# CHARACTERISATION OF SUPPRESSOR OF CYTOKINE SIGNALING 1 REGULATION OF TYPE I INTERFERON SIGNALING

Submitted for the full requirements of the degree of Doctor of Philosophy

Rebecca Piganis Bachelor of Biomedical Science (Honours)

Centre for Innate Immunity and Infectious Diseases Monash Institute of Medical Research Monash University 2013

## Notice 1

Under the Copyright Act 1968, this thesis must be used only under the normal conditions of scholarly fair dealing. In particular no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or in part without the written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis.

# TABLE OF CONTENTS

| TABLE OF CONTENTS                                         | ii  |
|-----------------------------------------------------------|-----|
| ABSTRACT                                                  | vii |
| GENERAL DECLARATION                                       | ix  |
| ACKNOWLEDGEMENTS                                          | x   |
| LIST OF FIGURES                                           | xi  |
| LIST OF TABLES                                            | xiv |
| ABBREVIATIONS                                             | xvi |
| CHAPTER 1                                                 | 1   |
|                                                           | 1   |
| INTERFERON SIGNALING AND ITS REGULATION BY SOCS1          | 1   |
| 1.1 Introduction                                          | 1   |
| 1.2 The Interferons                                       | 1   |
| 1.3 Production of the Type I IFNs                         | 2   |
| 1.3.1 Transcriptional Activation of Type I IFN Production | 2   |
| 1.3.2 Toll Like Receptors and Type I IFN Induction        | 4   |
| 1.3.3 Cytosolic Receptors and Type I IFN Induction        | 6   |
| 1.4 Type I IFN Signaling                                  |     |
| 1.4.1 The IFN Alpha Receptor (IFNAR)                      | 8   |
| 1.4.2 Janus Tyrosine Kinases (JAKs)                       | 12  |
| 1.4.3 Signal Transducers and Activators of Transcription  | 14  |
| 1.4.4 STAT Independent Type I IFN Signaling               | 21  |
| 1.5 Summary of IFN Signaling Mechanism                    | 22  |

| 1.6 Type I IFN Functions                                                                              | 23               |
|-------------------------------------------------------------------------------------------------------|------------------|
| 1.6.1 Antiviral Functions                                                                             | 23               |
| 1.6.2 Immunomodulatory Functions                                                                      | 25               |
| 1.7 Clinical Applications of the Type I IFNs                                                          |                  |
| 1.7.1 Treatment of Viral Infections                                                                   | 28               |
| 1.7.2 Treatment of cancer                                                                             | 29               |
| 1.7.3 Autoimmune Disease                                                                              |                  |
| 1.7.4 Side Effects of type I IFN treatment                                                            |                  |
| 1.8 Regulation of Type I IFN Signaling                                                                | 31               |
| 1.9 Suppressors of Cytokine Signaling (SOCS)                                                          | 33               |
| 1.9.1 SOCS Structure                                                                                  | 33               |
| 1.9.2 SOCS1 Expression                                                                                | 34               |
| 1.9.3 SOCS1 Inhibition of Interferon Signaling                                                        | 35               |
| 1.9.4 Mechanisms of SOCS1 inhibition                                                                  | 37               |
| 1.9.5 SOCS1 and Immune Cell Development                                                               |                  |
| 1.10 Summary                                                                                          | 39               |
| CHAPTER 2                                                                                             | 40               |
| METHODS                                                                                               | 40               |
| 2.1 Mouse Models                                                                                      | 40               |
| 2.2 Detection of STAT1, STAT3 and STAT5 phosphorylation in immune cell po<br>by Phosphoflow Cytometry | opulations<br>40 |
| 2.2.1 Collection and isolation of thymic and splenic immune cells                                     | 40               |
| 2.2.2 Collection and Isolation of Peripheral Blood Mononuclear Cells (PBMCs)                          | 41               |
| 2.2.3 Cell Stimulation                                                                                | 41               |

| 2.2.4 Cell Fixing and Permeabilisation                                                                                                                           | 41                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 2.2.5 Anti-body staining                                                                                                                                         | 42                                  |
| 2.2.6 Data Collection and Analysis                                                                                                                               | 42                                  |
| 2.3 Western Blot Analysis of total STAT1, STAT3 and STAT5 protein expression                                                                                     | 35                                  |
| 2.3.1 Preparation of Cell Lysates                                                                                                                                | 43                                  |
| 2.3.2 Lowry Protein Assay                                                                                                                                        | 43                                  |
| 2.3.3 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)                                                                                                          | 43                                  |
| 2.3.4 Protein Transfer to Nitrocellulose Membrane                                                                                                                | 43                                  |
| 2.3.5 Immunoblotting                                                                                                                                             | 44                                  |
| 2.4 Microarray                                                                                                                                                   | 45                                  |
| 2.4.2 IFN Treatment                                                                                                                                              | 45                                  |
| 2.4.3 Organ Collection                                                                                                                                           | 45                                  |
| 2.4.4 RNA isolation from Whole Thymus                                                                                                                            | 45                                  |
| 2.4.5 RNA clean up                                                                                                                                               | 46                                  |
| 2.4.6 RNA Quality Control                                                                                                                                        | 46                                  |
| 2.4.7 Reverse Transcription of RNA to cDNA                                                                                                                       | 46                                  |
| 2.4.8 GAPDH PCR                                                                                                                                                  | 46                                  |
| 2.4.9 Quantitative Real Time PCR (qRT-PCR)                                                                                                                       | 47                                  |
| 2.5.10 Microarray Procedure                                                                                                                                      | 47                                  |
| 2.5.11 Data Analysis                                                                                                                                             | 50                                  |
| CHAPTER 3                                                                                                                                                        | 53                                  |
| DECLARATION                                                                                                                                                      | 53                                  |
| PUBLICATION: SUPPRESSOR OF CYTOKINE SIGNALING (SOCS) 1 INHIBITS<br>INTERFERON (IFN) SIGNALING VIA THE INTERFERON RECEPTOR (IF<br>ASSOCIATED TYROSINE KINASE TYK2 | TYPE I<br><sup>-</sup> NAR1)-<br>55 |

| CHAPTER 4                                                                                                                      | 63                   |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------|
| CHARACTERISATION OF IFN $\alpha$ INDUCTION OF STAT PHOSPHORYLATION IN IMPORTED FOR THE POPULATIONS AND ITS REGULATION BY SOCS1 | MUNE<br>63           |
| 4.1 Basal MFI of pSTAT1, pSTAT3 and pSTAT5 in thymic CD4/CD8 T-cell subsets                                                    | 54                   |
| 4.2 Dose Response to IFN $\alpha$ – Thymic CD4/CD8 T-cell Subsets                                                              | 67                   |
| 4.3 Time Course – Thymic CD4/CD8 T-cell subsets                                                                                | 68                   |
| 4.3.1 Time course of STAT1 phosphorylation in the thymus                                                                       | 68                   |
| 4.3.2 Time course of STAT3 phosphorylation in the thymus                                                                       | 68                   |
| 4.3.3 Time course of STAT5 phosphorylation in the thymus                                                                       | 69                   |
| 4.3.4 Summary and Discussion – IFN $\alpha$ induced STAT phosphorylation in thymocytes                                         | 69                   |
| 4.4 Basal MFI of pSTAT1, pSTAT3 and pSTAT5 in PBMC CD4/CD8 T-cell subsets                                                      | 72                   |
| 4.5.1 Time course of STAT1 phosphorylation in the blood                                                                        | 73                   |
| 4.5.2 Time course of STAT3 phosphorylation in the blood                                                                        | 74                   |
| 4.5.3 Time course of STAT5 phosphorylation in the blood                                                                        | 75                   |
| 4.5.4 Thymic CD4/CD8 T-cells vs Periphery CD4/CD8 T-cells                                                                      | 75                   |
| 4.5.5 Summary and Discussion – IFN $\alpha$ induced STAT phosphorylation in peripheral immun                                   | e cells<br>76        |
| 4.6 SOCS1 effect on IFNα induced STAT phosphorylation                                                                          | 77                   |
| 4.6.1 STAT1 phosphorylation                                                                                                    | 76                   |
| 4.6.2 STAT3 phosphorylation                                                                                                    | 79                   |
| 4.6.3 STAT5 phosphorylation                                                                                                    | 80                   |
| 4.6.4 Summary and Discussion                                                                                                   | 80                   |
| 4.7 Total STAT1, STAT3 and STAT5 expression levels in the thymus of Socs1 <sup>-/-</sup> Ifn $\gamma$                          | / <sup>-/-</sup> and |
| Socs $1^{+/+}$ If $\eta \gamma^{-/-}$ mice                                                                                     | 81                   |
| 4.8 Summary                                                                                                                    | 82                   |

| CHAPTER 5                                                                                                                      | 83         |
|--------------------------------------------------------------------------------------------------------------------------------|------------|
| FN $\alpha$ AND SOCS1 REGULATION OF GENE EXPRESSION IN THE THYMUS                                                              | 83         |
| 5.1 Time Course of IFN $\alpha$ stimulation in the Thymus of Wild Type C57BL/6 mice                                            | 84         |
| 5.2 Thymic IFN $\alpha$ regulated genes and the Interferome                                                                    | 89         |
| 5.3 Basal Differences in Gene Expression between $Socs1^{-/-}Ifn\gamma^{-/-}$ and $Socs1^{+/+}Ifn\gamma^{-/-}$ m               | iice<br>92 |
| 5.3.1 Basal Cluster 1                                                                                                          | .93        |
| 5.3.2 Basal Cluster 2                                                                                                          | .95        |
| 5.3.3 Basal Cluster 3                                                                                                          | .96        |
| 5.4 SOCS1 regulation of IFN Stimulated Genes                                                                                   | 97         |
| CHAPTER 6 1                                                                                                                    | 103        |
| DISCUSSION 1                                                                                                                   | 103        |
| REFERENCES 1                                                                                                                   | 112        |
| PPENDICES I: SOLUTIONS                                                                                                         | 1 -        |
| PPENDICES II: PRIMERS for PCR and RT-PCR                                                                                       | 3 -        |
| PPENDICES III: GENE LISTS                                                                                                      | 4 -        |
| A. IFN $\alpha$ regulated probes within the thymus of wt mice                                                                  | 4 -        |
| B. Thymic IFN $\alpha$ regulated genes absent from the Interferome                                                             | 17 -       |
| C. Probes basally different between Socs1 <sup>+/+</sup> Ifn $\gamma^{-/-}$ and Socs1 <sup>-/-</sup> Ifn $\gamma^{-/-}$ mice 2 | 20 -       |
| D. IFN $\alpha$ regulated probes within the thymus of Socs1 <sup>+/+</sup> Ifn $\gamma^{-/-}$ mice 4                           | ł6 -       |
| E. IFN $\alpha$ regulated probes within the thymus of Socs1 <sup>-/-</sup> Ifn $\gamma^{-/-}$ mice                             | 56 -       |

#### ABSTRACT

Type I Interferons (IFNs) are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure an appropriate immune response is generated, as an imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand the signaling events activated in the cell following type I IFN stimulation and how signaling is regulated. SOCS1 is a negative regulator of type I IFN signaling, acting in a negative feedback loop. This thesis details the mechanism of SOCS1 regulation of type I IFN signaling as well as the consequences of this regulation in terms of its effect on IFN $\alpha$  induced STAT activation and the resultant transcriptional response.

Results in this thesis demonstrate that SOCS1 inhibits type I IFN signaling through an interaction with the type I IFN receptor (IFNAR1) associated kinase, TYK2. SOCS1 associates via its SH2 domain with conserved phospho-tyrosines 1054 and 1055 of TYK2 as well with the kinase inhibitor region (KIR). TYK2 is preferentially Lys-63 polyubiquitinated and this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of TYK2 not only results in a reduced IFN response due to inhibition of TYK2 kinase mediated STAT signaling, but also negatively impacts IFNAR1 surface expression which is stabilised by TYK2.

The STAT family of transcription factors are major mediators of the type I IFN response. This thesis demonstrates STAT activation by the type I IFNs occurs in a cell-type specific manner. STAT1 is up-regulated by type I IFN in a broad range of immune cell types including thymic and peripheral T-cells, B-cells and macrphages whereas activation of STAT3 and STAT5 is more confined to the thymic T-cells. Type I IFN stimulation of thymic cells results in rapid phosphorylation of STAT1, STAT3 and STAT5 and the resultant transcriptional response results in the up-regulation of an array of genes involved in innate defence. The promoter regions of these genes are enriched in ISGF3, STAT1, STAT3 and STAT5 binding elements.

Results of this thesis demonstrate that the downstream consequence of SOCS1 action is to suppress IFN induced STAT activation and subsequent gene induction. We found SOCS1 selectively regulates STAT phosphorylation in response to IFNα. The activation profile of STAT1 and STAT3 is altered by SOCS1, whereas STAT5 is independent of this regulation. Using microarray expression profiling, we identified subsets of IFN stimulated genes regulated by SOCS1. Promoter analysis of these gene sets identifies transcription factor enrichment of numerous ISGF3, STAT1 and STAT3 binding sites but not STAT5. These results support a model whereby SOCS1 negative regulation of type I IFN signaling

selectively modulates the activation profile of STAT1 and STAT3 and consequent gene induction.

These studies have mapped specific pathways of IFN regulation from the receptor component to transcription factor activation and interferon regulated gene induction. I demonstrate that SOCS1 selectively interacts with the IFNAR1 associated kinase, TYK2 and regulates the signaling of a subset of IFN activated STATs and IFN/STAT regulated genes. These findings therefore enhance our understanding of type I IFN signaling and its regulation by SOCS1 and provide the foundation for future therapies to select for specific type I IFN signaling pathways.

#### GENERAL DECLARATION

In accordance with Monash University Doctorate Regulation 17 Doctor of Philosophy and Research Master's regulations the following declarations are made:

I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma at any university or equivalent institution and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

This thesis includes one original paper published in peer reviewed journals and no unpublished publications. The core theme of the thesis is the characterisation of suppressor of cytokine signaling 1 regulation of type I Interferon signaling. The ideas, development and writing up of all the papers in the thesis were the principal responsibility of myself, the candidate, working within the Centre for Innate Immunity and Infectious Diseases under the supervision of Prof. Paul Hertzog.

The inclusion of co-authors reflects the fact that the work came from active collaboration between researchers and acknowledges input into team-based research.

| Thesis<br>chapter | Publication title                                                                                                                                                                                               | Publication<br>status* | Nature and extent of candidate's contribution                                                                                                                                                                                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                 | Suppressor of cytokine signaling (SOCS) 1<br>inhibits type I interferon (IFN) signaling via<br>the interferon alpha receptor (IFNAR1)-<br>associated tyrosine kinase Tyk2.<br>J Biol Chem 286(39): 33811-33818. | Published              | I performed all laboratory<br>experiments with exception of flow<br>cytometry analysis of IFNAR1<br>surface levels and cloning of<br>TYK2/mutant expression<br>constructs. I was responsible for<br>writing the publication. |

In the case of chapter 3, my contribution to the work involved the following:

I have renumbered sections of submitted or published papers in order to generate a consistent presentation within the thesis.

Signed:

13/5/13 Date:

ix

## ACKNOWLEDGEMENTS

There are many people who I am grateful to for their guidance and support throughout my PhD.

I would like to thank my supervisors Paul Hertzog and Nicky de Weerd. Thank you Paul for providing me with many opportunities to develop as a scientist whilst studying in your lab and thank you Nicky for starting me off in the lab and for your guidance throughout my PhD.

To everyone at the Centre for Innate Immunity and Infectious Diseases thank you for all the support, advice and knowledge you have given me throughout the years. I have learnt so much during my time here as I have been surrounded by many talented scientists. I would especially like to thank Bernadette Scott, Tali Lang, Claire Greenhill, Brett Verstak, Jodee Gould, Niamh Mangan, Ashley Mansell, Dale Carey, Sam Forster and Michelle Tate who have taught me, helped me or read my thesis. I would also like to thank everyone at CIIID for creating a great environment in which to undertake a PhD and for all the fun times we have had unwinding after a busy week in the lab.

Lastly, I would like to thank my friends and family for all their love and support over the years. I couldn't have done it without you.

# LIST OF FIGURES

| Figure 1.1 | Pathways leading to the transcriptional activation of the type I IFNs                       | ff2  |
|------------|---------------------------------------------------------------------------------------------|------|
| Figure 1.2 | The type I IFN JAK/STAT pathway                                                             | ff8  |
| Figure 1.3 | Structure of hu-IFNAR1 and mu-Ifnar1                                                        | ff9  |
| Figure 1.4 | Structure of hu-IFNAR2 (long form) and mu-Ifnar2c                                           | ff10 |
| Figure 1.5 | Structure of the JAK kinases                                                                | ff12 |
| Figure 1.6 | Structure of the STAT family of transcription factors                                       | ff14 |
| Figure 1.7 | JAK/STAT independent pathways activated by the type I IFNs                                  | ff21 |
| Figure 1.8 | Structure of SOCS1 and SOCS3                                                                | ff34 |
| Figure 2.1 | Flow chart of the microarray procedure                                                      | ff45 |
| Figure 2.2 | Flow chart of the initial steps in microarray analysis using                                | ff50 |
|            | Genespring GX                                                                               |      |
| Figure 2.3 | Flow chart of analysis for the identification of genes regulated                            | ff51 |
|            | following 3 and 6 hours IFN $\alpha$ treatment, administered                                |      |
|            | intraperitoneally, in the thymus of wt C57BL/6 mice                                         |      |
| Figure 2.4 | Flow chart of analysis for the identification of genes differentially                       | ff51 |
|            | expressed within $Socs1^{+/+}$ If $n\gamma^{-/-}$ vs $Socs1^{-/-}$ If $n\gamma^{-/-}$ mice. |      |
| Figure 2.5 | Flow chart of analysis for the identification of genes regulated                            | ff51 |
|            | following 3 and 6 hours IFN $\alpha$ treatment, administered                                |      |
|            | intraperitoneally, in the thymus of Socs1 <sup>+/+</sup> Ifn $\gamma^{-/-}$ C57BL/6 mice    |      |
| Figure 2.6 | Flow chart of analysis for the identification of genes regulated                            | ff51 |
|            | following 3 and 6 hours IFN $\alpha$ treatment, administered                                |      |
|            | intraperitoneally, in the thymus of Socs1-'-Ifn $\gamma$ -'- C57BL/6 mice                   |      |
| Figure 2.7 | Flow chart of analaysis for the identification of SOCS1/IFN regulated                       | ff51 |
|            | genes                                                                                       |      |
| Figure 4.1 | Gating of thymic CD4/CD8 T-cell populations                                                 | ff65 |
| Figure 4.2 | Gating of PBMC CD4, CD8, B220 and MAC1 cell populations                                     | ff65 |
| Figure 4.3 | Gating of splenic CD4, CD8 and MAC1 cell populations                                        | ff65 |
| Figure 4.4 | Methods of phosphoflow cytometry analysis                                                   | ff65 |
| Figure 4.5 | Basal STAT1, STAT3 and STAT5 phosphorylation levels in thymic                               | ff66 |
|            | CD4/CD8 T-cell subsets                                                                      |      |
| Figure 4.6 | Dose response of IFN $\alpha$ on STAT1, STAT3 and STAT5                                     | ff67 |
|            | phosphorylation in thymic CD4/CD8 T-cell subsets                                            |      |

| Figure 4.7  | Time course of IFN $\alpha$ induced STAT1 phosphorylation in thymic                                  | ff68 |
|-------------|------------------------------------------------------------------------------------------------------|------|
|             | CD4/CD8 T-cell subsets                                                                               |      |
| Figure 4.8  | Time course of IFN $\alpha$ induced STAT3 phosphorylation in thymic                                  | ff68 |
|             | CD4/CD8 T-cell subsets                                                                               |      |
| Figure 4.9  | Time course of IFN $\alpha$ induced STAT5 phosphorylation in thymic                                  | ff69 |
|             | CD4/CD8 T-cell subsets                                                                               |      |
| Figure 4.10 | Basal STAT1, STAT3 and STAT5 phosphorylation levels in PBMC                                          | ff73 |
|             | CD4/CD8 T-cell subsets, B220 positive or MAC1 positive cells                                         |      |
| Figure 4.11 | Time course IFN $\alpha$ induced STAT1 phosphorylation in PBMC                                       | ff73 |
|             | CD4/CD8 T-cell subsets, B220 positive or MAC1 positive cells                                         |      |
| Figure 4.12 | Time course IFN $\alpha$ induced STAT3 phosphorylation in PBMC                                       | ff74 |
|             | CD4/CD8 T-cell subsets, B220 positive or MAC1 positive cells                                         |      |
| Figure 4.13 | Time course of IFN $\alpha$ induced STAT5 phosphorylation in PBMC                                    | ff75 |
|             | CD4/CD8 T-cell subsets, B220 positive or MAC1 positive cells                                         |      |
| Figure 4.14 | Thymic and peripheral T-cell STAT1, STAT3 and STAT5                                                  | ff75 |
|             | phosphorylation in response to 15 minutes IFN $\alpha$ stimulation                                   |      |
| Figure 4.15 | Basal STAT1, STAT3 and, STAT5 phosphorylation levels in thymic                                       | ff77 |
|             | CD4/CD8 T-cell subsets from $Socs1^{-/-}Ifn\gamma^{-/-}$ and $Socs1^{+/+}Ifn\gamma^{-/-}$ mice       |      |
| Figure 4.16 | Time course of IFN $\alpha$ induced STAT1 phosphorylation in thymic                                  | ff78 |
|             | CD4/CD8 T-cell subsets from $Socs1^{-/-}Ifn\gamma^{-/-}$ and $Socs1^{+/+}Ifn\gamma^{-/-}$ mice       |      |
| Figure 4.17 | Time course of IFN $\alpha$ induced STAT1 phosphorylation in splenic                                 | ff78 |
|             | CD4/CD8 T-cell subsets and splenic B-cells from $Socs1^{-/-}Ifn\gamma^{-/-}$ and                     |      |
|             | Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> mice                                                        |      |
| Figure 4.18 | Time course of IFN $\alpha$ induced STAT1 phosphorylation in splenic                                 | ff78 |
|             | macrophages and BMMs                                                                                 |      |
| Figure 4.19 | Time course of IFN $\alpha$ induced STAT3 phosphorylation in thymic                                  | ff79 |
|             | CD4/CD8 T-cell subsets from $Socs 1^{-/-} Ifn \gamma^{-/-}$ and $Socs 1^{+/+} Ifn \gamma^{-/-}$ mice |      |
| Figure 4.20 | Time course of IFN $\alpha$ induced STAT5 phosphorylation in thymic                                  | ff80 |
|             | CD4/CD8 T-cell subsets from $Socs1^{-/-}Ifn\gamma^{-/-}$ and $Socs1^{+/+}Ifn\gamma^{-/-}$ mice       |      |
| Figure 4.21 | Total STAT1, STAT3 and STAT5 levels in the thymus of $Socs1^{-/-}Ifn\gamma^-$                        | ff81 |
|             | $^{/-}$ and $Socs1^{+/+}$ <i>Ifn</i> $\gamma^{-/-}$ mice following IFN $\alpha$ stimulation          |      |
| Figure 5.1  | Heatmap of IFN $\alpha$ regulated probes in the thymus of wt mice                                    | ff85 |
| Figure 5.2  | qRT-PCR validation of microarray data                                                                | ff85 |
| Figure 5.3  | Venn diagram of IFN $\alpha$ up-regulated probes and probes within the                               | ff89 |
|             | Interferome                                                                                          |      |

| Figure 5.4  | Heatmap of basal gene expression in the thymus of $Socs^{-/-}Ifn\gamma^{-/-}$ ,<br>$Socs1^{+/+}Ifn\gamma^{-/-}$ and wt mice | ff92  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 5.5  | Scatter plots of probe cluster found differentially expressed in the                                                        | ff92  |
|             | thymus of Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> and Socs1 <sup>-/-</sup> Ifny <sup>-/-</sup> mice                        |       |
| Figure 5.6  | Venn diagram of basal SOCS1 negatively regulated (Basal Cluster                                                             | ff94  |
|             | 1) and IFN $\alpha$ regulated (IFN $\alpha$ regulated in WT mice) probes                                                    |       |
| Figure 5.7  | Heatmap of IFN $\alpha$ regulated probes in Socs1 <sup>+/+</sup> Ifn $\gamma^{-/-}$ mice                                    | ff97  |
| Figure 5.8  | Heatmap of IFN $\alpha$ regulated probes in Socs1 <sup>-/-</sup> Ifn $\gamma$ <sup>-/-</sup> mice                           | ff97  |
| Figure 5.9  | Venn Diagram of probes found via two-way anova anaylsis of 3 and                                                            | ff99  |
|             | 6 hours IFN $\alpha$ stimulations in the thymus of Socs1 <sup>-/-</sup> Ifn $\gamma^{-/-}$ and                              |       |
|             | Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> mice                                                                               |       |
| Figure 5.10 | Heatmap of genes that interact over IFN $\alpha$ and SOCS1 regulation                                                       | ff99  |
| Figure 5.11 | Clusters of co-regulated probes that interact over $IFN\alpha$ and SOCS1                                                    | ff100 |
|             | regulation                                                                                                                  |       |
| Figure 5.12 | Expression profile and list of genes within Interaction Cluster 1                                                           | ff100 |
| Figure 5.13 | qRT-PCR validation of microarray data                                                                                       | ff100 |
| Figure 5.14 | Venn diagram of probes found via two-way anova anaylsis of 3 hour                                                           | ff101 |
|             | and 6 hour IFN $\alpha$ stimulations in the thymus of Socs1 <sup>-/-</sup> Ifn $\gamma^{-/-}$ and                           |       |
|             | Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> mice                                                                               |       |
|             |                                                                                                                             |       |

# LIST OF TABLES

| Table 2.1  | List of antibodies used for flow cytometry                                        | ff42 |
|------------|-----------------------------------------------------------------------------------|------|
| Table 5.1  | DAVID functional annotation clustering of genes up-regulated in the               | ff86 |
|            | thymus of wt mice 3 and 6 hours post IFN $\alpha$                                 |      |
| Table 5.2  | List of genes annotated with the GOTERM; GTPase activity or GTP                   | ff86 |
|            | binding, found up-regulated in wt mice 3 and 6 hours post IFN $\alpha$ .          |      |
| Table 5.3  | List of genes annotated with the GOTERM; Transferase activity,                    | ff86 |
|            | found up-regulated in wt mice 3 and 6 hours post $IFN\alpha$                      |      |
| Table 5.4  | List of genes annotated with the GOTERM; Defence Response,                        | ff86 |
|            | found up-regulated in wt mice 3 and 6 hours post $IFN\alpha$                      |      |
| Table 5.5  | Over-represented IRF, STAT and NF-кВ transcription factor binding                 | ff88 |
|            | elements within the promoters of genes up-regulated in the thymus                 |      |
|            | of wt mice 3 and 6 hours post IFNα                                                |      |
| Table 5.6  | Over-represented transcription factor elements within IFN $\alpha$ up-            | ff88 |
|            | regulated genes in the thymus of WT mice                                          |      |
| Table 5.7  | DAVID functional annotation clustering of the genes up-regulated in               | ff90 |
|            | the thymus of wt mice 3 and 6 hours post IFN $\alpha$ that are <i>not</i> present |      |
|            | within the Interferome                                                            |      |
| Table 5.8  | DAVID functional annotation clustering of the genes up-regulated in               | ff90 |
|            | the thymus of wt mice 3 and 6 hours post IFN $\alpha$ that are present            |      |
|            | within the Interferome                                                            |      |
| Table 5.9  | Over-represented IRF, STAT and NF-кВ transcription factor binding                 | ff91 |
|            | elements within the promoters of genes up-regulated in the thymus                 |      |
|            | of wt mice 3 and 6 hours post IFN $\alpha$ and that were not present within       |      |
|            | the Interferome                                                                   |      |
| Table 5.10 | Over-represented IRF, STAT and NF-kB transcription factor binding                 | ff91 |
|            | elements within the promoters of genes up-regulated in the thymus                 |      |
|            | of wt mice 3 and 6 hours post IFN $\alpha$ and that were present within the       |      |
|            | Interferome                                                                       |      |
| Table 5.11 | DAVID functional annotation of genes from Basal Cluster 1                         | ff93 |
| Table 5.12 | Clover promoter analysis of Basal Cluster 1 displaying A) Over-                   | ff93 |
|            | represented IRF, STAT and NF-κB binding elements, B) Over-                        |      |
|            | represented "non-STAT, IRF or NF-kB" binding elements                             |      |

| Table 5.13 | Gene list of Basal SOCS1 negatively regulated (Basal Cluster 1) and                         | ff94  |
|------------|---------------------------------------------------------------------------------------------|-------|
|            | IFN $\alpha$ regulated (IFN $\alpha$ regulated in WT mice) genes with associated            |       |
|            | Ensemble gene transcript IDs                                                                |       |
| Table 5.14 | DAVID functional annotation of basal SOCS1 negatively regulated                             | ff94  |
|            | (Basal Cluster 1) and IFNα regulated (IFNα regulated in WT mice)                            |       |
|            | genes                                                                                       |       |
| Table 5.15 | Clover promoter enrichment analysis of genes that are Basal SOCS1                           | ff94  |
|            | negatively regulated (Basal Cluster 1) and IFN $\alpha$ regulated (IFN $\alpha$             |       |
|            | regulated in WT mice) genes                                                                 |       |
| Table 5.16 | DAVID functional annotation of genes from Basal Cluster 2                                   | ff95  |
| Table 5.17 | Clover promoter analysis of Basal Cluster 2 displaying A) Under-                            | ff95  |
|            | represented IRF, STAT and NF-кВ binding elements, B) Over-                                  |       |
|            | represented "non-STAT, IRF or NF-κB" binding elements and C)                                |       |
|            | Under-represented "non-STAT, IRF or NF-κB" binding elements                                 |       |
| Table 5.18 | DAVID functional annotation of genes from Basal Cluster 3                                   | ff96  |
| Table 5.19 | Clover promoter analysis of Basal Cluster 3 displaying A) Over-                             | ff96  |
|            | represented IRF, STAT and NF-кВ binding elements, B) Over-                                  |       |
|            | represented "non-STAT, IRF or NF-κB" binding elements and C)                                |       |
|            | Under-represented "non-STAT, IRF or NF-κB" binding elements                                 |       |
| Table 5.20 | DAVID functional annotation clustering of genes up-regulated in the                         | ff98  |
|            | thymus of $Socs1^{+/+}$ If $n\gamma^{-/-}$ mice with 3 and 6 hour IFN $\alpha$ stimulations |       |
| Table 5.21 | DAVID functional annotation clustering of genes up-regulated in the                         | ff98  |
|            | thymus of <i>Socs1<sup>-/-</sup>Ifnγ<sup>-/-</sup></i> mice 3 and 6 hours post IFNα         |       |
| Table 5.22 | DAVID functional annotation of genes that interact over IFN $\alpha$ and                    | ff99  |
|            | Socs1 regulation                                                                            |       |
| Table 5.23 | Over-represented STAT, IRF and NF-kB binding elements within the                            | ff99  |
|            | promoters of genes that interaction over IFN $\alpha$ and SOCS1 regulation                  |       |
| Table 5.24 | DAVID functional annotation of genes from Interaction Cluster 1                             | ff100 |
| Table 5.25 | Over-represented STAT, IRF and NF-kB binding elements within the                            | ff100 |
|            | promoters of genes within Interaction Cluster 1                                             |       |
| Table 5.26 | DAVID Functional Annotation clustering of genes found regulated by                          | ff101 |
|            | IFNα yet not by Socs1 (Time – Interaction)                                                  |       |
| Table 5.27 | Promoter Enrichment of genes found regulated by $IFN\alpha$ yet not by                      | ff101 |
|            | Socs1 (Time minus Interaction)                                                              |       |

# ABBREVIATIONS

| AP-1   | Activator protein-1                         |
|--------|---------------------------------------------|
| ATP    | Adenosine triphosphate                      |
| BMM    | Bone marrow-derived macrophages             |
| CARD   | Caspase activation and recruitment domain   |
| CBP    | CREB-binding protein                        |
| cDNA   | Complimentary DNA                           |
| Cmpk2  | Cytidine monophosphate (UMP-CMP) kinase 2   |
| CpG    | 2' -deoxyribo(cytidine-phosphate-guanosine) |
| CREB   | cAMP responsive element binding             |
| DC     | Dendritic cell                              |
| Dhx58  | DEXH (Asp-Glu-X-His) box polypeptide 58     |
| DNA    | Deoxyribonucleic acid                       |
| dsRNA  | Double stranded RNA                         |
| EAR2   | Nuclear receptor subfamil 2                 |
| ES     | Enrichment score                            |
| Ets    | Erythroblastosis virus E26 oncogene homolog |
| GAPDH  | Glyceraldehyde phosphate dehydrogenase      |
| GTP    | Guanosine triphosphate                      |
| HAT    | Histone acetyltransferase                   |
| HMG    | High-mobility group                         |
| IFN    | Interferon                                  |
| IFNAR1 | IFN alpha receptor 1                        |
| IFNAR2 | IFN alpha receptor 2                        |

| IL    | Interleukin                                             |
|-------|---------------------------------------------------------|
| IRF   | Interferon regulated factor                             |
| ISG   | Interferon-stimulated gene                              |
| ISG15 | Interferon stimulated gene 15kDa                        |
| ISGF3 | Interferon-stimulated gene factor 3                     |
| ISRE  | Interferon stimulated response element                  |
| IU    | International units                                     |
| lκB   | Inhibitors of KB                                        |
| JAK   | Janus kinase                                            |
| Lck   | Lymphocyte-specific protein tyrosine kinase             |
| LMCV  | Lymphocytic chorimeningitis                             |
| LPS   | Lipopolysaccharide                                      |
| MDA5  | Melanoma Differentiation-Associated protein 5           |
| MFI   | Mean Flourescence Intensity                             |
| Mx    | Myxovirus (influenza virus) resistance                  |
| MyD88 | Myeloid differentiation protein 88                      |
| NF-κB | Nuclear factor of kappa light chain gene enhancer in B- |
| OAS   | Oligoadenylate synthetase                               |
| PAMP  | Pathogen associated molecular pattern                   |
| PARP  | Poly(ADP-ribose) polymerase                             |
| PBMC  | Peripheral blood mononuclear cells                      |
| PBS   | Phosphate buffered saline                               |
| PCR   | Polymerase chain reaction                               |
| pDC   | Plasmacytoid dendritic cell                             |
| PI3K  | Phosphatidylinositol-3 kinase                           |

| PRD    | Positive regulatory domain                             |
|--------|--------------------------------------------------------|
| PU.1   | Purine-rich 1                                          |
| PUR1   | Purine-rich element binding protein 1                  |
| RA     | Rheumatoid arthritis                                   |
| RIG-I  | Retinoic acid-inducible gene 1                         |
| RNA    | Ribonucleic acid                                       |
| RNAseL | Ribonuclease L                                         |
| RSAD2  | Radical S-adenosyl methionine domain containing 2      |
| RT     | Reverse transcriptase                                  |
| RT-PCR | Real-time polymerase chain reaction                    |
| SDS    | Sodium dodecyl sulphate                                |
| SLE    | Systemic lupus erythematosus                           |
| SOCS   | Suppressor of cytokine signaling                       |
| ssRNA  | Single stranded RNA                                    |
| STAT   | Signal transducer and activator of transcription       |
| SVK    | Spleen tyrosine kinase                                 |
| TF     | Transcription factor                                   |
| TLR    | Toll like receptor                                     |
| TRAF   | TNF receptor-associated factor                         |
| TRAM   | TRIF-related adaptor molecule                          |
| TRIF   | TIR domain containing adaptor inducing IFNb            |
| TRIM   | Tripartite motif                                       |
| TRP4   | Transient receptor potential cation channel, subfamily |
| TYK2   | Tyrosine kinase 2                                      |
| USP18  | Ubiquitin specific peptidase                           |
| VSV    | Vesicular somatitis virus                              |

## **CHAPTER 1**

## LITERATURE REVIEW

## INTERFERON SIGNALING AND ITS REGULATION BY SOCS1

#### **1.1 Introduction**

The IFNs were first discovered approximately 50 years ago due to their potent antiviral activity (Nagano and Kojima 1954; Isaacs and Lindenmann 1957). Since then, the critical importance of type I IFNs in controlling innate and adaptive immune responses has emerged and there are many examples of their use in clinical settings for the treatment of viral infections, cancers and some autoimmune diseases. The mechanism of type I IFN signaling, however, is complex and not yet fully understood. This review aims to highlight the current understanding of type I IFN signaling pathways and their functions, as well as investigate the negative regulation of type I IFN signaling via the potent inhibitor, suppressor of cytokine signaling (SOCS)1.

#### **1.2 The Interferons**

The interferons are a family of cytokines that elicit multifaceted effects in host innate and adaptive immunity. Produced in response to a number of stimuli, in particular viral infection, they exhibit antiviral, antiproliferative and immunomodulatory properties.

There are three types of IFNs: type I, type II and type III IFNs. The type I IFN family is extensive, consisting of multiple IFN $\alpha$  subtypes, IFN $\beta$ , IFN $\omega$ , IFN $\epsilon$  and IFN $\kappa$ , IFN $\delta$ , IFN $\tau$  and limitin (Hardy, Owczarek et al. 2004). The type II IFN family consists solely of IFN $\gamma$  and the type III interferon family consists of IFN $\lambda$ 1, IFN $\lambda$ 2 and IFN $\lambda$ 3 (Kotenko, Gallagher et al. 2003; Sheppard, Kindsvogel et al. 2003).

Human type I IFNs consist of 13 IFN $\alpha$ 's as well as IFN $\beta$ , IFN $\omega$ , IFN $\epsilon$  and IFN $\kappa$ . IFN $\delta$ , IFN $\tau$  and limitin are only found in pigs/cattle, ruminants and mice respectively (Hardy, Owczarek et al. 2004). The type I IFN genes are clustered on human chromosome 9p21 and in mouse they are clustered in a region of conserved synteny on chromosome 4 (Hardy, Owczarek et al. 2004). Phylogenetic analysis reveals three

main subfamilies of type I IFNs in mammals, IFN $\alpha$ , IFN $\beta$  and IFN $\omega$ . IFN $\beta$  appears as an out-group. Clustering based on amino acids identifies greater intra-species rather that interspecies similarities among the type I IFN subtypes (Hardy, Owczarek et al. 2004).

Although, by definition, all type I IFNs signal through the same receptor, they have a range of different functions and biological activities. Most studies performed with type I IFNs use IFN $\alpha$  subtypes and IFN $\beta$ . These are therefore extensively characterised and the main focus of this literature review.

#### **1.3 Production of the Type I IFNs**

All nucleated cell types can produce type I IFN upon pathogenic infection via the detection of pathogen associated molecular patterns. Plasmacytoid dentritic cells, however, are specialised IFN producing cells that can produce large amounts of IFN (Liu 2005).

There are a number of complementary systems for pathogen detection leading to type I IFN production. These include the transmembrane toll-like receptors (TLR's) that localise at the plasma membrane or within intracellular vesicles, and cytosolic receptors including the RIG-I like helicases, DNA sensors such as STING and the DEAD/H-box helicases, the NOD-like receptors and C-type lectins (Dostert, Meylan et al. 2008; Takeuchi and Akira 2010; Sancho and Reis e Sousa 2012). The induction of type I IFNs in response to these pathogen detectors occurs in a cell-type specific and pathogen specific manner (Kato, Sato et al. 2005). Pathogen detection via these receptors leads to downstream signaling events resulting in the activation of transcription factors which regulate IFN production. Figure 1.1 shows the general signaling pathways from TLRs and the RIG-I like receptors following pathogen detection and the subsequent expression of type I IFNs.

#### 1.3.1 Transcriptional Activation of Type I IFN Production

The promoter regions of the type I IFNs contain a number of regulatory *cis* elements. The IFN $\beta$  gene contains the positive regulatory domains (PRDs) I, II, III and IV while the promoter regions of the IFN $\alpha$  genes contain PRDI-like and PRDIII-like elements (Kim and Maniatis 1997; Honda, Takaoka et al. 2006). These elements bind transcription factors such as IRFs, NF-kB (for IFN $\beta$  only) and AP-I along with the high-



**Figure 1.1. Pathways leading to the transcriptional activation of the type I IFNs.** Type I IFN expression is activated in response to TLR mediated or cytosolic receptor mediated detection of pathogen associated molecular patters. Activation of these pathways leads to transcription factor expression and activation of IRF factors and NFkB, resulting in type I IFN production.

mobility group protein HMG-I(Y) to form the "enhanceosome" complex (Kim and Maniatis 1997). For IFN $\beta$  gene expression, the enhanceosome recruits the histone acetyl transferase (HAT), called GCN5, which acetylates the nucleosomes blocking the TATA box and the transcription start site (Agalioti, Lomvardas et al. 2000). GCN5 then dissociates and the CBP-PoIII holoenzyme complex is recruited by the enhanceosome. Next the SWI/SNF complex is recruited by CBP and is stabilised by the acetylated histones. SWI/SNF remodels the nucleosomes allowing the transcription factor II D (TFIID) complex access to the promoter to drive gene expression (Agalioti, Lomvardas et al. 2000).

IRF3 and IRF7 are critical regulators of type I IFN production (Sakaguchi, Negishi et al. 2003; Honda, Yanai et al. 2005). They are members of a family of nine transcription factors (IRF1-9) which contain a conserved N-terminal DNA binding domain consisting of five tryptophan repeats (Mamane, Heylbroeck et al. 1999). Through this domain they bind specific DNA motifs within the promoter regions of responsive genes. IRF3 is constitutively expressed in many cell types and exists in the cytoplasm in an inactive state. In response to viral infection, it is activated via phosphorylation resulting in dimerisation and translocation to the nucleus (Sato, Tanaka et al. 1998). IRF3 binds to PRDI and PRDIII located within the IFN $\beta$  promoter and interacts with CBP to mediate IFN $\beta$  gene expression (Sato, Tanaka et al. 1998). In contrast, IRF3 has little effect on IFNα gene induction (Sato, Hata et al. 1998; Sato, Tanaka et al. 1998). Instead the IFNa's are expressed as a result of IRF7 activation. IRF7 is expressed at low levels in most cell types but is strongly induced by type I IFN signaling through Interferonstimulated gene factor 3 (ISGF3) (Sato, Hata et al. 1998). IRF7 also exists in an inactive state in the cytoplasm and upon viral infection undergoes phosphorylation, dimerisation and translocation into the nucleus. It can bind to the PRDI and PRDIII-like domains in the IFN $\alpha$  promoter regions inducing the expression of IFN $\alpha$  subtypes as well to the IFN $\beta$  promoter to induce IFN $\beta$  expression (Sato, Hata et al. 1998). The regulated expression of IRF7 by type I IFN signaling through ISGF3 creates a two phase expression of type I IFNs; IRF3 initially induces IFN $\beta$  which then acts in a positive feedback loop to induce IRF7, resulting in a subsequent second phase of IFNa's expression (Sato, Tanaka et al. 1998). IRF7 also has a short half-life which may be a means to prevent overproduction of IFN (Honda, Takaoka et al. 2006).

Unlike other cell types, plasmacytoid dendritic cells (pDCs) are specialised IFN producing cells (Liu 2005). They constitutively express high levels of IRF7 and are thus primed to respond rapidly to viral infection (Honda, Yanai et al. 2005). This results in the rapid production of large amounts of IFN $\alpha$  and IFN $\beta$ . Within 24 hours of viral stimulation, pDCs produce 100 -1000 times the amount of IFN produced by any other cell type. pDCs have an important role in adaptive immune responses via the regulation of T-cells and B-cells thus linking innate and adaptive immunity (Liu 2005). In addition to pDCs, the constitutive expression of IRF7 may also occur in other cell types such as mammary epithelium where it has critical immune-regulatory effects (Bidwell, Slaney et al. 2012).

NF- $\kappa$ B and AP-1 are transcription factors that are also activated by viral infection and involved in the regulation of type I IFN production. They bind to PRDII and PRDIV elements within the promoter region of the IFN $\beta$  gene only (Kim and Maniatis 1997). Activation of NF- $\kappa$ B is central to TLR signaling, regulating a multitude of anti-pathogenic genes. NF- $\kappa$ B is maintained in the cytoplasm in the un-induced state through an interaction with I $\kappa$ B proteins. Activation of the IKK complex induces phosphorylation of the I $\kappa$ B proteins and their consequent ubiquitination and degradation. This releases NF- $\kappa$ B allowing translocation into the nucleus and activation of gene transcription (Carmody and Chen 2007).

#### 1.3.2 Toll Like Receptors and Type I IFN Induction

Toll-like receptors (TLRs) are key pathogen recognition receptors involved in innate immunity. They are transmembrane receptor proteins expressed at the cell surface and within endosomes. They recognise pathogen associated molecular patterns (PAMPs) from a wide range of microorganisms resulting in the activation of downstream signaling pathways and an innate immune response (Uematsu and Akira 2007). There are 13 mammalian TLRs. They contain a cytoplasmic Toll/IL-1 receptor (TIR) domain that is highly similar to the cytoplasmic domain of IL-1R and is required for activation of signaling events. The extracellular domains of TLRs contain leucine rich repeats and are responsible for PAMP recognition. Each TLR recognises specific PAMPs and activates its own intrinsic pathways to induce a specific biological response. A subset of TLRs induce type I IFN production in response to both viral and bacterial pathogen recognition. These include TLR3, TLR4, TLR7, TLR8 and TLR9 (Uematsu and Akira 2007). TLRs signal through their TIR domain by recruiting other TIR domain-containing

adaptor proteins in a homotypic interaction. These adaptor proteins include MyD88, MAL, TRIF and TRAM. TLR stimulation results in activation of the MyD88-dependent or the TRIF-dependent signaling pathways. All TLRs, except TLR3 activate the MyD88-dependent pathway whereas only TLR3 and TLR4 activate the TRIF-dependent pathway (Uematsu and Akira 2007).

TLR3 recognises viral dsRNAs from dsRNA and ssRNA viruses as well as a synthetic analogue of dsRNA, poly(I:C) (Choe, Kelker et al. 2005; Akira, Uematsu et al. 2006). Ligand stimulation of TLR3 results in activation of IRF3 and NF- $\kappa$ B via the TRIF signaling pathway (Yamamoto, Sato et al. 2003). TLR4, located on the cell surface plasma membrane, recognises lipoplysaccahride (LPS) from Gram negative bacterial cell walls as well as a number of viral proteins (Poltorak, He et al. 1998; Hoshino, Takeuchi et al. 1999; Akira, Uematsu et al. 2006). Once TLR4 activates the MyD88-dependent signaling pathway at the cell surface it is then internalised in an endosome and recruits TRAM and TRIF to activate the TRIF-dependent signaling pathway. This results in NF- $\kappa$ B and IRF3 activation which translocate to the nucleus and drive the transcription of IFNβ (Kawai, Adachi et al. 1999; Fitzgerald, Rowe et al. 2003). TLR4 induced IFNβ production is dependent on IRF3 rather than IRF7 activation. This is evident as IFNβ production in *Irf7*<sup>-/-</sup> mice (Honda, Takaoka et al. 2006).

pDCs, the specialised IFN producing cells, express high levels of TLR7 and TLR9 and are thus primed to respond rapidly to pathogen. TLR9 recognises CpG DNA (CpG DNA motifs are found in the genomes of DNA viruses) and TLR7 recognises guanosine or uridine rich ssRNA from a number of viruses. Type I IFN production via TLR7 and TLR9 in pDCs is dependent on MyD88 and results in the activation of IRF7. This occurs through a direct interaction of MyD88 with IRF7 via its death domain while TRAF6 activates IRF7 through its ubiquitin E3 ligase activity (Hemmi, Kaisho et al. 2003; Honda, Yanai et al. 2004; Kawai, Sato et al. 2004). Other signaling events have also been linked to the activation of IRF7 in pDCs. IRAK1, IRAK4 and IKK $\alpha$  have been shown to be important for IRF7 activation suggesting that the IRAK1, IRAK4 and IKK $\alpha$ pathway may also be involved in full IRF7 phosphorylation (Uematsu and Akira 2007). The exact mechanisms of IRF7 activation need to be further elucidated to get a clearer picture of the pathways involved. IRF1 is also activated by TLR signaling via a direct interaction with MyD88. This pathway appears more important in myeloid DCs rather than pDCs. IRF1 is strongly induced by IFN $\gamma$  and IFN $\beta$  induction is increased in DCs in an IRF1 dependent fashion following pre-treatment with IFN $\gamma$  (Negishi, Fujita et al. 2006).

In addition to the TLRs, the C-type Lectins are another family of plasma membrane receptors that recognise PAMPs (Zelensky and Gready 2005). The cytoplasmic domains of the C-type lectins contain Immunoreceptor Tyrosine based Activation Motifs (ITAMs) which signal via the recruitment of Syk kinases, MAP kinases, NFAT and NF<sub>x</sub>B pathways leading to the modulation of cytokine production (Zelensky and Gready 2005). In the context of type I IFN expression, the C-type lectin, CLEC4C, has been shown to inhibit TLR-9 induced type I IFN production in pDCs through activation of Syk kinases (Dzionek, Sohma et al. 2001). An increase in CLEC4C antigen expression by peripheral blood leukocytes following infection is thought to help control excessive IFN production activated by pDCs in pathological tissue (Riboldi, Daniele et al. 2011). Furthermore, the expression of CLEC4C antigen on tumour cells is thought to be a mechanism to evade type I IFN responses (Riboldi, Daniele et al. 2011).

#### 1.3.3 Cytosolic Receptors and Type I IFN Induction

Host mechanisms have also developed for the detection of cytosolic pathogens and associated antigens. These include the RIG-I like helicases, the NOD-like receptors and other sensors such as STING.

Viral replication can result in the production of intracellular dsRNA. RNA helicase retinoic acid inducible gene (RIG-I) and its homologue melenoma-differentiationassociated gene 5 (MDA5) are essential cytosolic proteins involved in intracellular dsRNA recognition leading to the production of type I IFNs (Yoneyama, Kikuchi et al. 2004; Kato, Takeuchi et al. 2006). They serve complementary roles both *in vivo* and *in vitro* in dsRNA detection. *In vitro* RIG-I and MDA5 detect different types of dsRNA; RIG-I detects *in vitro* transcribed dsRNAs whereas MDA5 detects poly(I:C) (Kato, Takeuchi et al. 2006). RIG-I and MDA5 also have differential roles in the recognition of RNA viruses (Kato, Takeuchi et al. 2006). *Rig-I<sup>-/-</sup>* mice are unable to produce type I IFN in response to negative-sense ssRNA viruses including Newcastle Disease virus (NDV), Sendai virus (SeV), Vesicular Stomatitis virus (VSV) and influenza as well as positive sense ssRNA viruses such as Japanese encephalitis virus whereas MDA5 is dispensable for type I IFN production in response to these viruses (Kato, Sato et al. 2005; Kato, Takeuchi et al. 2006). In contrast,  $Mda5^{-/-}$  mice are unable to produce type I IFN in response to positive-sense ssRNA viruses such as Encephalomyocarditis virus (EMCV), Theiler's virus and Mengo virus (Kato, Takeuchi et al. 2006).

RIG-I and MDA5 are similar in overall structure containing two N-terminal caspase recruitment domains (CARD) and a C-terminal DEcD/H box RNA helicase domain. The DEcD/H box helicase domain is a characteristic motif of many RNA binding proteins. It recognises, binds to, and unwinds dsRNA via ATP hydrolysis. This causes a conformational change within RIG-I and MDA5 allowing the N-terminal CARD domains to interact with the N-terminal CARD domain of the IFN $\beta$  promoter stimulator 1 (IPS-1, also known as MAVS, Cardif and VISA) which is localised to the outer mitochondrial membrane via a C-terminal hydrophobic transmembrane region (Yoneyama, Kikuchi et al. 2004; Kawai, Takahashi et al. 2005) (Kumar, Kawai et al. 2006). The interaction of RIG-I and IPS-1 is facilitated by the E3 ubiquitin ligase, TRIM25. IPS-1 and TRAF3 also directly interact; this is via a TRAF-interaction motif (TIM) within IPS-1 and the TRAF domain of TRAF3 (Saha, Pietras et al. 2006). TRAF3 is involved in the activation of TANK binding kinase (TBK1), the essential serine-threonine kinase for the phosphorylation and activation of IRF3 and IRF7 (Oganesyan, Saha et al. 2006). IPS-1 has also been shown to interact with TRAF6, FADD and RIP1, most likely involved with the activation of NF- $\kappa$ B (Kawai, Takahashi et al. 2005; Xu, Wang et al. 2005). These signaling pathways ultimately result in activation of the transcription factors IRF3, IRF7 and NF- $\kappa$ B consequently leading to type IFN production. IRF3 and IRF7 are both critical to IFN production in the cytosolic pathway however the conventional two-step model of IFN production does not occur. In the cytosolic pathway, in addition to a role in later phase IFN production, IRF7 expression is critical in early phase type I IFN production. In the absence of IRF7 during the early phase, the contribution of IRF3 is minor. It is hypothesised that an IRF7 homodimer or an IRF3/IRF7 heterodimer rather than an IRF3 homodimer may be necessary for IFN production in the cytosolic pathway (Honda, Takaoka et al. 2006).

In addition to cytosolic RNA sensors, there are also a number of cytosolic DNA sensors such as STING and the DEAD/H-box helicases which recognise DNA viruses and drive type I IFN production. STING which recognises dsDNA is localised to the ER. Activation of STING results in its translocation to other subcellular organelles, an association with TBK and subsequent activation of IRF3 and IFNβ production (Ishikawa and Barber 2008). The DEAD/H-box helicases, DHX36 and DHX9 sense CpG DNA

motifs and interact with MyD88 leading to activation of NF-κB or IRF7 activation of IFNα transcription (Kim, Pazhoor et al. 2010).

Other cytosolic receptors involved in pathogen recognition include the NOD-Like receptors (NLRs). Members of the NLR family recognise a range of pathogen antigens including viral RNA, bacterial cell wall peptidoglycans and bacterial associated toxins as well as non-microbial stimuli such as uric acid crystals, amyloid plaques, ATP and cholesterol (Inohara and Nunez 2003; Dostert, Meylan et al. 2008). NLRs contain a Cterminal ligand recognition domain, a central oligomerisation and binding domain (Nod) and an N-terminal interaction domain such as CARD, Pyrin or Baculovirus inhibitor of apoptosis protein repeat (BIR). Ligand binding results in aggregation of NLRs through their central domain and protein interactions through their N-terminal domains to drive inflammation. NOD1 and NOD2 which contain N-terminal CARD domains recruit signaling adaptors leading to activation of NF-kB and the MAP kinase pathways (Inohara and Nunez 2003). NLRs containing BIR or Pyrin domains primarily signal through recruitment of ASC resulting in activation of Caspase 1 which cleaves IL1, IL18 and IL33 to their mature forms (Dostert, Meylan et al. 2008). Interestingly, the NLRP3-ASC-Casapase 1 pathway, while activating IL-1 does not appear to induce expression of the type I IFNs, a notable distinction from most of the other pathogen recognition pathways.

#### 1.4 Type I IFN Signaling

The type I IFNs signal through a common receptor, the IFN alpha-receptor, IFNAR. As demonstrated in Figure 1.2, the primary signaling pathway activated by the type I IFNs is the JAK/STAT signaling pathway resulting in formation of the transcription factor ISGF3 (composed of STAT1 STAT2 and IRF9) as well as other STAT homodimers and heterodimers, which regulate transcription of interferon stimulated genes (ISGs). Below is a detailed review of the signaling events leading to the activation of the JAK/STAT pathway from the receptor to STAT mediated expression of ISGs.

#### 1.4.1 The IFN Alpha Receptor (IFNAR)

All type I IFNs signal through the IFNα-receptor, IFNAR, composed of two transmembrane glycoproteins belonging to the class II helical cytokine receptor (hCR)



Nucleus



**Figure 1.2. The Type I IFN JAK/STAT pathway.** Type I IFN binding to IFNAR results in cross-activation of the intracellular associated kinases, Tyk2 and Jak1. These in turn phosphorylate intracellular tyrosine residues of IFNAR1 and IFNAR2. STATs are recruited to the receptor via the interaction of their SH2 domain with phosphorylated receptor tyrosines. Recruited STATs are phosphorylated via the receptor associated kinases resulting in STAT dimerisation and translocation to the nucleus to regulate gene expression. All STAT family members can be activated by the type I IFNs resulting in various combinations of STAT dimers which bind distinct DNA elements to regulate transcription. The complex ISGF3, composed of STAT1, STAT2 and IRF9, is highly activated by type I IFNs and binds ISRE sites within the promoters of ISGs.

family (Kim, Cohen et al. 1997; Krause and Pestka 2005). The two receptor subunits IFNAR1 and IFNAR2 are expressed in almost every cell type (Kim, Cohen et al. 1997). Many cells are therefore able to respond to IFN stimulation. The genes encoding IFNAR1 and IFNAR2 are located on human chromosome 21q22.1 in a cytokine receptor gene cluster.

Both receptor subunits are required for type I IFN signaling (Domanski, Witte et al. 1995). A two-step mechanism of IFN binding to IFNAR occurs by which IFN initially docks onto the high affinity receptor subunit IFNAR2 to form an IFN-IFNAR2 complex which then binds IFNAR1 (Cohen, Novick et al. 1995). IFN binding to the receptor is species specific as mu-Ifn cannot bind hu-IFNAR and vice versa (Constantinescu, Croze et al. 1994).

Hu-IFNAR1 and mu-Ifnar1 were first cloned in 1990 and 1992, respectively (Uze, Lutfalla et al. 1990; Uze, Lutfalla et al. 1992). Figure 1.3 shows the structure of hu-IFNAR1 and mu-Ifnar1. Hu-IFNAR1 is a glycoprotein of 557 amino acids. It consists of a 27 amino acid leader sequence, a large extracellular domain of 409 amino acids, a single transmembrane domain of 21 amino acids and an intracellular domain of 100 amino acids (Uze, Lutfalla et al. 1990). Mu-Ifnar1 is a 590 amino acid protein with 46% amino acid homology with hu-IFNAR1. It contains a leader sequence of 26 amino acids, a large extracellular domain of 403 amino acids, a single transmembrane domain of 403 amino acids, a single transmembrane domain of 403 amino acids.

The extracellular domain of IFNAR1 consists of four subdomains (SD1-SD4) each containing a fibronectin (FBN-like) domain. The subdomains SD1-SD3 are involved in ligand binding (SD1-SD3) as well as binding membrane glycosphingolipids (SD1) (Ghislain, Lingwood et al. 1994; Cajean-Feroldi, Nosal et al. 2004; Chill, Quadt et al. 2004; Lamken, Lata et al. 2004; Strunk, Gregor et al. 2008). SD4 is required for inducing a conformation change in IFNAR1 following ligand binding which is essential for signal activation (Strunk, Gregor et al. 2008). The intracellular domain of IFNAR1 is constitutively associated with the Janus Tyrosine Kinase, TYK2 (Colamonici, Uyttendaele et al. 1994; Gutterman 1994). The TYK2 binding site on hu-IFNAR1 has been mapped to residues 481 - 511 (Yan, Krishnan et al. 1996). The recruitment of SH2 domain-containing signaling molecules (such as STATs) to the receptor requires phosphorylated tyrosine residues. The intracellular domain of human and murine IFNAR1 contains four tyrosine residues (hu-IFNAR1; Tyr466, Tyr481, Tyr527 and

## **Full Length IFNAR1**



**Figure 1.3: Structure of hu-IFNAR1 and mu-Ifnar1**. hu-IFNAR1 and mu-Ifnar1 consist of four extracellular subdomains (SD1 – SD4) involved in ligand binding and ternary complex formation, a transmembrane domain (TM) and an intracellular domain containing a JAK binding domain (JBD) and four tyrosine phosphorylation sites.

Tyr538, mu-Ifnar1; Tyr455, Tyr518, Tyr529 and Tyr576). The two most C-terminal tyrosine residues of hu-IFNAR1, Tyr527 and Tyr538, are conserved in mouse and correspond to Tyr518 and Tyr529 of mu-Ifnar1. A negative regulatory region of IFNAR1 has been mapped to 16 residues surrounding the two conserved tyrosines, as deletion of this region resulted in increased sensitivity to IFN (Gibbs, Takahashi et al. 1996; Basu, Yang et al. 1998).

The importance of IFNAR1 is evident in the phenotype of *lfnar1*<sup>-/-</sup> mice (Muller, Steinhoff et al. 1994; Hwang, Hertzog et al. 1995). IFNAR1 is vital for mediating the antiviral activities of type I IFNs and *lfnar1*<sup>-/-</sup> mice are extremely susceptible to viral infection (Hwang, Hertzog et al. 1995). Compared to wild type mice, *lfnar1*<sup>-/-</sup> mice die rapidly after SFV and EMCV infection with extremely high viral titres detected in multiple organs. The induction of antiviral IFN stimulated genes such as 2'-5'OAS were undetectable in *lfnar1*<sup>-/-</sup> cells following treatment with IFN. Abnormalities of hemopoietic cells are also seen in the *lfnar1*<sup>-/-</sup> mice (Hwang, Hertzog et al. 1995). Elevated levels of myeloid lineage cells are detected in the peripheral blood and bone marrow. In addition, bone marrow macrophages from *lfnar1*<sup>-/-</sup> mice are functionally abnormal showing reduced antiproliferative and antiviral effects and aberrant responses to CSF-1 (Hwang, Hertzog et al. 1995). Interestingly there were no differences observed in the levels of peripheral blood CD4 or CD8 T-cell populations in *lfnar1*<sup>-/-</sup> compared to wild type mice (Hwang, Hertzog et al. 1995).

There are three forms of hu-IFNAR2: a soluble form (hu-IFNAR2a) and two transmembrane forms (short; IFNAR2b and long; IFNAR2c). The soluble and short transmembrane forms of hu-IFNAR2 were identified and cloned in 1994 and the long transmembrane form in 1995 (Novick, Cohen et al. 1994; Domanski, Witte et al. 1995; Lutfalla, Holland et al. 1995). Three forms of mu-Ifnar2 have also been cloned including two soluble forms, mu-Ifnar2a and mu-Ifnar2a' and one transmembrane form, Mu-Ifnar2c (Kim, Cohen et al. 1997; Owczarek, Hwang et al. 1997). Figure 1.4 shows the structure of long hu-IFNAR2 and mu-IFNAR2c. There has also been *in vitro* evidence for the generation of a soluble IFNAR2 by cleavage of transmembrane hu-IFNAR2 by intramembrane proteases (Saleh, Fang et al. 2004). Long transmembrane hu-IFNAR2 is 515 amino acids, short transmembrane hu-IFNAR2 is 331 amino acids and soluble hu-IFNAR2 is 239 amino acids in length. The transmembrane forms share the same 26 amino acid soluble form of IFNAR2 consists of the leader sequence and extracellular

**Full Length** 



#### **Intracellular Domain**



**Figure 1.4: Structure of hu-IFNAR2 (long form) and mu-Ifnar2c.** hu-IFNAR2 (long form) and mu-Ifnar2c consist of two extracellular subdomains involved in ligand binding, a transmembrane domain (TM) and an intracellular domain containing a JAK binding domain (JBD) and seven (human) or six (mouse) tyrosine phosphorylation sites.

region up to amino acid 237 with an additional two amino acids at its C-terminal end (Novick, Cohen et al. 1994). Short and long transmembrane forms diverge at amino acid 280, which is just distal to the 21 amino acid transmembrane region. Long hu-IFNAR2 has an intracellular region of 251 amino acids and short IFNAR2 has an intracellular region of 67 amino acids (Novick, Cohen et al. 1994; Lutfalla, Holland et al. 1995). The structure of mu-Ifnar2c includes a 27 amino acid leader sequence, an extracellular region of 250 amino acids, a transmembrane region of 21 amino acids and an intracellular region of 250 amino acids (Kim, Cohen et al. 1997; Owczarek, Hwang et al. 1997). The two soluble forms of mu-Ifnar2, mu-Ifnar2a and mu-Ifnar2a', contain all but the last six C-terminal amino acid residues of the extracellular domain of mu-Ifnar2c. Each variant has an additional 12 (mu-Ifnar2a) and 11 (mu-Ifnar2a') unique amino acid residues at their C-terminus. Long transmembrane forms of murine and human IFNAR2 share 49% structural identity.

Only the long form of IFNAR2, when expressed with IFNAR1, can activate the JAK-STAT signaling pathway in response to type I IFN (Lutfalla, Holland et al. 1995). The short IFNAR2 form does not contain the full JAK1 binding motif and although it can bind IFN, is unable to activate IFN induced pathways. It has been reported to have a dominant negative role following IFN $\alpha$  stimulation, inhibiting the signaling pathways activated by the long form (Pfeffer, Basu et al. 1997; Gazziola, Cordani et al. 2005). For example, when expressed with IFNAR1, the short form of IFNAR2 reduces the IFNinduced antiviral, antiproliferative and ISRE-dependent gel shift binding activity conferred by IFNAR1 alone (Pfeffer, Basu et al. 1997). The soluble forms of IFNAR2 have been found to have both agonistic and antagonistic effects in vitro (Hardy, Owczarek et al. 2001). In L929 cells, recombinant mu-Ifnar2a competitively inhibited IFN $\alpha$  and IFN $\beta$  in reporter assays as well as the anti-viral and anti-proliferative effects of IFN. In contrast, in primary thymocytes from *Ifnar2<sup>-/-</sup>* mice, recombinant mu-Ifnar2a was able to form a complex with IFN $\alpha$  or IFN $\beta$  and mu-Ifnar1 and transmit an antiproliferative signal (Hardy, Owczarek et al. 2001). In vivo, soluble Ifnar2 has been found to potentiate IFN signaling; transgenic mice overexpressing soluble Ifnar2 are more susceptible to LPS- and IFN $\beta$ - induced septic shock (Samarajiwa et al, unpublished data). Soluble Ifnar2 may therefore be involved in trans-signaling events (similar to sIL6R) (de Weerd, Samarajiwa et al. 2007; Waetzig and Rose-John 2012). Low concentrations of soluble Ifnar2 have also found to increase the stability of IFN $\beta$  and may therefore potentiate signaling by reducing the clearance and increasing the half-life of IFN $\beta$  *in vivo* (McKenna, Vergilis et al. 2004).

The remainder of this section of the review will focus on signaling events mediated by the long transmembrane form of IFNAR2 rather than the short forms. The intracellular domain of IFNAR2 is constitutively associated with the JAK tyrosine kinase, JAK1 (Domanski, Fish et al. 1997). The JAK1 binding region of hu-IFNAR2 maps to amino acids 300-346 (Domanski, Fish et al. 1997). The intracellular region of hu-IFNAR2 contains two clusters of tyrosines, a proximal cluster (Tyr269, Tyr306, Tyr316, Tyr318, and Tyr377) and a distal cluster (Tyr411 and Tyr512). The intracellular region of mu-Ifnar2c contains Tyr268, Tyr315, Tyr317, Tyr355, Tyr398 and Tyr 510.

IFNAR2 is also essential for IFN signaling as demonstrated in  $Ifnar2^{-/-}$  mice. These mice are highly susceptible to viral and bacterial infections and have abnormal thymic T-cell development (Hertzog et al, unpublished data).

## 1.4.2 Janus Tyrosine Kinases (JAKs)

The Janus Tyrosine Kinases (JAKs) are a family of non-receptor protein tyrosine kinases that include JAK1, JAK2, JAK3 and TYK2. Figure 1.5 shows the general structure of the JAK kinases. These kinases are 115 – 135 kDa and consist of seven JH regions. C-terminal JH1 is a pseudo-kinase domain, JH2 is an adjacent kinase domain and JH3-JH7 are involved in protein interactions. TYK2 and JAK1 are intracellularly associated with IFNAR1 and IFNAR2 respectively and upon IFN binding, TYK2 and JAK1 are thought to be trans-phosphorylated and activated resulting in phosphorylation of the receptor subunits (Muller, Briscoe et al. 1993; Barbieri, Velazquez et al. 1994; Constantinescu, Croze et al. 1994).

#### 1.4.2.1 TYK2

The intracellular domain of IFNAR1 is constitutively associated with the Janus Tyrosine Kinase, TYK2 (Colamonici, Uyttendaele et al. 1994; Gutterman 1994). TYK2 was first linked to type I IFN signaling by chemical mutagenesis of a 2fTGH cell line resulting in a mutant cell line (Mutant 11,1) unresponsive to IFN $\alpha$  and only partially sensitive to IFN $\beta$  (Velazquez, Fellous et al. 1992). Transfection of a cosmid containing the TYK2 gene into the mutant cells reverted the cell phenotype back to that of wild type 2fTGH cells (Velazquez, Fellous et al. 1992). The TYK2 binding site on IFNAR1 has been



Figure 1.5 Structure of the JAK kinases. JAK kinases consist of seven Janus Homolgy regions (JH1 – JH7). C-terminal JH1 is a pseudo-kinase domain, JH2 is a kinase domain and JH3 – JH7 are involved in protein interactions.
mapped to residues 481 - 511 of hu-IFNAR1 with most of the conserved residues within this region required for binding (Yan, Krishnan et al. 1996). The mutation of critical residues within this site results in reduced TYK2, STAT1 and STAT2 phosphorylation in response to IFN $\alpha$  (Yan, Krishnan et al. 1996).

TYK2 has also been linked to the stabilisation of IFNAR1 at the plasma membrane (Gauzzi, Barbieri et al. 1997; Ragimbeau, Dondi et al. 2003). In cells lacking TYK2, IFNAR1 is only weakly expressed at the cell surface and is instead found localised in a perinuclear endosomal compartment (Ragimbeau, Dondi et al. 2003). Increased expression of TYK2 results in increased localisation of IFNAR1 to the cell surface and reduced degradation of IFNAR1 due, in part, to reduced endocytosis (Ragimbeau, Dondi et al. 2003).

TYK2 deficient mice show no overt developmental deficiencies however contain defects in IL-12 induced T-cell functions (Shimoda, Kato et al. 2000). Although un-responsive to low doses of IFNα, *Tyk2<sup>-/-</sup>* embryonic fibroblasts (EFs) are still sensitive to high doses of IFNα as assessed by phosphorylation of STAT1, STAT2 and the induction of MHC class-1 (Shimoda, Kato et al. 2000). These mice also respond normally to IL-6 and IL-10 which both activate TYK2 *in vitro*. In addition, the level of expression of IFNAR1 on the cell surface membrane was similar to that of wild type mice, which contradicts previous findings that TYK2 stabilises IFNAR1 at the plasma membrane (Shimoda, Kato et al. 2000). These findings were somewhat surprising as a larger defect in type I IFN signaling was expected. The JAKs are quite similar in structure and perhaps in the absence of TYK2 another JAK is able to bind IFNAR1 or other cytokine receptors (such as receptors of IL-6 and IL-10) and mediate IFN signaling.

#### 1.4.2.2 JAK1

The intracellular domain of IFNAR2 is constitutively associated with the Janus Tyrosine Kinase, JAK1 (Domanski, Fish et al. 1997). Similarly to TYK2, JAK1 was first linked to type I IFN signaling via mutagenesis of a 2fTGH cell line resulting in a mutant cell line (U4A) unresponsive to IFN $\alpha$ . Transfection of JAK1 back into the mutant cell line resulted in restoration of the type I IFN response (Muller, Briscoe et al. 1993). The JAK1 binding region on IFNAR2 comprises amino acids 300-346. This is distinct from the Box 1 motif (amino acids 287-295) of IFNAR2, which is important for the binding of other cytokine receptors to JAK kinases (Domanski, Witte et al. 1995).

Disruption of the JAK1 gene in mice show that it is essential for type I and II IFN signaling as well as for many other cytokine signaling pathways, including those involving class II cytokine receptors and those that utilise the gp130 receptor subunit and  $\gamma_c$  subunit (Rodig, Meraz et al. 1998). JAK1 null mice die perinatally and weigh 40% less than their wild type littermates. Although no gross abnormalities are found in most organs, the thymus is significantly reduced in size, containing a severely reduced number of thymocytes, possibly due to a lack of IL-7 signaling (Rodig, Meraz et al. 1998). Fibroblasts and macrophages from JAK1 null embryos are unresponsive to IFN $\alpha$  and IFN $\gamma$ , demonstrating the importance of JAK1 in type I and II IFN signaling (Rodig, Meraz et al. 1998).

# 1.4.2.3 JAK Activation and Function

TYK2 and JAK1 are rapidly phosphorylated and activated in response to IFN $\alpha$  (Muller, Briscoe et al. 1993; Barbieri, Velazquez et al. 1994; Colamonici, Yan et al. 1994; Constantinescu, Croze et al. 1994; Platanias, Uddin et al. 1994). This is likely via cross-phosphorylation. In mutant U4A cells lacking JAK1, TYK2 fails to be phosphorylated in response to IFN. Conversely, JAK1 fails to be phosphorylated in mutant U1D cells lacking TYK2 (Muller, Briscoe et al. 1993). TYK2 is phosphorylated on amino acids Tyr1054 and Tyr1055, located within its kinase domain (Gauzzi, Velazquez et al. 1996). Activated TYK2 and JAK1 are then likely to phosphorylate IFNAR. Phosphorylation of the JAKs and IFNAR subunits follows similar kinetics peaking within 1 - 5 minutes and reducing by 60 minutes (Constantinescu, Croze et al. 1994; Platanias, Uddin et al. 1994). Phosphorylated receptor chains and JAK kinases then recruit and activate signaling molecules (such as STATs) to elicit the type I IFN response.

#### 1.4.3 Signal Transducers and Activators of Transcription

STATs are a family of transcription factors activated in response to cytokine signaling. Figure 1.6 shows the general structure of the STAT proteins. They are between 750 and 800 amino acids in length and contain an SH2 domain that mediates binding to other proteins, a carboxyl-terminal tyrosine phosphorylation site, a DNA binding site between amino acids 400 and 500 and an N-terminal portion that mediates cooperative binding to multiple DNA sites (Akira 1999). There are 7 STAT family members: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6. Type I IFNs can activate all STAT family members (van Boxel-Dezaire, Rani et al. 2006). The mechanism however is complex and occurs in a cell type and specific manner (as discussed below).



**Figure 1.6 Structure of the STAT family of transcription factors.** STAT family members contain several functional domains including an N-terminal protein interaction domain, a coiled-coil domain, a central DNA binding domain, an SH2-domain and a C-terminal transactivation domain containing a conserved tyrosine residue (Y) which once phosphorylated binds the SH2 domain of other STAT molecules to form STAT dimers. .

Specific phosphorylated tyrosine residues of IFNAR serve as docking sites for the SH2 domains of STATs, however STATs have also been reported to bind receptors (including IFNAR) via phosphotyrosine independent mechanisms (Darnell 1997; Nadeau, Domanski et al. 1999; Nguyen, Saleh et al. 2002; Tyler, Persky et al. 2007; Zhao, Lee et al. 2008). Following recruitment to the receptor complex, STATs are activated by phosphorylation on a highly conserved carboxyl-terminal tyrosine residue, presumably by the receptor associated JAKs (Darnell 1997). They then dimerise by SH2-phosphotyrosine interactions. STAT dimers are able to enter the nucleus and bind specific DNA elements to regulate gene expression (Darnell 1997). In addition to tyrosine phosphorylation, other STAT modifications such as serine phosphorylation of STAT1, STAT3 and STAT5 also occur which enhance their ability to regulate gene expression (Darnell 1997).

Although the STAT transcription factors were proposed to bind to similar sequences, different gene knock-outs display distinct phenotypes. In general STAT dimers bind to palindromic DNA elements with the same core motif, TTCN<sub>2-4</sub>GAA, however small differences in this sequence such as the number of N nucleotides present can have effects on the binding specificity of different STATs (Ehret, Reichenbach et al. 2001). The actions of the type I IFNs therefore depend largely on the level and type of STATs activated by the receptor. As discussed below, the level and type of STATs activated by the IFN receptor varies across different cell types and may therefore be dependent on a number of factors such as the level of receptor on the cell surface available for signaling, the presence or absence of co-activators or inhibitors and the type of IFN acting on the cell. Specific STAT transcription complexes that form in the cell following IFN stimulation will drive expression of a distinct set of genes and thus dictate the cellular response to IFN. It is therefore important to understand how the STATs are activated in response to IFN as well as the level and type of STAT activation in particular cell types.

#### 1.4.3.1 STAT1 and STAT2

STAT1 and STAT2 have an essential role in type I IFN signaling (Meraz, White et al. 1996; Park, Li et al. 2000). After phosphorylation and activation, they complex with IRF9 to form the major transcriptional complex activated by type I IFNs, ISGF3. ISGF3 binds IFN stimulated response elements (ISRE) located within the promoters of IFN

stimulated genes (ISGs). STAT1 also forms homodimers, which bind Gamma Activated Sequences (GAS).

The generation of STAT1 and STAT2 null mice demonstrate the importance of these transcription factors in type I IFN signaling (Meraz, White et al. 1996; Park, Li et al. 2000). STAT1 null mice do not show any overt developmental abnormalities however they do have a complete lack of responsiveness to type I and II IFNs and are highly sensitive to viral infection (Meraz, White et al. 1996). STAT2 null mice are also highly sensitive to viral infection and have several immune defects due to absent type I IFN signaling including a lack of the type I IFN autocrine activation loop and defects in macrophage and T-cell responses (Park, Li et al. 2000). In particular, the T-cell specific marker Ly-6C, induced in response to IFN $\alpha$ , was reduced in STAT2 null mice and failed to be induced by IFN $\alpha$  (Park, Li et al. 2000). This implicates the importance of STAT2 in driving T-cell responses to IFN. In addition to absent ISGF3 formation in fibroblasts from STAT2 null mice, there are also defects in the induction of GAS driven target genes. Similar results are observed in a STAT2 deficient tumour cell line (Leung, Qureshi et al. 1995). These results suggest that STAT2 is required for type I IFN induced STAT1 activation. However, in contrast to fibroblasts, the analysis of macrophages taken from STAT2 null mice show that STAT1 activation is independent of STAT2 which highlights tissue specific differences and the complexity of type I IFN signaling (Park, Li et al. 2000).

