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Abstract

Stormwater models are powerful tools to aid the planning, design and performance of different
stormwater management strategies. Although these models provide a great platform for decision
making, they all have an intrinsic level of uncertainty. Little is understood about the sources and
magnitude of this uncertainty, which could be due to the errors in measured data (input and
calibration data) and/or due to the model itself. To better understand these sources and their
impacts on the model predictions, robust model calibration and sensitivity analysis should be
performed. The methodologies used for such an exercise should not only be able to provide an
assessment of the uncertainties in the model’s parameter values and an evaluation of the
confidence level of the model’s predictions, but also be able to identify and propagate the different
sources of uncertainties.

The main aim of this research project is to assess uncertainties in conceptual urban stormwater
flow and pollution generation models, with different levels of complexity, by evaluating the impact
of different sources of uncertainties on the model predictions and parameter sensitivity. The
research focuses on three main steps: (i) identifying suitable global sensitivity analysis method(s) to
perform parameter calibration, model sensitivity and uncertainty analysis in stormwater models; (ii)
exploring parameter calibration, model sensitivity and the resulting predictive uncertainties in
models with different level of complexities; and, (iii) investigating the impact of measured input
and calibration data uncertainty on the performance, sensitivity and predictive uncertainty of

stormwater models.

Four methods were applied for calibration, sensitivity and uncertainty analysis of a simple
stormwater (quantity and quality) model: one is a formal Bayesian approach, and three are methods
based on Monte Catlo simulations coupled with different sampling and acceptance criteria. While
the application of the four methods generated similar posterior parameter distributions and
predictive uncertainty, results indicated that the selection of the most appropriate method is a
trade-off between the need for a strong theory-based description of uncertainty (but limited by the
requirements on prior knowledge), simplicity (but limited by the subjectivity) and computational
efficiency (also affected by subjectivity). The results also suggested that modellers should select the
method which is most suitable for the system they are modelling, their skill/knowledge level, the
available information, and the purpose of their study. Further analysis of the application of the
Bayesian approach verified the potential of the method to assess urban drainage models (with
different level of complexities) in urban catchments of different sizes and land-use types. The

tested Bayesian approach was selected to be used in the remaining activities of this research.

The likelihood function in the applied Bayesian approach assumes that the model errors (residuals)
are normally distributed. This study demonstrated that this assumption is often not met in
stormwater modelling (i.e. model residuals are not normally distributed), and therefore, the data
was transformed (Box-Cox) to ensure the normality of the model residuals. The main finding was
that the parameter sensitivity varied significantly between the scenarios in which the normality
assumption of the residuals was verified or not. The main reason for this being the fact that the
data transformation method to meet the assumption altered the intrinsic content of the measured

data, which then influenced the emphasis on various parts of the hydrograph.

The Bayesian approach was used to assess two conceptual catchment rainfall runoff models
(MUSIC, which simulates runoff from both impervious and pervious areas as a series of reservoirs;
and, KAREN that simulates runoff from impervious surfaces using the time-area method) and few




simple stormwater quality models (empirical regressions and build-up/wash-off based models).
Results from parameter calibration and sensitivity analysis of the rainfall runoff models
demonstrated that the effective impervious fraction is the main parameter governing the prediction
of runoff in urbanised catchments. Other key parameters are those related to the time of
concentration. Indeed, the analysis indicated that the pervious area parameters play a secondary
role when modelling highly urbanised catchments, which implies that the tested models could be
simplified. The uncertainty analysis showed that the total predictive uncertainty bands (i.e. the total
uncertainty derived from the specific modelling application) was considerably larger than the
uncertainty bands contributed from parameter uncertainty alone, indicating that there are other
prominent sources of uncertainty for these models. The water quality models were shown to be “ll-

posed’ and unable to reproduce the pollutant processes in the catchment.

The impact of both input and calibration data errors on the parameter sensitivity and predictive
uncertainty was cvaluated by means of propagating these errors through the selected urban
stormwater model (rainfall runoff model KAREN coupled with a build-up/wash-off water quality
model). It was found that random errors in measured data had minor impact on the model
performance and sensitivity. Systematic errors in input and calibration data impacted the parameter
distributions (e.g. changed their shapes and location of peaks). In most of the systematic error
scenarios (especially those where uncertainty in input and calibration data was represented using
‘best-case’ assumptions), the errors in measured data were fully compensated by the parameters.
For example, when rainfall was systematically under or overestimated, the effective impervious area
parameter varied systematically to compensate for the changes in the input data. Parameters were
unable to compensate in some of the scenarios where the systematic uncertainty in the input and
calibration data were represented using extreme worst-case scenarios. As such, in these few worst
case scenarios, the model’s performance was reduced considerably. Systematic errors in the
calibration data error did not significantly impact the parameter probability distributions of the
water quality model, mainly because the model cannot even reproduce TSS concentrations when
the ‘true’ data is used. This finding suggested that the current main limitation in water quality
modelling is related to poor model structure, and not to errors in measured data.

This research provides a comprehensive study of the propagation of different sources of
uncertainties through stormwater models. It identifies how the different uncertainty sources impact
on parameter sensitivity and the predictive uncertainty. In addition, the analysis of model
parameters and their interactions provides practical recommendations for refining and further

developing stormwater rainfall runoff and pollution generation models.
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Preface

This thesis presents the results of the research into parameter sensitivity and uncertainties in urban
drainage models in the form of seven journal papers (all with the PhD candidate as the lead
author), of which five have been published and two have been submitted for review. These papers
are accompanied by introduction, literature review, and discussion and conclusion chapters. The
introduction and literature review focus on the current state and the main knowledge gaps in the
following areas: (i) urban stormwater modelling approaches; (ii) sources of uncertainties in urban
drainage models; (iif) uncertainties in urban drainage data; and, (iv) methods used to assess model
uncertainties. The first and second papers, Comparison of different uncertainty techniques in nrban
Stormwater quantity and quality modelling (\Water Research - 2012) and Awalysis of parameter uncertainty of a
Sflow and quality stormwater model (Water Science and Technology - 2009) investigate and test the most
suitable methods for parameter calibration, model sensitivity and uncertainty analyses that could be
used in urban drainage modelling. The third, fourth and fifth papers, Calibration and sensitivity analysis
of stormwater models (Australian Journal of Water Resources - 2011), Swrmmwater quality models:
performance and sensitivity analysis (Water Science and Technology - 2010) and Performance and sensitivity
analysis of stormwater models using a Bayesian approach and long-term high resolution data (Environmental
Modelling and Software - 2011) investigate parameter sensitivity and model uncertainty of a
number of urban drainage models using a Bayesian approach. The sixth paper, Uncertainty analysis
in urban drainage modelling: should we break onr back for normally distributed residnals? (currently in press in
Water Science and Technology) explores possible shortcomings of the Bayesian approach on
model sensitivity and uncertainty. The seventh paper, Impacts of measured data uncertainty on unrban
Stormwater models (submitted to Journal of Hydrology), presents results of an approach for
propagating input and calibration data errors in stormwater models by taking into account the
errors in the data sets and investigating their impact on parameter sensitivity and model predictive

uncertainty. Finally, concluding remarks are given and possible future work is discussed.

In addition to the seven papers included in the thesis, the candidate co-authored a paper (Deletic et
al, 2012) that is included as appendix. This paper is result of a major effort of International
Working Group on Data and Models (that works under Joint Committee on Urban Drainage of
IWA and IAHR) on development of a framework for assessing uncertainties in urban drainage
models. The candidate also produced 6 conference papers (not included in the thesis), that she

presented at major international conferences across the world.
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Chapter 1

Data and models







1.1 Introduction

Non-point sources of pollution such as runoff from urban stormwater and agricultural areas are
currently a significant concern all over the world. Among the diffuse pollution sources, stormwater
runoff is one of the major sources of water pollution across urban areas. In the late 90s, runoff
from urban areas was the fourth largest contributor of water pollution in rivers and streams in the
United States (USEPA, 1998). However, due to investments made in management of point sources
of pollution (such as industrial and domestic wastewater), as well as reduction in agricultural runoff
pollution, stormwater became the leading source of pollution; e.g. it is recognised to be the
number one source of pollution in many areas of the USA (USEPA, 2012). In Australia, the
situation is not different, and stormwater is currently the main cause of coastal pollution
(Department of Environment and Heritage NSW, 2012). In Melbourne, around 400 GL per year
of stormwater flows down drains and into the Yarra River and surrounding crecks, finishing in the
Port Phillip Bay (Melbourne Water, 2012). As such, stormwater management is at the forefront of
many policies in Australia (as well as other developed countries), with increasing government
funding becoming available (Department of Environment and Heritage NSW, 2012; USEPA,
2012). In Australia, the focus is not only on treating stormwater, but also realising its potential as
an alternate water source. Indeed, many major Australian cities have just recovered from a severe
and extended drought, from which stormwater emerged as viable source of water supply.
Therefore, management of stormwater for both pollution protection of receiving waters and as a
water resource is becoming regular practice in our cities (Wong et al., 2011). This is known as
Water Sensitive Urban Design (WSUD) stormwater management in Australia (City of Melbourne,
2012), or implementation of Sustainable Urban Drainage Systems (SUDS) in the UK, or Low
Impact Development (LID) strategies in the USA.

Stormwater models are powerful tools to aid the planning, design, and performance of different
stormwater management strategies. Indeed, the Model for Urban Stormwater Improvement
Conceptualisation (MUSIC model developed in 2001 for the conceptual assessment of stormwater
management - eWater CRC, 2012) has enabled Australia to lead the world WSUD implementation;
MUSIC now underpins the decision making process in urban water management, policies and
regulation. Similar models exist around the world that are used in a similar way (e.g. SWMM

(USEPA, 2007) in USA).

Although these models provide a great platform for decision making, they all have an intrinsic level
of uncertainty, regardless of their formulations (e.g. whether they are physically based or purely
statistical) (Bertrand-Krajewski et al., 2002). Understanding this uncertainty is important; in fact,
incorrect estimates of stormwater flows and pollution concentrations would easily lead to an
inadequate design of stormwater management systems. Little is understood about the sources and
magnitude of this uncertainty, which could be due to the errors in measured data (input and

calibration data) and/or due to the model structure and parameters. As a result, improving models
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and the confidence in their results requires more robust methodologies for model calibration,
sensitivity and uncertainty analysis. These methodologies should not only be able to provide an
assessment of the uncertainties in the model’s parameter values and an evaluation of the
confidence level of the model’s predictions, but also be able to identify and propagate the different

sources of uncertainties.

1.2 Uncertainties in stormwater models

As stated above, uncertainties are present in all models, yet it is often not addressed because
uncertainty analysis is considered to be a difficult and time consuming activity. In most cases, it is
avoided among practitioners because it actually reveals that the results are, in fact, highly unreliable
(Larssen et al., 2007), or in other cases, the opposite, it is avoided because the uncertainty in the
results seems very complex to deal with. In this context, if the different sources of errors
compromise the level of accuracy of any model’s output, then assessing uncertainties in stormwater
models due to different sources of errors is crucial for advancing urban drainage modelling

practice.

Typically, four key sources of uncertainties are identified: (1) uncertainty due to calibrated
parameter values, (2) errors due to incomplete or biased model structure and (3) random and
systematic errors in the measured input data and (4) errors in calibration data (Butts et al., 2004). In
terms of stormwater modelling and related fields (e.g. environmental modelling), these sources of
uncertainties are interlinked (Beck, 1987; Walker et al., 2003; Kleidorfer et al., 2009), suggesting
that assessing the impacts of a single source is not enough and that simultaneous propagation of

key sources of uncertainty is required.

As with most models, the calibration of urban drainage models rarely results in one unique
parameter set, and instead many equally plausible parameter sets are obtained, which reduces the
confidence in modelled results during the prediction period (Kuczera and Parent, 1998). Global
sensitivity analysis methods have the advantage of performing uncertainty analysis while providing
information about the most likely parameter sets to calibrate the model. However, there is no
indication of the most suitable method to assess stormwater models. Therefore, the comparison of
different methods to perform parameter calibration, model sensitivity and uncertainty analysis will

identify the most suitable for stormwater models.

While a range of models have been applied worldwide to predict flows and pollution generation
from stormwater, the assessment of the uncertainty associated with model structure has not been
sufficiently explored. Furthermore, there is no standard method to evaluate structural uncertainty.
Different approaches to evaluate structural uncertainties must be explored, even if from a heuristic
perspective. Exploring parameter calibration, model sensitivity and the resulting predictive
uncertainties in models with different levels of complexity will provide information about the

models’ limitations (including the existence of model structure and conceptual errors).
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Measured data such as rainfall, flow rates and pollutant concentrations are required for the
application of urban drainage models. However, these measured data are plagued with uncertainties
(i.e. due to a range of random and systematic errors). As such, there is a need to understand the
impacts of these uncertainties on the performance, sensitivity and predictive uncertainty of
stormwater models. This will contribute to further understanding their consequences in the

modelling exercise.

1.3 Overall aim

This research improves our understanding of the uncertainties in urban rainfall runoff and
pollution generation models in order to define their reliability. The specific aim is to assess
uncertainties in stormwater flow and pollution generation models (with different levels of
complexity) and the impact of different sources of uncertainties on the models’ results and
parameter sensitivity. The findings of this research will be useful to inform stormwater
management practices, such as: risk assessment, urban planning, design of stormwater facilities,
optimisation of data monitoring campaigns (i.e. which kind and how much of data should be
prioritised) and issues related to model under and over-parameterisation to the development of

more accurate models.
The following are the main objectives of this study:

1. identify suitable method(s) to perform parameter calibration, model sensitivity and

uncertainty analysis in stormwater models;

2. explore parameter calibration, model sensitivity and the resulting predictive

uncertainties in models with different levels of complexity; and,

3. explore the impact of measured input and calibration data uncertainty on the

performance, sensitivity and predictive uncertainty of stormwater models.

1.4 Scope of the thesis

The dataset used in this study has been previously collected as part of other research projects. The
dataset contains long term and high resolution data on rainfall, flows and TSS and TN
concentrations collected at the outlet of five urban catchments around Melbourne, Australia. The
work was focused on separate storm drainage systems; i.e. the systems that collect and transport
stormwater only (in Australia we do not have combined systems where stormwater and sewage are

mixed).

Among the models representing the different processes happening in the catchment, only
stormwater flow and pollution generation models are considered in this research. Treatment

efficiency models are not included and should be part of future research projects in the field.




While a number of models and approaches to simulate discharges from urban catchments are
available, it is not possible to cover all of them. They range from simple empirical equations
(usually over-simplified and not able to illustrate the physical process) to complex models (that
have a large number of calibration parameters and require a large number of input data). There is a
group of conceptual models that falls in between; they do not represent the actual physical
processes occurring in the catchment, but include equations describing the concept of the
processes occurring in the system. Being widely used in practice (Butler and Davies, 2000; Wagener
et al., 2004), conceptual rainfall runoff and pollution generation models ranging from simple to

moderate complexity are the focus of this research.

A number of global sensitivity analysis method(s) is applied to a simple rainfall runoff model
coupled with a simple pollution generation model. The most suitable methods are identified,

however only one is selected to be used through the remaining of the research.

1.5 Outline of the thesis

Chapter 2 provides a review of the published literature, identifies the current research gaps, and
presents the objectives and main hypotheses undetrlined in the present thesis. The review on urban
drainage modelling is organised in terms of three major topics: modelling urban stormwater,
sources of uncertainties in urban drainage models and assessing uncertainty in urban drainage

models.

Chapter 3 provides an overview of the dataset and stormwater models employed in this study. The
dataset was collected by former Monash University PhD students, thus only the key aspects of the
monitoring are summarised. The selection of the models was done so that both water quantity and

quality were included.

Chapter 4 explores different methods for parameter calibration, model sensitivity and uncertainty
analyses of urban drainage models. Not only the results with respect to model parameter sensitivity
and predictive uncertainty are presented, but the interaction between the complexity of the method

used, computational time required and the knowledge/skill level of the modeller is also considered.

Chapter 5 further investigates parameter calibration, model sensitivity and uncertainty analysis in
models with different levels of complexity by means of a Bayesian approach. The models’
sensitivity to the different parameters is presented and the models’ predictive uncertainty,

originating from parameter uncertainty, is also reported.

Chapter 6 investigates the main impacts of verifying (or not) the assumed structure of model
errors on model parameter sensitivity and associated predictive uncertainty of stormwater models,

and it also explores alternative strategy to mitigate such impacts.

Chapter 7 applies a novel method for propagating input and calibration data errors in stormwater

models using a Bayesian approach. The results are then presented by means of evaluating the




impact of the input and calibration data errors on the sensitivity and predictive uncertainty of

stormwater quantity and quality models.

Chapter 8 provides a summary of the key findings, a discussion of the strengths and weaknesses of

the thesis and a summary of the areas requiring further investigation.

Appendix A encloses a journal paper co-authored by the candidate, which relates to the methods

used in the research conducted within this thesis.

Appendix B includes a glossary with the definition of the terms related to stormwater modelling

uncertainty that were widely used throughout this thesis.
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Chapter 2

Literature review, specific objectives and underlying
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2.1 Introduction

A large number of flow and pollution generation stormwater models are currently used worldwide.
Regardless of whether they are physically based or purely statistical, they all have a high level of
uncertainty (Bertrand-Krajewski et al., 2002). However, little is understood about the sources and
magnitude of this uncertainty, which could be due to the errors in the measured data (input and
calibration data) and/or due to the model structure and parameters. Improving the models and
their effectiveness requires more robust methodologies for model calibration, sensitivity and
uncertainty analysis. Such methodologies should not only be able to provide an assessment of the
uncertainties in the model’s parameter values and an evaluation of the confidence level of the

model’s predictions, but also be able to identify and propagate the different sources of errors.

Within this context, this chapter aims to present a review of literature on uncertainty analysis in
urban drainage models and also on the related topics. Firstly, an introduction about stormwater
models (their different principles and levels of complexity) is provided and the different sources of
uncertainty in such models are then presented. Subsequently, the methods currently used to
evaluate model uncertainty are summarised. Finally, the knowledge gaps in the topic are identified

and the main research question is introduced.

