeans; the difference is that
EM uses Gaussian models to initialize each clustero parameters, the mean
vectorm and the covariance of the models, are requiredit@alize all Gaussian
models. Then the probability of each video beloggim each model is computed.
Video will be assigned to the cluster of Gaussiandeh with the highest
probability. Then the mean of each model (clusiei)be updated. The formula of
video probability computation is shown as equafipand equation 2 shows how to
update the mean vector for each cluster after mleos are assigned to the
corresponding clusters. The probability and meae aomputed in the
maximization and expectation step respectively.s€higo steps are repeated until

they converge. In summary, it has the followingamages and disadvantages:

Advantages:
* |t is sensitive to the initial Gaussian model oflealuster.

* EM is Kmeans-like algorithm, and easy to implement.

Disadvantages:
» Easily gets stuck at local maxima optimization.
 Most of the time, it produces inappropriate overgdaped and under-

populate distribution when it is stuck at localiopzation.

68



e Local maxima optimization problem is caused by #igorithm always
passing through some high likelihood regions, akgpping the low

likelihood regions.

3.4. Experiment
The experiment is conducted on PC with Intel(R)efoM) 2.67 GHz 2 GB RAM,

32-bit windows7 OS and java programming languagesid. The dataset is pre-
classified into clusters by these six clusteringthods respectively. Then the
NDVR with clusters is compared to that of non-atustbased approach. Two parts
of experiments are conducted. First, the clusteexgeriment, the result is shown
in Section 3.4.1. This experiment is to study haaviaus clustering techniques
partition the dataset to form the clusters with NDi¥ the same cluster. Second,
having the different clustering results from thestfipart experiment, the NDVR is
conducted with these formed clusters dataset. CaB WHDEO [44] is used as
experiment dataset, which consists of 12860 vidéws/e more videos than
claimed) including 3789 NDVs and 9071 noise videos.

3.4.1. Form clustershy various clustering approachesfrom the

literature
To keep the experiments consistence, the parameafteisistering approaches are
adjusted to form the number of clusters as closEO@@0 as possible. The focus of
the clustering is not the accuracy of the clusteapproach. The aim is to reduce
the dataset accessing time without the retrievali@acy dropping. According to the
small dataset testing, when the number of formedtets is 6-10 times less than
the number of the whole dataset copies, the retri@we will be reduced around 5

times. Based on the priori knowledge of that, acbif00 clusters are expected to
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be formed. Table 3.25 lists the number of clustiensned by applying six
clustering approaches.

Birch Cure Kmeans | Dbscan | Proclus | EM

No. of clusters
1086 1000 1096 950 1018 999
formed

Table 3.25. Number of clusters formed by different clustering algorithm

3.4.2. NDVR based on clustersformed by different clustering
approaches

This section presents NDVR based on the clusteraegd by different clustering
algorithms. Take Birch clustering as an examplesr&lare 1086 clusters formed by
applying Birch clustering algorithm on the 12860deds dataset. Instead of
comparing the query video to 12860 videos in datéseretrieve the video of
interest, the query video is compared to the cefmean vector) of each cluster,
1086 comparison times in other words. The comparisnes of one query video is
reduced from 12860 times to 1086 times, theordyictie retrieval time will be
12860/1086 times faster. While the retrieval tinsedramatically reduced, the

retrieval accuracy is expected to be improved d¢eagt maintained.

Fig. 3.10.shows the precision-recall comparisorNBV/R based on clusters
formed by the six clustering approaches as welthas of non-clustering based
approach. Table 3.27 shows whether there’s a signif difference of the retrieval
accuracy between various clustering algorithms dastrieval by using t-test
statistical testing, where 1 indicates there’sgmificant difference and O indicates
there’s no significant difference. Their averagegmsion along with the recall is

shown in the table 3.26. From the table, dbscanooisly performs the worst
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0.3751 only. Kmeans is slightly better compareaaoclustering based retrieval,
while birch and em are slightly less accurate; haxethey are not significant in
difference. Through fig. 3.10, the precision-recaitves of birch, em, kmeans and
no clustering based are almost superposed. Dbseaisipn-recall curve is below
that of birch, em, kmeans and no clustering balsexdn be concluded that dbscan
is not suitable for clustering to enhance NDVRamis of retrieval accuracy. The
same as cure, it has very poor performance as shhovoth the table and the
figure. Though Proclus has average precision 0.4ir5%e precision-recall figure,
it can see the performance curve is not stable tieddre recall 0.4, its precision is
below the other 4 approaches (birch, kmeans, ne&€kisand em). Thus NDVR

based on clusters formed by cure, dbscan and Rractupoor in performance.

0.95 T T T T T T T T T
' —&— birch
—HB— cure H
dbscan

em
—#— kmeans
—+ proclus

—a— noClusters

0.8

07

Precision

0 1 1 1 1

1
0 01 02 03 0.4 05 0.6 07 0.8 0.9 1
Recall

Figure 3.10. Precision-recall of NDVR based
on various clustering algorithms
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noClusters

Birch

Cure

Dbscan

Kmeans

Em

Proclus

0.5196

0.5133

0.4103

0.3751

0.5254

0.5182 04

Table 3.26. MAP of precision-recall retrieval based on different clustering

noClusterg Birch | Cure | Dbscan| Kmeans| Em | Proclus
noClusters
Birch 0
Cure 1 1
Dbscan 1 1 0
Kmeans 0 0 1 1
Em 0 0 1 1 0
Proclus 0 0 0 1 0 0

Table 3.27. The significant difference relationship of the retrieval accuracy
between various clustering-based retrieval

Fig. 3.11.showsthe time (s) consumed correspontbndifferent amount of
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query copies processethe retrieval time of the six clustering based apph is
almost the same, since a similar amount of clustergdormed. However, the same
amount of clusters will not produce the same eed#l time. The distribution of
amount of video copies in each cluster will affdet retrieval speed too, either a
biased distribution or uniform distribution. Figl3.shows that with the number of
query videos processed, the retrieval time of thelastering based increases much

faster than that of clustering based. The retriégvaé of non-clustering based is




almost two times slower than that of clusteringedoa®DVR when 100 query
videos processed. Whilst when 1000 query videogpareessed, the retrieval time

increases dramatically from 2 times slower to aln7asmes.

1600

—=— noClustersTime
1400 - —&— birchTime
—#— cureTime
—i=— dbscanTime
1200 | —4— emTime
kmeansTime
—+—— proclusTime

1000

Time elapsed in seconds
[=x]
=
(=]

1 1 1 1 1 1
400 500 600 700 800 900 1000
Mumber of query copies processed

o i L
100 200 300

Figure 3.11. NDVR time at different number of
query copies processed

Finally, itis concluded that NDVR based clustemsifed by birch, kmeans and
em clustering approaches are promising to enhari@¢RNin terms of accuracy
and speed, especially the retrieval speed compgarétht of non-clustering based
approach. The NDVR based on these three clusteniathods is much faster
compared to that of non-clustering based naiveogmbr while yields equivalent
retrieval accuracy. However, em clustering metteothirly slow, considering that
the scale up to millions of videos, kmeans is tast lalternative that it is simple in

terms of implementation and fast in terms of clusgeperformance.
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3.5. Summary

In this chapter, it studies the clustering techegin literature by illustrating on
real video features. The experimental study of ithpact of various clustering
techniques on NDV retrieval is conducted as weluded the formed clusters by
using various clustering techniques for retrievahleation study. Without any
doubt, the retrieval speed is increased. Howewer etnpirical results also showus
how the retrieval accuracy varies with diverse tdtsg-based NDV retrieval. This

chapter answers the research questions:

RQ1: Are the clustering algorithms from the litanst good for preprocessing
NDVs?

