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Abstract 

The paradigm of pervasive computing aims to integrate the computing technologies in 

a graceful and transparent manner, and make computing solutions available anywhere 

and at any time. Different aspects of pervasive computing, like smart homes, smart 

offices, social networks, micromarketing applications, PDAs are becoming a part of 

everyday life. 

Context can be defined as information that can be of possible interest to the system. 

Context often includes location, time, activity, surroundings among other attributes. 

One of the core features of pervasive computing systems is context awareness – the 

ability to use context to improve the performance of the system and make its behavior 

more intelligent. 

Situation awareness is related to context awareness, and can be viewed as the 

highest level of context generalization. Situations allow eliciting the most important 

information from context. For example, situations can correspond to locations of 

interest, actions and locomotion of the user, environmental conditions. 

The thesis proposes, justifies and evaluates situation modeling methods that allow 

covering broad range of real-life situations of interest and reasoning efficiently about 

situation relationships. The thesis also addresses and contributes to learning the 

situations out of unlabeled data. One of the main challenges of that approach is 

understanding the meaning of a newly acquired situation and assigning a proper label 

to it. This thesis proposes methods to infer situations from unlabeled context history, as 

well as methods to assign proper labels to the inferred situations. This thesis proposes 

and evaluates novel methods for formal verification of context and situation models. 

Proposed formal verification significantly reduces misinterpretation and misdetection 

errors in situation aware systems. The proper use of verification can help building more 

reliable and dependable pervasive computing systems and avoid the inconsistent 

context awareness and situation awareness results. The thesis also proposes a set of 

context prediction and situation prediction methods on top of enhanced situation 

awareness mechanisms. Being aware of the future situations enables a pervasive 

computing system to choose the most efficient strategies to achieve its stated objectives 

and therefore a timely response to the upcoming situation can be provided. In order to 

become efficient, situation prediction should be complemented with proper acting on 

prediction results, i.e. proactive adaptation. This thesis proposes proactive adaptation 

solutions based on reinforcement learning techniques, in contrast to the majority of 

current approaches that solve situation prediction and proactive adaptation problems 

sequentially. This thesis contributes to situation awareness field and addresses multiple 

aspects of situation awareness. 

The proposed methods were implemented as parts of ECSTRA (Enhanced Context 

Spaces Theory-based Reasoning Architecture) framework. ECSTRA framework has 

proven to be efficient and feasible solution for real life pervasive computing systems. 
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Situation Awareness in Pervasive Computing. Definition, 

Verification and Prediction of Situations.
3
 

1  Pervasive and Ubiquitous Computing 

The first research efforts in the field of ubiquitous computing started in 1988, at Xerox Palo 

Alto Research Center (PARC) [WG99]. What began as an idea of a “computer wall”, 

emerged into a novel computing paradigm. 

The paradigm of desktop computing focuses on the use of personal computers – general 

purpose information processing devices with high computational power. That paradigm is 

still in use and it functions well for a wide range of tasks. However, the researchers from 

PARC identified the following shortcomings of the personal computers: “too complex and 

hard to use; too demanding of attention; too isolating from other people and activities; and 

too dominating as it colonized our desktops and our lives.”[WG99]. 

The paradigm of ubiquitous computing aims to address those problems by intertwining 

the computing technologies with everyday life to the extent when the technologies become 

indistinguishable from it [We91].  

Ubiquitous computing solutions are now becoming an integrated part of the everyday 

environment. Various implementation of ubiquitous computing paradigm include smart 

homes (see figure 1), smart offices and other ambient intelligence solutions, wearable 

computing devices, personal digital assistants, social networks. However, there is still much 

research to be done in the area. 

The concept of pervasive computing is connected to the concept of ubiquitous 

computing so closely, that those terms are sometimes used interchangeably even in the 

research community [Po09].  It was noted that ”the vision of ubiquitous computing and 

ubiquitous communication is only possible if pervasive, perfectly interoperable mobile and 

fixed networks exist…” [IS99]. 

Although often used as synonyms, the term pervasive computing is often preferred when 

discussing the integration of computing devices and weaving them into the everyday 

environment, while the term ubiquitous computing is usually preferred when addressing the 

interfaces and graceful interaction with the user. Based on the provided definitions, this 

thesis is mostly focused on pervasive computing challenges, and therefore the term 

“pervasive computing” is used in most cases. 

The paradigm of pervasive computing pursues two main goals: 

1. Graceful integration of computing technologies into everyday life. 

2. High availability – the computing services should be available everywhere and at 

any time. 

                                                           
3
 The introduction is partially based on the introductory part of the licentiate thesis [Bo11]. 
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Pervasive computing systems often deal with enormous amounts of information, and 

tend to utilize the large amount of small, highly specialized and highly heterogeneous 

devices, and those features make the achievement of those goals especially complicated. 

The area of pervasive computing proposes new research tasks for the computer science 

community, and this thesis contributes to overcoming those challenges. 

2  Context, Context Awareness and Situation Awareness 

Context is a key characteristic of any pervasive computing system.  According to the 

widely acknowledged definition given by Day and Abowd [DA00], context is “any 

information that can be used to characterize situation of an entity”. In plain words, any 

piece of information that the system has is a part of the system’s context. The aspects of 

context include, but are not limited to, location, identity, activity, time. In this thesis the 

terms “context”, “context data” and “context information” are used interchangeably. 

The system is context aware “if it uses context to provide relevant information and/or 

services to the user, where relevancy depends on the user’s task.”[DA00]. In simple words, 

the definition means that the system is context aware if it can use the context information to 

its benefit. Although recognized as an interdisciplinary area, context awareness is often 

associated with pervasive computing. Context awareness is core functionality in pervasive 

computing, and any pervasive computing system is context aware to some extent. 

Figure 2 provides an overview of how the context is processed and how the pervasive 

computing system actions emerge from context processing efforts. On figure 2 the context 

processing is viewed from the aspects of algorithms and information flows, and that aspect 

is in the focus of this thesis. For simplicity the aspects like hardware, physical 

communications, interaction protocols are intentionally left out from figure 2. 

 

Fig. 1. Smart home environment. (a) Kitchen; (b) Fridge; (c),(d) Control panels. Photos taken at  DAI -

Labor, TU Berlin, Germany in 2010. 
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Fig. 2. Context processing 

Sensors are the devices that directly measure the environment characteristics (like 

temperature, light, humidity). Direct user input is provided by such devices as keyboards, 

touchscreens, and voice recognition solutions. Sensor information and user input are often 

processed in a similar manner, and in this thesis when talking about sensor information or 

the input data, both sensory originated information and user input are referred to, unless the 

distinction is explicitly specified. 

After highly heterogeneous input data is delivered, the first processing step is the data 

fusion and low-level validation of sensor information. Sometimes raw sensor data, collected 

in a signle vector of values, are already viewed as low-level context. 

The distinction between different levels of context grounds in the amount of 

preprocessing performed upon the collected sensor information. Usually raw or minimally 

preprocessed sensor data is referred to as low-level context, while the generalized and 

evaluated information is referred to as high-level context [YD12]. 

The situation awareness in pervasive computing can be viewed as the highest level of 

context generalization. Situation awareness aims to formalize and infer real-life situations 

out of context data. From the perspective of a context aware pervasive computing system, 

the situation can be identified as “external semantic interpretation of sensor data”, where 

the interpretation means “situation assigns meaning to sensor data” and external means 

“from the perspective of applications, rather than from sensors” (definitions quoted from 

the article [YD12]). Therefore, the concept of a situation generalizes the context data and 

elicits the most important information from it. Properly designed situation awareness 
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extracts the most relevant information from the context data and provides it in a clear 

manner. Multiple aspects of situation awareness are the focus of this thesis. 

Context prediction aims to predict future context information. It can be done on any 

level of context processing, starting from low-level context prediction and ending with 

situation prediction. Different aspects of situation prediction and acting on predicted 

situation are addressed in the thesis. 

Adaptation block defines the response of the pervasive computing system to the 

provided input, and provides the commands to the actuators. Actuators are the devices that 

do actions on behalf of pervasive computing environment. For example, a relay that turns 

switch on or off according to the commands of context aware system is a simple actuator. 

Or the display that provides the information from context aware system to the user is also 

an actuator. Or the conditioner that adjusts the temperature on request of smart home 

environment is also an example of actuator. 

The main focus of this thesis is situation awareness. This thesis addresses several 

important challenges of situation awareness area: 

- Properly defining the situations using the expert knowledge. 

- Learning the situations from unlabeled context history. 

- Ensuring correctness of the obtained situation models. 

- Predicting future situations and properly adapting to prediction results 

Next section provides more details on what challenges this thesis addresses and what 

research questions this thesis answers. 

3  Research Questions 

One of the main goals of situation awareness functionality is sematic interpretation of 

context information. However, in order to interpret context information, situation aware 

system needs a mapping between context data and corresponding ongoing situations. For 

example, if a wearable computing system aims to detect the locomotion of the user, the 

system needs a model which takes entire set of current sensor readings as input and 

produces the outputs like “User sits”, “User stands” or “User walks”. Interpretation 

functionality is the core of situation awareness, and designing that mapping is a challenging 

and error-prone task. The first research question of this thesis addresses some aspects of 

that challenge. 

Question 1: How to derive a mapping between context information and ongoing 

situations? 

Two possible answers to that question were proposed by research community (for 

example, see [YD12]). 

The first method is to derive the mapping manually using expert knowledge of the 

subject area. The models based, for example, on ontologies [St09], first order logic [RN09] 

or fuzzy logic [Pi01] allow the expert to formalize the knowledge of the subject area. At the 

runtime pervasive computing system can use those formalizations to reason about context 

and situations. Chapter III of this thesis addresses the challenge of designing situation 

models in order to achieve ease of development, flexibility and efficient runtime reasoning. 

Another option is to learn the mapping from examples.  The option of learning the 

mapping usually refers to supervised learning methods. On the first stage developers 

observe the situation in practice and create a training set [RN09] – a set of context 

measurements labeled with an ongoing situation. On the second stage the developers 
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employ various supervised learning methods to derive the formula, which maps context 

information to a situation. 

This thesis explores a different option of learning the situation, which is less frequently 

seen in practice – learning situations from unlabeled data. Advantages of that approach 

include possible learning of new situations at the runtime and becoming aware of the 

situations that were not considered at the design stage. 

One of the main challenges of learning the situations from unlabeled data is the 

challenge of labeling. For example, cluster of location measurements can correspond to a 

location of interest to the user, but what kind of location is that? Labeling can be done 

either manually by the user or automatically. Chapters IV and V of this thesis address both 

manual and automated labeling. 

Both developing and learning the models of situations are complex tasks, and they are 

prone to various kinds of errors. Those errors can significantly disrupt situation awareness 

functionality. Research question 2 addresses the methods to detect and fix situation 

definition errors. 

Question 2: How to prove, that the derived mapping is correct? 

Consider an example of a wearable computing system, which aims to detect locomotion 

of the user. Situations like “User sits”, “User stands” or “User walks” are represented as 

formulas, which take sensor readings as inputs and produce probability of a situation as an 

output. Those formulas can be the subject of expert error, if they are defined by hand. If the 

formulas are learnt, mistakes can appear, for example, due to overfit or underfit. 

Testing the situations is a viable option to detect possible errors, but still sometimes it is 

not enough. There is no guarantee that a failure scenario will be encountered during testing. 

This thesis proposes verification of situation models – a novel method of formally 

proving situation correctness. Inspired by verification of protocols and software [CG99], 

verification of situation allows to specify the expected properties of situations and either 

formally prove that the situations comply with the properties, or derive counterexamples – 

particular context features that will lead to inconsistent situation awareness. 

Situation awareness functionality can be improved by situation prediction. Situation 

prediction and related aspects constitute research question 3. 

Question 3: How to predict future situation and how to act according to prediction 

results? 

Situation prediction is a recognized functionality of pervasive computing systems, and 

many context prediction systems employ situation prediction. However, there is a lack of 

general approaches to situation prediction. Many situation prediction solutions were 

designed to fit their particular tasks and did not mean to be generalized for the entire 

situation prediction field. Addressing the situation prediction problem in general sense can 

provide important insights in the area, find the techniques to address common problems of 

pervasive computing field and derive the methods that are applicable for wide class of 

situation prediction tasks. This thesis addresses situation prediction challenge and proposes 

architecture and algorithms to solve situation prediction task. 

In order for situation prediction to have any value, pervasive system has to properly act 

according to prediction results. This task is usually referred to as proactive adaptation task. 

This thesis addresses the challenge of proactive adaptation and proposes algorithms and 

architecture to achieve efficient proactive adaptation. 
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4  Thesis Overview and Roadmap 

This thesis consists of 11 chapters, which comprise the contribution of 11 articles. 

Numeration of figures, formulas and tables is separate for every chapter. The chapters share 

common references, which are explained in references section at the end of the thesis. 

According to LTU dissertation standards thesis includes publications as chapters (except 

for chapters I and XI). It explains minor formatting differences. The chapters are arranged 

in the order determined by the research questions. The chosen order is not the chronological 

order of publications, but it ensures full understanding of how the research proceeds and 

how the directions of research depend on each other. Chapters II-X are based on my 

publications with minor modifications. Chapter VI and chapter X contain the results of two 

merged articles each. The chapters are arranged as follows. 

Chapter I sets the necessary background for further work. Chapters I and II address 

mainly the research question 1, although chapter II is related to all the research questions. 

Chapter I contains an overview of situation awareness methods. It discusses the 

methods to define the situations at the design time or runtime, and elicit the situation out of 

context data at the runtime. Chapter I describes related work dedicated to defining 

situations using expert knowledge, learning the situations from labeled data and learning 

situations from unlabeled data. Chapter I also discusses the challenges of situation 

awareness and, hence, introduces the background necessary for understanding subsequent 

chapters and their contribution. 

Chapter II proposes ECSTRA (Enhanced Context Spaces Theory-based Reasoning 

Architecture) – the framework for context awareness and situation awareness. The 

architecture and implementation of ECSTRA provide solid bases for situation awareness, 

and gracefully address the problems of context dissemination, multiple agent support and 

reasoning results sharing. Most of the testing and evaluation, done in this thesis, used either 

ECSTRA or extensions of it. In collaboration with INRIA, ECSTRA was incorporated in a 

smart home solution for situation awareness. There ECSTRA has shown practical 

usefulness, which is certified by INRIA (see appendix). 

Chapters III-V address the research question 1. 

Chapter III addresses the challenge of defining situations and contains the work to 

provide extensive situation awareness support for the theory of context spaces. Chapter III 

proposes enhanced situation models and addresses the aspects of their flexibility, clarity 

and reasoning complexity. 

Chapter IV contributes to one of the least frequently used approaches to situation 

awareness – learning and labeling situations at the runtime. Chapter IV proposes and tests a 

novel method to fuse and cluster location information, and then extract relevant places from 

location data. It views high level location awareness task as situation awareness, and 

employs situation awareness techniques for location awareness. 

Chapter V proposes and proves an alternative approach to the one proposed in chapter 

IV. Chapter V proposes and evaluates novel location awareness techniques and activity 

recognition techniques for lifelogging task. Activity recognition and high-level location 

awareness are viewed as situation awareness tasks. Locations are learned at the runtime, but 

in contrast with Chapter IV the labels are chosen manually by the user. The application in 

chapter V aims to make labeling as easy and non-intrusive as possible by providing proper 

description of locations and activities in terms of location convex hulls and corresponding 

pictures. 

Chapter VI and chapter VII address the research question 2. 
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Chapter VI proposes and proves the novel technique that allows formal verification of 

context and situation models in pervasive computing environments. Chapter VI addresses 

and solves an important problem of context and situation awareness – the plausibility of 

context model and situation model errors. Once being introduced at the design time, the 

specification error can lead to inconsistent context awareness and situation awareness 

results and those results constitute the background of context prediction and proactive 

adaptation efforts. 

Chapter VII continues the research from chapter VI and proposes and proves formal 

verification method for fuzzy situations. Fuzzy logic is a frequently used technique for 

situation awareness, and enhancing it with verification capabilities can significantly reduce 

the number of errors in real life pervasive computing systems.  

Chapters VIII-X address the research question 3. 

Chapter VIII contains an overview of context prediction and situation prediction in 

pervasive computing systems. It extensively addresses the massive amount of related work 

in the area, identifies the features of context prediction task in pervasive computing, 

proposes the prediction methods comparison criteria and addresses the possible context and 

situation prediction solution approaches. 

Chapter IX addresses the research to apply various context prediction approaches on 

top of situation awareness capabilities of context spaces theory. The theory of context 

spaces provides the formalized context awareness and situation awareness approach that 

can relief the problems of context prediction and proactive adaptation in pervasive 

computing area. The chapter discusses the possible applications of context prediction 

techniques both on the level of context models, as well as on the top of situation awareness 

mechanisms. 

Chapter X continues the research direction and introduces proactive adaptation 

techniques into the context spaces approach. The chapter formally states the task of 

proactive adaptation, and proves the necessity of an integrated approach to context 

prediction and proactive adaptation. Chapter X also proposes the possible reinforcement 

learning mechanisms that can be applied to context spaces theory, and discusses the 

necessary architectural support for it. As well as in chapter IX, proactive adaptation 

methods are discussed both at the context model level and on top of situation awareness 

techniques. Chapter X also proposes CALCHAS (Context Aware Long-term aCt aHead 

Adaptation System) middleware – an extension of ECSTRA, which aims to improve 

ECSTRA functionality by context and situation prediction and proper acting according to 

predicted context. 

Chapter XI summarizes the results of the thesis, provides the discussion and possible 

future work directions. 

Figure 3 depicts the roadmap of the thesis, shows the correspondence between the 

research questions and chapters of the thesis and identifies the connection between the 

chapters. 
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Fig. 3. Thesis roadmap. 
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Prediction in Pervasive Computing 

Systems: Achievements and Challenges 

[BZ10a] 

Question 2. Chapter VI. Formal 

Verification of Context and Situation 

Models in Pervasive Computing 

[BZ12b] 

Question 1. Chapter I. Situation Awareness in Pervasive Computing Systems: Principles 

and Practice [BZ10a] 

Question 1. Chapter III. From 

Sensory Data to Situation 

Awareness – Enhanced Context 

Spaces Theory Approach 

[BZ11b] 

Question 1. Chapter IV. Where 

Have You Been? Using Location 

Clustering and Context Awareness 

to Understand Places of Interest 

[BZ12a] 

Question 1. Chapter V. 

Structuring and Presenting 

Lifelogs based on Location Data 

[KB12] 

Question 2. Chapter VII. Correctness 

Analysis and Verification of Fuzzy 
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Pervasive Computing Systems [BZ12c] 
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Context Spaces Theory by Proactive 

Adaptation [BZ10b][Bo10] 
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 The content of chapter I is largely new. It contains literature review and related work, as 

well as elements of the article [BZ10a]. 
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Foreword 

This chapter contains a survey and classification of existing situation awareness 

approaches. It overviews related work and discusses current challenges of situation 

awareness field. Therefore, this chapter provides background information, which is 

necessary for understanding the contributions of subsequent chapters. 

This chapter also starts the answer to the first research question, proposed in this thesis: 

how to derive a mapping between context information and ongoing situations? Chapter I 

overviews main groups of methods used to map context features to situations and analyzes 

main challenges of those methods. 
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Situation Awareness in Pervasive Computing Systems: 

Principles and Practice. 

1  Context Awareness and Situation Awareness in 
Pervasive Computing 

Context awareness is one of the most important features of pervasive computing system. 

Context can be defined as “any information that can be characterized situation of an entity” 

[DA00]. The definition means that any piece of information that can be potentially used to 

pervasive computing system is a part of system context. For example, location, time and 

activity can be parts of context. Pervasive computing system is context aware “if it uses 

context to provide relevant information and/or services to the user, where relevancy 

depends on the user’s task.”[DA00]. Any pervasive computing system is context aware to 

some extent.  

Situation can be defined as “external semantic interpretation of sensor data”[YD12]. In 

this definition interpretation means that from computational perspective situation is a 

formula that takes sensor readings as input and returns inference result as output. Semantic 

in the definition means that “situation assigns meaning to sensor data”. External means 

“from the perspective of application, rather than from sensors”, i.e. situation awareness 

functionality aims to benefit higher level applications. For example, application that 

automatically set profile of the phone might benefit from situations like Noisy or 

InAMeeting.  Application that monitors and logs health of a user can benefit from situations 

Hypertension, Tachycardia and UserFalls. If the situation is of no use to any application, 

there is no reason to infer it at all. 

From the perspective of two groups of definitions, related to context awareness [DA00] 

and to situation awareness [YD12], it can be concluded that situation awareness is the part 

of context awareness, which provides the uppermost layer of context generalization – 

generalization in terms of meaning of context. 

The concepts related to situation awareness are activity recognition and location 

awareness. In pervasive computing human activity recognition aims to “recognize common 

human activities in real life settings”[KH10b]. The examples of recognized activities are 

locomotion like UserSitting, UserStanding or UserWalking [BI04], simple actions like 

“Opening door” or “Taking cup”, or even complex actions like “Cooking” or 

“Cleaning”[KH10b]. The example activities can be viewed as “semantic interpretations of 

sensor data”. Therefore, in pervasive computing activity recognition and situation 

awareness significantly overlap, and their common part is interpreting the sensor 

information in terms of its general meaning. 

Location is one of the most important components of context. From pervasive 

computing perspective location awareness can be viewed as an aspect of context awareness, 

responsible for inferring and utilizing location information of users and objects in pervasive 

computing system. Location awareness overlaps with situation awareness on high levels of 

generalization. Generalizations of location like “At home”, “In the office” or “At friend’s 

place” belong to the field of location awareness. However, those generalizations also are 

“external semantic interpretation of sensor data”[YD12], i.e. situations. 

Still situation awareness is not restricted to location awareness or activity recognition. 

For example, consider a wearable healthcare system that can detects situations like 
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Tachycardia or Hypertension. Generalization capabilities of the system are examples of 

situation awareness, but not an example of activity recognition or location awareness. 

For more details about foundational aspects of context and context awareness an 

interested reader is referred to the paper by Dey and Abowd [DA00], which inroduced 

widely accepted definition of context and context awareness. The article by Ye et al. 

[YD12] provides a detailed introduction to the topic of situation awareness, as well as a 

comprehensive survey of situation awareness techniques. For the detailed information about 

activity recognition an interested reader is referred to the article by Kim et al. [KH10b]. 

Next section addresses situation definition methods in more details. 

2  Defining Situations 

From computational perspective every situation is described by a model, which takes raw 

or preprocessed sensor readings as input and produces reasoning result as output. 

Reasoning result might be probability of situation occurrence, fuzzy confidence or Boolean 

answer that identifies whether the situation is recognized or not. Obtaining the model of 

situation is one of the main challenges of situation awareness. The model should give 

correct reasoning results (i.e. it should not misinterpret sensor readings) and also it should 

be computationally feasible for runtime use (i.e. reasoning should not be too slow). We can 

obtain situation definitions in several ways. 

1. Situations can be manually defined using the expert knowledge of the subject area. 

2. Situations can be learned from labeled data. 

3. Situations can be learned from unlabeled data. 

From the perspective of entire pervasive system the approaches are not mutually 

exclusive. Situation aware system can include a multitude of situations, each of which is 

obtained by different method. Three approaches to situation have their own benefits and 

challenges. Next sections describe the methods to define the situations in more details. 

2.1 Deriving Situations from Expert Knowledge 

Sometimes human expert can just compose the formula by hand. For example, the formula 

of a situation, which takes blood pressure sensor readings as input and returns confidence in 

situation Hypertension, is relatively clear [DZ08]. Manual definition might be very 

efficient, but it is prone to human errors and restricted only to the formats that can be 

manually defined. For example, human expert can manually define a fuzzy set [DZ08], but 

manually defining the coefficients of neural network [Ha09] is often practically not 

possible. 

This section overviews several approaches to situation awareness, which rely on manual 

definition of situations by human experts. This section introduces situation awareness 

concepts based on propositional and first order logic, belief function theory and Dempster-

Shafer approach fuzzy logic and ontologies. This section also overviews spatial 

representation of context and situations. 

2.1.1 Logic-based Approaches to Situation Awareness 

Russel and Norvig [RN09] describe logic as “a general class of representation to support 

knowledge-based agents”. Logic allows the system not only to store the knowledge, but 

also to reason on it and properly infer new facts out of existing data.  

One of the types of logic extensively used in situation awareness is propositional logic. 
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According to Kleene [Kl02] propositional logic is “a part of logic that deals only with 

connections between the propositions, which depend only on how some propositions are 

constructed out of other propositions that are employed intact, as building blocks, in the 

construction”. The basic propositions, for which their internal structure can be ignored, are 

called prime formulas. In situation awareness scenario prime formulas can be, for example, 

UserInTheLivingRoom, UserInTheKitchen, TVisON. More complex propositions are called 

composite formulas, and they are defined as operations over other propositions. Composite 

formula in situation awareness can look like, for example, 

SomeoneInTheLivingRoom|SomeoneInTheKitchen|SomeoneInTheHall – there is either 

someone in the living room, or someone in the corridor, or someone in the kitchen. Each 

proposition is either true or false, but the value of particular proposition is not always 

known. In situation awareness scenarios the value of proposition can be known directly 

either from sensor values (e.g. pervasive system can detect that TVisON) or from expert 

knowledge and common sense (e.g. expression like (SomeoneInTheLivingRoom| 

|SomeoneInTheKitchen|SomeoneInTheHall)→ SomeoneInTheHouse can be asserted as true 

– if someone is in the kitchen, corridor or hall, it means that there is someone in the house). 

Propositions, for which the values are not asserted explicitly, can be inferred from the 

propositions with a known value. 

While propositional logic can reason only about facts (i.e. prime formulas) and their 

relationships (i.e. composite formulas), the language of first order logic is built around 

facts, objects and relations. It is achieved by using quantifiers and predicates. Quantifiers 

include existence quantifier (∃) and universal quantifier (∀). An example of predicate in 

situation awareness scenario can be Room(X) (whether some object X is a room), IsAt(X,Y) 

(whether some object X is at a place Y), User(X) (whether some object X is a user of 

situation aware pervasive system). 

The model in first order logic contains the following elements [RN09]: 

1. Domain. Domain is the set of object that the model contains. For example, in 

pervasive comnputing domain can contain the objects corresponding to different users, 

rooms, appliances. 

2. Relations between objects. Relations take one or more objects as arguments and 

produce Boolean output. For example, there can be a unary relation User(X) to determine 

whether object X is a user, unary relation Room(X) to determine whether the object X is a 

room or binary relation IsAt(X,Y) to determine whether user X is at room Y. 

3. Knowledge base. Like in propositional logic, knowledge base is a set of sentences. 

Once the model is specified, the language of first order logic allows making certain 

assertions. First order logic allows using universal quantifier and existence quantifier in 

order to express the properties of collections of objects. For example, the sentence can be ∀ 

X, ∀Y, User(X) & Room(Y) & IsAt(X,Y) & TvOn(Y) → WatchingTV(X) – for any user X and 

room Y, if user X is at room Y and the TV in room Y is on, then user X is watching TV. 

Once the model is specified, it can be used to infer new facts and answer the queries. 

For more information about predicate logic (which incorporates first-order logic) refer to 

Kleene [Kl02], for more specific information about first order logic refer to Enderton 

[En01] or Russel and Norvig [RN09][RN06]. For temporal logic refer to the book [CG99]. 

Situation awareness systems based on fuzzy logic are discussed in the next section. 

Logic-based solutions were used multiple times in context awareness and situation 

awareness systems. Henricksen and Indulska [HI06] proposed graphical context modeling 

language, and defined situations as logical expressions over the context model. An example 

of a situation “person is occupied” in provided in expression (1) (the expression is quoted 

from [HI06]).  
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Occupied(person) : 

∃t1,t2,activity, such that 

engagedIn[person,activity,t1,t2]                                                                             (1) 

(t1 ≤ timenow() ∧ (timenow() ≤ t2 ∨ isnull(t2))∨ 

(t1 ≤ timenow() ∨ isnull(t1)) ∧ timenow() ≤ t2)∧ 

(activity = “in meeting” ∨ activity = “taking call”) 

 

The meaning of situation definition (1) is following. The person is occupied, if there 

exist an “in meeting” of “taking call” activity for that person (line 6 of expression (1)). 

Lines 4 and 5 of expression (1) effectively mean that activity should start before current 

time and end after current time, but line 4 allows the ending time of an activity to be 

unspecified, while line 5 allows start time of an activity to be unspecified. However, either 

starting or ending time should be specified. 

The permitted assertion included equality, inequality and relation (like 

“engagedIn[person,activity,t1,t2]” from expression 2). For evaluation purposes the use of 

quantifiers was restricted: the definition of every situation could begin with multiple 

existence quantifiers or with multiple universal quantifiers. Possible relations between 

different elements of context were defined in context model, which was designed by the 

means of context modeling language. 

Seng W. Loke [Lo04b] proposed logic-based context awareness and situation awareness 

system for pervasive computing. The proposed system aimed to answer two types of 

queries: 

1) Given an entity (which can be user, device or software agent) possible situations and 

contextual information (sensor readings and results of their processing), determine what 

situations are occurring. 

2) Given a situation, an entity and contextual information, determine if the situation is 

occurring. 

In order to design a system, which could handle those queries, the author proposed 

LogicCAP (Logic programming for Context Aware Pervasive application) – an extension of 

Prolog language with an operator that can handle type (2) quaries (see [RN09] for more 

details on Prolog). Type (1) queries could be handled by executing type (2) queries for all 

involved situations. The situations were defined in terms of rules. For example, the 

situation WithSomeone(person, place) could be defined according to expression (2) as a 

sufficient condtion and expression (3) as a necessary condition (example adapted from 

[Lo04b]). 

 

If (Location(person, place))&& 

   (PeopleInRoom(place,N))&&                                                                                  (2) 

  (N > 1) 

  then WithSomeone(person, place) 

 

If WithSomeone(person, place) then 

   (Location(person, place)), 

   (PeopleInRoom(place,N)),                                                                                       (3) 

  (N > 1) 

 

Expression (2) asserts that if a person is at some place, there are N people at that place 

and that numer of people is more than 1, then it means that person is not alone in that room. 

Expression (3) asserts that if a person is not alone in a room, then there should be more than 
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1 person in that room. The argumets within condition can be sensor readings or other 

situations. Apart from inferring the situations, the same kind of rules was used to determine 

necessary actions that pervasive system should take. 

Augusto et al. [AL08] proposed logic-based approach to context modeling in smart 

home systems. The authors represented expected behavior in terms of rules. However, they 

augmented logic with additional operators to represent temporal dependency. Tose 

operators included ANDlater (one condition is satisified later than the other) and ANDsim 

(both conditions are ssatisfied simultaneously). Expression (4) shows the rule to detect the 

situation “occupant fainted”. The example is adapted from the paper [AL08]. 

IF at_kitchen_on  ANDlater tdRK_on ANDlater  no_movement_detected               (4) 

                THEN occupant_fainted 

Rules for actions can be composed in a similar manner. 

To summarize, many situation aware systems in pervasive computing use logic-based 

knowledge representation and reasoning. A distinct type of logic is fuzzy logic, which is 

overviewed in the next section. 

2.1.2 Fuzzy Logic for Situation Awareness 

Fuzzy logic originates from the works of L. Zadeh [Za65], who introduced the concept 

fuzzy sets. Fuzzy set is “a class of objects with a continuum of grades of 

membership”[Za65]. In an original set an object either belongs to the set or does not belong 

to it. In a fuzzy set every object belongs to a set with a certain degree of membership, 

which can vary from 0 to 1. Zadeh concludes that in real life objects sometimes do not have 

precise criteria of membership. The author argues that the classes like “tall men” do not 

consititue sets in original sense, but still play an important role in human thinking. Fuzzy 

sets provide the tool to describe the classes like “tall man”, “cold day”, “dark place”, and 

fuzzy logic allows additional reasoning with these classes. 

Every fact in fuzzy logic is treated as a degree of belonging to some fuzzy set. Figure 1 

describes an example membership function for a certain room to be a member of the set 

“dark room”. As figure 1 shows, membership function depends on the iluminance in the 

room. If illuminance is less than 350 Lx, the room is definitely dark (membership function 

1). If the illuminance is above 500 Lx, the room is definitely not dark (membership function 

0). If the illuminance is between 350Lx and 500Lx the room is considered to be somewhat 

dark, and degree of membership varies. 

 
Fig. 1. An example of a membership function 
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The shapes of membership function might vary. For example, the shape of membership 

function “temperature is approximately 25°C” will most likely be triangular depending on 

temperature with a peak at 25°C. Or, for example, the shape of the membership function 

“morning” will most likely have trapezoidal shape depending on time of the day. Popular 

shapes of membership functions are presented in [HM93]. From situation awareness 

perspective genralizations in terms of fuzzy set membership can already be viewed as a 

situation. 

Fuzzy logic can work with relations between different classes. For example, smart home 

developer can assert that the room is suitable for work if it is silent and not dark. Therefore, 

it can be asserted that RoomSuitableForWorkSilentRoom&(¬DarkRoom). Those 

relations can be described in terms of Zadeh operators [Za65] (expression (5)). Zadeh 

operators represent interactions between fuzzy sets, e.g. degree of membership in an 

intersection of fuzzy sets SilentRoom and WellIlluminatedRoom is the minimum of two 

degrees of memebrship. 

 
𝐴𝑁𝐷: 𝐴 & 𝐵 =  𝑚𝑖𝑛(𝐴, 𝐵)

𝑂𝑅: 𝐴 | 𝐵 =  𝑚𝑎𝑥(𝐴, 𝐵)

𝑁𝑂𝑇:¬𝐴 =  1 –  𝐴

                                                                                             (5) 

 

For more details on fuzzy logic, fuzzy control and decision making refer to the works 

[Pi01][RN09][Za65][HM93]. 

Some situation awareness systems in pervasive computing are based on fuzzy logic. An 

example of fuzzy logic-based approach to situation awareness is the work by 

Anagnostopoulos et. al [AN06]. The authors introduced a framework for context awareness 

and proposed situation reasoning mechanisms. A situation in [AN06] is viewed as a 

conjunction of context features (see expression (6), quoted from [AN06]). 

 

⋀ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑥𝑖, 𝑢𝑠𝑒𝑟) → 𝐼𝑠𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑑𝐼𝑛(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛, 𝑢𝑠𝑒𝑟),   𝑁 > 1𝑁
𝑖=1                         (6) 

 

In a similar manner the framework [AN06] decides, what action the system should take 

if certain situations take place. 

The paper [MS02] used fuzzy logic to provide context aware control to mobile 

terminals. On the first stage of context processing the proposed system extracted context 

features out of raw measurements. On the subsequent step the features underwent fuzzy 

quantization (i.e. representation in terms of fuzzy set membership). One of the aspects of 

fuzzy quantization was recognition of user’s activities: whether the user walks and whether 

the user runs. Another aspect was generalization of sound level (silence, modest sound, 

loud sound) and environment illumination level (bright, moderate or dark). As a result, the 

system was able to control the settings of mobile terminal based on the perceived 

conditions. 

Cao et al. [CX05] used fuzzy logic for pervasive service adaptation. The authors applied 

fuzzy quantization to the characteristics like network delay, clock rate or free space in the 

RAM. The proposed system used fuzzy logic in order to adapt the services like chat service 

or e-mail service to current condition. 

Acampora et al. [AG10] used fuzzy logic to actuate proper services in ambient 

intelligence systems. Sensor information was generalized using fuzzy quantization. It 

produced such generalizations like “Internal temeprature is high” or “time is evening”, 
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which can be viewed as situations. Subsequent logical inference was used to infer the 

suitable adaptation policy. It should be noted that both the papers [CX05] and [AG10] used 

the term “context situation”, which they defined as “a combination of context 

information”[CX05]. This term differs from the term “situation” in this thesis and should 

not be confused with it. 

Fuzzy logic is popular and powerful method both for generalization of context 

information and for adaptation in pervasive computing system. Next section discusses 

situation awareness using ontologies – a popular knowledge engineering concept, which is 

closely related to logic-based inference. 

2.1.3 Ontologies for Situation Awareness 

Ontologies in computer science provide generic domain independent way to represent, 

share and reason about knowledge [Gr93]. One of the most popular definitions of 

ontologies is provided by Gruber [Gr93]. Gruber defines ontology as “explicit 

specifications of a conceptualization”. The author further explains the concept of ontologies 

by adding the notion of universe of discourse and the notion of vocabulary. The article 

[Gr93] defines universe of discourse as “the set of objects that can be represented” and 

vocabulary as “set of objects, and the describable relationships among them”. Most 

important relations include “is-a” relation (e.g. accelerometer is a sensor) and “instance-of” 

relation (room A3304b is an instance of a room). As a result, the author proposes the 

following expanded definition of ontology: ontology is “a specification of a 

representational vocabulary for a shared domain of discourse — definitions of classes, 

relations, functions, and other objects”[Gr93]. An example of ontology is presented in 

figure 2. The ontology in figure 2 is a simplified situational context ontology, which was 

used in the article [AN06]. 

 

 
Fig. 2. An example of a situation awareness ontology 

The ontology in figure 2 describes the realtions between different types of situations, 

aspects of context and information about users of the system. For example, when a meeting 

is added to the system, corresponding node is added below a “Meeting” node with 

“instance-of” relation. Ontologies allow inferring the facts. For example, it can be 

straightforwardly inferred that meeting hour is a part of context. 

Ontologies provide techniques to share knowledge between several reasoning agents, 
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infer new information and detect incomsistencies in a knowledge base. For more details on 

ontological engineering, languages to describe ontologies and inference methods for 

ontologies, refer to the handlbook [St09]. 

Ontologies are widely used in context awareness and situation awareness in pervasive 

computing. Anagnostopoulos et al. [AN06] proposed ontology-based situation awareness 

technique, which was partically described in section 2.1.2 and earlier this section. Wang et 

al. [WZ04] introduced context ontology for logic based context reasoning ans situation 

awareness. Chen et al. [CF05] proposed SOUPA – Standard Ontology for Ubiquitous and 

Pervasive Applications. Dimakis et al. [DS07] proposed ontology-based mechanisms to 

provide necessary information to pervasive services. Ejigu et al. [ES07] proposed general 

purpose ontology-based context modeling system. For more details and more examples of 

ontologies in pervasive computing, refer to the survey by Ye et al. [YC07b] and the survey 

by Bettini et al. [BB10]. 

Next section introduces situation awareness methods based on combining the evidences. 

In particular, next section overviews the methods based on Dempster-Shafer approach and 

belief function theory. 

2.1.4 Theory of Evidence for Situation Awareness 

Theory of evidence [Sh76], also known as Dempster-Shafer theory [Sh76] or theory of 

belief functions [YL08], aims to combine the evidences and fuse the data from various 

senors [Sh76][RN09]. Also Dempster-Shafer approach aims to draw a distinction between 

uncertainty and ignorance. It is achieved by transitioning from probability that a proposition 

is true to the probability that the evidence supports the proposition. That measure is referred 

to as belief function [RN09]. 

The concept of belief function can be illustrated with a following example. Assume that 

there is an area, out of which 50% is known to be land, 30% is known to be water and the 

remaining 20% area is unknown. In that case, if a random point is uniformly picked in the 

area, the probability that this point is on the land is at least 0.5 (assuming that all unknown 

area is covered by water) and at most 0.7 (assuming that all unknown area is also land). 

Therefore, the belief in the fact that point is on the land is 0.5, and the plausibility that the 

point is on the land is 0.8. Belief and plausibility in the fact that the point is on the land can 

be written as [0.5; 0.8]. 

In order to formally define belief and plausibility and overview some advanced cases, 

consider a more complicated example. Now there are three mutually exclusive options: 

some area is either plain, or covered by water, or covered by hills. From the whole area 

20% is known to be water, 25% to be plain, 15% to be hills. For 10% of the whole area it is 

known for sure that there is no water there, but it is unclear to what extent the terrain is flat 

and to what extent it is covered with hills. For the remaining 30% of the area nothing is 

known – it can contain water, plains or hills in any proportion. Once again, consider that a 

random point is unformly picked on that area. 

The set {Plain, Water, Hills} from the example is referred to as frame of discernment. In 

pervasive conmputing the elements of frame of discernment are events or situations. The 

elements of frame of discernment should be mutually exclusive. 

The set of all subsets is referred to as power set. For the example the power set is 

{Water, Plain, Hills} the power set will be {Ø, {Plain}, {Water}, {Hills}, {Plain, Water}, 

{Plain, Hills}, {Water, Hills}, {Plain, Water, Hills}}. Empty set ususally corresponds to 
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contradictive evidences. Size of a power set is 2
D
, where D is the size of frame of 

discernment. Therefore, power set grows exponentiallywith the set of frame of discerment. 

Mass function assigns value from the interval [0,1] to every element of a power set. In 

the example the mass m({Plain}) is 0.25, the mass m({Water}) is 0.2, the mass m({Hills}) is 

0.15, the mass m({Plain, Hills}) is 0.1 and the mass m({Plain, Water, Hills}) is 0.3. The 

remaining masses are 0. 

The formal definition of belief and plausibility is defined in expressions (7) and (8) 

respectively. 

𝑏𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵⊆𝐴,𝐵≠                                                                                              (7) 

𝑝𝑙(𝐴) = ∑ 𝑚(𝐵)(𝐵∩𝐴)≠                                                                                                (8) 

As follows from expression (7), belief for some element A of the power set is a sum of 

masses of all the other elements of a power set, which are contained by A (excluding the 

empty set). For example, consider the belief that a randomly picked point is on the plain. 

The sum will contain only one summand – m({Plain}). Therefore, bel({Plain}) = 0.25. As 

for the belief that a randomly picked point is either on the plain or in the hills, according to 

expression (7) that belief consists of m({Plain}), m({Hills}) and m({Plain, Hills}). 

Therefore, bel({Plain, Hills})=0.25+0.15+0.1=0.5. Belief in the fact that randomly chosen 

point is either on the land, or in the hills, or on the water is equal to 1. One of those options 

is definitely true, and formula (7) reflects that. The belief bel({Plain, Hills, Water}) is the 

sum of all the masses except for the mass of empty set (that is 0 is our case). 

Formula (8) shows that plausibility of some element A of a power set is equal to the sum 

of masses for all the sets, which have non-empty intersections with A. For example, the 

plausibility that some random point is on the plain will consist of m({Plain}), m({Plain, 

Hills}), m({Plain,Water}) and m({Plain,Water,Hills}). Therefore, the plausibility 

pl({Plain}) = 0.25+0.1+0.3=0.65. The plausibility that a randomly picked point is in the 

hills or on the plain consists of evey mass except m({Water}) and the mass of empty set. 

Therefore, the plausibility pl({Plain,Hills})=0.8. 

Multiple evidences can be combined in a following manner. Several evidences 

correspond to several mass functions over the same power set. A single mass function, 

corresponding to the combined evidences, is calculated using Dempster’s rule of 

combination. Dempster’s rule of combination is presented in expression (9). 

𝑚(𝐶) =
∑ 𝑚1(𝐴)∗𝑚2(𝐵)𝐵∩𝐴=𝐶≠ 

1−∑ 𝑚1(𝐴)∗𝑚2(𝐵)𝐵∩𝐴= 
                                                                             (9) 

In expression (9) the terms m1 and m2 refer to the mass functions that come from two 

evidences that need to be combined. The function m refers to the resulting mass function. If 

the conflicts between evidences should be ignored, then expression (9) is applied to all the 

elements of a power set except for Ø, and the mass m(Ø) is set to 0. The term 

∑ 𝑚1(𝐴) ∗ 𝑚2(𝐵)𝐵∩𝐴=  in the denominator in expression (9) is the measure of conflict 

between two pieces of evidence. 

For more details on Dempster-Shafer approach, its extensions and modifications refer to 

[Sh76][RN09][Ra07][YL08]. 

Pervasive computing systems usually contain a variety of sensors, which provide 

multiple evidences for situations. Some pervasive computing systems used Dempster-

Shafer approach to combine the evidences and generalize sensor information. 
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Padovitz [PZ06][Pa06] proposed to use Dempster-Shafer theory in combination with 

context spaces approach in order to fuse context information and achieve efficient situation 

awarenes. Hong et al. [HN09] proposed to use Dempster-Shafer approach to recognize 

activities of daily living in a smart home. Zhang et al. [ZG10] proposed CRET approach 

(Context Reasoning using extended Evidence Theory). In order to account for possible 

conflicting evidences, the authors proposed new evidence selection and conflict resolution 

strategies. McKeever et al. [MY10] proposed a method to recognize the activities of 

inhabitants in smart home. As part of the approach, the authors introduced an extension of 

Dempster-Shafer theory to take into account temporal aspects of activities. Dominici, 

Pietropaoli and Weis [DP11] used theory of evidence for sensor fusion in a smart home 

environment. Evidence theory allowed combining data from multiple sensors and inferring 

contextual abstractions such as presence of someone in the room. Situation awareness was 

achieved by combination of evidence theory and context spaces approach [PL08b]. 

In pervasive computing Dempster-Shafer approach has been successfully used because it 

allows fusing the information from multiple sensor readings and context features. Next 

section introduces a way to fuse sensor readings and context features by representing 

possible context as multidimensional space. This method can be combined with other 

situation awareness approaches, and it has been successfully used in conjunction with with 

fuzzy logic [DZ08] and Dempster-Shafer approach [PZ06] [Pa06]. 

2.1.5 Spatial Representation of Context and Situations 

Spatial representation of context and situations emerges from a straightforward idea that a 

set of important context parameters can be represented as a vector of values. It can be 

illustrated by a following example. Consider a context of a room in a smart home. That 

context includes number of people, level of noise and the position of the door (open or 

closed). Other context characteristics are omitted for the purpose of simplicity. The 

considered parameters can be either measured directly (e.g. the level of noise), or inferred 

out of sensed information (e.g. number of people can be estimated by processing indoor 

positioning information for all people in the building). At any particular time context 

features can be combined into a single vector. In the example a vector can look like [3; 40 

dB; Closed] – there are three persons in the room, noise level is 40 dB and the door is 

closed. Note that elements in a vector can as well be non-numeric. 

The set of all possible vectors can be viewed as multidimensional space. A 

multidimensional for the considered example is proposed in figure 3. The point in figure 3 

represents the ealier mentioned vector [3; 40 dB; Closed]. In some practical cases the 

position of the point can be unclear due to sensor uncertainty, or the value for some 

dimensions can be unknown due to sensor unavailability. 

One of the most prominent methods for spatial representation of context is context 

spaces approach [PL04][PL08b][Pa06]. The context spaces approach extensively uses 

spatial metaphors to represent context and situations. A multidimensional space like the one 

presented in figure 3 is referred to as application space or context space. Every axis of 

application space is referred to as context attribute. So in the example context attributes are 

the number of people, noise level and door position. A point in a multidimensional space is 

referred to as context state. Therefore, at any moment context of pervasive computing 

system corresponds to some context state, and functioning of pervasive computing system 

over time can be characterized by a trajectory of context state in an application space. 



 
Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice 

 

25 

 

 
Fig. 3. Context Spaces Approach – an example 

In order to reason about situations, context spaces approach introduced the concept of 

situation space. The confidence in a situation was calculated as weighted sum of 

contributions of different context attributes. Generic formula of a situation is presented in 

expression (10). 

 
N

=i

iiS,iS )(xcontrw=(X)conf
1

                                                                               (10) 

In expression (10) the term confS(X) corresponds to the confidence that situation S is 

occurring (depending on the context state X), wi corresponds to the weight of i-th context 

attribute and contrS,i(X) corresponds to the contribution of i-th context attribute to the 

situation S. For example, for the situation Hypertension [DZ08] the contributing context 

attributes can be SistolicPressure and DiastolicPressure, both with the weights 0.5. Weights 

sum up to 1, and the value of contribution function is between 0 and 1. Therefore, 

confidence is between 0 and 1. 

Generic contribution function for numeric context attribute is presented in expression 

(11). For numeric context attribute different contribution values are assigned to different 

intervals of a context attribute. For non-numeric context attributes different contribution 

values are assigned to different non-numeric values of a context attribute. 
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=contr(x)                                                                            (11) 

Situation algebra allows reasoning about the relationships between situations. For 

example, situation algebra allows finding the confidence in the fact that user is either 

walking or running (UserWalking|UserRunning). The operations AND, OR and NOT of 

situation algebra are based on Zadeh operators [Za65] (expression (5)), and more 

complicated logical expression can be claculated using operators (5) as basis. 

The provided definition of situation is flexible enough to represent a broad class of real 

life situations. Moreover, it allows fast reasoning algorithms and still the concept of 
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situation space is clear enough for the situations to be composed by human expert. 

Delir et al. [DZ08] proposed fuzzy situation inference - an extension of the context 

spaces approach. The main difference was that instead of original contribution function (11) 

the authors used a degree of belonging to a fuzzy set. 

Padovitz et al. [PZ06], the developers of original context spaces approach, proposed an 

extension to context spaces approach, which combined spatial representation of context 

with situation reasoning based on Dempster-Shafer theory. 

A different way to combine context spaces approach and evidence theory was proposed 

by Dominici et al. [DP11]. The authors used the methods of evidence theory to estimate 

context features, and then applied extended context spaces-based situation reasoning. 

Another example of spatial representation of context is the work by Anagnostopulous et 

al. [AM05]. The authors represented possible context as a multidimensional space and 

current condition as a point in multidimensional space. However, in contrast with context 

spaces approach and subsequent works, the work [AM05] did not generalize context in 

situations. The paper [AM05] proposed context prediction by extrapolating the trajectory in 

the space of context. The similar principle in application to context spaces approach was 

proposed by Padovtiz et al. [PL07]. 
Although the term “context space” is specific to context spaces approach, graphical 

representation of context provides useful inutitions in many cases. Throughout the thesis 
the space formed by context features will be referred to as context space, even outside the 
context spaces appoach. 

This concludes the topic of defining situations using expert knowledge. Defining 
situations manually can be very efficient, but it is not always possible. Learning the 
definition of a situation is often a viable option if a developer cannot define the mapping 
between sensor readings and situation. 

2.2 Learning Situations from Labeled Data 

Sometimes the list of situations is known, and the sensors provide enough information for 
reasoning, but still the formula is unclear. For example, consider a wearable computing 
system with multiple accelerometers and orientation sensors attached to the smart clothes 
(example close to [BI04]). The provided information might be enough to detect situations 
like UserStanding, UserSitting or UserWalking, but the formulas of those situations are not 
clear. The solution is to design an experiment and collect labeled data – sensor readings 
annotated with information about situation. In the example the solution is to watch testers 
wearing the system in a lab, and log both the sensor readings and occurring situations. Real 
occurring situations can be extracted manually, for example, from camera image of the 
tester. Once enough labeled data are collected, developers can use multiple supervised 
learning methods [RN06] to extract the formulas of situations. 

This section contains some practical examples of that approach. Following subsections 
provide brief overview of supervised learning techniques, which were used to infer 
situations in pervasive computing. In particular, several subsequent sections discuss 
learning the situations in the form of Bayesian networks [RN09] – one of the most popular 
probabilistic graphical formalism. 

2.2.1 Naïve Bayesian Approach for Situation Awareness 

Naïve Bayesian approach is a relatively simple, yet very efficient way to combine the 
evidence from multiple sources. This method relies on a strong assumption, that evidences 
are conditionally independent from one another having the situations [RN09]. Consider the 
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following illustration: a smart home system evaluates the presence of people in the room. 
The used sensors include sound sensor and pressure sensors on the floor. In order to 
mitigate possible challenging scenarios (like sound from TV left on, which can lead to 
evidences of presence from sound sensors), pervasive system should combine the evidences 
from multiple sensors. So, the involved situation is presence, and the task is to combine the 
evidences and calculate the probability of presence of one or more persons in the room. 
First step to solve the task is applying the rule of Bayes.  Rule of Bayes, applied to 
illustration scenario, is presented in formula (12). 
 

𝑃(𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 | 𝑠𝑜𝑢𝑛𝑑, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) =
𝑃(𝑠𝑜𝑢𝑛𝑑,𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒| 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 )∗𝑃(𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒)

𝑃(𝑠𝑜𝑢𝑛𝑑,𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)
                    (12) 

  
In the illustration scenario it is safe to assume that when there is no one in the room, the 

readings of pressure sensor and sound sensor are independent from each other. The same 
applies for the case when someone is in the room. The resulting conditional independence 
is presented in formula (13). 

 
𝑃(𝑠𝑜𝑢𝑛𝑑, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) = 

                               =  𝑃(𝑠𝑜𝑢𝑛𝑑|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) ∗ 𝑃(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒)                  (13) 
 
Formula (13) illustrates the main assumption of naïve Bayesian approach – evidences 

are independent give the situation. Learning the probabilities 𝑃(𝑠𝑜𝑢𝑛𝑑|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒), 
𝑃(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒|¬𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒), 𝑃(𝑠𝑜𝑢𝑛𝑑|¬𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) and 𝑃(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) requires 
much less training data than learning the joint probability 𝑃(𝑠𝑜𝑢𝑛𝑑, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒| 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) 
and 𝑃(𝑠𝑜𝑢𝑛𝑑, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒| ¬𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒). The remaining terms of formula (12) can be 
obtained in a following manner: 𝑃(𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) can be inferred directly from the training 
data (as well 𝑃(¬𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒)). As for denominator of (12), it is a sum of numerator (12) and 
similar numerator for probability of non-presence. 

The benefits of naïve Bayesian approach include efficient learning, as well as fast 
runtime inference. Every learning task for naïve Bayesian approach requires learning a 
distribution function of one variable. The distribution can be learned using maximum 
likelihood approach. Exact learning method depends on chosen distribution function 
[RN09]. More variables (sensors or context parameters) the task has, more training data is 
required to learn the distribution and, hence, more benefit naïve Bayesian approach 
provides. However, failing to satisfy a very strong assumption of conditional independence 
can lead to problems. 

Once the probabilities are learned, formula (12) can be used at runtime to calculate the 
probability of a situation given the sensor data. 

Naïve Bayesian approach was used in multiple pervasive computing tasks. In the paper 
[BI04] authors used naïve Bayesian approach to infer user locomotion from acceleration 
data. The authors used five wearable accelerometers to recognize the activities of the user. 
Twenty recognized activities included walking, riding the escalator, vacuuming, lying 
down. The authors used a following assumption: having the situation, the sensor readings 
are distributed normally and independently of each other. The authors learned probability 
distributions out of training data and tested the performance in the lab. However, the 
performance of naïve Bayesian was unsatisfactory. According to authors’ analysis, 
conditional assumption was not satisfied in practice. 

In the paper [MB04] authors used Naïve Bayesian approach to detect activity and 
availability of the user. Possible activity included using PC, using PDA, talking on the 
phone, meeting, walking. The authors used naïve Bayesian method to extract this 
information from the observable values like PC usage, ambient sound, iPAQ location, time 
of the day. Possible avalability values were “available for a quick question”, “available for 



 
Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice 

 

28 

 

a disscussion”, “to be available soon” and “not available”. The paper [MB04] proposed to 
infer availability value using naïve Bayesian approach. The considered observable 
information included user’s activity, user’s location and time of the day. 

In the paper [TI04] authors aimed to explore whether activities of daily living can be 
inferred using massive amounts of simple sensors. One of the considered options was naïve 
Bayesian approach. The activities included “preparing breakfast”, “watching TV”, 
“listening to music”. 

An example of naïve Bayesian approach applied to pervasive computing is presented in 
the paper [KK07]. The authors applied naïve Bayesian approach to recognize activities of 
daily living in the residence for elders. As a baseline model they used Naïve Bayesian 
approach, and then augmented it with time dependencies and transformed into dynamic 
Bayesian network. In their subsequent work [KK08] the authors proposed CARE (Context 
Awareness in Residence for Elderly) system. The activity recognition techniques once again 
included naïve Bayesian approach. 

Naïve Bayesian model can be viewed as a very simple case of Bayesian network. More 
general examples of Bayesian networks are described in the next sections, as well as the 
examples of Bayesian networks used in situation awareness. 

2.2.2 Bayesian Networks for Situation Awareness 

The Bayesian network is a direct acyclic graph where every node is associated with a fact 

and every directed edge represents the influence on one fact by another. Nodes of the 

Bayesian network have local Markov property: each variable is independent of its non-

descendants given its parents. For basic information on Bayesian networks refer, for 

example, to Russel and Norvig [RN06][RN09]. 

A classic example of a Bayesian network is the sprinkler and rain network depicted in the 

figure 4. 

 
 

Fig. 4. Bayesian network example 

The following interpretation begins by examining three facts – whether there was rain 

(node R), whether the sprinkler was working (node S) and whether the grass is wet (node 

W). Every node has probability distribution depending on its parents; for example, if it is 

both raining and the sprinkler is working, then the grass is wet with a probability of 99 per 

cent; if it is just raining – a 95 percent probability; if just the sprinkler works – 90 per cent 

probability; and if there is no rain and sprinkler is off – a probability of three per cent. 

Nodes with no parents have only prior probability (for rain it is 50 per cent). Some facts are 

directly observed (e.g., we see or hear that the sprinkler is working). The system can 

compute the posterior probabilities of unobserved facts using either the formula of Bayes 

(up the graph – whether it is raining) or direct probability calculations (down the graph – 

whether the grass is wet).  
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A learning task is quite common for Bayesian networks. Users sometimes do not have 

complete information about the network and need to infer probability distributions of the 

nodes (parameters learning task) or even the structure of Bayesian network graph itself 

(structure learning task). For more details refer to the book by Russel and Norvig 

[RN06][RN09]. 

Ye et al. [YC07a] proposed a concept of situation lattice. In brief situation lattice can be 

defined as follows: “Situation lattice L, is defined as L = (S, ≤), where S is a set of 

situations and the partial order ≤ is a generalisation relation between situations"[YC07a]. 

The authors mentioned that the concept of situation lattice was inspired by the concept of 

lattice in linguistics. The authors also noted that the semantics of situation lattice is 

effectively captured by Bayesian network, and that situation lattice can be converted to 

Bayesian network for further reasoning by a straightforward algorithm. 

Among multiple other methods in the paper [DP07] the authors used Bayesian networks 

for context reasoning in smart homes. As an example authors used automatically inferred 

Bayesian network, which connected the characteristics like motion detection, time of the 

day, blinds position in a room, luminosity. That Bayesian network also included situations 

like user presence in the room or user actions. 

In the paper [ZS11] authors used Bayesian networks to detect when the user falls. Falling 

was detected using sensors like gyroscopes and accelerometers, and additional Bayesian 

network was used to validate the results. In the Bayesian network the node “Fall detection 

alarm” (i.e. that sensors detected the fall) was a child node to the “Fall” node (i.e. that the 

fall has really occurred). The parents of “Fall” node were the nodes corresponding to 

physiological condition, physical activity and location. Physiological condition in turn 

depended on health record and age of a user. The observable information was user profile 

and the fact whether sensors detected the fall or not. Using observable information 

Bayesian network could determine whether the fall has really occurred. 

For more examples of Bayesian networks in situation awareness refer to survey by Ye et 

al. [YD12]. A distinct type of Bayesian network is dynamic Bayesian network (DBN). 

Dynamic Bayesian networks allow capturing time dependencies between the variables, and 

multiple works used DBN for situation awareness [KK07][DP09][IN09][LO11] and 

situation prediction [AZ98][PP05] task. 

2.2.3 Dynamic Bayesian Networks for Situation Awareness 

A dynamic Bayesian network (DBN) is an extension over of Bayesian network that takes 

timing into account. Consider time being discrete (t=1,2,3….) the dynamic Bayesian 

network can be defined as a pair of B1,B->, where B1 is the Bayesian network which defines 

all prior probabilities on time t=1 and B-> defines several-slice (as usual, two-slice) 

temporal Bayesian network, where all time dependencies are represented in terms of 

directed acyclic graph. For example, it can look like this (see figure 5). 

Dashed lines in Figure 5 represent temporal dependencies. B1 is the initial graph of t=1 

with all the necessary starting probability distributions, B-> being a combined graph of t=1 

and t=2 (with all the necessary distribution functions). 
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Fig. 5. Dynamic Bayesian network example. 

 

Learning tasks in dynamic Bayesian networks (DBNs) are the straightforward 

generalisation of learning tasks for simple Bayesian networks: parameter learning and 

structure learning. In context prediction the tasks structure of a dynamic Bayesian network 

is usually known and the system needs to infer parameters. For more information on 

dynamic Bayesian networks see, for example, the work [RN06][RN09]. 

Dynamic Bayesian networks have been used in practice for situation awareness and 

activity recognition purposes. For example, in the paper [KK07] the authors used dynamic 

Bayesian network to recognize activities in the residence for elderly. The authors started 

with naïve Bayesian model for activity recognition and then procceded to the connection 

between activities – activity on the previous step influenced activity on the subsequent step, 

and the dependency formed dynamic Bayesian network. 

The paper [IN09] proposed using dynamic Bayesian network to recognize activity from 

sensed interactions with objects. The system was designed to facilitate the work of a nurse. 

The authors used RFID sensors to detect interaction of nurse with tool and materials: RFID 

tags were attached to the objects, while RFID reader was munted on a wrist of a user.  The 

authors used dynamic Bayesian network to fuse sensed information and infer the ongoing 

activity. For different activities of drip injection task the paper [IN09] claims over 95% 

recognition accuracy. 

Dimitrov et al. [DP07] used dynamic Bayesian networks in their context reasoning 

framework. As the authors noted, Bayesian network, which they also used, was unable to 

reason over time, and they resorted to dynamic Bayesian network to encode timing 

dependencies. Inferred situations included, for example, “user leaving the house”[DP07]. 

In the paper [LO11] authors used dynamic Bayesian network for human activity 

recognition. The authors used the dataset collected by van Kasteren [KA08]. During dataset 

collection a set of state-change sensors was attached to multiple places in a smart home 

including doors, cupboards and refrigerator. The recognized activities were "Leave house", 

"Toileting", "Showering", "Preparing breakfast", "Preparing dinner", "Preparing a 

beverage", "Sleeping" and “Idle”. In the paper [LO11] the authors achieved ~80% precision 

and recall on the mentioned dataset. However, dynamic Bayesian network was used only as 

a benchmark for comparison, and the main focus was on the techniques featuring sliding 

window and decision trees, which gained over 90% of precision and recall. 

Dynamic Bayesian networks conclude the overview of Bayesian network-based 

approaches to situation awareness. The next sections discuss logistic regression and support 

vector machines. Those two approaches usually separate context space (see section 2.1.5) 

by a hyperplane into two parts – the part where the situation occurs and part where situation 

does not occur. 
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2.2.4 Logistic Regression for Situation Awareness 

As previous sections have shown, the task of situation inference can be viewed as the task 

of estimating the probability of a situation. Logistic regression emerges from the task of 

estimating the probability, and enables a practical solution both for learning situation 

definitions and for inferring situations during the runtime. The basic concepts of logistic 

regression are presented, for example, in the book [RN09][HL00]. 

Usually logistic regression relies on the use of sigmoid function. The formula of sigmoid 

function is presented in the expression (14). 

 

𝑠𝑖 𝑚𝑜𝑖𝑑(𝑥) =
1

1     (  )
                                                                                                   (14) 

 

The plot of sigmoid function is presented on figure 6. The function can be skewed or/and 

moved by using linear function a*x+b as an argument instead of x. Sigmoid lies between 0 

and 1 and, therefore, can represent probability. 

 

 
Fig. 6. Sigmoid function example. 

Probabilistic estimation can be converted into Boolean decision. Usually if probability 

reaches some threshold (often 0.5) the situation is claimed to occur, while if the probability 

is below the threshold the situation is counted as non-occurring. Sigmoid is ascending 

function, so a threshold for sigmoid value effectively means a threshold for sigmoid 

argument. For example, sigmoid is greater than 0.5 when the argument is greater than 0. 

Logistic regression aims to learn the probability model in the form of sigmoid function. 

Consider a multidimensional context space like the one presented in the section 2.1.5. The 

probability is estimated as a sigmoid of linear combination of context features: 

sigmoid(W
T
*X+b), where X = [1 x1 x2 … xN] is the vector of context state and W = [wo w1 

… wN] is the vector of weights. Usually an input vector starts with the value x0 = 1 in order 

to gracefully incorporate the bias term. Just as described in previous paragraph, if we use 

the threshold 0.5, the situation is claimed to occur if W
T
*X ≥ 0 and is claimed not to occur 
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if  W
T
*X < 0. However, W

T
*X defines a hyperplane in multidimensional space, and 

expressions W
T
*X ≥ 0 and W

T
*X < 0 define two sides of that hyperplane. To summarize, 

logistic regression approach separates multidimensional context space by hyperplane; if 

current context reading is on the side of the hyperplane where W
T
*X ≥ 0 the situation is 

counted as occurring, otherwise – as non-occurring. However, the challenge is to find a 

vector of weights, which fits the training data best. 

A generic illustration is provided in figure 7. A line (in general case – a hyperplane) 

separates labeled data. Context readings, where the situation has occurred, are marked by o. 

Context readings, where the situation did not occur, are marked by x. Those are training 

data, which were used to construct the hyperplane. When new context state arrives at the 

runtime, it is tested against the hyperplane. If context state is on top-right of separating line 

(or exactly on the line), the situation is counted as occurring, otherwise – as non-occuring. 

 
Fig. 7. Separating line in 2-dimensional context space 

Coefficients of the separating hyperplane can be learned in the following manner. 

Assume that the pervasive system developers have M points of training data. For example, 

the developers could aim to infer situation “sitting”, and collected some wearable 

accelerometer readings when the situation “sitting” has occurred and some wearable 

accelerometer readings when the situation “sitting” did not occur. Particular context 

readings used for training are denoted as Xi (where i is an index from 1 to M)  and the 

corresponding label is denoted as Yi. If the situation occurred (points o in figure 7) the real 

probability of occurence is one (Yi=1). If the situation did not occur (points x in figure 7) 

the real probability of occurence is zero (Yi=0). A frequently used error estimation for a 

single example is following (expression (15)). 

𝑐𝑜𝑠𝑡(  ,   , ) = [
−    (𝑠𝑖 𝑚𝑜𝑖𝑑(  ∗   )) , 𝑖    = 1

−    (1 − 𝑠𝑖 𝑚𝑜𝑖𝑑(  ∗   )) , 𝑖    =  
                         (15) 

The total error estimation is the sum of estimations for evey learning example (formula 

(16)). The use of cost function (16) makes error estimation a convex function of weights, 

which makes optimization significantly easier. 

  ( ) = ∑ 𝑐𝑜𝑠𝑡(  ,   , ))
 

 =1
                                                                           (16) 
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The error function depends on the weights of sigmoid argument. This error function can 

be minimized using, for example, gradient descent (note that linear separability is not 

required for the method to work). The optimal weights, corresponding to mimum error Wopt 

= argmin(J(W)) are learned during the development of situation aware system. At the 

runtime those weights are incorporated into the system as constants. For every new sensor 

reading X probability of a situation occurrence can be estimated merely as sigmoid(W
T
*X), 

and then this probability can be compared against the probability threshold. 

For more information on logistic regression refer to the books [HL00] and [RN09]. 

Logistic regression was used for situation awareness in pervasive computing on multiple 

occasions. Kwapisz et al. [KW10] used cell phone accelerometers to infer the activities of a 

user. The system extracted a set of features out of raw accelerometer data. Those features 

were input of activity recognition algorithm, which needed to distinguish between walking, 

jogging, going up and down the stairs, standing and sitting. Logistic regression was one of 

the investigated activity recognition options, along with decision tree and multilayer 

perceptron. The performance of logistic regression varied a lot between different activities: 

it has achieved accuracy of 98% for jogging, but for going downstairs only 12% accuracy 

was achieved. 

Al-Bin-Ali and Davies [AD04] proposed to use logistic regression for activity 

recognition purpose. The authors used three light intensity sensors – kitchen sensor, 

bathroom sensor and bedroom sensors. As a result, they were able to infer the activities like 

bathing, cooking, watching movie or sleeping. The accuracy was 60.8% when using 

bathroom sensor only, 98% whn using bathroom and kitchen sensors and 99.2% when 

using all thress sensors. 

Ryoo and Aggrawal [RA09] used logistic regression to estimate the probabilities of 

high-level user activities. The system used computer vision as a sensor input, and then on 

lower level it hierarchically ecognized body parts positions, then posture, and then basic 

human gestures. On higher level logistic regression was used to to recognize activities and 

interactions between users (like “greeting” or “fighting”). Probability of activity was 

estimated as a value of sigmoid function, which used weighted sum of gesture features as 

an input. 

Next section discusses support vector machines and their application to situation 

awareness task. SVM has some similarity with logistic regression, but it uses different 

criteria for constructing the separating hyperplane. 