2.2 Modelling urban stormwater

Stormwater models are essential in urban water management; they enable the quantification of
urban discharges and the design of stormwater treatment and harvesting technologies. Moreover,
they underpin the decision making process regarding water resource policies and regulations. The
standard components of stormwater models are: (a) a rainfall runoff module to generate the runoff
from the precipitation excess; (b) a water quality module to estimate the pollutant generation; (c) a
transport modelling approach to route flows and pollutants through the system (channels/pipes);
and, (d) a treatment module to design and analyse the performance of stormwater treatment and
harvesting strategies. The outputs of each module are commonly used as inputs for the next one.
For example, modelled flows might be used to estimate pollutant loads, which can be used to
design treatment technologies. Rainfall runoff models are currently well developed and widely
adopted in practice (Elliott and Trowsdale, 2007); they range from simple empirically-based to
complex physical-based models. Contrary to the rainfall runoff models, reliable stormwater
pollution generation models are almost non-existent (Elliott and Trowsdale, 2007). The available
approaches for modelling water quality range from simple regression equations to conceptual
models based on the concepts of build-up and wash-off processes (examples in McAlister et al.,

2006).

Stormwater models simulating the catchment’s runoff and pollution generation are reviewed in this
section. Firstly, a general modelling approach scheme is presented, from which the main modelling

components and tasks are identified. Then a description of the main modelling principles is
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presented. This is followed by an introduction to the common general stormwater modelling
protocol (i.e. main tasks involved in the modelling exercise). The review of these general points is
important to provide background for the next sub-sections that review the approaches currently

used to model flows and pollution generated from urban stormwater.

2.2.1 General modelling concepts

A general modelling approach, presented in Figure 2.1, was adopted to describe the main
components and tasks in the modelling exercise. The following components can be identified:
model structure, model parameters, measured input and calibration data, calibration algorithms
with objective functions and model outputs. In addition, model calibration and application are
represented in the framework. This sub-section focuses on describing the main principles related to
the model structure and the main required protocol in most of stormwater modelling routines. The

remaining components in Figure 2.1 will be described later in this literature review.
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— — = = Modelcalibratian (inverse problem)

Figure 2.1 General modelling framework (after Deletic et al., 2012).

The different principles regarding the model structure are well known and established between the

modelling community, and therefore they are only summarised in this section.

Deterministic models describe a physical process in the catchment in terms of mathematical
equations that transform a certain set of input data into outputs. If however, one or more factors
within the model (e.g. process description and/or model parameters) have a random nature, the
model is classified as stochastic (Abbott and Refsgaard, 1996). Contrary to deterministic models,

stochastic models will not generate the same outputs even if the same set of input data and/or
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parameters are used, as one or more variables are randomly sampled from a distribution (Parker et
al., 2010). Stochastic models have the advantage of accounting for irreducible uncertainty by
attempting to reproduce the natural variability of the processes, which is useful when the process
being modelled is not fully understood. On the other hand, they might have limited application for
some studies because the random variables are restricted to certain probability distributions
(Zoppou, 2001). In addition, stochastic models do not allow a complete control of the user over
the results, which imposes limitations for further model calibration, validation and sensitivity
analysis. Meanwhile, deterministic models are accurate when the process being modelled is well
described by the model. Deterministic models have become the standard approach in many areas

(Butler and Davies, 2000).

Empirical models do not represent the physical process of a system and their parameters are not
directly related to the physical processes (i.e. parameters have to be inferred by model calibration)
(Wagener et al., 2004). Conceptual models, on the other hand, include equations that describe at
least the concept of the processes occurring in the system. Their parameters might (a) have a
physical background and therefore be estimated from measured data, and/or (b) not have any
physical background and thus have to be calibrated (Wagener et al., 2004). The most complex
group of models are process based (Wagener et al., 2004), where mathematical equations
represent the actual physical processes occurring in the catchment and their parameters are also
physically based (i.e. parameters can be easily estimated from the measured data). This group of
models usually generates more accurate outputs (closer to reality). However, their formulations are
often complex, their numerical solution might not be explicit (which can lead to numerical
instabilities) and they also demand long computational times. Conceptual models are the most used
in practice (Butler and Davies, 2000; Wagener et al., 2004) as they are a compromise; they represent
the physical processes by simplified concepts and require less input data, a lower level of expertise
from the user and a lower level of understanding of the fundamental processes when compared to

the process based models.

Lumped models represent the study area as one homogeneous block (Beven, 2001). Only one set
of parameters is required to generate the response for the whole area and therefore the spatial
variability of the area is ignored. On the contrary, the spatial variability is better represented by
distributed models, which disaggregate the study area in sub-areas with similar characteristics
(Beven, 2001). In general, distributed models can represent the different processes to be modelled,
while lumped models assume that all processes are punctual (in space and time). They use mean
values for the various processes, and therefore are indicated to be applied with large temporal
scales in which a detailed description of the processes is not important (Zoppou, 2001). However,
it is often the case that point-based measured data is collected to represent the whole area. In this

case, the benefits of subdividing the area are not significant.
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In general, models can be applied for a range of temporal scales and timesteps. In the water related
fields, continuous models simulate the system’s response over a period of time (e.g. weeks,
months, years) and therefore, account for the overall water balance in the system; continuous
models can represent the event antecedent conditions. Models based on event simulation can only

estimate the system’s response from discrete events and cannot account for any between event

characteristics (McAlister et al., 2000).

In most cases, the accuracy of stormwater models increases as the modelling timestep decreases,
and the choice of an inadequate timestep can compromise the model results (Einfalt et al., 2002;
McCarthy, 2008; eWater CRC, 2009). For example, if the model is used with a timestep larger than
the transient time of the process in the catchment, results will not reflect reality (eWater CRC,

2009).

The majority of models require calibration prior to their application, especially those which have
an empirical or conceptual structure (refer to Figure 2.1 for a schematic of model calibration in the
general modelling framework). It is very unlikely that non-calibrated conceptual models will be able
to reproduce reality (Wagener et al., 2004). In practice, urban stormwater models can be used
without calibration (Rauch et al., 2002b). This is mainly because of the lack of accurate
measurements required to calibrate and evaluate the performance of such models (Bertrand-
Krajewski et al., 1993; Gaume et al., 1998). In the cases where sufficient measured data is available
and models can be calibrated, the following concepts are used: measured input data is used as the
input to the model, which is used to generate the outcomes (output data). The model is then
calibrated through calibration algorithms and objective functions that are used to compare the
modelled outputs to the measured calibration data. The choice of calibration datasets and objective
function is critical as they tune the parameters to characterise different parts of the hydrograph or
pollutograph (e.g. low or peak flows) (Diskin and Simon, 1977; Yapo et al., 1996; Madsen et al,,
2002; Guinot et al., 2011). In addition, as with most models, the calibration of urban drainage
models rarely results in one unique parameter set, and instead many equally plausible parameter
sets are obtained. This effect is called equifinality (Beven and Freer, 2001) and is caused by several
factors: (i) the parameter space presents several local minima regions; (ii) often the model is not
equally sensitive to all the calibration parameters, in fact some models are over-parameterised and
present a large number of insensitive parameters; and, (iii) parameters can present a high degree of
correlation (usually non-linear interactions as per Wagener et al., 2004). The equifinality (mainly
related to the influential parameters) effect drastically reduces the confidence in modelled results

(Kuczera and Parent, 1998).

Model validation should be performed to verify if the model is able to reproduce the simulated
process outside the calibration data (Mourad et al., 2005a; Mourad et al., 2005c). For validation,

data management is a major task as the choice of how to split the data for calibration and
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validation may influence our understanding of the model’s predictive ability (McCarthy, 1976;
Klemes, 1986; Vaze and Chiew, 2003; Wagener et al., 2004). Finally, the model application is the
process of using the model with the calibrated parameter sets to predict outside the calibration and

validation scenarios (Figure 2.1).

The following two sub-sections use the concepts and processes reviewed in this sub-section to

present a review of the different rainfall runoff and water quality models currently adopted.

2.2.2 Review of rainfall runoff models

Empirical models

The Soil Conservation Service curve number, mostly used to predict peak flows (SCS, 1956), and
the polynomial equations and time-series methods used to generate the catchment’s runoff (Chiew
et al., 1993) are examples of empirical models. They have the advantage of being easy to apply and
hence no hydrologic knowledge is required. While they produce reasonable results when applied to
the simulation of urban developments with monthly and annual volumes, these models are too
simple to represent the within-event characteristics of the processes being modelled. In other
words, they are not able to reproduce the processes within events and consequently are not suitable

for small timesteps (Chiew et al., 1993).
Conceptual models

The runoff is generated by assuming the catchment as a number of interlinked storages with
mathematical functions describing the movement of water entering and leaving them (Boyd et al.,
1994). These models produce reasonable results even when applied in small timesteps (e.g. sub-

daily to few minutes) and range from simple to very complex urban drainage models.

The simplest conceptual models focus on the simulation of the impervious area runoff only, which
is modelled as a single reservoir (Schueler, 1994). They are lumped models ideal for the estimation
of total volumes, but they might not be very informative when the modeller is interested in a
detailed study of the catchment’s hydrological processes (e.g. baseflow). Such models ate easy to
use, computationally fast and usually involve a small number of parameters. The Rational Method,
which generates runoff as a function of the rainfall and imperviousness of the catchment (Schueler,
1994) forms the basis for many continuous conceptual models. KAREN (Rauch and Kinzel, 2007)
is an example of a conceptual simple model based on the Rational Method (Schueler, 1994). It is a
continuous model designed to estimate flows from urban areas and presents only four parameters
to be calibrated. The model was recently calibrated for two Australian urban catchments and
resulted in reasonable estimates of urban flows, with the Nash-Sutcliffe efficiency coefficients

(Nash and Sutcliffe, 1970) higher than 0.6 (Kleidorfer et al., 2009).

There is a range of models that are distributed catchment models and include runoff generation

from impervious and pervious surfaces and simulate simplified channel/pipe flow. P§-UCM (P8-
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Urban Catchment Model) by Palmstrom and Walker (1990) and MUSIC (Model for Urban
Stormwater Improvement Conceptualisation) by eWater CRC (2012) are examples of this category.
These models are based on continuous simulation and represent a simplified description of the
rainfall runoff processes by a series of reservoirs. P8 UCM works with hourly timesteps and
MUSIC allows a minimum of 6 minutes timestep. MUSIC is of particular interest because it was
developed for Australian conditions, can operate at a range of temporal and spatial scales and has
been widely used in Australia mainly for the conceptual design of drainage systems (Ladson, 2008;
Mitchell et al., 2008), in particular treatment technologies (Walsh et al., 2005). While a number of
studies contributed to the enhancement of MUSIC’s stormwater treatment module (Scholes et al.,
2008; Hatt et al., 2009), the rainfall runoff model is usually applied without calibration. Moreover,

validation of MUSIC’s rainfall runoff model has not been explored.

Some studies looked into the comparison of different conceptual models. For example, Chiew et
al. (1993) compared six rainfall/runoff models, which ranged from a simple polynomial equation to
a more complex conceptual model (MODHYDROLOG - Chiew and McMahon, 1994). They
compared the models in terms of daily, monthly and annual volumes. Their results are in
agreement with the fact that simple models can only be applied for the large timesteps (monthly or
annual). The conceptual models were able to predict total daily flows and the rather complex
MODHYDROLOG was the only one able to depict the low flows in the catchments. The
performance of these different conceptual model structures in sub-daily timesteps has not

been explored.

There is another group of more complex models, which contain representations of surface runoff,
subsurface flow, evapotranspiration, and channel flow. However, they can be far more complicated
due to their complex nature. MOUSE (DHI, 2004), Infoworks (Wallingford Software, 2009),
CANOE (INSA/SOGREAH, 1999) and SWMM (USEPA, 2007) are examples of such models.
They model both complex surface runoff and channel/pipe flow, including transition from
unpressurised to pressurised pipe flow. These models can be applied to a wide range of temporal
and spatial distributions and are suitable for a vast range of applications. However, they are
probably too complex to be used by the general public or non-modelling professionals (Elliott and
Trowsdale, 2007). They have the option of different concepts to estimate the catchment’s hydraulic
responses. These conceptual complex models range from linear reservoir routing routines to
solving the full Saint-Venant equations for dynamic wave routing. As any other type of model,
these are unlikely to perform well if not calibrated, but unlikely the simpler ones, these present a
large number of parameters. Moreover, the required input data (topographic, geological, climatic,

etc) is not very often available, mainly for practical industrial application.

Elliott and Trowsdale (2007) reviewed the qualitative strengths, weakness and potential uses of ten

widely used conceptual urban stormwater models. They demonstrated that the popular MOUSE
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(DHI, 2002c; 2004), MUSIC (eWater CRC, 2012), SWMM (USEPA, 2007) and P8-UCM
(Palmstrom and Walker, 1990) are the only spatially distributed models with a link-node drainage
network. Moreover, only MOUSE (DHI, 2002c¢; 2004), SWMM (USEPA, 2007) and MUSIC
(eWater CRC, 2012) showed the capability of predicting flow rates from small catchments due to
their distributed sub-hourly temporal scale. On the other hand, routing flow through the
channel/pipe is available in the majority of models. In terms of potential use, MOUSE (DHI,
2002c¢; 2004) and SWMM (USEPA, 2007) were the most suitable for a large range of applications
with the disadvantage of being complex, requiring a large amount of data and parameters to be

measured or calibrated, and hence unlikely to be used by the practitioners.

The effects of long term simulations with the complex CANOE (INSA/SOGREAH, 1999) and
the simple KAREN (Rauch and Kinzel, 2007) on the design of CSO structures and storage tanks
was studied by Gamerith (2000). Interestingly, both models, with different levels of complexity,
generated similar results. The author argued that this result was due to the simplicity of the sewer
system and the large size of the sewer sections, which prevented flooding. Such result is in
agreement with previous literature on hydrological models, which suggests that conceptual models
are suitable for predicting steamflow, volumes or loads at the catchment scale (Refsgaard and
Knudsen, 1996; Rauch et al., 2002b), while more complex cases, for example where spatial

representation is important, would require more highly parameterised complex models (Refsgaard

and Abbott, 1996).
Summary

While the empirical equations are usually over-simplified and cannot describe the physical process,
the complex models require a large amount of input data and have a large number of (a) physical
parameesters to be measured in the field or (b) conceptual parameters to be calibrated. Moreover,
these data and parameter sets will only be valid for a specific area and thus, the models are not
transferable for other catchments. In this context, conceptual models are preferred and are
currently the most used in the field (Butler and Davies, 2000; Wagener et al., 2004). However, the
assessment of these models’ structures and their associated predictive uncertainty under

the same conditions has not been explored.

2.2.3  Review of pollution generation models

Stormwater quality models are important tools to control pollution generation, evaluate pollutant
loads and investigate and rank alternative approaches for stormwater quality management (Ahyerre
et al,, 1998; Marshall et al., 2005). Different approaches are available to attempt reproducing the

response of urban catchments in terms of pollutants generation (Huber, 1985; Huber, 19806):
* cvent mean concentration (EMC) models;

e continuous stochastic models;
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*  empirical regression models;
*  process based build-up/wash-off models; and,

*  physical models.

The current most used softwares such as P§-UCM (Palmstrom and Walker, 1990), XP-AQUALM
(XP-SOFTWARE, 1999), SWMM (USEPA, 2007) and MUSIC (eWater CRC, 2009) usually

include one or more of these approaches. The different approaches are reviewed in this section.
Event Mean Concentration (EMC) Models

These are the simplest modelling approaches for estimating pollution generation in urban drainage.
Such group of model uses monitored data to associate the catchment’s physical or hydrological
characteristics with measured concentrations and loads (Charbeneau and Barrett, 1998) and assume
that the constituent concentration is well represented by an event mean concentration (i.e. constant
throughout an event). It can relate the parameters of an event (e.g. average rainfall intensity, rainfall
total, etc) and climatic parameters (e.g. antecedent dry weather period, average previous day
temperature, etc) to an EMC for a certain pollutant (e.g. Duncan, 1995; 1999; McCarthy, 2008;
Dembélé et al.,, 2010). Duncan (2005), for example, reported a power relationship between the
event load and the rainfall intensity. McCarthy (2008) found a strong relationship between E. co/i
EMCs and antecedent temperatures (and evaporation). EMC based models statistically describe the
long-term pollution generation process in the system and thus, are able to evaluate the long-term
impact of pollutants in the receiving bodies, i.e. annual loads can be estimated (Charbeneau and
Barrett, 1998; Francey, 2010). The disadvantages of such models are that they do not represent any
pollutant processes in the catchment and also they are not easily transferable to other areas without
extensive data collection/calibration. This is due to the great variance of EMC values between

sites, even when they have similar characteristics.
Stochastic and semi-stochastic models

These models are commonly used to represent the stochastic nature of pollutant inputs into the
system, or our lack of understanding of the process (Butler and Davies, 2000; Rossi et al., 2005).
For example, in MUSIC (eWater CRC, 2009) the pollutant distribution is defined by specifying the
mean and standard deviation of a log-normal distribution, from which concentrations are
stochastically generated for each timestep. XP-Storm (XP-SOFTWARE, 1977) and SWMM
(USEPA, 2007) use a similar approach, in which a random EMC value is sampled from the
measured data distribution of the pollutant at the beginning of each event; this value is then used
as a constant throughout the specific event. A similar approach is available in XP-AQUALM (XP-
SOFTWARE, 1999) for estimating the daily loads in the catchment. In addition to the group of
semi-stochastic models there is a new approach proposed by Bach et al. (2010), in which water

quality concentrations are predicted using the first flush theory.
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Regression models

Simple or multiple regression models are another group of models to quantify discrete pollutant
concentration in the catchment (Letcher et al., 2002). The wash-off rating curves proposed by
Duncan (1995) are examples of this group. They can be used as event based or continuous models.
These models generally relate the pollutant concentration or loads to some storm characteristics
such as rainfall intensity, total rainfall and flow (Vaze and Chiew, 2003; Mourad et al., 2005a). For
example, the kinetic energy of falling raindrops in the detachment of surface pollutants is
considered in the power relationship between the event loads and the rainfall intensities (Duncan,
1995). Variations of this model include, for instance, the replacement of the rainfall intensities by
the catchment runoff, in which the transport of the pollutants is represented by the shear stress
generated by flow (Letcher et al., 2002). Vaze and Chiew (2003) and Francey (2010) tested a
number of simple regression equations to estimate event pollutant loads from impervious surfaces.
Results on total loads were reported to be promising when the models were tested in terms of TSS
and its associated pollutants, TN and TP. Several popular stormwater models have the option of
regression equations in their algorithms: XP-AQUALM (XP-SOFTWARE, 1999), SWMM
(USEPA, 2007) and P8-UCM (Palmstrom and Walker, 1990). The drawback of such approach is
that no build-up consideration is made and hence, the accumulation of pollutants on the surface is
neither considered nor characterised. In addition, the unexplained variability in concentrations and
loads are so large that the predictive power of deterministic empirical models becomes

questionable (Vogel et al., 2005; Shaw et al., 2010).
Process-based build-up /wash-off models

The first build-up/wash-off model was proposed by Sartor and Boyd (1972) and its variations are
currently used in some of the popular stormwater models, such as SWMM (USEPA, 2007) and
MOUSE (DHI, 2004). In addition, these models have been subject of a number of studies (e.g.
Deletic et al., 2000; Kanso et al., 2006; Hossain et al., 2010; Shaw et al., 2010). For instance, Kanso
et al. (2000) tested vatiations of the original model in terms of TSS concentrations for two urban
catchments in France. It was concluded that the model was unable to represent the complexity of
the system at the scale of urban sub-catchments. In contrast, Gaume et al. (1998) used a build-
up/wash-off model to simulate TSS concentrations from stormwater in an urban catchment and
reported a good agreement between measured and modelled values. Vaze and Chiew (2003)
comparted a number of build-up/wash-off models to estimate event pollutant loads from
impervious surfaces. Between 14 and 20 events, with rainfall, flow and concentration data from
three urban catchments in Australia were used in the study. Their results indicated that, once
calibrated, both approaches estimated event pollutant loads satisfactorily. The predictive power of

these models in terms of concentration has been less explored.