The mutational analysis of IFNAR has highlighted key residues and regions involved in STAT recruitment and activation. Although STAT1 and STAT2 docking onto IFNAR1 has been reported (Abramovich, Shulman et al. 1994; Yan, Krishnan et al. 1996; Li, Leung et al. 1997; Krishnan, Singh et al. 1998; Nadeau, Domanski et al. 1999), it does not appear essential for a full type I IFN response. Studies using mutated mu-Ifnar1 over-expressed in *Ifnar1*<sup>-/-</sup> MEFs show that mutations of all intracellular tyrosine residues and truncations of the receptor below the TYK2 binding domain still enables normal STAT1, STAT2 and STAT3 phosphorylation and ISRE gene induction (Zhao, Lee et al. 2008). Similarly, the mutation of all tyrosine residues of hu-IFNAR1 results in a functional receptor (Gibbs, Takahashi et al. 1996). The reported docking of STAT1 and STAT2 to the non-conserved tyrosine residue Tyr466 of hu-IFNAR1 and the weak docking of STAT1 to the non-conserved tyrosine residue Tyr481 of hu-IFNAR1 therefore appear redundant to IFN signaling (Yan, Krishnan et al. 1996; Li, Leung et al. 1997; Nadeau, Domanski et al. 1999). It has been suggested there is threshold level of

STAT activation required for the IFN response and that STAT binding sites on the IFNAR2 receptor chain alone are sufficient for this level of activation (Nadeau, Domanski et al. 1999). This indicates tyrosine phosphorylation of IFNAR1 is not required for mediating STAT activation and ISRE gene induction. IFNAR1's primary role may therefore be the recruitment of TYK2 to the receptor complex as truncations immediately prior to the TYK2 binding region abrogate signaling (Zhao, Lee et al. 2008). In addition to TYK2 recruitment, IFNAR1 may also have a role in the recruitment of other signaling molecules to the receptor complex, mediating the activation of non-STAT pathways.

IFNAR2 therefore appears the most important receptor chain for STAT recruitment (Kotenko, Izotova et al. 1999; Nadeau, Domanski et al. 1999; Russell-Harde, Wagner et al. 2000; Wagner, Velichko et al. 2002; Zhao, Lee et al. 2008). Following IFN stimulation, IFNAR2 is rapidly phosphorylated (Platanias, Uddin et al. 1994). The individual mutation of each tyrosine of IFNAR2 has no effect, however, the mutation of all tyrosines of IFNAR2 results in a receptor unable to signal (Russell-Harde, Wagner et al. 2000; Wagner, Velichko et al. 2002). The reconstitution of tyrosine residues back onto IFNAR2 reveal that Tyr512 and Tyr337, individually, are able to mediate STAT1 and STAT2 phosphorylation, ISGF3 formation and ISG induction in response to IFN $\alpha$ and IFN<sub>B</sub> (Wagner, Velichko et al. 2002). Studies using mutated mu-Ifnar2 overexpressed in Ifnar2<sup>-/-</sup> MEFs yields similar results. Mutation of the conserved distal tyrosine 510 of mu-Ifnar2 (corresponding to human Tyr512) results in reduced IFN $\alpha$ induced STAT1, STAT2 and STAT3 phosphorylation. Mutation of the more proximal tyrosine 335 (corresponding to human Tyr337) also shows a modest reduction in STAT phosphorylation. In contrast to the human receptor in which individual tyrosines can induce ISG induction, individual mutations of Tyr335 and Tyr510 result in significantly reduced ISG induction suggesting both tyrosine residues are required for a sufficient level of STAT activation. As expected, the mutation of both Tyr510 and Tyr335 completely abrogates STAT1, STAT2 and STAT3 phosphorylation and target gene induction (Zhao, Lee et al. 2008).

A constitutive STAT2 docking site on IFNAR2 has also been reported (Nadeau, Domanski et al. 1999; Nguyen, Saleh et al. 2002). This maps to amino acids 418-444 of hu-IFNAR2 and interacts with non-phosphorylated STAT2 (Nguyen, Saleh et al. 2002). There have been mixed reports about the function of this STAT binding site; some studies report it has a positive signaling role whereas others report it acts to negatively

regulate STAT activation. Ngyugen et al found that STAT phosphorylation is enhanced with the mutation of conserved amino acid residues within this region and it is therefore likely involved in negative regulation (Nguyen, Saleh et al. 2002). Another study found a truncation at amino acid 462 allowed for IFN signaling, however a truncation at amino acid 417 abolished all signaling in response to IFN $\alpha$  suggesting this region is required for STAT activation (Russell-Harde, Wagner et al. 2000). A study by Domanski et al found that 417 and 346 truncations of IFNAR2 demonstrate antiviral activity in response to IFN $\alpha$  but not IFN $\beta$ , whereas truncations at 462 allow signaling in response to both IFNs (Domanski, Nadeau et al. 1998). This suggests that the STAT binding region is required for IFN $\beta$  signaling but not IFN $\alpha$ . In another study by Domanski et al, hu-IFNAR2 truncated at amino acid 346 (removal of Tyr512 and the constitutive STAT binding region) is still able to signal and trigger an anti-viral state in response to IFN $\alpha$ (Domanski, Fish et al. 1997), however when combined with mutations at other STAT binding sites (on either IFNAR1 or IFNAR2) signaling is reduced (Nadeau, Domanski et al. 1999). This suggests a positive role for the STAT2 constitutive binding site and that perhaps at least one site on IFNAR2 is required for signaling but when only one binding site on IFNAR2 is present, the STAT docking sites on IFNAR1 are also needed. This supports the theory of a threshold level of STAT activation being required for the IFN response. The differences found across these studies may be due to technical differences such as the cell type used. Different cells have different receptor expression and composition as well as different expression of surface proteins that may modulate receptor function and responses. Also, it is evident that the different type I IFNs signal differentially and this may also contribute to the different responses seen.

## 1.4.3.2 STAT3

STAT3 has anti-apoptotic, pro-proliferative and both anti- and pro-inflammatory properties. It has been implicated as an oncogene as it is found constitutively expressed in a number of cancers, and is able to transform a number of cell lines. It is also essential in development as STAT3 null mice die during early embryogenesis. STAT3 is activated by a number of cytokines including the IL-6-type cytokines, which utilise the gp130 receptor (Akira 1999; Velichko, Wagner et al. 2002). STAT3 is also activated by the type I and II IFNs resulting in STAT3:STAT3 and STAT1:STAT3 transcription complexes (Yang, Shi et al. 1996; Owczarek, Hwang et al. 1997; Velichko, Wagner et al. 2002). In response to IFN $\alpha$ , STAT3 is tyrosine phosphorylated and serine phosphorylated (Yang, Shi et al. 1996). The IFNAR1 associated TYK2, has been

reported as critical for IFNβ mediated STAT3 tyrosine phosphorylation (Rani, Leaman et al. 1999). STAT3 has been reported to associate with phosphorylated IFNAR1 upon IFN $\alpha$  stimulation through an interaction with the STAT3 SH2 domain (Yang, Shi et al. 1996). However, like STAT1 and STAT2, truncations and mutations of tyrosine residues within mu-Ifnar1 still enables STAT3 phosphorylation following IFN stimulation indicating the interaction between STAT3 and mu-Ifnar1 is not necessary (Zhao, Lee et al. 2008). STAT3 association with specific tyrosine residues on IFNAR2, however, is essential for its phosphorylation (Velichko, Wagner et al. 2002; Zhao, Lee et al. 2008). The mutation of all tyrosines within hu-IFNAR2 abolishes IFN $\alpha$  induced activation of STAT3, which indicates that STAT3 binding to IFNAR2c, via a phosphotyrosine dependent interaction, is critical for its activation (Velichko, Wagner et al. 2002). These tyrosines have been mapped to Tyr337 and Tyr512 of hu-IFNAR2c, these are the same tyrosine residues in hu-IFNAR2c that are critical to STAT1 and STAT2 binding (Velichko, Wagner et al. 2002; Wagner, Velichko et al. 2002; Zhao, Lee et al. 2008). STAT3 binding to corresponding tyrosine residues of mu-Ifnar2 has also been demonstrated (Zhao, Lee et al. 2008). The mutation of these tyrosines results in the abrogation of STAT3 phosphorylation and formation of downstream signaling complexes in response to IFN $\alpha$  (Velichko, Wagner et al. 2002; Zhao, Lee et al. 2008). The use of a STAT2<sup>-/-</sup> cell line also indicates that, unlike STAT1 activation, STAT3 does not require the presence of STAT2 to be activated by type I IFNs (Velichko, Wagner et al. 2002).

#### 1.4.3.3 STAT4

STAT4 plays an important role in human Th1 development. STAT4 activation in CD4<sup>+</sup> T cells results in the regulation of adaptive immune responses by promoting secretion of IFN $\gamma$  (Farrar, Smith et al. 2000). IFN $\alpha$  and IFN $\beta$  can promote Th1 development in the human but not the murine system. A major species difference is that IL-12 is unique in activating STAT4 in murine CD4<sup>+</sup> T cells, whereas in human CD4<sup>+</sup> T cells both IL-12 and IFN $\alpha$  can activate STAT4, thereby inducing IFN $\gamma$  production (Farrar, Smith et al. 2000). Farrar et al hypothesised that this may be due to differences in the structure of human and mouse IFNAR as tyrosine residues across the species are not well conserved. However STAT4 does not directly interact with phosphotyrosines on either subunit of the IFNAR receptor (Farrar, Smith et al. 2000). Rather a more complex mechanism exists in which the STAT4 N-terminal domain forms a pre-associated complex with the cytoplasmic domain of hu-IFNAR2 but not mu-Ifnar2 (Tyler, Persky et

al. 2007). The region on hu-IFNAR2 has been mapped to amino acids 299 – 333. Interestingly this region is well conserved in mu-Ifnar2, yet STAT4 fails to bind (Tyler, Persky et al. 2007). In addition it has been found that in cells lacking STAT2, STAT4 phosphorylation by IFN $\alpha$  is inhibited (Farrar, Smith et al. 2000). This is similar to that seen with STAT1 activation in response to IFN $\alpha$  being dependent on STAT2. STAT4 activation by IFNAR may therefore be through an additional interaction with STAT2 upon IFN $\alpha$  stimulation (Farrar, Smith et al. 2000).

#### 1.4.3.4 STAT5 Transcription Factors

The STAT5 transcription factors play an important role in type I IFN signaling (Uddin, Lekmine et al. 2003). There are two distinct genes which encode the two isoforms of STAT5; STAT5a and STAT5b (Grimley, Dong et al. 1999). These are tyrosine phosphorylated upon IFN stimulation resulting in STAT5a and STAT5b homodimers and heterodimers (Grimley, Dong et al. 1999). Full activation of STAT5 however also requires serine phosphorylation and both Stat5a and Stat5b are serine phosphorylated in response to IFN $\alpha$  and IFN $\beta$  in a MAP-kinase and PI 3'-kinase independent manner (Uddin, Lekmine et al. 2003). Signaling assays with Stat5a and Stat5b null mouse embryonic fibroblasts using a luciferase reporter construct with 8 x GAS repeats demonstrate that Stat5 is required for type I IFN dependent reporter activity (Uddin, Lekmine et al. 2003). In addition to forming homodimers or STAT5a and STAT5b heterodimers, STAT5 has also been found to associate with other proteins and regulate transcription. For example, the type I IFN activated Crk family member, CrkL has been found to form a heterodimer with STAT5, functioning as a nuclear adaptor protein (Fish, Uddin et al. 1999). STAT5 reportedly interacts with TYK2 constitutively and upon IFNinduced phosphorylation acts as a docking site for the SH2 domain of CrkL (Fish, Uddin et al. 1999). Consequent studies using  $Crkl^{-}$  mice have found it to be critical for IFN $\alpha$ dependent induction of some STAT5-GAS driven genes such as the growth inhibitory protein PML (Lekmine, Sassano et al. 2002). STAT5a and STAT5b have also been found important for activation of the PI3K signaling cascade, promoting cell proliferation and survival. This is mediated via Grb associated binder 2 protein, Gab2, which forms an interaction with STAT5 (Nyga, Pecquet et al. 2005). Although this has not been directly linked to type I IFN signaling, it may represent an alternative pathway for activation of STAT5 independently of the IFNAR associated kinases TYK2 and JAK1. Indeed, GAB2 is tyrosine phosphorylated upon IFNa2 stimulation and is thought to compete with IFNAR2 for interaction with IFNAR1 (Baychelier, Nardeux et al. 2007).

The interaction site is believed to coincide with a region of Gab2 containing p85-PI3K binding sites (Baychelier, Nardeux et al. 2007).

# 1.4.3.5 STAT6

Although not much data exists on the role of STAT6 in type I IFN signaling a number of studies have reported its activation in response to IFN in a cell type specific manner (Gupta, Jiang et al. 1999; Eriksen, Sommer et al. 2004). Gupta et al found STAT6 is phosphorylated and forms an ISGF3 like complex with STAT2 and IRF9 in response to IFN $\alpha$  in a number of B-cell lines including Ramos and Daudi cells but not in non B-cell lines such as WI38 or WISH cells (Gupta, Jiang et al. 1999). In addition, Erikson et al found IFN $\alpha$  has a synergistic effect with IL-4 on STAT6 activation at early time points in CD4<sup>+</sup> and CD8<sup>+</sup> T cell lines, greatly increasing IL-4 induced STAT6 phosphorylation (Eriksen, Sommer et al. 2004).

# 1.4.4 STAT Independent Type I IFN Signaling

STAT independent signaling pathways are also activated by the type I IFNs. A number of these pathways are demonstrated in Figure 1.7. Tyrosine residues on IFNAR that are not important for STAT recruitment may therefore be involved in the recruitment of other SH2 containing proteins to the receptor and the activation of non-STAT, type I IFN induced, pathways. Phospho-tyrosine independent mechanisms of signal molecule recruitment also exist. For example there have been reports of the IFN $\alpha$  induced recruitment and activation of CREB-binding protein by the IFNAR receptor complex resulting in the acetylation of IFNAR2 to create protein docking sites (Tang, Gao et al. 2007). Discussed below are a number of pathways activated by type I IFN signaling that are independent of STAT activation.

Insulin Receptor Substrate proteins 1 (IRS1) and IRS2 are tyrosine phosphorylated by type I IFNs in a JAK-dependent manner and have been found to interact with TYK2 via their PH domains (Platanias, Uddin et al. 1996). Activation of IRS1 and IRS2 results in downstream activation of phosphatidylinositol and PI 3-Kinases. Activation of the PI 3-Kinase pathway in interferon signaling appears to mediate antiviral responses and also plays a role in the serine phosphorylation (727) of STAT1 (Platanias, Uddin et al. 1996). Type I IFNs also induce the phosphorylation of Crk proteins. CrkL and CrkII expression is necessary for the IFN $\alpha$ -mediated suppression of hematopoietic progenitors (Platanias, Uddin et al. 1999). These CrkL and CrkII mediated anti-proliferative effects



**Figure 1.7. JAK/STAT independent pathways activated by the type I IFNs.** Type I IFN signaling results in the activation of a number of JAK/STAT independent pathways. These include activation of the PI3-Kinase pathway via IRS1 and IRS2, activation of the p38 map kinases via RAC1 and RAS inhibition via CrkL and CrkLII. of IFN $\alpha$  may be an effect of Rap1 activation (a RAS antagonist), which is downstream of Crk proteins and induced in response to IFN (Platanias, Uddin et al. 1999; Lekmine, Sassano et al. 2002). As mentioned previously, CrkL has been found to dimerise with STAT5 and is critical for IFN $\alpha$ -dependent induction of some GAS driven genes (Fish, Uddin et al. 1999). Type I IFNs can also mediate p38 MAP kinase phosphorylation through Rac1 (Uddin, Lekmine et al. 2000). This is hypothesised to be via JAK mediated tyrosine phosphorylation of Vav, resulting in Rac1 activation. The role of p38 MAP kinases in type I IFN signaling is not clear. It has been linked to mediating antiviral activities, serine phosphorylation of STAT1 as well gene induction by histone modification through serine phosphorylation and acetylation (Uddin, Lekmine et al. 2000).

*Ifnar1<sup>-/-</sup>* and *Ifnar2<sup>-/-</sup>* mice, both unable to activate STATs, have distinct phenotypes and differential gene activation profiles in response to IFN signaling. This suggests each receptor is able to transduce specific signals and may be a result of the above mentioned or novel type I IFN induced signaling pathways (Hertzog et al, unpublished data).

# 1.5 Summary of IFN Signaling Mechanism

Type I IFN signaling results in the formation of a receptor complex involving interactions between many signaling molecules including the receptor components IFNAR1 and IFNAR2 as well as TYK2, JAK1 and STAT transcription factors. The receptor associated JAKs have multiple functions such as receptor stabilisation and tyrosine phosphorylation of both the receptor and recruited signaling molecules (such as STATs). STATs mediate many of the biological actions of the type I IFNs. All 7 STAT family members can be activated by the type I IFNs although the mechanism of receptor-STAT interactions is complex and appears to vary across different species, cell types and with use of different type I IFNs. STATs are generally found to interact with specific tyrosine residues of IFNAR through their SH2 domains although constitutive STAT binding sites on IFNAR have also been identified. The key tyrosine residues of IFNAR involved in STAT recruitment are the conserved tyrosine residues Tyr337 and Tyr512 of hu-IFNAR2. It is likely that there is a threshold level of STAT activation required for a biological response and that multiple STAT binding sites on IFNAR are required to obtain such a level of STAT activation. The level and type of

STATs activated will ultimately define the response of the cell to IFN through the formation of STAT hetero or homo-dimers or other complexes such as ISGF3 and the regulation of genes containing distinct elements to which these complexes can bind. IFN-induced genes have a diverse range of activities that mediate the anti-pathogenic and immunomodulatory functions of the type I IFNs and these are discussed below.

# **1.6 Type I IFN Functions**

Type I IFNs are predominantly known for their potent anti-viral and anti-pathogenic functions through co-ordinated activation of innate and adaptive immune responses. This complex immune regulation requires IFN control of a diverse range of cellular functions and the regulation of a complex network of genes and signaling pathways to exhibit cell specific antiviral, antiproliferative, antitumour and immunomodulatory activities.

# **1.6.1 Antiviral Functions**

IFNs were originally discovered based on their antiviral activity (Lindenmann, Burke et al. 1957). Upon production, IFN acts in a paracrine, autocrine and endocrine or systemic manner on infected cells to regulate the expression of a multitude of genes, many with antiviral activities. These act to control the infection within the cell, limiting replication and release of the virus. Many antiviral genes are up-regulated in response to IFN signaling, primarily though IFN induced ISGF3 and STAT1 binding to ISRE and GAS elements within the genes promoters, respectively. A study by Schoggins et al which screened hundreds of ISGs for anti-viral activity found that different viruses are targeted by a unique set of ISGs encompassing a range of antiviral activities (Schoggins, Wilson et al. 2011). The function of some of the best characterised antiviral genes activated by the type I IFNs are discussed below.

# 1.6.1.1 PKR

RNA-dependent protein kinase (PKR) is a serine/threonine protein kinase induced by the type I IFNs (Meurs, Chong et al. 1990). The importance of its anti-viral functions is evident in PKR deficient mice which have an increase susceptibility to viral infection (Nakayama, Plisch et al. 2010). PKR contains two N-terminal dsRNA binding motifs and a C-terminal protein kinase domain. PKR exists in an inactive state, mostly in the cytoplasm. Binding of PKR to dsRNA unmasks its catalytic ATP binding site resulting in the auto-phosphorylation of PKR on multiple serine and threonine residues (Thomis and Samuel 1993). Once activated, PKR phosphorylates the protein synthesis initiation factor eIF2 $\alpha$ , preventing the recycling of eIF2 $\alpha$  required for ongoing translation (Meurs, Watanabe et al. 1992; Thomis and Samuel 1993). Subsequently this results in the inhibition of mRNA translation and therefore inhibition of viral replication within the cell.

# 1.6.1.2 2',5'-OAS and RNAse-L

The 2',5'-oligoadenylate synthetases (2',5'-OASs) and RNAse L are IFN inducible genes involved in viral RNA degradation. 2',5'-OAS proteins are dsRNA activated enzymes which convert ATP to 2',5'-linked oligoadenylates with a 2',5' phosphodiester bonds (Chakrabarti, Jha et al. 2011). Binding of 2',5'-oligodenylates to the endoribonuclease, RNAse L, results in dimerisation of RNAse L monomers through their kinase-like domains, resulting in functional RNAse L able to cleave viral RNAs (Chakrabarti, Jha et al. 2011). In addition to the cleavage of viral RNAs, RNAse L cleaves some self RNA and produces small RNAs which activate intracellular receptors such as RIG-1 and MDA-5 (Chakrabarti, Jha et al. 2011). The importance of the 2',5'-OAS/RNase-L pathway in IFN signaling is evident in RNase L deficient mice which have reduced anti-viral effects following IFN $\alpha$  treatment (Zhou, Paranjape et al. 1997). These mice also have an enlarged thymus and spleen due to a suppression of apoptosis indicating this pathway is also involved in controlling cell death which may act to eliminate infected cells or modulate the immune cell repertoire (Zhou, Paranjape et al. 1997).

#### 1.6.1.3 Mx Proteins

The Mx proteins are involved in the inhibition of a range of viruses (Netherton, Simpson et al. 2009). They were initially discovered in an inbred mouse strain unusually resistant to influenza A virus (Lindenmann 1962). Their expression is strictly dependent on type I IFNs as mice deficient in IFN or IFNAR are also deficient in Mx proteins (Haller, Staeheli et al. 2007). Mx proteins consist of three domains, an N-terminal GTPase domain, a middle linker domain and a C-terminal GTPase effector domain. Mx proteins are involved in mediating vesicle budding, organogenesis and cytokinesis and exert their antiviral activities by sequestering viral nucleocapsid proteins in the cytoplasm and blocking their movement into the nucleus (Haller, Staeheli et al. 2007).

#### 1.6.1.4 ISG15

Inteferon stimulated gene 15 (ISG15) is a ubiquitin-like protein involved in the inhibition of a range of DNA and RNA viruses. The importance of ISG15 in viral control is evident in knockout mice which have increased susceptibility to influenza A virus, Herpes and Sendai virus (Lenschow, Lai et al. 2007). In a similar pathway to ubiquitination, ISG15 is conjugated to target proteins in a process called ISGylation (Zhang and Zhang 2011). ISG15 is initially cleaved to reveal a C-terminal LRLRGG motif. Adenylation of this motif and a cascade of enzymatic reactions involving E1, E2 and E3 enzymes results in the transfer of ISG15 onto a lysine residue of its target substrate. ISGylation of target proteins renders them inactive, likely affecting the proteins stability, function or localisation (Zhang and Zhang 2011).

#### **1.6.2 Immunomodulatory Functions**

In addition to innate immune responses activated by type I IFNs in which they directly target and activate anti-viral pathways within infected cells, the type I IFNs also activate adaptive immune responses in order to target and clear infected cells and generate protective memory. Type I IFN modulates host adaptive immune responses by acting on multiple cell types including T-cells, B-cells and antigen presenting cells. Type I IFN has been shown to act both directly and indirectly in modulating T- and B- cell functions. Indirect mechanisms are predominantly through IFN mediated recruitment and maturation of antigen presenting cells such as monocytes, macrophages and dendritic cells, which in turn stimulate T- and B-cell functions through antigen presentation.

The type I IFN producing cells, pDCs, are central to IFN mediated immune-regulation. As mentioned previously, pDCs express high levels of TLR7 and TLR9 as well as IRF7 and thus respond rapidly to pathogen recognition. Type I IFN mRNA can be detected at 4 hours post-viral infection and peaks at 12 hours. At 6 – 12 hours post infection, about 50% of total mRNA expressed by pDCs encodes for type I IFN however after the first 24 hours of viral stimulation, IFN production is reduced (Liu 2005). Upon recognition of pathogen and the production of large amounts of IFN pDCs subsequently differentiate into DCs to trigger adaptive immune responses (Liu 2005). Such adaptive immune responses include modulation of the function of natural killer (NK) cells, B-cells, T-cells and myeloid DCs (Liu 2005). pDCs are located in prime areas of adaptive-immune responses. They are produced in the bone marrow from hematopoietic stem cell

progenitors and after leaving the bone marrow follow a migration behaviour much like that of B and T lymphocytes migrating into T cell-rich areas of secondary lymphoid tissue and mucosa-associated lymphoid tissue (MALT) as well as through marginal zones of the spleen (Liu 2005). pDCs differentiate into mature DCs through two known pathways; the virus induced pathway and the IL-3 dependent pathway. The resultant mature DC will depend on the type of maturation signals it receives (Rissoan, Soumelis et al. 1999). The virus-induced pathway involves the production of IFN $\alpha$  and TNF $\alpha$ , which act in an autocrine fashion to promote DC survival and differentiation (Kadowaki and Liu 2002). In an IFN $\alpha$  dependent manner, the resultant DCs promote human naïve CD4+ allogenic T-cells to undergo strong proliferation and differentiation into IFNy and IL-10 producing cells. This creates a TH1-like immune response, however, unlike myeloid DCs, this is independent of IL-12 (Rissoan, Soumelis et al. 1999; Kadowaki and Liu 2002). The other pathway is IL-3 dependent and results in an anti-parasitic adaptive TH2 immune response. It is proposed that IL-3 is produced by basophils, eosinophils and mast cells during parasitic infection, which acts on pDC IL-3 receptors. IL-3 dependent mature DCs prime naïve CD4+ T-cells to produce TH2 cytokines IL-4, IL-5, and IL-10 (Rissoan, Soumelis et al. 1999; Kadowaki and Liu 2002; Liu 2005).

Type I IFNs also promote the presentation of viral antigens on conventional dendritic cells via up-regulation of MHC class I and II molecules as well as other co-stimulatory molecules including CD83, CD40, CD80 and CD86 resulting in potent antigen presenting cells (Luft, Pang et al. 1998; Gallucci, Lolkema et al. 1999; Paquette, Hsu et al. 2002). This results in enhanced presentation of antigen to T- and B-cells and thus an increased adaptive immune response. For example, virus induced IFN enhances CD8+ T-cell responses through activation of cross-priming in antigen presenting cells (Le Bon, Etchart et al. 2003).

In addition to modulation of T-cell and B-cell function via indirect methods, such as through antigen presenting cells, type I IFN also acts directly on T-cells and B-cells to modulate their function. The direct effects of IFN on T-cells and B-cells have primarily been studied through the use of cells with a selective deletion of Ifnar1. Direct modulation of CD4+ and CD8+ T-cell function has been shown *in vivo* with the use of *Ifnar1<sup>-/-</sup>* or *Ifnar1<sup>+/+</sup>* T-cells expressing transgenic receptors specific for LCMV antigenic peptides. Adoptive transfer of *Ifnar1<sup>-/-</sup>* LCMV-specific CD4+ and CD8+ T-cells into recipient mice results in reduced expansion and generation of memory T-cells following LCMV infection as compared to *Ifnar1<sup>+/+</sup>* LCMV-specific T-cells (Kolumam, Thomas et

al. 2005; Aichele, Unsoeld et al. 2006; Havenar-Daughton, Kolumam et al. 2006). This was due to increased apoptosis rather than a reduction in the cells ability to proliferate (Kolumam, Thomas et al. 2005; Aichele, Unsoeld et al. 2006; Havenar-Daughton, Kolumam et al. 2006). IFN administration (through injection) to mouse models that are selectively deficient for Ifnar1 in B-cells or T-cells also demonstrate the importance of direct IFN stimulation in generating adaptive immune responses. *In vivo* studies demonstrate that IFN $\alpha$  stimulation enhances the antibody response (increased production of IgM and all subclasses of IgG) to soluble antigen whereas this is dramatically reduced in mice with B-cells or T-cells selectively deficient for Ifnar1 (Le Bon, Thompson et al. 2006).

The direct effects of IFN on T-cell survival, proliferation and differentiation have been further characterised in a number of studies. The response of the cell however depends largely on the timing of IFN stimulation as well as the activation state of the cell at the time. Activated T-cells have an increased susceptibility to cell death compared to resting T-cells and evidence suggests IFN can antagonise cell death pathways associated with T-cell activation. As mentioned above, IFN stimulation of LCMVspecific activated T-cells in vivo results in reduced apoptosis of T-cells resulting in expansion and generation of memory T-cells. IFNa has also been found to enhance survival of activated CD4+ and CD8+ T-cells in vitro (Marrack, Kappler et al. 1999; Dondi, Rogge et al. 2003). In subsequent studies, IFN was found to protect T-cells from intrinsic mitochondrial-dependent apoptosis early upon TCR-CD28 activation via the up-regulation of Bcl-2 and the down regulation of Bax (Dondi, Roue et al. 2004). Interestingly, these studies also show that IFN sensitizes cells to the extrinsic apoptotic pathway through partial activation of caspase 8 and up-regulation of Fas, thereby increasing the sensitivity of the cell to antigen induced cell death (Dondi, Roue et al. 2004). This however occurs 24 hours later than mechanisms which enhance T-cell survival and thus may be a means of controlling the response during chronic infection. In addition to the modulation of cell survival, IFN also has effects on cell proliferation. For example, IFN prolongs the proliferation and expansion of antigen-specific CD8+ T cells during cross priming and the presence of IFNAR on the CD8+ T cells was essential to this effect. The cytokines IL-2 and IL-15 have been identified as activators of CD8+ T cell responses. IFN was also found to up-regulate expression of these cytokines yet neither of these were required for the effect of IFNa on CD8+ T cell cross priming (Le Bon, Durand et al. 2006).

The timing of exposure to IFN relative to antigen is also an important factor in determining the response of the cell to IFN. In comparison to the effects of IFN on activated T-cells, IFN suppresses expansion of resting T-cells (Marrack, Kappler et al. 1999; Dondi, Rogge et al. 2003). One such mechanism, in the context of resting naïve CD4+ T-cells, is through delaying entry into cell division pathways (Dondi, Rogge et al. 2003).

Furthermore, Lin et al found that IFN treatment severely inhibits B-cell and T-cell development at early stages (Lin, Dong et al. 1998). In IFN-treated newborn mice, bone marrow and splenic cellularity were decreased and B lineage cells were diminished by greater than 80%. Thymic cellularity was also decreased with IFN treatment by greater than 80%. In *Ifnar1<sup>-/-</sup>* mice T- and B-cell development was unaffected by IFN treatment, showing that this effect is through the IFNAR receptor. Furthermore, it was found that the inhibitory effect of IFN $\alpha$  on T- and B-cell development was through IFN inhibition of IL-7 induced growth and survival (Lin, Dong et al. 1998). Evidence suggests IFN $\alpha$  is constitutively expressed by resident pDCs in the thymus and may play a role in the regulation of T-cell development and differentiation (Colantonio, Epeldegui et al. 2011). In the absence of infection, the constitutive expression of IFN $\alpha$  in the thymus may therefore be a means to suppress adaptive immune responses.

#### 1.7 Clinical Applications of the Type I IFNs

Type I IFNs are used in the clinical setting for the treatment of a range of diseases including viral infections, cancers and some autoimmune diseases. The role of IFN in these diseases however is complex, often having opposing roles depending on the disease.

#### **1.7.1 Treatment of Viral Infections**

Type I IFN is used in the treatment of viral infections, most commonly hepatitis B and C (Roffi, Mels et al. 1995; Mazzella, Saracco et al. 1999). Pegylated-IFNα in combination with ribavirin leads to viral eradication in 50% of treated patients (Vezali, Aghemo et al. 2011). As discussed above, IFN treatment results in the induction of the innate immune response including many antiviral genes as well as adaptive immune responses

following viral infection. The innate and adaptive immune responses elicited by IFNα likely act together to eliminate virus.

# 1.7.2 Treatment of cancer

IFNα was one of the first cytokines used for clinical oncology and has been used in the treatment of over 14 cancers including haematological malignancies (hairy cell leukemia, chronic myeloid leukemia, and some B- and T-cell lymphomas) and some solid tumors (melanoma, renal carcinoma, and Kaposi's sarcoma) (Talpaz, Kantarjian et al. 1987; Paredes and Krown 1991; Rizza, Moretti et al. 2010). While IFN treatment has been replaced with other cytokines in some of these diseases it is still widely used in cancer immunotherapy (in particular for melanoma). IFN acts to control cancer by modulating adaptive immune responses as well as through a direct interaction with tumour cells. For example, IFN can prime the tumour for apoptosis while IFN-DCs are highly effective at taking up antigen from apoptotic cells and cross-priming CD8+ T cell responses to antigen.

Anti-angiogenesis properties of IFNs also play a role in modulating tumour growth (Indraccolo 2010). IFN can promote down-regulation of angiogenesis factors such as bFGF, IL-8 and VEGF. In addition IFN has been found to directly affect endothelial cell proliferation and migration. IFN expression at the site of tumour formation disrupts the tumour microvasculature resulting in tumour hypoxia. The anti-angiogenic effect of IFN on established tumours however is minimal and most likely plays a role in inhibiting tumour formation through disruption of the development of the tumour vasculature rather than modulating established tumour vasculature (Indraccolo 2010).

Recent studies have implicated IFN in controlling breast cancer metastasis to bone (Bidwell, Slaney et al. 2012). In a mouse model of spontaneous bone metastasis, a large subset of genes supressed in bone metastases compared to primary tumour cells were found to be targets of IRF7. Subsequently the expression of IRF7 in tumour cells or treatment with IFN resulted in reduced bone metastases and increased survival. Furthermore metastasis was enhanced in *Ifnar1*<sup>-/-</sup> mice or mice deficient in NK and CD8+ T-cells indicating this suppression is though IFN activation of immuno-surveillance. Clinical evidence also indicates that patients with high levels of IRF7 regulated genes in primary tumours have reduced bone metastasis and prolonged survival (Bidwell, Slaney et al. 2012).

#### 1.7.3 Autoimmune Disease

IFN has been implicated in the pathogenesis of autoimmune diseases such as Systemic Lupus Erythematosus and Sjogrens syndrome (Hooks, Moutsopoulos et al. 1979; Ronnblom 2011). In addition, IFNa treatment, in some cases, results in the development of inflammatory diseases such as rheumatoid arthritis, multiple sclerosis and type I diabetes (Ronnblom 2011). Interestingly, in contradiction to this, IFN $\beta$  has protective, anti-inflammatory effects and is used for the treatment of some autoimmune diseases such as multiple sclerosis (Ann Marrie and Rudick 2006). The differential effects of IFN in these diseases may be due to systemic versus local type I IFN activity. IFNa activity is more systemic and thought to contribute more to autoimmune disease than IFNβ, which is produced locally and has an anti-inflammatory role (Crow 2010; Sozzani, Bosisio et al. 2010; Choubey and Moudgil 2011). For example, many patients with systemic autoimmune disease have high levels of systemic IFNa and IFNainduced gene induction (Ronnblom 2011). In the context of rheumatoid arthritis, a subgroup of patients with systemically increased IFN inducible genes have a more destructive form of the disease. In contrast, IFNß produced locally in the joint results in reduced cartilage and bone destruction (Crow 2010). Indeed a higher IFNB:IFNa ratio is associated with a better clinical response to TNF treatment in rheumatoid arthritis (Crow 2010).

As outlined in Chapter 1.6.2, IFN $\alpha$  has various roles in activating T-cells and B-cells either directly or indirectly. IFN $\alpha$  has been found to contribute to the pathogenesis of autoimmune disease through stimulating an increase in numbers of auto-reactive T-cells and B-cells which are major mediators of autoimmune disease (Conrad 2003). IFN $\alpha$  activation of auto-reactive T-cells may be through a number of mechanisms such as enhancing functions of antigen presenting cells to increase cross-priming of self-reactive T-cells as well as by acting directly on T-cells to promote T-cell activation and survival (Conrad 2003).

#### 1.7.4 Side Effects of type I IFN treatment

Apart from the development of autoimmune disease with IFNα treatment, other aberrant side effects are also observed, which often cause patients to decline or cease IFN therapy. Toxicities associated with IFNs result in the development of flu like symptoms (fever, headache, chills, fatigue) as well as haematological changes and neuropsychiatric disturbances (Calvaruso, Mazza et al. 2011). Thus improvements in

therapy may arise from the design of IFN or related factors that can achieve effective responses with minimum toxicity. In order to achieve this, the mechanism of type I IFN signaling and its negative regulation must be well understood. Below we investigate the mechanisms of the regulation of IFN signaling.

## 1.8 Regulation of Type I IFN Signaling

Chronic activation of the immune system, due to increased type I IFN signlaing can lead to serious inflammatory disease such as septic shock and autoimmune disease (Karaghiosoff, Steinborn et al. 2003; Sakaguchi, Negishi et al. 2003). Type I interferon signaling must therefore be tightly controlled to exert an appropriate immune response to pathogenic infection. A number of regulatory mechanisms exist to control type I IFN signaling. These mechanisms act at all points throughout the IFN signaling pathway including at the level of receptors, intracellular signaling (SOCS)1 and SOCS3 play an important role in controlling type I IFN signaling responses, as discussed in detail in the next section of this literature review. Outlined below are other mechanisms involved in the control of IFN signaling.

One such mechanism of IFN regulation occurs at the level of receptor activation. As discussed in section 1.1, soluble mu-Ifnar2 and short membrane bound hu-IFNAR2 are able to antagonise IFN signaling *in vitro* however *in vivo* evidence to date does not support this (Pfeffer, Basu et al. 1997; Hardy, Owczarek et al. 2001). Other mechanisms that control IFN signaling target intracellular signaling molecules. For example protein inhibitor of activated STAT (PIAS1) inhibits tyrosine phosphorylated STAT1 mediated gene expression following IFN signaling (Liu, Liao et al. 1998). In addition to targeting the IFN receptor and intracellular signaling molecules, mechanisms also exist to control IFN synthesis. For example, some tumour cells are able to suppress IFN signaling via the release of Prostaglandin E2 or the production of cAMP phosphodiesterases, which reduce cAMP, an important second messenger in IFN synthesis (Chadha, Ambrus et al. 2004).

microRNA regulation has recently emerged as an important mechanism involved in controlling IFN signaling (David 2010). Cellular miRNA control of virus replication was initially reported in the context of the retrovirus, primate foamy virus type 1 (PFV-1),

which accumulated in human cells following suppression of RNA silencing (Lecellier, Dunoyer et al. 2005). Furthermore the HIV-1 Tat proteins were reported to evade defence mechanisms through suppression of RNA silencing (Bennasser, Le et al. 2005). Subsequent studies supported a role for miRNAs in controlling virus replication as the inhibition or removal of Dicer, a key enzyme in the generation of miRNAs, resulted in enhanced replication of VSV and influenza A virus (Matskevich and Moelling 2007; Otsuka, Jing et al. 2007). Two mechanisms for the type I IFN control of virus replication via miRNAs have been proposed. One mechanism involves IFN induction of antiviral miRNAs and the other involves IFN inhibition of cellular miRNAs that support viral replication. Evidence exists to support both mechanisms. For example, IFNB stimulation of the hepatic cell line, Huh7, resulted in induction of multiple miRNAs including miR-196, miR-296, miR-351, miR-431 and miR-448. These miRNAs matched sequences within the HCV genome and expression of their corresponding synthetic forms inhibited HCV replication in vivo (Pedersen, Cheng et al. 2007). In contrast to this, the liver specific miRNA, miR-122, which enhances replication of hepatitis C virus, is reduced in response to IFN $\alpha$  and IFN $\beta$  stimulation of Huh7 cells (Pedersen, Cheng et al. 2007).

In addition to IFN mediated miRNA control of viral replication, IFN induced miRNAs may also contribute to activation or inhibition of the expression of molecules involved in the IFN response thereby serving as activators or inhibitors of IFN signaling. Recent studies within our lab have demonstrated that type I IFN induces widespread miRNA expression and predicted targets of these miRNAs include many components of the type I IFN pathway and IFN induced genes (Sam Forster, unpublished data). As for SOCS1, which is induced by IFN and acts in a negative regulatory loop to control IFN signaling, miRNAs may also be induced by IFN and act back to negatively control excessive IFN signaling by targeting major components of the IFN pathway. Evidence for a negative feedback loop by miR-155 has been reported in pDCs whereby IFNα can induce miR-155 and miR-155 attenuates IFNa and IFNB production by repressing TAB2 expression (Zhou, Huang et al. 2010). These regulatory mechanisms however involve quite a complex network of interactions as miR-155 has also been shown to supress SOCS1 expression in macrophages, thereby enhancing type I signaling (Wang, Hou et al. 2010). Other miRNAs have also been linked to negatively controlling the type I IFN pathway such as miR-221 and miR-222 which attenuate STAT1 and STAT2 expression and phosphorylation in response to IFN $\alpha$  as well as miR-146a which attenuates transcriptional transduction through the type I IFN receptor and has been shown to target both STAT1 and IRF5 (Tang, Luo et al. 2009; Zhang, Han et al. 2010). The induction of these miRNAs by IFN however has not yet been demonstrated.

In addition to homeostatic regulation of IFN signaling, viruses have evolved to antagonise type I IFN production or signaling and thus evade the IFN-mediated immune response. Mechanisms may include sequestering or cleaving signaling modulates or targeting signaling molecules for proteosomal degradation (Versteeg and Garcia-Sastre 2010). For example, respiratory syncytial virus produces NS1 and NS2 which block IRF3 phosphorylation and subsequent IFN production while Herpesviruses produce pM27 which binds STAT2 and induces its ubiquitination and degradation (Hengel, Koszinowski et al. 2005). Furthermore, the vaccinia virus encodes a secreted protein with three immunoblobin domains that functions as a soluble receptor for IFN and attenuates IFN antiviral responses (Alcami, Symons et al. 2000). In addition the expression of proteins able to inhibit components of the innate immune system, viruses have evolved to encode miRNAs that attenuate innate immune responses, although none have yet been linked to the type I IFN pathway (David 2010).

## 1.9 Suppressors of Cytokine Signaling (SOCS)

SOCS1 was discovered in 1997 by three independent research groups. Starr et al, discovered SOCS1 by its ability to generate a stable clone of M1 cells unresponsive to IL-6 induced macrophage differentiation (Starr, Willson et al. 1997); Endo et al, discovered SOCS1 by its ability to bind to the JAK2 JH1 domain (Endo, Masuhara et al. 1997); and Naka et al, discovered SOCS1 via screening of a cDNA library with an antibody generated against the SH2 domain of STAT (Naka, Narazaki et al. 1997). This protein was consequently named SOCS1, JAK-binding protein (JAB) and STAT-induced STAT-inhibitor 1 (SSI-1), respectively (Endo, Masuhara et al. 1997; Naka, Narazaki et al. 1997; Starr, Willson et al. 1997). A protein homology search by Starr et al identified three other related proteins including cytokine-inducible SH2-containing protein (CIS), discovered in 1995 by Yoshimura et al, and SOCS2 and SOCS3 (Yoshimura, Ohkubo et al. 1995; Starr, Willson et al. 1997). Sequence homology between these proteins then led to the discovery of a total of eight family members, named SOCS1-SOCS7 and CIS (Hilton, Richardson et al. 1998).

#### **1.9.1 SOCS Structure**

All SOCS family members contain a C-terminal homologous region called the SOCS box, a central SH2 domain and a non-homologous N-terminal region (Starr, Willson et al. 1997; Hilton, Richardson et al. 1998). The SOCS proteins may be grouped in pairs according to similarity. These are CIS and SOCS2, SOCS1 and SOCS3, SOCS4 and SOCS5, and SOCS6 and SOCS7. The general structure of SOCS1 and SOCS3 are demonstrated in Figure 1.8.

The SOCS box is a highly conserved region of 40 amino acids which has been identified in numerous proteins (Hilton, Richardson et al. 1998). The SOCS box has been implicated in the ubiquitination and targeting of proteins for proteosomal degradation through interactions with elongins B and C (Zhang, Farley et al. 1999). Other studies however suggest that the SOCS box has a role in the stabilization of SOCS1 through its interactions with elongins B and C and that it is not necessary for signal inhibition (Narazaki, Fujimoto et al. 1998; Nicholson, Willson et al. 1999). These studies were performed in over expression systems however and *in vivo* mouse models have shown that the deletion of the SOCS box results in partial loss of function of SOCS1 with mice having an increased responsiveness to IFNγ (Zhang, Metcalf et al. 2001).

The N-terminal region of SOCS1 and SOCS3 contain a kinase inhibitory region (KIR). A number of studies have demonstrated that both the SH2 domain and the KIR domain are required for the inhibitory function of SOCS1 (Narazaki, Fujimoto et al. 1998; Nicholson, Willson et al. 1999; Yasukawa, Misawa et al. 1999; Haque, Harbor et al. 2000). Mutational analysis and modeling of the SOCS1 interaction with the JH1 domain of JAK2 has helped predict a mechanism by which SOCS1 inhibits JAK kinase activity; the SH2 domain of SOCS1 binds to a phosphotyrosine on the JAK kinase while the KIR domain stabilizes this association through an interaction with the catalytic pocket of the JH1 domain (Yasukawa, Misawa et al. 1999; Giordanetto and Kroemer 2003). The KIR domain somewhat resembles the activation loop of JAK kinases and is believed to act as a pseudo-substrate preventing access of ATP and other substrates to the JAK catalytic pocket thereby inhibition JAK function (Yasukawa, Misawa et al. 1999; Giordanetto and Kroemer 2003).

#### 1.9.2 SOCS1 Expression

The primary site of SOCS1 expression is within thymocytes, particularly CD4+CD8+ T-cells (Marine, Topham et al. 1999). SOCS1 is also expressed, but to a much lesser



**Figure 1.8 Structure of SOCS1 and SOCS3.** SOCS1 and SOCS3 consist of an N-terminal region containing the Kinase Inhibitory Region (KIR), a central SH2 domain and a C-terminal SOCS Box.

extent, in bone marrow, spleen and peripheral blood. Expression within the thymus is independent of cytokine signaling and T-cell receptor engagement, suggesting it may be developmentally regulated (Marine, Topham et al. 1999). In addition to its high expression in thymocytes, SOCS1 expression can be induced in response to a range of cytokines including IL-2, IL-4, IL-6, IL-10, IL-21, LIF, EPO, G-CSF, FGF, GH, OSM, IFN- $\alpha$ , IFN- $\beta$  and IFN $\gamma$  (Naka, Narazaki et al. 1997; Starr, Willson et al. 1997; Sakamoto, Yasukawa et al. 1998; Sporri, Kovanen et al. 2001; Jegalian and Wu 2002; Ding, Chen et al. 2003; Ben-Zvi, Yayon et al. 2006; Strengell, Lehtonen et al. 2006). This expression is largely cell type specific, however, SOCS1 is strongly induced by IFNα, IFNβ and IFNγ in a broad variety of cells lines (Sakamoto, Yasukawa et al. 1998). In addition to cytokine induced stimulation, SOCS1 may also be induced by other factors such as pathogen derived stimuli (e.g LPS and CpG DNA) (Dalpke, Opper et al. 2001; Kinjyo, Hanada et al. 2002). The expression of SOCS proteins in response to cytokine signaling is mediated by the STAT family of proteins. STAT dimers bind to elements within the promoter regions of SOCS genes. The promoter region of SOCS1 contains Specificity Protein 1 (SP1), ISRE, GAS and STAT3 and STAT6 binding elements (Naka, Narazaki et al. 1997; Sakamoto, Yasukawa et al. 1998; Schluter, Boinska et al. 2000).

# 1.9.3 SOCS1 Inhibition of Interferon Signaling

SOCS1 and SOCS3 are negative regulators of the type I and type II interferon JAK-STAT signaling pathway (Song and Shuai 1998). SOCS1 and SOCS3 mRNA expression is induced in response to IFN $\gamma$  and IFN $\alpha$  signaling (Song and Shuai 1998). In a negative feedback loop, SOCS1 and SOCS3 have both been shown to inhibit interferon signaling, however SOCS1 demonstrates a much more potent inhibitory response (Song and Shuai 1998). The inhibitory effects of SOCS1 are demonstrated by the inactivation of signaling molecules involved in the JAK-STAT signaling pathway. For example, in cells overexpressing SOCS1, decreased JAK1, TYK2 and STAT1 phosphorylation is observed in response to type I interferons and decreased STAT1 phosphorylation is observed in response to type II interferon (Sakamoto, Yasukawa et al. 1998; Song and Shuai 1998). The negative regulation of interferons by SOCS1 is also demonstrated by the inhibition of antiviral and antiproliferative effects of IFN $\alpha$ , IFN $\beta$  and IFN $\gamma$  stimulation in cells overexpressing SOCS1 (Sakamoto, Yasukawa et al. 1998; Song and Shuai 1998). The critical importance of SOCS1 in the regulation of cytokine signaling has been demonstrated with the generation of  $Socs1^{-/-}$  mice. Within 10 days of birth,  $Socs1^{-/-}$  mice are significantly smaller than their wild type littermates, and die before reaching 3 weeks of age due to a severe inflammatory syndrome (Starr, Metcalf et al. 1998). Abnormalities are observed in a number of organs. Most notable are severe lymphoid deficiencies within the peripheral blood and the lymphoid organs as well as major fatty degeneration, necrosis and monocytic infiltration of the liver (Starr, Metcalf et al. 1998). Monocytic infiltration of the lungs, heart and pancreas is also observed (Starr, Metcalf et al. 1998).

*Socs* 1<sup>-/-</sup> mice show both increased type I and II interferon signaling. IFN<sub>γ</sub> responsive genes are up-regulated in *Socs* 1<sup>-/-</sup> mice; this is due to both an increased expression of IFN<sub>γ</sub> and a hyper-responsiveness of cells to IFN<sub>γ</sub> (Alexander, Starr et al. 1999; Fenner, Starr et al. 2006). ISGs are also up-regulated in *Socs* 1<sup>-/-</sup> mice and the treatment of BMMs from *Socs* 1<sup>-/-</sup> Ifn<sub>γ</sub><sup>-/-</sup> mice with IFN<sub>α</sub> results in prolonged tyrosine phosphorylation of STAT1 (Fenner, Starr et al. 2006). This is due to a hyper-responsiveness of cells to the type I interferons (Fenner, Starr et al. 2006).

The inflammatory phenotype of  $Socs 1^{-/-}$  mice is largely due to dis-regulated IFN $\gamma$ signaling and is comparable to the effects observed with the administration of IFN $\gamma$  to neonatal mice (Alexander, Starr et al. 1999). Consequently, the neonatal lethality of Socs 1<sup>-/-</sup> mice can be rescued by the administration of anti-IFN<sub> $\gamma$ </sub> antibody or via the generation of Socs1-/-Ifny-/- mice (Alexander, Starr et al. 1999). The contribution of interferon signaling to the inflammatory phenotype, however, is complex. Knockout studies have found that type I interferon signaling also contributes to the inflammatory phenotype of Socs1<sup>-/-</sup> mice and that this is specific to IFNAR1 signaling (Fenner, Starr et al. 2006). Socs1<sup>-/-</sup>Ifnar1<sup>-/-</sup> mice survive past 3 weeks of age and do not display the inflammatory syndrome of Socs1<sup>-/-</sup> mice whereas Socs1<sup>-/-</sup> Ifnar2<sup>-/-</sup> mice all die by 3 weeks of age and display a phenotype similar to Socs1<sup>-/-</sup> mice (Fenner, Starr et al. 2006). This raises questions about the contribution of type I and type II interferon signaling towards the inflammatory phenotype, as the knockout of either pathway abolishes the inflammatory phenotype of Socs1<sup>-/-</sup> mice. This may be due to the pathways working in synergy with each other. One theory is that IFNAR1 associates with IFNGR which would explain why the knockout of IFNAR1 and not IFNAR2 abolishes inflammation (Fenner, Starr et al. 2006). Other data suggests that priming by type I IFN is necessary for maintaining STAT1 levels basally and in the absence of this priming effect IFNγ is unable to signal efficiently (Gough, Messina et al. 2010).

Compared to wild type mice,  $Socs1^{-/-}$  mice have a significantly greater ability to resolve viral infection (Fenner, Starr et al. 2006), a characteristic which is due to a hyper-responsiveness of cells solely to the type I interferons, not IFNγ (Fenner, Starr et al. 2006). The administration of antibody against IFNα and IFNβ to 5 – 10 day old  $Socs1^{-/-}$  *Ifnγ*<sup>-/-</sup> mice prior to infection with SFV results in the death of all mice within 4 days compared to an 84% survival rate of SFV challenged, but untreated,  $Socs1^{-/-}$ Ifnγ<sup>-/-</sup> mice (Fenner, Starr et al. 2006). Similarly,  $Socs1^{-/-}$ Ifnar1<sup>-/-</sup> mice which have reduced type I interferon signaling are highly susceptible to viral infections and die within 4 days (Fenner, Starr et al. 2006).

#### 1.9.4 Mechanisms of SOCS1 inhibition

Overall, these data suggest that IFNAR1, specifically, is a target for negative regulation by SOCS1 (Fenner, Starr et al. 2006). In other signaling systems, the SOCS proteins have been shown to inhibit receptor signaling by a number of mechanisms. In the IFNγ signaling pathway, SOCS1 binds a phosphotyrosine residue (Tyr441) of the interferon gamma receptor 1 and is believed to restrict signaling by its kinase inhibitory region (KIR) interacting with the receptor associated JAK1 (Qing, Costa-Pereira et al. 2005). SOCS3 inhibition of gp130 signaling is through binding to a receptor phosphotyrosine and blocking the recruitment of signaling molecules (Nicholson, De Souza et al. 2000). In other systems, SOCS proteins have been found to directly interact with receptor associated JAK kinases. For example, in studies with recombinant proteins, SOCS1 has been shown to bind phosphorylated TYK2 and the SH2 domain of SOCS1 is required for this interaction (Narazaki, Fujimoto et al. 1998). In addition to the SH2 domain, the KIR domain is also required for SOCS1 inhibition of TYK2 autophosphorylation (Narazaki, Fujimoto et al. 1998).

The mechanism of SOCS1 inhibition of IFN signaling is yet to be elucidated. Based on other systems, SOCS1 may inhibit signaling in a number of ways, whether it is by binding directly to the receptor, receptor associated JAKs or other adaptors. It may inhibit signaling by the KIR blocking kinase function of receptor associated kinases or by blocking the recruitment of other signaling molecules such as STATs.

#### 1.9.5 SOCS1 and Immune Cell Development

SOCS1 plays an important role in immune cell development and differentiation. As mentioned previously, the major site of SOCS1 expression is within thymocytes, and occurs in a developmentally regulated manner (Marine, Topham et al. 1999). Socs 1<sup>-/-</sup> mice have altered T-cell counts. At 4 days post birth, Socs1<sup>-/-</sup> mice have a reduced double positive T-cell population and by 10 days post birth T-cells are largely CD4 or CD8 single positive cells. The perinatal lethal phenotype of Socs1<sup>-/-</sup> mice can be rescued by crossing onto a recombination activating gene 2 (RAG2)-deficient background, thus indicating a significant contribution of T-cells in the development of the phenotype of Socs1<sup>-/-</sup> mice (Marine, Topham et al. 1999). Studies involving mice with specific T-cell lineage SOCS1 deficiency have helped further refine the role of SOCS1 in thymic T-cell development (Chong, Cornish et al. 2003; Zhan, Davey et al. 2009). Mice with a specific deletion of SOCS1 from thymocytes do not display multiorgan failure suggesting that the inflammatory phenotype of SOCS1 is not due solely to the direct effect of SOCS1 on T-cell function. Nevertheless these mice display multiple lymphoid deficiencies (Chong, Cornish et al. 2003). SOCS1 has effects on both single positive CD4 and CD8 T-cells. Thymus-specific deletion of SOCS1 results in an enhanced CD8+:CD4+ T-cell ratio (Chong, Cornish et al. 2003). The effect of SOCS1 on thymic T-cells translates downstream into altered peripheral T-cells. There is a significant increase in single positive T-cells within bone marrow and splenic T-cells display an activated phenotype responding to cytokines in the absence of T-cell receptor stimulation (Marine, Topham et al. 1999). Peripheral CD8+ T-cells display increased hypersensitivity to cytokines and a memory like phenotype with the deletion of thymic SOCS1 (Chong, Cornish et al. 2003). Deletion of SOCS1 in T-cells also results in increased numbers of Foxp3+ CD4+ thymocytes due to increased survival of CD25+CD4+ T-cells. This is independent of IFNα or IL-7 signaling. (Zhan, Davey et al. 2009). In addition to the direct effects of SOCS1 in T-cells, a dis-regulated cytokine network between T-cells and macrophages also contributes to the inflammatory disease (Chong et al 2005).

As mentioned previously, IFN $\gamma$  contributes largely to the phenotype of  $Socs1^{-/-}$  mice. SOCS1, however, has IFN $\gamma$  independent actions in T-cell homeostasis (Cornish, Davey et al. 2003), as T-cell development in  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice is perturbed. Overall T-cell numbers in  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice are increased due to an increase in proliferation, although there is a decrease in splenic T-cell numbers (Cornish, Davey et al. 2003). Similarly to  $Socs1^{-/-}$  mice,  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice also have a reduced CD4+:CD8+ T-cell ratio in lymphoid tissues as compared to control mice. As this decreased ratio was also seen in fetal thymic organ cultures of  $Socs1^{-/-}$  and  $Socs1^{-/-}Ifn\gamma^{-/-}$  embryos, it suggests that this perturbation may originate in the thymus. Comparison of proliferation and survival of T-cells in  $Socs1^{-/-}Ifn\gamma^{-/-}$  and  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice demonstrate no difference in survival, yet proliferation of CD8+ T-cells was greater than that of CD4+ T cells and thus may drive the altered ratio of CD4+:CD8+ T cells (Cornish, Davey et al. 2003).

As SOCS1 is involved in numerous cytokine signaling pathways, there are a number of candidate cytokines which may contribute to this altered ratio, such as IL-12, IL-7 and IL-15. As transfer of  $Socs1^{-/-}$  progenitor T-cells to wild type mice also results in a reduced CD4+:CD8+ ratio, the altered T-cell numbers are likely due to a hypersensitivity of T-cells to cytokines or direct cytokine secretion from T-cells themselves rather than a change in the environment of  $Socs1^{-/-}$  mice such as altered cytokine levels.

#### 1.10 Summary

The type I IFNs are critical in orchestrating an immune response to infection. Many pathogen detection mechanisms exist within the cell which ultimately results in type I IFN synthesis. Type I IFNs then act back on the cell to stimulate a host of anti-viral events as well as in a systemic manner to modulate cellular responses to infection. There is a tight balance between under and over activation of the immune system. Under-activation may result in an inability to clear infection while over-activation may result in uncontrolled inflammation. Considering the wide variety of effects type I IFN has in controlling immune responses it is critical that type I IFN signaling is regulated in an appropriate manner to effectively clear infection while maintaining homeostasis.

Initial signaling events at the receptor result in the phosphorylation of STATs which mediate many of the functions of the type I IFNs through transcriptional regulation. Many factors may act to control the balance of STATs activated by the type I IFNs and thus the response of the cell to IFN stimulation. The potent inhibitor, SOCS1, is one such factor which has a significant impact on IFN signaling. The mechanism of SOCS1 regulation of type I IFN signaling has yet to be determined and thus the focus of this thesis.

# **CHAPTER 2**

# METHODS

Note: all methods for Chapter 3 are included within Chapter 3.

# 2.1 Mouse Models

Mice were maintained in a specific pathogen free (SPF) environment at the Monash Medical Centre Animal Facility. All mice used were female between 10 – 14 weeks of age. The following genotypes were used.

- wild type C57BL/6
- Socs1<sup>-/-</sup>Ifnγ<sup>-/-</sup> (C57BL/6 background) (Alexander, Starr et al. 1999)
- Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> (C57BL6 background) (Alexander, Starr et al. 1999)

# 2.2 Detection of STAT1, STAT3 and STAT5 phosphorylation in immune cell populations by Phosphoflow Cytometry.

# 2.2.1 Collection and isolation of thymic and splenic immune cells

Mice were euthanised by  $CO_2$  inhalation. The spleen and thymus were harvested and collected in a solution of Dulbecco's Phosphate Buffered Saline (DPBS) (Gibco) with 5mM EDTA (Amresco) on ice. Single cell suspensions of splenocytes or thymocytes were created by filtering through 70 µm Nylon Cell Strainers (BD Falcon) with ice cold DPBS into a clean 15 ml falcon tube (BD Falcon). Cells were then pelleted at 1000 x *g* for 5 minutes and the supernatant discarded. Cells were resuspended in 5 ml pre-warmed (37°C) red cell lysis (RCL) buffer (appendix I) and incubated at 37°C for 5 minutes to lyse red blood cells. 5 ml of ice cold DPBS was then added and the cells pelleted. The supernatant was discarded and the cells resuspended and washed in 5 mls DPBS. A 200 µl aliquot was taken from each sample for analysis and cell counting using the Sysmex cell counter according to the manufacturers' instructions (Sysmex). The cells were again pelleted and the supernatant discarded and resuspended in pre-

warmed in Dulbecco's Modified Eagle Medium (DMEM) (Gibco) with 1% Fetal Bovine Serum (FBS) (Gibco) at a concentration of  $10^7$  cells/ml. The cell suspension was incubated at 37°C with 5% CO<sub>2</sub> for 1-2 hours prior to stimulation.

# 2.2.2 Collection and Isolation of Peripheral Blood Mononuclear Cells (PBMCs)

Prior to blood collection, 10 µl of Heparin (Sigma Aldrich) was aliquoted into a clean 1.7 ml eppendorf tube (Axygen) and placed on ice. The blood was collected via cardiac puncture and transfered to the eppendorf tube containing heparin. The blood and heparin were mixed and kept on ice to prevent blood clotting. Isolation of PBMCs was performed using Histopaque<sup>®</sup> (Sigma Aldirch). The blood was warmed to room temperature and diluted in DPBS to a volume of 3 ml. 3 ml of room temperature histopaque solution was aliquoted into a 15 ml falcon tube and the diluted blood layered on top. These were then centrifuged at 4000 x g for 30 minutes at room temperature to separate the plasma, white blood cells, histopaque and red blood cells and granulocytes. The cell fraction layer was then carefully collected and pooled with samples from mice with the same genotype into a 50 ml falcon tube (BD Falcon) with the addition of 40 ml DPBS. The cells were pelleted at 2000 x g for 10 minutes and the supernatant removed. To ensure no red blood cells remained in the cell solution, 5 ml of pre-warmed (37°C) RCL buffer was added to the cell pellet, mixed and incubated at  $37^{\circ}$ C for 5 minutes. The cells were then pelleted at 1000 x g for 5 minutes and the supernatant discarded. 5 ml of DPBS was then added to the cells and a 200 µl aliquot taken for analysis by the Sysmex cell counter. The cells were again pelleted at 1,000 x g for 5 minutes and resuspended in 1% FCS DMEM to a concentration of  $10^7$  cells per ml.

# 2.2.3 Cell Stimulation

For each stimulation condition, 300  $\mu$ l of cell solution was transferred to 15 ml falcon tubes. mulFN $\alpha$  (Trajanovska, Owczarek et al. 2003) diluted to the required concentration (as specified) in DMEM was added to the cell suspensions and the tubes were incubated at 37°C for the required time (as specified).

# 2.2.4 Cell Fixing and Permeabilisation

Following stimulations, cells were fixed by adding 1 ml pre-warmed (37°C) 1% Buffered Formalin (10% Buffered Formalin (Austalian Biostain Pty. Ltd.) diluted 1/10 in DPBS) and incubated at 37°C for 10 minutes. To stop fixation, 1 ml of ice cold DPBS was added to the cells and the cells pelleted at 1,000m x *g* for 5 minutes at 4°C. The cells were washed again in DPBS at 4°C, pelleted and the supernatant discarded. Excess supernatant was removed so cells were in minimal volume. Cells were then vortexed to disrupt the pellet while adding 1 ml of ice cold 90% methanol (Australian Biostain) (diluted in Milli-Q H<sub>2</sub>0) to permeabilise the cells. Cells were then placed at -80°C for next day staining.

# 2.2.5 Anti-body staining

Cells were removed from -80°C freezer and placed on ice. Cells were then pelleted at 1,000 x g for 5 mins at 4°C. The supernatant was removed and the cells resuspended in 2 ml of freshly made, ice cold, phosphoflow staining buffer (appendix I). Cells suspensions were transferred to Fluorescence Activated Cell Sorting (FACS) tubes (BD Biosciences) for ease of handling. Cells were then washed twice in staining buffer, pelleting at 1,000 x g for 5 mins at 4°C. Following washes, cells were resuspended in 240  $\mu$ l staining buffer and allowed to hydrate for 1 hour, on ice. 40  $\mu$ l of cells were then transferred to fresh FACS tubes for each antibody stain. The antibodies used for phosph-Stat1, phospho-Stat3 and phospho-Stat5 staining and surface marker staining are described in Table 2.1. Antibodies were prepared in a total of 10  $\mu$ l staining buffer at appropriate concentrations (as specified). The diluted antibodies (in 10  $\mu$ l volume) were added to the 40ul aliquots of cell suspensions and incubated for 60 minutes on ice in the dark. Following staining, cells were washed twice in 1 ml ice cold staining buffer, with centrifuge spins of 1000 x g for 5 minutes at 4°C. Following washes, cells were resuspended in 400  $\mu$ l staining buffer for FACS analysis.

# 2.2.6 Data Collection and Analysis

Data was acquired using a BD FACSCanto<sup>™</sup>II analyser according to the manufacturers' instructions. A minimum of 10,000 cells for each sample was collected. Prior to data collection, single stained (FITC, PE of Alexa647) controls were used to compensate for any background readings. Data was analysed using the software FlowJo. Details of this analysis are outlined in section 4.1.1.

| Antibody                       | Conjugation | Concentration | Dilution | Company        |
|--------------------------------|-------------|---------------|----------|----------------|
| Anti-phospho-<br>STAT1 (pY701) | A647        | unknown       | 1/5      | BD Biosciences |
| Anti-phospho-<br>STAT3 (pY705) | A647        | unknown       | 1/5      | BD Biosciences |
| Anti-phospho-<br>STAT5 (pY694) | A647        | unknown       | 1/5      | BD Biosciences |
| Anti-CD4                       | FITC        | 0.5 mg/ml     | 1/1600   | BD Biosciences |
| Anti-CD8                       | PE          | 0.2 mg/ml     | 1/100    | BD Biosciences |
| Anti-B220                      | FITC        | 0.5 mg/ml     | 1/3200   | BD Biosciences |
| Anti-MAC1                      | PE          | 0.2 mg/ml     | 1/1600   | BD Biosciences |

# Table 2.1: List of antibodies used for flow cytometry.

#### 2.3 Western Blot Analysis of total STAT1, STAT3 and STAT5 protein expression

## 2.3.1 Preparation of Cell Lysates

Whole thymus was harvested and a single cell suspension prepared as outlined in section 2.2.1. For each thymus,  $10^7$  cells, in a total volume of 1 ml DMEM with 1% FCS, were aliquoted into wells of a 24 well plate and allowed to rest for one hour. Cells were stimulated with muIFN $\alpha$  for 0, 30, 120 and 240 minutes. At appropriate time points, 1 ml of ice cold DPBS was added to each well, the cells were detached by pipetting and transferred to a 15 ml falcon tube. Cells were pelleted at 1000 x *g* for 5 mins, washed twice in DPBS and resuspended in 200 µl cell lysis buffer (appendix I). Cell lysates were transferred to an eppendorf tube and rotated for 1 hour at 4°C to ensure complete lysis. The nuclei was pelleted at 10,000 x *g* for 10 minutes at 4°C and the supernatant transferred to a fresh eppendorf tube.

## 2.3.2 Lowry Protein Assay

A Lowry protein assay (Promega) was performed, according to the manufacturer's instructions, to determine the concentration of protein in the cell lysates. In a total volume of 5  $\mu$ l, 0, 1, 2, 4, 8, 10, 20 and 50  $\mu$ g Bovine Serum Albumin (BSA, Sigma Aldrich) standards were aliquoted, in triplicate, into a flat bottom 96 well plate (BD Falcon) along with the cell lysates to be tested. Lowry assay reagents (Promega) were added to the wells, according to the manufacturer's instructions, and incubated at RT for 15 mins. The absorbance at 490 nm was determined using a FluoStar Optima plate reader, according to the manufacturer's instructions. A standard curve was generated using the BSA samples and the protein content of the cell lysates determined.

# 2.3.3 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

SDS-PAGE was performed using the BIO-RAD SDS-PAGE apparatus. Proteins were separated using 8% SDS-PAGE gels (appendix I). 40  $\mu$ g of lysate samples (heated at 95C for 5 mins with 5 x Sample buffer (appendix I)) were loaded onto the SDS-PAGE gel and electrophoresed at 80 V in SDS-PAGE running buffer (appendix I) until adequate separation was achieved. A BenchMark molecular weight marker (Invitrogen) was run alongside protein samples for calculation of molecular weight.

# 2.3.4 Protein Transfer to Nitrocellulose Membrane

Resolved protein from SDS-PAGE was transferred onto a nitrocellulose membrane (Immobilon-FL, Millipore) for immunoblot analysis. This was performed in wet transfer buffer (appendix I) using the wet transfer technique with BIO-RAD apparatus, according to the manufacturer's instructions. The transfers were run at 100 V for 70 minutes.

#### 2.3.5 Immunoblotting

Membranes were blocked for 1 hour at RT in Odyssey Blocking Buffer (OBB, LI-COR Biosciences). Membranes were then placed in roller tubes (Starstedt) and incubated with either rabbit anti-muSTAT1 (Cell Signalling), mouse anti-muSTAT3 (Cell Signalling) or rabbit anti-muSTAT5 (Cell Signalling) antibodies diluted 1:1000 in OBB overnight at 4°C. Membranes were washed 3 x 10 mins in PBS with 0.1% Tween (PBST) at RT, placed into clean roller tubes and incubated with secondary antibody, 800 nm fluorescence labelled anti-mouse-IgG or anti-rabbit-IgG antibodies (LI-COR Biosciences), diluted 1:1500 in OBB with 0.1% Tween for 1 hour at RT. Membranes were wash 3 x 10 mins at RT in PBST. Protein was visualised using the Odyssey Infrared Imaging System (LI-COR Biosciences), at wavelength 800 nm, according to the manufacturer's instructions. Membranes were then stripped of antibody by incubation with stripping buffer (appendix I) for 10 mins at 55°C. Membranes were reblocked in OBB and incubated with anti-B-tubulin antibody (Abcam) diluted 1:1000 in OBB overnight at 4°C. Membranes were washed and incubated with secondary antibody, 800 nm flourescence labelled anti-mouse-IgG, diluted 1:1000 in OBB with 0.1% Tween. Membranes were then washed and protein visualised using Odyssey, on wavelength 880, according to the manufacturer's instructions. Odyssey Infrared Imaging System, at wavelength 800 nm, according to the manufacturer's instructions.
## 2.4 Microarray

A flow chart of the microarray procedure is outlined in Figure 2.1 and explained in detail below.

## 2.4.2 IFN Treatment

mulFN $\alpha$  was diluted in 200  $\mu$ l DPBS to contain a total of 1000 IU. Mice were injected i.p using a 26 gauge needle with 200  $\mu$ l DPBS with mulFN $\alpha$  (1000 IU) or with 200  $\mu$ l DPBS for controls.

## 2.4.3 Organ Collection

Mice were euthanized by  $CO_2$  inhalation at 3 and 6 hours post IFN $\alpha$  stimulation. Mice injected with DPBS were euthanized at the 6 hour time point. Following euthanasia the thymus was harvested, snap frozen in liquid nitrogen then stored at -80°C.

## 2.4.4 RNA isolation from Whole Thymus

The thymi were removed from -80°C and placed on dry ice. Samples were weighed and transferred to 50 ml falcon tubes with 1 ml of TRIzol reagent (Invitrogen). The tissue was homogenised in TRizol using a T24 Ultra-Turrax (IKA) homogeniser. Following homogenisation, samples were transferred to 15 ml falcon tubes and 200 µl of chloroform (Sigma) added to each tube. Samples were vortexed for 15 seconds and incubated at room temperature for 3 minutes. Samples were centrifuged at 10,000 x g for 15 minutes at 4°C. Following centrifugation, the aqueous phase (top layer) containing the RNA was transferred to a fresh eppendorf tube. 500 µl of isopropanol (Merck) was added to each tube and the samples mixed and incubated for 10 minutes at room temperature to precipitate the RNA. The samples were then centrifuged at 10,000 x g for 10 minutes at 4°C and the supernatant discarded. The RNA was washed once with 1 ml of 70% ethanol (Labchem) (diluted in 0.1% v/v diethylpyrocarbonate (DEPC) treated Milli-Q H<sub>2</sub>0 (appendix I)), mixed by vortexing and centrifuged at 7,500 x g for 5 minutes at 4°C. The supernatant was discarded and the RNA pellet air dried for 5 -10 minutes. 400 µl of DEPC treated H<sub>2</sub>0 was then added and the RNA redissolved at 55°C for 10 minutes. RNA was then stored at -80°C.

|                                          | 0 hour | 3 hours | 6 hours |
|------------------------------------------|--------|---------|---------|
| WT                                       | PBS    | IFNα    | IFNα    |
|                                          | (n=3)  | (n=3)   | (n=3)   |
| Socs1 <sup>+/+</sup> lfnγ <sup>./-</sup> | PBS    | IFNα    | IFNα    |
|                                          | (n=3)  | (n=3)   | (n=3)   |
| Socs1 <sup>-/</sup> -Ifnγ <sup>-/-</sup> | PBS    | IFNα    | IFNα    |
|                                          | (n=3)  | (n=3)   | (n=3)   |



Figure 2.1: Flow chart of the microarray procedure.

#### 2.4.5 RNA clean up

To remove any contaminates from the RNA samples, these were cleaned using a Qiagen RNeasy Mini Kit (with an on-column DNAse1 digestion) according to the manufacturers' instructions. RNA was eluted in a total volume of 50  $\mu$ l in DEPC treated H<sub>2</sub>0.

## 2.4.6 RNA Quality Control

Analysis of the RNA integrity and the presence of contaminants were performed using Experion RNA StdSens Analysis Kit (BIO-RAD) according to the manufacturers' instructions.

## 2.4.7 Reverse Transcription of RNA to cDNA

Reverse transcription of RNA to cDNA was performed with the SuperScript<sup>™</sup>III First-Strand Synthesis System (Invitrogen). RNA (1 ug) was combined with 50 ng random hexamers (Invitrogen) and 1 µl of 10 mM dNTP mix (Invitrogen) (total concentration 1mM) in a total volume of 10 µl. The samples were incubated at 65°C for 5 minutes, cooled on ice for 5 minutes and then pulse spun. 10 µl of freshly made cDNA Synthesis Mix was then added to each sample, consisting of 2 µl of 10 x Reverse Transcriptase buffer (Invitrogen), 2 µl of 0.1 M DTT (Invitrogen) (total concentration 0.01mM), 4 µl of 25 mM MgCl<sub>2</sub> (Invitrogen) (total concentration 5 mM), 1 µl of 40 U/ µl RNaseOUT<sup>™</sup> (Invitrogen) and 1 µl of SuperScript<sup>™</sup>III Reverse Transcriptase (Invitrogen). The samples were incubated at room temperature for 10 minutes followed by 50°C for 50 minutes. The reactions were heat inactivated at 85°C for 5 minutes. 1 µl of RNase H (Invitrogen) was added to each sample and samples were incubated at 37°C for 20 minutes. Samples were diluted 1 in 5 in DEPC treated H<sub>2</sub>0. This dilution allows for 2 µl of sample to be used for each PCR or qRT-PCR. Samples were stored at -20°C until use.

## 2.4.8 GAPDH PCR

A GAPDH PCR was performed on cDNA samples to ensure no genomic DNA contamination. 1  $\mu$ I of cDNA was added to 10  $\mu$ I of 5 x Green Taq buffer (Promega), 1  $\mu$ I of 10mM dNTP (Promega), 1  $\mu$ I of 5' and 3' GAPDH primers (appendix II), 3  $\mu$ I of MgCl<sub>2</sub> (Promega), 0.3  $\mu$ I of Flexi Taq Polymerase (Promega) and made up to 50  $\mu$ I with

DEPC treated H<sub>2</sub>0. All PCR reactions were carried out in a MyCycler<sup>™</sup> Thermal Cycler (BIO-RAD)

- PCR reaction conditions
- Denaturation: 94°C, 30 seconds
- Denaturation: 94°C, 30 seconds
- Annealing: 55°C, 30 seconds
- Extension: 72°C, 30 seconds
- Extension: 72°C, 5 minutes

# 2.4.9 Quantitative Real Time PCR (qRT-PCR)

The Applied Biosystems 7900HT Fast Real-time PCR system and Syber Green were used for qRT-PCR. Each reaction was performed in a total volume of 10 µl including 2 µl cDNA, 5 µl of Syber Green PCR Master Mix (Applied Biosystems) and 0.2 µM each of forward and reverse primers as indicated. The total volume was made to 10 µl with DEPC treated H<sub>2</sub>0. The primers used for each gene are indicated in appendix II. For each gene analysed a control of 18S was also performed for each sample. Each 10 µl reaction was performed in triplicate in a MicroAmp<sup>TM</sup> Optical 384-well reaction plate and sealed with MicroAmp<sup>TM</sup> Optical adhesive film. The thermal cycling protocol was as follows: 50°C for 2 minutes, 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and  $60^{\circ}$ C for 1 minute. Cycle threshold (Ct) values for all probes were exported and  $\Delta\Delta$ Ct for each sample calculated relative to 18S. Fold induction of  $\Delta\Delta$ Ct values was calculated relative to a chosen sample (as indicated).