2.2.5 Support Vector Machines for Situation Awareness 

Support vector machine (SVM) is a supervised learning method for linear and, whith some 

extensions, non-linear classification. Russel and Norvig [RN09] claim that SVM is 

currently the most popular approach for off-the-shelf supervised learning. SVM made its 

way into the context awareness and situation awareness fields as well. 

Like logistic regression, SVM method learns from labeled data and builds classifier, 

which distinguishes situation occurrence from situation non-occurrence (in our case). And 

like logistic regression SVM ends up with a separating hyperplane. However, criteria for 

constructing the separating hyperplane are different. SVM aims to find a linear separation 

with maximum margin – the distance between the recognized classes. Figure 8 provides an 

illustration. The axes correspond to different context features (in a way similar to section 

2.1.5). Line (for more dimensions – plane or hyperplane) separates the cases of situation 
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occurrence and non-occurrence. Here occurrence is claimed if a context state is on top-right 

of the separating line. Labeled data, used to learn the separating line position, are marked as 

o (situation occurred) and x (situation did not occur). Margin is the area between two 

classes (in the figure 8 – between two grey lines on both sides of separating line, those lines 

are parallel to the separating line). The distance from the separating hyperplane to each 

class is denoted as d. The hyperplane is in the center of margin area, for both classes 

because it results in greater distance from separating hypeplane to the closest example 

point, and as a result in safer classification. The size of margin in figure 8 it is equal 2*d. 

The goal of support vector machines method is to find the way of linear separation, which 

maximizes the margin. Refer to the tutorial [BU98] and book [RN09] for more details on 

support vector machines. 

 
Fig. 8. SVM example for the case of two relevant context features. 

Note that depending on how the hyperplane is drawn, different sample will be the closest 

ones. Finding separating hyperplane with the largest margin can be reduced to quadratic 

programming task, for which there exist multiple efficient algorithms. Some techniques are 

availablr for the case if labeled data are not completely linearly separable (see [BU98] for 

more details). Kernel trick allows extending SVM to non-linear cases and find non-linear 

separators. Refer to [BU98][RN09] for more information on kernel trick. 

Support vector machines were used multiple times in context awareness and situation 

awareness. For example, Kanda et al. [KG08] used SVM to categorize the motion of 

customers in a smart shopping mall. The authors employed multiple laser finders to provide 

location readings. The recognized motion patterns included going straight, making right 

turn, making left turn, making U-turn, and stopping. Combined with other context 

awareness techniques, this information was used to deduce customer anticipations and 

proactively provide service to the customer. 

In the paper [PR07] Patel et al. designed a system for activity recognition in a smart 

home home. SVM was used to classify the powerline transients, produced by home 

appliances. Therefore, the system was able to detect what appliances were turned on and 

off. In turn, this information was used to infer the activities of smart home inhabitants. The 

authors claim that they achieved 85-90% accuracy in detecting electrical events in a smart 

home. 
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Lee et al. [LL12] also used SVM to detect the appliances which smart home inhabitant 

uses. This information, combined with activity recognition, allowed detecting non-essential 

appliances, which do not participate in user activities and can be turned off. As an input the 

system used information from non-intrusive power meter. The accuracy of SVM 

recognition was around 88%. However, precision and recall were just around 52% and 43% 

respectively. 

Next section discusses using neural netowrks for situation awareness in pervasive 

computing systems. 

2.2.6 Using Neural Networks for Situation Inference 

Neural networks are formal mathematical models that imitate biological neural structures. 

Starting back in the 1940s with the first models of neuron, it became one of the most 

popular ways of solving artificial intelligence related tasks. Learning capability allows 

neural networks to solve a variety of problems including pattern association, pattern 

recognition, function approximation. 

Neural network can be defined as “a machine that is designed to model the way in which 

the brain performs particular task or function of interest” [Ha09]. A comprehensive list of 

neural network benefits is presented in the guide [Ha09]. The benefits relevant for 

pervasive computing task are following. 

1. Nonlinearity. Neural networks can represent the situations that depend non-linearly 

from context features. 

2. Adaptivity. Neural networks are well suited for supervised learning techniques. 

[Ha09]. 

3. Evidential response. Single neural network can be used to reason about several 

situations, whether the situations are mutually exclusive or not. Neural network both infer 

the ongoing situations and provide the confidence in the decision. 

For comprehensive neural networks overview refer, for example, to the work by Russell 

and Norvig [RN09] or to the book [Ha09]. 

Neural network house [MD95] is one of the earliest examples of context aware smart 

home environment. The authors proposed ACHE system (Adaptive Control for Home 

Environments). ACHE aims to control all the aspects of comfort in smart home: ventilation, 

lighting, air and water temperature. Neural networks were the core of the algorithms for 

inferring inhabitants’ lifestyle and for controlling smart home resources. The used sensors 

included light sensors, room temperature, sound level sensors, motion detectors, sensors for 

statuses of all doors and windows, illuminance sensors and many more. ACHE employed 

some situation awareness aspects as well. For example, it implemented occupancy model – 

for each zone (where each zone usually corresponded to a particular room) the system 

recognized, whether it is occupied by the user or not. 

In the paper [KW10] authors proposed an activity recognition system that inferred user 

activities using cell phone accelerometers. The system extracted a set of features out of raw 

accelerometer data, and compared the performance of different activity recognition 

alogirthm on top of those features. The compared options were logistic regression, decision 

tree and multilayer perceptron, which is a very commonly used type of a neural network. 

The accuracy of multilayer perceptron reached 44% and 61% for the activities “going 

upstairs” and “going downstairs” respectively, but for all the other activities it exceeded 

90% (activity “jogging” was recognized with over 98% accuracy). 
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Favela et. al [FT07] used neural networks for activity recognition in context aware 

hospital applications. The authors tracked the activities of hospital staff, and the recognized 

activities included patient care, information management, clinical case assessment. Four 

contextual variables were used as neural network input: location, artifcats, role and time. 

The feedforward neural network with 16 hidden units was trained using backpropagation 

algorithm. Overall, the authors achieved 75% activity recognition accuracy. 

Neural networks are robust and versatile tools for learning various dependencies. 

However, neural networks contain some disadvantages as well. The main disadvantage of 

neural network is that it is a blackbox. The methods like decision trees, naïve Bayesian 

approach or logistic regression enable clear representation of situation formula. Human 

expert can interpret the learned dependencies and find out how exactly the situation is 

inferred. Neural networks are much less prone to human analysis. 

Next section discusses the use of decision trees for situation awareness in pervasive 

computing. As opposed to neural netowrks, decision trees can be easily read and 

understood by the human expert. 

2.2.7 Decision Trees for Situation Awarenes 

Decision tree is a tree-like structure, which is used in decision support. Decision tree 

represents a function that uses a vector of attributes as an input and produces single output 

value – a decision. A simple example can be found in Figure 9. The figure shows a decision 

tree, which decides whether to give a loan to the customer. The input includes several facts 

about the customer: whether he/she is employed, the customer’s salary and wehther 

customer has some assets. The graph in figure 9 is a tree graph. Decision making starts 

from the root node and proceeds on different directions depending on the input. For 

example, if the customer is employed, has high salary and asks for loan, on the first step 

decision making will take “Employed - Yes” direction from the root node and it will end up 

in the node “Salary”. On the next step decision making will take “Salary - High” direction 

and end up in a decision node ”Loan: Accept”. It is a terminal node, and accepting the loan 

request is a final decision. Therefore, every node in a decision tree corresponds to an input 

feature to test, and the outcomes of testing determine, which child node should be taken 

next. For more details on decision trees and decision tree learning refer to [RN09]. 
Hong et al., [HS09] provided several reasons to use decision trees: they are easily 

understandable; they are capable of processing non-linear interactions among variables; 
they have very low sensitivity for the outliers; they can handle large amounts of data; and 
they can process both categorical and numerical data. Therefore, decision trees made their 
way into context awareness and situation awareness systems. In context awareness and 
situation awareness the input vector is a vector of context features, and the final decision is 
an occuring situation. 

Kwapisz et al. [KW10], among other methods, used decision trees to recognize activity 

of a user from cell phone accelerometer readings. The activities included walking, standing, 

sitting, running, ascending and descending stairs. The authors designed 43 features of 

accelerometer readings, and those features were input of a decision tree. The accuracy of 

decision trees heavily depended on activity and varied from 55% (for going downstairs) to 

96% (for jogging). 

Bao and Intille [BI04] investigated several approaches to recognize user locomotion out 

of aceelerometer data. One of the inverstigated approaches was decision trees. Sensor 

readings from five wearable accelerometers gave enough information to recognize twenty 

locomotion activities. The recognized activities included walking, running, vaccuming, 
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standing still, climbing stairs, strength training. The authors claimed that decision trees 

have shown the best performance (compared to naiva Bayesian approach, instance-based 

learning and decision tables) and achieved around 84% accuracy. 

In the paper [LO11] authors compared multiple approaches to human activity recognition 

on the dataset from the work [KA08]. The task was to infer user activities using the 

readings of many relatively cheap state change sensors. Sensors were attached to doors, 

furniture and appliances, and those sensors allowed to detect when an object is used by the 

user. Decision trees were one of the considered activity recognition approaches. Decision 

trees gained over 90% precision and recall. 
 

 
Fig. 9. Decision tree example.  

It concludes the overview of the methods, which allow extracting situations out of 

labeled data. Next section discusses the methods to extract situation definitions out of 

unlabeled data. Those methods should overcome not only the challenge of extraction itself, 

but also the challenge of labeling the newly acquired situation. 

2.3 Extracting Situations from Unlabeled Data 

In previous sections we viewed manually defining the situations and learning the situations 

from labeled data. Manual definition of situation requires human expert to define the 

formula. Learning situation models from labeled data requires collecting training 

information, and then the formula can be obtained using supervised learning methods. 

Learning situations from unlabeled data is mostly (but not exclusively [Ma04a][SL09]) 

used in location awareness. For example, location aware systems might need situations 

corresponding to the places that user frequently visits. Those situations can be AtHome, 

AtWork or VisitingFriend. However, the boundaries of the places are unknown in advance. 

The places like AtHome or AtWork are different for every user, so training sets collected in 

the lab are of no use for those situations. Requiring user to specify the information like 

home place, work place, locations of friends, places of interest in the city. is very intrusive 

and impractical. The same applies to creating labeled training set by periodically asking the 

user where he/she is. 

A feasible solution is to find the clusters of location information and define the situations 

on that basis. Clusters of location readings are likely to correspond to places where user 

spends significant time, i.e. places of interest to the user. However, naming the newly 

acquired situation might be very challenging. 
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Learning situations from unlabeled data has the following advantages comparing to 

manual definition of situations and supervised learning: 

- Situations can be learned at runtime. It is suitable for the cases when the definitions of 

situations heavily depend on the user, and prior training is impractical. 

- The list of situations is not required. In previously mentioned examples the list of 

situations was pre-defined, and the main goal was to find the formulas, which transformed 

context into situations. However, in some situation aware systems even the number of 

situations is unknown in advance. For example, in context aware system that learns the 

hobbies of the user, or in location aware system that learns places of interest to the user 

there is no way to tell in advance, how many distinct hobbies will be detected, or how many 

places does the user often visit. For those cases unsupervised learning is a very efficient 

option. 

Despite those advantages, the concept of learning situations from labeled data is used 

less frequently then the other methods of defining the situations. There are numerous 

challenges related to unsupervised learning of situation definitions, and those challenges 

make the application of unsupervised learning complicated. The main challenges are 

following: 

- Possible slow start. The method requires multiple sensor readings sometimes over 

long time in order to identify the clusters. 

- Clustering takes time and computational resources. 

- Labeling the situation is additional challenge. Cluster of sensor readings might 

correspond to some situation of interest, but to what situation do they correspond? For 

example, it requires additional analysis to determine whether newly acquired cluster of 

location information is user’s home, user’s workplace or a shop that user often visits. Two 

possible options are asking the user and trying to label automatically. 

- Distance metrics can be unclear. Clustering methods usually rely on the metrics of 

distance between sensor readings. For location aware systems the metrics is quite clear – it 

is real distance between locations. However, the distance metrics is unclear for two sets of 

sensor readings containing, for example, statuses of household appliances and wearable 

accelerometers on the user. 

- Unknown number of situation restricts the scope of learning methods. Some 

clustering methods require the number of clusters as input (for example, K-means 

[WH07]), while other methods do not rely on that information (for example, DBSCAN 

[EK96] or growing neural gas [Fr95]). In some systems, like location awareness example in 

this section, the number of future situations is unknown, and it significantly restricts the 

scope of learning methods. 

- Some sensor readings do not belong to any situation, and it can also restrict the scope 

of clustering methods. For example, location aware system can use clustering to identify 

multiple places of interest. However, some location measurements will correspond to the 

user moving from onew important location to another. 

- It might be challenging to produce definitions of situations, which are suitable for 

runtime inference. Some clustering algorithms (like DBSCAN [EK96]) attribute all the 

points from the training set to some cluster or identify it as noise. However, when a new 

point arrives, it can be challenging to determine to what cluster it belongs. 

The identified challenges are solvable for many practical applications, but the exact way 

to overcome the challenge depends on particular task. 

Mayrhofer [Ma04a] performed a comprehensive work on context prediction, and 

addressed situation awareness questions as part of that work. In [Ma04a] the author viewed 

context prediction problem as situation prediction, and the situations were identified as 
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clusters in the space of context features. Mayrhofer compared multiple methods to cluster 

the sensor data and infer situations. The survey in [Ma04a] contained many clustering 

methods, out of which three were chosen for final implementation and evaluation in context 

prediction system: Kohonen’s self-organizing maps [Ha09], K-means [WH07] and growing 

neural gas [Fr95][Ha01]. Distance metrics was Euclidean distance in a multidimensional 

space. Growing neural gas can learn the clusters of arbitrary shapes and it does not require 

knowing the number of clusters in advance (unlike K-means). The work [Ma04a] chose 

lifelong growing neural gas for situation recognition and namedtwo more reasons for that: 

growing neural gas is easy to use in online mode (unlike K-means and self-organizing 

maps) and also growing neural gas provides more stable cluster trajectories (i.e. much less 

jumps from cluster to cluster). After the situations are obtained by clustering, they are 

manually labeled and then used in context prediction effort. Mayrhofer’s work will be 

addressed in more details when discussing context prediction. 

Ashbrook et al. [AS02] employed the variation of K-means algorithm to cluster the GPS 

data and define and predict the location of the user. Original K-means algorithm has pre-

defined number of clusters, which is ususally unsuitable for situation awareness approach. 

The version of K-means algorithm proposed in [AS02] is capable of handling variable 

number of clusters. For each cluster the algorithm marks all the points within a defined 

radius, and computes the mean of all the points. Then the system draws new radius from 

new mean, and repeats it until mean no longer changes. The algorithm [AS02] keeps adding 

the clusters untril there are no GPS points left. The system proposed in [AS02] also looks 

for sublocations within each location (i.e. subclusters within each cluster) in the same 

manner. The radius of clusters is determined by analyzing the dependency between the 

cluster radius and number of clusters. When the radius grows, the number of clusters 

decreases. This plot has a “knee”, when the decreasing becomes slower. As Ashbrook et al. 

argue, at that point the number of cluster converges to the number of real meaningful 

location. Locations then can be labeled by the user; automated labeling is out of scope of 

[AS02]. Once locations and sublocations are found, the system uses Markov model [RN09] 

for location prediction. 
Andrienko et al. [AA11] proposed the system, which extracts significant events and 

relevant places out of mobility data. Mobility data is aggregated from multiple users. On 
the first step the system extracted m-events (movement events) out of mobility information. 
Movement characteristics, which were used for event extraction, included speed, travelled 
distance, direction and temporal distances to the beginnings and ends of the trajectories. On 
the second step the system attempts to detmine place and time of likely event occurences, 
and the authors proposed two-stage clustering for that purpose. On the first stage the 
authors implemented spatio-temporal clustering of events – events are clustered according 
to their positions in space and time. The main purpose of the first stage is to remove the 
“noise” – occasional events that occur closely in space but at different time. The work 
[AA11] investigated the choice of distance function, which included space, time and 
thematic attributes of events. The considered options included distance on Earth for 
locations, distance in time for time properties (with some modigfications for cyclic 
properties like the day of the week) and Euclidean distance otherwise. The authors used 
density base clustering (DBSCAN [EK96] and OPTICS [AB99]), but defined the 
neighbourhood using the combination of spatial distance and distance thresholds for every 
considered attribute (note that for this approach single distance function is not required, and 
it overcomed one of the problems of clustering in situation awareness). On the second stage 
of clustering the system [AA11] applied spatial clustering, but only to the events that were 
not ruled out as noise on the first stage. Events then were further aggregated for subsequent 
analysis. The approach in [AA11] considered multiple possible user interventions for 
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choosing the attributes for events or for setting the distance thresholds. The collected and 
aggregated information can be used for multiple purposes. The authors provided examples 
of traffic congestion analysis and flight analysis. 

Sometimes context awareness and situation awareness framework combine supervised 
learning and unsupervised learning in a single system. Siirtola et al. [SL09] combined 
supervised and non-supervised learning for activity recognition. The recognized activities 
included football, basketball, walking, running, Nordic walking, pedaling (spinning or 
cykling), gym training, roller skating, racket sports (tennis or badminton), floor ball and 
aerobics. The authors used the data from just one 2-dimensional wrist-worn accelerometer, 
which every user wore while perfoming the activities. The list of features used for 
clustering and classification included mean, variance, averga change between subsequent 
measurements. For clustering the authors used expectation-maximization algorithm 
[DL77]. The authors determined the correspondence between clusters and activities using 
the count of labeled points inside the clusters. C4.5 algorithm [Qu93] was used to construct 
decision tree, which takes a measurement as an input and attributes it to certain obtained 
cluster. Within the cluster another decision tree is constructed to determine the activity. As 
a result, the accuracy of activity recognition was increased from 80% for straightforward 
application of decision tree to 85% for the proposed combination of clustering and decision 
trees. 

Van Kasteren et al. [KE11] proposed activity recognition mechanism that clusters sensor 
data into the clusters of actions, and then uses those clusters of actions to infer the activity. 
The final model is 2-layer hierarchical hidden Markov model. The model contains activities 
on the upper layer and sensor readings on the observation layer. Action cluster acts as an 
intermediate layer between raw sensor readings and activities. Timing dependencies are 
introduced between action clusters and activities. Refer to [KE11] for more details on the 
nodes and dependencies of the model. The authors claim that the proposed model 
outperforms straightforward hidden Markov model and hidden semi-Markov model. 

Gordon et al. [GH12] proposed a system, which recognizes individual and group 
activities using the sensor data from smart coffee mugs and using mobile phone as a 
computational center. The auhors learned the activities out of labeled data and compared 
multiple algorithms for that purpose: K nearest neighbors, naïve Bayesian and decision 
trees (the book [RN09] contains an overview for all of those approaches). However, the 
authors used also unsupervised learning to aid the classification of activities. The authors 
compared several options of what to send from local activity recognition units to group 
activity recognition system. The options included raw sensor data, sensor signal features, 
local activity label and clustering results. The authors concluded that for now clustering-
based approach results in sharp accuracy rate decrease (from 96% to 76%), but still it has 
some potential due to not requiring separate phase for local training and due to energy 
consumption reduction by 33%. 

To summarize, learning the situations from unlabeled data poses multiple challenges, 
mostly related to labeling the clusters and defining the distance function. Still, unsupervised 
learning was used as situation inference method on multiple occasions 
[Ma04a][AS02][AH11][BZ12a][KB12]. In some cases supervised learning-based situation 
inference used unsupervised learning as an intermediate step [SL09][KE11][GH12]. Next 
section summarizes situation awareness techniques in pervasive computing, discusses the 
challenges of situation awareness and concludes chapter I. 
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3 Summary. Challenges of Situation Awareness in Pervasive 

Computing 
Previous sections provided an overview of the methods used for situation awareness in 
pervasive computing area. The field of situation awareness contains multiple challenges. 
The challenges analyzed in this section are specific to entire group of approaches, or even 
to the whole field of situation awareness itself. The challenges outlined in this section are 
addressed later in the thesis. 

The analysis of the overviewed situation awareness methods shows the following 
benefits and challenges of situation awareness approaches. 

Definition of situations by human expert has the following benefits: 
- It can be an efficient way to formalize the knowledge that the expert has. Sections 

2.1.1-2.1.5 show a wide range of situation awareness applications. The situations were 
defined by experts in activity recoginiton scenario [HI06], service adaptation scenario 
[CX05], smart home systesm [DP11] and many more. In each of the provided examples the 
developers already know the mapping between sensor data and situations, and the task 
mainly involves formalizing that knowledge properly. 

- Manual definition of a situation allows representing situations in a clear and insightful 
manner. Sections 2.1.1-2.1.5 overview multiple methods of sitation awareness, and in all 
those methods the final situation can be read and understood by the expert. For example, 
the expert can understand the situation by reading logic formula or by visulaizing the graph 
of ontology. 

However, manual definition of situation has also multiple challenges, which need to be 
addressed in order to use increase the approach efficiently. 

- Manual definition has limited applicability. Developer can use the models described in 
sections 2.1.1-2.1.5 to define the situations manually. However, many other models (e.g. 
most of the models described in sections 2.2.1-2.2.6 and 2.3) are not suitable for manual 
definition. 

- Manual defitinion is prone to human errors. The methods described in section 2.1.1-
2.1.5 do not contain methods for automatically proving that the proposed situation 
definition matches expert knowledge. 

- There migh be a tradeoff between complexity of development, complexity of reasoning 
and flexibility. When defining the situations, pervasive computing developer should take 
into account the following considerations: 

1. Complexity of development. If the definition is complicated for a human expert to 

understand or compose, it can result in increased development efforts and in definition 

errors. 

2. Flexibility. The model of a situation should be robust enough to infer real life 

situation out of sensor data. 

3. Complexity of reasoning. At the runtime situation aware pervasive computing 

system constantly uses situation model to detect whether the situation occurs or not. If the 

model is too complex and the reasoning is too slow, it can significantly hamper situation 

awareness functionality and disrupt other functions of pervasive computing system. 
Sometimes the aspects of development complexity, reasoning complexity and flexibility 

form a tradeoff, and this tradeoff is one of the challenges of situation awarenes. Chapter III 
of the thesis addresses this challenge, proposes a set of flexible situation models and 
analyzes the question of reasoning complexity. 

As section 2.3 shows, unsupervised learning in situation awareness is primarily used in 
location awareness or in combination with supervised learning techniques. Many 
researchers decided to infer situations out of unlabled data for following resons: 
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- It is initially unclear how many situations are there going to be (e.g. how many 

importnat locations does the user visit). For example, refer to the article [AS02] or to the 

work [Ma04a] , both of which were overviewed in section 2.3. 

- The definitions of each situation significantly depend on the user, and cannot be 

learned at the design time (e.g. important locations for every person are not the same). For 

example, refer to the articles [AS02] and [AA11]. 
One of the main challenges of unsupervised learning in situation awareness is the 

necessity of labeling. That challenge may result either in intrusiveness (if user performs the 
labeling [Ma04a]) or in additional efforts to design automated labeling system [BZ12a]. 
Sometimes if clustering is used as an intermediate step the clusters do not require labels and 
the challenge is avoided [KE11][GH12]. 

Chapters IV and V of the thesis address the challenges of learning situations in 
unsupervised manner and labeling those situations. The sections solve two different 
location awareness and activity recognition tasks by learning the situations from unlabeled 
data. Both sections address the challenge of proper clustering location information. Chapter 
IV proposes a method to automatically label the identified situations, while chapter V 
employs manual labeling and addresses the challenge of presenting the information to the 
user in a clear and meaningful manner in order to make labeling easier and more precise. 

A challenge common for all proposed approaches is ensuring the correctness of situation 
definition. If a model of a situation is incorrect, it can lead to erroneous situation awareness 
results and, in turn, inadequate actions of pervasive computing system. Errors in situation 
model can be, for example, a result of human expert error or a result of overfit or underfit 
when learning the situation. Situation awareness functionlaity can be tested, but sometimes 
testing is not sufficient. Chapters VI and VII of the thesis propose, develop and evaluate 
situation verification – the technique to formally prove that the definition of situation is 
correct. 

Chapters VIII-X address the challenge of context prediction, which is mostly represented 
by situation prediction techniques. Being able to predict future situations is of much use to 
pervasive computing systems. 

The resolution of mentioned challenges will lead to more efficient situation awareness 
and, as a result, to significant improvements in pervasive computing. 
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Foreword 

This chapter presents ECSTRA – general purpose context awareness and situaiton awareness 

framework. ECSTRA provides a distributed context awareness and situation awareness engine, which 

can process both low-level and high-level context information. This chapter describes the foundations 

of ECSTRA, its architecture and implementation features. 

ECSTRA framework was developed as part of PhD research project, and it provided a solid 

fundament for implementation and evaluation of the proposed algorithms and approaches. Most of the 

solutions proposed in the subsequent chapters, are implemented as extensions of ECSTRA 

framework, so ECSTRA is an important background for understanding the rest of the thesis. 

Among other topics, this chapter describes the evaluation of ECSTRA framework. The goal of 

evaluation was to determine whether ECSTRA is suitable for real-time situation inference. In order to 

perform evaluation multiple different realistic situations and multiple different realistic context states 

were generated. The context attributes for evaluation were taken from common sense and from 

practice. For every generated situation the generated contribution functions were practically plausible 

(in terms of intervals and corresponding contribution values). Generated context states were given 

practically plausible values as well. Therefore, the evaluation provided some representation of how 

ECSTRA can work in practical scenario. 

ECSTRA has proven its practical usefulness in smart home environment. In collaboration with 

INRIA, ECSTRA was incorporated as a context awareness and situation awareness tool in a smart 

home solution. The usefulness of ECSTRA was certified by INRIA (see appendix). 
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ECSTRA – Distributed Context Reasoning Framework for 

Pervasive Computing Systems 

Abstract. Pervasive computing solutions are now being integrated into everyday 

life. Pervasive computing systems are deployed in homes, offices, hospitals, 

universities. In this work we present ECSTRA – Enhanced Context Spaces Theory-

based Reasoning Architecture. ECSTRA is a context awareness and situation 

awareness framework that aims to provide a comprehensive solution to reason about 

the context from the level of sensor data to the high level situation awareness. Also 

ECSTRA aims to fully take into account the massively multiagent distributed nature 

of pervasive computing systems. In this work we discuss the architectural features 

of ECSTRA, situation awareness approach and collaborative context reasoning. We 

also address the questions of multi-agent coordination and efficient sharing of 

reasoning information. ECSTRA enhancements related to those problems are 

discussed.  Evaluation of proposed features is also discussed. 

Keywords: Context awareness, situation awareness, context spaces theory, multi-

agent systems, distributed reasoning, collaborative reasoning. 

1   Introduction 

Pervasive computing paradigm focuses on availability and graceful integration of 

computing technologies. Pervasive computing systems, like smart homes or 

micromarketing applications, are being introduced into everyday life. Context awareness is 

one of the core challenges in pervasive computing, and that problem has received 

considerable attention of the research community. 

The majority of pervasive computing systems are massively multiagent systems – they 

involve potentially large number of sensors, actuators, processing devices and human-

computer interaction. 

In this paper we present ECSTRA - system architecture for multiagent collaborative 

context reasoning, and situation awareness. ECSTRA builds on context spaces approach 

[PL08b] as context awareness and situation awareness backbone of the system. 

The paper is structured as follows. Section 2 discusses the related work. Section 3 briefly 

addresses context spaces theory, an approach that constitutes the basis for low-level context 

reasoning and situation awareness in ECSTRA. Section 4 describes the structure of 

ECSTRA framework and addresses each of its architectural components in details. Section 

5 describes the implemented mechanism for collaborative context reasoning and context 

information dissemination in ECSTRA. Section 6 provides and analyzes evaluation results. 

Section 7 discusses the directions of future work and concludes the paper. 

2   Related Work 

The research community proposed various approaches to address the problems of context 

awareness, situation awareness and distribution of context information. 
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Padovitz et. al. in [PL08b] propose ECORA architecture. Being a predecessor to 

ECSTRA, ECORA utilizes situation awareness mechanism on the basis of context spaces 

approach. ECORA was a source of an inspiration for ECSTRA, but no code was reused. 

Comparing to ECORA, our approach has extended support for multiagent reasoning, 

enhanced support for sharing and re-using reasoning information and also natural support 

for context prediction and proactive adaptation integration [BZ09][BZ10b]. 

In the paper [KK05] authors introduced ACAI (Agent Context-Aware Infrastructure) 

system. ACAI approach introduced multiple types of cooperating agents: context 

management agent, coordinator agents, ontology agents, reasoner agents and knowledge 

base agents. Context is modeled using ontologies. Comparing to ACAI, our approach 

features less specialized agents that are less coupled with each other. Agents are acting and 

sharing information without establishing sophisticated hierarchy. It makes our approach 

more robust and flexible to common disturbing factors like agent migration or 

communication and equipment failures. Instead of using the ontologies like ACAI, 

ECSTRA uses the methods of context spaces theory, that provide integrated solution from 

low-level context quality evaluation to situation awareness. 

The work [XP08] featured CDMS (Context Data Management System) framework. That 

approach introduced the concept of context space (the set of context parameters needed by 

context aware application) and physical space (the set of raw sensor data provided by 

environment). Dissemination of context data from physical spaces is arranged using the 

P2P network. The approach [XP08] provided very advanced solutions for context data 

retrieval: query evaluation, updates subscription, matching between context spaces 

elements and relevant physical spaces elements. Comparing to CDMS, our approach 

features much higher degree of independence between context aware agents. It ensures 

better capabilities of information exchange between peer reasoning agents, and it ensures 

the robustness to different agent entering or leaving the system. In our framework context 

reasoning is completely decentralized. Context aware agents are capable of exchanging the 

information between each other, not just from-bottom-to-top manner. We utilize relatively 

flat publish/subscribe system, which allows us to employ loose coupling between multiple 

context aware applications, and make the system even more robust to reasoning agent 

migration. Our approach to context reasoning is based on context spaces theory and 

situation awareness principle, which provides simple, but yet flexible and insightful way to 

reason about real life situations. 

The work [SW11] proposed MADIP multiagent architecture to facilitate pervasive 

healthcare systems. As a backbone MADIP utilized secure JADE [BC11] agent framework 

in order to maintain scalability and security criteria. ECSTRA uses Elvin publish/subscribe 

protocol [E11], which provides sufficient functionality for the search and dissemination of 

necessary context information, and also ensures independence and loose coupling of 

reasoning agents. Exact mechanisms for context awareness and situation awareness are not 

in the focus of [SW11], while it was the main concern when developing ECSTRA. 

3   Theory of Context Spaces 

The context reasoning and situation reasoning mechanisms of ECSTRA framework are 

based on context spaces theory. The context spaces theory is an approach that represents the 

context as a point in a multidimensional space, and uses geometrical metaphors to ensure 

clear and insightful situation awareness. The main principles of context spaces theory are 
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presented in [PL04]. 

A domain of values of interest is referred to as a context attribute. For example, in smart 

home context attributes can be air temperature, illuminance level, air humidity. Context 

attributes can as well be non numerical, like on/off switch position or open/closed window 

or door. 

In spatial representation a context attribute is an axis in multidimensional space. 

Multiple relevant context attributes form a multidimensional space, which is referred to as 

context space or application space. 

The set of values of all relevant context attributes is referred to as a context state. So, the 

context state corresponds to a point in the multidimensional application space. Sensor 

uncertainty usually makes the point imprecise to a certain degree. Methods to represent 

context state uncertainty include context state confidence levels and Dempster-Shafer 

approach [Sh76]. 

The real life situations are represented using the concept of a situation space. Reasoning 

over the situation space converts context state into a numerical confidence level, which falls 

within [0;1] range. In context spaces approach a situation confidence value is viewed as a 

combination of contributions of multiple context attributes. 

Confidence level can be determined using formula (1). 
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In formula (1) confidence level for situation S at context state X is defined by confS(X). 

The context state vector X consists of context attribute values xi, the importance weight of 

i-th context attribute is wi (all the weights sum up to 1), the count of involved context 

attributes is N, and the contribution function of i-th context attribute into situation S is 

defined as contrS,i(xi). 

Contribution function is often a step function that is represented by formula (2). 
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Practically, any boundary can be included or excluded, for as long as the set of intervals 

covers entire set of possible values and the intervals do not overlap. For non-numeric 

context attributes the intervals are replaced with the sets of possible values. 

Next section discusses our proposed ECSTRA framework. 

4   ECSTRA Framework 

ECSTRA (Enhanced Context Spaces Theory-based Reasoning Architecture) is a distributed 

mutiagent context awareness framework, with its architectural elements distributed across 

the pervasive computing system. ECSTRA is presented in figure 1.  
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Fig. 1. Enhanced Context Spaces Theory-based Reasoning Architecture (ECSTRA). 

Environmental parameters are measured and supplied by sensors. From the perspective 

of this research, human-computer interaction can be viewed as providing sensor input as 

well. However, raw sensor data is not the context information yet. Pervasive computing 

system needs to label that information, put necessary tags on it, evaluate its uncertainty and 

reliability, and distribute it within the system. These functions are carried out by the 

gateways. Gateways process information obtained through sensor networks, translate it into 

context attributes (most importantly, assign the unique names and define the uncertainties) 

and publish it to the special publish/subscribe service. Therefore, gateways process the 

sensor readings and create low-level context information out of it. Sensor uncertainty 

estimations can be either provided by sensors themselves or calculated by the gateway. 

Usually gateways are deployed on the devices directly connected to the sensor network 

base stations. 

Context information is distributed using the publish/subscribe service. ECSTRA uses 

Avis open source implementation [A11] of Elvin publish/subscribe protocol [E11] for 

context information distribution. Reasoning agents subscribe to necessary context attributes 

information, and gateways publish the data they have. With separate publish/subscribe 

approach the context dissemination process becomes very flexible and almost transparent. 

Both the gateways and the reasoning agents can migrate freely, and it takes just 

resubscription in order to restore the proper information flow. 

Reasoning engines are container entities that consist of one or more reasoning agents. 

The structure of reasoning engine and reasoning agents is depicted in figure 2. 

Reasoning agents directly perform the context processing and situation reasoning. Every 

reasoning agent works with some part of the context. Sharing reasoning process between 

several reasoning agents can help to make reasoning agents more lightweight and 

parallelize the reasoning process. 

Reasoning agent comprises context collector and application space. 

Context collector block has the following functions: 

1. Aggregating context data to a single context state. Sensor readings arrive one at a 

time, but application space requires the entire context state vector at any moment.  
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Fig. 2. Reasoning Engine Structure 

2. Delivering new context states to the application spaces. Context collectors update 

the context state upon receiving of any new context attribute from publish/subscribe engine. 

3. Managing the subscription to context information. It is the responsibility of 

context collector to subscribe to the necessary context information and to re-subscribe after 

the agent migration or restart. 

4. Track the deterioration of quality of context over time. If there is no information 

received in a while, the context collectors update the context quality estimations and 

increase the expected uncertainty. 

The application space block and the situation space blocks within it correspond to 

application space and situation spaces of context spaces theory. Application space handles 

context reasoning process and defines all the questions of situation algebra syntax and 

semantics. Situation space handles all the questions of situation representation. Currently 

ECSTRA supports original context spaces theory situation definition, fuzzy situation 

inference [DZ08], and a set of specially developed flexibility-optimized situation space 

formats, which are the subjects of ongoing work. 

Another function of application space is sending notification to the clients that new 

context data have arrived. Application space operates only with context states as input data, 

and between the changes of context state the reasoning results remain the same. The client 

does not have to be subscribed to context data change, in order to request reasoning from 

application space. If the client is interested in receiving the context state itself right after the 

update, it can subscribe directly to the context collector using the application space to 

context collector interface. 

As it was noted before, the context state within the application space does not change in 

the time between the notifications of context collector. That allows reducing the reasoning 

efforts by introducing the cache of reasoning results. If any ECSTRA client requested the 

reasoning about the certain situation, either like a single situation or within the situation 

algebra expression, the reasoning results are put into reasoning results cache. Later, if the 

context state did not change yet, but the same situation is requested again (once again, 

either as a single situation or a situation within algebra expression), ECSTRA takes the 

information from the cache. After context state changes, situation confidence levels might 

change as well, and cached results can no longer be trusted. Therefore reasoning results 

cache is cleaned when the new context state is received. 

External clients are not a part of ECSTRA (some exceptions are provided in section 5). 

They connect to the application space, send reasoning requests and obtain the result of 

reasoning. For example, CALCHAS context prediction and proactive adaptation framework 

[BZ10b] can be a client of ECSTRA. Usually reasoning requests are presented in the format 
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of situation algebra expression, and reasoning results are either confidence level or Boolean 

value, that represents the validity of requested expression with respect to current context 

state. 

As a part of this work, we implemented several enhancements to original ECSTRA 

architecture, which take the advantage of multi-agent and distributed nature of pervasive 

computing system. 

5   Distributed Context Reasoning 

The architecture of ECSTRA was designed to allow distributed reasoning and information 

sharing between agents. ECSTRA allows sharing high-level reasoning results. This 

approach encapsulates low-level reasoning efforts of different agents and reduces the 

amount of overlapped reasoning efforts between several reasoning agents. 

Several particular features of ECSTRA enable distributed context reasoning. Those are 

context aware data retrieval, subscription-based reasoning result sharing and multilayer 

context preprocessing. 

5.1   Context Aware Data Retrieval 

Consider the following motivating scenario: the user is in a smart home. User’s context is 

managed by PDA and the light level is requested from the sensor in the room. Practically it 

makes sense to treat the current light level around the user as a user’s context attribute. 

However, the context attribute “CurrentLightLevel” will be represented by different sensors 

depending on the context. Here the required sensor will depend on user location. 

To summarize, sometimes single context attribute corresponds to different sensors in 

different occasions. The context aware data retrieval aims to overcome that problem. The 

idea is to adaptively resubscribe to different context sources, depending on the current 

context information itself.  

The method is to enhance collector with two additional functions: resubscription on 

request, and masking the global name of context attribute to replace it with its local name. 

As a result, for the application space the technique is completely transparent, and the 

computational core does not require any modifications. New block, subscription manager is 

introduced to manage the subscription switching. 

Context aware data retrieval architecture is depicted in figure 3. 

Context collector accepts commands from subscription manager. Subscription manager, 

in turn, contains the set of rules that define resubscription procedures.  Subscription 

manager acts as a client to the application space. 

The simplified protocol of resubscription decision making is depicted in figure 4. 

The efficient use of that technique can allow to significantly reduce the number of 

context attributes under consideration, and to bring the number of involved context 

attributes down to the tractable numbers even for large-scale systems. Also it can 

significantly simplify the development of situation spaces. 
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Fig. 3. Context Aware Data Retrieval – Architecture. 

 
Fig. 4. Context Aware Data Retrieval – Protocol. 

5.2   Reasoning Results Dissemination 

In practice several remote clients can be interested in the results of reasoning agent work. 

Moreover, situation reasoning results can be taken as context attributes by other reasoning 

agents (if carried out properly, it can simplify the reasoning activities). The possible 

enhancement for that case is to reason about the situation and then to return the reasoning 

result into publish/subscribe engine. In ECSTRA it is implemented in a manner, presented 

in figure 5. 
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Fig. 5. Sharing of Reasoning Results. 

As depicted in figure 5, situation sharing block returns the results of situation reasoning 

to publish/subscribe system. The subscribers to those results can be either other reasoning 

agents, or remote external clients themselves. The outer interface of situation sharing block 

resembles the interface of a gateway. It allows packing the shared information in context 

attribute-like format.  This format allows managing context attributes and shared situations 

in a unified manner. The situation reasoning results (in the format of confidence level or 

binary occurrence) can be subscribed to and taken as an input by other reasoning engine, 

and this can create hierarchical distributed reasoning structure. 

This approach can significantly reduce the necessary amount of reasoning activities and 

allow efficient sharing of information between reasoning agents and the external clients. 

Also this approach can naturally construct a hierarchy of reasoning activities, and this 

hierarchy will be relatively flexible and robust to agent migration and replacement, 

especially if combined with context aware data retrieval. 

5.3   Multilayer Context Preprocessing 

If both the number of context attributes and the number of reasoning agents are large, the 

efforts for context preprocessing might be significant. Context preprocessing efforts can be 

reduced by applying the multilayer context preprocessing technique, depicted in figure 6. 

If N reasoning agents within reasoning engine have the common subset V of context 

state vector, the system can construct the context collector for context state V. Then 

obtained context state V can be used by all N context collectors directly. As a result, instead 

of N times preparing the vector V, that vector will be derived just once, and then distributed 

among all the interested reasoning agents. 

So, multilayer context preprocessing approach can reduce the context preparation efforts. 

It is completely tolerant to the migration of context sources. However, multilayer structure 

can cause problems during the reasoning agents migration. As a result, multilayer context 

preprocessing should be used when there are many reasoning agents, but those reasoning 

agents are not likely to migrate separately. 
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Fig. 6. Multilayer Context Preprocessing. 

6   Evaluation of Situation Reasoning 

The theoretical analysis of situation reasoning complexity is presented in table 1. The 

definition of the situation space is presented in section 3 in expressions (1) and (2). We 

refer to the total number of involved context attributes as N, to the number of involved 

intervals on i-th context attribute as mi, and to the total number of involved intervals on all 

the context attributes as M = ∑
i= 1

N

m
i . 

It should be noted that N ≥ M – there is at least one interval per context attribute. In 

practice often N>>M. Summarizing table 1, we expect that reasoning time will be linearly 

dependent on the number of intervals. 

The experiment was performed as follows. Situation spaces and context states were 

randomly generated. There were 1000 randomly generated situations in a single application 

space. For every generated situation the number of intervals was generated uniformly 

between 1 and 60. Then the distribution of intervals between context attributes was 

generated uniformly. For every situation the reasoning was performed 10000 times without 

using the results cache, and then average reasoning time was taken as a result. Testing was 

performed on Lenovo ThinkVantage T61 laptop. The results are depicted in figure 7. 

 
Table 1. Situation Reasoning Complexity 

Operation Order Details 

+ O(N) On formula (1) the sum contains N summands. There are 

no more additions involved. 

* O(N) On formula (1) every summand has one multiplication 

within. There are no more multiplications involved. 

comparison O(M) Consider formula (2). For every context attribute the 

necessary interval will be taken the last in the worst case. 

That gives O(P) comparisons as the worst case estimation. 
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Fig. 7. Situation Reasoning Efficiency 

The exact analysis of hetersocedactic properties of situation awareness complexity is 

being done as a part of advanced situation awareness, which is mentioned as future work 

direction in section 8. For the purpose of current research averaging out the results for 

every number of intervals (right plot in figure 7) provides enough accuracy. 

Situation cache provides significant improvement in reasoning time, in comparison with 

straightforward situation reasoning. The experiment was performed in a similar manner on 

similar equipment. The reasoning time was calculated as an average for 1000 reasonings. 

The results are presented in figure 8 and table 2. 

 
Table 2.Situation Cache Efficiency 

Cache Size 

(situations) 
25000 26000 27000 28000 29000 30000 31000 

Average 

Reasoning 

Time (ms) 

0.0653 0.0628 0.0623 0.0623 1.1836 1.1972 1.4400 

As expected, if the reasoning result is taken from the cache, reasoning time does not 

depend on the size of situation space, but it does depend on the number of situations in the 

cache. As it is shown in table 2 and figure 8, until the amount of situations in the cache 

reach 29000, reasoning time is ~0.06 ms, which is less than time for reasoning about 1-

interval situation. However, when the number of situations in the cache reaches 29000, the 

reasoning time starts to grow rapidly. 

So the general recommendation is to use the situation cache even for the situations with 

low number of intervals, unless the count of situations in the cache exceeds 28000. 

7   Conclusion and Future Work 

In this work we presented the pervasive ECSTRA computing framework and application, 

that is capable of context reasoning and  situation reasoning. ECSTRA is designed to fit 

multi-agent and highly distributed nature of pervasive computing systems. 

We identified the following possible directions of future work: 
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Fig. 8. Situation Cache Efficiency 

1. Advanced context aware data retrieval. Currently the context aware 

resubscription technique is defined by static rules. It might work well for the relatively 

small systems, but for large-scale pervasive computing systems like smart towns it will 

result in enormous amount of rules. In order to address large-scale context aware data 

retrieval problem, we need advanced language of re-subscription rules, combined with 

efficient context attribute naming technique. 

2. Advanced situation awareness. The situation reasoning techniques of context 

spaces theory provide a memory efficient and fast situation awareness solution, but 

sometimes they lack flexibility, and many real-life situations cannot be defined in the terms 

of expressions (1) and (2). The search of new situation definitions and analysis of its 

efficiency is the subject of ongoing work. 

3. Reliable distributed context delivery. Reasoning agents are mostly vulnerable 

when they are migrating. If the context information update arrives during the migration of 

the agent (after unsubscribing, but before subscribing), it can as well be lost. In that case, 

loose coupling between sender and receiver, the important benefit of publish/subscribe 

system, becomes a disadvantage. The possible remedy for that problem is establishing some 

kind of knowledge storage agents that contain up-to-date data. Another possible option is 

introducing the request for data within publish/subscribe space. 

4. Smart situation cache. Currently situation cache can be either on or off. If 

situation cache is on, it stores any situation reasoning results. In section 6 we proved that 

situation cache significantly reduces reasoning time, unless there are tens of thousands of 

situations in it. Situation cache can be further enhanced by smart decision making about 

whether to put the situation in it or not. Situations in the cache can be preempted depending 

on number of intervals (and, therefore, expected saved time). Another possible 

enhancement is to allow entire situation algebra expressions in the cache. The 

implementation details of those techniques, as well as efficiency of those methods, are yet 

to be determined. 
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Foreword 

This chapter addresses the research question 1 – how to derive a mapping between context 

information and ongoing situations? As Chapter I identified, one of the possible approaches is to 

define the mapping using expert knowledge. However, in order for that approach to be effective the 

situation models need to be flexible enough to represent real life situations, the situation models needs 

to be clear enough to be composed by human expert and the reasoning complexity of the situations 

should be suitable for real time situation inference. 

This chapter proposes an enhancement of context spaces theory approach with new situation 

modeling techniques. New situation types provide a robust solution to represent broad class of real 

life situations. Moreover, otrthotope-based situation spaces provide a background for the verification 

approach, which is proposed in subsequent chapters as an answer to the research question 2. The 

proposed enhancements are implemented as an extension of ECSTRA framework, which was 

described in chapter II. 
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From Sensory Data to Situation Awareness: Enhanced 

Context Spaces Theory Approach 

Abstract. High-level context awareness can be significantly improved by the 

recognition of real-life situations. The theory of context spaces is a context awareness 

approach that uses spatial metaphors to provide integrated mechanisms for both low-

level and high-level context awareness and situation awareness. Taking context spaces 

theory situation awareness as a baseline, we propose and analyze the enhanced 

situation awareness techniques, which allow us to reason about broad class of real-life 

situations. We also improve reasoning about the relationships between situations, and 

discuss how it relates to newly proposed situation awareness approaches. Practical 

evaluation of the results is also discussed. 

Keywords: context awareness, situation awareness, context spaces theory, pervasive 

computing. 

1   Introduction 

Context awareness is a key feature of pervasive, ubiquitous and ambient computing. For 
example, ambient intelligence systems (like smart homes or smart offices), social networks 
and micromarketing applications extensively utilize context awareness methods.  
High-level context awareness can be enhanced by situation awareness – the recognition of 
real-life situations. 

Consider an example scenario. John works in the office at the construction site, and his 
workplace environment is at constant risk of problems: surrounding works can produce 
excessive noise, air might get dusty and polluted, power outages can lead to illuminance 
problems. In order to provision environmental conditions for his work, pervasive system 
needs to be aware of situations like “Light_Level_Insufficient”, “Noise_Level_Too_High” 
or “Workplace_Environment_OK”. If there are any problems, system should take corrective 
actions: for example, switch to backup power supplies, engage additional ventilation, close 
doors and windows to reduce noise. So, situation awareness is important enhancement of 
context awareness and backbone functionality for further decision making. 

The situation from context awareness perspective can be defined as «external semantic 
interpretation of sensor data» [YD12]. The situation model is a method to represent a 
situation in a manner plausible for automated inference. The situation can be modeled as a 
cluster in a space of context features [Ma04a], as an entity in the ontology 
[DZ08][ES07][WZ04], as a conjunction of context properties [AN06], among other non-
exhaustive definitions. The important features of a situation model include acceptable 
reasoning complexity, clarity and readability by the expert, and the flexibility to represent 
the wide class of real-life situations. 

Context spaces theory (CST) [Pa06][PL04] is a context awareness approach that uses 
spatial metaphors to reason about context and situations. Using context spaces theory as a 
baseline, this paper proposes qualitative extension and novel situation awareness techniques 
that achieve flexibility, concise and clear situation representation and tractable reasoning 
complexity. 

The paper is structured as follows. Section 2 describes the related work. Section 3 
addresses the basics of context spaces theory, describes situation reasoning approach and 
derives the complexity evaluation for it. Section 4 provides the sample motivating scenario. 
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Section 5 proposes and analyzes the enhanced situation awareness approaches. Section 6 
contains the practical evaluation of new situation awareness methods. Section 7 provides 
summary, further work directions and concludes the paper. 

2   Related Work 

Detecting real-life situations received considerable attention in context awareness research 
community. 

The solutions presented in this paper are based on context spaces theory. The theory of 
context spaces was proposed by Padovitz et. al. [Pa06][PL04]. In context spaces approach 
the context information was viewed as a vector in multidimensional space of context 
attributes, and situations were viewed roughly as subspaces in that space. The paper by 
Delir et. al. [DZ08] proposes fuzzy set based extension to situation definitions for context 
spaces theory. Comparing to the original context spaces approach, we propose more 
powerful situation awareness techniques that address broader class of real-life situations 
and significantly enhance reasoning about the relationships between situations. 

Anagnostopoulos et. al. [AN06] proposed the situation awareness technique that 
inferred the situation as the conjunction of Boolean context features. This approach 
resembles the CST method of confidence level calculation (see section 3). However, the 
situation awareness methods of CST work with confidence levels, and that provides more 
flexibility when working with real-life situations. Moreover, CST is capable of handling 
unequal importance of different context features and, using the results of this paper, can 
avoid the independent contribution assumption. 

The papers [BI04][IS09][KK07][RA04] perform situation and activity inference using 
naïve Bayesian approach. Despite the seeming similarity, CST situation awareness and the 
Bayesian approach employ different semantics. The Bayesian approach assumes that 
situation either occurs or not, and estimates the probability of occurrence. Context spaces 
theory uses semantics of uncertainty (in particular, fuzzy logic [DZ07] and Dempster-
Shafer [Pa06] approaches) and degree of occurrence. 

Mayrhofer [Ma04a] viewed context as a vector in a multidimensional space of context 
features. Situations were represented as the clusters in that space. That approach enabled 
automated situation detection with clustering algorithms, so the method proposed in the 
work [Ma04a] is effective if initially the situations of interest are unknown. In addition, that 
solution works well if context prediction is involved. Comparing to [Ma04a], our concept 
of situation enables more clear and more concise situation definition, as well as simpler 
situation reasoning. Moreover, our approach features situation algebra, which allows us to 
reason about relationships between situations. Context spaces approach can also integrate 
context prediction and acting on predicted context [BZ09][BZ10b] (but context prediction 
is out of the scope of this paper). 

Papers [DS07][ES07][WZ04] suggested ontology-based situation reasoning. Ontologies 

provide powerful solutions to represent the relationships between different situations. 

However, context ontologies usually do not address the level of raw sensory data, and 

therefore ontology-driven situation awareness requires additional complementary low-level 

reasoning. Comparing to ontology-based situation awareness our approach addresses all 

levels of context and features an integrated set of reasoning methods for both high-level 

context and low-level context. 
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3   The Theory of Context Spaces 

The context spaces theory (CST) is an integrated approach for context awareness and 
situation awareness. CST uses spatial metaphors to achieve clear and insightful context 
representation. The foundations of context spaces theory are provided in the article by 
Padovitz et. al. [PL04]. In this section we define a set of related terms that will be used 
throughout the paper. 

A domain of values of interest is referred to as context attribute. Context attributes can 
be either measured by sensors directly, or derived from sensory data. For example, air 
temperature, light level, noise level, air humidity can be the context attributes for a smart 
office. 

Context attribute can be viewed as an axis. The exact value on the axis (e.g. particular 
air temperature at certain time or particular light level at certain time) is referred to as 
context attribute value. 

An entire set of relevant context attributes constitute a multidimensional space. This 
space is referred to as application space or context space. 

A set of all relevant context attribute values at a certain time is referred to as a context 
state. So, a context state represents a point in the context space. Context state point is 
usually imprecise due to sensor uncertainty. 

Situation space is designed to represent real life situation. Reasoning about the situation 

in original context spaces theory worked in a following manner [PL04]. The input data for 
the reasoning process is the context state. The reasoning result is a confidence level – a 
value within the range [0;1] , that numerically represents the confidence that the situation is 
occurring. Confidence level can be calculated according to formula (1). 

 

conf𝑆( ) = ∑
i=1

𝑁

𝑤 ∗ contrS,i(𝑥 )                                                                                   (1) 

 
In formula (1) confS(X) is a confidence level for situation S at context state X, a 

particular context attribute within X is referred to as xi, the importance weight of i-th 

context attribute is referred to as wi (all the weights sum up to 1), the number of relevant 

context attributes is N, the contribution value of certain context attribute into total 
confidence value of the situation is referred to as contrS,i(xi). 

Contribution function is usually a step function over certain context attribute. It can be 
expressed by formula (2). 

contrS,i =

[
 
 
 
 
 

𝑎1,𝑥 ∈ (𝑏1,𝑏2]

𝑎2,𝑥 ∈ (𝑏2,𝑏3]
...

𝑎𝐾𝑖
,x ∈ (𝑏𝐾𝑖

,b𝐾𝑖 1]

𝑎 ,𝑑𝑒𝑓𝑎𝑢𝑙𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                   (2) 

In formula (2) the values a
j
 are the contribution values, corresponding to certain 

interval. If the i-th context attribute value does not correspond to any interval, ai,default 

contribution is assigned. Contribution values are within the range [0;1]. The boundaries of 
the intervals (b

j
, b

j+1
] can be either included or excluded, as long as the intervals do not 

overlap with each other. The total number of intervals for all context attributes from now 

and on will be referred to as P=∑
i=1

𝑁

𝐾 . 
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So, according to formula (1), the original CST situation implies that the total situation 
confidence level comprises independent contributions of various context attribute values. 
Independent contributions of different context attributes can be a benefit from the 
perspective of reasoning complexity and memory consumption. However, the independence 
of contributions can result in significant lack of flexibility, especially for representing the 
relationships between the situations. We are going to address this problem in more details in 
sections 4 and 5. 

As a part of this work, we analyzed the complexity of original CST situation reasoning. 

The results are depicted in table 1. If there exist at least one interval per context attribute, it 

means that 𝑃 ≥ 𝑁. In practice often P>>N, and therefore the expectation is to have O(P) 

reasoning time – linear dependency between reasoning time and number of intervals. 

Practical evaluation of that claim is provided in section 6. 

In order to reason about situation relationships, original CST provides the following 

situation algebra operations. 

1. AND: Confidence in the fact that all situations occur simultaneously. 
2. OR: Confidence in the fact that at least one of the situations occurs. 
3. NOT: Confidence in the fact that situation is not occurring. 

Expressions (3) present the definitions of the operations. 
 

AND: c nfA & 𝐵(X)  =  min(c nfA(X), c nfB(X))

OR: c nfA | B(X)  =  max(c nfA(X), c nfB(X))

NOT: c nf! A(X)  =  1 –  c nfA(X)

                                                   (3) 

More complex situation algebra expressions can be calculated recursively, using the set 
of operations (3) as a basis. 

4   CST Situation Awareness Challenges – Motivating Scenario 

CST situation representation provides a set of tools, useful for many practical situation 
awareness cases. However, when the situation relationships are involved, the capability of 
original CST situation definition might be insufficient. 

Consider a sample scenario – a smart office that monitors the workplace environment. 
Smart office has a light sensor and a sound sensor deployed. Each of those sensors has a 
directly corresponding context attribute: respectively LightLevel (measured in lx) and 
NoiseLevel (measured in dB). 

Consider two CST situations: LightLevelOK and NoiseLevelOK. They define 
respectively whether the workplace has sufficient illuminance and whether the noise level 
at the workplace is acceptable. Expressions (4) and (5) represent situations LightLevelOK 
and NoiseLevelOK. 

 

LightLevelOK= [

0,LightLevel<350

 .5,LightLevel ∈ [350,500)

1, therwise
                                                                    (4) 

 

NoiseLevelOK= [

1,NoiseLevel  40

 .7,NoiseLevel ∈ (40,50]

 .3,NoiseLevel ∈ (50,60]

0, therwise

                                                                      (5) 
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Table 1. Original CST Situation Reasoning Complexity 

Operation Order Explanation 

+ O(N) Sum in formula (1) has N summands. 

* None Sum in formula (1) has N summands. Every summand has 1 

multiplication operation. However, if the weights are 

multiplied by corresponding contribution levels in advance, 

there is no need for multiplication at all. 

comparison O(P) Consider formula (2). In the worst case Ki comparisons will 

be required to find the contribution level. For N context 

attributes the number of comparisons is ∑
i=1

𝑁

𝐾 =P.  

memory O(P)  For every context attribute situation needs to store Ki 

contribution values and Ki+1 interval borders and inclusion 

levels per every axis. That gives O( ∑
i=1

𝑁

𝐾 ) = O(P) memory 

consumption. The situation also needs to store N weights, but 

if they are applied in advance, no additional memory is 

needed. 

A compound situation ConditionsAcceptable determines whether the workplace has 
acceptable environmental conditions for the office worker. The proposed example is 
simplified, so in this scenario ConditionsAcceptable comprises only illuminance level and 
noise level. We define ConditionsAcceptable as LightLevelOK & NoiseLevelOK, where 
AND operation is performed according to the rules of CST situation algebra, presented in 
formulas (3). 

The construction of ConditionsAcceptable situation is depicted on figure 1. 
In order to derive ConditionsAcceptable, situation algebra was applied to expressions 

(4) in a straightforward manner. The resulting situation ConditionsAcceptable is depicted in 

figure 2. In a formal way ConditionsAcceptable situation can be defined according to 

formula (6). 

 

ConditionsAcceptable == 

[
 
 
 
 

1,(LightLevel ≥ 500) ∧ (NoiseLevel  40)

 .7,(LightLevel ≥ 500) ∧ (NoiseLevel ∈ [40,50))

 .5,(LightLevel ∈ [350,500)) ∧ (NoiseLevel  50)

 .3,(LightLevel ≥ 350) ∧ (NoiseLevel ∈ [50,60))
0,(LightLevel<350) ∨ (NoiseLevel>60)

                       (6) 

 
So, ConditionsAcceptable can be viewed as real life situation from common sense point 

of view. Moreover, situation ConditionsAcceptable is a result of a simple situation algebra 
expression over original CST situations. But the distribution of confidence levels, provided 
in formula (6), is unrepresentable in terms of the original CST situation definition. 
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Fig. 1. Constructing ConditionsAcceptable situation 

 
Fig. 2. ConditionsAcceptable situation 

For the reasons of memory efficiency and reasoning complexity in original CST 
situations every context attribute contributes independently to the total confidence level. 
However, sometimes this assumption is too restrictive, especially if situation algebra is 
involved. For example, in this scenario LightLevel has zero contribution to 
ConditionsAcceptable if noise level is high and non-zero contribution otherwise. 

We are going to refer to that sample scenario throughout the paper. 
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5   Enhanced Situation Representation 

In order to make situation reasoning faster and cover the broader range of possible 
situations, we propose additional types of situation representation. 

Dense orthotope-based situation space. Consider the situation ConditionsAcceptable 

from the example scenario presented in section 4. The distribution of confidence levels for 

ConditionsAcceptable is depicted in figure 2. The structure presented in figure 2 can be 

straightforwardly formalized into formula (7). 

C nditi nsAcceptab e =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 , (Li htLeve < 35 ) ∧ (N iseLeve  4 )

 , (Li htLeve < 35 ) ∧ (N iseLeve ∈ [4 ,5 ))

 , (Li htLeve < 35 ) ∧ (N iseLeve ∈ [5 ,6 ))

 , (Li htLeve < 35 ) ∧ (N iseLeve > 6 )

 .5, (Li htLeve ∈ [35 ,5  )) ∧ (N iseLeve  4 )

 .5, (Li htLeve ∈ [35 ,5  )) ∧ (N iseLeve ∈ [4 ,5 ))

 .3, (Li htLeve ∈ [35 ,5  )) ∧ (N iseLeve ∈ [5 ,6 ))

 , (Li htLeve ∈ [35 ,5  )) ∧ (N iseLeve > 6 )

1, (Li htLeve ≥ 5  ) ∧ (N iseLeve  4 )

 .7, (Li htLeve ≥ 5  ) ∧ (N iseLeve ∈ [4 ,5 ))

 .3, (Li htLeve ≥ 5  ) ∧ (N iseLeve ∈ [5 ,6 ))

 , (Li htLeve ≥ 5  ) ∧ (N iseLeve > 6 )

                       (7) 

 
Original CST situation space uses separate contribution levels for every interval of 

every context attribute. In order to achieve more flexibility, a separate confidence level can 
be defined for every combination of context attribute intervals. Every row of formula (7) is 
a Cartesian product of intervals, and thus defines an orthotope [Co73]. Orthotopes are the 
basis of situation awareness improvements proposed in this paper. 

By definition an orthotope is a Cartesian product of intervals [Co73]. So, for example, 
one dimensional orthotope is a line segment, two dimensional orthotope is a rectangle, three 
dimensional orthotope is rectangular parallelepiped. The example orthotope is provided on 
figure 3. 

 
Fig. 3. An orthotope in the context space. It corresponds to intervals [20;25] on temperature axis, 

[50;60] on NoiseLevel axis and [350;500] on LightLevel axis.  
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In formula (7) the orthotopes densely cover (tesselate) the entire application space, so 

that any context state belongs to some orthotope. Therefore, this kind of situation 

representation is referred to as dense orthotope-based situation space. 
Formal definition of generic dense orthotope-based situation space can be represented 

as follows. Consider that there are N context attributes involved in the situation. For the 
situation ConditionsAcceptable from the sample scenario, N=2 (LightLevel and 
NoiseLevel). Without the loss of generality, we can consider that the relevant context 
attributes correspond to positions 1...N in the context state vector. Let LightLevel and 
NoiseLevel be the values number 1 and 2 in the vector respectively. The number of 
intervals, defined over i-th context attribute, is referred to as ri. In the sample scenario, r1 = 
3 and r2 = 4. The boundaries of i-th interval for j-th context attribute are referred to as lowj,i 
and highj,i. Every boundary of every interval can be either included or excluded, as long as 
every possible context state is included in one and only one orthotope. We define the total 

number of orthotopes as 𝐿 = ∏ 𝑟𝑖
𝑁
i=1 . For ConditionsAcceptable situation L=12. The total 

number of involved intervals is referred to as R=∑
i=1

𝐿

𝑟 . For ConditionsAcceptable situation 

R=7. 
Dense orthotope-based situation space is defined according to formula (8).  

c nf(X) =

[
 
 
 
 

a1,(x1 ∈ [  w1,1, hi h1,1]) ∧. . .∧ (xN ∈ [  wN,1, hi hN,1])

a2,(x1 ∈ [  w1,1, hi h1,1]) ∧. . .∧ (xN ∈ [  wN,2, hi hN,2])
. . .

aL, (x1 ∈ [  w1,r1 , hi h1,r1]) ∧. . .∧ (xN ∈ [  wN,rN , hi hN,rN])

                  (8) 

 
For every involved context attribute the set of intervals should cover the entire set of 

possible context attribute values. Also for every involved context attribute the intervals 
should not overlap with each other. 

Table 2 presents reasoning complexity analysis for dense orthotope-based situation 
spaces. Table 2 shows that reasoning complexity is O(R). This claim is practically tested in 
section 6. Also table 2 shows that the major drawback of this situation representation is 
high memory consumption. In practice reasoning about orthotope-based situation space is 
done using decision trees. Pruning the decision tree is a way to improve both memory 
consumption and reasoning time. The exact potential benefit of decision tree pruning is a 
subject of future work. 

 
Table 2. Reasoning over Dense Orthotope-based Situation Spaces 

Operation Order Explanation 

comparison O(R) In the worst case the proper interval will be 

encountered the last for every axis. In that case ri 

interval inclusion tests will be performed for every 

context attribute, and it will result in ∑ 𝑟 
𝐿
i=1 =R total 

comparisons. 

memory O(L+R) Confidence level for very cell needs to be stored, as 

well as all the boundaries. 

 

In order to improve memory consumption while retaining the flexibility, we developed 

another kind of situation representation. 
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Sparse orthotope-based situation space. Consider the situation ConditionsAcceptable, 
defined in the sample scenario in section 4. Formula (7) was derived by straightforward 
formalization of figure 2. But it is clearly visible that formula (7) is redundant, and formula 
(6) represents ConditionsAcceptable situation in a much more concise manner. Formula (6) 
can be derived from formula (7) by merging the neighboring orthotopes, if those orthotopes 
have the same associated confidence level. Situation algebra operators, presented in 
formulas (3), make it likely that the adjacent orthotopes will share the confidence level. 

Formula (6) can be even further simplified, and the situation ConditionsAcceptable can 
be defined according to formula (9) or figure 4. 

ConditionsAcceptable =

[
 
 
 
 

1,LightLevel ≥ 500 ∧ NoiseLevel  40

 .7,LightLevel ≥ 500 ∧ NoiseLevel ∈ [40,50)

 .5,LightLevel ∈ [350,500) ∧ NoiseLevel  50

 .3,LightLevel ≥ 350 ∧ NoiseLevel ∈ [50,60)
0,otherwise

                      (9) 

 
In formula (9) the entire situation space is defined as a set of orthotopes in the context 

space, and each orthotopes is assigned a confidence level. But in contrast with dense 
orthotope-based situation space, the orthotopes are sparsely scattered throughout the 
context space, and the default confidence level is associated with the context state that do 
not belong to any orthotope. This kind of situation representation is referred to as sparse 
orthotope-based situation space. 

Generic sparse orthotope-based situation space can be formally defined as follows. 
Consider that situation space is defined over N context attributes. Without the loss of 
generality, we can consider that the relevant context attributes correspond to positions 1...N 
in the context state vector. For the situation ConditionsAcceptable, similarly to dense 
orthotope-based situation representation,  N=2 (LightLevel and NoiseLevel). Let LightLevel 
and NoiseLevel be the values number 1 and 2 in the context state vector respectively. The 
number of orthotopes is referred to as Q. For the situation ConditionsAcceptable Q=4. 
Every orthotope is defined over N context attributes and contains one interval for each 
context attribute. Let the boundaries of i-th orthotope for j-th context attribute be lowj,i and 
highj,i. Every boundary of every orthotope can be either included or excluded, as long as 
orthotopes do not overlap. 

 
Fig. 4. ConditionsAcceptable situation – simplified 

Sparse orthotope-based situation space can be defined according to formula (10).  
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c nf(X) =

[
 
 
 
 
a1,(x1 ∈ [  w1,1, hi h1,1]) ∧ …∧ (xN ∈ [  w1,N, hi h1,N])

a2,(x1 ∈ [  w2,1, hi h2,1]) ∧ …∧ (xN ∈ [  w2,N, hi h2,N])
…

aQ, (x1 ∈ [  wQ,1, hi hQ,1]) ∧. . .∧ (xN ∈ [  wQ,N, hi hQ,N])

ad fault,  therwise

                (10) 

 

We performed complexity analysis for reasoning over sparse orthotope-based situation 

spaces. The results are given in table 3 and some necessary explanations are provided 

below. 

Table 3. Reasoning over Sparse Orthotope-based Situation Spaces 

Operation Order Explanation 

comparison O(Q*N) At most N interval inclusion checks are required for each of 

Q subspaces. 

memory O(Q*N) Situation space stores Q contribution levels and Q*N 

interval boundaries. The total order is O(Q*N). 

 
Comparing to dense orthotope-based situation space, sparse orthotope-based situation 

space often represents situations in more clear and concise manner, and yet provides the 
same level of flexibility. Transitioning from dense to sparse orthotope-based situation space 
might improve memory consumption and reasoning time, but it depends on how many 
neighboring orthotopes share the same confidence level. 