Physical models
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There are also attempts to develop physical models (e.g. Shaw et al, 2000), which have the
advantage of better characterising the pollutant transport process within the catchments. These are
not quite established and therefore their application is very limited. For example, a model based on
the advection dispersion equation was developed by Mannina and Viviani (2010). The results
suggested the model is promising in terms of modelling approach. However, the model with eleven
parameters was calibrated with only five events, which makes it difficult to assess the quality of the
model and highlights the importance of adequate datasets for model calibration. This group of
models can only be tested and validated if a comprehensive measured input data set is available,

which is usually not the case for water quality data.
Model application —temporal scale

In general, models can be applied for a range of temporal scales and timesteps. In the water related
tields, continuous models simulate the system’s response over a period of time (e.g. weeks,
months, years) and therefore, account for the overall water balance in the system; continuous
models can represent the event antecedent conditions. Models based on event simulation can only
estimate the system’s response from discrete events and cannot account for any between event

characteristics (McAlister et al., 2000).

In most cases, the accuracy of stormwater models increases with as the modelling timestep
decreases, and the choice of an inadequate timestep can compromise the model results (Einfalt et
al., 2002; McCarthy, 2008; eWater CRC, 2009). For example, if the model is used with a timestep
larger than the transient time of the process in the catchment, results will not reflect reality (eWater

CRC, 2009).
Summary

While EMC based and stochastic models are adopted as an option in a number of stormwater
models, they do not provide information about the physical processes of pollutants in the
catchment. Simple regressions that relate pollutant concentration to some hydrological variable to
model wash-off and process based build-up/wash-off models are preferred as they are not ovetly
complex, yet attempt to reproduce the main processes of pollutants in the system. Due to the high
variability of stormwater quality processes and pollutants both between and within events,

continuous simulation is recommended over event based (Hossain et al., 2010; Shaw et al., 2010).

2.2.4  Summary

There are a number of approaches to represent the rainfall runoff and pollutant generation
processes in urban stormwater. However, the physical process occurring in the systems are plagued
with so many uncertainties that the ability of models to represent reality is very limited (Mourad et

al., 2005a).
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The general rainfall runoff mechanisms in the catchment are understood and there is a plethora of
rainfall runoff models available to predict general figures as mean annual flows and total volumes,
and also a number of models are formulated to quantify and represent the processes within and
between events (Elliott and Trowsdale, 2007). The conceptualization errors in this models are
related either to an over simplification of physical processes or to the complexity of some

formulations used in physical models (Elliott and Trowsdale, 2007).

The context of water quality is much worse (Ahyerre et al., 1998; Rauch et al,, 2002a). The
mechanisms governing the processes and dynamics of accumulation and wash-off of pollutants are
not well understood, especially in the sources and processes of pollution generation in drainage
systems (Kanso et al., 2005; Rossi et al., 2005; Park and Roesner, 2012). The sum of all these
factors leads to large model conceptualization errors, which results in models with low accuracy

and a high level of uncertainty (Ahyerre et al., 1998; Bertrand-Krajewski and Bardin, 2002).

In this context, the uncertainties related to the misfit between measured and model data due to the
model structure are immense and should be addressed (Butts et al., 2004; Refsgaard et al., 2000;
Doherty and Welter, 2010). However, uncertainties were often ignored in the urban drainage field
and only recently they have been addressed (Vezzaro and Mikkelsen, 2011; Vezzaro and Mikkelsen,
2012). As such, it is clear that a complete, but yet simple, exercise of assessing model
uncertainty through rigorous parameter calibration, model sensitivity and estimation of the
uncertainty associated with the model’s predictions is required (Beven and Binley, 1992;
Kuczera and Parent, 1998; Wagener et al., 2004). The following section reviews the different

sources of uncertainties associated with modelling urban drainage and related fields.

2.3 Sources of uncertainties in urban drainage models

2.3.1  Introduction

During the last decades, a number of studies have been done on the uncertainty associated to
groundwater, wastewater, environmental and hydrological modelling (O'Donnell and Canedo,
1980; Canale and Seo, 1996; Krzysztofowicz and Kelly, 2000; Refsgaard, 2000; Mclntyre et al.,
2005; Belia et al., 2009). But the uncertainty associated with urban drainage modelling was only
recently approached (Kanso et al., 2006; Vezzaro and Mikkelsen, 2012). To advance the uncertainty
analysis in stormwater model, it is important to understand the different sources of uncertainties.
This sub-section introduces the main sources of uncertainties in urban drainage models and related

fields.

The sources of uncertainties in environmental and hydrological models were extensively mapped in
the literature (Beck, 1987; Melching, 1995; Refsgaard, 2000; Walker et al., 2003; Wagener et al.,
2004; Gourley and Vieux, 2006). While these sources have been named or grouped differently in
some of the mentioned studies, the content was the same. The general modelling framework in

Figure 2.1 can be used to help map those sources of uncertainties in urban drainage models:
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1. model structure uncertainty is the limitation of the model structure in representing real
physical processes, usually because of a lack of knowledge about the process being
modelled, the model assumptions and boundaty conditions. In addition, models usually
reproduce different aspects of the system with different parameters, which often leads to

high level of parameter interaction.

ii.  measured data uncertainty is related to the errors in data measurements, including
collection, handling and post-processing of model input and calibration data. It can also
relate to some variables that are “estimated” rather than measured data (e.g. catchment

area);

ii.  model calibration uncertainty is about the methods used for calibration, also including

the selection of the objective functions and data selection; and,
iv.  model calibration parameter uncertainty relates to the calibrated model parameters;

The following sub-sections describe each of them in more detail.

2.3.2  Model structure

The causes of this uncertainty are numerous and include: conceptualisation errors, such scale-issues
or omitting key processes; equations, which could be ill posed and thus inadequately represent the
process; and, numerical methods and boundary conditions, which can be ill defined leading to

inaccurate solutions (Refsgaard et al., 2006).

Renard et al. (2008) presented a Bayesian based framework that is promising in quantifying
uncertainties arising from structural errors (among other sources). However, its application is not
straightforward and very computationally demanding (Renard et al., 2008). As an attempt to deal
with structural errors, Refsgaard et al. (2006) and Wagener et al. (2003) proposed frameworks to
assess uncertainty due to model structure errors. The proposed schemes differ about method and
criteria, but both suggest that comparing model structures is the way of assessing this source of
uncertainty. Nevertheless, the causes of this source of uncertainty are very complex, and there is no
generic approach to evaluate model structure uncertainty (Refsgaard et al., 2006; Doherty and

Welter, 2010).

It is also true that model validation is very important to assess the model’s efficiency in simulating
specific physical processes outside the calibration period (McCarthy, 2008), and therefore could
also be used as an indication of the model structure error. The assessment of the model structure is
sometimes performed by accepting or rejecting a model structure depending on the number of
observations covered in the predictive uncertainty bands (Freni et al., 2009). However, this method
is too subjective, as it depends on how wide confidence bands are (e.g. 65%, 95% or 99%

confidence interval) (Refsgaard and Henriksen, 2004). In addition, is rejecting the model the best
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way to go? There might be cases that results from less accurate models are still useful (Refsgaard

and Henriksen, 2004).

In summary, it is suggested that comparing results from different model structures when
applied to the same case study could be a starting point to evaluate model structure

uncertainty in stormwater models.

2.3.3  Measured data

This source refers to the uncertainty in any measured or estimated data used as model input or for
model calibration. Independent of the model type, all models require some input measured dataset
which will inherently contain a certain degree of error. Furthermore, to calibrate models, another
measured dataset is required, which also includes some error. Finally, models often require extra
information as input to the model, which also contains a degree of uncertainty: e.g. catchment
characteristics (e.g. area and slope) and/or extra climate data (e.g. evapotranspiration and
antecedent dry weather periods). Uncertainties in the measured data are generally caused by (i)
systematic and/or (i) random etrors. The following paragraphs outline the uncertainties inherent
in the major data sources used in rainfall runoff and water quality modelling of stormwater

systems.

The most common input to rainfall runoff and water quality models is rainfall intensity, and it is
usually required in time-series format (Achleitner et al., 2007; McCarthy, 2008; eWater CRC, 2012).
Tipping bucket rainfall gauges are the standard and most used device for measuring rainfall data
(Sevruk, 2002). The main sources of uncertainties in the data measured with these gauges are
related to both catching and counting errors (Molini et al., 2005b). While splashing losses were
found to be only up to 2% and evaporation losses were up to 4%, the wind losses were found to
be inversely proportional to the rain intensity and were up to 30% for rainfall intensities around
0.25 mm/h (Sevruk, 1982). Battery, logger and computer clock failures are significant source of
errors in rainfall measurements. Time drifts are inherent to any battery controlling logging devices
and values around 0.07 min/day were reported by McCarthy (2008). The spatial variability of
rainfall is another issue. It is common that the point rainfall measured with the tipping bucket is
different from the average rainfall calculated if several gauges were installed along the catchment.
To address spatial rainfall distribution radar rainfall data can be used. But this also requires a

calibration on rain gauge measurements to reduce the radar uncertainties (Einfalt et al., 2004).

Measured flow data is often used for the calibration of rainfall runoff models (e.g. Sherman, 1932;
Marshall et al., 2004; Refsgaard et al., 2006; Huard and Mailhot, 2008), and is sometimes used as
input into water quality models (e.g. Kanso et al., 2003; Vaze and Chiew, 2003). The errors in flow
data are usually related to the measurement equipment and installation methods. Flow
measurement uncertainties for the velocity-area method are caused by the uncertainties in the

estimation of the channel’s cross section and velocity estimates. The Law of Propagation of
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Uncertainty (LPU) (Taylor and Kuyatt, 1994), which is used to propagate and combine individual
sources of uncertainties, can be used to estimate this uncertainty associated with the measured
flows (Bertrand-Krajewski and Muste, 2007). Values of £20% were reported in the literature for
flows with the velocity-area method (Ahyerre et al.,, 1998; Harmel et al., 2006a). Uncertainties in
flow measurements due to systematic errors were not explored. They are related to the height

measurement and an inaccurate velocity calibration or incorrect probe set-up (McCarthy, 2008).

To adequately calibrate stormwater quality models, water quality samples need to be taken and
analysed for the parameter of interest (or in-situ probes are utilised). However, monitoring
stormwater quality is plagued by a wide range of errors, including those related to sampling, storage
and analytical /laboratorial analysis (Harmel et al., 2006a). While the etrors relating to sampling
methods (i.e. the process of actually extracting the sample from the water source) are significant for
TSS measurements (e.g. up to 33%), they are often less significant for dissolved pollutants (Harmel
et al., 2006a). Some pollutants are also impacted by storage uncertainties; for example, uncertainties
of up to 50% were found for TN concentrations, even for those samples which were stored
appropriately (iced <6hrs) (Kotlash and Chessman, 1998). Uncertainty related to the laboratorial
analysis was less explored, but values from -9.8 % to 5.1 % have been reported for TSS (Harmel et

al., 2006a) while 10.4 % has been reported for TN (Donohue and Irvine, 2008).

In general, uncertainties in measured input and calibration data can be characterised and assessed
according to international standards as ISO (1993; 1995; 2007; 2008; 2009a; b). In these standards,
uncertainty is defined as the variable associated with a measurement result which characterises the
dispersion of the values that could be reasonably attributed to the measured variable, LPU (Taylor

and Kuyatt, 1994) is an example.

Errors in measured data could strongly impact the model outputs (Andreassian et al., 2001;
Haydon and Deletic, 2009). Mainly systematic errors would propagate the error over an over
through the model (Ahmad et al., 2010). For example, if the rainfall data is constantly over- or
under-estimated and/or the data logger is suffering from time drifts, the modelled flows or
pollutant concentrations would systematically suffer/respond for these errors. Errors in discrete
pollutant concentrations can lead to an inadequate design of stormwater treatment technologies

(Vaze and Chiew, 2003).

2.3.4  Model calibration

Introduction

The confidence of the model outputs relates to the model uncertainty remaining after the model
has been calibrated. Therefore, there is a need for robust and reliable automatic calibration
procedures (Beven and Freer, 2001; Moore and Doherty, 2005). However, even when using

complex algorithms, which are capable of calibrating highly non-linear functions, there is never
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certainty that the best solution (or global optimum) will always be found (Beven and Freer, 2001;

Wagener et al., 2004).

Auto-calibration methods

Two approaches are extensively used for the estimation of parameters. These are the frequentist
and Bayesian approaches. In the frequentist approach, unknown parameters are assumed as fixed
and a calibration dataset is used to estimate their values. One disadvantage of such methods is that
they usually depend on the initial parameter values assumed at the beginning of the calibration
process, which might compromise the optimisation by not searching all the possibilities in the
parameter space. Old optimization tools such as downhill simplex method (Nelder and Mead,
1965), the pattern search method (Hooke and Jeeves, 1961) and the rotating directions method
(Rosenbrock, 1960) can easily fail because their search for the best estimates can considerably float
according to the choice of the initial values and therefore get stuck in some random local
minimum. Some gradient based methods that start calibration from different points in the
parameter space, which are selected in a manner that minimizes the chance of finding the same
local minimum twice, can overcome the problem of the objective function surface in parameter
space being pitted with local minima. PEST (Doherty, 2004) is one example of this type of tool.
Many studies reported successful applications of the software for calibrating conceptual
hydrological models (Doherty and Johnston, 2003; Kunstmann et al., 2006; Skahill and Doherty,
2006).

The Metropolis algorithm (Metropolis et al., 1953), a general Monte Carlo Markov Chain (MCMC)
sampling method, has also been widely used for model calibration and sensitivity analysis of
models in related fields (e.g. conceptual hydrological models - Kuczera and Parent (1998) and
Feyen et al. (2007) and water distribution hydraulic models - Kapelan et al. (2007)). Contrary to
frequentist approaches, the Metropolis algorithm identifies not only a best parameter set, but a
probability distribution of parameters according to measured data; it estimates the true postetior
probability distribution of parameters, which may differ significantly from the multinormal
distributions used in classical parameter uncertainty estimation methods. This is a major advantage
of this method, as it can overcome the identifiability problem (Kuczera and Parent, 1998). In

addition, it is possible to account for model uncertainty while evaluating model performance.

Objective function

The choice of appropriate objective functions is a fundamental consideration when estimating
model parameters. Different objective functions influence the calibrated parameter distributions
and the uncertainty of model predictions. All objective functions sacrifice the fit of a certain
portion of the dataset to achieve a good performance in another portion (Diskin and Simon, 1977;
Sorooshian et al., 1983; Servat and Dezetter, 1991; Wagener et al., 2004). It is a common view that

the selection of the most appropriate objective function is not an easy task and should reflect the
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modelling aims (Madsen et al., 2002; Krause et al., 2005). In addition, Croke (2009) recommended
that objective functions should consider the uncertainties in the measured and modelled data. As
such, he suggested that accounting for the non-homoscedastic and serial correlation of the model
residuals (i.e. misfit between the measured and modelled data) can reduce the uncertainty in the
estimated parameters and improve the ability of evaluating the model performance. In the same
context, Doherty and Welter (2010) added that the choice of objective function, rather than the
exact nature of the statistical characterisation of model-to-measurement misfit, becomes an issue of
critical importance in the model calibration process. In particular, the choice of an objective
function that tunes a model to make predictions of a certain type can lower the uncertainty
associated with predictions of that type. The potential and benefits of multi-objective methods to
calibrate models have been investigated and a review of these approaches can be found in
Efstratiadis and Koutsoyiannis, (2010). Multiple objective functions have some disadvantages as
increasing the number of objective functions can turn the problem of model calibration into a

decision-making process (Khu and Madsen, 2005).

Least square based objective functions place emphasis on medium/large values, which are
often the goals for stormwater management practices (i.e. high volumes - e.g. Chiew and
McMahon, 1999). In addition, its statistical background is rather simple, which is the
reason why they are still the most adopted functions in the field (e.g. Feyen et al., 2007;
Freni et al., 2009).

Calibration data availability

While the uncertainty in measured calibration data was covered in the previous section, the
relationship between model uncertainty and the data availability for calibration and validation is
addressed here. Model predictions depend on calibration and calibration depends on data. For
example, Gaume et al. (1998) used a build-up/wash-off model to simulate TSS concentrations
from stormwater in an urban catchment and reported a good agreement between measured and
modelled values. The limitation was that the authors used eight events, all over summer, to
calibrate the model (with four calibration parameters). It could be argued that if their events were
more evenly distributed along the year (or more events evenly distributed through the year) the
model would behave differently. Similarly Rodriguez et al. (2010), obtained satisfactory TSS
estimations when applying different build-up/wash-off formulations for a small urban catchment

in Bogota, Colombia. Nevertheless, only two events were taken into account for calibration.

In addition, the influence of the calibration data availability is reflected in the uncertainty of a
model’s prediction outside the calibration period (Vaze and Chiew, 2003; Mourad et al., 2005b),
and also on model’s parameter probability distributions (Larssen et al,, 2007). For example,
Mourad et al. (2005a; 2005c) found that the commonly used build-up/wash-off and multiple

regression models were sensitive to the amount of calibration data (i.e. number of events) and that
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more data should be allocated for model calibration in comparison to the amount of data for
model validation. An alternative to decrease this dependence is to use datasets that include
different contexts, such as data from different seasons, to better represent the natural variability of
the natural process (Bertrand-Krajewski, 2007; Renard et al, 2008). However, the objective
functions do not endow the model with the ability to make all types of predictions equally, and

therefore it is unlikely that the model will be able to capture the differences.