RQ2: What is the impact of various clustering algons from the literature on
NDV retrieval?

And achieves research objectives:

RO1: To study the clustering algorithms from ther&ture, and analyze with

illustrations.

RO2: Experimental study the impact of various dreg algorithms from the
literature on NDV retrieval compared to the naivenrclustering based NDV
retrieval. Through the empirical results, it wihew the knowledge of which pre-

process clustering algorithm is better for NDV rewal.

Inthe next chapter, a novel multiple sequence algmt clustering framework
will be proposed. The proposed framework catersthe nature of video
representation in the form of sequence in videe tirder.
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CHAPTERA4

PROPOSED CLUSTERING
FRAMEWORK

Inspired by multiple sequence alignment (MSA) iibiormatics, MSA will be
explored for the content-based video clustering r@tideval. MSA is employed to
align the group of DNA sequences and gives theabisiew of the similarity
between them to determine whether the group of BRduences is from the same
ancestor. There are three main stages for muligdgiences progressive alignment:
first, construct a matrix of all pairwise proximisgores; second, build a guide tree
by using neighbor joining according to the proxymtatrix created in the first step,
progressively joining the two most related sequsnocetil the least related
sequences are reached and joined, and all sequenecgouped into the guide tree;
third, use the guide tree to further align (a) segpe to sequence, (b) sequence to
profile’, and (c) profile to profile until the root of theee is reached. In the
literature, Kim et al. [26] propose to use the gapgene sequence alignment
algorithm in Biology, i.e., BLAST, in detecting meduplicate images. Based on

this idea, they study how various image feature$ gene sequence generation

'More than one video-DNA sequences are aligned as a unit is regarded as the profile
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methods (using gene alphabets such as A, C, GTandDNA sequences) affect
the accuracy and performance of detecting neanghiplimages. Many research
papers show video as a string sequence, and apjplyg sequence alignment as a
distance measure[29] [27]. However, MSA has notnbegploited for content
based near duplicate video analysis yet. This enaptl evaluate whether MSA is
feasible for near duplicate videos clustering draimpact on the NDVR based on

the clustering results by the MSA clustering frarngw

4.1. MSA Background

MSA, which is an active research area and has beeastigated for decades by
bioinformatics researchers, is a sequence alignnadgarithm of 3 or more
biological sequences, generally protein, DNA, orARdequences that are assumed
to have an evolutionary relationship by sharinghadge inherited from a common
ancestor. Visual depictions of the alignment (&ig. 4.1.), illustratesmutation
events such as point mutations (single amino acichuxleotide changes) that
appear as differing characters in a single aligrir@iumn, and insertion or
deletion mutations (indels or gaps) that appeanyghens in one or more of the
sequences in the alignment. From the image, it shwow the descendants share
the common ancestor. Pairwise alignment is mucieetein multiple alignment, it
can be aligned by hand easily. However, when thezehundreds or thousands of
biological sequences, it becomes difficult and clexpr even impossible to align
the sequences by hand. Therefore, researchemsdseploring multiple sequences
alignment methodologies, and trying to reduce dsglexity cost for facilitating
biologists to conduct the phylogenetic assessmgnaralyzing the sequences’
shared evolutionary origin with the alignment résul

Recently developed systems have advanced theddttte-art withrespect to

accuracy, ability to scale to thousands of proteds flexibility in comparing
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proteins that do not share the samedomain arcaregd6]. Until 2006, the MSA
could only be scaled to thousands of proteins asearchers are still trying to

exploit variety of ways to reduce the computatiomplexity cost.
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Figure4.1.Multiple protein sequence alignment result using Clustal X program [2]

Approaches such as progressive alignment andiiteratethods [34] have been
exploited for this purpose, along with the populgnamic programming algorithm
which, however, has been found infeasible for atignarge numbers of sequences
due to its exponential complexity [28]. Feng& Ddidi[10] were the first to
propose progressive alignment for MSA to address gitoblem of high
computational complexity and real-time processiaguirements. More recently,
programs such as Clustal series[14] and T-Coff@} pdve been developed that
use the progressive alignment principle proposefd @ to find efficient ways to
align multiple biology sequences. Edgar &Batzoglé]review most recent MSA
programs and conclude that MAFFT [39] [31], MUSC|36] [34], T-COFFEE[42]
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and PROBCONS [30] are the best current programtheir time. MAFFT and
MUSCLE are very similar in design. Both are basedh® work which is done by
Gotoh in the 1990s that culminated in the PRRN BRIRP programs [15][20].
Although they achieved the best accuracy in thieret they were not widely
applied and used due to the slow computation ofptiegram. T-COFFEE is the
method based on the prototypical consistency. lone of the most accurate
programs so far. More recently, PROBCONS presergedonsistency-based
approach that employs a probabilistic model and imam expected accuracy
scoring system [38]. The consistency-based apprshctvs an advantage in terms
of accuracy, but it is very costly to compute. Doghe expensive computational
complexity and large memory requirements, PROBCCi8 T-COFFEE are
practically limited to align around 100 sequencesiesktop computers. To address
the scalability issue, MAFFT and MUSCLE programsg aesigned to provide
reasonable starting points for general alignmendblems with comparable
alignment accuracy.There are dozens of programsingporaut year by year.
However, CrustalW[14] is still the most popular gram.

In this thesis, it starts with progressive aligninenethodology to solve
multiple video sequences alignment problem. The@se of this is to assess the
structure shared by multiple video sequences ariceraa inference whether they
should be grouped into the same cluster, whichfem® a common ancestor.
Progressive alignment methods reduce the problenalighing all sequences
simultaneously to aligning them progressively bgrahg the most similar pairs of
sequences first, then progressively adding unatigeguences into aligned profiles
until all sequences are aligned. The essence of M3Aing the hierarchical tree
clustering algorithm. However, the hierarchicalstiring algorithm doesn’t really
produce clusters, a decision, where to split armthfolusters, has to be made.

Progressive alignment is a way to split clusterstgring the multiple sequences

78



alignment results and assessing the scoring witbshiold to form clusters if it

meets the criteria.

4.2. Proposed video DNA clustering framewor k

The overview of the framework is proposed in Fig,4llustrating how video
collection is partitioned into distinct clusters forther address challenges of
accessing a video of interest. The algorithms &mhestage process will be detailed
in section 3.3. Meanwhile, the clustering flow enabnstrated in algorithm 4.1.

' Proximity matrix between
Video DNA video pairs

[ABCDEGHIUTXRDEFRSA | W [w W] [~
GCDJKIOPQWASDEFGH
MNLVDEWRTXQIPONB.
KLHGUTIERWSASUVCQ

&lala s

=
w [ n <

Video Databas

=’>

. 5 Multiple video DNA
GUIde tree alignment

Figure 4.2.Video DNA clustering framework

79



The following will briefly walk through the basideéas presented in Fig. 4.2.