Situations of different types can be combined in the same application space and, 
moreover, different kinds of situation spaces can be combined in situation algebra 
expressions without altering the original concepts of CST situation algebra. Mixed situation 
spaces that have the features of original CST situation spaces on high level and dense 
orthotope-based or sparse orthotope-based situation spaces on low level are the subject of 
future work (see section 7). 

Practical evaluation of different situation representation techniques is presented in 

section 6. 

6   Reasoning Complexity Evaluation 

The theoretical evaluation of situation inference complexity is presented in section 3 
and section 5 (particularly, in table 1, table 2 and table 3). In this section we will address the 
practical aspects of situation reasoning. 

Original situation space. Figure 5 shows testing results of ECSTRA reasoning for 
original context spaces theory situation space. Every point of the plot is the testing results 
for randomly generated situation. Abscissa contains the number of intervals for the situation 
(value P), and ordinate contains the average reasoning time in milliseconds. We generated 
60000 random situations. For every situation the total number of intervals was chosen from 
[1;60] range uniformly. The distribution of intervals between context attributes was 
generated uniformly. The reasoning was performed at 1000 random context states for every 
situation. The result of every experiment is the average reasoning time. 

The plot on figure 5 has visible heteroscedasticity, and it can obscure the results and 
mislead the analysis. The reason for heteroscedasticity is following: for any situation with P 
involved intervals, if P=N (one interval per axis) there are P inevitable interval inclusion 
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checks. It is the worst case for a situation. In the best case there are P/2 interval inclusion 
checks in average: if N=1 the number of comparisons varies from 1 to P with average at 
P/2. So the expected lower border and upper border are linear, with the upper border around 
twice higher than the lower border. And that is visible on figure 5. 

 

 

Fig. 5. Situation Reasoning Time – Original CST Definition 

In order to have reliable estimations in presence of heteroscedasticity, we used the 
weighted regression technique. We used the method suggested, for example, in [Do07]. In 
addition we took the advantage of discrete explanatory variable, which allowed us to have 
variance estimations for every relevant point on abscissa. Regression analysis was 
performed using R [VS12] statistical software. The testing have shown that R

2
 coefficient 

of weighted regression is equal to 96.18%, which shows good fit and practically proves the 
claims about linear algorithm complexity. 

Dense orthotope-based situation space. The experiment settings for dense orthotope-
based situation reasoning evaluation were similar to those for original CST situation 
reasoning evaluation. We generated 60000 random situations, where every situation 
contained up to 40 intervals. 

The testing results are presented on figure 6. The abscissa contains R – the number of 
involved intervals, while the ordinate contains average reasoning time in milliseconds. 

In order to prove linear trend, we performed regression analysis over testing results. To 
overcome heteroscedasticity weighted regression technique was used. R

2
 coefficient is 0.87, 

and it shows good fit and practically proves linear dependency between reasoning time and 
total number of intervals. 

Sparse orthotope-based situation space. Figure 7 contains evaluation results for 
reasoning over sparse orthotope-based situations. The experiment settings were similar to 
the experiments for evaluating original CST situation space and dense orthotope-based 
situation space. Test engine generated 60000 random situations with up to 60 intervals. 

Figure 7 shows clearly visible heteroscedasticity. The reasons for heteroscedasticity are 
quite similar comparing to other experiments, but the features of situation representation 
introduce more variability in reasoning time. In order to analyze the data in presence of 
heteroscedasticity, we employed weighted regression technique. R

2
 coefficient is 0.82, and 

it practically proves the linear trend. 
To summarize, for all three mentioned situation representations, theoretical claims about 

reasoning complexity were proven practically. In addition, for all situation definitions the 
testing results showed heteroscedasticity: with growing explanatory variable, the variability 
of reasoning time grows as well. It makes reasoning time less predictable when the number 
of involved intervals increases. 
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Fig. 6. Situation Reasoning Time - Dense Orthotope-based Situation Spaces 

 

 
Fig. 7. Situation Reasoning Time - Sparse Orthotope-Based Situation Spaces 

7   Summary and Future Work 

In this paper we addressed the problem of situation awareness and made significant 
improvement to the situation awareness technique based on context spaces approach. 
Taking context spaces theory as a baseline, we developed enhanced situation awareness 
techniques that can address the broad class of real-life situations and reason about situation 
relationships in more efficient manner. The increasing flexibility of situation representation 
enables more versatile situation awareness, better generalization of context information and 
more intelligent decision making. 

We consider the following directions of further work in situation awareness area: 

1. Mixed situation representation. Situation space can be defined by combining the 
elements of original, sparse orthotope-based and dense orthotope-based situation spaces. 
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However, in order to construct mixed situation space, we need to identify which context 
attributes have mutually dependent contributions. 

2. Automated situation space definition. Situations in CST are currently defined 
manually. This process can be cumbersome and prone to errors. Existing knowledge bases 
(e.g. ontologies of the subject area) might already have the necessary information to 
generate the situations, and extracting the situations from knowledge bases can eliminate 
the need for manual work.  

3. Run-time situation inference. Situations of interest can as well be unclear during 
the system startup. Identifying the areas of context space that are likely to be the situations 
of interest is a subject of future work. For example, it can be achieved by clustering context 
states history. 

4. Situation awareness in absence of information. Due to the sensor uncertainty and 
unreliability, the sensory data can become erroneous or missing. The goal of situation aware 
system is to retain as much situation awareness capability as possible in these 
circumstances. 

5. Context prediction and proactive adaptation. Some papers addressed the problem 
of context prediction and acting on predicted context in context spaces theory 
[BZ09][BZ10b], but still there is a large room for improvements in the field. In particular, 
situation awareness advancements can enhance situation prediction area. 
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Foreword 

Chapter I classified situation awareness approaches and identified a clear distinction between defining 

situations using expert knowledge and learning the situation definitions. This chapter answers the 

research question 1, but it takes another approach comparing to chapter III. While chapter III 

investigates defining the situations by hand, this chapter proposes an approach to learning the 

situations. 

Most of situation awareness approaches require labeled data to learn the situation definitions, but 

this chapter proposes an approach to infer the situations out of unlabeled data. The solution proposed 

in this chapter chapter infers most important places that a user visits and autolabels the identified 

place, hence addressing both important problems of learning situations from unlabeled data. The 

proposed algorithms are implemented in ContReMAR application, which is based on ECSTRA 

framework. 
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Where Have You Been? Using Location Clustering and 

Context Awareness to Understand Places of Interest  

Abstract. Mobile devices have access to multiple sources of location data, but at any 

particular time often only a fraction of the location information sources is available. 

Fusion of location information can provide reliable real-time location awareness on 

the mobile phone. In this paper we propose and evaluate a novel approach to detecting 

the places of interest based on density-based clustering. We address both extracting 

the information about relevant places from the combined location information, and 

detecting the visits to known places in the real time. In this paper we also propose and 

evaluate ContReMAR application – an application for mobile context and location 

awareness. We use Nokia MDC dataset to evaluate our findings, find the proper 

configuration of clustering algorithm and refine various aspects of place detection. 

Keywords: context awareness, contextual reasoning, location awareness, sensor 

fusion. 

1  Introducton 

Present day mobile devices have access to multiple sources of location information. The 

possible sources include GPS sensors, WLAN location information, GSM localization, 

indoors positioning systems, dead reckoning. However, the sources of information are not 

always available. For example, GPS sensor is unstable indoors, it is battery consuming, and 

users usually turn it on only for driving from one place to another. In turn WLAN is often 

available at home and in office buildings, but it is rarely used outdoors. Therefore, for 

location awareness it is vital to fuse the location measurements from different sources. 

Location data fusion can remedy both with the unavailability of location information 

sources and the lack of precision of location information. 

The area of mobile location awareness faces two major challenges that we are going to 

address in this paper: 

- Detecting the places of interest out of location measurements that are fused from 

multiple sources. 

- Finding the model of places of interest that allows feasible mobile real-time 

recognition using the measurements from multiple sources. 

We used Nokia Mobile Data Challenge (MDC) dataset [LG12] as a benchmark, in order 

to evaluate location awareness algorithms, as well as to test the long-run performance of the 

application by imitating the sensor feed. We used ECSTRA toolkit [BZ11a] for context 

awareness and context information sharing. 

The paper is structured in the following way. Section 2 proposes the approach to extract 

relevant places from location information. Section 3 discusses the architecture of 

ContReMAR – mobile context awareness application that we developed to evaluate the 

proposed approaches. ContReMAR has embedded capabilities for location awareness and 

location data fusion. Section 4 provides evaluation and demonstration of the proposed 

application. We use Nokia MDC data [LG12] in order to configure the parameters of 

clustering algorithms and increase the precision of place recognition. Section 5 discusses 

the related work. Section 6 summarizes the results, provides further work directions and 

concludes the paper. 
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2  Mobile Location Awareness 

Location awareness is an important part of context awareness. The information about 

current or previously visited places can be used to provide timely assistance and 

recommendation for the user. The outcomes of location awareness can be also used as a 

baseline for activity recognition or context prediction. One of the main aspects of location 

awareness is detecting and labeling the places of interest. 

In order to detect the relevant places, we need to identify the concept of a relevant place 

first. The place where the user has spent significant time is likely to be the place of interest 

for the user. The latter can be obtained by clustering the location measurements. We 

propose the following algorithm for extraction and identification of the relevant places. 

Evaluation of the proposed approach is provided in section 4. 

Place Recognition Approach. 

Step 1. Fusion of location measurements. We complemented the information obtained 

from GPS data with the location information obtained from WLAN. The GPS entries, 

which corresponded to high-speed movement, were removed from consideration. 

Step 2. Cluster the location information. When logging is complete (e.g. at the end of 

the day), the application finds the clusters of location measurements to detect the places of 

interest. The nature of the task enforces following requirements for the clustering approach: 

1. The user stays in the relevant place for significant time. So, the place of interest can 

be characterized by a relatively dense cluster of location measurements. 

2. The number of places, that user has visited during a day, is not known in advance. 

Therefore, the number of clusters is initially unknown. 

3. Some measurements do not correspond to any place of interest (e.g. user just walks 

on a street). Therefore, the clustering algorithms should not try to attribute all points to 

some cluster. 

The approach, which satisfies all the constraints, is density-based clustering. DBSCAN 

[EK96] and OPTICS [AB99] are the most well-known algorithms of that approach. Those 

algorithms have the following parameters: 

- MinPts – minimum number of points in vicinity, in order for the point to be in the 

core of the cluster. 

- Eps – vicinity radius. 

Step 3. Analysis of relevance. This step identifies, whether the detected clusters are the 

places of interest or not. For example, staying at the traffic light can result in multiple GPS 

measurements around the same spot, but it is not a place of interest. Irrelevant places can be 

filtered out by applying a threshold on the time spent at the place. More advanced aspects 

of relevance analysis are discussed in section 4. 

Step 4. Auto-labeling the detected places. The detected place should be presented to 

the user in a meaningful way. Our approach combines two ways to auto-label the detected 

places. 

Step 4.1. Obtain the list of possible relevant places. We use Google Places API 

[GP12] to detect the relevant places in the vicinity. The obtained list of places can be then 

filtered and ordered depending on at what time user was at that place. 

Step 4.2. Analyze the time spent at a certain place of interest. In order to identify, 

what place of interest does the cluster correspond to, it is important to notice when the user 

was at that place. For example, if the user spent entire Wednesday at some place, it is very 

likely to be his/her work or study place, any night is very likely to be spent at home, and 

break in the middle of the working day is very likely to be lunch. 
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Step 5. Save the place description for later real-time recognition. 
Section 3 discusses ContReMAR application, in which we implemented this location 

awareness approach. The evaluation of the proposed approach is presented in section 4. 

3  ContReMAR Application 

In order to prove, test and validate our approach, we designed and developed ContReMAR 

(CONText REasoning for Mobile Activity Recognition) application – a solution for mobile 

context awareness. The scope of ContReMAR is broader than just location awareness. 

However, in this paper we are going to focus on location awareness capabilities of 

ContReMAR, and its other aspects of mobile context awareness are out of scope of this 

paper. 

The location awareness approach, proposed in section 2, was embedded into the 

ContReMAR application. The architectural and implementation solution are addressed in 

details in the subsections 3.1-3.3. 

3.1 ContReMAR Architecture 

The structure of ContReMAR application is depicted in figure 1. The blocks, which we 

designed and implemented specially for ContReMAR are depicted in green. The third-party 

solutions that we used are presented in yellow. 

The application is divided into server part (which resides, for example, on a stationary 

computer or a laptop) and client part (which resides on the user device). Server side is 

responsible for computationally heavy and memory heavy parts of the work: logging the 

GPS data and identifying the clusters. The client side is responsible for real-time activity 

recognition. ECSTRA (Enhanced Context Spaces Theory Based Reasoning Architecture) 

framework [BZ11a], which is the basis of context reasoner, is available for Android 

platform. In order to evaluate the algorithms, we also used a simulation of mobile device, 

where the sensor feed was replaced with Nokia MDC [LG12] data flow. 

 
Fig. 1. ContReMAR Application Architecture 

Figure 1 illustrates that ContReMAR application consists of the following components: 
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- ECSTRA-based context reasoner. We developed context reasoner for real-time 

location awareness, situation awareness and activity recognition. The detailed description 

of context reasoner component is provided in the section 3.2.  

- Location Analyzer. We implemented location analyzer in order to infer new 

meaningful places from raw location data. Location analyzer is discussed in details in 

section 3.3. 

- User Interface. It is a currently prototyped application component, which shows the 

results of context reasoning. The design of user-friendly interface is a subject for future 

work. 

- Elvin publish/subscribe environment. In order to facilitate the communication 

between mobile device and the server side, we employed Elvin publish/subscribe protocol 

[E11]. Our application used Avis [A11] open source implementation of Elvin protocol. The 

proposed solution ensures seamless communication, even if both mobile device and server 

(which can be situated on a laptop) are moving between the coverage areas of different 

WLAN spots. 

- Sensors. In non-simulated environment the sensors are merely the sensors situation on 

a mobile device. In order to evaluate our approach using Nokia MDC data [LG12] we also 

developed a simulated mobile device, which imitates sensor feed by substituting it with 

Nokia MDC data flow. 

The application uses Google Places API [GP12] in order to detect the possible places of 

interest in the vicinity of the location. 

3.2 Context Reasoner 

We proposed and developed context reasoner for real-time inference of location, situations 

and activities. Context reasoner is based on ECSTRA framework [BZ11a], and has many of 

it components reused or extended from ECSTRA. ECSTRA is a general purpose context 

awareness and situation awareness framework, which acts a backbone for context reasoning 

in ContReMAR. The structure of context reasoner is depicted in figure 2. 

  

Fig. 2. Context Reasoner Architecture 

In figure 2 the components specially designed for ContReMAR are depicted in green. 

Components reused from ECSTRA framework are depicted in blue. 

Context reasoner consists of following components: 

- Context collector. We redeveloped context collector component based on the similar 

component of ECSTRA framework. It is responsible for sensor fusion, proper reporting of 
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the newly arrived sensor data and preliminary analysis. 

- Application space. Application space was reused from ECSTRA framework. 

Application space is responsible for handling the reasoning requests, which come from UI 

component. Application space contains complete current context information and 

encompasses situation spaces – the possible interpretations of sensor data. 

- Situation spaces. Situations are generalizations of sensor information.  Situation 

spaces are ESCTRA components, which are responsible for reasoning about one situation 

each. The situations of interest for this paper are the relevant places. However, in general 

case situations can also represent, for example, activities or events. 

- Location importer. We developed location importer to ensure proper introduction of 

new places of interest (i.e. new situation spaces) into the application space. 

- Elvin connector. Elvin connector is ECSTRA component (part of Elvin support in 

ECSTRA), designed to send and receive context information. It was extended comparing to 

ECSTRA in order to incorporate exporting and importing the place descriptions. 

More details on ECSTRA and its components can be found in [BZ11a]. 

3.3 Location Analyzer 

We designed and implemented location analyzer for extracting relevant places out of 

location data. Location analyzer is also responsible for relevance analysis, place type 

analysis and interacting with Google Places to detect the places in proximity of the location 

measurements cluster. Figure 3 shows location analyzer architecture. ContReMAR-specific 

components are depicted in green. The components, reused from ECSTRA, are depicted in 

blue. Location analyzer contains the following components: 

- Elvin connector. The component originates in ECSTRA, but it was extended to 

handle new functionality of exchanging the situation descriptions. Elvin connector was 

already described in section 3.2.  

 
Fig.3. Location Analyzer Architecture. 

- Clusterer.  The clusterer component is one of the core components in ContReMAR. 

We designed the component to cluster location measurements in order to define the places 

of interest. Clustering was facilitated by the libraries of Weka toolkit [HF09]. Our 

application use density-based clustering, which was justified in section 2. The parameters 

of clustering algorithms are discussed in section 4. The clusterer is also responsible for 

analyzing the type of the place and communicating with Google Places service in order 

identify possible places, which the cluster can correspond to. 

- Location exporter. Location exporter is responsible for translating clusters of points 

into situation descriptions and providing the descriptions to Elvin connector for further 

sharing with user device. 

- Logger.  We implemented loggesr component to provide detailed reports of how the 

application worked. It is mostly used for monitoring, debugging and evaluation purposes. 
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Next section discusses the advanced aspects of location analysis and provides the 

evaluation of ContReMAR application. 

4  Evaluation 

The proposed location awareness approach contains multiple parameters, like the minimum 

number of points for the cluster core, radius of the location point proximity, minimum time 

for the place to be relevant. In order to determine the best values of the parameters, 

extensive user studies are needed. Still unlabeled data, provided by Nokia MDC [LG12], 

allow performing some analysis and establishing some error bounds and parameter 

recommendations. 

4.1 Experiments 

We performed a series of experiments to prove and evaluate our approach. We used 

ContReMAR application with imitated user device as a testbed. During the experiment we 

simulated the mobile device and used Nokia MDC [LG12] data as an imitated sensor feed. 

The settings of every experiment, as well as the results, are reviewed in the subsequent 

subsections. 

Experiment 1. Shall the location information be fused from multiple sources? Or is 

there any dominant source of location information? Location measurements come from 

two sources: GPS measurements and WLAN access at known spots. Figure 4 shows 

proportion of GPS location data in the total number of location measurements. The users to 

be depicted on the plot in figure 4 were chosen randomly (uniformly among all users in the 

Nokia MDC database [LG12]). 

 
Fig 4. Proportion of GPS data in location measurements 

The absence of obvious pattern in figure 4 allows deriving an important conclusion. 

Figure 4 proves that there is no dominant source of location information. Therefore, as it 

was expected, in practice we have to analyze both sources of location information and 

cannot simply use just one of those. This conclusion justifies the need for further 

experiments in order to determine, whether density-based clustering works well in presence 

of multiple-source location measurements. 

Experiment 2. Can we use time thresholds to increase the precision of place 

recognition and minimize the number of false recognitions? What threshold value 
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should it be?  The relevance of the place is influenced by the amount of time that the user 

spends at that place. If the user spends less than a minute at some place, most likely the user 

just passed it by. However, if the user spends around 15 minutes at some place, it is usually 

worth noticing. In the testbed application we implemented the following criterion – if the 

user spends less than certain amount of consecutive time at the location cluster, then the 

cluster is rejected and removed from consideration. The dependency between the number of 

detected clusters over time and the consecutive time threshold is presented in figure 5. The 

user was chosen randomly, but the trend holds for the vast majority of the users. We 

analyzed the possible time threshold values of 1 minute, 3 minutes, 5 minutes, 10 minutes 

and 15 minutes. The analysis of the trends in the number of recognized places allowed us 

adjusting the value of the time threshold. 

We analyzed figure 5 according to the following criteria. The proper identification of 

relevant places should notice the most frequently visited places (like home, work or favorite 

lunch place) in first week or few weeks. After that the rate of detecting new places should 

slow down. If the rate stays high all the time, it can be a sign of numerous false 

recognitions. To summarize, if the number of recognized places grows with constant trend, 

it is a sign of possible massive false recognitions. 

Figure 5 shows that the threshold of 1 minute leads to constant growth of recognized 

places. The threshold of 3 or 5 minutes also shows the same problem for most users. For the 

thresholds of 10 minutes of 15 minutes the number of recognized places almost stops 

growing in the first three weeks, and it matches the expected behavior of the correct 

location awareness algorithm. Therefore, the time threshold values of 10-15 minutes should 

be preferred. 

Experiment 3. How can we configure clustering algorithm using unlabeled data? 

Can we do it by analyzing the fraction of revisited places? The efficiency of the place 

recognition algorithm can be evaluated by analyzing the number of revisited places. If the 

place is visited only once, it means that this place will just hamper recommendation and 

prediction algorithms. The possible unsupervised criterion for place recognition efficiency 

is the count of places, which were later revisited. Higher is that count, more significant 

places are detected. 

 

 
Fig. 5. Recognized places over time for random user, depending on the time threshold. 
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In table 1 we show the results of location measurements analysis for four randomly 

chosen users. We took all the places recognized in the first 25 days and analyzed how many 

times were they re-encountered during the first 50 days (i.e. during the 25 of active place 

recognition and 25 days after that, when we only analyzed the visits to the already 

recognized places). For the experiment we used the clustering algorithm with parameters 

Eps=50m, MinPts=3 and without consecutive time restrictions. Due to the very relaxed 

constraints the algorithm tends to recognize as a place everything that even remotely 

resembles a place of interest. We are going to refer to that algorithm as the benchmark 

clustering algorithm. 

Table 1. Proportion of revisited places. 

User (anonymized) a b c d 

Revisited places (%) 49% 53% 38% 19% 

 

As table 1 shows, the benchmark clustering algorithm will result in 50-60% of false 

recognitions (up to 80% in some cases). This information can be later used for auto-

configuration purposes of location awareness algorithms. The parameters of the clustering 

algorithm can be preliminary evaluated by comparing it to the benchmark clustering 

approach. If the clustering approach under consideration leaves out in average 50-60% of 

clusters, recognized by the benchmark clustering algorithm, then it shows the expected 

behavior of a correct place clustering approach. Still, it should be noted that this criterion 

can be used only for preliminary estimation, and more precise parameter choice needs 

extensive user studies. 

4.2 Demonstration and Evaluation Summary 

To summarize, the experiments and demonstration lead to the following conclusions: 

- GPS and WLAN location measurements are equally important for location awareness 

on the mobile phone. Density-based clustering is a feasible approach for detecting relevant 

places. 

- In order to avoid false recognitions, the threshold can be put on the consecutive time 

that the user remained at some area. Using the threshold values of 1-5 minutes exhibits the 

signs of massive false recognitions, while the threshold values of 10-15 minutes show no 

visible problems. 

- The clustering algorithm parameters can be evaluated by comparing its results to the 

benchmark clustering algorithm. The benchmark clustering algorithms is likely to produce 

from 50-60% to 80% of false recognitions. If the clustering algorithm differs from 

benchmark by that amount, it can be a preliminary indication of appropriate performance. 

The space requirements do not allow extensive demonstration. For the proof of concept 

we show the following example. Figure 6 shows the results of location measurements 

analysis for randomly chosen user for day one. The system was able to determine most 

likely home and work places. For example, the application detected that the user works in 

EPFL Lausanne. The system suggested 3 possible places, where the user is likely to work 

(all of them are subdivisions of EPFL) and filtered out the places which couldn’t be user’s 

workplace (like the nearby streets). 
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5  Related Work 

There is a large body of work in various techniques for trajectory mining, e.g. pattern 

discovery, similarity measures, clustering and classification for GPS data streams [HL08,  

JY08,  LJ10]. 

Spaccapietra et. at [SP08] introduced “stops and moves” model for reasoning from GPS 

data. The application allowed detecting user visits to place of interest, but the user had to 

specify the relevant places manually. Palam et. al. [PB08] proposed spatio-temporal 

clustering method, based on speed in order to find interesting places automatically. SeMiTri 

system [YC11] focused on processing heterogeneous trajectories, integrating information 

from geographic objects and accommodating most existing geographic information sources. 

The GeoPKDD1 [AB07] address semantic  behaviors of  moving  objects. Andrienko et. al. 

[AA11] developed a generic procedure for analyzing mobility data in order to study place-

related patterns of events and movements. 

An important novelty of our approach is fusion of information from multiple sources to 

build a comprehensive picture of user’s location. Our approach also scales to large amounts 

of data to find the model of places of interest that allows feasible mobile real-time 

recognition using the measurements from multiple sources. One more novel feature of our 

approach is auto-labeling the places of interest based on both location and time analysis. 

 

 
Fig. 6. ContReMAR application detected the workplace of the user 

Next section concludes the paper and provides the direction of future work. 

6  Conclusion and Future Work 

In this paper we proposed a novel technique for mobile location awareness. In order to 

prove the feasibility and efficiency of the proposed approach we developed an application 

called ContReMAR. The outcomes of ContReMAR can enhance mobile activity 

recognition, context prediction and mobile context-driven recommender systems. 

We used Nokia MDC dataset [LG12] as a simulated sensor feed in order to prove the 

soundness of our approaches, configure the proposed algorithms and evaluate the 

application performance. The evaluation showed the feasibility of density-based clustering 

approach to place identification and place recognition. Subsequent analysis led us to 

designing a set of experiments in order to test and evaluate the algorithms in absence of 

labeled data. In turn, it allowed us to configure the parameters of the algorithms. 

We identified the following major directions of the future work: 

- Improving the quality of place recognitions by performing user studies. 

- Location-driven mobile activity recognition. 
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- Designing friendly user interface. 

Present day mobile phones are able to sense the large amount of location information, as 

well as other diverse context. The proper analysis and verification of that information will 

significantly improve the capabilities of mobile devices and enable full-scale mobile 

location and context awareness, as well as support for advanced services and applications 

as has been demonstrated in [BZ12b]. 
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Foreword 

This chapter addresses the research question 1 – how to find a mapping between context information 

and ongoing situations? Like chapter IV, this chapter addresses the approach of learning situations 

from unlabeled data. However, this chapter proposes an alternative approach comparing to chapter IV. 

The solutions proposed in both chapters investigate learning situations out of unlabeled data and 

both solutions use density-based clustering for location inference. However, chapters IV and V take 

different approach to labeling. 

Among other contributions chapter IV proposed a viable method for automated situation labeling 

in location awareness scenario. Manual labeling introduces intrusiveness, but can potentially provide 

more meaningful situation names. Labeling is not restricted to naming. For example, in the 

lifelogging scenario in this chapter locations and activities are first labeled using pictures from a 

SenseCam, and only then user gives meaningful names to them. For manual labeling the learned 

situations need to be presented to the user in an understandable manner. Moreover, intrusiveness 

should be kept to minimum. This chapter addresses lifelogging scenario and proposes an approach for 

learning important locations and activities out of unlabeled data. Also this chapter proposes an 

approach and an application, which ensure comfortable labeling and easy retrieval. 
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Structuring and Presenting Lifelogs based on Location 

Data 

Abstract. Lifelogging techniques help individuals to log their life and retrieve 

important events, memories and experiences. Structuring lifelogs is a major 

challenge in lifelogging systems since the system should present the logs in a 

concise and meaningful way to the user. In this article the authors present a novel 

approach for structuring lifelogs as places and activities based on location data. The 

structured lifelogs are achieved using a combination of density-based clustering 

algorithms and convex hull construction to identify the places of interest. The 

periods of time where the user lingers at the same place are then identified as 

possible activities. In addition to structuring lifelogs the authors present an 

application in which images are associated to the structuring results and presented to 

the user for reviewing. The proposed approach allows automatic inference of 

information about significant places and activities, which generates structured 
image-annotated logs of everyday life. 

Keywords: activity recognition, activity inference, lifelogging, clustering 

algorithms, SenseCam, GPS. 

1 Introduction 

Lifelogging is the act of digitally recording aspects and personal experiences of someone’s 

life. Some people are interested in logging their life’s activities for fun, medical purposes or 

diary applications [BL07]. It is important for many individuals to retrieve moments and 

events such as trips, weddings, concerts, etc. Reminiscing previous events among a group 

of people not only helps in remembering those events, but it also creates tighter social 

bonds and improves relationships among them [Do09]. Aiding memory is also one of the 

benefits that people gain by logging their life. For example, a lifelogging system can be 

used as an external memory aid that supports a person with memory problems by using 

reminiscence therapy [KH10a]. In reminiscence therapy the user reviews and talks about 

the day with someone, such as a caregiver. The review and discussion act both as a social 

activity and as assistance for the user to remember. For this purpose, and to improve events 

retrieval using lifelogging in general, lifelogs need to be properly structured. Structuring 

lifelogs is the primary issue being addressed in this article. 

A natural way to structure lifelogs is in the form of activities; for example having lunch, 

sitting in the park, shopping, attending a seminar, etc. This structuring requires techniques 

for reasoning and inferring of activities from the logged data. The logged data is part of the 

lifelogs and the granularity, as well as the types of data, can vary. However, the basic 

context should be captured to infer activities. This basic context have been analysed and 

identified as identity, location, activity and time, where locations and activities are of 

special importance [KH10a][DA00]. Context data could be captured by mobile devices 

carried by the user such as wearable sensors. It is good, however, to use a single mobile 

device when logging as the number of devices the user needs to carry should be kept to a 

minimum.  

Just structuring data into activities based on context may not be sufficient for efficient 

retrieval and to support people reviewing their life experiences. Both context (e.g. time, 

locations and places) and content (e.g. images) need to be aggregated and segmented into 
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the activities and be given semantic meaning. In previous work the authors have explored 

using known places to create this semantic meaning [KH10a]. However, this approach is 

limited to predefined places. A desired solution would be finding places of importance and 

then inferring activities automatically. In this article the authors introduce an approach to 

detect new places and then infer activities automatically relying solely on time-stamped 

location data. Location and time are rich and easily accessible sources of context 

information that are relevant to find places of importance, where the user spent significant 

time. Being for a period of time in a significant place might be an indication of some 

activities happened in the place. The first problem that the article addresses is: “How can 

places of importance be recognized and activities be inferred based on location data and 

time?”  
Once lifelogs are segmented into activities, they can be annotated with content, such as 

images and descriptions. Images play a vital role in enriching the logs and in supporting 

reminiscence processes in a lifelogging system [FK02][Ch97]. Images can be captured 

automatically by purpose-built devices (e.g. SenseCam which is further described in 

Section 5) or by a smart-phone carried in a way that allows it to capture images. However, 

the information and the images still need to be presented to the user in a way that takes 

advantage of the structured lifelogs. The second problem that this article addresses is: 

“How can structured lifelogs be presented so the user can review and retrieve the life 

experiences?” 
The rest of this article presents the work done to address the problems listed in the 

introduction and is organized as follows: section 2 shows what algorithms have been used 

in this work to recognize new places. The calibration of the chosen place recognition 

algorithms is presented in section 3. Section 4 discusses the algorithm that has been used to 

infer activities. The development and deployment of the prototype application, which 

organizes the logs and presents them to the user, is the topic of section 5. Section 6 presents 

some of the related work and section 7 discusses the research questions. Finally, section 8 

concludes the paper and presents the future work. 

2 Recognizing places of importance 

One of the problems addressed in this article is how to recognize places of importance for 

the purpose of structuring lifelogs. This is important because the places people visit contain 

hints towards the activities taking place. In fact, time-stamped location data can be used to 

recognize relevant places, and then infer activities based on identified places and time. In 

practice, areas where the user spends a significant amount of time can be seen as important 

locations or as activities done by the user at a specific location. One of the common 

approaches for discovering interesting patterns and data distributions from location data is 

density-based clustering algorithms [EK96][AB99]. For instance, these algorithms can infer 

information of areas where the user spent significant time when having location data logged 

by a mobile sensor carried by the user [PB08][AA02].  

The proposed Place Recognition Algorithm relies on GPS points as a source of location 

data. The algorithm, however, is not restricted to GPS location information only. The 

adopted approach is depicted in Figure 1 and works as follows: 

1. Raw time-stamped location data are used as an input for the approach. 

2. Location data are clustered to identify places. 

3. A convex hull is constructed over each cluster to estimate the geographical boundaries 

of the place. 
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Fig. 1. New Places Recognition – Action Flow 

The aim of the clustering algorithm is to identify places of importance to the user, which 

are previously unknown in the system. These places can be confirmed and labeled by the 

user while reviewing the lifelogs. If the user confirms a place, the system will add the 

coordinates that correspond to this place and define the place as a known one. The 

algorithm compares each GPS point with all previously known places. If the point belongs 

to a known place, the algorithm will remove it from the input set, but keep it for inferring 

activities later on. If the point does not belong to a known place, the algorithm will keep it 

in the input set for clustering. The GPS points in the input set are then clustered and 

aggregated regardless of time. Such clusters are signs of places where the user spent 

significant time. For example, the user might go to the office at different times of the day 

but the place is still the same. 

The following requirements should be taken into consideration when choosing the 

clustering algorithm: 

 The number of clusters is initially unknown. Different users have different numbers of 

visited places. The user can also visit a place that is never visited before. Algorithms which 

have pre-defined number of clusters will consequently not work in that case. 

 Some GPS points might not correspond to a significant place for the user. For 

instance, the user might walk home from the working place. The location data, captured on 

the way home, do not belong to a significant place. The clustering algorithm should 

therefore allow a point not to be a part of any cluster. 

 The algorithm should be noise-tolerant and resistant to outliers. Even though GPS 

points correspond to the user’s position, outliers can appear when the user is inside a 

building when there are not enough satellites detected. These outliers should be identified 

as noise. 

Density-based clustering algorithms satisfy all the aforementioned requirements. Two 

algorithms of density-based clustering approach were used by the authors: Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) [EK96] and Ordering Points To 

Identify the Clustering Structure (OPTICS) [AB99]. OPTICS can be viewed as extension of 

DBSCAN. While DBSCAN provides faster runtime clustering, OPTICS supplies the 

developers with additional analysis tools and better visualization of the results [AB99]. 

Therefore, DBSCAN was implemented to cluster location data and then OPTICS-based 

analysis was used for algorithm configuration and parameters adjustment. 

After the clusters are identified, the system constructs the convex hulls to estimate the 

geographical boundaries of the places. The convex hull of a set of points Q is the smallest 

convex polygon P for which each point of Q is either on the boundary of P or in its interior 

[CL09]. It is usually assumed that points in the set Q are unique and that Q contains at least 

three points that are not collinear. Rubber band analogy is often used for better 

understanding. Each point in Q is considered as being a nail sticking out from a board. The 

convex hull is then the shape formed by a tight rubber band that surrounds all the nails 

[CL09]. Figure 2 illustrates the view of the place clusters after implementing DBSCAN 

over the location data and constructing the convex hull. 
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Fig. 2. Recognized places 

3 Calibrating the Place Recognition Algorithm  

Algorithms like the aforementioned density-based clustering algorithm have parameters 

that should be set in advance. Therefore, the parameters’ values should be calibrated and 

tuned so the algorithm produces a minimum number of errors. 

DBSCAN algorithm uses two parameters: the Radius, the range around a point where 

other points in that range are considered neighbours, and MinPts, minimum number of 

neighbours that a point needs in order to not be declared as noise. After setting the 

parameters, the algorithm forms clusters using the density of local neighbourhoods of 

points. This is done by selecting a point and then assigning all the points within its Radius 

(high destiny neighbours) to the same cluster. This approach is repeated for all the points 

resulting in many clusters with different arbitrary shapes. All points that do not belong to 

any cluster are considered noise. 

A suitable set of parameters is the set that results in fewer numbers of place recognition 

errors. In order to evaluate the number of place recognition errors that correspond to 

different parameter sets, real-life data were collected and labeled manually, the possible 

error types were defined and then the performance of different parameter sets was estimated 

with respect to the identified error types. 

3.1 Data Collection 

A Windows Mobile application has been developed to log GPS tracks periodically every 30 

seconds. If there are no satellites detected when logging, the application will do nothing and 

wait another 30 seconds to look for satellites. When connecting the logging device to a 

computer, the application transfers the logs as an XML file that contains longitude, latitude, 

logging time, speed, and number of satellites. The application then deletes the logs from the 

logging device so they do not interfere with new logs. Three users have done the data 

collection over a period of six months. The users were asked to carry a mobile device, with 

the application installed, during the day. By the end of the day, the user connects the mobile 

to a computer to transfer the logs.  

Relying on time-stamped GPS data has some limitations. Firstly, GPS data might be 

noisy and not accurate if few satellites were detected when logging the location. To 

overcome this limitation, the logged GPS data with less than 4 satellites are ignored. 

Having 4 satellites or more showed good results when doing manual analysis. Blocking the 

view of the GPS receiver by another object is another limitation. This happens sometimes 

when the user has keys, for instance, together with the mobile device in the same pocket. 
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This case results in missing some location data or having noisy data. During the data 

collection period, the users were advised to not have any other object next to the mobile 

device to reduce the risk of blocking the access to satellites. 

The users were also involved in the evaluation process to ensure that the algorithm’s 

results correspond to significant places. 

3.2 Error Types 

Manual analysis of the collected data revealed that there are 4 types of possible errors: 

1. The algorithm detected a cluster that does not correspond to any real-life place. The 

impact of this error is the least severe of all four. It is possible for the user to manually fix 

this by discarding this cluster when reviewing the lifelogs. This kind of error can also result 

in detecting non-existent activities on later activity inference steps, but this can be also 

fixed when reviewing the logs. However, this problem can still result in distraction and 

waste time for the user. The amount of errors of this kind tends to grow with increasing the 

Radius or with decreasing MinPts. 

2. The algorithm merged two places into one. This problem causes distraction to the 

user and it can disrupt the activity inference process. The number of errors of this kind 

tends to grow with increasing the Radius or with decreasing MinPts. 

3. The algorithm separates one place into two different ones. This problem is opposite 

to the previous one. The number of errors of this kind tends to grow with decreasing the 

Radius or with increasing MinPts. 

4. The algorithm did not detect an essential place. This error type is the most serious 

one because the activities in that place will be lost as well. The number of errors of this 

kind tends to grow with decreasing the Radius or with increasing MinPts. 

3.3 Parameter Values 

25 randomly chosen logs were analysed to determine the best parameter values of the 

DBSCAN algorithm. Each log has data collected during one day. Logs were manually 

analysed and essential places were identified based on observation.  

The DBSCAN algorithm has been implemented using JavaScript and the results have 

been shown through a web application and manually processed to identify errors of 

different types. The application shows a map with all collected points during the day on the 

left side, and the clustering results after applying DBSCAN based on the Radius and 

MinPts on the right side. Figure 3 presents part of the results when running DBSCAN on 

one selected log with 20 meters as a Radius and 3 points as MinPts. The points that are 

marked by 1 belong to one cluster while the points that are marked by 2 belong to another 

cluster. 
Different reasonable values of the Radius and MinPts were tested to find out what errors 

they produce. For each log, the following parameters sets were considered: every possible 
MinPts from 2 to 20 with the step of 1, combined with every possible Radius from 5 meters 
to 30 meters with the step of 5. The aforementioned trends of errors (error types in section 
3.2) allowed finding the best values without checking all the combinations of every MinPts 
with every Radius. Those heuristics significantly reduce the number of parameter 
combinations for manual testing, and practically allow to check just ~10-30 parameter 
combinations per log. The aim is to find the minimum values of MinPts and the Radius that 
result in fewer numbers of errors for each log. The priority is to reduce the errors of type 4 
when the algorithm does not detect essential places. After determining the best values for 
each log, the average of those values is calculated to find out a representative value for the 
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whole set of logs. Table 1 shows the best combination for minimum values of the Radius 
and MinPts for each log followed by the average values. 

The average value for MinPts is 3.24, while it is 12.8 for the Radius. Since increasing 

MinPts might result in increasing the number of undetected places, the value 3.24 is 

rounded to 3. Thus the parameter values that yield the best results for the DBSCAN 

algorithm are: 3 for MinPts and 12.8 meters for the Radius. 

As an additional method of parameters adjustment the OPTICS algorithm was used 

[AB99]. OPTICS operates with the same parameters as DBSCAN, but while MinPts should 

be specified manually, the neighbourhood radius can be adjusted by the analysis of 

reachability plots. The plots visualize the structure of clusters and sub-clusters. Analysis of 

OPTICS reachability plots can confirm the values of the DBSCAN parameters. The 

analysis also gives an indication of how stable the clustering approach is. To perform 

OPTICS-based analysis, the WEKA toolkit was used [HF09]. WEKA is a machine learning 

software that has a collection of visualization tools and algorithms for data analysis and 

predictive modelling.  

Table 1. Summarization of the logs analyses 

GPS Log# MinPts Radius (meters) 

1 2 10 

2 4 10 

3 2 15 

4 3 10 

5 3 5 

6 2 10 

7 3 30 

8 4 5 

9 3 5 

10 5 10 

11 2 5 

12 3 30 

13 2 20 

14 2 5 

15 4 15 

16 3 10 

17 3 5 

18 2 15 

19 3 10 

20 6 20 

21 4 5 

22 3 15 

23 2 10 

24 5 25 

25 6 20 

Average 3.24 12.8 
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Fig. 3. DBSCAN implemented in a web application 

Two sample reachability plots are depicted in figure 4. Reachability plots (a) and (b) 
correspond to two different GPS logs chosen out of the 25 logs of testing. MinPts is set to 3 
and the green threshold lines correspond to the Radius value of 12.8  meters. The  plot  
areas  below the threshold line correspond to clusters. In the reachability plot (a) there are 8 
clusters, while there are 2 clusters in the reachability plot (b). This visualization can 
identify how significant change of the neighbourhood radius is required to obtain different 
clustering results.  For example, the leftmost cluster of the figure 4 (b) would have been 
recognized as 3 separate clusters if the neighbourhood radius is set below 10 meters. If the 
reachability plots contain many values near the threshold, it means that the clustering is 
unstable, and the number and the structure of the clusters can be heavily influenced by 
random fluctuations in GPS measurements. The analysis of reachability plots allowed the 
authors to conclude that for the vast majority of the testing samples it takes significant 
change of the neighbourhood radius to alter the clustering results. Therefore, the chosen 
parameter values provide stable clustering and low sensitivity to random factors. 
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Reachability Plot (a). The green line represents the threshold value of the Radius 12.8 

meters. 8 clusters are recognized (the white areas below the threshold) 

 

 

Reachability Plot (b). The green dashed line represents the threshold value of the Radius if 

it is changed from 12.8 meters to less than 10 meters. The leftmost cluster will be 

recognized as 3 clusters. 

Fig. 4. Reachability plot visualization when using OPTICS 
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4 Inferring Activities  

Once places of importance have been identified then they can be used to infer activities. To 

reason about activities, the following properties of an activity are identified: 

1. An activity occurs at a place. The place can be a new one, which was just obtained by 

the place recognition algorithm, or a previously known one for which the geographical 

boundaries are known. This property leads to several important consequences: 

 The GPS points that correspond to the same activity are defined as a subset of the 

GPS points that correspond to the same place. This reduces the scope of the algorithm from 

the entire set of GPS points to just points within places. 

 If the user leaves a place, even for a short time, the activity is interrupted. This 

consequence can help in distinguishing several activities that happened in the same place at 

different times. 

2. An activity takes a certain amount of time. 

Based on these properties, a set of GPS points is an indication of an activity if:  

 The points belong to the same place. 

 The points are sequential in time. 

The main idea of the activity inference algorithm is to decompose all place clusters into 

sub-clusters that do not overlap with each other in time. Place cluster refers to the set of 

GPS points within the place. Overlapping occurs when the user leaves place A, for example, 

to place B then comes back later to place A. For instance, the user spends time in the office 

from 8 AM to 1 PM, goes to a restaurant for lunch from 1 PM to 2 PM, back to the office 

from 2 PM to 5 PM and finally goes to the same restaurant from 5 PM to 7 PM for dinner. 

The timeframe of the GPS points captured when being in the office will be from 8 AM to 5 

PM while the ones captured when being in the restaurant will be from 1 PM to 7 PM. 

Decomposing the office cluster and the restaurant cluster into sub-clusters that do not 

overlap in time will result in 4 sub-clusters that represent 4 different activities: 

 From 8 AM to 1 PM (being in the office) 

 From 1 PM to 2 PM (being in the restaurant) 

 From 2 PM to 5 PM (being in the office) 

 From 5 PM to 7 PM (being in the restaurant) 

To identify activities that happened at certain places based on the definitions in this 

section, the following algorithm has been introduced. For any place A, the earliest captured 

GPS point at this place is marked as A.begins, and the latest captured GPS point at this 

place is marked as A.ends. The fact that GPS points are naturally ordered by time makes 

calculating the timeframe easy. Clusters that correspond to the visited places are added to 

the input set of the activity inference algorithm. 

 

Algorithm: 

1. Take the first element of the input set (and remove it from the set). Let it be 

cluster A. 

2. Search through the entire remaining parts of the input set. Search goes on 

until we find another element whose timeframe overlaps with the timeframe of 

A. Let it be cluster B. 

3. If no overlapping cluster can be found: 

3.1. Add cluster A to the result set. 

3.2. If the input set is not empty, go to step 1. 
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3.3. If the input set is empty, go to step 5. 

4. If an overlapping cluster can be found: 

4.1. Remove cluster B from the input set. 

4.2. Order the following points in time in ascending order: A.begins, 

B.begins, A.ends, B.ends. Let's refer to the ordered time variables as time1 

≤ time2 ≤ time3 ≤  time4.  

4.3. Add to the input set the following sub-clusters of cluster A: 

           1) Sub-cluster within timeframe [time1, time2] 

           2) Sub-cluster within timeframe [time2, time3] 

           3) Sub-cluster within timeframe [time3, time4] 

4.4. Add to the input set the following sub-clusters of cluster B: 

            1) Sub-cluster within timeframe [time1, time2] 

            2) Sub-cluster within timeframe [time2, time3] 

            3) Sub-cluster within timeframe [time3, time4] 

4.5. If the input set is not empty, go to step 1. 

5. End the algorithm and return the result set. 

Output: a set of sub-clusters that do not overlap in time, each sub-cluster 

represents an activity. 
 

The final timeframe of an activity can be obtained in a straightforward manner after the 

GPS points are attributed to activities; the time between the earliest point and the latest 

point of the activity. If a sub-cluster contains only one GPS point (lets refer to this only 

point as P), then the timeframe for this activity is counted as follows: 

 If the sub-cluster is the earliest one, the timeframe of the activity is counted as the time 

between P and the next collected point after P. 

 If the sub-cluster is the latest one, the timeframe of the activity is counted as the time 

between P and the previous collected point before P. 

 If the sub-cluster is not the earliest or the latest one, the timeframe of the activity is 

counted as the time between the previous collected point before P and the next 

collected point after P. 

Figure 5 illustrates the view of activities after decomposing Place 1 (which is shown in 

figure 2) to sub-clusters that represent activities. 
 

 

Fig. 5. Recognized activities within a place 
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5 Implementation and Deployment 

For lifelogs to be useful they need to be structured and presented to the user in a way that 

will give a good overview of content and data. The proposed solution for structuring 

lifelogs is to identify places of importance, infer activities, and then associate images with 

the places and the activities. A prototype application to demonstrate how this could be 

done, used with six months’ worth of captured lifelog data, is therefore presented in this 

section. 

The prototype consists of mobile devices for capturing images and contexts, and an 

application for reviewing the gathered data. The mobile device for capturing images that is 

being used in this prototype is called SenseCam, which is depicted in Figure 6. 

SenseCam is a wearable digital camera, which keeps a digital record of the activities that 

the person experiences [KB10][GW04][BD08][DC08]. All recordings are automatically 

logged without the user’s intervention and therefore without any conscious effort [GW04]. 

SenseCam contains a number of different electronic sensors which can be used to collect 

data for the lifelogs: light-intensity and light-color sensors, a passive infrared (body heat) 

detector, a temperature sensor, and a multiple-axis accelerometer. Certain changes in sensor 

readings can also be used to automatically trigger a photograph to be taken [HW06] which 

helps capturing things of significant importance. SenseCam does not feature a GPS sensor, 

so location data was instead captured by a smartphone, synchronized with the SenseCam.  

When connecting the two devices, the SenseCam and the smartphone, to a computer 

with the prototype application installed, the system performs the following steps: 
 

 

Fig. 6. SenseCam worn around the neck 

1. Transferring the logs in the form of XML. The logs consist of time-stamped GPS data 

and time-stamped images. 

2. Analyzing the GPS data to identify periods of time where the user visited known places 

during the day. 

3. GPS points that do not correspond to any of the known places are aggregated, using the 

DBSCAN algorithm, into clusters that represent new places. The Radius is set to 12.8 

meters and MinPts is set to 3. 

4. Inferring activities based on the places using the method presented in section 4. 

5. Associating SenseCam images with the recognized places and the inferred activities 

based on time.  

6. Showing the results on the main interface in a chronological order. 
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The prototype application associates SenseCam images with auto-recognized places and 

inferred activities. The middle image of each group of images that belongs to a place or to 

an activity is chosen as a representative image. When reviewing, the application shows not 

only the images, associated with places and activities as content, but also the location 

context data. This can improve the reviewing process as it combines context with content 

data. Figure 7 shows the main interface of the application after transferring the logs of one 

day. This interface consists of 2 columns, where one column presents places and the other 

one presents activities. 

5.1 Reviewing Places 

Figure 8 shows the place page when reviewing. When reviewing a place, the system shows 
the constructed convex hull from the GPS points that correspond to the place. In addition, 
SenseCam images that have been captured when the user was in the place are shown. 

The user can choose a representative image for the place using the available SenseCam 
images. The user can also upload own images from an external source. If the user confirms 
the place, the system will save the chosen image as the representative one together with the 
coordinates that correspond to this place. Thus the place will be known and detected 
automatically by the system if the user visits it again. As the user continues to review the 
data, more places will be added to the list of known places of importance. This will 
improve the system’s knowledge of important places, which will increase the level of 
automation in detecting the user’s movements. 

5.2 Reviewing Activities 

When reviewing an activity, the system presents all SenseCam images that have been 
captured during that activity. The system also shows all the GPS points that correspond in 
time to this activity on a map. It is possible for the user to choose certain images to 
associate with the activity among the whole set of images. Figure 9 shows the activity page 
when reviewing. 
Reviewing activities differs from reviewing places in the following aspects: 

 It is possible to annotate an activity with many images, while a place can be annotated 

only with 1 image. 

 The coordinates that correspond to an activity will not be saved in the system if the 

user chooses to save the activity. 

 All the activities that happened in a place will be associated with this place for later 

context-dependent retrieval. 
Saved activities can be retrieved later based on date/time or places. This means that the 

user can recall all the activities that happened at a certain time or in a certain place. 

6 Related work 

In this article the authors have shown how to recognize places of importance, how to use 

them to structure lifelogs in the form of activities, and how to present lifelogs to the user in 

a structured way. This section describes some of the work that has been done by others, 

which is related to the work presented in this article.  

The DBSCAN algorithm, together with OPTICS, was used by the authors when 

clustering the location data. Another common clustering approach is K-means. K-means is 

a method of cluster analysis that aims  to  partition n observations into  k  clusters  [WX07].  
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Fig. 7. The main interface of the lifelogging application 

 

Fig. 8. Reviewing a place within the lifelogging application 
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Fig. 9. Reviewing an activity within the lifelogging application 

This method assigns k initial means randomly, and then it goes over all the observations 

and assigns them with the nearest mean, which results in having k clusters. The mean value 

of each cluster is calculated, and then the method is repeated until the error term is deemed 

small or the decrease is below a threshold. This method is very sensitive to noise, and the 

number of the clusters must be known in advance. K-means also rely on the random 

initialization of the means that makes it non-deterministic [ZF04]. Ashbrook et al. [AS02] 

used a variant of the k–means clustering algorithm that used GPS data in defining locations 

of the user. All the points within a pre-defined Radius are marked, and the mean of these 

points is computed. The system will do calculation again based on the mean and the given 

Radius to find a new mean value. When the mean value is not changing any more then all 

points within its Radius are placed in a cluster and removed from consideration. This 

approach is repeated until there are no more GPS points left. The main limitation of this 

approach is that the Radius should be set in advance and then the clustering algorithm will 

rely on that value. Density-based algorithms overcome the limitations of the K-means 

clustering method [EK96]. The advantages of using DBSCAN over K-means are mentioned 

by Zhou et al. [ZF04]: DBSCAN is less sensitive to noise, it allows clusters of arbitrary 

shape, and it provides deterministic results. 

Alvares et al. [AB07] presented an approach to add semantic information to trajectories. 

Trajectories are decomposed into stops and moves where a stop is a set of points that is 

transformed into a geographic object with a meaning, and a move is a small part of a 

trajectory between two stops. Candidate stops are identified in advance and the output of 

the work was a semantic trajectory dataset. Palma et al. [PB08] extended the work 

presented in the paper [AB07]. Palma et al. used a variation of the DBSCAN algorithm to 

discover interesting places in trajectories, which are previously unknown. Trajectories are 

observed as a set of stops and moves, where stops are more important. The authors in 

[PB08] calculated the distance between points along the trajectory instead of using 

Euclidean distance, and they used minimal time instead of using minimal number of points 



 
Chapter V – Structuring and Presenting Lifelogs Based on Location Data 

 

105 

MinPts, for a region to be dense. The absolute distance (Eps) is used to calculate the 

neighbourhood of a point. The choice of Eps requires knowing the percentage of location 

points, which corresponds to stops. In our work the choice of Eps is based on analysis and 

observation of real-life data. In contrast to [AB07] and [PB08], our work considers activity 

inference and contains the methods to visualize and label the found places and activities.   
Andrienko et al. [AA11] defined the trajectory of an object as temporally ordered 

position records of that object. The authors in [AA11] looked at the characteristics of the 
movement such as instant speed, direction, travelled distance, displacement and the 
temporal distances to the starts and ends of the trajectories. These characteristics are then 
represented as dynamic attributes that can give an indication of movement events. For 
instance, having low speed in some areas can be an indication of specific events belonging 
to those areas. The events are clustered according to their positions and time, and then used 
to extract places. Repeated occurrences of events in places are calculated by means of 
density-based clustering, and those places are defined as interesting ones to the user. The 
result was defining places of interests from mobility data by analysing place-related 
patterns of events and movements. However, the work presented in [AA11] relied on the 
data collected by many users in the area, while our work is designed for detecting and 
logging personal preferences, so activities in our work represent the personal life 
experiences of the user. In addition, no prototype application was done in [AA11] so the 
user cannot review and save the detected places and events for later retrieval. 

Another work was presented by Wolf et al. [WG01] that relied on the loss of the GPS 
data as indication of buildings. Losing GPS signals within a given Radius on three different 
occasions is interpreted by the system as a building has been entered. This work identified 
only buildings and provided no detection for outdoor places or any activities.  

The effect of using locations and images on memory recall has been tested by Kalnikaite 
et al. [KS10]. In their work, SenseCam images are associated with locations based on time 
and then presented to the user through an application. However, images are associated 
without the use of any particular clustering techniques. Thus if a SenseCam timestamp falls 
within 50 seconds of a GPS timestamp, that image and the GPS point will be paired 
together. Another application that presents groups of images on a map based on their 
locations has been created by Toyama et al. [TL03]. All the images are tagged by the 
location data and stored in a database, and then the application groups the images and 
shows them on the map based on the tagged location. Locations can be cities, streets, or 
user-defined places. This application lacks the automatic detection of important places as it 
relies mostly on the tagged data of the images.  

In summary, the work presented in this paper extends the previously mentioned works 
by presenting techniques that cluster location data and then grouping a sequence of images 
based on the clustering results. The authors combine recognition of places with inference of 
activities relying solely on time-stamped location data. Context and Content data are also 
combined and visualized through a prototype application, so the user can mark places and 
activities that happened at interesting stops to retrieve them later on. In addition, having a 
stream of images can help the user, when reviewing through the proposed application, in 
naming what activity happened in the place. 

7 Discussion 

This section discusses the results of the efforts with respect to the research questions.  

The first addressed question is: “How can places of importance be recognized and 

activities be inferred based on location data and time?” 
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Places can be recognized relying solely on time-stamped location data using the 

DBSCAN algorithm. DBSCAN aggregates GPS points into clusters based on the density of 

points. The authors calibrated the density-based algorithm based on data collected by three 

users over a period of six months. The best parameter values for DBSCAN that result in 

fewer numbers of place recognition errors are 12.8 meters for the Radius and 3 points for 

MinPts. OPTICS algorithm is also used to ensure that the chosen parameters values for 

DBSCAN provide stable clustering results. The DBSCAN algorithm results in clusters that 

represent places visited by the user. After the clusters are identified, the system constructs 

the convex hull to estimate the geographical boundaries of the recognized places. 

Activities are inferred based on the known places and the essential places that are 

defined in the previous step. An activity is represented by a set of GPS points which belong 

to the same place and which are sequential in time. The system searches within the defined 

place clusters and splits them into sub-clusters that do not overlap in time. Each sub-cluster 

represents an activity that happened in a certain place at a certain time. The timeframe of 

each activity is the time between the earliest point and the latest one within the sub-cluster. 

A cluster, which represents a place, might be divided into several sub-clusters, which 

represent activities happened in the same place at different time. 

The second addressed question is: “How can structured lifelogs be presented so the 

user can review and retrieve the life experiences?” 
The lifelogs, which are structured based on places and activities, are presented through a 

prototype application that answers the following questions: 

 When did the activity take place? The timeframe of the activity is presented based on 

the identified corresponding time-stamped GPS points. 

 Where was the activity? The place where the activity happened is presented on the map 

based on a convex hull of the corresponding GPS points. 

 What was the user doing? The presentation of the activity is based on the auto-captured 

images, which were taken at the time of the activity. 

A SenseCam can be used to capture images automatically while a mobile device can 

collect GPS points during the day of the person. The system transfers all the logs when 

connecting those portable devices to a computer, and then defines places and activities 

based on the GPS data. SenseCam images are then associated with those places and 

activities based on time and presented to the user for reviewing and adjustment. Adding 

SenseCam images, as content, to the clustering results helps the user in naming places and 

activities when reviewing.  
If the user confirms a cluster as a place, the coordinates that correspond to this place are 

saved and the place will be known and detected automatically next visit. Therefore the 
system can improve its knowledge about the user’s preferable places. Saving activities will 
just save the data and make it available for later retrieval. The system thus presents the 
structured lifelogs as places and activities associated with SenseCam images. The system 
helps the user to retrieve or share previous moments in life based on places or time. For 
example, the user can review all the activities that happened in a certain place, such as the 
university, or at a certain time, such as the New Year eve. 

8 Conclusion and Future Work 

This article presented a novel approach that relies on location data and images to organize 

the lifelogs of someone’s life. Location data provides a context source that can be used to 
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recognize places and infer activities. Images, as content data, can be then associated with 

those recognized places and inferred activities, and be presented to the user for reviewing 

and adjustment. The introduced prototype system structures and presents lifelogs based on 

places, activities and images that can be available for later retrieval. The system therefore 

provides a digital tool for people to reminisce and share their life. 

The next stage of our work is improving the inference of activities within the lifelogging 

system using the same set of devices. Sensor-readings in SenseCam can be used with image 

processing techniques to better reason about daily activities. This will also help the system 

distinguishing between different activities that usually happen in the same place, which will 

improve the activity inference task. 
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Foreword 

Previous chapters addressed different ways of defining situations and answered the first research 

question: how to derive a mapping between context information and ongoing situations? This chapter 

addresses the second research question: once the situations are identified, how to prove, that the 

derived mapping is correct? This chapter answers the research question 2 by proposing, proving and 

evaluating a novel concept – verification of situation models. Verification allows formally proving 

that a situation definition does not have error of certain kind, or (if there is an error) derive a 

counterexample – particular context features that will cause situation awareness inconsistency. 
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Formal Verification of Context and Situation Models in 

Pervasive Computing
8
 

Abstract. Pervasive computing is a paradigm that focuses on availability of 

computer resources anytime anywhere for any application and supports non-

intrusive integration of computing services into everyday life. Context awareness is 

the core feature of pervasive computing. High-level context awareness can be 

enhanced by situation awareness that represents the ability to detect and reason 

about the real-life situations. In this article we propose, analyze and validate the 

formal verification method for situation definitions and demonstrate its feasibility 

and efficiency. Situations are often defined manually by domain experts and are, 

therefore, susceptible to definition inconsistencies and possible errors, which in turn 

can cause situation reasoning problems. The proposed method takes as an input 

properties of situations and dependencies among them as well as situation 

definitions in terms of low-level context features, and then either formally proves 

that the definitions do comply with the expected properties, or provides a complete 

set of counterexamples – context parameters that prove situation inconsistency. 

Evaluation and complexity analysis of the proposed approach are also presented and 

discussed. Examples and evaluation results demonstrate that the proposed approach 

can be used to verify real-life situation definitions, and detect non-obvious errors in 

situation specifications.  

 

Keywords: context awareness; situation awareness; context spaces theory; situation 

algebra; verification. 

1   Introduction 

Pervasive computing paradigm aims to integrate computing services gracefully into 

everyday life, and make them available everywhere and at any time. Partial 

implementations of this approach are, for example, ambient intelligence systems (like smart 

homes or smart offices), PDAs, social networks. One of the foundational features of 

pervasive computing is context awareness. Context awareness can be further enhanced by 

the concept of situation awareness – generalization of context information into real-life 

situations. 

Manually-defined specifications of situations are usually clear to understand and easy to 

reason about. However, the creation of situation specifications is a resource and effort 

consuming work. One of the main problems of manual definition is the possibility to 

introduce a situation specification error. The specification errors can result in inadequate 

situation reasoning and internal contradictions in context reasoning results. The theoretical 

solution and practical implementation presented in this article allow formally verifying 

specifications of situations using the expected situation relationships, and, if the verification 

detected an error, allow deriving counterexamples – the exact context properties that will 

lead to inadequate situation awareness results. The relationships that are being verified may 

include contradiction (e.g. verify that the situation “Driving” cannot co-occur with the 

                                                           
8
 This part contains merged publications [BZ11c] and [BZ12b]. The article [BZ12b] was 

taken as a baseline, but the proofs of lemmas and algorithms were taken from the report 

[BZ11c]. References and formulas were renumbered accordingly. 
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situation “Walking”), generalization (e.g. verify that by specification the situation 

“InTheLivingRoom” implies the situation “AtHome”), composition (e.g. verify that by 

specification the situation “InTheCar” consist of “OnBackSeat” and “OnFrontSeat”). The 

detailed description of possible relationships that can be verified is formulated in section 

3.1 and the motivating example is provided in section 3.2. 

To the best of our knowledge this research is a pioneering approach for verification of 

integrity, consistency, non-contradiction and adequacy of a context model, which represents 

the understanding of internal and external environment of a pervasive system. The proposed 

capability to verify the context model detects and eliminates errors during pervasive 

computing system development and at runtime, and therefore results in more reliable and 

dependable systems. This approach is applicable to context models based on context space 

theory and in general to broader class of context models, e.g. decision trees. 

This article is structured as follows. Section 2 addresses the basics of context spaces 

theory, the background theory of this article, and introduces some additional definitions that 

will be used throughout the article. Section 3 introduces the challenge of formal situation 

verification and proposes the general approach to address that challenge. Section 4 proposes 

and analyzes improved situation representations using context spaces theory, which later 

will be used as a basis for the verification algorithms. Section 5 proposes the verification 

approach. Section 6 contains theoretical complexity analysis and practical evaluation of the 

proposed verification approach. Section 7 discusses related work and distinctive and unique 

features of the proposed verification approach. Section 8 contains summary, future work 

directions and concludes the article. 

2  The Theory of Context Spaces 

2.1 Basic Concepts 

The context spaces theory (CST) was introduced by Padovitz et. al. [PL08a][PL08b]. CST 

uses spatial metaphors to represent context as a multidimensional space and to achieve 

insightful and clear situation awareness. In this section we summarize the definitions and 

concepts of context space approach. These concepts were redeveloped and enhanced to 

provide more solid basis for the verification techniques, which are the focus of this article. 

A context attribute [PL08a] is a feature of context and context can be represented by 

multiple context attributes. Context attributes correspond to respective domains of values of 

interest. For example, in smart home environment information like air temperature, energy 

consumption and light level can be taken as context attributes. Context attributes can be 

numeric (e.g. noise level, air humidity, illuminance level, water temperature), non-numeric 

(e.g. on/off switch position, door open/closed) and  mixed (that can have both numeric and 

non-numeric values at different time, e.g. air conditioner setup – particular temperature or 

the value “Off”).  In case if a context attribute is missing (for example, due to unavailability 

of the sensor), its value is usually set to undefined, which is treated just as a possible non-

numeric value. 

A context attribute can be metaphorically represented as an axis in a multidimensional 

space. In this article a certain value of context attribute, taken with respect to uncertainty, is 

referred to as context attribute value. In the simplest case context attribute values are 

particular points on the context attribute axis – single values, numeric or non-numeric, 

without any attached estimations of uncertainty. 

Situation reasoning requires testing, whether the context attribute value is within some 
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interval. Generalized concept of interval over some context attribute ca can be defined in 

one of the following ways: 

1. If ca is numeric or mixed, the interval is just a numeric interval. The borders can be 

included or excluded arbitrary. The possible formats are: [a;b], (a;b), [a;b) or (a;b], where 

a,b  R,and a≤ b. 

2. If ca is non-numeric or mixed, there are 2 possible formats for a generalized interval. 

2a. The generalized interval contains a set of possible values: {a1, a2, …, aN}, where 

ai are non-numerical context attribute values. If the context attribute has one of those 

values, it falls within the interval. It should be specifically noted, that checking for 

undefined context attribute also falls under that category. 

2b. The generalized interval contains a set of prohibited values: ¬{a1, a2, …, aN}, 

where ai are non-numerical context attribute values. If the context attribute does not match 

any of the values a1, a2, …, aN, it falls within the interval. 

From now and on, when referring to any interval over context attribute axis, the 

generalized concept of interval will be implied. 

Two generalized intervals overlap, if there exists a context attribute value that belongs to 

both intervals.  

A multidimensional space, which comprises multiple context attributes as its axes, is 

referred to as application space or context space [PL08a]. 

The entire vector of relevant context attribute values at a certain time is referred to as 

context state [PL08a]. In spatial representation, the context state can be viewed as a point in 

multidimensional context space. 

The concept of situation space is developed in order to generalize context information 

and provide higher-level reasoning. Situation spaces are designed to formalize real-life 

situations and allow reasoning upon real-life situation using the sensory data. A situation 

space in original CST situation definition can be identified as follows [PL08a]: 

 
N

=i

iiS,i )(xcontrw=S(X)
1

                                                                             (1) 

In formula (1) S(X) is a confidence level of situation S at a certain state X. The context 

state X includes context attribute values xi that are relevant for situation S.  The coefficient 

wi represents the weight of i-th context attribute contribution to the total confidence of the 

situation S. The number of relevant context attributes is N, and contrS,i(xi) is a function that 

measures the contribution of i-th context attribute to the total confidence of the situation S.  

Usually the contribution function resembles a step function over a certain context 

attribute. Formula (2) shows the contribution function format. 
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,

2,2

1,1

,
...

                                                                                    (2) 

In formula (2) Ii,j are various generalized intervals over i-th context attribute (possibly 

including the test for missing context attribute value). Intervals over the same context 

attribute should not overlap. Also the intervals Ii,1…Ii,m should cover entire i-th context 

attribute, i.e. any possible context attribute value x should belong to an interval from 

Ii,1…Ii,m set. Contribution levels ai are usually within [0;1] range. A contribution level ai 
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can as well be set to UD (undefined) for some intervals. Usually undefined contributions 

correspond to missing context states. The presence of any undefined contribution makes the 

entire situation confidence value undefined. 

In order to achieve Boolean situation reasoning results, a threshold is often applied on 

top of the confidence level. A situation with Boolean reasoning results is presented in 

formula (3). 

 

𝑆( ) = [
𝑡𝑟𝑢𝑒, ∑ 𝑤 ∗ 𝑐𝑜𝑛𝑡𝑟𝑆, (𝑥 ) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑁

 =1

 𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                          (3) 

 

In formula (3) the contribution function is defined according to formula (2). If only 

Boolean values are acceptable as a reasoning result, then undefined confidence level of a 

situation is usually counted as non-occurrence (which is implied by formula (3)). 

Otherwise, undefined confidence level usually results in undefined reasoning result. 

Sometimes suitable weights, contributions and threshold can be defined by hand, but 

there also exist some techniques to facilitate setting the parameters of a situation. The 

techniques for choosing situation parameters include: 

1. Defining the constraints on parameters. For some context states the fact of 

occurrence/non-occurrence of the situation is known. Those known states can be obtained 

by analyzing the subject area or by testing. Together they define a set of inequalities, which 

provides the limitations on parameters. 

2. Voting for fixing option. If some test fails, there exist multiple possible methods to fix 

the situation parameters. For example, unexpected occurrence of the situation can be fixed 

by reducing the contribution of the triggered intervals, by redistributing the weights in favor 

of the context attributes with lower contribution on this testing sample or by increasing the 

threshold. Multiple testing results “vote” for taking or not taking different option to fix the 

parameters, and the option with good tradeoff between positive and negative votes is 

attempted first. 