More recently, Sun and Bertrand-Krajewski (2012) proposed few methods to select representative
calibration datasets in order to optimise the performance of selected regression models. They
concluded that the method that uses multiple-dimension information of the measured inputs is
more effective than the methods that consider only one-dimension information of the outputs. In
the context of flows, Yapo et al. (1996) concluded that sensitivity of the calibration to the data
length (e.g. data availability) and period selection (e.g. wet or dry periods) was determined by the
different objective functions. Boughton (2007) found that the estimates for long term runoff are
more data-dependent than model-dependent when short periods of data are used for calibration. It
is important to remember that such finding might be study or data dependent and not a general

finding, as the model structure does represent a significant source of errors in models.

In summary, some studies have examined how to divide the available data into calibration
and validation sets (McCarthy, 1976; Klemes, 1986; Vaze and Chiew, 2003; Wagener et al.,
2004). No specific protocol was found yet, but the overall suggestion is that datasets
should include data covering a range of intrinsic content (e.g. different climate seasons

and hydrologic behaviours).

Variables to be calibrated

Most water quality models have been calibrated against fluxes and total loads from urban
catchments (Sriananthakumar and Codner, 1992; Charbeneau and Barrett, 1998; Dembélé, 2010;
Francey, 2010). However, fluxes are driven by flow rates, which generate a degree of spurious
correlation in load based models, and therefore mask the real predictive capability of the models
(Vogel et al., 2005; Shivers and Moglen, 2008; McCarthy et al., 2011). Moreover, false conclusions
about the intrinsic characteristics of pollutants and their soutces could be easily derived. For these
reasons, estimation of concentrations rather than fluxes would be indicated. Although few studies
investigated pollutant concentrations modelling, they usually utilised a very limited number of

events.

Summary
The choice among different auto-calibration methods, objective functions, calibration datasets and
variables to be calibrated, impacts the model results and uncertainties, and therefore influences the

model calibration parameters.

27



2.3.5  Model calibration parameters

Understanding the uncertainties associated with the stormwater model parameters is crucial for
advancing urban drainage modelling practice. For example, the high level of uncertainty in the
calibrated parameters has been recognised as one of the main problems in the establishment of
water quality models (Kanso et al., 2003; Kanso et al., 2005). The parameter uncertainty may result
from (1) a poor fit between model outcomes and measured data (Yapo et al., 1996), (2) a high level
of parameter cotrelation (Vanrolleghem and Keesman, 1996; Lindenschmidt, 2006); and/ot, (3) the

insensitivity or practical identifiability problem (Vanrolleghem et al., 1995).

The model sensitivity to its parameters is usually determined by either local (Deletic, 2001; Haydon
and Deletic, 2007) or global sensitivity methods (Beven and Binley, 1992; Kuczera and Parent,
1998). While local sensitivity methods can identify how the model results change with the different
parameter values, they usually do not provide information about the global influence of the
different sets of model parameters (Saltelli, 2005). Global sensitive methodologies are preferred as
they allow all parameters to vary simultaneously over a wide range of possible parameter values
(Neumann et al., 2009; Varella et al., 2010; Vezzaro and Mikkelsen, 2012) and provides information
not only about the different parameter sets, but also about parameter interaction. In addition, they
can provide insights about the model structure, because most of the methods valuate the model
sensitivity while quantifying the uncertainty associated with the parameters (Kuczera and Parent,
1998). Model sensitivity analysis is one of the main interests of this research and is further reviewed

in detail in Section 2.4.2.

2.3.6  Summary

Measured data used for input and calibration of stormwater models are not free of errors.
Therefore, it is likely that the model’s responses will reflect those uncertainties and consequently,
the model’s calibration parameters will also be impacted. In addition, the combination of different
calibration methods and objective functions determines which parts of the dataset the model is
tuned to reproduce and these modelling setup choices impact the values of the calibrated
parameters. As such it seems clear that the sources of uncertainties in models are interlinked and
eventually they all impact the model parameters. It is hypothesized that some of these sources can
add-up or compensate for each other, suggesting that assessing the impact of a single source is not

enough and that simultaneous propagation of key sources of uncertainties is required.

2.4 Assessing uncertainty in urban drainage models

2.4.1 Introduction

Model sensitivity and uncertainty analysis are imperative prior to model application. While the
uncertainty analysis quantifies the uncertainty in the model results, sensitivity analysis complement
the uncertainty analysis by providing information about the importance and relevance of model

parameters in determining the change in the results (model outputs). This section introduces and

28



compares the most common adopted methods for model sensitivity and uncertainty analysis in

urban drainage models and related fields.

2.4.2  Model sensitivity

Model sensitivity analysis reveals how sensitive the model outputs are to each parameter or input.
The results can be used just to screen for the most important parameters (Weijers and
Vanrolleghem, 1997; Reichl et al., 2006; Haydon and Deletic, 2007; Kleidorfer et al., 2009) oz, as in
most cases, model sensitivity results can be used to estimate confidence intervals around the
model’s results (Feyen et al., 2007; Yang et al., 2008; Li et al., 2010). This sub-section reviews the

most popular sensitivity analysis methods in the area and related fields.

Global uncertainty analysis

Adequate sensitivity analyses have to include an investigation over the full range of plausible
parameter values and their interactions (Saltelli, 2005). In summary, global sensitivity analysis is the
assessment of how the variation in the model outputs can be assigned to the uncertainty in the
model parameters (Vezzaro and Mikkelsen, 2012). Methods including the variance based measures
and Monte Carlo approaches (Ratto et al., 2001; Dorini et al., 2011) have been used in different
fields (Saltelli, 2005). During the last decades, a number of studies investigated the uncertainty
associated with groundwater, environmental and hydrological modelling (Beck, 1987; Beven and
Binley, 1992; Canale and Seo, 1996; Krzysztofowicz and Kelly, 2000; Refsgaard, 2000; Reichert and
Vanrolleghem, 2001; Refsgaard et al., 2007). Mclntyre et al. (2005) analysed uncertainty in a semi-
distributed catchment nutrient model, focusing on the spatial significance of parameters and model
outputs, and associated uncertainties. Results suggested that even the most influential parameters
suffered from high uncertainty due to (i) spatial inconsistencies in the estimated optimum values;
(i) the sampling error associated with the calibration method; and, (i) parameter equifinality. A
number of studies compiled and qualitatively compared different methods used in integrated
environmental modelling (Matott et al., 2009). Makowski et al. (2002), Willems (2008) and Yang et
al. (2008) compared the application of different uncertainty analysis techniques in different fields
and concluded that modellers should choose the method which is most suitable for the system they
are modelling (e.g. complexity of the model’s structure including the number of parameters), their

skill and knowledge level and the purpose of their study.

Uncertainty associated with urban drainage modelling was only recently investigated (Kanso et al.,
20006; Kleidorfer et al., 2009; Lindblom et al., 2011; Vezzaro et al., in press). Some studies have
assessed the impact of uncertainties in model parameters (e.g. Kanso et al., 2003; Thorndahl et al.,
2008). The key methods and concepts already used in water resources modelling were adopted for
urban drainage models and many methodologies (some packed in software tools) are now available
to evaluate the model sensitivity, while calibrating and quantifying the uncertainty associated with

the parameters. They range from formal Bayesian approaches (Bayes, 1763) as the Markov Chain
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Monte Carlo (MCMC) approaches (e.g. MICA by Doherty (2003), or DREAM by Vrugt et al.
(2008)) to less formal likelihood methods as the Generalized Likelihood Uncertainty Estimation
(GLUE) by Beven and Binley, (1992).

Bayesian inference based on MCMC methods express the uncertainties associated with parameters
and model outputs in terms of probability. Samples are generated from the Markov Chains, which
will converge to the posterior distribution of the parameters. One of the most used MCMC
methods is the Metropolis-Hasting algorithm (Hastings, 1970), which uses an adaptive proposal
distribution to sample parameters and is thus better at finding the high posterior density region. Its
effectiveness is now well established (e.g. Bates and Campbell, 2001). GLUE has largely been
applied to uncertainty assessment in general hydrological models (e.g. Montanari, 2005). The
principle of GLUE is to generate parameter samples from a uniform distribution in order to
provide a scan of the parameters’ space. The method requires a large number of Monte Carlo
simulations, while the criteria for accepting a parameter set (the choice of a certain threshold,
usually based on a measure of the model performance, that defines which of the sampled
parameter sets will be considered for further analysis) is subjective and is defined by the user. In
addition, the results obtained with GLUE are very sensitive to this acceptance threshold, which
places some limitation in the application of such methodology (Mantovan and Todini, 2006; Freni

et al., 2008).

Many likelihood functions used in some Bayesian approaches assume that the model errors (or
residuals between the measured and modelled values) are normally distributed. However, this
assumption is often not checked; this is the case for both scientific literature (Maksimovic et al.,
1991; Kanso et al., 2006; Varella et al., 2010) and modelling practitioners, who are often not fully
acquainted with uncertainty procedures. In the cases where these assumptions are checked, it is
commonly found that the error does not follow any specific distribution and the results are still
presented ‘as is”. In the literature, a transformation of measured and modelled data (e.g. log or Box-
Cox transformation) is used by some modellers to ensure they meet the assumptions (Gallagher
and Doherty, 2007; Yang et al., 2008). However, it is noted that all transformation methods will
intrinsically change the implied information content of the observations (Beven et al., 2008). For
example, in an urban drainage model, using a log or Box-Cox transformation (Box and Cox, 1964)
to meet normality of residuals will place more emphasis on different parts of the hydrograph (i.e.
lower flow rates), which in turn significantly influences the sensitivity to the model parameters
(Yang et al.,, 2008). The impacts of verifying, or not verifying these assumptions on the

model sensitivity and associated parameter uncertainty have not been studied.

According to Freni et al. (2009), the classical Bayesian method is more effective at discriminating
models according to their uncertainty, but the GLUE approach performs similarly when it is based

on the same founding assumptions as the Bayesian method. However, this conclusion is still
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debated (Beven, 2009; Vrugt et al., 2009). The different approaches have also been compared in
related fields other than urban drainage; for example, Makowski et al. (2002) compared GLUE and
Markov Chain Monte Carlo (MCMC) methods (in particular the Metropolis-Hasting sampling
approach) using a simplified crop model with 22 parameters. Both methods presented similar
results, but the authors recommend the use of the Metropolis-Hasting algorithm. This is because
the Metropolis-Hasting method converges to the true posterior distribution even if the model
includes a large number of parameters, while GLUE found this challenging because it required a
large number of simulation runs. Nevertheless, MCMC procedures also have their own limitations
and a misspecification of the error structure (or likelihood function) in the Bayesian approach can
lead to an erroneous quantification of the model predictive uncertainty (Beven et al., 2008).
Although these insights are valuable, it is difficult to relate the results between different

comparison studies, as they employ different models and different datasets.

In summary, the reviewed global uncertainty analysis methods have the advantage of performing
uncertainty analysis while providing information about the most likely parameter sets that calibrate
the model. They do, however, have disadvantages (Bayesian - assumption or knowledge about the
likelihood function and GLUE - subjective parameter acceptance criteria) that might limit their real
potential of performing sensitive analysis. Nevertheless, there is no information in the
literature which suggests which is the most suitable method to assess parameter

uncertainties in urban drainage models.

2.4.3  Propagation of measured data uncertainty in stormwater models

The sensitivity analysis methods reviewed in the above section (Section 2.4.2) are used to identify
the most influential parameters and also to assess the model predictive uncertainty due to
parameter uncertainty. Nevertheless, the measured data and model structure are other sources of

uncertainty that should be considered (as summarised in Sub-section 2.3.3).

Impacts of input data uncertainties on urban drainage modelling are largely unknown, although
their importance in other related fields was already noted (e.g. hydrologic models: Krzysztofowicz
and Kelly, 2000; Haydon and Deletic, 2009). Korving and Clemens (2005) evaluated the sensitivity
of a distributed hydrologic model to parameter and radar rainfall uncertainty. Among other results,
they found that as the drainage area increased, the uncertainty in flows modelled with the
distributed model also increased. Some work has been done on the propagation of input data
uncertainties through urban drainage models, mainly by methods based on Monte Carlo
simulations (Rauch et al., 1998; Bertrand-Krajewski et al., 2003; Korving and Clemens, 2005).
However, in these studies, the models were first calibrated assuming that measured inputs and
outputs are without error, and the impact of input data uncertainties were then propagated through
the models, while keeping the model parameters fixed. Kleidorfer et al. (2009) developed this

further by assessing the impact of input data uncertainties on model parameters. The techniques
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used to measure urban discharges and associated water quality are of limited accuracy (Harmel et
al., 2000b; Bertrand-Krajewski, 2007; McCarthy et al., 2008). However, the impact of this
contribution to the model’s overall uncertainty is not well understood. The effect of input and
calibration data uncertainty on the parameters and outputs of urban drainage models has

not been explored.

While most of the existing studies about input and calibration data uncertainty on the outputs have
been restricted to hydrologic models of large natural catchments, the methods used are complex
and as a result have limited practical application for urban stormwater models. For example,
Renard et al. (2008) and Thyer et al (2009a; 2009b). applied the Bayesian Total Error Analysis
methodology (BATEA proposed by Kuczera et al., 2000) to evaluate the uncertainties in
hydrological models arising from model input, outputs and structural errors. The BATEA
framework is based on hierarchical Bayesian models, in which each source of uncertainty is
explicitly considered. The model input errors, structure errors and calibration errors are considered
to be independent, and the error from one source should not be compensated by another one
(Kuczera et al., 2006; Thyer et al., 2009b). For example, the uncertainty in the model inputs should
not be compensated by re-calibrating the model and adjusting the parameters. Uncertainties are
considered at their source and therefore different parameters should not compensate for each
other. This methodology has significant advantages for estimation of predictive uncertainties when
circumstances change. For example, changes in the availability of data (e.g. use of new
measurement devices, installation of more rain gauges) can easily be implemented by adapting the
specific error model without the requirement for a complete new calibration of the model (Renard
et al., 2008). On the other side, the model can be changed, improved or extended without changing
error models (Renard et al., 2008). This is attractive for urban drainage modelling because the
systems are continuously changing with the changes in the urban infrastructure. In BATEA, error
models are used to improve the model predictions. One of the disadvantages of this approach is
the inclusion of a large number of extra parameters from the error models and there is a chance
that the relationship between the number of parameters to be calibrated and the amount of
measured data is such that it generates spurious results (Kleidorfer, 2010). In addition, validation of
the estimated uncertainty is limited as BATEA is a probabilistic approach and the estimates ate
made in terms of predictive distributions. The approach seems very promising; however, its
application is not straightforward, is computationally demanding and requires a significant level of
expertise about model structures and probabilistic approaches, which might limit the range of users
(Renard et al., 2008). Perhaps a less complex approach is required to assess urban drainage

models.
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2.5 Conclusions from the literature review

There are a vast variety of modelling approaches to simulate stormwater processes in the urban
drainage system. While rainfall runoff models are well established, water quality models are still
being researched, as the existing ones are unable to adequately represent the pollutant processes in
stormwater systems. Furthermore, there are a wide range of uncertainties which can impact the
modelling results. For further improvement of urban drainage models, it is imperative that these

uncertainties are acknowledged and evaluated.
The key findings of this literature review are summarised as follows:

1. a number of rainfall runoff and pollution generation models have been used to predict
flows and pollutants from stormwater. Independently of the modelling approach,
conceptualisation errors will always be present. This is even more evident for pollution
generation models because the related processes are not yet fully understood. It is assumed

that such errors lead to a large amount of uncertainty in these models;

2. the uncertainties associated with urban drainage models have not been fully investigated.
Therefore, there is a need to further explore this field of research. First, the sources of
uncertainty in urban drainage models have to be understood, then their impact on the

model’s predictions can be evaluated;

3. model calibration parameters are likely to respond to all sources of uncertainty in the
model; consequently, rigorous assessment of the uncertainty associated with model

parameters is required, and robust methodologies should be used for this task;

4. global sensitivity analysis methods have the advantage of performing uncertainty analysis
while providing information about the most likely parameter sets to calibrate the model.
However, there is no indication of the most suitable method to assess stormwater models.
Therefore, the comparison of different methods to perform parameter calibration, model
sensitivity and uncertainty analysis will identify the most suitable one for stormwater

models;

5. while a range of models have been applied worldwide to predict flows and pollution
generation from stormwater, the assessment of the uncertainty associated with model
structure has not been explored in any great detail. Furthermore, there is no standard
method to evaluate this source of uncertainty. Different approaches are required to
evaluate structural uncertainties, even if from a heuristic perspective. Testing models with
different formulations (levels of complexity) through the application of a sound global
sensitivity analysis method will provide information about the model structure (e.g. under

or over parameterised, ability of representing (or not) different processes);
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6. there are various assumptions made about global sensitivity analysis methods, and while
these assumptions need to be verified, in practice it is common that such assumptions are
not even checked. Research is required to determine the impact of verifying (or not)
assumptions on the model sensitivity and predictive uncertainty. The comparison of
scenarios in which the method assumption is verified and unverified will guide the

approach to future applications; and,

7. input and calibration data are plagued with uncertainties. As such, there is a need to
understand the impacts of these uncertainties on the performance, sensitivity and
predictive uncertainty of stormwater models. This will contribute to further understanding

their consequences in the modelling exercise.

2.6 Research aims and objectives

As stated in Chapter 1, the overall aim of this thesis is to further understand the impact of different
sources of uncertainties on urban drainage models. The underlying hypothesis is that the soutces
of uncertainty are linked and that the model parameters respond to all the different uncertainty

sources.

2.6.1 Specific aims and hypotheses
The literature review found that significant knowledge and data gaps exist in order to better
understand uncertainties in urban drainage models. The overall aim presented above will be

accomplished by completing a number of more specific objectives and hypotheses as follows:

@ identify suitable method(s) to perform parameter calibration, model sensitivity and

uncertainty analysis in stormwater models.

* it is hypothesised that different uncertainty analysis methods lead to different results
with respect to model parameter sensitivity and predictive uncertainty because they
rely on different formulations (e.g. formal probabilistic or not) and assumptions (e.g.
assumption about the model errors structure, such as the assumption that the residuals

are independent and normally distributed).

* it is hypothesised that there is a complex interaction between the complexity of the
method used, computational time trequited and the knowledge/skill level of the

modeller;

* it is hypothesised that verifying the underlying assumption of the sensitivity and
uncertainty analysis method will result in the most comprehensive understanding of

the model’s uncertainty;

(ID) explore parameter calibration, model sensitivity and the resulting predictive

uncertainties in models with different levels of complexity;
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* it is hypothesised that a well-posed and well-calibrated model (which has influential
and identifiable parameters) will have a higher model efficiency. Providing inadequate
calibration for a well-posed model may neglect important processes represented by the

model;

* it is hypothesised that the results from a sound model sensitivity analysis will indicate
if the model is well or ‘ill-posed’, as the identifiability of parameters, the confidence in
the model results and the existence of model structure and conceptual errors will be

determined.