First, video analysis and features extraction immeted. All videos in the
collection are preprocessed through segmentatiod keyframe extraction
techniques, resulting in a video being charactdrizg a series of keyframes in
chronological order. Representative features fahdeeyframe are automatically
extracted. The entire video is described as a seguef low-level extracted

features, analogous to a DNA or protein sequenhehas called “video-DNA”.

Second,anxn proximity matrix is constructed (wherns the size of the video
collection).A proximity measure (using either drsta metric/measurement e.g.
Euclidean distance/dynamic programming or simyjarntetric/measurement e.g.
cosine similarity/n-gram) is computed for pairsvafeo sequences and a proximity

matrix is constructed.

Third, a guide tree is built which is used to guttle progressive alignment.
Based on the proximity matrix, a guide tree is tousing a neighbor joining
algorithm that: i) creates a profile by joiningsfirthe two most related videos to
generate the first branching of the guide treen tifeprogressively joins the less
proximate videos are joined into the guide tre¢hinsame manner until all videos
are included in the tree in hierarchical groupst us note that the guide tree

heuristic is only roughly classifying the videosarlusters.

Fourth, the progressive alignment. The refinemérhe clustering is done by
progressive multiple sequence alignment accorairthe guide tree (the details are
discussed in Section 4.4). Alignment may be betwsenvideo and another video
(1 to 1 alignment), one video and one video profileto n alignment), or one

profile to another profile (m to n alignment).
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Fifth, to determine whether the profile is goingataluster. The video sequence
set will be aligned with similar fragments in blecks shown in Fig.4.2., Stage 5. A
score for each profile alignment result is compuded videos in this alignment
will be considered members of one cluster if tlusrs is above a given threshold

attributed to the cluster.

In order to have high average pufiof clusters and DNA-like sequences, we
construct the video-DNA as discussed in Sectionl4 Bach keyframe in a video
will be partitioned into 2x2 blocks, the average infensity of each block is
computed and ranked. For a 2x2 partitions, theee 4r Permutations. Each
permutation is mapped to the specific alphabetegdradting the alphabet
representation of each keyframe together in a dtogrical order forms the video-
DNA. An n-gram sliding window technique, which hasen shown to outperform
other state-of-the-art techniques [29], is usec¢dmpute the similarity between
video pairs as a measure of proximity in the secstage. Normalized Sum-of-
Pairs GP scoring system aims at evaluating the similabgtween the profiles

resulting from the progressive alignment step.

Algorithm 4.1: video clustering using MSA

INPUT:Video-NDA, dataset consisting of index video DNAsdeptors
OUTPUT: Clustered video dataset, each cluster consistaf

1- DNA-based Video representation (preprocessing)

2-  Proximity Matrix (pair-wise similarity) constructio

’For the cluster, the video with most number of near-duplicate copies is the dominant cluster, then
the number of near-duplicate copies of the dominant is divided by the total number of the cluster
is called the purity of the cluster.
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3-

Guide Tree creation using the Proximity Matrix aadneighbor joining

heuristics

Progressive alignment according to the Guide Tree

Generation of a progressive alignment group prayirecore by Sum-of-Pairs

scoring and comparison to threshold

Acceptance:

a) Retrieve all videos in the current profile as ohsster.

b) Process the un-clustered video DNA representatrepgat from stage 2

c) Continue until all video DNA representations in tinee are classified into
clusters

Reection:

Repeat from process 4. Pick a video or profile fribia tree according to the

degree of proximity and add it to the current aingmt. Continue to perform

progressive alignment.

Algorithm 4.1 gives the detailsof the DNA clusteyirin step 1, all videos will be

preprocessed into video-DNA offline as shown int®ec4.3.1. In step 2 (c.f.

Section 4.3.2), the constructed proximity matri¥ we nxn, where n is the number
of videos in the database. In step 3 (c.f. Sectidh3), the guide tree is built
according to the proximity matrix that, the mosn#ar of two members will be

selected and joined into the node first and thetlsanilar of two members are
joined in last. In step 4 (c.f. 4.3.4), accordingptder of building the guide tree, the
members in the earliest joined two nodes will Hected for alignment to form the
profile first, and then the next is selected irte profile for alignment to form the
new profile. When the new profile is formed, thepst5 (c.f. 4.3.5) will be

introduced to determine whether to send the cupmottle into the cluster by using
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the SPscoring system for measurement. Step 2 is repedted the current profile
forms the cluster, otherwise repeat the step 4. sfé@ps repeat in such a manner

until all videos are in the corresponding clusters.

4.3. Detailed steps

This section will describe the details of the aitjons used at each processing step

of the clustering framework introduced in section 2

4.3.1. Video representation for NDV clustering

The CC_WEB_VIDEO [44] dataset is used. It is claintbat there are 12790
videos in dataset. 24 queries were selected teevetthe most viewed and top
favorite videos from YouTube. Each text query wssued to YouTube, Google
Video, and Yahoo! Video respectively. The videogeveollected in November,
2006. The collected videos have the duration Ikas L0 minutes. The example
videos are shown in fig. 4.3. The shown examplescammon in visual content.
The clip of near-duplicate durations introduced samtation transformation, and

additional frames/background noise insertion.

Durations of original video clip:

E0OPLE WILL
N THE WORLDY
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Figure 4.3.Near-duplicate video examples

To represent videos as DNA genomes, the idea dfdéinge macro block spatial
ordinal pattern histogram described in [47]will bsedwith slight changes. Fig.
4.4.illustrates how to represent the frame withngle alphabet symbol. As far as
ranking is concerned, instead of dividing key franm@o 3x2 blocks and using the
Y,Cb,Cr color data to compute the block averageiejakach key frame will be
partitioned into 2x2 blocks and use the gray-scadasurements. For 2x2 blocks,
we have 4x3x2x1=24 possible permutations of spatidinal patterns. For each
pattern (permutation), a single alphabet symba@ssigned. In total, 24 alphabets
are introduced from A to X. In such a process, ewgicleo is a sequence of

alphabets character in chronological order, whictailedvideo-DNA.

Spatial ordinal

Gray scale feature representation
1234 > A
56 121 1 3
Rank block Symbols 1243->8B
29 200 Ordinal ) 4 Assignment >
4321 ->X
Individual key frame 4] = 4x3x2x1=24

possible patterns

Figure 4.4.Keyframe pattern extraction processing
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4.3.2. Generation of the video proximity matrix
As shown in fig. 4.5., the proximity matrix is syretrically built up by storing
pairwise proximity (similarity measurement is udedthe experiment), which is
measured by using sliding window based n-gram nuketho

Vl V2 V3 V4

Vi 0

V, | 027 ] 0

V3 0.15 | 0.43 0

V, 0.22 | 0.32 0.6 0

Figure 4.5.Proximity matrix

The N-Gram algorithm is used to compute a slidingdew based similarity
measure. The comparison between two video DNA semtations happens only
within the window (c.f. fig. 4.6). The window sizand step size are given as
parameters. Step size is the size to slide the omindrward after comparison is
done within the window. At each point, the simitarbetween the two videos
within the current window will be calculated andngmared to the similarity
calculation from the previous window location. Thest similarity score will be
preserved until the sliding window has moved albimg entire video DNA. The

detail of the algorithm is shown in algorithm 423].