# 2.5.10 Microarray Procedure

The methods described in section 2.5.10 were performed by Jodee Gould, CIIID, MIMR.

# 2.5.10.1 Spike In

600 ng of RNA was diluted in nuclease free water to a total volume of 7.3  $\mu$ l. The spike in mix was prepared by heating at 37°C for 5 mins. Three fold serial dilutions of the spike in mix were prepared and 3  $\mu$ l was added to each RNA sample along with 1.2  $\mu$ l T7 promoter primer to make a final volume of 11.5  $\mu$ l. The samples were denatured by incubating at 65°C for 10 minutes followed by ice for 5 minutes and a pulse spin.

- 1 cycle
- 35 cycles
- 1 cycle

#### 2.5.10.2 cDNA synthesis

8.5  $\mu$ I of cDNA mix was added to each sample and consists of 4 ul 5X first strand buffer, 2  $\mu$ I 0.1M DTT, 1  $\mu$ I 10mM dNTP mix, 1  $\mu$ I MMLV-RT and 0.5  $\mu$ I RNaseOUT. Samples were mixed by pipetting and incubated in a 40°C water bath for 2 hours. Samples were then heat inactivated by heating at 65°C for 15 minutes followed by ice for 5 minutes. Samples were stored at -20°C until the next step.

## 2.5.10.3 Cy-3 Labelling and Transcription

60 µl of transcription mix was added to each tube consisting of 15 µl nuclease free water, 20 µl 4X transcription buffer, 6 µl 0.1mM DTT, 8 µl NTP mix, 6.4 µl 50% PEG (prewarmed 40°C for 1 minute), 0.5 µl RNaseOUT, 0.6 µl inorganic pyrophosphatase, 0.8 µl T7 RNA polymerase and 2.4 µl Cy-3-CTP. Samples were incubated in a 40°C water bath for 2 hours.

## 2.5.10.4 Purification of cRNA

Cy3 labelled cRNA was then purified using Qiagen RNeasy mini kit. 20  $\mu$ l water was added to cRNA samples for a total volume of 100  $\mu$ l. 350  $\mu$ l RLT (+ $\beta$ ME 10  $\mu$ l/ml) was then added and mixed by pipetting, followed by 250  $\mu$ l 100% ethanol. 700  $\mu$ l of cRNA was transferred to a Qiagen mini column and centrifuged at 10,000 x *g* for 30 seconds. Flow through was discarded. The column was transferred to a new collection tube and 500  $\mu$ l RPE added. Columns were centrifuged at 10,000 x *g* for 30 seconds and the flow through discarded. This was then repeated with another 500  $\mu$ l RPE with centrifugation 10,000 x *g* for 1 minute. Columns were spun for an extra 30 seconds to remove all traces of ethanol. The column was then transferred to a 1.5 ml eppendorf tube and 30  $\mu$ l water added. Following a one minute incubation, columns were centrifuged 10,000 x *g* for 30 seconds.

## 2.5.10.5 Quantification of cRNA

1  $\mu$ I of cRNA from each sample was tested on the nanodrop using the RNA-40/Cy3 microarray measurement. Yield must be > 1.65  $\mu$ g and specific activity > 9.0 pmol/ $\mu$ g.

µg cRNA = mg/µl cRNA x 30µl(elution volume)/1000

specific activity = (pmol/µl Cy3/ ng/µl cRNA) x 1000

## 2.5.10.6 Hybridisation

For 4x 44K microarrays, 1.65  $\mu$ g of Cy3 labelled cRNA , 11  $\mu$ l of 10 x blocking agent, 2.2  $\mu$ l of 25 x fragmentation buffer in a total volume of 55  $\mu$ l made up with water. The samples were incubated at 60°C for exactly 30 minutes. The reaction was stopped by the addition 55  $\mu$ l of 2 x GE Hybridisation buffer. The samples were mixed carefully by pipetting and centrifuged at 13,000 x *g* for 1 minute.

100  $\mu$ I of sample was then used immediately for hybridisation onto the microarray slide at 65°C for 17 hours at 10 rpm.

# 2.5.10.7 Microarray slide wash

Disassembly was performed in GE wash buffer 1 at 25°C. Slides were then washed in GE wash buffer 1 for 1 minute at 25°C and then pre-warmed GE wash buffer 2 for 1 minute.

## 2.5.10.8 Microrray slide scan

Each slide was loaded into a Version B slide holder (*Agilent Technologies*) and scanned in a G2505B Series Microarray scanner (*Agilent Technologies*) using the one colour scan setting for 4x44k array slides (Scan Area 61x21.6 mm, Scan resolution 5µm, Dye channel was set to Green and Extended Dynamic Range selected at 100% and 10% Green PMT).

# 2.5.10.9 Feature Extraction

The scanned images were analysed with Feature Extraction Software 9.5.3.1 (Agilent Technologies) using default parameters (protocol GE1-v5\_95 and Grid: 014868\_D\_20060807) to obtain background subtracted and spatially detrended Processed Signal intensities. Features flagged in Feature Extraction as Feature non-uniform outliers were excluded. Ultimately, the log intensity of each spot was calculated. Log (intensity) is dependent on the gene effect, array effect, dye effect, treatment effect, effect of interaction and error. Within the analysis we are interested in the difference between log intensities of a gene under different treatment.

#### 2.5.11 Data Analysis

Analysis of the microarray was performed using Genespring GX. Following feature extraction, the microarray data files were loaded into Genespring GX. Prior to statistical analysis, the data underwent a number of normalisation and quality control steps to ensure a reliable probe list was generated for analysis. A flow chart of the initial normalisation, transformation and quality control steps applied to the microarray data is demonstrated in Figure 2.2 and outlined below.

Normalisation of samples was performed to account for variations across arrays. The recommended Genespring normalisation for a one-colour Agilent array is a 'shift to the 75<sup>th</sup> percentile'. The 75<sup>th</sup> percentile was computed for every sample. The log values of the probe intensities of a sample were then subtracted by a factor so that every sample had the same 75<sup>th</sup> percentile. Following the above normalisation, baseline values for each sample were transformed to either the median of all samples or the median of its own genotypes 0 hour (as indicated). The type of baseline transformation performed is an important consideration depending on the questions to be asked of the data and the type of analysis performed.

Analysis of sample box plots enables the identification of 'abnormal' arrays. The distribution of one of the 6 hour IFN $\gamma$  time points did not follow patterns similar to the other samples and was therefore removed from the experiment. Unfortunately this only allows a sample of n=2 for this condition. Consequently some statistical analyses were unable to be performed. Where Genespring allowed the use of n=2 for statistical tests, these were performed.

Prior to data analysis, filtering of entities was performed based on gene expression intensities and the presence of flags. Entities were filtered for only those within the  $15^{th}$  –  $100^{th}$  percentile of intensities values of a probe set. For entities to be included in these analyses, they must be within the  $15^{th}$  –  $100^{th}$  percentile of at least half the samples. Flags are attributes that denote the quality of the entities. Values are generated based on the feature quality of the chip, like signal saturation and signal uniformity. The entities with low significant attributes in the data file were marked as absent and high significant values marked as present. Filtering by flags allows removal of 'absent' entities.



Figure 2.2: Flow chart of the initial steps in microarray analysis using Genespring GX.

Ultimately these steps resulted in a 'reliable' probe list on which statistical analysis was performed. Differential expression of genes across the different samples were analysed by performing a fold change cut off and applying a statistical test. A fold change cut off of greater or equal to two was used when comparing gene expression across the conditions. The type of statistical test applied was dependent on the question being asked. T-tests and one-way and two-way anovas were used (as indicated). A Benjamini Hochberg false discovery rate (FDR) multiple testing correction was also applied during the statistical analysis to minimise the detection of false positives. When a low number of genes were identified, the FDR correction was not applied (as indicated). Figure 2.3 outlines the statistical tests performed to identify genes significantly regulated following 3 and 6 hour IFNα treatment in the thymus of wt C57BL/6 mice. Figure 2.4 outlines the statistical tests performed to identify genes differentially expressed within Socs1+/+ Ifny-/vs  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice. Figure 2.5 outlines the statistical tests performed to identify genes significantly regulated following 3 and 6 hour IFNa treatment in the thymus of Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> C57BL/6 mice. Figure 2.6 outlines the statistical tests performed to identify genes significantly regulated following 3 and 6 hour IFNa treatment in the thymus of Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> C57BL/6 mice. Figure 2.7 outlines the statistical tests performed to identify genes that interact over SOCS1 regulation and IFNα stimulation.

Following statistical analysis, further bioinformatics analysis was employed on the gene lists shown to be statistically different between the conditions analysed. Further refining of these lists using clustering techniques enabled grouping of similarly expressed (coregulated) genes. The K-means algorithm was used to cluster the genes into groups with distinct profiles. K-means clustering partitions entities into k groups so that the sum of squares from points to the defined cluster centres are minimised. Euclidean distance was used as a metric and variance was used as a measure of cluster scatter. The amount of clusters generated was user-defined with the optimal number found by trial.

#### 2.5.11.1 Functional Annotation

A web-based program called the Database of Annotation, Visualisation and Integrated Discovery (DAVID) was used to perform functional annotation clustering of gene lists (Dennis, Sherman et al. 2003). The enrichment score (ES) is a ranking calculated from the geometric mean of members p-values in a corresponding annotation cluster. The top ranked annotation groups are likely to have consistently lower p-values for their annotation members.



Figure 2.3: Flow chart of analysis for the identification of genes regulated following 3 and 6 hours IFN $\alpha$  treatment, administered intraperitoneally, in the thymus of wt C57BL/6 mice



Figure 2.4: Flow chart of analysis for the identification of genes differentially expressed within  $Socs1^{+/+} Ifny^{-/-}$  vs  $Socs1^{-/-} Ifny^{-/-}$  mice.



Figure 2.5: Flow chart of analysis for the identification of genes regulated following 3 and 6 hours IFN $\alpha$  treatment, administered intraperitoneally, in the thymus of  $Socs1^{+/+}$  Ifn $\gamma^{-/-}$  C57BL/6 mice.



Figure 2.6: Flow chart of analysis for the identification of genes regulated following 3 and 6 hours IFN $\alpha$  treatment, administered intraperitoneally, in the thymus of  $Socs1^{-1}Ifn\gamma^{-1}$  C57BL/6 mice.



Figure 2.7 Flow chart of anathelaysis for the identification of SOCS1/IFN regulated genes.

#### 2.5.11.2 Promoter Analysis

The promoters of specific genes were analysed using the program Clover (Cis-element over-representation) (Frith, Fu et al. 2004). Clover identifies statistically overrepresented sequence motifs within the promoters of specified gene sets compared with background sequences. Clover compares each motif to the sequence set and calculates a raw score indicating how strongly the motif is present in the set. For each background set clover will repeatedly extract random fragments matched by length to the target sequences and calculate raw scores for these fragments. The p-value is equal to the proportion of times that the raw score fragment set exceeds or equals the raw score target set. For each motif a separate P-value is calculated for each background file. The P-value indicates the probability that the motifs presence in the target set can be explained by chance alone. The motifs used for analysis were obtained from TRANSFAC 2010.3. TRANSFAC is a database of transcription factors containing their experimentally proven binding sites and regulated genes. Target sets: Sequences for analysis of a particular gene set were obtained from Ensemble BioMart. For each gene, 2000 base pairs upstream of the transcription start site were analysed. Background Sequence: sequences 2000 bp upstream of mouse genes (47.8% G+C) from UCSC (25 April 2003).

## **CHAPTER 3**

## DECLARATION

In the case of Chapter 3 the nature and extent of my contribution to the work was the following:

| Nature of contribution                                | Extent of |
|-------------------------------------------------------|-----------|
| Cloned IFNAR1 and IFNAR1 mutant expression constructs | 100       |
| Performed all luciferase assays                       | 100       |
| Performed all co-immunoprecipitation assays           | 100       |
| Performed all ubiquitination assays                   | 100       |
| Performed analysis of endogenous and exogenous TYK2   | 100       |
| expression                                            |           |
| Writing of the paper                                  | 100       |

The following co-authors contributed to the work:

| Name                | Nature of contribution                                         |
|---------------------|----------------------------------------------------------------|
| Nicole de Weerd     | Performed flow cytometry analysis of IFNAR1 surface levels     |
| Jodee Gould         | Cloned and performed mutagenesis of TYK2 expression constructs |
| Christian Schindler | Provided advice and reagents                                   |
| Ashley Mansell      | Provided advice and reagents                                   |
| Sandra Nicholson    | Provided advice and reagents                                   |
| Paul Hertzog        | Supervisor and lab director                                    |

Candidate's Signature

| ······································ |         |
|----------------------------------------|---------|
|                                        | Date ,  |
|                                        | 23/4/13 |

#### Declaration by co-authors

The undersigned hereby certify that:

- (1) the above declaration correctly reflects the nature and extent of the candidate's contribution to this work, and the nature of the contribution of each of the coauthors.
- (2) they meet the criteria for authorship in that they have participated in the conception, execution, or interpretation, of at least that part of the publication in their field of expertise;
- (3) they take public responsibility for their part of the publication, except for the responsible author who accepts overall responsibility for the publication;
- (4) there are no other authors of the publication according to these criteria;
- (5) potential conflicts of interest have been disclosed to (a) granting bodies, (b) the editor or publisher of journals or other publications, and (c) the head of the responsible academic unit; and
- (6) the original data are stored at the following location(s) and will be held for at least five years from the date indicated below:

Location(s)

The Centre for Innate Immunity and Infectious Diseases Monash Institute of Medical Research

| Author              | Signature | Date       |
|---------------------|-----------|------------|
| Nicole de Weerd     | -         | 15-4-201   |
| Jodee Gould         |           | 15-4-2013  |
| Christian Schindler |           | 3-22-2013  |
| Sandra Nicholson    |           | 15/4/2013  |
| Ashley Mansell      |           | 15/4/2013  |
| Paul Hertzog        |           | 17/4/2013. |

# Suppressor of Cytokine Signaling (SOCS) 1 Inhibits Type I Interferon (IFN) Signaling via the Interferon $\alpha$ Receptor (IFNAR1)-associated Tyrosine Kinase Tyk2<sup>\*</sup>

Received for publication, June 9, 2011, and in revised form, July 11, 2011 Published, JBC Papers in Press, July 13, 2011, DOI 10.1074/jbc.M111.270207

Rebecca A. R. Piganis<sup>‡</sup>, Nicole A. De Weerd<sup>‡</sup>, Jodee A. Gould<sup>‡</sup>, Christian W. Schindler<sup>§</sup>, Ashley Mansell<sup>‡</sup>, Sandra E. Nicholson<sup>¶</sup>, and Paul J. Hertzog<sup>‡1</sup>

From the <sup>‡</sup>Centre for Innate Immunity and Infectious Disease, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, the <sup>§</sup>Department of Microbiology and Department of Medicine, College of Physicians and Surgeons, Columbia University, Hammer Health Science Center, and the <sup>¶</sup>Walter and Elisa Hall Institute, Melbourne, Victoria 3001, Australia

Type I IFNs are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure appropriate immune responses as imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand how type I IFN signaling is regulated. Here we have investigated the mechanism by which suppressor of cytokine signaling 1 (SOCS1) inhibits type I IFN signaling. We have found that SOCS1 inhibits type I IFN signaling not via a direct interaction with the IFN  $\alpha$  receptor 1 (IFNAR1) receptor component but through an interaction with the IFNAR1-associated kinase Tyk2. We have characterized the residues/regions involved in the interaction between SOCS1 and Tyk2 and found that SOCS1 associates via its SH2 domain with conserved phosphotyrosines 1054 and 1055 of Tyk2. The kinase inhibitory region of SOCS1 is also essential for its interaction with Tyk2 and inhibition of IFN signaling. We also found that Tyk2 is preferentially Lys-63 polyubiquitinated and that this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of Tyk2 not only results in a reduced IFN response because of inhibition of Tyk2 kinase-mediated STAT signaling but also negatively impacts IFNAR1 surface expression, which is stabilized by Tyk2.

Interferons are a family of cytokines that elicit multifaceted effects during the host innate and adaptive immune response. The type I IFN family consists of multiple IFN $\alpha$  subtypes, IFN $\beta$  and others, that are produced in response to host viral and bacterial infection and act in an endocrine or autocrine fashion to stimulate cell antiviral responses (1). Type I IFNs signal through a common receptor, the IFN  $\alpha$  receptor (IFNAR)<sup>2</sup> which is composed of two subunits, IFNAR1 and IFNAR2 (2). The primary signaling events activated by the type I IFNs are mediated by the activation of receptor-associated JAK kinases and the recruitment of STATs to the intracellular domains of

the receptor (reviewed in Ref. 3). The kinases Tyk2 and JAK1 are associated with the intracellular domains of IFNAR1 and IFNAR2, respectively (4, 5). The JAK kinases consist of a C-terminal kinase domain, an adjacent pseudo-kinase domain, and N-terminal JH3-7 regions. The kinase domain of Tyk2 contains three conserved and functionally important residues: Tyr-1054 and Tyr-1055, which must be phosphorylated for activity, and a critical Lys-930, which is important for kinase activity (6). The JH3-7 region of Tyk2 allows association of this kinase with IFNAR1 (7). Upon IFN binding, Tyk2 and JAK1 are trans-phosphorylated (on conserved tyrosines within their kinase domain) and activated, resulting in tyrosine phosphorylation of the receptor subunits (8-10). Receptor phosphotyrosines act as docking sites for STATs, which assemble, detach from the receptor, and translocate to the nucleus as the transcription factor complex ISGF3 (composed of STAT1, STAT2, and IRF9) as well as other STAT homo- and heterodimers. Activated STAT transcriptional complexes regulate a complex network of genes and signaling pathways to exhibit cell-specific antiviral, antiproliferative, antitumor, and immunomodulatory activities (reviewed in Ref. 11).

Regulation of type I IFN signaling is critical in maintaining homeostasis and for the generation of an appropriate immune response to viral and bacterial infections. SOCS1 is a potent negative regulator of both type I and type II IFN signaling (12, 13).  $SOCS1^{-/-}$  mice are hyperresponsive to type I IFN and have a significantly greater ability than wild-type mice to resolve viral infection independently of IFN $\gamma$  (13). SOCS1<sup>-/-</sup> mice also have a severe inflammatory phenotype because of deregulated type I and II IFN signaling. The SOCS1 protein consists of a central SH2 domain, a C-terminal SOCS box, and an N-terminal region that contains the kinase inhibitory region (KIR). The SOCS box is involved in targeted degradation, whereas the SH2 and KIR domain are involved in protein binding and inhibition of kinase activity, respectively (14, 15). SOCS1 expression is induced by the type I IFNs and then acts in a negative feedback loop to inhibit type I IFN signaling. Crosses of SOCS1<sup>-/-</sup> mice to IFNAR1<sup>-/-</sup> mice rescue the inflammatory phenotype, whereas crosses to IFNAR2<sup>-/-</sup> mice do not suggest that SOCS1 inhibits type I IFN signaling exclusively via IFNAR1 (13). Indeed, coimmunoprecipitation studies in our laboratory demonstrate that SOCS1 is associated with IFNAR1 (13).

<sup>\*</sup> This work was supported by funding from the National Health and Medical Research Council and the Victorian Government Infrastructure Support Program.

<sup>&</sup>lt;sup>1</sup> To whom correspondence should be addressed. Tel.: Fax: ; E-mail:

<sup>&</sup>lt;sup>2</sup> The abbreviations used are: IFNAR, IFN α receptor; SOCS, suppressor of cytokine signaling; MEF, murine embryonic fibroblast; ISRE, interferon stimulated response element; TK, thymidine kinase; β-ME, β-mercaptoethanol; GAS, gamma-interferon activated sequence.

In other cytokine systems, SOCS proteins have been shown to inhibit signaling either by a direct interaction with intracellular receptors via their phosphotyrosines or indirectly via an interaction with associated JAK kinases. For example, SOCS3 binds directly to phosphotyrosine 757 on gp130 to inhibit signaling via this receptor (16). In vivo studies have demonstrated that this interaction is critical to maintaining the appropriate balance of STAT signaling that otherwise lead to spontaneous diseases that include gastritis and tumors, inflammatory disease of the lungs and hemopoietic abnormalities (17). Furthermore, SOCS1 has been demonstrated to inhibit IFNy signaling via a direct interaction with phosphotyrosine 441 on IFNGR1 (18). Evidence of indirect inhibition via interaction with JAK kinases has also been shown in vitro where the SH2 domain of SOCS1 binds to a phosphotyrosine residue within the Jak2 kinase domain, whereas modeling studies indicated that the KIR stabilizes this association through an interaction with the JAK catalytic pocket (19-21). SOCS1 has also previously been shown to bind and inhibit phosphorylated Tyk2 through an interaction with its SH2 and KIR domains (14). Because the SOCS proteins, including SOCS1, have the capacity to bind either to a receptor phosphotyrosine or to a JAK family member, we have undertaken to investigate the mechanism whereby SOCS1 regulates type I IFN signaling.

Our results demonstrate that rather than a direct interaction with IFNAR1, SOCS1 inhibits IFNAR signaling through an interaction with Tyk2 via its SH2 and KIR domains. Furthermore, we have discovered a novel role of SOCS1 in the inhibition of an activating Lys-63 polyubiquitination of Tyk2.

#### **EXPERIMENTAL PROCEDURES**

Cell Lines and Cell Culture—IFNAR1<sup>-/-</sup> murine embryonic fibroblasts (MEFs) and HEK293T cells were cultured in DMEM (Invitrogen) supplemented with 10% FCS, 1% L-glutamine, and 1% penicillin/streptomycin and incubated at 37 °C in 5% CO<sub>2</sub>. Mice used include SOCS1<sup>-/-</sup>IFN $\gamma^{-/-}$  and SOCS1<sup>+/+</sup>IFN $\gamma^{-/-}$  on a C57BL/6 background as well as wildtype C57BL/6 mice and were housed in specific pathogen free conditions at Monash Medical Centre Animal Facility. Whole thymus from SOCS1<sup>-/-</sup>IFN $\gamma^{-/-}$ , SOCS1<sup>+/+</sup>IFN $\gamma^{-/-}$ , and wild-type mice were harvested and filtered through 70- $\mu$ m nylon cell strainers in 1% FCS DMEM to create a single cell suspension. Red blood cells were lysed in Tris-buffered NH<sub>4</sub>Cl solution for 5 min at 37 °C. Cells were washed twice, counted (Sysmex cell counter), plated at 1 × 10<sup>7</sup> cells/ml in 1% FCS DMEM, and allowed to rest for 2 h prior to stimulations.

*Constructs and Cloning*—pEF-BOS-SOCS1-FLAG constructs are as described in (22). pEF-BOS-muIFNAR1 and mutant IFNAR1 constructs are as described in (23). hu-Tyk2-HIS and hu-Tyk2KD-GST (encoding the JH1 domain of Tyk2) were provided by Dr. Isabelle Lucet (Monash University Department of Molecular Biology and Biochemistry). Plasmids pEF-ubiquitin, pEF-Ub-K48-HA and pEF-Ub-K63-HA were a kind gift from Neal Silverman (University of Massachusetts). pEF-Ub-K63-HA contains all lysines mutated to arginine except Lys-63 and thus forms only Lys-63 ubiquitin linkages. pEF-Ub-K48-HA contains all lysines mutated to arginine except Lys-48 and thus forms only Lys-48 ubiquitin linkages. Tyk2-HIS and Tyk2KD-GST were cloned into pEF-BOS. The Tyk2 Y1054F/Y1055F mutations were achieved by site-directed mutagenesis (QuikChange, Stratagene). Mutations were verified by DNA sequencing.

Luciferase Assays—A total 0.5  $\mu$ g of DNA consisting of IFNAR1 or IFNAR1 mutants (0.3 ng), SOCS1 or SOCS1 mutants (1 ng), interferon stimulated response element (ISRE) luciferase reporter (30 ng), thymidine kinase (TK)-*Renilla* reporter (100 ng) and pEF-BOS (up to 0.5  $\mu$ g) were transfected into IFNAR1<sup>-/-</sup> MEFs with FuGENE6 transfection reagent (Roche) according to the manufacturer's instructions. Transfected cells were stimulated with 50 IU/ml mu-IFN $\alpha$ 1 (24) (referred to as IFN $\alpha$  in text) for 7 h. Following stimulation, cells were lysed in reporter lysis buffer (Promega). Luciferase activity was determined using a Promega luciferase assay according to the manufacturer's instructions and TK-*Renilla* activity using Stop & Glo (Promega). Luminescence of luciferase and TK-*Renilla* was determined using a FLUOstar Optima microplate reader (BMG Technologies).

Coimmunoprecipitation and Immunoblotting-A total 2.5  $\mu$ g of DNA consisting of various combinations of IFNAR1 or IFNAR1 mutants (1 µg), SOCS1-FLAG or SOCS1 mutants (500 ng), Tyk2-HIS (2 µg), Tyk2KD-GST or Tyk2KD mutants (500 ng), ubiquitin-HA or ubiquitin mutants (200 ng), and pEF-BOS (up to 2.5  $\mu$ g) were transfected into HEK293T cells with FuGENE6 transfection reagent according to the manufacturer's instructions. For assays involving ubiquitin, cells were stimulated with MG132 for 4 h prior to harvest. Transfected HEK293T cells were harvested in lysis buffer (50 mM TRIS-HCL (pH 7.4), 1% Nonidet P-40, 150 mM NaCl, 1 mM Na<sub>3</sub>VO<sub>4</sub>, 10 mm NaF, 1 mm PMSF, and 1 protease inhibitor tablet per 50 ml of buffer) and precleared with protein G-Sepharose beads (GE Healthcare). Immunoprecipitation was performed with either monoclonal IFNAR1 antibody (Abcam) (with protein-g-Sepharose beads), glutathione beads (GE-Healthcare) (for Tyk2KD-GST) or Nickel affinity Sepharose beads (GE Healthcare) (for Tyk2-HIS). Following immunoprecipitation, Sepharose beads were washed three times in lysis buffer and boiled with 5×  $\beta$ -mercaptoethanol ( $\beta$ -ME) sample buffer to elute the bound protein. Protein lysates were analyzed by SDS-PAGE analyses and Western blotting. Blotting was performed with appropriate antibodies for the detection of IFNAR1 (anti-IF-NAR1 (25), rabbit anti-mouse IgG-HRP (Dako)), SOCS1-FLAG (anti-FLAG-HRP (Sigma)), Tyk2KD-GST (anti-GST (Cell Signaling Technology, Inc.), rabbit anti-goat IgG-HRP (Dako)), Tyk2-HIS (anti-HIS (Cell Signaling Technology, Inc.), rabbit anti-mouse IgG-HRP), Tyk2 (anti-Tyk2 (Cell Signaling Technology, Inc.), goat anti-rabbit IgG-HRP (Dako)) or ubiquitin (anti-HA (Rockland), goat anti-rabbit IgG-HRP).

Endogenous Tyk2 Expression—Thymocytes were stimulated with 10,000 IU of IFN $\alpha$  for 0, 30, and 60 min. Cells were washed and lysed in 50 mM Tris (pH 7.4), 1% Nonidet P-40, 10% glycerol, 1 mM EDTA, 1 mM Na<sub>3</sub>VO<sub>4</sub>, 1 mM NaF, 1 mM DTT, 10 mM  $\beta$ -glycerophosphate, 1 mM PMSF, and 1× protease inhibitor tablet (Roche) per 50 ml of buffer. Lysates were incubated for 2 h at 4 °C, 5×  $\beta$ -ME sample buffer was added, and the lysates were boiled. Protein lysates were analyzed by SDS-PAGE analyses and Western blotting. Blotting was performed with appropriate antibodies for the detection of Tyk2 (anti-Tyk2, goat anti-rabbit IgG-HRP) or  $\beta$ -tubulin (anti- $\beta$ -tubulin (Abcam), rabbit anti-mouse IgG-HRP).

Flow Cytometry-Flow cytometry was used to measure and compare the surface levels of IFNAR1 on thymocytes from wild-type, SOCS1<sup>+/+</sup>IFN $\gamma^{-/-}$ , and SOCS1<sup>-/-</sup>IFN $\gamma^{-/-}$  mice. Where specified, cycloheximide (Sigma Aldrich) (to a final concentration of 20  $\mu$ g/ml) was added 15 min prior to the addition of mIFN $\alpha$  (to a final concentration of 1,000 IU/ml). One and 2 h after the addition of mIFN $\alpha$ , cells were washed and resuspended in Fc blocking antibody (eBiosciences, diluted to 1:200 in PBS with 2% FCS (wash buffer)) and incubated on ice for 20 min. Cells were then washed twice and resuspended in 100  $\mu$ l of the primary antibody (either anti-IFNAR1 (25) or isotype control antibody, both diluted to 10  $\mu$ g/ml in wash buffer, or wash buffer alone for the negative controls) and incubated on ice for 20 min. Cells were then washed twice and resuspended in 100  $\mu$ l of Alexa Fluour 488 (BD Biosciences, diluted 1:200 in wash buffer) and incubated on ice for 20 min. Following an additional two washes, cells were resuspended in 400  $\mu$ l of wash buffer containing 1  $\mu$ g/ml propidium iodide. Fluorescent staining on the cells was analyzed on a BD FACS CANTO II (BD Biosciences).

#### RESULTS

The SOCS1 SH2 Domain and N-terminal Region Are Critical for Inhibition of Type I IFN Signaling-To determine the critical regions of SOCS1 involved in the interaction with IFNAR1, we generated a series of SOCS1 mutants and tested their effect on IFN signaling using an ISRE luciferase assay (Fig. 1). IFNAR1<sup>-/-</sup> MEFs were transiently cotransfected with an ISRE luciferase reporter, a TK-Renilla reporter, IFNAR1, and either FLAG-tagged SOCS1 or SOCS1 mutants. We compared the ability of SOCS1 and the SOCS1 mutant proteins to inhibit IFN $\alpha$ -induced luciferase activity. A mutation in a critical region of SOCS1 would abolish its ability to inhibit interferon signaling and thus luciferase activity. In the absence of SOCS1, IFN $\alpha$ induced luciferase activity was robustly and reproducibly induced approximately 4-fold in this system, and the induced level is normalized to 100%. The addition of SOCS1 significantly reduced luciferase activity to approximately uninduced levels (around 30%). Deletion of the SOCS box plus SH2 domain (S1 $\Delta$ 82–212) was inactive, indicating the importance of these two domains for activity. Furthermore, deletion of the SOCS box alone (S1 $\Delta$ 170–212) retained activity, indicating the importance of the SH2 domain. This was reinforced by the lack of activity of the S1R105K mutant, which contains a mutation within the critical residue of the SOCS1 SH2 domain. The remaining constructs (S1Δ1-76, S1F59A, and S1D64R) demonstrate that deletion or mutation of critical residues in the KIR domain are also important for SOCS activity. Given the importance of the SH2 domain and its characteristic of binding phosphotyrosine residues in the target proteins, we next sought to determine the interacting partner of SOCS1 in the type I IFN signaling complex.

SOCS1 Inhibits Signaling via the Tyk2 Interacting Domain of IFNAR1—Previous genetic studies involving IFNAR1<sup>-/-</sup> SOCS1<sup>-/-</sup> and IFNAR2<sup>-/-</sup>SOCS1<sup>-/-</sup> mice indicated that



Relative Luciferase Activity (%)

FIGURE 1. **Effect of SOCS1 variants on type I IFN signaling.** The histogram shows the relative expression of an ISRE-luciferase reporter in IFNAR1<sup>-/-</sup> MEFs transiently cotransfected with mu-IFNAR1 and either mu-SOCS1, SOCS1 $\Delta$ 82–212, SOCS1R105K, SOCS1 $\Delta$ 170–212, SOCS1 $\Delta$ 1–76, SOCS1F59A, or SOCS1 $\Delta$ 64R (represented diagrammatically in the *lower panel*). C represents the carboxy terminal, and *N* represents the amino terminal. Cells were stimulated with 50 IU/ml mu-IFN $\alpha$  for 7 h prior to luciferase readings. Luciferase activity is normalized against a TK-*Renilla* reporter to control for transfection efficiency and then expressed as a percentage of activity in the absence of SOCS1 (*-S1*), which is denoted as 100%. Addition of SOCS1 resulted in almost complete inhibition of IFN activity to control levels. Data are expressed as mean  $\pm$  S.E. of three experiments. \*\*\*, p < 0.001.

SOCS1 specifically regulates the type I IFN receptor via an interaction with IFNAR1 and not IFNAR2 (13). Because SH2 domains are known to associate with phosphotyrosine residues and because our results above showed that the SH2 domain is critical for SOCS1-mediated inhibition of type I IFN signaling, we investigated whether SOCS1 inhibits activity by binding to a phosphotyrosine within the intracellular domain of IFNAR1, as shown for the type II IFN receptor, IFNGR1 (18). This hypothesis was tested by a luciferase reporter assay (Fig. 2A) and coimmunoprecipitation studies (B). A series of constructs containing single and multiple tyrosine-to-phenylalanine mutations in residues in the intracellular domain of IFNAR1 were utilized to first test the ability of SOCS1 to inhibit signaling in an ISRE luciferase reporter assay (Fig. 2A).  $IFNAR1^{-/-}$  MEFs were transiently cotransfected with an ISRE luciferase reporter, a TK-Renilla reporter, IFNAR1, or IFNAR1 tyrosine mutants (as specified) with and without SOCS1-FLAG. The luciferase activity induced by wild-type IFNAR1 in the absence of SOCS1 (again approximately 4-fold in these experiments) is normalized to 100%. All IFNAR1 tyrosine mutant proteins were able to induce luciferase activity to similar levels as wild-type IFNAR1 (in the absence of SOCS1), indicating that the tyrosine residues within the intracellular region of IFNAR1 are not essential for activation of ISRE signaling in this system. Also unexpectedly, in the presence of SOCS1, the luciferase activity induced by IFN stimulation of all IFNAR1 tyrosine mutant proteins was com-



FIGURE 2. Mapping IFNAR1 domains critical for interaction with SOCS1. A, the histogram shows relative expression of an ISRE-luciferase reporter MEFs transiently cotransfected with either mu-IFNAR1, in IFNAR1 IFNAR1Y445F, IFNAR1Y518F, IFNAR1Y529F, IFNAR1Y576F, IFNAR1Y518F/ Y529F/Y576F(3F), IFNAR1Y445F/Y518F/Y529F/Y576F(4F) IFNAR1∆511, or IFNAR1Δ471 (represented diagrammatically in the *lower panel*) with or without mu-SOCS1. Y denotes tyrosine residues. Cells were stimulated with 50 IU/ml mu-IFN $\alpha$  for 7 h prior to luciferase readings. Luciferase activity is normalized against a TK-Renilla reporter to control for transfection efficiency and is expressed relative to wild-type IFNAR1 in the absence of SOCS1, which is denoted as 100%. Data are represented as mean  $\pm$  S.E. of three experiments. \*\*\*, p < 0.001. B, immunoprecipitation (IP) Western blot analyses (WB) of IFNAR1 mutants and SOCS1. IFNAR1, IFNAR1(4F), IFNAR1A 511, or IFNAR1Δ471 were cotransfected with SOCS1-FLAG into HEK293T cells. Following expression, immunoprecipitation of IFNAR1 or the IFNAR1 mutants was performed using anti-IFNAR1 antibody. Immunoprecipitates and whole cell lysates (WCL) were separated by SDS-PAGE and immunoblotted with anti-FLAG to detect SOCS1-FLAG. Blots are representative of triplicate experiments.

parable with the inhibition seen with wild-type IFNAR1, including the 4F mutant whereby all four intracellular tyrosine residues of IFNAR1 are mutated to phenylalanine (approximately 30-40%). These results demonstrate that SOCS1 does not interact directly with IFNAR1 phosphotyrosine residues in its intracellular domain but rather uses an alternative mechanism for interaction. Thus, we next generated truncated forms of IFNAR1, terminating at amino acid 471 or 511, that flank the Tyk2 binding site of IFNAR1. The truncation mutant, IFNAR1 $\Delta$ 471, was unable to induce ISRE activity in response to IFN stimulation, consistent with the critical nature of Tyk2 for this activity. Thus, inhibition by SOCS1 could not be determined. The truncation mutant IFNAR1 $\Delta$ 511 was still able to signal at levels comparable with wild-type IFNAR1, with signaling still able to be inhibited by the addition of SOCS1. This suggests that SOCS1 inhibits signaling by binding to a region of IFNAR1 proximal to this truncation site.

The putative association of IFNAR1 with SOCS1 was further tested by coimmunoprecipitation studies to confirm the data above (Fig. 2*B*). We found that SOCS1-FLAG was coimmunoprecipitated with wild-type IFNAR1, IFNAR1(4F), and IFNAR1 $\Delta$ 511 but not IFNAR1 $\Delta$ 471. As SOCS1 was coimmunoprecipitated with IFNAR1(4F), it confirms the above conclusion that SOCS1 does not bind tyrosine residues within the intracellular domain of IFNAR1. Because SOCS1 coimmunoprecipitated with IFNAR1 $\Delta$ 511 but not IFNAR1 $\Delta$ 471, our results suggest that SOCS1 interacts with IFNAR1 either directly or indirectly within this region, likely via Tyk2.

SOCS1 Binds Conserved Tyrosines of Tyk2 and Regulates Tyk2 Expression—To demonstrate that SOCS1 interacted with Tyk2 and to characterize this interaction, we performed coimmunoprecipitation experiments with SOCS1-FLAG and either Tyk2KD-GST or Tyk2KD(2F)-GST in which the tyrosines at residues 1054 and 1055 were mutated to phenylalanines. The latter were included because the SOCS1 SH2 domain dependence of the IFN signal suppression would imply SOCS1bound phosphotyrosines on Tyk2. Importantly, SOCS1-FLAG is indeed coimmunoprecipitated with Tyk2KD-GST. By contrast, Tyk2KD(2F)-GST interaction is almost completely inhibited (Fig. 3A). These results are consistent with these tyrosine residues being important for SOCS1 docking onto Tyk2. Because our results above demonstrated the importance of the KIR domain in inhibition of signaling, we investigated SOCS1 KIR mutants (SOCS1F59A and SOCS1D64R) for their binding to Tyk2 in a coimmunoprecipitation experiment. Where wildtype SOCS1 bound to Tyk2KD, these mutants failed to interact with wild-type Tyk2KD or Tyk2KD(2F), suggesting that the KIR of SOCS1 is essential for Tyk2 binding and thus inhibition of signaling.

Because SOCS1 binding can target proteins for degradation and thus impact the levels of these critical signaling molecules, we investigated the effect of SOCS1 on cellular levels of Tyk2. Firstly, Tyk2-HIS was transfected into HEK293T cells in the presence and absence of SOCS1-FLAG. In the presence of SOCS1, Tyk2 expression was reduced (Fig. 3*B*). Next we analyzed the effect of SOCS1 on the endogenous levels of Tyk2. Analysis of thymocytes from SOCS1<sup>-/-</sup>IFN $\gamma^{-/-}$  and SOCS1<sup>+/+</sup>IFN $\gamma^{-/-}$  mice demonstrated that SOCS1 modified





PIGURE 3. Interaction of SOCS1 with Tyk2 and its degradation. Western blot analyses (*WB*) and immunoprecipitation (*IP*) Western blot analyses of Tyk2 interacting with SOCS1. *A*, Tyk2KD or Tyk2KD(2F) were cotransfected with SOCS1-FLAG, SOCS1F59A-FLAG, or SOCS1D64R-FLAG into HEK293T cells. Following expression, immunoprecipitation of Tyk2 constructs were performed using glutathione-Sepharose beads. Immunoprecipitates and whole cell lysates (*WCL*) were separated by SDS-PAGE and immunoblotted with indicated antibodies. *B*, Tyk2-HIS was expressed  $\pm$  SOCS1-FLAG in HEK293T cells. Cells lysates were separated by SDS-PAGE and probed with the indicated antibodies. *C*, thymocytes from SOCS1<sup>+/+</sup>IFN $\gamma^{-/-}$  and SOCS1<sup>-/</sup> -IFN $\gamma^{-/-}$  mice were stimulated with IFN $\alpha$  for 0, 30, or 60 min. Cell lysates were separated by SDS-PAGE and probed with the indicated antibodies. Blots are representative of triplicate experiments. The histogram represents densitometric quantification of the Western blot analyses. Data are represented as mean  $\pm$  S.E. of three independent experiments.

the Tyk2 expression levels (Fig. 3*C*). In the SOCS1<sup>+/+</sup> thymocytes, Tyk2 levels were significantly reduced by 60 min after stimulation with IFN $\alpha$ . In contrast, in the SOCS1<sup>-/-</sup> thymocytes, not only was the (SOCS1-mediated) reduction in Tyk2 levels lost, but Tyk2 levels increased with IFN stimulation. Together with our overexpression data it is evident SOCS1 has an important regulatory role in type I IFN signaling through its interaction with Tyk2 and the reduction of its levels in the cell.

SOCS1 Inhibits Lys-63 Polyubiquitination of Tyk2—One method of SOCS1-induced degradation of binding partners is

FIGURE 4. The effect of SOCS1 on Tyk2 ubiquitination. Western blots analyses (WB) and immunoprecipitation (IP) Western blot analyses of Tyk2 ubiguitination. A, Tyk2-HIS was expressed in HEK293T cells with ubiquitin-HA, ubiquitin(K63)-HA, or ubiquitin(K48)-HA  $\pm$  SOCS1-FLAG or SOCS1 $\Delta$ 170–212 in the presence of MG132. Cell lysates were immunoprecipitated with nickel affinity beads. Immunoprecipitates and whole cell lysates (WCL) were separated by SDS-PAGE and probed with the indicated antibodies. The second panel from the top shows a shorter exposure than the top panel. Tyk2 ubiquitination is shown in the top panel, third lane, and Lys-63 ubiquitination in the top panel and the second panel from the top, fifth lane. Inhibition by SOCS1 constructs is evident in the fourth lane (top panel) and the sixth and seventh lanes (top panel or second panel from the top). B, Tyk2KD-GST or Tyk2KD(2F)-GST were expressed in HEK293T cells  $\pm$  ubiquitin-HA. Cell lysates were immunoprecipitated with glutathione beads. Immunoprecipitates were separated by SDS-PAGE and probed with the indicated antibodies. Blots are representative of triplicate experiments.

via the SOCS box recruitment of E3 ubiquitin ligases (26, 27). Thus, we investigated the ability of Tyk2 to be ubiquitinated in the presence and absence of SOCS1. Firstly, Tyk2-HIS was overexpressed with or without ubiquitin-HA, ubiquitin-

(K63)-HA, or ubiquitin-(K48)-HA and/or SOCS1-FLAG or SOCS1 $\Delta$ 170–212-FLAG (Fig. 4A, first through fourth lanes). Following immunoprecipitation of Tyk2 and detection of total ubiquitination using ubiquitin-HA, we found that Tyk2 is indeed spontaneously ubiquitinated in this system and that coexpression with SOCS1 surprisingly inhibited this ubiquitination. We then investigated the type of ubiquitination using mutant ubiquitin constructs, which form Lys-63- or Lys-48linked ubiquitin chains. These different ubiquitin linkages result in different conformations and activation of alternate pathways (28). Lys-48 linkages are primarily used for targeting the protein for degradation via the proteasome. In contrast, Lys-63 linkages have been implicated in numerous other functions, including activation of NF-kB-inducing kinase (29). As shown in Fig. 4A (fifth through ninth lanes), our data demonstrates that Lys-48-linked polyubiquitination of Tyk2 was not detected, whereas Lys-63-linked polyubiquitination was observed. In addition, the use of ubiquitin-(Lys-63)-HA resulted in increased ubiquitination of Tyk2 compared with wild-type ubiquitin-HA and may be explained either by the greater specificity of this reagent or by the mutation of lysine residues involved in negative regulation. Importantly, SOCS1 coexpression suppressed Lys-63-linked ubiquitination of Tyk2. The expression of SOCS1 $\Delta$ 170–212 (lacking the SOCS box) also inhibited Lys-63-linked polyubiquitination of Tyk2, although to a lesser extent.

We next investigated the impact of whether the phosphotyrosine residues of Tyk2 that were involved in binding SOCS1 were involved in ubiquitination. Our results show that the Tyk2 kinase domain was polyubiquitinated (Fig. 4*B*). Tyk2KD(2F) was also Lys-63 polyubiquitinated. As Tyk2 requires phosphorylation of these mutated tyrosine residues for its function our results suggest that Lys-63 ubiquitination of the Tyk2 kinase domain is not dependent on Tyk2 phosphorylation and activation.

SOCS1 Expression Reduces IFNAR1 Surface Levels with IFNa Stimulation—Tyk2 has been reported to be involved in stabilization of IFNAR1 at the plasma membrane (30). Because SOCS1 binds Tyk2 and modulates both its degradation and its activating ubiquitination, it is possible that the interaction of SOCS1 with IFNAR1 via its associated Tyk2 modifies cell surface expression levels. Flow cytometry was used to measure the surface expression of IFNAR1 in primary thymocytes from SOCS1<sup>-/-</sup>IFN $\gamma^{-/-}$ , SOCS1<sup>+/+</sup>IFN $\gamma^{-/-}$ , and wild-type mice (Fig. 5). After IFN stimulation, IFNAR1 surface levels are reduced in all three genotypes. However, in  $SOCS1^{-/-}$ IFN $\gamma^{-/-}$  thymocytes, IFNAR1 surface expression was reduced to a lesser extent than that in thymocytes from  $SOCS1^{+/+}$ IFN $\gamma^{-/-}$  and wild-type mice one and two h after IFN stimulation (Fig. 5A). Thus, SOCS1 either accelerated the internalization or degradation of the receptor or increased recycling/resynthesis. Cycloheximide (CHX) was used, where shown, to block de novo protein synthesis in thymocytes from all three genotypes, thereby allowing us to measure the real rate of internalization in the absence of *de novo* protein synthesis (Fig. 5B). In the presence of cycloheximide there was again significantly more IFNAR1 present on the surface of SOCS1<sup>-/-</sup> cells compared with control cells at the 1-h time point. Our results thereIFNAR1 surface levels (-CHX)



FIGURE 5. The effect of SOCS1 on surface levels of IFNAR1. The graphs show IFNAR1 surface levels on thymocytes from SOCS1<sup>+/+</sup>IFN $\gamma^{-/-}$ , SOCS1<sup>-/-</sup> IFN $\gamma^{-/-}$ , and wild-type mice stimulated with IFN $\alpha$  for 0, 1, or 2 h. Cells were probed with anti-IFNAR1 antibody and analyzed by flow cytometry to detect IFNAR1 surface levels in the presence and absence of cycloheximide (CHX). Data are represented as mean  $\pm$  S.E. of four experiments. \*\*\*, p < 0.001; \*\*, p < 0.005.

fore demonstrate that the surface levels of IFNAR1 during a response are modulated by SOCS1, likely through its interaction with Tyk2.

#### DISCUSSION

SOCS1 regulation of type I IFN signaling is critical in maintaining an appropriate immune response and to survival. The data presented here complement our previous in vivo data, which demonstrate that SOCS1 regulates signaling through the IFNAR1 component of the receptor. We now add mechanistic data showing how this occurs. Indeed, SOCS1 regulation of type I IFN signaling is mediated via an interaction with the IFNAR1-associated kinase Tyk2 and not by direct interaction with receptor tyrosine kinases. This distinguishes the mechanism of SOCS1 regulation of type I IFN signaling from how it modulates type II IFN $\gamma$  signaling. This study suggests that in the type I IFN system none of the intracellular tyrosine residues within IFNAR1 are important for the negative regulation of type I IFN signaling via SOCS1. Indeed, they are not required for driving ISRE (STAT1/STAT2/IRF9)-dependent signaling nor for STAT3 signaling as shown recently and thus not for gamma-interferon activated sequence (GAS) element activation (23, 31). It would be interesting to investigate the impact of these residues in the receptors and of SOCS1 on other type I IFN signaling pathways. Consequently, these results demonstrate that for the type I IFN signaling complex the interaction of SOCS1 is mediated indirectly via an adaptor molecule. Within the type I IFN system, SOCS1 requires its KIR and SH2

domains for its inhibitory function, indicating a requirement for SOCS1 interaction with the kinase and phosphotyrosine residues. Our coimmunoprecipitation studies demonstrated that the Tyk2 binding region of IFNAR1 was required for the interaction with SOCS1. Previous studies have found a direct interaction between Tyk2 and SOCS1 and a requirement of the Tyk2 SH2 domain and SOCS1 KIR domain (14), but these studies were not performed in the context of the type I IFN receptor signaling complex as described herein. Here we show that SOCS1 binds conserved tyrosine residues within the Tyk2 catalytic region (Tyr-1054 and Tyr-1055), which are phosphorylated in response to IFN $\alpha$  and are required for Tyk2 activation (6). Mutation of these residues from tyrosine to phenylalanine resulted in almost complete inhibition of the interaction between Tyk2 and SOCS1. Our results therefore suggest that the SOCS1 interaction with Tyk2 is limited to the activated, phosphorylated kinase behaving in a negative feedback manner. In addition to a requirement of the SH2 domain, we also found that the KIR domain of SOCS1 is important for binding to Tyk2 and for its inhibitory action of IFN signaling. Modeling studies have proposed that the KIR domain of SOCS1 mimics the activation loop of Jak2 and obstructs its catalytic groove (19). This region is highly conserved across JAK family members, and thus it is probable that the KIR domain of SOCS1 can also interact with and inhibit Tyk2 catalytic function.

The SOCS box has been implicated previously in the recruitment of E3 ubiquitin ligases and the consequent ubiquitination and destruction of target proteins (26, 27). We therefore aimed to investigate the effect of SOCS1 on Tyk2 ubiquitination and, quite interestingly, found that SOCS1 expression inhibited rather than facilitated the ubiquitination of Tyk2. Analysis of the type of ubiquitination of Tyk2 found that it was Lys-63linked and not Lys-48-linked ubiquitination. In other signaling systems, Lys-63-linked ubiquitination is associated with activation of target proteins. For example, Lys-63 ubiquitination of the NF-kB-inducing kinase by zinc finger protein 91 contributes to stabilization and tyrosine phosphorylation of the kinase (29). Thus, SOCS1 may exert its negative effects on Tyk2 in part via inhibiting an activating or stabilizing Lys-63 ubiquitination. A mutant SOCS1 protein lacking the SOCS box was also able to inhibit the Lys-63 ubiquitination of Tyk2 and, thus, the SOCS box does not appear to be essential for this function. The mechanism of SOCS1 inhibition of ubiquitination may be via blocking the ubiquitination site of Tyk2, which we found was located within the Tyk2 kinase domain, the same region of Tyk2 to which SOCS1 binds. As SOCS1 coexpression with Tyk2 resulted in reduced Tyk2 levels, it is probable that inhibition of this ubiquitination by SOCS1 destabilizes Tyk2. As SOCS1 did not enhance ubiquitination, as might have been expected, the SOCS1 SOCS box appears to not have a critical role in the regulation of Tyk2. Our luciferase assay supports this conclusion because SOCS1 lacking the SOCS box still enabled significant inhibition of type I IFN signaling. The affinity of the SOCS1 SOCS box for E3 ubiquitin ligases is significantly weaker than that of the other SOCS family members (15). Deletion of the SOCS1 SOCS box in mice, however, resulted in reduced function of SOCS1 in response to IFN $\gamma$  (32). This may be attributed to the SOCS box stabilizing SOCS1 through

recruitment of other proteins. In our overexpression assays we saw slight, although not statistically significant, differences between wild-type SOCS1 and the SOCS box mutant. Perhaps *in vivo* a more significant role of the SOCS box in type I IFN signaling would be seen.

The Lys-63 linked ubiquitination of Tyk2 is also a novel finding and warrants further investigation. A candidate residue for ubiquitination is lysine 930, located within the Tyk2 kinase domain. A mutation of this residue destabilizes Tyk2 and reduces kinase activity (6).

In addition to facilitating IFN signal transduction by activation of STAT interactions with the receptor, Tyk2 is required for the stabilization of IFNAR1 at the plasma membrane. We postulated that the SOCS1 interaction with Tyk2 may therefore result in the destabilization of Tyk2 and the dissociation of Tyk2 from IFNAR1, leading to reduced surface levels of the receptor. In human cells lacking Tyk2, IFNAR1 is only weakly expressed at the cell surface and is instead found localized in perinuclear endosomal compartments, constituting early and recycling endosomes (30). An internalization motif of human IFNAR1, located within the Tyk2 binding site, is polyubiquitinated and targeted for degradation (33). Increased expression of Tyk2 results in increased localization of IFNAR1 to the cell surface and reduced degradation of IFNAR1 due in part to reduced endocytosis (30). In our overexpression experiments we found that SOCS1 reduced Tyk2 expression and that in primary thymocytes the absence of SOCS1 resulted in increased endogenous Tyk2 expression 1 h after IFN stimulation. Analysis of IFNAR1 internalization in thymocytes demonstrated a role for SOCS1 in controlling IFNAR1 surface expression following IFN $\alpha$  stimulation. Although not significantly different basally, IFNAR1 internalization/recycling is reduced in cells lacking SOCS1 following 1-h IFNα stimulation and correlates with increased endogenous expression of Tyk2. SOCS1 therefore has a role in effecting the surface expression of IFNAR1 during an interferon response. SOCS1 association of Tyk2 following its phosphorylation and activation may result in destabilization of Tyk2 and exposure of the IFNAR1 internalization motif with subsequent IFNAR1 internalization and reduced IFN signaling.

Together these studies demonstrate the mechanism of SOCS1 inhibition of type I IFN signaling. An understanding of this mechanism may lead to novel approaches to manipulate the type I IFN response and thus contribute to better therapeutic treatments of IFN-mediated diseases or enhancement of the beneficial therapeutic effects of IFN.

#### REFERENCES

- 1. Samuel, C. E. (2001) Clin. Microbiol. Rev. 14, 778-809
- de Weerd, N. A., Samarajiwa, S. A., and Hertzog, P. J. (2007) J. Biol. Chem. 282, 20053–20057
- 3. Platanias, L. C., and Fish, E. N. (1999) Exp. Hematol. 27, 1583-1592
- 4. Colamonici, O. R., Uyttendaele, H., Domanski, P., Yan, H., and Krolewski, J. J. (1994) *J. Biol. Chem.* **269**, 3518–3522
- Domanski, P., Fish, E., Nadeau, O. W., Witte, M., Platanias, L. C., Yan, H., Krolewski, J., Pitha, P., and Colamonici, O. R. (1997) *J. Biol. Chem.* 272, 26388–26393
- Gauzzi, M. C., Velazquez, L., McKendry, R., Mogensen, K. E., Fellous, M., and Pellegrini, S. (1996) *J. Biol. Chem.* 271, 20494–20500
- 7. Gauzzi, M. C., Barbieri, G., Richter, M. F., Uzé, G., Ling, L., Fellous, M., and

Pellegrini, S. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 11839-11844

- Barbieri, G., Velazquez, L., Scrobogna, M., Fellous, M., and Pellegrini, S. (1994) *Eur. J. Biochem.* 223, 427–435
- Müller, M., Briscoe, J., Laxton, C., Guschin, D., Ziemiecki, A., Silvennoinen, O., Harpur, A. G., Barbieri, G., Witthuhn, B. A., and Schindler, C. (1993) *Nature* 366, 129–135
- Constantinescu, S. N., Croze, E., Wang, C., Murti, A., Basu, L., Mullersman, J. E., and Pfeffer, L. M. (1994) *Proc. Natl. Acad. Sci. U.S.A.* **91**, 9602–9606
- 11. Schindler, C., Levy, D. E., and Decker, T. (2007) J. Biol. Chem. 282, 20059-20063
- Alexander, W. S., Starr, R., Fenner, J. E., Scott, C. L., Handman, E., Sprigg, N. S., Corbin, J. E., Cornish, A. L., Darwiche, R., Owczarek, C. M., Kay, T. W., Nicola, N. A., Hertzog, P. J., Metcalf, D., and Hilton, D. J. (1999) *Cell* 98, 597–608
- Fenner, J. E., Starr, R., Cornish, A. L., Zhang, J. G., Metcalf, D., Schreiber, R. D., Sheehan, K., Hilton, D. J., Alexander, W. S., and Hertzog, P. J. (2006) *Nat. Immunol.* 7, 33–39
- Narazaki, M., Fujimoto, M., Matsumoto, T., Morita, Y., Saito, H., Kajita, T., Yoshizaki, K., Naka, T., and Kishimoto, T. (1998) *Proc. Natl. Acad. Sci.* U.S.A. 95, 13130–13134
- Babon, J. J., Sabo, J. K., Zhang, J. G., Nicola, N. A., and Norton, R. S. (2009) J. Mol. Biol. 387, 162–174
- Nicholson, S. E., De Souza, D., Fabri, L. J., Corbin, J., Willson, T. A., Zhang, J. G., Silva, A., Asimakis, M., Farley, A., Nash, A. D., Metcalf, D., Hilton, D. J., Nicola, N. A., and Baca, M. (2000) *Proc. Natl. Acad. Sci. U.S.A.* 97, 6493–6498
- Jenkins, B. J., Grail, D., Nheu, T., Najdovska, M., Wang, B., Waring, P., Inglese, M., McLoughlin, R. M., Jones, S. A., Topley, N., Baumann, H., Judd, L. M., Giraud, A. S., Boussioutas, A., Zhu, H. J., and Ernst, M. (2005) *Nat. Med.* **11**, 845–852
- Qing, Y., Costa-Pereira, A. P., Watling, D., and Stark, G. R. (2005) J. Biol. Chem. 280, 1849–1853
- 19. Giordanetto, F., and Kroemer, R. T. (2003) Protein Eng. 16, 115-124
- Endo, T. A., Masuhara, M., Yokouchi, M., Suzuki, R., Sakamoto, H., Mitsui, K., Matsumoto, A., Tanimura, S., Ohtsubo, M., Misawa, H., Miyazaki, T., Leonor, N., Taniguchi, T., Fujita, T., Kanakura, Y., Komiya, S., and

Yoshimura, A. (1997) Nature 387, 921-924

- Yasukawa, H., Misawa, H., Sakamoto, H., Masuhara, M., Sasaki, A., Wakioka, T., Ohtsuka, S., Imaizumi, T., Matsuda, T., Ihle, J. N., and Yoshimura, A. (1999) *EMBO J.* 18, 1309–1320
- Nicholson, S. E., Willson, T. A., Farley, A., Starr, R., Zhang, J. G., Baca, M., Alexander, W. S., Metcalf, D., Hilton, D. J., and Nicola, N. A. (1999) *EMBO J.* 18, 375–385
- Zhao, W., Lee, C., Piganis, R., Plumlee, C., de Weerd, N., Hertzog, P. J., and Schindler, C. (2008) J. Immunol. 180, 5483–5489
- 24. Trajanovska, S., Owczarek, C. M., Stanton, P. G., and Hertzog, P. J. (2003) J. Interferon Cytokine Res. 23, 351–358
- Sheehan, K. C., Lai, K. S., Dunn, G. P., Bruce, A. T., Diamond, M. S., Heutel, J. D., Dungo-Arthur, C., Carrero, J. A., White, J. M., Hertzog, P. J., and Schreiber, R. D. (2006) J. Interferon Cytokine Res. 26, 804–819
- Kamura, T., Sato, S., Haque, D., Liu, L., Kaelin, W. G., Jr., Conaway, R. C., and Conaway, J. W. (1998) *Genes Dev.* 12, 3872–3881
- Zhang, J. G., Farley, A., Nicholson, S. E., Willson, T. A., Zugaro, L. M., Simpson, R. J., Moritz, R. L., Cary, D., Richardson, R., Hausmann, G., Kile, B. J., Kent, S. B., Alexander, W. S., Metcalf, D., Hilton, D. J., Nicola, N. A., and Baca, M. (1999) *Proc. Natl. Acad. Sci. U.S.A.* 96, 2071–2076
- Tenno, T., Fujiwara, K., Tochio, H., Iwai, K., Morita, E. H., Hayashi, H., Murata, S., Hiroaki, H., Sato, M., Tanaka, K., and Shirakawa, M. (2004) *Genes Cells* 9, 865–875
- 29. Jin, X., Jin, H. R., Jung, H. S., Lee, S. J., Lee, J. H., and Lee, J. J. (2010) *J. Biol. Chem.* **285**, 30539–30547
- Ragimbeau, J., Dondi, E., Alcover, A., Eid, P., Uzé, G., and Pellegrini, S. (2003) *EMBO J.* 22, 537–547
- Russell-Harde, D., Wagner, T. C., Rani, M. R., Vogel, D., Colamonici, O., Ransohoff, R. M., Majchrzak, B., Fish, E., Perez, H. D., and Croze, E. (2000) *J. Biol. Chem.* 275, 23981–23985
- Zhang, J. G., Metcalf, D., Rakar, S., Asimakis, M., Greenhalgh, C. J., Willson, T. A., Starr, R., Nicholson, S. E., Carter, W., Alexander, W. S., Hilton, D. J., and Nicola, N. A. (2001) *Proc. Natl. Acad. Sci. U.S.A.* 98, 13261–13265
- Kumar, K. G., Barriere, H., Carbone, C. J., Liu, J., Swaminathan, G., Xu, P., Li, Y., Baker, D. P., Peng, J., Lukacs, G. L., and Fuchs, S. Y. (2007) *J. Cell Biol.* 179, 935–950

#### **CHAPTER 4**

# CHARACTERISATION OF IFNα INDUCTION OF STAT PHOSPHORYLATION IN IMMUNE CELL POPULATIONS AND ITS REGULATION BY SOCS1

The primary signaling pathway activated by the type I IFNs is the JAK/STAT signaling pathway (Stark, Kerr et al. 1998). Following IFN binding to IFNAR, JAK1 and TYK2 undergo cross-activation events resulting in the phosphorylation of intracellular receptor tyrosine residues of IFNAR1 and IFNAR2 (Constantinescu, Croze et al. 1994; Stark, Kerr et al. 1998). STATs are then recruited to specific phosphorylated receptor tyrosine residues via their SH2 domain. The recruitment of STATs to the activated receptor allows receptor associated kinases to phosphorylate STAT proteins. Phosphorylation of STATs leads to the formation of STAT homo and/or hetero-dimers which form transcriptionally active complexes (Levy and Darnell 2002). There are seven STAT family members (STAT1, 2, 3, 4, 5a, 5b and 6) in human and mice, all of which can be activated in response to type I IFN (van Boxel-Dezaire, Rani et al. 2006). Many combinations of STAT dimers can form in response to type I IFN signaling. The transcription factor ISGF3 is a common IFN induced STAT complex and is composed of STAT1, STAT2 and IRF9. Activated STAT complexes translocate to the nucleus and regulate gene transcription (Stark and Darnell 2012). The profile of STAT activation, in response to IFNa, therefore dictates the transcriptional response of the cell. The response of the cell to IFN can be quite different depending on the type of cell, or state of the cell, that IFN is acting on. For example IFNα can have pro- or anti-proliferative effects on T-cells depending on the activation state of the T-cell at the time of stimulation (Dondi, Roue et al. 2004). It is therefore important to understand the level and type of STATs activated in response to IFNa in different cell types to provide insight as to how the cell might respond.

It is also important to understand how SOCS1 effects IFN-induced STAT activation. As discussed in Chapter 1, SOCS1 is a potent negative regulator of type I IFN signaling and over-expression of SOCS1 results in reduced antiviral and anti-proliferative effects of IFN $\alpha$  (Fenner, Starr et al. 2006). Chapter 3 demonstrates SOCS1 binds to the receptor associated kinase TYK2 and regulates IFN signaling. Previous studies have also shown SOCS1 reduces IFN induced TYK2 and STAT1 phosphorylation as well as

downstream gene induction (Fenner, Starr et al. 2006). I therefore aimed to further investigate the effect of SOCS1 on STAT activation in different immune cell types as SOCS1 alteration of STAT activation may have important consequences for downstream gene regulation and the response of the cell to IFN.

I employed phosphoflow cytometry studies to determine STAT phosphorylation in response to IFN $\alpha$  in different immune cell types. This involved staining of cells with cell surface markers (to identify cell types) and anti-phospho-STAT antibodies (to identify STAT phosphorylation). I looked at immune cells of the thymus, spleen and blood from wt mice to determine STAT1, STAT3 and STAT5 phosphorylation in response to IFNa stimulation. Due to the availability of reagents I was unable to analyse STAT2 separate differences STAT5A and phosphorvlation or between STAT5B phosphorylation. To study the effects of SOCS1, I utilised Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> and Socs  $1^{+/+}$  If  $ny^{-/-}$  mice to compare the differences in IFN $\alpha$  induced STAT1, STAT3 and STAT5 phosphorylation in the presence or absence of SOCS1. Socs1<sup>-/-</sup> lfny<sup>-/-</sup> and Socs  $1^{+/+}$  If  $ny^{-/-}$  mice were used to analyse the effects of SOCS1 on IFN $\alpha$  signaling as Socs 1<sup>-/-</sup> mice are not viable (die of severe inflammation within 3 weeks of birth). These genotypes have previously been used to study SOCS1 regulation of type I IFN signaling both in vitro and in vivo (Fenner, Starr et al. 2006).

As described in Chapter 2.2, immune cells were isolated from the thymus, spleen or blood of mice and stimulated with IFNα for the indicated time points in vitro. Following stimulations, cells were fixed, permeabilised and stained with cell surface marker antibodies coupled with anti-phospho-STAT (pSTAT) antibodies. Cell surface marker antibodies used on thymic cells include anti-CD4-FITC and anti-CD8-PE (BD Biosciences). Surface marker antibodies on spleen and blood include anti-CD4-FITC, anti-CD8-PE, anti-B220-FITC and anti-MAC1-PE (BD Biosciences). The pSTAT antibodies used include pSTAT1(pY701)-alexa647, pSTAT3(pY705)-alexa647 or pSTAT5(pY694)-alexa647 (BD Biosciences). The software program FlowJo was used for the analysis of phosphoflow cytometry data. Cells were initially gated on forward scatter (FSC) and side scatter (SSC) to select cell populations of the expected size and granularity and exclude smaller, presumably dead, cells or debris. A dead cell stain could not be performed because the cells were permeabilised for the uptake of antibody. Channel compensations were performed with single colour controls to adjust for any cross-over between channel fluorescence. Cells were then gated on surface marker expression. Thymic cells were gated on CD4 or CD8 expression to isolate

CD4+CD8+, CD4+CD8-, CD4-CD8+ and CD4-CD8- T-cell populations (Figure 4.1). PBMCs were gated on CD4 or CD8 expression to isolate CD4+CD8- and CD4-CD8+ Tcell populations (Figure 4.2b). PBMCs were also gated on B220 and MAC1 surface identify B220+ (B-cells expression to cells and pDCs), MAC1+ cells (macrophages/DCs/NK cells) and MAC1++ cells (monocytes) (Figure 4.2c). Splenic cells were gated on CD4, CD8 or MAC1 expression (Figure 4.3). This enabled the isolation of CD4+CD8- and CD4-CD8+ T-cells populations as well as CD4-CD8- cells (mostly B-cells), MAC1+ cells (macrophages/DCs/NK cells) and MAC1++ cells (monocytes/neutrophils).

Following cell type gating based on surface marker expression, a histogram of alexa647 mean fluorescence intensity (MFI) was plotted against cell count for each stimulation time point. As demonstrated in Figure 4.4, the data was analysed via two methods. A) MFI of the cell populations and B) the percentage of positive cells (cells with increased pSTAT levels compared to basal pSTAT levels). For MFI based analysis, the MFI of alexa647 fluorescence was calculated from the histogram (Figure 4.4a). MFI data was plotted as raw MFI or change in MFI relative to basal levels (as indicated), against stimulation time. The data generated from this method of analysis indicates the total pSTAT levels within the given cell population. For the calculation of the percentage of positive cells (percentage of cells with increased pSTAT expression above unstimulated controls), alexa-647 fluorescence for each cell population was plotted as a histogram and a cell gate was placed on the unstimulated cell populations so that between 0 and 2 % of unstimulated cells were in the positive gate (Figure 4.4b). For each stimulation time point, the percentage of positive cells was calculated as the percentage of cells in the positive gate relative to the total cell count and then plotted against stimulation time. The data generated by this method of analysis gives an indication of the percentage of a particular cell population with up-regulated pSTAT levels. The calculation of the percentage of positive cells has been performed previously, by van Boxel-Dezaire et al, for the analysis of IFN induction of STAT phosphorylation in populations of immune cells from human subjects (van Boxel-Dezaire, Zula et al. 2010). I therefore employed this method of analysis to enable comparison between IFN-induction of STAT phosphorylation in their human data and my data on mouse immune cell populations.



**B. CD4 and CD8 Populations** 

A. Thymus

**Figure 4.1: Gating of thymic CD4/CD8 T-cell populations. A.** The main population of cells within the thymus were selected based on forward scatter (FSC) and side scatter (SSC) to select cells of the expected size and granularity. **B.** The main population of cells were then separated based on CD4-FITC and CD8-PE fluorescence.



#### A. Peripheral Blood Mononuclear Cells (PBMCs)

**B. CD4 and CD8 Populations** 

#### C. B220 and MAC1 Populations



**Figure 4.2: Gating of PBMC CD4, CD8, B220 and MAC1 cell populations. A.** Live cells were selected based on forward scatter (FSC) and side scatter. (SSC) to select cells of the expected size and granularity. These cells were then separated based on **B.** CD4-FITC and CD8-PE fluorescence or **C.** B220-FITC or MAC1-PE fluorescence.







#### **C. MAC1 Populations**



**Figure 4.3: Gating of splenic CD4, CD8 and MAC1 cell populations. A.** Live cells were selected based on forward scatter (FSC) and side scatter. (SSC). These cells were then separated based on **B.** CD4-FITC and CD8-PE fluorescence or **C.** MAC1-PE fluorescence.



#### B. Percentage of Increased Cells



**Figure 4.4: Methods of Phosphoflow Cytometry Analysis.** A histogram of alexa-647 (representing pStat levels) was plotted for unstimulated (light blue) and stimulated (purple) cell populations. Data was analysed via two methods. **A.** The MFI (mean fluorescence intensity) of alexa647 of the unstimulated and stimulated cell populations were calculated. **B.** The percentage of positive cells were calculated by placing a gate on the unstimulated cell populations so that between 0 and 2 % of unstimulated cells were in the positive gate. For each stimulation time point, the percentage of positive cells was calculated as the percentage of cells in the positive gate.

## 4.1 Basal MFI of pSTAT1, pSTAT3 and pSTAT5 in thymic CD4/CD8 T-cell subsets

The different CD4/CD8 T-cell populations in the thymus had different basal levels of pSTAT1. Basal pSTAT1 levels were greatest in CD4-CD8+ T-cells (MFI 300), followed by CD4+CD8- (MFI 194), CD4-CD8- (MFI 140) and CD4+CD8+ (MFI 58) T-cells (Figure 4.5a). Basal pSTAT1 levels were not significantly different (p > 0.05) between CD4+CD8- and CD4-CD8+ T-cells. Basal pSTAT1 levels of CD4+CD8- and CD4-CD8+ T-cells. Basal pSTAT1 levels of CD4+CD8- and CD4-CD8+ T-cells. T-cells were both significantly higher (p < 0.05) than that of CD4+CD8+ T-cells.

The different CD4/CD8 T-cell populations in the thymus also had different basal levels of pSTAT3. Basal pSTAT3 levels were greatest in CD4-CD8- (MFI 158) T-cells, followed by CD4-CD8+ T-cells (MFI 131), CD4+CD8- (MFI 98) and CD4+CD8+ (MFI 51) T-cells (Figure 4.5b). Basal pSTAT3 levels were significantly different (p < 0.05) between CD4+CD8- and CD4-CD8+ T-cells. Basal pSTAT3 levels of CD4+CD8- and CD4-CD8+ were both significantly higher than that of CD4+CD8+ T-cells.

The different CD4/CD8 T-cell populations in the thymus also had different basal levels of pSTAT5. Basal pSTAT5 levels were greatest in CD4-CD8+ T-cells (MFI 1745), followed by CD4+CD8- (MFI 1304), CD4-CD8- (MFI 1299) and CD4+CD8+ (MFI 695) T-cells (Figure 4.5c). Basal pSTAT5 levels were not significantly different between CD4+CD8- and CD4-CD8+ T-cells. Basal pSTAT5 levels of CD4+CD8-, CD4-CD8+ and CD4-CD8- T-cell were significantly higher than that of CD4+CD8+ T-cells.

CD4+CD8+ T-cells displayed the lowest level of basal pSTAT1, pSTAT3 and pSTAT5. Although not significant, CD4-CD8+ T-cells displayed a trend of higher pSTAT1, pSTAT3 and pSTAT5 basal levels than CD4+CD8- T-cells.

Comparison of the basal MFI's of the different STATs, in the same cell types, demonstrates large differences between pSTAT1 and pSTAT3 compared to pSTAT5 (Figure 4.5). Basal pSTAT5 MFI's are at least 5 times higher than basal pSTAT1 MFI's. This however may be due to technical differences such as differences in antibody affinities and background staining rather than a reflection of total pSTAT levels and thus cannot be taken as conclusive.

Figure 4.5: Basal Stat1, Stat3 and Stat5 phosphorylation levels in thymic CD4/CD8 T-cell subsets. Thymus was harvested from wt C57BL/6 mice and a single cell suspension created. Cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with **A.** pStat1-Alexa647, **B.** pStat3-Alexa647 or **C.** pStat5-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for each cell subset. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.



#### 4.2 Dose Response to IFNα – Thymic CD4/CD8 T-cell Subsets

A dose response of STAT phosphorylation was analysed in CD4/CD8 T-cell subsets of the thymus (Figure 4.6). Cells were stimulated with 100, 1000, 3000 or 10,000 IU/ml of IFNα for 15 minutes. The data is represented as change in MFI of stimulated cells compared to unstimulated cells as well as the percentage of positive cells (percentage of cells with increased pSTAT expression compared to unstimulated controls).

IFNα induction of STAT1, STAT3 and STAT5 phosphorylation occurred in a dose dependent manner. The increase in pSTAT1 MFI (Figure 4.6 A1) was greater than that of pSTAT3 (Figure 4.6 B1) in response to all doses of IFNα and the increase in pSTAT3 MFI was greater than that of pSTAT5 (Figure 4.6 C1). The stimulation of cells with 100 IU/ml of IFNα resulted in no change in STAT1, STAT3 or STAT5 phosphorylation levels compared to unstimulated controls (not shown). At 1000 IU/ml, a significant increase in STAT1 phosphorylation (1.5-2-fold, p < 0.05) was observed in all T-cell populations except CD4+CD8- T-cells. At 3000 IU/ml and 10,000 IU/ml of IFNα, STAT1 phosphorylation levels were significantly increased in all CD8/CD4 T-cell populations (2-3-fold and 3-5-fold, respectively). In contrast to STAT1, IFNα induction of STAT3 and STAT5 phosphorylation was very low and only significant with the higher 10,000 IU/ml dose of IFNα (1.5-2-fold).

In terms of the percentage of positive cells, less than 20% of cells showed upregulation of pSTAT1 with 1000 IU/ml of IFN $\alpha$  (Figure 4.6 A2). With 3000 IU/ml of IFN $\alpha$ , a significant percentage of cells (10-50%, p < 0.05) showed up-regulation of pSTAT1 and with 10,000 IU/ml of IFN $\alpha$  this was increased (35-70%, p < 0.05). In contrast to pSTAT1, the percentage of cells up-regulating pSTAT3 and pSTAT5 were low. 5-25% of cells showed up-regulation of pSTAT3 (p < 0.05) (Figure 4.6 B2) and 10-35% of cells showed up-regulation of pSTAT5 (p < 0.05) (Figure 4.6 C2) with 10,000 IU/ml IFN $\alpha$ .

STAT1, STAT3 and STAT5 were phosphorylated in the thymus in response to IFN $\alpha$  stimulation in a dose dependent manner. These data indicate STAT1 phosphorylation occurs at lower doses of IFN $\alpha$  than that required to induce STAT3 and STAT5 phosphorylation. STAT1 phosphorylation levels were also induced to a greater degree over unstimulated controls than that of STAT3 and STAT5 phosphorylation when stimulated with the same amount of IFN $\alpha$ . In addition, more cells were also able to induce STAT1 phosphorylation than STAT3 and STAT5 phosphorylation when stimulated with the same amount of IFN $\alpha$ . STAT1 therefore appears more sensitive to
Figure 4.6: Dose response of IFN $\alpha$  on Stat1, Stat3 and Stat5 phosphorylation in thymic CD4/CD8 T-cell subsets. Thymus was harvested from wt C57BL/6 mice and a single cell suspension created. Cells were left untreated or stimulated with 1000, 3000 or 10,000 IU/ml of IFN $\alpha$  for 15 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with **A.** pStat1-Alexa647, **B.** pStat3-Alexa647 or **C.** pStat5-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for each cell subset and stimulation dose. Data is represented as **Panel 1.** fold induction of MFI (MFI stimulation/MFI basal) and **Panel 2.** percentage of positive cells. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.