* the assessment of the uncertainty originating from model parameters allows a
comprehensive analysis of model structure and parameter interaction. Nevertheless,
other sources of uncertainties (e.g. input measured data, model formulation and
assumptions and selected objective function) should be investigated because they

impact on the total uncertainties in the modelled results.

(III)  explore the impact of measured input and calibration data uncertainty on the
performance, sensitivity and predictive uncertainty of stormwater quantity and quality

models;

e it is hypothesised that the model parameters can entirely compensate for the
uncertainty in input and calibration data. As such, if the model parameters are
considered initially as reflecting reality, then these uncertainties will reduce this

representation; and,

* itis hypothesised that systematic errors in measured data will have more impact on the
model sensitivity and uncertainty than random errors because they are time-

dependent, and therefore they will be continuously propagated through the model.

2.6.2  Methodology used to complete the aims
In total, there are eight main chapters in this thesis, each contributing to one, or more, of the

above listed aims.

Figure 2.2 provides an overview of how the chapters of the thesis are organised to achieve the
major aim described at the beginning of Section 2.6. Data collected from different urban
catchments in Melbourne, Australia, were used to complete many of the above aims and
hypotheses. Assessing model sensitivity and uncertainty analysis forms the major part of the overall

thesis.
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Review rainfall runoff
and pollution
generation models in
urban drainage

Chapter 2 - Literature review

Understand parameter

uncertainties and select

appropriate uncertainty
assessment methods

Chapter 3 -Data and
models

Chapter 4 —approaches
for parameter calibration
and uncertainty analysis

Present data and
models used

Identify suitable global
sensitivity analysis
method(s)
(Papers 1&2)

Chapter 5 —Bayesian
approach and model
assessment

Explore parameter
uncertainties in models
with different levels of

complexity
(Papers 3-5)

Chapter 6 — Bayesian
approach and underlying
assumptions

Understand and
guantify measured data
uncertainty sources in
urban drainage
modelling

Chapter 7—- Propagation of
input and calibration
data errors

Understand implications
of methodology
assumptions
(Paper 6)

Understand implications
of measured data on
model uncertainty
(Paper7)

Figure 2.2 Flow chart describing the chapters of the thesis, the main roles they play in achieving

the aim and how the papers fit in each of the chapters and objectives.
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The information collated in the literature review will assist in the selection of different urban
stormwater rainfall runoff and pollution generation models to be tested. Model calibration,
sensitivity and uncertainty analyses will be conducted using an array of different methods. The

most suitable one will be used to assess different models and sources of uncettainties.

2.6.3  Thesis by publication
This is a thesis by publication, and the results of this research are presented in the form of journal
papers that are integrated within the chapters. Figure 2.2 shows how these journal papers are

incorporated into the thesis and how they meet the key objectives.

The search for suitable global sensitivity analysis method(s) to perform parameter calibration,
model sensitivity and uncertainty analysis in stormwater models is presented in Chapter 4 in the
form of two journal papers: (1) Comparison of different uncertainty techniques in urban stormwater guantity

and quality modelling; and, (2) Analysis of parameter uncertainty of a flow and quality stormwater model.

Next, parameter calibration, model sensitivity and predictive uncertainties (originating from
parameter uncertainties), in models with different formulations, are extensively investigated in
Chapter 5 through three journal papers: (3) Calibration and sensitivity analysis of urban drainage models:
MUSIC rainfall/ runoff module and a simple stormwater guality, (4) Stornwater quality models: performance and
sensitivity analysis, and, (5) Performance and sensitivity analysis of stormmwater models using a Bayesian approach

and long-term high resolution data.

This is followed by an evaluation of the main assumption of the sensitivity analysis method in
Chapter 6. This is presented in one journal paper: (6) Uncertainty analysis in urban drainage modelling:
should we break onr back for normally distributed residuals? The last part of this research focuses on
propagating measured data uncertainty through stormwater models and this is presented in
Chapter 7 through the following journal paper: (7) Impacts of measured data uncertainty on urban
stormwater models. Finally, the last chapter presents the main conclusions and summarises the main

topics for further investigation (Chapter 8).
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Chapter 3

Data and models







3.1 Introduction

This chapter provides an overview of the dataset and stormwater models employed in this study.
The data collection was conducted by two former Monash University PhD students, and the full
details of the monitoring campaigns can be found in their thesis: McCarthy (2008) and Francey
(2010). The key aspects of the monitoring are summarised in this section. The models selection
was done so that both water quantity and quality were included. The models were of different

complexities and reliabilities to investigate impacts of model structure on the results.

3.2 Overview of the monitoring sites

The study sites used in this thesis were part of a large monitoring program which focused on the
measurement of rainfall and flow data and on the collection of typical stormwater pollutants, such
as Total Suspended Solids (T'SS) and Total Nitrogen (IN) (Francey, 2010; Francey et al., 2010).
Four out of the five sites also included a comprehensive data set on E. co/i (McCarthy, 2008). The
sites were selected to represent different characteristics of urban catchments, which included the

coverage of:
e different catchment sizes;

» different levels of development (i.e. from high density developments to low density

developments), which reflects the various levels of imperviousness;
» different types of land-uses (i.e. industrial, commercial and residential land-uses); and,

* relatively established catchments to ensure that construction or other development works

were kept to a minimum during the sampling period.

In addition, the security of the sampling point and the proximity of the sites to the research team
were also taken into account when selecting the sites. According to these criteria, five study
catchments in the inner suburbs of Melbourne, Australia were selected (McCarthy, 2008; Francey,

2010).

Table 3.1 shows a summary of the characteristics of the catchments. The total impervious fraction
of the sites (TTF) ranges from 0.2 to to 0.8 and catchment areas ranges from just 10 to over 100 ha.
The level of development of the catchments is also diverse. Figure 3.1 presents the aerial
photographs of each catchment showing the relative positions of the centroid, rainfall gauge and
flow gauges. All catchments are serviced by separate stormwater and wastewater systems, but some
cross-connections between systems are expected. Narre Warren and Doncaster are the only sites

that contain septic systems (tanks).
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Table 3.1 Summary of the characteristics of the catchments (McCarthy, 2008; Francey, 2010).

Site Gilby Rd (GR) Richmond (RICH) Ruffeys Lake, Doncaster (RD) Shepherds Bush (SB) Narre Warren (NW)
Primary Land Use Commercial High Density Residential Medium Density Residential Medium Density Residential =~ Rural Residential
Area (ha) 28.2 89.1 105.6 38 10.5

TIF* 0.8 0.74 0.51 0.45 0.2

Catchment Average slope (%) 1 3.5 5 4 4

Time of concentration (min) 23 31 14 14 16

* Total Impervious Fraction (TTF)



3.3 Overview of the monitoring programs

0.2 mm tipping bucket rainfall gauges were used in all the sites and the bucket size volume was
regularly calibrated. The gauges were installed in areas where they were not obstructed by trees or
buildings, as close as possible to the catchment’s centroid, accessible by monitoring staff, and safe
to leave unattended (Francey, 2010). Figure 3.1 shows the location of each of the rainfall gauges in

relation to the catchments’ centroids.

Rainfall loggers were installed next to each rainfall gauge and were programmed to count the
number of tips which occur during each minute. Visual inspection of each of the loggers and
rainfall gauges were made on each visit and if this inspection revealed any inconsistency then the
loggers and rainfall gauges were re-calibrated and tested. The rainfall intensities were then
calculated taking into account the time passed between the recorded tips and the number of tips

registered (see Chapter 3, Section 3.1.1 of McCarthy, 2008 for full details).

Flows were measured with the American Sigma/HACH area-velocity 950 sensor (HACH, 2008)
installed in the outlet pipes of each of the sites. Figure 3.1 shows the location of each of the flow
meters on the aerial photographs of each site. The Sigma 950 uses a submerged area velocity
sensor probe containing a pressure transducer to measure depth of flow in conjunction with
ultrasonic transducers for velocity measurement. Subsequently the flow rates were calculated by the
product between the wetted cross-sectional area and the velocity. Flow loggers were installed close
to the flow meter and were programmed to measure the instantaneous average cross sectional
velocity (m/s) and depth (m) of the stormwater and these readings were recorded at the end of
every minute. Visual inspection of each of the loggers and flow gauges were made on most the
fortnightly visits and if this inspection revealed any inconsistency (e.g. debris, etc.) then the loggers

and flow gauges were re-calibrated and tested.
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Gilby Rd (GR) Richmond (RICH)

Ruffeys Lake, Doncaster (RD) Shepherds Bush (SB)
- P RIS ST

.g:g. Rainfall gauge location
E[:] Catchment centroid

® Flow gauge location

Figure 3.1 Aerial phtoaphs of each catchment showing the relative positions of the centroid,
rainfall gauge and flow gauges (after McCarthy, 2008).

The water quality samples were collected at the outlet of the catchments using a discrete sampling
methodology. Non refrigerated autosamplers were used to withdraw samples from the stormwater
using peristaltic pumps through reinforced suction tubes. The suction tubes were placed at a

continuous gradient from the autosampler to the stormwater pipe, to avoid any ponding of water
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within the tube. A flow-weighed sampling approach was used, which means that subsequent
samples were taken after predetermined volumes passed through the pipe. In general, pollutant
concentrations vary considerably during the ascending peak of the hydrograph and regularise
during the descending peak (Leecaster et al., 2002). As such the trigger volumes were set to allow a
representative coverage of the event with the sample intervals becoming larger as the event

progresses (e.g. see Figure 3.2).
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Figure 3.2. Example hydrograph and sampling points for Richmond catchment (RICH) taken on
144 of April 2005.

An event was considered to be representative if four or more samples were collected. The starting
point of an event was considered to be at 3 hours before the first sample and the end point after 3
hours past from the last sample. In addition, the event was ended if rainfall or runoff did not occur

for two hours or more.

3.4 Overview of the data used in this study

Most of the sites were monitored from January 2004 to December 2007. Rain and flow data,
collected between 2004 and 2005, were used for model calibration (used in Chapters 4, 5, 6 and 7),
while data collected from 2006 to 2007 was used for model validation (see Chapter 5). Table 3.2
reports on the characteristics of events used for model calibration, and also on the events used for
validation (these are presented in square parentheses). The validation of the water quality models
was not performed as preliminary tests and previous studies (e.g. Kanso et al., 2000) confirmed the
models’ very low performance even during calibration. As such, validation of these models would

not make sense and therefore data is not presented.
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Water quantity data: The mean annual rainfall in these catchments ranges from 370 to over 720
millimetres per year. From the rainfall figures in Table 3.2, it is possible to note that the data used
for validation reflects the severe draught that Melbourne went through during 2006 and 2007. The
mean rainfall among all the catchments that was 661 mm for the data period used for calibration
(and reflects the normal average rainfall in Melbourne) went down to 452 mm during the period of

data used for validation.

Figure 3.3 presents the flow duration curves for each catchment in mm/min (ie. flow per
catchment area) during the period used for calibration, 2004 and 2005 (on the left) and validation,
2006 and 2007 (on the right). Again the effects of the severe draught are identified in the flow

duration curves.
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Figure 3.3 Flow duration cutves for each catchment (mm/min) - calibration (left) and validation
(right) period.

Although measures were taken to avoid measurement errors, uncertainty can only be minimised
but not eliminated. Therefore, rainfall data used in this study was processed to cope with gaps and
time drifts, which are inherent in any battery controlled logging device. Flow data was checked for
any discrepancy (e.g. backflow effects indicated by negative velocities). As such, these ‘corrected’ or
validated datasets are used for the subsequent chapters (see Chapter 3, Section 3.1.1 of McCarthy,
2008 for full details).
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Table 3.2 Summary of measured data details (McCarthy, 2008; Francey, 2010). The characteristics of events used for model calibration are

presented while the characteristics of events used for validation are given in brackets [ |.

Site Gilby Rd Richmond Ruffeys Lake, Shepherds  Narre
(GR) (RICH) Doncaster (RD) Bush (SB) Warren (NW)

Distance from catch centroid to rain gauge (m) 100 600 700 550 250
Mean annual rainfall (mm/year) 723 [5306] 650 [500] 650 [370] 580 700 [400]
Mean event maximum rainfall intensity (mm/hr) 10 [7.5] 10 [8.4] 9171 6 10 [§]
Range of event maximum rainfall intensity (mm/hr) 2-86 [2- 30] 2—-060 [2-44] 2-44 12 - 28] 2-60 2.5-80.3 [2-32]
Mean event maximum runoff rate (L/s) 408 [50] 547 [212] 723 [165] 214 44 [20]
Range of event maximum flow rates (L/s) ;5 0_- i?)?)} E,Z 5‘_3 ?273 0 1[23 ) ;82]9 29— 1200 3140-2058]
N. of events - TSS 49 40 54 19 41
Maximum TSS concentration (mg/L) 867 1600 1422 1545 2398
TSS CV** (%) 151.46 164.05 183.12 153.54 182.87
Mean of TSS EMC’s*** (mg/L) 71.6 125.1 77.0 94.8 91.9
N. of events - TN 47 39 - 17 18
Maximum TN concentration (mg/L) 9 26 - 15 19
TN CV** (%) 83.18 101.32 85.22 76.82
Mean of TN EMC’s*** (mg/L) 1.17 2.29 - 1.74 3.51

*Total impervious fraction (TIF)
**Coeffident of variation (CV)
*** Event Mean Concentration (EMC)



A time series of areal potential evaporation (PET) was also required for this study. The values are
based on the evaporation data from the Australian Bureau of Meteorology (BOM, 2012) and were
used in a daily format (mm/day). However, the time series was obtained from a long-term average,
in which the monthly values are constant through the year. Figure 3.4 shows the constant daily
values for Melbourne; as expected a seasonal pattern was observed with higher PET during the

summer.

Areal Potential-Evapotranspiration
(mm/day)

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.4 Melbourne daily PET (mm).

Water quality data: Approximately 20 to 50 pollutographs are available for each site, each event
containing between 5 and 30 discrete samples. At each site, a range of pollutants were available.
For this study we used pollutographs of Total Nitrogen (TN) and mostly pollutographs of Total
Suspended Solids (TSS) for all catchments, except for RD where only TSS samples were available.
These two pollutants were selected as TSS represents pollutants that are associated with particles,
while TN is mainly dissolved in water (Taylor, 20006). The variability of TSS and TN concentrations
between sites was quite large as shown by their coefficient of variation (CV) in Table 3.2 and
Figure 3.5. These large coefficient values also indicate the log nature of these pollutants. The mean
Event Mean Concentration (EMC) for TSS ranged from 72 to 125 mg/L between sites, and for
TN this was between 1.17 and 3.51 mg/L.
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Figure 3.5 Probability of exceedence plots for TSS (left) and TN (right) concentrations measured
during wet weather events at each site (mg/L).

3.5 Models used in the study

This research focuses on modelling flows and pollution generation from urban areas located in
Melbourne, Australia. For such purpose, the selected models should be able to predict flow rate
(rainfall-runoff models) and TSS and TN concentrations (quality models) during wet weather

events.

Stormwater models with different levels of complexity were used in order to evaluate their
performance and applicability to different domains. Flows and stormwater quality were simulated
separately with distinct models. After a thorough literature review (see Chapter 2), two conceptual
models MUSIC (eWater CRC, 2012) and KAREN (Rauch and Kinzel, 2007) were selected for
runoff modelling, while a process-based build-up/wash-off model (Sartor and Boyd, 1972) and a
few empirical regression models (as used in SWMM - USEPA, 2007) were compared in terms of
stormwater pollutant modelling. The following subsections summarise the rationale behind this

selection and present the description of the selected models.

3.5.1 Rainfall runoff models

The choice of conceptual models over simple empirical or complex process based ones was
founded on the advantages and disadvantages presented in Section 2.2.2. For example, empirical
models are not suitable for daily and smaller timesteps, which is the focus of this research. In
addition, no information on the catchment’s hydrologic response is obtained. On the other hand,
complex process based models require a large number of inputs and parameters that are not usually
available in practice. Conceptual models describe the main processes in the catchment, providing
not only reasonable runoff generation, but also information on the catchment’s imperviousness

and hydrological behaviour (e.g. flow regimes).
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MUSIC

The algorithm in MUSIC — Model for Urban Stormwater Improvement (eWater CRC, 2012) is
based on the originally daily urban SimHyd model developed by Chiew and McMahon (1999),
which was initially developed for large natural catchments. This SimHyd model was modified to
enable disaggregation of daily runoff into sub-daily temporal patterns. The model is a simplified
description of the rainfall runoff processes in urban catchments and involves the concepts of the
impervious area and soil moisture storage. For given rainfall and evapotranspiration time series,
MUSIC continuously simulates catchment discharges. MUSIC was designed to operate at a range
of temporal and spatial scales, suitable for catchment areas from 0.01 to over 100 km2. The model
operates at timesteps from 6 minutes to 24 hours to match the spatial scale of the catchment being
modelled. Previous studies suggested that MUSIC is among the models suitable and recommended
for prediction of flow rates from small catchments and also for conceptual or preliminary design at
cither a subdivision or catchment scale (McAlister et al., 2006; Elliott and Trowsdale, 2007). Flows
from impervious and petvious areas are modelled separately (see Figure 3.6). The model

components, as well as the main relationships, are explained in the following subsections.

The parameters involved in each of the modelled processes are summarised in Table 3.3 and a full
description of the model is available in the MUSIC manual (eWater CRC, 2012). In addition to
abbreviations and units, the table refers to the description of each parameter and also reports the
default values. Default values were initially obtained based on results from manual calibration of
the model with few catchments along the southeast of Australia (e.g. Chiew and McMahon, 1999;
eWater CRC, 2012). In Melbourne, for example, MUSIC was calibrated for one single catchment.
Table 3.3 also suggests ranges of values that are based on the manual and also on more recent
studies that reported MUSIC parameters for different regions (Brisbane City Council, 2006; Gold
Coast City Council, 2006; Macleod, 2008).

=
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Figure 3.6 Schematic of MUSIC rainfall runoff model and its parameters (after CRCCH, 2005).
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Impervious area component. The impervious area runoff is primarily a function of the
proportion of catchment imperviousness with initial loss playing a small part. The effective
impervious fraction (EIF), which corresponds to the areas that are directly connected to the
drainage system, is a calibration parameter. Surface runoff from impervious areas occurs after the
rainfall in the catchment exceeds the runoff threshold (Thres) parameter, which defines the
minimum daily rainfall before surface runoff occurs from the impervious area according to

Equation 3.1:
Qimp = max(0, Rain — Thres) Equation 3.1

where Qimyp is the surface runoff rate from impervious areas (mm); Rain is the rainfall incident on

the catchment (mm) and, Thres is the initial loss parameter (mm/day).