Algorithm 4.2: Sliding-window based similarity technique

INPUT: pair-wise DNA video sequence

OUTPUT: similarity measure between two videos
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1. Apply pair-wise comparison on the n adjacent keyga each encompassed by
a sliding window, count the number of frame matclzesl reserve the current
offset and the corresponding number of matches.

2. Slide target window S steps forward, repeat step 2.

3. For each complete scan of the target, retrieveoffset with max (number of
matched frames) and the query index.

4. Slide query window S steps forward.

5. Repeat from step 2 until complete scan of the qu&sgign the best starting
index and offset Best (I, O) for the highest numiifematches and their offset.

6. Starting from Best (I, O), count the number of dqehacent pairs until the first
non-equal pairs are found and assign a score tatpet.

|% window size H|

Figure 4.6.0verview of the sliding window-based similarity technique

4.3.3. Congtruction of theguidetree

The guide tree is built incrementally following eegdy heuristic neighbor joining
algorithm. The selection of two video-DNA descrigtas based on the similarity
measurement according to the proximity matrix ttvad videos with the highest
similarity will be chosen, and joined in the sameetnode as a profile. In this

model, each video DNA is a leaf node of the guide.tAfter every join of one
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video to one video (1:1) / one video to video peofil: n) / one video profile to
another video profile (m: n), the proximity mathas to be updated by joining the
affected members into the same cell and computieg proximity of the new
profile to all of the other videos and video preél In such an updating, the size of

the proximity is shrinking.

The computation of the proximity of the new profiteall of the other videos or
profiles is the average proximity (similarity) ofgfile member proximity to other
videos. For example, there are 4 videos V,, V3 and \, and assume that the
proximity matrix (fig. 4.5.) is computed as desedbin section 3.3.2. From the
proximity matrix, it shows that ¥and \, are the most similar (value of 0.6). They
are then selected and joined to form a branchefthide tree as shown in fig.4.7.
After that, the proximity between the new joineddeo(Vs, V4) and the other
videos: M and \bhave to be updated. The proximity is calculatethasaverage of
the similarities of each member in the joined namlanother node, resulting in an
updated proximity matrix with 3 nodes;,W; and (\s V4). The video selection,
joining, and matrix updating processes are repaatétiall videos in the proximity
matrix are joined, resulting in the final guideetre

Vs

Vs

Figure 4.7.Joining of V; and V,

4.3.4. Progressive multiple video alignment
In this stage, the selection of videos is accordinthe guide tree, and aligns them

progressively using a dynamic programming technigiiee normalized sum of
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pairs SP scoring system is applied to measure the prafignment at each stage
of the process. The scoring result will be usedhim cluster formation stage to
make a decision on whether videos in the alignegfilprshall continue to be

considered for the alignment process or be gatheithth one cluster.

Video sequence selection

The related videos are selected according to thdegtiee constructed in the
previous stage. The order of selection follows tfahe insertion within the guide
tree, which is heuristic. After relevant videos aedected, they are next considered

for the progressive alignment process.

Progressive alignment

Rather than aligning all video sequences at one,ttire algorithmwill align video
sequences progressively. In the very beginninglways starts with aligning two
single video sequences, then followed by sele@maher video/profile from guide
tree and align with the current formed profile, gnessively and repeatedly until it
meets the requirement to form the cluster (c.ftiSeet.3.5), and repeat the process

of progressively alignment again.

There are three cases to consider for the progeeaignment process: Qne-
to-one a single video-DNA sequence is aligned to anottiagle video-DNA
sequence; iiOne-to-profile a single video DNA is aligned to many video-DNAs
that is aligned (i.e. a profile); iiiprofile-to-profile many aligned video-DNAs are
aligned to another many aligned videos-DNAs. Indineplest one-to-one case, two
video-DNAs are aligned in the same fashion as tlpbabet sequences by using
dynamic programming following the optimization aigent path with the delete

and insert gap operations.
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In the most complex profile-to-profile alignmentseavideo profiles are treated
as single position sequences. Following a dynamagramming technique, an
optimization alignment path is searched for. Thecpss is based on introducing
gapsto align sequences and tracking the optimum patkrims of least cost to fill
these gaps (i.e. penalty operations). A dynamigrammming table is generated
where each row and column correspond to the datamprofiles to be aligned. A
similarity score is computed and the optimum patlthen tracked. Once a gap is
introduced in a profile, it remains open in eachjusmce at the same position,
which follows the policy of “once a gap, always aptj [33]. The one-to-profile

case is a simplification of the profile-to-proftase.

Algorithm 4.3: profile-to-profile alignment

INPUT: two profiles, P and B, to be aligned
OUTPUT: aligned group of DNA video representations

Let l;and I, the lengths of Pand P respectively (in other words, they are the
number of columns)P; andP% as I" and |" columns of Pand B respectivelyg

as the gap insertion cost

1. loopifrom 1 tol;

2. loop j from 1 td,

3. dist[i][j] = min(dist[i-1][j-1] +

mismatchPenalty(i,j), dist[i][j-1]®, dist[i-1][j]+g)

4. if dist[il[j] = dist[i][j-1]+g
5. insert gap “-” int®"; of each member video-DNA inP
6. endif

7. if dist[i][j] = dist[i-1][]+g
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8. insert gap “-” int&% of each member video- DNA irf P
9. endif

10.endloop

11.endloop

Algorithm 4.3 details the process of how to ingm@ps to align two video DNA
profiles. The demonstration of how to align two fies by following the optimum
path is shown in the dynamic programming tableigf4.8., which computes the
similarity between pairwise columns in profiles Bnd B respectively. Each
column, treated as one unit, consists of the etgegram descriptors and a gap “-
" is introduced in the same column of each memlb¢he profile.f represents the
edge histogram descriptor of thBkeyframe in video DNA. Fig. 4.8.shows an
example of a dynamic programming table where msfi® andP of lengths 5 and
6 respectively are aligned by following the minimufistance path, which is
illustrated by arrows. Following this optimum paththe table, the alignment result
of profiles P andP is produced, forming a new profile of length 7saswn in fig.
4.9.

= ELE Y| E |
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Figure 4.8. Profile to profile alignment by dynamic programming
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Figure 4.9. Profile alignment result

4.35. Formation of video clusters

Normalized Sum-of-Pairs (SP) scoring is used tduata the similarity between
the profiles resulting from the progressive aligninstep. The final score is
computed as the average of each column’s normatizece. As an illustration,
video-DNA representations is considered in thenalignt for which performs the
sum up scoring operatioR,is the number of columns of the aligned profile an

SP(C) given in equation (4.1), is the normalized suneath column score.
1k
SRQ=-2 SR 9 (4.1)

WhereSP(¢) is the matching score corresponding to the colpositioncifor a

given video pair. After that, for normalization poses, the score of each column is

divided by the number of comparisons, whic4§-Y .
2
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The scoring result is then compared to a givenstiokl to assess whether all
videos in the corresponding profile will be consetkin a cluster. This threshold is
especially significant since it determines the Einty of video DNA representations
in the same cluster and the number of clustersrgtte A high threshold implies
high inter-cluster similarity (i.enigh purity) and a high number of clusters generated;
while a low threshold implies low inter-cluster damnty (i.e. low purity) and a small

number of formed clusters. Its value is determimgoerimentally.