3. Learning situations from labelled data. The labeled data can be obtained by subject 

area analysis or by testing.  

The choice of situation parameters is a large and relatively unexplored area, which 

mostly lies beyond the scope of this article. However, verification is a powerful way to 

prove that the parameters are defined correctly, or to identify the error. 

It should also be noted that any situation can be transformed to have the any threshold 

between (0;1), and after the transformation the situation will be triggered at the same 

context state as before and remain well-defined (i.e. all the contributions are within [0;1], 

all the weights are within [0;1] and the weights sum up to 1). Those transformations are 

often used to achieve the same threshold for all the situations within the context space. 

For example, one of the possible transformations is performed as follows. In order to 

change the threshold from the old value thold to the new value thnew the developer can 

introduce an artificial context attribute, which has a single generic possible value (for 

example, non-numeric value Stub). The weight of the newly introduced context attribute is 

w0. Other weights are multiplied by (1- w0) for normalization. The contribution of the 

newly introduced context attribute is 1 if the threshold is increased (thnew> thold) and 0 if the 

threshold is decreased (thnew< thold). It can be straightforwardly proven that the proper value 

is 𝑤 =
𝑡       𝑡    

𝑡    
  if the threshold is decreased (0<thnew< thold ≤ 1) and 𝑤 =

𝑡       𝑡    

1 𝑡    
 

if the threshold is increased (0 ≤ thold< thnew < 1).  Note that it is enough to introduce a 



 
Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing  

 

115 

single context attribute stub, and use it for all the situations that undergo the threshold 

modification. 

In this article we view all the situations within the application space as having the same 

threshold. As we proved above, it can be considered without any loss of generality. Usually 

the threshold is defined for an application space, and then if any situation has different 

threshold, the transformation is applied. 

In order to detect the confidence values of various situation relationships, CST is 

supplied with situation algebra concept. Operations, that constitute the basis of situation 

algebra, are presented in formula (4). The definitions comply with Zadeh operators [Za65]. 

 

𝐴𝑁𝐷: (𝐴 & 𝐵)( )  =  𝑚𝑖𝑛(𝐴( ), 𝐵( ))

𝑂𝑅: (𝐴 | 𝐵)( )  =  𝑚𝑎𝑥(𝐴( ), 𝐵( ))

𝑁𝑂𝑇: (¬𝐴)( )  =  1 –  𝐴( )

                                                               (4) 

 

Any arbitrary situation algebra expression can be evaluated, using the operations (4) as a 

basis. If a situation, provided as an argument for AND, OR or NOT operation, is undefined 

at some context state X, than the whole situation algebra expression is undefined at the 

context state X as well. 

The situation awareness concepts, provided in the context spaces approach, have 

numerous benefits, including the following: 

1. Integrated approach. CST contains the methods that lead reasoning process from raw 

sensory data up to the situation confidence interpretation. 

2. Uncertainty integration. The situation reasoning can handle imprecision and even 

possible unavailability of sensor data. 

3. Unified representation. Different situations might have different semantics. For 

example, situations can represent certain location, certain condition, certain activity. 

Context spaces theory allows defining and reasoning about the situations in a unified 

manner. 

4. Clarity. Situations are human readable and can be relatively easily composed 

manually by the expert. 

In the next sections we are going to provide an example scenario to clarify the concepts. 

2.2  Context Spaces Approach Example 

For the demonstration of the context spaces approach we developed an illustrative example. 

In the section 3.2 this example will be extended to the motivating scenario for the 

verification approach. We apply the theory of context spaces and its situation awareness 

capabilities in smart office environment. 

Consider a smart office that monitors the conditions at the workplaces. A separate CST 

application space is associated with any arbitrary workplace. In that application space the 

situations are triggered if the confidence level reaches 0.7. 

There are three context attributes of a particular interest: sensor measurement for light 

level (numerical), sensor measurement for noise level (numerical) and sensed light level 

switch (non-numeric On/Off). For simplicity we do not take into account possible sensor 

uncertainty or sensor unreliability. 

Consider the CST situation ConditionsAcceptable(X). The situation represents the fact 

that the light and noise levels at the workplace are acceptable. The situation 
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ConditionsAcceptable(X) is presented in the expression (5). We consider that the noise level 

and the luminance are of equal importance for evaluating the workplace conditions, so both 

weights are assigned at 0.5.  

C nditi nsAcceptab e(X) =
 .5 ∗ contr𝐿   𝑡(Li htLeve )  .5 𝑐𝑜𝑛𝑡𝑟N    (N iseLeve )            

contr𝐿   𝑡(Li htLeve )= [

0,LightLevel<350

 .5,LightLevel ∈ [350,500)

1,Li htLeve ≥5  
                                           (5) 

𝑐𝑜𝑛𝑡𝑟N    (N iseLeve )= [

1,NoiseLevel  40

 .7,NoiseLevel ∈ (40,50]

 .3,NoiseLevel ∈ (50,60]

0,N iseLeve >6 

 

Consider also the situation LightMalfunctions(X), which is presented in the expression 

(6). Light malfunction is detected, if the light switch is on, but still there is insufficient light 

at the workplace. The contribution of the light level is inversed comparing to the expression 

(5), because now the impact means unacceptability of the light level, not its acceptability 

(somewhat equivalent to the NOT operation from formula (4)). The contribution of the light 

switch position is straightforward – it has full impact if it is on, and if it is off it has no 

impact on the LightMalfunctions(X) situation. 

As for the weights for the expression (6), the weight for the light level should not reach 

0.7: otherwise with the luminance of lower than 350 lx the lamp will be counted as 

malfunctioning, but it could just be turned off. Both the position of the switch and 

insufficiency of the light are important in order to detect, so equal weights are chosen. 

 

Li ht a f ncti ns(X) =  .5 ∗ contr𝐿   𝑡(Li htLeve )  .5 ∗ 𝑐𝑜𝑛𝑡𝑟N    (N iseLeve )            

contr𝐿   𝑡(Li htLeve )= [

1,LightLevel<350

 .5,LightLevel ∈ [350,500)

0,Li htLeve ≥5  
                                                        (6)       

𝑐𝑜𝑛𝑡𝑟   t  ( witch  siti n)= [
1,SwitchPosition ∈  𝑂𝑛 

 ,SwitchPosition ∈  𝑂   
          

 

We are going to refer to this example throughout the article. In section 3 this example 

will be expanded to the motivating scenario for the verification approach. But in order to do 

that, we need to provide some additional definitions and formalize the verification concept. 

2.3.  Additional Definitions 

In order to proceed further, we propose several more definitions and formally present the 

entities we are going to work with. 

Let C be the set of all possible confidence values that can be returned by any situation 

space after reasoning. The formal definition of the set C is presented in formula (7). 

 

C   RU{UD}                                                                                                          (7) 

 

A confidence value is a real value that numerically represents the confidence in the fact 

that a situation is occurring. In formula (7) UD (undefined) is a special value that shows 
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that confidence of the situation cannot be calculated. Usually confidence level, if defined, 

falls within the range [0;1], but in this article we will not restrict those boundaries. 

Two confidence values c1 C and c2  C are equal if and only if they either both have 

the same numeric value, or they are both undefined. Inequalities are considered only for 

numeric confidence values. Any inequality between confidence values holds false, if there 

is UD on either side of it. 

Let the set of all possible context states be St. Therefore, an expression like X ∈ St 
merely means that X is a context state. 

An arbitrary function f, that takes context state as an input and outputs a confidence 

level, will be referred to as a situation. A situation can be formally defined as f: St→C . 

Ye et. al. [YD12] define a situation as “external semantic interpretation of sensor 

data”[YD12], where the interpretation means “situation assigns meaning to sensor 

data”[YD12] and external means “from the perspective of applications, rather than from 

sensors”[YD12]. Our general concept of a situation can be viewed as an application of that 

definition to the CST context model – the situation interprets low-level context information 

in a meaningful manner, and the rules of interpretation are given externally (by the expert) 

from an application perspective. 

If for two situations f1 and f2 the expression (8) holds true (i.e. if for any context state X 

situations f1(X) and f2(X) produce the same output confidence value), we consider that 

situation f1 is a representation of f2 (or, symmetrically, f2 is a representation of f1). The 

situations f1 and f2 are considered to be different representations of the same situation.  

 

∀  St,      1( ) =  2( )                                                                                          (8) 

 

Obviously, any situation is a representation of itself (it directly follows from the 

definition). 

To summarize, the term situation is used for any function that takes a context state as 

input and produces a confidence level as the output. The terms situation space or CST 

situation are used for the situations that can be represented in terms of the CST definition 

(expressions (1) and (2)). It means that any situation algebra expression can be called a 

situation, but it is not necessarily a situation space. 

In order to supply CST with verification capabilities, we also need to introduce the 

definition of an empty situation. Situation S is empty with respect to threshold f if and only 

if there exists no context state, for which the confidence level of the situation S reaches f.  

Formally the definition is represented in formula (9). 

 

S is empty w.r.t. f     ∈ St, 𝑆( ) ≥                                                                  (9) 

 

For example, the situation (AtHome & ¬AtHome)(X) is empty w.r.t. any threshold 

greater than 0.5. The concept of an empty situation will be of much practical value for the 

task of situation relations verification that will be introduced in the next section. 
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3.  Situation Relations Verification in CST 

3.1 Formal Verification by Emptiness Check 

In this section we will justify the need to verify situation definitions, identify the challenges 

of that task and propose the general solution direction. 

The methods to identify the situation can be classified into two groups [YD12]: learning-

based approaches (definition by a set of examples, using supervised or unsupervised 

learning) and specification-based approaches (manual definition by an expert). 

Specification-based approaches do not require any training data beforehand and they often 

feature clearer situation representation and easier reasoning. On the other hand, learning-

based approaches do not require preliminary manual situation definition (and therefore 

avoid most definition errors) and can automatically identify possible situations of interest 

that were not taken into account manually. 

Context spaces theory follows specification-based approach. Situations in context spaces 

theory are defined manually, and the concept of the situation space is optimized to make the 

situations human-readable and easy to compose. Still the process of situation composition is 

prone to errors, and it will be highly beneficial if the user could formally verify, whether 

the defined situations and situation relations comply with certain properties.  

Ye et. al. [YD12] identified multiple possible relationships between situations. Here we 

analyze the application of those relations to CST situation spaces. Temporal properties are 

out of scope of our article, so any relationships that involve timing or sequence of 

occurrence are intentionally left out. 

1. Generalization. The occurrence of less general situation implies the occurrence 

of more general situation. For example, the situation Driving implies the situation 

InTheCar, which is more general. 

In context spaces theory the generalization relations can be defined in a following 

manner (expression (10)). 

∀  St,    𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( ) →  𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )                 (10) 

Using the situation algebra definitions (4) as a basis, the expression (10) can be rewritten 

as expression (11), and then converted to the expression (12). 

 

∀  St, ¬( 𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )& (¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )))       (11) 

 

   St, 𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )& (¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( ))              (12) 

 

The expression (12) means that the situation 

𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )& (¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( ) should never occur, i.e. that 

the situation 𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )& (¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( ) should be 

empty.  The exact definition of an empty situation is provided in expression (9) in section 

2.3. 

So, the task of verifying generalization relationship was reduced to the task of checking 

the emptiness of a situation algebra expression. 

2. Composition. Some situations can be decomposed into sub-situations. For 

example, the situation AtHome can be decomposed into the situations like 

InTheLivingRoom, InTheKitchen, InTheBathroom. For the context spaces theory it might be 
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formalized either as expression (13) or as expression (14). 

∀  St,    𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( ) →
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1( ) | 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ( )|… | 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁( )                               (13) 

∀  St,    𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )  
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1( ) | 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ( )|… | 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁( )                               (14) 

The expression (14) implies that all particular sub-cases of the situation 

ComposedSituation do belong to at least one of the components, while the expression (13) 

does not have that assumption. 

The expressions (13) and (14) can be rewritten as the expressions (15) and (16) 

respectively: 

 

   St, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1( ) &¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ( )…& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁( )        (15) 

 

   St, (𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )&¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1( )& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ( )…& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁( ))|                        

(¬𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( )& 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1( )& 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ( )…&𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁( ))                     (16) 

 

Both expressions (15) and (16) can be viewed as an emptiness check task. It means that 

the task of verifying composition relationship can also be represented as a task of emptiness 

check. 

3. Dependence. Ye et. al. [YD12] have concluded that “A situation depends on 

another situation if the occurrence of the former situation is determined by the occurrence 

of the latter situation” [YD12]. In terms of the context spaces theory it can be presented in 

the form of the expression (17). 

∀  St,    𝐷𝑒𝑝𝑒𝑛𝑑𝑠𝑂𝑛𝑆𝑖𝑡( )   𝑆𝑖𝑡( )                                                                     (17) 

The expression (17) can be rewritten as the expression (18), which in turn can be viewed 

as an emptiness check task. 

   St,    (¬𝐷𝑒𝑝𝑒𝑛𝑑𝑠𝑂𝑛𝑆𝑖𝑡( ))& 𝑆𝑖𝑡( )                                                                  (18) 

So, the task of verifying the dependence can be represented as the task of situation 

emptiness check as well. 

4. Contradiction. Contradicting situations should not occur at the same time. For 

example, the situation Running should not co-occur with the situation Sitting. The 

contradiction relationship for two generic situations is presented in the expression (19). The 

contradiction relations between multiple situations can be viewed as multiple contradictions 

between every pair of situations (i.e. every involved situation contradicts every other). 

   St,    𝑆𝑖𝑡1( ) & 𝑆𝑖𝑡 ( )                                                                                 (19) 

The expression (19) shows that the test for contradiction can also be viewed as 

emptiness check. 

It should be noted that the same kinds of relationships can apply not only to the single 

situations, but to the situation expressions as well. For example, the relationship (InTheCar 

& Moving)<=>(Driving | CarPassenger) can be viewed as slightly more complicated case 

of composition relationship: the joint situation (InTheCar & Moving) is composed of the 

sub-situations Driving and CarPassenger. 
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To summarize, if the expected relationship is represented as a situation algebra 

expression that should never hold true, then it is ready to be an input for the verification 

process (which, as we will show further, has emptiness check as its essential part). If the 

property under verification is represented as a situation algebra expression that should 

always hold true, then it can be converted to another format using the relationship (20). 

∀  St, Expression (X)      <=>          St, ¬(Expression (X))                              (20) 

As a result, the analysis of possible situation relations, presented in this section, implies 

an important conclusion: formal verification of situation relationships can be viewed as 

an emptiness check of a situation algebra expression. If the task of emptiness check is 

solved for any arbitrary situation algebra expression, it will allow deriving a solution for the 

verification task. 

3.2 Motivating Example 

In order to demonstrate the functionality of the approach, we developed the following 

illustrative example.  

Consider the smart office scenario presented in the section 2.2. The smart office is aware 

of two situations: ConditionsAcceptable, which implies that the light and noise conditions 

are acceptable for work, and LightMalfunctions, which says that despite the light is on, the 

illuminance level is still insufficient. So, LightMalfunctions(X) implies that the light level is 

insufficient to resume the work. In turn, light level insufficiency means that the conditions 

at the workplace are not acceptable. So, if the situation spaces are defined correctly, the 

situations LightMalfunctions(X) and ConditionsAcceptable(X) should not co-occur. There is 

a contradiction relationship between those situations. The formalization of that relation is 

presented in the expression (21). 

   St,    𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠( )& 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒( )                              (21) 

According to the application space definition, the threshold 0.7 is used to identify the 

occurrence, so in the expression (21) the situation is considered to be occurring if its 

confidence level reaches 0.7. The aim is to verify the relations between 

LightMalfunctions(X) and ConditionsAcceptable(X) and, therefore, check for emptiness the 

situation (𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠& 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒)( ) with respect to threshold 

0.7. 

In the next section we are going to discuss the solution approach for the emptiness check 

problem. This motivating scenario will be used as an illustration throughout the article. 

4  Orthotope-based Situation Representation 

In the section 3.1 we derived a conclusion, that in order to verify the situation relationships, 

we need to develop an efficient algorithm to check the emptiness of an arbitrary situation 

algebra expression. However, direct application of the situation algebra (formula (4)) 

allows reasoning only about the confidence level for a particular context state.  It does not 

allow checking, whether certain condition holds for every possible context state. 

As a solution approach we chose to enhance the situation representation for context 

spaces theory with a new situation format that will be able to represent any particular 

situation algebra expression as a situation and have a tractable algorithm for emptiness 
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check. Therefore, we introduced the following new situation space type – orthotope-based 

situation space. 

In order to provide clear understanding of orthotope-based situation spaces concept we 

are going to refer to the example presented in the sections 2.2 and 3.2. The confidence level 

of LightMalfunctions(X) can be plotted using context attributes LightLevel and 

SwitchPosition as axes. The resulting plot is presented in the figure 1. The formal definition 

of the situation LightMalfunctions(X) and the corresponding values are derived from 

formula (6). 

In the figure 1 it is clearly visible that the confidence levels are constant, if the context 

state is inside a certain combination of intervals over context attributes. Actually, this fact is 

true for any arbitrary situation, and it follows directly from formulas (1) and (2). 

Straightforward formalization of the figure 1 allows formulating the situation 

LightMalfunctions(X) as described in the expression (22). 

 
Fig. 1. Confidence level of LightMalfunctions(X) 

Li ht a f ncti ns(X) =

[
 
 
 
 
 
 

 .5,(LightLevel<350) ∧  ( witch  siti n ∈  Off )

 . 5,(LightLevel ∈ [350,500)) ∧ ( witch  siti n ∈  Off )

 ,(Li htLeve ≥5  ) ∧  ( witch  siti n ∈  Off )

1,(LightLevel<350) ∧  ( witch  siti n ∈  On )

 .75,(LightLevel ∈ [350,500)) ∧  ( witch  siti n ∈  On )
 .5,(Li htLeve ≥5  ) ∧  ( witch  siti n ∈  On )

           (22) 

Each condition in the expression (22) is a Cartesian product of generalized intervals (the 

concept of a generalized interval was presented in the section 2.1), i.e. a generalized 

orthotope [Co73]. 

The expression (22) provides representation of LightMalfunctions(X) as an orthotope-

based situation space. General orthotope-based situation space can be defined according to 

the formula (23). 

𝑆( ) =

[
 
 
 
 
 
 
 

𝑎1,(𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)

𝑎2,(𝑥1 ∈ 𝐼1,2) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)
…

𝑎r1,(𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)

𝑎r1 1,(𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,2)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)
…

𝑎𝐿 , (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧ …∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁
)

                             (23) 

In the formula (23) Ii,j represents the j-th generalized interval over i-th context state. For 

i-th involved context attribute there are in total ri non-overlapping intervals (numbered from 



 
Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing  

 

122 

Ii,1 to Ii,ri), which cover the entire range of possible context attribute values. The number of 

context attributes, involved in a situation is referred to as N. The total number of the 

involved orthotopes (rows in the formula (23)) is referred to as 𝐿 = ∏ 𝑟𝑖
𝑁
i=1 . The total 

number of involved intervals is referred to as R=∑
i=1

𝑁

𝑟 . The symbol ∧ refers to the 

conjunction (the symbol was chosen in order to avoid the confusion with situation algebra 

AND).  

Every row inside the formula (23) defines a condition as a Cartesian product of multiple 

generalized intervals over N context attributes, i.e. an orthotope [Co73] in the application 

space. Therefore, every row of the formula (23) is referred to as an orthotope, and the 

situation itself is referred to as an orthotope-based situation representation. 

For the situation LightMalfunctions from the example scenario (section 3.2), the number 

of involved context attributes is N=2 (LightLevel and SwitchPosition). Let LightLevel and 

SwitchPositions be the context attributes number 1 and 2 respectively. Therefore, the 

number of intervals for context attributes, r1 = 3 (LightLevel<350; LightLevel ∈ [350;500) 

and LightLevel≥500) and r2 = 2 ( witch  siti n ∈  On  and  witch  siti n ∈  Off ). The 

number of orthotopes is L=6 and the total number of intervals is R=5. 

In subsequent sections we are going to prove several important properties of the 

orthotope-based situation space. In order to do that, we need to prove additional lemmas. 

Lemma 4.1. Any particular context state belongs to some orthotope of the orthotope-

based situation space. 

Proof. Consider an arbitrary orthotope-based situation space S(X), defined over context 

attribute CA1…CAN. For context attribute CAi the sets of intervals is 𝐼(𝑖, 1)… 𝐼(𝑖, 𝑟 ). 

Consider an arbitrary particular context state X. 

Consider the context attribute CAi from the set CA1…CAN. Let’s define the value for 

context attribute CAi within context state X as xi. The value xi can as well be undefined. By 

definition the set of intervals 𝐼(𝑖, 1)… 𝐼(𝑖, 𝑟 ) cover all possible set of context attribute 

values, i.e. any particular context attribute value belongs to some interval of that set. It 

applies to xi as well. Let’s define the interval xi belongs to as 𝐼(𝑖, 𝑝 ). 

To summarize: (𝑥1 ∈ 𝐼(1, 𝑝1)) ∧ (𝑥2 ∈ 𝐼( , 𝑝2)) …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑝𝑁)). By definition of 

orthotope-based situation space, all the combinations of intervals for different context 

attributes have the corresponding orthotope in the situation (formula (10)).  It applies as 

well to (𝑥1 ∈ 𝐼(1, 𝑝1)) ∧ (𝑥2 ∈ 𝐼( , 𝑝2))…∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑝𝑁)). And that is the orthotope 

that context state X belongs to. 

So for any arbitrary orthotope-based situation space and for any arbitrary particular 

context state X it was proven that it belongs to some orthotope of the orthotope-based 

situation space. 

Q.E.D.■ 

Orthotope-based situation space is the key concept for verification. In the next section 

we are going to propose the verification algorithm using orthotope-based situation spaces as 

a useful intermediate representation. 

5 Orthotope-based Situation Spaces for Situation Relations Verification 

In this section we are going to propose and prove the approach to the formal verification of 

an arbitrary situation relation. 

In general, verification can be performed as follows. In the subsections of this section we 

are going to discuss each step of this algorithm in details. 
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Step 1. Represent the property under verification as a situation algebra expression that 

should be checked for emptiness. This step was discussed in section 3, but, as will follow in 

section 5.4, the applicability of verification is not restricted to the properties described in 

3.1. 

Step 2. Convert the involved situations to orthotope-based situation spaces. Section 5.1 

proposes the conversion algorithm from an original CST situation space to an orthotope-

based situation space and discusses the algorithm correctness. The practical evaluation of 

the algorithm is provided in the section 6.1. 

Step 3. Using the situation algebra expression under test and the converted input 

situations, derive the orthotope-based representation of the verified expression. Section 5.2 

proposes the algorithm to derive the representation of the expression. Complexity of the 

proposed algorithm is defined in the section 6.2. 

Step 4. Check orthotope-based representation for emptiness, and, if necessary, find the 

counterexamples. Section 5.3 proposes the emptiness check algorithm and discusses the 

algorithm correctness. The complexity of that algorithm is evaluated in the section 6.3. 

Section 5.3 also addresses the problem of counterexamples and proposes possible solutions. 

As a result, the algorithm determines whether the expression under verification is empty 

(according to the definition (9)). 

Section 5.4 summarizes the results of the sections 5.1-5.3, summarizes the integrated 

verification approach and discusses advanced practical aspects of the verification. 

5.1   Conversion to an Orthotope-based Situation Space 

The conversion from original CST situation space to orthotope-based situation space can 

be performed in a manner, described in the algorithm 5.1. In order to provide clear 

explanation of the algorithm, we need to propose the following lemma. 

Lemma 5.1. Premise. Consider an arbitrary original CST situation space sit(X), defined 

over N context attributes CA1…CAN according to the formula (24). 

 

𝑠𝑖𝑡( ) = ∑ 𝑤 
𝑁
 =1     t  (𝑥 )    ; contr (𝑥 )= [

a(i, 1), 𝑥 ∈ I(i,1)

a(i,  ), 𝑥 ∈ I(i, )

…
a(i,r(i)), 𝑥 ∈ I(i,r(i))

                                (24) 

In formula (24) the weight of context attribute CAi is referred to as wi. Within the 

arbitrary context state X the value of context attribute CAi is referred to as xi. The number 

of involved intervals over context attribute CAi is r(i). According to the definition of 

original CST situation space (section 2.1), the intervals over every involved context 

attribute cover the entire set of possible values of that context attribute, and do not overlap. 

It means, any particular value xi of context attribute CAi (i=1..n) does belong to one and 

only one interval in the set I(i,1)…I(i,r(i)). Any contribution value a(i, j) can as well be 

undefined. If the contribution is undefined, then any sum involving that contribution will 

result in undefined confidence level. 

Consider also a situation space orthotope(X) that is designed in a following manner 

(expression (25)). In expression (25) if the sum on any of the rows contains at least one 

undefined summand then the whole sum is undefined as well for that row. 
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𝑜𝑟𝑡ℎ𝑜𝑡𝑜𝑝𝑒( ) =

[
 
 
 
 
 
 
 
 
 
 
 
 
∑ w ∗ a(i,   )

N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼( , 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 = 1,  𝑘2 = 1,… , 𝑘𝑁 = 1

∑ w ∗ a(i,   )
N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼( , 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 =  ,  𝑘2 = 1,… , 𝑘𝑁 = 1
                                                               …
∑ w ∗ a(i,   )

N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼( , 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 = 𝑟(1),  𝑘2 = 1,… , 𝑘𝑁 = 1

∑ w ∗ a(i,   )
N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼( , 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 = 1,  𝑘2 =  ,… , 𝑘𝑁 = 1
                                                               …
∑ w ∗ a(i,   )

N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼( , 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 = 𝑟(1),  𝑘2 = 𝑟( ),… , 𝑘𝑁 = 𝑟(𝑁)

             (25) 

 

Actually, the orthotopes of situation (25) are obtained using brute-force iteration through 

every possible Cartesian product of intervals, mentioned in situation (24). 

Lemma statements: 1) orthotope(X) is an orthotope-based situation space. 

2) orthotope(X) and sit(X) represent the same situation. 

Proof: 

We can prove the statement 1 as follows. Formula (25) is compliant with the definition 

formula (22)  -  every i-th context attribute is divided into the set of intervals 

I(i,1)…I(I,r(i)), and by construction the situation space orthotope(X) assigns the confidence 

level to every combination of those intervals. Every set of intervals I(i,1)…I(i,r(i)) (i=1..N) 

over context attribute CAi covers the entire set of possible context attribute values and does 

not overlap within each other – both those facts are the part of the definition of original 

CST situation space Sit(X). All those facts combined make the definition of orthotope(X) 

fully compliant with the definition of an orthotope-based situation space provided in the 

section 4. It means, that orthotope(X) is an orthotope-based situation space. Q.E.D. for 

statement 1. 

Statement 2 can be proven as follows. By definition the situation orthotope(X) is a 

representation of situation sit(X), if for any arbitrary particular context state X the 

confidence levels of the situation spaces sit(X) and orthotope(X) are equal. 

Consider a random particular context state X. Consider an arbitrary context attribute CAi 

from the set CA1…CAN. The value of context attribute CAi in the context state X is referred 

to as xi. According to the definition of sit(X), the set of intervals, I(i,1)…I(i,.r(i)) covers the 

entire context attribute CAi and do not overlap, i.e. any particular context attribute value 

belongs to one and only one of the intervals. So, xi belongs to one of the intervals 

I(i,1)…I(i,.r(i)). That interval will be referred as I(i,pi). 

So, xi ∈ I(i,pi) and that applies to any context attribute CAi within the set of CA1…CAN. 

The results for all the involved context attributes are summarized in the expression (26). 

 : (𝑥1 ∈ 𝐼(1, 𝑝1)) ∧ (𝑥2 ∈ 𝐼( , 𝑝2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑝𝑁))                                  (26) 

The expression (26) identifies one of the orthotopes in orthotope(X) according to the 

expression (25). In particular, it is the orthotope where k1=p1, k2=p2,…,kN=pN. So, 

according to the expression (25) the confidence value of orthotope(X) at state X is 

𝑜𝑟𝑡ℎ𝑜𝑡𝑜𝑝𝑒( ) = ∑ w ∗ a(i, p )
N
 =1 . 

The context attribute value xi belongs to the interval I(i,pi), and therefore according to the 

expression (24) the contribution of the context attribute CAi is 𝑎(i, p ) (i=1..N). The total 

confidence level for sit(X) is a weighted sum of contributions, so according to the formula 

(24) sit( ) = ∑ w ∗ a(i, p )
N
 =1 . 
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To summarize, 𝑜𝑟𝑡ℎ𝑜𝑡𝑜𝑝𝑒( ) = ∑ w ∗ a(i, p )
N
 =1 = 𝑠𝑖𝑡( ). If any of the a(i,pi) is 

undefined, then the confidence level will be undefined for both of the situations, and the 

results will remain equal.. 

As a result, for an arbitrary context state X the reasoning result of orthotope(X) is the 

same as reasoning result of sit(X). It means that orthotope(X) and sit(X) represent the same 

situation. 

Q.E.D.  for statement 2. ■ 

The situation sit(X) is an arbitrary original CST situation, and for any sit(X) the 

orthotope-based representation orthotope(X) can be composed. Therefore, lemma 5.1 

directly implies that for any original CST situation space there exists an orthotope-based 

representation. 

Lemma 5.1 also proposes the equivalent representation of an arbitrary original CST 

situation space in an orthotope-based format. Therefore, any algorithm that takes a situation 

like expression (24) (and that can be any original CST situation) as an input and provides a 

situation like expression (25) as an output, is a correct algorithm: it takes arbitrary original 

CST situation space as an input and returns orthotope-based (according to lemma 5.1. 

statement 1) representation of the same situation (according to lemma 5.1. statement 2) as 

an output, and that is what we expect from a conversion algorithm. 

For example, orthotope-based situation can be built by composing orthotope after 

orthotope (i.e. row after row in formula (25)) using the algorithm 5.1. 

Algorithm 5.1. Input. Any arbitrary original CST situation sit(X), defined according to 

the formula (24). 

Algorithm pseudocode: 

//Consitruction the situation from formula (25) row after row 

SituationSpace orthotope = new SituationSpace(); //Creating new situation space 

for every combination k1,k2,…,kN where k1 = 1..r(1), k2 = 1..r(2),...,kN=1..r(N) 

   //Start constructing the new orthotope 

  OrthotopeDescription oDescription = new OrthotopeDescription(); 

  ConfidenceLevel confidence = 0; 

   //Creating the orthotope and confidence – one context attribute after another 

   for j=1..N 

      orthotopeDescription.addContextAttributeInterval(CAj, I(j,kj)); 

      confidence += wj*a(j,kj); 

   end for 

   orthotope.addOrthotope(oDescription, confidence ); 

end for 

Output. Situation orthotope(X). 

The complexity of the algorithm 5.1 is evaluated in section 6. 

Consider an example of the algorithm 5.1, applied to the situation LightMalfunctions(X)  

(expression (6)) from the sample scenario presented in section 3.2. There are 3 involved 

intervals for the light level (LightLevel<350; LightLevel ∈ [350;500) and LightLevel≥500) 

and 2 involved intervals for the switch position ( witch  siti n ∈  On  and 

 witch  siti n ∈  Off ). The possible combinations of intervals and the corresponding 

confidence levels are provided in the expression (27). 

(LightLevel<350)   ( witch  siti n ∈  Off ):  .5 ∗ 1   .5 ∗  =  .5 
(LightLevel ∈ [350,500))   ( witch  siti n ∈  Off ):  .5  .5  .5   =  . 5 
(Li htLeve ≥5  )   ( witch  siti n ∈  Off ):  .5    .5  =  (27) 
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(LightLevel<350)   ( witch  siti n ∈  On ):  .5 ∗ 1   .5 ∗ 1 = 1 
(LightLevel ∈ [350,500))   ( witch  siti n ∈  On ):  .5  .5  .5 1 =  .75 
(Li htLeve ≥5  )   ( witch  siti n ∈  On ):  .5 ∗    .5 ∗ 1 =  .5           

The result of the transformation of the situation LightMalfunctions(X) is presented in the 

expression (22). Using the similar methods, the situation ConditionAcceptable(X) can be 

represented in an orthotope-based situation format in a manner described in expression 

(28). 

 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒( ) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 )

 .35, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 ))

 .15, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6 ))

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 )

 .75, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 )

 .6, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 ))

 .4, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6 ))

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 )

1, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 )

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 ))

 .65, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6 ))

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 )

      (28) 

 

In the next section we demonstrate that any arbitrary situation algebra expression over 

the orthotope-based situation spaces can be represented as an orthotope-based situation 

space. The orthotope-based situations LightMalfunction(X) (expression (22)) and 

ConditionsAcceptable(X) (expression (28)) will be used for illustration purposes. 

5.2   Closure under Situation Algebra 

In order to derive the expected conclusion about the closure under situation algebra, several 

additional lemmas are required. Lemma 5.2.1 provides the method to preprocess the 

involved situations properly. Lemma 5.2.2 facilitates the new situation composition. 

Lemma 5.2.3 provides the sufficient conditions for the closure under an operation for 

orthotope-based situation spaces. Lemma 5.2.4 proves the closure under any situation 

algebra expression (with certain requirements for the situation algebra basis), and concludes 

the closure proof. The algorithm 5.2 for deriving the orthotope-based situation 

representation of an arbitrary situation algebra expression emerges as a result of the proof. 

Lemma 5.2.1. Premise.  

Consider a function a(l1,l2,…,lN), that accepts N integer arguments and returns a 

confidence level. Any input argument li can have a value within the range [1;ri]. 

Consider an arbitrary set of context attributes CA1...CAN+1. For every context attribute 

CAi there is a set of intervals  Ii,1…Ii, ri defined. Those intervals cover the entire set of 

possible values for context attribute CAi and do not overlap. 

Consider situation A(X), defined by formula (29) over the context attributes CA1…CAN. 
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𝐴( ) =

[
 
 
 
 
 
 
 

𝑎(1,1, … ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1). . .∧ (𝑥𝑁 ∈ 𝐼𝑁,1)

𝑎( ,1, … ,1), (𝑥1 ∈ 𝐼1,2) ∧ (𝑥2 ∈ 𝐼2,1). . .∧ (𝑥𝑁 ∈ 𝐼𝑁,1)
…

𝑎(𝑟1, 1, … ,1), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)

𝑎(1, , … ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,2)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)
…

𝑎(𝑟1, 𝑟2, … , 𝑟𝑁), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧. . .∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁
)

                        (29) 

 

Consider the situation B(X), defined according to formula (30) over the context attributes 

CA1…CAN+1 

 

𝐵( ) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎(1,1,… ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1). . .∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)

𝑎( ,1,… ,1), (𝑥1 ∈ 𝐼1,2) ∧ (𝑥2 ∈ 𝐼2,1). . .∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)
…

𝑎(𝑟1, 1,… ,1), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)

𝑎(1, ,… ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,2)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)
…

𝑎(𝑟1, 𝑟2, … , 𝑟𝑁), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧ …∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)

𝑎(1,1,… ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,2)
…

𝑎(𝑟1, 𝑟2, … , 𝑟𝑁), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧ …∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,2)

𝑎(1,1,… ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,3)
…

𝑎(𝑟1, 𝑟2, … , 𝑟𝑁), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧ …∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,𝑟𝑁 1
)

    (30) 

 

So, situation B is defined over context attributes CA1…CAN+1. The context attributes 

CA1…CAN are divided into the same intervals, as for situation A. The entire set of possible 

values for context attribute CAN+1 is decomposed into intervals IN+1,1… 𝐼𝑁 1,𝑟𝑁 1
. As 

follows from formula (30) the confidence level of B does not depend on the CAN+1 context 

attribute value. 

Lemma statements: 1) A(X) and B(X) are different representations of the same 

situation. 

2) Both A(X) and B(X) are orthotope-based situation spaces. 

Before the proof starts, consider some clarifications.  Lemma 5.2.1 allows to derive 

more concise representations of the situations (use A(X) instead of B(X)), and to get rid of 

the context attributes that do not influence the confidence level. This transformation 

provides more concise and clear representation and reduces the efforts for situation 

reasoning. 

For example, if by some calculations, the user finds out that the situation 

NoiseLevelOK(X) can be represented by formula (31) then the same situation 

NoiseLevelOK(X) can be represented in a simpler manner, by the expression (32) (for 

simplicity undefined context attributes are not considered in the example). 
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 N iseLeve O (X)=

[
 
 
 
 
 
 
 
 

1,(N iseLeve  4 ) ∧  (Li htLeve  < 3  )

 .7,(N iseLeve ∈ (4 ,5 ]) ∧  (Li htLeve  < 3  )

 .3,(N iseLeve ∈ (5 ,6 ]) ∧  (Li htLeve  < 3  )
 ,(N iseLeve >6 ) ∧  (Li htLeve  < 3  )
1,(N iseLeve  4 ) ∧  (Li htLeve  ≥ 3  )

 .7,(N iseLeve ∈ (4 ,5 ]) ∧  (Li htLeve  ≥ 3  )

 .3,(N iseLeve ∈ (5 ,6 ]) ∧  (Li htLeve  ≥ 3  )
 ,(N iseLeve >6 ) ∧  (Li htLeve  ≥ 3  )

                               (31) 

 

N iseLeve O (X)= [

1,N iseLeve  4 
 .7,N iseLeve ∈ (4 ,5 ]

 .3,N iseLeve ∈ (5 ,6 ]

 , therwise

                                                                     (32) 

 

Lemma 5.2.1 can also be used in another direction and introduce new context attributes 

into consideration, without altering the situation itself (use B(X) instead of A(X)). That 

transformation does not add any information, and might seem unnecessary complication at 

the first glance. However, the possibility of that transformation means that when working 

with a set of orthotope-based situation spaces, we can treat them as if they were all defined 

over the same set of context attributes. It will allow simplifying the subsequent algorithms. 

Whichever way the transformation proceeds, the statement 2 allows stating that the 

transformation result is an orthotope-based situation space. 

Proof. Let’s start with statement 2. 

The definition of A(X) and B(X) is compliant with the formula (23). By definitions of 

A(X) and B(X) the set of intervals for every involved context attribute covers the entire 

possible set of context attribute values, and the intervals do not overlap with each other. 

According to the definitions in expressions (29) and (30) the corresponding confidence 

level is defined for every combination of intervals. Taken together, those facts imply that 

both A(X) and B(X) entirely comply with the definition provided in section 4, and therefore 

both A(X) and B(X) are orthotope-based situation spaces. Q.E.D. for statement 2. 

Consider the proof for statement 1. The situations A(X) and B(X) are the representations 

of the same situation if and only if for any arbitrary particular context state X the 

confidence levels of A(X) and B(X) are equal. 

Consider an arbitrary particular context state X. For any context state CAi  (i=1…N+1) 

context state X has particular context attribute value xi (if the value for context state CAi is 

missing from context state X, it will result just in having undefined as a value for xi, which 

is the special case of particular context attribute value). 

By definition of lemma the set of intervals 𝐼 ,1 … 𝐼 ,𝑟𝑖
 covers the entire range of possible 

values of context attribute CAi (i=1…N+1). Also by definition the intervals 𝐼 ,1 … 𝐼 ,𝑟𝑖
 do 

not overlap. It means that context attribute value xi belongs to one of those intervals. Let’s 

refer to the number of that interval as ki (and thus the interval itself is Ii,ki). Summarizing 

those facts for all the involved context attributes, allows deriving the confidence level A(X) 

using the formula (29) directly. Expression (33) presents the confidence value calculation. 

 
𝑥1 ∈ 𝐼1, 1

𝑥2 ∈ 𝐼2, 2…
𝑥𝑁 ∈ 𝐼𝑁,𝐾𝑁

} => 𝐴(X) = a( 1,  2, … ,  N)                                                              (33) 
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However, context states CA1…CAN in the situation B(X) are divided using the same 

intervals as for the situation A(X) and those intervals are assigned the same numbers. It 

allows, in turn, calculating confidence value using the formula (30). The calculation process 

is presented in expression (34).  

 
𝑥1 ∈ 𝐼1, 1

𝑥2 ∈ 𝐼2, 2…
𝑥𝑁 ∈ 𝐼𝑁,𝐾𝑁

𝑥𝑁 1 ∈ 𝐼𝑁 1,𝐾𝑁 1}
 
 

 
 

=> 𝐵(X) = a( 1,  2, … ,  N)                                                   (34) 

 

Expressions (33) and (34) imply that B(X) = a( 1,  2, … ,  N) = A(X). 

So, for any arbitrary context state X, the confidence level B(X) is equal to the confidence 

level of A(X), and by definition it means that A(X) and B(X) represent the same situation. 

Q.E.D. for statement 1. 

Lemma 5.2.1 was derived in order to facilitate further proofs. However, the results of 

lemma 5.2.1 can be used separately in order to detect the unimportant context attributes and 

remove them from consideration without changing the situation itself. 

Lemma 5.2.2 is an auxiliary lemma that proves some features of multiple interval 

intersections. Those features are used in subsequent proofs. 

Lemma 5.2.2. Premise. 

Consider an arbitrary context attribute CA. 

Consider K sets of intervals (see expression (35)). 

 
𝑆𝑒𝑡1:  𝐼(1,1), 𝐼(1, ), … , 𝐼(1, 𝑟1) 

𝑆𝑒𝑡2:  𝐼( ,1), 𝐼( , ), … , 𝐼( , 𝑟2) …
𝑆𝑒𝑡𝐾:  𝐼(𝐾, 1), 𝐼(𝐾,  ), … , 𝐼(𝐾, 𝑟𝐾) 

                                                                              (35)                                                                                             

 

Every set of intervals 𝐼(𝑖, 1), 𝐼(𝑖,  ), … , 𝐼(𝑖, 𝑟 ) (i=1..K) covers the entire set of possible 

context attribute values of CA, i.e. any particular value x of context attribute CA belongs to 

some interval of set Seti. Intervals within one set do not overlap with each other. 

Consider a new set of intervals SetNew, defined according to formula (36): 

 

 𝐼(1, 𝑙1) ∩ 𝐼( , 𝑙2) ∩ …∩ 𝐼(𝐾, 𝑙𝐾) |𝑙1 = 1. . 𝑟1, 𝑙2 = 1. . 𝑟2, … , 𝑙𝐾 = 1. . 𝑟𝐾                                   (36) 

 

Consider also the set of intervals SetNew2. The set SetNew2 is derived from the set 

SetNew by removing all the empty intervals. 

Lemma statements: 

1. SetNew covers all possible values of context attribute CA, i.e. every possible 

particular value x of context attribute CA belongs to at least one of the intervals. 

2. The intervals within SetNew do not overlap, i.e. any particular value x of context 

attribute CA belongs to at most one interval. 

Statements 1 and 2 together imply that the intervals from SetNew can be used for an 

orthotope-based situation space. 

3. Statements 1 and 2, as well as their implication, hold true for SetNew2 as well. 

Proof: 

Consider an arbitrary particular value x of context attribute CA. 
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By definition of the set Seti  (i=1..K) its intervals cover the entire sent of possible context 

attribute values and do not overlap, so the context attribute value x belongs to one interval 

of that set: either I(i,1), or I(i,2), …, or I(i,ri). Let’s refer to that interval as I(i,pi). 

Taking all the set together, context attribute value x belongs to all of those intervals 

I(1,p1), I(2,p2),…, I(K,pK) (every pi is in range [1;ri]). And the value that belongs to several 

intervals at once, belongs to the intersection of those intervals. 

So, 𝑥 ∈  (1, p1) ∩   ( , p2) ∩ …∩  ( , p ). But by definition of SetNew the interval 

 (1, p1) ∩   ( , p2) ∩ …∩  ( , p ) belongs to that set (it is the case when l1=p1, l2=p2, etc.). 

It proves that x belongs to one of the intervals for SetNew. So, any arbitrary particular 

context state x belongs to some interval of the set SetNew and it means that the set SetNew 

covers the entire set of possible values for context state CA.  Q.E.D. for statement 1. 

Consider arbitrary particular context attribute value x. That context attribute value 

belongs to some interval of SetNew according to statement 1:  𝑥 ∈  (1, p1) ∩   ( , p2) ∩
…∩  ( , p ). Let’s prove statement 2 by contradiction. Consider that there is another 

interval within the set SetNew and context attribute value x belong to that interval as well. 

Let it be the interval  (1,m1) ∩   ( ,m2) ∩ …∩  ( ,m ), and for at least one index mj ≠ pj. 

However, if the context state x belongs to the intersection of intervals  (1,m1) ∩
  ( ,m2) ∩ …∩  ( ,m ), it means that it belongs to any interval in that intersection (by 

definition, belonging to intersection means belonging to all the intervals). In particular, it 

means that 𝑥 ∈  ( , m ). But according to our pervious definitions 𝑥 ∈  ( , p ). By definition 

the intervals within the set Setj do not intersect with each other, it means that if mj ≠ pj, than 

the intersection of  ( , p ) and  ( , m ) is empty, i.e. there is no particular context attribute 

value that belongs to both of those intervals. However, the context attribute value x belongs 

to both of those intervals. It is a contradiction. The contradiction shows that the assumption 

was wrong, and x belongs to at most one of the intervals within the set SetNew. So, there is 

no context state that belongs to two or more intervals of SetNew, and it means that the 

intervals of that set are non-overlapping. Q.E.D for statement 2. 

Let’s proceed to the implication. The set SetNew decomposes the context attribute CA to 

the set of non-overlapping intervals (statement 2), that cover the entire set of possible 

context state values (statement 1). It is enough for compliance with the requirements for 

interval set of an orthotope-based situation space definition (see the definition in section 4). 

It should be noted that many intervals of SetNew are likely to be empty. For an 

orthotope-based situation space it will just result in unreachable and therefore useless 

orthotopes, but the definition will still be consistent. However, the unreachable orthotopes 

will result in the waste of memory and the waste of processing time, and therefore 

unreachable orthotopes should be removed from the consideration, if possible. 

Consider the proof for statement 3. Statement 3 contains 2 sub-statements: 

Sub-statement 3.1. The statement 1 still holds true for the set SetNew2, which consists 

of all non-empty intervals of the set SetNew. Let’s prove it by contradiction. It is already 

proven that statement 1 is true for SetNew. Assume that several empty intervals were 

removed, and after that the statement 1 is no longer true. It means that there exists 

particular context attribute value x that does not belong to any of the remaining intervals. 

However, before the intervals were removed from the SetNew, that context state did belong 

to some interval in that set (according to already proven statement 1). It implies that the 

context attribute value x did belong to one of the removed intervals. But the removed 

intervals are empty by definition of SetNew2, and no context state belongs to them. It is a 

contradiction. That means, the assumption is wrong and the intervals for SetNew2 cover the 
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entire set of possible context attribute values. Q.E.D for sub-statement 3.1. 

Sub-statement 3.2. The proof of statement 2 for the set SetNew2 can be done in exactly 

the same manner as for SetNew. The fact that some intervals were removed from the set 

will not change anything in the proof. Sub-statement 3.2. is proven. 

The proven sub-statements 3.1 and 3.2 show that the set SetNew2 is suitable for 

orthotope-based situation space for exactly the same reasons as SetNew. And it proves the 

implication from statement 3. 

As a result, all three statements and their implications are proven. The proof is complete. 

Lemma 5.2.2 is proven.■ 

The results of lemma 5.2.2 facilitate the proof of lemma 5.2.3. Lemma 5.2.3 is probably 

the most important lemma in the section 5. Orthotope-based situation spaces are closed 

under specific kinds of operations, and lemma 5.2.3 proposes the sufficient conditions for 

the operation, in order for an orthotope-based situation space to be closed under it. Later it 

can be relatively easily proven that any kind of situation algebra expressions over different 

kinds of basis functions do comply with that sufficient condition. 

Lemma 5.2.3. Premise: Consider the function presented in formula (37). 

 

func: C K → C ,   𝑢𝑛𝑐(𝑐1, 𝑐2, … , 𝑐𝐾) = 𝑐                                                      (37) 
 

As presented in formula (37), the function func takes K arguments of confidence value 

type. The returned value is of a confidence type as well. 

Consider a set of K arbitrary orthotope-based situation spaces: Sit1(X), Sit2(X), …, SitK(X)  

Consider a situation op(X) defined in formula (38). 

 

∀  St,     𝑜𝑝( ) =  𝑢𝑛𝑐(𝑆𝑖𝑡1( ), … , 𝑆𝑖𝑡𝐾( ))                                                  (38) 

 

Lemma statement: For op(X) there exists an orthotope-based situation representation. 

Proof.  

Let’s introduce a set of context attributes CA1...CAN. An arbitrary context attribute is 

added to that set, if it is mentioned in at least one of the situations Sit1, Sit2, …, SitK. 

According to lemma 5.2.1 without the loss of generality we can consider that every 

situation space from Sit1, Sit2, …, SitK set is defined over CA1...CAN. If situation space Siti 

does not involve some context attribute CAj, that context attribute can be added into 

consideration using the transformation rules from lemma 5.2.1. Also according to lemma 

5.2.1 after the transformation all the situations Sit1, Sit2, …, SitK will still retain the 

orthotope-based situation space format. 

We are going to prove lemma 5.2.3 by construction, i.e. by showing and proving the 

algorithm that will derive orthotope-based representation of op(X). 

Let’s introduce new situation space orthotope(X) in a following manner. The situation 

space orthotope(X) will be defined over context attributes CA1…CAN. At first, for the 

situation space orthotope(X) let’s introduce sets of intervals over the context attributes. 

Consider the method to derive the set of intervals for arbitrary context attribute CAi from 

the list of CA1…CAN. For any context attribute from that list the procedure is the same. 

Let’s refer to the number of intervals that situation Sitj(X) has over the context state CAi as 

r(i,j) and refer to the intervals themselves as I(i,j,1) …I(i,j,r(i,j)). That means, different 

situation spaces have the following intervals over context attribute CAi (see expression 

(39)). 
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𝑆𝑖𝑡1( ): 𝐼(𝑖, 1,1), 𝐼(𝑖, 1, ), … , 𝐼(𝑖, 1, 𝑟(𝑖, 1))

𝑆𝑖𝑡2( ): 𝐼(𝑖,  ,1), 𝐼(𝑖,  , ), … , 𝐼(𝑖,  , 𝑟(𝑖,  ))
…

𝑆𝑖𝑡𝐾( ): 𝐼(𝑖, 𝐾, 1), 𝐼(𝑖, 𝐾,  ), … , 𝐼(𝑖, 𝐾, 𝑟(𝑖, 𝐾))

                                                       (39) 

 

Every set of intervals (i.e. every row of expression (39)) is an entire interval set of an 

orthotope-based situation space for a certain context attribute. So, every set is compliant 

with the definition of an orthotope-based situation space, and that means that any set of 

intervals from expression (39) covers the entire set of possible context state attributes, and 

does not have the overlaps. It means that lemma 5.2.2 is applicable. Let’s construct the set 

of intervals, according to the lemma 5.2.2. The result is the expression (40). 

 

 𝐼(𝑖, 1, 𝑙1) ∩ 𝐼(𝑖,  , 𝑙2) ∩ …∩ 𝐼(𝑖, 𝐾, 𝑙𝐾) |𝑙1 = 1. . 𝑟(𝑖, 1), 𝑙2 = 1. . 𝑟(𝑖,  ), 
    … , 𝑙𝐾 = 1. . 𝑟(𝑖, 𝐾)                                                    (40) 

 

According to the lemma 5.2.2, the constructed set will divide the entire context attribute 

CAi into the set of non-overlapping intervals. Let’s consider only non-empty intervals from 

that set. According to lemma 5.2.2 statement 3 the set of intervals will still divide the entire 

context attribute CAi into the set of non-overlapping intervals. Let the remaining number of 

intervals be 𝑟 (𝑖), and let’s refer to those remaining intervals as 

𝐼 (𝑖, 1), 𝐼 (𝑖,  ),…, 𝐼 (𝑖, 𝑟 (𝑖)). 

It should be noted that 𝑟 (𝑖)  ∏ 𝑟(𝑖,  )𝐾
 =1  – in a special case there will be no empty 

intersections, and the number of resulting intervals will be ∏ 𝑟(𝑖,  )𝐾
 =1  (all possible 

combinations), in other cases some intervals will be removed if they are empty. 

So, applying the procedure from lemma 5.2.2 will allow dividing the set of all possible 

context attribute values of every involved context attribute to the set of non-overlapping 

intervals. Applying the same procedure for every context attribute CA1..CAN will construct 

N sets of intervals over N context attributes. Each of those sets will be suitable for an 

orthotope-based situation space (according to the implication of statement 3 from lemma 

5.2.2). So, taken together they will construct the structure of orthotopes for an orthotope-

based situation space orthotope(X). 

Before advancing further, we need to derive a sub-statement 5.2.3.1. 

Sub-statement 5.2.3.1.: every orthotope of the orthotope(X) is reachable, i.e. for every 

orthotope there exists a particular context state that belongs to it. The proof is following. If 

the orthotope consists of non-empty intervals for all involved context attributes, then the 

orthotope is reachable - context state can be composed by taking arbitrary particular context 

attribute value within the interval (and taking the particular value within the interval is 

possible, as the intervals are non-empty, i.e. there exist a value or values that belong to the 

interval). It means that if the orthotope is completely unreachable, that orthotope contains at 

least one empty interval for a context attribute. However, there are no empty intervals 

involved for any context attribute in orthotope(X) – they all were removed according to the 

rules provided in statement 3 of lemma 5.2.2. It means that all the orthotopes of 

orthotope(X) are reachable. Q.E.D. for sub-statement 5.2.3.1. 

In order to complete the definition of orthotope(X), for every orthotope in the situation 

the confidence level should be defined. Let’s do it in a following manner: for every 

orthotope take an arbitrary particular context state that belongs to it. At least one such state 
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does exist according to the sub-statement 5.2.3.1, so it is possible to do so. Let it be the 

context state X’. Then the confidence level of that orthotope should be defined as 𝑜𝑝(  ) =
 𝑢𝑛𝑐(𝑆𝑖𝑡1(  ), … , 𝑆𝑖𝑡𝐾(  )). 

As a result, we defined an orthotope-based situation space orthotope(X) in a specific 

manner. Now let’s prove that orthotope(X) and op(X) are different representations of the 

same situation. If they are, that will complete the proof. 

By definition two situations are the representations of each other if for any arbitrary 

particular context state X the confidence levels of those situations are equal. 

Consider an arbitrary context state Y. By definition, the confidence level of situation 

space op(X) can be calculated according to formula (38). Expression (41) provides the 

confidence for this case. 

 

op(Y) =  𝑢𝑛𝑐(𝑆𝑖𝑡1( ), … , 𝑆𝑖𝑡𝐾( ))                                                                              (41) 

Context state Y falls into some orthotope of orthotope-based situation space 

orthotope(X) according to lemma 4.1 (see section 4). When assigning the confidence value 

to that orthotope, we used an arbitrary context state within that orthotope. Let it be state Y’. 

It means that the confidence level is following (expression (42)). 

orthotope(Y) =  𝑢𝑛𝑐(𝑆𝑖𝑡1(  ), … , 𝑆𝑖𝑡𝐾(  ))                                                                (42) 

Consider any arbitrary situation Siti(X) from the list Sit1(X)…SitK(X). By definition the 

situation Siti(X) is an orthotope-based situation space, that means according to the lemma 

4.1 context state Y belongs to some orthotope of it. Let’s refer to that orthotope as: 

 1 ∈ 𝐼(1, 𝑖, 𝑝1) ∧  2 ∈ 𝐼( , 𝑖, 𝑝2). . .∧  𝑁 ∈ 𝐼(𝑁, 𝑖, 𝑝𝑁) (the intervals I(a,b,c) are numbered in 

the same manner as in the expression (39), first index refers to the context attribute, second 

index refers to the situation in the set, third index refers to particular interval). The same 

method applies to the context state Y’. It belongs to some orthotope of the orthotope-based 

situation space Siti(X), and let’s refer to that orthotope as   1 ∈ 𝐼(1, 𝑖, 𝑝 1) ∧   2 ∈
𝐼( , 𝑖, 𝑝 2). . .∧   𝑁 ∈ 𝐼(𝑁, 𝑖, 𝑝 𝑁). 

Sub-statement 5.2.3.2: Context states Y and Y’ belong to the same orthotope of all the 

situations Sit1(X)…SitK(X). Let’s prove it by contradiction. Let the orthotopes for Y and Y’ 

be different for some situation Siti(X) from that list. The orthotopes are different, i.e. for at 

least one context attribute CAj    ∈ 𝐼( , 𝑖, 𝑝 ),     ∈ 𝐼( , 𝑖, 𝑝  ) and 𝑝  𝑝  . By definition 

of orthotope-based situation space, the intervals 𝐼( , 𝑖, 𝑝 ) and 𝐼( , 𝑖, 𝑝  ) do not overlap. 

Now consider the intervals, that situation space orthotope(X) has over context attribute 

CAj. Consider the formula (40) that shows how those intervals were constructed. Context 

state attribute yj belong to some of those intervals, let’s refer to it as 𝐼( , 1, 𝑙1) ∩ 𝐼( ,  , 𝑙2) ∩
…∩ 𝐼( , 𝐾, 𝑙𝐾). For the context state attribute y’j let’s refer to thatinterval  𝐼( , 1, 𝑙 1) ∩
𝐼( ,  , 𝑙 2) ∩ …∩ 𝐼( , 𝐾, 𝑙 𝐾). 

Sub-statement 5.2.3.3. Consider the interval 𝐼( , 1, 𝑙1) ∩ 𝐼( ,  , 𝑙2) ∩ …∩ 𝐼( , 𝐾, 𝑙𝐾), 

described in previous paragraph. 

Assertion to prove: the interval ( , 𝑖, 𝑝 ) , defined above, and the interval 𝐼( , 𝑖, 𝑙 ) is the 

same interval, i.e. pj = lj. 

Proof. Let’s prove it by contradiction. Consider the opposite, i.e. intervals 𝐼( , 𝑖, 𝑝 ) and 

𝐼( , 𝑖, 𝑙 ) are different. However, the common first index j shows that they are both over the 

same context attribute, and commons second index i shows that they are both from the 

orthotope-based situation space Siti(X). And, by definition of orthotope-based situation 
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space, within an orthotope-based situation space the intervals over the same context 

attribute do not overlap. That means, 𝐼( , 𝑖, 𝑝 ) and 𝐼( , 𝑖, 𝑙 ) do not overlap, and no 

particular context attribute value can belong to both of those intervals 𝐼( , 𝑖, 𝑝 ) and 

𝐼( , 𝑖, 𝑙 ). However, the context attribute value yj belongs to the intersection 𝐼( , 1, 𝑙1) ∩

𝐼( ,  , 𝑙2) ∩ …∩ 𝐼( , 𝐾, 𝑙𝐾), i.e. belongs to every interval in that intersection including 

𝐼( , 𝑖, 𝑙 ). And   ∈ 𝐼( , 𝑖, 𝑝 )  by definition of that interval. So, yj belongs to both of the 

intervals, and therefore they cannot be non-overlapping. It is a contradiction. It means that 

initial assumption was wrong, and 𝐼( , 𝑖, 𝑝 ) and 𝐼( , 𝑖, 𝑙 ) are the same interval. 

Q.E.D. for sub-statement 5.2.3.3. 

For the same reasons the intervals 𝐼( , 𝑖, 𝑝  ) and 𝐼( , 𝑖, 𝑙  ) are the same. In order to 

derive that fact, the proof of sub-statement 5.2.3.3 can be applied to context attribute value 

y’j and the intervals 𝐼( , 𝑖, 𝑝  ) and 𝐼( , 𝑖, 𝑙  ).  

Consider the expression (43). It shows the intervals of situation space orthotope(X) over 

context attribute CAj, that include yj and y’j. The intervals 𝐼( , 𝑖, 𝑙 ) and 𝐼( , 𝑖, 𝑙  ), are 

replaced with the equivalents 𝐼( , 𝑖, 𝑝 ) and 𝐼( , 𝑖, 𝑝  ) respectively. 

  ∈ 𝐼( , 1, 𝑙1) ∩ 𝐼( ,  , 𝑙2) ∩ …∩ 𝐼( , 𝑖 − 1, 𝑙  1) ∩ 𝐼( , 𝑖, 𝑝 ) 

∩ 𝐼( , 𝑖  1, 𝑙  1) ∩ …∩ 𝐼( , 𝐾, 𝑙𝐾) 

   ∈ 𝐼( , 1, 𝑙 1) ∩ 𝐼( ,  , 𝑙 2) ∩ …∩ 𝐼( , 𝑖 − 1, 𝑙   1) ∩ 𝐼( , 𝑖, 𝑝  )                                               (43) 

∩ 𝐼( , 𝑖  1, 𝑙   1) ∩ …∩ 𝐼( , 𝐾, 𝑙 𝐾) 

The expression (43) shows that one of the intersections contain 𝐼( , 𝑖, 𝑝 ), and another 

intersection contains 𝐼( , 𝑖, 𝑝  ). And, as it was already derived, the intervals 𝐼( , 𝑖, 𝑝 ) and 

𝐼( , 𝑖, 𝑝  ) do not overlap (see sub-statement 5.2.3.2, paragraph 1).  

It means that the intersections from expression (43) do not overlap: there is no particular 

context attribute value that belongs to both of those intersections, because every particular 

context attribute value, that belongs to both of those intersections, should belong to every 

single interval of both of the intersections, including 𝐼( , 𝑖, 𝑝 ) and 𝐼( , 𝑖, 𝑝  ) 

simultaneously, and there is no particular context attribute value, that belongs to both 

intervals 𝐼( , 𝑖, 𝑝 ) and 𝐼( , 𝑖, 𝑝  ). 

As follow from the previous paragraph, y and y’ belong to non-overlapping intervals of 

orthotope(X) along the context state CAj. So, the context states Y and Y’ cannot be in the 

single orthotope for situation space orthotope(X) – according to formula (22), in order to be 

in the same orthotope they have to belong to the same intervals for every context attribute, 

and for at least for CAj it is not true. However, the context states Y and Y’ by their 

definition (expression (42)) do belong to the same orthotope of orthotope(X). It is a 

contradiction, and it means that the assumption was wrong, and context state Y and Y’ do 

belong to the same orthotope of any situation Siti(X) from the list Sit1(X)…SitK(X). It 

completes proof by contradiction. Q.E.D. for sub-statement 5.2.3.2. 

As follows from sub-statement 5.2.3.2, for any situation space Siti(X) the context states 

Y and Y’ belong to the same orthotope of the orthotope(X). And according to the formula 

(22), the confidence level is the same within the orthotope in the situation. Let’s refer to it 

as Ci. It means that 𝑆𝑖𝑡 (  ) = 𝑆𝑖𝑡 ( ) = 𝐶  for any i=1..K. 

Summarizing the implications above, the confidence levels of op(Y) and orthotope(Y) 

can be rewritten according to the expression (44): 
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𝑜𝑝( ) =  𝑢𝑛𝑐(𝑆𝑖𝑡1( ), … , 𝑆𝑖𝑡𝐾( )) =  𝑢𝑛𝑐(𝐶1, 𝐶2, … , 𝐶𝐾)

𝑜𝑟𝑡ℎ𝑜𝑡𝑜𝑝𝑒( ) =  𝑢𝑛𝑐(𝑆𝑖𝑡1(  ), … , 𝑆𝑖𝑡𝐾(  )) =  𝑢𝑛𝑐(𝐶1, 𝐶2, … , 𝐶𝐾)
                           (44) 

According to expression (44), for any arbitrary context state Y the confidence levels of 

op(Y) and orthotope(Y) are equal. And by definition it implies that the situation 

orthotope(X) is a representation of op(X). 

To summarize, for every arbitrary situation op(X), defined according to the conditions of 

the lemma 5.2.3, there exists a representation of that situation in the form of orthotope-

based situation space. Q.E.D.  for lemma 5.2.3■ 

As a result, lemma 5.2.3 implies sufficient conditions for the closure of the orthotope-

based situation spaces under a certain operation. Lemma 5.2.4 shows that any arbitrary 

situation algebra expression is compliant with those sufficient conditions.  

Lemma 5.2.4.  Premise: Consider an arbitrary situation algebra expression that involves 

K arbitrary situation spaces. The situation algebra under consideration relies on N basis 

functions b1…bN, and those basis functions can be represented as follows (expression (45)). 

∀   St,  𝑏1(𝑆𝑖𝑡1, 𝑆𝑖𝑡2, … , 𝑆𝑖𝑡𝑟1)( ) = 

=  1 (𝑆𝑖𝑡1( ), … , 𝑆𝑖𝑡𝑟1( )) ;  f1: C 
r

1 → C 

∀   St,  𝑏2(𝑆𝑖𝑡1, 𝑆𝑖𝑡2, … , 𝑆𝑖𝑡𝑟2)( ) = 

=  2 (𝑆𝑖𝑡1( ), … , 𝑆𝑖𝑡𝑟2( )) ;  f2: C 
r

2 → C                                   
…     (45) 

∀   St,  𝑏𝑁(𝑆𝑖𝑡1, 𝑆𝑖𝑡2, … , 𝑆𝑖𝑡𝑟𝑁)( ) = 

=  𝑁 (𝑆𝑖𝑡1( ), … , 𝑆𝑖𝑡𝑟𝑁( ));  fN: C 
r

N → C 

So, according to expression (45) every i-th basis function takes ri situations as an input, 

and returns a situation as an output. It should be noted that situation (see definition in 

section 2.2) is merely a function that takes context state as an input and provides a 

confidence level as an output. For a situation, which can be represented in CST format, the 

term situation space is reserved. The functions fi , as follows from expressions (45), take ri 

confidence levels as an input and provide a confidence level as an output. The functions fi 

does not depend on the context state itself. 

Lemma statement. Any arbitrary situation algebra expression over orthotope based 

situation spaces can be represented as an orthotope-based situation space, if for that 

situation algebra there exists a basis compliant with the definition (45). 

Before the proof starts, consider an illustration. Consider the function AND from 

formula (4). It is compliant with the requirements for a basis function, presented expression 

(45): by definition for any context state X the confidence of situation (A & B)(X)  is the 

minimum of the confidence levels A(X) and B(X). It can be formalized as expression (46): 

 ∀  St, (𝑆𝑖𝑡1 & 𝑆𝑖𝑡2)( ) = 𝑚𝑖𝑛(𝑆𝑖𝑡1( ), 𝑆𝑖𝑡2( ))                                                  (46) 

For the function AND the count of involved situations is r=2. The function f for it is 

f(a,b) = min(a,b) (minimum of confidence levels, or undefined if any of the confidence 

levels is undefined). Therefore, function AND with the definition presented in formula (45) 

can be one of the basis functions without breaking the compliance with the definition (45). 

Reasoning in the same manner, we can prove that NOT function (formula (4)) is also 

compliant with the definition (45): for NOT situation algebra function r=1 and f(a)=1-a (or 

undefined if the input is undefined). Taken together, functions AND and NOT constitute 
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AND-NOT basis, and it means that for the situation algebra definitions presented in 

formula (4) the basis is compliant with the definition (45), and therefore any situation 

algebra expression over orthotope-based situation spaces (original CST situation spaces 

also have orthotope-based representations according to lemma 5.1) is compliant with the 

conditions of lemma 5.2.4. 

Proof. In order to proceed further, we need to prove a sub-statement. 

Sub-statement 5.2.4.1. Consider an arbitrary situation algebra expression 

Expression(X), defined over some situations Sit1(X)…SitK(X). The situations 

Sit1(X)…SitK(X) can be arbitrary, it is not required for them to be situation spaces of any 

kind. The basis of situation algebra is compliant with requirement (45). 

Assertion to prove (sub-statement 5.2.4.1): For any context state X the expression 

Expression(X) can be viewed as a function of the confidence levels Sit1(X)…SitK(X). It can 

be formalized as expression (47). 

∃ 𝑢𝑛𝑐: C K → C ; s.t. ∀  St,  𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛( ) = 
=  𝑢𝑛𝑐(𝑆𝑖𝑡1( ), 𝑆𝑖𝑡2( ), … , 𝑆𝑖𝑡𝐾( ))                                    (47) 

Proof (sub-statement 5.2.4.1). According to the given information the functions b1…bN 

constitute a basis of situation algebra, i.e. any situation algebra expression can be 

represented as a recursive superposition of those basis functions. We are going to prove the 

sub-statement by mathematical induction over the recursion depth. This depth will be 

referred to as n. 

Induction basis. The depth n=0 means a degenerate situation algebra expression that 

consists of just an input situation itself, and does not require any basis functions: 

 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛( )=𝑆𝑖𝑡1( ). Therefore,  𝑢𝑛𝑐(𝑆𝑖𝑡1( )) = 𝑆𝑖𝑡1( )fits the requirements (47), 

and the fact that we found the function proves its existence. Q.E.D. for induction basis. 