Pervious area component. The pervious area represents the fraction of the catchment in which
infiltration occurs. The infiltration rate (Inf) is defined as an exponential function of the soil
moisture storage. Runoff from the pervious areas occurs when the pervious soil storage is either
saturated (SatEx) or its infiltration rate (Inf) is exceeded (InfEx). The pervious area runoff
related parameters are mainly described by: (1) soil storage capacities, the maximum soil storage
(SMax) and the initial storage level (SIni), in which the second is expressed as a percentage of
the first, and (2) infiltration factors (coeff and sq). Water from the soil storage is lost due to
actual evapotranspiration (ET), which is a function of the current day’s potential
evapotranspiration (PET) and the ratio between the water currently in the petvious store and its

capacity (S§/Smax). Equations 3.2 to 3.5 describe the processes in the petvious area:

(—sq-SIni) )
Inf = min(coeff, e\ SMax J Rain) Equation 3.2

SatEx = max(Sini — SMax, 0)

Equation 3.3

InfEx = Rain = Inf Equation 3.4
10SIni

ET = min ( e , PET) Equation 3.5
SMax
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where Inf is the petvious soil storage infiltration rate (mm); coeff and sq are the infiltration
capacity coefficient and exponent, respectively; SIni is the initial storage level (mm); SMax is the
maximum storage capacity of the pervious area store (mm); Razn is the rainfall incident on the
catchment (mm); atEx is the saturation excess (mm); InfEXx is the infiltration excess (mm); ET is
the water lost to atmosphere by evaporation (mm); and, PET is the current daily

evapotranspiration (mm/day).

Baseflow component. Groundwater is modelled as a store that is recharged when the level in the
pervious soil storage exceeds the field capacity (f¢). The rate of this recharge is a percentage of
the water in the store, which is the calibration parameter 7fac. This store is emptied via baseflow,
which is modelled as a percentage of the water within the store, the model parameter (fc). The
rate of this recharge is a percentage of the water in the store, which is the calibration parameter
rfac. In similar way, deep seepage is set as a percentage of the groundwater store, which is the
model parameter dseep. Equations 3.6 to 3.8 represent these groundwater processes. Baseflow
becomes part of the catchment outflow, deep seepage, on the other hand, is permanently lost from

the catchment.

Gr = max(0,rfac - (S — fc)) Equation 3.6
Basfl = bfac - gw Equation 3.7
Seep = dseep - gw Equation 3.8

where G7 is the groundwater recharge; fc is the field capacity (mm); rfac is the daily groundwater
daily recharge from the soil store (exptressed as a petcentage of the volume above the fc in the
store); Basfl is the baseflow (mm); gw is the volume of the groundwater store at the start of the
simulation (mm); bfac is the daily baseflow rate (expressed as a percentage of the initial
groundwater storage gw); Seep is the deep seepage; and, dseep is the daily deep seepage rate (also

expressed as a percentage of the initial groundwater volume gw).
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Table 3.3 MUSIC rainfall runoff model - Summary of model parameters.

Component Parameter name Description Unit vail:lt Comments**
Effective impervious Fraction of areas that are directly connected to the drainage Y ) )
. fraction (EIF) system ’
Impervious Area Minimum daily rainfall before surface runoff occurs from the
Rainfall threshold (Thres) . . ) mm 1.0 Values from 0 to 5
impervious
Soil storage capacity (§Max) ~ Maximum soil storage mm 30* Values from 30 to 500
Initial storage ($17i) Initial storage level as a percentage of the Soil storage capacity % 30 Values from 0 to 50
Pervious Field capacity (£) Wheq the level in the pervious soil store exceeds the field mm 0% Values from 10 to 200
Area capacity, groundwater store starts being recharged
Infiltration capacity Maximum infiltration loss 200 Values from 0 to 400
coefficient (coeff)
Infiltration capacity Infiltration loss exponent - 1 Values from 0 to 7
exponent (§9)
Daily recharge rate (20 iztrf; of groundwater recharge as percentage of the water in the % 25% i
Daily bascflow rate (i) Rate that the groundwater empties via baseflow as a percentage of e 5, i
the groundwater store
Groundwater G dwater initial st
(g;;)un WALCH IMTHATSTOMEE y7olume of the groundwater store at the start of the simulation mm 10 Values from 0 to 100
](3,;1277) deep seepage rate Deep seepage rate as a percentage of the groundwater store % 0 -
Translation and factor (K) Relatefi to ‘the travel time for the flood wave through the channel min 30 Values lgrger than 1/3 of the
. reach in minutes chosen timestep
Muskingum Cunge Dimensionless flow weighting factor; lower the value, lager th
Attenuations factor (f) imensioniess How welghting factor; fower the value, fager the - 0.25 Values from 0.1 to 0.3

attenuation

*MUSIC default values for Melbourne
**Compiled values from Brisbane City Council (2006), Gold Coast City Council (2006), Macleod (2008) and eWater (2012)



Routing routine. The Muskingum Cunge routing method (Cunge, 1969) is applied for the routing
of flows through the drainage system. The method is based on the continuity of mass equation
within a channel reach. The basic equations are presented in this subsection and complete
discussion of the method can be found in Cunge (1969) and Bedient and Huber (1992). Given the
inflow into the channel reach and the outflow from the channel reach, the variation of the volume

of water in storage within the channel reach (as illustrated in Figure 3.7) is expressed as:

= Equation 3.9

where Q;, is the inflow into the channel reach; Q,+ is the outflow from the channel reach; S is the

volume of water in storage within the channel reach; and,t is the time.

The total volume of water in the storage within the channel reach can be expressed as a function of

the flow rates entering and leaving the reach:

S —KOQ;,

Qout = -9 Equation 3.10

where K is approximately equal to the travel time for the flood wave through the channel reach in
minutes. It is recommended that K should not assume values less than one third of the chosen
timestep. 6 is a dimensionless weighting factor that has a value between 0 and 0.5, and is generally
between 0.1 and 0.3 for natural channels. When 6 is zero, the volume of water in storage is purely
a function of the outflow. A value of 0.5 produces no attenuation and the flood wave is purely
translated by a time value equals to K. MUSIC assumes that the values of K and 6 remain constant

within a reach throughout the simulation and are considered as model calibration parameters

(Table 3.3).

Qout

Figure 3.7 Schematic of storages in a channel reach (after CRCCH, 2005).
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KAREN

KAREN is a simple linear reservoir model (Rauch and Kinzel, 2007). For a given rainfall time
series, the model generates a series of flows originating from impervious areas only. The pervious
components of the catchments are not considered. The main relationships are explained in this
section. Table 3.4 presents a summary of the parameters included in the model. For a full
description of the model, see the manual (Rauch and Kinzel, 2007). In addition, Table 3.4 presents
a description of each parameter. Whenever available, the table reports the default values of
parameters (according to the manual - Rauch and Kinzel, 2007). A schematic presentation of the

rainfall runoff model implemented in KAREN is given in Figure 3.8.
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Figure 3.8 Schematic of KAREN rainfall runoff model and its parameters(Kleidorfer et al., 2009).

The model is similar to that found in MUSIC but neglects all processes/parameters relating to
runoff from pervious areas. Again, the effective impervious area of the catchment is an important
parameter (EIF) to be calibrated. Runoff from impervious areas is generated depending on
whether a certain rainfall threshold has been exceeded. Such threshold is represented by the initial
loss parameter (li) and it is modelled as a single reservoit. Furthermore, here the initial loss is not a
minimum daily rainfall sum but a total (time-independent) value, which fills during rainfall and
drains during dry weather periods depending on a permanent loss, which is the evaporation
calibration parameter (ev). The effective rainfall is calculated as the difference between the

measured rainfall and an initial loss:

h, =h,, — li Equation 3.11

where h, is the effective rainfall intensity (mm); Ry, is the measured rainfall intensity (mm); and, li

is the initial loss parameter (mm).

The initial loss is drained during dry weather periods, in each timestep # depending on a permanent

loss:

67



li, =li;_1—ev Equation 3.12

where li; is the initial loss at the timestep % li;_q is the initial loss at the previous timestep; and, ev

is a permanent loss through evaporation (mm/day).

Surface runoff concentration is calculated using the linear time-area method, which is similar to the
unit hydrograph method (Sherman, 1932). At the beginning of a rainfall event, the effective
impervious area (EIF) is increased according to the flow time on the catchment surface until the
whole catchment contributes to runoff after the time of concentration, which is a calibration

parameter (TOC). The runoff is calculated as:

Q, = Z Iom Ap—myq 1073 Equation 3.13

where @), is the runoff (m3/s), n is the index of the runoff; I is the effective rainfall intensity

(mm/s); m is the index of the rainfall; and, 4 is the current effective impervious area (m?).
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Table 3.4 KAREN rainfall runoff model - Summary of model parameters.

Component Parameter name Description Unit Default value
L . . Fraction of areas that are directly connected to the
Effective impervious fraction (EIF) . ? % -
drainage system
. . Related to the time that the whole catchment .
) Concentration time (TOC) . Min -
Impervious Area contributes to runoff
. Minimum rainfall before surface runoff occurs from
Initial loss (/) mm 1

the impervious

Evapotranspiration (ev) Permanent loss during dry weather

mm/day 1.5




3.5.2 Water quality models

Contrary to the water quantity models, reliable stormwater pollution generation models are almost
non-existent (Elliott and Trowsdale, 2007). Understanding the processes within pollution
generation is very important for the development of better modelling approaches. In general, these
processes are very complex and are influenced by a variety of factors, such as: rainfall, runoff,
climatic, land use and surface characteristics (Deletic and Maksimovic, 1998; Vaze and Chiew,
2002; Egodawatta et al., 2007; McCarthy et al, 2011). This complex nature of pollutant
accumulation and wash-off, together with high temporal and spatial variations, generates technical
difficulties in the development of accurate and reliable models of pollutant processes. Few
approaches are available for reproducing the catchment’s response in terms of pollutants (e.g.

Sartor and Boyd, 1972; Vaze and Chiew, 2003).

The approaches vary among the popular modelling packages (Elliott and Trowsdale, 2007). For
example, MOUSE (DHI, 2002c; 2004) and SLAMM (Pitt, 1998) use the build-up/wash-off
method (based on work of Sartor and Boyd, 1972). Empirical power rating curves for
concentration as function of rainfall intensity and flow rate are also included in some of the models
(e.g. SWMM -USEPA, 2007). However, they are difficult to calibrate and validate as they seem
unable to accurately reproduce the pollutant’s behaviour in the systems (Beck, 1987; Kanso et al.,
2006; Egodawatta et al., 2007). MUSIC (eWater CRC, 2012), SLAMM (Pitt, 1998) and XP-SWMM
(WP Software, 1995) come with a stochastic component, which has been widely used. This poses a
challenge for calibration as the models always generate different values. Simple statistical models,
such as investigated by Blasone et al. (2008) and Lee and Heaney (2003) cannot be used outside
catchments for which they are developed. To advance these models it is important to understand
the soutces of their uncertainties. It has been recognised that one of the main problems in the
establishment of water quality models is the high level of uncertainty in their calibrated parameters

(Fletcher et al., 2004; Francey et al., 2010).

A process-based build-up/wash-off model and a few empirical regression models were compared.
Although poor performance of these models is expected, they are commonly used in practice
(Palmstrom and Walker, 1990; XP-SOFTWARE, 1999; USEPA, 2007), and were assessed in terms
of parameter calibration and model sensitivity analysis in order to (i) guide future development of
such models and indicate the data required to support their development and application, and (ii)

test the applicability of different sensitivity analysis methods to ‘ill-posed” models.

Build-up/wash-off model

The generation of pollutants in the runoff from an impervious surface is often described and
modelled using the concepts of build-up and wash-off. The attempt to model these both processes
was proposed by Sartor and Boyd (1972) and is summarized in Sartor et al. (1974). It has been

tested (Deletic et al., 2000; Shaw et al., 2010) and derivations have been adopted in several
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stormwater softwares, such as SWMM (USEPA, 2007) and the US Army Corps’s STORM model
(XP-SOFTWARE, 1977). A modified version, of the one originally proposed by Sartor and Boyd

(1972), was tested. The build-up of pollutants during dry weather periods is calculated as

6k .
Build —up: M(t;) = M, -(1- e—Tzﬁ)td) Equation 3.14

where M is the amount of pollutant on the sutface (in g/m? in Chapters 4 and 5 and kg in Chapter
8) and tg is the dry period in, here being the 6 minutes timestep. Again, this equation has two
calibration parameters: My, which is the maximum amount of solids expected at the surface (in
g/m? in Chapters 4 and 5 and kg in Chapter 7) and k; that represents an accumulation constant

(day™).

Two versions of the wash of model were used. The first represented by the Equation 3.15:
Wash — of f: C(t) = k,-M(t)-I(t)*s-A Equation 3.15

where C is the concentration in runoff (mg/L), I is the rainfall intensity (mm/hr), and, A is the
impervious area (m?). The calibration parameters are kj, the wash-off coefficient and k3, which is

the wash-off exponent. In total, there are four calibration parameters (summarised in Table 3.5).

Another modified wash-off model, which includes a transport component was also tested. It
calculates the amount of pollutants washed from the surface and the concentration of pollutants in
the runoff within a timestep as a power function of the catchment’s runoff (runoff rate and

volume):

Wash — off: C(t) = k, - M(t,) - % (t —1)ks Equation 3.16

W(t) = 107 * C(t) * Vol(t) Equation 3.17

where C is the concentration of pollutants (mg/L); q is the modelled runoff (mm/ht) and RC is
the catchment runoff coefficient, here assumed as the effective impervious fraction of the
catchment obtained from the rainfall runoff model, EIF). RC was included to represent wash-off
only from impervious surfaces, which is a safe assumption because the majority of runoff from
urban catchments originates from impervious surfaces (Chiew and McMahon, 1999). Modelling

water quality with modelled q values is widely used in practice where measured data are scarce or
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not available. If instead of g, rainfall intensities were used, the model would have to include a
routing algorithm (e.g. linear reservoir routing method) which means an additional equation and at
least one extra parameter to attenuate the rainfall. In addition, the uncertainty in the model would
increase due to the errors in extra input data (rainfall records). And finally the use of modelled g
and Vol accounts for the changes in the time of concentration existing between different events
(Vezzaro et al., in press). As in the original approach, two calibration parameters are involved in
the wash-off process: £; as the washoff coefficient, and 4&; which is the washoff exponent. In
addition, a transport trelated parameter (7) was added into the model to tepresent the small lag
time which is often noted between the hydrographs and the pollutographs (Vaze and Chiew, 2003).

The runoff is translated by a number of timesteps in min. The amount of pollutants washed from
the surface (W in kg) is then calculated in function of the predicted concentration and the runoff

volume (Vol in L). Table 3.5 presents a summary of the parameters included in the model.
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Table 3.5 Build-up/wash-off model versions 1 and 2- Summary of model parameters.

Component

Parameter name

Interpretation

Unit

Comments

Build-up

Maximum amount of

pollutant (M)

Accumulation
constant (&)

Maximum amount of pollutant on
the surface before a rain event

Accumulation rate of pollutant
during dry weather period

g/m? (Version 1)
kg (Version2)

Values from 3 and 18 g/m? for suspended solids in urban stormwater
(Sriananthakumar and Codner, 1992; Tomanovic and Maksimovic, 1996;
Hossain et al., 2010)

Values from 200 to 560 kg for suspended solids and from 2.6 to 3.5 kg
for TN in stormwater alley (Alley and Smith, 1981)

Values of 0.098 and 0.38 for suspended solids in combined sewers
(Kanso et al., 2003)

Values from 0.015 to 0.2 for sediments in stormwater (Alley and Smith,
1981; Sriananthakumar and Codner, 1992; Tomanovic and Maksimovic,
1996)

Values of 0.05 and 0.08 for TN in stormwater (Sriananthakumar and
Codner, 1992)

Wash-off

Wash-off coefficient
(&)

Wash-off exponent
(&)

Translation factor
(r in Version 2)

Related to the sources of pollutants
in the catchment

Related to the kinetic energy of the
rainfall in detaching pollutant from
the surface or to the shear stress
generated by flow

Represents the lag between the
hydrographs and the pollutographs

min x number of
timesteps

Values of 0.049 and 0.073 for concentration of suspended solids in
combined sewers (Kanso et al., 2003)

Values from 0.002 to 0.2 for loads of suspended solids (from impervious
surfaces) in urban stormwater (Hossain et al., 2010)

Values of 1.3 and 1.2 for concentration of suspended solids in combined
sewers (Kanso et al., 2003)

Values from 0.3 to 0.7 for loads of suspended solids (from impervious
surfaces) in urban stormwater (Hossain et al., 2010)

Value of approximately 0.29 for sediments in stormwater. (McCarthy et
al., 2011)




Regression models

The simple regression models adopted in this study estimate concentrations within a timestep as a
power function of either the catchment’s runoff or rainfall intensity. Derivations of this regression
models are used in practice in several stormwater models, such as XP-AQUALM (XP-
SOFTWARE, 1999), SWMM (USEPA, 2007) and P8-UCM (Palmstrom and Walker, 1990). Three

different equations were tested:

C(t) =a I(t)P Equation 3.18
Ct) =a I(t)%utea Equation 3.19
C(t) =a q(t)® Equation 3.20

where C is the pollutant concentration (mg/L) at time £ [ is the rainfall intensities (mm/hr). The
calibration parameters ate a and b. In which a relates the amount of pollutants on the surface of
the catchment and b relates to the kinetic energy of the rainfall in detaching pollutant from the
surface (Equation 3.18 and Equation 3.19) or to the shear stress generated by flow (Equation 3.20).
Because the build-up is not considered, these wash-off curves assume that the amount of available
matetial in the catchment before every event is constant. Ipoyteq is the routed rainfall intensities
(mm/hr). The intensities were translated and attenuated with the Muskingum Cunge routing
method described in the Section 3.5.1. q is the measured or modelled runoff (mm/hr), for which

K and 6 parameters have to be calibrated. Table 3.6 presents a summary of the model parameters.
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Table 3.6 Regression models - Summary of model parameters.