4.4. Experiment

This section will show the clustering experimentsults. The aim of this
experiment is to partition the dataset intastdrs that NDVs are grouped into
the same cluster. By clustering, it achievesgbel of reducing the searching
space which is different from the traditional apmibes such as indexing
techniques.The experiment data is from CC_WEB_VIDHE®ere are 12860
videos in CC_WEB_VIDEO dataset, 3789 videags aear duplicate videos,
and the rest are noise videos. 5000 viddd3(@9 NDVs and additional 1211

noise videos) are chosen as the experiment dataset.

Two key criteria impact the NDV retrieval perforntanusing a preprocessing
step of clustering: i) a low number of clustercasrelated to computational cost
effectiveness, as it involves a reduced numberoaiparisons between the query
video and representative cluster videos; ii) higimnma-cluster purity is linked to
improved retrieval accuracy, since videos thattlaeemost similar will be clustered
together. Hence, the goal is to minimize the nundfeslusters while maximizing

intra-cluster purity.

In the experiment, the clustering threshold isteed.3 based on a comparison

with other thresholds. With a threshold value & @07 clusters are generated and
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the average intra-cluster purity is 0.6759. Tableshows the purity and number of
clusters formed for thresholds varying from 0.10t6 while table 4.2 shows the
increment in terms of purity and number of clustesemed corresponding to

different threshold intervals. It isnoticed thatetincrement of purity sharply

decreases with increasing threshold values, asasdlhe increment of the number
of formed clusters. The selection of the threshaldie and corresponding number
of clusters formed is based on optimizing bothiegal accuracy and speed for
varying threshold values on a subset composed @iteos. The benefit in terms

of both retrieval accuracy and speed is apparergnwime number of formed

clusters is 6 to
_ Threshold 0.1 0.2 0.3 0.4 0.5
10 times Purity 0.5755 0.6388 0.6759 0.7011  0.7104 smaller
than the  No©°f 560 711 807 880 928 size of
Clusters
the entire dataset.

Table 4.1. Purity and number of formed clusters corresponding
to different thresholds

Threshold Intervals 0.1-0.2 0.2-0.3 0.3-04 0.4-0.5

Increment of Purity 0.0633 0.0371  0.0252 0.0093
Increment of Number

of Formed Clusters

151 96 73 48

Table 4.2.Increment of purity and number of formed clusters for
different threshold intervals
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4.5. Summary

This chapter presented an automatic clustering éveonk based on progressive
multiple video DNA sequence alignment for effeclivelustering NDV collections.
The approach is heuristic and optimized results progluced. The formed 807
NDV clusterswill be used for MSA clustering-base®W retrieval evaluation in

the next chapter. This chapter answers the resgaestions:

RQ3: Since video is always represented as a seguendrame’s descriptor in the
order of time, how to develop a clustering techrighat caters to the video

sequence descriptor?
And achieves the research objectives:

RO3: To propose a novel MSA-based clustering allgorithat caters to video
sequence signature representation, since the clogtalgorithms in literature are
good for data points input only that are singletees with the same length.

In the next chapter, it will evaluate the MSA-ckratg based NDVR performance

by using various features.
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CHAPTER 5

EVALUATION OF MSA CLUSTERING-
BASED NEAR-DUPLICATE VIDEO
RETRIEVAL

This chapter will evaluate the MSA clustering-badiaV retrieval. The evaluation
framework is the same as shown in Section 3.1 @p@hr 3. The ordinal feature,
global features, and local feature will be evaldatespectively, since various
features have different impact on NDV retrieval.eTtlustering-based retrieval
result will be compared to that of non-clusterirgséd naive NDV retrieval. The
purpose of this evaluation is to show that the M3#stering-based NDV retrieval
by using different features is promising comparedhtat of non-clustering based,
since the retrieval speed is greatly reduced wihiéeretrieval accuracy performs

equivalent or even better.

5.1. Video Features Representation

Color and texture are the most common global featuand SIFT is the most
popular local feature. In this chapter, it will &vate ordinal feature, scalable color,
edge histogram and SIFT for clustering-based NDVR.
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5.1.1. Ordinal feature

Fig. 5.1 shows the process of how to get the 24 kideo histogram by using
ordinal information. First, all the keyframes isrgtéoned into 4 blocks. The
average intensity of each block is computed. Thenblock is ranked according to
the average intensity value. With 4 blocks panitichere are 24 possible
permutations, which are also the correspondingfdrirthe video histogram. The
percentage of the keyframes falling into bins isnpated as the 24-dimentional

video histogram.

Spatial ordinal
Gray scale feature representation Block spatial ranking
pattern distribution

»
»

6 21 )
Rank block t B Histogram

Calenlation

B9 00 Ordinal 2 n

I
———a

v

Individual key frame
v 41 = 4x3x2x1=24 possible 1 2. 24

patterns

Figure 5.1. Video spatial pattern histogram processing

5.1.2. Global Features

Color and texture are the most common global visealures. There are various
color and texture types [101]. This chapter wilbksate scalable color and edge
histogram. Thus, each keyframe could be represdmyedither a scalable color

descriptor or an edge histogram. Therefore, aovidedescribed as a sequence of

vector descriptors.

Scalable color is a color histogram that is quaatin the HSV color space and

then encoded by Haar transform. City-block distaats® known as Manhattan
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distance is the best metric to measure the distbat@een two color histograms
[101].

An edge histogram describes the spatial distrilbutibfive types of directional
and non-directional edges. The edge histogram dotpes color descriptors.
Metric such as Euclidean distance, cosine simylarduld be used to measure the

distance/similarity between two edge histograms

5.1.3. Local Features

Local scale-invariant features (SIFT) [102] wasga®ed in 1999 by Lowe, D.G. It
is still the most popular local feature. Local teats outperform global features in
terms of accuracy. However, it suffers from expemstomputational complexity
problem. Accordingly, Sivic and Zisserman [103pposed text retrieval method
by using SIFT, which using k-means to group sinki@ypoints in the same cluster
and mapping keypoints in image/video to closessteluto form the bag of words
(BoW) to describe the image/video. Following thippr, there are many other
papers [44] proposed to apply the BoW concept teesthe real-time NDVR in

large-scale video collections problem and achieateer good performance.

BoW concept is employed to process the SIFT featureideo histogram. It
randomly selects one representation video for edddo cluster. 708 videos are
selected. Then it randomly selects 40000 keypalasriptor from the 708 videos.
K-means then applied to cluster 40000 keypointh w#200. The centroid of each
cluster is computed. The size of video histogramaéx)the size of keypoints
clusters which is 200 in this case. Given a videth the SIFT feature extracted,
each SIFT point is mapped to the closest clustee. fJumber of points fall in each

cluster bin is computed.

97



5.2. Cluster Representation

The quality of cluster representation is connedtedhe NDVR performance in
terms of accuracy. Two ways are always used tesgpt the cluster: 1) Select one
or more than one videos to represent the clusje€atnpute the centroid of the

cluster to represent the cluster.

5.2.1. Representative Video Selection

In the experiment, for global features (color apdtures), it selects one single
video to represent the cluster. For each videbeanctuster, it computes the number
of nearest videos that, meet the required distamugarity threshold. The video
with the greatest number of nearest videos willsbkected as the representative

video of the cluster.