Induction step. Consider that the functions exist for the situation algebra expressions 

that can be calculated by applying basis function recursively, if the recursion depth is not 

more than n-1. Let’s prove that the function exists for the expressions that require n depth 

of recursion. 

Consider an arbitrary situation algebra expression Expression(X), defined over situations 

Sit1(X)…SitK(X), and the situation Expression(X) can be calculated using basis functions 

recursively with the depth not more than n. During the calculations, some basis function 

from the set b1…bN is going to be calculated last, let’s refer to that function as bi. In this 

case, using the conditions (45), the expression Expression(X) can be represented as follows 

(formula (48)). 

∀  St,  𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛( ) =  𝑏 ( 1,  2, … ,  𝑟𝑖
)( ) = ( 1( ),  2( ), … ,  𝑟𝑖

( ))            (48) 

The sub-expressions Gj(X) are later going to be calculated recursively using the basis 

functions. 

The depth of recursion for expression Expression(X) exceeds by one the maximum depth 

of recursion, required to calculate any Gj(X) (calculation of bi on top of entire Gj(X) 

recursive calculations). And by definition the depth of Expression(X) is not greater than n. 

It means that for the situations  Gj(X) recursion depth is not more than n-1 (if n-1=0, it 

means that Gj(X) are just the input situations). Therefore, according to induction 

assumption, for any situation Gj(X) there exist a function, compliant with properties (47). 

Let’s refer to it as funcj(Sit1(X), Sit2(X),…,SitK(X)). Without the loss of generality, we can 

consider that funcj(…) is defined over all the situation spaces Sit1(X), Sit2(X),…,SitK(X) (if 
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any of those do not influence the funcj(…) output, it does not break the proof). Therefore, 

the expression (48) can be rewritten as expression (49). 

∀  St,  𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛( ) =  𝑏 ( 1,  2, … ,  𝑟2)( ) = 

                =   ( 𝑢𝑛𝑐1(𝑆𝑖𝑡1( ), 𝑆𝑖𝑡2( ), … , 𝑆𝑖𝑡𝐾( )),                                                       (49) 

… ,  𝑢𝑛𝑐𝑟𝑖
(𝑆𝑖𝑡1( ), 𝑆𝑖𝑡2( ), … , 𝑆𝑖𝑡𝐾( )) 

Consider a definition of function func(𝑐1, 𝑐2, … , 𝑐𝐾), that takes K confidence levels as an 

input and produces confidence level as an output (expression (50)). 

 𝑢𝑛𝑐: C K → C ;   𝑢𝑛𝑐(𝑐1, 𝑐2, … , 𝑐𝐾)    

    ( 𝑢𝑛𝑐1(𝑐1, 𝑐2, … , 𝑐𝐾), … ,  𝑢𝑛𝑐𝑟𝑖
(𝑐1, 𝑐2, … , 𝑐𝐾))                                          (50) 

Using the definition (50), the expression (49) can be rewritten as formula (51): 

∀  St,  𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛( ) =  𝑢𝑛𝑐(𝑆𝑖𝑡1( ), 𝑆𝑖𝑡2( ), … , 𝑆𝑖𝑡𝐾( )) ,                         (51) 

where   𝑢𝑛𝑐: C K → C  

Expression (51) directly shows that the function func(𝑐1, 𝑐2, … , 𝑐𝐾) fits the requirements 

(47). And the fact that we found the function proves its existence. 

Q.E.D. for induction step, and that completes the proof of sub-statement 5.2.4.1. 

Now let’s return to the proof of the main part of lemma 5.2.4. 

Consider an arbitrary situation algebra expression Expression(X), defined over some 

orthotope-based situations Sit1(X)…SitK(X). The basis of situation algebra is compliant with 

the properties (45). 

Consider several already proven statements: 

1. By definition there exists a set of K orthotope-based situation spaces 

Sit1(X)…SitK(X). 

2. According to the sub-statement 5.2.4.1, there exists a function  𝑢𝑛𝑐: C K → C, 

so that ∀  St,  𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛( ) =  𝑢𝑛𝑐(𝑆𝑖𝑡1( ), 𝑆𝑖𝑡2( ), … , 𝑆𝑖𝑡𝐾( )) 

The statements 1 and 2, taken together, constitute the conditions of lemma 5.2.3, 

where  𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛( ) stands for op(X). Therefore, according to lemma 5.2.3 the situation  

 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛( ) has an orthotope-based representation.  Q.E.D. for lemma 5.2.4■ 

Lemma 5.2.4 shows that the orthotope-based situation space is closed under any 

situation algebra expression, if the basis functions of the situation algebra are compliant 

with expression (45). For example, all the situation algebra methods from formula (4) are 

compliant with those conditions. See expressions (52). 

AND: (Sit1&Sit2(X)) = f(Sit1(X), Sit2(X))), 

 where  f(a,b) = min(a,b) (or UD if either a or b is UD). 

OR: (Sit1|Sit2)(X) = f(Sit1(X), Sit2(X))),                                          (52) 

 where  f(a,b) = max(a,b) (or UD if either a or b is UD). 

NOT: (¬Sit)(X) = f(Sit(X)), where f(a) = 1-a (or UD if a is UD). 

Lemma 5.2.4 also implies the closure, if instead of Zadeh operators [Za65] from formula 

(4) the user chooses the functions like expressions (53), or expressions (54). 
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AND: (Sit1&Sit2(X)) = f(Sit1(X), Sit2(X))), 

where  f(a,b) = min(0;a+b-1) (or UD if either a or b is UD). 

OR: (Sit1|Sit2)(X) = f(Sit1(X), Sit2(X))), ).                                                                          (53) 

where  f(a,b) = max(1;a+b) (or UD if either a or b is UD). 

NOT: (¬Sit)(X) = f(Sit(X)), where f(a) = 1-a (or UD if a is UD). 

AND: (Sit1&Sit2(X)) = f(Sit1(X), Sit2(X))), 

where  f(a,b) = a*b  (or UD if either a or b is UD). 

OR: (Sit1|Sit2)(X) = f(Sit1(X), Sit2(X))),                                                                              (54) 

where  f(a,b) = a+b-a*b (or UD if either a or b is UD). 

NOT: (¬Sit)(X) = f(Sit(X)), where f(a) = 1-a (or UD if a is UD). 

Lemma 5.2.4 ensures the existence of orthotope-based situation representation. 

However, in order to derive the verification result, that orthotope-based situation 

representation needs to undergo an emptiness check. And in order to do this, the orthotope-

based situation representation needs to be derived explicitly. Consider the algorithm 5.2 

that originates in the proofs of lemma 5.2.3. 

Algorithm 5.2. Input. A set of orthotope-based input situations Sit1(X)…SitK(X) and a 

situation Expression(X), that complies with the property (55). 

∀  St,  𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛( ) =   𝑢𝑛𝑐(𝑆𝑖𝑡1( ), 𝑆𝑖𝑡2( ), … , 𝑆𝑖𝑡𝐾( ))                                   (55) 

It should be specially noted that the knowledge of function func(…) is not required, the 

condition is just that it exists. The situation Expression(X) can as well be a blackbox. For 

example, the situation Expression(X) can be a situation algebra expression, calculated 

directly using the superposition of formulas (4). 

Expected output: orthotope-based representation of Expression(X). 

Algorithm steps. For better understandability, the algorithm is presented as a set of 

steps. 

Step 1. Construct a set of involved context attributes CA1…CAN. The context 

attribute is added to the set, of it is involved in at least one of the situations Sit1(X)…SitK(X). 

Step 2. For every situation Siti(X) within Sit1(X)…SitK(X) and for every context 

attribute CAj within CA1…CAN do step 2.1. 

Step 2.1. If the situation Siti(X) does not involve context attribute CAj, add it into 

consideration in compliance with lemma 5.2.1. For numeric context attribute the interval 

𝑥 ∈ (-∞,+∞) can be added to the description of every orthotope. For non-numeric context 

attribute the interval 𝑥 ∈ ¬{} (the list of non-included non-numeric values is empty, i.e. all 

non-numeric values are included) can be added to the description of every orthotope, or it 

can be the interval that contains all possible non-numeric values explicitly. The number of 

orthotopes will not be increased in those cases. For mixed context attributes, those methods 

should be combined, and thus the number of the orthotopes will double. Let’s refer to the 

count of intervals that the situation Siti(X) has over context state CAj as r(i,j) and to the 

intervals themselves as I(i,j,1)… I(i,j,r(i,j)). 

Step 3. Create an orthotope-based situation space orthotope(X) over the context 

attributes CA1…CAN. 
Step 4. For every context attribute CAj within CA1…CAN do step 4.1. 

Step 4.1. For any combination of intervals I(i,1,p1), I(i,2,p2), …, I(i,K,pk),  where 

p1 = 1..r(i,1), p2 = 1..r(i,2), …, pK = 1..r(i,K) do the steps 4.1.1.-4.1.2. 

Step 4.1.1. Calculate an interval I(i,1,p1)∩I(i,2,p2) ∩ …∩ I(i,K,pk). 

Step 4.1.2. If it is not empty, add it to orthotope(X) as a part of 
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decomposition of CAj. 

Step 5. For every orthotope of orthotope(X) do steps 5.1.- 5.3. 

 Step 5.1. Generate a random context state X’ within the considered orthotope. 

 Step 5.2. Calculate the confidence level Expression(X’). 

Step 5.3. Assign confidence value Expression(X’) to the orthotope under 

consideration. 

Output. Situation orthotope(X) 

Correctness Proof. The correctness of the algorithm is implied by lemma 5.2.3. The 

algorithm 5.2 represents in details the steps of lemma 5.2.3 to construct the orthotope-based 

representation orthotope(X) out of the situation space op(X) (here – Expression(X)). And 

the equivalence of orthotope(X) and op(X) is proven as a part of  lemma 5.2.3. Q.E.D. ■ 

The complexity of the algorithm 5.2 is evaluated in section 6. Consider an illustration of 

the algorithm 5.2. Refer to the sample scenario, presented in section 3.2.  In that scenario 

we need to verify whether the situation LightMalfunctions(X) (definition (20)) and 

ConditionsAcceptable(X) (definition (19)) are in a contradiction. The contradiction 

verification implies checking that the expression (LightMalfunctions & 

ConditionsAcceptable)(X) is empty. 

Having the orthotope-based representations for the involved situations (formulas (23) 

and (28)), let’s derive the situation (LightMalfunctions & ConditionsAcceptable)(X) in an 

orthotope-based format, using the algorithm 5.2. Each step of the algorithm is addressed 

briefly. 

Step 1. The involved context attributes are CA1=LightLevel, CA2= NoiseLevel and 

CA3=SwitchPosition. 

Step 2. Adding the interval NoiseLevel∈ (-∞,+∞) to LightMalfunctions(X) and 

SwitchPosition ∈ {On,Off}  to ConditionsAcceptable(X). The results (in a concise manner) 

are presented in the expression (56). 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒( ) = 

= 

[
 
 
 

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 ) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛, 𝑂   )

 .35, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 )) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛, 𝑂   )
…

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 ) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛, 𝑂   )

  

𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠( ) =                                                                                                (56) 

= [

 .5,(Li htLeve <35 ) ∧  ( witch  siti n ∈  Off ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ (− ,  ))

 . 5,(Li htLeve ∈ [35 ,5  )) ∧ ( witch  siti n ∈  Off ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ (− ,  ))
. . .

 .5,(Li htLeve ≥5  ) ∧  ( witch  siti n ∈  On ) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ (− ,  ))

 

Step 3. Creating orthotope(X) over context attributes are CA1=LightLevel, 

CA2=NoiseLevel and CA3=SwitchPosition. 

Step 4. The possible combinations of intervals over the context attributes are following 

(expression (57), the empty intervals are already removed): 

LightLevel: I(1,1) – 𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ; I(1,2) – Li htLeve ∈ [35 ,5  ); I(1,3) – Li htLeve ≥5   

NoiseLevel: I(2,1) – Noise𝐿𝑒𝑣𝑒𝑙  4 ; I(2,2) – NoiseLeve ∈ (4 ,5 ];                                                              (57) 

I(2,3) – NoiseLeve ∈ (5 ,6 ]; I(2,4) – NoiseLeve >6  

SwitchPosition: I(3,1) – SwitchPosition ∈  𝑂𝑛 ; I(3,2) - SwitchPosition ∈  𝑂    

Therefore, the context attributes of orthotope(X) are decomposed into intervals, 

presented in expression (57). The situation orthotope(X) will consist of 24 orthotopes – 

every orthotope will correspond to a combination of one interval over LightLevel, one 

interval over NoiseLevel and one interval over SwitchPosition.. 
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Step 5. Let’s illustrate the step 5 on one of the orthotopes. The remaining orthotopes are 

processed in a similar manner. Consider the orthotope: Li htLeve ∈ [35 ,5  ); 

Noise𝐿𝑒𝑣𝑒𝑙  4 ; SwitchPosition ∈  𝑂   . 
Step 5.1.  Generate random context state inside the orthotope. Let it be: X’ = 

{Li htLeve = 4  ; Noise𝐿𝑒𝑣𝑒𝑙 = 3 ; SwitchPosition=  𝑂   }. 

Step 5.2. Calculate the confidence value of the expression at the generated context 

state X’. The calculation process is presented in the expression (58). 

(LightMalfunctions & ConditionsAcceptable)(X’) =  

= min(LightMalfunctions(X’); ConditionsAcceptable(X’)) =                                  (58) 

= min (0.25; 0.75) = 0.25  

Step 5.3. Assign the obtained confidence value to the orthotope under 

consideration. It means, one of the rows of orthotope(X) definition will be following 

(expression (59)). 

0.25; Li htLeve ∈ [35 ,5  ); Noise𝐿𝑒𝑣𝑒𝑙  4 ;                                                          (59) 

SwitchPosition ∈  𝑂     

The orthotope-based representation of (LightMalfunctions & ConditionsAcceptable)(X) 

emerges as the results of the algorithm 5.2. We will need that situation to illustrate 

emptiness check, so we present the complete result of the algorithm in the expression (60). 

(𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 &𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒)( ) = 

= 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 )  ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 )  ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .35, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 )  ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .15, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 )  ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 )  ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 ) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .75, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 )  ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .6, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .4, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 )  ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  )  ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 )  ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  )  ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  )  ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  )  ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 )  ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 )

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 )  ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 )  ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 .35, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 .15, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 )  ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 ) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 )  ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6 )) ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  )) ∧  (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 )  ∧  (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  )  ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 ) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  )  ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5 ))  ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  )  ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6 ))  ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5  )  ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6 ) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂   )

      (60) 

5.3    Emptiness Check for an Orthotope-based Situation Space 

As proposed in section 3.1, the verification of situation relationship can be viewed as an 

emptiness check of a certain situation algebra expression. Any situation algebra expression 

over original CST situation spaces can be represented as an orthotope-based situation space 
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in two steps. At first, the involved situations should be represented in an orthotope-based 

situation space format using the algorithm 5.1. Then the orthotope-based representation of 

the situation algebra expression can be derived using the algorithm 5.2. After that, when the 

orthotope-based representation of situation algebra expression is obtained, it requires only 

emptiness check of that situation space in order to complete the verification. 

Emptiness of the orthotope-based situation space can be checked using the algorithm 

5.3. 

Algorithm 5.3. Input. 

1. Orthotope-based situation space S(X), that is defined over the context attributes 

CA1…CAN according to the definition (22). 

2. Threshold th. The emptiness is checked with respect to that threshold (see (9)). 

3. The flag searchAllCounterexamples. The algorithm can either perform an 

extensive search and find all possible counterexamples, or just derive yes/no 

answer. 

Expected output: The set of counterexamples, i.e. the definitions of context states, 

where the situation is occurring. All possible counterexample should be in the 

counterexample set. 

Algorithm pseudocode. 

CounterexampleSet cs = new CounterexampleSet(); //Initializing the empty set 

for every Ci from  S.orthotopes() //For every orthotope, L orthotopes in total 

      //If the orthotope has the confidence over the threshold 

     L1: if (Ci.confidence() >= th) then 

          //Add the definition of orthotope to the counterexamples 

          cs.add(Ci.orthotopeDescription()); 

          //Return cs, if only yes/no answer is needed. 

          L2: if (¬searchAllCounterexamples)  then return cs; 

    end if 

end for 

return cs; 

Output. Counterexample set cs, that contains the definitions of all the orthotopes, which 

have the confidence value over the threshold. 

Correctness proof. 

The correctness proof consists of 2 asserted statements: 

Statement 1. The algorithm cannot take a wrong value in the counterexample set. 

Statement 2. The algorithm cannot skip the counterexample, if 

searchAllCounterexamples is on. 

Proof of statement 1. Let’s prove it by contradiction. Consider that there exists a 

context state X, for which the confidence value S(X) is lower than threshold, but the value 

itself does belong to the counterexample set. 

According to lemma 4.1 the context state X belongs to some single orthotope. Let’s refer 

to it as the orthotope Ci. By definition of the algorithm, the counterexample set is the set of 

orthotopes of S(X). It means, that in order for context state X to belong to counterexample 

set, the whole orthotope that contains it should belong to counterexample set. And the only 

set that contains X is the set Ci, so it should be in the counterexample set. 

According to formula (22) the confidence level at context state X is equal to the 

confidence level associated with the orthotope Ci. By definition of the algorithm, if the 

orthotope confidence is lower than threshold, it is not added to the counterexample set: it 
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will either fail the condition at label (L1), or the return will be triggered earlier at label 

(L2). But in either case the orthotope Ci should not have been added to the counterexample 

set. 

As a summary, the orthotope Ci should and should not be in the counterexample set at 

the same time. It is a contradiction. So, initial assumption was wrong, and there is no 

context state X, that belongs to the counterexample set, but has the confidence value S(X) 

below the threshold. Q.E.D. for statement 1. 

Proof of statement 2. Statement 2 applies only to the case when 

searchAllCounterexamples=true, so the condition at label (L2) is always false. Let’s take 

an arbitrary counterexample and prove that it will belong to the counterexample set. 

Consider an arbitrary context state X, for which the S(X) reaches the threshold: S(X)≥th. 

According to lemma 4.1 the context state X belongs to some orthotope of the S(X). Let’s 

refer to that orthotope as Ci. According to the definition (22), the confidence level at state X 

is the confidence level, associated with the corresponding orthotope. It implies that S(X) = 

Ci.confidence, which in turn means that Ci.confidence ≥th. 

However, if searchAllCounterexamples=true  than the algorithm will parse through all 

the orthotopes. Without triggering the condition at label (L2), the loop cannot end before 

iterating through all the orthotopes. Consider the iteration of the loop, that concerns the 

orthotope Ci. As it was already proven, Ci.confidence ≥th. It means, condition at label (L1) 

will be triggered, and as a result the whole orthotope will be added to the counterexample 

set. 

As a result, the orthotope Ci is a sub-state of the counterexample set. The context state X 

belongs to the sub-state Ci of the counterexample set, and therefore to the counterexample 

set as well. 

So, if searchAllCounterexamples is on, than any arbitrary context state X, for which 

S(X)≥th, will belong to the counterexample set. Q.E.D. for statement 2. ■ 

Consider an example of the algorithm 5.3 applied to the example scenario from section 

3.2. The situation of LightMalfunctions(X) should be contradictory with 

ConditionsAcceptable(X), and therefore the situation of (LightMalfunctions & 

ConditionsAcceptable)(X) should be empty w.r.t. to the chosen threshold 0.7. Using the 

algorithm 5.2, the situation (LightMalfunctions & ConditionsAcceptable)(X) was 

represented as an orthotope-based situation space in expression (60). 

The algorithm 5.3 iterates the situation orthotope after orthotope (i.e. row after row in 

formula (22)), and adds orthotope description to the counterexample set, if the orthotope 

confidence level reaches the threshold. As follows from formula (60), the only orthotope 

where the confidence level reaches the threshold 0.7 is the orthotope 𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈

[35 ,5  ) ∧ 𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 ∧ 𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛 . It is a counterexample. 

The verification of the example scenario is complete. The results of the verification 

process are following: 

1. The specification does not comply with the expected relationship. The situations 

LightMalfunctions(X) and ConditionsAcceptable(X)  do not have contradiction 

relationship over the entire application space. 

2. For any particular context state within the orthotope  𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5  ) ∧

𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  4 ∧ 𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈  𝑂𝑛  the contradiction relationship between 

LightMalfunctions(X) and ConditionsAcceptable(X) will be broken. 

3. For any other context state, the contradiction relationship will hold true. 
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In the next section we are going to summarize the approach and propose the method for 

the verification of an arbitrary situation relationship. 

5.4    Verification of Situation Specifications 

According to the set of algorithms and lemmas, provided in the sections 5.1-5.3, the formal 

verification of an arbitrary situation relation can be performed as follows: 

1. Represent the property under verification as a situation algebra expression that should 

be checked for emptiness. The guidelines for deriving the representations are given in 

section 3. 

2. Convert the involved situations to orthotope-based situation spaces using the 

algorithm 5.1. 

3. Using the situation algebra expression under test and the converted input situations, 

derive the orthotope-based representation of the expression using the algorithm 5.2. 

4. Check orthotope-based representation for emptiness using the algorithm 5.3 and 

obtain the counterexamples, if needed. 

The theoretical complexity analysis and the evaluation of the verification approach is 

provided in section 6. 

6 Formal Verification Mechanism Evaluation and Complexity Analysis 

The proposed formal verification mechanism consists of three algorithms 5.1-5.3, 

respectively the conversion of situation format, retrieving the orthotope-based 

representation of the expression and emptiness check. Those algorithms will be analyzed in 

detail in sections 6.1-6.3. The summary of verification evaluation and complexity analysis 

will be provided in the section 6.4. 

6.1 The Conversion of Situation Format 

The first step of the verification process is the conversion of the involved situations into the 

orthotope-based format using the algorithm 5.1. Theoretical and practical evaluation of the 

algorithm 5.1 is discussed below. For evaluation we used ECSTRA (Enhanced Context 

Spaces Theory Reasoning Architecture) – a context spaces theory based framework for 

context awareness and situation awareness. The verification mechanisms were implemented 

as an extension of ECSTRA. Due to the space requirements the detailed description of 

ECSTRA framework is omitted, an interested reader can refer to [BZ11a][BZ11c]. The 

experiment was carried out as follows: 50000 original CST situations were generated 

randomly using the specially developed ECSTRA add-on. For each situation the number of 

involved context attributes was generated uniformly then each context attribute was 

decomposed into the set of intervals, which were also generated uniformly. Using the 

algorithm 5.1, implemented as a part of ECSTRA verification mechanism, each of the 

situations was converted into the orthotope-based format. The practical complexity in terms 

of different operations was calculated using the counters. The experiments were conducted 

on Lenovo ThinkPad T61 (2.50GHz processor, 2GB RAM, Ubuntu Linux OS). We used R 

[VS12] and Octave [Ea11] applications for data processing and generating the plots. The 

experimental results are presented in the figure 2 and analyzed in table 1. 
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 (a) Additions, Multiplications, Comparisons, Assignments                                            (b) Divisions 

Fig. 2. The complexity of the algorithm 5.1  

Table 1 contains the explanation and theoretical analysis of the results, presented in 

figure 2. For every involved operation the table 1 contains the order of the operation, 

practical R
2
 and theoretical evaluations. The coefficient R

2
 is calculated from the 

experimental data using R [VS12] statistical package. The data used for constructing figure 

2 and for calculating R
2
 are the same. R

2
 coefficient practically proves the theoretically 

expected order of operations by showing the fit between the expected order and the number 

of operations of certain kind. In compliance with the definition of orthotope-based situation 

space (section 4), N stands for the number of involved context attributes and L stands for 

the number of orthotopes in resulting orthotope-based situation space. 

To summarize, the complexity of the algorithm is O(N*L) – the order of count of 

orthotopes multiplied by the number of involved context attributes. 

6.2   Orthotope-based Representation of Expression 

As the section 6.1 demonstrates, the involved situations can each be converted to the 

orthotope representation at the order of O(N*L), where N is the number of involved context 

attributes, and L is the number of orthotopes. After all the situations are converted into the 

orthotope-based situation spaces, the resulting situation can be derived using the algorithm 

5.2. 

The algorithm 5.2 takes as an input all the involved situations and the situation 

Expression(X) = func(Sit1(X), Sit2(X), …, SitK (X)), that can as well be a blackbox. For 

evaluation purposes we estimate the complexity for the operations AND, OR and NOT, 

defined by formulas (4). The experiment was carried out in a similar manner as in the 

section   6.1.  The  algorithm   5.2  was  implemented  as  a  part  of  ECSTRA verification 

extension, and the random situation generation was done using the specially designed add-

on. CST situation spaces were randomly generated in a manner, similar to the experiment in 
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Table 1. The Complexity of the Algorithm 5.1 

Operation Order R2 Explanation 

Additions O(N*L) 0.9999 The resulting situation space contains L orthotopes. For every orthotope 

the calculation of the confidence value contains a sum with N summands. 

Also the algorithm contains numerous auxiliary additions, related to 

various loops. 

Multiplications O(N*L) 1 The resulting situation contains L orthotopes and in order to determine 

the confidence level of each orthotope, a sum with N summands should 

be calculated. Every summand involves one multiplication, so the 

complexity is O(N*L) for multiplications. 

Divisions O(N) 1 The division operations is used to normalize the weights of the basic 

situation spaces (make them sum up to 1) before the conversion starts. 

There are N weights, and each of the weights is divided by the sum of 

other weights. 

Assignments O(N*L) 0.9999 The main portion of the assignments appears as the part the orthotope 

description creation. For each of the L orthotopes the description is 

composed of  N intervals, and that results in O(N*L) order. 

Comparisons O(N*L) 0.9997 Although the comparisons are not explicitly present in the algorithm 5.1, 

they are involved in the loops. Each iteration of the loop contains a 

comparison in order to test for the exit condition. The most comparison-

heavy part, which explains the order, is the calculation of the confidence 

levels. For each of the L orthotopes there is a nested loop, which 

calculates the weighted sum of N contributions. It makes the number of 

comparisons O(N*L). 

section 6.1 (50 000 situations for NOT, 10 000 situation pairs for AND and OR). The 

conversion of the situations into orthotope-based situation spaces was evaluated in section 

6.1, and therefore the operations for conversion are not counted in this experiment. The 

converted situations (or a single situation in case of NOT) were used as an input for the 

algorithm 5.2. The results of the experiment are presented in the figures 3 (AND), figure 4 

(OR) and figure 5 (NOT). The theoretical complexity calculations and their connection to 

the practical results are discussed in table 2, which is designed similarly to table 1. There 

are three coefficients R
2
 provided – one for each of for the experiments (for AND, OR and 

NOT respectively). 

To summarize, the theoretical complexity of the representation algorithm is O(N*L) and, 

according to the figures 3-5 and R
2
 coefficient in table 2, the practical evaluation is 

absolutely compliant with the theoretical results. 

It might seem counterintuitive that there is no dependency on the number of involved 

situations (let’s refer to that number as K, in compliance with the section 5.2). However, 

that number is implicitly contained in various characteristics and heavily influences the 

total complexity of the algorithm. The number of the involved situations K and the structure 

of those situations do influence the decomposition of context attributes into resulting 

intervals. In turn, that decomposition defines the number of resulting orthotopes, and 

therefore has a determining influence on the total complexity of the algorithm. The number 

of situations also can influence the complexity of the expression call. The influence of 

number of involved situations will also be addressed as the part of the final complexity 

evaluation in section 6.4. 
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Table 2. The Complexity of the Algorithm 5.2 

Operation Order R2 Explanation 

Additions O(N*L) AND: 0.9994 

OR: 0.9994 

NOT: 0.9979 

The main sources of additions are the nested loops, which 

use additions to increase the counters. Calculation of 

confidence levels involves context state generations. To 

generate the context state for each of the L orthotopes N 

context attribute values need to be generated. The nested 

loop gives N*L additions for the counters, and that results 

in O(N*L) order. 

Assignments O(N*L) AND: 0.9995 

OR: 0.9995 

NOT: 0.9987 

As well as for the addition operation, the part of the 

algorithm, which determines the order of assignments, is 

generation of context state. The nested loop for context 

state generation adds O(N*L) assignments to the total 

algorithm complexity. 

Comparisons O(N*L) AND: 0.9994 

OR: 0.9994 

NOT: 0.9982 

The most comparison-heavy part of the algorithm is the 

nested loop for generating the test context state. It results in 

the order O(N*L). 

Expression 

calls 

O(L) 1 (in all 

cases) 

In the algorithm 5.2 the confidence level of the situation 

op(X) is calculated exactly once for every orthotope, in 

order to determine the confidence value. 

Random value 

generation 

O(N*L) 1 (in all 

cases) 

Random value generation is performed N times for each of 

the L orthotopes, in order to generate N-valued context 

state and use it as an input for the expression calculation. 

 

         

            (a) Additions, assignments, comparisons                               (b) Expression calls, context state generation 

Fig. 3. The complexity of the algorithm 5.2 for AND operation. 
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             (a) Additions, assignments, comparisons                               (b) Expression calls, context state generation 

Fig. 4. The complexity of the algorithm 5.2 for OR operation. 

          

                  (a) Additions, assignments, comparisons                          (b) Expression calls, context state generation 

        Fig. 5. The complexity of the algorithm 5.2 for NOT operation. 

6.3   Emptiness Check 

After the orthotope-based representation of the situation space is produced using the 

algorithm 5.2, it should be checked for emptiness using the algorithm 5.3. The experiment 

was carried out in a similar way as the experiment for conversion test in the section 6.1. 

The algorithm 5.3 was implemented as a part of ECSTRA verification extension, and the 

random situation generation was performed using the specially designed add-on. The 

results of the evaluation of the algorithm 5.3 are presented in the table 3 and the figure 6. In 

the figure 6 blue marks identify the case when all the counterexamples had to be explicitly 
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computed (searchAllCounterexamples=true in the algorithm 5.3). The red marks of the 

figure 6 represent the case when the algorithm stops after finding a single counterexample 

(searchAllCounterexamples=false in algorithm 5.3). It should be noted that the cases 

searchAllCounterexamples=true and searchAllCounterexamples=false had different sets of 

generated situations. As expected, the practical complexity in the case 

searchAllCounterexamples=false varies between a single loop iteration as the lower bound 

and the complexity of searchAllCounterexamples=true as the upper bound. The table 3 

refers both to the case searchAllCounterexamples=true and to the upper bound of the case 

searchAllCounterexamples=false. 

The analysis of emptiness check algorithm, presented in table 3, shows O(L) complexity. 

This estimation is true for both the case searchAllCounterexamples=true, and the upper 

border for the case searchAllCounterexamples=false. This result finalizes the complexity 

evaluation of the algorithms 5.1-5.3 of the verification process. Section 6.4 summarizes the 

verification mechanism evaluation and discusses the derived total complexity of the 

verification process. 

 

                
                               (a) Additions                                                                (b)  Comparisons 

 Fig. 6. The complexity of the algorithm 5.3. 

Table 3. The Complexity of the Algorithm 5.3 

Operation Order R2 Explanation 

Comparisons  O(L) 1 In the algorithm 5.3 The main loop contains L iterations. In 

every iteration of the main loop the confidence level is tested 

against the threshold, and also the loop condition is tested against 

the exit condition. It makes the number of comparison operations 

at the order of O(L). 

Additions O(L) 1 Additions are used within the main loop, in order to increase the 

loop counter, once per iteration.  

Assignments O(L) 1 The assignments are used as the part of the main loop in order to 

increase the loop counter. 
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6.4 Verification of  Situation Definitions – Total Complexity 

The complexity of the formal verification mechanism aggregates the complexity of the 

algorithms 5.1-5.3, which is evaluated in the sections 6.1-6.3. Combination of the results, 

provided in sections 6.1-6.3, allows us to derive the following complexity of the 

verification process (formula (61)). 

O( ∑ 𝑁 𝐿 
𝐾
 =1   +  NresLres + Lres)                                                  (61) 

In formula (61) Ni and Li (i=1..K) stand for the number of orthotopes and number of 

context attributes for the i-th situation involved in the situation algebra expression. The 

number of orthotopes and the number of involved context attributes for the resulting 

situation is referred to as Lres and Nres respectively. 

If the situation is converted from original CST representation into the orthotope-based 

representation, then the number of the orthotopes in the converted situation is equal to the 

number of combinations of intervals (see the expressions (24) and (25) and algorithm 5.1 

for the proof). It allows expressing the formula (61) as the formula (62). 

O( ∑ 𝑁 ∗ (∏ 𝑟(𝑖,  )
𝑁𝑖
 =1 )𝐾

 =1   +  NresLres + Lres)                                                (62) 

In formula (62) the term 𝑟(𝑖,  ) refers to the number of intervals for the i-th situation 

over j-th context attribute (within the situation). Formula (62) provides the final result of 

the complexity estimation. The formula (63) is used just for illustration purposes, in order 

to provide rough estimation of the total complexity order. Expression (63) is derived from 

formula (62) using the assumptions that the number of context attributes is the same for 

every involved situation (we refer to it as N), and the number of intervals over any context 

attribute is the same for any of the involved situations: Ni = Navg, r(i,j) = r, i=1…K, 

j=1…Ni) We also assumed that the number of intervals is the same for every context 

attribute in the resulting situation, and refer to that number as rres. 

O( 𝐾 ∗ 𝑁𝑎  ∗ 𝑟𝑎  
𝑁     +  Nres * 𝑟𝑟𝑒𝑠

𝑁    +  𝑟𝑟𝑒𝑠
𝑁   )                                               (63) 

The algorithm is supposed to work offline, and it makes the complexity requirements 

milder. However, the formula (63) very roughly shows that the worst case rate of growth of 

the straightforward verification can be roughly estimated as K*Navg*exp(Navg) + 

(Nres+1)*exp(Nres) function of the involved context attributes and the number of involved 

situations. The complexity still remains tractable for the realistic situations (which are 

usually defined over small number of context attributes), but the fast verification algorithms 

are considered to be the high priority item of the future work. 

In this section we theoretically calculated the complexity of the verification process and 

tested it practically. Formula (62) contains the final result of the verification complexity 

calculation, and it finalizes the complexity evaluation of the algorithm. 
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7 Discussion and Related Work 

In this article we presented the approach for formal verification of situation models. In the 

following section we are going to discuss the several aspects of the proposed approach, 

compare the approach with related work and provide some discussion. 

7.1 Formal Verification in Pervasive Computing 

The techniques of formal verification have received some attention of the pervasive 

computing research community, and various aspects of pervasive computing systems were 

enhanced with applicable verification methods.  

Cardelli and Gordon [CG00] proposed the ambient logic – a specially designed calculus 

that can describe multiple moving and interacting entities. That approach was improved and 

extended in subsequent works. For example, Coronato and Pietro [CP10] used ambient 

logic techniques to specify pervasive healthcare applications. Also Coronato and Pietro 

[CP11] proposed the extensions of ambient calculus and ambient logic. The main difference 

between the ambient logic-based approaches and our article is that the specification aspects 

under verification are different. Ambient logic based approaches view the pervasive system 

as the set of interacting agents, and thus aim to verify the spatial and temporal interactions 

between devices, processes and services. In contrast, our article proposes a solution to 

verify the integrity of the context model – the underlying formal representation of internal 

and external environment. 

Ishikawa et. al. [IS09] proposed methods to verify and specify pervasive computing 

systems. Their verification approach is based on the event calculus formalism. Event 

calculus allows representing the behavior of the system and the assumptions about the 

behavior, and then formally verify, whether the behavior matches the assumptions. The 

article [IS09] addresses the interaction of pervasive computing system with an external 

environment. In contrast, our method allows the verification of system understanding of 

internal and external environment, and that understanding is the root cause of system 

behavior.  Therefore, our approach allows deeper insight into the context awareness and 

situation awareness, its problems and risks. 

To summarize, the related work did address the verification of internal communications 

[CG00, CP10, CP11] and user interactions [IS09] in pervasive computing systems. To the 

best of our knowledge our article is the first to address the verification of the integrity, 

consistency, non-contradiction and adequacy of the context model – the system 

understanding of internal and external environment. 

7.2. Specification of Situation Relationships 

The verification approach presented in this article uses the expected situation relationship 

as the part of the input information. Those relationships can be obtained using expert 

knowledge and common sense, but there are multiple solutions to produce the relationships 

automatically. Different approaches to situation awareness focus on the relationships 

between different situations rather than on inferring the situations from low-level context 

(e.g., sensor) data.  Those approaches supply the properties for the formal verification 

mechanism. The approaches rely on some low-level inference of the atomic facts, events 

and situations, but on top of that they provide powerful tools to assert and facilitate the 

verification of various relationships between the situations. 
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The articles [DS07, ES07, WZ04] proposed to use the ontologies to reason about the 

situations. Ontologies provide the powerful tools to represent and reason about the 

relationships between different entities, facts, events and situations. Still many ontologies 

for representing the context work on the high-level context awareness level and consider 

the inference of low-level facts as being out of scope of the work. Therefore, ontology-

based solutions require the low-level inference model, and that model should be consistent 

with the ontology itself. The consistency of the low-level model and the ontology can be 

verified using the methods presented in this article. 

Ranganathan et. al. [RA04] used the predicate logic to define the events and situations. 

Moreover, the predicate logic was used to define the relationships between situations, such 

as mutual contradiction. However, those relationships were used not for the verification, but 

mainly for addressing context uncertainty. 

The articles [AL08][GG06] proposed the solutions based on temporal logic. Logic-based 

expressions often can be the property under verification. However, working with the 

temporal logic is the part of future work. Neither the context spaces theory model, nor the 

situation algebra do not involve any timing or sequential dependencies. Sequential and 

timing dependencies can be analyzed using the concept of the trajectory in the application 

space. 

7.3. Situation Modeling 

Various ways of defining situations have received considerable amount of attention from 

pervasive computing research community. A number of methods of situation specification 

either originate in the context spaces theory, or have some degree of similarity with context 

spaces theory situation awareness approach. 

Delir et. al. [DZ08] proposed improved situation specifications for the context spaces 

approach. Instead of step functions, the authors suggest to use standard fuzzy logic based 

contribution functions (like trapezoid). This approach leads to more natural and flexible 

situation specifications. However, the use of step functions as contribution functions also 

have some benefits. For example, the verification method proposed in this article heavily 

relies on the fact that contribution function is a step function, and therefore the confidence 

levels remain constant within certain orthotopes. 

The papers [BI04][KK07][KK08][MB04][TI04] use naïve Bayesian approach to define 

the situations and activities. Naïve Bayesian approach assumes the independence of various 

context features, having the situation occurrence/non occurrence as a fact. It can be viewed 

as somewhat similar to the approach of context spaces theory, where the situation has 

independent contributions from various context attributes. In both cases the independence 

assumption ensures memory efficient and computationally tractable situation specifications, 

but in turn can lead to limited flexibility. The main difference in our approach to situation 

specification and the Bayesian approach is the difference in semantics. The Bayesian 

approach is purely probabilistic – it assumes that in underlying real world the situation is 

either occurring or not, and provides the method to evaluate the probability of occurrence. 

Context spaces theory, in contrast, uses fuzzy logic semantics, where the situation can occur 

with some confidence level, and it does not mean probability. For example, if the noise 

level is 50 dB, the confidence level of situation Noisy can be evaluated as 0.7, but stating 

that it is noisy with probability 70% is semantically wrong. Another serious difference is 

that the context spaces theory features specification-based approach, where the situations 

are defined manually, while the naïve Bayesian approach is better suited for learning the 

situation. 
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Anagnostopoulos et. al. [AN06] proposed the advanced situation awareness framework 

that leads the context reasoning from the low-level situation representation to properly 

acting on the situation awareness results. On the lowest levels the situation was inferred as 

the conjunction of multiple context features (see formula (64), quoted from [AN06]). 

⋀ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑥 , 𝑢𝑠𝑒𝑟) → 𝐼𝑠𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑑𝐼𝑛(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛, 𝑢𝑠𝑒𝑟),   𝑁 > 1𝑁
 =1                         (64) 

Similar to the context spaces theory, the approach [AN06] to situation definition utilizes 

the contribution from multiple context features. However, the context spaces theory allows 

working with confidence levels and representing unequal importance of the different 

context features for the situation. 

7.4. Geometrical Metaphors for Context Awareness 

Our article uses geometrical metaphors in order to represent the context and reason about 

the situations. The idea of collecting the entire set of low-level data into the single vector is 

straightforward.  That vector can be viewed as a point in a multidimensional space. 

However, many context reasoning approaches immediately advance further to higher level 

context awareness, and do not take the full advantage of spatial representation. 

Anagnostopoulos et. al. [AM05] modeled the context as a multidimensional space, the 

current conditions of the context as the point in the space, and utilized this representation 

for context prediction. The authors predicted the context using the extrapolation of context 

trajectory in the multidimensional space. However, that paper did not provide any concept 

of the situation and did not generalize the context data in any manner, and the 

generalization in terms of situations provides the mechanism to extract the most important 

information from the context. The context prediction approach similar to [AM05] was 

proposed for the context spaces theory by Padovitz et. al. [PL08b]. 

The article by Mayrhofer [Ma04b] utilized the geometrical metaphors and viewed 

context as a vector in a multidimensional space of context features. The clusters in the 

space of context features were considered to be the possible situations of interest. That 

solution allowed learning the situations and then manually labeling them in a meaningful 

manner. Also that approach provided the solid background for context prediction. However, 

clustering methods usually result in situation definition being a blackbox and the situations 

being human-unreadable. Learning-based and specification-based approaches to the 

situation definition can be combined within one system. 

8   Conclusion and Future Work 

In this article we propose, develop and evaluate the mechanism for formal verification of 

context model and situation definitions. Using the situation definitions in terms of low-level 

context features and the expected situation relationships as an input, the mechanism can 

either formally prove the compliance between the properties and the definitions, or identify 

the entire set of possible context states, that can serve as a counterexample that proves 

situation inconsistencies and exposes a contradictory context model. 

As a part of verification method, we propose the novel situation model, an orthotope-

based situation space, which provides sufficient flexibility to reason about a broad class of 

real-life situations and their relationships, retain the human-readable representation of the 

situation, and have a set of properties that are very important for the verification process. 

We develop, implement and evaluate the algorithm to represent arbitrary situation algebra 
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expression as an orthotope-based situation space. We develop, implement and evaluate the 

algorithm to check an orthotope-based situation space for emptiness and detect the entire 

set of counterexamples. 

The final contribution of this article is the context model verification method. The 

proposed mechanism can formally verify that the context model does not have internal 

contradictions, that it implies the necessary knowledge about the environment and that it 

does not contradict the real world facts. The verification method can detect the specification 

errors during the design of the context model, help an expert to properly fix the 

specification, and therefore improve the reliability of the system and reduce the risk of the 

pervasive system design error.  

We consider the following directions of the future work: 

1. Fast verification algorithms. The verification algorithm has roughly exponential 

dependency on the number of involved context attributes and, therefore, will highly benefit 

from the algorithms optimization.  

2. Verification of dynamic and temporal situation properties. The properties that 

involve sequence or time (like “If the situation is PhoneCall, it means that there was a 

situation PhoneRings or Dialing before”) are currently out of scope of the verification 

process. The ability to incorporate the temporal relationships into the verification 

significantly broadens the verification capabilities. 

3. Automated situation fix. The current version of the verification approach 

verifies if there is a specification error and describes the context attributes that can lead to 

the context model inconsistency. However, the counterexamples only give the clue about 

how the specification error can be fixed. If the verification algorithm could provide 

suggestions for the situation specification fix on its own, it can facilitate the work of the 

expert. 

4. Combining verification and uncertainty. The approach proposed in this article 

assumes that the context state is a particular point in a multidimensional space, and the 

specifications of the uncertainty are not provided. For different ways of uncertainty 

representation there should be either a proof that the verification approach is still 

applicable, or the amended verification algorithm. 

5. Context quality evaluation. The expected relationships between situations can 

be viewed from different perspective. For example, the situation “SunnyDay & 

BlindsOpen” practically implies “LightLevelOK”, but it is not implied by the model 

directly. These relationships can be asserted into the context model, and then be used to 

verify the consistency of the context state. For example, if the situations SunnyDay(X) & 

BlindsOpen(X) & ¬LightLevelOk(X) holds true, it means a problem with either of the 

sensors, that is involved in those situations. The algorithm that can identify the 

inconsistency and propose the solution to fix the context model can improve the run-time 

context awareness reliability and efficiency. 

6. Learning the situations. Context spaces theory features the specification-based 

approach to the situation awareness. The ability to detect the possible presence of situation 

of interest, and suggest the specification of that situation, can significantly facilitate the 

work of the expert and improve the context model. 
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Foreword 

This chapter addresses the research question 2 and continues the research direction described in 

chapter VI. Fuzzy logic complements situation awareness with versatile and robust situation concepts.  

This chapter proposes, proves and evaluates a novel verification algorithm for fuzzy situations. 

Chapter VII uses basic concepts of verification originating in chapter VI, but in order to apply 

verification principles to fuzzy situations a completely different algorithm is proposed, implemented 

and evaluated. 



 
Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware 

Pervasive Computing Systems 

 

157 

Correctness Analysis and Verification of Fuzzy Situations in 

Situation Aware Pervasive Computing Systems 

Abstract. Context awareness is one of the central features of pervasive computing 

systems. From pervasive computing perspective a situation can be defined as 

external semantic interpretation of context. Situation awareness aims to infer 

situations out of context. Developing situation awareness is a challenging task, 

which can be significantly hampered by errors during design stage. In this article we 

propose a novel method for verification of fuzzy situation definitions. Fuzzy logic is 

a powerful mechanism for reasoning in pervasive computing systems and 

verification of situation models is a new method of formally ensuring correctness of 

context awareness and situation awareness. Verification is applied at the design time 

to check that definitions of situations are error-free. Verification approach allows 

developers to rigorously specify expected relationships between situations and then 

formally check that definitions of situations comply with expected relationships. If 

an error is found, then additional task is to find counterexamples - particular context 

attribute values, which can cause situation awareness inconsistency. 

Counterexamples provide additional insight into the cause of error and help 

repairing situation definitions. We also discuss a method to formalize requirements, 

as well as propose and formally prove the novel verification algorithm for fuzzy 

situation models. Last, but not least, we analyze theoretical and practical complexity 

of the proposed solution. 

 

Keywords: context awareness; situation awareness; fuzzy logic; fuzzy situation 

inference; situation algebra; verification 

1  Introduction 

Context awareness is one of the foundational principles of pervasive computing. Context is 

the key characteristic of every pervasive computing system and, according to predictions 

[GP09], by 2015 context will be as influential in mobile consumer services, as search 

engines are influential to the web. 

Situation in pervasive computing can be viewed as a higher level of generalization of 

context. For example, multiple wearable accelerometers on user’s arms and legs produce 

enough information to detect situations like “user walking”, “user running”, “user standing” 

or “user sitting” (see [BI04]), in the room the data from noise sensors, movement sensors 

and appliance usage sensors can be generalized into situations “nobody in the room”, “one 

person in the room” or “several people in the room” (see [DP11]), blood pressure sensory 

data in mobile healthcare can be generalized into situations “hypertension”, “hypotension” 

and “normal pressure” (see [DZ08]). Situation awareness functionality extracts most 

general relevant information from context and provides it in a clear manner to the 

applications. 

Practically used situation modeling methods include Naïve Bayesian approach 

[BI04][KK07], fuzzy logic [AN06][DZ08], belief function theory [DP11], context spaces 

[PL08a], neural networks [YW08], and many more (see [YD12] for a comprehensive 

survey). Situation models can be either learned from labeled [BI04][KK07] or unlabeled 

[HM06][Ma04a][Ma04b] data, or designed manually [DZ08][DP11] using the expert 

knowledge of the subject area. Situation reasoning result might be, for example, a Boolean 
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value (whether the situation occurs or not), probability that the situation is occurring, fuzzy 

level of confidence. 

Design of a situation aware system is a complex and error-prone task. Developing 

situation definitions manually may be hampered by expert errors. Errors in training data, 

overfits or underfits, as well as choice of an unsuitable learning approach can hamper 

automated learning of situation models. Incorrect situation awareness results are transferred 

to applications, and in turn it leads to improper adaptation actions. For example, if the 

situations “one person in the room” and “two people in the room” are triggered 

simultaneously, it might be a result of sensor error, but it as well might be a result of an 

improper generalization, i.e. it can happen if the sensor readings are not translated into 

situations correctly. Or, for example, definition mistake might result in triggering together 

situations “user sitting” and “user walking” even if the sensor error has no impact. As 

another example, situation “driving” should imply situation “in the car”, and if for some 

reliable sensor data it is possible to have the “driving” situation, but not “in the car” 

situation, this points to a definition mistake. Consider also one more example: a smart 

office, where there are two situations of interest associated with each workplace. One 

situation is “conditions acceptable for work”, which means that the workplace environment 

(including light level and noise level) is sufficiently good to continue working at that 

workplace. The second situation is “light malfunctions”, and it is triggered if the light is on, 

but the level of light is still insufficient to continue: the lamp may produce too dim light or 

be just off. According to their meaning, those situations should not co-occur – by definition 

“light malfunctions” implies insufficiency of light level, while “conditions acceptable” 

implies that all the workspace parameters are sufficient. Triggering both situations means 

contradictive situation awareness result, which might propagate further and lead to 

erroneous adaptation actions. This scenario will be a motivating example throughout the 

article. This example was inspired by the example from our previous article [BZ12b], but in 

this work it is redeveloped for fuzzy situation inference and analyzed by completely 

different approach. 

In order to avoid definition errors, situation models often undergo extensive testing: 

developers thoroughly check that the situation awareness recognize proper situation for 

certain sensor inputs. Sensor inputs can be from real sensors or imitated sensors in 

simulated environment. However, the capabilities of testing are limited. The sensor values, 

which trigger certain problems, might as well not be considered during the testing. 

Verification is an acknowledged opportunity of reducing the amount of errors in protocols 

and programs. Usually verification ensures that the program has a certain property, like “if 

a request comes, it will be processed” (see [CG99] for more details on verification of 

software). In order to prove that a program has certain property, corresponding assertion 

under verification has to be expressed in a formal manner (e.g. as a temporal logic 

formula). Verification procedure then rigorously proves that for the given program the 

assertion is always true, or finds counterexamples – precise description of cases, where 

assertion fails. In pervasive computing some articles proposed methods to verify behavior 

rules [AC09][IS09] or multi-agent interaction aspects [CP10][CP11]. However, the 

plausibility of situation definition verification is often overlooked. 

Some situation awareness-related articles, including our previous article [BZ12b], 

defined the problem of verification of situation models, i.e. detection of errors in the 

formulas of the situations. This article in comparison with [BZ12b] proposes novel methods 

to verify the situations, which are defined using fuzzy logic. 

The paper is structured as follows. Section 2 introduces the background of the work. It 

provides an overview of spatial representation of context, introduces fuzzy situation 
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inference and recaps the concept of verification of situation models. Section 2 also contains 

multiple examples, which emerge into the motivating scenario – a running example, which 

we are going to use throughout the article in order to illustrate the proposed approach. 

Sections 3 proposes and proves step-by-step algorithms, which allow verification and, 

hence, detection of errors in the definitions of fuzzy situations.  Section 4 describes 

evaluation results and provides complexity analysis of the proposed approach. Section 5 

provides description of related work and discussion of the achieved results. Section 6 

proposes future work directions and concludes the paper. 

2  Background 

This section provides the background to the challenges of verifying fuzzy situation models. 

It starts with discussing spatial representation of context, proceeds with fuzzy situation 

inference and introduces the concept of situation verification. The motivating example, 

which is briefly mentioned in the introduction, is built throughout the entire background 

section. The section is concluded with fully formalized and detailed motivating scenario 

that will be used as an illustration in the rest of the paper. 

2.1 Spatial Representation of Context 

Spatial representation of context emerges from a relatively straightforward idea of 

collecting all context attributes into a single vector of values. Context attributes include 

relevant sensor readings and the values derived from them. For example, in a mobile device 

with accelerometer and orientation sensor, a vector of context values can include readings 

of accelerometer, readings of orientation sensor, and absolute acceleration values, 

calculated from relative acceleration and orientation. All possible context vectors define 

multidimensional space of possible context. 

Representing context as a vector ensures clarity and allows efficient situation awareness 

using subspaces in multidimensional space [BZ12b][DZ08][Ma04a][Ma04b][PL08a]. Also 

it enables context prediction based on extrapolation of context trajectory [AM05][PL08a]. 

However, despite seeming simplicity, spatial representation of context contains some 

challenges related to missing sensor readings, non-numeric values, sensor uncertainty and 

the fact that sensor readings arrive at different time and may get outdated. 

The terminology, which we are going to define in this section, is based on terms 

established in the articles [BZ12b][DZ08][PL08a]. Comparing to the background work, in 

this article the terms are defined in a rigorous manner, in order to use them for formal proof 

and analysis of the verification algorithms. 

An example of multidimensional context space in figure 1 is related to previously 

mentioned motivating scenario. The figure depicts a simple context space for a workspace 

in a smart office. Current context is represented as a point in the multidimensional space. In 

figure 1 at the workplace there is currently luminance of 500 Lx, noise level of 30 dB and 

the light switch is on. Those values can be raw sensor readings, or they can be the result of 

sensor data processing. 
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Fig.1. Example of Spatial Representation of Context 

A multidimensional space, like in figure 1, is referred to as application space or context 

space [PL08a].  Axes in the multidimensional space of figure 1 are context attributes. 

Formally context attribute is defined as domain of values of interest [PL08a]. Context 

attributes can as well be non-numeric: weather context attribute can have values like 

“sunny”, “rainy” or “cloudy”, tap valve context attribute can have values “open” and 

“closed”, any appliance can be “On” or “Off”. Some context attributes can have both 

numeric and non-numeric values. Those context attributes are referred to as mixed. For 

example, air conditioner can be configured to maintain certain temperature or it can be just 

off. Mixed context attributes allow graceful integration of missing context information: if 

some parameter is unknown, then the value for corresponding context attribute can be set to 

the special non-numeric value Undefined [BZ12b]. In order to simplify the example, in 

figure 1 Undefined values are omitted and context attributes NoiseLevel and LightLevel are 

considered to be numeric. 

Context attribute value is a value of context attribute taken at a certain time [BZ12b]. 

Figure 1 shows that at present the value of NoiseLevel context attribute is 30 dB, the value 

of LightLevel context attribute is 500Lx and the value of SwitchPosition context attribute is 

On. In reality context attribute value takes uncertainty into account, but the questions of 

sensor uncertainty are out of scope of this article. Therefore, for the purpose of this article 

context attribute value is viewed just as a value on context attribute axis. 

A point in the multidimensional context space is referred to as a context state [PL08a]. 

Therefore, a context state is a vector of context attribute values. The set of all possible 

context states will be referred to as St. The fact that some entity X is a context state is 

formally expressed as X ∈ St. Any context state X can be described like {c1=x1, c2=x2, … }, 

where ci is a name of a particular context attribute. For example, the context state in figure 

1 can be denoted as {LightLevel=500, NoiseLevel=30, SwitchPosition=On} or just 

{500,30,On}, if the order of context attributes in a vector is pre-defined. 
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2.2 Fuzzy Situations 

Fuzzy logic is extensively used for context awareness and situation awareness purposes 

[AG10][AN06][CX05][DZ08][MS02]. In this article we use fuzzy situation format that was 

proposed in the paper in [DZ08]. Fuzzy situation is a versatile fuzzy logic-based situation 

awareness concept, and the algorithms developed for fuzzy situations can be applied to 

many other situation awareness techniques with minor modifications or no modifications at 

all. 

Situation in pervasive computing is “external semantic interpretation of sensor data” 

[YD12]. From context reasoning perspective situation is a formula, which takes context 

state as an input and produces reasoning result as an output [BZ12b]. Reasoning result is 

often a numeric value, representing either probability of the situation occurrence or 

confidence in the fact that the situation is occurring. Also reasoning result can be Boolean, 

representing whether the situation occurs or not. Situations with Boolean reasoning results 

can be viewed as subspaces of the context space. 

Fuzzy situation is a situation of a special format, which is presented in expression (1). 

The format of fuzzy situation was proposed in the paper [DZ08] in order to simplify the 

design of situations, prevent possible design mistakes and ensure readability. 

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( ) = ∑ 𝑤 ∗ 𝜇 (𝑥 )
𝑁
 =1                                                                          (1) 

The term Situation(X) refers to the result of situation reasoning. This result is referred to 

as certainty or confidence value. Originally certainty was defined as numeric [DZ08]. In 

this article we augment it with a special value UD, which stands for undefined. It allows 

accounting for missing sensor readings and handling the cases when there is not enough 

information to reason about the situation. 

Input parameter X in expression (1) is a context state. Vector X includes a set of values 

of relevant context attributes. Those values are referred to as xi, where i = 1…N and N is 

the number of relevant context attributes. 

In formula (1) coefficient wi is the weight of i-th context attribute contribution to the 

final confidence. All the weights sum up to one. The function µi(xi) is a membership 

function, which defines the contribution of i-th context attribute value. Every membership 

function depends on the value of only one context attribute. The term membership function 

comes directly from fuzzy logic - contribution is determined by the degree of belonging of 

a context attribute value to a specially designed fuzzy set [HM93]. The most popular shapes 

of membership functions are depicted in the figure 2 [DZ08][HM93]. In case if context 

attribute is non-numeric or mixed, there is a fixed value of the membership function 

associated with every possible non-numeric value. 

For this article we enforce only the following requirements on membership functions: 

1. Membership functions should be continuous in the numeric part of respective 

context attributes. 

2. Derivatives of membership functions should be piecewise constant. 

Given requirements encompass all functions depicted in figure 2, as well as all polygonal 

curve shaped membership functions. In a very general form we assume that a membership 

function over a numeric context attribute (or over numeric part of a mixed context attribute) 

is defined according to formula (2). 
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Fig. 2. Popular shapes of a membership function. (a),(d) Step membership function; (b),(e) 

Triangle membership function; (c),(f) Trapezoid membership function. 

 

µ(𝑥) =

[
 
 
 
 

𝑎1 ∗ 𝑥  𝑏1, 𝑥 ∈ (− , 𝑝(1)]

𝑎2 ∗ 𝑥  𝑏2, 𝑥 ∈ [𝑝(1), 𝑝( )]
…

𝑎𝐿 ∗ 𝑥  𝑏𝐿 , 𝑥 ∈ [𝑝(𝐿 − 1), 𝑝(𝐿)]

𝑎𝐿 1 ∗ 𝑥  𝑏𝐿 1, 𝑥 ∈ [𝑝(𝐿),   )

                                                                (2) 

In formula (2) the points p(1)…p(L) are referred to as breakpoints. The number of 

breakpoints L usually varies from 2 (in step function – figures 2a and 2d) to 4 (in trapezoid 

– figures 2c and 2f). For particular membership function µ (𝑥)of i-th context attribute  the 

breakpoints will be referred to as p(i,1)…p(i,Li), where Li is the number of breakpoints in 

the membership function µ (𝑥). 

Additional requirement for the membership function is continuity. Note that the intervals 

in formula (2) overlap on the boundaries. Compliance with formula (3) ensures that there 

are no contradictions. It shows that different parts of the piecewise linear functions connect 

at the breakpoints. 

{

𝑎1 ∗ 𝑝(1)  𝑏1 = 𝑎2 ∗ 𝑝(1)  𝑏2

𝑎2 ∗ 𝑝( )  𝑏2 = 𝑎3 ∗ 𝑝( )  𝑏3

…
𝑎𝑙 ∗ 𝑝(𝐿)  𝑏𝐿 = 𝑎𝐿 1 ∗ 𝑝(𝐿)  𝑏𝐿 1

                                                                       (3) 

A special case of L=0 is acceptable. In practice it is often a constant membership 

function with zero value. It does not contradict formulas (2) and (3), and it acts as a stub 

membership function. 

Non-numeric values can be incorporated into membership function by assigning 

membership function value for every non-numeric parameter. An example is depicted in 

formula (4). 
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µ(𝑥) = [
…

𝑈𝐷, 𝑥 ∈  𝑈𝑛𝑑𝑒 𝑖𝑛𝑒𝑑                                                                                       (4) 

For examples of fuzzy situations, refer to the context space depicted in figure 1. In that 

context space we can define two situations. A first situation under consideration is the 

situation, reflecting whether the workplace conditions are sufficient for normal work. For 

the purpose of illustration we consider only light level and noise level at the workplace. 

Membership functions of light and noise levels are presented in figure 3 and formalized 

into formula (5). In order to distinguish between membership functions of different 

situations over the same context attribute, the superscript over µ contains abbreviation of 

the situation name (CA stands for ConditionsAcceptable). 

µL   t
 𝐴 (Li htLeve ) = [

 , Li htLeve  35 
𝐿   𝑡𝐿𝑒 𝑒𝑙 3  

1  
, Li htLeve ∈ [35 ,5  ]

1, Li htLeve ≥ 5  

                                (5)  

µN    
 𝐴 (N iseLeve ) = [

1, N iseLeve  4 
(6 − 𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙)   , N iseLeve ∈ [4 ,6 ]

 , N iseLeve ≥ 6 
 

 
Fig. 3. Membership functions of ConditionsAcceptable situation 

 

Light level and noise level are equally important characteristics at the workplace and, 

therefore, they are assigned the same weight. We define situation ConditionsAcceptable 

according to expression (6). 

C nditi nsAcceptab e(X) =  .5 ∗ µL   t
 𝐴 (Li htLeve )   .5 ∗ µN    

 𝐴 (N iseLeve )          (6) 

Another situation under consideration is whether the light is malfunctioning. The 

problem is detected if lamps are on, but still provide insufficient light. For example, the 

lamps can be too dim due to internal malfunction, or they can become unpowered due to 

wire problems. The contributing parameters are position of light switch and light level. 

Contributions are depicted in figure 4 and formalized into expression (7). Superscript on 

top of membership function distinguishes the situation (LM stands for LightMalfunctions). 
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Fig. 4. Membership functions of LightMalfunctions situation 

 

µL   t
𝐿 (Li htLeve ) = [

 , Li htLeve  35 
(5  − 𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙) 15 , Li htLeve ∈ [35 ,5  ]

1, Li htLeve ≥ 5  
               (7)      

µ   t  
𝐿 ( witch  siti n) = [

1,  witch  siti n ∈  𝑂𝑛 

 ,  witch  siti n ∈  𝑂   
    

 

Final formula of the situation is depicted in expression (8). 

Li ht a f ncti ns(X) =  .5 ∗ µL   t
𝐿 (Li htLeve )   .5 ∗ µ   t  

𝐿 ( witch  siti n)     (8) 

The situations, defined in expressions (5)-(8), will be used throughout this article as 

running examples.  Several more definitions are necessary to proceed to verification of 

situation models. 

Fuzzy situation inference uses certainty threshold to decide whether the situation occurs 

or not. If the certainty reaches the threshold, situation is counted as occurring. If the 

certainty is below the threshold or the certainty is undefined, then occurrence is not 

claimed. 

Situation algebra was developed in order to reason about relationships between 

situations [PL08a]. Situation algebra procedures resemble Zadeh operators [Za65]. Details 

are provided in expression (9). 

𝐴𝑁𝐷: (𝐴 & 𝐵)( )  =  𝑚𝑖𝑛(𝐴( ), 𝐵( ))

𝑂𝑅: (𝐴 | 𝐵)( )  =  𝑚𝑎𝑥(𝐴( ), 𝐵( ))

𝑁𝑂𝑇: (¬𝐴)( )  =  1 –  𝐴( )

                                                          (9) 

If the certainty value of A(X) or B(X) is undefined, then the result of situation algebra 

operation is undefined as well. The notations like (A | B)(X) and A(X) | B(X) are equivalent 

and just represent different styles. 

Next section uses the definitions from this section and on their basis defines the 

essentials of verification of situation definitions. 
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2.3 Verification of Context Models and Motivating Scenario 

Boytsov and Zaslavsky [BZ12b] analyzed and formalized possible relationships between 

situations and utilized them for context model verification. One of the main outcomes of the 

article [BZ12b] is that non-temporal situation relationships can be expressed as assertions 

of emptiness for some situation algebra expressions. The relationships between situations, 

as well as the corresponding assertions are presented in formula (10). 

Generalization:    St, 
 (𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛& ¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛)( ) ≥ th             

Composition:   St,                                                                                                          (10) 

        (𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 & ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1 & ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 …& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁)( ) ≥ th  

Dependence:    St, (𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 & ¬𝐷𝑒𝑝𝑒𝑛𝑑𝑠𝑂𝑛)( )≥ th 

Contradiction:    St, (𝑆𝑖𝑡1 & 𝑆𝑖𝑡 )( ) ≥ th                                                                     

The term th in formula (10) denotes certainty threshold. Expressions (10) are assertions 

of emptiness with respect to the threshold. Empty situation algebra expression [BZ12b] is 

an expression that cannot reach certainty threshold for any input context state. Therefore, 

empty expression will never be recognized as occurring. 

In formula (10) generalization means that one situation is less general than the other, e.g. 

a situation InTheLivingRoom is less general then a situation AtHome. Corresponding 

assertion states that less general situation should not occur without more general situation, 

or, rigorously, for no context state should the certainty of having less general situation and 

not more general situation reach the certainty threshold. Composition means that the 

situation is built from several components. The assertion states that for no context state 

should the situation be recognized without any of its components. For example, situation 

InTheHouse is composed of situations like InTheLivingRoom, InTheHall, InTheBathroom. 

Dependence means that one situation is a prerequisite to another (e.g. situation 

UserWatchingTV depends on situation TVisOn). Contradiction means that situations should 

not occur simultaneously, and the motivating scenario is a good example of it. More 

sophisticated assertions can be verified by using situation algebra expressions as arguments 

for the formulas (10). 

A context state, for which the assertion under verification is false, is referred to as a 

counterexample. If a developer needs to know, whether the assumption is satisfied or not, it 

is enough to find at least one counterexample or prove that there are none. Finding as many 

counterexamples as possible might provide better insight on how to fix the definition error, 

but in turn searching for more counterexamples might require more time and computational 

resources. 

We demonstrate the approach by applying it to illustrative example. The motivating 

scenario is built on top of the example context and situations, which were defined in earlier 

sections. The example was inspired by [BZ12b], but we use different and more advanced 

concept of a situation, and it results in more realistic situation representation. Moreover, 

different concept of a situation results in entirely different verification algorithm, which is 

proposed and proved in this article. 

Consider the context space, depicted in figure 1. It has three context attributes: numeric 

attributes NoiseLevel and LightLevel and non-numeric context attribute SwitchPosition. The 

situations LightMalfunctions and ConditionsAcceptable, are defined in expressions (6) and 

(8) respectively. As we mentioned in the introduction, the situations ConditionsAcceptable 

and LightMalfunctions should not co-occur: ConditionsAcceptable implies illuminance 
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sufficiency, while LightMalfunctions implies illuminance insufficiency. In terms of 

situation relations (10), ConditionsAcceptable and LightMalfunctions are in a contradiction. 

The value 0.7 is frequently chosen as confidence threshold in practice, and we are going to 

choose it for the motivating example. As a result, assertion (11) should be maintained. 

   St,    (𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 & 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒)( ) ≥ 0.7                    (11) 

Assertion (11) states that for no context state the confidence level of the situation algebra 

expression ConditionsAcceptable&LightMalfunctions exceeds the threshold, i.e. for no 

context state the two mentioned situations are triggered together. 

This section provided rigorous formalization of the necessary terms and defined a 

motivating scenario. The next section proposes verification algorithm for fuzzy situations 

and uses verification of assertion (11) as a running example. 

3 Verification of Fuzzy Situations 

In this section we propose a method of emptiness check for a situation algebra expression 

that involves fuzzy situations. Section 3.1 describes additional assumptions and notation 

agreements. Section 3.2 proposes a general method to utilize DNF representation of the 

verified assertion. Section 3.3 describes the method to handle non-numeric and mixed 

context attributes. Sections 3.4 and 3.5 propose the method to find subspaces of context 

space, where all the involved situations are linear functions. Section 3.6 proposes a method 

to find the maximum confidence values within those subspaces. Section 3.7 summarizes the 

verification approach. Every step of verification is illustrated in details using the motivating 

scenario from section 2.3. 

3.1  Additional Assumptions 

In order to simplify further proofs and analysis, we make several additional assumptions. 

Those assumptions do not result in any loss of generality, and can be viewed more as 

notation agreements. 

Assumption 1. All the mentioned situations are defined over the same set of context 

attributes. 

This assumption simplifies the proofs without reducing generality of the methods: if 

needed, additional context attributes with zero weight and constant zero membership 

functions can be introduced into any situation. In the motivating scenario we can rewrite the 

situations in the following manner (expressions (12) and (13)). 