IFN $\alpha$  induced phosphorylation than STAT3 and STAT5. This is explored in more detail below, with a time-course of IFN $\alpha$  treatment. As stimulation with 10,000 IU/ml of IFN $\alpha$  resulted in significant induction of STAT1, STAT3 and STAT5 phosphorylation in all CD4/CD8 T-cell subsets analysed, this concentration was chosen for subsequent experiments.

# 4.3 Time Course – Thymic CD4/CD8 T-cell subsets

A time-course of STAT1, STAT3 and STAT5 phosphorylation in response to 10,000 IU/mI IFN $\alpha$  was analysed in immune cell subsets of the thymus and blood.

# 4.3.1 Time course of STAT1 phosphorylation in the thymus

The highest levels of STAT1 phosphorylation were obtained following 15 minutes IFNα stimulations and were greatest in CD4-CD8+ T-cells (MFI 1384), followed by CD4+CD8- (MFI 847), CD4-CD8- (MFI 540) and CD4+CD8+ T-cells (MFI 223) (Figure 4.7 A). This follows the same pattern as the basal levels. At 15 minutes post-stimulation, STAT1 phosphorylation was increased 4.8-fold in CD4-CD8+ T-cells, 4.6-fold in CD4+CD8- T-cells, 3.9-fold in CD4+CD8+ T-cells and 3.8-fold in CD4-CD8- T-cells. At 30 minutes post-stimulation, pSTAT1 levels were slightly decreased than at 15 minutes. At subsequent time points, pSTAT1 levels were reduced. The largest drop occurred between 30 and 60 minutes post-stimulation. By 120 minutes post-stimulation, pSTAT1 levels were returned to near basal levels.

The percentages of cells with increased STAT1 phosphorylation, above basal levels, were analysed (Figure 4.7 B). CD4-CD8+ T-cells were the most significant responders (70%) followed by CD4+CD8- (59%), CD4-CD8- (52%) and CD4+CD8+ T-cells (37%). A similar percentage of cells were increased for pSTAT1 at 30 minutes post-stimulation. By 60 minutes stimulation, there is an approximately 30% reduction in the amount of cells expressing pSTAT1 and by 120 minutes this is reduced further.

# 4.3.2 Time course of STAT3 phosphorylation in the thymus

The highest levels of pSTAT3 were obtained following 15-30 minutes IFN $\alpha$  stimulations and were greatest in CD4-CD8+ T-cells (MFI 271), followed by CD4-CD8- (MFI 243), CD4+CD8- (MFI 183) and CD4+CD8+ T-cells (MFI 97) (Figure 4.8 A). This follows the



Figure 4.7: Time course of IFN $\alpha$  induced Stat1 phosphorylation in thymic CD4/CD8 T-cell subsets. Thymus was harvested from wt C57BL/6 mice and a single cell suspension created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15, 30, 60 or 120 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with pStat1-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for each cell subset and time point. Data is represented as **A.** MFI and **B.** percentage of positive cells. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.





Figure 4.8: Time course of IFN $\alpha$  induced Stat3 phosphorylation in thymic CD4/CD8 T-cell subsets. Thymus was harvested from wt C57BL/6 mice and a single cell suspension created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15, 30, 60 or 120 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with pStat3-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for each cell subset and time point. Data is represented as **A.** MFI and **B.** percentage of positive cells. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.

same pattern as the basal levels. At 15 minutes post-stimulation, STAT3 phosphorylation was increased 2-fold in CD4-CD8+ T-cells and 1.9-fold in CD4-CD8-, CD4+CD8- and CD4+CD8+ T-cells.

The percentages of cells increased for pSTAT3, above basal levels, were also analysed (Figure 4.8 B). CD4-CD8+ T-cells were the most significant responders (26%) followed by CD4-CD8- (22%), CD4+CD8- (13%) and CD4+CD8+ T-cells (8%). The percentage of positive cells for pSTAT3 remain similar at 30 minutes post-IFN $\alpha$  stimulation followed by a drop to near basal levels at 60 minutes post-IFN $\alpha$  stimulation.

## 4.3.3 Time course of STAT5 phosphorylation in the thymus

The highest levels of pSTAT5 were obtained following 15-30 minutes IFNα stimulations and were greatest in CD4-CD8+ T-cells (MFI 2359), followed by CD4+CD8- (MFI 2082), CD4-CD8- (MFI 2046) and CD4+CD8+ T-cells (MFI 1186) (Figure 4.9 A). This follows the same pattern as the basal levels. At 15 minutes post-stimulation, STAT5 phosphorylation was increased 1.74-fold in CD4+CD8+ T-cells, 1.64-fold in CD4+CD8- T-cells, 1.59-fold in CD4-CD8- T-cells and 1.46 fold in CD4-CD8+ T-cells.

The percentages of cells increased for pSTAT5, above basal levels, were also analysed (Figure 4.9 B). CD4+CD8- T-cells were the most significant responders (33%) followed by CD4-CD8+ (28%), CD4-CD8- (26%) and CD4+CD8+ T-cells (12%). A significant percentage of cells were increased for pSTAT5 at 30 minutes post-stimulation. There is then a dramatic drop in pSTAT5 positive cells at 60 minutes post-IFNα stimulation to near basal levels.

# 4.3.4 Summary and Discussion – IFN $\alpha$ induced STAT phosphorylation in thymocytes

STAT phosphorylation peaked at 15-30 minutes post-IFNα stimulation and reduced over-time with the largest reduction between 30 and 60 minutes post-IFNα stimulation. By 120 minutes post-stimulation, most STAT phosphorylation levels were reduced to near basal. Previous studies have shown IFN induces JAK1, TYK2 and IFNAR phosphorylation within 1-5 minutes and this is reduced by 60 minutes post stimulation (Constantinescu, Croze et al. 1994; Platanias, Uddin et al. 1994). The kinetics of STAT phosphorylation are consistent with STAT activation occurring downstream of JAK and



Α.

10,000 IU/ml IFNα



Figure 4.9: Time course of IFN $\alpha$  induced Stat5 phosphorylation in thymic CD4/CD8 T-cell subsets. Thymus was harvested from wt C57BL/6 mice and a single cell suspension created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15, 30, 60 or 120 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with pStat5-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for each cell subset and time point. Data is represented as **A.** MFI and **B.** percentage of positive cells. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.

IFNAR phosphorylation and indicate primary signalling events occur rapidly and transiently.

STAT1 phosphorylation underwent the highest induction in response to IFN $\alpha$ , followed by STAT3 and STAT5. Similarly, more cells showed induction of STAT1 phosphorylation than STAT3 and STAT5. Despite phosphorylated STAT3 displaying a greater induction than STAT5 in terms of the total level of STAT phosphorylation, the percentage of cells with increased STAT5 phosphorylation was greater than that with increased STAT3 phosphorylation. These results indicate that a larger number of cells within the thymus are able to phosphorylate STAT5 in response to IFN $\alpha$  than STAT3 although the level of STAT3 phosphorylation within a responding cell is greater than that of STAT5.

A complex network of cytokine signalling and a balance of STAT activation plays a large role in T-cell selection and differentiation within the thymus (Adamson, Collins et al. 2009). The balance of activated STATs will likely dictate the level of each transcription factor complex that forms and thus resultant gene expression and cellular changes. Phosphorylated STAT1 may form ISGF3, STAT1 homodimers or STAT1:STAT3 heterodimers. The higher phosphorylation of STAT1 than STAT3 and STAT5 indicate IFN stimulation of the thymus will predominantly result in ISGF3 or STAT1:STAT1 mediated responses. As STAT1 knock out studies have shown that it is important in mediating viral resistance, the up-regulation of STAT1 by IFNα is consistent with the anti-viral effects of the type I IFNs (Meraz, White et al. 1996).

STAT2 phosphorylation was unable to be studied due to the availability of required reagents. A number of studies however have previously shown that IFN induction of STAT2 phosphorylation is required for STAT1 phosphorylation to proceed and it is thus likely that STAT2 is also phosphorylated in these cell types in response to IFN (Leung, Qureshi et al. 1995). Due to the reagents available, differences in STAT5A and STAT5B phosphorylation were also unable to be analysed. Although these proteins are very similar in structure and there is still considerable overlap in the genes they are able to regulate, differences in control of gene expression have been found and thus in future studies it would be interesting to determine whether IFN $\alpha$  induces both STAT5A and STAT5B similarly (Basham, Sathe et al. 2008).

It is evident the level of STAT1, STAT3 and STAT5 phosphorylation in response to  $IFN\alpha$  is cell type specific. Different immune cell subsets of the thymus contain different

levels of basal phosphorylated STATs and a different response to IFN $\alpha$  induced STAT phosphorylation. I found that thymic CD4-CD8+ and CD4+CD8- T-cells displayed the highest levels of pSTAT1, pSTAT3 and pSTAT5 basally and following IFN $\alpha$  stimulations compared to CD4-CD8- and CD4+CD8+ T-cell sub-populations. The single positive T-cells within the thymus are therefore likely to be more responsive to IFN $\alpha$  stimulation than less mature CD4-CD8- and CD4+CD8+ T-cells.

Previous studies have implicated that type I IFN has a role in controlling T-cell differentiation and survival within the thymus. One study indicates that IFNa is expressed constitutively in the thymus by resident pDCs and that it may play a role in negative T-cell selection within the medulla, increasing the susceptibility of T-cells to cell death and reducing the threshold needed for negative selection (Colantonio, Epeldegui et al. 2011). In support of this, another study has shown the deletion of either IFNAR1 or STAT1 in thymocytes results in the impaired deletion of auto-reactive T-cells within the thymus (Moro, Otero et al. 2011). This negative selection occurs at the level of CD4+CD8+ thymocytes however evidence indicates that mature thymocytes may mediate this selection process (Moro, Otero et al. 2011). Indeed, the ability of all thymocytes to induce STAT1 phosphorylation following IFNa indicate that IFNa may also have a greater range of effects on thymocytes than at the level of CD4+CD8+ Tcell selection alone. As mentioned above, the greatest induction of STAT phosphorylation was found in the single positive CD4+CD8- or CD4-CD8+ T-cells which have already undergone selection processes indicating a role for IFNa in modulating the effects of the more mature thymocytes as well.

It should be noted the high doses of IFN $\alpha$  used for stimulation in our studies may reflect levels seen following an infection rather than basal expression levels. As only STAT1 phosphorylation was seen at lower doses of IFN $\alpha$  treatment in our studies, low level constitutive IFN $\alpha$  expression in the thymus may be mediated by STAT1 alone, not STAT3 or STAT5. Another important consideration is the ability of IFN $\alpha$  to prime STAT1 expression and mediate cross-talk between different cytokine pathways that utilise STAT1 (Gough, Messina et al. 2010). In the context of the thymus, the constitutive expression of IFN $\alpha$  in the thymus may mediate effects of other cytokines pathways that play a role in T-cell differentiation such as IFN $\gamma$ .

The induction of STAT3 and STAT5 phosphorylation at the higher doses of IFN $\alpha$  indicate that these STATs may be activated and mediate T-cell effects during infection

when high doses of IFN $\alpha$  are produced. An important consideration however in these studies is the absence of T-cell activation through the TCR. As discussed in chapter 1, IFNa can have different effects depending on the activation state of the T-cell at the time. The IFNa induced phosphorylation of STAT1, STAT3 or STAT5 during an infection may differ to the results seen here when acting on inactive T-cells. In the absence of infection, IFNa expression acts to inhibit T-cell function. During early stages of T-cell differentiation and development in the thymus, IFN $\alpha$  is found to have an inhibitory effect on T-cell expansion as IFNa treatment of newborn mice results in a greater than 80% reduction in thymic cellularity. This inhibitory effect was found to occur at stages when T-cell growth and survival is mediated by IL-7 signaling (Lin, Dong et al. 1998). Interestingly IL-7 predominantly activates STAT5 signaling pathways. As IFNa also activates STAT5 in the thymus, perhaps there is cross-talk between these two pathways at the level of STAT activation. For example STAT5 activation by IFN $\alpha$  may result in a reduced amount of STAT5 available for IL-7 signaling. In the context of IFN mediated STAT5 signaling, STAT5 has been found to form complexes with a number of other transcription factors or binding proteins which may inhibit the amount of STAT5 available to form typical STAT5A/B homo or hetero dimers and thus limit typical STAT5 signaling. This however is purely speculative and additional studies are required to elucidate this hypothesis.

Interestingly we found that not all cells of a particular population induced STAT phosphorylation in response to IFN $\alpha$ . This was particularly evident with STAT3 and STAT5 which in some cases showed less than 20% of cells responding. A study by Zhao et al showed that in response to viral infection, only a portion of cells up-regulate IFN $\beta$  gene expression (Zhao, Zhang et al. 2012). They found that this variability was due to the stochastic variability of the cells themselves within a population, such as the expression of a number of factors within the cell including those involved in viral replication and expression, viral detection, signaling pathways and also the level of transcription factor expression (Zhao, Zhang et al. 2012). The response of a cell to IFN may therefore also be dependent on a range of factors within the cell such as the level of receptor expression, the level of STAT expression as well as the presence of co-activators or inhibitors. The differences observed between different cell populations are also likely to be impacted by these factors.

#### 4.4 Basal MFI of pSTAT1, pSTAT3 and pSTAT5 in PBMC CD4/CD8 T-cell subsets

The basal levels of phosphorylated STAT1, STAT3 and STAT5 within PBMC CD4+CD8- and CD4-CD8+ T-cells were not significantly different between cell types (Figure 4.10). For pSTAT1, CD4+CD8- T-cells displayed a basal MFI of 229 whereas CD4-CD8+ T-cells displayed a basal MFI of 222. For pSTAT3 CD4+CD8- T-cells displayed a basal MFI of 138 whereas CD4-CD8+ T-cells displayed a basal MFI of 138 whereas CD4-CD8+ T-cells displayed a basal MFI of 141. For pSTAT5, CD4+CD8- T-cells displayed an MFI of 1310 whereas CD4-CD8+ T-cells displayed an MFI of 1590.

Basal pSTAT levels in B220+ cells were slightly reduced compared to basal pSTAT levels in T-cells, although not significant. B220+ cells displayed a basal pSTAT1 MFI of 142, a basal pSTAT3 MFI of 94 and a basal pSTAT5 MFI of 1120.

Basal pSTAT1 levels in MAC1+ cells were slightly reduced compared to that of T-cells (222-229), with an MFI of 170. In comparison pSTAT3 and pSTAT5 levels were slightly increased as compared to T-cells and B220+ cells, with MFIs of 300 and 2187, respectively.

MAC1++ cells displayed relatively high basal levels of pSTAT1, pSTAT3 and pSTAT5 compared to T-cells, B220+ cells and MAC1+ cells, with MFIs of 478, 690 and 6690 respectively. The high basal levels of pSTATs in the MAC1++ cells indicate these cells are highly activated as basal pSTAT levels are similar to those found with IFN $\alpha$  stimulation in other cell types.

# 4.5 Time Course of IFNα induced STAT phosphorylation in PBMC CD4+/CD8+, B220+ and MAC1+ and MAC1++ cell Subsets

The phosphorylation of STAT1, STAT3 and STAT5 in response to IFN $\alpha$  in peripheral CD4+/CD8+ T-cells, B220+ cells, MAC1+ and MAC1++ cells was analysed.

# 4.5.1 Time course of STAT1 phosphorylation in the blood

The highest level of pSTAT1 was reached in CD4-CD8+ T-cells (MFI 1059) followed by CD4+CD8- T-cells (MFI 733) (Figure 4.11 A). These had induction levels, above basal, at 15 minutes post-IFN $\alpha$  stimulation of 4.7-fold and 3.2-fold, respectively. The percentage of cells increased for pSTAT1 above basal levels was also analysed (Figure 4.11 B). CD4-CD8+ T-cells were the most significant responders (75%)



Figure 4.10: Basal Stat1, Stat3 and Stat5 phosphorylation levels in PBMC CD4/CD8 T-cell subsets, B220 positive or MAC1 positive cells. Blood was harvested from wt C57BL/6 mice and a single cell suspension created. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE or anti-B220-FITC and anti-MAC1-PE) in combination with **A.** pStat1-Alexa647, **B.** pStat3-Alexa647 or **C.** pStat5-Alexa647. Cell subsets were separated based on surface marker expression of FITC and PE. The alexa647 MFI was calculated for each cell subset. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* =  $p \le 0.05$ , \*\* =  $p \le 0.01$ , \*\*\* =  $p \le 0.005$ .



Figure 4.11: Time course IFN $\alpha$  induced Stat1 phosphorylation in PBMC CD4/CD8 T-cell subsets, B220 positive or MAC1 positive cells. Blood was harvested from wt C57BL/6 mice and a single cell suspension created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15, 30 or 60 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE or anti-B220-FITC and anti-MAC1-PE) in combination with pStat1-Alexa647. Cell subsets were separated based on surface marker expression of FITC and PE. The alexa647 MFI was calculated for each cell subset and time point. Data is represented as **A.** MFI and **B.** percentage of positive cells. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.

followed by CD4+CD8- (54%). A slightly reduced proportion of cells were positive for pSTAT1 at 30 minutes post-stimulation. By 60 minutes IFNα stimulation this is reduced further, however pSTAT1 levels were still significantly greater than basal levels.

B-cells (B220+) displayed up-regulation of pSTAT1 at 15-60 minutes post-IFN $\alpha$  stimulation (Figure 4.11 A). pSTAT1 levels increased 3.4-fold at 15 minutes post-IFN $\alpha$  stimulation and remained increased at 30 minutes (2.9-fold) and 60 minutes (2.2-fold) post-IFN $\alpha$  stimulation. Peak pSTAT1 levels in B-cells (350) did not reach values near that of the stimulated T-cell populations (733-1059) due to a comparatively low basal level to begin with. The percentage of B-cells positive for pSTAT1 ranged from approximately 40% with 15-30 minutes IFN $\alpha$  stimulation to approximately 25% at 60 minutes post-IFN $\alpha$  stimulation (Figure 4.11 B).

MAC1+ cells displayed up-regulation of pSTAT1 at 15-60 minutes post-IFN $\alpha$  stimulation. pSTAT1 levels increased 2.8-fold at 15 minutes post-IFN $\alpha$  stimulation and remained increased at 30 minutes (2.5-fold) and 60 minutes (2-fold) post-IFN $\alpha$  stimulation (Figure 4.11 A). The percentage of MAC1+ cells increased for pSTAT1 levels were approximately 20% at 15-30 minutes and 15% at 60 minutes post-IFN $\alpha$  stimulation (Figure 4.11 B).

MAC1++ cells displayed a 1.8-fold up-regulation of pSTAT1 15-30 minutes post-IFN $\alpha$  stimulations (Figure 4.11 A). Despite a similar trend, there was no significant induction of MAC1++ cells expressing pSTAT1 following IFN $\alpha$  stimulations, due to a large variance in results across experiments (Figure 4.11 B).

### 4.5.2 Time course of STAT3 phosphorylation in the blood

There was no significant induction of pSTAT3 in peripheral CD4-CD8+ or CD4+CD8- Tcells following IFN $\alpha$  stimulations (Figure 4.12 A). The percentage of cells increased for pSTAT3 above basal levels was also analysed. There was large variance in the number of cells responding across samples and therefore no significance differences were obtained (Figure 4.12 B). Despite this it is evident that the change in MFI and the percentage of positive cells were very low compared to those seen for STAT1 phosphorylation.



Figure 4.12: Time course IFN $\alpha$  induced Stat3 phosphorylation in PBMC CD4/CD8 T-cell subsets, B220 positive or MAC1 positive cells. Blood was harvested from wt C57BL/6 mice and a single cell suspension created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15, 30 or 60 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE or anti-B220-FITC and anti-MAC1-PE) in combination with pStat3-Alexa647. Cell subsets were separated based on surface marker expression of FITC and PE. The alexa647 MFI was calculated for each cell subset and time point. Data is represented as **A.** MFI and **B.** percentage of positive cells. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.

B220+ cells displayed no significant up-regulation of pSTAT3, in terms of MFI, in response to IFN $\alpha$  stimulation (Figure 4.12 A). At 15 minutes post-IFN $\alpha$  stimulation only 5% of B220+ cells were positive for pSTAT3 (Figure 4.12 B).

MAC1+ and MAC1++ cells did not display significant up-regulation of pSTAT3 in response to IFN $\alpha$  in terms of MFI or percentage of positive cells (Figure 4.12).

# 4.5.3 Time course of STAT5 phosphorylation in the blood

There was no significant induction of pSTAT5 in peripheral CD4-CD8+ or CD4+CD8- Tcells following IFN $\alpha$  stimulations (Figure 4.13 A). The percentage of cells increased for pSTAT5 above basal levels was also analysed (Figure 4.13 B). There were very few cells responding to IFN $\alpha$  in terms of pSTAT5 up-regulation. Only 6.5% of CD4+CD8- Tcells were positive for pSTAT5 (p < 0.05) and 8% of CD4-CD8+ T-cells at 15 minutes post-IFN $\alpha$  stimulation. It is evident that the change in MFI and the percentage of positive cells were very low compared to those seen for STAT1 phosphorylation.

B220+, MAC1+ and MAC1++ cells displayed no significant up-regulation of pSTAT5 in response to IFN $\alpha$  in terms of MFI or percentage of positive cells (Figure 4.13).

# 4.5.4 Thymic CD4/CD8 T-cells vs Periphery CD4/CD8 T-cells

The percentage of cells up-regulated above basal levels of pSTAT1, pSTAT3 and pSTAT5 were compared following 15 minutes IFN $\alpha$  stimulation in thymic and peripheral T-cells (PBMC or splenic) (Figure 4.14). It is evident that the response to IFN $\alpha$  is cell type and tissue specific. Thymic and peripheral T-cells displayed similar levels of pSTAT1 activation in response to IFN $\alpha$ . Approximately 50-60% of CD4+CD8- and 70-80% of CD4-CD8+ thymic and PBMC T-cells displayed up-regulation of pSTAT1 at 15 minutes IFN $\alpha$  stimulation. In contrast splenic cells were less responsive as approx. 30% of CD4+CD8- and 40% of CD4-CD8+ cells were responsive to 15 minutes IFN $\alpha$  stimulation. The percentages of cells positive for pSTAT3 were relatively low (<20%) in CD4+CD8- T-cells from thymus, blood and spleen (Figure 4.14). The percentages of cells positive for pSTAT1 and STAT3 showed similar levels of phosphorylation in response to IFN $\alpha$  between thymic and PBMC T-cells, STAT5 phosphorylation was significantly different displaying higher levels in the thymus compared to the periphery. The percentage of thymic CD4+CD8- T-cells positive for



Figure 4.13: Time course of IFN $\alpha$  induced Stat5 phosphorylation in PBMC CD4/CD8 T-cell subsets, B220 positive or MAC1 positive cells. Blood was harvested from wt C57BL/6 mice and a single cell suspension created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15, 30 or 60 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE or anti-B220-FITC and anti-MAC1-PE) in combination with pStat5-Alexa647. Cell subsets were separated based on surface marker expression of FITC and PE. The alexa647 MFI was calculated for each cell subset and time point. Data is represented as **A.** MFI and **B.** percentage of positive cells. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.



Figure 4.14: Thymic and peripheral T-cell Stat1, Stat3 and Stat5 phosphorylation in response to 15 minutes IFN $\alpha$  stimulation. Thymus, blood or spleen was harvested from wt C57BL/6 mice and single cell suspensions created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with pStat5-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for **A**. CD4+CD8- and **B**. CD4-CD8+ cell populations. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.

pSTAT5, above basal levels in response to IFN $\alpha$ , were approx. 33% compared to 6.5% for PBMC CD4+CD8- T-cells and a non-significant response in the spleen. The percentage of thymic CD4-CD8+ T-cells increased for pSTAT5, above basal levels in response to IFN $\alpha$ , were approx. 25% compared to a non-significant response in PBMC and splenic CD4+CD8- T-cells.

# 4.5.5 Summary and Discussion – IFN $\alpha$ induced STAT phosphorylation in peripheral immune cells

STAT1 is phosphorylated in response to IFN $\alpha$  stimulation universally among the immune cell populations analysed as T-cells, B220+ cells, MAC1+ and MAC1++ cells all showed increased STAT1 phosphorylation in response to IFN $\alpha$ . T-cells and B220+ cells displayed the highest induction of STAT1 phosphorylation above basal levels. This is in contrast to pSTAT3 and pSTAT5 as T-cells, B220+ cells, MAC1+ and MAC1++ cells displayed only poor to no up-regulation of pSTAT3 and pSTAT5 in response to IFN $\alpha$ .

PBMC derived CD4+CD8- and CD4-CD8+ T-cells displayed up-regulation of pSTAT1 in response to IFN $\alpha$  in a similar manner to thymic derived T-cells. In contrast there is a large difference in the ability of thymic vs peripheral T-cells (PBMCs and splenocytes) to induce pSTAT5 and to a lesser degree pSTAT3. This may be due to intrinsic cell differences between immature T-cells isolated from the thymus and mature peripheral T-cells isolated from the blood and spleen. The result however may impact greatly on the type of response IFN $\alpha$  has on these cells. As mentioned previously, the response of the cells to IFN $\alpha$  is orchestrated in part by the level and type of STAT5 that are activated. Thymic T-cells may display a STAT1, STAT3 and STAT5 mediated response whereas peripheral T-cell would be skewed towards a STAT1 response. This may have important consequences in terms of the effect of IFN $\alpha$  on the function of thymic versus peripheral T-cells. As STAT5 is an important transcription factor in T-cell differentiation, the ability of thymic T-cells to induce STAT5 may therefore be indicative of IFN $\alpha$  manipulating thymic T-cell differentiation.

The profile of IFN $\alpha$  induced pSTAT upregulation in murine PBMCs is comparatively quite different to the profile of IFN $\alpha$  and IFN $\beta$  induced pSTAT upregulation in human blood leukocytes (van Boxel-Dezaire, Zula et al. 2010). Monocytes and lymphocytes derived from human blood showed a large increase in the percentage of cells upregulating pSTAT5 and pSTAT3 whereas our results showed blunted up-regulation of

pSTAT3 and pSTAT5 in murine derived PBMCs and splenocytes (van Boxel-Dezaire, Zula et al. 2010). We also found peak pSTAT induction at 15-30 minutes post IFNα stimulation whereas human leukocytes displayed peak inductions at 45 minutes post IFN stimulation. These differences may be due to differences in experimental technique. Van Boxel-Dezaire et al stimulated whole blood cultures with IFN, whereas we isolated PBMC's prior to stimulation. In support of this theory, van Boxel-Dezaire has observed a blunted response following stimulation of isolated human PBMCs compared to whole human blood cultures (un-published data). The stimulation of whole mouse blood may therefore result in higher pSTAT3 and pSTAT5 up-regulation compared to the stimulation of isolated PBMCs. Future studies in mice could utilise the technique employed by van Boxel-Dezaire et al in order to make a more direct comparison to the human data.

Although these differences in technique may cause blunted responses in PBMCs, murine derived thymocytes displayed significant upregulation of pSTAT5 following IFNα stimulation and were harvested in a similar manner to splenocytes, which displayed a blunted response. The blunted response in splenocytes is therefore likely to be real.

### 4.6 SOCS1 effect on IFNα induced STAT phosphorylation

As mentioned above, it is important to understand the effect SOCS1 has on IFN $\alpha$  induced STAT activation to understand how SOCS1 affects the response of the cell to IFN $\alpha$ . I analysed the phosphorylation profile of STAT1, STAT3 and STAT5 in immune cell subsets of Socs1<sup>-/-</sup>Ifn $\gamma^{-/-}$  and Socs1<sup>+/+</sup>Ifn $\gamma^{-/-}$  mice to determine the effect SOCS1 has on IFN $\alpha$  induced STAT phosphorylation.

Cells were stimulated with 10,000 IU/m IFN $\alpha$  for 0, 15, 30 or 60 minutes. Cells were gated on surface marker expression and analysed for MFI of alexa647, an indicator of pSTAT1, pSTAT3 or pSTAT5 levels. The MFI was plotted against stimulation time and compared between the genotypes. The percentage of positive cells were also analysed however results showed no significant differences between the two genotypes and thus are not shown.



Figure 4.15: Basal pStat1, pStat3 and, pStat5 phosphorylation levels in thymic CD4/CD8 T-cell subsets from Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice. Thymus was harvested from Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> C57BL/6 mice and single cell suspensions created. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with **A.** pStat1-Alexa647, **B.** pStat3-Alexa647 or **C.** pStat5-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for each cell subset. Data is represented as MFI. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.

#### 4.6.1 STAT1 phosphorylation

Basal pSTAT1 levels in CD4/CD8 thymic T-cell subsets were significantly greater in Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> compared to Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice (Figure 4.15 A). In CD4+CD8- and CD4-CD8+ thymic T-cell populations, pSTAT1 basal levels were approximately 2-fold greater in the absence of SOCS1. In CD4+CD8+ and CD4-CD8- T-cells pSTAT1 basal levels were approximately 1.5-fold greater in the absence of SOCS1. Upon IFNa stimulation, significant pSTAT1 differences were also observed in the two genotypes. Thymic cells from Socs 1<sup>-/-</sup> Ifny<sup>-/-</sup> mice displayed higher pSTAT1 levels, at all time-points, than cells expressing SOCS1 (Figure 4.16). For CD4+CD8+ T-cells, the differences in MFI of cells from  $Socs1^{-/-}Ifny^{-/-}$  compared to  $Socs1^{+/+}Ifny^{-/-}$  mice were 14 (p < 0.01) at basal (46% increase), 20.5 at 15 minutes post-stimulation (16% increase), 48.75 at 30 minutes (44% increase) and 44.48 (p < 0.01) at 60 minutes post-stimulation (65% increase). For CD4+CD8- T-cells, the differences in MFI of cells from Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> compared to  $Socs 1^{+/+} Ifn \gamma^{-/-}$  mice were 72.98 (p < 0.005) at basal levels (93% increase). 172.5 (p < 0.005) at 15 minutes post-stimulation (51% increase), 276 (p < 0.05) at 30 minutes (85% increase) and 146.8 (p < 0.005) at 60 minutes post-stimulation (96% increase). For CD4-CD8+ T-cells, the differences in MFI of cells from Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> compared to  $Socs 1^{+/+} Ifn \gamma^{-/-}$  mice were 97.05 (p < 0.005) at basal levels (87% increase), 193.5 (p < 0.05) at 15 minutes post-stimulation (41% increase), 235.3 (p < 0.01) at 30 minutes (64% increase) and 295.7 (p < 0.005) at 60 minutes post-stimulation (77% increase). For CD4-CD8- T-cells, the differences in MFI of cells from Socs1--Ifny-compared to  $Socs1^{+/+}$  lfn $\gamma^{-/-}$  mice were 83.2 (p < 0.005) at basal levels (51% increase), 109.8 (p < 0.005) at 15 minutes post-stimulation (43% increase), 82.5 (p < 0.005) at 30 minutes (35% increase) and 79.75 (p < 0.01) at 60 minutes post-stimulation (56% increase).

It is evident the largest differences in pSTAT1 levels in thymic T-cells from  $Socs1^{-/-}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice occur at 15-30 minutes post-IFN $\alpha$  stimulation. pSTAT1 levels also appear to remain elevated in the absence of SOCS1 at later time-points.

pSTAT1 induction was also investigated in spleen cells and bone marrow macrophages from  $Socs1^{-/-1}Ifn\gamma^{-/-}$  and  $Socs1^{+/+1}Ifn\gamma^{-/-}$  mice (Figures 4.17 and 4.18). CD4+CD8- and CD4-CD8+ splenic cells displayed increased levels of pSTAT following IFNα stimulations in the  $Socs1^{-/-1}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+1}Ifn\gamma^{-/-}$  mice. For CD4+CD8- Tcells from  $Socs1^{-/-1}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+1}Ifn\gamma^{-/-}$  mice, there is a difference in MFI of



Figure 4.16: Time course of IFN $\alpha$  induced Stat1 phosphorylation in thymic CD4/CD8 T-cell subsets from Socs1<sup>-/</sup>Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice. Thymus was harvested from Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> C57BL/6 mice and single cell suspensions created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15, 30, or 60 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with pStat1-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for each cell subset (A. CD4+CD8+, B. CD4+CD8-. C. CD4-CD8+ and D. CD4-CD8-) and time point. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.



Figure 4.17: Time course of IFNα induced Stat1 phosphorylation in splenic CD4/CD8 T-cell subsets and splenic B-cells from Socs1<sup>-/-</sup> Ifnγ<sup>-/-</sup> and Socs1<sup>+/+</sup> Ifnγ<sup>-/-</sup> mice. The spleen was harvested from Socs1<sup>-/-</sup> Ifnγ<sup>-/-</sup> and Socs1<sup>+/+</sup> Ifnγ<sup>-/-</sup> C57BL/6 mice and single cell suspensions created. Cells were left untreated or stimulated with 10,000 IU/ml of IFNα for 15, 30, 60 or 120 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with pStat1-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE or MAC1-PE. The alexa647 MFI was calculated for each cell subset (A. CD4+CD8+, B. CD4+CD8- and C. CD4-CD8-) and time point. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.



Figure 4.18: Time course of IFNα induced Stat1 phosphorylation in splenic macrophages and BMMs. The spleen was harvested from Socs1<sup>-/-</sup> *Ifnγ*<sup>-/-</sup> and Socs1<sup>-/-/-</sup> (C57BL/6 mice and single cell suspensions created. BMMs were harvested and cultured from Socs1<sup>-/-</sup> *Ifnγ*<sup>-/-</sup> and Socs1<sup>-/+/+</sup> *Ifnγ*<sup>-/-</sup> (C57BL/6 mice - Cells were left untreated or stimulated with 10,000 IU/ml of IFNα for 15, 30, 60 or 120 minutes. Following cell fixation and permeabilisation, splenic cells were incubated with anti-MAC1-PE in combination with pStat1-Alexa647 and BMMs were incubated with pStat1-Alexa647 alone. Splenic cell subsets were separated based on surface marker expression of MAC1-PE. The alexa647 MFI was calculated for MAC1+ cells and BMMs at each time point. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.

58 at basal levels (33% increase), 99 at 15 minutes (19% increase), 69 at 30 minutes (13% increase), 92 (p < 0.01) at 60 minutes (27% increase) and 82 (p < 0.05) at 120 minutes post-IFNα stimulation (30% increase). For CD4-CD8+ T-cells from *Socs1<sup>-/-</sup>Ifnγ*<sup>-/-</sup> compared to *Socs1<sup>+/+</sup>Ifnγ*<sup>-/-</sup> mice, there is a difference in MFI of 55 (30% increase) at basal levels, 45 at 15 minutes (8% increase), 29 at 30 minutes (5% increase), 72 (p < 0.05) at 60 minutes (21% increase) and 65 (p < 0.05) at 120 minutes post-IFNα stimulation (23% increase). There were no significant differences in pSTAT1 levels observed in splenic CD4-CD8- or MAC1+ cells between the two genotypes. For BMMs there were no significant differences in pSTAT1 induction between the two genotypes.

SOCS1 mediated differences in basal STAT1 phosphorylation and IFNα induced STAT1 phosphorylation were greatest in thymic T-cell subsets compared to peripheral T-cells whereas there were no differences in CD4-CD8- and MAC1+ cells. This is probably due to the thymus being the tissue of highest basal SOCS1 expression (Marine, Topham et al. 1999). STAT3 and STAT5 phosphorylation were therefore also analysed in CD4+/CD8+ populations of thymic T-cells.

#### 4.6.2 STAT3 phosphorylation

Thymic pSTAT3 basal levels were significantly greater in CD4+CD8+, CD4+CD8- and CD4-CD8+ T-cells from Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> compared to Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice (Figure 4.15 B). The differences however were not as pronounced as for those seen with pSTAT1, with the highest difference of 1.3-fold in CD4-CD8+ cells. Upon IFNα stimulation pSTAT3 levels were also significantly greater in thymic cells from Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> compared to Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice, although like with basal levels, these were lower as compared to the differences with pSTAT1 (Figure 4.19). For CD4+CD8+ T-cells, the difference in MFI of cells from  $Socs 1^{-/-} Ifn \gamma^{-/-}$  compared to  $Socs 1^{+/+} Ifn \gamma^{-/-}$  mice were 7.45 (p < 0.005) at basal levels (15% increase), similar at 15 minutes post-stimulation, 18.9 (p < 0.01) at 30 minutes (27% increase) and 15.43 (p < 0.05) at 60 minutes post-stimulation (31% increase). For CD4+CD8- T-cells, the difference in MFI of cells from Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> compared to  $Socs 1^{+/+} Ifn \gamma^{-/-}$  mice were 20.38 (p < 0.005) at basal levels (24% increase), 37.5 (p < 0.005) at 15 minutes post-stimulation (28% increase), 36.25 (p < 0.01) at 30 minutes (31% increase) and 29.95 (p < 0.01) at 60 minutes post-stimulation (37% increase). For CD4-CD8+ T-cells, the difference in MFI of cells from Socs1--Ifnv-compared to  $Socs1^{+/+}$  lfny<sup>-/-</sup> mice were 35.25 (p < 0.05) at basal levels (31% increase), 74.75 (p < 0.005) at 15 minutes post-stimulation (39% increase), 61.5 (p < 0.01) at 30



Figure 4.19: Time course of IFN $\alpha$  induced Stat3 phosphorylation in thymic CD4/CD8 T-cell subsets from Socs1<sup>-/</sup>Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice. Thymus was harvested from Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> C57BL/6 mice and single cell suspensions created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15, 30, or 60 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with pStat3-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for each cell subset (A. CD4+CD8+, B. CD4+CD8-. C. CD4-CD8+ and D. CD4-CD8-)and time point. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.

minutes (37% increase) and 48.75 (p < 0.01) at 60 minutes post-stimulation (41% increase). For CD4-CD8- T-cells, the difference in MFI of cells from  $Socs1^{-/-}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice were similar at basal levels, 41.75 at 15 minutes post-stimulation (18% increase), 41.25 (p < 0.05) at 30 minutes (22% increase) and 37.8 (p < 0.01) at 60 minutes post-stimulation (37% increase).

#### 4.6.3 STAT5 phosphorylation

In contrast to pSTAT1 and pSTAT3 (to a lesser extent), basal pSTAT5 appears independent of SOCS1 negative regulation (Figure 4.15 C). No significant differences in basal pSTAT5 were observed in CD4-CD8-, CD4+CD8- or CD4-CD8+ T-cells from Socs  $1^{-/-1}$  If  $n y^{-/-}$  compared to Socs  $1^{+/+1}$  If  $n y^{-/-1}$  mice. A small difference (16% decrease) was observed basally in CD4+CD8+ T-cells from Socs1-1/Ifny-1- mice as compared to Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice, displayed decreased STAT5 phosphorylation in cells lacking SOCS1. Upon IFNa stimulations, minor differences were seen in pSTAT5 induction in Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> compared to Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice in CD4+CD8+ and CD4+CD8- T-cells and at limited times post-stimulation, unlike STAT1 for which differences were seen at all times (Figure 4.20). With 15 minutes IFN $\alpha$  stimulation, CD4+CD8+ and CD4+CD8-T-cells contained lower pSTAT5 levels in the absence of SOCS1 with an MFI change of 231 (23% decrease) and 269 (16% decrease) respectively. This suggests SOCS1 does not have a negative regulatory role in controlling STAT5 phosphorylation early on. By 60 minutes post-stimulation, however, pSTAT5 levels were slightly increased in CD4+CD8+, CD4+CD8-, CD4-CD8+ cells lacking SOCS1 with an MFI change of 115.5 (49% increase), 215 (50% increase), and 176 (28% increase) respectively.

#### 4.6.4 Summary and Discussion

Basal STAT1 phosphorylation levels were significantly higher in thymic cells from  $Socs1^{-/-}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice. Basal STAT3 phosphorylation levels were also higher; however this was not as pronounced as for that seen with STAT1. In comparison, there were very limited differences in basal STAT5 phosphorylation levels. Following IFN $\alpha$  stimulation, STAT1 and STAT3 phosphorylation was enhanced and prolonged in the thymus of  $Socs1^{-/-}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice. This again was more pronounced for STAT1. This indicates a role for SOCS1 in the negative regulation of STAT1 and STAT3 phosphorylation. In contrast, IFN $\alpha$  induced STAT5 phosphorylation was lower in  $Socs1^{-/-}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice at early time-points. These results therefore indicate SOCS1 does not negatively regulate



Figure 4.20: Time course of IFN $\alpha$  induced Stat5 phosphorylation in thymic CD4/CD8 T-cell subsets from Socs1<sup>-/</sup>Ifny<sup>-/</sup> and Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice. Thymus was harvested from Socs1<sup>-/</sup>Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> C57BL/6 mice and single cell suspensions created. Cells were left untreated or stimulated with 10,000 IU/ml of IFN $\alpha$  for 15, 30, or 60 minutes. Following cell fixation and permeabilisation, cells were incubated with surface marker antibodies (anti-CD4-FITC and anti-CD8-PE) in combination with pStat5-Alexa647. Cell subsets were separated based on surface marker expression of CD4-FITC and CD8-PE. The alexa647 MFI was calculated for each cell subset (A. CD4+CD8+, B. CD4+CD8-. C. CD4-CD8+ and D. CD4-CD8-) and time point. Data is presented as mean +/- SEM of N = 3-5 separate experiments. \* = p ≤ 0.05, \*\* = p ≤ 0.01, \*\*\* = p ≤ 0.005.

STAT5 phosphorylation basally or in the context of IFN $\alpha$  signaling at early time-points. Rather than a negative regulatory role, SOCS1 may have a minor positive regulatory role on STAT5 phosphorylation. As chapter 3 shows SOCS1 acts through TYK2, perhaps STAT5 phosphorylation is independent of TYK2. At later time points however there was increased STAT5 phosphorylation in the absence of SOCS1. As this negative change is only seen at later time-points, and is minor, these differences may be due to secondary effects of SOCS1. For example, as shown in Chapter 3, SOCS1 affects IFN $\alpha$  signaling through reduction of receptor expression at the cell surface and thus may contribute to differences in STAT5 at the later time points.

It is evident SOCS1 selectively alters the balance of STATs within the cell. As discussed previously, SOCS1 is essential in maintaining appropriate IFN $\alpha$  signaling events and in the absence of SOCS1 IFN $\alpha$  signaling proceeds unchecked resulting in uncontrolled inflammation and a high resistance to viral infection (Fenner, Starr et al. 2006). As I have shown here, SOCS1 controls both STAT1 and STAT3 phosphorylation. It is therefore likely these inflammatory events and viral resistance are mediated by STAT1 and STAT3. This is in contrast to STAT5 and may reflect the importance of IFN $\alpha$  induced STAT5 signaling to be maintained in the thymus during infection. STAT5 is a critical factor in mediating T-cell differentiation, most notably through the IL-7 signaling pathway. As mentioned previously, IFN $\alpha$  interferes with IL-7 induced growth and survival of T-cells and perhaps this is important to maintain even when other IFN $\alpha$  pathways need to be negatively controlled to maintain homeostatsis (Lin, Dong et al. 1998).

# 4.7 Total STAT1, STAT3 and STAT5 expression levels in the thymus of $Socs1^{-1}$

To identify whether the differences seen in the STAT phosphorylation of thymic cells from  $Socs1^{-/-}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice were due to protein expression changes, the total level of STAT1, STAT3 and STAT5 protein expression was investigated in the thymus of  $Socs1^{-/-}Ifn\gamma^{-/-}$  and  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice by western blot analysis. The thymus was harvested and a single cell suspension of 10<sup>7</sup> cells per ml was created. Cells were stimulated with 10,000 IU/ml of IFN $\alpha$  for indicated time points. Following stimulation, cells were lysed and SDS-PAGE and western blot performed to compare STAT protein expression levels between the two genotypes. STAT1, STAT3 **4.21 Total Stat1, Stat3 and Stat5 levels in the thymus of Socs1<sup>-/-</sup> Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> mice following IFNα stimulation.** Whole thymus was harvested from Socs1<sup>-/-</sup> Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> mice and a single cell suspension created. 10<sup>-7</sup> cells per condition were stimulated with10,000 IU/ml of IFNα for the indicated time points. Cells were lysed and proteins separated by SDS-PAGE and transferred to nitrocellulose membrane for detection by western blot analysis. Membranes were probed with anti-Stat1, Stat3 or Stat5 antibodies with an appropriate fluorescence conjugated secondary antibody for detection via odyssey. Membranes were then stripped and probed with anti-β-tubulin and appropriate fluorescence conjugated secondary antibody for detection via odyssey. Data is representative of 3 separate experiments.



and STAT5 protein expression in the thymus of  $Socs 1^{-/-}Ifn\gamma^{-/-}$  and  $Socs 1^{+/+}Ifn\gamma^{-/-}$  mice are displayed in Figure 4.21 and are representatives of triplicate experiments. Results demonstrate that STAT1 and STAT3 protein expression were higher in cells lacking SOCS1. In contrast, STAT5 expression was similar in both genotypes. These results are consistent with that of basal phospho-STAT levels where STAT1 and STAT3 phosphorylation were increased in cells lacking SOCS1 whereas STAT5 phosphorylation was similar. Some of the differences seen with STAT1 and STAT3 phosphorylation levels may therefore be attributed to total STAT levels within the cell. From this data it is also evident that STAT1 protein expression was similar to basal levels at early IFN $\alpha$  time-points and increased at 240 minutes post-IFN $\alpha$  stimulation in both genotypes. This reflects that status of STAT1 as a known IFN $\alpha$  inducible gene. In contrast STAT3 and STAT5 remained relatively similar following IFN $\alpha$  stimulation.

## 4.8 Summary

STAT1 phosphorylation is induced in response to type I IFN in all major T-cell populations of the thymus as well as in peripheral T-cells, B-cells and monocytes. In contrast, IFNα induction of STAT3 and STAT5 phosphorylation is limited to thymic T-cell populations. SOCS1 negatively regulates IFNα induced STAT1 and STAT3 phosphorylation but not STAT5.

#### CHAPTER 5

## IFN $\alpha$ AND SOCS1 REGULATION OF GENE EXPRESSION IN THE THYMUS

Type I IFN stimulation results in the activation of multiple signaling pathways which regulate the expression of an array of genes. SOCS1 has an essential role in the regulation of type I IFN signaling (Fenner, Starr et al. 2006). Previous chapters looked at cell-type specific activation of different STAT pathways and demonstrated some that were/were not SOCS1 regulated. In this chapter I sought to complement these studies with expression profiling to examine the extent of gene regulation by IFN $\alpha$  and SOCS1 in the thymus and correlate these to the STAT signaling pathways.

To investigate the effects of IFN $\alpha$  and SOCS1 mediated gene regulation in the type I IFN pathway, the gene expression profiles of the thymus of wild type, Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> and Socs  $1^{+/+}$  If  $ny^{-/-}$  mice were compared in response to an IFN $\alpha$  treatment time course,. As mentioned previously, Socs 1<sup>-/-</sup> mice are not viable and I must therefore compare Socs 1<sup>-/-</sup> <sup>/-</sup>*Ifny*<sup>-/-</sup> mice to Socs1<sup>+/+</sup>*Ifny*<sup>-/-</sup> mice to analyse the effects of SOCS1. The thymus was chosen as the tissue to perform the microarray study since preliminary phosphoflow experiments, in the previous chapter, showed significant induction of STAT1, STAT3 and STAT5 phosphorylation in thymocytes in response to IFNα and that SOCS1 has the largest effect on STAT phosphorylation in immune cells from the thymus compared to other sources of immune cells (PBMCs and spleen). Furthermore evidence in the literature shows SOCS1 is most highly expressed in the thymus (Marine, Topham et al. 1999). It should be noted however that double positive CD4+CD8+ T-cells form the largest population of T-cells within the thymus and thus the microarray results will be most representative of the response of double positive T-cells to IFNa. This may therefore override the response that would be seen in smaller T-cell subsets such as single positive CD4+ or CD8+ T-cell populations.

This experiment consists of three different genotypes: wild type,  $Socs1^{-/-}Ifn\gamma^{-/-}$  and  $Socs1^{+/+}Ifn\gamma^{-/-}$ . Mice were injected intraperitonealy with 1000 IU of IFN $\alpha$  or with PBS (0 hour) (Chapter 2.4.2). At 3 and 6 hours later, the mice were culled and the thymus harvested (Chapter 2.4.3). Each condition was performed in triplicate to allow appropriate statistical tests to be performed. RNA extraction, purification and quality control were then performed (Chapter 2.4.4 – 2.4.6). An Agilent one-colour microarray

was performed using 4 x 44k mouse micorarray chips (Chapter 2.5.10). It should be noted that in some cases one gene may be represented by multiple probes on the microarray. The analysis may therefore refer to either probes or genes. Analysis of the microarray data was performed with Genespring GX and other bioinformatics analysis approaches (Chapter 2.5.11).

The outcome of this experiment was multi-faceted, providing information on:

- The response of the thymus to a time course of IFNα treatment
- Basal differences in gene expression due to SOCS1 regulation
- Type I IFN regulated genes that are SOCS1 regulated

The following chapter of this thesis analyses all three of these aspects to better understand type I IFN mediated gene regulation in the thymus, the difference between basal thymic gene expression in  $Socs1^{-/-}Ifn\gamma^{-/-}$  vs.  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice and the consequence of SOCS1 on IFN $\alpha$  mediated gene regulation in the thymus.

### 5.1 Time Course of IFNα stimulation in the Thymus of Wild Type C57BL/6 mice

The profile of gene expression in response to IFN $\alpha$  in the wild type mice was initially investigated. Normalisation, baseline transformation, filtering and statistical tests applied to the data are outlined in Chapter 2.5.11 and Figure 2.3. To summarise, samples were normalised to the 75<sup>th</sup> percentile (recommended for Agilent one-colour array) and the baseline transformed to the median of the 0hr samples for that genotype. Probes were then filtered based on expression values and flags to yield a list of 31504 probes. A cut off was performed to reduce the probe list to those probes greater or equal to a 2-fold difference between any two of the conditions. This reduced the list to 1534 probes. Two approached were used to identify genes significantly regulated with IFNa treatment and are described in chapter 2. A one way analysis of variance (ANOVA) with Benjamini Hochberg false discovery rate (BHFDR) multiple testing correction was performed on the wild type IFNa time course to determine probes significantly (p < 0.05) affected by IFN $\alpha$  treatment. This resulted in a list of 276 probes significantly regulated by type I IFN. In addition, unpaired student t-tests with BHFDR multiple testing corrections were also performed on the probe list to identify probes significantly (p < 0.05) regulated from the 0 to 3 or 0 to 6 hour time points. The probes

identified from the one way ANOVA and t-tests were combined into a single probe list (appendix IIIA). This list consists of 283 probes.

A heatmap of the gene expression profile of the 283 probes significantly changed with IFN $\alpha$  stimulation is shown in Figure 5.1. Of the 283 probes found significantly changed with IFN $\alpha$  treatment, 269 probes were up-regulated from basal levels within 3 hours. 86 of these probes were induced 2-3 fold above basal levels, 50 were induced 3-4 fold, 36 were induced 4-5 fold, 35 were induced 6-8 fold, 7 were induced 8-10 fold while 11 were induced greater than 10 fold. The most highly up-regulated genes include *Rsad2* (28.4-35 fold), *Cmpk2* (18.8-28.4 fold), *Mx2* (18 fold), *Dhx58* (*RIG-I*) (14.5 fold), *Isg15* (14 fold), *Oas3* (12.8 fold), *Usp18* (11.8 fold), *Rtp4* (10.6 fold) and *OasI1* (10.2 fold). 254 of the 269 probes up-regulated remained up-regulated with 6 hours IFN $\alpha$  treatment however most are reduced compared to 3 hours of IFN $\alpha$  treatment. Only 14 probes were down regulated with 3 hours of IFN $\alpha$  treatment. *Ucp1* was the most highly down-regulated gene (9.8 fold).

gRT-PCR, as described in Chapter 2.4.9, was utilised to validate the microarray data (Figure 5.2). Wt samples were analysed for Isg15, Irgm1, Stat1, Irf7 and Cxcl10 gene expression at 0 (PBS), 3, 6 and 24 hours following IFNα stimulation. The induction of each gene by IFNa was expressed relative to expression levels in unstimulated samples (0 hour/PBS). Results show significant induction of all genes analysed and these inductions are comparable to microarray results. RT-PCR results demonstrate *Irgm1* was induced approximately 5.5 fold above basal levels at 3 hours post IFN and 1.5 fold at 6 hours post IFN compared to a 5.8 fold and 1.3 fold induction, respectively, from microarray data. RT-PCR results demonstrate *lsg15* was induced approximately 15 fold above basal levels at 3 hours post IFN and 2.5 fold at 6 hours post IFN compared to a 14 fold and 2.3 fold induction, respectively, from microarray data. RT-PCR results demonstrate Stat1 was induced approximately 4 fold above basal levels at 3 hours post IFN and 1.5 fold at 6 hours post IFN compared to a 3.7 fold and 1.4 fold induction, respectively, from microarray data. RT-PCR results demonstrate Irf7 was induced approximately 5 fold above basal levels at 3 hours post IFN and 2.5 fold at 6 hours post IFN compared to a 7.3 fold and 2.3 fold induction, respectively, from microarray data. RT-PCR results demonstrate Cxcl10 was induced approximately 3 fold above basal levels at 3 hours post IFN and not significantly at 6 hours post IFN compared to a 3.9 fold and an insignificant fold induction, respectively, from microarray data. Taken together, the magnitudes of change measured by RT-PCR were similar to


Figure 5.1: Heatmap of IFN $\alpha$  regulated probes in the thymus of wt mice. Statistical analysis was performed to identify probes significantly changed (p < 0.05) in the thymus of wt mice with 3 hour and 6 hour IFN $\alpha$  stimulations (as described in Section 5.2). The heatmap of these probes was generated using hierarchical clustering in Genespring GX.

# Figure 5.2: qRT-PCR validation of microarray data.

Quantitative RT-PCR analysis of *Irgm1*, *Isg15*, *Stat1*, *Irf7* and *Cxcl10* expression in the thymus of wt mice following 0, 3 6 and 24 hour stimulations with 1000 IU IFN $\alpha$  per mouse, administered intraperitoneally. Data is presented as mean +/- SEM of N = 3-5 separate experiments following normalisation to 18S and is expressed relative to unstimulated controls.













Stimulation Time

that measured by microarray, thus the microarray data can be considered an accurate, quantitative measure of relative gene expression changes.

To explore the function of the genes up-regulated with IFNα treatment, functional annotation analysis was performed with DAVID, as described in chapter 2.5.11. DAVID is a gene functional classification tool which uses a novel algorithm to cluster a set of genes or biological terms into classes of related genes or functions (Huang da, Sherman et al. 2007). This is achieved by mining and integrating data sourced from multiple independent functional annotation approaches, producing the most comprehensive functional gene classification system based on available data. This meta-analysis approach minimises annotation specific biases inherent in approaches such as Gene Ontology analysis alone. Enrichment scores (ES) for each functional group are calculated based on over-representation of the gene swithin that group are involved in more important roles, however all gene groups are considered important despite lower rankings (Huang da, Sherman et al. 2007). This type of analysis therefore gives an overview of the major biological functions of the genes analysed.

DAVID functional annotation analysis of the genes up-regulated with IFN $\alpha$  treatment (Table 5.1) identified a cluster of genes encoding proteins with GTP-binding and/or GTPase activities (ES 8.33) (Table 5.2). There are four classes of GTPases which include the Immunity-Related GTPases (IRGs, p47 family), the p65 family, the Mx family and the very large inducible GTPases (VLIGs), all of which are induced by IFN $\gamma$  and to a weaker degree by the type I IFNs (MacMicking 2004; Taylor, Feng et al. 2007). I have found that members of the p47, p65 and Mx GTPase families are up-regulated in thymocytes in response to IFN $\alpha$ . The different GTPases have varying roles within the cell to control pathogen infection and confer resistance to a diverse range of pathogens (Taylor, Feng et al. 2007). In the context of IFN $\alpha$  signaling, the up-regulation of GTPases is therefore likely to enhance resistance to a range of pathogens.

DAVID functional annotation also identified a cluster of genes with 2'-5'-oligodenylate synthetase and transferase activities (ES 6.14) (Table 5.3). As discussed in Chapter 1, the 2'5-Oases are potent inhibitors of viral replication and known IFN inducible genes. DAVID functional annotation also identified a cluster of genes encoding proteins involved in the innate and defence response (ES 6.07) (Table 5.4). These include the

Table 5.1: DAVID functional annotation clustering of genes up-regulated in the thymus of wt mice 3 and 6 hours post IFN $\alpha$ . probes found to be upregulated in the thymus of wt mice following 3 and 6 hour IFN $\alpha$  stimulations were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble gene IDs were loaded into DAVID for functional annotation analysis with medium classification stringency.

| Functional Annotation                                                   | ES   |
|-------------------------------------------------------------------------|------|
| GTP-binding and/or GTPase activites                                     | 8.33 |
| 2'5'-OAS and/or transeferase activites                                  | 6.41 |
| Innate and defence response                                             | 6.07 |
| Purine nucleotide binding activities                                    | 4.73 |
| Zinc finger domains and/or cation binding                               | 4.06 |
| PARP activity                                                           | 3.25 |
| Pyrin domains                                                           | 3.24 |
| Ubiquitination and proteolysis activity                                 | 1.91 |
| DNA helicase activity and/or DNA repair                                 | 1.82 |
| Cytokines and chemokines                                                | 1.83 |
| Ubiquitin                                                               | 1.16 |
| Tetratricopetide containing domain                                      | 1.12 |
| Positive regulation of response to stimulus and regulation of apoptosis | 1.11 |

| Gene Name                          | Ensemble Gene ID  |
|------------------------------------|-------------------|
| RIKEN cDNA 9930111J21              | ENSMUSG0000069893 |
| Tgtp1                              | ENSMUSG0000078921 |
| Tgtp2                              | ENSMUSG0000078922 |
| BC057170                           | ENSMUSG0000029298 |
| Gbp2                               | ENSMUSG0000028270 |
| Gbp3                               | ENSMUSG0000028268 |
| Gbp4                               | ENSMUSG0000079363 |
| Gbp5                               | ENSMUSG0000040264 |
| Gbp7                               | ENSMUSG0000040253 |
| lrgm1                              | ENSMUSG0000046879 |
| lrgm2                              | ENSMUSG0000069874 |
| lgtp                               | ENSMUSG0000078853 |
| lfi47                              | ENSMUSG0000078920 |
| Gbp6                               | ENSMUSG0000079362 |
| Mx1                                | ENSMUSG0000000386 |
| Mx2                                | ENSMUSG0000023341 |
| predicted gene 12250               | ENSMUSG0000082292 |
| tubulin, alpha 3B;                 | ENSMUSG0000067338 |
| tubulin, alpha 3A                  | ENSMUSG0000067702 |
| pRIKEN cDNA 5830443L24gene         | ENSMUSG0000054588 |
| predicted gene, OTTMUSG00000005523 | ENSMUSG0000048852 |

Table 5.2: List of genes annotated with the GOTERM; GTPase activity or GTP binding, found up-regulated in wt mice 3 and 6 hours post IFN $\alpha$ .

Table 5.3: List of genes annotated with the GOTERM; Transferase activity, found up-regulated in wt mice 3 and 6 hours post IFN $\alpha$ .

| Gene Name             | Ensemble Gene ID   |
|-----------------------|--------------------|
| 2'-5'OAS1A            | ENSMUSG0000052776  |
| 2'-5'OAS1B            | ENSMUSG0000029605  |
| 2'-5'OAS-like 1       | ENSMUSG00000041827 |
| 2'-5'OAS-like 2       | ENSMUSG0000029561  |
| RIKEN cDNA 1300018105 | ENSMUSG0000024019  |
| Cmpk2                 | ENSMUSG0000020638  |
| Eif2ak2               | ENSMUSG0000024079  |
| PARP12                | ENSMUSG0000038507  |
| PARP14                | ENSMUSG0000034422  |
| PARP9                 | ENSMUSG0000022906  |
| Papd7                 | ENSMUSG0000034575  |

| Gene Name | Ensemble Gene ID  |
|-----------|-------------------|
| Ddx58     | ENSMUSG0000040296 |
| Dhx58     | ENSMUSG0000017830 |
| Fcgr1     | ENSMUSG0000015947 |
| Ccl12     | ENSMUSG0000035352 |
| Ccl2      | ENSMUSG0000035385 |
| Ccl22     | ENSMUSG0000031779 |
| Ccl7      | ENSMUSG0000035373 |
| Cxcl10    | ENSMUSG0000034855 |
| Samhd1    | ENSMUSG0000027639 |
| lrgm1     | ENSMUSG0000046879 |
| ldo1      | ENSMUSG0000031551 |
| lfi47     | ENSMUSG0000078920 |
| lfih1     | ENSMUSG0000026896 |
| Mx1       | ENSMUSG0000000386 |
| Mx2       | ENSMUSG0000023341 |
| Rsad2     | ENSMUSG0000020641 |
| Spn       | ENSMUSG0000051457 |
| Thbs1     | ENSMUSG0000040152 |
| Tlr3      | ENSMUSG0000031639 |
| Tap1      | ENSMUSG0000037321 |

Table 5.4: List of genes annotated with the GOTERM; Defence Response, found up-regulated in wt mice 3 and 6 hours post IFN $\alpha$ .

Toll-like receptor, TLR3, as well as the RIG-I-like receptors RIG-I (Ddx58), MDA5 (Ifih1) and LPG2 (Dhx58) which play a critical role in the detection of virus infection.

Other functional clusters identified by DAVID contain genes encoding proteins with purine nucleotide binding activities (ES 4.73), zinc finger and cation binding domains (ES 4.06), PARP activity (ES 3.25), Pyrin domains (ES 3.24), DNA helicase activity and DNA repair (ES 1.82), ubiquitination and proteolysis activity (ES 1.91), cytokines and chemokines (ES 1.83), Ubiquitin (ES 1.16), tetratricopetide containing domains (ES 1.12) as well as proteins involved in the positive regulation of response to stimulus and the regulation of apoptosis (ES 1.11). The induction of genes involved in the regulation of apoptosis suggests that IFN $\alpha$  may control apoptosis of thymocytes and modulate the T-cell repertoire. As mentioned in Chapter 4, previous studies have implicated that type I IFN has a role in controlling T-cell differentiation and survival within the thymus. One study indicates that IFN $\alpha$  is expressed constitutively in the thymus by resident pDCs and that it may play a role in negative T-cell selection within the medulla, increasing the susceptibility of T-cells to cell death and reducing the threshold needed for negative selection (Colantonio, Epeldegui et al. 2011).

From the diverse range of gene functions regulated by IFNα, it is evident a range of cell processes are involved in the response of the thymus to IFNα treatment. A large number of these genes contain anti-pathogenic and anti-viral functions and include *Gtpases*, 2'5 *Oas's* and other innate immune activators or effectors including *Isg15*, *Rsad2*, *Rig-I* and *TIr3*. Considering the potent anti-viral effects of IFN, the up-regulation of genes involved in innate immunity and host defence was expected.

The genes up-regulated by IFN $\alpha$  in wt thymus were analysed for transcription factor enrichment within their promoters. This analysis was performed to determine which transcription factors may be regulating expression of these genes, particularly which STAT family members may be involved. The analysis was performed using the program Cis-Element Over-Representation (Clover) as is outlined in Chapter 2.5.11.2. Clover analyses a sequence set to determine transcription factor binding motif over or under-representation compared to a background sequence set. The raw score (RS) calculated for each binding motif quantifies the degree of the motif's presence in the test sequences while the p-value represents the probability of obtaining the raw score by chance. A low p-value (p < 0.01) indicates the binding motif is over-represented within the test sequences. The binding motifs tested were obtained from the TRANSFAC database. Often one transcription factor may have multiple database entries and therefore appears multiple times in the analysis. The sequence set used for this analysis consisted of the promoter sequences 2000bp upstream of the transcript start site of the genes found up-regulated with IFNa. Transcription factors displaying over-representation within the promoters of these genes are presented in Table 5.5 and 5.6. Table 5.6 shows that genes up-regulated by IFNα contain over-representation of STAT family, IRF family and NF-KB transcription factor binding sites within their promoters. General IRF binding elements were most strongly over-represented (RS infinity, p = 0). ISGF3 and ICSBP (IRF8) binding sites were also strongly overrepresented (RS > 480, p = 0). STAT3 (RS 385, p = 0), IRF1 (RS 362, p = 0), STAT5A (RS 325, p = 0.008), STAT1 (RS 292, p = 0), IRF7 (RS 170, p = 0), NF-KB (RS 72.7, p = 0) and IRF2 (RS 49.6, p = 0) binding elements were also found to be overrepresented. Table 5.6 shows over-representation of other transcription factors found to have strong association with these promoters. These include neuroD (RS 627, p = 0), TFII-I (RS 608, p = 0), GAGA (RS 580, p = 0), PUR1 (RS 552, p = 0), Blimp1 (RS 521, p = 0.003) E2A (RS 521, p = 0.004) and MET31 (RS 510, p = 0) as well as a number of Ets family members which include PU.1 (RS 546, p = 0), Ets2 (RS 537, p = 0) and Ets1 (RS 509, p = 0).

The enrichment of ISGF3 (STAT1/STAT2/IRF9), STAT1, STAT3 and STAT5A binding elements within the promoters of up-regulated genes was expected as the previous chapter showed STAT1, STAT3 and STAT5 were phosphorylated in all subsets of thymic T-cells following IFN $\alpha$  stimulation The IRF family of transcription factors have a diverse range of functions from mediating innate antiviral responses to modulation of adaptive immunity such as control of hematopoietic cell differentiation (Battistini 2009). I found promoter enrichment of IRF1, IRF2, IRF7 and IRF8 (ICSBP) binding elements within the promoters of genes up-regulated upon IFN $\alpha$  stimulation. However, the general IRF binding motifs are similar to that of ISGF3 which binds the ISRE. IRF4 and IRF8, which are expressed only in immune cells have previously been shown to bind the ISRE (Ozato, Tailor et al. 2007). The presence of general IRF and IRF8 binding elements analysis may therefore reflect bona-fide IRF binding sites or over-representation of an ISRE.

It was unexpected to see a large number of transcription factors with stronger binding motif over-representation than the binding motifs of ISGF3 and other STAT family members. This may reflect the prevalence of sites occurring within each promoter, as Table 5.5: Over-represented IRF, STAT and NF- $\kappa$ B transcription factor binding elements within the promoters of genes up-regulated in the thymus of wt mice 3 and 6 hours post IFN $\alpha$ . Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes significantly up-regulated with 3 and 6 hours IFN $\alpha$  treatment in the thymus of wt mice. IRF, STAT or NK- $\kappa$ B binding elements found overrepresented (p < 0.01) and with a Raw value greater than 0 were extracted.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| IRF (M00972)                         | infinity  | 0       |
| IRF (M00772)                         | infinity  | 0       |
| ISGF3 (M00258)                       | 484       | 0       |
| ICSBP (M00258)                       | 484       | 0       |
| ICSBP (M00699)                       | 482       | 0       |
| STAT3 (M01595)                       | 385       | 0       |
| IRF-1 (M00747)                       | 362       | 0       |
| STAT (M00777)                        | 354       | 0.009   |
| STAT5A (M00499)                      | 325       | 0.008   |
| STAT1 (M01260)                       | 292       | 0       |
| IRF-7 (M00453)                       | 170       | 0       |
| STAT3 (M00497)                       | 162       | 0.004   |
| IRF-1 (M00062)                       | 133       | 0       |
| NF-кВ (М00774)                       | 72.7      | 0       |
| STAT5A (M00457)                      | 51.5      | 0.002   |
| NF-кВ (M00194)                       | 50.3      | 0       |
| IRF-2 (M00063)                       | 49.6      | 0       |
| NF-κB (M00054)                       | 32.6      | 0       |
| NF-кВ (М00052)                       | 24        | 0       |
| NF-кВ (М00208)                       | 21.5      | 0       |

Table 5.6: Over-represented transcription factor elements within IFNa up-regulated genes in the thymus of WT mice. Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of up-regulated with 3 and 6 hours IFNa treatment in the thymus of wt mice. IRF, STAT or NF- $\kappa$ B binding elements were excluded and the remaining top 30 elements found over-represented (p < 0.01) were extracted.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| NeuroD (M01288)                      | 672       | 0       |
| TFII-I (M00706)                      | 608       | 0       |
| GAGA Factor (M00723)                 | 580       | 0       |
| PUR1 (M01721)                        | 552       | 0       |
| PU.1 (M00658)                        | 546       | 0       |
| ETS2 (M01207)                        | 537       | 0       |
| BLIMP1 (M01066)                      | 521       | 0.003   |
| E2A (M00804)                         | 521       | 0.004   |
| MET31(M01688)                        | 510       | 0       |
| c-Ets-1 (00339)                      | 509       | 0       |
| EAR2 (M01728)                        | 499       | 0.003   |
| MZF1 (M01733)                        | 484       | 0.004   |
| Ets (M00771)                         | 478       | 0       |
| Ets (M00971)                         | 476       | 0       |
| SMAD3 (M00701)                       | 470       | 0       |
| Poly (M00317)                        | 422       | 0.03    |
| Myogenin (M00712)                    | 421       | 0       |
| GCR2 (M01669)                        | 412       | 0.005   |
| RAV1 (M00344)                        | 408       | 0       |
| MET28 (M01674)                       | 404       | 0       |
| T3R (M00963)                         | 387       | 0       |
| ESE1 (M01214)                        | 387       | 0       |
| E2A (M00973)                         | 386       | 0       |
| Eve (M00629)                         | 378       | 0       |
| TAL1 (M00993)                        | 375       | 0       |
| SOX9 (M01284)                        | 374       | 0.001   |
| MAF (M00983)                         | 370       | 0       |
| Pax-4 (M00378)                       | 368       | 0       |
| NFAT2 (M01718)                       | 367       | 0.008   |
| MATH1 (M01716)                       | 365       | 0       |

ISRE sites are typically only present once while other sites may occur multiple times in each promoter. Alternatively it may reflect IFN activation of a number of other pathways that are JAK/STAT independent. In addition to STAT and IRF promoter enrichment, we also found enrichment of NF-kB regulatory elements. NF-kB is highly activated upon TLR and cytosolic receptor stimulation, mediating innate immune responses and activating expression of type I IFNs (Martins and Calame 2008). Ets factors are a large family of transcription factors essential to the regulation of the immune system. So far a number have been implicated in the regulation of the immune system and include Ets1, Ets2, GABP, FLI1, Elf1, MEF, ESE1, PU.1 and SpiB (Gallant and Gilkeson 2006). In our promoter analysis we found enrichment of Ets1, Ets2, and PU.1. Ets1 and PU.1, which were highly enriched and have a large role in the regulation of immune cell development (Gallant and Gilkeson 2006). Further to this, IRF8 has been shown to interact with PU.1 and regulate gene expression (Tamura, Thotakura et al. 2005). We also found promoter over-representation of Blimp1 (PRDM1) binding elements. Blimp1 is a transcriptional repressor primarily known for its role in B-cell function, including the development of immunoglobin secreting cells and the maintenance of long-lived plasma cells (Martins and Calame 2008). However, Blimp1 is also involved in T-cell function, including regulation of the survival, proliferation and differentiation of CD4+, CD8+ and CD4+ reg T-cells and can be induced by a range of cytokines (Xin, Nutt et al. 2011). The over-representation of Blimp1 binding elements indicates that Blimp1 may be induced by and mediate the effects of IFNa in the thymus. Alternatively, the set of genes regulated by IFNa may also be regulated in a different context, through Blimp1 or other transcription factors found over-represented, while sharing similar biological outcomes.

# 5.2 Thymic IFNα regulated genes and the Interferome

In order to determine the extent to which this experiment had uncovered novel IFN regulated genes, I compared the data set of genes up-regulated with IFN $\alpha$  with the list of IFN regulated genes in the Interferome database. The Interferome is a database of IFN regulated genes compiled from multiple microarray analyses (Shamith A. Samarajiwa, Sam Forster, Katie Auchettl, and Paul J. Hertzog INTERFEROME: the database of interferon regulated genes Nucleic Acids Research Advance Access published on November 7, 2008). A Venn diagram was generated comparing the list of wt thymic IFN $\alpha$  regulated probes and the probes within the murine Interferome (Figure 5.3). The Interferome currently contains 3035 IFN regulated murine probes. Of the 283



Figure 5.3. Venn diagram of IFN $\alpha$  up-regulated probes and probes within the Interferome. Probes found significantly regulated in the thymus of wt mice following 3 and 6 hour IFN $\alpha$  stimulations were compared to probes present within the Interferome. Of the 283 probes regulated in the thymus of wt mice following 3 and 6 hour IFN $\alpha$  stimulations, 133 were present in the Interferome whereas 150 were not.

probes identified as thymic IFN $\alpha$  regulated probes in the wild type mice, 133 are within the Interferome whereas 150 are not. Conversion of these 150 probes into ensemble IDs identifies 110 genes (appendix IIIB). These genes may represent novel IFN regulated genes with functions in the IFN response. The Interferome does not contain data from IFN stimulated thymocytes and therefore these genes may also be specific to IFN $\alpha$  regulation in the thymus.

DAVID functional annotation of the IFNa regulated genes absent or present from the Interferome are demonstrated in Table 5.7 and Table 5.8 respectively. For those genes absent from the Interferome, DAVID functional annotation clustering identified genes that encode proteins with 2'5'-OAS activities (ES 4.69), GTP binding and/or GTPase activities (ES 4.46), purine nucleotide binding (ES 3.68), innate immunity and the defence response with helicase activities (ES 3.21), zinc finger and/or metal binding affinities (ES 2.91), PARP activity (ES 2.13), the inflammatory response (ES 2.09) and positive regulation of apoptosis (ES 1.7), amongst others. Functional annotation clusters of the genes already present within the Interferome were very similar to those seen above and include genes that encode proteins with GTP binding and/or GTPase activities (ES 2.47), 2'5'-OAS activities (ES 2.3), purine nucleotide binding (ES 1.59) as well as zinc finger and/or metal binding (ES 0.91). There was however a lack of genes involved in inflammatory responses and genes involved in the positive regulation of apoptosis. Perhaps these functions of IFN $\alpha$  are more predominant within the thymus as compared to peripheral cells and may reflect the ability of IFNa to control T-cell survival and differentiation within the thymus.

Interestingly, some of the genes absent from the Interferome are still involved in typical IFN functions such as innate immunity and the defence response. Some of these are known IFN responsive genes, irrespective of expression within the thymus such as *Mx1*, the 2'5'-Oas isoform Oas1b and other Oas-like genes. The absence of some of these genes from the Interferome is therefore surprising. This may represent a gap of the gene sets currently contained within the Interferome or reflect the representation of genes on older microarray platforms that primarily comprise the Interferome database. As the Interferome is added to with increased experimental data it is likely this gap would decrease.

Table 5.7: DAVID functional annotation clustering of the genes upregulated in the thymus of wt mice 3 and 6 hours post IFN $\alpha$  that are *not* present within the Interferome. The 150 probes found to be up-regulated in the thymus of wt mice following 3 and 6 hour IFN $\alpha$  stimulations and that were *not* present within the Interferome (Section 5.3) were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble gene IDs were loaded into DAVID for functional annotation analysis with medium classification stringency.

| Functional Annotation                                                  | ES   |
|------------------------------------------------------------------------|------|
| 2'-5' OAS activities                                                   | 4.69 |
| GTP binding and/or GTPase activity                                     | 4.46 |
| Purine nucleotide binding                                              | 3.68 |
| Defence Response, Innate Immunity, Helicase                            | 3.21 |
| Zinc Finger and/or metal binding                                       | 2.91 |
| PARP                                                                   | 2.13 |
| Inflammatory Response                                                  | 2.09 |
| Positive Regulation of Apoptosis                                       | 1.7  |
| Extracellular Region, secreted                                         | 1.68 |
| Cellular Macromolecule catabolic process                               | 1.32 |
| Regulation of cytokine production                                      | 1.28 |
| Tetratricopeptide region                                               | 1.26 |
| Ubl conjugation                                                        | 1.26 |
| Glycoprotein, Signal peptide, Disulfide bond and inflammatory response | 0.86 |

Table 5.8: DAVID functional annotation clustering of the genes upregulated in the thymus of wt mice 3 and 6 hours post IFN $\alpha$  that are present within the Interferome. The 126 probes found to be up-regulated in the thymus of wt mice following 3 and 6 hour IFN $\alpha$  stimulations and that were also present within the Interferome (Section 5.3) were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble gene IDs were loaded into DAVID for functional annotation analysis with medium classification stringency.

| FunctionalAnnotation                     | ES   |
|------------------------------------------|------|
| GTP binding and/or GTPase activity       | 2.47 |
| 2'-5' OAS activities                     | 2.3  |
| Purine nucleotide binding                | 1.59 |
| Zinc finger domains and/or metal binding | 0.91 |
| Transferase Activity                     | 0.8  |
| Immunoglobin-like folds                  | 0.71 |
| Plasma membrane part                     | 0.7  |

Promoter enrichment analysis of STAT family, IRF family and NF-kB transcription factors was performed on the list of genes that are absent (Table 5.9) or present (Table 5.10) from the Interferome. Many promoter binding elements were similar between the two lists and include ISGF3, STAT3, IRF7, IRF8 and NFkB binding elements. There were however some differences, notably, STAT5 was over-represented (RS 164, p = 0) within the list of genes absent from the Interferome yet was not found within the list of genes currently within the Interferome.