5.2.2. Cluster Centroid Representation

If the video is represented as a histogram (BoWIBfT and ordinal histogram), the

cluster centroid is computed to represent the etust

5.3. Video Similarity M easur ement

This section describesthe similarity measure beatwé®o videos. Jaccard
Similarity is employed to measure videos describgdjlobal features and cosine
similarity is applied to score the similarity be®vetwo videos represented by local
features (video histogram of BowW SIFT) and ordiealure.

5.3.1. Global Features Similarity Measure
Jaccard similarity (Equation 5.1) is used to meassimilarity between videos
represented by color and texture features. Eaclirdqag is represented by a

color/texture vector, thus the video is describgdabsequence of color/texture
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vectors. Absolute city-block distance is used torecthe distance between two
color vectors (scalable color) and cosine simiyastapplied to score the similarity
between two texture vectors (edge histogram). mbasurement will be detailed
in algorithm 5.1.

— |V1 N V2|

Sim(\, \é)—m (5

Algorithm 5.1 Jaccard similarity measure between videos

INPUT: two sets of video color/texture vectors dggors V; and \b with length
L; andL,

Let variable X be the number of keyframes intelisedn two videos, T be the

threshold of city-block distance or cosine simthari

1: LOOP all of keyframes in v

/Il score = 100 (if distance);

2: Var score=-1(similarity)

3: LOOP rest of keyframes i,V

/I (Var dis=city-block(f, f,) if scalable color)

4: Varsim=cosineSimilarity{f f,)

*The initial for the variable score will be different depending on distance or similarity measurement
used. Accordingly, the green color comments are the alternative for the distance measurement
used.
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Il (score>dis && dis<=T)When color distance applied

5: IF (score<sim&&sim>=T)

6: score=sim/dis and record the currentriagye index in ¥
7. ENDIF

8: ENDLOOP

I/ scorel!=100 (if distance)
9: IF (score!=-1) {

10: X++; remove the keyframe descriptoihat preserved
index

11: ENDIF

12: ENDLOOP

13: get intersection=X; and uniornz + Lo—intersection

14: apply the jaccard equation (1) and get thelaity

OUTPUT: intersection/union, which is similarity beten  and \b

5.3.2. Local and Ordinal Feature Similarity Measure

This section presents the similarity measure betwedeos by using local and

ordinal features. It employs SIFT for the localtfea evaluation and processes
SIFT to video histogram by using BoW. When an oatlifeature is employed,

video is processed into a 24-dimensional videoobistm, where each bin is the
ranking permutation of average grayscale colorhef tlock in a keyframe. Thus

the distance/similarity metric such as Euclideastattice, cosine similarity could be

simply applied to measure the distance/similaréinkeen two video histograms. In
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this case, cosine similarity metric is employedve®i two video histograms’sind
V2, the cosine similarity is measured by the equaffoR), where k is the length of
the video vector.

N

<

XN
== =
2

5.4. Experimental Results

5000 videos are selected from CC_WEB_VIDEO [104]tfe experiment. The
5000 experimental dataset consists of 3789 nedicdtgp videos and 1211 noise
videos. The example videos could be found in [10#E NDV retrieval evaluation
will be conducted on the clusters formed by MSAstduing technique using video-
DNA feature (c.f. Chapter 4). Rather than compathegquery video to all videos
in database, it only has to compare to represeetaéntroids of the clusters. By
processing this way, the retrieval time is appdyergduced without any doubt.
However, the evaluation has to show how the MSAsteling-based retrieval

impacts the retrieval accuracy.

Section 5.2.1, 5.2.2 present how to representeatrsigfficiently when various
video features are applied for MSA clustering-baS&\ retrieval.After clusters
are represented by the representative videos droo#s, given a query video,
instead of comparing to all 5000 videos (non-cluste based naive NDVR), it

only has to compare to 807 cluster representatientibids (MSA clustering-based
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NDVR). It can see that the clustering process iaisi reduces the size of dataset
offline rather than online process by applying ixidg structure. The similarity
between videos is measured depending on the udagelinal, global and local
features as described in Section 5.3.1, 5.3.2 aB@ Bespectively. Four empirical
evaluations are conducted, which compares the meafoce of clustering based
NDVR to that of non-clustering based by using oatlircolor, texture, and SIFT
respectively. The comparison is taken under thmesariteria: i) same video
feature processing (color, texture and SIFT); @ne similarity measure method
with same threshold; iii) the experiment is conédcbn a standard PC with an
Intel(R) Core(TM) 2.67GHz processor and 2 GB of RANE presentation of
evaluation follows the information retrieval stardiaby using precision-recall
curve, where precision is computed by formula 58 aecall is computed by
formula 5.4. The curve is generated by using thiciaf released software
trec_eval [113].

the number of correctly retrieved NDVs
the number of retrieved videos

Precision=

(5.3

the number of correctly retrieved NDVs
the ground truth number of NDVs of the query video

\

Recall =

Section 5.4.1 will show the evaluation results oD\WR based on MSA
clustering by using ordinal feature. Section 5uil2 discuss the evaluation results

of NDVR based on clustering by using global featuedge histogram and scalable
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color. Section 5.4.3 will present the evaluatiosuteof NDVR based on clustering

by using local features SIFT compared to that of-cloistering based.

54.1. MSA Clustering-based NDVR with Ordinal Feature
1000 query videos, which are chosen from CC_WEB B@Ddataset with

different variations (caption inserted, rotatiomarhe drops, frame inserted,
brightness changes etc and also some noise videmsjbmitted for NDV retrieval

evaluation. It first compares the retrieval resalthat of non-clustering based and
as well as n-gram and edit distance methods. Tthemmpares to NDVR based on

the clustering techniques as shown in Chapter 3.

Fig. 5.2compares retrieval accuracy of the MSA telusg-based to the state-
of-the-art methods e.g. n-gram and edit distanceshmywing average precision-
recall curve. Fig. 5.3shows the MSA clustering-lbasetrieval speed in seconds
compared to that of non-clustering based correspgntb the number of query
copies processed. Although there is no significhfiérence in average precision-
recall accuracy by t-test statistical summary, fheposed clustering based
technique is significant more accurate at sometpa recall, while the retrieval
speed is more than 5 times faster when all 1000iepiare processed. The MAP
accuracy of the clustering-based method also pedalightly better than that of
non-clustering-based. In spite, from the figure, 8% proposed technique the
accuracy drops below non-clustering based and m-dgpefore recall 0.1, after that
the proposed technique always performs the besormymother techniques, edit
distance performs the slowest, n-gram and noneiust based are superimposed
in retrieval speed that non-clustering based yidleiter precision between recall
0.1 and 0.9. Overall, the precision of the MSA tusg based NDVR always

performs better than that of edit distance overealall.
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Figure 5.3.Comparison of retrieval time(s’) at corresponding
amount of queries processed by using ordinal feature
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Figure 5.4. Comparison of MSA clustering-based NDVR
tovarious other clustering techniques based NDVR