C nditi nsAcceptab e(X) =  .5 ∗ µL   t
 𝐴 (Li htLeve )   

  .5 ∗ µ𝑁𝑜 𝑠𝑒
 𝐴 (N iseLeve )   ∗ µ   t  

 𝐴 (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)                                 (12) 

µ   t  
 𝐴 (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = 0 

Li ht a f ncti ns(X) =  .5 ∗ µL   t
𝐿 (Li htLeve )   

  ∗ µN    
𝐿 (N iseLeve )   .5 ∗ µ   t  

𝐿 (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)                               (13) 

µN    
𝐿 (N iseLeve ) =   

Expressions (12) and (13) are equivalent to the definitions (6) and (8) respectively. In 

expressions (12) and (13) both situations, involved in the motivating scenario, are defined 

over the same set of context attributes: LightLevel, NoiseLevel and SwitchPosition. If a 



 
Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware 

Pervasive Computing Systems 

 

167 

context attribute influences at least one involved situation, it is added to all the other 

situations. Note that even if newly added context attribute is Undefined (e.g. due to 

unavailable sensor), the membership function is still zero. 

Assumption 2. Context space has only context attributes, which belong to at least one 

situation. Only those context attributes influence certainty levels, and, therefore, only those 

context attribute values determine whether any given context state is a counterexample or 

not. 

In the motivating example the only relevant context attributes are LightLevel, NoiseLevel 

and SwitchPosition. Other context attributes do not influence assertion (11) and, therefore, 

are omitted from context space by this assumption. 

Assumption 3. Context attributes within context state are ordered and numbered. It will 

ensure that when referring to i-th element of input context state, the same context attribute 

is implied for different situations. According to assumption 1, for all the situations the list 

of context attributes is the same. Therefore, choosing any arbitrary order will satisfy the 

assumption. 

In the motivating scenario we define the following order: {LightLevel, NoiseLevel, 

SwitchPosition}. For example, the point from figure 1 is {500,30,On}. Other context 

attribute values are omitted according to assumption 2. 

Further sections propose and prove the verification algorithm, and the derivations imply 

the assumptions 1-3. 

3.2 Utilizing DNF representation 

Disjunctive normal form (DNF) [RN06] is a way to represent logical expression as a 

disjunction of conjunction clauses. A generic example of DNF situation algebra expression 

is presented in formula (14). 

(Sit1(X)&Sit2(X)) | (Sit3(X)&(¬Sit4*(X))) | ((¬Sit5(X))&Sit1(X))                              (14) 

The whole expression (14) is a disjunction, where every disjunct is conjunction of single 

situations or their negations. The disjuncts in expression (14) are Sit1(X)&Sit2(X), 

Sit3(X)&(¬Sit4*(X)) and (¬Sit5(X))&Sit1(X). 

In formalized situation relations (10) expressions are naturally in DNF format. In the 

motivating example (11) expression is in DNF format as well. If needed, the following 

properties can assist DNF conversion. Those properties straightforwardly follow from 

formulas (9). 

1. AND and OR are commutative: 

(A & B)(X) = (B & A)(X), and (A | B)(X) = (B | A)(X). 

2. Distributive property holds for AND over OR: 

(A & (B | C))(X) = (A&B | A&C)(X). 

3. DeMorgan laws do apply: 

a. ¬ (A | B)(X) =  (¬A & ¬B)(X). 

b. ¬ (A & B)(X) =  (¬A | ¬B)(X). 

Lemma 3.2 shows how DNF representation can be utilized for verification purposes. The 

main idea is to find maximum achievable certainty for each disjunct, and obtain the context 

state where the maximum certainty is achieved. Lemma 3.2 shows that if counterexamples 

do exist, some of them will be at those context states. 
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Lemma 3.2. Any arbitrary DNF situation algebra expression is non-empty w.r.t. to some 

threshold, if and only if the maximum certainty value of at least one DNF disjunct is greater 

or equal to the threshold. 

Proof. Consider an arbitrary DNF situation algebra expression Expr(X), presented in 

formula (15). 

Expr(X) = Disj1(X) | Disj2(X) | … | DisjN(X)                                                               (15) 

Every disjunct Disji(X) is a conjunction of single situations or their negations, and for 

this lemma no further details are required. The chosen threshold is denoted as th. 

Part 1. Sufficiency proof. The proof of sufficiency assumes that for at least one disjunct 

the maximum value reaches the threshold th, and derives that the whole expression is non-

empty w.r.t. to that threshold. Let for some disjunct Disjk(X) the maximum achievable 

certainty value be d, which is not less than the threshold th. Let’s also denote as Xk the 

context state, at which the maximum certainty value d is achieved by Disjk(X). It can be 

summarized in formula (16). 

Disjk(XK) = d, d ≥ th                                                                                                     (16) 

Now let’s find the certainty of the expression Expr(X) at context state XK. The derivation 

is presented in (17). OR situation algebra operation is expanded according to definition (9). 

Expr(Xk) = Disj1(Xk) | Disj2(Xk) | … | DisjN(Xk) =  

   = max(Disj1(Xk), Disj2(Xk),…,DisjN(Xk)) =                                                                 (17) 

  = max(Disj1(Xk), Disj2(Xk),…, DisjK-1(Xk), d, DisjK+1(Xk),…,DisjN(Xk)) ≥ d ≥ th. 

Summarizing the derivation (17), at the context state XK the certainty of expression 

Expr(X) reaches the threshold th. Therefore the expression is not empty w.r.t. to the 

threshold th. It completes the sufficiency proof. 

Part 2. Necessity proof. Necessity proof assumes that expression (15) is non-empty 

w.r.t. to the given threshold th, i.e. there exist some context state X’ such that Expr(X’) ≥ th. 

The task is to prove that for at least one disjunct the maximum confidence value is greater 

or equal than the threshold th. Initial conditions for necessity proof can be summarized in 

expression (18). 

∃   St, Expr(X’) ≥ th                                                                                                   (18) 

For a proof by contradiction assume that the opposite is true – the maximum values of 

all disjunct are less than the threshold th. If this assumption results in a contradiction, it will 

prove that for some of the disjuncts the threshold will be reached. The assumption for proof 

by contradiction is summarized in expressions (19). 

max(Disji(X)) < th, i=1…N                                                                                           (19) 

Consider the derivation (20). It follows from expressions (18) and (19) and situation 

algebra definitions (9). 

th ≤  Exp (X’) = Disj1(X’) | Disj2(X’) | … | DisjN(X’) =  

                       = max(Disj1(X’), Disj2(X’),…,DisjN(X’)) ≤                                            (20) 

 ≤ max(maxx(Disj1(X)), maxx(Disj2(X)),…, maxx(DisjN(X))) < 

 < max(th, th,…, th) = th 

Derivation (20) leads to summary th<th, which is a contradiction. It proves that 

assumption (19) is wrong and completes proof by contradiction. Therefore, for at least one 

disjunct the maximum confidence value should reach the threshold. Q.E.D.■ 
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To summarize lemma 3.2, in order to check DNF situation algebra expression for 

emptiness it is sufficient to find the maximum certainty values of every disjunct separately 

and compare them against the threshold. If the threshold is exceeded for at least one 

disjunct, then the expression is not empty, and verification has detected an error. The 

context state, where maximum is achieved for that disjunct, is a counterexample. If all the 

maxima are below the threshold, then the situation definitions comply with the assertion 

under verification. 

Subsequent sections propose and prove a detailed method to find the maximum value of 

any disjunct. Next section discusses the influence of non-numeric context values on the 

maximization task. 

3.3  Handling Non-numeric Context Attribute Values 

In section 3.2 we proved that for verification of DNF assertion it is sufficient to find 

maximum achievable certainty of every disjunct. The presence of non-numeric values in 

non-numeric or mixed context attributes poses a challenge to searching for maximum. A 

plausible solution is to reduce the task to multiple maximization tasks with numeric input. 

For example, in the motivating scenario we can view two cases with purely numeric 

remaining context attributes: the case when SwitchPosition=On and the case when 

SwitchPosition=Off. The final task is to find two maximums for two numeric functions. 

Those functions are presented in expressions (21) (for SwitchPosition=On) and (22) (for 

SwitchPosition=Off). In expressions (21) and (22) the contributions of SwitchPosition are 

replaced by their exact values due to the fact that the value of SwitchPosition context 

attribute is fixed. 

min ( .5 ∗ µL   t
 𝐴 (Li htLeve )   .5 ∗ µN    

 𝐴 (N iseLeve ),  .5 ∗ µL   t
𝐿 (Li htLeve )   .5)       (21) 

min ( .5 ∗ µL   t
 𝐴 (Li htLeve )   .5 ∗ µN    

 𝐴 (N iseLeve ),  .5 ∗ µL   t
𝐿 (Li htLeve ))                (22) 

Mixed context attributes can be processed in similar manner. For example, consider a 

mixed context attribute AirConditionerSetting, which can have the values Off  if the 

conditioner is off, Undefined when the settings are unknown (e.g. due to connection 

problems), or have a numeric value – the temperature set for the air conditioner. Three 

special cases need to be investigated in that case. 

1. AirConditionerSetting=Off 

2. AirConditionerSetting=Undefined 

3. AirConditionerSetting ∈ R 

The general case of the described approach is proposed in operation 3.3. The goal of 

operation 3.3 is to reduce verification involving non-numeric context attributes to multiple 

verifications involving only numeric context attributes. 

Operation 3.3. Consider a situation algebra expression Expr(X). It is asserted that the 

certainty of Expr(X) does not reach the threshold, and in order to test it we need to find the 

maximum achievable certainty value. Among other context attributes, expression Expr(X) 

is defined over context attribute cL, which can take non-numeric values a1…aK (and, 

possibly, numeric values as well). 

Proposition. In order to find maximum certainty of Expr(X), it is sufficient to find 

maximum certainty for the following cases. 

Subtask 1. Find maximum certainty of Expr(X) with the constraint cL= a1. 

Subtask 2. Find maximum certainty of Expr(X) with the constraint cL= a2. 
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… 

Subtask K. Find maximum certainty of Expr(X) with the constraint cL= aK. 

Subtask K+1. Find maximum certainty with a condition that cL is numeric (if cL is a mixed 

context attribute). 

Output. The largest of obtained maximums and the corresponding context state, where 

it is achieved. 

The resulting expressions under maximization are denoted as Expr(X | cL= ai)  or Expr(X 

| cL∈ R). 

In the motivating scenario two resulting constrained optimization tasks are represented 

by the formulas (21) and (22). They respectively correspond to 

(ConditionsAcceptable&LightMalfunctions)(X|SwitchPosition=On) and 

(ConditionsAcceptable&LightMalfunctions)(X| SwitchPosition=Off). 

Proof. Let the maximum certainty value of Expr(X) be achieved at a context state X’. If 

in context state X’ the value of context attribute cL is equal to ai, then this context state will 

be found while solving i-th subtask. If in context state X’ the value of context attribute cL is 

numeric, then it will be found while solving (K+1)-th subtasks. Therefore, if all the maxima 

for Expr(X | cL= ai) and Expr(X | cL∈ R) are found, the global maximum can be obtained in 

a straightforward manner – it is the highest maximum value among the obtained maxima 

for tasks 1…K+1. Moreover, if any maximum for Expr(X | cL= ai) or Expr(X | cL∈ R) 

exceeds the threshold, then it is already a counterexample. 

Q.E.D.■ 

The main outcome of operation 3.3 is reducing the number of non-numeric parameters. 

On the first run of the operation, one context attribute cL will be eliminated from the 

subtasks 1...K (just like SwitchPosition was eliminated from the input of expression 

(ConditionsAcceptable & LightMalfunctions)(X)). For the subtask K+1 the context attribute 

cL will be reduced to numeric, and still the number of non-numeric inputs will be reduced 

by one. If there are many non-numeric or mixed context attributes involved, operation 3.3 

should be applied recursively until all of those context attributes are processed. Next 

iteration is applied to all the subtasks, which emerged from previous iteration. After 

multiple iterations of operation 3.3 the resulting subtasks will contain only numeric 

parameters as inputs. 

It should be specifically noted that after applying operation 3.3 the situations might no 

longer comply with definition (1). For example, in expression (21) the situation 

LightMalfunctions effectively becomes                        .5 ∗ µL   t
𝐿 (Li htLeve )   .5. 

Weights no longer sum up to 1, and a bias term is introduced. In order to proceed with the 

proof, we need a more general formula of a situation, which stays unaltered after applying 

operation 3.3. After the substitutions like cL= ai, which are part of operation 3.3, the 

involved situations comply with definition (23) instead of definition (1). Membership 

functions in the definition (23) are compliant with formulas (2) and (3). 

  𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( ) = ∑ 𝑤 ∗ 𝜇 (𝑥 )
𝑁
 =1  + 𝑤                                                                    (23) 

Fuzzy situations, which comply with the definition (1), do comply with the definition 

(23) as well. The term 𝑤  for them is equal to zero. Negated situations also comply with the 

definition (23), if the situation is defined according to expression (1) and negation is 

defined according to formula (9). For that case 𝑤  is equal to 1 and all the coefficients wi 

change the sign comparing to original, non-negated situation. In definition (23) the 

coefficients wi no longer have to be positive and no longer have to sum up to 1. 
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After one iteration of operation 3.3 the involved situations undergo substitution (24). 

Subscripts denote the subtask, and xL denotes the value of expanded context attribute. 

 

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛1( ) = ∑ 𝑤 ∗ 𝜇 (𝑥 )
𝐿 1
 =1  𝑤𝐿 ∗ 𝜇𝐿(𝑎1)  ∑ 𝑤 ∗ 𝜇 (𝑥 )

𝑁
 =𝐿 1  𝑤                    

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝐾( ) = ∑ 𝑤 ∗ 𝜇 (𝑥 )
𝐿 1
 =1  𝑤𝐿 ∗ 𝜇𝐿(𝑎𝐾)  ∑ 𝑤 ∗ 𝜇 (𝑥 )

𝑁
 =𝐿 1  𝑤        (24) 

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝐾 1( ) = ∑ 𝑤 ∗ 𝜇 (𝑥 )
𝑁
 =1  𝑤 , where xL  is restricted to 

                                                                   numeric values (if possible). 

The (K+1)-th situation of formula (24) is directly compliant with definition (23). Let’s 

prove that other situations of (24) remain compliant as well. Consider i-th expression of 

(24), where i is any integer value between 1 and K inclusively. The term 𝑤𝐿 ∗ 𝜇𝐿(𝑎 ) is a 

constant. Let’s define the term 𝑤   as 𝑤  𝑤𝐿 ∗ 𝜇𝐿(𝑎 ). Also let’s redefine the terms in a 

following manner: 

- 𝑤   = 𝑤  for  j=1..i-1 and 𝑤   = 𝑤  1 for j= i…N. 

- 𝜇   = 𝜇  for  j=1..i-1 and 𝜇   = 𝜇  1 for j= i…N. 

With redefined notation, i-th row of formula (24) can be rewritten as expression (25). 

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 ( ) = ∑ 𝑤  ∗ 𝜇 (𝑥 )
𝑁 1
 =1  𝑤                                                                    (25) 

Expression (25) is straightforwardly compliant with the definition (23). It proves that 

situations from formula (24) are all compliant with definition (23). To summarize, we have 

proven that after applying operation 3.3 the formulas of individual situations remain 

compliant with the expression (23). 

In the motivating scenario for the situation LightMalfunctions the term 𝑤  is equal to 0.5 

for the case SwitchPosition=On and is equal to 0 for the case SwitchPosition=Off. For the 

situation ConditionsAcceptable the term 𝑤  is equal to 0 in both cases. 

The case where w0 is undefined (UD) is a special case. It can appear in some subtasks 

when considering missing sensor values (see formula (4)). In that case the certainty of a 

situation is undefined. The whole conjunction of DNF expression, containing this situation 

is undefined, and so is the entire DNF expression. Whether to count undefined value as a 

counterexample or not is a matter of developer’s choice, but in any case no further 

calculations are necessary for that subtask. Therefore, the case w0 = UD is trivial and from 

now and on we consider only the cases when w0 is not UD (i.e. numeric), unless explicitly 

mentioned otherwise. 

To summarize, the propositions, proven in this section, have the following implications 

for further proofs: 

1. The search for maximum certainty can be performed separately for all possible 

combinations of non-numeric values. For mixed context attributes both possible numeric 

and non-numeric values should be taken into account. Operation 3.3 can generate a set of 

subtasks, which should be solved separately. 

2. Within every subtask the input arguments are numeric only. Also within every 

subtask the situations, involved in the expression under verification, are compliant with 

definition (23). Compliance with definition (1) is not guaranteed. 

The next section describes the search for maximum for every mentioned subtask, with 

respect to the implications summarized above. 
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3.4 Subspaces of Linearity – Single Situation 

The extended definition of fuzzy situation (expression (23)) shows that the situation is a 

weighted sum of membership functions. In turn, expressions (2) and (3) show that 

membership functions are continuous piecewise linear functions, which depend only on a 

single context attribute. The input context state is numeric – otherwise the operation 3.3 

should be applied first. 

A membership function of any arbitrary context attribute contains a set of breakpoints, 

and between those breakpoints (as well as before the first breakpoint and after the last one) 

a membership function linearly depends on a single context attribute value. The whole 

situation formula becomes a linear function if the context state is bounded within Cartesian 

product of intervals between the breakpoints. Consider an illustration from the motivating 

example. 

The situation ConditionsAcceptable can be correctly described both by definitions (26) 

and (27) for both cases SwitchPosition=On and to SwitchPosition=Off. Expressions (26) 

and (27) emerge from substituting expression (5) into expression (6). 

 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒( ) = 

= [

 .5 ∗ µN    
 𝐴 (N iseLeve ), Li htLeve  35 

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙   .5 ∗ µN    

 𝐴 (N iseLeve ) −
 

 
, Li htLeve ∈ [35 ; 5  ]

 .5 ∗ µN    
 𝐴 (N iseLeve )   .5, Li htLeve ≥ 5  

         (26) 

 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒( ) = 

= [

 .5 ∗ µL   t
 𝐴 (Li htLeve )   .5, N iseLeve  4 

−
1

  
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙   .5 ∗ µL   t

 𝐴 (Li htLeve )  
3

2
, N iseLeve ∈ [4 ,6 ]

 .5 ∗ µL   t
 𝐴 (Li htLeve ), N iseLeve ≥ 6 

            (27) 

 

Expressions (26) and (27) can be merged in order to find the situation formula within 

various Cartesian product of intervals on LightLevel and NoiseLevel axis. The result of the 

merging, which straightforwardly follows from formulas (26) and (27), is presented in table 

1. The formulas from table 1 apply to both cases SwitchPosition=On and 

SwitchPosition=Off. 

The intervals in expressions (26) and (27) do overlap and, hence, the subspaces in table 1 

do overlap as well. However, compliance with conditions (3) ensures continuity and 

protects from contradictions on the boundaries. As table 1 shows, for any context state, 

which belongs to several Cartesian products of intervals, it does not matter which line of 

table 1 to use for calculations – the resulting confidence value is the same. 

For LightMalfunctions situation the formulas are presented in expressions (28) and (29). 

They correspond to the cases SwitchPosition=On and SwitchPosition=Off respectively. 

Note that those two cases correspond to different subtasks, generated by operation 3.3 

(subtasks (21) and (22) respectively). 

Li ht a f ncti ns(X) = 

= [

 .5, Li htLeve  35 ,  witch  siti n = On

−
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

13

 
, Li htLeve ∈ [35 ,5  ],  witch  siti n = On

1, Li htLeve ≥ 5  ,  witch  siti n = On

      (28)      
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Table 1. ConditionsAccetable – expanded formula. 

Subspace ConditionsAcceptable 

Li htLeve  35 , N iseLeve  4  0.5
 

Li htLeve  35 , N iseLeve ∈ [4 ,6 ] −
1

4 
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  

3

 
 

Li htLeve  35 , N iseLeve ≥ 6  0 

Li htLeve ∈ [35 ; 5  ], N iseLeve  4  
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

 

3
 

Li htLeve ∈ [35 ; 5  ], N iseLeve ∈ [4 ,6 ] 
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

1

4 
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  

1

3
 

Li htLeve ∈ [35 ; 5  ], N iseLeve ≥ 6  
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

7

6
 

Li htLeve ≥ 5  , N iseLeve  4  1 

Li htLeve ≥ 5  , N iseLeve ∈ [4 ,6 ] −
1

4 
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙    

Li htLeve ≥ 5  , N iseLeve ≥ 6  0.5 

 

Li ht a f ncti ns(X) = 

= [

 , Li htLeve  35 ,  witch  siti n = Off

−
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

 

3
, Li htLeve ∈ [35 ,5  ],  witch  siti n = Off

 .5, Li htLeve ≥ 5  ,  witch  siti n = Off

      (29)      

  

Expressions (28) and (29) are summarized in table 2.  

As follows from table 1, there exists a set of subspaces within the context space, where 

the situation ConditionsAcceptable is linear. Every context state belongs to some subspace 

of that set (and, possibly, more than one subspace). The same conclusion regarding the 

situation LightMalfunctions follows from table 2, but the set of subspaces is different. And, 

actually, the same conclusion applies to any arbitrary situation – for any situation there 

exists a set of subspaces, which cover the entire context space. Within each of those 

subspaces the situation is linear. Those subspaces are referred to as subspaces of linearity – 

subspaces where the situation formula is a linear function. The proof that subspaces of 

linearity exist for any situation is presented in lemma 3.4. 

 
Table 2. LightMalfunctions – expanded formula. 

Subspace 
LightMalfunctions 

(SwitchPosition=On) 

LightMalfunctions 

(SwitchPosition=Off) 

Li htLeve  35 ,N iseLeve ∈ (− ,  ) 1 0.5 

Li htLeve ∈ [35 ; 5  ], 
N iseLeve ∈ (− ,  ) 

−
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

13

6
 −

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

5

3
 

Li htLeve ≥ 5  ,N iseLeve ∈ (− ,  ) 0.5 0 
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Lemma 3.4. For any context space and any situation Situation(X) (defined by formula 

(23)) there exist a set of subspaces, with following properties: 

1) Any context state is within some subspace of the set. 

2) The situation is a linear function in any subspace of the set. 
The input to the situation Situation(X) is numeric. Otherwise, operation 3.3 should be 

applied first. 

Proof.  

An arbitrary situation Situation(X), compliant with the definition (23): 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛( ) =
∑ 𝑤 ∗ 𝜇 (𝑥 )

𝑁
 =1  + 𝑤 . Membership functions are compliant with the definition (2). Let the 

breakpoints of membership function 𝜇 (𝑥 ) be p(i,1)…p(i,Li), the linear coefficients be 

a(i,1)..a(i,Li+1) and the bias terms be b(i,1)..b(i,Li+1). Let’s denote the intervals in a 

following manner: the interval (− , 𝑝(𝑖, 1)] is denoted as I(i,1), the interval 

[𝑝(𝑖, 1), 𝑝(𝑖,  )] is denoted as I(i,2) and so on. The last interval of the context attribute, 

[𝑝(𝐿),   ) is denoted as I(i, Li+1). Formula (30) shows membership function for i-th 

context attribute. The meaning does not differ from formula (3), the only difference is new 

notation, which will simplify further proofs. 

 

µ (𝑥 ) =

[
 
 
 
 

𝑎(𝑖, 1) ∗ 𝑥  𝑏(𝑖, 1), 𝑥 ∈ 𝐼(𝑖, 1)

𝑎(𝑖,  ) ∗ 𝑥  𝑏(𝑖,  ), 𝑥 ∈ 𝐼(𝑖,  )
…

𝑎(𝑖, 𝐿 ) ∗ 𝑥  𝑏(𝑖, 𝐿 ), 𝑥 ∈ 𝐼(𝑖, 𝐿 )

𝑎(𝑖, 𝐿  1) ∗ 𝑥  𝑏(𝑖, 𝐿  1), 𝑥 ∈ 𝐼(𝑖, 𝐿  1)

                                             (30) 

 

Consider the following set of subspaces, defined by expression (31).  

 

𝑥1 ∈ 𝐼(1, 𝑘1)   𝑥2 ∈ 𝐼( , 𝑘2)   … ^ 𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁)                                                          (31) 

 

In formula (31) every index ki can have any integer value between 1 and Li+1 (for 

i=1…N). The subspace is defined as Cartesian product of intervals over different context 

attributes. The formula of a situation (32) is applicable within any arbitrary subspace. 

Formula (32) is the result of direct substitution of (30) into the formula (23).  

  

Situation(X) = ∑ 𝑤 ∗ 𝑎(𝑖, 𝑘 ) ∗ 𝑥 
𝑁
 =1  + 𝑤  ∑ 𝑤 ∗ 𝑏(𝑖, 𝑘 )

𝑁
 =1 ,                                    (32) 

𝑥1 ∈ 𝐼(1, 𝑘1)   𝑥2 ∈ 𝐼( , 𝑘2)   … ^ 𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁) 

 

The term 𝑤  ∑ 𝑤 ∗ 𝑏(𝑖, 𝑘 )
𝑁
 =1  is a constant and the coefficients 𝑤 ∗ 𝑎(𝑖, 𝑘 ) are linear 

coefficients for i-th context attribute value xi. Therefore, formula (32) depends linearly on 

all context attribute values xi, and it proves proposition 2 of the lemma. Every formula from 

tables 1 and 2 are, actually, the applications of formula (32) to the situations 

ConditionsAcceptable and LightMalfunctions respectively. 

In order to prove proposition 1, consider arbitrary context state {x1, x2, …, xN}. By the 

construction, the set of intervals I(1,0), I(1,1), …, I(1,L1), I(1, L1+1) covers all possible 

values of 1
st
 context attribute, from -∞ to +∞. Therefore, x1 belongs to one of those 

intervals. Actually, if the value x1 it is equal to p(1,1), p(1,2), … p(1,L1), then x1 can belong 

to two intervals at once, in that case, we choose arbitrary interval. Let the interval be I(1,k1) 

where k1 can be any value between 1..L1+1.  

The same derivations can be applied to 2
nd

 context attribute. Therefore, the value x2 

belongs to the interval I(2,k2)  where k2 can be any value between 1 and L2+1. And so on 
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until xN. As a summary, the context state belongs to the subspace 𝑥1 ∈ 𝐼(1, 𝑘1)   𝑥2 ∈
𝐼( , 𝑘2)   … ^ 𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁), where every index ki can have any integer value between 1 

and Li+1 (for i=1…N). So, any arbitrary context attribute belongs to some subspace, 

defined by (31). It proves proposition 1 of the lemma and completes the proof. 

Q.E.D.■ 

To summarize, this section has proven that for any situation there exist a set of 

subspaces, where the situation is a linear function. Next sections extend this solution for the 

case of conjunction of several situations, and utilize it to find the maximum value of a DNF 

disjunct. 

3.5 Subspaces of Linearity – Conjunction of Situations 

As section 3.2 shows, in order to verify situations and find a counterexample, we need to 

find the maximum values of every disjunct of the DNF expression under verification. A 

disjunct in the DNF situation algebra formula is a conjunction of situations and their 

negations, generic example is presented in expression (33) 

Disj(X) = Conj1(X) & Conj2(X) & … & C  jK(X)                                                           (33) 

Combined with the situation algebra logic formulas (9), the final value is the minimum 

value between all the conjuncts (expression (34)). 

∀  St, Disj(X) = min(Conj1(X),Conj2(X), …,C  jN(X))                                                (34) 

Every conjunct Conji(X) is either a single situation, or a negation of a single situation. As 

section 3.3 shows, in both cases the definition is compliant with formula (23). Therefore, 

lemma 3.4 can be applied to every conjunct, and for every conjunct the context space can 

be divided into a set of subspaces, where in each subspace the conjunct is a linear function. 

All the conjuncts are linear functions in the intersections of the corresponding subspaces. 

Consider the following example. 

The expression ConditionsAcceptable(X) & LightMalfunctions(X) should be tested for 

emptiness. As table 1 and table 2 show, in some subspaces of the context space the situation 

ConditionsAcceptable(X) and the situation LightMalfunctions(X) are linear. All the 

intersections of the subspaces from tables 1 and 2 are presented in table 3. The intersections 

are the same for the cases SwitchPosition=On and SwitchPosition=Off. 

1. Any context state belongs to some subspace of the set. 

2. In every subspace all the situations, mentioned in conjunction 

ConditionsAcceptable(X) & LightMalfunctions(X) are linear. 

The approach can be generalized for any arbitrary conjunction. Consider a generic 

conjunction, defined according to formula (33). Algorithm 3.5 proposes a solution to find 

the mentioned subspace intersections. 

Algorithm 3.5. Consider a conjunction, defined according to expression (33). The 

conjuncts Conj1, Conj2, …, ConjK each are defined according to formula (35). 

The most important properties of the subspaces defined in table 3 are following: 

𝐶𝑜𝑛 𝐾( ) = ∑ 𝑤 ∗ 𝜇 , (𝑥 )
𝑁
 =1  𝑤 ,                                                                       (35) 

The membership function 𝜇 , (𝑥 ) is the function for k-th conjunct over i-th context 

attribute. Let the breakpoints be p(i,k,1)…p(i,k,L(i,k)). Variable L(i,k) denotes the number 

of breakpoints. 
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Table 3. Subspaces of linearity – ConditionsAcceptable & LightMalfunctions 

Subspace ConditionsAcceptable LightMalfunctions 

(SwitchPosition=On) 

LightMalfunctions 

(SwitchPosition=Off) 

Li htLeve  35  

N iseLeve  4  
0.5 1 0.5 

Li htLeve  35  

N iseLeve ∈ [4 ,6 ] 
−

1

4 
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  

3

 
 1 0.5 

Li htLeve  35  

N iseLeve ≥ 6  
0 1 0.5 

Li htLeve ∈ [35 ; 5  ], 
N iseLeve  4  

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

 

3
 −

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

13

6
 −

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

5

3
 

Li htLeve ∈ [35 ; 5  ] 
N iseLeve ∈ [4 ,6 ] 

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 − 

−
1

4 
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  

1

3
 

−
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

13

6
 −

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

5

3
 

Li htLeve ∈ [35 ; 5  ] 
N iseLeve ≥ 6  

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

7

6
 −

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

13

6
 −

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

5

3
 

Li htLeve ≥ 5  , 
N iseLeve  4  

1 0.5 0 

Li htLeve ≥ 5   

 N iseLeve ∈ [4 ,6 ] 
−

1

4 
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙    0.5 0 

Li htLeve ≥ 5   

N iseLeve ≥ 6  
0.5 0.5 0 

 

 

Algorithm pseudocode. 

 

// Step 1. Generate breakpoints. 

for i = 1 to N  //For every context attribute 

    p’(i) =  ew B eakp i tList(); //Establish a  ew list  f b eakp i ts f   i-th context 

attribute 

   for j = 1 to K  //For every situation 

     p’(i).addAll (p(i,k,1…L(i,k)) ); //Add all breakpoints to a resulting list 

   end for //End for every situation 

  p’(i).s  t();//S  t the b eakp i ts i  as e di g   de  

  p’(i). em veDuplicates(); //All breakpoints should be distinct. 

end for //End for every context attribute 

 

//Step 2. Generate the intervals. 

for i = 1 to N //For every context attribute 

   Interval I(i,1) = (-∞, p’(i,1)];//Fi st i te val – from negative infinity to the first 

breakpoint 

   f   j = 2 t  p’(i).le gth 

     Interval I(i,j) = [p’(i,j-1), p’(i,j)] //Subsequent intervals – between the breakpoints 

  end for 

  Interval I(i, p’(i).le gth+1) = [p’(i,L),+∞);//Last i te val – from the last breakpoint and 

further 
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end for //End for every context attribute 

 

//Step 3. Generate the subspaces. 

SubspaceList resultingList = new SubspaceList(); 

                                      //Generate new subspace by 

for i1 = 1 t  I(1).le gth // …   mbi i g eve y i te val  ve  fi st    text att ibute… 

  for i2 = 1 t  I(2).le gth // … with eve y i te val  f se   d    text att ibute 

     … 

    for iN = 1 t  I(N).le gth // … with eve y i te val  f N-th context attribute 

        resultingList.add (new Subspace(I(1,i1), I(2,i2),…, I(N,iN))); //add to the list 

    end for 

     … 

  end for 

end for 

 

return resultingList; 

 

Let us consider an application of the algorithm to the motivating scenario. Breakpoints 

over the context attribute LightLevel are {350,500}, the same for ConditionsAcceptable and 

LightMalfunctions. In the first step of the algorithm the breakpoints are merged into a single 

list: {350, 500, 350, 500}. The procedure p’(i).s  t() sorts the breakpoint array and 

transforms it into {350, 350, 500, 500}. The procedure p’(i). em veDuplicates() removes 

duplicated breakpoints and makes the breakpoint array for LightLevel look like {350, 500}. 

The breakpoints over the context attribute NoiseLevel are {40, 60} for the situation 

ConditionsAcceptable. For LightMalfunctions the set of breakpoints for NoiseLevel is 

empty. Therefore, the resulting set of breakpoints is {40, 60}. Removing duplicated 

breakpoints and sorting them does not change the array, it still remains {40, 60}. 

Step 2 of the algorithm composes the intervals. For the context attribute LightLevel the 

intervals are (-∞, 350], [350,500] and [500, +∞). For the context attribute NoiseLevel the 

intervals are (-∞, 40], [40,60] and [60, +∞). 

Step 3 composes the subspaces out of intervals, obtained in the step 2. The generated 

subspaces are illustrated in table 3. Also table 3 shows that all the mentioned situations are 

linear inside those subspaces. The proof of the algorithm shows that for an arbitrary 

conjunction all the conjuncts are linear inside the subspaces, generated by the algorithm 

3.5. 

Proof. In order to prove the correctness of the algorithm, it is sufficient to prove that the 

algorithm complies with two properties. 

1. Any context state is inside at least one subspace of the set. 

2. In every subspace all the situations within the conjunction are linear. 

Property 1 can be proven as follows, it slightly resembles the proof of lemma 3.4. 

Consider an arbitrary context state {x1, x2, …, xN}. Consider the value of 1
st
 context 

attribute x1. By the construction (see step 2), the set of intervals I(1,1), …, I(1,I(1).length) 

covers all possible values of 1
st
 context attribute, from -∞ to +∞. So, x1 belongs to at least 

one of those intervals. Let it be the interval I(1,k1). The same logic can be applied to any 

arbitrary context attribute: the context attribute value xi belong to the interval I(i,ki). 

Therefore, context state {x1, x2, …, xN} belongs to the subspace x1 ∈ I(1,k1)^ x2 ∈ 

I(2,k2)^…^ x𝑁 ∈ I(1,kN). According to the step 2 of the algorithm, that subspace was 

generated in the nested loops where i1=k1, i2=k2, …, iN=kN. Therefore, an arbitrary context 

state belongs to one of the generated subspaces, Q.E.D. for property 1. 
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Property 2 can be proven as follows. According to lemma 3.4, for any situation there 

exist a set of subspaces, where the situation is linear for every subspace in the set. As a 

consequence, the situation is linear in every subspace of that subspace. We need to prove 

that any subspace, generated by the algorithm, is a subspace of a subspace of linearity for 

any conjunct. Consider the proof of a following hypothesis. 

Hypothesis 3.5.1. Any interval over any context attribute, generated in the step 2 of the 

algorithm, does not contain any breakpoints (except for on the boundaries) of any conjuncts 

of that context attributes. Consider a proof by contradiction. Let there be some generated 

subspace x1 ∈ I(1,k1)^ x2 ∈ I(2,k2)^…^ x𝑁 ∈ I(1,kN). Let pi be the breakpoint of conjunct 

Conjt(X) on i-th context attribute. Let pi be inside the interval I(i,ki) and not on its 

boundaries. However, according to the step 2 of the algorithm any breakpoint is a boundary 

of some interval - the breakpoint p  should have been added as a breakpoint in the step 1 

and could not have been removed by removeDuplicates() operation (if it is a duplicate, one 

of the pi points is preserved to become a boundary of the interval in the step 2). Therefore, 

the point p  should have become a boundary of some interval, let it be the interval I(i,m). 

According to the assumption of proof by contradiction the point p  belongs to the interval 

I(i,ki), therefore, the intervals I(i,m) and I(i,ki) do overlap. Also according to the assumption 

of proof by contradiction the point p  is not on the boundary of I(i,ki), therefore the 

intersection of I(i,m) and I(i,ki) is not restricted to the boundary point. However, by the 

construction in the step 2 of the algorithm, the intervals can intersect only on boundary 

points. It is a contradiction, therefore, such breakpoint p  does not exist. Q.E.D. for 

hypothesis 3.5.1. 
Consider a proof of proposition 2 for an arbitrary conjunct Conjt(X) and an arbitrary 

generated subspace   x1 ∈ I(1,k1)^ x2 ∈ I(2,k2)^…^ x𝑁 ∈ I(1,kN). Consider an arbitrary i-th 

context attribute and the interval I(i,ki). According to the hypothesis 3.5.1, membership 

function of Conjt(X) over the first context attribute contains no breakpoints inside the 

interval I(i,ki) (except for, possibly, on the boundaries). There can be three cases: 

1. The interval I(i,ki) is situated before the first breakpoint p(i,t,1), including the case 

when the first breakpoint is an upper boundary of the interval I(i,ki). In this case the interval 

I(i,ki) belongs to the interval (-∞;p(i,t,1)], where Conjt(X) linearly depends on i-th context 

attribute value according to definitions (23) and (2). Therefore, inside the interval I(i,ki) the 

conjunct Conjt(X) linearly depends on i-th context attribute value. 

2. The interval I(i,ki) is after the last breakpoint, including the case when the last 

breakpoint is on the lower boundary of the interval I(i,ki). If Conjt(X) contains no 

breakpoints for i-th context attribute, it can be viewed as a special case of this point or 

previous point. In this case the interval I(i,ki) belongs to the interval  [p(i,t,L(i,t)); ∞), where 

Conjt(X) linearly depends on i-th context attribute value. As well as for case 1, inside the 

interval I(i,ki) the conjunct Conjt(X) linearly depends on i-th context attribute value due to 

definitions (23) and (2). 

3. The interval I(i,ki) is between the breakpoints and, hence, inside the interval [p(i,t,m); 

p(i,t,m+1)].  But inside [p(i,t,m); p(i,t,m+1)] the conjunct Conjt(X) linearly depends on i-th 

context attribute value, and the same applies to the subinterval I(i,ki). 

The remaining options are ruled out by the hypothesis 3.5.1. If the interval does not 

contain any breakpoint, then it is either before the first breakpoint, after the last breakpoint 

or between the breakpoint. 

Therefore, in the interval I(i,ki) the conjunct Conjt(X) linearly depends on i-th context 

attribute value. By applying the same proof to all conjuncts and all context attributes, we 

can state that in the subspace x1 ∈ I(1,k1)^ x2 ∈ I(2,k2)^…^ x𝑁 ∈ I(1,kN) all the conjuncts 

linearly depend on all context attribute values. And it can be applied to any subspace, 
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generated by the algorithm. As a summary, for all subspaces generated by the algorithm all 

the conjuncts linearly depend on all context attribute values. It completes the proof of 

proposition 2 and, hence, completes the proof of algorithm 3.5. 

Q.E.D.■ 

The next section discusses searching for the maximum point of a conjunction within 

every subspace, generated by the algorithm 3.5. Global maximum can be obtained 

straightforwardly by comparing the maxima within the subspaces, and it completes 

emptiness test of a DNF situation algebra expression. 

3.6 Constrained Optimization in the Subspace 

Previous section described the algorithm to divide a context space into a set of subspaces 

with special properties. In the subspaces, generated by the algorithm 3.5, all the conjuncts 

are linear functions. The task of finding a maximum of a conjunction inside the subspace 

can be reduced to the linear programming task. Consider an example from motivating 

scenario, before we proceed to the proof for an arbitrary conjunction. 

In the motivating scenario the conjunction under testing is ConditionsAcceptable(X) & 

LightMalfunctions(X). Context space can be divided into the set of subspaces, where both 

ConditionsAcceptable(X) and LightMalfunctions(X) are linear. The subspaces, as well as 

linear functions, are presented in table 3. For illustration, let’s find maximum value within 

the subspace (Li htLeve ∈ [35 ; 5  ]) (N iseLeve ∈ [4 ,6 ]) in case when 

SwitchPosition=On. Expression (36) formalizes the maximization task. 

 

Maximize: min (
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

1

  
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  

1

3
 , −

1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

13

 
) 

w.r.t. constraints: 

Li htLeve  5                                                                                                  (36) 

Li htLeve ≥ 35  

N iseLeve ≥ 4  

N iseLeve  6  

 

Actually, the task (36) is a piecewise linear programming task [BV04], which can be 

reduced to the linear programming tasks. Task (36) can be rewritten as task (37) by 

introducing the artificial intermediate variable t=min(
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

1

  
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  

1

3
, 

−
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

13

 
). 

 

Maximize: t 

w.r.t. constraints: 

𝑡   
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

1

4 
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙  

1

3
 

𝑡   −
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

13

 
                                                                                 (37) 

35  Li htLeve  5   

4  N iseLeve  6  
 

New maximization objective is the result of direct substitution of new variable t. The 

two uppermost constraints directly follow from the definition of t. Task (37) can be further 

rewritten as task (38). 
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Maximize: t 

w.r.t. constraints: 

𝑡 −
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙  

1

4 
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙   

1

3
 

𝑡  
1

3  
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙   

13

 
                                                                                    (38) 

35  Li htLeve  5   

4  N iseLeve  6  

 

The task (38) is not yet a canonical form of the linear programming task. However, for 

many linear programming solvers the format (38) is already acceptable as an input. For this 

article we use the implementation of interior point method, embedded in the GNU Linear 

Programming Kit [M12], which in turn is embedded in GNU Octave [E08]. The maximum 

values, obtained by solving of piecewise linear maximization task for different subspaces, 

generated by algorithm 3.5, and different subtasks, generated by operation 3.3, are 

presented in table 4. 

Now the verification of motivating scenario is complete. Rows 4 and 5 of table 4 show 

that for the values LightLevel=425, NoiseLevel=40 and SwitchPosition=On the confidence 

level for the expression ConditionsAcceptable(X) & LightMalfunctions(X) is equal to 0.75. 

It is above the threshold of 0.7, therefore, for the expression the 

ConditionsAcceptable(X)&LightMalfunctions(X) verification has detected an error. A 

straightforward test can show, that it is really a counterexample: for the context state {425; 

40; On} certainty of ConditionsAcceptable(X) and certainty of LightMalfunctions(X) will 

be both 0.75. Both situations will be triggered in that case, and it will cause inconsistent 

situation awareness results. 

Table 4 shows that the counterexample is detected twice (rows 5 and 6). The reason is 

that the counterexample lies on the border of the subspaces. It is quite common case and it 

does not hamper verification in any way.  The found counterexample is not the only 

counterexample available – within some subspace around the counterexample the 

confidence value of ConditionsAcceptable(X) & LightMalfunctions(X)  is above 0.7. 

Consider a sequence of steps for any arbitrary conjunction. Let the conjunction be                                 

Conj1(X) &Conj2(X) &…&C  jK(X). Let the subspace be (low1 ≤ x1 ≤ high1) ^(low2 ≤ x2 ≤ 

high2)^…( lowN ≤ xN ≤ highN). Any lower or upper boundary can as well be infinite, in that 

case inequality sign is not inclusive. The subspace is generated by the algorithm 3.5 for the 

conjunction. Therefore, every conjunct is linear inside the subspace. Let’s denote the linear 

coefficients of an arbitrary l-th conjunct according to formula (39).  

 

Conjl(X) = ∑ 𝑎(𝑙, 𝑖) ∗ 𝑥 
𝑁
 =1  𝑏(𝑙)                                                                                (39) 

 

The maximization task looks as follows (formula (40)). 

 

Maximize: min (∑ 𝑎(1, 𝑖) ∗ 𝑥 
𝑁
 =1  𝑏(1), ∑ 𝑎( , 𝑖) ∗ 𝑥 

𝑁
 =1  𝑏( ), 

… , ∑ 𝑎(𝐾, 𝑖) ∗ 𝑥 
𝑁
 =1  𝑏(𝐾)) 

w.r.t. constraints:                                                                                                          (40) 

low1 ≤ x1 ≤ high1 

low2 ≤ x2 ≤ high2  
          … 

lowN ≤ xN ≤ highN 
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Table 4. ConditionsAcceptable(X)&LightMalfunctions(X) - Maxima within subspaces. 

№ Subspace 
Maximum 

(t-value) 

Context 

State 

[LightLevel; 

NoiseLevel] 

1 Li htLeve  35 ,N iseLeve  4 , SwitchPosition=On 0.5 [350; 40] 

2 Li htLeve  35 ,N iseLeve ∈ [4 ,6 ], SwitchPosition=On 0.5 [350; 40] 

3 Li htLeve  35 ,N iseLeve ≥ 6 , SwitchPosition=On 0 [350; 60] 

4 
Li htLeve ∈ [35 ; 5  ], N iseLeve  4 , 

SwitchPosition=On 
0.75 [425; 40] 

5 
Li htLeve ∈ [35 ; 5  ], N iseLeve ∈ [4 ,6 ], 
SwitchPosition=On 

0.75 [425; 40] 

6 
Li htLeve ∈ [35 ; 5  ], N iseLeve ≥ 6 , 

SwitchPosition=On 
0.5 [500; 60] 

7 Li htLeve ≥ 5  ,N iseLeve  4 , SwitchPosition=On 0.5 [500; 40] 

8 Li htLeve ≥ 5  ,N iseLeve ∈ [4 ,6 ], SwitchPosition=On 0.5 [500; 40] 

9 Li htLeve ≥ 5  ,N iseLeve ≥ 6 , SwitchPosition=On 0.5 [500; 60] 

10 Li htLeve  35 ,N iseLeve  4 , SwitchPosition=Off 0.5 [350; 40] 

11 
Li htLeve  35 ,N iseLeve ∈ [4 ,6 ], 
SwitchPosition=Off 

0.5 [350; 40] 

12 Li htLeve  35 ,N iseLeve ≥ 6 , SwitchPosition=Off 0 [350; 60] 

13 
Li htLeve ∈ [35 ; 5  ], N iseLeve  4 , 

SwitchPosition=Off 
0.5 [350; 40] 

14 
Li htLeve ∈ [35 ; 5  ], N iseLeve ∈ [4 ,6 ], 
SwitchPosition=Off 

0.5 [350; 40] 

15 
Li htLeve ∈ [35 ; 5  ], N iseLeve ≥ 6 , 

SwitchPosition=Off 
0.25 [425; 60] 

16 Li htLeve ≥ 5  ,N iseLeve  4 , SwitchPosition=Off 0 [500; 40] 

17 
Li htLeve ≥ 5  ,N iseLeve ∈ [4 ,6 ], 
SwitchPosition=Off 

0 [500; 40] 

18 Li htLeve ≥ 5  ,N iseLeve ≥ 6 , SwitchPosition=Off 0 [500; 60] 

 

Task (40) is a piecewise linear programming task. Piecewise linear programming task 

can be reduced to linear programming task by introduction of slack variable [BV04]. The 

result looks as follows (task (41)). 

 

Maximize: t 

w.r.t. constraints: 

t + ∑ (−𝑎(1, 𝑖)) ∗ 𝑥 
𝑁
 =1  ≤ 𝑏(1) 

t + ∑ (−𝑎( , 𝑖)) ∗ 𝑥 
𝑁
 =1  ≤ 𝑏( ) 

… 

t + ∑ (−𝑎(𝐾, 𝑖)) ∗ 𝑥 
𝑁
 =1  ≤ 𝑏(𝐾)                                                                              (41) 

low1 ≤ x1 ≤ high1 

low2 ≤ x2 ≤ high2  
          … 

lowN ≤ xN ≤ highN 

 

Task (41) can be further reduced to the canonical form of linear programming task (see 

[BV04]). However, linear programming solvers often can work with the task in (41) format 



 
Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware 

Pervasive Computing Systems 

 

182 

already. As a result of solving task (41), the variable t will contain the maximum 

confidence value of the conjunction min (∑ 𝑎(1, 𝑖) ∗ 𝑥 
𝑁
 =1  𝑏(1), ∑ 𝑎( , 𝑖) ∗ 𝑥 

𝑁
 =1  

𝑏( ),  …, ∑ 𝑎(𝐾, 𝑖) ∗ 𝑥 
𝑁
 =1  𝑏(𝐾)), which should be tested against the threshold. The 

solution of task (41) in the values x1…xN will also contain a set of context attribute values, 

for which the maximum certainty is achieved. If the maximum certainty exceeds the 

threshold, this set of values is a counterexample. 

This section completes the description and proof of the verification algorithm. Next 

section summarizes the entire verification procedure. 

3.7 Verification Approach – Summary 

Summarizing the information of sections 3.1-3.6, the final verification procedure looks as 

follows. 

Input. The property under verification should be represented as emptiness assertion for 

DNF situation algebra expression. The guidelines for composing the expression are 

presented in section 2.3 and section 3.2. 

Step 1. Use operation 3.3 to define the subtasks for every combination of non-numeric 

and mixed context attributes. 

Step 2. For every subtask and for every disjunct of the DNF expression, find the 

subspaces where all the conjuncts are linear. It can be done using the algorithm 3.5. 

Step 3. For every subtask, for every disjunct of the expression and for every subspace, 

identified in the step 2, define and solve linear programming task to find the maximum 

certainty. The procedure for defining and solving linear programming task is defined in 

section 3.6. 

Linear programming solution contains maximum certainty value, as well as the context 

state where the maximum is achieved. If the certainty is above the threshold, then the 

corresponding context state is a counterexample. Counterexample is added to the list. If the 

developer needs just a Boolean answer whether the verification found any errors, then 

verification can stop upon finding the first counterexample. If after all iterations of step 3 

no counterexamples are found, it means that the context model complies with the assertion, 

and the verification detected no errors. 

Output. The list of counterexamples – context states where the expression under 

emptiness exceeds the threshold. If the list is empty, then verification has found no errors. 

The verification algorithm can be described in a following pseudocode. 

 

Algorithm 3.7. 

 

// Step 1. Define subtasks (use operation 3.3). 

subtasks = defineSubtasks(expression, situations); 

 

//Step 2. For every subtask and for every disjunct of DNF expression, find the 

subspaces of linearity. 

for i = 1 to expression.getDisjuncts() 

   for j = 1 to subtasks.getCount() 

      //Use algorithm 3.5 to get subspaces of linearity 

      subspaces[i,j] = subtasks[i].getSubspaces(expression.disjunct[j]); 

  end for; // End for every subtask 

end for; // End for every disjunct 

 



 
Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware 

Pervasive Computing Systems 

 

183 

//Step 3. For every subspace of linearity – find maximum confidence value. 

for i = 1 to expression.getDisjuncts() 

   for j = 1 to subtasks.getCount() 

        for k = 1 to subspaces[i,j].length //For every subspace  

           //Define linear programming subtask according to guidelines (41) 

           linearProgrammingTask = defineLPTask(subspaces[i,j,k], expression.disjunct[i], 

subtask[j]); 

           //Solve linear programming task, find maximum confidence value and corresponding 

context state  

           [value contextState] = solveLinearProgrammingTask(linearProgrammingTask); 

           if (value >= threshold) 

               counterexamples.add(contextState, expression.getConfidence(contextState)); 

           end if 

       end for; // End for every subspace 

   end for; // End for every subtask 

end for; //End for every disjunct 

 

//Output: a list of counterexamples. An empty list means that verification found no 

errors. 

return counterexamples; 

 

As for the motivating scenario, the proposed algorithm found a counterexample 

{LightLevel=425, NoiseLevel=40, SwitchPosition=On}, for which both situations have 

certainty of 0.75. The verification has detected an error. 

The next section discusses theoretical and practical complexity of the proposed solution. 

4 Evaluation 

In section 3 we proposed, discussed and proved the sequence of the steps of the verification 

approach for fuzzy situation models in pervasive computing. Complexity of the steps of the 

verification algorithm consists of following components: 

- Generation of possible combinations of non-numeric parameters. 

- Generation of subspaces. 

- Defining and solving linear programming task for every subspace and every 

combination. 

The verification mechanisms were implemented as an extension over ECSTRA 

(Enhanced Context Spaces Theory-based Reasoning Architecture) situation awareness 

framework, and all the practical tests were performed inside that framework as well. For 

more details on ECSTRA refer to the paper [BZ11a]. 

Next sections discuss the components of complexity in more details. Section 4.1 and 4.2 

prove the complexity of subspace generation and working with linear programming tasks 

respectively. Section 4.3 generalizes the result for non-numeric and mixed context 

attributes. Section 4.4 provides the summary and finalizes complexity estimation. 

4.1 Complexity Analysis for Generation of Subspaces 

Algorithm 3.5 is responsible for decomposition of context space into the subspaces. The 

algorithm is prone to multiple ways of enhancement, which we leave for the future work. 

Here we analyze the complexity of the algorithm 3.5 in a way it is presented in section 3.5. 
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The notation is as follows. Consider that algorithm 3.5 has an input like expression (33) – a 

conjunction containing K conjuncts, which are defined over N context attributes. Let’s 

denote the number of breakpoints over i-th context attribute for j-th conjunct as L(i,j). 

Assume that the input is correct and all the conjuncts are defined properly, without 

duplicate breakpoints. 

Step 1 of the algorithm 3.5 involves merging the breakpoints, sorting them and removing 

the duplicates. Consider the complexity of that operation for an arbitrary context attribute. 

Let’s denote it as i-th context attribute, where i can be any integer from 1 to N. Sorting can 

be efficiently done, for example, by Quicksort algorithm [Ho62] in, effectively, O(T*logT) 

time, where T is the number of elements in an array. The number of elements in array is, 

actually, the number of breakpoints before removing the duplicates, which is the sum of all 

breakpoints of all the conjuncts. Therefore, the complexity is 

O((∑ 𝐿(𝑖,  )𝐾
 =1 )*log(∑ 𝐿(𝑖,  )𝐾

 =1 )). In the worst case Quicksort can reach O(T
2
) time. 

In a sorted array the duplicates can be found in O(∑ 𝐿(𝑖,  )𝐾
 =1 ) time with a trivial 

algorithm. So, out of two sequential substeps of step 1 of algorithm 3.5, sorting substep has 

polylogarithmic complexity (quadratic in the worst case) and the substep of removing 

duplicates has linear complexity. The total complexity for a single context attribute is, 

therefore, polylogarithmic O((∑ 𝐿(𝑖,  )𝐾
 =1 )*log(∑ 𝐿(𝑖,  )𝐾

 =1 )) in average case or quadratic 

O((∑ 𝐿(𝑖,  )𝐾
 =1 )

2
) in the worst case. For all context attributes the complexity is illustrated 

in expression (42). 

 

Average case complexity: O(∑ [ (∑ 𝐿(𝑖,  )𝐾
 =1 ) ∗    (∑ 𝐿(𝑖,  )𝐾

 =1 ) ]𝑁
 =1 )                     (42) 

Worst case complexity: O(∑ [ (∑ 𝐿(𝑖,  )𝐾
 =1 )

2
 ]𝑁

 =1 ) 

 

Complexity of the steps 2 and 3 of the algorithm 3.5 depends on the final number of 

breakpoints. That number can be estimated as follows. The total number of breakpoints 

over i-th context attribute we denote as L(i). By the construction of algorithm 3.5, every 

breakpoint of every conjunct becomes a breakpoint for defining subspaces. The operation 

removeDuplicates() then removes duplicate values, which might appear from different 

conjuncts, and does not change previously mentioned fact – if a breakpoint appeared in a 

conjunct, it will appear in the final set of breakpoints. Therefore, total number of 

breakpoints cannot be smaller than the number of breakpoints for any of the conjuncts, and 

we can estimate that the total number of breakpoints L(i) ≥ maxj(L(i,j)). The lower 

boundary is achieved in motivating scenario for both context attributes. For context 

attribute LightLevel there are two breakpoints both for ConditionsAcceptable(X) and for 

LightMalfunctions(X)  (350 Lx and 500 Lx in both cases). Therefore, it can’t be less than 

two breakpoints in final breakpoints set, and those breakpoints are 350 Lx and 500 Lx. For 

the context attribute NoiseLevel the number of breakpoints also reach lower boundary – 

there are zero breakpoints for LightMalfunctions(X) and two for ConditionsAcceptable(X) 

(30 dB and 60 dB). The final number of breakpoints is two – those are 30 dB and 60 dB. 

The largest number of breakpoints will be generated in the case when there are no 

duplicates (i.e.  removeDuplicates() does not change anything). In that case the number of 

breakpoints for i-th context attribute is ∑ 𝐿(𝑖,  )𝐾
 =1 . In motivating scenario in some way it 

happens for the context attribute NoiseLevel (lower and upper boundaries are the same for 

that case). The situation ConditionsAcceptable(X) has two breakpoints over NoiseLevel  (30 

dB and 50 dB) and the situation LightMalfunctions(X) has zero breakpoints over that 

context attribute. The total number of breakpoints is two. 
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To summarize, for i-th context attribute the number of breakpoints can be estimated as 

expression (43). 

 

maxj(L(i,j)) ≤ L(i) ≤ ∑ 𝐿(𝑖,  )𝐾
 =1                                                                                   (43) 

 

Step 2 of the algorithm 3.5 generates intervals from the breakpoints. Generation of an 

interval takes constant time, so the time complexity is proportional to the number of 

iterations in the nested loops: O(∑ 𝐿(𝑖)𝑁
 =1 ), where according to (43), ∑ 𝐿(𝑖)𝑁

 =1  

≤ ∑ ∑ 𝐿(𝑖,  )𝐾
 =1

𝑁
 =1 . Therefore, the complexity of step 2 in the worst case is 

O(∑ ∑ 𝐿(𝑖,  )𝐾
 =1

𝑁
 =1 ), which is of lower order comparing to complexity of step 1 (both 

average and worst cases of expression (42)). The order of total complexity of steps 1 and 2 

is determined by complexity of step 1 and is still represented by expression (42). 

Step 3 of the algorithm 3.5 generates all the subspaces by calculating Cartesian product 

of intervals between the breakpoints, which were identified in the previous step. Once 

again, generating the subspace is a constant time operation. Therefore, the time complexity 

is determined by the number of iterations of the nested loops. The number of iterations is 

∏ (𝐿(𝑖)𝑁
 =1  1), which in the worst case is ∏ (1  ∑ 𝐿(𝑖,  )𝐾

 =1 )𝑁
 =1  (new summand +1 

appears because the number of intervals is equal to the number of breakpoints plus one). 

This value is of higher order comparing to the total complexity of first two steps, presented 

in expression (42). The order of this term determines total complexity of the algorithm 3.5. 

To summarize, the time complexity of the algorithm 3.5 is presented in expression (44). 

 

Complexity: O(∏ (𝐿(𝑖)  1)𝑁
 =1 ) = O(S) 

Worst case complexity: O(∏ (1  ∑ 𝐿(𝑖,  )𝐾
 =1 )𝑁

 =1 )                                                      (44) 

Best case complexity: O(∏ 𝑚𝑎𝑥 (𝐿(𝑖,  )
𝑁
 =1  1) 

 

In the expression (44) we denoted ∏ (𝐿(𝑖)𝑁
 =1  1) as S, which means the number of 

subspaces. Actually, the number of iterations of the nested loops of step 3 in algorithm 3.5 

is the number of generated subspaces. The time complexity of the algorithm 3.5 has linear 

dependency on the number of subspaces, and best and worst cases of expression (44) put 

boundaries on the number of subspaces depending on the number of breakpoints. 

The summary of expression (44) is that running time of the algorithm 3.5 linearly 

depends on the number of subspaces. We practically proved the time complexity of the 

algorithm using the following testing procedure. The testing involved 1000 experiments, 

where every experiment was conducted as follows. 

1. Generate K random situations, which contain a random subset of N context attributes. 

K and N are random and vary from 1 to 6. Situations follow the definition (23): 𝑆𝑖𝑡( ) =
∑ 𝑤 ∗ 𝜇 (𝑥 )

𝑁
 =1  + 𝑤 . The weights, the bias term and the breakpoints of membership 

functions are generated randomly in realistic manner. The shape of every membership 

function 𝜇 (𝑥 ) is uniformly randomly chosen among the options presented in figure 2. 

2. The generated K situations form a conjunction. Algorithm 3.5 is applied to detect the 

subspaces of linearity. The time, taken by the algorithm 3.5 is an outcome of the 

experiment. 

We summarized the outcomes of all 1000 experiments in the figure 5 and processed the 

results using R toolkit [VS12]. The plot in figure 5 was generated by R toolkit as well; 

minor manual interventions were restricted to improving readability of the figure. 
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The points in figure 5 exhibit clear linear dependency. The coefficient R
2
 between the 

time, required to generate subspaces, and the number of subspaces is 0.9995, and it 

practically proves the linearity. These results completely confirm our theoretical 

estimations of the algorithm complexity, summarized in expression (44). 

It should be noted that it is enough to generate the breakpoints (step 1) and intervals 

(step 2) once for all the involved context attributes (including mixed). Later the same 

breakpoints can be used when applying algorithm 3.5 to another disjunct or another 

combination of non-numeric values. Subspaces can be also generated only once, if there are 

no mixed context attributes involved (and significantly reused if there are any). However, 

solving linear programming task should be done separately for every subspace and for 

every combination of non-numeric/mixed context attributes anyway, and, as will be proven 

further, it is the main source of complexity. So, those obvious enhancements do not reduce 

the order of complexity and, therefore, can be omitted from complexity analysis. 

In order to reduce memory requirements it is possible to generate the subspaces and for 

every generated subspace right away calculate the maximum value of every disjunct in the 

DNF expression under test. 

Next section discusses the verification steps after the algorithm 3.5 – defining and 

solving piecewise linear programming tasks. 

 
Fig. 5.  Time required to generate subspaces of linearity. 

4.2 Complexity Analysis of Defining and Solving Linear Programming Task 

Next step of the verification algorithm involves defining and solving linear programming 

task for every subspace, derived in previous section. Consider complexity analysis for a 

single subspace, later it will be expanded for the case of all subspaces. 

The definition of linear programming task requires constructing the description in the 

format (41). There are 2*N inequalities that emerge from subspace definition (expressions 

like lowi ≤ xi ≤ highi count as two inequalities), where N is the number of context attributes. 

There are also K inequalities (equal to the number of conjuncts) that result from 

transformation of piecewise linear minimization task into linear programming task, and 

each of those inequalities contain N+1 terms (the coefficients for x1…xN and t). The 
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construction of latter inequalities is the most computationally heavy operation (order of 

N*K, opposed to order of N in the previous step), and it determines the order of complexity 

for the whole task construction algorithm. To summarize, straightforward construction of 

linear programming task requires O(N*K) time, and it should be done for every subspace. 

The standard form of linear programming task is defined in expression (45) [BV04]. 

Maximize: C
T
*X 

w.r.t. constraints:                                                                                                        (45) 

A*X = b 

X ≥ 0 

In the task (45) C and b are constant vectors and A is a matrix. Conversion of the task 

from format (41) into format (45) requires several steps. The inequalities lowi ≤ xi can be 

transformed into x’i ≥ 0 by introducing the variable x’i = xi - lowi. We also need to introduce 

new variables for all the other N+K inequalities in order to transform them into equalities. 

The main idea is to transform an inequality ∑𝑎 ∗ 𝑥  𝑏 into an equality ∑𝑎 ∗ 𝑥  𝑥 =
𝑏, which becomes a part of A*X = b, and inequality x0 ≥ 0, which becomes a part of X ≥ 0 

constraints (see [BV04] for more details). The newly introduced variables like x0 are 

referred to as slack variables. Some linear programming solvers, including GLPK [M12], 

can handle the transformation automatically. The very process of transformation does not 

add much complexity, but the fact that the number of variables changes can be important 

for complexity analysis. In order to transform task (41) into task (45) N slack variables 

need to be introduced for inequalities like t + ∑ (−𝑎( , 𝑖)) ∗ 𝑥 
𝑁
 =1  ≤ ( ) , and K slack 

variables need to be introduced for inequalities like xi ≤ highi. Together with N initial 

variables, it makes the total number of variables 2*N + K. 

A linear programming task can be solved by polynomial complexity algorithms. For 

example, Karmarkar’s algorithm [K84] estimates the complexity of the method as 

O(n
3.5

*B), where n is the number of variables (after introducing slack variables), and B is 

the number of bits in the input. Many more polynomial algorithms can solve linear 

programming tasks (see [BV04][W97] for more information). 

ECSTRA extension, which implements fuzzy situation verification approach, employs 

GLPK [M12] toolkit and its implementation of interior point method. According to GPLK 

reference manual [M12], the toolkit uses a version of primal-dual interior point methods, 

implemented according to Mehrotra’s technique [M92]. 

In order to estimate practical complexity, we performed a set of 1000 experiments, 

where every experiment was conducted as follows: 

1. K random situations are generated over a random subset of N context attributes. K and 

N were random values uniformly chosen from 1 to 50. Situations are defined according to 

expression (23): 𝑆𝑖𝑡( ) = ∑ 𝑤 ∗ 𝜇 (𝑥 )
𝑁
 =1  + 𝑤 . The weights and the bias term are 

generated randomly in a realistic manner. The shape of membership functions 𝜇 (𝑥 ) is 

randomly chosen among several options presented in figure 2. The breakpoints of 

membership functions are chosen randomly. 

2. The situations, generated in the step 1, are merged in a conjunction. The subspaces of 

linearity are obtained using the algorithm 3.5. 

3. A single random subspace of linearity is uniformly chosen from the set, obtained in 

the step 2. 

4. For the subspace, chosen in the step 3, linear programming task was constructed and 

solved. Solution time is the outcome of the experiment. In order to mitigate possible 
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random disturbances, calculations for every experiment were conducted 10 times and 

averaged. 

We summarized the outcomes of the experiment in the figure 6. The plots were created 

using R toolkit [VS12]; minor manual changes to the plots were restricted to improving the 

readability. 

The main purpose of the experiment was to find out how well does the linear 

programming solver algorithm scale with the growing size of the task. Figure 6 shows the 

following results. The plot on figure 6a depicts dependency of linear programming solution 

time on the number of context attributes involved in subspace definition. The number of 

variables in linear programming task is equal to the number of context attributes plus one 

(variable t). The number of variables tends to be close to the upper boundary. When there 

are multiple situations, each defined over a random subset of context attributes, the number 

of context attributes mentioned at least once grows fast. And the subspaces have to account 

for every context attribute, which is mentioned in at least one situation. 

Figure 6b depicts dependency between the number of constraints (i.e. number of rows of 

matrix A in the standard format (45)) and the time to solve linear programming task. The 

number of constraints is N+K: there are K constraints of type t + ∑ (−𝑎( , 𝑖)) ∗ 𝑥 
𝑁
 =1  ≤ 𝑏( ) 

and N constraints of type xi ≤ highi. Inequalities are later transformed into equalities by 

introduction of slack variables, but  the  number  of  equalities still remains  N+K.The 

lower boundaries of the variables constitute X ≥ 0 restriction of task (45), and are not 

counted. The dependency on figures 6a and 6b is not straightforward, but the results of 

experiments are fully explained by the subsequent plots 6c and 6d. 

The plot on figure 6c illustrates the dependency between the number of conjuncts K and 

the time to solve linear programming task. The coefficient R
2
 is equal to 0.9142, and it 

practically shows linear dependency with some variance. However, it turns that the results 

are better explained by the subsequent plot 6d. 

The Y-axis of plot 6d, as in all plots of figure 6, is the time required to solve linear 

programming task. The X-axis of plot 6d is the multiplication of number of conjuncts K 

and number of involved context attributes N. This value corresponds to the size of the input 

required to define the task. In order to specify the linear programming task the following 

information is required. Each of K inequalities t + ∑ (−𝑎( , 𝑖)) ∗ 𝑥 
𝑁
 =1  ≤ 𝑏( ) contains N+1 

coefficients on the left side and one term b(j). The boundaries of the variables require 

2*(N+1) more values (infinite boundaries on t are implied in formula (45), but should be 

supplied explicitly to linear programming solver). The maximization objective requires 

N+1 more values for specification (the function C
T
X to maximize is just t, so C = [1 0 

0…0]). It makes the number of parameters to specify equal to (N+2)*K+2*(N+1)+(N+1). 

Those parameters are necessary (i.e. no parameter can be deduced from the values of other 

parameters) and sufficient (i.e. they define linear programming task unambiguously). The 

number of parameters is the value of order O(N*K), and N*K is the X-axis of the plot 6d. 