Chapter 4 demonstrates that STAT3 and STAT5 are phosphorylated in the thymus in response to IFNa yet minimally or not at all peripheral immune cells (PBMCs and splenocytes). Considering the enrichment of STAT5 binding motifs within the promoters of genes found absent from the interferome and that the interferome does not yet contain thymic data, STAT5 may be an important transcription factor in mediating the regulation of genes within the thymus in response to IFNa. As STAT5 is not found to be enriched in genes currently within the interferome, it again supports the findings which suggest STAT5 is not activated in response to IFNa in peripheral cells. Although STAT3 binding sites were found to be enriched in both gene sets, the absence of IFNa induced STAT3 phosphorylation in peripheral cells, as shown in Chapter 4, suggest that STAT3 may too be important in mediating the regulation of genes within the thymus in response to IFNα. The identification of STAT3 binding sites within both gene lists may therefore represent the ability of STAT1 and STAT3 to regulate a similar set of genes or may be due to a redundancy of STAT sites within the TRANSFAC database. Nevertheless, it is likely that some of the differences in gene induction in thymic vs. peripheral T-cells are due to differences in STAT5 and STAT3 phosphorylation. The differences observed between the thymus and peripheral cells may be due to a number of reasons such as differences in the basal levels of STAT3 or STAT5, the presence of co-activators within thymic T-cells that are not present in peripheral cells or the presence of inhibitors within peripheral T-cells that are not present in thymic T-cells. A better understanding of the mechanisms leading to IFN induced STAT5 phosphorylation may provide an explanation as to how STAT5 is differentially regulated by IFN in different cell types.

Table 5.9: Over-represented IRF, STAT and NF- $\kappa$ B transcription factor binding elements within the promoters of genes up-regulated in the thymus of wt mice 3 and 6 hours post IFN $\alpha$  and that were not present within the Interferome. Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes significantly up-regulated with 3 and 6 hours IFN $\alpha$  treatment in the thymus of wt mice and that were not present within the Interferome. IRF, STAT or NK- $\kappa$ B binding elements found over-represented (p < 0.01) and with a Raw value greater than 0 were extracted.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| IRF (M00772)                         | 419       | 0       |
| IRF (M00972)                         | 370       | 0       |
| ISGF3 (M00258)                       | 180       | 0       |
| ICSBP (M00699)                       | 177       | 0       |
| STAT5A (M00499)                      | 164       | 0       |
| IRF8 (M01665)                        | 89.4      | 0.001   |
| STAT5A (M00493)                      | 84.4      | 0       |
| STAT4 (M00498)                       | 80.4      | 0.002   |
| STAT3 (M00497)                       | 78.2      | 0.003   |
| IRF7 (M00453)                        | 42.1      | 0       |
| NF-кВ (М00194)                       | 22.3      | 0.005   |

Table 5.10: Over-represented IRF, STAT and NF- $\kappa$ B transcription factor binding elements within the promoters of genes up-regulated in the thymus of wt mice 3 and 6 hours post IFN $\alpha$  and that were present within the Interferome. Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes significantly up-regulated with 3 and 6 hours IFN $\alpha$  treatment in the thymus of wt mice and that were present within the Interferome. IRF, STAT or NK- $\kappa$ B binding elements found over-represented (p < 0.01) and with a Raw value greater than 0 were extracted.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| IRF (M00772)                         | 625       | 0       |
| IRF (M00972)                         | 550       | 0       |
| ICSBP (M00699)                       | 310       | 0       |
| ISGF-3 (M00258)                      | 306       | 0       |
| STAT3 (M01595)                       | 299       | 0       |
| STAT1 (M01260)                       | 223       | 0       |
| IRF1 (M00747)                        | 221       | 0       |
| STAT (M00777)                        | 217       | 0.003   |
| IRF7 (M00453)                        | 126       | 0       |
| IRF1 (M00062)                        | 123       | 0       |
| IRF8 (M01665)                        | 103       | 0.001   |
| IRF2 (M00063)                        | 54.8      | 0       |
| NFkB (M00774)                        | 54.7      | 0       |
| NFkB (M00194)                        | 28.1      | 0.001   |
| NFkB (M00052)                        | 25.5      | 0       |
| NFkB (M00208)                        | 14.2      | 0.001   |

# 5.3 Basal Differences in Gene Expression between Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> and Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice

I sought to analyse the differences in gene expression between the  $Socs1^{+/-}Ifn\gamma^{-/-}$  and  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice. SOCS1 is involved in the regulation of a multitude of cytokine pathways. The differences observed between these mice may therefore be due to a number of cytokines. The use of  $Socs1^{-/-}Ifn\gamma^{-/-}$  and  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice eliminates the effects SOCS1 has on type II IFN signaling and allows for viable mice to be compared. Basal differences in  $Socs1^{-/-}Ifn\gamma^{-/-}$  and  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice therefore show a global view of SOCS1 regulation, with exception of IFNγ. As SOCS1 is a potent inhibitor of type I IFN signaling, some of the differential expression seen basally between these mice may represent a contribution by the type I IFNs. As demonstrated in previous chapters there is increased STAT1 and STAT3 phosphorylation levels in the thymus in  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice and as such I would expect a number of STAT1 and STAT3 regulated genes will be differentially expressed.

Using Genespring, samples were normalised to the 75<sup>th</sup> percentile and the baseline transformed to median of all samples. Filtering based on gene expression and flags were performed and resulted in a list of 25,962 probes. The basal differences between the Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> and the Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice were investigated as described in Figure 2.4. A cut off was performed to reduce the list to those genes that are 2 fold or greater different across the two conditions. An unpaired students t-test with BHFDR multiple testing correction was then performed on this gene list to identify significantly (p < 0.05) different gene expression across the conditions. This generated a list of 503 probes that were greater than 2 fold different with 185 of these probes greater than 3 fold different as shown in appendix IIIC. A heatmap of differential basal gene expression was generated and displayed in Figure 5.4. As can be seen from the heatmap, there are groups of genes with similar expression patterns. To define the clusters of similarly expressed (co regulated) genes, K-means clustering was performed, as outlined in Chapter 2.5.11. The co-regulated gene sets were identified by applying 3K-means clustering, using Euclidean distance, to genes found basally different between the Socs1<sup>-/-</sup> Ifny<sup>-/-</sup> and the Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> mice. The resultant basal gene clusters are shown on a scatter plot in Figure 5.5. These include a cluster of genes with increased expressed in the Socs1<sup>-/-</sup> Ifny<sup>-/-</sup> mice compared to Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> (Basal Cluster 1) as well as two clusters of genes with increased expression in the Socs 1<sup>+/+</sup> Ifny<sup>-/-</sup> mice compared to Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> mice. The difference between the last two clusters, as evidenced in



Figure 5.4: Heatmap of basal gene expression in the thymus of Socs<sup>-/-</sup> *Ifny*<sup>-/-</sup>, Socs1<sup>+/+</sup>*Ifny*<sup>-/-</sup> and wt mice. Statistical analysis was performed to identify probes significantly different (p < 0.05) in the thymus of Socs1<sup>+/+</sup>*Ifny*<sup>-/-</sup>, Socs1<sup>-/-</sup>*Ifny*<sup>-/-</sup>, and wt mice (as described in Section 5.5). The heatmap of these probes was generated using hierarchical clustering in Genespring GX.

Figure 5.5: Scatter plots of probe clusters found differentially expressed in the thymus of  $Socs1^{+/+} Ifn\gamma^{-/-}$  and  $Socs1^{-/-} Ifn\gamma^{-/-}$  mice. Clusters were generated by 3K-means clustering of probes differentially expressed in the thymus of  $Socs1^{+/+} Ifn\gamma^{-/-}$  and  $Socs1^{-/-} Ifn\gamma^{-/-}$  mice using Genespring GX. Scatter plots of the clusters were generated using Genespring GX. Normalised gene expression values of  $Socs1^{+/+} Ifn\gamma^{-/-}$  mice (y-axis) were plotted against normalised gene expression of  $Socs1^{-/-} Ifn\gamma^{-/-}$  mice (x-axis). Green lines represent a 2 fold induction boundary. Gene colours represent relative wt expression values.



Normalised Intensity Values (WT)



Figure 5.5, is the level of gene expression within the  $Socs+/+Ifn\gamma^{-/-}$  mice. Gene intensity values from  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice are greater in Basal Cluster 3 compared to Basal Cluster 2. In comparison gene intensity values from  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice are similar in Basal Cluster 2 and Basal Cluster 3. Functional annotation and promoter enrichment were performed on the three resultant clusters; Basal Cluster1, Basal Cluster 2, and Basal Cluster 3. Details of the results of these analyses are outlined below.

#### 5.3.1 Basal Cluster 1

Basal cluster 1 consists of 224 probes most highly expressed in the Socs1<sup>-/-</sup> Ifny<sup>-/-</sup> mice. As SOCS1 is not present in the Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> mice, these genes appear SOCS1 negatively regulated. DAVID functional annotation analysis (Table 5.11) of the upregulated genes found a functional cluster containing genes that encode proteins with signal peptide sequences (10.05) and thus constitute secreted or membrane bound rather than intracellular proteins. In the absence of SOCS1, this may result in an increased ability of the cells to interact with their extracellular environment, likely an important cell process during an immune response. The second functional cluster contains genes that encode proteins involved in innate and adaptive immune responses (4.28). Other functional clusters contain genes that encode proteins involved in lipid metabolism (3.04), hormone regulation (2.31), PARP signaling (2.17), chemotaxis (2.12) and cellular adhesion (2.04). Promoter enrichment analysis (Table 5.12) identified multiple transcription factor binding motifs involved in innate immunity which are over-represented in Basal Cluster 1 and include IRF (RS 320, p = 0), STAT5A (RS 174, p = 0.001), ISGF3 (RS 109, p = 0) ICSBP (IRF8) (RS 108, p = 0), STAT3 (RS 84.8, p = 0) and IRF7 (RS 33.2, p = 0). Other transcription factor binding motifs over-represented include Tal-1 (RS 460, p = 0.001), GAGA (RS 335, p = 0) and MZF1 (RS 328, p = 0) as well as a number of Ets factors including PU.1 (RS 292, p =0), Ets2 (RS 287, p = 0) and Ets1 (RS 238, p = 0).

The up-regulation of a larger set of genes in the absence of SOCS1 reflects the negative regulatory role of SOCS1 on transcription factor activation and gene expression. As SOCS1 is involved in the negative regulation of a range of cytokine pathways, the genes found up-regulated in the absence of SOCS1 are likely due to hyper-activation of these pathways. This may be due to an increase in total STAT1 or STAT3 expression levels in the absence of SOCS1, as shown in Chapter 4, and thus cytokine stimulation may result in increased phosphorylated STAT levels. Alternatively

**Tables 5.11: DAVID functional annotation of genes from Basal Cluster 1.** The probes of Basal Cluster 1 were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble gene IDs were loaded into DAVID for functional annotation analysis with medium classification stringency.

| Functional Annotation                                                                                                                                          | ES    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Proteins with signal peptide sequences (secreted or membrane bound proteins) consisting of Glycoproteins and/or proteins involved in disulfide bond formation. | 10.05 |
| Innate and adaptive immune responses                                                                                                                           | 4.28  |
| Lipid Metabolism                                                                                                                                               | 3.04  |
| Hormone Regulation                                                                                                                                             | 2.31  |
| PARP signaling                                                                                                                                                 | 2.17  |
| Chemotaxis                                                                                                                                                     | 2.12  |
| Cellular Adhesion                                                                                                                                              | 2.04  |

Table 5.12. Clover promoter analysis of Basal Cluster 1 displaying A) Over-represented IRF, STAT and NF- $\kappa$ B binding elements, B) Overrepresented "non STAT, IRF or NF- $\kappa$ B" binding elements. Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes within basal cluster 3. Table A displays STAT, IRF or NF- $\kappa$ B binding elements found over-represented (p < 0.01). There were no STAT, IRF or NF- $\kappa$ B binding elements found under-represented (p > 0.99). Table B displays "non STAT, IRF or NF- $\kappa$ B" binding elements overrepresented.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| IRF (M00772)                         | 320       | 0       |
| STAT (M00777)                        | 196       | 0.004   |
| STAT5A (M00499)                      | 174       | 0.001   |
| ISGF3 (M00258)                       | 109       | 0       |
| ICSBP (M00699)                       | 108       | 0       |
| STAT5A (M00493)                      | 87.2      | 0.006   |
| STAT3 (M00497)                       | 84.8      | 0.009   |
| IRF7 (M00453)                        | 33.2      | 0       |

# A. Over-represented – IRF, STAT and NF-κB

# B. Over-represented – Other

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| Tal-1 (M01591)                       | 460       | 0.001   |
| GAGA (M00723)                        | 335       | 0       |
| MZF1 (M00084)                        | 328       | 0       |
| MZF1 (M01733)                        | 307       | 0       |
| PU.1 (M00658)                        | 292       | 0.001   |
| ETS2 (M01207)                        | 287       | 0       |
| PUR1 (M01721)                        | 286       | 0       |
| ELF (M01266)                         | 255       | 0       |
| MZF1 (M00083)                        | 242       | 0       |
| c-Ets-1 (M00339)                     | 238       | 0       |
| E2A (M00972)                         | 201       | 0.006   |
| TAL1 (M00993)                        | 183       | 0       |
| c-Ets-2 (M00340)                     | 175       | 0       |

SOCS1 has been implicated in regulating cytokine expression and thus in the absence of SOCS1 there may be an increase in cytokines and hence cytokine signaling. The over-representation of ISGF3 and other STAT binding sites within the promoters of genes negatively regulated by SOCS1 was expected as SOCS1 is typically involved in the regulation of cytokine pathways that utilise STAT signaling, including IFNα signaling.

#### 5.3.1.1 Basal and IFNα regulation

In order to determine which SOCS1 negatively regulated genes are also IFNa induced genes, I compared the gene set of basal cluster 1 with the genes found up-regulated with IFNa treatment. A venn diagram comparing the genes up-regulated by IFNa in the wt mice and the genes basally higher in the Socs1<sup>-/-</sup> Ifny<sup>-/-</sup> compared to the Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> mice (Basal cluster 1), found 55 probes within this group. These genes thus appear both IFNα and SOCS1 regulated (Figure 5.6). Conversion of these probes to Ensembl gene IDs identifies 42 unique genes (Table 5.13). DAVID functional annotation clustering of these genes (Table 5.14) identified a cluster with an enrichment score of 5.01 containing cytoplasmic genes involved in response to virus, antiviral defence and the RIG-I like pathway. The second cluster with an enrichment score of 3.55 contains genes involved in the immune response and genes that have nucleotide binding and transferase activities. Promoter enrichment analysis was performed using clover and is presented in Table 5.15. Promoters from this gene set were found to be enriched in IRF (RS 229, p = 0), ISGF3 (160, p = 0), ICSBP (IRF8) (RS 137, p = 0), IRF7 (RS 90.8, p = 0), STAT3 (RS 78.9, p = 0.001), STAT1 (67, p = 0) and STAT5A (RS 61, p = 0.001) binding motifs.

The increased expression of IFNα induced genes, in the absence of SOCS1, was expected as previous chapters show SOCS1 negatively regulates IFNα induced STAT1 and STAT3 phosphorylation. Furthermore the involvement of these genes in viral detection and defence supports previous findings that in the absence of SOCS1, mice are highly resistant to viral infection (Fenner, Starr et al. 2006). The increased expression of the 42 genes found both IFNα regulated and SOCS1 negatively regulated may confer viral resistance to these mice. Some of the antiviral genes within this list include *Oas1a*, *Oas1b*, *Oas2*, *Oas3*, *Oas11*, *Ddx58* (*RIG-I*), *Ddx60*, *Irf7*, *Irf9*, *Mx2*, *Isg15*, *Rsad2*, *Cmpk2*, *Gbp5*, *Rtp4* and *Usp18*. A study by Schoggins et al analysed the ability of different ISGs to inhibit a range of viruses (Schoggins, Wilson et



**Figure 5.6:** Venn diagram of basal Socs1 negatively regulated (Basal Cluster 1) and IFNα regulated (IFNα regulated in WT mice) probes. Probes found significantly regulated in the thymus of wt mice following 3 and 6 hour IFNα stimulations were compared to probes up-regulated in  $Socs1^{-/-}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice (Basel Cluster 3). Of the 289 probes regulated in the thymus of wt mice following 3 and 6 hour IFNα stimulations 55 were also up-regulated in  $Socs1^{-/-}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice (Basel Cluster 3). Table 5.13. Gene list of Basal Socs1 negatively regulated (Basal Cluster 1) and IFN $\alpha$  regulated (IFNα regulated in WT mice) genes with associated Ensemble gene transcript IDs. The 55 probes found significantly regulated in the thymus of wt mice following 3 and 6 hour IFN $\alpha$  stimulations and up-regulated in Socs1<sup>-/-</sup>Ifnγ<sup>-/-</sup> compared to Socs  $1^{+/+}$  If  $n\gamma^{-/-}$  mice (Basel Cluster 1) were converted to Ensemble Gene IDs and associated gene names with Ensemble Biomart. This resulted in a list of 42 genes.

| Gene Name     | Ensembl Gene ID    |
|---------------|--------------------|
| Gm14446       | ENSMUSG00000079339 |
| Ddx58         | ENSMUSG0000040296  |
| AC125149.6    | ENSMUSG00000079800 |
| Rtp4          | ENSMUSG0000033355  |
| Ddx60         | ENSMUSG00000037921 |
| Hoxb5         | ENSMUSG0000038700  |
| Usp18         | ENSMUSG00000030107 |
| Oasl1         | ENSMUSG0000041827  |
| Gbp5          | ENSMUSG00000040264 |
| Trim30a       | ENSMUSG00000030921 |
| Trim30d       | ENSMUSG00000057596 |
| Tgtp1         | ENSMUSG00000078922 |
| Tgtp2         | ENSMUSG00000078921 |
| Oas2          | ENSMUSG0000032690  |
| Oas3          | ENSMUSG0000032661  |
| Oas1b         | ENSMUSG00000029605 |
| Oas1a         | ENSMUSG00000052776 |
| 4930599N23Rik | ENSMUSG00000073144 |
| H2-T24        | ENSMUSG0000053835  |
| Xaf1          | ENSMUSG00000040483 |
| Mx2           | ENSMUSG00000023341 |
| Ccl12         | ENSMUSG0000035352  |
| Plscr2        | ENSMUSG0000032372  |
| Fcgr4         | ENSMUSG00000059089 |
| Gm4955        | ENSMUSG00000037849 |
| Pydc4         | ENSMUSG00000073491 |
| Crb2          | ENSMUSG0000035403  |
| 9330175E14Rik | ENSMUSG00000074153 |
| Irf9          | ENSMUSG0000002325  |
| AC133103.4    | ENSMUSG00000079193 |
| AC133103.1    | ENSMUSG00000079189 |
| Gzmb          | ENSMUSG00000015437 |
| Has1          | ENSMUSG0000003665  |
| Gm10553       | ENSMUSG00000073631 |
| A530040E14Rik | ENSMUSG00000072109 |
| Gm10552       | ENSMUSG0000073628  |
| Irf7          | ENSMUSG00000025498 |
| Gm12250       | ENSMUSG0000082292  |
| NIrc5         | ENSMUSG00000074151 |
| Rsad2         | ENSMUSG00000020641 |
| Cmpk2         | ENSMUSG00000020638 |
| lsg15         | ENSMUSG0000035692  |

Table 5.14. DAVID functional annotation of basal Socs1 negatively regulated (Basal Cluster 1) and IFN $\alpha$  regulated (IFN $\alpha$  regulated in WT mice) genes. The Ensemble gene IDs of the 42 genes found significantly regulated in the thymus of wt mice following 3 and 6 hour IFN $\alpha$  stimulations and up-regulated in Socs1<sup>-/-</sup> Ifn $\gamma$ <sup>-/-</sup> compared to Socs1<sup>+/+</sup> Ifn $\gamma$ <sup>-/-</sup> mice (Basel Cluster 1) were loaded into DAVID for functional annotation analysis with medium classification stringency.

| FunctionalAnnotation                                              | ES   |
|-------------------------------------------------------------------|------|
| Response to virus, antiviral defence and the RIG-I like pathway   | 5.01 |
| Immune response and nucleotide binding and transferase activities | 3.55 |
| GTP binding, GTPase activity                                      | 1.6  |
| DNA binding, Transcriptional Regulation                           | 0.37 |

Table 5.15: Clover promoter enrichment analysis of genes that are Basal Socs1 negatively regulated (Basal Cluster 1) and IFNα regulated (IFNα regulated in WT mice) genes. Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes found significantly regulated in the thymus of wt mice following 3 and 6 hour IFNα stimulations and up-regulated in Socs1<sup>-/-</sup> Ifnγ<sup>-/-</sup> compared to Socs1<sup>+/+</sup> Ifnγ<sup>-/-</sup> mice (Basel Cluster 1). IRF, STAT or NK-κB binding elements found over-represented (p < 0.01) are shown.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| IRF (M00772)                         | 229       | 0       |
| IRF (M00972)                         | 193       | 0       |
| ISGF3 (M00258)                       | 160       | 0       |
| ICSBP (M00699)                       | 137       | 0       |
| IRF7 (M00453)                        | 90.8      | 0       |
| STAT3 (M01595)                       | 78.9      | 0.001   |
| STAT1 (M01260)                       | 67        | 0       |
| STAT5A (M00499)                      | 61        | 0.001   |
| IRF8 (M01665)                        | 38.9      | 0       |
| IRF-1 (M00062)                       | 33.5      | 0       |
| STAT4 (M00498)                       | 31.1      | 0.001   |
| STAT3 (M00497)                       | 30.4      | 0       |
| IRF2 (M00063)                        | 10.2      | 0.001   |

al. 2011). A number of genes were found to have broad antiviral activity such as *Ddx58* (*Rig-I*) as well as more specific antiviral activity such as *Ddx60*, *Rtp4*, *Oasl* and *Irf7*. When these genes were expressed in combination, the antiviral activity was significantly increased. The combination of expression of the IFN $\alpha$  induced antiviral genes, in the absence of SOCS1, is therefore likely to confer high viral resistance to a range of viruses.

In addition to the antiviral phenotype of  $Socs 1^{-/-}Ifn\gamma^{-/-}$  mice, these mice also develop an autoimmune disease later in life. As discussed in chapter 1, IFN $\alpha$  is known to contribute to the onset of autoimmune disease (Hooks, Moutsopoulos et al. 1979; Ronnblom 2011). The 42 IFN $\alpha$  induced genes found basally up-regulated in the absence of SOCS1 may therefore contribute to the onset of autoimmune disease which occurs in  $Socs 1^{-/-}Ifn\gamma^{-/-}$  mice due to a heightened immune response. As IFN $\alpha$  also plays a role in T-cell differentiation and/or selection, the absence of SOCS1 may also affect the T-cell repertoire and thus contribute to the susceptibility of these mice to developing autoimmune disease.

#### 5.3.2 Basal Cluster 2

Probes within basal cluster 2 are most highly expressed in the Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> mice and reduced in Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> mice. In total this cluster consists of 170 probes. These probes appear to be positively regulated by SOCS1. DAVID functional annotation clustering of basal cluster 2 was performed and identified a number of functional clusters (Table 5.16). The first functional cluster contained genes that encode proteins involved in lipid binding (ES 1.52). The second functional cluster contains genes that encode proteins involved in ion binding, in particular zinc finger containing proteins (ES 1.04). The third functional cluster contains genes that encode proteins within membrane enclosed lumen such as the nucleoplasm (ES 1.02). The fourth functional cluster contains genes that encode proteins involved in DNA repair and cellular response to stress (ES 0.93). Basal cluster 2 was also analysed for promoter enrichment using clover (Table 5.17). Results indicate STAT1 (RS 22.9, p = 0.997) and STAT3 (RS 40.9, p = 1) are underrepresented within this cluster, which is consistent with SOCS1 positive regulation of these genes. The Ets factors Ets1 (RS 57, p = 1) and Ets2 (RS 35.1, p = 1) were also found to be under-represented while other transcription factors including MZF1 (RS 191, p = 0.008), NF-AT (RS 82.3, p = 0.008), FOXP3 (RS 80.3, p = 0.009) and p53 (RS 70.7, p = 0) were all over-represented. The over-representation of these binding motifs

**Tables 5.16: DAVID functional annotation of genes from Basal Cluster 2.** The probes of Basal Cluster 1 were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble gene IDs were loaded into DAVID for functional annotation analysis with medium classification stringency.

| Functional Annotation                      | ES   |
|--------------------------------------------|------|
| Lipid Binding                              | 1.52 |
| Ion Binding                                | 1.04 |
| Proteins within membrane enclosed lumen    | 1.02 |
| DNA repair and cellular response to stress | 0.93 |

Table 5.17. Clover promoter analysis of Basal Cluster 2 displaying A) Under-represented IRF, STAT and NF-κB binding elements, B) Overrepresented "non STAT, IRF or NF-κB" binding elements and C) Underrepresented "non STAT, IRF or NF-κB" binding elements. Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes within basal cluster 1. There were no STAT, IRF or NF-κB binding elements found over-represented (p < 0.01). Table A displays IRF, STAT and NF-κB binding elements found underrepresented (p > 0.99). Table B displays "non STAT, IRF or NF-κB" binding elements over-represented. Table C displays "non STAT, IRF or NF-κB" binding elements under-represented.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| STAT (M00777)                        | 67.4      | 1       |
| STAT4 (M00498)                       | 53.5      | 0.992   |
| STAT3 (M01595)                       | 40.9      | 1       |
| STAT1 (M01260)                       | 22.9      | 0.997   |

# **B.** Over-represented - Other

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| MZF1 (M00084)                        | 191       | 0.008   |
| NF-AT (M00935)                       | 82.3      | 0.008   |
| FOXP3 (M01599)                       | 80.3      | 0.009   |
| p53 (M01652)                         | 70.7      | 0       |

# C. Under-represented – Other

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| Ets (M00771)                         | 80.1      | 1       |
| c-Ets-1 (M00339)                     | 57        | 1       |
| c-Ets-2 (M00340)                     | 35.1      | 1       |

within the promoters of genes with increased expression in the presence of SOCS1 indicates that their associated transcription factors may be SOCS1 positively regulated. This is true for Foxp3 as SOCS1 was found to prevent the loss of Foxp3 expression in regulatory T-cells (Takahashi, Nishimoto et al. 2011).

# 5.3.3 Basal Cluster 3

The 109 probes within this cluster have increased expression in Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> mice and reduced expression in Socs1<sup>-/-</sup> Ifny<sup>-/-</sup> mice. These genes therefore appear to be SOCS1 positively regulated. DAVID functional annotation analysis of probes within basal cluster 3 was performed (Table 5.18). The first functional cluster contains genes that encode intracellular, non-membrane bound, organelle and cytoskeleton proteins (ES 2.69). The second functional cluster contains genes that encode proteins involved in histone and chromatin modification and organisation (ES 1.22). Other functional clusters include genes involved in RNA processing and regulation of transcription. Promoter enrichment analysis was performed using clover (Table 5.19). Results show that the promoter regions of the genes within basal cluster 3 are over-enriched in IRF binding motifs (RS 147, p = 0). This is surprising as these motifs were also over-represented in Basal Cluster 1. Despite this, these genes displayed no over or under-representation of STAT elements within their promoters suggesting STAT independent mechanisms may be involved in their regulation. The highest scoring transcription factor binding elements over-represented were Blimp-1 (RS 147, p = 0) and Tal-1 (RS 68.3, p = 0.004) suggesting these transcription factors may be SOCS1 positively regulated.
**Tables 5.18: DAVID functional annotation of genes from Basal Cluster 3.** The probes of Basal Cluster 2 were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble gene IDs were loaded into DAVID for functional annotation analysis with medium classification stringency.

| Functional Annotation                                                | ES   |
|----------------------------------------------------------------------|------|
| Intracellular, non-membrane bound, organelle and cytoskeleton probes | 1.89 |
| Histone and chromatin modification and organisation                  | 1.36 |
| RNA processing                                                       | 1.17 |
| Regulation of Transcription                                          | 0.72 |

Table 5.19. Clover promoter analysis of Basal Cluster 3 displaying A) Over-represented IRF, STAT and NF-κB binding elements, B) Overrepresented "non STAT, IRF or NF-κB" binding elements and C) Underrepresented "non STAT, IRF or NF-κB" binding elements. Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes within basal cluster 2. Table A displays STAT, IRF or NF-κB binding elements found over-represented (p < 0.01). There were no STAT, IRF or NF-κB binding elements found underrepresented. Table B displays "non STAT, IRF or NF-κB" binding elements over-represented. Table C displays "non STAT, IRF or NF-κB" binding elements under-represented (p < 0.99).

# A. Over-represented – IRF, STAT and NF-κB

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| IRF (M00972)                         | 142       | 0       |
| IRF (M00772)                         | 139       | 0       |
| ICSBP (M00699)                       | 38.1      | 0.005   |

#### **B.** Over-represented – Other

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| BLIMP1 (M01066)                      | 147       | 0       |
| TAL-1 (M00993)                       | 68.3      | 0.004   |

### C. Under-represented - Other

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| c-Ets-1 (M00339)                     | 32.8      | 0.995   |

# 5.4 SOCS1 regulation of IFN Stimulated Genes

We aimed to identify IFN $\alpha$  regulated genes which have their expression effected by the presence or absence of SOCS1. We therefore performed analysis of probes differentially regulated in the Socs1<sup>-/-</sup>Ifn $\gamma^{-/-}$  and Socs1<sup>+/+</sup>Ifn $\gamma^{-/-}$  mice following IFN $\alpha$  stimulation.

To visualise IFN $\alpha$  gene induction, with respect to basal expression levels, we first performed individual analysis whereby each genotype was normalised to its own 0 hour. Statistical analysis was performed on these data sets to determine the genes which were significantly regulated by type I IFN over time (as outlined in Figures 2.5 and 2.6). 221 probes were found to be regulated by IFN $\alpha$  in the *Socs* 1<sup>+/+</sup>*Ifn* $\gamma^{-/-}$  mice (appendix IIID) whereas 304 probes were found to be regulated by IFN $\alpha$  in the *Socs* 1<sup>-/-</sup>*Ifn* $\gamma^{-/-}$  mice (appendix IIIE).

A heatmap of the 221 probes found significantly regulated with IFN $\alpha$  treatment in the thymus of  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice is shown in Figure 5.7. Of the 221 probes found differentially regulated with IFN $\alpha$  treatment 194 probes were up-regulated with 3 hours of IFN $\alpha$  treatment. The most highly up-regulated genes include *Rsad2* (37.4-42.2 fold), *Mx2* (26.9 fold), *Cmpk2* (23-25.1 fold), *Oas2* (13.8 fold), *Ddx60* (13.5 fold) and *Isg15* (13.3 fold). Only 9 genes were found significantly up-regulated with 6 hours of IFN $\alpha$  treatment.

A heatmap of the 304 probes found significantly regulated with IFN $\alpha$  treatment in the thymus of  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice is shown in Figure 5.8. Of the 304 probes differentially regulated with IFN $\alpha$  treatment, 281 probes were up-regulated with 3 hours of IFN $\alpha$  treatment. The most highly up-regulated genes include *Slfn4* (22.1 fold) *Rsad2* (20.6 – 22 fold), *Cmpk2* (13.3-14.7 fold), *Ptx3* (14 fold), *Mx1* (12.6 - 12.7 fold), *Oas2* (12.6 fold) and *Mx2* (12.4 fold). 275 probes were found to be up-regulated with 6 hours of IFN $\alpha$  treatment. The most highly expressed include *Slfn4* (10.8 fold), *Mmp13* (9.4 fold), *Oas2* (7 fold), *Oas3* (6.5 fold) and *Rsad2* (6.26 fold).

There were 87 more probes identified as being up-regulated with 3 hours IFN $\alpha$  in the  $Socs1^{-/-}Ifn\gamma^{-/-}$  but not in the  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice, indicating a suppression of IFN $\alpha$  induced gene transcription in the presence of SOCS1. Despite this, the induction of gene expression for some genes with 3 hours of IFN $\alpha$  treatment were much lower in  $Socs1^{-/-}Ifn\gamma^{-/-}$  compared to  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice. For example, with 3 hours IFN $\alpha$ 



**Figure 5.7: Heatmap of IFN** $\alpha$  **regulated probes in Socs1**<sup>+/+</sup>*Ifn* $\gamma$ <sup>-/-</sup> **mice.** Statistical analysis was performed to identify probes significantly changed (p < 0.05) in the thymus of Socs1<sup>+/+</sup>*Ifn* $\gamma$ <sup>-/-</sup> mice with 3 hour and 6 hour IFN $\alpha$  stimulations (as described in Section 5.7). The heatmap of these probes was generated using hierarchical clustering in Genespring GX.



**Figure 5.8: Heatmap of IFN** $\alpha$  regulated probes in Socs1<sup>-/-</sup>*Ifn* $\gamma$ <sup>-/-</sup> mice. Statistical analysis was performed to identify probes significantly changed (p < 0.05) in the thymus of Socs1<sup>-/-</sup>*Ifn* $\gamma$ <sup>-/-</sup> mice with 3 hour and 6 hour IFN $\alpha$  stimulations (as described in Section 5.7). The heatmap of these probes was generated using hierarchical clustering in Genespring GX.

treatment, Rsad2 was induced 20.6-22 fold in  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice compared to 37.4 – 42.2 fold in  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice and Cmpk2 was induced 14.7 fold in  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice compared to 23 fold in  $Socs1^{+/+}Ifn\gamma^{-/-}$  mice. Other genes however were more highly induced in the  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice such as CxcI10 which was induced 6.6 compared to 4.6 fold and *Ifi44* which was induced 10.9 compared to 6.4 fold.

Functional annotation of the significantly up-regulated genes was performed on both gene sets. Functional annotation of the genes significantly up-regulated in the Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> mice is shown in Table 5.20 and the Socs1<sup>-/-</sup> Ifny<sup>-/-</sup> mice in Table 5.21. DAVID functional annotation of the IFN $\alpha$  induced genes in Socs1<sup>+/+</sup> Ifn $\gamma^{-/-}$  thymus results in clusters of genes that encode proteins with GTP binding of GTPase activities (ES 6.76), 2'5'OAS or transferase activities (ES 6.4), nucleotide binding (ES 5.4), zinc fingers (ES 3.89) and proteins involved in the RIG-I like pathway, innate immunity and defence response (ES 2.28), amongst other functions. DAVID functional annotation of the IFNa induced up-regulated genes in Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> thymus results in clusters of genes that encode proteins with GTPase activities (ES 7.2), proteins involved in the defence response and innate immunity (ES 6.44), nucleotide binding (ES 6.35) and zinc fingers (ES 4.06), amongst other functions. In addition to these common clusters, genes up-regulated by IFNa treatment in the Socs1---Ifny--- thymus clustered into functional annotation groups that were not present in the Socs1<sup>+/+</sup> Ifny<sup>-/-</sup> thymus. These include genes that encode proteins involved in the inflammatory response (cytokines and chemokines) and apoptosis as well as genes that encode glycoproteins with signal peptides. Socs1<sup>-/-</sup> mice have a sever inflammatory phenotype and therefore the upregulation of proteins involved in the inflammatory response in Socs1---Ifny--- mice is consistent with this phenotype (Starr, Metcalf et al. 1998). The ability of SOCS1 to regulate genes involved in apoptosis is also consistent with previous findings in which SOCS1 was found to affect the anti-proliferative effects of IFNa in human neutrophils through a suppression of STAT3 (Sakamoto, Hato et al. 2005). The expression of glycoproteins with signal peptides also indicates an increased ability of cells from Socs 1<sup>-/-</sup> Ifny<sup>-/-</sup> mice to interact with the external environment. This is likely an important process during infection in which many cells, cytokines other signaling molecules must interact and act together to amount an appropriate immune response.

Following individual analysis of  $Socs 1^{-/-} Ifn \gamma^{-/-}$  and  $Socs 1^{+/+} Ifn \gamma^{-/-}$  mice to determine IFNa induced gene expression, they were analysed collectively to determine genes differentially regulated between the two genotypes. Normalisation and filtering of the

Table 5.20: DAVID functional annotation clustering of genes upregulated in the thymus of  $Socs1^{+/+}$  Ifny<sup>-/-</sup> mice with 3 and 6 hour IFNα stimulations. Probes found to be up-regulated in the thymus of  $Socs1^{+/+}$  Ifny<sup>-/-</sup> mice mice following 3 and 6 hour IFNα stimulations (Section 5.7) were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble gene IDs were loaded into DAVID for functional annotation analysis with medium classification stringency.

| Functional Annotation                                           | ES   |
|-----------------------------------------------------------------|------|
| GTP binding, GTPase activity                                    | 6.76 |
| 2'5'OAS, transferase activity                                   | 6.4  |
| Nucleotide binding                                              | 5.4  |
| Zinc finger                                                     | 3.89 |
| PARP activity                                                   | 3.18 |
| RIG-I like pathway, innate immunity, defense response, helicase | 2.28 |
| Macromolecule catabolic process, proteolysis                    | 1.51 |
| Tetratricopeptide region                                        | 1.32 |
| Ubiquitin                                                       | 1.32 |

Table 5.21: DAVID functional annotation clustering of genes upregulated in the thymus of  $Socs1^{-7}Ifn\gamma^{-7}$  mice 3 and 6 hours post IFNα. Probes found to be up-regulated in the thymus of  $Socs1^{-7}Ifn\gamma^{-7}$  mice mice following 3 and 6 hour IFNα stimulations (Section 5.7) were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble gene IDs were loaded into DAVID for functional annotation analysis with medium classification stringency.

| Functional Annotation                                                                | ES   |
|--------------------------------------------------------------------------------------|------|
| GTPase activity                                                                      | 7.2  |
| Defense response, Innate immunity                                                    | 6.44 |
| Nucleotide binding                                                                   | 6.35 |
| 2'5'OAS, RNA binding, transferase activity                                           | 5.47 |
| Zinc finger                                                                          | 4.06 |
| RNA binding, ds RNA binding                                                          | 3.83 |
| Pyrin                                                                                | 3.76 |
| PARP activity                                                                        | 3.49 |
| Inflammatory response, Cytokine, Chemokine, taxis, extracellular space               | 2.22 |
| Regulation of type I IFN production                                                  | 1.61 |
| Glycoprotein, signal peptide, disulfide bond                                         | 1.61 |
| Apoptosis                                                                            | 1.56 |
| Jak-STAT signaling pathway, Cytokine-cytokine receptor interaction                   | 1.36 |
| Thrombospondin repeat                                                                | 1.32 |
| Cellular macromolecule catabolic process, ISG15-<br>protein conjugation, proteolysis | 1.31 |
| Ubiquitin                                                                            | 1.12 |

data was first performed, as described previously. The baseline was then transformed to the median of all samples. A cut off was performed to obtain only the probes that are 2 fold or greater different across any of the conditions. This reduced the probe list to 2055 genes. A two-way anova was performed on this list to analyse differences between the IFN $\alpha$  time course of gene regulation in  $Socs1^{+/+}Ifn\gamma^{-/-}$  and  $Socs1^{-/-}Ifn\gamma^{-/-}$  mice. A two-way anova (two-way analysis of variance) allows measurement of the effects of two parameters simultaneously (IFN $\alpha$  time-course and genotype). Three gene lists were obtained, one for each parameter and one for measuring the interaction between the two parameters. I consequently identified of a subset of genes that interact over the two parameters.

The two-way anova experiment resulted in three lists (Figure 5.9):

- Genes different across time: 557
- Genes different across genotype: 1066
- Time-genotype Interacting genes: 167

We are interested in the 167 genes that interact over the two conditions (IFNa timecourse and genotype) as these will be the genes that are both IFN regulated and effected by the presence of SOCS1. A heatmap of the interacting genes using hierarchical clustering was generated in Genespring (Figure 5.10). DAVID functional annotation of the interacting genes (Table 5.22) indicates these genes encode proteins involved in the innate immune response (2.81), glycoproteins with signal peptides (2.2), GTP activities (1.94), peptidase inhibitors (1.71), EGF-like domains (1.58), response to wounding (1.21) and secreted proteins (1.2). Promoter enrichment analysis was performed using clover. Promoter analysis (Table 5.23) indicates over-representation STAT3 (RS 217, p = 0.001), STAT1 (RS 156, p = 0.002), ISGF3 (RS 55, p = 0.01), NF- $\kappa B$  (RS 43.6, p = 00.003) and IRF7 (RS 17.6, p = 0) binding elements. The enrichment of ISGF3, STAT1 and STAT3 within this gene cluster is consistent with findings in Chapter 4 which demonstrate SOCS1 regulates IFNa induced STAT1 and STAT3 phosphorylation. Interestingly, STAT5 binding elements were not present within the promoter analysis as either over or under-represented which is consistent with findings in Chapter 4 which suggest STAT5 phosphorylation is independent of SOCS1 regulation.

We further clustered the genes identified as interacting over the two conditions. 5 Kmeans clustering using Euclidean distance was performed on the time-genotype



Figure 5.9: Venn Diagram of probes found via two-way anova anaylsis of 3 and 6 hours IFN $\alpha$  stimulations in the thymus of  $Socs1^{-1}Ifny^{-1}$  and  $Socs1^{+1}Ifny^{-1}$  mice. A two-way anova (non-corrected) was performed on  $Socs1^{-1}Ifny^{-1}$  and  $Socs1^{+1}Ifny^{-1}$  microarray data to analyse differences between the IFN $\alpha$  time course of gene regulation in  $Socs1^{-1}Ifny^{-1}$  and  $Socs1^{+1}Ifny^{-1}$  mice. The resultant entity sets include probes regulated over time, probes regulated over genotype and probes that interact over time and genotype. The overlap of these gene sets is displayed. 167 probes were found to interact over time and genotype.



Figure 5.10: Heatmap of genes that interact over IFN $\alpha$  and Socs1 regulation. A heatmap was generated of the resultant entity list from two way anova analysis to determine genes that interact over IFN $\alpha$  and Socs1 regulation. The heatmap was generated in Genespring using hierarchical clustering.

Table 5.22: DAVID functional annotation of genes that interact over IFN $\alpha$  and Socs1 regulation. probes found to interact over IFN $\alpha$  and Socs1 regulation were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble gene IDs were loaded into DAVID for functional annotation analysis with medium classification stringency.

| FunctionalAnnotation                             | ES   |
|--------------------------------------------------|------|
| Immune Response, Innate Immunity                 | 2.81 |
| Disulfide Bond, Signal peptide, Glycoprotein     | 2.2  |
| GTPase activity, GTP-binding, nucleotide binding | 1.94 |
| Peptidase Inhibitor                              | 1.71 |
| Positive Regulation of immune response           | 1.59 |
| EGF like domain                                  | 1.58 |
| Extracellular region, extracellular matrix       | 1.36 |
| Defence Response, Response to wounding           | 1.21 |
| Secreted                                         | 1.2  |

Table 5.23: Over-represented STAT, IRF and NF- $\kappa$ B binding elements within the promoters of genes that interaction over IFN $\alpha$  and Socs1 regulation. Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes found to interact over IFN $\alpha$  and Socs1 regulation. IRF, STAT or NK- $\kappa$ B binding elements found over-represented (p < 0.05) and with a Raw value greater than 0 were extracted.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| STAT3 (M01595)                       | 217       | 0.001   |
| STAT1 (M01260)                       | 156       | 0.002   |
| ISGF-3 (M00258)                      | 55        | 0.01    |
| NFKB (M00774)                        | 43.6      | 0.003   |
| IRF7 (M00453)                        | 17.6      | 0       |
| NFKB (M00052)                        | 12.8      | 0.006   |

interacting list (Figure 5.11) to identify co-regulated gene sets. Distinct expression patterns were obtained in the time-genotype interaction clusters generated. Interaction cluster 1 contains 37 co-regulated probes which have sustained expression at 6 hours in the absence of SOCS1. Conversion of this list into ensemble gene IDs using ensemble Biomart results in 23 genes. These are presented in Figure 5.12. RT-PCR analysis was performed on samples to validate microarray results (Figure 5.13). Both RT-PCR and microarray results followed similar expression patterns. In this cluster, all genes are up-regulated with IFNa stimulation in both genotypes. Probes from the Socs1<sup>-/-</sup>Ifny<sup>-/-</sup> mice however remain increased at 6 hours, above basal levels, while in the Socs1<sup>+/+</sup>Ifny<sup>-/-</sup> mice they are significantly reduced at this time point to near basal levels. These results therefore indicate that the removal of SOCS1 enables sustained gene expression. Most genes within this cluster represent typical interferon stimulated genes involved in antiviral immunity. For example these include Ddx58 (Rig-I), Ifi47, Irf9, Irgm1, Irgm2, Isg15, Oas1b, Stat1, Trim21 and Rtp4. Functional annotation clustering identifies four clusters of genes, however, with some overlap (Table 5.24). The functional cluster with the highest enrichment score contains genes that encode proteins with GTPase activities and proteins involved in purine nucleotide binding (ES 2.88). The second cluster contains genes that encode cytoplasmic proteins involved in antiviral defence and the RIG-I like receptor signaling pathway (ES 2.18). The third cluster contains genes that encode nucleotide binding proteins involved in the immune and defence responses (ES 1.13). The fourth cluster contains genes that encode proteins that function within the nucleus and are involved in transcription and transcriptional regulation (ES 0.81). Promoter enrichment analysis of these genes was performed using clover to identify common transcription regulatory elements (Table 5.25). Transcription factors over-represented in the promoters of these genes include IRF (RS 149, p = 0), ICSBP (IRF8) (RS 79.4, p = 0), ISGF3 (RS 71.2, p=0), STAT3 (RS 69.7, p = 0) and STAT1 (RS 54, p = 0), amongst others. Surprisingly STAT5A and STAT5B binding elements were also enriched within the promoters of these genes (RS 19.9, p = 0 and RS 16, p = 0 respectively) however this may reflect the ability of different STATs to bind similar elements or regulate a similar set of genes.

In order to determine the transcription factors that are induced by IFNα yet are not regulated by SOCS1, it is important to analyse the promotors of genes that are IFNα regulated but not SOCS1 regulated. Comparison of promoter regulatory sites within these gene lists may help identify elements which are IFNα but not SOCS1 responsive. 486 probes were identified as being regulated by IFNα yet not regulated by SOCS1

Figure 5.11: Clusters of co-regulated probes that interact over IFN $\alpha$  and Socs1 regulation. 5K-means clustering was performed on the list of probes found to interact over IFN $\alpha$  stimulation and Socs1 regulation using Genespring. Data is represented as normalised intensity values.





| Gene Name | Ensembl Gene ID    |
|-----------|--------------------|
| AF067061  | ENSMUSG0000079674  |
| BC006779  | ENSMUSG00000027580 |
| BC094916  | ENSMUSG00000070501 |
| Ddx58     | ENSMUSG0000040296  |
| lfi47     | ENSMUSG0000078920  |
| lrf9      | ENSMUSG0000002325  |
| lrgm1     | ENSMUSG0000046879  |
| lrgm2     | ENSMUSG0000069874  |
| lsg15     | ENSMUSG0000035692  |
| Mitd1     | ENSMUSG0000026088  |
| Ncoa7     | ENSMUSG0000039697  |
| Oas1b     | ENSMUSG00000029605 |
| Parp14    | ENSMUSG0000034422  |
| Parp9     | ENSMUSG00000022906 |
| Pyhin1    | ENSMUSG0000043263  |
| Rnf213    | ENSMUSG00000070327 |
| Rtp4      | ENSMUSG0000033355  |
| Stat1     | ENSMUSG00000026104 |
| Tgtp1     | ENSMUSG00000078922 |
| Tgtp2     | ENSMUSG00000078921 |
| Trim21    | ENSMUSG0000030966  |

**Figure 5.12: Expression profile and list of genes within Interaction Cluster 1.** The expression profile of probes from interaction cluster 1 are represented as normalised intensity values, with the mean expression profile represented in black. The probes were converted to Ensemble Gene IDs and associated gene names with Ensemble Biomart.

**Figure 5.13: qRT-PCR validation of microarray data**. Quantitative RT-PCR analysis of *Irgm1*, *Stat1* and *Isg15* expression within the thymus of *Socs1*<sup>-/-</sup> *Ifny*<sup>-/-</sup> and *Socs1*<sup>+/+</sup>*Ifny*<sup>-/-</sup> mice following 0, 3 6 and 24 hour stimulations with 1000 IU IFNα per mouse, administered intraperitoneally. Data is presented as mean +/- SEM of N = 3-5 separate experiments following normalisation to 18S and is expressed relative to unstimulated controls from *Socs1*<sup>-/-</sup>*Ifny*<sup>-/-</sup> mice. \* =  $p \le 0.05$ , \*\* =  $p \le 0.01$ , \*\*\* =  $p \le 0.005$ .



Table 5.24: DAVID functional annotation of genes from InteractionCluster 1. The Ensemble gene IDs from interaction cluster 1 were loaded intoDAVID for functional annotation analysis with medium classificationstringency.

| Functional Annotation                                                        | ES   |
|------------------------------------------------------------------------------|------|
| GTPase activities and purine nucleotide binding                              | 2.88 |
| Cytoplasmic, involved in antiviral defence and RIG-I like receptor signaling | 2.18 |
| Nucleotide binding, involved in immune and defence responses                 | 1.13 |

Table 5.25: Over-represented STAT, IRF and NF- $\kappa$ B binding elements within the promoters of genes within Interaction Cluster 1. Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes within interaction cluster 1. IRF, STAT or NK- $\kappa$ B binding elements found over-represented (p < 0.01) and with a Raw value greater than 0 were extracted.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| IRF (M00772)                         | 149       | 0       |
| IRF (M00972)                         | 114       | 0       |
| ICSBP (M00699)                       | 79.4      | 0       |
| ISGF3 (M00258)                       | 71.2      | 0       |
| STAT3 (M01595)                       | 69.7      | 0       |
| STAT (M00777)                        | 55.5      | 0       |
| IRF7 (M00453)                        | 55.1      | 0       |
| STAT1 (M01260)                       | 54        | 0       |
| STAT1:STAT1 (M01212)                 | 32.9      | 0       |
| IRF1 (M00062)                        | 27.4      | 0       |
| IRF8 (M01665)                        | 26        | 0.001   |
| STAT5A (M00457)                      | 19.9      | 0       |
| NFKB (M00774)                        | 17.2      | 0       |
| STAT5B (M00459)                      | 16        | 0       |
| NFKB (M00194)                        | 10.4      | 0.004   |
| STATx (M00223)                       | 8.3       | 0.006   |
| NFKB (M00208)                        | 6.73      | 0.001   |
| STAT (M00259)                        | 5.86      | 0.002   |
| STAT3 (M00225)                       | 0.472     | 0       |

over a time-course of IFNa stimulation (Time minus Interaction). This is presented in Figure 5.14. DAVID functional annotation of this list demonstrates these genes encode proteins that have 2'5'OAS, RNA binding and transferase activities (4.51) and are involved in the inflammatory response with cytokine or chemokine functions (3.41) (Table 5.26). Promoter analysis was performed to identify transcription factors over- or under-represented within the promoters of these genes (Table 5.27). ISGF3 was not found to be over-enriched; a reflection of the negative regulation of ISGF3 by SOCS1. Surprisingly the promoter regions of these genes were still enriched in STAT1 (RS 451, p = 0) and STAT3 (RS 614, p = 0) binding elements. This may reflect that the genes with these binding sites within their promoters may also be regulated by other factors which are not SOCS1 regulated and thus their expression is maintained in the absence of SOCS1. Alternatively this may reflect a redundancy of STAT1, STAT3 and STAT5 sites within the transfac binding site definitions. The over-representation of STAT5A (RS 524, p = 0) and STAT5B (RS 61.9, p = 0) was consistent with our findings in previous chapters showing STAT5 phosphorylation is not negatively regulated by SOCS1.

Overall these microarray studies support a negative regulatory role for SOCS1 in IFNα induced STAT1 and STAT3 activation. We have identified a subset of IFNα induced genes suppressed by SOCS1. Promoter analysis of these genes indicates over-representation of ISGF3, STAT1 and STAT3 binding elements. STAT5A or STAT5B binding elements were not found to be over-represented, thus supporting a role for SOCS1 in the negative control of STAT1 and STAT3 but not STAT5. Further clustering of these genes identified a cluster which displayed sustained expression in the absence of SOCS1. This cluster contained genes involved largely in the innate defense response. Promoter analysis of these genes found enrichment of ISGF3, STAT1, STAT3 and STAT5A binding elements. STAT5B binding elements were not found to be enriched. As the promoters of these genes are enriched in ISGF3, STAT1 and STAT3 binding sites, it is likely that prolonged STAT1 and STAT3 phosphorylation and activation in the absence of SOCS1 contributes to prolonged expression of these genes.

By selectively controlling STAT activation, SOCS1 may selectively control the transcriptional response. The STAT family members have critical roles in regulation of the immune system and the balance of STATs activated in a cell will dictate the response of the cell to IFN. SOCS1 alteration of this balance will thus affect the



Figure 5.14: Venn diagram of probes found via two-way anova anaylsis of 3 hour and 6 hour IFN $\alpha$  stimulation in the thymus of Socs1<sup>-/-</sup> Ifn $\gamma^{-/-}$  and Socs1<sup>+/+</sup> Ifn $\gamma^{-/-}$  mice. A two-way anova (non-corrected) was performed on Socs1<sup>-/-</sup> Ifn $\gamma^{-/-}$  and Socs1<sup>+/+</sup> Ifn $\gamma^{-/-}$  microarray data to analyse differences between the IFN $\alpha$  time course of gene regulation in Socs1<sup>-/-</sup> Ifn $\gamma^{-/-}$  and Socs1<sup>+/+</sup> Ifn $\gamma^{-/-}$  mice. A venn diagram of the number of probes found regulated over time (557) and .found to interact over IFN $\alpha$  and Socs1 regulation (167) was generated. 486 probes were found to be regulated by time alone (time minus interaction).

Table 5.26: DAVID Functional Annotation clustering of genes found regulated by IFN $\alpha$  yet not by Socs1 (Time – Interaction). Probes found regulated by IFN $\alpha$  yet not Socs1 (Time – Interaction) were converted to Ensemble Gene IDs with Ensemble Biomart. The Ensemble genes IDs loaded into DAVID for functional annotation analysis with medium classification stringency.

| FunctionalAnnotation                                                                          | ES   |
|-----------------------------------------------------------------------------------------------|------|
| 2'5 OAS, RNA binding, Transferase Activity                                                    | 4.51 |
| Inflammatory response, cytokine-cytokine receptor interaction, Chemokine activity, chemotaxis | 3.41 |

Table 5.27: Promoter Enrichment of genes found regulated by IFN $\alpha$  yet not by Socs1 (Time minus Interaction). Clover promoter enrichment analysis was performed on sequences 2000bp upstream of the transcript start site of genes found regulated by IFN $\alpha$  yet not Socs1 (Time – Interaction). IRF, STAT or NK- $\kappa$ B binding elements found over-represented (p < 0.01) and with a Raw value greater than 0 were extracted.

| TRANSFAC Transcription Factor Matrix | Raw Score | P-value |
|--------------------------------------|-----------|---------|
| STAT3 (M01595)                       | 614       | 0       |
| STAT (M00777)                        | 563       | 0       |
| IRF1 (M00972)                        | 555       | 0       |
| IRF3 (M01279)                        | 543       | 0       |
| STAT5A (M00499)                      | 524       | 0       |
| STAT1 (M01260)                       | 451       | 0       |
| IRF8 (M01665)                        | 263       | 0       |
| STAT3 (M00497)                       | 252       | 0       |
| STAT4 (M01666)                       | 235       | 0       |
| IRF7 (M00453)                        | 174       | 0       |
| IRF1 (M00062)                        | 110       | 0       |
| STAT5A (M00457)                      | 93.6      | 0       |
| STAT5B (M00459)                      | 61.9      | 0       |
| NF-κΒ (M00194)                       | 58.5      | 0       |
| IRF2 (M00063)                        | 42.3      | 0       |
| NF-κΒ (M00054)                       | 29.2      | 0.002   |
| NF-кВ (M00208)                       | 23.2      | 0.007   |

response of the cell. STAT1 is typically involved in innate immunity, STAT3 in inflammation and STAT5 typically has immunomodulatory functions and is involved in adaptive immunity (Akira 1999; Adamson, Collins et al. 2009). SOCS1 selective regulation would therefore suppress STAT1 and STAT3 mediated innate defense and inflammatory functions while allowing the immunomodulatory functions of STAT5 to proceed. This may allow sustained IFN $\alpha$  immunomodulatory functions and adaptive immune responses while the initial innate response is dampened with SOCS1 expression.

### **CHAPTER 6**

### DISCUSSION

Suppressor of cytokine signaling (SOCS)1 has emerged as an important factor in controlling IFN signaling to limit potential toxicity and optimise effective signaling. This thesis has characterised the mechanism by which SOCS1 inhibits type I IFN signaling in the form of STAT activation and the transcription of IFN stimulated genes.

SOCS1 gene expression is up-regulated in response to type I IFN signaling and it acts in a negative feedback loop to suppress the actions of the type I IFNs. This was initially investigated by Fenner et al in which in vivo genetic studies showed that the deletion of SOCS1 resulted in mice being highly resistant to viral infection, a consequence of enhanced type I IFN signaling. In addition, they showed that SOCS1 regulation was mediated through the IFNAR1 component of the IFN receptor rather than IFNAR2 (Fenner, Starr et al. 2006). As shown in Chapter 3, SOCS1 inhibits type I IFN induction of ISGF3 mediated gene transcription through an interaction with the IFNAR1 associated JAK, TYK2, rather than through a direct interaction with the receptor itself. I propose a model in which SOCS1 binds to conserved tyrosine residues within the catalytic region of TYK2 through its SH2 domain and inhibits TYK2 kinase function though its kinase inhibitory region. I also propose that the interaction of SOCS1 with TYK2 inhibits an activating/stabilising Lys-63 ubiquitination of TYK2, resulting in reduced levels of TYK2 and thus reduced stabilisation of IFNAR1 at the cell surface. Subsequently type I IFN signaling is reduced initially through an inhibition of TYK2 kinase function and therefore TYK2 mediated STAT activation and later though a reduction in the level of receptor available for signaling at the cell surface.

The responses of cells to type I IFNs are dependent on the activation of a complex network of transcription factors and signaling pathways. The STAT family of transcription factors are major mediators of type I IFN signaling, dictating the transcription of a multitude of IFN stimulated genes by binding to distinct DNA regulatory elements. The response of a particular cell to IFN is therefore dependent on the type and level of STAT activation. All 6 members of the STAT family can be activated by the type I IFNs, although in a cell type specific manner (van Boxel-Dezaire, Rani et al. 2006). The activation of particular STATs in response to IFN is

dependent on a range of factors such as the level of basal STAT expression and phosphorylation within the cell, the concentration of receptor on the cell surface, the type and level of IFN acting on the cell as well as the presence or absence of co-activators and inhibitors (Zhao, Zhang et al. 2012). The data within this thesis demonstrates that SOCS1, a potent inhibitor of type I IFN signaling, alters the balance of STAT activation within the cell, resulting in an altered transcriptional response.

The results presented in Chapter 4 demonstrate the downstream consequences of SOCS1 inhibition of IFNα signaling in terms of STAT phosphorylation. IFNα stimulation of wt mice resulted in STAT1, STAT3 and STAT5 phosphorylation in thymocytes. In mice with a deletion of SOCS1, STAT1 and STAT3 phosphorylation were increased whereas STAT5 phosphorylation was not, indicating an ability of SOCS1 to selectively regulate IFNα mediated phosphorylation of STATs. As seen in Chapter 5, IFNα induces expression of a range of genes within thymocytes whose promoters are enriched in STAT1, STAT3 and STAT5 binding elements. In the absence of SOCS1, IFNα mediated gene expression is altered. A subset of genes found regulated by IFNα and SOCS1 were enriched in STAT1 and STAT3 binding elements but not STAT5 which again supports the ability of SOCS1 to negatively regulate STAT5 phosphorylation.

The set of genes found basally increased in the absence of SOCS1 and that were also induced by IFN $\alpha$ , primarily had antiviral functions. In addition, the expression of a set of IFN $\alpha$  induced genes with antiviral functions was sustained for longer in the absence of SOCS1. The function of SOCS1 may therefore primarily be in the control of IFN $\alpha$  induced antiviral functions. The suppression of IFN $\alpha$  induced antiviral functions by SOCS1 has previously been demonstrated (Song and Shuai 1998; Fenner, Starr et al. 2006). These suppressive effects are likely mediated by the suppression of STAT1 phosphorylation as previous studies have shown that STAT1 is essential in the control of viral infection through type I and II IFN signaling pathways and gene expression data from Chapter 5 showed enrichment of STAT1 binding elements in the promoters of these genes (Meraz, White et al. 1996; Park, Li et al. 2000). SOCS1 control of IFN $\alpha$  induced STAT1 phosphorylation was observed in all immune cell populations analysed (both thymic T-cells and peripheral T-cells, B-cells and monocytes) and thus the regulation of antiviral genes would also be expected in these cell types.

In addition to the control of antiviral genes, the STAT family members also have other critical roles in the regulation of the immune system and the balance of different phosphorylated STATs within a cell will influence the response of the cell to IFN. For example tyrosine phosphorylated STAT1 may form a combination of dimers with other tyrosine phosphorylated STATs in response to IFN $\alpha$  such as STAT1:STAT1, STAT1:STAT2 or STAT1:STAT3 and regulate a different set of genes. In addition, tyrosine phosphorylated STAT5A or STAT5B may form homo or heterodimers with each other or heterodimers with CrkL to regulate transcription (Lekmine, Sassano et al. 2002). The formation of any one of these particular dimers will be defined by the level of activated STATs in the cell available for dimer formation. In addition to STAT tyrosine phosphorylation, however, other post-translational STAT modifications also occur which may influence the function of STATs, the formation of dimers and their transcriptional potential. These include STAT serine phosphorylation, arginine methylation, lysine acetylation, threonine glycosylation and lysine SUMOylation (Brierley and Fish 2005). Several STAT family members including STAT1, STAT3, STAT4, STAT5a and STAT5b require specific serine phosphorylation at the C-terminal region for their full transcriptional potential (Brierley and Fish 2005). Specifically, STAT1 requires serine phosphorylation at serine727 for its full transcriptional activity and this occurs through type I IFN activation of the protein kinase C (PKC) isoform PKCo (Uddin, Sassano et al. 2002). In addition, IFN induced serine phosphorylation of STAT5a and STAT5b at serine725/730 respectively is required for its full transcriptional activity (Uddin, Lekmine et al. 2003). Arginine methylation has also been found to increase the transcriptional activity of STAT1 in response to IFN. For example STAT1 Arg31 methylation by protein arginine methyl-transferase (PRMT1) results in increased STAT1-DNA binding and in the absence of STAT1 arginine methylation there is an increased association of phosphorylated STAT1 with the STAT inhibitor PIAS1 (Mowen, Tang et al. 2001). Furthermore, cells deficient in methyl-thioadenosine phosphorylase (MTAP), which is involved in the de-methylation pathway, are less responsive to the anti-proliferative effects of IFN $\alpha$  and IFN $\beta$  (Mowen, Tang et al. 2001). A number of studies have also demonstrated that STAT1 acetylation negatively regulates IFN responses. IFN and histone deacetylase inhibitors (HDACIs) were found to regulate the acetylation of STAT1 by the histone acetyltransferase (HAT) CBP in a number of tumour cell lines (Kramer, Baus et al. 2006). Furthermore this acetylation counteracts IFN-induced STAT1 phosphorylation, nuclear translocation and transcriptional activity (Kramer, Knauer et al. 2009). As can be seen, these different modifications of STATs can greatly influence their function. Considering the large range of cytokines that stimulate STAT activation, these different modifications may also provide a framework for cross-talk between different cytokines that act on a particular cell. Future studies looking at the role of IFN $\alpha$  induced STATs in T-cell responses could consider these different modifications and how they influence STAT mediated transcription in response to IFN $\alpha$ . Furthermore investigation of the ability of SOCS1 to regulate these modifications may provide further insight into the role of SOCS1 in the negative regulation of IFN $\alpha$  signaling.

Previous studies have shown cross-talk between the type I and II IFN pathways exists at the level of STAT1 expression with type I IFN priming STAT1 expression to levels that enable type II signaling (Gough, Messina et al. 2010). SOCS1 regulation of type I IFN signaling results in reduced STAT1 expression and tyrosine phosphorylation and is therefore likely to reduce type II IFN signaling as well, suggesting that SOCS1 may mediate cross-talk between these two cytokine families through control of STAT1 (Fenner, Starr et al. 2006). As SOCS1 also negatively regulates IFNα mediated STAT3 phosphorylation perhaps there is also cross-talk between pathways that utilize STAT3 for signaling such as the IL-6 or IL-10 pathways.

In addition to the ability of tyrosine phosphorylated STATs to form dimers and regulate transcription, the ability of un-phosphorylated STATs to regulate gene transcription distinct from phosphorylated STATs has also been reported (Yang and Stark 2008). As shown in Chapter 4, IFN $\alpha$  stimulation of thymocytes results in increased total STAT1 levels within the cell. In addition, thymocytes deficient in SOCS1 have increased total STAT1 and STAT3 levels. Transcriptional changes following IFN $\alpha$  stimulation of thymocytes as well as the transcriptional changes mediated by SOCS1 may therefore include genes regulated by un-phosphorylated STATs. The genes regulated by unphosphorylated STATs however are likely to be induced at later time points than analysed in Chapter 5 as this regulation would follow the initial IFN mediated increase in STAT concentration. SOCS1 may therefore regulate un-phosphorylated STAT mediated gene expression through regulation of the IFN mediated increase in STAT concentration.

As IFNα stimulation of peripheral immune cells induced only STAT1 phosphorylaion while IFNα stimulation of thymocytes induced STAT1, STAT3 and STAT5 phosphorylation, STAT3 and STAT5 may be important in mediating the IFNα response

in immature thymocytes rather than in mature peripheral immune cells and perhaps these STATs play a role in mediating IFNa effects on T-cell differentiation or maturation. A number of studies have shown that STAT3 and STAT5 are critical in mediating T-cell differentiation. Conditional STAT3 or STAT5 knockouts indicate these STATs reciprocally regulate T-reg and Th17 cell differentiation. STAT3 activation by IL-6 and TGFβ results in the development of Th17 cells while a deletion of STAT3 in Tcells causes a decrease in ROR-gamma expression and an increase in Foxp3 expression which promotes T-reg cell development (Mathur, Chang et al. 2007; Yang, Panopoulos et al. 2007; Yang, Nurieva et al. 2008). In contrast, IL-2 mediated activation of STAT5 drives T-reg development through STAT5 directly binding the promoter and inducing expression of Foxp3 while it inhibits Th17 differentiation through an inhibition of IL-17 production (Zorn, Nelson et al. 2006; Burchill, Yang et al. 2007; Yao, Kanno et al. 2007). In addition to STAT3 and STAT5, STAT1 also has effects on T-reg cell development as a deletion of STAT1 results in impaired functionality and numbers of T-reg cells and an increased susceptibility to autoimmune disease (Nishibori, Tanabe et al. 2004). Considering STAT1, STAT3 and STAT5 are upregulated by IFN $\alpha$  and that they have differential roles in T-reg and Th17 development, a critical balance of each STAT may determine the ultimate outcome of IFN $\alpha$  signaling. A number of studies have shown that IFN $\alpha$  delays T-reg cell generation (Golding, Rosen et al. 2010; Pace, Vitale et al. 2010) while other studies have shown that IFNα suppresses Th17 cell differentiation (Moschen, Geiger et al. 2008; Hirohata, Shibuya et al. 2010). These studies however involved human peripheral T-cells and may not reflect the effect of IFN $\alpha$  on T-reg and Th17 cell differentiation in the thymus of mice. Subsequent studies could delve further into the role of type I IFN on specific T-cell subsets and the effect this has on the overall immune response. This could be achieved by analysing the response to infection in mouse models with a deletion of IFNAR in specific T-cell subsets such as T-reg of Th17 cells. Furthermore the combination of these studies with different STAT knockouts could provide further insight into the role of the different STATs in particular T-cell populations in response to IFNα signaling.

Further to the role of IFN $\alpha$  and STATs in T-cell differentiation, the ability of SOCS1 to negatively regulate IFN $\alpha$  induced STAT1 and STAT3 but not STAT5 may alter the balance of STATs within the cell and therefore alter the differentiation pathways of Treg and Th17 cells. Indeed SOCS1 has been implicated in maintaining Foxp3 expression in T-reg cells (through suppression of IFN $\gamma$ -STAT1 signaling) and in

suppressing IFNγ and IL-17 production by T-regs (through suppression of STAT3) (Takahashi, Nishimoto et al. 2011). In addition STAT5 has been found to be phosphorylated to a higher degree in SOCS1 deficient T-reg cells compared to wt T-reg cells (consistent with results within this thesis) and this is associated with an increase in T-reg cell numbers (Lu, Thai et al. 2009). During times of chronic IFNα stimulation and the expression of SOCS1, the ability of SOCS1 to negatively regulate STAT1 and STAT3 but not STAT5 may tip the balance towards STAT5 mediated effects driving T-reg cell development and suppressing Th17 cell development. This scenario ties in with the contribution of IFNα signaling to the inflammatory phenotype of *Socs1*<sup>-/-</sup> mice and their susceptibility to autoimmunity (Fenner, Starr et al. 2006). Whether this inflammation is driven by a lack of T-reg cells, however, remains to be determined.

SOCS1 is not the only negative regulator of type I IFN signaling. For example recent studies have also highlighted the importance of considering the effect of miRNA on IFNa signaling. This may be particularly important in the thymus as the thymic epithelial microRNA network has been shown to modify expression of IFNAR and thus IFNa signaling pathways that control infection associated thymic involution (Papadopoulou, Dooley et al. 2012). A microarray analysis, as performed in Chapter 5, provides a readout of the mRNA present within the cell through quantification of the association of mRNA with specific probes. The mRNA levels measured by microarray analysis, in steady state, reflect the balance of mRNA synthesis, stability and degradation. As discussed in chapter 1, miRNA is believed to have an effect on many components of the type I IFN pathway through regulation of the stability and degradation of mRNA. One such method for the analysis of miRNA expression involves next generation sequencing which can provide a total readout of the RNA expressed within the cell including mRNA, miRNA and long non-coding RNA. Future studies looking at the type I IFN response may therefore employ this method to provide a better understanding of the complex regulatory pathways activated by the IFNs and how these are controlled (ie. whether miRNA expression is controlled by SOCS1). Next generation sequencing could also be employed in combination with Chromatin IP studies (ChIP-Seq) to determine the specific sites of STAT binding following IFNa stimulation.

Although prediction models were used in Chapter 5 to identify STAT binding sites within gene promoters, these methods have their limitations. For example Clover

analysis employed in Chapter 5 relies on pre-defined binding sites and thus these studies are limited to the information contained within the TRANSFAC database. In addition, a pre-defined region must be selected on which the analysis is performed. In Chapter 5, a region of 2000bp upstream of the transcript site was selected and thus any potential binding sites outside of this region were not considered. Furthermore many of the STAT binding sites are similar in sequence and therefore competition for binding may occur which cannot be identified by prediction models. The use of ChIP-seq studies on different STATs following IFN $\alpha$  treatment would identify the exact sites to which these STATs bind. These studies could also be performed on a *Socs1*<sup>-/-</sup> background and thus also identify how SOCS1 controls STAT-DNA binding. A combination of ChIP-Seq studies with next generation sequencing of the RNA profile induced in the cell will also provide insight into how these STATs cooperatively regulate gene expression.

In addition to the analysis of STAT activation and STAT-DNA binding following IFN stimulation, future studies could also focus on non-STAT pathways induced by the IFNs. Promoter enrichment analysis of genes regulated by IFN found enrichment of binding elements associated with transcription factors such as Ets family members including Ets1, Ets2 and PU.1 as well as Blimp1 indicating these factors may also be regulated by IFN. As these transcription factors have previously been linked to T-cell regulation it is possible they may mediate T-cell responses following IFN stimulation (Gallant and Gilkeson 2006; Xin, Nutt et al. 2011). ChIP-Seq studies could be used to identify changes in DNA binding of these transcription factors following IFN stimulations. Furthermore the analysis of IFN signaling in mouse models with deletions of these transcription factors would identify whether they are required for the IFN response.

As IFNα induced STAT5 phosphorylation, in the thymus, was independent of SOCS1 negative regulation at early time points, we hypothesise that the mechanism of STAT5 phosphorylation by IFNAR differs to that of STAT1 and STAT3 phosphorylation mechanisms which are regulated by SOCS1. Our finding that SOCS1 binds to and inhibits TYK2 suggests that STAT1 and STAT3 require TYK2 for activation whereas STAT5 may use a different mechanism. Furthermore, as STAT1 and STAT3 require IFNAR2 tyrosine phosphorylation for their activation, STAT5 activation may be mediated by IFNAR1 (Zhao, Lee et al. 2008). SOCS1 inhibition of TYK2 may therefore result in reduced IFNAR2 tyrosine phosphorylation and reduced recruitment of STAT1

and STAT3 to IFNAR2 while IFNAR1 phosphorylation and STAT5 recruitment may continue uninhibited in the presence of SOCS1. Future studies could examine the effect SOCS1 has on IFNAR1 and IFNAR2 phosphorylation following stimulation to determine if this is the case. Alternatively, other kinases or adaptor proteins may also be interacting with the IFN receptor to mediate STAT5 phosphorylation. Evidence within the literature suggests that the adaptor protein GAB2 may be involved in IFN induced STAT5 activation. GAB2 has been linked, although independently, with constitutively binding IFNAR1 (Baychelier, Nardeux et al. 2007) and binding to STAT5 (Nyga, Pecquet et al. 2005). GAB2 is phosphorylated upon IFNα stimulation (Baychelier, Nardeux et al. 2007) and has many tyrosine phosphorylation sites to which STAT5 could potentially bind. Furthermore, in the context of IL-2 signaling, GAB2 has also been found to associate with CrkL (which can form dimers with phosphorylated STAT5) as well as p85 (part of the PI3-kinase complex which is also induced by IFN $\alpha$ ) and SHP-2 (a tyrosine phosphatase involved in the negative regulation of IFNa) (Gesbert, Guenzi et al. 1998). GAB2 may therefore act as an adaptor for STAT5 and other signaling components activated by IFN (in a similar manner to IL-2 signaling) bringing them into close proximity with IFNAR associated kinases to mediate phosphorylation. Future studies involving knockout or knockdown of GAB2 may help elucidate the exact components acting at the receptor that are involved in STAT5 activation. Alternatively tyrosine kinase inhibitors that target specific JAK kinases or other tyrosine kinases shown to interact with IFNAR may also help elucidate the kinases involved in IFN $\alpha$  induced STAT5 phosphorylation.

Overall, these findings provide the foundation for selectively controlling the IFN response through control of STAT activation. Although further research is needed into the precise signaling mechanisms that occur at the receptor, it is evident that manipulation of IFNα signaling could be achieved by modulation of the STATs it activates. This could be achieved by a number of mechanisms including blocking or mutating specific STAT1 and STAT3 binding sites on the receptor such as Tyr510 of mu-Ifnar2. Indeed mouse models with selective tyrosine to phenylalanine mutations of residues within IFNAR1 and IFNAR2 would help elucidate the precise tyrosines required for IFN signaling *in vivo* and dispel any contradictory evidence that exists about IFNAR-STAT binding from *in vitro* studies. Other mechanisms which take into account how SOCS1 regulates IFN induced STAT activation could also be utilized to control IFNα signaling to TYK2, altering the ability of the cell to activate Lys-63

ubiquitination pathways and thus altering SOCS1 mediated reduction of TYK2 and IFNAR1 surface levels or by using specific TYK2 or JAK1 inhibitors. As discussed in Chapter 1, IFNs are used in the clinic to treat a range of diseases such as viral infections, cancer and autoimmune disease (Hooks, Moutsopoulos et al. 1979; Talpaz, Kantarjian et al. 1987; Paredes and Krown 1991; Roffi, Mels et al. 1995; Mazzella, Saracco et al. 1999; Rizza, Moretti et al. 2010; Ronnblom 2011). There are however many adverse side effects of IFN treatment such as the development of flu-like symptoms, hematological changes and neuropsychiatric disturbances which often result in patients ceasing treatment (Calvaruso, Mazza et al. 2011). By altering the level of STATs activated by IFNs it may be possible to alter the IFN response to achieve desired clinical outcomes while reducing adverse effects.