Similar to the previous experiment, 1000 queries @nsidered. For all the
compared frameworks, the clustering parametersdjtested to form a number of
clusters sensibly close to that used for MSA badestering (i.e. 807 clusters). As
a consequence, retrieval speed is comparable fdahalconsidered frameworks.
However, the video representations used for thegering algorithms consist of a
24 bin histogram. The corresponding precision-temaives are shown in fig. 5.4.
It can see that the curve of the framework incapog MSA based clustering is
almost superimposed with that of the frameworkslé@menting clustering based
on the Birch and Proclus algorithms. It is testdtiie statistical significance of the
difference between the average precisions of thpqsed framework incorporating
MSA based clustering and the frameworks implemegntiustering based on the

Birch and Proclus algorithms. It is found no sigraht difference using the t-test:
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(t=0.1967, p>0.05, d.f.=19) and (t=-0.0949, p>085~19) respectively. All three

clustering based NDV retrieval frameworks therefgreld equivalent average
precision-recall results. Additionally, the framawdmplementing clustering based
on the EM algorithm obviously underperforms thesthbest performing previous
frameworks in terms of precision-recall. In partasyfor recall values greater than
0.6, the corresponding precision clearly degensrdter recall values lower than
0.6 and 0.8 respectively, the curves of the NDVieeal frameworks incorporating
a clustering step based on the Cure and Dbscanithlgs are also clearly below
those of the three best performing frameworks. Adidally, the MAPs of all

frameworks are listed in table 5.1. Although it dint find any significant statistical
difference between the MAP of the proposed fram&wand that of the

frameworks implementing the Birch and Proclus atpars, the advantage of the
proposed MSA based clustering relies on the faat this based on alignment,
which is more flexible for handling video index s&gures whilst other techniques
are metric based. To the best of myknowledge, ttepgse MSA clustering

technique is the only that makes use of sequemngena¢nt, which is advantageous

for various length of sequence signature basedwiggresentations.

MSA Birch Cure Dbscan EM Proclus
0.5493 0.5713 0.5187 0.4523 0.5055 0.5510

Table 5.1. MAP of NDVR based on different clustering
algorithms

54.2. Clustering-based NDVR with Global Features

This section will show the NDVR performance basedctustering compared to
that of non-clustering based by using texture aoldrcrespectively. 120 query

videos are submitted and the average precisiontret@eval curves are presented.
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Fig.5.5 and fig.5.6 shows the performance by uséxture (edge histogram) in
terms of retrieval accuracy and speed respecti@ty5.5 compares the average
precision-recall curve of NDVR based on clusterfnith clusters) to that of non-
clustering based (no clusters). The figure shows tiine clustering based performs
much better than non-clustering based before treallreéd.9. The curve is
superimposed after the recall 0.9. Overall, clustebased NDVR has better
retrieval accuracy than that of non-clustering bdagpproach. Meanwhile, fig.5.6
shows time consumed corresponding to the numbguerfy copies processed. The
clustering based (blue curve) NDVR costs only tielitime. The red curve of non-
clustering NDVR consumes more time. With the numdfequery videos that are
processed, the time consumed by non-clusteringdbl&8/R climbs much faster
than that of clustering based. When 120 videospaoeessed, clustering based
NDVR performs more than 6 times faster than thanhom-clustering based. In
summary, by using texture feature, clustering ba$B¥R performs much better

than that of non-clustering based in terms bottetsfeval accuracy and speed.
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Figure 5.5.Precision-recall of NDVR by using edge histogram
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Figure 5.6.Time consumed corresponding to the number
of query copies processedby using edge histogram

Fig.5.7 and fig.5.8 show NDVR performance by ustotpr (scalable color) in
terms of retrieval accuracy and speed respectivély.5.7shows the average
NDVR precision-recall curve based on clustering awh-clustering. The blue
curve of clustering-based NDVR significantly outjpems the red curve of non-
clustering based NDVR before the recall 0.8. Howeatter the recall 0.8, the two
curves are found no significant difference and aimsuperimposed. Overall,
clustering based has significantly better retriematuracy. Meanwhile, fig.5.8
presents the retrieval speed, which shows the tiomsumed corresponding to the
number of query videos processed. It can see tBAtR\Nbased on clustering (blue
curve) consumes a little time only when all 120rguedeos are processed and the

curve is fairly flat, linearly increasing with theumber of query videos increased,
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the consumed time climbs much slower than thabofclustering based approach.
By observing the slope of two curves, it can sed the non-clustering based
NDVR, the increase of time consumed of processwegyesingle query video is

more than 2 times than that of clustering based RDWhen all 120 query videos
are processed, the clustering based NDVR performsd 6 times faster than that
of non-clustering based. In summary, by using thlercfeature, NDVR based on
clustering also significantly outperforms non-ckrgtg based in terms of retrieval

accuracy and speed.
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Figure 5.7.Precision-recall of NDVR by using scalable color
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54.3. Clustering-based NDVR with Local Feature

This section will present the NDVR performanceans of accuracy and speed by
using SIFT feature. The same as Section 5.4.2qL20y videos are submitted for

evaluation. The cosine similarity is employed toasige the similarity between

videos (c.f. Section 5.3.2).

Fig.5.9 and fig.5.10 show the NDVR performance bing SIFT feature in terms
of precision-recall accuracy and speed respectivedyit shows in the fig.5.10, the
time consumed by non-clustering based (red) isgtater than that of clustering
based (blue), while the accuracy of two precisiecall curves remains at least
equivalent. Overall, the two precision-recall cuveve no significant difference.

However, the retrieval speed is dramatically enkdniy the use of clustering.
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When 120 query videos are processed, clusteringdb®VR is around 4 times

faster than that of non-clustering based.
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Figure 5.9.Precision-recall of NDVR by using SIFT

600

—r— with clusters
—»— no clusters

5001

400}

300

200f

-

]

=
T

NOWR time consumed in seconds (s)

20 40 60 g0 100 120
Mumber of query copies processed

Figure 5.10.Time consumed corresponding to the
number of query copies processed by using SIFT
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5.5. Summary

This chapterstudied the effectiveness of NDVR bamed/ISA clusters compared
to that of non-clustering based, and it also comgbato the clustering-based
retrieval technique to the state-of-the-art techaiop-gram and Levenshtein edit
distance (dynamic programming) by using ordinalidea The performance of
NDVR with a preprocessing clustering step is betteterms of retrieval cost
effectiveness on the one hand and higher in terfngetbeval accuracy in a
precision-recall framework on the other hand th#reiomethods.Meanwhile, the
retrieval incorporating MSA clustering is also caamgd against the retrieval that
incorporates the clustering techniques. It theo alsowed that NDVR based on
MSA clustering outperforms that of non-clusteringséd in terms of retrieval
accuracy and speed by using popular global and feetures. By showing this,
itsees that enhancing NDVR through clustering bpaipopular global and local
features is feasible on the dataset. By using elung} techniques to preprocess
video dataset offline, it can reduce the size dfablase offline, which greatly

enhance NDVR performance.This chapter answersnasgaestions:

RQ4: What is the impact of various video featuresdifal, global and local

features) impact on MSA clustering-based NDV reélie
RQ5: What is the performance of MSA clustering-dd$BV retrieval?
And achieves research objectives:

ROA4: To evaluate the MSA clustering based NDV eed#li in terms of retrieval
accuracy and speed compared to that of non-cluggeoased naive NDV retrieval

and also against other clustering methods in litera.
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RO5: To experimental study how various video feat@presentations (ordinal,

global and local features) impact on MSA-clusterraged NDVs retrieval.