The coefficient R
2
 is equal to 0.9148, and it practically shows even more pronounced linear 

dependency comparing to the figure 6c. The dependency 6c, can be explained by the fact 

that the number of involved context attributes tend to be close to maximum value (this 

effect was already described when discussing plot 6a), therefore N*K is close (and often 

equal) to NMAX*K, where NMAX is the total number of available context attributes (50 for 

the conducted experiments). 
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                                    (a)                                                                        (b) 

       

                                    (c)                                                                        (d) 

       

Fig. 6.  Time to solve linear programming task, depending on various factors: (a) 

Depending on number of involved context attributes; (b) Depending on number of 

inequality constraints;  (c) Depending on number of conjuncts; (d) Depending on 

multiplication of number of conjuncts and number of context attributes. 

 

To summarize, the algorithm for defining linear programming task requires O(N*K) 

time. The testing has shown, that practical complexity of solving linear programming task 

also have the complexity of order O(N*K). Therefore, the total complexity of defining and 

solving LP task can be estimated as O(N*K). Combining with, estimations (43) and (44), 

the total complexity can be estimated as expression (46). 

 

Complexity: O(S*N*K)                                                                                                 (46) 

∏ 𝑚𝑎𝑥 (𝐿(𝑖,  )  1)𝑁
 =1  ≤  S ≤  ∏ (1  ∑ 𝐿(𝑖,  )𝐾

 =1 )𝑁
 =1  

 

Expression (46) defines the verification complexity for a single conjunction with K 

conjuncts, defined over N context attributes that result in S subspaces of linearity. 

Moreover, the complexity estimate (46) implies that the verification continues until the 

maximums for all subspaces are found. This approach is advisable if the goal is to collect as 
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many counterexamples as possible. The identified counterexamples help to narrow down 

and fix one or multiple situation modeling problems. However, sometimes the developer 

might need just yes/no answer – whether the verification has detected an error or not. In this 

case verification can be stopped when the first counterexample is detected in some 

subspace. The detected counterexample provides sufficient information to claim 

verification has found an error, and still even a single counterexample points to what exact 

situation modeling error was detected. As a result, the estimation (46) is precise for the case 

when all the subspaces are processed, and it is an upper boundary for the case when 

verification continues until the first detected counterexample. 

Also it should be noted that expression (46) deals with numeric context attributes only. 

Next section provides more general complexity estimations for the case of non-numeric and 

mixed context attributes. 

4.3 Accounting for Non-numeric and Mixed Context Attributes 

Section 3.3 points out that non-numeric context attributes can be handled in a following 

manner: the task should be solved separately for every combination of non-numeric values 

of all non-numeric context attributes. Consider that in addition to all numeric parameters of 

formula (46) there is a set of Q non-numeric context attributes, and each of them can take 

Rq possible values. In that case the task is solved separately for each of ∏   
 
 =  

combinations of those parameters, and complexity estimation look like formula (47). 

 

Complexity: O( ∗ N ∗  ∗ ∏ R 
 
 =1 )                                                                             (47) 

∏ 𝑚𝑎𝑥 (𝐿(𝑖,  )  1)𝑁
 =1  ≤  S ≤  ∏ (1  ∑ 𝐿(𝑖,  )𝐾

 =1 )𝑁
 =1  

 

Mixed context attributes can contain both numeric and non-numeric possible values. In 

the verification approach accounting for mixed context attributes slightly differs from 

accounting for non-numeric context attribute: the verification task is solved separately for 

all possible non-numeric values of the context attribute, then it is solved for the case when 

mixed context attribute is restricted to numeric values. Consider there is a single mixed 

context attribute, which can take RQ+1 non-numeric values, as well as numeric ones. 

Formula (48) illustrates complexity estimates for that case. When the context attribute takes 

numeric values, it is counted as context attribute number N+1. Every j-th conjunct have 

L(N+1,j) breakpoints over that context attribute. The total number of breakpoints over 

context attribute number N+1, after merging and removing redundant ones, is referred to as 

L(N+1), just like for any other context attribute. 

 

Complexity: O( (RQ+1∗  ∗ N ∗  ∗ ∏ R 
 
 =1 ) + (  ∗ (N  1) ∗  ∗ ∏ R 

 
 =1 ))            (48) 

∏ 𝑚𝑎𝑥 (𝐿(𝑖,  )  1)𝑁
 =1  ≤  S ≤  ∏ (1  ∑ 𝐿(𝑖,  )𝐾

 =1 )𝑁
 =1  

∏ 𝑚𝑎𝑥 (𝐿(𝑖,  )  1)𝑁 1
 =1  ≤  S’ ≤  ∏ (1  ∑ 𝐿(𝑖,  )𝐾

 =1 )𝑁 1
 =1  

 

In estimation (48) the terms S’ refers to the number of subspaces where mixed context 

attribute is restricted to numeric values. As derived in section 4.1, the number of subspaces 

S = ∏ (𝐿(𝑖)𝑁
 =1  1). In the similar manner, S’ = ∏ (𝐿(𝑖)𝑁 1

 =1  1). Therefore, S’ = 

S*(L(N+1)+1) and, consequently, S’ ≥ S. As a result, for the first summand of calculation 

(48) the it is true that RQ 1 ∗  ∗ N ∗  ∗ ∏ R 
 
 =1  ≤ RQ 1 ∗   ∗ (N  1) ∗  ∗ ∏ R 

 
 =1 . 
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Also in (48) for the second summand   ∗ (N  1) ∗  ∗ ∏ R 
 
 =1  ≤ RQ+1∗   ∗ (N  1) ∗  ∗

∏ R 
 
 =1 . Therefore, the order O((R  1 ∗  ∗ N ∗  ∗ ∏ R 

 
 =1 ) + (  ∗ (N  1) ∗  ∗

∏ R 
 
 =1 )) has the upper bound of        O(2*RQ+1∗   ∗ (N  1) ∗  ∗ ∏ R 

 
 =1 ), which is 

O(RQ+1∗   ∗ (N  1) ∗  ∗ ∏ R 
  1
 =1 ). Formula (48) can, therefore, be transformed into 

formula (49). 

 

Complexity: O(  ∗ N ∗  ∗ ∏ R 
  1
 =1 )                                                                         (49) 

∏ 𝑚𝑎𝑥 (𝐿(𝑖,  )  1)𝑁 1
 =1  ≤  S’ ≤  ∏ (1  ∑ 𝐿(𝑖,  )𝐾

 =1 )𝑁 1
 =1  

 

Note that RQ+1 in formula (49) is under the multiplication. The interesting note about 

formula (49) is that mixed context attribute was accounted twice. First it was accounted as a 

N+1
st
 numeric context attribute, which lead to increased S and N. Second it was accounted 

as Q+1
st
 non-numeric context attribute, which resulted in additional Q+1

st
 term in the 

multiplication ∏ R 
  1
 =1 . The same principle can be applied all involved mixed context 

attributes. As a result, upper bound of complexity can be estimated as formula (50). 

 

Complexity: O( ∗ N ∗  ∗ ∏ R 
 
 =1 )                                                                            (50) 

∏ 𝑚𝑎𝑥 (𝐿(𝑖,  )  1)𝑁
 =1  ≤  S ≤  ∏ (1  ∑ 𝐿(𝑖,  )𝐾

 =1 )𝑁
 =1  

 

Estimate (50) looks much like formula (47), but the notation has different semantics. In 

formula (50) N is the number of both numeric and mixed context attributes. The same 

applies to the number of breakpoints L(i,j) – it still means the number of breakpoints of j-th 

conjunct over i-th context attribute, but now the context attribute can be mixed as well. 

Also in formula (50) the number Q refers to the total number of non-numeric and mixed 

context attributes, and the number Rq refers to the number of possible non-numeric values, 

that q-th context attribute can take. All mixed context attributes are intentionally accounted 

as both numeric and non-numeric context attributes. 

Formula (50) is quite pessimistic upper boundary. However, it is correct and easy to 

work with. Formula (50), like estimation (46), is also an upper boundary for complexity in 

case if verification proceeds until the first counterexample. Once a counterexample is found 

for any combination of non-numeric and mixed context attribute, the verification process 

can stop. 

Formula (50) provides an estimate for a single conjunction. Next section generalizes the 

estimates for an entire DNF expression under verification and concludes the complexity 

analysis. 

4.4 Complexity Analysis - Summary 

In order to complete the complexity analysis, estimation (50) should be generalized to 

account for multiple disjuncts. The analysis can proceed as follows. Consider that the whole 

DNF expression under verification contains M disjuncts, each of which is a conjunction of 

Ki terms, defined over Ni context attributes. According to the developed verification 

approach, each conjunct can be verified separately, in sequence or in parallel. Formula (50) 

contains the complexity estimates for every disjunct. The complexity of sequential 

verification of M disjuncts is presented in formula (51). 



 
Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware 

Pervasive Computing Systems 

 

192 

 

Complexity: O(∑  𝑚 ∗ N𝑚 ∗  𝑚 ∏ R ,𝑚
  
 =1

 
𝑚=1 )                                                             (51) 

∏ 𝑚𝑎𝑥 (𝐿𝑚(𝑖,  ))
𝑁 
 =1  ≤  Sm ≤  ∏ ∑ 𝐿𝑚(𝑖,  )

𝐾 
 =1

𝑁 
 =1  

 

The notation in formula (51) is quite similar to the notation of formula (50). The terms 

Nm  refers to the number of involved numeric and mixed context attributes in m-th disjunct, 

Km refers to the number of conjuncts in m-th disjunct and Sm refers to the number of 

subspaces in m-th disjunct. The same refers to the number of breakpoints: the term 𝐿𝑚(𝑖,  ) 

refers to the number of breakpoints over i-th numeric or mixed context attribute in j-th 

conjunct of m-th disjunct in the expression under verification. The term Qm refers to the 

number of non-numeric and mixed context attributes in m-th disjunct. The value R ,𝑚 is the 

number of non-numeric values, which q-th non-numeric or mixed context attribute of m-th 

disjunct can take. 

It should also be noted that, like formula (50), estimation (51) is an upper boundary of 

complexity, if the verification proceeds until the first detected counterexample. As lemma 

3.2 shows, a counterexample for any disjunct is a counterexample for entire expression, so 

if a single counterexample is detected in any disjunct, the verification can be stopped. 

In order to preliminary estimate the influence of various parameters on the complexity, 

consider a simplified case where all the disjuncts have similar properties: they have the 

same number of numeric and mixed context attributes N, the same number of conjuncts K, 

the same number of subspaces S, and the same number of non-numeric or mixed context 

attributes Q, each of which can take one of R values. In that case the complexity can be 

estimated as O(M*S*N*K*R
Q
). It points that in average the complexity increases linearly 

with growing number of disjuncts, although in practice it depends a lot on the configuration 

of every disjunct: how many conjuncts are there, how many context attributes are involved 

and how many subspaces of linearity can be generated (which in turn depends on the 

configuration of breakpoints). The growth of complexity with growing N and K heavily 

depends on the configuration of breakpoints – in addition to their direct linear influence on 

formula (51), they can also influence the number of subspaces. For example, adding one 

new context attribute of interest to one of the situations under consideration will multiply 

the number of subspaces in that conjunct by the number of breakpoints of newly introduced 

membership functions plus one. However, adding into account a context attribute, which is 

already considered by another situation in a conjunct, might have less severe consequences 

on the total complexity. The dependency on number of non-numeric and mixed context 

attributes is exponential. The dependency on the geometrical average number of values in 

mixed or non-numeric context attribute is polynomial. 

Despite having some exponential dependencies, the approach works well on the tasks of 

practical size. One of the reasons is that the breakpoints overlap relatively often due to the 

features of situation design (see the motivating example). Also complexity requirements are 

influenced by the fact that verification process should be done only once at the design time. 

The verification algorithms are prone to numerous enhancements and can be successfully 

parallelized, but we leave those enhancements out of scope of current article. 

To summarize, formula (51) is the final estimation of verification complexity, which 

takes into accounts all the aspects of verification process. Next section discusses the related 

work in the area and provides the discussion of the proposed approach. 
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5  Discussion and Related Work 

5.1 Formal Verification of Pervasive Computing Systems 

In this article we propose a novel method to verify the context models, based on fuzzy 

situations. Our previous article [BZ12b] introduced some basic concepts that we use in this 

article. In the article [BZ12b] we introduced the task of situation models verification, 

formulated it as emptiness test of an arbitrary situation algebra expression, and solved the 

emptiness test task for situation models based on context spaces theory. In this article we 

significantly extend that work and develop verification principles for fuzzy situation 

models. Fuzzy situations are much more versatile and realistic than original context spaces 

situations, considered in [BZ12b]. However, the verification of fuzzy situation models is a 

more complicated task and it requires a completely different emptiness test approach, which 

has nearly nothing in common with the algorithms defined in [BZ12b]. That approach to 

emptiness test of situation algebra expressions over fuzzy situations constitutes one of the 

main contributions of this article. 

Pervasive computing research community is showing increased interest in formal 

verification. However, our article aims to verify the models of situations and their 

relationships, and the related work aims to verify other aspects of pervasive computing, e.g. 

agent interaction and behavior rules. As a consequence, this leads to completely different 

approaches to specification and verification themselves. Usually verification was a method 

of choice to detect the errors in the behavior specifications of pervasive computing system, 

while the way pervasive system generalizes incoming context information was out of 

verification scope. 

The paper [IS09] proposed a novel approach to modeling and verification of pervasive 

computing systems. The authors employed event calculus – an AI formalism [RN06], 

which allows reasoning about actions and their consequences. Among other uses, in [IS09] 

the authors used event calculus for expressing undesired behavior of applications, which 

should be avoided (like “user receives simultaneous audio input from multiple 

sources”[IS09]). The authors also used assumptions to specify the behavior like “no 

unauthorized user can enter the room”[IS09]. In the paper [IS09] verification of whether the 

undesirable situation might ever happen or whether the assumption holds is performed by 

translating event calculus model into SAT problem, and then applying SAT solvers. The 

main difference of our article and the approach defined in [IS09] is different aspect under 

verification. In [IS09] authors aim to verify the behavior of pervasive computing 

applications, often in terms of activating and deactivating devices and handling user 

requests. Our approach works on lower level – this article proposes a method to verify 

whether the transition from sensor values and low level context to further generalizations 

(i.e. situations) is correct. These generalizations are the basis for behavior of pervasive 

computing system. In turn, the difference in scope determines completely different 

approach to verification. 

Ambient calculus is designed to specify interaction between multiple agents. The 

essentials of ambient calculus were introduced in the paper [CG00]. Pervasive systems 

consist of multiple interacting agents, and some researchers considered ambient calculus as 

a possible description formalism. The article [CP10] proposes ambient calculus-based 

approach to specify pervasive healthcare system. The subsequent article [CP11] extended 

ambient calculus, introduced enhancements to previous approach and introduced 

verification mechanisms. Once again, the main difference between this article and the 

approach proposed in [CP10][CP11] is different aspects under verification. Ambient 
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calculus allows specifying spatial and temporal interactions between multiple agents, which 

constitute pervasive computing system. Our article proposes a solution to verify the 

integrity of a context model of a reasoning agent, i.e. whether the agent correctly 

generalizes context information. 

The paper [AC09] considered verification of security, safety and usability properties of 

pervasive computing systems. For example, possible assertions can be “If a patient is in 

danger, assistance should arrive in a given time with a probability of 95%”[AC09] or “No 

component will take an action that it believes will endanger the patient”[AC09]. The 

authors formalized the properties of pervasive systems in terms of temporal logic. Temporal 

logic is substantially used in specification and verification of protocols and programs (see 

[CG99]), and numerous techniques and tools were developed to verify properties expressed 

in terms of temporal logic. In [AC09] authors also presented an overview of tools, which 

can be used for verification of temporal logic properties of pervasive computing systems. 

The paper [AC09] considered only adaptation and temporal properties of pervasive 

computing systems. The paper [AC09] did not specify, how the generalizations like “patient 

is in danger”[AC09] (which is effectively a situation) are achieved or how to verify whether 

the system detects this situation correctly. In contrast, this article verifies situation models, 

which are specified and, hence, verified using completely different techniques comparing to 

[AC09]. 

The paper [CG09] proposed an approach to verify the action rules of pervasive 

computing system. The examples of rules, which the paper [CG09] worked with are “If my 

webcam detects movement then display a pop-up message on my screen and display a 

message on the screen list”[CG09] or, more complicated example of context-sensitive rule, 

“If the red button is pressed, then if the webcam recently detected movement inform me 

with synthesized speech else send me an e-mail”[CG09]. The verification was used, for 

example, for following purposes. 

- Detecting rule redundancy. Redundancy may range from simple repeat to overlap with 

multiple other rules. 

- Making sure that modalities work well together. For example, if the system reports two 

events simultaneously using speech synthesizers, it can just confuse the user and neither of 

the reports will be understood. 

- Making sure that priorities are handled correctly. High priority messages should be 

reported first and no lower priority message should take over while high priority message is 

being reported. 

In the paper [CG09] authors proposed a mechanism to derive temporal logic 

specification from Promela rules, and that specification was used as an input for SPIN 

[Ho97] model checker. 

It should be noted that the approaches proposed in [AC09][CG09][IS09] and the 

technique presented in this article might complement each other well. They don’t overlap in 

scopes and together they cover verification of both situation awareness and acting on 

perceived situations. 

To summarize, multiple approaches have considered verification as an essential 

component of pervasive computing development. Different articles proposed verification 

methods for different aspects of pervasive computing systems. Different aspects under 

verification resulted in different required approaches to verification and specification. 
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5.2 Fuzzy Logic for Context Awareness in Pervasive Computing 

The concept of fuzzy situations, used in this article, was inspired by fuzzy situation 

inference (FSI) concept proposed by Delir et. al. [DZ08]. In [DZ08] the authors proposed a 

combination of context spaces theory approach to context modeling and fuzzy logic-based 

approach to situation awareness. The paper [DZ08] also introduced an extension to account 

for sensor uncertainty. In [DZ08] the authors applied newly proposed situation awareness 

mechanisms for health reasoning on ECG-capable mobile device. In this article we extend 

the situation model, proposed in [DZ08], in order to account for non-numeric sensor 

readings and possible sensor unavailability. Fuzzy situation concept proposed in [DZ08] is 

a subset of fuzzy situation models used in this article, so the proposed verification 

techniques can without any modification be applied to non-extended FSI models. 

The paper [DZ08], in turn, extends the context spaces approach, described in [PL08a]. 

Original context spaces theory also features situation algebra based on Zadeh operators, and 

the situations in original context spaces approach are modeled as weighted sum of 

contributions. However, original context spaces approach uses piecewise constant as the 

contribution function (contribution function is replaced by fuzzy membership function in 

[DZ08] and this article). The verification methods provided in this article are not suitable 

for original context spaces situation models. However, the suitable verification mechanisms 

were proposed and proved in our previous works [BZ11c][BZ12b]. 

Multiple related work examples applied fuzzy control process for context awareness and 

acting on context information. For example, the paper [MS02] applied fuzzy logic to 

context aware control of mobile terminals. In the paper [CX05] the authors applied fuzzy 

control to the adaptation of pervasive services. In the paper [AG10] authors used fuzzy 

engine to control the actuation of proper services. Fuzzy situations in this article were 

inspired by fuzzy logic techniques, and many aspects of fuzzy context awareness can be 

represented in terms of fuzzy situations. For example, membership functions (figure 2) are 

widely used membership functions for fuzzy sets [HM93], and therefore membership in 

fuzzy set is effectively the same as fuzzy situation over a single context attribute. 

Therefore, multiple aspects of fuzzy context awareness can be translated into fuzzy 

situation terms and then verified by the approach proposed in this article. 

To summarize, the context model, presented in this article, in some aspects resemble 

various classes of context awareness mechanisms used in related works. Therefore, 

verification technique, presented in this article, is likely to be applicable to multiple classes 

of existing context awareness methods with minor adaptation efforts. The exact methods of 

adaptation and required modifications are the subject of future work. 

6 Conclusion and Future Work 

In this article we propose and prove a novel method for formally verifying correctness of 

fuzzy situation models. We extend and enhance the notion of fuzzy situations in order to 

achieve robust situation awareness and mitigate the consequences of unavailable sensor 

data. In this article we also prove that verification by assertion of emptiness is applicable 

for fuzzy situations. We propose and prove a novel step-by-step approach for emptiness test 

of a situation algebra expression, which is the core of our verification technique. As part of 

this work we implement the verification approach as an extension for ECSTRA [BZ11a] 

context awareness framework, and analyze practical efficiency of the proposed method. We 

analyze complexity of the verification approach and discuss its applicability to other 

context awareness approaches. The proposed methods can impact the design and running of 
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pervasive computing systems in a major way due to their potential of detecting pervasive 

system design mistakes, which are not detected by testing, and due to their capabilities of 

proving that certain kind of error is not present in system design. Two major future work 

directions include: improving the fuzzy situation verification method; improving general 

aspects of situation models verification. Future improvements of the proposed approach 

include the following research directions. 

Efficient ordering of subspaces and combinations. The subspaces of linearity and 

non-numeric combinations, which are more likely to contain counterexamples, should be 

generated and analyzed first. It will significantly reduce the running time for the use cases 

when verification proceeds until the first counterexample is computed. 

Parallelization. Efficient parallelization can significantly improve the performance of 

verification algorithms, since different subtasks of the verification task can be run in 

parallel. 

Verification in general can be improved in following ways. 

Verification of temporal properties. Current verification approach cannot analyse 

timing dependencies between situations. Improvement of verification techniques to 

incorporate temporal properties can be of much use to pervasive computing area. 

Automated repair. If the verification has detected an error, even with the 

counterexamples it can be complicated to narrow it down and repair the definition mistake. 

It can be highly beneficial if the repair is suggested by the verification algorithm itself. The 

suggestion for the repair should take into account all the properties that should be 

maintained, not only the one that caused an error. 

Automated situation generation. This future work direction is the continuation of 

previous task. As an input, the developer specifies multiple requirements that situations 

should comply with. Those can be emptiness assertions like described in section 2.3, or 

expected testing results, like “if the light level is above 500Lx and noise is below 30dB, 

situation ConditionsAcceptable(X) should have certainty1”. The expected output is a list of 

situation specifications. For example, for fuzzy situations it can be a list of involved context 

attributes, weights and membership functions. 
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1. Boytsov, A. and Zaslavsky, A. Context prediction in pervasive computing 

systems: achievements and challenges. in Burstein, F., Brézillon, P. and 

Zaslavsky, A. eds. Supporting real time decision-making: the role of context in 

decision support on the move. Springer p. 35-64. 30 p. (Annals of Information 

Systems; 13), 2010.
9
  

                                                           
9
 This chapter is based on the article [BZ10a]. The fragments of the arctile [BZ10a] that 

were included in chapter I are omitted from chapter VIII. 
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Foreword 

Previous chapters addressed the problems of defining situations and checking that the definition is 

correct. Therefore, previous chapters answered the research questions 1 and 2. Chapters I-VII also 

built a solid foundation for investigating subsequent research question: how to predict future 

situations and how to properly act according to prediction results? This chapter answers the first part 

of the research question 3: how to predict future situations? Chapter VIII represents a survey of 

context prediction research area and introduces the classification of context prediction approaches. 

This chapter also allows concluding that context prediction efforts are mainly focused in situation 

prediction area. Also chapter VIII identifies open challenges of situation prediction, and those 

challenges will be addressed in subsequent chapters. 
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Context Prediction in Pervasive Computing Systems: 

Achievements and Challenges 
 

Abstract. Context awareness is one of the core principles of pervasive 

computing. Context prediction is also recognized as a challenge and an 

opportunity. Numerous approaches have been applied to resolve context 

prediction. This work develops and justifies the principles to analyze and 

compare context prediction methods, analyses the development in the area, 

compares different context prediction techniques to identify their benefits and 

shortcomings, and finally identifies current challenges in the area and proposes 

the solutions. 

 

Keywords: Pervasive Computing; Context Awareness; Context Prediction; 

Sequence Prediction; Markov Model; Bayesian Network; Neural Network; 

Branch Prediction; Expert System. 

1  Context and Context Prediction 

Pervasive computing paradigm is a relatively recent approach where computing systems 

are integrated into everyday life and the environment in a transparent, graceful and non-

intrusive manner. An example of a pervasive computing system can be a smart home that 

adjusts lights and temperature in advance before the user enters the room, which increases 

the efficiency of energy and water consumption. Or it can be an elderly care system that 

decides whether the user needs advice or assistance. Or it can be a smart car that proposes 

the best route to the destination point and that assesses its own condition and provides a 

maintenance plan. Many pervasive computing systems are now being introduced into our 

lives. 

One of the grounding principles of the pervasive computing system is context awareness. 

Earlier works on context and context awareness proposed numerous different definitions of 

the context. A. Dey and G. Abowd [DA00], performed a comprehensive overview of those 

efforts. From now on their definitions of context and context awareness will be used: 

“Context is any information that can be used to characterize the situation of an entity” 

[DA00]. So, in fact, every piece of information a system has is a part of that system’s 

context. 

“A system is context-aware if it uses context to provide relevant information and/or 

services to the user, where relevancy depends on the user’s task” [DA00]. Or, in more 

simple words, the system is context-aware if it can use context to its benefit. Context 

awareness is one of the main principles of pervasive computing. 

Reasoning about the context is the process of obtaining new information from the 

context. Context model, in that case, becomes an intuitively understandable term that can 

be formally defined as a way of context representation that is used for further reasoning. 

Context prediction, therefore, does not need any special definition and merely means the 

activities to predict future context information. 

Context awareness and context prediction are relatively new areas. However, they 

already have some methods developed for reasoning about the context and prediction of the 

context. 
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Cook and Das [CD05] give a quite comprehensive overview of the context prediction 

area with a focus on smart home environments and location prediction. Pichler et al. 

[PB04] provide a context prediction overview, focusing on artificial intelligence-based 

techniques; they discuss not only the examples, but further possibilities as well. [Z08] 

contains another context prediction overview with the focus on user behavior modeling; 

Hong et al., [HS09] focuses on user preferences inference and utilizing the context history; 

Cook et al., [CA09] focuses on ambient intelligence systems; and Boytsov et. al [BZ09] 

focuses on machine learning based techniques. One of the most comprehensive works 

regarding general approach to context prediction is [Ma04a], which will be mentioned 

further in more details.  

2 Context Prediction in Pervasive Computing 

2.1 Context Prediction Task 

Context awareness is one of the core features of any pervasive computing system. Context 

prediction is acknowledged as both a challenge and an opportunity. Some works provide 

comprehensive lists of context prediction use case scenarios. Those use cases include (list 

partially based on [NM05][Ma04a]): 

1.  Reconfiguration. Sometimes configuration-related tasks take a while to complete. This 

includes installation of updates, loading and unloading libraries, starting new 

applications, processing the infrastructure changes related to node mobility, searching 

in large databases. If the system can predict the need for those tasks in advance, it can 

perform the work beforehand and avoid unnecessary delays. 

An application specific example was presented by Mayrhofer, [Ma04a]. When the 

key appears near upper-class BMW cars, the car predicts that it is going to be started 

and the on-board navigation system initiates boot-up. Therefore, when the user enters 

the car, the navigation system is already fully functional. Otherwise, it would have 

taken extra 30 seconds to complete. 

2.  Device power management. Device that are unused and will not be used in near future 

can be shut down or switched to sleep mode. 

There are other scenarios that fall under that category as well. For example [NM05], 

if the user attempts to send a large multimedia message while in an area of bad radio 

reception, the system can predict that the user is going to enter a better reception area 

soon and will delay sending the message (and therefore saving power). 

3.  Early warning of possible problems. Context prediction can determine whether the 

system is about to enter an unwanted state and act accordingly. For example, a 

pervasive system can predict that it is going to run out of memory or computation 

power soon and act proactively to counter that problem – for example, find the devices 

to share the computations, offload the data and drop unnecessary applications. Or, for 

example, a pervasive system can predict that user is going to enter a traffic jam soon. In 

that case, the system can find a way around the traffic jam and provide it to the user 

before the traffic jam area is entered. Different cases of accident prevention also fall 

under the category of early warning of possible problems. 

6.  Planning aid. If a user’s needs can be predicted, a pervasive system can meet them 

proactively. For example, an air conditioner in a smart home can be launched in 

advance to have a certain air temperature when the user returns from work. Or in a 

smart office, the door can be opened right before the person enters. 
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7.  Inferences on other’s future contexts. User can actually be influenced by the future 

context of another user. For example [NM05], a user may have confidential 

information on the screen. Therefore, when someone passes by, the screen should be 

hidden. Prediction of other people’s interference can help to hide the image proactively 

and in a timely fashion. 

8.  Early coordination of individuals. This can be viewed as a consequence of the previous 

point. If the needs of several users in a group can be predicted, the system can act to 

satisfy the interests of the group as a whole. 

 

Future context can be predicted using a large variety of models. However, 

implementation of context prediction faces challenges that distinguish context prediction 

from many other kinds of prediction tasks. The challenges include the following (partially 

based on the papers [NM05] [Ma04a]):  

 

1. Pervasive systems work in real time. 

2. Pervasive systems need to predict human actions. This is one of the main reasons why 

most of context prediction techniques are grounded in machine learning. Human 

actions depend on human habits and personal features which, in turn, often cannot be 

guessed beforehand but can be inferred during the run time. 

3. The systems work in discrete time. All context data are provided by sensors and 

sensors work in an impulse manner which provides the measurements in certain points 

of time. 

4. The data are highly heterogeneous. Lots of data of different nature and different type 

are coming from different sources. For example, context data can be numerical and 

non-numerical; context data can come periodically or when a certain event occurs. 

5. Sometimes hardware capabilities are limited. Using lots of small and preferably 

inexpensive devices is very common in pervasive computing. Many devices have to be 

relatively autonomous and use wireless interfaces for interactions. Devices of that kind 

have limited power supply and limited computational capacity. 

6. Connectivity problems are possible which can cause problems including data loss and 

sensor unavailability. 

7. The learning phase should be kept to a minimum. Often a pervasive computing system 

needs to start working right away. Ability to incorporate prior assumptions about the 

system is also highly desired in order to achieve a fast system start. 

8. Sensors are uncertain. Not taking that into account can lead to reasoning and prediction 

problems. 

9. There is a need for automated decision making. 

 

So far there are some works that address context prediction challenges, but there still is 

a definite lack of universal approaches to the problem. 

In this chapter context prediction techniques will be classified according to the formal 

models and approaches which inspired them. This is an insightful way that can provide a 

direction for new techniques research. Sometimes those approaches can overlap and, 

therefore, some approaches can be associated with several classes.  
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2.2 From Task Definition to Evaluation Criteria 

To develop a basis for context prediction methods classification, we need a formal 

definition of the context prediction task. It will help to identify criteria for classification 

and evaluation of context prediction approaches. 

Let S1, S2, be the context data at a certain moment in time. As usual, every portion of 

context data Si is a vector that contains sensor data and the results of sensor data 

preprocessing. 

A context predictor in most general sense can be viewed in following manner (formula 

(1)). 

 

Pr = G(S1, S2, …,St)                                                                                                   (1) 

 

In formula (1) t is current time and Pr is prediction result, the prediction result can be 

either just a set of expected future context features, or their distribution, or a future event, 

or a future state. Context prediction operation is represented by operator G. Initial 

knowledge and assumptions about the system are also included in G. To summarize, 

context prediction results depend on the context prediction method and possibly on context 

history and current context data. Questions of context history awareness will be addressed 

later in this section. 

In more details, the context predictor can be viewed in following manner (see Figure 1). 

 

 
Fig. 1. Context prediction – general structure 

 

Several parts of the context predictor can be identified. 

Part 1. Context prediction core. It implements the exact context prediction method. This 

can be an ad hoc method defined for an exact case or any kind of well-known approach 

(like neural network, Markov model, Bayesian network, sequence predictor). Actually, the 

method used as the context prediction core is the main criteria of distinguishing one method 

of context prediction from another. 

To define the context prediction method, we need to define its main principle (e.g., 

Bayesian network, Markov model, neural network) and its parameters. Those parameters 

can be, for example, transition probabilities for Markov chain, neural network coefficients, 

or distributions for Bayesian network. The context predictor can obtain the parameters as 

prior knowledge or infer the parameters during run time. Here are the suggested evaluation 

criteria: 

Criterion 1. Determine whether prior estimations about a pervasive system can be 

incorporated into the method. If the method cannot do that, it might result in low 

effectiveness at the startup. Sometimes prior training can be a workaround for that problem: 

to pre-train the context predictor, the trainer system needs to generate training data 
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according to prior estimations and present it as pre-training before the system actually 

starts. 

Criterion 2. Determine whether prior estimations about the pervasive system can be 

incorporated into the method. In pervasive computing systems the problem of having 

numerous unknown parameters is quite common. For example, pervasive computing 

systems often involve user behaviour prediction. User behaviour depends on user habits; 

the system usually cannot guess those habits in advance and needs to learn them during the 

run time. Practically, in pervasive computing there are almost no methods that are 

incapable of incorporating run time knowledge. 

Criterion 3. Determine whether white box/black box. Another criterion, closely correlated 

with two aforementioned ones, is whether the method is a “black box” or “white box.” If 

the method is a white box, method parameters usually show in a quite insightful manner 

how the system really works. By looking at system parameters the expert can tell what 

exactly the system has learnt or, in turn, having some prior estimation, the expert can 

configure the system parameters accordingly. If the method is a black box, it is capable of 

prediction, but an expert cannot see the underlying reasons for the current prediction even 

if that expert knows the complete set of method parameters. Black box methods are 

generally unlikely to be able to incorporate prior knowledge about the system.  

For example, transition probabilities of the discrete time Markov chain explicitly reveal the 

chance for the system context to be in a particular state at a particular time; the state, in 

turn, corresponds to certain context features. And, having the transition probability, expert 

can easily understand what kind of regularity is found (at least in terms like “if context at 

current time t has features a1, a2, a3, …, that means that it will have features b1, b2, b3, … at 

time t+t’ with probability p”). So, Markov chain-based methods are white box methods. As 

for neural networks, even though the expert knows all the weights for every neuron, it is 

usually impossible to tell what kind of regularities it corresponds to. So, neural network-

based methods are black box methods. 

Criterion 4. Determine whether estimation of prediction reliability is incorporated into 

the method. In practice if the method is capable of estimating its own reliability, the 

predictor usually returns the distribution of predicted value (e.g., Markov models, Bayesian 

networks), not just the value itself. If reliability estimation is not possible in the method, 

such method usually returns just predicted value with no probabilistic estimations. 

Criterion 5. Determine outlier sensitivity. All sensors have some degree of uncertainty. 

Moreover, the sensors can become unavailable or the measurement results can be lost in 

transfer. In that case, an outlier appears. The outlier can significantly alter the prediction 

results. In a very general sense we can classify outlier sensitivity in the following groups. 

• No sensitivity. Outliers will not affect prediction effectiveness in any way. No 

examples so far. Theoretically it is possible if, for example, we have just a prediction 

formula which does not take any current data into account (formula (2)). 

 

Pr = G(S1, S2, …,St) = G(t)                                                                               (2) 

 

But practically that kind of predictor is very inflexible and, therefore, is not used. 

 

• Moderate sensitivity. Outliers do affect prediction effectiveness, but over time the 

influence of the outlier fades. For example, the neural network of the Markov 

predictor learns over time, and if there is an outlier in the training sequence, it will 
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have an effect. However, the amounts of data in the training sequence will be growing 

and the influence of the outlier will be decreasing. 

 

• High sensitivity. One outlier can significantly influence subsequent results of context 

predictions; the effect of the outlier will not decrease until the outlier value is 

completely excluded from the history. For example, the values of sensor 

measurements over time can be treated as function and interpolated. Later that 

function can be extrapolated to the future and it will be the prediction result. But 

outlier presence can significantly alter the resulting function and the effect will not be 

reduced until that point is out of the history range (which will happen practically, at 

least due to memory limitations). 

Criterion 6. Determine what types of incoming data are supported by the context 

predictor. Context can contain data of several types: real, integer and non-numerical (e.g., 

room in smart office or the position of the switch). If some data type of the context is not 

accepted by the context prediction method, preprocessing needs to be performed. 

Part 2. Preprocessing block. The preprocessing block transfers incoming sensor data to 

the format that is applicable to the context prediction core. In a very general sense it can be 

represented in the following manner: 

S’ = Prep(S) 

Where S – current received context data, S’ – preprocessed context data for further usage 

by context prediction core. Prep() represents preprocessing operator. Preprocessing 

operation also can theoretically be dependent on historical data, but practically it is not 

likely. 

Criterion 7. Determine preprocessing information loss. The more information lost during 

preprocessing, the greater the chance to miss significant information, not use it during 

context prediction and therefore get reduced context prediction capability. So here is one 

more context prediction method evaluation criterion: whether the information is lost during 

preprocessing. 

• No information loss. For example, context can be left as is (it can be represented as 

state-space model with later prediction using filter theory or context data can be used 

directly as an input for the neural network). Or new context attributes can be 

introduced during preprocessing (e.g., one of the environmental characteristics can be 

estimated in two different manners to detect sensor failure or use filtering to combine 

two sources of data). So, processing in this case can require some efforts as well. The 

criterion for the method to be included in this category is following: for every S’ there 

should be at most one value of S. 

• Information loss present. Denotes all other cases. For example, some values can be 

aggregated, or context can be completely reduced to a finite number of states of the 

Markov model or probabilities of Bayesian network nodes, or the context can be 

decomposed into event flow and timing information can be lost, and many more 

examples. 

Usually the presence of information loss depends both on the prediction method and on 

sensor data the system obtains. For example, if there are only a few sensors with a small set 

of discrete non-numerical data coming from them, the Markov model can be created 

without information loss – every predictor state (S’) will correspond to every possible 

combination of sensor values (S). However, even if the system has just one real-valued 

sensor, creating the Markov model without information loss is impossible – there is an 
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infinite number of possible values of S and it cannot be covered by any finite number of 

states in S’. 

Part 3. Memory. The predictor might need to store history or parameters in an 

applicable manner. Some methods require only current value and do not store history in 

any manner. Some of the methods are capable of handling all the history and using it to its 

benefit. 

Criterion 8. Determine constant or variable amount of memory needed. For example, a 

neural network needs only memory to store weight coefficients for neurons. The Markov 

model needs only a fixed amount of memory to store transition probabilities and some 

intermediate data to obtain them. However, an expert system-based context predictor that 

constantly introduces new rules or a sequence predictor-based approach with growing 

prediction tree requires a variable amount of memory and the memory demand can grow 

over time. 

In summary then, here are the defined criteria for evaluation of context prediction methods: 

1. Prior knowledge accumulation? Yes / No. 

2. Real-time knowledge accumulation? Yes / No. 

3. “Black box” / “White box”? 

4. Prediction reliability estimation? Yes / No. 

5. Outlier sensitivity? No / Medium / High. 

6. Types of data supported? 

6.1 Real? Yes / No. 

6.2 Integer? Yes / No. 

6.3 Non-numerical? Yes / No. 

7. Information loss on preprocessing? Yes / No (usually it depends on certain conditions). 

8. Memory amount needed? Fixed, Variable. 

3 Context Prediction Methods 
In practice, the methods used most frequently are: 

 

1. Sequence prediction approach. 

 This approach to context prediction is based on the sequence prediction task from 

theoretical computer science and can be applied if the context can be decomposed into 

some kind of event flow. 

2.  Markov chains approach. 

 Context prediction techniques based on Markov chains are quite widespread. Markov 

chains provide an easily understandable view of the system and can be applied if the 

context can be decomposed into a finite set of non-overlapping states. 

3.  Bayesian network approach. 

 This can be viewed as the generalisation of the Markov models. It provides more 

flexibility but requires more training data in turn. 

4.  Neural networks approach. 

Neural networks are biologically inspired formal models that imitate the activity of an 

interconnected set of neurons. Neural networks are quite popular in machine learning. 

Context prediction approaches based on neural networks exist as well. 

5.  Branch prediction approach. 
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 This approach initially comes from the task of predicting the instruction flow in a 

microprocessor after the branching command. Some context prediction systems use 

similar algorithms. 

6.  Trajectory prolongation approach. 

 Some context prediction approaches treat the vector of context data as a point in 

multidimensional space. Then the context predictor approximates or interpolates those 

points with some function, and that function is extrapolated to predict future values. 

7.  Expert systems approach. 

 Based on expert systems and rule-based engines, the expert systems approach appears 

in some works on context prediction. The goal of the approach is to construct the rules 

for prediction. It provides a very clear view of the system. 

 

Subsequent chapters address those approaches in more details. 

3.1 Sequence Prediction Approach 

The sequence prediction task is a quite researched problem in theoretical computer science. 

Generally, the problem is as follows: having the sequence of symbols <S(1), S(2), …, 

S(t)>, received at the time from 1 to t, the task is to predict next symbol S(t+1). 

If the context of pervasive computing systems can be represented as a flow of symbols 

(e.g., flow of events or state of Markov model in particular time), the context prediction 

problem can be viewed as a sequence prediction task.  

D. Cook and S. Das [CD05] provided quite a comprehensive overview of sequence 

prediction techniques used in context prediction (particularly in smart home environments). 

So far the earliest works which treated the problem of user activity prediction as 

sequence prediction tasks were the works of Davidson and Hirsh, related to command 

prediction in the UNIX environment [DH97, DH98]. Those works inspired subsequent 

research in the area of user activity prediction, including context prediction in pervasive 

computing systems and particularly smart home systems. 

In a number of works [Ma04a][BD09][DC03][RB03] algorithms from the Lempel-Ziv 

family were suggested as a means of context prediction. In practice, the LZ78 algorithm 

was a baseline for a set of context prediction algorithms. For more details refer to Ziv and 

Lempel [ZL78] for the description of the algorithm; to Feder et al. [FM92] for subsequent 

researches; and to Gopalratnam and Cook [GC03] for the overview of enhancements 

related to context prediction. 

Bhattacharya and Das [BD99] introduced the LeZi update, which addressed the problem 

of predicting the next location of the user in a cellular network. Proactivity in that case 

could benefit the cellular system by enhancing paging and location updates. The paper 

[BD99] also inspired the subsequent work of Das et. al. [DC02], where the authors used the 

LeZi update algorithm for the smart home environment. The work was further enhanced in 

Roy et al. [RB03], where the authors addressed the questions of energy consumption 

prediction based on path prediction. 

Compared to the classical LZ78 approach, the LeZi-Update approach tried to keep a 

track on all contexts within a phrase. The idea of enhancement is as follows: on every step 

update frequency – not only for every prefix like in LZ78, but for every suffix of this 

prefix. E.g., if the received phrase is “ABC”, then the frequency should be updated not only 

for ”ABC”, but for “C” and “BC” as well. 

LeZi-Update inspired further enhancements including Active LeZi. Gopalratnam and 

Cook [GC03] introduced the Active LeZi algorithm in order to predict the actions of 



 
Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and 

Challenges 

209 

 

inhabitants in smart home environments. Authors identified several shortcomings of the 

initial LZ78 algorithm: 

1. The algorithm will lose any information that will cross the boundary of the phrase. 

2. There is a low rate of convergence. 

The authors proposed a solution to the shortcomings. Using the LeZi Update as a basis, 

they introduced a sliding window of previously seen symbols to be able to detect patterns 

that cross phrase boundaries. During a testing scenario without any noise or sensor 

uncertainty on highly repetitive data, Active LeZi reached almost 100 per cent prediction 

rate after around a 750-symbol training sequence. However, when noise was introduced 

into testing scenarios in practical implementations, the prediction rate began to float around 

86 per cent. Testing on real data has shown that Active LeZi has around 47 per cent 

prediction rate after around 750 symbols. Mayrhofer [Ma04a] suggested using Active LeZi 

in a more general case of context prediction task. In Section 4 more details on that work 

will be given. 

Therefore, sequence prediction turns out to be a feasible and widely used approach for 

context prediction and this approach has shown good performance practically. Moreover, 

some theoretical enhancements in the sequence prediction area were made while 

researching the context prediction problem (e.g., Active LeZi development). However, the 

sequence prediction approach has several shortcomings. Generally, reduction of the entire 

context to the mere sequence of symbols introduces the possibility of losing valuable 

information on preprocessing. Another problem is that the system cannot deal with levels 

of confidence when a situation has occurred. Prediction reliability can be computed, but the 

reliability of observed data cannot be taken into account. One more major shortcoming is 

that this approach generally does not deal with time (although some exceptions do exist). It 

won’t detect timing-dependent regularities like “If engine is overheated, it will break down 

in 10 minutes”. The duration of a situation occurring can also be important. It is not 

considered in the sequence learning approach as well. However, although the sequence 

prediction approach has its shortcomings, it still turns out to be a good choice for many 

practical tasks. 

3.2 Markov Chains for Context Prediction 

The discrete time first order Markov chain is a model that consists of following parts: 

 

1. Finite number of possible model states: S = {S0, S1, …, Sn-1}. 

 

2. The probability of the system to transition from one state to another is presented in the 

expression (3). 

 

Pij = P(S(t+1) = Sj | S(t) = Si), i,jϵ[0..n-1] , t=0,1,2,…                                            (3) 

 

Markov property is the property of the system’s future states to be dependent on the 

current state only (and not on the history). In a more general case of Markov chains of 

order K, transition probabilities depend not only on current state, but on the history of 

states down to time t-(K-1). From now on we are going to refer only to discrete time 

Markov chains unless explicitly stated otherwise. 

The transition probabilities are stationary – Pij does not depend on time. 

 

3. Initial probability of the model to be in certain state: P(S(0)=Si) i = 0,1,…, -1 
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Pervasive systems usually employ discrete time models due to the nature of sensory 

originated data, which usually arrive at certain moments in time, either in some period or at 

the occurrence of some event. So from now on we are going to refer only to discrete time 

Markov chains, unless explicitly stated otherwise. 

Markov chains are widely researched formal models that were applied to numerous 

practical tasks. See, for example, Russel and Norvig [RN06] for more details on Markov 

chains, and Baum and Petrie [BP66], Rabiner [R90] on more details on hidden Markov 

models.  

Some projects applied Markov chains to address context prediction problems. For 

example, in Kaowthumrong et al. [KL02] addressed an active device resolution problem. A 

device resolution problem is a problem when the user has a remote control to interact with 

a set of devices, but there are always several devices in user proximity. The system needs to 

determine to what device the user is referring. The proposed solution was to predict the 

next device to which the user is likely to refer and use this information to resolve ambiguity 

on the next step. The authors proposed the hypothesis that the next device depended on the 

current device only. That hypothesis is actually Markov property. The context prediction 

system is built into the Markov chain; devices show states and transition between the states 

representing the order of device access. E.g., if the user turns on the light (state L) and then 

turns on the TV (state T) that means that the model transitioned from state L to state T. The 

model continued being in that state until a new action was performed by the user. The goal 

was to infer user habits from observed action sequence. Initially, transition probabilities 

were unknown. During the run time, the system inferred transition probabilities by 

calculating relative transition frequency (expression (4)). 

 

    =  
N(∀t  , (t 1)=   , (t)=  )

N(∀t  , (t)=  )
                                                                          (4) 

 

In the formula (4) is the count of cases. 

Having several devices in proximity of remote control, the system chose the one with the 

highest probability among them. Prediction accuracy was estimated at 70-80%. 

Another example is the work by Krumm [Kr07], where the author used discrete time 

Markov chain for driving route prediction. Road segments were states in Markov chain and 

the transitions were the possibilities to enter another road segment e.g. at the crossroad. 

Probabilities were inferred from the history in a manner similar to Kaowthumrong et. al., 

[KL02]. Author used Markov chains of different orders and compared the results. One-step 

prediction accuracy exceeded 60% for 1
st
 order Markov model. Prediction accuracy 

exceeded 80% and tended to 90% when Markov model order grew to 10. Overall, the 

system was able to predict one segment ahead (237.5 meters in average) with 90% 

accuracy and three segments ahead (712.5 meters in average) with 76% accuracy. 

Zukerman et. al. [ZA99] used Markov models for prediction of next user request on 

WWW.  

Using discrete time Markov chains in context prediction is plausible and easy way when 

the system is fully observable and when the context can naturally be represented as a 

limited set of possible states changing over discrete time. However, more complicated 

cases require the extension of Markov chain approach. 

Hidden Markov model extends Markov chains to the case of partial observability. 

Hidden Markov models (HMM) were introduced in the work [BP66]. HMM can be defined 

as Markov models, where the exact state of the system is unknown. One of very popular 

example is urns with colored balls (according to [R90], introduced by J. Fergusson in his 
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lectures on information theory). Each urn contains many balls of different colors, and the 

distribution of colors is different between the urns. The user sees the color of the ball, but 

she does not know which urn the ball is taken from. In this example exact urn stands for 

hidden state and the color of the ball stands for output. Comparing to fully observable 

Markov chain description, HMM also requires following distribution (expression (5)). 

 

P’jk = P (Y(t) = k | S(t) = Sj)                                                                                           (5) 

 

In expression (5) the term Pjk represents the probability of seeing output k in state j at 

time t. 

Several tasks are quite common for HMM: 

1. Given the model and the output, identify underlying sequence of states and 

transitions. 

2. Given the model and the output, identify the probability of an output to 

correspond that model. One of the special cases of that task is following: given a set of 

possible underlying models, choose a model that matches the output sequence best. 

3. Given a model without transition probabilities and given some output, find the 

missing probabilities. The process of detecting those probabilities is usually referred as 

training HMM. This HMM use case is the most common one for context prediction task. 

For more information on the algorithms for different tasks, refer, for example, to the 

work by Rabiner [R90]. 

HMMs were used for context prediction in several projects. For example, Gellert and 

Vintan [GV06] used hidden Markov models to obtain the prediction of the next room a 

person was likely to visit. The resulting HMM represented every room as a possible state. 

Simmons et al. [SB06] the authors used HMMs for route prediction. The prediction system 

represented the road structure as a graph where nodes were crossroads and edges were 

roads between crossroads. The state of HMM was the combination of the position on the 

road (which was observed) and destination point (which was not observed, but could be 

guessed). According to the authors, prediction accuracy was up to 98 per cent in most 

cases. Hidden Markov models are rather popular for the cases when the Markov model is 

applicable and the system is partially observable; partial observability often appears either 

due to sensor uncertainty or due to taking into account such parameters as user intentions or 

user emotions which are not directly measureable. 

One more extension of the Markov chain is the Markov decision process (MDP). MDP is 

a formal model that consists of following parts: 

1. Finite number of possible model states: S = {S0, S1, …, Sn-1}. 

2. A set of possible actions to be taken in state Si: A(i) = {ai1, ai2, …}, i = 0,1,…, -1. 

3. The probability of the system to transition from one state to another on particular action 

is presented in expression (6). 

 

Pij(k) = P(S(t+1) = Sj | S(t) = Si , a(t) = k), i,jϵ[0..n-1] , t=0,1,2,…                            (6) 

 

4. Initial probability of the model to be in certain state: P(S(0)=Si) i = 0,1,…, -1. 

5. A reward or cost for transferring from state Si to Sj on choosing certain action a: R(Si, Sj, 

a). 

There are often considered simpler cases when the reward depends only on next state and 

action (R(Sj, a)) or even next state only (R(Sj)). 
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Partially observable MDP (POMDP) is an extension of MDP idea for partially 

observable systems. POMDP extends the concept of MDP in the same manner like HMM 

extends the concept of the Markov chain. POMDP also requires the distribution of possible 

observations depending on the state (formula (7)). 

 

P’jk = P (Y(t) = k | S(t) = Sj)                                                                                        (7) 

 

Usually the goal of MDP processing is to find a policy – principles of choosing the 

action to maximise the rewards. Policy can be defined as π = {π0, π1, π2, …}, where πi = 

πi(hi) is a probability distribution of choosing certain actions depending on observed 

history. 

Sometimes the objective is to resolve an inverse problem with one or both of the 

following considerations: the system needs to find cost or reward function R(i,a) that 

explains user behaviour. This task is usually referred to as apprenticeship learning. Refer to 

Abeel and Ng, 2004 for more details on the apprenticeship learning problem. 

To compare different policies several methods are available: 

1. Discounted expected total reward (expression (8)). 

 

R = R(  )   ∑   R( (i − 1),  (i), A(i))L
 =1                                                              (8) 

 

In formula (8) the term β ϵ [0,1] is a discount factor, S(t) stands for the state at time t, 

A(t) stands for action at time t, R stands for reward function and L stands for horizon (it is 

often infinite). 

1.Average reward criterion (expression (9)). 

 

R =   imN→ (
 (  )  ∑    ( (  1), ( ), ( ))N

 =1 )

N
                                                 (9) 

 

Refer to the book by Russell and Norvig [RN06] for more details on MDP theory. 

Markov decision processes were used in location prediction and gained some popularity 

in driving route prediction. For example, Ziebart et. al., [ZM08] proposed PROCAB 

method (Probabilistically Reasoning from Observed Context-Aware Behavior) and used it 

for vehicle navigation. More specifically, authors addressed three issues: turn prediction, 

route prediction and destination prediction. The system represented user behavior as 

sequential actions in Markov decision process. Authors adopted apprenticeship learning 

approach: at first, system observes driver actions and infers driver preferences. After some 

training the system is able to predict driver actions. Inferred cost function is used to 

compare the significance of route benefits and shortcomings according to the opinion of the 

driver (which is very different from person to person). For apprenticeship learning, authors 

adopted the approach proposed by Abbeel and Ng [AN04]. As a result, system became 

capable of predicting route, turn or destination and providing services and suggestions 

proactively. Hoey et. al. [HP07] authors used partially observable Markov decision 

processes in elderly care systems for people with dementia. The system tracked the process 

of handwashing of people with dementia and decided whether to call a caregiver, give and 

advice or just do not interfere. Using the camera, elderly care system could observe some 

information like the stage of handwashing process (e.g. turned the water on, watered the 

hands, soaped the hands) , and some information like the stage of the disease was 

considered to be hidden state. 
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So, Markov decision processes are plausible and practically effective way to predict the 

context in the situations when Markov models are applicable and control actions can 

significantly affect prediction results. 

3.3 Neural Networks for Context Prediction 

Neural networks are formal mathematical models that imitate biological neural structures. 

Starting back in the 1940s with the first models of neuron, it became one of the most 

popular ways of solving artificial intelligence related tasks. Learning capability allows 

neural networks to solve a variety of problems including pattern association, pattern 

recognition, function approximation. For comprehensive neural networks overview refer, 

for example, to the works by Russell and Norvig [RN06][RN09] or to the book [Ha09]. 

Neural networks were used for context prediction as well. For example, Mozer [Mo98] 

described smart house that predicts expected occupancy patterns in the house, estimates hot 

water usage, estimates the likelihood for a zone to be entered soon, etc. In that project 

authors used feedforward neural networks trained with back propagation. Indoor movement 

prediction related projects considered neural network approach as well. For example, in the 

work Vintan et. al. [VG04] addressed the problem of finding next room the person is going 

to visit. Predictor took current room number as an input and was expected to give most 

probable next room number as an output.  For prediction method authors chose multi-layer 

perceptron with one hidden layer and back propagation learning algorithm. System used 

log of movement for training. Al-Masri and Mahmoud [AM06] authors suggest to use 

artificial neural networks for providing mobile services. Authors presented SmartCon 

application that is capable of learning user needs and dynamically providing applicable 

mobile services. Authors elicited relevant information by training neural network with 

device-specific features (all the information about user’s device: hardware type, terminal 

browser, software platform), user-specific features (learned user preferences) and service 

specific-features (service provider preferences). Later this information is user to suggest 

proper mobile service to user. Lin et. al. [LW08] suggested to use neural network for smart 

handoff. The process of handoff occurs when mobile device is moving away from coverage 

area of one base station under coverage area of another. Handoff decision is usually based 

on such characteristics like signal strength, bit error rate, signal to noise ratio. However, 

sometimes user is moving close to the borders of coverage area of different base stations 

and lots of unnecessary handoffs appear. The goal is to predict whether user is likely to 

move under the coverage area of any base station completely. Prediction results will affect 

handoff decision. Authors proposed to use multilayer perceptron to detect the correlation 

between packet success rate and a certain set of metrics. According to Lin et. al., [LW08] 

their algorithm outperforms current common handoff algorithms. 

As a result, neural networks turned out to be a feasible way of context prediction for 

many practical use cases. There are various types of neural networks available and they can 

provide a flexible tradeoff between complexity and effectiveness. The major shortcoming 

of the neural network approach is that it is a black box – by examining neural network 

structure it is not possible to say what exact regularities are detected. 

3.4 Bayesian Networks for Context Prediction 

The approach of Bayesian networks generalizes Markov models and avoids some of the 

Markov model shortcomings. For more details on Bayesian networks and dynamic 

Bayesian networks refer to the books [RN06][RN09] and to chapter I sections 2.2.1-2.2.4. 
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Numerous projects have used dynamic Bayesian networks for context prediction. For 

example, in Petzold et al. [PP05], the authors used dynamic Bayesian networks to predict a 

person’s indoor movement. Context was represented as DBN, where the current room 

depends on several rooms visited previously and the duration of staying in the current room 

depends on the current room, time of the day and day of the week. The context predictor 

achieved high prediction accuracy (floating between around 70 per cent and around 90 per 

cent for different persons and tasks). However, retraining the system in case of user habit 

change turned out to be cumbersome. Dynamic Bayesian networks were also widely used 

to recognise user plans and infer user goals. The example of user modelling and user goals 

inference using a Bayesian network is the work by Albrecht et al. [AZ98]. The authors used 

DBNs to predict further user actions in an adventure game. This task can still be viewed as 

context prediction – the fact that context is completely virtual does not really affect the 

essense of the method. Horvits et al., 1998 describes another example of DBNs – the 

Lumiere project. The project intended to predict the goals of software users and provide 

services proactively. Nodes of DBN were user profile, goals and actions. 

Numerous projects used Bayesian networks for context prediction. Bayesian networks 

have a broad range of possible use cases and good opportunities to incorporate any kind of 

prior knowledge. 

3.5 Branch Prediction Methods for Context Prediction 

Historically, branch prediction algorithms are used in microprocessors to predict the future 

flow of the program after branch instruction. By their nature, branch prediction methods are 

fast and simple and designed for fast real-time work. Refer to the work by Yeh and Patt 

[YP03] for more details on branch prediction techniques. 

Petzold et al. [PB03] used branch prediction algorithms for context prediction in 

pervasive computing systems. Authors used branch prediction to predict moving of the 

person around the house or office. The system described in [PB03] used several kinds of 

predictors: state counter-based predictor; state counter-based predictor; local two-level 

context predictors; and global two-level context predictors. Counter-based predictors were 

much faster in training and retraining while two-level predictors were much better at 

learning complicated patterns. The authors also developed some suggestions for 

enhancements that can take into account time and confidence level. 

Context prediction using branch prediction algorithms is not a widespread approach. 

Algorithms are generally very simple and fast, but they can detect only very simple 

behaviour patterns. 

3.6 Trajectory Prolongation Approach for Context Prediction 

Context prediction by trajectory prolongation works in the following manner: 

1. Consider every context feature as an axis and construct multidimensional space of 

context features. 

2. Consider the observed context features at a certain moment in time as a point in that 

multidimensional space. 

3. Consider the set of those points collected over time as a trajectory in multidimensional 

space. 

4. Interpolate or approximate that trajectory with some function. 

5. Extrapolate that function further in time to get the prediction results. 

Some projects used this approach to context prediction. For example, Anagnostopoulos 

et al., [AM05] suggest a special architecture and approach for context prediction. The 
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authors validate their approach on location prediction methods for longitude and latitude. 

For validating and testing, the authors used GPS trace files. According to the authors, 

Newton and Lagrange’s interpolation methods proved to be inappropriate for that purpose 

due to oscillatory behaviour on a high amount of points. Cubic Bezier splines in turn 

appeared to be promising and moreover had the complexity only O(n). Regression-based 

techniques fall under that category as well. For example, Karbassi and Barth [KB03] 

addressed vehicle time of arrival estimation. The system built linear regression between a 

congestion factor and time of arrival and inferred the parameters from the history. Some 

works [SH06][Ma04a] suggested use of autoregressive models to resolve context prediction 

task. 

Trajectory prolongation approach initially comes from a location prediction area which is 

adjacent to context prediction and can be viewed as its sub task. However, trajectory 

prolongation can face numerous shortcomings when applied to a general context prediction 

task. The most important shortcoming for the trajectory prolongation approach is that it is 

not capable of handling non-numerical data, which are quite common for pervasive 

computing environments. 

3.7  Expert Systems for Context Prediction 

Expert systems theory is a branch of the artificial intelligence area which attempts to 

imitate the work of a human expert. Usually an expert system represents the regularities in 

terms of rules. For example, it can look like this: (t>37
o
C)&(caugh) -> (ill) 

Which means “if the person has body temperature over 37
o
C and cough, s/he is ill”. 

Large number of projects applied expert systems to different fields. For more details on 

expert systems refer to [GR04]. Expert systems are sometimes used for context inference 

and context prediction. For example, Hong et al. [HS09] use rule engines for context 

prediction. The system inferred rules in the runtime to determine user preferences and 

provide services proactively. For example, having user age, gender and family status, the 

engine can infer what kind of restaurant a user is likely to look for this evening. It is done 

in terms of rules like: 

(age>23)&(age<32)&(gender=male)&(status=married)→(preference=familyRestaurant). 

Then, for example, the system can predict that the user is going to the restaurant in the 

evening, proactively provide the choice and find the route in advance. A context aware 

system employs decision tree learning and rule learning techniques to mine for user 

preferences. 

The system described in [HS09] used Apriori algorithm to infer association rules. 

Initially that algorithm was developed to mine the data from database transactions and find 

sets of features that appear together. The main idea of the algorithm is to find the sub sets 

of facts of different length incrementally starting from single facts. On every step, bigger 

sub sets are generated and the sub sets with frequency below some thresholds are dropped. 

For more details on the algorithm and its enhancements refer to the work by Agrawal and 

Srikant [AS94]. 

Williams et al. [WM08] discuss forecasting a person’s location using the context 

prediction approach. The system collects the log of household activities and elicits 

sequential association rules using a generalised sequential patterns (GSP) technique. See 

[SA96] for more details on the rule mining method.  

In another example [Va08] the author considered mining the rules to learn user habits 

and implement fuzzy control in smart home environments. The pervasive system learns by 

example from user actions. In brief, their approach looks like this: All the day is divided 
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into the set of timeframes. The system detects association rules within the timeframe. Every 

rule has sensor conditions as an input and triggered actuators as an output. The system also 

maintains a weight coefficient for every rule: triggering the rule increases the weight, not 

triggering the rules decrease the weight. Rules with 0 weights are removed. If both the 

weight and the degree of membership for the rule are high enough, the system starts 

executing the actions proactively, instead of the user, according to the rule. 

One more notable work in the area of rule-based systems is the work by S. W. Loke 

[Lo04a]. The author addressed the questions of proactivity and the questions of action 

consequences. The author also proposed to determine whether the action was worth 

performing by comparing the uncertainty of the context and the severity of the action in the 

form of a rule (expression (10)). 

 

IF Uncertainty(Context) < U AND Severity(Action) < S THEN DO Action              (10) 

 

That work [Lo04a] addresses not just rules for taking actions, but different 

argumentation techniques to define those rules (based on different sources of knowledge) 

and to determine what action to take. 

To summarize, the approach to context prediction based on expert systems is quite 

promising. It allows quick and natural integration of prior knowledge, it allows relatively 

easy integration of adaptation actions, and it can contain learning and self-correcting 

capabilities.  

3.8  Context Prediction Approaches Summary 

Table 1 presents the comparison of context prediction approaches according to the criteria 

identified in section 2. It should be noted that different kinds of predictors can be combined 

to improve prediction quality, enhance each others’ strength and compensate each others’ 

weaknesses. 

4 General Approaches to Context Prediction 
One of the context prediction research challenges is the development of a general approach 

to context prediction. Many context prediction approaches were designed to fit the 

particular task and most of them were not designed to be generalizeable (although some of 

them have generalization capability). 

A quite notable attempt to look at the context prediction problem in general was made by 

R. Mayrhofer who developed a task-independent architecture for context prediction 

[Ma04a]. 

As a result, the context prediction process consists of several steps: 

1. Sensor data acquisition. This step takes data received from multiple sensors and arranges 

them into the vector of values. 

2. Feature extraction. This step transforms raw sensor data for further usage. From vector of 

sensor data, vector of features is formed. 

3. Classification. Performs searches for recurring patterns in context feature space. Growing 

neural gas was considered to be the best choice. See [Fr95] for more details on that 

algorithm. The result of the classification step is a vector of values that represents 

degrees of membership of current vector to certain class. 

4. Labeling. This is the only step that involves direct user interaction. The frequency of 

involvement depends on a quality of clustering step if classes are often overwritten and 

replaced that will result in more frequent user involvements. 
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5. Prediction. This step takes the history of class vectors and estimates a future expected 

class membership vector. For this step the author researched numerous prediction 

approaches and, according to evaluation results presented in [Ma04a], an active LeZi – 

combined with a duration predictor – slightly outperformed other evaluated algorithms. 

Many context prediction applications provided the architecture for some particular 

context prediction tasks. The work by Mayrhofer [Ma04a] was one of the first works which 

addressed the context prediction task in a general sense and provided complete architecture 

to handle that challenge. The architecture is well-developed and well-reasoned and it 

ensures pluggability of different context prediction methods and non-obtrusiveness for the 

user. The author put large research efforts into estimating the effectiveness of different 

context prediction approaches and provided quite comprehensive overview of those. The 

shortcoming here is that the problem of acting on predicted context was not recognised as a 

challenge and, moreover, using the rules to act on predicted context was considered the 

only option without any reasoning. That drawback is quite common throughout many 

general case context predictors. One more minor shortcoming is that feature extraction was 

restricted only to clustering of sensor data and no other preprocessing was considered. 

Several other works addressed general case of context prediction as well. For example, 

Nurmi et al. [NM05] developed their architecture for context prediction for a MobiLife 

project. The authors suggested that the process of context prediction consists of several 

steps: data acquisition, preprocessing, feature extraction, classification and prediction. 

Actually, the view is quite similar to the one provided in [Ma04a]. However, there are some 

differences. One of them is that in [NM05] the authors introduced a preprocessing step. As 

the authors noticed, in [Ma04a] some preprocessing was included into the sensor data 

acquisition step. However, separating preprocessing and data acquisition can provide more 

insightful view on the system and make it more flexible. Also Nurmi et al. [NM05] 

included a labeling step with the classification step and provided some techniques to make 

labeling even less obtrusive. The shortcomings are generally the same compared to 

[Ma04a]. The problem of acting on predicted context was slightly mentioned, but no exact 

solution was proposed. 

One more notable work on context prediction architecture is the Foxtrot framework 

described by Sigg et al. [SH06]. There, authors presented a quite different view of the 

context prediction problem. Authors focused their efforts on treating the context as time 

series and applying time series forecasting techniques such as Markov predictors, an 

autoregressive moving average model or alignment methods. The Foxtrot project 

represented the context as a multilayered structure where higher level context information 

was obtained from lower level context information using preprocessing. Context prediction 

worked on every context layer and provided the prediction for every layer. The approach 

itself was quite novel. The authors made an extensive research to theoretically estimate the 

possible error of such an approach. Also, the authors defined a context prediction task in a 

very general sense and did not make any unnecessary assumptions (like restricting 

preprocessing to clustering or having only high level context features and low level context 

data), therefore implicitly assuming only two context layers. The Foxtrot framework 

implemented prediction on every layer of context data and did not restrict it to higher level 

context only. However, the choice of possible context prediction methods was relatively 

small (just autoregressive methods, alignment methods or Markov predictor) and the 

architecture itself took almost no context prediction specifics into account. The problem of 

how to use predicted information (including the questions of labeling context classes to 

achieve meaningful and understandable output of predicted information and the questions 

of acting on predicted context) was not considered at all. 
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Anagnostopoulos et al. [AM05] present one more general approach to context prediction. 

They treat context data as time series, interpolate the trajectory and extrapolate it further for 

prediction. However, although stated as a general context prediction method, the approach 

was derived from location prediction techniques validated on location prediction problems 

and does not take into account general context prediction specifics. Prediction methods 

were restricted to interpolation (which generally has numerous shortcomings, see sections 

3.6 and 3.8), the questions of preprocessing and different layers of context were not taken 

into account, and the questions of meaningful output or acting on predicted context were 

not considered as well. 

Context prediction and proactivity problems were also addressed in the works regarding 

context spaces theory. The overview of theory of context spaces can be found in [PL08a]. 

The theory itself represents the context as a multidimensional space and uses geometrical 

metaphors to improve context awareness. The situations are represented as subspaces. 

Context spaces theory was used as a basis for some context prediction and proactive 

decision-making mechanisms. Padovitz et al. [PL08a] discuss the questions of proactive 

behavior of a mobile reasoning agent that migrates between different information sources 

to collect additional information and reason about the situations. In [PL07] the authors 

provide the concept of natural flow – pre-defined likely sequence of situations over time. 