Parameter name

Description Unit

Comments

Water quality scale
coefficient (a)

Water quality shape
coefficient (b)

Translation and factor (K)

Attenuations factor (0)

Related to the sources of pollutants in the catchment -

Related to the kinetic energy of the rainfall in detaching
pollutant from the surface or to the shear stress generated by -
flow

Related to the translation of the pollutograph through the

min
channel reach

Related to the attenuation of the pollutograph through the
channel reach

Value of approximately 0.29 for sediments in stormwater.
(McCarthy et al., 2011)




As described in this section, the models were arranged to predict pollutant concentrations from
urban catchments. In the literature, however, the models have been often calibrated for pollutant
loads (e.g. Vaze and Chiew, 2003; Francey, 2010). Very little is available for concentrations, mainly

in separate sewer systems.

3.6 Chapter summary

This chapter focused on presenting the data and models used for this research. Five study
catchments, located in Melbourne Australia, were used to represent the different land-uses
(industrial/commercial and residential), catchment areas (from 10 to 100 ha) and levels of
development/imperviousness (total impervious fraction varying from 0.2 to 0.8). Data on rainfall,
runoff flows and concentrations of TSS and TN recorded from 2004 to 2007 were used for this

research.

Two rainfall runoff models were selected for the study. MUSIC was chosen mainly due to its
widespread application in Australia and KAREN was adopted due to its simpler design. Both
MUSIC and KAREN are used to estimate the runoff generated from urban areas continuously and
require a series of rainfall and the catchment area as the main inputs. The difference in the number
of calibration parameters and the processes that are simulated in each of the models exemplify the
difference in their complexity. MUSIC presents thirteen parameters to be calibrated, while
KAREN presents only four. MUSIC estimates flows from impervious and pervious areas
separately as a series of reservoirs, while KAREN predicts the runoff only from impervious areas
using a single reservoir model. The evaluation of such models will define their applicability to

different domains.

Two conceptual process-based build-up/wash-off models and three empirical regression models to
quantify stormwater pollutant concentrations were described. They were chosen for this study
because they are usually adopted in the most used stormwater modelling packages. The process-
based models account for both build-up and wash-off processes, while the regressions estimate
only wash-off. Evaluation of these models will help to guide their future improvement and indicate
the data required to support new model development and application. The described models will

be used through the thesis for a variety of tasks.
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4.1 Introduction

As the literature review demonstrated (see Sections 2.3 and 2.4), different methods have been
applied for parameter calibration, model sensitivity and uncertainty analysis in stormwater
management practice and related fields (e.g. environmental and hydrological modelling). Although,
some of these approaches have been used in assessment of urban drainage models, the application
and comparison among methods have not been systematically investigated. Therefore, the first aim
of this research was to identify suitable global uncertainty analysis method(s) to perform

parameter calibration, model sensitivity and uncertainty analysis in stormwater models.

The objectives were to address the following key research questions and hypotheses:

*  Given that all global uncertainty analysis methods have advantages and limitations, which
methods generate more comprehensive results with respect to model calibration and
predictive uncertainty (e.g. results from more formal mathematical based methods or more

information about parameter interaction)?

0 Different uncertainty methods lead to different results with respect to model
parameter sensitivity and predictive uncertainty because they rely on different
formulations (e.g. formal probabilistic or not) and assumptions (e.g. assumption
about the model errors structure, such as the assumption that the residuals are

independent and normally distributed).

*  What are the main requirements of different methods in terms of computational resources

and modeller skill/knowledge level?

0 There is a complex interaction between the complexity of the method used, the

computational time required and the knowledge/skill level of the modeller.

The aims, methods and results of this assessment have been published as two separate journal
papers. In order to address the knowledge gap that the application and comparison among
uncertainty methods have not been systematically investigated in the urban drainage field, an
international research project commenced in 2008 to address this gap. The main objective was to
compare different methods often used for uncertainty assessment of the parameters in urban water
related fields. The project was led by the candidate who coordinated work of research teams from
Australia, Italy, Austria, Denmark and Germany. The project went for two years and the results,
Comparison of different uncertainty techniques in urban stormmwater guantity and quality modelling, are now
published in Water Research. This paper is the body of text of Section 4.2. Subsequently, a
preliminary application of the uncertainty method (a Bayesian approach) for stormwater flow and
quality modelling is provided. This work, Analysis of parameter uncertainty of a flow and quality stormwater

model, was first presented at the 77% International Conference on Urban Drainage, held in Edinburgh,
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Scotland in 2008 and it was subsequently selected for publication in Water Science and Technology.

This paper was published in 2009 (cited 14 up-to-date) and it is included in Section 4.2.
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4.2 Comparison of different uncertainty techniques in urban stormwater

quantity and quality modelling
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its hypothesis on normality of residuals. It is concluded that modellers should select the

method which is most suitable for the system they are modelling (e.g. complexity of the
model’s structure including the number of parameters), their skill/’knowledge level, the

available information, and the purpose of their study.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The application of stormwater models as design, planning
and/or management tools has become common practice in
the urban drainage field. These models, as any other mathe-
matical models, represent only a fraction of reality leading to
uncertain results; in fact uncertainties are inherent in all
models and their total elimination is not possible (Beck, 1987;
Harremoés, 2003). Therefore, uncertainty analysis must be
performed for urban drainage models in order to quantify the
level of reliability of the model results and provide a robust
basis for their application in practice (e.g. to provide a level of
confidence for a model used for risk analysis).

As pointed out by Beven (2009), there are many sources of
uncertainty that interact non-linearly in the modelling
process. Not all uncertainty sources can be ‘quantified’, and
the fraction of uncertainty sources being ‘ignored’ might be
significant in environmental investigations (Rauch and
Harremoés, 1999). The following sources of uncertainties are
commonly listed in the environmental modelling literature
(e.g. Butts et al., 2004): (i) model parameters, (ii) input data, (iii)
calibration data, and (iv) model structure. The impact of cali-
bration methods, choice of objective functions, and calibra-
tion data availability are also recognised.

Many published studies investigated the impact of the
uncertainties on urban drainage model predictions (e.g. Kanso
et al., 2003; Lindblom et al., 2007; Willems, 2008; Kleidorfer
et al, 2009; Dotto et al,, 2010). For example, Freni and
Mannina (2010a) used the variance decomposition method
to understand the significance of different uncertainty sour-
ces in an integrated urban water quality model (composed of
a sewer system, wastewater treatment plant and a river).
According to this analysis, the uncertainty of the sewer water
quality model was one order of magnitude higher than the
uncertainty of the quantity model.

Assessing uncertainties in models is not wide spread in
practice and is usually an academic exercise; indeed, urban
drainage models are no exception. This is mainly because the
techniques required for this analysis are so numerous, highly
complex, poorly understood, and some are still highly
underdeveloped. The need of step-by-step manuals is also
recognised. Clear and comprehensive comparisons of these
techniques when applied to typical drainage models would
therefore be desirable. Some examples of such comparisons
are now available in literature. Recently, Freni et al. (2009)
compared the classical Bayesian Monte Carlo (i.e. Bayesian
inference approach) and the pseudo-Bayesian approaches (i.e.
Generalized Likelihood Uncertainty Estimation — GLUE)
employing eight different stormwater quality models. They
found that the methods performed similarly when GLUE is
based on the same assumptions as the Bayesian Monte Carlo
approach. However, GLUE is sensitive to the user-defined

threshold for accepting parameter sets, which might lead to
an under- or over-estimation of uncertainties.

The different approaches have also been compared in
related fields other than urban drainage; for example,
Makowski et al. (2002) compared GLUE and Markov Chain
Monte Carlo (MCMC) methods (in particular the Metropo-
lis—Hasting sampling approach) using a simplified crop model
with 22 parameters. Both methods presented similar results,
but the authors recommend the use of the Metropolis—Hast-
ing algorithm. This is because this method converges to the
true posterior distribution even if the model includes a large
number of parameters, while GLUE found this challenging
because it required a large number of simulation runs.
However, MCMC procedures also have their own limitations,
and a misspecification of the error structure (or likelihood
function) in the Bayesian approach can lead to an erroneous
quantification of the model predictive uncertainty (Beven
et al., 2008). Although these insights are valuable, it is diffi-
cult to relate the results between different comparison
studies, as they employ different models and different
datasets.

The objective of this paper is to provide a comprehensive
comparison of the most common methods used for assessing
urban drainage model parameter uncertainties. This
comparison highlights the advantages and disadvantages of
each method when used in urban drainage practice. Four
uncertainty techniques are compared:

[y

. The Generalized Likelihood Uncertainty Estimation (GLUE)
developed by Beven and Binley (1992);

2. The Shuffled Complex Evolution Metropolis algorithm
(SCEM-UA) by Vrugt et al. (2003a, b), applied in combination
with GLUE by Blasone et al. (2008);

3. A multialgorithm, genetically adaptive multi-objective
method (AMALGAM) by Vrugt and Robinson (2007); and,

4. The classical Bayesian approach based on a Markov Chain

Monte Carlo method and the Metropolis—Hastings sampler

(implemented in the software MICA by Doherty, 2003).

As these techniques are based on different philosophies
and hypotheses, an exact comparison is not possible. There-
fore, common criteria for the comparison have been estab-
lished, mainly with regards to practical applicability as the
number of simulations required, the 90% probability bands
and the likelihood measure. A simplified stormwater quantity
and quality model was employed for the comparison using an
Australian case study for which long-term high resolution
data was available. The key finding is that all methods
provided similar results on the rainfall/runoff model sensi-
tivity to its parameters, but the probability distributions of
model parameters and the prediction intervals were slightly
different for the water quality model. Methods generally
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differed in efficiency (i.e. required less iterations and conse-
quently less computing time).

2. Material and methods

2.1.  Uncertainty techniques
2.1.1.
GLUE
GLUE is based on Monte Carlo simulations, where the random
sampling of individual parameters from prior probability
distributions is used to determine a set of parameter values.
Parameter sets are compared with respect to their ability to
reproduce available observations by the means of a user-
defined likelihood measure. Specifically, sets with poor like-
lihood weights (e.g. lower than a selected threshold) are dis-
carded and are classified as “non-behavioural”. All other
parameter sets are retained, and their likelihood weights, re-
scaled to, so that their cumulative probability sum is equal
to 1. The uncertainty bands of model predictions are then
calculated as per Beven and Binley (1992).

The GLUE methodology is attractive because there is no
need for an assumption of the error distribution functions.
However, GLUE can be very computationally demanding. The
GLUE results can be affected by the definition of parameter
variation ranges. A small parameter range can lead to unre-
alistic uncertainty in the model outputs, while wider ranges
(by giving more significant information of the influence of
parameters) can, for example, increase the computational
cost of the analysis (Beven and Binley, 1992). However, the key
criticism of GLUE is the fact that it relies on some subjective
criteria that can impact the results (Freni et al., 2008, 2009; Li
et al,, 2010). For example, it employs a user-defined likeli-
hood measure that often is a subjective acceptance threshold
which has large impact on results. To overcome this problem,
other likelihood measures have been introduced in literature
(Freer et al,, 1996) and formal probability distributions may be
adopted (Romanowicz et al., 2000). However, it can be argued
that this transforms GLUE into a more formal Bayesian
method.

The Generalized Likelihood Uncertainty Estimation —

2.1.2.  The Shuffled Complex Evolution Metropolis

Algorithm — SCEM-UA

Optimization algorithms, such as MCMC methods, have been
applied to reduce the computational burden by exploring the
parameter space, identifying the region of higher likelihood
and increasing the parameters sampling in these regions. In
this context, the Shuffled Complex Evolution Metropolis
algorithm (SCEM-UA) was initially developed by Vrugt et al.
(2003a) in a Bayesian framework and it was subsequently
coupled with GLUE by Blasone et al. (2008). The general
procedure for the application of the SCEM-UA algorithm in
a pseudo-Bayesian framework can be subdivided in three
steps (see the step-by-step description in Vrugt et al., 2003b):

Step 1:Identification of the likelihood measure (e.g. objective
function and acceptance threshold) and the model parameter
space defined by prior distributions.

Step 2:Generation of a parameter set sample of dimension n
(with n smaller compared to the sample size used in tradi-
tional sampling) and application of the optimization algo-
rithm to identify the regions of the parameter space with
higher likelihood. The algorithm develops as follows.

(a) Subdivision of initial parameter sample into k
complexes.

(b) Evolution of each complex, which evolves indepen-
dently according to the Sequence Evolution Metropolis
(SEM) algorithm. This applies the Metropolis—Hastings
method (Metropolis et al., 1953; Hastings, 1970) by
accepting/rejecting candidate sets which are gener-
ated by jumping in wide regions of the parameter
space. This feature avoids the collapse of sequence on
local optima.

(c) Substitution of the worst member of the sequence,
focussing it in the region of higher likelihood.

(d) Shuffling of the complexes (after a defined number of
iterations) to avoid the collapse in local optima. The
algorithm starts again from point (b)

(e) Evolution until the convergence criterion (defined by
VR criterion of Gelman et al.,, 1995) is satisfied.

Step 3:Application of the GLUE analysis to the new parameter
set sample: rejection of the parameter sets below the accep-
tance threshold and estimation of the model uncertainty
bounds.

The SCEM-UA method can overcome some of the GLUE
limitations. For example, the initial range of parameter
samples can be wide without necessarily increasing compu-
tational requirements. However, the issues surrounding the
subjective acceptance criteria are still the same as in GLUE.

2.1.3.  Multi-objective calibration using AMALGAM

This approach is based on the further analyses of multi-
objective calibration results (Wohling et al., 2008). The param-
eter distributions (PDs) of the Pareto optimal solutions are
estimated within a multi-event calibration run. In comparison
to the other methods, each estimated parameter represents
one optimal solution for the used objective function.

The AMALGAM method is a multialgorithm, genetically
adaptive multi-objective method (Vrugt and Robinson, 2007;
Huisman et al,, 2010). It uses the four optimization algo-
rithms: (i) non-dominated sorted genetic algorithm-II (NSGA-
11, Deb et al.,, 2002), (ii) particle swarm optimization (PSO,
Kennedy et al.,, 2001), (iii) adaptive Metropolis search (AMS,
Haario et al., 2001), and (iv) differential evolution (DE, Storn
and Price, 1997). The four algorithms share information
through their common population, but methods with higher
reproduction success are favoured in the calibration process
(Huisman et al, 2010). AMALGAM uses the fast non-
dominated sorting algorithm (Deb et al., 2002) and crowding
distance for population ranking. The result of an AMALGAM
calibration is a set of Pareto optimal solutions of the used
objectives.

The AMALGAM algorithm is included in the software tool
KALIMOD (Uhl and Henrichs, 2010), which was constructed as
an interface between simulation models and optimization
algorithms. The general procedure used in this study can be
summarized as in the following:
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Step 1:Identification/Selection of relevant rainfall-runoff
events;

Step 2:Perform multi-event calibration with AMALGAM; and,
Step 3: Estimation of the Pareto optimal solutions.

As GLUE and SCEM-UA, this approach is sensitive to the
subjective acceptance criteria. With a smaller threshold,
larger uncertainty bands can be obtained. The AMALGAM
method is also sensitive to the selection of rainfall-runoff
events. The choice of different rainfall-runoff events with
varying characteristics concerning rainfall, intensity, peak
flow, and volume for multi-event calibration leads to a set of
Pareto optimal solutions with different optima and parameter
sets. Therefore, rainfall and runoff data have to be analysed
carefully (Schmitt et al., 2008).

2.1.4. Bayesian inference using MICA

The fundamentals go back to Bayes’ theorem (also often called
Bayes’ law by Bayes, 1763) for calculation of conditional
probabilities. In terms of modelling Bayes’ theorem can be
written as:

P(D|6)-P(6)

P(UID) ==, M

with P() as prior distribution of a set of model parameters , P(D)
as distribution of observations (calibration data) and P(D]) as
conditional probability of observing data D for a given
parameter set (i.e. the likelihood function). Hence, P([D) is the
probability distribution for the parameter set for given the
observed data D (often called posterior distribution). Further-
more, P(D) is the updated parameter probability after
imposing calibration constraints.

Using this formal learning strategy, the posterior distribu-
tion P(|D) can be updated by observing P(D|) to finally approach
the true posterior probability distribution of the parameters.
Forexample, Lindley (2006) suggests that probability is the only
way to deal with uncertainty in models. Therefore, the
Bayesian inference can be an efficient approach to deal with
uncertainties in urban drainage modelling as long as the
different components can be defined adequately (Beven, 2009).

In this study, the Bayesian inference was done using the
software MICA (Doherty, 2003). It undertakes a MCMC analysis
with the Metropolis—Hastings algorithm (Hastings, 1970) by
sampling mainly in areas of high likelihood (to be as effective
as possible), but also allowing some samples in areas of low
likelihood (to have a wide scan of the parameter space). First,
the model is run with initial parameter values sampled from
a prior distribution. The estimated values are compared with
the observed data, and the likelihood of such parameters is
calculated. Subsequently, the model is run with a new set of
parameters derived from proposal distributions and the like-
lihood of the new set of parameters is calculated. Bayes’
theorem is used to calculate the posterior distribution and
parameter sets are accepted or rejected (i.e. similar to the
behavioural or non-behavioural parameter sets for non-
Bayesian methods). The proposal distributions are updated
using the information from previous accepted parameter sets.
The acceptance of parameter sets is not influenced by a user-
defined threshold, but instead it is implicitly included in the
Metropolis—Hastings algorithm and the assumed likelihood

function. Usually, this process is repeated until the R crite-
rion of Gelman et al. (1995) is reached.

The main limitation of this specific MCMC procedure is that
the distribution of the model errors has to be known and in
MICA itis assumed to be normally distributed. Thisis a concern
for many uncertainty/sensitivity procedures as this assump-
tion is usually not satisfied (e.g. Feyen et al., 2007; Thyer et al.,
2007), and therefore, erroneous quantification of the model
predictive uncertainty is expected (Beven et al., 2008).

2.2. Stormwater model — SIMPLE KAREN

The stormwater model SIMPLE KAREN has been adopted to
perform the comparison of the different techniques. The
model was selected for its simple structure, as the comparison
focuses on the features of the uncertainty analysis techniques
rather than on the model behaviour. This software is divided
into two different modules: a rainfall/runoff module, and
a water quality module. SIMPLE KAREN is a simplified version
of the commercial software KAREN (Rauch and Kinzel, 2007),
which is commonly used in Austria to evaluate efficiency of
combined sewer systems. A brief description of the two
modules is provided leaving further details to literature
(Kleidorfer, 2010).

The rainfall/runoff module is a simple linear reservoir
model (Rauch and Kinzel, 2007). It requires the catchment area
and a rainfall time series as inputs to generate a series of flows
originating from impervious areas only. The pervious
components of the catchments are not considered. The model
has four calibration parameters (Table 1): the effective
impervious fraction, EIF (%); the time of concentration, TC
(min); initial loss, li (mm); and, evapotranspiration, ev (mm/d).