Thenext chapter will give the conclusion and futwarks.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Conclusion

In this thesis, in order to explore a new way t@iave the NDVR performance in
terms of both accuracy and speed, it studies tleetefeness of incorporating the
clustering techniques to pre-process dataset imd¥dNgroups offline and then
implement NDVR on the representatives of the clgste directly reduce the

searching space offline rather than online.

First, the impact of different clustering technigua literature on NDVR was
studied. Each clustering method was illustrated wedt through the advantages
and drawbacks of the techniques. Then, itexperiatignevaluated the NDVR
based on clusters formed by using different clusgetechniques against that of
non-clustering based naive NDVR. The empirical ltgstesents the feasibility of

clustering techniques, which answers research ignsst

RQ1: Are the clustering algorithms from the litansg good for preprocessing
NDVs?

RQ2: What is the impact of various clustering algons from the literature on
NDV retrieval?

and achieves research objectives:
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RO1: To study the clustering algorithms from ther&ture, and analyze with

illustrations.

RO2: Experimental study the impact of various dusty algorithms from the
literature on NDV retrieval compared to the naivenrclustering based NDV
retrieval. Through the empirical results, it wihew the knowledge of which pre-

process clustering algorithm is better for NDV retal.

Second, to caterto the variable length of video ueage signature
representation, a novel clustering framework wagppsed based on multiple

sequence alignment in Chapter 4, which answerseearch question:

RQ3: Since video is always represented as a sequandrame’s descriptor in the
order of time, how to develop a clustering techeighat caters to the video

sequence descriptor?
and achieves the research objective:

RO3: To propose a novel MSA-based clustering allgorithat caters to video
sequence signature representation, since the clogtalgorithms are good for

data points input only that are single vectors wite same length.

The approach is heuristic and optimizedthe numberusters produced to serve
the evaluation of MSA clustering-based NDVR whichswpresented in Chapter 5.

Finally, the evaluation of NDVR incorporating clest formed by MSA
clustering method is conducted. The methods ofessrting the cluster were
introduced. Then a query video is compared to &lister representatives
(clustering-based NDVR) instead of comparing tovadeos (non-clustering based
NDVR) in the database. Besides the proposed teshAnigas evaluated and

compared to non-clustering based retrieval under game fair criteria, it also
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compares to the state-of-the-art methods e.g. dgnpragramming and n-gram by
using ordinal video features. The result showstehugg-based NDVR is more than
5 times faster than other approaches on one hahgields better precision at most
recall points. Meanwhile, the MSA clustering-bas¢dVR by using the ordinal
feature was also compared against that of theathestering techniques based.
Besides the ordinal feature, the scalable coloreaig® histogram are chosen as the
representatives of the global feature and SIFThasrépresentative of the local
feature to evaluate the impact of the features DVR. Since SIFT has exhaustive
computation complexity, Bow method is used to pssceideo SIFT into a 200-
dimensional histogram. Each bin computes the frequeof the visual word
appearing in the video. The experiment resultshihesclustering-based NDVR is
much faster while yields significant better prearsrecall accuracy by using global
features and slightly better MAP accuracy by udouwpl features. This evaluation
answers the research questions:

RQ4: What is the impact of various video featuresdifal, global and local

features) impact on MSA clustering-based NDV resiie
RQ5: What is the performance of MSA clustering-dd$BV retrieval?
andachieve research objectives:

RO4: To evaluate the MSA clustering based NDV ee#li in terms of retrieval
accuracy and speed compared to that of non-cluggeoased naive NDV retrieval
and also against other clustering methods.

ROS5: To experimental study how various video feata@presentations (ordinal,

global and local features) impact on MSA-clusteroaged NDVs retrieval.
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The fullfeasibility study of clustering-based ND\MRrough different clustering
techniques and different features present us griowledge of the effectiveness of
clustering-based NDVR. In future works, fusion bktclustering and indexing
would be studied for both offline and online redoctin the searching space to
further accelerate the retrieval speed on the arel rand enforce the retrieval

accuracy on the other hand.

Meanwhile, | would like to encourage researchersotasider of pre-processing
their dataset by selecting a suitable clusterinthrigjue which caters to their
scalability and video feature representation remment before their NDVR

operation.

6.2. FutureWorks

6.2.1. Fusion of Indexing Structurefor Clustering-based NDVR

To achieve the scalability of video retrieval inga-scale database with millions or
even billions, the introduction of indexing struetuo the framework is the main
solution. When videos are processed by clusterirghads into clusters, the
indexing structure could be introduced to index thk cluster representations
instead of indexing all video descriptors.This cbaksist in further improving the
retrieval speed.

As reviewed in chapter 2, many indexing structusesh as variety of trees,
inverted file, LSH etc. have been studied to ingdibeo descriptors. The selection
of indexing structure depends on what features .u¥ed inverted file will be
introduced when visual words are applied. Howel&iH hashing table will be
introduced when video is represented in the highedisional vector. Multiple hash

tables will be incorporated to enhance the rettiazauracy.

117



6.2.2. Training of Visual Words

Visual words (Bag of Words) have been widely used image and video
retrieval. The basic idea of construction of vismwairds in video retrieval is to
cluster keyframe features by employing clusterifgpathms. So far, k-means is
widely used for clustering features due to the é$igitp and robustness of the
algorithm. Then the mean vectors of clusters ameprded, and the keyframes of a
single video is mapped to the closest cluster bgsmeng the distance between the
keyframe vector and mean vectors of clusters. lohsa manner, video is

represented by a bag of visual words.

During the construction of the visual words, thiegues are important: i) the
complexity of visual words construction; ii) howetmmumber of visual words
(clusters) affects the retrieval performance; tiig¢ size of training dataset. These
three issues have been addressed and still remzhallenge. However, as far as
clustering algorithm concerns, k-means is alwaysiue cluster the sample dataset
for visual words construction. Therefore, it wilk binteresting to study other
clustering algorithms and observe how other clusgelalgorithms impact the

visual words based NDV retrieval

6.2.3. Video Signature Descriptor

Currently, the most popular video signature desaris the BoW, which quantizes
frame feature vectors, and then map each keyfrdrtewideoto the closest visual
words which aggregating together to be a BoW desgithe video content.

Although the technique solves the video retriewalability caused by using SIFT
features, there are still several uncertain remgim BoW which was discussed in
Section 6.2.2. Thus, considering of improving gpedformance ordinal feature is

an alternative.
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6.2.4. I mprovementofM ultipleSequenceAlignment
Currently, the applied multiple sequence alignmentaligning video feature
sequences (shots). It will be interesting to greigeo shots into scenes, instead of

aligning shots, scenes can be aligned locally.

6.3. Summary

This chapter summarizes and concludes how the sthesswers the research
guestions, and achieves the research objectivexigrimental study.It concludes
that near-duplicate video retrieval based on ctigletechniques is feasible and

promising.

Besides, it also highlights the future works inesaV aspects which could be
studied and improved. Overall, the chapter givesgéneral idea of what goals and

works in thesis have been achieved, and listeddutork trends.
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APPENDIX A
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