Natural flow was used as a verification technique if there were uncertainty about the 

current situation. Situations that fit the flow are considered to be more likely. Although not 

used for context prediction directly, the natural flow concept has definite context prediction 

potential. One more work regarding context prediction and proactivity in context space 

theory is the work of Boytsov et al. [BZ09]. There the authors provide the techniques to 

adopt different machine learning based context prediction techniques to context spaces 

theory. 

To summarize, there do exist some projects that address the problem of context 

prediction in a general sense. However, their number is small and still the development of a 

general approach to context prediction task is a challenge. The most serious common 

shortcoming is that acting on predicted context is not recognized as a problem and either is 

not mentioned at all or considered as a task subsequent to the context prediction step. 

Meanwhile, in many cases, system actions can influence prediction results and therefore 

treating context prediction and acting on predicting as independent sequential tasks can 

severely limit the scope of possible use cases. 

5 Research Challenges of Context Prediction 
Context prediction is a relatively new problem for computer science. Now the area of 

context prediction is just being developed and still there are numerous challenges yet to be 

addressed. Those challenges include: 

1. Lack of general approaches to the context prediction problem. 

Most current solutions predict context for particular situations. There have been only a 

few attempts to define and solve the context prediction task in general. 

2. Lack of automated decision-making approaches. 

Most context prediction-related works focused the efforts on prediction itself, but 

proper acting on prediction results usually was not considered. Most context prediction 

systems employed an expert system with pre-defined rules to define the actions based 

on prediction results. With one notable exception of Markov decision processes, almost 

no systems considered a problem like “learning to act”. 

3. Mutual dependency between system actions and prediction results is not resolved. 
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This challenge is somewhat related to the previous one. Many context prediction 

systems considered the tasks of predicting the context and acting on predicted context 

in sequence: predict and then act on prediction results. That approach can handle only 

simplified use cases when actions do not affect prediction results. For example, in a 

smart home the system can employ any policy for switching the light or opening the 

door in advance, depending on user movement prediction results. But whatever the 

system does, it will not affect user intentions to go to a particular room. However, in a 

general case system, actions do affect prediction results. For example, consider which 

is capable of automatic purchases to some degree and which needs to plan the 

expenses, or in a more serious use case, consider a pervasive system that is capable of 

calling the ambulance and that needs to decide whether to do it or not depending on 

observed user conditions. In those and many more use cases, prediction results clearly 

will depend on what the system does. However, there are almost no works which 

considered the problem of mutual dependency between system actions and prediction 

results. So far, the only works which did address that problem were the works on the 

Markov decision processes (see section 2.3). The task of resolving that dependency is 

actually a special case of a reinforcement learning task. In our opinion, although 

comparing to most reinforcement learning task pervasive computing systems have their 

own specifics (e.g., relatively obscure cost and reward functions, high cost of errors 

and therefore very limited exploration capabilities), recent advancement in the 

reinforcement learning area can help to overcome that problem. 

If all those context prediction challenges are resolved, it will let pervasive computing 

systems handle more sophisticated use cases, enhance the applicability and the 

effectiveness of context prediction techniques and therefore enhance overall usability of 

pervasive computing systems. 
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Foreword 

Previous chapter provided an overview of context and situation prediction research area. This chapter 

continues addressing the research question 3 and improves situation awareness and context prediction 

techniques by combining versatile situation awareness tools of context spaces approach with various 

context prediction mechanisms, identified in the previous chapter. Chapter IX is based on the paper 

[BZ09]. By the time of writing the paper [BZ09] context prediction approaches were considered as a 

plausible extension of ECORA framework, but eventually became the core of CALCHAS – proactive 

adaptation framework on top of ECSTRA situation awareness application. 
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Extending Context Spaces Theory by Predicting Run-time 

Context 
 

Abstract. Context awareness and prediction are important for pervasive computing 

systems. The recently developed theory of context spaces addresses problems related 

to sensors uncertainty and high-level situation reasoning. This paper proposes and 

discusses componentized context prediction algorithms and thus extends the context 

spaces theory. This paper focuses on two questions: how to plug-in appropriate 

context prediction techniques to the context spaces theory and how to estimate the 

efficiency of those techniques. An overview of existing context prediction methods is 

presented, including Markov chains, Bayesian reasoning and sequence predictors. The 

paper also proposes and presents a testbed for testing a variety of context prediction 

methods. The results and ongoing implementation are also discussed. 

 

Keywords: context awareness, context prediction, context spaces theory, pervasive 

computing, Markov model, Bayesian network, branch prediction, neural network. 

1 Introduction 

Pervasive computing is a paradigm where computing systems are integrated into the 

everyday life and environment in a non-intrusive, graceful and transparent manner. For 

example, it can be a smart home or office, where doors are automatically opened and light 

is automatically turned on right before a person enters the room [PB03]. Or it can be a 

smart car, which suggests the fastest way to the destination and which assesses its own 

condition and proposes maintenance plan. Many pervasive computing systems are now 

being introduced into our life. 

Context awareness and context prediction are relatively new research areas, but they are 

becoming an important part of pervasive computing systems. This paper analyzes various 

context prediction techniques and proposes a plug-in approach to context prediction for 

pervasive computing systems at run-time. This approach is proposed as an extension of 

context spaces theory [Pa06][PL04]. This paper focuses on how to apply various available 

context prediction techniques and how to estimate the efficiency of those techniques. This 

paper also proposes validation of the pluggable context prediction techniques using the 

“Moonprobe” model and application scenario that imitates movement of vehicle over a 

sophisticated landscape. 

The article is structured as follows. Necessary definitions are included in section 2. 

Section 3 provides a brief overview of the context spaces theory – its essence, addressed 

problems, proposed solutions and current research challenges. In section 4 we propose 

context prediction methods and develop the algorithms for their adaptation to the theory of 

context spaces. In section 5 we introduce “Moonprobe” model and application scenario – a 

testing framework that we developed to estimate context prediction efficiency. Section 6 

summarizes the paper and proposes future work.  
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2 Definitions 

This paper addresses many important issues of pervasive computing systems. Generally, 

pervasive systems comprise many small and inexpensive specialized devices. If a device is 

used to specifically obtain information from the environment that device is usually referred 

to as a sensor. Each device performs its own functions, but to be able to perform them 

effectively the device usually needs to communicate with other devices and process the 

information that it obtains from them. 

One of the most important characteristics of a pervasive computing system is its context. 

In earlier works on context awareness different definitions of context were proposed. 

Comprehensive overview of those efforts was presented by Dey and Abowd [DA00]. They 

define context as “any information that can be used to characterize the situation of an 

entity.” In fact, every piece of information that a system has is a part of that system’s 

context. The system is context aware if it can use context information to its benefit. 

Reasoning about context is the process of obtaining new knowledge from current and 

possibly predicted context. Context model is a way of context representation that is used for 

further reasoning. We assume that context aware pervasive computing systems have the 

following features: 

1. Sensors supply data that will be used by pervasive system for further reasoning. 

Examples of sensors include light sensors, altitude sensors and accelerometers. 

2. Sensors transfer all the data to reasoning engine via a sensor network. 

3. The reasoning engine, which can possibly be a distributed system, performs 

reasoning, makes context predictions and produces some output that can be used 

for modifying system’s behavior. 

Many important issues of pervasive computing systems are left out of scope of this 

paper, for example, security, privacy, need for distributed computations and other related 

problems. 

3 Context Spaces Theory 

The theory of context spaces [Pa06][PL04] is a recently developed approach for context 

awareness and reasoning which addresses the problems of sensors uncertainty and 

unreliability. It also deals with situation reasoning and the problems of context 

representation in a structured and meaningful manner.  

Context spaces theory is designed to enable context awareness in clear and insightful 

way. This theory uses spatial metaphors for representing context as a multidimensional 

space. To understand context spaces theory we need to introduce several new terms. Any 

kind of data that is used to reason about context is called context attribute. Context attribute 

usually corresponds to a domain of values of interest, which are either measured by sensors 

directly or calculated from other context attributes. It can be either numerical value or a 

value from pre-defined set of non-numerical options. 

Context state represents the set of all relevant context attributes at a certain time. A set of 

all possible context states constitutes application space. Therefore, application space can be 

viewed as a multi-dimensional space where the number of dimensions is equal to the 

number of context attributes in the context state. The state of the system is represented by a 
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point in the application space and the behavior of the system is represented by a trajectory 

moving through the application space over time. 

Situation space is meant to represent real life situation. It can be defined as subspace of 

the application space. So if context state is in the subspace representing situation S, it 

means that situation S is occurring. Situation S has the level of occurrence certainty. It 

depends on the probability of the context state to be within S and it also depends on the 

subspace within S. See figure 1 for simple illustration. We’ll keep referring to that example 

for context prediction approaches illustration throughout the article. 

 

 
Fig. 1. Context spaces theory 

In context spaces theory several methods were developed for reasoning about the context. 

Bayesian reasoning [RN06] or Dempster-Shafer algorithm [Sh76] are used to get overall 

confidence in the fact that a situation is occurring. Algebraic operations on situations and 

some logic-based methods were developed for reasoning in terms of situations. 

Context spaces theory was implemented in ECORA [PL08b] – Extensible Context 

Oriented Reasoning Architecture. ECORA is a framework for development of context-

aware applications. That framework provides its functionality as a set of Java classes to be 

integrated into the prototypes of context-aware systems. 

The research presented in this paper develops context prediction methods that can be 

used to extend the context spaces theory and benefit ECORA-based applications. 

4 Context Prediction for Context Spaces Theory 

The ability to predict future context will benefit runtime performance of context aware 

applications. For example, use cases for context prediction can be found in [NM05]. 

Predicted context can be used, for example, for early warnings, for power management, for 

system reconfiguration. Context prediction is one of research challenges for context spaces 

theory. 

In practice, most of current context prediction approaches involve inferring various 

context features during run-time. The results of inference are then used for context 

prediction. That inference is actually a machine learning task. For this purpose neural 

networks [Ha99], Markov chains [CM05] and Bayesian networks [RN06] might be 

sufficiently effective tools. Here we analyze possible context prediction techniques and 

develop the appropriate algorithms for two-way mapping between the context spaces theory 

and the analyzed context prediction technique. 
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Sequence predictors for context prediction. Many context prediction approaches were 

inspired by research in UNIX next command prediction [DH97][DH98]. There authors 

suggested to represent each UNIX command as a symbol and the whole command flow – as 

symbol sequence. Also they proposed a set of algorithms for sequence prediction. Sequence 

prediction techniques were later used in a variety of systems from “Smart Home” 

architectures to prediction of movement in cellular networks. Various modifications of 

LZ78 algorithm [ZL78] were used in various papers 

[AS02][BD99][DC02][GC03][MR04][RD03]. It is worth noting the paper [MR04] which 

presents general application-independent architecture for context prediction. The paper 

[MR04] also suggests that Active LeZi algorithm can be used to predict future situations 

(note that the concept of a situation in [MR04] differs from the concept of a situation in 

context spaces theory).  The Active LeZi algorithm itself is described in [GC03]. According 

to [MR04], Active LeZi provides up to 99% of accuracy on 1-step prediction. 

Sequence prediction techniques are feasible in context spaces theory as well. For 

prediction purpose context can be represented as a sequence of situations. When situation 

occurs, a special symbol is added to the sequence. When situation is over, another special 

symbol can be added to the sequence as well. Sequence prediction techniques can be 

applied to predict the next symbol in that sequence and, therefore, to predict the occurrence 

of a situation. For example, context state flow in Fig. 1 can be described by following 

sequence: (SS3-in)(SS4-in)(SS3-out)(SS4-out)(SS1-in) 

Sequence prediction algorithms should be adjusted to the fact that situations have 

certain levels of confidence. It can be done by introducing the threshold for the level of 

certainty. We consider that the situation is occurring if its level of confidence is above the 

threshold and we consider that the situation is over if its level of confidence drops below 

the threshold. In [MR04] active LeZi showed very good performance in a variety of cases. 

Incorporation of active LeZi algorithm into context spaces theory is in progress. Its 

efficiency is currently being investigated. 

Neural networks for context prediction. Some techniques of context prediction use 

neural networks to learn from user behavior. For example, [Mo98] describes “Neural 

Network House” project where special equipment predicts expected occupancy patterns of 

rooms in the house, estimates hot water usag and estimates the likelihood for a room to be 

entered soon. In [Mo98] authors used feedforward neural networks trained with back 

propagation.  Projects related to indoor movement prediction considered neural network 

approach as well. In [VG04] authors addressed the problem of predicting next room the 

person is going to visit. A neural network took current room number as an input and 

produced the most probable next room number as an output.  Logs of user movement were 

used to train the network. For prediction purposes authors chose multi-layer perceptron 

with one hidden layer and back propagation learning algorithm. 

Neural networks adaptation for context spaces theory can use several approaches. For 

example, the neural network can accept current situation (with its level of confidence) and 

predict next situation to occur. Alternatively, the neural network can accept the whole set of 

current situations and return a whole set of situations expected over a period of time. 

Additionally, neural network can accept context coordinates and infer the expected future 

coordinates or expected future situations. 

Markov models for context prediction. Markov models proved to be a feasible way of 

context prediction. In [AZ99][Be96] authors used Markov chains to predict what internet 

site user is likely to visit next. Context prediction using Markov chains based techniques 

and Bayesian networks based techniques were considered in the [KL02]. Authors addressed 

the active device resolution problem, when the user has a remote control to interact with a 
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set of devices, but there are always several devices in user proximity. Some papers use 

hidden Markov model to learn from user behavior. For example, in [GV06] hidden Markov 

models are used to obtain prediction of next room that the person is likely to visit. The 

layout of rooms in the house, represented as a graph, is handled as a hidden Markov model, 

and the history is used to obtain the probabilities of moving from one room to another. 

Context in our approach can be viewed as a Markov model as well. For that we need to 

represent the context as a graph where every node represents a situation. However, Markov 

model states have to be mutually exclusive. It is not generally so in context spaces theory. 

To make situations mutually exclusive, we need to find all kinds of situations intersection 

and extract them as new situations. To do this we developed the following algorithm. 

Algorithm MM4CS. 

Step 1. Create three entities: 

Entity 1: set of situations. Initially it contains all defined situations. From now on initial 

situations will be referred to as S1, S2, S3, …, SN. Also they will be referred to as old 

situation spaces. Newly acquired situations may appear as a result of situation 

decomposition. They will be referred to according to the situation algebra expressions they 

were obtained from, for example, S1∩S2∩!S3 or S10∩S8. From now on, for simplicity, when 

talking about situations and it does not matter whether those situations are initial or newly 

acquired we’ll refer to them as A,B,C,etc. Subspace of application space that includes 

whole application space except the situation A will be referred to as !A. 

Entity 2: set of situation pairs. Elements of the set will be referred like (A, B), where A 

and B are some situations. Expression (A,*) is a joint name of all elements containing the 

situation A. Pair of situation with itself like (A,A) are not supported. Situation pairs are 

unordered, i.e. (A,B) and (B,A) both identify the same set element. Initially the set contains 

all available pairs of starting set of situations, i.e. (Si, Sj) for every i,j ϵ [1.. N] and i≠j. 

Entity 3: dependency graph. Initially it has 2 sets of vertices. Each vertex of each set 

represents a situation. Vertex will be referred as (A)
j
 where the A represents situation and 

the superscript represents the set number (1 or 2). Dependency graph will be used for 

prediction in terms of old situation spaces. Initially it has only vertices (Si)
1
 and (Si)

2
 and 

edges between (Si)
1
 and (Si)

2
 (i ϵ [1.. N]). Edges are undirected. Also in the graph special 

temporary vertices can appear during the runtime. They will be referred as (A)
j:B

. 

Step 2. Take any element from a situation pairs set. Let’s say, it is element (A, B). See, 

if situation spaces A and B have any intersections in application space. It can be done using 

situation algebra provided in [Pa06]. If there are no intersections between A and B – just 

remove the element (A, B) from the situation pair set. If there are any intersections, a set of 

substeps has to be performed: 

Substep 2.1.  Remove element (A, B) from the set. 

Substep 2.2. Iterate through the situation pairs list and perform following changes: 

Substep 2.2.1. Every (A,*) element should be replaced with two new elements. 

Element (A∩B, *) is created in all cases and element (A∩!B, *) is created if the 

subspace A∩!B is not empty. 

Substep 2.2.2. Every (B,*) element should be replaced with two new elements as 

well. Element (A∩B, *) is created if it was not created on substep 2.2.1 and element 

(!A∩B, *) is created if the subspace !A∩B is not empty. 

Substep 2.3. Update dependency graph: 

Substep 2.3.1. Vertex (A)
2
 should be removed and several new vertices should be 

created instead. Vertex (A∩B)
2:A

 should be created in all cases and vertex (A∩!B)
2
 

should be created if subspace A∩!B is not empty. Newly created vertices should 

have the edges to every element that (A)
2
 had the edge to. 
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Substep 2.3.2. Vertex (B)
2
 should be removed and several new vertices should be 

created instead. Vertex (A∩B)
2:B

 should be created in all cases and vertex (!A∩B)
2
 

should be created if subspace !A∩B is not empty. Newly created vertices should 

have the edges to every element that (B)
2
 had the edge to. 

Substep 2.3.3. Vertices (A∩B)
2:A

 and (A∩B)
2:B

 should be merged to new vertex 

(A∩B)
2
. All the edges leading to either (A∩B)

2:A
 or (A∩B)

2:B
 should be redirected to 

(A∩B)
2
 instead. 

Substep 2.4. In situation set remove situations A and B and introduce all non-empty 

situations of these: A∩B, !A∩B, A∩!B. 

Step 3. If situation pair list is not empty – go to step 2. If situation pair list is empty – 

add new situation to the situations list: !S1∩!S2∩!S3∩!...∩!SN. Also add corresponding 

vertex to the dependency graph: (!S1∩! S2∩!S3∩!...∩!SN)
2
. It has no edges. Another option 

is not to mention !S1∩! S2∩!S3∩!...∩!SN situation and consider the system being in process 

of transition when no situation is triggered. ■ 

Resulting list of situations will now be referred to as new situation spaces. Resulting 

dependency graph will have old situation spaces in one set of vertices and new situation 

spaces in another. Edges between the vertices mean that old situation space has 

corresponding new situation space as a part of its decomposition. 

Algorithm has to be applied to the system only once – before the runtime. When this 

algorithm is complete, mutually exclusive set of situations is obtained. Now this new set of 

situation spaces can be represented as states of the Markov model. All Markov model based 

context predictors are applicable for it. 

For illustration see Fig. 2. There are two options of Markov models for the system 

described in Fig. 1 and it depends on what option do we take on step 3 of an algorithm. 

 

 
Fig. 2. Markov model for Fig.1 

Reasoning in terms of old situation spaces can be easily done using new situation 

spaces. Let’s say, we need prediction for the situation Si from old situation spaces. It can be 

done in the following manner. 

Step 1. Find (Si)
1
 vertex. It is connected to some other vertices. Let them be (D1)

2
, (D2)

2
, 

(D3)
2
, … (Dk)

2
,etc. 

Step 2. Take predicted levels of confidence for those vertices. It is done using Markov 

predictor directly. 

Step 3. Infer the level of confidence of situation: 

P(Si) = P(D1U D2U D3U…U Dk) 
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Where P(Si) – predicted level of confidence in situation Si, and sign U is a operator for 

uniting situations. Uniting situations can be done by the means of situation algebra 

provided by [Pa06]. P(Si) is the demanded result. However, these 3 steps should be done on 

every case of prediction and therefore they will introduce some run-time overhead. 

So, Markov models seem to be feasible way of context prediction for context spaces 

theory. However, to make it applicable for context spaces some pre-processing is needed. 

Some computation overhead in the run-time will be introduced as well to transition from 

new situation spaces to old ones. 

Bayesian networks for context prediction. Bayesian network approach for context 

prediction was considered in the paper [PP05]. That research addressed the problem of 

predicting next room person is likely to visit. Context was represented as dynamic Bayesian 

network, where current room depended on several rooms visited previously and duration of 

staying in current room depended on current room itself, time of the day and week day. In 

[PP05] dynamic Bayesian network learned from the history of indoor movements. One 

more case of context prediction using Bayesian networks was described in [KL02]. There 

authors addressed active device resolution problem. The paper [KL02] was already 

discussed in previous section. 

Context within context spaces theory can actually be represented by dynamic Bayesian 

network. In a simplest form it can allow to establish correlations between situations in time 

(and situations do not have to be mutually exclusive in this case). Dynamic Bayesian 

networks can also help if there are any additional suggestions about factors that influence 

the context but are not included directly in the application space. 

Branch prediction for context prediction. Paper [PB03] considered applying branch 

prediction algorithms for context prediction in pervasive computing systems. Branch 

prediction algorithms are used in microprocessors to predict the future flow of the program 

after branch instruction. In [PB03] the authors consider another example: branch prediction 

is used to predict moving of the person around the house or office. 

Branch prediction algorithms can be applied to context spaces theory as well. Once 

again, context should be represented in terms of situations, and the situations should be 

represented as a graph. One option is to use mutually exclusive situation decomposition that 

was presented for Markov model predictors. Then we can predict moving through the graph 

over time using branch prediction techniques. Another option is to use the same approach 

like we took to apply sequence predictors: when situation happens or wears off, special 

symbol is added to the sequence. Branch predictors can be used to predict next symbol 

there. 

Summary. The features of different approaches to context spaces theory can be 

summarized in following way (see table 1). 

Common challenges and future work directions. As it was shown all context 

prediction methods have to overcome some specific challenges to be applied to context 

spaces theory. But there is one common challenge, which was not yet addressed: all the 

defined context prediction methods deal with a discrete set of possible events or situations. 

So to apply the prediction methods context should be represented as a set of situations. But 

the flow of any prediction algorithm depends on how we define situation spaces within 

application space. Different situation spaces will result in different algorithm flows, even if 

application space is generally the same. This effect might be vital. So the question arises: 

what is the best way to define situations inside context space for prediction purposes? 

Results can depend on exact prediction algorithm or exact application. Situations should be 

both meaningful for the user and good for prediction. This question needs further research. 
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Table 1. Context prediction approaches summary 

Approach Benefits and shortcomings Summary 

Sequence 

predictors 

Good results are proven in practice. Low 

adaptation efforts are needed. 

This approach  

is the most 

perspective . 

Neural 

networks 

Large variety of options to choose and low 

adaptation efforts needed. However, additional 

thorough testing is needed by every application to 

determine what exact neural network type is the 

most feasible. 

The approach is 

quite 

perspective. 

Markov 

chains 

They can be applied. However, this approach 

requires splitting the application space in a set of 

non-overlapping situations, which is not natural 

for context spaces theory and requires significant 

pre-processing 

The efficiency 

of this approach 

is questionable. 

Bayesian 

networks 

Approach is able to estimate the influence of 

different factors, not depending on whether they 

are in the context or not yet. Low adaptation 

efforts are needed.  

The approach is 

very 

perspective. 

Branch 

predictors 

The algorithms are simple. However, prediction 

results are influenced only by small part of the 

history and the algorithms are capable of working 

with simple patterns only. 

In general case 

that approach is 

not perspective. 

5 Testbed for Context Prediction Methods 

For validating context prediction methods proposed above we introduce “Moonprobe” 

model and application scenario. “Moonprobe” is a model that simulates vehicle going over 

some sophisticated landscape in 2D environment. The aim of the vehicle is to reach some 

destination and not to crash or run out of fuel on its way. This model was developed using 

XJ Technologies  AnyLogic modeling tool [A12]. 

The “Moonprobe” model deals with the problems that every pervasive system deals 

with, inclufding sensor uncertainty, sensor outages, determining environment 

characteristics, fusing heterogeneous sensor data. Also the moonprobe has a set of specific 

situations to be aware of. These are not just sensor outage situations, but also current 

progress of going to the destination point and safety conditions. By now the moonprobe 

uses around 20 context parameters to reason about the situations. 

In a very simplified manner the model can be described by the following set of 

equations (see formula (1)). 
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Where t is time, X is probe coordinate, V is probe velocity, M is mass of the probe 

(known system parameter), N is support reaction (directed perpendicular to the ground), Fl 

– fuel level remained, g – gravity, FCR – fuel consumption rate (known system parameter), 

Fen – engine force vector (value and direction set by probe). 

In some cases probe can leave the ground. When probe lands, it will experience ground 

collision. Ground collisions are dangerous for the probe. Engines can be used to slow down 

the landing and avoid the crash. 

The architecture of the model is following (see Fig. 3). System consists of several 

components. 

1. “Environment and probe” component. It implements the physical model of the 

system. Also it monitors what happens to the probe (e.g. crash, sensor outage). 

1. “Sensors” component.  Sensors measure the data from the probe in certain moments 

of time and introduce some errors.  

2. “Controlling engine” component. It takes sensed data and provides control 

information (e.g. desired engine power). 

3. “Main” component provides overall assessment of experimental results. 

All the context prediction methods described in section 4 can be applied to moonprobe 

scenario. They can be incorporated in “Controlling engine” component and then be used to 

find optimal values of engine power to minimize crash risk and reduce fuel consumption. 

The development of the “Moonprobe” testbed is now complete. Screen dump of running 

“Moonprobe” is depicted on Fig 4. 

Model evaluation has shown that the “Moonprobe” model is really capable of estimating 

prediction results and that context prediction and context awareness algorithms are really 

pluggable into it. Exact measurements of the result of different context prediction methods 

are in progress. 

Fig. 3. “Moonprobe” system architecture 
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6 Conclusion and Future Work 

Context spaces theory is a promising approach, which addresses many problems of context 

awareness in pervasive computing. Adding accurate and reliable context prediction 

methods is one of the research challenges of that theory. 

In this paper a set of available context prediction techniques was proposed. Two-way 

mapping algorithms were developed to apply these context prediction methods to context 

spaces theory. Efficiency of context prediction methods was addressed. A special testbed 

was developed to evaluate the effectiveness of context prediction methods. Feasibility of 

the proposed testbed has been also proven. 

As a result, context spaces theory was enhanced with context prediction algorithms and 

their applicability and feasibility were demonstrated. By extending context spaces theory 

with context prediction techniques it can address not only problems of uncertain sensors or 

situation reasoning, but context prediction problem as well. It will benefit ECORA-based 

applications and widen the applicability of ECORA to new class of tasks – the tasks which 

require prediction capability. The proposed approach incorporates pluggable algorithms of 

context prediction, so for every application it can be defined what exact context prediction 

approach is the best. 
Future work will concentrate on accuracy metrics and analytical comparison of the 

efficiency of context prediction methods. Another interesting challenge for future work is 
how to define the situation spaces in a manner that both grants usability and enhances 
context prediction. 

  

Fig. 4. "Moonprobe" system working 
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Foreword 

Chapters VIII and IX mainly addressed the first part of the research question 3 – how to predict future 

situations? Those chapters proposed the techniques for situation prediction by combining various 

predictive models with situation awareness approach of context spaces theory. However, situation 

prediction should be complemented by properly acting according to prediction results. 

As chapter VIII concluded, most current context prediction and situation prediction approaches 

consider context prediction and proactive adaptation tasks as sequential. This approach does not work 

if prediction results can be influenced by pervasive system actions. Chapter X conlcudes addressing 

the research question 3 and answers the second part of the research question 3 of how to properly act 

according to predicted context. This chapter continues the research started in chapter IX and addresses 

the challenge identified in chapter VIII. The proposed CALCHAS application is integrated as an 

extension of ECSTRA framework. 
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Extending Context Spaces Theory by Proactive 

Adaptation
11

 

Abstract.  Context awareness is one of the core features of pervasive computing 

systems. Pervasive systems can also be improved by smart application of context 

prediction. This paper addresses subsequent challenge of how to act according to 

predicted context in order to strengthen the system. Novel reinforcement learning 

based architecture is proposed to overcome the drawbacks of existing approaches to 

proactive adaptation. Context spaces theory is used as an example of how existing 

context awareness systems can be enhanced to achieve proactive adaptation. This 

recently developed theory addresses problems related to sensors uncertainty and high-

level situation reasoning and it can be enhanced to achieve efficient proactive 

adaptation as well. Possible reinforcement learning solutions for pervasive computing 

area are elaborated. 

Keywords: context awareness, context prediction, context spaces theory, pervasive 

computing, reinforcement learning, proactive adaptation, act-ahead adaptation. 

1  Introduction 

Pervasive computing is a paradigm where computing systems are integrated into the 

everyday life in a non-intrusive, graceful and transparent manner. Some implementations of 

pervasive computing paradigm include smart homes, elderly care systems, smart mobile 

devices, GPS navigators, RFID tracking systems, social networks. 

Context awareness is one of the basic features of pervasive computing. Context 

prediction is also recognized as a challenge and an opportunity. However, for context 

prediction and especially for acting on predicted context there is a definite lack of universal 

approach to the problem. 

This paper proposes and motivates the approach for contextual act-ahead adaptation – 

proactive adaptation to predicted context. The strengths and challenges of proposed 

approach are discussed. 

The article is structured as follows. Section 2 describes related work and current 

challenges of proactive adaptation to predicted context. Section 3 further elaborates 

identified challenges and proposes and explains the solution approach. Section 4 describes 

the essentials of context spaces theory and introduce ECORA framework. Sections 5 and 6 

discuss the integration of proposed approach into context spaces theory and introduce 

CALCHAS – Context Aware aCt aHead Adaptation System. Section 7 discusses the 

plausible reinforcement learning methods and their application to the context model. 

Section 8 makes a summary, provides future research plans and concludes the paper. 

                                                           
11

 The publications [BZ10b] and [Bo10] were merged to create this chapter. References and 

formulas were renumbered accordingly. Sections 1-6 correspond to sections 1-6 of the 

publication [BZ10b], while the section 7 corresponds to section 7 of the publication [Bo10]. 
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2  Context Prediction and Acting on Predicted Context 

Most of context prediction approaches use machine learning techniques. Predictive models 

that were applied to context prediction task include sequence predictors [DC02], neural 

networks [TW08], Bayesian networks [PP05], branch predictors [PB03], decision tree 

learning [HS09], time series prediction [SH07], Markov models [GV06], trajectory 

extrapolation [AM05]. 

Some authors actually do recognize acting on predicted context as a specific problem 

[CA09][CD07], but still there is not much research done for the challenge of proactive 

adaptation. Generally most of the ways to act on predicted context can be classified in two 

groups. 

1. Rule-based engines. For every particular prediction result there is a rule that defines 

an action. Improving behavior of the system is achieved by improving efficiency of context 

prediction. 

2. Learning by example. That approach was applied mostly in smart home 

environments. Pervasive computing system tracks user actions and then it starts executing 

the actions for the user. 

On the basis of studying and analyzing existing approaches, summary representation can 

look like expression set (1). 

state(t)=SenseAndProcessData(t) 

prediction(t)=PredictionModel(state(t),history(t),prediction(t-1 ) 

history(t+1)=addToHistory(state(t),history(t) ) 

action(t)=actOnPrediction(state(t),prediction(t),history(t)) . 

(1) 

Where state(t) is entire context state at the time t, including the results of sensor data 

acquisition, validation and processing. Entire aggregated history up to time t, but not 

including time t, is stored in history(t). Prediction results at time t for time t+1 and maybe 

subsequent steps are referred to as prediction(t). Usually they depend on the current state 

and on the dependencies learned from history. Sometimes previous prediction results can 

influence them as well, if time horizons of prediction attempts do overlap. System is acting 

on predicted context, so action at time t action(t) depends on prediction results and current 

state. In case learning by example is implemented, action also has some learning 

mechanisms and therefore depends on history. 

The model presented in (1) has a very serious drawback – it cannot handle mutual 

dependency between system actions and prediction results. Those drawbacks and solution 

opportunities will be addressed in section 3. 

Notable exceptions that do not fall in that model are the applications of Markov decision 

processes and Q-learning based approaches to context prediction [FL07][Mo04][ZM08]. 

They will be mentioned further in section 3 when discussing reinforcement learning 

solutions. 

3  Proactive Adaptation as Reinforcement Learning Task 

Sometimes the system has to provide results of context prediction in quite specific 

conditions. Here are some motivating use cases. Consider elderly care system. Users need 

some assistance in accomplishing everyday tasks. System is able to give an advice, call a 
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caregiver or just do nothing if the user is performing quite well. The task is to predict the 

probability of successful outcome of the activity and to act to maximize that probability, but 

not at the cost of wasting the time of the caregiver or annoying the user with unnecessary 

advices. Use case is partially based on [HB07]. 

Another motivating use case can be a smart home, where user satisfaction can be 

estimated according to both direct questioning and the number of user manual interventions 

into a configuration of home parameters. The task is to predict user’s cumulative 

satisfaction and act to increase it. Also the system should do its best to behave in non-

intrusive manner and not to annoy the user with too many questions. 

One more example might be prediction and prevention of memory shortage in pervasive 

system. If memory shortage was predicted with the certainty above the threshold, the 

system takes actions to avoid memory shortage condition (e.g. searches for additional 

resources to share the work). But if those preventive actions are successful, the predictor 

would have learning problem. Formally if there was no memory shortage, it is a prediction 

failure. In reality most likely it is not, but we cannot claim it for sure. Actually, when the 

system starts decision making, predictor becomes unable to learn properly - predictor 

cannot distinguish between prediction failure and successful prevention. 

For all those cases, neither rule-based system, nor learning by example can solve the 

problem completely. The solution for this and many similar use cases is to take decision 

making process into account while making predictions. 

The dependencies for those use cases can be described like the expressions (2). 

state(t)=SenseAndProcessData(t)  

prediction(t)=PredictionModel(state(t),history(t),prediction(t-1),       

action(t)) 

history(t+1)=addToHistory(state(t),history(t) ) 

action(t)=actOnPrediction(state(t),prediction(t),history(t)) . 

(2) 

The meaning of state(t), history(t), action(t) and other elements in (2) is the same as in 

expressions (1). The difference between (2) and (1) is marked in bold. The additional 

dependency makes most current proactive adaptations methods inapplicable. System acts 

on predicted context, but in turn predicted context depends on system actions. Most of the 

context prediction approaches we mentioned previously use predictive models, which do 

not take into account the mutual dependency between system actions and prediction results. 

Usually this problem is avoided by completely splitting the context in two independent 

parts: the one that is affected by actions and the one that is predicted. For example, if the 

system intends to proactively open the door before the user comes into the room, the choice 

whether the system opens the door or leaves it closed will not change user intentions and, 

therefore, prediction results. 

Learning by example is also the way to avoid mutual dependency problem, but this 

approach has very limited applicability: it works only if possible user actions and system 

actions significantly overlap and only with the assumption that imitating user actions grants 

acceptable effectiveness of the system. 

We propose an enhanced method to solve mutual dependency problem between actions 

and predictions. That problem can actually be viewed as reinforcement learning task. 

Reinforcement learning problem is a problem faced by an agent that should find an 

acceptable behavior in a dynamic environment and learn from its trial and errors [KL96]. 

Reinforcement learning in application to pervasive computing task is almost not researched. 

Notable exceptions are Markov decision processes and Q-learning approaches 

[FL07][Mo04][ZM08]. However, as it will be discussed further in this section, Markov 
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decision processes have very limited applicability due to the features of pervasive 

computing systems. Recent advancements in reinforcement learning include the 

approaches, which to the best of our knowledge were not applied to pervasive computing at 

all, including predictive state representation [WJ08], most cases of neural network control 

[HD99], different applicable cases of actor-critic model (like [HW07]), self-organizing 

maps and Q-learning integration [S02] and many more. 

To the best of our knowledge, there was no attempt to address particular features of 

reinforcement learning in pervasive computing area. Those features are: 

1. Continuous action spaces. Actuators sometimes provide the choice from practically 

continuous range of values. 

2. Continuous state spaces. Many kinds of sensors produce values from practically 

continuous range as well. However, this problem can be resolved by the means of 

situation awareness. 

3. Mobility of nodes. Mobility of nodes in pervasive computing system can cause the loss 

of connection to certain sensors and actuators. Or, on the contrary, new connections to 

different sensors and actuators can be established. 

4. High dimensionality. The count of sensors and actuators in pervasive computing system 

can be very high. 

5. High heterogeneity of data. Discrete-valued, continuous-valued or event-based sensors 

and actuators can appear in any combination. 

6. Ability to incorporate prior knowledge. Sometimes common sense or expert estimations 

can give some sketches of good acting strategies. Ability to incorporate them can 

significantly reduce learning time. 

7. Explicit prediction result can also provide some insight into the problem. 

8. Limited exploration capabilities. Pervasive system cannot just do a random thing to see 

what happens. 

9. Limited time for decision making. 

10. Goals of the user can change instantly. 

The features mentioned above seriously limit the scope of reinforcement learning 

solutions that we can try. In particular, those features mean that Markov decision process – 

the dominating model for reinforcement learning – can be used only in limited set of special 

cases. The main reason here is MDPs’ discrete state and action spaces, which might be not 

suitable for pervasive computing solutions. 

In sections 4-7 we will discuss in more details, how we can address pervasive computing 

challenges presented in the list above. 

4 Context Spaces Theory – Main Concepts 

Some features of proactive adaptation in pervasive computing can be addressed by 

improving context spaces theory. The theory of context spaces [PL04] is a recently 

developed approach for context awareness and reasoning which addresses the problems of 

sensors uncertainty and unreliability. It also deals with situation reasoning and the problems 

of context representation in a structured and meaningful manner.  

Context spaces theory is designed to enable context awareness in clear and insightful 

way. This theory uses spatial metaphors for representing context as a multidimensional 
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space. To understand context spaces theory we need to introduce several new terms. Any 

kind of data that is used to reason about context is called context attribute. Context attribute 

usually corresponds to a domain of values of interest, which are either measured by sensors 

directly or calculated from other context attributes. It can be either numerical value or a 

value from pre-defined set of non-numerical options. 

Context state represents the set of all relevant context attributes at a certain time. A set of 

all possible context states constitutes application space. Therefore, application space can be 

viewed as a multi-dimensional space where the number of dimensions is equal to the 

number of context attributes in the context state. The state of the system is represented by a 

point in the application space and the behavior of the system is represented by a trajectory 

moving through the application space over time. 

Situation space is meant to represent real life situation. It can be defined as subspace of 

the application space. So if context state is in the subspace representing situation S, it 

means that situation S is occurring. Situation S has the level of occurrence certainty. It 

depends on the probability of the context state to be within S and it also depends on the 

subspace within S. See Figure 1 of chapter IX for simple illustration. 

In context spaces theory several methods were developed for reasoning about the 

context. Bayesian reasoning [RN06] or Dempster-Shafer algorithm [Sh76] are used to get 

overall confidence in the fact that a situation is occurring. Algebraic operations on 

situations and some logic-based methods were developed for reasoning in terms of 

situations [PL04]. 

Some solutions were developed to integrate various context prediction methods into the 

theory of context spaces [BZ09]. However, those prediction methods are based on pure 

forecasting and do not take into account decision making aspects. 

Context spaces theory was implemented in ECORA [PL08b] – Extensible Context 

Oriented Reasoning Architecture. ECORA is a framework for development of context-

aware applications. That framework provides its functionality as a set of Java classes to be 

integrated into the prototypes of context-aware systems. 

The presented research introduces proactive adaptation methods that can be used to 

extend the context spaces theory and enhance ECORA-based applications. 

5 Integrating Proactive Adaptation into Context Spaces 

Theory 

Context spaces theory has all the necessary capabilities to ensure context awareness. 

However, when it comes to proactive adaptation, some enhancements have to be made. At 

first, the actuators need to be introduced into the model. Actually, those actuators can 

constitute a separate space in the manner much like the context space itself.  That actuator 

space can be treated as action space for reinforcement learning. Considering different 

meaning of sensors and actuators, it seems that the better solution is to separate the spaces 

for sensors and actuators. Situation spaces in the space of actuators are not likely to have 

any value (or, in case a set of discrete actions can be elicited, those situations will just look 

like points, not spaces). 

In case of the lost connection to actuator, the corresponding axis is removed. Most 

likely, it will take some time for the system to learn how to act in new conditions, but 

previously learnt data can provide a good starting point and reduce adaptation time. Similar 
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refers to introducing new actuators – combining old data with exploration can provide 

adaptation to new capabilities. 

Another question is how to define reinforcement learning state space for context spaces 

theory. Having discrete state space is likely to make the task simpler. One solution is to 

take situations as states for reinforcement learning and trigger the state if the certainty of 

situation occurring is above some threshold. To fit the Markov property (that is essential for 

different kinds of Markov decision processes), situation decomposition algorithm presented 

in [BZ09] can be used. That kind of situation decomposition approach can also help to 

overcome node mobility problem from sensor point of view: if the sensor loses the link or if 

new sensor is introduced, situation properties are recalculated (see [PL04] for the details), 

but it is transparent for the upper layer, including the proactive adaptation. 

Also taking context space as state space for reinforcement learning is an option. One 

more option is to take the degrees of certainty in different situations as continuous state 

space. 

To summarize, context spaces theory can be enhanced to incorporate proactive 

adaptation solutions. Those context spaces theory enhancements can deal with one of the 

main features of pervasive computing – the mobility of sensors and actuators – using 

geometrical metaphors and situation awareness. Addressing other features of proactive 

adaptation depends mostly on exact reinforcement learning method and the architecture of 

proactive adaptation solutions of upper layers. 

 6 CALCHAS Prototype 

The proposed approach can be implemented by creating a general-purpose middleware 

for context prediction and proactive adaptation based on context spaces theory. CALCHAS 

(Context Aware Long-term aCt aHead Adaptation System) prototype is now under 

development. Integrated with ECORA, it will allow achieving efficient proactive adaptation 

for context spaces theory. 

The architecture was designed to address all the features of pervasive computing area 

that were mentioned in section 3. 

That middleware solution should incorporate a library of different context prediction and 

proactive adaptation methods. Middleware development is in progress and the prototype is 

being implemented. 

We propose the following architecture for CALCHAS (see Figure 1). 

The architectural blocks have following purpose. Run-time goal and efficiency engine 

translates user input into exact goals for pervasive system in terms of context and timing. 

Sensor fusion and low-level validation block provides preliminary low-level processing of 

context data. Retraining database provides bulk of recent low-level data on request, in case 

there is a need to retrain the model (e.g. due to goal change) or provide faster model start. 

Feedback is implicit – every actuator action will affect future state of the system, which 

will in turn be tracked by sensors. Adaptation and prediction engine is responsible for 

inferring adaptation sequences – sequences of actions for the actuator to do. Also it is 

responsible for providing explicit prediction results. Adaptation engine has the following 

structure (see Figure 2). 
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Fig. 1. CALCHAS general architecture. 

 
Fig. 2. CALCHAS adaptation engine. 

All the translation blocks are used to translate between the format of internal model (e.g. 

states of Markov decision process, its reward functions) and the format of the outer system 

(e.g. vectors of values of sensor data and exact commands for actuators). The adaptation 

core is responsible for generating the actions according to the model and learning engine is 

responsible to adapt the model to new data. 

All translation blocks are heavily dependent on specific task, but for most of other 

blocks general purpose solutions can be developed. Supplied with a comprehensive library 

of reinforcement learning methods, the system can facilitate the development of pervasive 

computing applications, which will be aware of current and predicted context and which 

will be capable of smart proactive adaptation to predicted context. 
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7  Reinforcement Learning Solutions12 

Now we can estimate what kind of reinforcement learning solutions can be plugged into 

CALCHAS. Features of pervasive computing, identified in section 3, should be also taken 

into account. 

To discuss reinforcement learning approaches we’ll need to introduce some definitions. 

Refer to [SB98] for general reinforcement learning overview. 

Reinforcement learning problem is the problem of an agent that acts in unknown 

environment. It can execute the actions and receive the observations (e.g. new state, 

immediate reward or cost). The majority of reinforcement learning solutions were designed 

for the case when the environment can be modeled by Markov decision process (MDP). A 

particular finite MDP is defined by its set of states S, action set A, one-step dynamics of the 

environment P(St+1 | St, a) and cost/reward function R(s) (sometimes – R(s,a) or even 

R(st,a,st+1)). From here and now we consider that the time in the model is discrete. 

The method to choose the actions depending on a state is usually referred to as a policy. 

The policy might as well be stochastic. Usually it is considered that the optimal policy is 

the policy that maximizes expected discounted sum of rewards. The state value function of 

the state Vπ(s) is the expectation of future sum of rewards, if in state s we follow policy π. 

In turn, V(s) is value function of an optimal policy. Action-value function Qπ(s,a) of the 

state s and action a means the expected future reward of taking action a in state s and 

following policy π afterwards. Action-value function Q(s,a) of the state s and action a 

means the system takes action a in a state s and follows optimal policy π after. If action-

value function is known, the optimal action for state s will be argmaxa(Q(s,a)). However, in 

practice Q-function is usually unknown, and the strategies are more complicated. 

In contrast to the model defined above, in pervasive computing the sensors and actuators 

usually have practically continuous range of available values and discretization is not 

always possible. So, continuous ranges of state and actions fit the features of pervasive 

computing area in a better way. All the concepts defined above can be generalized for 

continuous range of state and actions in a straightforward manner. However, it introduces a 

set of new challenges. 

Here we present some attempts of generalization of reinforcement learning solutions to 

continuous space. Now most of them are under development in CALCHAS system. 

7.1  Q-learning in Continuous Space 
Q-learning approach is relatively simple, yet very effective way to learn action-value 

function from interacting with the environment. Initially Q(s,a) can have any values. On 

subsequent steps the agent updates Q-function in a following way (formula (3)) 

 

Q (st,at) <– (1- α)*Q(st,at) + α*(R + γ*max Qt(st+1,a t+1))       (3)
13

 

 

Where γ is discount factor and α – learning rate. See [S02] for more detailed description 

of the method. 

                                                           
12

 Comparing to the publication [Bo10], numbering of formulas was introduced to this 

section. The text was amended accordingly. 

13
 Original publication [Bo10] contained a typo in the corresponding formula. For clarity, in 

this chapter the formula is corrected. 
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In continuous state and action space action-value function is usually approximated. The 

most serious problem for continuous Q-learning generalization is the choice of actions to 

take. When the set of available actions is finite, searching for the action with largest Q-

value can be straightforward. However, when the actions can be chosen from continuous 

range, exhaustive search does not work. There were some attempts to avoid that problem 

and generalize Q-learning approach to continuous state and/or action spaces. For example, 

those are: 

1. Wire fitting approach. The approach learns the state-action function Q(s,a) in a 

format that allows finding the maximum easily.  In brief, this method learns a set of 

functions Ai(s) and Yi(s), that are referred to as control wires. Action-value function Q(s,a) 

is approximated in such a way that for every state the maximum of function Q(s,a) is the 

highest value of a wire function: maxi(Yi(s)) and corresponding Ai(s) contains the action 

which leads to Q(s,a)=Yi(s). The detailed description of the method can be found in 

[BC93]. 

2. Q-AHC. That method which combines Q-learning with actor-critic learning. Q-

learning is used to choose between a set of actor-critic learners. However, the work 

[GW99] claims that this method did not show good results and tended to set the actions to 

constant settings or use only one actor-critic model. See [GW99] for more details about the 

method. 

3. CMAC integration. Being applied to reinforcement learning, CMAC (Cerebellar 

Module Articulation Controller) approach divides the entire state and action space into cells 

by a set of overlapping grids (tilings). Each cell has an associated weight. As the tilings 

overlap, every point (s,a) in the combined state and action space corresponds to several 

cells at once. If the system is in state (s,a), those corresponding cells are counted as 

triggered. Action-value function is approximated by a sum of weights for all triggered cells. 

On every step the weights of tiles are adjusted according to state, actions and received 

rewards. See [SS98] for more details on the method. The major drawback for CMAC 

integration method is that there is no efficient way for action selection in continuous action 

space. 

4. Memory-based Function Approximators. In this method algorithm stores the 

database of experiences. Every experience record contains state, action and estimated Q-

value. For every state and action the expected Q-value is approximated as a weighted 

average of Q-values in proximity. Further details might vary. See [SS98] for the details 

about the method. 

5. Q-learning and neural networks. There is a large variety of methods that 

combine neural network approaches and Q-learning to achieve the generalization to 

continuous state space and, sometimes, to continuous action space. For example, in [To97] 

author suggested a method for integration of Q-learning and Kohonen’s self-organizing 

maps (SOM). Another kind of SOM and Q-learning integration was suggested in [S02]. In 

[GW99] authors provided an overview of neural field Q-learning and Q-radial basis 

approach. See [Ha99][Ha09] for more details on neural network theory. 

To summarize, there is a number of methods that can generalize Q-learning approach for 

continuous set of states and actions, but there are much less methods that can provide 

efficient action choice for continuous action space. 

7.2  Actor-Critic Approach in Continuous Space 
Actor-critic method is reinforcement learning method that separates explicit 

representation of the policy and the representation of the value function. Actor is the policy 
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representation structure – it is used to select actions. The estimated value function is usually 

referred to as the critic, because it evaluates (“criticizes”) the actions provided by the actor. 

Detailed description of the approach can be found in [SB98]. 

In more details, on every step critic estimates the difference between expected state 

value and obtained one (formula (4)). 

δ(t) = rt+1 + γ * V(st+1) - V(st)                       (4) 

In formula (4) δ(t) is error estimation, rt+1 is obtained immediate reward, γ  is discount 

factor and V(s) is estimated state-value function. Critic also updates the state value function 

in a following manner (formula (5)). In formula (5) α stands for learning rate. 

V(st) = V(st) + α * δ(t)                    (5) 

Actor, in turn, uses the information provided by critic to improve the policy (expression 

(6)). In formula (6) β is a step-size parameter and p(s,a) is an intermediate function that is 

used to calculate exact policy. 

p(st,at) <– p(st,at) + β* δ(t)                  (6) 

The policy is calculated according to formula (7). 

πt(s,a) = exp(p(s,a)) / Σb exp(p(s,b))                 (7) 

In formula (7) πt(s,a) is a probability of choosing action a in state s. See [SB98] for more 

details on actor-critic approach. 

So, actor-critic model learns the policy at once and does not work with explicit Q-

functions. Therefore there is no need to search for Q-function maximum to choose the 

actions. That makes actor-critic approach a good candidate to be generalized for continuous 

action spaces. Here are some examples of how it can be done. 

In the work [HW07] author suggested to work with any kind of parametrized function 

approximators to generalize to continuous state space. Consider that the state value function 

is generalized by the function approximator, that is parametrized by the vector Θ
V
. In that 

case an update can be expressed by following formula (expression (8)). 

Θ
V

t+1(i) = Θ
V

 t+1(i) + α * δ(t) * d(Vt(st))/ d(Θ
V

 t(i))                (8) 

In formula (8) the term i stands for the number of component. So the value function is 

adjusted along the gradient proportionally to the error. 

The work [HW07] provides some overview of policy update techniques. For example, in 

CACLA (Continuous Actor-Critic Learning Automation) algorithm updates the policy in a 

following manner. Consider that the actions are chosen according to the function Ac(s), and 

that function was approximated by the function approximator, which in turn was 

parametrized by the vector Θ
AC

. It can be formalized in expression (9). 

If δ(t)>0: Θ
Ac

t+1(i) = Θ
Ac

 t+1(i) + 

α * (at – Act(st)) * d(Act(st))/ d(Θ
Ac

 t(i))               (9) 

So, update depend only on the sign of δ(t), not on the value itself. Probability is updated 

only if the chosen action lead to the improvement of value function (better expected 

reward). The probabilities of choosing other actions in that state scaled down accordingly. 

According to [HW07], positive updates will make the approximator move towards better 

action, negative updates will result in moving away from worse actions, and the 

consequences of such drift are unknown. That’s why negative updates are not used and just 

ignored. 
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Some further enhancements of those approaches include using the variance to see 

whether the action was exceptionally good or exceptionally bad and adjust accordingly. 

To summarize, for actor-critic approach some improvements were developed, that allow 

it to be used in pervasive computing area. 

8   Conclusion and Future Work 

In this work we addressed the task of proactive adaptation to predicted context and 

proposed reinforcement learning based architecture, which will allow pervasive computing 

systems to address more complicated use cases. 

The features of proactive adaptation task in pervasive computing systems were 

identified. The architecture of proactive adaptation solution – CALCHAS system – was 

developed to address them. 

Context spaces theory was used as particular example of integration between context 

awareness system and proactive adaptation solution. The reinforcement learning algorithms 

capable of being applied to pervasive computing area were addressed. 

Our future plans are to implement the entire middleware with a comprehensive library of 

available reinforcement learning approaches. Also the plan is to extend reinforcement 

learning solutions methods to suit the core challenges pervasive computing area. 
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Conclusion 

1 Thesis Summary and Discussion 

This thesis proposes multiple contributions to the area of context awareness and situation 

awareness. Section 1 summarizes and discusses in details the contribution of the thesis. 

This summarizes the research questions and the answers, proposed and evaluated in the 

thesis. 

The research questions, which became the main focus of this thesis, can be answered as 

follows. 

Question 1: How to derive a mapping between context information and ongoing 

situations? 

In general, the mappings between context and situations can be derived in three ways: it 

can be defined by expert, learned from labeled data or learned from unlabeled data. Chapter 

I proposes a suitable classification of mapping techniques and provides the necessary 

background information. Different ways of deriving the mapping have their distinct 

challenges, and the thesis proposes multiple ways to solve those challenges. The thesis 

proposes solutions to those challenges in chapters III-V. Chapter III addresses the 

challenges of applying expert knowledge to derive the mapping between context and 

situations. Chapter IV and V address relatively unexplored area of deriving the mapping 

from unlabeled data. 

The major challenges of defining the situations manually are: 

- Clarity. Human expert should be able to define the mapping between situation and 

context information. 

- Flexibility. Modeling technique should be able to represent a wide range of real-life 

situations. 

- Reasoning complexity. Pervasive system should be able to detect those sitautions in 

real time. 

Chapter III [BZ11b] proposes and evaluates orthotope-based situation spaces - a set of 

clear and flexible situation models, which can be defined by human expert and later 

automatically tested. This thesis proposes orthotope-based situation representations, 

analyzes their flexibility aspects and evaluates reasoning complexity. 

The main challenge of learning the situations from unlabeled data is detecting a situation 

– pervasive system should understand that some situation of interest occurs. Another major 

challenge is labeling a situation – pervasive system needs to give meaningful name to 

newly detected situation in order to present it to the user or to any program that uses 

situation awareness results. 

Chapters IV [BZ12b] and V [KB12] address challenges of learning the situations from 

unlabeled data. Chapter IV uses a location awareness scenario as an example of the 

approach. The chapter proposes and justifies density-based clustering to infer locations of 
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interest out of fused location information. Also chapter IV proposes a mechanism to label 

the newly acquired situation in a meaningful manner. The proposed labeling technique is 

based on analysis of locations (retrieving nearby places of interest from Google Places API 

[GP12]) and analysis of time that the user spends at the place. 

Chapter V [KB12] aims to learn locations and activities out of unlabeled data. Chapter 

IV and chapter V both use density-based clustering to infer the locations of interest. 

However, the other aspects of the approach are not similar. Activities in the article [KB12] 

are inferred by analyzing consecutive time spent at a place. In contrast with chapter IV, 

chapter V allows manual labeling of the learned situations. Sometimes manual labeling 

breaks non-obtrusiveness principle of pervasive computing, but in the lifelogging scenarios 

like the one addressed in chapter V manual labeling is a viable solution. Among other 

challenges, chapter V addresses the challenge of describing newly acquired situation to the 

user. In order to manually label the newly learned situation, user needs to understand 

precisely what situation was learned. Chapter V solves this problem by meaningfully 

specifying a location and by using the pictures of an activity. 

The proposed situation awareness solutions are implemented as part of ECSTRA 

(Enhanced Context Spaces Theory-based Reasoning Architecture). ECSTRA is a general 

purpose context awareness and situation awareness framework, which was developed as 

part of PhD project. The architecture and basic functionality of ECSTRA framework is 

described in details in chapter II. 

Once the mapping between context and situations is defined, the subsequent challenge is 

to prove that the derived mapping is correct. If any error is introduced into situation 

definition at the design time, it can lead to inadequate situation awareness at the runtime 

and, as a result, to improper adaptation actions. The challenge of ensuring correctness 

constitutes the research question 2. 

Question 2: How to prove, that the derived mapping between context features and 

situation is correct? 

The thesis answers this research question by proposing, proving and evaluating novel 

technique of detecting modeling errors – verification of situation models. Verification of 

situations was inspired by the verification of protocols [CG99], and like verification of 

protocols it is based on formally specifying expected property and either rigorously proving 

that definitions comply with the property, or algorithmically generating counterexamples – 

particular features of context that will lead to situation awareness inconsistency. 

The detailed answer to the research question 2 is provided in chapters VI and VII. 

Chapter VI proposed the principle of verification, introduced basic concepts and proposed, 

implemented and evaluated verification algorithm for the context spaces approach 

[PL08a][PL08b]. Also chapter VI provides the background for chapter VII. Chapter VII 

[BZ12c] proposes, proves and evaluates a novel verification techinue for fuzzy situation 

models. Chapter VI and chapter VII propose similar first step of solving the problem – 

represent the property under verification as an emptiness check of situation algebra 

expression. However, the mentioned emptiness check requires different algorithms for the 

situation spaces of context spaces approach and for fuzzy situations. Practically, algorithms 

proposed in chapter VI and chapter VII serve somewhat similar purpose, but have nothing 

in common due to the differences in the task definition. 

Verification of situation models is implemented as part of ECSTRA framework. 

ECSTRA-based implementation was used for practical evaluation of the proposed solution. 

After the situation models are defined and verified, the subsequent question is how to 

predict future sitautions and how to properly act according to prediction results. This 

challenge constitutes the research question 3. 
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Question 3: How to predict future situation and how to act according to prediction 

results? 

This thesis applies and implements a number of machine learning based solutions to 

situation prediction problem. Chapter IX [BZ09] proposes a number of methods to combine 

spatial representation of context (and related situation awareness techniques) with situation 

prediction methods. Situation prediction techniques are applied in combination with 

situation awareness using context spaces approach, which became a framework for 

answering the research questions 1 and 2. 

Additionally this thesis identifies and addresses a challenge of properly acting according 

to predicted results. The algorithms for predicting the situations and for choosing the 

actions according to prediction results are usually applied sequentially, which is not 

applicable if adaptation actions influence prediction results. In chapter X and XI this thesis 

proposes general solution to the problem – combining context prediction and proactive 

adaptation into a single reinforcement learning task. Also this thesis introduces a set of 

possible reinforcement learning techniques that can be applied. In addition this thesis 

proposes CALCHAS (Context Aware Long-term aCt aHead Adaptation System) context 

prediction and proactive adaptation framework. CALCHAS is now integrated as an 

extension over ECSTRA. 

To summarize, this thesis has three major contributions: 

● This thesis proposes, proves and evaluates methods for modeling situations, 

unsupervised learning of situations and auto-labeling the learned situations. 

●  This thesis proposes, proves and evaluates methods for situation verification – a novel 

approach to ensure correctness of situation models. 

● This thesis proposes and evaluates novel techniques for situation prediction and 

proactive adaptation. The issue of properly acting according to predicted context is 

investigated.  

Next sections discuss research progress between the licentiate thesis and this 

dissertation, and suggest plausible directions for future research. 

2 Research Progress 

 

Significant research work was performed between the completion of licentiate thesis and 

the completion of PhD thesis. Chapter II, chapter VIII, chapter IX and chapter X did 

participate in licentiate thesis, and the modification between licentiate and PhD thesis was 

minor. Licentiate thesis did contain the parts corresponding to chapter III and chapter VI of 

this thesis, but the contents underwent major revision when transitioning from licentiate to 

PhD thesis. Chapter I, chapter IV, chapter V and chapter VII do not have any analogues in 

licentiate thesis. As a result of additional research efforts and publications, the size of PhD 

thesis is almost double the size of licentiate thesis. 

Licentiate thesis was focused on the problems of context prediction and proactive 

adaptation in pervasive computing. Situation awareness enhancements were viewed as tools 

to enhance context prediction capabilities. However, as the research progressed and 

evolved, it became clear that context prediction needs a very solid backbone of proper 

context awareness and situation awareness methods. Situation awareness turned out to be of 

particular importance for many practical applications, and, moreover, many context 

prediction systems considered viewed context prediction as situation prediction task. As a 
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result, situation awareness became new main focus of the research, and main contributions 

of the thesis are in the area of situation awareness. 

The licentiate thesis [Bo11] proposed the following future work directions, which 

became the basis of this thesis. 

- Enhanced situation models. This direction future work was addressed in chapters IV 

and V of the thesis. Moreover, that direction was addressed by major improvenents in 

chapter III. 

- Automated situation specification. Chapter IV and chapter V of the thesis propose 

novel techniques for automated specification of situation, thus addressing that aspect of 

previously proposed future work. 

- Improvement of context prediction and proactive adaptation techniques. Although not 

mentioned directly, this aspect was improved by improving situation awareness 

capabilities. Situation awareness is a backbone for situation prediction, and comparing to 

licentiate thesis [Bo11] situation awareness was improved in many aspects. Those include 

situation modelling, situation inference and situation verification. 

- Quality of context evaluation. This challenge remains a possible direction for future 

research. 

In addition to following the future work directions proposed in [Bo11], this thesis 

contains the following achievements: 

- Situation verification technique was developed further. Novel verification techniques 

were introduced for fuzzy situation models. 

- ECSTRA framework was under constant development and improvement throughout 

the whole course of PhD studies. As one of the results, ECSTRA was integrated into smart 

home solutions developed by INRIA [DP11]. In particular, ECSTRA was appreciated for 

ease of use, the support of distributed and heterogeneous architectures and for flexible 

situation awareness mechanisms. Appendix contains a statement of accomplishment and 

appreciation from INRIA. 

This section concludes the discussion and summary of thesis results. Next section 

proposes plausible future work directions for subsequent research. 

3 Possible Future Work Directions
14

 

Possible directions of the future work are proposed throughout the thesis. Most important 

ones are summarized in this section. Future work can include the following directions of 

research. 

Quality of context evaluation. Inconsistent context information can mislead situation 

awareness, context prediction and proactive adaptation. Testing and formal verification of 

context model at the design time should be complemented with the context quality 

evaluation at the runtime. 

Automated situation specification. This challenge is partially addressed in the thesis, 

but there are multiple directions for further improvement. Automated situation specification 

problem encompasses two separate problems: automated situation specification at the 

design time, using the available sources of knowledge, and automated specification at the 

run-time by detection and automated labeling possible situations of interest. Automated 

                                                           
14

 This section is partially based on the licentiate thesis [Bo11]. 
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specification methods can improve the reliability and dependability of situation awareness 

mechanisms. 

Improvement of situation prediction and proactive adaptation methods. In this 

thesis much work has been done in the area of situation prediction and proactive adaptation. 

However, still there is a room for improvement regarding, for example, introduction of new 

context prediction and proactive adaptation algorithms or addressing distributed and 

resource-constrained nature of pervasive conputing systems. 

Introduction of new verification methods. This thesis introduces the area of formal 

verification of situation models, defines ground principles and proposes the algorithms for 

multiple kinds of situations. However, as follows from chapters VI and VII, sometimes 

verification algroithms significantly depend on the chosen situation modeling method. 

Reducing the dependency can be a direction of further research. In particular, future work 

might include introduction of model-independent verification approaches, as well as 

developing verification approaches for particular classes of situation models. 

The research directions discussed above can constitute a core of new subsequent 

research projects. 
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Acronyms 

ACAI – Agent Context-Aware Infrastructure [KK05] 

ACES – Ambient Computing and Embedded Systems project 

ACHE – Adaptive Control for Home Environment [MD95] 

BN – Bayesian Network 

CALCHAS – Context Awareness Long-term aCt aHead Adaptation System (see chapter 

X) 

CDMS – Context Data Management System [XP08] 

ContReMAR – Context Reasoning for Mobile Activity Recognition (see chapter IV) 

CSIRO – Commonwealth Scientific and Industrial Research Organization 

CST –  Context Spaces Theory 

DBN – Dynamic Bayesian Network 

DBSCAN – Density-Based Spatial Clustering of Applications with Noise [EK96]. 

ECORA – Extensible Context Oriented Reasoning Architecture (see [Pa06][PL08b]) 

ECSTRA –Enahnced Context Spaces Theory Based Reasoning Architecture 

FSI – Fuzzy Situation Inference 

GLPK – GNU Linear Programming Toolkit (see [Ma12]). 

GPS – Global Positioning System 

GSM – Global System for Mobile communications 

HMM – Hidden Markov Model 

INRIA – Institut National de Recherche en Informatique et en Automatique (National 

Institute for Research in Computer Science and Control) 

JADE – Java Agent Development framework (see [BC11]) 

LAN – Local Area Network 

LTU – Luleå Tekniska Universitet (Luleå University of Technology) 

MADIP –  Mobile multi-Agent based Distributed Information Platform (see [SW11]) 

MDC – Mobile Data Challenge 

MDP – Markov Decision Process. 

OPTICS – Ordering Points To Identify the Clustering Structure (see [AB99]) 

PARC – Xerox Palo Alto Research Center 
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PDA – Personal Digital Assistant 

POMDP – see Partially Observable Markov Decision Process. 

SOUPA – Standard Ontology for Ubiquitous and Pervasive Applications (see [CH05]). 

SVM – Support Vector Machines 

WLAN – Wireless LAN 

XML – eXtended Markup Language 
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Glossary 

Activity recognition –recognizing common human activities in real life settings[KH10b]. 

Application Space – multidimensional space, where context attributes act as dimensions. 

See [Pa06], [PL08] and chapters I and VI for more details. 

Context – “any information that can be used to characterize situation of an entity”[DA00] 

Context Attribute – context feature that can be characterized by numeric or non-numeric 

value. For example, in smart home environment information like air temperature, energy 

consumption and light level can be taken as context attributes. 

Context Awareness – ability “to provide relevant information and/or services to the user, 

where relevancy depends on the user’s task.”[DA00] 

Context Data – used interchangeably with the term “context” in this thesis. 

Context Information –used interchangeably with the term “context” in this thesis. 

Context Prediction – forecasting future context features. 

Context Space – see Application Space. 

Context Spaces Approach – see Context Spaces Theory. 

Context Spaces Theory – a context awareness approach, which is based on representing 

context as multidimensional space and utilizing spatial metaphors. See [Pa06], [PL08] and 

chapters I and VI for more details. 

Context state – a cotext spaces theory term, which means the set of all relevant context 

attributes at a certain time. A context state can be viewed as a point in an application space. 

See chapter IV for more details. 

ContReMAR – Context Reasoning for Mobile Activity Recognition, ECSTRA-based 

location awareness and situation awareness solution. contReMAR applcaition learns the 

situations out of unlabeled data. See chapter IV for more details. 

Dense Orthotope-based Situation Space – a modification of orthotope-based situation 

space. See chapter III for more details. 

ECORA – Extensible Context Oriented Reasoning Architecture. Context awareness 

framework, based on context spaces approach. Although both ECSTRA and ECORA are 

based on context spaces approach, there are no reuses between those two context awareness 

frameworks. See [PL08][PL04a][PL04b][Pa06] for more details 

ECSTRA – Enhanced Context Spaces Theory Based Reasoning Architecture. ECSTRA is 

a general purpose context awareness and situation awareness engine, developed as part of 

this doctoral research. See chapter II for more details. 
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Fuzzy situation – 

1) In a narrow sense, FSI-based situation model. 

2) In a broader sesnse, any situation model, which is based on fuzzy logic. 

Lifelogging – digitally recording aspects and personal experiences of someone’s life 

[BL07]. 

Mixed context attribute – context attribute, which can take both numeric and non-numeric 

values. 

Orthotope-based Situation Space – an extension of situation space concept, proposed in 

this thesis. See chapters III and VI for more details. Orthotope-based  situation spaces allow 

representing broader class of real life situations and play an important role in verification of 

situation models. 

Proactive adaptation – adaptation actions in response to predicted context (as opposed to 

reacting on current context only). 

Situation –  “external semantic interpretation of sensor data” [YD12], where the 

interpretation means “situation assigns meaning to sensor data” [YD12] and external 

means “from the perspective of applications, rather than from sensors”[YD12]. The concept 

of a situation generalizes the context data and elicits the most important information from 

it. Properly designed situation awareness extracts the most relevant information from the 

context data and provides it in a clear manner. Multiple aspects of situation awareness are 

the focus of this thesis. 

Situation Awareness – the process of inferring situations out of context data. 

Situation Space – formal model of a situation, which is used in context sapces theory. 

Sparse Orthotope-based Situation Space – a modification of orthotope-based situation 

space. See chapter III for more details. 
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