### REFERENCES

- Abramovich, C., L. M. Shulman, et al. (1994). "Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN-alpha and IFN-beta." <u>Embo J</u> 13(24): 5871-5877.
- Adamson, A. S., K. Collins, et al. (2009). "The Current STATus of lymphocyte signaling: new roles for old players." <u>Curr Opin Immunol</u> **21**(2): 161-166.
- Agalioti, T., S. Lomvardas, et al. (2000). "Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter." <u>Cell</u> **103**(4): 667-678.
- Aichele, P., H. Unsoeld, et al. (2006). "CD8 T cells specific for lymphocytic choriomeningitis virus require type I IFN receptor for clonal expansion." J <u>Immunol</u> **176**(8): 4525-4529.
- Akira, S. (1999). "Functional roles of STAT family proteins: lessons from knockout mice." <u>Stem Cells</u> **17**(3): 138-146.
- Akira, S., S. Uematsu, et al. (2006). "Pathogen recognition and innate immunity." <u>Cell</u> **124**(4): 783-801.
- Alcami, A., J. A. Symons, et al. (2000). "The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN." <u>J Virol</u> 74(23): 11230-11239.
- Alexander, W. S., R. Starr, et al. (1999). "SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine." <u>Cell</u> **98**(5): 597-608.
- Ann Marrie, R. and R. A. Rudick (2006). "Drug Insight: interferon treatment in multiple sclerosis." <u>Nat Clin Pract Neurol</u> **2**(1): 34-44.
- Barbieri, G., L. Velazquez, et al. (1994). "Activation of the protein tyrosine kinase tyk2 by interferon alpha/beta." <u>Eur J Biochem</u> **223**(2): 427-435.
- Basham, B., M. Sathe, et al. (2008). "In vivo identification of novel STAT5 target genes." <u>Nucleic Acids Res</u> **36**(11): 3802-3818.
- Basu, L., C. H. Yang, et al. (1998). "The antiviral action of interferon is potentiated by removal of the conserved IRTAM domain of the IFNAR1 chain of the interferon alpha/beta receptor: effects on JAK-STAT activation and receptor downregulation." <u>Virology</u> 242(1): 14-21.
- Battistini, A. (2009). "Interferon regulatory factors in hematopoietic cell differentiation and immune regulation." <u>J Interferon Cytokine Res</u> **29**(12): 765-780.
- Baychelier, F., P. C. Nardeux, et al. (2007). "Involvement of the Gab2 scaffolding adapter in type I interferon signalling." <u>Cell Signal</u> **19**(10): 2080-2087.
- Ben-Zvi, T., A. Yayon, et al. (2006). "Suppressors of cytokine signaling (SOCS) 1 and SOCS3 interact with and modulate fibroblast growth factor receptor signaling." <u>J Cell Sci</u> **119**(Pt 2): 380-387.
- Bennasser, Y., S. Y. Le, et al. (2005). "Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing." Immunity **22**(5): 607-619.
- Bidwell, B. N., C. Y. Slaney, et al. (2012). "Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape." <u>Nat Med</u>.
- Brierley, M. M. and E. N. Fish (2005). "Stats: multifaceted regulators of transcription." J Interferon Cytokine Res **25**(12): 733-744.
- Burchill, M. A., J. Yang, et al. (2007). "IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells." <u>J Immunol</u> **178**(1): 280-290.
- Cajean-Feroldi, C., F. Nosal, et al. (2004). "Identification of residues of the IFNAR1 chain of the type I human interferon receptor critical for ligand binding and biological activity." <u>Biochemistry</u> **43**(39): 12498-12512.
- Calvaruso, V., M. Mazza, et al. (2011). "Pegylated-interferon-alpha(2a) in clinical practice: how to manage patients suffering from side effects." <u>Expert Opin Drug</u> <u>Saf</u> **10**(3): 429-435.
- Carmody, R. J. and Y. H. Chen (2007). "Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling." <u>Cell Mol Immunol</u> **4**(1): 31-41.
- Chadha, K. C., J. L. Ambrus, Jr., et al. (2004). "Interferons and interferon inhibitory activity in disease and therapy." <u>Exp Biol Med (Maywood)</u> **229**(4): 285-290.
- Chakrabarti, A., B. K. Jha, et al. (2011). "New insights into the role of RNase L in innate immunity." <u>J Interferon Cytokine Res</u> **31**(1): 49-57.
- Chill, J. H., S. R. Quadt, et al. (2004). "NMR backbone dynamics of the human type I interferon binding subunit, a representative cytokine receptor." <u>Biochemistry</u> **43**(31): 10127-10137.
- Choe, J., M. S. Kelker, et al. (2005). "Crystal structure of human toll-like receptor 3 (TLR3) ectodomain." <u>Science</u> **309**(5734): 581-585.
- Chong, M. M., A. L. Cornish, et al. (2003). "Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependent CD8+ T cell differentiation." Immunity **18**(4): 475-487.
- Choubey, D. and K. D. Moudgil (2011). "Interferons in autoimmune and inflammatory diseases: regulation and roles." <u>J Interferon Cytokine Res</u> **31**(12): 857-865.
- Cohen, B., D. Novick, et al. (1995). "Ligand-induced association of the type I interferon receptor components." <u>Mol Cell Biol</u> **15**(8): 4208-4214.

- Colamonici, O., H. Yan, et al. (1994). "Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase." <u>Mol Cell Biol</u> **14**(12): 8133-8142.
- Colamonici, O. R., H. Uyttendaele, et al. (1994). "p135tyk2, an interferon-alphaactivated tyrosine kinase, is physically associated with an interferon-alpha receptor." <u>J Biol Chem</u> **269**(5): 3518-3522.
- Colantonio, A. D., M. Epeldegui, et al. (2011). "IFN-alpha is constitutively expressed in the human thymus, but not in peripheral lymphoid organs." <u>PLoS One</u> **6**(8): e24252.
- Conrad, B. (2003). "Potential mechanisms of interferon-alpha induced autoimmunity." <u>Autoimmunity</u> **36**(8): 519-523.
- Constantinescu, S. N., E. Croze, et al. (1994). "Role of interferon alpha/beta receptor chain 1 in the structure and transmembrane signaling of the interferon alpha/beta receptor complex." Proc Natl Acad Sci U S A **91**(20): 9602-9606.
- Cornish, A. L., G. M. Davey, et al. (2003). "Suppressor of cytokine signaling-1 has IFNgamma-independent actions in T cell homeostasis." <u>J Immunol</u> **170**(2): 878-886.
- Crow, M. K. (2010). "Type I interferon in organ-targeted autoimmune and inflammatory diseases." <u>Arthritis Res Ther</u> **12 Suppl 1**: S5.
- Dalpke, A. H., S. Opper, et al. (2001). "Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs." J Immunol **166**(12): 7082-7089.
- Darnell, J. E., Jr. (1997). "STATs and gene regulation." <u>Science</u> 277(5332): 1630-1635.
- David, M. (2010). "Interferons and microRNAs." <u>J Interferon Cytokine Res</u> **30**(11): 825-828.
- de Weerd, N. A., S. A. Samarajiwa, et al. (2007). "Type I interferon receptors: biochemistry and biological functions." J Biol Chem **282**(28): 20053-20057.
- Dennis, G., Jr., B. T. Sherman, et al. (2003). "DAVID: Database for Annotation, Visualization, and Integrated Discovery." <u>Genome Biol</u> **4**(5): P3.
- Ding, Y., D. Chen, et al. (2003). "Suppressor of cytokine signaling 1 inhibits IL-10mediated immune responses." J Immunol **170**(3): 1383-1391.
- Domanski, P., E. Fish, et al. (1997). "A region of the beta subunit of the interferon alpha receptor different from box 1 interacts with Jak1 and is sufficient to activate the Jak-Stat pathway and induce an antiviral state." J Biol Chem **272**(42): 26388-26393.
- Domanski, P., O. W. Nadeau, et al. (1998). "Differential use of the betaL subunit of the type I interferon (IFN) receptor determines signaling specificity for IFNalpha2 and IFNbeta." J Biol Chem **273**(6): 3144-3147.

- Domanski, P., M. Witte, et al. (1995). "Cloning and expression of a long form of the beta subunit of the interferon alpha beta receptor that is required for signaling." <u>J Biol Chem</u> **270**(37): 21606-21611.
- Dondi, E., L. Rogge, et al. (2003). "Down-modulation of responses to type I IFN upon T cell activation." <u>J Immunol</u> **170**(2): 749-756.
- Dondi, E., G. Roue, et al. (2004). "A dual role of IFN-alpha in the balance between proliferation and death of human CD4+ T lymphocytes during primary response." J Immunol **173**(6): 3740-3747.
- Dostert, C., E. Meylan, et al. (2008). "Intracellular pattern-recognition receptors." <u>Adv</u> <u>Drug Deliv Rev</u> **60**(7): 830-840.
- Dzionek, A., Y. Sohma, et al. (2001). "BDCA-2, a novel plasmacytoid dendritic cellspecific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction." J Exp Med **194**(12): 1823-1834.
- Ehret, G. B., P. Reichenbach, et al. (2001). "DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites." J Biol Chem **276**(9): 6675-6688.
- Endo, T. A., M. Masuhara, et al. (1997). "A new protein containing an SH2 domain that inhibits JAK kinases." <u>Nature</u> **387**(6636): 921-924.
- Eriksen, K. W., V. H. Sommer, et al. (2004). "Bi-phasic effect of interferon (IFN)-alpha: IFN-alpha up- and down-regulates interleukin-4 signaling in human T cells." J Biol Chem **279**(1): 169-176.
- Farrar, J. D., J. D. Smith, et al. (2000). "Recruitment of Stat4 to the human interferonalpha/beta receptor requires activated Stat2." <u>J Biol Chem</u> **275**(4): 2693-2697.
- Fenner, J. E., R. Starr, et al. (2006). "Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity." <u>Nat Immunol</u> 7(1): 33-39.
- Fish, E. N., S. Uddin, et al. (1999). "Activation of a CrkL-stat5 signaling complex by type I interferons." J Biol Chem **274**(2): 571-573.
- Fitzgerald, K. A., D. C. Rowe, et al. (2003). "LPS-TLR4 signaling to IRF-3/7 and NFkappaB involves the toll adapters TRAM and TRIF." <u>J Exp Med</u> **198**(7): 1043-1055.
- Frith, M. C., Y. Fu, et al. (2004). "Detection of functional DNA motifs via statistical overrepresentation." <u>Nucleic Acids Res</u> 32(4): 1372-1381.
- Gallant, S. and G. Gilkeson (2006). "ETS transcription factors and regulation of immunity." <u>Arch Immunol Ther Exp (Warsz)</u> **54**(3): 149-163.
- Gallucci, S., M. Lolkema, et al. (1999). "Natural adjuvants: endogenous activators of dendritic cells." <u>Nat Med</u> **5**(11): 1249-1255.

- Gauzzi, M. C., G. Barbieri, et al. (1997). "The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor." <u>Proc Natl Acad Sci U S A</u> **94**(22): 11839-11844.
- Gauzzi, M. C., L. Velazquez, et al. (1996). "Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase." J Biol Chem 271(34): 20494-20500.
- Gazziola, C., N. Cordani, et al. (2005). "The relative endogenous expression levels of the IFNAR2 isoforms influence the cytostatic and pro-apoptotic effect of IFNalpha on pleomorphic sarcoma cells." Int J Oncol **26**(1): 129-140.
- Gesbert, F., C. Guenzi, et al. (1998). "A new tyrosine-phosphorylated 97-kDa adaptor protein mediates interleukin-2-induced association of SHP-2 with p85phosphatidylinositol 3-kinase in human T lymphocytes." J Biol Chem **273**(29): 18273-18281.
- Ghislain, J., C. A. Lingwood, et al. (1994). "Evidence for glycosphingolipid modification of the type 1 IFN receptor." <u>J Immunol</u> **153**(8): 3655-3663.
- Gibbs, V. C., M. Takahashi, et al. (1996). "A negative regulatory region in the intracellular domain of the human interferon-alpha receptor." J Biol Chem **271**(45): 28710-28716.
- Giordanetto, F. and R. T. Kroemer (2003). "A three-dimensional model of Suppressor Of Cytokine Signalling 1 (SOCS-1)." <u>Protein Eng</u> **16**(2): 115-124.
- Golding, A., A. Rosen, et al. (2010). "Interferon-alpha regulates the dynamic balance between human activated regulatory and effector T cells: implications for antiviral and autoimmune responses." <u>Immunology</u> **131**(1): 107-117.
- Gough, D. J., N. L. Messina, et al. (2010). "Functional crosstalk between type I and II interferon through the regulated expression of STAT1." <u>PLoS Biol</u> **8**(4): e1000361.
- Grimley, P. M., F. Dong, et al. (1999). "Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation." <u>Cytokine Growth Factor Rev</u> **10**(2): 131-157.
- Gupta, S., M. Jiang, et al. (1999). "IFN-alpha activates Stat6 and leads to the formation of Stat2:Stat6 complexes in B cells." J Immunol **163**(7): 3834-3841.
- Gutterman, J. U. (1994). "Cytokine therapeutics: lessons from interferon alpha." <u>Proc</u> <u>Natl Acad Sci U S A</u> **91**(4): 1198-1205.
- Haller, O., P. Staeheli, et al. (2007). "Interferon-induced Mx proteins in antiviral host defense." <u>Biochimie</u> **89**(6-7): 812-818.
- Haque, S. J., P. C. Harbor, et al. (2000). "Identification of critical residues required for suppressor of cytokine signaling-specific regulation of interleukin-4 signaling." J <u>Biol Chem</u> 275(34): 26500-26506.

- Hardy, M. P., C. M. Owczarek, et al. (2004). "Characterization of the type I interferon locus and identification of novel genes." <u>Genomics</u> **84**(2): 331-345.
- Hardy, M. P., C. M. Owczarek, et al. (2001). "The soluble murine type I interferon receptor Ifnar-2 is present in serum, is independently regulated, and has both agonistic and antagonistic properties." <u>Blood</u> **97**(2): 473-482.
- Havenar-Daughton, C., G. A. Kolumam, et al. (2006). "Cutting Edge: The direct action of type I IFN on CD4 T cells is critical for sustaining clonal expansion in response to a viral but not a bacterial infection." J Immunol **176**(6): 3315-3319.
- Hemmi, H., T. Kaisho, et al. (2003). "The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets." J Immunol **170**(6): 3059-3064.
- Hengel, H., U. H. Koszinowski, et al. (2005). "Viruses know it all: new insights into IFN networks." <u>Trends Immunol</u> **26**(7): 396-401.
- Hertzog, P. J., L. A. O'Neill, et al. (2003). "The interferon in TLR signaling: more than just antiviral." <u>Trends Immunol</u> **24**(10): 534-539.
- Hilton, D. J., R. T. Richardson, et al. (1998). "Twenty proteins containing a C-terminal SOCS box form five structural classes." <u>Proc Natl Acad Sci U S A</u> **95**(1): 114-119.
- Hirohata, S., H. Shibuya, et al. (2010). "Suppressive influences of IFN-alpha on IL-17 expression in human CD4+ T cells." <u>Clin Immunol</u> **134**(3): 340-344.
- Hoebe, K., E. M. Janssen, et al. (2003). "Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways." <u>Nat Immunol</u> **4**(12): 1223-1229.
- Honda, K., A. Takaoka, et al. (2006). "Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors." <u>Immunity</u> **25**(3): 349-360.
- Honda, K., H. Yanai, et al. (2004). "Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling." <u>Proc Natl</u> <u>Acad Sci U S A</u> **101**(43): 15416-15421.
- Honda, K., H. Yanai, et al. (2005). "IRF-7 is the master regulator of type-I interferondependent immune responses." <u>Nature</u> **434**(7034): 772-777.
- Hooks, J. J., H. M. Moutsopoulos, et al. (1979). "Immune interferon in the circulation of patients with autoimmune disease." <u>N Engl J Med</u> **301**(1): 5-8.
- Hoshino, K., O. Takeuchi, et al. (1999). "Cutting edge: Toll-like receptor 4 (TLR4)deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product." J Immunol **162**(7): 3749-3752.
- Huang da, W., B. T. Sherman, et al. (2007). "The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists." <u>Genome Biol</u> **8**(9): R183.

- Hwang, S. Y., P. J. Hertzog, et al. (1995). "A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses." <u>Proc Natl Acad Sci U S A</u> 92(24): 11284-11288.
- Indraccolo, S. (2010). "Interferon-alpha as angiogenesis inhibitor: learning from tumor models." <u>Autoimmunity</u> **43**(3): 244-247.
- Inohara, N. and G. Nunez (2003). "NODs: intracellular proteins involved in inflammation and apoptosis." <u>Nat Rev Immunol</u> **3**(5): 371-382.
- Isaacs, A. and J. Lindenmann (1957). "Virus interference. I. The interferon." <u>Proc R</u> Soc Lond B Biol Sci **147**(927): 258-267.
- Ishikawa, H. and G. N. Barber (2008). "STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling." <u>Nature</u> **455**(7213): 674-678.
- Jegalian, A. G. and H. Wu (2002). "Differential roles of SOCS family members in EpoR signal transduction." <u>J Interferon Cytokine Res</u> **22**(8): 853-860.
- Kadowaki, N. and Y. J. Liu (2002). "Natural type I interferon-producing cells as a link between innate and adaptive immunity." <u>Hum Immunol</u> **63**(12): 1126-1132.
- Karaghiosoff, M., R. Steinborn, et al. (2003). "Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock." <u>Nat Immunol</u> **4**(5): 471-477.
- Kato, H., S. Sato, et al. (2005). "Cell type-specific involvement of RIG-I in antiviral response." Immunity **23**(1): 19-28.
- Kato, H., O. Takeuchi, et al. (2006). "Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses." <u>Nature</u> **441**(7089): 101-105.
- Kawai, T., O. Adachi, et al. (1999). "Unresponsiveness of MyD88-deficient mice to endotoxin." <u>Immunity</u> **11**(1): 115-122.
- Kawai, T., S. Sato, et al. (2004). "Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6." <u>Nat Immunol</u> 5(10): 1061-1068.
- Kawai, T., K. Takahashi, et al. (2005). "IPS-1, an adaptor triggering RIG-I- and Mda5mediated type I interferon induction." <u>Nat Immunol</u> **6**(10): 981-988.
- Kim, S. H., B. Cohen, et al. (1997). "Mammalian type I interferon receptors consists of two subunits: IFNaR1 and IFNaR2." <u>Gene</u> **196**(1-2): 279-286.
- Kim, T., S. Pazhoor, et al. (2010). "Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells." <u>Proc Natl Acad Sci U S A</u> **107**(34): 15181-15186.
- Kim, T. K. and T. Maniatis (1997). "The mechanism of transcriptional synergy of an in vitro assembled interferon-beta enhanceosome." <u>Mol Cell</u> **1**(1): 119-129.

- Kinjyo, I., T. Hanada, et al. (2002). "SOCS1/JAB is a negative regulator of LPSinduced macrophage activation." Immunity **17**(5): 583-591.
- Kolumam, G. A., S. Thomas, et al. (2005). "Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection." <u>J Exp Med</u> 202(5): 637-650.
- Kotenko, S. V., G. Gallagher, et al. (2003). "IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex." <u>Nat Immunol</u> **4**(1): 69-77.
- Kotenko, S. V., L. S. Izotova, et al. (1999). "The intracellular domain of interferon-alpha receptor 2c (IFN-alphaR2c) chain is responsible for Stat activation." <u>Proc Natl</u> <u>Acad Sci U S A</u> **96**(9): 5007-5012.
- Kramer, O. H., D. Baus, et al. (2006). "Acetylation of Stat1 modulates NF-kappaB activity." <u>Genes Dev</u> **20**(4): 473-485.
- Kramer, O. H., S. K. Knauer, et al. (2009). "A phosphorylation-acetylation switch regulates STAT1 signaling." <u>Genes Dev</u> **23**(2): 223-235.
- Krause, C. D. and S. Pestka (2005). "Evolution of the Class 2 cytokines and receptors, and discovery of new friends and relatives." <u>Pharmacol Ther</u> **106**(3): 299-346.
- Krishnan, K., B. Singh, et al. (1998). "Identification of amino acid residues critical for the Src-homology 2 domain-dependent docking of Stat2 to the interferon alpha receptor." <u>J Biol Chem</u> 273(31): 19495-19501.
- Kumar, H., T. Kawai, et al. (2006). "Essential role of IPS-1 in innate immune responses against RNA viruses." J Exp Med **203**(7): 1795-1803.
- Lamken, P., S. Lata, et al. (2004). "Ligand-induced assembling of the type I interferon receptor on supported lipid bilayers." <u>J Mol Biol</u> **341**(1): 303-318.
- Le Bon, A., V. Durand, et al. (2006). "Direct stimulation of T cells by type I IFN enhances the CD8+ T cell response during cross-priming." <u>J Immunol</u> **176**(8): 4682-4689.
- Le Bon, A., N. Etchart, et al. (2003). "Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon." <u>Nat Immunol</u> **4**(10): 1009-1015.
- Le Bon, A., C. Thompson, et al. (2006). "Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN." J Immunol **176**(4): 2074-2078.
- Lecellier, C. H., P. Dunoyer, et al. (2005). "A cellular microRNA mediates antiviral defense in human cells." <u>Science</u> **308**(5721): 557-560.
- Lekmine, F., A. Sassano, et al. (2002). "The CrkL adapter protein is required for type I interferon-dependent gene transcription and activation of the small G-protein Rap1." <u>Biochem Biophys Res Commun</u> **291**(4): 744-750.

- Lenschow, D. J., C. Lai, et al. (2007). "IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses." <u>Proc Natl</u> <u>Acad Sci U S A</u> **104**(4): 1371-1376.
- Leung, S., S. A. Qureshi, et al. (1995). "Role of STAT2 in the alpha interferon signaling pathway." <u>Mol Cell Biol</u> **15**(3): 1312-1317.
- Levy, D. E. and J. E. Darnell, Jr. (2002). "Stats: transcriptional control and biological impact." <u>Nat Rev Mol Cell Biol</u> **3**(9): 651-662.
- Li, X., S. Leung, et al. (1997). "Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling." <u>Mol Cell</u> <u>Biol</u> **17**(4): 2048-2056.
- Lin, Q., C. Dong, et al. (1998). "Impairment of T and B cell development by treatment with a type I interferon." J Exp Med **187**(1): 79-87.
- Lindenmann, J. (1962). "Resistance of mice to mouse-adapted influenza A virus." <u>Virology</u> **16**: 203-204.
- Lindenmann, J., D. C. Burke, et al. (1957). "Studies on the production, mode of action and properties of interferon." <u>Br J Exp Pathol</u> **38**(5): 551-562.
- Liu, B., J. Liao, et al. (1998). "Inhibition of Stat1-mediated gene activation by PIAS1." <u>Proc Natl Acad Sci U S A</u> 95(18): 10626-10631.
- Liu, Y. J. (2005). "IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors." <u>Annu Rev Immunol</u> **23**: 275-306.
- Lu, L. F., T. H. Thai, et al. (2009). "Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein." <u>Immunity</u> **30**(1): 80-91.
- Luft, T., K. C. Pang, et al. (1998). "Type I IFNs enhance the terminal differentiation of dendritic cells." J Immunol **161**(4): 1947-1953.
- Lutfalla, G., S. J. Holland, et al. (1995). "Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster." <u>Embo J</u> **14**(20): 5100-5108.
- MacMicking, J. D. (2004). "IFN-inducible GTPases and immunity to intracellular pathogens." <u>Trends Immunol</u> **25**(11): 601-609.
- Mamane, Y., C. Heylbroeck, et al. (1999). "Interferon regulatory factors: the next generation." <u>Gene</u> **237**(1): 1-14.
- Marine, J. C., D. J. Topham, et al. (1999). "SOCS1 deficiency causes a lymphocytedependent perinatal lethality." <u>Cell</u> **98**(5): 609-616.
- Marrack, P., J. Kappler, et al. (1999). "Type I interferons keep activated T cells alive." J Exp Med **189**(3): 521-530.

- Martins, G. and K. Calame (2008). "Regulation and functions of Blimp-1 in T and B lymphocytes." <u>Annu Rev Immunol</u> **26**: 133-169.
- Mathur, A. N., H. C. Chang, et al. (2007). "Stat3 and Stat4 direct development of IL-17secreting Th cells." J Immunol **178**(8): 4901-4907.
- Matskevich, A. A. and K. Moelling (2007). "Dicer is involved in protection against influenza A virus infection." J Gen Virol **88**(Pt 10): 2627-2635.
- Mazzella, G., G. Saracco, et al. (1999). "Long-term results with interferon therapy in chronic type B hepatitis: a prospective randomized trial." <u>Am J Gastroenterol</u> **94**(8): 2246-2250.
- McKenna, S. D., K. Vergilis, et al. (2004). "Formation of human IFN-beta complex with the soluble type I interferon receptor IFNAR-2 leads to enhanced IFN stability, pharmacokinetics, and antitumor activity in xenografted SCID mice." J Interferon Cytokine Res **24**(2): 119-129.
- Meraz, M. A., J. M. White, et al. (1996). "Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway." <u>Cell</u> 84(3): 431-442.
- Meurs, E., K. Chong, et al. (1990). "Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon." <u>Cell</u> 62(2): 379-390.
- Meurs, E. F., Y. Watanabe, et al. (1992). "Constitutive expression of human doublestranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth." <u>J Virol</u> 66(10): 5805-5814.
- Moro, H., D. C. Otero, et al. (2011). "T cell-intrinsic and -extrinsic contributions of the IFNAR/STAT1-axis to thymocyte survival." <u>PLoS One</u> **6**(9): e24972.
- Moschen, A. R., S. Geiger, et al. (2008). "Interferon-alpha controls IL-17 expression in vitro and in vivo." Immunobiology **213**(9-10): 779-787.
- Mowen, K. A., J. Tang, et al. (2001). "Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription." <u>Cell</u> **104**(5): 731-741.
- Muller, M., J. Briscoe, et al. (1993). "The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction." <u>Nature</u> **366**(6451): 129-135.
- Muller, U., U. Steinhoff, et al. (1994). "Functional role of type I and type II interferons in antiviral defense." <u>Science</u> **264**(5167): 1918-1921.
- Nadeau, O. W., P. Domanski, et al. (1999). "The proximal tyrosines of the cytoplasmic domain of the beta chain of the type I interferon receptor are essential for signal transducer and activator of transcription (Stat) 2 activation. Evidence that two Stat2 sites are required to reach a threshold of interferon alpha-induced Stat2 tyrosine phosphorylation that allows normal formation of interferon-stimulated gene factor 3." J Biol Chem 274(7): 4045-4052.

- Nagano, Y. and Y. Kojima (1954). "[Immunizing property of vaccinia virus inactivated by ultraviolets rays]." <u>C R Seances Soc Biol Fil</u> **148**(19-20): 1700-1702.
- Naka, T., M. Narazaki, et al. (1997). "Structure and function of a new STAT-induced STAT inhibitor." <u>Nature</u> **387**(6636): 924-929.
- Nakayama, Y., E. H. Plisch, et al. (2010). "Role of PKR and Type I IFNs in viral control during primary and secondary infection." <u>PLoS Pathog</u> 6(6): e1000966.
- Narazaki, M., M. Fujimoto, et al. (1998). "Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling." <u>Proc Natl</u> <u>Acad Sci U S A</u> **95**(22): 13130-13134.
- Negishi, H., Y. Fujita, et al. (2006). "Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program." <u>Proc Natl Acad Sci U S A</u> **103**(41): 15136-15141.
- Netherton, C. L., J. Simpson, et al. (2009). "Inhibition of a large double-stranded DNA virus by MxA protein." <u>J Virol</u> **83**(5): 2310-2320.
- Nguyen, V. P., A. Z. Saleh, et al. (2002). "Stat2 binding to the interferon-alpha receptor 2 subunit is not required for interferon-alpha signaling." <u>J Biol Chem</u> **277**(12): 9713-9721.
- Nicholson, S. E., D. De Souza, et al. (2000). "Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130." Proc Natl Acad Sci U S A **97**(12): 6493-6498.
- Nicholson, S. E., T. A. Willson, et al. (1999). "Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction." <u>Embo J</u> 18(2): 375-385.
- Nishibori, T., Y. Tanabe, et al. (2004). "Impaired development of CD4+ CD25+ regulatory T cells in the absence of STAT1: increased susceptibility to autoimmune disease." J Exp Med **199**(1): 25-34.
- Novick, D., B. Cohen, et al. (1994). "The human interferon alpha/beta receptor: characterization and molecular cloning." <u>Cell</u> **77**(3): 391-400.
- Nyga, R., C. Pecquet, et al. (2005). "Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter." <u>Biochem J</u> **390**(Pt 1): 359-366.
- Oganesyan, G., S. K. Saha, et al. (2006). "Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response." <u>Nature</u> **439**(7073): 208-211.
- Otsuka, M., Q. Jing, et al. (2007). "Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression." <u>Immunity</u> **27**(1): 123-134.

- Owczarek, C. M., S. Y. Hwang, et al. (1997). "Cloning and characterization of soluble and transmembrane isoforms of a novel component of the murine type I interferon receptor, IFNAR 2." J Biol Chem **272**(38): 23865-23870.
- Ozato, K., P. Tailor, et al. (2007). "The interferon regulatory factor family in host defense: mechanism of action." J Biol Chem **282**(28): 20065-20069.
- Pace, L., S. Vitale, et al. (2010). "APC activation by IFN-alpha decreases regulatory T cell and enhances Th cell functions." <u>J Immunol</u> **184**(11): 5969-5979.
- Papadopoulou, A. S., J. Dooley, et al. (2012). "The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-alpha receptor." <u>Nat Immunol</u> **13**(2): 181-187.
- Paquette, R. L., N. Hsu, et al. (2002). "Interferon-alpha induces dendritic cell differentiation of CML mononuclear cells in vitro and in vivo." Leukemia **16**(8): 1484-1489.
- Paredes, J. and S. E. Krown (1991). "Interferon-alpha therapy in patients with Kaposi's sarcoma and the acquired immunodeficiency syndrome." <u>Int J</u> <u>Immunopharmacol</u> **13 Suppl 1**: 77-81.
- Park, C., S. Li, et al. (2000). "Immune response in Stat2 knockout mice." Immunity **13**(6): 795-804.
- Pedersen, I. M., G. Cheng, et al. (2007). "Interferon modulation of cellular microRNAs as an antiviral mechanism." <u>Nature</u> **449**(7164): 919-922.
- Pfeffer, L. M., L. Basu, et al. (1997). "The short form of the interferon alpha/beta receptor chain 2 acts as a dominant negative for type I interferon action." <u>J Biol</u> <u>Chem</u> **272**(17): 11002-11005.
- Platanias, L. C., S. Uddin, et al. (1999). "CrkL and CrkII participate in the generation of the growth inhibitory effects of interferons on primary hematopoietic progenitors." <u>Exp Hematol</u> 27(8): 1315-1321.
- Platanias, L. C., S. Uddin, et al. (1994). "Tyrosine phosphorylation of the alpha and beta subunits of the type I interferon receptor. Interferon-beta selectively induces tyrosine phosphorylation of an alpha subunit-associated protein." <u>J Biol</u> <u>Chem</u> 269(27): 17761-17764.
- Platanias, L. C., S. Uddin, et al. (1996). "The type I interferon receptor mediates tyrosine phosphorylation of insulin receptor substrate 2." J Biol Chem **271**(1): 278-282.
- Poltorak, A., X. He, et al. (1998). "Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in TIr4 gene." <u>Science</u> **282**(5396): 2085-2088.
- Qing, Y., A. P. Costa-Pereira, et al. (2005). "Role of tyrosine 441 of interferon-gamma receptor subunit 1 in SOCS-1-mediated attenuation of STAT1 activation." <u>J Biol</u> <u>Chem</u> 280(3): 1849-1853.

- Ragimbeau, J., E. Dondi, et al. (2003). "The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression." <u>Embo J</u> 22(3): 537-547.
- Rani, M. R., D. W. Leaman, et al. (1999). "Catalytically active TYK2 is essential for interferon-beta-mediated phosphorylation of STAT3 and interferon-alpha receptor-1 (IFNAR-1) but not for activation of phosphoinositol 3-kinase." <u>J Biol</u> <u>Chem</u> 274(45): 32507-32511.
- Riboldi, E., R. Daniele, et al. (2011). "Human C-type lectin domain family 4, member C (CLEC4C/BDCA-2/CD303) is a receptor for asialo-galactosyl-oligosaccharides." <u>J Biol Chem</u> **286**(41): 35329-35333.
- Rissoan, M. C., V. Soumelis, et al. (1999). "Reciprocal control of T helper cell and dendritic cell differentiation." <u>Science</u> **283**(5405): 1183-1186.
- Rizza, P., F. Moretti, et al. (2010). "Recent advances on the immunomodulatory effects of IFN-alpha: implications for cancer immunotherapy and autoimmunity." <u>Autoimmunity</u> **43**(3): 204-209.
- Rodig, S. J., M. A. Meraz, et al. (1998). "Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses." <u>Cell</u> **93**(3): 373-383.
- Roffi, L., G. C. Mels, et al. (1995). "Breakthrough during recombinant interferon alfa therapy in patients with chronic hepatitis C virus infection: prevalence, etiology, and management." <u>Hepatology</u> 21(3): 645-649.
- Ronnblom, L. (2011). "The type I interferon system in the etiopathogenesis of autoimmune diseases." Ups J Med Sci **116**(4): 227-237.
- Russell-Harde, D., T. C. Wagner, et al. (2000). "Role of the intracellular domain of the human type I interferon receptor 2 chain (IFNAR2c) in interferon signaling. Expression of IFNAR2c truncation mutants in U5A cells." J Biol Chem 275(31): 23981-23985.
- Saha, S. K., E. M. Pietras, et al. (2006). "Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif." <u>Embo J</u> **25**(14): 3257-3263.
- Sakaguchi, S., H. Negishi, et al. (2003). "Essential role of IRF-3 in lipopolysaccharideinduced interferon-beta gene expression and endotoxin shock." <u>Biochem</u> <u>Biophys Res Commun</u> **306**(4): 860-866.
- Sakamoto, E., F. Hato, et al. (2005). "Type I and type II interferons delay human neutrophil apoptosis via activation of STAT3 and up-regulation of cellular inhibitor of apoptosis 2." J Leukoc Biol **78**(1): 301-309.
- Sakamoto, H., H. Yasukawa, et al. (1998). "A Janus kinase inhibitor, JAB, is an interferon-gamma-inducible gene and confers resistance to interferons." <u>Blood</u> **92**(5): 1668-1676.
- Saleh, A. Z., A. T. Fang, et al. (2004). "Regulated proteolysis of the IFNaR2 subunit of the interferon-alpha receptor." <u>Oncogene</u> **23**(42): 7076-7086.

- Sancho, D. and C. Reis e Sousa (2012). "Signaling by myeloid C-type lectin receptors in immunity and homeostasis." <u>Annu Rev Immunol</u> **30**: 491-529.
- Sato, M., N. Hata, et al. (1998). "Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7." <u>FEBS Lett</u> **441**(1): 106-110.
- Sato, M., N. Tanaka, et al. (1998). "Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene." <u>FEBS Lett</u> **425**(1): 112-116.
- Schluter, G., D. Boinska, et al. (2000). "Evidence for translational repression of the SOCS-1 major open reading frame by an upstream open reading frame." <u>Biochem Biophys Res Commun</u> 268(2): 255-261.
- Schoggins, J. W., S. J. Wilson, et al. (2011). "A diverse range of gene products are effectors of the type I interferon antiviral response." <u>Nature</u> **472**(7344): 481-485.
- Sheppard, P., W. Kindsvogel, et al. (2003). "IL-28, IL-29 and their class II cytokine receptor IL-28R." <u>Nat Immunol</u> **4**(1): 63-68.
- Shimoda, K., K. Kato, et al. (2000). "Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function." Immunity **13**(4): 561-571.
- Song, M. M. and K. Shuai (1998). "The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities." J Biol Chem **273**(52): 35056-35062.
- Sozzani, S., D. Bosisio, et al. (2010). "Type I interferons in systemic autoimmunity." <u>Autoimmunity</u> **43**(3): 196-203.
- Sporri, B., P. E. Kovanen, et al. (2001). "JAB/SOCS1/SSI-1 is an interleukin-2-induced inhibitor of IL-2 signaling." <u>Blood</u> **97**(1): 221-226.
- Stark, G. R. and J. E. Darnell, Jr. (2012). "The JAK-STAT pathway at twenty." Immunity 36(4): 503-514.
- Stark, G. R., I. M. Kerr, et al. (1998). "How cells respond to interferons." <u>Annu Rev</u> <u>Biochem</u> 67: 227-264.
- Starr, R., D. Metcalf, et al. (1998). "Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1." <u>Proc Natl Acad Sci U S A</u> 95(24): 14395-14399.
- Starr, R., T. A. Willson, et al. (1997). "A family of cytokine-inducible inhibitors of signalling." <u>Nature</u> 387(6636): 917-921.
- Strengell, M., A. Lehtonen, et al. (2006). "IL-21 enhances SOCS gene expression and inhibits LPS-induced cytokine production in human monocyte-derived dendritic cells." <u>J Leukoc Biol</u>.

- Strunk, J. J., I. Gregor, et al. (2008). "Ligand binding induces a conformational change in ifnar1 that is propagated to its membrane-proximal domain." <u>J Mol Biol</u> **377**(3): 725-739.
- Takahashi, R., S. Nishimoto, et al. (2011). "SOCS1 is essential for regulatory T cell functions by preventing loss of Foxp3 expression as well as IFN-{gamma} and IL-17A production." J Exp Med 208(10): 2055-2067.
- Takeuchi, O. and S. Akira (2010). "Pattern recognition receptors and inflammation." <u>Cell</u> **140**(6): 805-820.
- Talpaz, M., H. M. Kantarjian, et al. (1987). "Clinical investigation of human alpha interferon in chronic myelogenous leukemia." <u>Blood</u> **69**(5): 1280-1288.
- Tamura, T., P. Thotakura, et al. (2005). "Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages." <u>Blood</u> 106(6): 1938-1947.
- Tang, X., J. S. Gao, et al. (2007). "Acetylation-dependent signal transduction for type I interferon receptor." <u>Cell</u> 131(1): 93-105.
- Tang, Y., X. Luo, et al. (2009). "MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins." <u>Arthritis Rheum</u> 60(4): 1065-1075.
- Taylor, G. A., C. G. Feng, et al. (2007). "Control of IFN-gamma-mediated host resistance to intracellular pathogens by immunity-related GTPases (p47 GTPases)." <u>Microbes Infect</u> **9**(14-15): 1644-1651.
- Thomis, D. C. and C. E. Samuel (1993). "Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR." J Virol **67**(12): 7695-7700.
- Trajanovska, S., C. M. Owczarek, et al. (2003). "Generation and characterization of recombinant unmodified and phosphorylatable murine IFN-alpha1 in the methylotropic yeast Pichia pastoris." <u>J Interferon Cytokine Res</u> 23(7): 351-358.
- Tyler, D. R., M. E. Persky, et al. (2007). "Pre-assembly of STAT4 with the human IFNalpha/beta receptor-2 subunit is mediated by the STAT4 N-domain." <u>Mol</u> <u>Immunol</u> **44**(8): 1864-1872.
- Uddin, S., F. Lekmine, et al. (2003). "Role of Stat5 in type I interferon-signaling and transcriptional regulation." <u>Biochem Biophys Res Commun</u> **308**(2): 325-330.
- Uddin, S., F. Lekmine, et al. (2000). "The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon alpha-dependent transcriptional activation but not serine phosphorylation of Stat proteins." J Biol Chem **275**(36): 27634-27640.
- Uddin, S., A. Sassano, et al. (2002). "Protein kinase C-delta (PKC-delta ) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727." J Biol Chem **277**(17): 14408-14416.

- Uematsu, S. and S. Akira (2007). "Toll-like receptors and Type I interferons." <u>J Biol</u> <u>Chem</u> **282**(21): 15319-15323.
- Uze, G., G. Lutfalla, et al. (1992). "Behavior of a cloned murine interferon alpha/beta receptor expressed in homospecific or heterospecific background." <u>Proc Natl</u> <u>Acad Sci U S A</u> **89**(10): 4774-4778.
- Uze, G., G. Lutfalla, et al. (1990). "Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA." <u>Cell</u> **60**(2): 225-234.
- van Boxel-Dezaire, A. H., M. R. Rani, et al. (2006). "Complex modulation of cell typespecific signaling in response to type I interferons." <u>Immunity</u> **25**(3): 361-372.
- van Boxel-Dezaire, A. H., J. A. Zula, et al. (2010). "Major differences in the responses of primary human leukocyte subsets to IFN-beta." <u>J Immunol</u> **185**(10): 5888-5899.
- Velazquez, L., M. Fellous, et al. (1992). "A protein tyrosine kinase in the interferon alpha/beta signaling pathway." <u>Cell</u> **70**(2): 313-322.
- Velichko, S., T. C. Wagner, et al. (2002). "STAT3 activation by type I interferons is dependent on specific tyrosines located in the cytoplasmic domain of interferon receptor chain 2c. Activation of multiple STATS proceeds through the redundant usage of two tyrosine residues." J Biol Chem 277(38): 35635-35641.
- Versteeg, G. A. and A. Garcia-Sastre (2010). "Viral tricks to grid-lock the type I interferon system." <u>Curr Opin Microbiol</u> **13**(4): 508-516.
- Vezali, E., A. Aghemo, et al. (2011). "Interferon in the treatment of chronic hepatitis C: a drug caught between past and future." <u>Expert Opin Biol Ther</u> **11**(3): 301-313.
- Waetzig, G. H. and S. Rose-John (2012). "Hitting a complex target: an update on interleukin-6 trans-signalling." <u>Expert Opin Ther Targets</u> **16**(2): 225-236.
- Wagner, T. C., S. Velichko, et al. (2002). "Interferon signaling is dependent on specific tyrosines located within the intracellular domain of IFNAR2c. Expression of IFNAR2c tyrosine mutants in U5A cells." J Biol Chem 277(2): 1493-1499.
- Wang, P., J. Hou, et al. (2010). "Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1." <u>J Immunol</u> **185**(10): 6226-6233.
- Xin, A., S. L. Nutt, et al. (2011). "Blimp1: driving terminal differentiation to a T." <u>Adv</u> <u>Exp Med Biol</u> **780**: 85-100.
- Xu, L. G., Y. Y. Wang, et al. (2005). "VISA is an adapter protein required for virustriggered IFN-beta signaling." <u>Mol Cell</u> **19**(6): 727-740.
- Yamamoto, M., S. Sato, et al. (2003). "Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway." <u>Science</u> **301**(5633): 640-643.

- Yan, H., K. Krishnan, et al. (1996). "Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein." <u>Embo J</u> 15(5): 1064-1074.
- Yan, H., K. Krishnan, et al. (1996). "Molecular characterization of an alpha interferon receptor 1 subunit (IFNaR1) domain required for TYK2 binding and signal transduction." <u>Mol Cell Biol</u> 16(5): 2074-2082.
- Yang, C. H., W. Shi, et al. (1996). "Direct association of STAT3 with the IFNAR-1 chain of the human type I interferon receptor." <u>J Biol Chem</u> **271**(14): 8057-8061.
- Yang, J. and G. R. Stark (2008). "Roles of unphosphorylated STATs in signaling." <u>Cell</u> <u>Res</u> 18(4): 443-451.
- Yang, X. O., R. Nurieva, et al. (2008). "Molecular antagonism and plasticity of regulatory and inflammatory T cell programs." <u>Immunity</u> **29**(1): 44-56.
- Yang, X. O., A. D. Panopoulos, et al. (2007). "STAT3 regulates cytokine-mediated generation of inflammatory helper T cells." J Biol Chem **282**(13): 9358-9363.
- Yao, Z., Y. Kanno, et al. (2007). "Nonredundant roles for Stat5a/b in directly regulating Foxp3." <u>Blood</u> **109**(10): 4368-4375.
- Yasukawa, H., H. Misawa, et al. (1999). "The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop." <u>Embo J</u> **18**(5): 1309-1320.
- Yoneyama, M., M. Kikuchi, et al. (2004). "The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses." <u>Nat</u> <u>Immunol</u> 5(7): 730-737.
- Yoshimura, A., T. Ohkubo, et al. (1995). "A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors." <u>Embo J</u> **14**(12): 2816-2826.
- Zelensky, A. N. and J. E. Gready (2005). "The C-type lectin-like domain superfamily." FEBS J 272(24): 6179-6217.
- Zhan, Y., G. M. Davey, et al. (2009). "SOCS1 negatively regulates the production of Foxp3+ CD4+ T cells in the thymus." <u>Immunol Cell Biol</u> **87**(6): 473-480.
- Zhang, C., L. Han, et al. (2010). "Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells." <u>Int J Oncol</u> **36**(6): 1503-1512.
- Zhang, D. and D. E. Zhang (2011). "Interferon-stimulated gene 15 and the protein ISGylation system." <u>J Interferon Cytokine Res</u> **31**(1): 119-130.
- Zhang, J. G., A. Farley, et al. (1999). "The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation." <u>Proc Natl Acad Sci U S A</u> **96**(5): 2071-2076.

- Zhang, J. G., D. Metcalf, et al. (2001). "The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo." <u>Proc Natl Acad</u> <u>Sci U S A</u> 98(23): 13261-13265.
- Zhao, M., J. Zhang, et al. (2012). "Stochastic expression of the interferon-beta gene." <u>PLoS Biol</u> **10**(1): e1001249.
- Zhao, W., C. Lee, et al. (2008). "A conserved IFN-alpha receptor tyrosine motif directs the biological response to type I IFNs." <u>J Immunol</u> **180**(8): 5483-5489.
- Zhao, W., C. Lee, et al. (2008). "A conserved IFNAR tyrosine motif directs the biological response to type I IFNs." <u>Submitted</u>.
- Zhou, A., J. Paranjape, et al. (1997). "Interferon action and apoptosis are defective in mice devoid of 2',5'-oligoadenylate-dependent RNase L." <u>Embo J</u> 16(21): 6355-6363.
- Zhou, H., X. Huang, et al. (2010). "miR-155 and its star-form partner miR-155\* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells." <u>Blood</u> **116**(26): 5885-5894.
- Zorn, E., E. A. Nelson, et al. (2006). "IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo." <u>Blood</u> **108**(5): 1571-1579.

# **APPENDICES I: SOLUTIONS**

### 1% Buffered Formalin

10% Buffered Formalin diluted 1 in 10 in DPBS

## Cell Lysis Buffer

50 mM Tris-HCI (pH 7.4), 1% (v/v) Igepal, 10% (v/v) Glycerol, 1 mM EDTA, 1 mM Na<sub>3</sub>VO<sub>4</sub>, 1 mM NaF, 1 mM DTT, 4.5 mM Sodium Pyrophosphate, 10 mM  $\beta$ -Glycerophosphate, 1 mM PMSF, protease inhibitor (1 tablet per 50 mls) and made to volume with MQdH<sub>2</sub>O.

## DEPC H2O

0.1% DEPC in MQH<sub>2</sub>0, incubated at RT overnight then autoclaved

### **Phosphoflow Staining Buffer**

0.5% BSA, 100mM NaF, 1mM NaV, 10mM B-glycerophosphoric acid and 4.5 mM Na Pyrophosphate made to volume with DPBS.

## Red Cell Lysis (RCL) Buffer

155 mM NH<sub>4</sub>Cl, 12 mM NaHCO<sub>3</sub>, 0.1 mM EDTA made up to volume with MQdH<sub>2</sub>O.

### 8% SDS-PAGE Lower Gel (10mls)

2.7 mls of 30% bis-acrylamide mix, 2.5 mls of 1.5 M Tris (pH 8.8), 0.1 mls of 10% SDS, 0.1 mls of 10% ammonium persulfate, 0.006 mls of TEMED and 4.6 mls of MQdH<sub>2</sub>O.

### 5 x SDS Sample Buffer

625mM Tris, 10% (v/v) glycerol, 50mM Dithiothreitol, 2.3% (w/v) SDS, 2% (v/v)  $\beta$ -mercaptoethanol

### SDS-PAGE Running Buffer

25mM Tris-HCL, 192 mM Glycine, 0.1% (w/v) SDS, made to volume with MQdH<sub>2</sub>O.

## SDS-PAGE Upper Gel (10mls)

1.7 mls of 30% bis-acrylamide mix, 1.25 mls of 0.5 M Tris (pH 6.8), 0.1 mls of 10% SDS, 0.1 mls of 10% ammonium persulfate, 0.01 mls of TEMED and 6.8 mls of MQdH<sub>2</sub>O.

# **Stripping Buffer**

62.5 mM Tris-HCl (pH 6.8), 2% (w/v) SDS, 0.1 M  $\beta$ -mercaptoethanol, made to volume with MQdH<sub>2</sub>O.

# Wet Transfer Buffer

1.56 mM Tris-HCl (pH 8.1), 1.2 mM Glycine, 20% (v/v) Methanol, made to volume with  $MQdH_2O$ .

# **APPENDICES II: PRIMERS for PCR and RT-PCR**

GAPDH Primers for conventional PCR (5' – 3' Prime)

Fwd: CTG CCA CCC AGA AGA CTG TGG

Rev: GTC ATA CCA GGA AAT CAG C

# qRT-PCR Syber Primers

| Target Gene | Forward Primer (5' – 3' Prime) | Reverse Primer (5' – 3' Prime) |
|-------------|--------------------------------|--------------------------------|
| 18S         | GTA ACC CGT TGA ACC CCA TT     | CCA TCC AAT CGG TAG TAG CG     |
| lsg15       | TGA GAG CAA GCA GCC AGA AG     | ACG GAC ACC AGG AAA TCG TT     |
| lrgm1       | GGA GCT GAA AGG TCC ACA GA     | GGG GAG CAT AAT GGG TCT CT     |
| Stat1       | TCA CAT TCA CAT GGG TGG AA     | CGG CAG CCA TGA CTT TGT AG     |
| lrf7        | ATC TTG CGC CAA GAC AAT TC     | AGC ATT GCT GAG GCT CAC TT     |
| Cxcl10      | CTG AAT CCG GAA TCT AAG ACC A  | GAG GCT CTC TGC TGT CCA TC     |

# APPENDICES III: GENE LISTS

# A. IFN $\alpha$ regulated probes within the thymus of wt mice

| Agilent Probe<br>Name | GeneSymbol     | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|----------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P77093           | 1600014C10Rik  | 2.628                         | up                           | 1.233                            | up                              | 0.000                                          | 0.002                                                           |                                                                 |
| A_51_P453616          | 1700003F17Rik  | 13.310                        | up                           | 1.921                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_51_P322473          | 2310042D19Rik  | 5.842                         | up                           | 1.308                            | up                              | 0.001                                          | 0.005                                                           |                                                                 |
| A_52_P542502          | 2310042D19Rik  | 4.975                         | up                           | 1.048                            | down                            | 0.033                                          | 0.031                                                           |                                                                 |
| A_52_P241640          | 4930599N23Rik  | 3.393                         | up                           | 2.667                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_52_P359071          | 4930599N23Rik  | 3.770                         | up                           | 1.587                            | up                              | 0.002                                          | 0.003                                                           |                                                                 |
| A_51_P264132          | 5430416O09Rik  | 1.755                         | down                         | 1.236                            | up                              | 0.023                                          |                                                                 |                                                                 |
| A_52_P417945          | 9330175E14Rik  | 2.732                         | up                           | 1.201                            | up                              | 0.024                                          | 0.021                                                           |                                                                 |
| A_51_P249471          | 9530028C05     | 2.759                         | up                           |                                  |                                 |                                                | 0.045                                                           |                                                                 |
| A_52_P61697           | 9930111J21Rik2 | 2.583                         | up                           | 1.220                            | up                              | 0.005                                          | 0.016                                                           |                                                                 |
| A_51_P158072          | A230050P20Rik  | 3.336                         | up                           | 1.556                            | up                              | 0.001                                          | 0.007                                                           |                                                                 |
| A_51_P158073          | A230050P20Rik  | 3.090                         | up                           | 1.477                            | up                              | 0.004                                          | 0.016                                                           |                                                                 |
| A_52_P649038          | A230050P20Rik  | 3.788                         | up                           | 1.553                            | up                              | 0.022                                          | 0.010                                                           |                                                                 |
| A_52_P367486          | A430072C10Rik  | 1.999                         | down                         | 1.080                            | up                              | 0.047                                          |                                                                 |                                                                 |
| A_52_P564444          | A530064D06Rik  | 7.449                         | up                           | 1.962                            | up                              | 0.005                                          | 0.017                                                           |                                                                 |
| A_52_P875073          | A930019D19Rik  | 1.053                         | up                           | 2.198                            | down                            | 0.021                                          |                                                                 |                                                                 |
| A_51_P215143          | AC154274.1     | 4.263                         | up                           | 1.339                            | up                              | 0.017                                          | 0.015                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol    | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|---------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P234944          | Adamts4       | 1.877                         | up                           | 1.427                            | down                            | 0.040                                          |                                                                 |                                                                 |
| A_51_P257134          | Adar          | 4.327                         | up                           | 2.047                            | up                              | 0.002                                          | 0.007                                                           |                                                                 |
| A_52_P183181          | Adar          | 3.353                         | up                           | 1.755                            | up                              | 0.004                                          | 0.016                                                           |                                                                 |
| A_51_P325281          | AI607873      | 3.108                         | up                           | 1.182                            | up                              | 0.017                                          | 0.000                                                           |                                                                 |
| A_52_P86965           | AI607873      | 3.092                         | up                           | 1.938                            | up                              | 0.038                                          | 0.004                                                           |                                                                 |
| A_52_P360742          | Apol7a        | 2.683                         | up                           | 1.803                            | up                              | 0.009                                          | 0.016                                                           |                                                                 |
| A_52_P803082          | Apol9a        | 3.004                         | up                           | 1.824                            | up                              | 0.005                                          | 0.003                                                           |                                                                 |
| A_51_P123546          | Armc3         | 2.197                         | up                           | 1.634                            | up                              | 0.005                                          | 0.016                                                           |                                                                 |
| A_51_P134627          | Asb13         | 2.632                         | up                           | 1.102                            | up                              | 0.012                                          | 0.019                                                           |                                                                 |
| A_52_P537941          | Asb13         | 2.517                         | up                           | 1.196                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_52_P549985          | Asb13         | 3.007                         | up                           | 1.252                            | up                              | 0.005                                          | 0.003                                                           |                                                                 |
| A_51_P129006          | B2m           | 1.502                         | up                           | 2.405                            | up                              | 0.037                                          |                                                                 |                                                                 |
| A_52_P233811          | B430306N03Rik | 3.227                         | up                           | 1.277                            | up                              | 0.005                                          | 0.005                                                           |                                                                 |
| A_51_P165182          | Batf2         | 3.889                         | up                           | 1.704                            | up                              | 0.026                                          |                                                                 |                                                                 |
| A_51_P406604          | BC006779      | 4.826                         | up                           | 1.983                            | up                              | 0.002                                          | 0.000                                                           |                                                                 |
| A_52_P321358          | BC006779      | 5.318                         | up                           | 1.540                            | up                              | 0.001                                          | 0.000                                                           |                                                                 |
| A_51_P494597          | BC013712      | 2.572                         | up                           | 1.419                            | up                              | 0.037                                          |                                                                 |                                                                 |
| A_51_P460844          | Blvrb         | 1.834                         | up                           | 3.193                            | up                              | 0.030                                          |                                                                 |                                                                 |
| A_51_P169693          | Bst2          | 3.911                         | up                           | 2.454                            | up                              | 0.002                                          | 0.009                                                           |                                                                 |
| A_52_P249514          | Ccl12         | 3.902                         | up                           | 1.729                            | up                              | 0.004                                          | 0.016                                                           |                                                                 |
| A_51_P286737          | Ccl2          | 2.602                         | up                           | 1.632                            | up                              | 0.022                                          | 0.017                                                           |                                                                 |
| A_51_P327996          | Ccl22         | 1.255                         | up                           | 2.160                            | up                              | 0.017                                          |                                                                 |                                                                 |
| A_51_P436652          | Ccl7          | 3.302                         | up                           | 1.732                            | up                              | 0.011                                          | 0.015                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol    | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|---------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P208763          | Ccl7          | 3.400                         | up                           | 1.719                            | up                              | 0.013                                          | 0.019                                                           |                                                                 |
| A_51_P232682          | Ccrl2         | 2.561                         | up                           | 1.218                            | up                              | 0.029                                          |                                                                 |                                                                 |
| A_52_P334593          | Ccrl2         | 2.749                         | up                           | 1.309                            | up                              | 0.047                                          |                                                                 |                                                                 |
| A_51_P431364          | Cd247         | 1.868                         | up                           | 2.770                            | up                              | 0.015                                          |                                                                 |                                                                 |
| A_51_P253074          | Chit1         | 4.078                         | up                           | 3.577                            | up                              | 0.037                                          | 0.011                                                           |                                                                 |
| A_51_P199168          | Cidea         | 4.742                         | down                         | 2.377                            | up                              | 0.026                                          |                                                                 |                                                                 |
| A_51_P400190          | Cmpk2         | 28.433                        | up                           | 3.887                            | up                              | 0.002                                          | 0.007                                                           |                                                                 |
| A_52_P186937          | Cmpk2         | 18.845                        | up                           | 2.564                            | up                              | 0.000                                          | 0.000                                                           |                                                                 |
| A_51_P432641          | Cxcl10        | 4.095                         | up                           | 1.301                            | up                              | 0.002                                          | 0.012                                                           |                                                                 |
| A_52_P380369          | D14Ertd668e   | 4.913                         | up                           | 1.943                            | up                              | 0.000                                          | 0.001                                                           |                                                                 |
| A_51_P393748          | Ddx58         | 5.273                         | up                           | 1.354                            | up                              | 0.012                                          | 0.002                                                           |                                                                 |
| A_52_P385536          | Ddx58         | 5.556                         | up                           | 1.652                            | up                              | 0.001                                          | 0.005                                                           |                                                                 |
| A_52_P479001          | Ddx58         | 5.634                         | up                           | 1.597                            | up                              | 0.000                                          | 0.001                                                           |                                                                 |
| A_52_P523946          | Ddx58         | 6.126                         | up                           | 1.472                            | up                              | 0.011                                          | 0.001                                                           |                                                                 |
| A_51_P197910          | Ddx60         | 7.349                         | up                           | 2.147                            | up                              | 0.045                                          | 0.012                                                           |                                                                 |
| A_51_P234274          | Ddx60         | 8.165                         | up                           | 3.117                            | up                              | 0.048                                          |                                                                 |                                                                 |
| A_52_P223809          | Dhx58         | 14.489                        | up                           | 4.837                            | up                              | 0.002                                          | 0.008                                                           |                                                                 |
| A_52_P127813          | E030037K03Rik | 6.681                         | up                           | 1.780                            | up                              | 0.002                                          | 0.000                                                           |                                                                 |
| A_52_P559919          | Eif2ak2       | 5.953                         | up                           | 1.545                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_52_P475229          | Ep400         | 1.343                         | up                           | 3.434                            | up                              | 0.047                                          |                                                                 |                                                                 |
| A_51_P376050          | Epsti1        | 2.433                         | up                           | 1.629                            | up                              | 0.010                                          | 0.005                                                           |                                                                 |
| A_52_P582374          | Epsti1        | 2.863                         | up                           | 1.825                            | up                              | 0.022                                          | 0.007                                                           |                                                                 |
| A_51_P167535          | Fabp3         | 1.618                         | down                         | 2.243                            | up                              | 0.014                                          |                                                                 |                                                                 |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P100852          | Fam26f     | 4.026                         | up                           | 2.352                            | up                              | 0.013                                          | 0.034                                                           |                                                                 |
| A_52_P172838          | Fat2       | 1.766                         | up                           | 2.230                            | up                              | 0.048                                          |                                                                 |                                                                 |
| A_51_P296755          | Fcgr1      | 4.230                         | up                           | 3.968                            | up                              | 0.007                                          | 0.033                                                           |                                                                 |
| A_52_P47846           | Fcgr1      | 5.221                         | up                           | 4.632                            | up                              | 0.001                                          | 0.010                                                           | 0.001                                                           |
| A_51_P181517          | Fcgr4      | 4.027                         | up                           | 4.589                            | up                              | 0.003                                          | 0.023                                                           | 0.027                                                           |
| A_51_P223177          | Ftsjd2     | 2.314                         | up                           | 1.345                            | up                              | 0.007                                          | 0.024                                                           |                                                                 |
| A_52_P309418          | Ftsjd2     | 2.215                         | up                           | 1.146                            | up                              | 0.000                                          | 0.002                                                           |                                                                 |
| A_51_P203955          | Gbp2       | 3.373                         | up                           | 1.802                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_51_P165244          | Gbp3       | 2.375                         | up                           | 1.389                            | up                              | 0.017                                          | 0.015                                                           |                                                                 |
| A_52_P327664          | Gbp5       | 2.724                         | up                           | 1.032                            | up                              | 0.014                                          | 0.006                                                           |                                                                 |
| A_51_P463846          | Gbp6       | 3.453                         | up                           | 1.033                            | up                              | 0.018                                          | 0.021                                                           |                                                                 |
| A_51_P323180          | Gbp9       | 3.270                         | up                           | 1.257                            | up                              | 0.038                                          | 0.027                                                           |                                                                 |
| A_52_P344949          | Gbp9       | 4.429                         | up                           | 1.524                            | up                              | 0.038                                          |                                                                 |                                                                 |
| A_52_P532982          | Gdf15      | 1.842                         | up                           | 2.072                            | up                              | 0.001                                          |                                                                 | 0.030                                                           |
| A_52_P146457          | Gm11531    | 1.428                         | up                           | 2.024                            | up                              | 0.029                                          |                                                                 |                                                                 |
| A_52_P494730          | Gm12185    | 6.088                         | up                           | 1.144                            | up                              | 0.001                                          | 0.001                                                           |                                                                 |
| A_52_P164821          | Gm12250    | 9.549                         | up                           | 2.086                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_52_P378084          | Gm12799    | 2.060                         | up                           | 5.563                            | up                              | 0.043                                          |                                                                 |                                                                 |
| A_51_P500082          | Gm14446    | 6.643                         | up                           | 1.740                            | up                              | 0.002                                          | 0.006                                                           |                                                                 |
| A_52_P294064          | Gm14446    | 6.260                         | up                           | 1.576                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_52_P599964          | Gm4955     | 7.676                         | up                           | 2.112                            | up                              | 0.001                                          | 0.001                                                           |                                                                 |
| A_52_P427759          | Gm6118     | 1.457                         | up                           | 2.797                            | up                              | 0.045                                          |                                                                 |                                                                 |
| A_51_P211467          | Gpr50      | 1.449                         | up                           | 2.927                            | up                              | 0.035                                          |                                                                 |                                                                 |

| Agilent Probe<br>Name | GeneSymbol    | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|---------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P179309          | Gria3         | 1.447                         | down                         | 2.006                            | down                            | 0.006                                          |                                                                 |                                                                 |
| A_51_P162794          | Gzma          | 2.960                         | up                           | 2.287                            | up                              | 0.004                                          | 0.008                                                           |                                                                 |
| A_51_P333274          | Gzmb          | 2.484                         | up                           | 1.414                            | up                              | 0.029                                          |                                                                 |                                                                 |
| A_51_P432538          | H2-T22        | 2.067                         | up                           | 1.523                            | up                              | 0.022                                          |                                                                 |                                                                 |
| A_52_P197826          | H2-T22        | 2.355                         | up                           | 1.149                            | up                              | 0.045                                          |                                                                 |                                                                 |
| A_52_P189812          | H2-T24        | 6.365                         | up                           | 2.634                            | up                              | 0.001                                          | 0.001                                                           |                                                                 |
| A_52_P581082          | H2-T24        | 8.122                         | up                           | 3.059                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_52_P64514           | Herc5         | 3.044                         | up                           | 1.373                            | up                              | 0.009                                          | 0.014                                                           |                                                                 |
| A_51_P134228          | HIf           | 3.479                         | down                         | 1.053                            | up                              | 0.005                                          | 0.019                                                           |                                                                 |
| A_51_P375754          | Hoxc10        | 1.089                         | up                           | 2.123                            | up                              | 0.029                                          |                                                                 |                                                                 |
| A_52_P522427          | Hsh2d         | 7.068                         | up                           | 1.947                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_52_P663686          | l830012O16Rik | 8.687                         | up                           | 3.286                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_51_P292116          | lca1          | 1.813                         | up                           | 2.105                            | up                              | 0.033                                          |                                                                 |                                                                 |
| A_51_P307150          | ldo1          | 2.050                         | up                           | 1.135                            | up                              | 0.010                                          | 0.036                                                           |                                                                 |
| A_51_P408346          | lfi204        | 3.051                         | up                           | 1.587                            | up                              | 0.030                                          | 0.028                                                           |                                                                 |
| A_51_P358233          | lfi27l2a      | 1.984                         | up                           | 2.108                            | up                              | 0.033                                          |                                                                 |                                                                 |
| A_51_P414889          | lfi35         | 3.909                         | up                           | 1.597                            | up                              | 0.007                                          | 0.025                                                           |                                                                 |
| A_51_P129229          | lfi47         | 4.453                         | up                           | 1.379                            | up                              | 0.000                                          | 0.002                                                           |                                                                 |
| A_51_P387810          | lfih1         | 4.258                         | up                           | 1.460                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_52_P121468          | lfih1         | 4.965                         | up                           | 1.447                            | up                              | 0.022                                          | 0.013                                                           |                                                                 |
| A_51_P327751          | lfit1         | 8.684                         | up                           | 1.985                            | up                              | 0.001                                          | 0.001                                                           |                                                                 |
| A_51_P161021          | lfit2         | 2.701                         | up                           | 1.031                            | down                            | 0.042                                          |                                                                 |                                                                 |
| A_52_P542388          | lfit2         | 3.272                         | up                           | 1.131                            | up                              | 0.040                                          | 0.018                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P359570          | lfit3      | 6.923                         | up                           | 2.686                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_51_P450788          | lgkv7-33   | 3.191                         | down                         | 1.094                            | down                            | 0.029                                          |                                                                 |                                                                 |
| A_51_P112355          | Igtp       | 3.501                         | up                           | 1.311                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_51_P421876          | lrf7       | 7.676                         | up                           | 2.764                            | up                              | 0.002                                          | 0.011                                                           |                                                                 |
| A_51_P127367          | Irf9       | 5.138                         | up                           | 2.321                            | up                              | 0.002                                          | 0.005                                                           |                                                                 |
| A_52_P176013          | Irf9       | 5.655                         | up                           | 2.248                            | up                              | 0.004                                          | 0.006                                                           |                                                                 |
| A_51_P262171          | lrgm1      | 5.748                         | up                           | 1.585                            | up                              | 0.000                                          | 0.001                                                           |                                                                 |
| A_52_P126158          | lrgm1      | 6.128                         | up                           | 1.507                            | up                              | 0.001                                          | 0.001                                                           |                                                                 |
| A_51_P416295          | lrgm2      | 4.397                         | up                           | 1.418                            | up                              | 0.000                                          | 0.002                                                           |                                                                 |
| A_52_P463936          | lsg15      | 14.072                        | up                           | 2.908                            | up                              | 0.000                                          | 0.002                                                           |                                                                 |
| A_51_P510713          | lsg20      | 2.277                         | up                           | 1.225                            | up                              | 0.047                                          |                                                                 |                                                                 |
| A_52_P448253          | lsg20      | 2.368                         | up                           | 1.226                            | up                              | 0.038                                          |                                                                 |                                                                 |
| A_51_P511285          | Kcnj9      | 2.284                         | down                         | 2.599                            | down                            | 0.040                                          |                                                                 | 0.027                                                           |
| A_51_P359636          | Lgals3bp   | 3.679                         | up                           | 1.936                            | up                              | 0.016                                          | 0.040                                                           |                                                                 |
| A_51_P500813          | Lgals9     | 2.353                         | up                           | 1.671                            | up                              | 0.023                                          | 0.037                                                           |                                                                 |
| A_52_P165856          | LOC639910  | 4.734                         | up                           | 2.030                            | up                              | 0.001                                          | 0.005                                                           |                                                                 |
| A_52_P203833          | Mitd1      | 2.806                         | up                           | 1.308                            | up                              | 0.001                                          | 0.002                                                           |                                                                 |
| A_52_P203837          | Mitd1      | 3.263                         | up                           | 1.558                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_51_P499623          | Mlana      | 2.096                         | up                           | 2.057                            | up                              | 0.007                                          | 0.010                                                           |                                                                 |
| A_51_P440535          | Miki       | 2.393                         | up                           | 1.550                            | up                              | 0.006                                          | 0.020                                                           |                                                                 |
| A_51_P184484          | Mmp13      | 5.714                         | up                           | 4.988                            | up                              | 0.016                                          | 0.049                                                           |                                                                 |
| A_51_P377620          | Mnda       | 2.674                         | up                           | 1.165                            | up                              | 0.033                                          | 0.031                                                           |                                                                 |
| A_51_P169495          | Mov10      | 4.087                         | up                           | 1.860                            | up                              | 0.002                                          | 0.009                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P189772          | Mpa2l      | 6.028                         | up                           | 1.746                            | up                              | 0.026                                          | 0.041                                                           |                                                                 |
| A_52_P393488          | Ms4a4c     | 2.183                         | up                           |                                  |                                 |                                                | 0.021                                                           |                                                                 |
| A_51_P294505          | Ms4a4d     | 2.488                         | up                           | 1.486                            | up                              | 0.007                                          | 0.002                                                           |                                                                 |
| A_52_P211956          | Ms4a4d     | 2.923                         | up                           | 2.124                            | up                              | 0.002                                          | 0.001                                                           |                                                                 |
| A_51_P422300          | Ms4a6b     | 2.546                         | up                           | 1.430                            | up                              | 0.003                                          | 0.007                                                           |                                                                 |
| A_52_P446431          | Mx1        | 9.040                         | up                           | 1.686                            | up                              | 0.001                                          | 0.002                                                           |                                                                 |
| A_52_P614259          | Mx1        | 8.384                         | up                           | 1.505                            | up                              | 0.000                                          | 0.002                                                           |                                                                 |
| A_51_P514085          | Mx2        | 18.139                        | up                           | 2.355                            | up                              | 0.001                                          | 0.001                                                           |                                                                 |
| A_52_P311903          | Ncoa7      | 2.904                         | up                           | 1.349                            | up                              | 0.030                                          | 0.034                                                           |                                                                 |
| A_52_P255300          | Nhsl2      | 2.114                         | up                           |                                  |                                 |                                                | 0.020                                                           |                                                                 |
| A_52_P382107          | NIrc5      | 3.056                         | up                           | 1.436                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_52_P337357          | Oas1a      | 5.031                         | up                           | 3.233                            | up                              | 0.007                                          | 0.026                                                           |                                                                 |
| A_52_P110877          | Oas1b      | 7.478                         | up                           | 1.998                            | up                              | 0.001                                          | 0.002                                                           |                                                                 |
| A_51_P428529          | Oas1c      | 3.430                         | up                           | 1.769                            | up                              | 0.001                                          | 0.005                                                           |                                                                 |
| A_51_P134030          | Oas1e      | 2.545                         | up                           | 1.455                            | up                              | 0.022                                          |                                                                 |                                                                 |
| A_51_P154842          | Oas1f      | 4.061                         | up                           | 4.336                            | up                              | 0.011                                          | 0.022                                                           |                                                                 |
| A_51_P277994          | Oas2       | 9.137                         | up                           | 2.711                            | up                              | 0.001                                          | 0.001                                                           |                                                                 |
| A_51_P472867          | Oas3       | 12.771                        | up                           | 3.058                            | up                              | 0.000                                          | 0.002                                                           | 0.030                                                           |
| A_52_P516296          | Oas3       | 8.069                         | up                           | 3.995                            | up                              | 0.005                                          | 0.008                                                           |                                                                 |
| A_51_P437309          | Oasl1      | 10.200                        | up                           | 2.062                            | up                              | 0.001                                          | 0.006                                                           |                                                                 |
| A_51_P387123          | Oasl2      | 2.964                         | up                           | 1.706                            | up                              | 0.022                                          | 0.050                                                           |                                                                 |
| A_52_P272217          | Ogfr       | 2.098                         | up                           | 1.312                            | up                              | 0.022                                          | 0.038                                                           |                                                                 |
| A_51_P237055          | Olfr1198   | 1.304                         | up                           | 2.248                            | up                              | 0.029                                          |                                                                 |                                                                 |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P386280          | Olfr187    | 1.134                         | up                           | 2.231                            | up                              | 0.047                                          |                                                                 |                                                                 |
| A_52_P358720          | Olfr266    | 1.514                         | up                           | 2.509                            | up                              | 0.028                                          |                                                                 |                                                                 |
| A_51_P340525          | Olfr357    | 1.833                         | up                           | 2.149                            | up                              | 0.040                                          |                                                                 |                                                                 |
| A_52_P103732          | Olfr741    | 1.430                         | up                           | 2.153                            | up                              | 0.003                                          |                                                                 |                                                                 |
| A_51_P389255          | Olfr767    | 1.609                         | up                           | 2.710                            | up                              | 0.008                                          |                                                                 | 0.048                                                           |
| A_52_P451775          | Otub2      | 2.170                         | up                           | 1.361                            | up                              | 0.008                                          | 0.026                                                           |                                                                 |
| A_51_P120738          | P2ry14     | 2.002                         | up                           | 1.451                            | up                              | 0.007                                          | 0.010                                                           |                                                                 |
| A_52_P380329          | Papd7      | 2.382                         | up                           | 1.321                            | up                              | 0.005                                          | 0.015                                                           |                                                                 |
| A_51_P129199          | Parp10     | 3.101                         | up                           | 1.249                            | up                              | 0.004                                          | 0.019                                                           |                                                                 |
| A_51_P214747          | Parp12     | 5.135                         | up                           | 2.363                            | up                              | 0.001                                          | 0.005                                                           |                                                                 |
| A_51_P341767          | Parp14     | 4.861                         | up                           | 1.184                            | up                              | 0.008                                          | 0.002                                                           |                                                                 |
| A_51_P514712          | Parp14     | 4.421                         | up                           | 1.520                            | up                              | 0.000                                          | 0.001                                                           |                                                                 |
| A_52_P97680           | Parp14     | 5.063                         | up                           | 1.674                            | up                              | 0.007                                          | 0.007                                                           |                                                                 |
| A_51_P218984          | Parp9      | 6.968                         | up                           | 2.125                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_51_P282760          | Per2       | 2.287                         | down                         | 1.444                            | down                            | 0.017                                          | 0.040                                                           |                                                                 |
| A_51_P262515          | Phf11      | 3.538                         | up                           | 2.475                            | up                              | 0.003                                          | 0.003                                                           |                                                                 |
| A_51_P199199          | Pik3ap1    | 2.496                         | up                           | 1.553                            | up                              | 0.030                                          |                                                                 |                                                                 |
| A_51_P270339          | Pik3ap1    | 2.307                         | up                           | 1.605                            | up                              | 0.038                                          |                                                                 |                                                                 |
| A_52_P642239          | Pik3ap1    | 2.610                         | up                           | 1.695                            | up                              | 0.027                                          |                                                                 |                                                                 |
| A_51_P515883          | Plac8      | 2.150                         | up                           | 2.075                            | up                              | 0.041                                          |                                                                 |                                                                 |
| A_51_P251022          | Plscr2     | 2.683                         | up                           | 1.378                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_52_P372901          | Plscr2     | 2.494                         | up                           | 1.163                            | up                              | 0.001                                          | 0.002                                                           |                                                                 |
| A_51_P282799          | Pml        | 3.979                         | up                           | 1.251                            | up                              | 0.013                                          | 0.032                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P121087          | Pml        | 4.044                         | up                           | 1.285                            | up                              | 0.004                                          | 0.018                                                           |                                                                 |
| A_51_P428372          | Ppbp       | 1.643                         | down                         | 2.901                            | up                              | 0.037                                          |                                                                 |                                                                 |
| A_51_P361535          | Psme2      | 2.169                         | up                           | 1.940                            | up                              | 0.040                                          |                                                                 |                                                                 |
| A_51_P470443          | Rabepk     | 2.022                         | up                           | 1.223                            | up                              | 0.002                                          | 0.004                                                           |                                                                 |
| A_52_P193362          | Rilpl1     | 2.388                         | up                           | 2.211                            | up                              | 0.037                                          |                                                                 |                                                                 |
| A_51_P177819          | Rnf114     | 3.435                         | up                           | 1.695                            | up                              | 0.004                                          | 0.016                                                           |                                                                 |
| A_51_P259378          | Rnf114     | 2.565                         | up                           | 1.431                            | up                              | 0.007                                          | 0.022                                                           |                                                                 |
| A_51_P159503          | Rnf213     | 6.006                         | up                           | 2.590                            | up                              | 0.001                                          | 0.001                                                           |                                                                 |
| A_51_P191469          | Rnf31      | 2.168                         | up                           | 1.395                            | up                              | 0.022                                          | 0.043                                                           |                                                                 |
| A_52_P514982          | Rnf31      | 2.244                         | up                           | 1.339                            | up                              | 0.026                                          | 0.044                                                           |                                                                 |
| A_52_P78183           | Rnf43      | 2.291                         | up                           | 2.715                            | up                              | 0.048                                          |                                                                 |                                                                 |
| A_52_P548790          | Rpl7a      | 1.487                         | up                           | 2.895                            | up                              | 0.047                                          |                                                                 |                                                                 |
| A_51_P505132          | Rsad2      | 33.252                        | up                           | 4.133                            | up                              | 0.000                                          | 0.000                                                           |                                                                 |
| A_51_P505134          | Rsad2      | 35.023                        | up                           | 4.345                            | up                              | 0.000                                          | 0.000                                                           |                                                                 |
| A_52_P670026          | Rsad2      | 28.339                        | up                           | 3.797                            | up                              | 0.000                                          | 0.000                                                           |                                                                 |
| A_51_P304170          | Rtp4       | 10.673                        | up                           | 3.700                            | up                              | 0.001                                          | 0.000                                                           |                                                                 |
| A_52_P466090          | Samhd1     | 2.066                         | up                           | 1.415                            | up                              | 0.002                                          | 0.012                                                           |                                                                 |
| A_52_P419678          | Serpina3f  | 6.614                         | up                           | 2.063                            | up                              | 0.002                                          | 0.009                                                           |                                                                 |
| A_52_P419679          | Serpina3f  | 4.796                         | up                           | 2.940                            | up                              | 0.010                                          | 0.012                                                           |                                                                 |
| A_51_P326191          | Serpina3g  | 2.883                         | up                           | 1.632                            | up                              | 0.033                                          |                                                                 |                                                                 |
| A_51_P447329          | Slc25a22   | 2.001                         | up                           | 1.035                            | up                              | 0.002                                          | 0.013                                                           |                                                                 |
| A_52_P425890          | Slfn1      | 4.544                         | up                           | 1.465                            | up                              | 0.001                                          | 0.005                                                           |                                                                 |
| A_51_P423578          | Slfn2      | 3.002                         | up                           | 1.567                            | up                              | 0.007                                          | 0.023                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P364694          | Slfn5      | 4.728                         | up                           | 1.510                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_51_P413359          | Slfn5      | 4.753                         | up                           | 1.218                            | up                              | 0.033                                          | 0.004                                                           |                                                                 |
| A_52_P543489          | Slfn8      | 6.654                         | up                           | 1.320                            | up                              | 0.022                                          | 0.012                                                           |                                                                 |
| A_51_P504988          | Slfn9      | 6.391                         | up                           | 1.398                            | up                              | 0.015                                          | 0.015                                                           |                                                                 |
| A_51_P255016          | Sp100      | 3.508                         | up                           | 1.760                            | up                              | 0.035                                          |                                                                 |                                                                 |
| A_51_P305583          | Sp100      | 2.591                         | up                           | 1.472                            | up                              | 0.020                                          | 0.008                                                           |                                                                 |
| A_52_P140287          | Spn        | 1.775                         | up                           | 4.841                            | up                              | 0.042                                          |                                                                 |                                                                 |
| A_52_P496503          | Stat1      | 4.021                         | up                           | 1.595                            | up                              | 0.001                                          | 0.005                                                           |                                                                 |
| A_52_P505218          | Stat1      | 3.908                         | up                           | 1.613                            | up                              | 0.001                                          | 0.001                                                           |                                                                 |
| A_52_P542540          | Stat1      | 4.650                         | up                           | 1.399                            | up                              | 0.040                                          | 0.029                                                           |                                                                 |
| A_52_P70255           | Stat1      | 4.100                         | up                           | 1.356                            | up                              | 0.001                                          | 0.002                                                           |                                                                 |
| A_52_P70261           | Stat1      | 4.248                         | up                           | 1.572                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_51_P100327          | Tap1       | 2.477                         | up                           | 1.333                            | up                              | 0.022                                          | 0.049                                                           |                                                                 |
| A_51_P481777          | Tcstv1     | 4.335                         | up                           | 3.249                            | up                              | 0.022                                          | 0.012                                                           |                                                                 |
| A_51_P143200          | Tcstv3     | 4.552                         | up                           | 1.902                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_51_P271835          | Tdrd7      | 2.493                         | up                           | 1.527                            | up                              | 0.003                                          | 0.008                                                           |                                                                 |
| A_51_P478722          | Tgtp1      | 7.045                         | up                           | 1.421                            | up                              | 0.000                                          | 0.001                                                           |                                                                 |
| A_52_P676510          | Tgtp1      | 9.697                         | up                           | 2.512                            | up                              | 0.022                                          |                                                                 |                                                                 |
| A_52_P363951          | Thbs1      | 2.619                         | up                           | 1.075                            | down                            | 0.026                                          | 0.024                                                           |                                                                 |
| A_52_P22001           | Thsd1      | 1.284                         | down                         | 1.699                            | up                              | 0.046                                          |                                                                 |                                                                 |
| A_51_P291906          | Tlr3       | 2.116                         | up                           | 1.037                            | up                              | 0.046                                          |                                                                 |                                                                 |
| A_52_P799815          | Tmem171    | 7.117                         | up                           | 2.180                            | up                              | 0.004                                          | 0.016                                                           |                                                                 |
| A_51_P448741          | Tnfsf10    | 2.854                         | up                           | 1.460                            | up                              | 0.001                                          | 0.006                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P503149          | Tns4       | 1.271                         | up                           | 2.218                            | up                              | 0.018                                          |                                                                 |                                                                 |
| A_51_P124886          | Tor1aip1   | 2.032                         | up                           | 1.192                            | up                              | 0.041                                          |                                                                 |                                                                 |
| A_51_P198179          | Tor3a      | 3.391                         | up                           | 1.652                            | up                              | 0.014                                          | 0.032                                                           |                                                                 |
| A_52_P52357           | Tor3a      | 3.534                         | up                           | 2.225                            | down                            | 0.001                                          | 0.002                                                           |                                                                 |
| A_51_P414412          | Trafd1     | 2.152                         | up                           | 1.138                            | up                              | 0.044                                          |                                                                 |                                                                 |
| A_52_P267391          | Trim12     | 2.807                         | up                           | 1.235                            | up                              | 0.048                                          | 0.034                                                           |                                                                 |
| A_52_P634829          | Trim12     | 3.145                         | up                           |                                  |                                 |                                                | 0.032                                                           |                                                                 |
| A_52_P252348          | Trim14     | 3.813                         | up                           | 1.348                            | up                              | 0.002                                          | 0.002                                                           |                                                                 |
| A_52_P640484          | Trim21     | 3.184                         | up                           | 1.194                            | up                              | 0.001                                          | 0.002                                                           |                                                                 |
| A_51_P212854          | Trim25     | 4.243                         | up                           | 1.543                            | up                              | 0.000                                          | 0.001                                                           |                                                                 |
| A_52_P654161          | Trim25     | 4.181                         | up                           | 1.553                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_52_P353031          | Trim26     | 2.058                         | up                           | 1.258                            | up                              | 0.013                                          | 0.033                                                           |                                                                 |
| A_52_P353038          | Trim26     | 2.209                         | up                           | 1.285                            | up                              | 0.007                                          | 0.023                                                           |                                                                 |
| A_51_P275454          | Trim30     | 5.517                         | up                           | 1.727                            | up                              | 0.002                                          | 0.004                                                           |                                                                 |
| A_52_P442567          | Trim30     | 7.425                         | up                           | 1.880                            | up                              | 0.022                                          | 0.015                                                           |                                                                 |
| A_52_P157316          | Trim34     | 3.549                         | up                           | 1.470                            | up                              | 0.010                                          | 0.001                                                           |                                                                 |
| A_52_P278853          | Trim34     | 3.954                         | up                           | 1.553                            | up                              | 0.004                                          | 0.002                                                           |                                                                 |
| A_52_P367034          | Trim34     | 4.370                         | up                           | 1.638                            | up                              | 0.002                                          | 0.003                                                           |                                                                 |
| A_51_P244820          | Trim56     | 2.204                         | up                           | 1.117                            | up                              | 0.002                                          | 0.002                                                           |                                                                 |
| A_52_P199019          | Trim6      | 2.179                         | up                           | 1.000                            | down                            | 0.017                                          | 0.030                                                           |                                                                 |
| A_52_P199023          | Trim6      | 2.394                         | up                           | 1.027                            | down                            | 0.049                                          |                                                                 |                                                                 |
| A_52_P199024          | Trim6      | 3.329                         | up                           |                                  |                                 |                                                | 0.027                                                           |                                                                 |
| A_52_P199633          | Trim79     | 5.541                         | up                           | 1.730                            | up                              | 0.005                                          | 0.005                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol      | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|-----------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P371494          | Trim79          | 3.396                         | up                           | 1.382                            | up                              | 0.038                                          | 0.041                                                           |                                                                 |
| A_52_P72826           | Tro             | 2.430                         | up                           | 1.174                            | up                              | 0.020                                          | 0.034                                                           |                                                                 |
| A_51_P145404          | Tuba3a          | 2.528                         | up                           | 1.498                            | up                              | 0.040                                          |                                                                 |                                                                 |
| A_51_P316816          | Uba7            | 2.507                         | up                           | 1.780                            | up                              | 0.007                                          | 0.020                                                           |                                                                 |
| A_52_P214740          | Ube2l6          | 2.301                         | up                           | 1.879                            | up                              | 0.048                                          |                                                                 |                                                                 |
| A_51_P426353          | Ucp1            | 9.821                         | down                         | 5.653                            | up                              | 0.007                                          |                                                                 |                                                                 |
| A_51_P164219          | Usp18           | 11.856                        | up                           | 2.052                            | up                              | 0.000                                          | 0.003                                                           |                                                                 |
| A_52_P284652          | Wrb             | 1.487                         | up                           | 2.000                            | up                              | 0.041                                          |                                                                 |                                                                 |
| A_51_P494403          | Xaf1            | 7.908                         | up                           | 2.536                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_51_P184936          | Zbp1            | 6.186                         | up                           | 2.333                            | up                              | 0.002                                          | 0.006                                                           |                                                                 |
| A_51_P177744          | Zc3hav1         | 2.382                         | up                           | 1.417                            | up                              | 0.011                                          | 0.031                                                           |                                                                 |
| A_52_P231610          | Zc3hav1         | 3.069                         | up                           | 1.623                            | up                              | 0.024                                          |                                                                 |                                                                 |
| A_51_P352216          | Zfp365          | 6.018                         | up                           | 2.091                            | up                              | 0.001                                          | 0.004                                                           |                                                                 |
| A_51_P144438          | Znfx1           | 2.497                         | up                           | 1.298                            | up                              | 0.007                                          | 0.026                                                           |                                                                 |
| A_51_P136181          | none identified | 2.771                         | up                           | 1.215                            | up                              | 0.015                                          | 0.029                                                           |                                                                 |
| A_51_P225764          | none identified | 1.699                         | up                           | 5.009                            | up                              | 0.046                                          |                                                                 |                                                                 |
| A_52_P1100772         | none identified | 2.648                         | up                           | 1.145                            | up                              | 0.023                                          | 0.041                                                           |                                                                 |
| A_52_P241032          | none identified | 1.534                         | up                           | 2.928                            | up                              | 0.048                                          |                                                                 |                                                                 |
| A_52_P321627          | none identified | 1.533                         | up                           | 2.033                            | up                              | 0.040                                          |                                                                 | 0.030                                                           |
| A_52_P325598          | none identified | 5.523                         | up                           |                                  |                                 |                                                | 0.048                                                           |                                                                 |
| A_52_P326187          | none identified | 7.162                         | up                           | 1.782                            | up                              | 0.001                                          | 0.002                                                           |                                                                 |
| A_52_P36261           | none identified | 3.129                         | up                           | 1.116                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_52_P374983          | none identified | 4.822                         | up                           | 1.847                            | up                              | 0.013                                          | 0.026                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol      | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold Change<br>(0 vs 6<br>hours) | Regulation<br>(0 vs 6<br>hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs<br>6 hours) (BHFDR) |
|-----------------------|-----------------|-------------------------------|------------------------------|----------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P510790          | none identified | 5.170                         | up                           | 1.293                            | up                              | 0.014                                          | 0.002                                                           |                                                                 |
| A_52_P540690          | none identified | 1.590                         | down                         | 1.333                            | up                              | 0.047                                          |                                                                 |                                                                 |
| A_52_P612668          | none identified | 2.881                         | up                           |                                  |                                 |                                                | 0.015                                                           |                                                                 |
| A_52_P615247          | none identified | 2.591                         | up                           | 1.291                            | up                              | 0.008                                          | 0.027                                                           |                                                                 |
| A_52_P648759          | none identified | 8.305                         | up                           | 3.131                            | up                              | 0.000                                          | 0.001                                                           |                                                                 |
| A_52_P653054          | none identified | 6.748                         | up                           | 2.314                            | up                              | 0.000                                          | 0.002                                                           |                                                                 |
| A_52_P670399          | none identified | 1.599                         | down                         | 2.090                            | up                              | 0.029                                          |                                                                 |                                                                 |
| A_52_P68235           | none identified | 5.743                         | up                           | 2.566                            | up                              | 0.001                                          | 0.003                                                           |                                                                 |
| A_52_P787894          | none identified | 3.105                         | up                           | 1.067                            | up                              | 0.013                                          | 0.012                                                           |                                                                 |
| A_52_P852190          | none identified | 5.319                         | up                           | 1.639                            | up                              | 0.001                                          | 0.002                                                           |                                                                 |
| A_52_P915536          | none identified | 5.322                         | up                           | 1.520                            | up                              | 0.037                                          | 0.002                                                           |                                                                 |
| A_52_P932813          | none identified | 1.326                         | up                           | 2.354                            | up                              | 0.040                                          |                                                                 |                                                                 |
| A_52_P973470          | none identified | 3.820                         | up                           | 1.559                            | up                              | 0.017                                          | 0.013                                                           |                                                                 |

# B. Thymic IFN $\alpha$ regulated genes absent from the Interferome

| Gene Symbol | Ensembl Gene ID   |
|-------------|-------------------|
| 1600014C10  | ENSMUSG0000054676 |
| 1700003F17R | ENSMUSG0000086327 |
| 2310042D19  | ENSMUSG0000078486 |
| 4930599N23  | ENSMUSG0000073144 |
| 5430416009  | ENSMUSG0000028475 |
| 9330175E14R | ENSMUSG0000074153 |
| 9830107B12  | ENSMUSG0000073386 |
| 9930111J21R | ENSMUSG0000069893 |
| 9930111J21R | ENSMUSG0000069892 |
| A530040E14R | ENSMUSG0000072109 |
| A530064D06  | ENSMUSG0000043939 |
| A930019D19  | ENSMUSG0000085958 |
| AC125149.6  | ENSMUSG0000079800 |
| AC133103.1  | ENSMUSG0000079189 |
| AC133103.4  | ENSMUSG0000079193 |
| Adamts4     | ENSMUSG0000006403 |
| AI607873    | ENSMUSG0000073490 |
| Apol7a      | ENSMUSG0000010601 |
| Armc3       | ENSMUSG0000037683 |
| Asb13       | ENSMUSG0000033781 |
| B430306N03  | ENSMUSG0000043740 |
| Batf2       | ENSMUSG0000039699 |
| Ccl12       | ENSMUSG0000035352 |
| Ccl22       | ENSMUSG0000031779 |
| Cd247       | ENSMUSG0000005763 |
| Chit1       | ENSMUSG0000026450 |
| Cidea       | ENSMUSG0000024526 |
| Ep400       | ENSMUSG0000029505 |
| Fabp3       | ENSMUSG0000028773 |
| Fabp3-ps1   | ENSMUSG0000056366 |
| Fat2        | ENSMUSG0000055333 |
| Fcgr1       | ENSMUSG0000015947 |
| Fcgr4       | ENSMUSG0000059089 |
| Gbp10       | ENSMUSG0000054588 |
| Gbp6        | ENSMUSG0000079362 |
| Gbp7        | ENSMUSG0000040253 |
| Gbp9        | ENSMUSG0000029298 |
| Gdf15       | ENSMUSG0000038508 |
| Gm10552     | ENSMUSG0000073628 |
| Gm10553     | ENSMUSG0000073631 |
| Gm11531     | ENSMUSG0000075587 |

| Gm12185     | ENSMUSG0000048852 |
|-------------|-------------------|
| Gm12187     | ENSMUSG0000083178 |
| Gm12250     | ENSMUSG0000082292 |
| Gm12799     | ENSMUSG0000082264 |
| Gm14446     | ENSMUSG0000079339 |
| Gm16825     | ENSMUSG0000085149 |
| Gm4955      | ENSMUSG0000037849 |
| Gpr50       | ENSMUSG0000056380 |
| Gria3       | ENSMUSG0000001986 |
| Gzma        | ENSMUSG0000023132 |
| H2-T10      | ENSMUSG0000079491 |
| H2-T22      | ENSMUSG0000056116 |
| Hlf         | ENSMUSG0000003949 |
| Hoxc10      | ENSMUSG0000022484 |
| I830012016R | ENSMUSG0000062488 |
| lca1        | ENSMUSG0000062995 |
| Kcnj9       | ENSMUSG0000038026 |
| Mitd1       | ENSMUSG0000026088 |
| Mlana       | ENSMUSG0000024806 |
| Mlkl        | ENSMUSG0000012519 |
| Mmp13       | ENSMUSG0000050578 |
| Ms4a4d      | ENSMUSG0000024678 |
| Ms4a6b      | ENSMUSG0000024677 |
| Ms4a6c      | ENSMUSG0000079419 |
| Mx1         | ENSMUSG0000000386 |
| Ncoa7       | ENSMUSG0000039697 |
| Nhsl2       | ENSMUSG0000079481 |
| NIrc5       | ENSMUSG0000074151 |
| Oas1b       | ENSMUSG0000029605 |
| Oas1f       | ENSMUSG0000053765 |
| Oasl2       | ENSMUSG0000029561 |
| Olfr1198    | ENSMUSG0000075117 |
| Olfr187     | ENSMUSG0000043357 |
| Olfr266     | ENSMUSG0000043529 |
| Olfr357     | ENSMUSG0000055838 |
| Olfr741     | ENSMUSG0000060108 |
| Olfr742     | ENSMUSG0000068431 |
| Olfr765     | ENSMUSG0000056853 |
| Olfr767     | ENSMUSG0000059762 |
| Otub2       | ENSMUSG0000021203 |
| Papd7       | ENSMUSG0000034575 |
| Parp14      | ENSMUSG0000034422 |
| Parp9       | ENSMUSG0000022906 |
| Per2        | ENSMUSG0000055866 |

| Pik3ap1   | ENSMUSG0000025017  |
|-----------|--------------------|
| Plscr2    | ENSMUSG0000032372  |
| Pydc4     | ENSMUSG0000073491  |
| Rabepk    | ENSMUSG0000070953  |
| Rilpl1    | ENSMUSG0000029392  |
| Rnf213    | ENSMUSG00000070327 |
| Rnf43     | ENSMUSG0000034177  |
| Rpl17     | ENSMUSG0000062328  |
| Serpina3f | ENSMUSG0000066363  |
| Slfn1     | ENSMUSG0000078763  |
| Slfn2     | ENSMUSG0000072620  |
| Slfn8     | ENSMUSG0000035208  |
| Slfn9     | ENSMUSG0000069793  |
| snoU13.18 | ENSMUSG0000089232  |
| Thsd1     | ENSMUSG0000031480  |
| Tmem171   | ENSMUSG00000052485 |
| Tor1aip1  | ENSMUSG00000026466 |
| Trim12a   | ENSMUSG0000066258  |
| Trim30a   | ENSMUSG00000030921 |
| Trim30d   | ENSMUSG00000057596 |
| Trim6     | ENSMUSG0000072244  |
| Tro       | ENSMUSG00000025272 |
| U29423    | ENSMUSG00000076575 |
| Ucp1      | ENSMUSG0000031710  |
| Wrb       | ENSMUSG0000023147  |
| Zfp365    | ENSMUSG0000037855  |
| Agilent Probe<br>Name | Gene Symbol    | Fold Change (Socs1*/*/Ifny <sup>-/-</sup> vs Socs1*/-<br>Ifny <sup>-/-</sup> ) | Regulation (Socs1⁺/⁺Ifnγ⁻ <sup>/</sup> vs Socs1 <sup>-/</sup><br>Ifnγ <sup>-/</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|----------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|
| A_52_P225888          | 1110018N20Rik  | 2.182                                                                          | up                                                                                    | 0.020                                         |
| A_52_P649276          | 1110032A04Rik  | 2.206                                                                          | down                                                                                  | 0.018                                         |
| A_52_P533780          | 1110037F02Rik  | 5.574                                                                          | down                                                                                  | 0.038                                         |
| A_51_P433679          | 1600014C10Rik  | 3.728                                                                          | down                                                                                  | 0.041                                         |
| A_52_P85893           | 1600021P15Rik  | 5.416                                                                          | down                                                                                  | 0.027                                         |
| A_51_P142206          | 1600029O15Rik  | 14.032                                                                         | down                                                                                  | 0.014                                         |
| A_52_P625270          | 1700024G13Rik  | 2.164                                                                          | down                                                                                  | 0.032                                         |
| A_51_P160536          | 1700026D08Rik  | 2.567                                                                          | down                                                                                  | 0.026                                         |
| A_52_P252996          | 1700047I17Rik1 | 3.470                                                                          | down                                                                                  | 0.019                                         |
| A_52_P50417           | 1700084J12Rik  | 4.360                                                                          | down                                                                                  | 0.027                                         |
| A_51_P139096          | 1700122O11Rik  | 2.748                                                                          | down                                                                                  | 0.020                                         |
| A_52_P931190          | 1810013L24Rik  | 2.074                                                                          | down                                                                                  | 0.038                                         |
| A_51_P334318          | 2010110P09Rik  | 2.014                                                                          | down                                                                                  | 0.016                                         |
| A_52_P670654          | 2210409E12Rik  | 2.771                                                                          | down                                                                                  | 0.022                                         |
| A_51_P360122          | 2610028H24Rik  | 2.041                                                                          | down                                                                                  | 0.027                                         |
| A_52_P218792          | 3830406C13Rik  | 2.026                                                                          | down                                                                                  | 0.031                                         |
| A_52_P1163494         | 4930480K23Rik  | 2.269                                                                          | up                                                                                    | 0.027                                         |
| A_52_P1035451         | 4930518J21Rik  | 4.909                                                                          | up                                                                                    | 0.023                                         |
| A_52_P247915          | 4930526F13Rik  | 2.381                                                                          | down                                                                                  | 0.037                                         |
| A_51_P107039          | 4930555G01Rik  | 6.627                                                                          | down                                                                                  | 0.029                                         |
| A_51_P155565          | 4930590J08Rik  | 2.320                                                                          | up                                                                                    | 0.020                                         |
| A_52_P241640          | 4930599N23Rik  | 2.310                                                                          | up                                                                                    | 0.012                                         |

## C. Probes basally different between Socs1+'+Ifn $\gamma$ -'- and Socs1-'-Ifn $\gamma$ -'- mice

| Agilent Probe<br>Name | Gene Symbol   | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1*/*Ifny*/ vs Socs1*/<br>Ifny*/) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|---------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| A_52_P1051779         | 6330403A02Rik | 2.622                                                                                                  | up                                               | 0.039                                         |
| A_52_P393589          | 9030425E11Rik | 2.581                                                                                                  | up                                               | 0.029                                         |
| A_51_P206144          | 9030425E11Rik | 2.635                                                                                                  | up                                               | 0.017                                         |
| A_51_P456114          | 9930013L23Rik | 2.218                                                                                                  | up                                               | 0.042                                         |
| A_51_P496795          | A330049M08Rik | 2.031                                                                                                  | up                                               | 0.013                                         |
| A_51_P279616          | A430089I19Rik | 3.713                                                                                                  | down                                             | 0.027                                         |
| A_51_P443082          | Abca3         | 2.648                                                                                                  | down                                             | 0.038                                         |
| A_51_P239236          | Acacb         | 2.301                                                                                                  | up                                               | 0.013                                         |
| A_51_P463452          | Acsl1         | 2.035                                                                                                  | up                                               | 0.032                                         |
| A_52_P420504          | Acta2         | 2.434                                                                                                  | up                                               | 0.038                                         |
| A_52_P210078          | Acta2         | 2.089                                                                                                  | up                                               | 0.027                                         |
| A_51_P241269          | Actg2         | 4.339                                                                                                  | down                                             | 0.048                                         |
| A_51_P110830          | Adamts8       | 2.420                                                                                                  | up                                               | 0.014                                         |
| A_52_P509020          | Adamts8       | 2.309                                                                                                  | up                                               | 0.019                                         |
| A_51_P505738          | Adig          | 2.462                                                                                                  | up                                               | 0.024                                         |
| A_51_P458451          | Adipoq        | 2.231                                                                                                  | up                                               | 0.034                                         |
| A_52_P458169          | Adm2          | 3.021                                                                                                  | up                                               | 0.027                                         |
| A_52_P661412          | Adora1        | 2.797                                                                                                  | up                                               | 0.018                                         |
| A_52_P172272          | Adora1        | 2.185                                                                                                  | up                                               | 0.018                                         |
| A_52_P551743          | Aff4          | 7.654                                                                                                  | down                                             | 0.013                                         |
| A_52_P199633          | AI451617      | 2.102                                                                                                  | up                                               | 0.028                                         |
| A_52_P151393          | AI646023      | 3.246                                                                                                  | down                                             | 0.018                                         |
| A_52_P346037          | Akr1c12       | 2.004                                                                                                  | ир                                               | 0.011                                         |
| A_51_P256170          | Akr1c18       | 6.596                                                                                                  | ир                                               | 0.013                                         |

| Agilent Probe<br>Name | Gene Symbol   | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|---------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P180213          | Akr1c19       | 2.171                                                                                                  | ир                                                                                                    | 0.012                                         |
| A_52_P58145           | Aldh1a2       | 2.272                                                                                                  | ир                                                                                                    | 0.017                                         |
| A_51_P219088          | Alpk2         | 2.862                                                                                                  | up                                                                                                    | 0.016                                         |
| A_51_P404815          | Apol6         | 3.266                                                                                                  | up                                                                                                    | 0.044                                         |
| A_52_P403405          | Aqp7          | 2.056                                                                                                  | up                                                                                                    | 0.025                                         |
| A_51_P378063          | Aqp7          | 2.195                                                                                                  | up                                                                                                    | 0.018                                         |
| A_52_P288456          | Arhgap11a     | 4.835                                                                                                  | down                                                                                                  | 0.012                                         |
| A_51_P505372          | Art2b         | 2.863                                                                                                  | ир                                                                                                    | 0.030                                         |
| A_52_P227267          | Atp1a2        | 2.205                                                                                                  | up                                                                                                    | 0.010                                         |
| A_52_P125485          | AU042651      | 2.071                                                                                                  | ир                                                                                                    | 0.037                                         |
| A_52_P54176           | Axin2         | 7.645                                                                                                  | down                                                                                                  | 0.024                                         |
| A_52_P397814          | B230340J04Rik | 2.402                                                                                                  | down                                                                                                  | 0.032                                         |
| A_51_P295848          | Bai1          | 2.275                                                                                                  | down                                                                                                  | 0.042                                         |
| A_51_P309293          | BC046331      | 2.929                                                                                                  | down                                                                                                  | 0.036                                         |
| A_52_P460929          | BC048507      | 5.691                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P605319          | BC051665      | 2.040                                                                                                  | down                                                                                                  | 0.020                                         |
| A_51_P279154          | Bex1          | 2.874                                                                                                  | down                                                                                                  | 0.026                                         |
| A_51_P208793          | C1s           | 2.336                                                                                                  | up                                                                                                    | 0.023                                         |
| A_52_P634218          | C1s           | 2.109                                                                                                  | ир                                                                                                    | 0.026                                         |
| A_52_P428699          | C2            | 2.330                                                                                                  | up                                                                                                    | 0.016                                         |
| A_52_P583097          | C2cd4a        | 2.516                                                                                                  | up                                                                                                    | 0.024                                         |
| A_51_P428708          | C4b           | 3.234                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_52_P68175           | C77080        | 11.103                                                                                                 | down                                                                                                  | 0.043                                         |
| A_51_P280384          | Cacna1h       | 2.654                                                                                                  | ир                                                                                                    | 0.015                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1* <sup>/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P357573          | Cald1       | 2.124                                                                                                  | up                                                                                                    | 0.018                                         |
| A_51_P167232          | Cask        | 2.575                                                                                                  | down                                                                                                  | 0.026                                         |
| A_52_P229997          | Cbx8        | 6.745                                                                                                  | down                                                                                                  | 0.043                                         |
| A_52_P249514          | Ccl12       | 2.056                                                                                                  | up                                                                                                    | 0.014                                         |
| A_51_P114462          | Ccl17       | 2.787                                                                                                  | ир                                                                                                    | 0.012                                         |
| A_51_P509573          | Ccl4        | 2.057                                                                                                  | up                                                                                                    | 0.029                                         |
| A_51_P231042          | Cd163       | 4.805                                                                                                  | down                                                                                                  | 0.039                                         |
| A_52_P466268          | Cd22        | 2.166                                                                                                  | up                                                                                                    | 0.016                                         |
| A_52_P483911          | Cdc42bpa    | 2.668                                                                                                  | down                                                                                                  | 0.025                                         |
| A_52_P109403          | Cebpz       | 2.573                                                                                                  | down                                                                                                  | 0.025                                         |
| A_51_P273979          | Cenpa       | 2.553                                                                                                  | down                                                                                                  | 0.047                                         |
| A_52_P371666          | Cep68       | 2.043                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P375969          | Ces3        | 2.259                                                                                                  | up                                                                                                    | 0.037                                         |
| A_51_P496905          | Cfi         | 2.220                                                                                                  | up                                                                                                    | 0.018                                         |
| A_51_P112966          | Ch25h       | 3.193                                                                                                  | ир                                                                                                    | 0.006                                         |
| A_51_P299107          | Chst5       | 6.876                                                                                                  | up                                                                                                    | 0.013                                         |
| A_51_P199168          | Cidea       | 2.279                                                                                                  | up                                                                                                    | 0.025                                         |
| A_51_P490456          | Cidec       | 2.199                                                                                                  | up                                                                                                    | 0.026                                         |
| A_51_P313294          | Cir1        | 4.444                                                                                                  | down                                                                                                  | 0.042                                         |
| A_51_P196243          | Ckap5       | 2.989                                                                                                  | down                                                                                                  | 0.028                                         |
| A_51_P469568          | Cldn13      | 2.435                                                                                                  | up                                                                                                    | 0.031                                         |
| A_52_P558609          | Clec16a     | 2.359                                                                                                  | up                                                                                                    | 0.028                                         |
| A_52_P447284          | Clic6       | 2.967                                                                                                  | down                                                                                                  | 0.013                                         |
| A_52_P186937          | Cmpk2       | 2.344                                                                                                  | ир                                                                                                    | 0.013                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P400190          | Cmpk2       | 2.159                                                                                                  | up                                                                                                    | 0.022                                         |
| A_51_P505384          | Cntn4       | 2.201                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P658611          | Col1a1      | 2.008                                                                                                  | ир                                                                                                    | 0.047                                         |
| A_52_P282058          | Col8a1      | 3.183                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P148612          | Cox7a1      | 2.468                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_52_P136153          | Cox7c       | 5.833                                                                                                  | down                                                                                                  | 0.026                                         |
| A_51_P246001          | Сре         | 2.061                                                                                                  | ир                                                                                                    | 0.028                                         |
| A_52_P78417           | Сре         | 2.107                                                                                                  | ир                                                                                                    | 0.026                                         |
| A_51_P170562          | Cpn2        | 4.471                                                                                                  | up                                                                                                    | 0.020                                         |
| A_51_P232913          | Cpt1b       | 2.200                                                                                                  | ир                                                                                                    | 0.028                                         |
| A_51_P139108          | Cpxm1       | 2.337                                                                                                  | ир                                                                                                    | 0.021                                         |
| A_51_P300618          | Crb2        | 2.138                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_52_P460734          | Crhbp       | 2.601                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_52_P420500          | Cry1        | 3.354                                                                                                  | down                                                                                                  | 0.013                                         |
| A_52_P278064          | Cspg4       | 2.081                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_51_P137419          | Cst7        | 2.048                                                                                                  | ир                                                                                                    | 0.049                                         |
| A_52_P38029           | Cwf19I1     | 2.488                                                                                                  | down                                                                                                  | 0.021                                         |
| A_52_P99810           | Cx3cr1      | 2.121                                                                                                  | ир                                                                                                    | 0.026                                         |
| A_51_P294235          | Cxcl17      | 2.612                                                                                                  | down                                                                                                  | 0.014                                         |
| A_52_P559975          | Cxcr2       | 2.631                                                                                                  | up                                                                                                    | 0.019                                         |
| A_52_P95517           | Cyp2a22     | 6.096                                                                                                  | down                                                                                                  | 0.013                                         |
| A_52_P481346          | Cyp2g1      | 2.019                                                                                                  | down                                                                                                  | 0.028                                         |
| A_51_P252859          | Cyr61       | 2.362                                                                                                  | ир                                                                                                    | 0.010                                         |
| A_52_P380369          | D14Ertd668e | 2.444                                                                                                  | ир                                                                                                    | 0.025                                         |

| Agilent Probe<br>Name | Gene Symbol   | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1*/*Ifny*/ vs Socs1*/<br>Ifny*/) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|---------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| A_52_P305579          | D330041H03Rik | 2.488                                                                                                  | down                                             | 0.043                                         |
| A_52_P204331          | D630039A03Rik | 2.379                                                                                                  | ир                                               | 0.013                                         |
| A_52_P445346          | Dapk1         | 6.678                                                                                                  | down                                             | 0.012                                         |
| A_52_P37826           | Dapk1         | 2.877                                                                                                  | down                                             | 0.007                                         |
| A_51_P156144          | Dbx1          | 2.896                                                                                                  | down                                             | 0.045                                         |
| A_51_P384936          | Ddo           | 2.465                                                                                                  | up                                               | 0.036                                         |
| A_51_P393748          | Ddx58         | 2.207                                                                                                  | ир                                               | 0.014                                         |
| A_51_P197910          | Ddx60         | 2.673                                                                                                  | ир                                               | 0.042                                         |
| A_51_P512820          | Dera          | 2.702                                                                                                  | down                                             | 0.028                                         |
| A_51_P256369          | Dot1I         | 5.168                                                                                                  | down                                             | 0.019                                         |
| A_51_P115441          | Dpysl3        | 2.034                                                                                                  | ир                                               | 0.010                                         |
| A_51_P249848          | Dsg2          | 2.208                                                                                                  | up                                               | 0.014                                         |
| A_52_P141715          | Dtna          | 2.614                                                                                                  | down                                             | 0.025                                         |
| A_52_P108607          | Dtna          | 2.322                                                                                                  | down                                             | 0.016                                         |
| A_51_P365744          | Duoxa2        | 2.638                                                                                                  | ир                                               | 0.047                                         |
| A_51_P242634          | Dusp16        | 4.786                                                                                                  | down                                             | 0.012                                         |
| A_52_P127813          | E030037K03Rik | 3.871                                                                                                  | up                                               | 0.018                                         |
| A_51_P157524          | E2f4          | 12.484                                                                                                 | down                                             | 0.027                                         |
| A_52_P349216          | E2f6          | 3.297                                                                                                  | down                                             | 0.026                                         |
| A_52_P157726          | Ear7          | 3.017                                                                                                  | down                                             | 0.013                                         |
| A_51_P266103          | Edc4          | 3.281                                                                                                  | down                                             | 0.047                                         |
| A_51_P493364          | Eif4a1        | 12.113                                                                                                 | down                                             | 0.013                                         |
| A_52_P613688          | Elmo1         | 2.876                                                                                                  | down                                             | 0.048                                         |
| A_51_P422257          | Emx1          | 3.102                                                                                                  | down                                             | 0.041                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1⁺/⁺Ifny⁻/⁻ vs Socs1⁻/⁻<br>Ifny⁻/⁻) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| A_51_P332309          | Eomes       | 6.211                                                                                                  | up                                                  | 0.013                                         |
| A_52_P475229          | Ep400       | 3.666                                                                                                  | down                                                | 0.022                                         |
| A_51_P209903          | Erc2        | 2.448                                                                                                  | ир                                                  | 0.044                                         |
| A_52_P197965          | Erdr1       | 2.170                                                                                                  | down                                                | 0.018                                         |
| A_51_P329043          | Ets1        | 2.002                                                                                                  | down                                                | 0.020                                         |
| A_51_P174961          | F10         | 2.009                                                                                                  | up                                                  | 0.042                                         |
| A_51_P167535          | Fabp3       | 3.365                                                                                                  | ир                                                  | 0.031                                         |
| A_51_P387764          | Fabp5       | 5.094                                                                                                  | down                                                | 0.026                                         |
| A_51_P368285          | Fam101a     | 2.526                                                                                                  | down                                                | 0.033                                         |
| A_52_P437850          | Fam13c      | 2.214                                                                                                  | down                                                | 0.032                                         |
| A_52_P57317           | Fam19a3     | 2.099                                                                                                  | up                                                  | 0.025                                         |
| A_51_P237512          | Fam33a      | 4.107                                                                                                  | down                                                | 0.018                                         |
| A_52_P375970          | Fam38b      | 2.058                                                                                                  | ир                                                  | 0.028                                         |
| A_52_P362828          | Fat3        | 2.757                                                                                                  | up                                                  | 0.010                                         |
| A_51_P499020          | Fbp2        | 2.487                                                                                                  | ир                                                  | 0.033                                         |
| A_51_P181517          | Fcgr4       | 2.976                                                                                                  | up                                                  | 0.011                                         |
| A_52_P416518          | Fgd4        | 3.643                                                                                                  | down                                                | 0.032                                         |
| A_52_P326548          | Fhod3       | 2.066                                                                                                  | up                                                  | 0.038                                         |
| A_51_P286423          | Foxd3       | 2.527                                                                                                  | down                                                | 0.018                                         |
| A_51_P344790          | Foxl2       | 2.059                                                                                                  | down                                                | 0.018                                         |
| A_51_P401096          | Foxp3       | 2.202                                                                                                  | ир                                                  | 0.027                                         |
| A_51_P481261          | Foxq1       | 3.300                                                                                                  | down                                                | 0.032                                         |
| A_51_P312485          | Fpr1        | 2.229                                                                                                  | up                                                  | 0.041                                         |
| A_52_P89305           | Frmd5       | 2.070                                                                                                  | up                                                  | 0.019                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1⁺/⁺Ifny⁻/⁻ vs Socs1⁻/⁻<br>Ifny⁻/⁻) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| A_51_P381821          | Fst         | 3.371                                                                                                  | up                                                  | 0.005                                         |
| A_52_P129428          | Fzd2        | 2.661                                                                                                  | up                                                  | 0.027                                         |
| A_51_P404077          | Fzd2        | 3.166                                                                                                  | up                                                  | 0.023                                         |
| A_51_P490997          | Gas2l1      | 4.380                                                                                                  | down                                                | 0.038                                         |
| A_51_P213260          | Gata5       | 3.406                                                                                                  | ир                                                  | 0.039                                         |
| A_52_P327664          | Gbp5        | 2.148                                                                                                  | up                                                  | 0.028                                         |
| A_51_P406913          | Gdf7        | 2.914                                                                                                  | down                                                | 0.029                                         |
| A_51_P241426          | Gfra4       | 2.234                                                                                                  | up                                                  | 0.027                                         |
| A_51_P331431          | Glt25d2     | 2.179                                                                                                  | down                                                | 0.028                                         |
| A_52_P602847          | Glycam1     | 19.839                                                                                                 | up                                                  | 0.045                                         |
| A_52_P657123          | Gm10270     | 5.435                                                                                                  | down                                                | 0.029                                         |
| A_52_P219741          | Gm10324     | 7.446                                                                                                  | down                                                | 0.024                                         |
| A_52_P481279          | Gm1060      | 2.411                                                                                                  | up                                                  | 0.032                                         |
| A_52_P164821          | Gm12250     | 2.593                                                                                                  | up                                                  | 0.009                                         |
| A_51_P514553          | Gm12504     | 8.189                                                                                                  | down                                                | 0.013                                         |
| A_52_P302041          | Gm12755     | 2.236                                                                                                  | down                                                | 0.022                                         |
| A_52_P108492          | Gm12770     | 4.559                                                                                                  | down                                                | 0.018                                         |
| A_52_P106399          | Gm13253     | 4.563                                                                                                  | down                                                | 0.016                                         |
| A_52_P347796          | Gm14420     | 2.038                                                                                                  | down                                                | 0.030                                         |
| A_51_P500082          | Gm14446     | 3.599                                                                                                  | up                                                  | 0.020                                         |
| A_52_P294064          | Gm14446     | 3.019                                                                                                  | ир                                                  | 0.040                                         |
| A_52_P234910          | Gm15032     | 5.841                                                                                                  | down                                                | 0.018                                         |
| A_51_P286431          | Gm15247     | 2.479                                                                                                  | down                                                | 0.036                                         |
| A_51_P286426          | Gm15247     | 2.426                                                                                                  | down                                                | 0.037                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1⁺/⁺Ifny⁻/⁻ vs Socs1⁻/⁻<br>Ifny⁻/⁻) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| A_51_P180176          | Gm16223     | 5.141                                                                                                  | down                                                | 0.018                                         |
| A_52_P13216           | Gm16381     | 7.022                                                                                                  | down                                                | 0.014                                         |
| A_52_P157880          | Gm1947      | 3.513                                                                                                  | down                                                | 0.029                                         |
| A_52_P975691          | Gm4371      | 3.761                                                                                                  | down                                                | 0.044                                         |
| A_52_P1082736         | Gm4532      | 2.733                                                                                                  | down                                                | 0.044                                         |
| A_52_P639689          | Gm4907      | 2.090                                                                                                  | down                                                | 0.029                                         |
| A_52_P219791          | Gm4961      | 3.732                                                                                                  | down                                                | 0.031                                         |
| A_52_P151378          | Gm5076      | 6.269                                                                                                  | down                                                | 0.033                                         |
| A_52_P195358          | Gm5176      | 3.186                                                                                                  | down                                                | 0.018                                         |
| A_52_P136741          | Gm5222      | 4.231                                                                                                  | up                                                  | 0.023                                         |
| A_52_P648246          | Gm5699      | 8.941                                                                                                  | down                                                | 0.013                                         |
| A_52_P150114          | Gm5731      | 3.982                                                                                                  | down                                                | 0.028                                         |
| A_52_P638319          | Gm5828      | 3.542                                                                                                  | down                                                | 0.023                                         |
| A_52_P401295          | Gm5989      | 8.163                                                                                                  | down                                                | 0.036                                         |
| A_51_P494655          | Gm6484      | 2.899                                                                                                  | up                                                  | 0.029                                         |
| A_52_P740427          | Gm6484      | 2.220                                                                                                  | up                                                  | 0.029                                         |
| A_52_P759266          | Gm6787      | 4.422                                                                                                  | down                                                | 0.016                                         |
| A_51_P163261          | Gm6985      | 5.796                                                                                                  | down                                                | 0.015                                         |
| A_52_P629037          | Gm6987      | 5.396                                                                                                  | down                                                | 0.028                                         |
| A_52_P602180          | Gm7098      | 16.001                                                                                                 | down                                                | 0.018                                         |
| A_52_P341489          | Gm7120      | 2.631                                                                                                  | down                                                | 0.030                                         |
| A_52_P113916          | Gm7146      | 4.950                                                                                                  | down                                                | 0.047                                         |
| A_52_P403527          | Gm8109      | 5.205                                                                                                  | down                                                | 0.028                                         |
| A_52_P337821          | Gm8300      | 5.735                                                                                                  | down                                                | 0.025                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_52_P74637           | Gm9292      | 5.366                                                                                                  | down                                                                                                  | 0.025                                         |
| A_52_P351686          | Gm9558      | 3.919                                                                                                  | down                                                                                                  | 0.010                                         |
| A_52_P579252          | Gm9644      | 3.488                                                                                                  | down                                                                                                  | 0.042                                         |
| A_51_P293853          | Gpd1        | 2.552                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_52_P16419           | Gpd1        | 2.494                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_51_P292008          | Gpx3        | 2.770                                                                                                  | ир                                                                                                    | 0.011                                         |
| A_52_P87997           | Gsdmc2      | 2.245                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P470475          | Gsdmcl-ps   | 3.652                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_51_P322016          | Gsx1        | 2.157                                                                                                  | down                                                                                                  | 0.029                                         |
| A_51_P382732          | Gtf3c6      | 15.527                                                                                                 | down                                                                                                  | 0.038                                         |
| A_51_P195153          | Gtse1       | 6.014                                                                                                  | down                                                                                                  | 0.026                                         |
| A_51_P333274          | Gzmb        | 2.260                                                                                                  | ир                                                                                                    | 0.017                                         |
| A_51_P138510          | Gzmc        | 3.429                                                                                                  | ир                                                                                                    | 0.037                                         |
| A_51_P142196          | H19         | 2.575                                                                                                  | up                                                                                                    | 0.046                                         |
| A_52_P571350          | H19         | 2.469                                                                                                  | ир                                                                                                    | 0.030                                         |
| A_51_P230267          | H2-Q10      | 2.258                                                                                                  | ир                                                                                                    | 0.033                                         |
| A_52_P581082          | H2-T24      | 2.118                                                                                                  | up                                                                                                    | 0.036                                         |
| A_52_P189812          | H2-T24      | 2.050                                                                                                  | ир                                                                                                    | 0.021                                         |
| A_51_P129127          | H2-T3       | 2.323                                                                                                  | down                                                                                                  | 0.014                                         |
| A_51_P492456          | Has1        | 2.635                                                                                                  | up                                                                                                    | 0.013                                         |
| A_51_P342897          | Heatr5b     | 3.145                                                                                                  | down                                                                                                  | 0.038                                         |
| A_52_P36591           | Hmmr        | 3.752                                                                                                  | down                                                                                                  | 0.018                                         |
| A_52_P14666           | Hnrnpa1l2   | 7.484                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P509263          | Hoxa7       | 3.349                                                                                                  | down                                                                                                  | 0.040                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1*/*Ifny*/- vs Socs1*/-<br>Ifny*/-) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| A_51_P436342          | Hoxb5       | 2.062                                                                                                  | up                                                  | 0.019                                         |
| A_51_P235945          | Нр          | 2.160                                                                                                  | up                                                  | 0.047                                         |
| A_51_P388819          | Hpcal4      | 4.433                                                                                                  | ир                                                  | 0.013                                         |
| A_51_P419007          | Hspb3       | 2.485                                                                                                  | down                                                | 0.032                                         |
| A_51_P453142          | lbtk        | 2.589                                                                                                  | down                                                | 0.032                                         |
| A_52_P86693           | lfi27l1     | 2.143                                                                                                  | up                                                  | 0.029                                         |
| A_52_P90363           | lfi27l2a    | 2.135                                                                                                  | ир                                                  | 0.026                                         |
| A_51_P358233          | lfi27l2a    | 2.223                                                                                                  | up                                                  | 0.021                                         |
| A_52_P90364           | lfi27l2a    | 2.775                                                                                                  | up                                                  | 0.014                                         |
| A_52_P541802          | lfitm1      | 2.585                                                                                                  | up                                                  | 0.012                                         |
| A_51_P150710          | lgj         | 2.051                                                                                                  | ир                                                  | 0.036                                         |
| A_52_P957659          | lgkv1-117   | 2.193                                                                                                  | up                                                  | 0.048                                         |
| A_51_P142703          | II19        | 2.025                                                                                                  | up                                                  | 0.013                                         |
| A_51_P339793          | ll1rl1      | 3.151                                                                                                  | up                                                  | 0.018                                         |
| A_52_P484194          | ll1rl1      | 3.136                                                                                                  | up                                                  | 0.029                                         |
| A_52_P360280          | Ints2       | 2.662                                                                                                  | down                                                | 0.017                                         |
| A_51_P421876          | lrf7        | 2.758                                                                                                  | up                                                  | 0.026                                         |
| A_52_P176013          | Irf9        | 2.344                                                                                                  | up                                                  | 0.026                                         |
| A_51_P127367          | Irf9        | 2.540                                                                                                  | up                                                  | 0.020                                         |
| A_52_P463936          | lsg15       | 2.631                                                                                                  | ир                                                  | 0.028                                         |
| A_51_P292221          | Kcnk3       | 2.197                                                                                                  | ир                                                  | 0.022                                         |
| A_52_P639402          | Kcnk3       | 2.309                                                                                                  | up                                                  | 0.019                                         |
| A_52_P665887          | Kdm5a       | 2.666                                                                                                  | down                                                | 0.028                                         |
| A_52_P538490          | Klk7        | 3.584                                                                                                  | down                                                | 0.007                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1⁺′⁺Ifnγ⁻⁄⁻ vs Socs1⁻∕⁻<br>Ifnγ⁻⁄⁻) | Regulation (Socs1⁺ <sup>/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P256983          | Klrg1       | 2.419                                                | up                                                                                                    | 0.013                                         |
| A_51_P287691          | Kremen2     | 2.383                                                | up                                                                                                    | 0.025                                         |
| A_52_P410685          | Krt7        | 2.541                                                | up                                                                                                    | 0.040                                         |
| A_52_P666855          | Ksr1        | 3.129                                                | down                                                                                                  | 0.034                                         |
| A_52_P142807          | Lamp3       | 4.297                                                | down                                                                                                  | 0.020                                         |
| A_51_P125345          | Lce1b       | 2.077                                                | down                                                                                                  | 0.028                                         |
| A_51_P298615          | Lhx8        | 2.387                                                | ир                                                                                                    | 0.042                                         |
| A_52_P229278          | Limch1      | 2.050                                                | down                                                                                                  | 0.049                                         |
| A_51_P435366          | Lipe        | 2.022                                                | up                                                                                                    | 0.015                                         |
| A_52_P426554          | Lmnb2       | 3.794                                                | down                                                                                                  | 0.039                                         |
| A_51_P427964          | Lmod3       | 2.970                                                | down                                                                                                  | 0.012                                         |
| A_52_P445474          | Lmtk2       | 4.438                                                | down                                                                                                  | 0.028                                         |
| A_52_P246277          | LOC633417   | 2.312                                                | down                                                                                                  | 0.014                                         |
| A_52_P671812          | LOC641192   | 5.601                                                | down                                                                                                  | 0.029                                         |
| A_52_P186785          | LOC675539   | 2.657                                                | down                                                                                                  | 0.036                                         |
| A_52_P565396          | LOC676708   | 2.850                                                | down                                                                                                  | 0.014                                         |
| A_51_P288295          | LOC677484   | 2.595                                                | up                                                                                                    | 0.045                                         |
| A_51_P304239          | LoxI1       | 2.103                                                | up                                                                                                    | 0.018                                         |
| A_51_P229498          | Lrfn2       | 2.565                                                | ир                                                                                                    | 0.018                                         |
| A_52_P285470          | Lrp2        | 2.467                                                | up                                                                                                    | 0.036                                         |
| A_51_P407780          | Ly6h        | 2.140                                                | ир                                                                                                    | 0.013                                         |
| A_51_P407786          | Ly6h        | 2.574                                                | ир                                                                                                    | 0.023                                         |
| A_52_P215597          | Lztfl1      | 5.554                                                | down                                                                                                  | 0.035                                         |
| A_51_P504214          | Magix       | 2.102                                                | up                                                                                                    | 0.043                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P480390          | Meig1       | 2.178                                                                                                  | down                                                                                                  | 0.014                                         |
| A_51_P124535          | Mest        | 2.272                                                                                                  | ир                                                                                                    | 0.017                                         |
| A_51_P195244          | Mfap4       | 2.330                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P255699          | Mmp3        | 2.750                                                                                                  | ир                                                                                                    | 0.032                                         |
| A_51_P122071          | Muc5b       | 2.060                                                                                                  | down                                                                                                  | 0.043                                         |
| A_51_P514085          | Mx2         | 2.807                                                                                                  | ир                                                                                                    | 0.023                                         |
| A_51_P455157          | Mybpc2      | 2.975                                                                                                  | ир                                                                                                    | 0.042                                         |
| A_51_P159367          | Myo16       | 3.602                                                                                                  | down                                                                                                  | 0.020                                         |
| A_51_P431785          | Myom2       | 2.764                                                                                                  | up                                                                                                    | 0.020                                         |
| A_52_P183138          | Nab2        | 11.308                                                                                                 | down                                                                                                  | 0.014                                         |
| A_51_P500882          | Ncr1        | 2.958                                                                                                  | ир                                                                                                    | 0.017                                         |
| A_52_P1076033         | Ndufs5      | 2.179                                                                                                  | down                                                                                                  | 0.021                                         |
| A_51_P283759          | Nfkb1       | 3.753                                                                                                  | down                                                                                                  | 0.016                                         |
| A_52_P382107          | NIrc5       | 2.190                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_51_P187210          | Nol11       | 2.764                                                                                                  | down                                                                                                  | 0.030                                         |
| A_52_P505501          | Nsmce2      | 2.202                                                                                                  | down                                                                                                  | 0.015                                         |
| A_51_P305003          | Ntrk1       | 2.517                                                                                                  | up                                                                                                    | 0.013                                         |
| A_52_P486360          | Nubpl       | 2.952                                                                                                  | down                                                                                                  | 0.010                                         |
| A_51_P204121          | Nudt6       | 2.889                                                                                                  | down                                                                                                  | 0.017                                         |
| A_52_P337357          | Oas1a       | 3.635                                                                                                  | ир                                                                                                    | 0.028                                         |
| A_52_P110877          | Oas1b       | 2.039                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P277994          | Oas2        | 4.210                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P472867          | Oas3        | 2.181                                                                                                  | ир                                                                                                    | 0.039                                         |
| A_51_P437309          | Oasl1       | 3.484                                                                                                  | ир                                                                                                    | 0.016                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1* <sup>/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_52_P377492          | Olfr1122    | 2.120                                                                                                  | down                                                                                                  | 0.042                                         |
| A_51_P436790          | Olfr144     | 2.049                                                                                                  | down                                                                                                  | 0.027                                         |
| A_51_P386280          | Olfr187     | 2.703                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P219752          | Olfr382     | 2.015                                                                                                  | down                                                                                                  | 0.047                                         |
| A_52_P557059          | Olfr536     | 2.091                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P319460          | Osmr        | 2.084                                                                                                  | up                                                                                                    | 0.016                                         |
| A_52_P495729          | Osmr        | 2.300                                                                                                  | up                                                                                                    | 0.037                                         |
| A_51_P486190          | Pabpc2      | 4.503                                                                                                  | down                                                                                                  | 0.018                                         |
| A_51_P422540          | Paqr8       | 2.326                                                                                                  | down                                                                                                  | 0.010                                         |
| A_52_P241129          | Pcbp1       | 14.599                                                                                                 | down                                                                                                  | 0.014                                         |
| A_51_P184223          | Pcdhb7      | 2.613                                                                                                  | up                                                                                                    | 0.022                                         |
| A_51_P483878          | Pcdhb9      | 2.802                                                                                                  | up                                                                                                    | 0.027                                         |
| A_51_P137688          | Pex1        | 2.367                                                                                                  | down                                                                                                  | 0.033                                         |
| A_51_P414927          | Pigw        | 2.008                                                                                                  | down                                                                                                  | 0.038                                         |
| A_52_P99848           | Pik3cd      | 2.809                                                                                                  | down                                                                                                  | 0.050                                         |
| A_52_P608312          | Pitpnb      | 5.031                                                                                                  | down                                                                                                  | 0.020                                         |
| A_51_P225427          | Pkp2        | 2.137                                                                                                  | up                                                                                                    | 0.006                                         |
| A_52_P94983           | Pla2g5      | 2.473                                                                                                  | up                                                                                                    | 0.018                                         |
| A_51_P244497          | Plin1       | 2.522                                                                                                  | up                                                                                                    | 0.014                                         |
| A_51_P495780          | Plin4       | 2.811                                                                                                  | up                                                                                                    | 0.016                                         |
| A_51_P262757          | Plin5       | 2.605                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_52_P372901          | Plscr2      | 2.915                                                                                                  | ир                                                                                                    | 0.028                                         |
| A_51_P251022          | Plscr2      | 2.740                                                                                                  | ир                                                                                                    | 0.030                                         |
| A_51_P202331          | Plunc       | 3.477                                                                                                  | down                                                                                                  | 0.019                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Regulation (Socs1* <sup>/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P490397          | Pold3       | 3.491                                                                                                  | down                                                                                                  | 0.037                                         |
| A_51_P450924          | Pole4       | 4.748                                                                                                  | down                                                                                                  | 0.036                                         |
| A_51_P293538          | Ppp1r1a     | 2.270                                                                                                  | ир                                                                                                    | 0.022                                         |
| A_51_P461779          | Ppp2r2c     | 2.324                                                                                                  | up                                                                                                    | 0.041                                         |
| A_51_P307243          | Ppp5c       | 6.034                                                                                                  | down                                                                                                  | 0.024                                         |
| A_51_P414072          | Prom1       | 2.134                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P127425          | Prpf4b      | 4.132                                                                                                  | down                                                                                                  | 0.047                                         |
| A_51_P508959          | Prr15       | 2.064                                                                                                  | ир                                                                                                    | 0.022                                         |
| A_52_P137104          | Prr15       | 2.120                                                                                                  | up                                                                                                    | 0.025                                         |
| A_51_P418644          | Prr15l      | 2.376                                                                                                  | down                                                                                                  | 0.041                                         |
| A_52_P366790          | Psmb11      | 3.857                                                                                                  | down                                                                                                  | 0.024                                         |
| A_51_P327874          | Pth1r       | 2.176                                                                                                  | ир                                                                                                    | 0.025                                         |
| A_52_P622042          | Pth2        | 3.956                                                                                                  | down                                                                                                  | 0.039                                         |
| A_51_P129360          | Pthlh       | 2.995                                                                                                  | up                                                                                                    | 0.012                                         |
| A_51_P129363          | Pthlh       | 2.581                                                                                                  | up                                                                                                    | 0.010                                         |
| A_51_P264084          | Rab36       | 2.106                                                                                                  | down                                                                                                  | 0.014                                         |
| A_51_P211471          | Rab40b      | 2.244                                                                                                  | up                                                                                                    | 0.042                                         |
| A_52_P413805          | Rad18       | 2.262                                                                                                  | down                                                                                                  | 0.013                                         |
| A_52_P39756           | Rap1gap2    | 4.408                                                                                                  | down                                                                                                  | 0.032                                         |
| A_52_P466147          | Rarres2     | 2.127                                                                                                  | up                                                                                                    | 0.014                                         |
| A_52_P496726          | Rasd1       | 2.208                                                                                                  | up                                                                                                    | 0.044                                         |
| A_51_P105927          | Rasl12      | 2.647                                                                                                  | up                                                                                                    | 0.050                                         |
| A_51_P503194          | Rbm15b      | 2.479                                                                                                  | down                                                                                                  | 0.049                                         |
| A_51_P233597          | Retn        | 2.072                                                                                                  | ир                                                                                                    | 0.032                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P257951          | Retnla      | 2.751                                                                                                  | up                                                                                                    | 0.020                                         |
| A_52_P254817          | Retnla      | 2.340                                                                                                  | ир                                                                                                    | 0.032                                         |
| A_52_P298301          | Rfwd2       | 2.824                                                                                                  | down                                                                                                  | 0.031                                         |
| A_52_P392229          | Rnf152      | 2.286                                                                                                  | up                                                                                                    | 0.028                                         |
| A_52_P678800          | Rps21       | 3.804                                                                                                  | down                                                                                                  | 0.018                                         |
| A_52_P740562          | Rps21       | 2.940                                                                                                  | down                                                                                                  | 0.046                                         |
| A_51_P292357          | Rps3a       | 2.564                                                                                                  | down                                                                                                  | 0.042                                         |
| A_52_P780667          | Rps4x       | 3.895                                                                                                  | down                                                                                                  | 0.014                                         |
| A_52_P573727          | Rrm2b       | 5.866                                                                                                  | down                                                                                                  | 0.019                                         |
| A_51_P505132          | Rsad2       | 3.086                                                                                                  | up                                                                                                    | 0.019                                         |
| A_52_P670026          | Rsad2       | 3.179                                                                                                  | up                                                                                                    | 0.013                                         |
| A_51_P505134          | Rsad2       | 2.588                                                                                                  | up                                                                                                    | 0.023                                         |
| A_52_P312826          | Rtf1        | 3.354                                                                                                  | down                                                                                                  | 0.020                                         |
| A_51_P304170          | Rtp4        | 3.717                                                                                                  | up                                                                                                    | 0.010                                         |
| A_51_P478688          | Samd10      | 2.144                                                                                                  | down                                                                                                  | 0.036                                         |
| A_52_P789023          | Sarnp       | 2.232                                                                                                  | down                                                                                                  | 0.017                                         |
| A_52_P682382          | Scd1        | 2.956                                                                                                  | up                                                                                                    | 0.044                                         |
| A_51_P184340          | Scn3b       | 4.459                                                                                                  | up                                                                                                    | 0.009                                         |
| A_52_P228899          | Scn3b       | 2.658                                                                                                  | up                                                                                                    | 0.037                                         |
| A_51_P184331          | Scn3b       | 2.631                                                                                                  | up                                                                                                    | 0.005                                         |
| A_52_P127115          | Sema5b      | 2.234                                                                                                  | down                                                                                                  | 0.027                                         |
| A_51_P231364          | Sepsecs     | 2.876                                                                                                  | down                                                                                                  | 0.032                                         |
| A_52_P324042          | Serpina1b   | 3.016                                                                                                  | ир                                                                                                    | 0.030                                         |
| A_52_P598495          | Serpina1c   | 2.148                                                                                                  | ир                                                                                                    | 0.027                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P236303          | Serpina1d   | 2.978                                                                                                  | up                                                                                                    | 0.032                                         |
| A_51_P157112          | Serpina3c   | 2.428                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P326191          | Serpina3g   | 2.062                                                                                                  | ир                                                                                                    | 0.020                                         |
| A_51_P159453          | Serpina3n   | 3.892                                                                                                  | up                                                                                                    | 0.012                                         |
| A_52_P430348          | Serpinb1b   | 2.782                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P207763          | Serpinb3b   | 7.011                                                                                                  | down                                                                                                  | 0.024                                         |
| A_51_P406328          | Serpinb6c   | 2.630                                                                                                  | down                                                                                                  | 0.010                                         |
| A_52_P602669          | Serpinb6d   | 3.687                                                                                                  | down                                                                                                  | 0.011                                         |
| A_51_P376238          | Serping1    | 2.193                                                                                                  | up                                                                                                    | 0.013                                         |
| A_51_P201747          | Sez6l       | 2.221                                                                                                  | up                                                                                                    | 0.045                                         |
| A_52_P427377          | Sez6l       | 2.356                                                                                                  | ир                                                                                                    | 0.031                                         |
| A_52_P583728          | Sfrs8       | 4.231                                                                                                  | down                                                                                                  | 0.015                                         |
| A_51_P359891          | Siglec1     | 2.984                                                                                                  | up                                                                                                    | 0.028                                         |
| A_51_P352324          | Slc16a2     | 2.051                                                                                                  | up                                                                                                    | 0.025                                         |
| A_52_P971776          | Slc25a12    | 2.169                                                                                                  | down                                                                                                  | 0.018                                         |
| A_51_P514405          | Slc2a5      | 2.216                                                                                                  | up                                                                                                    | 0.042                                         |
| A_51_P164400          | Slc33a1     | 4.341                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P221256          | Slc34a2     | 3.161                                                                                                  | ир                                                                                                    | 0.005                                         |
| A_51_P366672          | Slc36a2     | 2.552                                                                                                  | up                                                                                                    | 0.026                                         |
| A_52_P503384          | Slc4a1ap    | 2.086                                                                                                  | down                                                                                                  | 0.012                                         |
| A_52_P108502          | Slc4a7      | 3.141                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P268193          | Slc7a10     | 2.183                                                                                                  | ир                                                                                                    | 0.027                                         |
| A_52_P367829          | SIc9a8      | 2.259                                                                                                  | down                                                                                                  | 0.020                                         |
| A_51_P403636          | Smad7       | 2.151                                                                                                  | down                                                                                                  | 0.031                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_52_P478025          | Smpd3       | 2.034                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_52_P395149          | Smtnl2      | 2.376                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_51_P279606          | Socs1       | 1204.233                                                                                               | down                                                                                                  | 0.010                                         |
| A_51_P163639          | Spaca4      | 2.589                                                                                                  | down                                                                                                  | 0.018                                         |
| A_51_P370552          | Spink12     | 2.032                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P497350          | Spint2      | 4.181                                                                                                  | down                                                                                                  | 0.030                                         |
| A_52_P242321          | Spon1       | 2.021                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P225903          | Sprr4       | 2.065                                                                                                  | down                                                                                                  | 0.022                                         |
| A_51_P119055          | Ssb         | 4.447                                                                                                  | down                                                                                                  | 0.041                                         |
| A_52_P59006           | St13        | 2.995                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P290090          | Stbd1       | 2.033                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_51_P471458          | Sult5a1     | 2.212                                                                                                  | ир                                                                                                    | 0.014                                         |
| A_52_P306162          | Syne1       | 2.401                                                                                                  | down                                                                                                  | 0.036                                         |
| A_52_P62986           | Synpo       | 4.564                                                                                                  | down                                                                                                  | 0.050                                         |
| A_52_P299292          | Tardbp      | 2.244                                                                                                  | down                                                                                                  | 0.031                                         |
| A_51_P484329          | Tcra        | 2.286                                                                                                  | down                                                                                                  | 0.039                                         |
| A_51_P338336          | Tdg         | 2.395                                                                                                  | down                                                                                                  | 0.024                                         |
| A_51_P251402          | Tgds        | 7.922                                                                                                  | down                                                                                                  | 0.005                                         |
| A_51_P212754          | Tgfbi       | 2.252                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_52_P676510          | Tgtp1       | 2.054                                                                                                  | ир                                                                                                    | 0.024                                         |
| A_51_P478722          | Tgtp1       | 2.195                                                                                                  | ир                                                                                                    | 0.005                                         |
| A_51_P353221          | Thbs4       | 3.520                                                                                                  | ир                                                                                                    | 0.016                                         |
| A_52_P401504          | Thbs4       | 3.690                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P194099          | Thrsp       | 2.343                                                                                                  | ир                                                                                                    | 0.044                                         |

| Agilent Probe<br>Name | Gene Symbol | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1*/*Ifny-/- vs Socs1-/-<br>Ifny-/-) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| A_52_P229052          | Tmeff2      | 2.048                                                                                                  | up                                                  | 0.029                                         |
| A_51_P210611          | Tmem30a     | 7.712                                                                                                  | down                                                | 0.014                                         |
| A_51_P368496          | Tmem98      | 2.231                                                                                                  | up                                                  | 0.013                                         |
| A_52_P217937          | Tmlhe       | 3.931                                                                                                  | down                                                | 0.028                                         |
| A_52_P450780          | Tmod3       | 4.968                                                                                                  | down                                                | 0.028                                         |
| A_51_P415775          | Tmtc1       | 2.051                                                                                                  | up                                                  | 0.027                                         |
| A_51_P484371          | Tnfsf8      | 2.285                                                                                                  | up                                                  | 0.019                                         |
| A_52_P418477          | Tpm2        | 2.078                                                                                                  | up                                                  | 0.045                                         |
| A_51_P466436          | Tprg        | 2.025                                                                                                  | down                                                | 0.033                                         |
| A_52_P442567          | Trim30      | 2.555                                                                                                  | up                                                  | 0.013                                         |
| A_52_P401824          | Tsg101      | 3.959                                                                                                  | down                                                | 0.043                                         |
| A_52_P203404          | Ttc24       | 2.023                                                                                                  | up                                                  | 0.019                                         |
| A_51_P480062          | Ubap1       | 2.162                                                                                                  | down                                                | 0.028                                         |
| A_51_P426353          | Ucp1        | 2.942                                                                                                  | up                                                  | 0.032                                         |
| A_51_P164219          | Usp18       | 2.149                                                                                                  | up                                                  | 0.032                                         |
| A_52_P153265          | Uvrag       | 2.298                                                                                                  | down                                                | 0.042                                         |
| A_52_P577533          | Vat1I       | 2.853                                                                                                  | up                                                  | 0.042                                         |
| A_51_P298107          | Vit         | 2.619                                                                                                  | up                                                  | 0.013                                         |
| A_51_P383629          | Vps4a       | 2.123                                                                                                  | down                                                | 0.039                                         |
| A_51_P133260          | Vsnl1       | 2.940                                                                                                  | ир                                                  | 0.013                                         |
| A_52_P515880          | Vsnl1       | 2.278                                                                                                  | up                                                  | 0.020                                         |
| A_52_P485450          | Vta1        | 3.060                                                                                                  | down                                                | 0.019                                         |
| A_51_P390314          | Wdfy1       | 2.949                                                                                                  | down                                                | 0.013                                         |
| A_52_P511821          | Wdfy1       | 2.198                                                                                                  | ир                                                  | 0.037                                         |

| Agilent Probe<br>Name | Gene Symbol     | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_52_P328825          | Wdfy1           | 2.978                                                                                                  | down                                                                                                  | 0.017                                         |
| A_51_P288558          | Wdr16           | 2.286                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P292632          | Wdr20b          | 4.351                                                                                                  | down                                                                                                  | 0.018                                         |
| A_52_P185568          | Wdr76           | 2.520                                                                                                  | down                                                                                                  | 0.024                                         |
| A_51_P462708          | Wfdc15b         | 2.086                                                                                                  | down                                                                                                  | 0.023                                         |
| A_51_P390804          | Wisp2           | 2.235                                                                                                  | ир                                                                                                    | 0.013                                         |
| A_51_P494403          | Xaf1            | 2.678                                                                                                  | up                                                                                                    | 0.013                                         |
| A_51_P234956          | Xcl1            | 2.138                                                                                                  | up                                                                                                    | 0.013                                         |
| A_51_P463607          | Xpnpep3         | 2.003                                                                                                  | down                                                                                                  | 0.025                                         |
| A_51_P184936          | Zbp1            | 2.179                                                                                                  | ир                                                                                                    | 0.025                                         |
| A_52_P382040          | Zcchc11         | 2.983                                                                                                  | down                                                                                                  | 0.028                                         |
| A_51_P377826          | Zfand2a         | 2.218                                                                                                  | down                                                                                                  | 0.023                                         |
| A_52_P547251          | Zfp560          | 2.379                                                                                                  | down                                                                                                  | 0.013                                         |
| A_52_P17112           | Znrf1           | 2.065                                                                                                  | down                                                                                                  | 0.043                                         |
| A_52_P704340          | none identified | 4.326                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P165315          | none identified | 13.999                                                                                                 | down                                                                                                  | 0.018                                         |
| A_52_P17306           | none identified | 5.293                                                                                                  | down                                                                                                  | 0.018                                         |
| A_52_P941407          | none identified | 10.742                                                                                                 | down                                                                                                  | 0.023                                         |
| A_52_P624998          | none identified | 4.311                                                                                                  | down                                                                                                  | 0.019                                         |
| A_52_P653054          | none identified | 2.010                                                                                                  | up                                                                                                    | 0.037                                         |
| A_52_P662562          | none identified | 2.093                                                                                                  | ир                                                                                                    | 0.018                                         |
| A_52_P462540          | none identified | 11.180                                                                                                 | down                                                                                                  | 0.016                                         |
| A_52_P326187          | none identified | 3.042                                                                                                  | up                                                                                                    | 0.023                                         |
| A_52_P615247          | none identified | 2.064                                                                                                  | ир                                                                                                    | 0.032                                         |

| Agilent Probe<br>Name | Gene Symbol     | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_52_P439745          | none identified | 4.261                                                                                                  | down                                                                                                  | 0.026                                         |
| A_52_P739689          | none identified | 2.854                                                                                                  | down                                                                                                  | 0.018                                         |
| A_52_P20211           | none identified | 2.618                                                                                                  | down                                                                                                  | 0.045                                         |
| A_52_P764924          | none identified | 7.370                                                                                                  | down                                                                                                  | 0.022                                         |
| A_52_P398554          | none identified | 2.514                                                                                                  | down                                                                                                  | 0.032                                         |
| A_52_P242631          | none identified | 6.259                                                                                                  | down                                                                                                  | 0.040                                         |
| A_52_P250664          | none identified | 5.489                                                                                                  | down                                                                                                  | 0.024                                         |
| A_51_P133953          | none identified | 3.494                                                                                                  | down                                                                                                  | 0.050                                         |
| A_52_P583399          | none identified | 6.818                                                                                                  | down                                                                                                  | 0.025                                         |
| A_51_P225764          | none identified | 7.723                                                                                                  | down                                                                                                  | 0.044                                         |
| A_52_P1149594         | none identified | 2.185                                                                                                  | down                                                                                                  | 0.010                                         |
| A_52_P559189          | none identified | 2.190                                                                                                  | down                                                                                                  | 0.049                                         |
| A_52_P763262          | none identified | 4.192                                                                                                  | down                                                                                                  | 0.043                                         |
| A_52_P141077          | none identified | 7.878                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P380350          | none identified | 4.492                                                                                                  | down                                                                                                  | 0.014                                         |
| A_52_P167500          | none identified | 3.022                                                                                                  | down                                                                                                  | 0.027                                         |
| A_52_P599964          | none identified | 2.948                                                                                                  | up                                                                                                    | 0.013                                         |
| A_52_P427759          | none identified | 4.184                                                                                                  | down                                                                                                  | 0.029                                         |
| A_52_P41506           | none identified | 7.113                                                                                                  | down                                                                                                  | 0.042                                         |
| A_51_P376454          | none identified | 11.410                                                                                                 | down                                                                                                  | 0.016                                         |
| A_52_P47121           | none identified | 2.280                                                                                                  | down                                                                                                  | 0.027                                         |
| A_52_P72186           | none identified | 8.529                                                                                                  | down                                                                                                  | 0.025                                         |
| A_52_P488011          | none identified | 2.181                                                                                                  | down                                                                                                  | 0.018                                         |
| A_52_P670399          | none identified | 3.432                                                                                                  | ир                                                                                                    | 0.028                                         |

| Agilent Probe<br>Name | Gene Symbol     | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1⁺ <sup>/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_52_P322962          | none identified | 2.761                                                                                                  | down                                                                                                  | 0.023                                         |
| A_52_P238492          | none identified | 3.485                                                                                                  | down                                                                                                  | 0.046                                         |
| A_52_P4482            | none identified | 3.382                                                                                                  | down                                                                                                  | 0.010                                         |
| A_52_P74715           | none identified | 8.451                                                                                                  | down                                                                                                  | 0.027                                         |
| A_52_P399604          | none identified | 5.332                                                                                                  | down                                                                                                  | 0.014                                         |
| A_52_P299311          | none identified | 3.365                                                                                                  | down                                                                                                  | 0.043                                         |
| A_52_P594036          | none identified | 3.068                                                                                                  | down                                                                                                  | 0.035                                         |
| A_52_P476400          | none identified | 3.677                                                                                                  | down                                                                                                  | 0.019                                         |
| A_52_P430427          | none identified | 11.468                                                                                                 | down                                                                                                  | 0.022                                         |
| A_52_P612840          | none identified | 6.243                                                                                                  | down                                                                                                  | 0.013                                         |
| A_52_P163541          | none identified | 2.549                                                                                                  | down                                                                                                  | 0.043                                         |
| A_52_P725041          | none identified | 2.033                                                                                                  | up                                                                                                    | 0.033                                         |
| A_52_P535084          | none identified | 4.999                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P549754          | none identified | 2.749                                                                                                  | down                                                                                                  | 0.044                                         |
| A_52_P132612          | none identified | 4.393                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P756465          | none identified | 4.573                                                                                                  | down                                                                                                  | 0.014                                         |
| A_52_P398494          | none identified | 2.921                                                                                                  | down                                                                                                  | 0.016                                         |
| A_52_P612868          | none identified | 5.131                                                                                                  | down                                                                                                  | 0.020                                         |
| A_52_P542970          | none identified | 2.233                                                                                                  | down                                                                                                  | 0.020                                         |
| A_52_P171197          | none identified | 2.464                                                                                                  | up                                                                                                    | 0.041                                         |
| A_52_P87118           | none identified | 2.724                                                                                                  | down                                                                                                  | 0.012                                         |
| A_51_P264922          | none identified | 2.469                                                                                                  | ир                                                                                                    | 0.030                                         |
| A_52_P241032          | none identified | 3.225                                                                                                  | down                                                                                                  | 0.036                                         |
| A_52_P948927          | none identified | 4.373                                                                                                  | down                                                                                                  | 0.033                                         |

| Agilent Probe<br>Name | Gene Symbol     | Fold Change (Socs1 <sup>+/+</sup> /Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-----------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_52_P44534           | none identified | 4.353                                                                                                   | down                                                                                                  | 0.028                                         |
| A_51_P201445          | none identified | 5.578                                                                                                   | down                                                                                                  | 0.026                                         |
| A_51_P145232          | none identified | 2.789                                                                                                   | down                                                                                                  | 0.027                                         |
| A_52_P579279          | none identified | 2.271                                                                                                   | down                                                                                                  | 0.036                                         |
| A_52_P406195          | none identified | 4.072                                                                                                   | down                                                                                                  | 0.040                                         |
| A_51_P235835          | none identified | 2.293                                                                                                   | up                                                                                                    | 0.042                                         |
| A_52_P84234           | none identified | 3.626                                                                                                   | down                                                                                                  | 0.017                                         |
| A_52_P444260          | none identified | 3.136                                                                                                   | up                                                                                                    | 0.049                                         |
| A_51_P292332          | none identified | 2.307                                                                                                   | down                                                                                                  | 0.014                                         |
| A_52_P105890          | none identified | 2.503                                                                                                   | down                                                                                                  | 0.031                                         |
| A_52_P510790          | none identified | 2.184                                                                                                   | up                                                                                                    | 0.016                                         |
| A_51_P152725          | none identified | 3.283                                                                                                   | down                                                                                                  | 0.028                                         |
| A_52_P378084          | none identified | 7.707                                                                                                   | down                                                                                                  | 0.049                                         |
| A_52_P553820          | none identified | 9.054                                                                                                   | down                                                                                                  | 0.015                                         |
| A_51_P305239          | none identified | 2.632                                                                                                   | ир                                                                                                    | 0.025                                         |
| A_52_P498702          | none identified | 3.628                                                                                                   | down                                                                                                  | 0.026                                         |
| A_52_P296632          | none identified | 5.572                                                                                                   | down                                                                                                  | 0.023                                         |
| A_52_P374983          | none identified | 2.163                                                                                                   | up                                                                                                    | 0.027                                         |
| A_51_P187579          | none identified | 4.520                                                                                                   | down                                                                                                  | 0.028                                         |
| A_52_P359071          | none identified | 2.048                                                                                                   | up                                                                                                    | 0.005                                         |
| A_52_P127513          | none identified | 2.746                                                                                                   | down                                                                                                  | 0.042                                         |
| A_51_P297993          | none identified | 4.606                                                                                                   | down                                                                                                  | 0.017                                         |
| A_52_P206322          | none identified | 3.915                                                                                                   | up                                                                                                    | 0.037                                         |
| A_52_P104444          | none identified | 4.173                                                                                                   | down                                                                                                  | 0.012                                         |

| Agilent Probe<br>Name | Gene Symbol     | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P279994          | none identified | 2.550                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P272054          | none identified | 4.360                                                                                                  | down                                                                                                  | 0.044                                         |
| A_52_P475630          | none identified | 4.593                                                                                                  | down                                                                                                  | 0.022                                         |
| A_51_P264914          | none identified | 2.263                                                                                                  | up                                                                                                    | 0.048                                         |
| A_52_P223814          | none identified | 8.174                                                                                                  | down                                                                                                  | 0.014                                         |
| A_52_P81664           | none identified | 2.671                                                                                                  | down                                                                                                  | 0.037                                         |
| A_52_P460285          | none identified | 3.359                                                                                                  | down                                                                                                  | 0.024                                         |
| A_52_P295012          | none identified | 2.805                                                                                                  | down                                                                                                  | 0.009                                         |
| A_52_P1133703         | none identified | 3.314                                                                                                  | down                                                                                                  | 0.016                                         |
| A_52_P618417          | none identified | 3.396                                                                                                  | down                                                                                                  | 0.038                                         |
| A_51_P450394          | none identified | 6.335                                                                                                  | down                                                                                                  | 0.020                                         |
| A_52_P1076265         | none identified | 2.019                                                                                                  | down                                                                                                  | 0.013                                         |
| A_52_P594107          | none identified | 8.498                                                                                                  | down                                                                                                  | 0.026                                         |
| A_52_P477269          | none identified | 7.912                                                                                                  | down                                                                                                  | 0.026                                         |
| A_52_P511243          | none identified | 2.012                                                                                                  | up                                                                                                    | 0.005                                         |
| A_52_P322976          | none identified | 4.487                                                                                                  | down                                                                                                  | 0.038                                         |
| A_52_P561772          | none identified | 9.485                                                                                                  | down                                                                                                  | 0.010                                         |
| A_52_P467900          | none identified | 9.189                                                                                                  | down                                                                                                  | 0.014                                         |
| A_52_P417624          | none identified | 2.466                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P217100          | none identified | 5.469                                                                                                  | down                                                                                                  | 0.039                                         |
| A_52_P356562          | none identified | 2.928                                                                                                  | down                                                                                                  | 0.038                                         |
| A_52_P224413          | none identified | 2.207                                                                                                  | down                                                                                                  | 0.013                                         |
| A_52_P287739          | none identified | 2.234                                                                                                  | down                                                                                                  | 0.036                                         |
| A_52_P288669          | none identified | 3.745                                                                                                  | down                                                                                                  | 0.030                                         |

| Agilent Probe<br>Name | Gene Symbol     | Fold Change (Socs1 <sup>+/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Regulation (Socs1 <sup>+/+</sup> Ifny <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifny <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_51_P326922          | none identified | 2.107                                                                                                  | down                                                                                                  | 0.021                                         |
| A_52_P1028560         | none identified | 6.565                                                                                                  | down                                                                                                  | 0.031                                         |
| A_52_P443904          | none identified | 2.909                                                                                                  | down                                                                                                  | 0.027                                         |
| A_52_P107542          | none identified | 3.974                                                                                                  | down                                                                                                  | 0.023                                         |
| A_52_P1021832         | none identified | 6.987                                                                                                  | down                                                                                                  | 0.027                                         |
| A_52_P318023          | none identified | 2.929                                                                                                  | down                                                                                                  | 0.038                                         |
| A_52_P716675          | none identified | 5.219                                                                                                  | down                                                                                                  | 0.028                                         |
| A_52_P493509          | none identified | 5.953                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P140829          | none identified | 26.110                                                                                                 | up                                                                                                    | 0.011                                         |
| A_51_P282279          | none identified | 4.667                                                                                                  | down                                                                                                  | 0.020                                         |
| A_52_P208213          | none identified | 2.308                                                                                                  | down                                                                                                  | 0.017                                         |
| A_52_P284203          | none identified | 7.774                                                                                                  | down                                                                                                  | 0.013                                         |
| A_52_P473813          | none identified | 2.283                                                                                                  | down                                                                                                  | 0.042                                         |
| A_52_P484000          | none identified | 3.191                                                                                                  | down                                                                                                  | 0.027                                         |
| A_52_P664965          | none identified | 2.459                                                                                                  | down                                                                                                  | 0.043                                         |
| A_52_P57557           | none identified | 7.648                                                                                                  | down                                                                                                  | 0.017                                         |
| A_52_P445135          | none identified | 5.070                                                                                                  | down                                                                                                  | 0.025                                         |
| A_52_P229167          | none identified | 3.633                                                                                                  | down                                                                                                  | 0.033                                         |
| A_52_P274624          | none identified | 2.536                                                                                                  | down                                                                                                  | 0.010                                         |
| A_52_P190059          | none identified | 3.146                                                                                                  | down                                                                                                  | 0.035                                         |
| A_52_P553749          | none identified | 6.232                                                                                                  | down                                                                                                  | 0.025                                         |
| A_52_P513153          | none identified | 2.435                                                                                                  | ир                                                                                                    | 0.005                                         |
| A_51_P383950          | none identified | 4.781                                                                                                  | down                                                                                                  | 0.013                                         |
| A_51_P166849          | none identified | 2.046                                                                                                  | down                                                                                                  | 0.049                                         |

| Agilent Probe<br>Name | Gene Symbol     | Fold Change (Socs1*/*Ifnγ*/² vs Socs1*/²<br>Ifnγ*/²) | Regulation (Socs1⁺ <sup>/+</sup> Ifnγ <sup>-/-</sup> vs Socs1 <sup>-/-</sup><br>Ifnγ <sup>-/-</sup> ) | Corrected p-value Unpaired T-<br>test (BHFDR) |
|-----------------------|-----------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A_52_P190286          | none identified | 4.570                                                | down                                                                                                  | 0.033                                         |
| A_52_P107717          | none identified | 2.041                                                | down                                                                                                  | 0.005                                         |
| A_52_P227937          | none identified | 2.816                                                | down                                                                                                  | 0.027                                         |

| Agilent Probe<br>Name | GeneSymbol     | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|----------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_52_P77093           | 1600014C10Rik  | 2.336                         | up                           |                                  |                              |                                                | 0.007                                                           |                                                        |
| A_51_P453616          | 1700003F17Rik  | 13.275                        | up                           |                                  |                              |                                                | 0.013                                                           |                                                        |
| A_51_P322473          | 2310042D19Rik  | 4.778                         | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_52_P542502          | 2310042D19Rik  | 5.977                         | up                           |                                  |                              |                                                | 0.018                                                           |                                                        |
| A_51_P107039          | 4930555G01Rik  |                               |                              | 3.069                            | up                           |                                                |                                                                 | 0.034                                                  |
| A_52_P241640          | 4930599N23Rik  | 4.935                         | up                           |                                  |                              |                                                | 0.010                                                           |                                                        |
| A_51_P249471          | 9530028C05     | 5.137                         | up                           |                                  |                              |                                                | 0.037                                                           |                                                        |
| A_52_P61697           | 9930111J21Rik2 | 2.677                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_51_P158072          | A230050P20Rik  | 3.200                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_51_P158073          | A230050P20Rik  | 3.137                         | up                           |                                  |                              |                                                | 0.009                                                           |                                                        |
| A_52_P564444          | A530064D06Rik  | 4.535                         | up                           |                                  |                              |                                                | 0.010                                                           |                                                        |
| A_52_P30728           | Abca17         | 2.433                         | up                           |                                  |                              |                                                | 0.031                                                           |                                                        |
| A_52_P183181          | Adar           | 2.861                         | up                           |                                  |                              |                                                | 0.020                                                           |                                                        |
| A_51_P257134          | Adar           | 3.564                         | up                           |                                  |                              |                                                | 0.039                                                           |                                                        |
| A_52_P199633          | Al451617       | 9.252                         | up                           |                                  |                              |                                                | 0.010                                                           |                                                        |
| A_52_P360742          | Apol7a         | 2.787                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_52_P439874          | Arfgap3        |                               |                              | 2.251                            | up                           |                                                |                                                                 | 0.018                                                  |
| A_51_P134627          | Asb13          | 4.308                         | up                           |                                  |                              |                                                | 0.047                                                           |                                                        |
| A_52_P537941          | Asb13          | 3.084                         | up                           |                                  |                              | 0.047                                          | 0.006                                                           |                                                        |
| A_52_P549985          | Asb13          | 2.753                         | up                           |                                  |                              |                                                | 0.020                                                           |                                                        |
| A_52_P233811          | B430306N03Rik  | 2.763                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |

## D. IFN $\alpha$ regulated probes within the thymus of Socs1<sup>+/+</sup>Ifn $\gamma^{-/-}$ mice

| Agilent Probe<br>Name | GeneSymbol  | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|-------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_52_P321358          | BC006779    | 5.463                         | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_51_P406604          | BC006779    | 4.952                         | up                           |                                  |                              | 0.048                                          | 0.004                                                           |                                                        |
| A_52_P392638          | Bin1        |                               |                              | 10.435                           | down                         |                                                |                                                                 | 0.032                                                  |
| A_52_P508131          | Capn11      |                               |                              | 3.964                            | up                           |                                                |                                                                 | 0.025                                                  |
| A_52_P249514          | Ccl12       | 5.464                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_52_P208763          | Ccl7        | 4.766                         | up                           |                                  |                              |                                                | 0.031                                                           |                                                        |
| A_51_P436652          | Ccl7        | 4.598                         | up                           |                                  |                              |                                                | 0.029                                                           |                                                        |
| A_51_P253074          | Chit1       | 4.278                         | up                           |                                  |                              |                                                | 0.015                                                           |                                                        |
| A_52_P265855          | Clec4g      |                               |                              | 3.252                            | up                           |                                                |                                                                 | 0.036                                                  |
| A_51_P514035          | Cma1        |                               |                              | 2.083                            | down                         |                                                |                                                                 | 0.011                                                  |
| A_51_P514029          | Cma1        |                               |                              | 2.411                            | down                         |                                                |                                                                 | 0.026                                                  |
| A_52_P186937          | Cmpk2       | 25.142                        | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_51_P400190          | Cmpk2       | 22.974                        | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_51_P177491          | Ctrl        | 2.036                         | up                           |                                  |                              |                                                | 0.007                                                           |                                                        |
| A_51_P432641          | Cxcl10      | 4.628                         | up                           |                                  |                              | 0.048                                          | 0.004                                                           |                                                        |
| A_51_P461665          | Cxcl9       | 2.522                         | up                           |                                  |                              |                                                | 0.029                                                           |                                                        |
| A_52_P380369          | D14Ertd668e | 6.685                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P215143          | D430006K04  | 7.253                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_51_P393748          | Ddx58       | 6.559                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_52_P385536          | Ddx58       | 7.117                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_52_P523946          | Ddx58       | 6.766                         | up                           |                                  |                              | 0.048                                          | 0.004                                                           |                                                        |
| A_52_P479001          | Ddx58       | 6.284                         | up                           |                                  |                              |                                                | 0.006                                                           |                                                        |
| A_51_P234274          | Ddx60       | 13.455                        | up                           |                                  |                              |                                                | 0.040                                                           |                                                        |

| Agilent Probe<br>Name | GeneSymbol    | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|---------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_51_P197910          | Ddx60         | 11.942                        | up                           |                                  |                              |                                                | 0.020                                                           |                                                        |
| A_52_P223809          | Dhx58         | 8.297                         | up                           |                                  |                              |                                                | 0.013                                                           |                                                        |
| A_52_P127813          | E030037K03Rik | 7.728                         | up                           |                                  |                              |                                                | 0.028                                                           |                                                        |
| A_52_P559919          | Eif2ak2       | 9.809                         | up                           |                                  |                              |                                                | 0.007                                                           |                                                        |
| A_52_P582374          | Epsti1        | 3.760                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_51_P376050          | Epsti1        | 3.328                         | up                           |                                  |                              |                                                | 0.015                                                           |                                                        |
| A_51_P100852          | Fam26f        | 2.343                         | up                           |                                  |                              |                                                | 0.025                                                           |                                                        |
| A_51_P181517          | Fcgr4         | 3.414                         | up                           |                                  |                              |                                                | 0.012                                                           |                                                        |
| A_52_P309418          | Ftsjd2        | 2.273                         | up                           |                                  |                              |                                                | 0.012                                                           |                                                        |
| A_51_P203955          | Gbp2          | 4.333                         | up                           |                                  |                              |                                                | 0.011                                                           |                                                        |
| A_52_P327664          | Gbp5          | 4.072                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_51_P463846          | Gbp6          | 7.494                         | up                           |                                  |                              |                                                | 0.047                                                           |                                                        |
| A_51_P323180          | Gbp9          | 6.294                         | up                           |                                  |                              |                                                | 0.030                                                           |                                                        |
| A_52_P344949          | Gbp9          | 4.561                         | up                           |                                  |                              |                                                | 0.014                                                           |                                                        |
| A_51_P385639          | Gjb5          |                               |                              | 2.083                            | down                         |                                                |                                                                 | 0.020                                                  |
| A_52_P164821          | Gm12250       | 11.479                        | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P500082          | Gm14446       | 13.196                        | up                           |                                  |                              |                                                | 0.013                                                           |                                                        |
| A_52_P294064          | Gm14446       | 13.286                        | up                           |                                  |                              |                                                | 0.028                                                           |                                                        |
| A_52_P176865          | Gm5431        | 4.841                         | up                           |                                  |                              |                                                | 0.034                                                           |                                                        |
| A_51_P162326          | Gm5933        | 5.532                         | up                           |                                  |                              |                                                | 0.034                                                           |                                                        |
| A_51_P333274          | Gzmb          | 2.478                         | up                           |                                  |                              |                                                | 0.029                                                           |                                                        |
| A_52_P581082          | H2-T24        | 7.209                         | up                           |                                  |                              |                                                | 0.015                                                           |                                                        |
| A_52_P189812          | H2-T24        | 6.158                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |

| Agilent Probe<br>Name | GeneSymbol    | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|---------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_51_P249313          | Herc3         | 2.133                         | up                           |                                  |                              |                                                | 0.025                                                           |                                                        |
| A_52_P64514           | Herc5         | 4.728                         | up                           |                                  |                              |                                                | 0.020                                                           |                                                        |
| A_52_P522427          | Hsh2d         | 5.595                         | up                           |                                  |                              |                                                | 0.007                                                           |                                                        |
| A_52_P663686          | l830012O16Rik | 8.811                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_51_P408343          | lfi204        | 7.135                         | up                           |                                  |                              |                                                | 0.047                                                           |                                                        |
| A_51_P487690          | lfi44         | 6.235                         | up                           |                                  |                              |                                                | 0.037                                                           |                                                        |
| A_51_P129229          | lfi47         | 5.252                         | up                           |                                  |                              | 0.037                                          | 0.002                                                           |                                                        |
| A_51_P387810          | lfih1         | 7.332                         | up                           |                                  |                              |                                                | 0.007                                                           |                                                        |
| A_52_P121468          | lfih1         | 9.669                         | up                           |                                  |                              |                                                | 0.013                                                           |                                                        |
| A_51_P327751          | lfit1         | 12.039                        | up                           |                                  |                              |                                                | 0.009                                                           |                                                        |
| A_52_P542388          | lfit2         | 4.788                         | up                           |                                  |                              |                                                | 0.037                                                           |                                                        |
| A_51_P359570          | lfit3         | 8.138                         | up                           |                                  |                              |                                                | 0.005                                                           |                                                        |
| A_51_P112355          | lgtp          | 3.606                         | up                           |                                  |                              |                                                | 0.015                                                           |                                                        |
| A_51_P421876          | Irf7          | 6.444                         | up                           |                                  |                              |                                                | 0.013                                                           |                                                        |
| A_52_P176013          | Irf9          | 5.160                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_51_P127367          | Irf9          | 4.912                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_51_P262171          | lrgm1         | 7.461                         | up                           |                                  |                              |                                                | 0.006                                                           |                                                        |
| A_52_P126158          | lrgm1         | 7.806                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P416295          | lrgm2         | 5.234                         | up                           |                                  |                              |                                                | 0.005                                                           |                                                        |
| A_52_P463936          | lsg15         | 13.336                        | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_52_P614207          | LOC100047222  |                               |                              | 3.433                            | down                         |                                                |                                                                 | 0.049                                                  |
| A_51_P395899          | LOC100047628  |                               |                              | 3.761                            | down                         |                                                |                                                                 | 0.044                                                  |
| A_52_P165856          | LOC639910     | 3.643                         | up                           |                                  |                              |                                                | 0.030                                                           |                                                        |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_52_P203833          | Mitd1      | 3.522                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_52_P203837          | Mitd1      | 3.719                         | up                           |                                  |                              |                                                | 0.010                                                           |                                                        |
| A_51_P303332          | Mitd1      | 5.674                         | up                           |                                  |                              |                                                | 0.037                                                           |                                                        |
| A_51_P440535          | Miki       | 2.666                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_51_P377620          | Mnda       | 4.879                         | up                           |                                  |                              |                                                | 0.038                                                           |                                                        |
| A_51_P169495          | Mov10      | 3.471                         | up                           |                                  |                              |                                                | 0.031                                                           |                                                        |
| A_52_P189772          | Mpa2l      | 11.555                        | up                           |                                  |                              |                                                | 0.010                                                           |                                                        |
| A_52_P211956          | Ms4a4d     | 4.900                         | up                           |                                  |                              |                                                | 0.027                                                           |                                                        |
| A_51_P422300          | Ms4a6b     | 2.877                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_51_P149714          | Ms4a6d     | 2.207                         | up                           |                                  |                              |                                                | 0.037                                                           |                                                        |
| A_52_P446431          | Mx1        | 11.986                        | up                           |                                  |                              |                                                | 0.018                                                           |                                                        |
| A_52_P614259          | Mx1        | 12.153                        | up                           |                                  |                              |                                                | 0.013                                                           |                                                        |
| A_51_P514085          | Mx2        | 26.969                        | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P248638          | Myoz2      |                               |                              | 12.168                           | down                         |                                                |                                                                 | 0.039                                                  |
| A_52_P311903          | Ncoa7      | 4.742                         | up                           |                                  |                              |                                                | 0.030                                                           |                                                        |
| A_51_P435987          | Ndst4      |                               |                              | 2.450                            | up                           |                                                |                                                                 | 0.001                                                  |
| A_52_P382107          | NIrc5      | 3.456                         | up                           |                                  |                              |                                                | 0.002                                                           |                                                        |
| A_51_P125067          | Nmi        | 2.160                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P182693          | Npr1       |                               |                              | 2.246                            | down                         |                                                |                                                                 | 0.048                                                  |
| A_52_P110877          | Oas1b      | 8.867                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P428529          | Oas1c      | 2.736                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_51_P134030          | Oas1e      | 2.156                         | up                           |                                  |                              | 0.048                                          | 0.015                                                           |                                                        |
| A_51_P154842          | Oas1f      | 3.755                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_51_P277994          | Oas2       | 13.835                        | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_51_P472867          | Oas3       | 11.923                        | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_52_P516296          | Oas3       | 6.733                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P437309          | Oasl1      | 8.800                         | up                           |                                  |                              |                                                | 0.007                                                           |                                                        |
| A_51_P387123          | Oasl2      | 2.623                         | up                           |                                  |                              |                                                | 0.043                                                           |                                                        |
| A_51_P276715          | Olfr1350   |                               |                              | 2.155                            | down                         |                                                |                                                                 | 0.038                                                  |
| A_51_P195598          | Olfr259    |                               |                              | 2.540                            | down                         |                                                |                                                                 | 0.034                                                  |
| A_52_P468639          | Olfr450    |                               |                              | 2.342                            | down                         |                                                |                                                                 | 0.002                                                  |
| A_51_P459908          | Olfr56     | 3.335                         | up                           |                                  |                              |                                                | 0.046                                                           |                                                        |
| A_51_P129199          | Parp10     | 2.922                         | up                           |                                  |                              |                                                | 0.047                                                           |                                                        |
| A_51_P452227          | Parp11     | 2.001                         | up                           |                                  |                              | 0.037                                          | 0.004                                                           |                                                        |
| A_51_P214747          | Parp12     | 6.176                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P341767          | Parp14     | 6.537                         | up                           |                                  |                              |                                                | 0.006                                                           |                                                        |
| A_52_P97680           | Parp14     | 6.361                         | up                           |                                  |                              |                                                | 0.006                                                           |                                                        |
| A_51_P514712          | Parp14     | 5.864                         | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_51_P218984          | Parp9      | 6.862                         | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_51_P122855          | Pax5       |                               |                              | 2.484                            | down                         |                                                |                                                                 | 0.010                                                  |
| A_51_P262515          | Phf11      | 4.639                         | up                           |                                  |                              |                                                | 0.009                                                           |                                                        |
| A_51_P199199          | Pik3ap1    | 2.037                         | up                           |                                  |                              |                                                | 0.036                                                           |                                                        |
| A_51_P282799          | Pml        | 3.190                         | up                           |                                  |                              |                                                | 0.047                                                           |                                                        |
| A_52_P121087          | Pml        | 3.453                         | up                           |                                  |                              | 0.048                                          | 0.024                                                           |                                                        |
| A_51_P363258          | Prss22     | 2.110                         | up                           |                                  |                              |                                                | 0.028                                                           |                                                        |
| A_51_P505132          | Rsad2      | 41.824                        | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_52_P670026          | Rsad2      | 37.453                        | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P505134          | Rsad2      | 42.211                        | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_51_P304170          | Rtp4       | 12.010                        | up                           |                                  |                              |                                                | 0.002                                                           |                                                        |
| A_52_P466090          | Samhd1     | 2.452                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P245558          | Scnn1g     |                               |                              | 2.148                            | down                         |                                                |                                                                 | 0.047                                                  |
| A_52_P419678          | Serpina3f  | 6.742                         | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_52_P419679          | Serpina3f  | 3.566                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_51_P326191          | Serpina3g  | 2.543                         | up                           |                                  |                              |                                                | 0.034                                                           |                                                        |
| A_51_P173678          | Slc10a6    | 2.172                         | up                           |                                  |                              |                                                | 0.043                                                           |                                                        |
| A_51_P447329          | Slc25a22   | 2.054                         | up                           |                                  |                              |                                                | 0.007                                                           |                                                        |
| A_51_P113403          | Slc26a11   | 2.029                         | down                         |                                  |                              |                                                | 0.032                                                           |                                                        |
| A_52_P425890          | Slfn1      | 4.595                         | up                           |                                  |                              |                                                | 0.005                                                           |                                                        |
| A_51_P504991          | Slfn10     | 6.300                         | up                           |                                  |                              |                                                | 0.031                                                           |                                                        |
| A_51_P183812          | Slfn4      | 11.017                        | up                           |                                  |                              |                                                | 0.048                                                           |                                                        |
| A_51_P364694          | Slfn5      | 8.023                         | up                           |                                  |                              |                                                | 0.020                                                           |                                                        |
| A_52_P543489          | Slfn8      | 12.700                        | up                           |                                  |                              |                                                | 0.025                                                           |                                                        |
| A_51_P504988          | Slfn9      | 12.353                        | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_52_P127720          | Sp100      | 2.289                         | up                           |                                  |                              |                                                | 0.020                                                           |                                                        |
| A_51_P255016          | Sp100      | 2.814                         | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_51_P305583          | Sp100      | 2.988                         | up                           |                                  |                              |                                                | 0.006                                                           |                                                        |
| A_51_P458638          | Spink8     |                               |                              | 2.066                            | down                         |                                                |                                                                 | 0.047                                                  |
| A_51_P119055          | Ssb        |                               |                              | 3.217                            | up                           |                                                |                                                                 | 0.044                                                  |
| A_52_P496503          | Stat1      | 4.293                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_52_P70255           | Stat1      | 4.829                         | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_52_P505218          | Stat1      | 4.112                         | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_52_P70261           | Stat1      | 4.750                         | up                           |                                  |                              |                                                | 0.007                                                           |                                                        |
| A_52_P542540          | Stat1      | 7.306                         | up                           |                                  |                              |                                                | 0.032                                                           |                                                        |
| A_52_P280967          | Stk36      |                               |                              | 2.317                            | down                         |                                                |                                                                 | 0.021                                                  |
| A_51_P481777          | Tcstv1     | 3.935                         | up                           |                                  |                              |                                                | 0.025                                                           |                                                        |
| A_51_P143200          | Tcstv3     | 3.896                         | up                           |                                  |                              |                                                | 0.027                                                           |                                                        |
| A_51_P271835          | Tdrd7      | 2.749                         | up                           |                                  |                              | 0.048                                          | 0.007                                                           |                                                        |
| A_52_P676510          | Tgtp1      | 9.644                         | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_51_P478722          | Tgtp1      | 11.943                        | up                           |                                  |                              |                                                | 0.003                                                           |                                                        |
| A_51_P517525          | Tmem169    | 2.212                         | up                           |                                  |                              |                                                | 0.013                                                           |                                                        |
| A_51_P448741          | Tnfsf10    | 2.725                         | up                           |                                  |                              |                                                | 0.028                                                           |                                                        |
| A_52_P602018          | Tor1aip1   | 2.241                         | up                           |                                  |                              |                                                | 0.023                                                           |                                                        |
| A_52_P52357           | Tor3a      | 3.215                         | up                           |                                  |                              |                                                | 0.025                                                           |                                                        |
| A_52_P634829          | Trim12     | 4.946                         | up                           |                                  |                              |                                                | 0.025                                                           |                                                        |
| A_52_P267391          | Trim12     | 4.441                         | up                           |                                  |                              |                                                | 0.020                                                           |                                                        |
| A_52_P252348          | Trim14     | 3.403                         | up                           |                                  |                              | 0.037                                          | 0.003                                                           |                                                        |
| A_52_P640484          | Trim21     | 3.939                         | up                           |                                  |                              |                                                | 0.005                                                           |                                                        |
| A_52_P654161          | Trim25     | 4.160                         | up                           |                                  |                              | 0.048                                          | 0.004                                                           |                                                        |
| A_51_P212854          | Trim25     | 3.854                         | up                           |                                  |                              | 0.047                                          | 0.003                                                           |                                                        |
| A_52_P353038          | Trim26     | 2.058                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| A_52_P442567          | Trim30     | 7.885                         | up                           |                                  |                              |                                                | 0.006                                                           |                                                        |
| A_51_P275454          | Trim30     | 9.461                         | up                           |                                  |                              |                                                | 0.017                                                           |                                                        |

| Agilent Probe<br>Name | GeneSymbol      | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|-----------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_52_P278853          | Trim34          | 6.224                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_52_P367034          | Trim34          | 5.517                         | up                           |                                  |                              |                                                | 0.015                                                           |                                                        |
| A_52_P157316          | Trim34          | 3.928                         | up                           |                                  |                              |                                                | 0.005                                                           |                                                        |
| A_51_P244820          | Trim56          | 2.250                         | up                           |                                  |                              | 0.037                                          | 0.003                                                           |                                                        |
| A_52_P199019          | Trim6           | 2.964                         | up                           |                                  |                              |                                                | 0.028                                                           |                                                        |
| A_51_P165504          | Twist2          |                               |                              | 2.098                            | down                         |                                                |                                                                 | 0.027                                                  |
| A_51_P316816          | Uba7            | 2.541                         | up                           |                                  |                              |                                                | 0.033                                                           |                                                        |
| A_51_P164219          | Usp18           | 11.301                        | up                           |                                  |                              | 0.048                                          | 0.006                                                           |                                                        |
| A_52_P42834           | Usp25           | 3.079                         | up                           |                                  |                              |                                                | 0.033                                                           |                                                        |
| A_51_P494403          | Xaf1            | 7.658                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_51_P184936          | Zbp1            | 7.272                         | up                           |                                  |                              |                                                | 0.006                                                           |                                                        |
| A_51_P144438          | Znfx1           | 2.262                         | up                           |                                  |                              |                                                | 0.046                                                           |                                                        |
| A_52_P648759          | none identified | 7.526                         | up                           |                                  |                              | 0.048                                          | 0.002                                                           |                                                        |
| A_52_P653054          | none identified | 8.258                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_52_P326187          | none identified | 9.388                         | up                           |                                  |                              |                                                | 0.004                                                           |                                                        |
| A_52_P1187714         | none identified |                               |                              | 2.746                            | up                           |                                                |                                                                 | 0.030                                                  |
| A_52_P1100772         | none identified | 2.880                         | up                           |                                  |                              |                                                | 0.032                                                           |                                                        |
| A_51_P379905          | none identified | 2.777                         | up                           |                                  |                              |                                                | 0.030                                                           |                                                        |
| A_52_P1092709         | none identified | 2.501                         | up                           |                                  |                              |                                                | 0.040                                                           |                                                        |
| A_52_P121942          | none identified |                               |                              | 2.725                            | down                         |                                                |                                                                 | 0.048                                                  |
| A_52_P620240          | none identified |                               |                              | 2.063                            | down                         |                                                |                                                                 | 0.027                                                  |
| A_52_P599964          | none identified | 9.564                         | up                           |                                  |                              |                                                | 0.007                                                           |                                                        |
| A_52_P973470          | none identified | 4.331                         | up                           |                                  |                              |                                                | 0.031                                                           |                                                        |

| Agilent Probe<br>Name | GeneSymbol      | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | p value, Unpaired T-<br>test (0 vs 6 hours)<br>(BHFDR) |
|-----------------------|-----------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
| A_52_P68235           | none identified | 6.894                         | up                           |                                  |                              |                                                | 0.002                                                           |                                                        |
| A_51_P151888          | none identified |                               |                              | 4.690                            | down                         |                                                |                                                                 | 0.010                                                  |
| A_52_P86965           | none identified | 6.128                         | up                           |                                  |                              |                                                | 0.046                                                           |                                                        |
| A_52_P36261           | none identified | 3.663                         | up                           |                                  |                              | 0.048                                          | 0.009                                                           |                                                        |
| A_52_P510790          | none identified | 6.542                         | up                           |                                  |                              |                                                | 0.005                                                           |                                                        |
| A_51_P301117          | none identified | 2.679                         | up                           |                                  |                              |                                                | 0.009                                                           |                                                        |
| A_51_P159503          | none identified | 7.230                         | up                           |                                  |                              |                                                | 0.002                                                           |                                                        |
| A_52_P374983          | none identified | 3.875                         | up                           |                                  |                              |                                                | 0.035                                                           |                                                        |
| A_52_P359071          | none identified | 5.093                         | up                           |                                  |                              |                                                | 0.005                                                           |                                                        |
| A_51_P181785          | none identified | 2.310                         | up                           |                                  |                              |                                                | 0.013                                                           |                                                        |
| A_52_P852190          | none identified | 4.963                         | up                           |                                  |                              |                                                | 0.032                                                           |                                                        |
| A_52_P1173559         | none identified | 6.696                         | up                           |                                  |                              |                                                | 0.035                                                           |                                                        |
| A_51_P188527          | none identified | 2.957                         | up                           | 2.113                            | down                         |                                                | 0.048                                                           | 0.014                                                  |
| A_52_P612668          | none identified | 3.074                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_52_P577992          | none identified | 3.723                         | up                           |                                  |                              |                                                | 0.022                                                           |                                                        |
| A_51_P325281          | none identified | 3.260                         | up                           |                                  |                              |                                                | 0.008                                                           |                                                        |
| Agilent Probe<br>Name | GeneSymbol     | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|----------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P77093           | 1600014C10Rik  | 2.889                         | up                           | 1.491                            | up                           | 0.024                                          | 0.050                                                           |                                                                 |
| A_51_P453616          | 1700003F17Rik  | 10.749                        | up                           | 3.761                            | up                           | 0.006                                          | 0.022                                                           | 0.028                                                           |
| A_51_P326555          | 1700093K21Rik  | 2.616                         | up                           | 1.005                            | up                           | 0.029                                          |                                                                 |                                                                 |
| A_51_P105380          | 2010005H15Rik  | 2.238                         | up                           | 1.756                            | up                           | 0.021                                          | 0.040                                                           |                                                                 |
| A_51_P322473          | 2310042D19Rik  | 3.746                         | up                           | 1.384                            | up                           | 0.009                                          | 0.032                                                           |                                                                 |
| A_52_P542502          | 2310042D19Rik  | 7.562                         | up                           | 2.646                            | up                           | 0.008                                          | 0.023                                                           |                                                                 |
| A_52_P986608          | 2610301H18Rik  | 2.719                         | up                           | 1.710                            | up                           | 0.031                                          | 0.039                                                           |                                                                 |
| A_52_P241640          | 4930599N23Rik  | 3.173                         | up                           | 2.790                            | up                           | 0.005                                          | 0.022                                                           | 0.015                                                           |
| A_52_P311976          | 9330175E14Rik  | 2.026                         | up                           | 1.659                            | up                           | 0.004                                          | 0.020                                                           |                                                                 |
| A_52_P417945          | 9330175E14Rik  | 2.970                         | up                           | 2.081                            | up                           | 0.007                                          | 0.024                                                           |                                                                 |
| A_52_P250268          | 9430034N14Rik  | 2.260                         | up                           | 1.835                            | up                           | 0.032                                          |                                                                 |                                                                 |
| A_51_P249471          | 9530028C05     | 3.389                         | up                           | 2.115                            | up                           | 0.021                                          | 0.038                                                           |                                                                 |
| A_52_P61697           | 9930111J21Rik2 | 2.252                         | up                           | 1.549                            | up                           | 0.031                                          | 0.033                                                           |                                                                 |
| A_51_P158072          | A230050P20Rik  | 2.722                         | up                           | 2.079                            | up                           | 0.013                                          | 0.030                                                           | 0.028                                                           |
| A_51_P158073          | A230050P20Rik  | 2.668                         | up                           | 1.884                            | up                           | 0.020                                          | 0.035                                                           |                                                                 |
| A_52_P649038          | A230050P20Rik  | 3.861                         | up                           | 2.480                            | up                           | 0.004                                          | 0.018                                                           | 0.039                                                           |
| A_52_P638457          | A430084P05Rik  | 2.051                         | up                           | 1.483                            | up                           | 0.021                                          | 0.037                                                           |                                                                 |
| A_51_P274803          | A530023O14Rik  | 5.791                         | up                           | 2.837                            | up                           | 0.049                                          |                                                                 |                                                                 |
| A_52_P499640          | A530032D15Rik  | 2.012                         | up                           | 1.370                            | up                           | 0.038                                          | 0.044                                                           |                                                                 |
| A_52_P564444          | A530064D06Rik  | 8.643                         | up                           | 3.356                            | up                           | 0.011                                          | 0.026                                                           |                                                                 |
| A_52_P30728           | Abca17         | 5.359                         | up                           | 2.293                            | up                           | 0.025                                          | 0.037                                                           |                                                                 |

## E. IFN $\alpha$ regulated probes within the thymus of Socs1<sup>-/-</sup>Ifn $\gamma$ <sup>-/-</sup> mice

| Agilent Probe<br>Name | GeneSymbol    | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|---------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P213932          | Adamts1       | 2.692                         | up                           | 1.257                            | up                           | 0.048                                          | 0.041                                                           |                                                                 |
| A_52_P489295          | Adamts1       | 2.174                         | up                           | 1.153                            | up                           | 0.049                                          |                                                                 |                                                                 |
| A_51_P234944          | Adamts4       | 3.435                         | up                           | 1.105                            | down                         | 0.027                                          | 0.037                                                           |                                                                 |
| A_51_P257134          | Adar          | 2.444                         | up                           | 1.954                            | up                           | 0.020                                          | 0.046                                                           |                                                                 |
| A_51_P238563          | Agpat2        |                               |                              |                                  |                              |                                                | 0.037                                                           |                                                                 |
| A_52_P199633          | AI451617      | 5.238                         | up                           | 2.856                            | up                           | 0.004                                          | 0.018                                                           | 0.030                                                           |
| A_52_P371494          | AI451617      | 5.645                         | up                           | 3.142                            | up                           | 0.023                                          | 0.033                                                           |                                                                 |
| A_52_P375312          | Amica1        | 2.081                         | up                           | 1.444                            | up                           | 0.048                                          | 0.030                                                           |                                                                 |
| A_52_P368690          | Amica1        | 2.247                         | up                           | 1.614                            | up                           | 0.020                                          | 0.033                                                           |                                                                 |
| A_52_P803082          | Apol9a        | 3.843                         | up                           | 2.203                            | up                           | 0.008                                          | 0.030                                                           | 0.031                                                           |
| A_52_P549166          | Arsj          | 2.257                         | up                           | 1.053                            | up                           | 0.021                                          | 0.020                                                           |                                                                 |
| A_51_P134627          | Asb13         | 3.662                         | up                           | 1.684                            | up                           | 0.050                                          | 0.030                                                           |                                                                 |
| A_52_P537941          | Asb13         | 2.641                         | up                           | 1.728                            | up                           | 0.032                                          |                                                                 |                                                                 |
| A_52_P549985          | Asb13         | 2.586                         | up                           | 1.925                            | up                           | 0.019                                          | 0.034                                                           |                                                                 |
| A_52_P452689          | Atf3          | 2.169                         | up                           | 1.318                            | up                           | 0.041                                          |                                                                 |                                                                 |
| A_51_P190639          | Atp8b4        | 2.364                         | up                           | 1.503                            | up                           | 0.034                                          |                                                                 |                                                                 |
| A_52_P233811          | B430306N03Rik | 3.122                         | up                           | 1.397                            | up                           | 0.004                                          | 0.018                                                           |                                                                 |
| A_51_P324535          | B4galt5       |                               |                              |                                  |                              |                                                | 0.040                                                           |                                                                 |
| A_51_P165182          | Batf2         | 3.793                         | up                           | 1.455                            | up                           | 0.008                                          | 0.020                                                           |                                                                 |
| A_52_P321358          | BC006779      | 3.788                         | up                           | 2.155                            | up                           | 0.003                                          | 0.018                                                           | 0.015                                                           |
| A_51_P406604          | BC006779      | 3.690                         | up                           | 2.329                            | up                           | 0.018                                          | 0.034                                                           | 0.039                                                           |
| A_51_P494597          | BC013712      | 2.000                         | up                           | 1.310                            | up                           | 0.012                                          | 0.022                                                           |                                                                 |
| A_52_P480044          | BC023105      | 11.934                        | up                           | 5.728                            | up                           | 0.033                                          |                                                                 |                                                                 |

| Agilent Probe<br>Name | GeneSymbol  | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|-------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P452599          | Bco2        | 2.454                         | up                           | 1.246                            | up                           | 0.030                                          |                                                                 |                                                                 |
| A_51_P169693          | Bst2        | 2.451                         | up                           | 2.416                            | up                           | 0.020                                          | 0.040                                                           |                                                                 |
| A_52_P249514          | Ccl12       | 3.715                         | up                           | 1.878                            | up                           | 0.003                                          | 0.018                                                           |                                                                 |
| A_51_P286737          | Ccl2        | 5.099                         | up                           | 2.183                            | up                           | 0.004                                          | 0.020                                                           | 0.032                                                           |
| A_52_P208763          | Ccl7        | 6.055                         | up                           | 2.770                            | up                           | 0.003                                          | 0.018                                                           | 0.019                                                           |
| A_51_P436652          | Ccl7        | 5.700                         | up                           | 2.823                            | up                           | 0.003                                          | 0.018                                                           | 0.015                                                           |
| A_52_P561716          | Ccnyl1      | 2.596                         | up                           | 1.846                            | up                           | 0.035                                          | 0.047                                                           |                                                                 |
| A_51_P232682          | Ccrl2       | 3.024                         | up                           | 1.278                            | up                           | 0.020                                          | 0.044                                                           |                                                                 |
| A_52_P334593          | Ccrl2       | 3.205                         | up                           | 1.445                            | up                           | 0.036                                          |                                                                 |                                                                 |
| A_52_P573255          | Cdc42ep1    | 2.166                         | down                         | 1.271                            | down                         | 0.019                                          | 0.032                                                           |                                                                 |
| A_52_P360112          | Clip2       | 2.181                         | down                         | 1.755                            | down                         | 0.018                                          | 0.036                                                           |                                                                 |
| A_52_P186937          | Cmpk2       | 13.341                        | up                           | 4.793                            | up                           | 0.003                                          | 0.018                                                           | 0.008                                                           |
| A_51_P400190          | Cmpk2       | 14.685                        | up                           | 5.056                            | up                           | 0.004                                          | 0.018                                                           | 0.019                                                           |
| A_51_P300618          | Crb2        | 3.496                         | down                         | 1.331                            | down                         | 0.007                                          | 0.018                                                           |                                                                 |
| A_52_P267564          | Creb5       | 2.046                         | up                           | 1.188                            | up                           | 0.037                                          |                                                                 |                                                                 |
| A_52_P917015          | Csprs       |                               |                              |                                  |                              |                                                | 0.022                                                           |                                                                 |
| A_51_P432641          | Cxcl10      | 6.570                         | up                           | 1.370                            | up                           | 0.011                                          | 0.033                                                           |                                                                 |
| A_52_P380369          | D14Ertd668e | 4.632                         | up                           | 3.076                            | up                           | 0.006                                          | 0.023                                                           | 0.039                                                           |
| A_51_P215143          | D430006K04  | 4.896                         | up                           | 2.563                            | up                           | 0.011                                          | 0.026                                                           |                                                                 |
| A_52_P110052          | Darc        | 2.301                         | up                           | 1.129                            | up                           | 0.032                                          | 0.045                                                           |                                                                 |
| A_51_P223569          | Ddx4        | 6.869                         | up                           | 5.381                            | up                           | 0.015                                          | 0.035                                                           |                                                                 |
| A_51_P393748          | Ddx58       | 3.731                         | up                           | 2.274                            | up                           | 0.008                                          | 0.024                                                           | 0.041                                                           |
| A_52_P385536          | Ddx58       | 5.912                         | up                           | 2.104                            | up                           | 0.041                                          | 0.034                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol    | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|---------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P523946          | Ddx58         | 4.792                         | up                           | 2.462                            | up                           | 0.005                                          | 0.020                                                           | 0.016                                                           |
| A_52_P479001          | Ddx58         | 4.265                         | up                           | 2.150                            | up                           | 0.003                                          | 0.018                                                           | 0.015                                                           |
| A_51_P197910          | Ddx60         | 6.803                         | up                           | 4.282                            | up                           | 0.018                                          | 0.040                                                           |                                                                 |
| A_52_P223809          | Dhx58         | 5.741                         | up                           | 3.782                            | up                           | 0.005                                          | 0.022                                                           | 0.019                                                           |
| A_51_P306017          | DII1          | 2.082                         | up                           | 1.301                            | up                           | 0.005                                          | 0.023                                                           |                                                                 |
| A_52_P483799          | E030037K03Rik | 9.292                         | up                           | 5.804                            | up                           | 0.038                                          | 0.046                                                           |                                                                 |
| A_52_P127813          | E030037K03Rik | 5.915                         | up                           | 3.977                            | up                           | 0.004                                          | 0.018                                                           | 0.017                                                           |
| A_52_P559919          | Eif2ak2       | 5.900                         | up                           | 2.340                            | up                           | 0.005                                          | 0.018                                                           |                                                                 |
| A_52_P379277          | Enpp3         | 2.111                         | up                           | 1.549                            | up                           | 0.024                                          | 0.048                                                           |                                                                 |
| A_52_P582374          | Epsti1        |                               |                              | 2.011                            | down                         |                                                | 0.041                                                           |                                                                 |
| A_51_P376050          | Epsti1        | 2.229                         | up                           | 2.011                            | up                           | 0.012                                          | 0.035                                                           | 0.021                                                           |
| A_51_P100852          | Fam26f        |                               |                              |                                  |                              |                                                | 0.041                                                           |                                                                 |
| A_51_P492047          | Fam3b         | 2.343                         | up                           | 1.450                            | up                           | 0.015                                          | 0.028                                                           |                                                                 |
| A_51_P426008          | Fbxo39        | 8.576                         | up                           | 5.144                            | up                           | 0.008                                          | 0.026                                                           |                                                                 |
| A_52_P47846           | Fcgr1         | 2.608                         | up                           | 3.005                            | up                           | 0.012                                          | 0.024                                                           |                                                                 |
| A_51_P296755          | Fcgr1         | 2.449                         | up                           | 2.659                            | up                           | 0.017                                          | 0.022                                                           |                                                                 |
| A_51_P181517          | Fcgr4         | 3.039                         | up                           | 3.342                            | up                           | 0.003                                          | 0.018                                                           | 0.019                                                           |
| A_52_P551974          | Ffar1         | 2.022                         | up                           | 1.320                            | up                           | 0.024                                          | 0.047                                                           |                                                                 |
| A_51_P344790          | Foxl2         |                               |                              | 2.392                            | down                         |                                                |                                                                 | 0.031                                                           |
| A_51_P288138          | Fpr2          | 3.787                         | up                           | 2.398                            | up                           | 0.021                                          | 0.037                                                           |                                                                 |
| A_52_P109378          | Fpr2          | 4.485                         | up                           | 2.513                            | up                           | 0.005                                          | 0.018                                                           |                                                                 |
| A_52_P309418          | Ftsjd2        | 2.060                         | up                           | 1.515                            | up                           | 0.012                                          | 0.019                                                           |                                                                 |
| A_51_P203955          | Gbp2          | 3.886                         | up                           | 2.592                            | up                           | 0.018                                          | 0.040                                                           | 0.016                                                           |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P463562          | Gbp4       | 2.684                         | up                           | 1.389                            | up                           | 0.025                                          | 0.041                                                           |                                                                 |
| A_52_P327664          | Gbp5       | 3.794                         | up                           | 1.813                            | up                           | 0.020                                          | 0.039                                                           |                                                                 |
| A_51_P463846          | Gbp6       | 4.429                         | up                           | 1.802                            | up                           | 0.020                                          | 0.038                                                           |                                                                 |
| A_51_P323180          | Gbp9       | 3.718                         | up                           | 2.347                            | up                           | 0.033                                          | 0.045                                                           |                                                                 |
| A_52_P344949          | Gbp9       | 4.036                         | up                           | 2.735                            | up                           | 0.021                                          | 0.040                                                           |                                                                 |
| A_51_P267587          | Gdap10     | 3.534                         | up                           | 1.967                            | up                           | 0.020                                          | 0.041                                                           |                                                                 |
| A_52_P525317          | Gja5       | 2.175                         | down                         | 1.170                            | down                         | 0.050                                          | 0.049                                                           |                                                                 |
| A_52_P494730          | Gm12185    | 8.013                         | up                           | 3.284                            | up                           | 0.004                                          | 0.020                                                           |                                                                 |
| A_52_P164821          | Gm12250    | 8.086                         | up                           | 3.229                            | up                           | 0.004                                          | 0.019                                                           | 0.015                                                           |
| A_51_P500082          | Gm14446    | 8.279                         | up                           | 4.581                            | up                           | 0.009                                          | 0.029                                                           | 0.030                                                           |
| A_52_P294064          | Gm14446    | 8.980                         | up                           | 4.831                            | up                           | 0.010                                          | 0.029                                                           | 0.032                                                           |
| A_52_P116184          | Gm2795     | 2.192                         | up                           | 1.083                            | up                           | 0.037                                          |                                                                 |                                                                 |
| A_52_P315423          | Gm3224     |                               |                              | 3.386                            | up                           |                                                | 0.050                                                           |                                                                 |
| A_52_P947847          | Gm4951     | 9.550                         | up                           | 3.241                            | up                           | 0.028                                          | 0.034                                                           |                                                                 |
| A_52_P176865          | Gm5431     | 5.347                         | up                           | 2.201                            | up                           | 0.004                                          | 0.018                                                           |                                                                 |
| A_51_P162326          | Gm5933     | 3.555                         | up                           | 2.168                            | up                           | 0.018                                          | 0.034                                                           |                                                                 |
| A_51_P333274          | Gzmb       | 2.648                         | up                           | 2.369                            | up                           | 0.030                                          |                                                                 | 0.045                                                           |
| A_52_P581082          | H2-T24     | 4.410                         | up                           | 3.505                            | up                           | 0.004                                          | 0.020                                                           | 0.019                                                           |
| A_52_P189812          | H2-T24     | 3.945                         | up                           | 2.726                            | up                           | 0.004                                          | 0.018                                                           | 0.038                                                           |
| A_51_P147850          | Hand2      | 3.392                         | up                           | 2.007                            | up                           | 0.048                                          |                                                                 |                                                                 |
| A_51_P492456          | Has1       | 4.692                         | up                           | 1.346                            | down                         | 0.008                                          | 0.040                                                           |                                                                 |
| A_52_P64514           | Herc5      | 4.214                         | up                           | 2.658                            | up                           | 0.021                                          | 0.040                                                           |                                                                 |
| A_52_P679860          | Herc5      | 5.508                         | up                           | 3.189                            | up                           | 0.028                                          | 0.038                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol    | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|---------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P436342          | Hoxb5         | 2.205                         | up                           | 1.397                            | down                         | 0.008                                          | 0.046                                                           |                                                                 |
| A_52_P522427          | Hsh2d         | 3.799                         | up                           | 2.374                            | up                           | 0.006                                          | 0.020                                                           | 0.035                                                           |
| A_51_P130332          | Hspa12b       | 2.196                         | down                         | 1.178                            | down                         | 0.023                                          | 0.039                                                           |                                                                 |
| A_52_P663686          | l830012O16Rik | 9.308                         | up                           | 4.808                            | up                           | 0.018                                          | 0.032                                                           |                                                                 |
| A_51_P286488          | ler3          | 2.041                         | up                           | 1.167                            | up                           | 0.038                                          |                                                                 |                                                                 |
| A_52_P811745          | lfi203        | 4.180                         | up                           | 1.961                            | up                           | 0.043                                          | 0.049                                                           |                                                                 |
| A_51_P408346          | lfi204        | 4.276                         | up                           | 3.008                            | up                           | 0.022                                          | 0.047                                                           |                                                                 |
| A_51_P408343          | lfi204        | 4.161                         | up                           | 2.556                            | up                           | 0.026                                          | 0.047                                                           |                                                                 |
| A_51_P414889          | lfi35         | 2.447                         | up                           | 1.660                            | up                           | 0.018                                          | 0.033                                                           |                                                                 |
| A_52_P550858          | lfi44         | 10.936                        | up                           | 4.990                            | up                           | 0.018                                          | 0.036                                                           |                                                                 |
| A_51_P487690          | lfi44         | 6.427                         | up                           | 2.916                            | up                           | 0.041                                          | 0.034                                                           |                                                                 |
| A_51_P129229          | lfi47         | 3.750                         | up                           | 2.039                            | up                           | 0.006                                          | 0.024                                                           | 0.019                                                           |
| A_51_P387810          | lfih1         | 5.737                         | up                           | 2.922                            | up                           | 0.009                                          | 0.028                                                           |                                                                 |
| A_52_P121468          | lfih1         | 7.384                         | up                           | 3.510                            | up                           | 0.018                                          | 0.034                                                           |                                                                 |
| A_51_P327751          | lfit1         | 9.103                         | up                           | 4.018                            | up                           | 0.007                                          | 0.020                                                           |                                                                 |
| A_52_P542388          | lfit2         | 4.791                         | up                           | 2.202                            | up                           | 0.015                                          | 0.034                                                           |                                                                 |
| A_51_P161021          | lfit2         | 4.998                         | up                           | 2.216                            | up                           | 0.028                                          | 0.046                                                           |                                                                 |
| A_51_P359570          | lfit3         | 6.663                         | up                           | 4.509                            | up                           | 0.006                                          | 0.023                                                           | 0.017                                                           |
| A_51_P112355          | Igtp          | 2.486                         | up                           | 1.209                            | up                           | 0.041                                          | 0.035                                                           |                                                                 |
| A_51_P387239          | ligp1         | 8.303                         | up                           | 4.039                            | up                           | 0.017                                          | 0.036                                                           |                                                                 |
| A_52_P18746           | lkzf3         | 2.079                         | down                         | 1.128                            | down                         | 0.020                                          | 0.035                                                           |                                                                 |
| A_51_P430766          | II10          | 2.645                         | up                           | 1.485                            | up                           | 0.022                                          | 0.032                                                           |                                                                 |
| A_52_P15461           | II15          | 2.118                         | up                           | 1.177                            | up                           | 0.009                                          | 0.032                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol   | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|--------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P217218          | 116          | 7.137                         | up                           | 1.527                            | up                           | 0.022                                          | 0.040                                                           |                                                                 |
| A_51_P421876          | lrf7         | 3.449                         | up                           | 3.064                            | up                           | 0.009                                          | 0.027                                                           | 0.041                                                           |
| A_52_P176013          | Irf9         | 2.079                         | up                           | 1.934                            | up                           | 0.026                                          | 0.048                                                           |                                                                 |
| A_51_P123625          | lrg1         | 3.609                         | up                           | 1.515                            | up                           | 0.046                                          |                                                                 |                                                                 |
| A_51_P262171          | lrgm1        | 4.352                         | up                           | 2.482                            | up                           | 0.003                                          | 0.018                                                           | 0.005                                                           |
| A_52_P126158          | lrgm1        | 4.831                         | up                           | 2.500                            | up                           | 0.003                                          | 0.018                                                           | 0.015                                                           |
| A_51_P416295          | lrgm2        | 3.194                         | up                           | 1.760                            | up                           | 0.004                                          | 0.018                                                           |                                                                 |
| A_52_P463936          | lsg15        | 6.476                         | up                           | 3.424                            | up                           | 0.004                                          | 0.018                                                           | 0.047                                                           |
| A_52_P546175          | LOC100045156 | 2.365                         | up                           | 1.941                            | up                           | 0.030                                          |                                                                 |                                                                 |
| A_52_P315421          | LOC544818    | 3.402                         | up                           | 2.757                            | up                           | 0.020                                          | 0.044                                                           |                                                                 |
| A_52_P203833          | Mitd1        | 2.621                         | up                           | 1.825                            | up                           | 0.004                                          | 0.018                                                           |                                                                 |
| A_52_P203837          | Mitd1        | 3.015                         | up                           | 1.594                            | up                           | 0.019                                          | 0.023                                                           |                                                                 |
| A_51_P303332          | Mitd1        | 3.907                         | up                           | 2.115                            | up                           | 0.018                                          | 0.036                                                           |                                                                 |
| A_51_P440535          | Miki         | 2.599                         | up                           | 2.001                            | up                           | 0.011                                          | 0.030                                                           | 0.022                                                           |
| A_51_P184484          | Mmp13        | 11.238                        | up                           | 9.406                            | up                           | 0.006                                          | 0.024                                                           | 0.017                                                           |
| A_51_P377620          | Mnda         | 3.296                         | up                           | 1.878                            | up                           | 0.041                                          |                                                                 |                                                                 |
| A_52_P189772          | Mpa2l        | 5.743                         | up                           | 3.200                            | up                           | 0.007                                          | 0.022                                                           |                                                                 |
| A_52_P393488          | Ms4a4c       | 4.418                         | up                           | 3.642                            | up                           | 0.027                                          |                                                                 | 0.047                                                           |
| A_52_P211956          | Ms4a4d       | 3.479                         | up                           | 2.930                            | up                           | 0.010                                          | 0.034                                                           | 0.039                                                           |
| A_51_P294505          | Ms4a4d       | 3.814                         | up                           | 2.685                            | up                           | 0.022                                          |                                                                 |                                                                 |
| A_51_P422300          | Ms4a6b       | 2.219                         | up                           | 1.872                            | up                           | 0.011                                          | 0.034                                                           |                                                                 |
| A_51_P149714          | Ms4a6d       | 2.130                         | up                           | 1.799                            | up                           | 0.007                                          | 0.026                                                           |                                                                 |
| A_52_P446431          | Mx1          | 12.610                        | up                           | 4.425                            | up                           | 0.006                                          | 0.023                                                           | 0.033                                                           |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P614259          | Mx1        | 12.662                        | up                           | 4.604                            | up                           | 0.006                                          | 0.023                                                           | 0.028                                                           |
| A_51_P514085          | Mx2        | 12.368                        | up                           | 4.468                            | up                           | 0.003                                          | 0.018                                                           | 0.023                                                           |
| A_52_P6328            | Nampt      | 2.332                         | up                           | 1.639                            | up                           | 0.023                                          | 0.049                                                           |                                                                 |
| A_51_P387235          | Nampt      | 2.294                         | up                           | 1.490                            | up                           | 0.031                                          |                                                                 |                                                                 |
| A_52_P476950          | Ncoa7      | 3.215                         | up                           | 1.669                            | up                           | 0.040                                          |                                                                 |                                                                 |
| A_52_P311903          | Ncoa7      | 3.141                         | up                           |                                  |                              |                                                | 0.035                                                           |                                                                 |
| A_52_P382107          | NIrc5      | 2.499                         | up                           | 1.644                            | up                           | 0.035                                          |                                                                 |                                                                 |
| A_52_P337357          | Oas1a      | 3.355                         | up                           | 3.303                            | up                           | 0.021                                          |                                                                 |                                                                 |
| A_52_P110877          | Oas1b      | 4.785                         | up                           | 2.625                            | up                           | 0.003                                          | 0.018                                                           | 0.015                                                           |
| A_51_P428529          | Oas1c      | 2.342                         | up                           | 1.773                            | up                           | 0.009                                          | 0.027                                                           |                                                                 |
| A_52_P587071          | Oas2       | 12.617                        | up                           | 7.013                            | up                           | 0.009                                          | 0.033                                                           |                                                                 |
| A_51_P277994          | Oas2       | 6.947                         | up                           | 4.313                            | up                           | 0.004                                          | 0.019                                                           | 0.015                                                           |
| A_51_P472867          | Oas3       | 8.314                         | up                           | 4.852                            | up                           | 0.008                                          | 0.026                                                           | 0.030                                                           |
| A_52_P516296          | Oas3       | 6.174                         | up                           | 6.487                            | up                           | 0.050                                          |                                                                 |                                                                 |
| A_51_P437309          | Oasl1      | 5.167                         | up                           | 2.555                            | up                           | 0.006                                          | 0.020                                                           |                                                                 |
| A_51_P387123          | Oasl2      | 2.909                         | up                           | 2.399                            | up                           | 0.028                                          |                                                                 | 0.019                                                           |
| A_51_P459908          | Olfr56     | 5.889                         | up                           | 2.331                            | up                           | 0.010                                          | 0.022                                                           |                                                                 |
| A_51_P120738          | P2ry14     | 2.171                         | up                           | 1.763                            | up                           | 0.009                                          | 0.032                                                           |                                                                 |
| A_51_P129199          | Parp10     | 2.501                         | up                           | 1.622                            | up                           | 0.033                                          | 0.040                                                           |                                                                 |
| A_51_P452227          | Parp11     | 2.065                         | up                           | 1.194                            | up                           | 0.015                                          | 0.039                                                           |                                                                 |
| A_51_P214747          | Parp12     | 4.384                         | up                           | 3.054                            | up                           | 0.015                                          | 0.040                                                           | 0.016                                                           |
| A_51_P341767          | Parp14     | 4.214                         | up                           | 1.742                            | up                           | 0.009                                          | 0.019                                                           |                                                                 |
| A_52_P97680           | Parp14     | 4.217                         | up                           | 2.186                            | up                           | 0.003                                          | 0.018                                                           | 0.024                                                           |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P514712          | Parp14     | 3.769                         | up                           | 2.175                            | up                           | 0.004                                          | 0.018                                                           | 0.015                                                           |
| A_51_P218984          | Parp9      | 4.497                         | up                           | 2.392                            | up                           | 0.006                                          | 0.023                                                           |                                                                 |
| A_51_P262515          | Phf11      | 4.820                         | up                           | 4.365                            | up                           | 0.019                                          | 0.048                                                           | 0.015                                                           |
| A_52_P642239          | Pik3ap1    | 3.266                         | up                           | 2.156                            | up                           | 0.045                                          |                                                                 |                                                                 |
| A_51_P270339          | Pik3ap1    | 2.107                         | up                           | 1.590                            | up                           | 0.049                                          | 0.046                                                           |                                                                 |
| A_51_P199199          | Pik3ap1    | 2.307                         | up                           | 1.406                            | up                           | 0.028                                          | 0.024                                                           |                                                                 |
| A_52_P372901          | Plscr2     | 2.770                         | up                           | 1.763                            | up                           | 0.020                                          | 0.040                                                           |                                                                 |
| A_51_P251022          | Plscr2     | 2.897                         | up                           | 1.591                            | up                           | 0.022                                          | 0.038                                                           |                                                                 |
| A_51_P282799          | Pml        | 2.639                         | up                           | 1.431                            | up                           | 0.044                                          |                                                                 |                                                                 |
| A_52_P121087          | Pml        | 3.068                         | up                           | 1.677                            | up                           | 0.021                                          | 0.033                                                           |                                                                 |
| A_52_P229271          | Pnpt1      | 3.141                         | up                           | 1.719                            | up                           | 0.041                                          |                                                                 |                                                                 |
| A_51_P363729          | Prg3       | 1.584                         | down                         | 2.211                            | down                         | 0.022                                          |                                                                 |                                                                 |
| A_51_P363258          | Prss22     | 2.078                         | up                           |                                  |                              |                                                | 0.047                                                           |                                                                 |
| A_51_P374726          | Ptx3       | 12.046                        | up                           | 1.375                            | up                           | 0.003                                          | 0.014                                                           |                                                                 |
| A_52_P26161           | Ptx3       | 13.980                        | up                           | 1.368                            | up                           | 0.004                                          | 0.018                                                           |                                                                 |
| A_52_P193657          | Pyhin1     | 4.179                         | up                           | 2.113                            | up                           | 0.050                                          |                                                                 |                                                                 |
| A_52_P563280          | Pyhin1     |                               |                              |                                  |                              |                                                | 0.042                                                           |                                                                 |
| A_51_P340699          | Rasl11a    | 2.108                         | up                           | 1.150                            | up                           | 0.038                                          |                                                                 |                                                                 |
| A_52_P425839          | Retnlg     | 2.697                         | up                           |                                  |                              |                                                | 0.026                                                           |                                                                 |
| A_51_P177819          | Rnf114     | 2.094                         | up                           | 1.739                            | up                           | 0.041                                          |                                                                 |                                                                 |
| A_51_P505132          | Rsad2      | 20.654                        | up                           | 7.440                            | up                           | 0.003                                          | 0.018                                                           | 0.019                                                           |
| A_52_P670026          | Rsad2      | 17.280                        | up                           | 6.263                            | up                           | 0.003                                          | 0.018                                                           | 0.009                                                           |
| A_51_P505134          | Rsad2      | 21.025                        | up                           | 7.965                            | up                           | 0.003                                          | 0.018                                                           | 0.015                                                           |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P304170          | Rtp4       | 3.704                         | up                           | 3.055                            | up                           | 0.003                                          | 0.018                                                           | 0.016                                                           |
| A_52_P466090          | Samhd1     | 2.844                         | up                           | 1.796                            | up                           | 0.018                                          | 0.040                                                           |                                                                 |
| A_52_P136316          | Samhd1     | 4.216                         | up                           | 1.560                            | up                           | 0.020                                          | 0.034                                                           |                                                                 |
| A_52_P419678          | Serpina3f  | 9.056                         | up                           | 3.046                            | up                           | 0.007                                          | 0.023                                                           | 0.028                                                           |
| A_52_P419679          | Serpina3f  | 6.118                         | up                           | 3.254                            | up                           | 0.041                                          |                                                                 |                                                                 |
| A_51_P326191          | Serpina3g  | 2.569                         | up                           | 1.688                            | up                           | 0.047                                          | 0.035                                                           |                                                                 |
| A_51_P173678          | Slc10a6    | 4.269                         | up                           | 1.106                            | up                           | 0.047                                          |                                                                 |                                                                 |
| A_51_P277373          | Slc8a1     |                               |                              | 2.103                            | down                         |                                                |                                                                 | 0.027                                                           |
| A_52_P425890          | Slfn1      | 3.980                         | up                           | 2.951                            | up                           | 0.008                                          | 0.026                                                           | 0.016                                                           |
| A_51_P504991          | Slfn10     | 3.906                         | up                           | 2.074                            | up                           | 0.018                                          | 0.035                                                           |                                                                 |
| A_51_P228768          | Slfn3      | 2.209                         | up                           | 1.605                            | up                           | 0.042                                          |                                                                 |                                                                 |
| A_51_P183812          | Slfn4      | 22.093                        | up                           | 10.757                           | up                           | 0.017                                          | 0.039                                                           |                                                                 |
| A_51_P413359          | Slfn5      | 6.032                         | up                           | 2.568                            | up                           | 0.007                                          | 0.022                                                           |                                                                 |
| A_51_P364694          | Slfn5      | 5.613                         | up                           | 2.434                            | up                           | 0.010                                          | 0.026                                                           |                                                                 |
| A_52_P543489          | Slfn8      | 6.320                         | up                           | 2.753                            | up                           | 0.008                                          | 0.022                                                           |                                                                 |
| A_51_P504988          | Slfn9      | 5.597                         | up                           | 2.556                            | up                           | 0.012                                          | 0.022                                                           |                                                                 |
| A_51_P255016          | Sp100      | 2.546                         | up                           | 1.702                            | up                           | 0.020                                          | 0.033                                                           |                                                                 |
| A_51_P305583          | Sp100      | 2.573                         | up                           | 1.808                            | up                           | 0.037                                          | 0.034                                                           |                                                                 |
| A_52_P496503          | Stat1      | 2.939                         | up                           | 1.977                            | up                           | 0.006                                          | 0.024                                                           |                                                                 |
| A_52_P70255           | Stat1      | 3.058                         | up                           | 1.917                            | up                           | 0.004                                          | 0.018                                                           |                                                                 |
| A_52_P505218          | Stat1      | 2.820                         | up                           | 1.998                            | up                           | 0.013                                          | 0.023                                                           |                                                                 |
| A_52_P70261           | Stat1      | 3.229                         | up                           | 2.119                            | up                           | 0.004                                          | 0.018                                                           | 0.017                                                           |
| A_52_P542540          | Stat1      | 4.272                         | up                           | 2.908                            | up                           | 0.004                                          | 0.018                                                           | 0.032                                                           |

| Agilent Probe<br>Name | GeneSymbol | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P225808          | Stat2      | 2.132                         | up                           | 1.499                            | up                           | 0.020                                          | 0.037                                                           |                                                                 |
| A_51_P474278          | Sun5       |                               |                              |                                  |                              |                                                | 0.049                                                           |                                                                 |
| A_51_P508580          | Tcf15      | 2.437                         | down                         | 1.089                            | up                           | 0.049                                          |                                                                 |                                                                 |
| A_51_P143200          | Tcstv3     | 3.191                         | up                           | 2.407                            | up                           | 0.008                                          | 0.027                                                           | 0.028                                                           |
| A_51_P271835          | Tdrd7      | 2.542                         | up                           | 1.509                            | up                           | 0.008                                          | 0.027                                                           |                                                                 |
| A_52_P676510          | Tgtp1      | 5.933                         | up                           | 3.402                            | up                           | 0.005                                          | 0.022                                                           | 0.028                                                           |
| A_51_P478722          | Tgtp1      | 7.970                         | up                           | 3.540                            | up                           | 0.003                                          | 0.018                                                           | 0.007                                                           |
| A_52_P337092          | Thbs1      | 3.767                         | up                           | 1.219                            | down                         | 0.018                                          | 0.035                                                           |                                                                 |
| A_52_P363951          | Thbs1      | 4.657                         | up                           | 1.663                            | up                           | 0.018                                          | 0.032                                                           |                                                                 |
| A_52_P85174           | Tlr3       | 4.840                         | up                           |                                  |                              |                                                | 0.040                                                           |                                                                 |
| A_51_P291906          | Tlr3       | 4.164                         | up                           | 1.872                            | up                           | 0.039                                          |                                                                 |                                                                 |
| A_51_P371710          | Tlr7       | 2.563                         | up                           | 2.139                            | up                           | 0.041                                          |                                                                 |                                                                 |
| A_52_P261086          | Tmem140    | 2.160                         | up                           | 1.382                            | up                           | 0.006                                          | 0.023                                                           |                                                                 |
| A_52_P799815          | Tmem171    | 5.821                         | up                           | 1.983                            | up                           | 0.008                                          | 0.018                                                           |                                                                 |
| A_51_P448741          | Tnfsf10    | 2.308                         | up                           | 1.600                            | up                           | 0.031                                          |                                                                 |                                                                 |
| A_52_P253167          | Tor1aip2   | 2.274                         | up                           | 1.514                            | up                           | 0.019                                          | 0.025                                                           |                                                                 |
| A_51_P198179          | Tor3a      | 3.057                         | up                           | 1.672                            | up                           | 0.021                                          | 0.041                                                           |                                                                 |
| A_52_P52357           | Tor3a      | 3.239                         | up                           | 2.171                            | up                           | 0.023                                          | 0.049                                                           | 0.019                                                           |
| A_52_P634829          | Trim12     | 3.584                         | up                           | 2.343                            | up                           | 0.009                                          | 0.023                                                           |                                                                 |
| A_52_P267391          | Trim12     | 3.015                         | up                           | 2.116                            | up                           | 0.020                                          | 0.034                                                           |                                                                 |
| A_52_P252348          | Trim14     | 2.902                         | up                           | 1.677                            | up                           | 0.004                                          | 0.019                                                           |                                                                 |
| A_52_P640484          | Trim21     | 2.867                         | up                           | 1.689                            | up                           | 0.004                                          | 0.018                                                           |                                                                 |
| A_52_P654161          | Trim25     | 3.005                         | up                           | 1.745                            | up                           | 0.015                                          | 0.034                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol      | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|-----------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_51_P212854          | Trim25          | 2.413                         | up                           | 1.695                            | up                           | 0.003                                          | 0.018                                                           |                                                                 |
| A_52_P353038          | Trim26          | 2.008                         | up                           | 1.454                            | up                           | 0.024                                          | 0.034                                                           |                                                                 |
| A_52_P442567          | Trim30          | 4.578                         | up                           | 2.204                            | up                           | 0.004                                          | 0.018                                                           |                                                                 |
| A_51_P275454          | Trim30          |                               |                              |                                  |                              |                                                | 0.022                                                           |                                                                 |
| A_52_P278853          | Trim34          | 3.642                         | up                           | 2.347                            | up                           | 0.005                                          | 0.022                                                           | 0.042                                                           |
| A_52_P367034          | Trim34          | 3.249                         | up                           | 1.908                            | up                           | 0.003                                          | 0.018                                                           |                                                                 |
| A_52_P157316          | Trim34          | 2.751                         | up                           | 2.051                            | up                           | 0.004                                          | 0.020                                                           | 0.027                                                           |
| A_52_P199019          | Trim6           | 2.753                         | up                           | 1.508                            | up                           | 0.041                                          |                                                                 |                                                                 |
| A_52_P654703          | Trim69          | 2.595                         | up                           | 1.455                            | up                           | 0.046                                          | 0.044                                                           |                                                                 |
| A_51_P316816          | Uba7            | 2.180                         | up                           | 2.118                            | up                           | 0.018                                          | 0.050                                                           | 0.015                                                           |
| A_51_P164219          | Usp18           | 6.425                         | up                           | 2.836                            | up                           | 0.004                                          | 0.019                                                           | 0.021                                                           |
| A_52_P42834           | Usp25           | 2.488                         | up                           | 1.330                            | up                           | 0.020                                          | 0.034                                                           |                                                                 |
| A_52_P251703          | Vcan            | 2.884                         | up                           | 1.965                            | up                           | 0.038                                          |                                                                 |                                                                 |
| A_51_P494403          | Xaf1            | 4.543                         | up                           | 3.047                            | up                           | 0.004                                          | 0.020                                                           | 0.015                                                           |
| A_51_P312121          | Xdh             | 2.128                         | up                           | 1.900                            | up                           | 0.048                                          |                                                                 |                                                                 |
| A_51_P184936          | Zbp1            | 4.194                         | up                           | 2.468                            | up                           | 0.018                                          | 0.034                                                           |                                                                 |
| A_52_P373961          | Zcchc2          | 2.362                         | up                           | 1.571                            | up                           | 0.021                                          | 0.039                                                           |                                                                 |
| A_51_P352216          | Zfp365          | 3.552                         | up                           | 2.034                            | up                           | 0.004                                          | 0.018                                                           | 0.015                                                           |
| A_51_P144438          | Znfx1           | 2.311                         | up                           | 1.601                            | up                           | 0.044                                          | 0.049                                                           |                                                                 |
| A_52_P178002          | none identified | 2.479                         | up                           |                                  |                              |                                                | 0.018                                                           |                                                                 |
| A_52_P648759          | none identified | 5.218                         | up                           | 3.756                            | up                           | 0.008                                          | 0.026                                                           | 0.020                                                           |
| A_52_P653054          | none identified | 7.453                         | up                           | 4.925                            | up                           | 0.009                                          | 0.024                                                           | 0.049                                                           |
| A_52_P326187          | none identified | 5.934                         | up                           | 3.222                            | up                           | 0.006                                          | 0.023                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol      | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|-----------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P615247          | none identified | 2.993                         | up                           | 1.825                            | up                           | 0.020                                          | 0.040                                                           |                                                                 |
| A_52_P1100772         | none identified | 2.417                         | up                           | 1.288                            | up                           | 0.032                                          | 0.020                                                           |                                                                 |
| A_52_P599964          | none identified | 5.735                         | up                           | 3.045                            | up                           | 0.004                                          | 0.018                                                           | 0.036                                                           |
| A_52_P973470          | none identified | 2.696                         | up                           | 2.133                            | up                           | 0.004                                          | 0.018                                                           | 0.021                                                           |
| A_52_P68235           | none identified | 4.832                         | up                           | 3.644                            | up                           | 0.006                                          | 0.024                                                           | 0.025                                                           |
| A_52_P423810          | none identified | 4.601                         | up                           | 1.042                            | up                           | 0.041                                          |                                                                 |                                                                 |
| A_52_P325598          | none identified | 5.364                         | up                           | 2.908                            | up                           | 0.035                                          | 0.034                                                           |                                                                 |
| A_52_P787894          | none identified | 4.452                         | up                           | 2.951                            | up                           | 0.012                                          | 0.031                                                           |                                                                 |
| A_52_P86965           | none identified | 4.223                         | up                           | 2.633                            | up                           | 0.038                                          | 0.024                                                           |                                                                 |
| A_52_P36261           | none identified | 2.487                         | up                           | 1.451                            | up                           | 0.009                                          | 0.023                                                           |                                                                 |
| A_52_P448829          | none identified | 5.133                         | up                           | 3.270                            | up                           | 0.028                                          |                                                                 |                                                                 |
| A_52_P510790          | none identified | 3.914                         | up                           | 2.265                            | up                           | 0.008                                          | 0.025                                                           | 0.041                                                           |
| A_52_P1116491         | none identified | 2.234                         | up                           | 1.617                            | up                           | 0.008                                          | 0.023                                                           |                                                                 |
| A_51_P250049          | none identified |                               |                              |                                  |                              |                                                | 0.044                                                           |                                                                 |
| A_52_P52653           | none identified |                               |                              |                                  |                              |                                                | 0.047                                                           |                                                                 |
| A_51_P159503          | none identified | 4.779                         | up                           | 3.377                            | up                           | 0.004                                          | 0.020                                                           | 0.005                                                           |
| A_52_P374983          | none identified | 3.621                         | up                           | 1.727                            | up                           | 0.020                                          | 0.020                                                           |                                                                 |
| A_52_P359071          | none identified | 3.740                         | up                           | 2.257                            | up                           | 0.004                                          | 0.019                                                           | 0.019                                                           |
| A_52_P1132687         | none identified | 4.282                         | up                           | 3.422                            | up                           | 0.024                                          | 0.040                                                           |                                                                 |
| A_52_P852190          | none identified | 2.473                         | up                           | 1.640                            | up                           | 0.017                                          | 0.022                                                           |                                                                 |
| A_51_P136181          | none identified | 2.506                         | up                           | 1.382                            | up                           | 0.006                                          | 0.014                                                           |                                                                 |
| A_52_P612668          | none identified | 2.639                         | up                           | 2.052                            | up                           | 0.003                                          | 0.014                                                           | 0.019                                                           |
| A_51_P293401          | none identified | 3.455                         | up                           | 1.367                            | up                           | 0.006                                          | 0.024                                                           |                                                                 |

| Agilent Probe<br>Name | GeneSymbol      | Fold Change (0<br>vs 3 hours) | Regulation (0<br>vs 3 hours) | Fold<br>Change (0<br>vs 6 hours) | Regulation (0<br>vs 6 hours) | Corrected p value,<br>One way anova<br>(BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 3<br>hours) (BHFDR) | Corrected p value,<br>Unpaired T-test (0 vs 6<br>hours) (BHFDR) |
|-----------------------|-----------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| A_52_P577992          | none identified | 5.322                         | up                           | 2.609                            | up                           | 0.013                                          | 0.020                                                           |                                                                 |
| A_51_P167097          | none identified |                               |                              |                                  |                              |                                                |                                                                 | 0.027                                                           |
| A_52_P218894          | none identified | 4.288                         | up                           | 3.139                            | up                           | 0.020                                          | 0.035                                                           |                                                                 |
| A_52_P353081          | none identified |                               |                              |                                  |                              |                                                | 0.033                                                           |                                                                 |
| A_51_P325281          | none identified | 3.126                         | up                           | 1.545                            | up                           | 0.003                                          | 0.018                                                           |                                                                 |
| A_51_P300986          | none identified | 4.111                         | up                           | 4.647                            | up                           | 0.023                                          | 0.043                                                           |                                                                 |
| A_52_P915536          | none identified | 4.208                         | up                           | 2.732                            | up                           | 0.018                                          | 0.020                                                           |                                                                 |