The water quality module is a simple concentration
regression model which is based on the most common
approach used in practice for decades (Francey et al., 2010)
and is widely used in several stormwater models, such as
SWMM5 (Rossman, 2008) and P8-UCM (Palmstrom and
Walker, 1990):

C,=W-R? 2

where: C, is the pollutant concentration at time t (mg/L); Rt is
measured flow/catchment area (mm/hour over the time-step);
and, W and b are calibration parameters (Table 1).

Table 1 — SIMPLE KAREN parameters.

Parameter name Unit Prior distribution
(min—max)

The rainfall runoff module

Effective impervious % 0-100
fraction (EIF)

Time of concentration (TC) min 1-83

Initial loss (li) mm 0-10

Evapotranspiration (ev) mm/day 0-15

The water quality module &

Water quality scale mgg“?b‘ 10-300

coefficient (W)
Water quality shape = 02
coefficient (b)
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For both rainfall/runoff and water quality modules
a simulation time-step of six minutes was applied. Although it
is known that this simple form of a stormwater quality model
is not able to sufficiently predict Total Suspended Solids (TSS)
concentrations (Dotto et al., 2010), it was chosen to test the
performance of the different uncertainty methodologies on
a poor performing model but characterized by limited
computational burden.

2.3.  Case study
The study used the comprehensive stormwater dataset
collected in Melbourne, Australia, at Richmond (Francey et al.,
2010). This urban catchment is drained by a separate storm-
water system and has a total area of 89.20 ha with a total
imperviousness of 74%. The dataset consists of two years of
continuous rainfall and flow measurements with a temporal
resolution of 1 min (the data was then aggregated in a 6 min
time-step for modelling). The rainfall totals for wet weather
events range from 1.2 to 40.8 mm, and the mean maximum
event runoff rate is 547 L/s. The data also includes 12 wet
weather events monitored for TSS. The water quality samples
were collected at the outlet of the catchments using a discrete
sampling methodology, ensuring that pollutographs are
monitored throughout each event. For more information on
the site and monitoring program see Francey et al. (2010).
The model was applied for calculations of flow rates and
TSS concentrations, both at 6 min intervals. Because the
models are explicitly independent of each other (i.e. water
quality does not rely on the outputs of the water quantity
module — see Eq. (2)), the uncertainty analyses were run
sequentially: first, the uncertainty in the parameters of the
water quantity module was estimated, then the same proce-
dure was followed for the quality module.

2.4.  The comparison of the uncertainty methods
The tested uncertainty analysis methods outlined above were
applied according to their original formulations. However, the
following was kept constant for all methods to ensure an
unbiased comparison: (i) likelihood measure and acceptance
threshold, (ii) range and prior distribution of parameters, and
(iii) criterion for the definition of the number of simulations.
The Nash and Sutcliffe (E) efficiency index (Nash and
Sutcliffe, 1970) was selected as the likelihood measure for all
tested methods. In GLUE, SCEM-UA, and AMALGAM parameter
sets with E values smaller than the selected threshold value
were discarded and the other parameter sets were accepted as
behavioural. As discussed previously, results of the uncertainty
analysis are sensitive to this threshold; there is a trade-off
between the level of acceptance of behavioural parameter
sets to achieve informative results (i.e. representative distri-
butions, uncertainty bands, etc) and the computational cost of
the analysis (see Freni et al,, 2008). The following threshold
values were selected considering this trade-off and the fact that
all methods will be compared using the same threshold values
(thereby reducing the impacts of this sensitivity):

o Water quantity module: measured and predicted flow rates
were compared and parameter sets that achieved E > 0.6
were behavioural; and,

e Water quality module: measured and predicted TSS
concentrations were compared and parameters sets that
achieved E > 0 were behavioural.

In the Bayesian approach (MICA), the evaluation of uncer-
tainty is based on appropriate formal likelihood measures
{here based on the normality of the residuals between
observed and modelled values), and E was only used for
comparison of accepted/behavioural simulations with the
other three methods.

A uniform prior distribution was considered for all
parameters and for all methods. This was because there was
insufficient prior information on parameters’ behaviour.
Indeed, as recently demonstrated by Freni and Mannina
{(2010b), a uniform prior distribution of model parameters is
preferred unless relevant prior parameter information is
available. The ranges of values are listed in Table 1.

The number of simulations was selected through a sepa-
rate process (similar to the one described in Bertrand-
Krajewski et al, 2002). For each method, the uncertainty
analysis was carried out by means of a variable number of
simulations starting from 500 and increasing with steps of
500. At each step, the cumulated parameter distributions were
compared to those obtained in the previous step. The number
of simulations adopted for each method was reached when
the differences between the two posterior distributions were
not appreciable according to Kolmogorov—Smirnov maximum
distance test with a significance level equal to 0.01. Conse-
quently, this means that both distributions come from the
same population and that the sample size is high enough to
represent this population.

The comparison of results between the different uncer-
tainty techniques was defined similarly to the criteria adopted
in previous studies (Yang et al., 2008; Li et al., 2010):

Performance of the model, assessed by the Nash and Sut-
cliffe efficiency criterion;

The best parameter estimate, their posterior distributions,
the estimated parameter uncertainty, and the correlation
coefficients between model parameters;

Model prediction uncertainty, or more precisely the derived
90% probability bands defined as the Average Relative
Interval Length ARIL (as proposed by Jin et al., 2010):

N o7i s o
leltupper.i — Limitiower,i

1
ARIL = — 3
N Kobsi ( )

i1

where, Limitypper,; and Limityower,; are respectively, the upper
and the lower boundary values of the 90% confidence interval;
N is the number of measured values; and Xobs, i is the
observed ith value.

Percentage of observations within the prediction bands (i.e.
coverage of observations by the probability bands). A
combination of a lower ARIL value and a larger percentage
of observations within the prediction bands would indicate
the better performance of a certain method/model.

Computational requirements, expressed as the number of
required model runs.
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3. Results and discussion

For each method, matrix plots were produced for the quantity
(Fig. 1) and the quality module (Fig. 2). Each plot provides the
parameters’ posterior distribution and information on the
correlations between model parameters. The figures also
show the scatter plots between the behavioural parameter
values and the Nash and Sutcliffe efficiency. Each dot repre-
sents one behavioural model run. The diagonal histograms
represent the density function of the modelling efficiency (in
the left upper corner of the figures) and the likelihood densi-
ties for all the parameters. The importance of the various
model parameters can be seen from these plots (Ratto et al,,
2001). Model sensitivity is identified by the clear peaks (for
the influential parameters) or flat shapes (for the non-
influential parameters) in the parameter PDs. Tables 2 and 3
report the mean, standard deviation, and correlation matrix
of the posterior distribution for the water quantity and water
quality module parameters, respectively.

The hydrograph and pollutograph for one selected event
(recorded on 23th of April 2004) were presented for all
methods in Fig. 3 for water quantity, and Fig. 4 for water
quality. This event was selected for being an example of
a large event observed in the studied catchment. The
frequency plots were also created to show the uncertainty
bands against the measured data for the whole time series in
Fig. 5 for water quantity and Fig. 6 for water quality.

@ 0.7

il
o

The efficiency of each method is presented in Table 4,
which includes information on the maximum Nash and Sut-
cliffe values, percentage of the measured data points that fall
within the prediction bands, the ARIL, and the number of
simulations needed to produce reliable results.

3.1.  Rainfall/runoff module

From Figs. 4 and 5 it is clear that the model is able to predict
flow rates. The maximum E values were around 0.8 for all
methods (Table 4). However, for flows higher than approxi-
mately 0.5 m%s, the model regularly under predicted, as
shown in Fig. 5 where these measured data points are above
the bisector line. For flows above 1.5 m*/s the measured flows
fall outside the 95% uncertainty bands. This is most likely due
to a change in the system behaviour that cannot be simulated
by the SIMPLE KAREN model as pervious catchment areas are
not represented (which is most likely to contribute to runoff
during large rainfall events).

Fig. 3 and Table 4 both show that all four methods provide
similar results in terms of producing prediction bands which
cover the observed data (ranging from 45% to 48%). Although
not the specific focus of this paper, this low percentage also
suggests that the modelling approach should be questioned
and that additional sources of uncertainties exist (e.g. model
structure, input and calibration data errors, etc.) which are not
covered in the analyses (Beven, 2009). The addition of the
residual term to these prediction bands to provide the total

@ 0.7
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Fig. 1 — Matrix plot of efficiency scatter plots and posterior histograms (efficiency density in the upper left comer,
parameters posterior likelihood densities in the other diagonal places) of water quantity module parameters; GLUE (top left),
SCEM-UA (top right), AMALGAM (bottom left) and MICA (bottom right).
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Fig. 2 — Matrix plot of efficiency scatter plots and posterior histograms (efficiency density in the upper left corner,
parameters posterior likelihood densities in the other diagonal places) of water quality module parameters; GLUE (top left),
SCEM-UA (top right), AMALGAM (bottom left) and MICA (bottom right).

error in the prediction may have changed these results (as Considering the average relative interval length,
described in Feyen et al., 2007). This was not conducted here AMALGAM presented the lowest ARIL (1.17) among the
since we are specifically interested in parameter uncertainties methods (Table 4), while still maintaining the highest
and comparing methods used to develop parameter distribu- percentage of observations within its prediction bands. GLUE
tions and associated prediction bands. presented the highest ARIL value (2.33), suggesting that GLUE

Table 2 — Mean, standard deviation (¢), Coefficient of Variation (CoV) and correlation matrix of the posterior distributions

for the flow module parameters.

Method Parameter Mean o CoV Correlation coefficient, R
EIF TC li ev
EIF (%) 35.08 7.86 22% 1
GLUE TC (min) 47.03 16.01 34% 0.15 1
Ii (mm) 2.47 1.83 74% 0.08 —0.15 1
ev (mm/d) 6.59 4.53 69% 0.08 —0.08 —0.14 1
EIF (%) 35.33 7.43 21% 1
SCEM-UA TC (min) 45.22 14.4 32% 0.30 1
Ii (mm) 1.99 1.45 73% 0.07 —0.17 1
ev (mm/d) 6.17 4.12 67% 0.16 —0.04 —0.26 1
EIF (%) 37.03 5.68 15% 1
AMALGAM TC (min) 37.22 7.80 21% —0.32 1
Ii (mm) 2.19 1.81 83% 0.12 —0.21 1
ev (mm/d) 6.72 4.54 68% 0.01 0.04 —0.44 1
EIF (%) 34.20 3.54 10% 1
MICA TC (min) 38.51 6.68 17% 0.12 1
Ii (mm) 1.48 0.91 61% 0.10 —0.04 1
ev (mm/d) 4.73 2.96 63% 0.23 —-0.13 —0.36 1
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Table 3 — Mean, standard deviation (s), coefficient of

variation (CoV) and correlation matrix of the posterior

distributions for the water quality module parameters.

Method  Parameter Mean o CoV  Correlation
coefficient, R
b "%
GLUE b 0.302 041 136% 1
w 67.87 2112 31% —0.70 1
SCEM-UA b 0.281 0.108 38% 1
W 71.5 16.9 24% —0.82 1
AMALGAM b 0.32 0.149 47% 1
w 64.92 212 33% —0.86 1
MICA b 0.33 024 73% 1
w 67.33 30.60 45% —0.84 1

usually had higher uncertainty bands with respect to the
other methods (yet its coverage percentage was not signifi-
cantly different).

For all four methods, the effective impervious fraction of
the catchment (EIF) was found to be the most important
calibration parameter, followed by the time of concentration
(TC) and the initial loss (li) (Fig. 1 and Table 2). The model was
insensitive to the evapotranspiration (ev) parameter with all
the tested methods. This is because ev only controls the
drainage of the initial loss volume during dry weather periods
and therefore it does not have a significant influence when the
initial loss is only a small fraction of the total event rainfall
volume or when the dry weather periods are long (i.e. it does
not matter if the initial loss is drained within couple of hours
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or days). The reduced sensitivity is also compounded by the
least squares objective function used here, which focuses on
these larger events (see Dotto et al., 2011 for further discus-
sion). The calibrated parameter sets did not differ much. For
instance, the EIF parameter did not vary more than 5%
between methods (Table 2). However, it appears that GLUE and
SCEM-UA tend to flatten the confidence region response
surface so that sharp peaks and valleys are not as clear for EIF
as they are for the other two methods (Fig. 1). This is also
reflected in Table 2, where the standard deviations (and coef-
ficient of variations) for the EIF and TC parameter PDs were
generally larger for GLUE and SCEM-UA. This finding is
consistent with previous studies (e.g. Beven et al., 2008 and
Yang et al., 2008) which related this behaviour to the equifin-
ality philosophy that is behind GLUE. However, it is also
possible that these findings are dependent on the threshold
selection (that influences GLUE and SCEM-UA results; Freni
et al.,, 2008), which can influence the shape of the parameter
PDs. In the case of MICA, the data used to create the parameter
PDs generally had the highestE values (usually >0.7, compared
with, for example, >0.6 for GLUE; Fig. 1), meaning that PDs
from MICA are constructed only with the best parameter sets
which subsequently produces more pronounced peaks in the
PDs and therefore smaller ARIL values (yet the coverage of
observations was similar to that of the other methods).

All four methods found weak (in fact often non-existent)
correlation between hydrological parameters (Table 2).
However, GLUE showed consistently the lowest level of
correlations, possibly a function of the number of data points
used in the comparisons. These low correlations found from
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the GLUE results confirm the fact that this method tends to
flatten the response surface. Such results are in line with
previous studies (among others, Beven et al., 2008; Yang et al.,
2008). The other three methods had a tendency to show a weak
negative correlationbetween ev and li, both of which were non-
sensitive parameters (R being between —0.26 and —0.44). Other
correlations existed, but they were also very weak and never in
the same direction across the four methods. As pointed out by
Yang et al. (2008), these correlations are likely related to the
behavioural parameter sets with significant weight that are
quite uniformly dispersed over the parameter space.

3.2.  Water quality module

All the techniques provided similar optimised model effi-
ciency results, each having a maximum recorded E value of
around 0.04 (Table 4). Furthermore, Fig. 6 shows that, for all
four methods, the model over-predicts low measured TSS
values and heavily under-predicts values for measured TSS
above 130 mg/L. The independence of method type indicates
that this low efficiency is a model or data error (not a method
error) and this has repeatedly been reported in the literature
(e.g. Kanso et al., 2003; Dotto et al., 2010). The model structure
is simple and is not able to simulate some characteristics
which have been recognised to influence TSS behaviour in
stormwater (e.g. the first flush effect — Deletic, 1998; vari-
ability in concentrations between wet weather events; etc.).

These model limitations are reflected by the low number of
observations covered by the prediction bands (Table 4), which
ranged from 23% to 29% for the four methods. MICA and
AMALGAM provided the narrowest bands (ARIL of 1.57 and
2.21, respectively) and the lowest percentage of observations
within these bands, while GLUE and SCEM-UA had the highest
ARILs and the highest percent coverage of observations.

The four procedures gave different suggestions about
sensitivity to the two parameters W and b (Fig. 2). As
compared with the water quantity results, the standard
deviations and coefficient of variations of W and b (showing
the peakiness of the PDs) are now lowest for SCEM-UA and
AMALGAM (Table 3). This could be related to the number of
runs needed to create the plots (see number of simulations in
Table 4). It is possible that for an ill-posed model, MICA cannot
focus around the best parameter sets, thereby limiting the
update of the proposal distributions which may imply the
process becomes similar to that of GLUE (hence the reasonably
similar results seen in Table 3 for GLUE and MICA).

The matrix plots (Fig. 2) also show how some methods are
limited in the way they explore the parameter space. For
example, it appears that GLUE did not accept any parameter
values below a certain threshold for b (e.g. b < 0.2) while other
methods had relatively high levels of acceptance below the
same threshold. This suggests that GLUE may not have
explored this area of the parameter space adequately — an
interesting finding considering GLUE used a uniform distri-
bution to randomly create parameter sets between b =0 and 2.
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All four methods found very high levels of cross-
correlation between the two water quality model parameters
(Tables 3). These results clearly indicate that the model is ‘ill-
posed’ and needs to be reformulated in order to include some
relevant processes not accurately simulated (e.g. first flush,
sewer sediment erosion and transport, etc.). It may be argued
that the model is so ill-posed that all the analyses on the
parameter sensitivity are flawed and that the assessment of
a single ill-posed model would not have been sufficient to
compare uncertainty techniques. However, it was a specific
objective of this paper to use one model which adequately
represents the data (i.e. water quantity module) and one
which cannot accurately represent the measured data (i.e.
water quality module) so that comparisons between the four
methods can be made on both ends of the spectrum.

3.3. Computational requirements

The application of GLUE requires the lowest modelling skill, as
it can be simplified in three main steps: (1) generation of
parameter set samples, (2) simulation of the model and esti-
mation of the likelihood for each set, and (3) identification of
behavioural parameter sets. SCEM-UA increases the
complexity of GLUE by using an MCMC optimization algo-
rithm. This is also used by MICA, which requires additional
assumptions regarding the structure of the model error. This

is not required by AMALGAM, which, although requires a prior
analysis of the input data (identification of relevant rainfall
events), this process does not add significant computational
requirements.

The number of runs required from each method is listed in
Table 4; for the water quantity model GLUE and MICA required
the highest number of simulations (3500), while the lowest
was needed by SCEM-UA (<2350). For the ill-posed water
quality model, the same pattern was observed except that
GLUE was now a clear outlier and required 30,000 model runs.
The methods employing advanced optimization algorithms
(SCEM-UA and AMALGAM) require smaller samples to identify
water quality parameters than water quantity. This is
explained by the higher sensitivity of the two parameters W
and b, resulting in a steep response surface that facilitates the
evolution of the search algorithms. SCEM-UA is the most
computationally efficient method, with a saving in computa-
tional time of >6% for the quantity module and >36% for the
quality module when compared to the second most efficient
methods.

3.4.  User expertise requirements

A modeller’s objective and expertise often vary dramatically;
some are only interested in the outputs of a model with a very
superficial understanding of the model’s methods/processes,
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while others are experts who fully understand the modelling
methods and use the model to, for example, examine inter-
actions of complex processes in the environment. No matter
their expertise, at least some knowledge of uncertainty anal-
ysis, and a basic understanding of computer programming, is
required to interrogate and analyse the output data from
these methods and to properly interpret these findings. The
following further explains the requirements for implementa-
tion of each method.

GLUE is the easiest method to implement, but it can be very
computationally demanding and it might be limited in

application because of the subjective acceptance threshold
(which often requires expert judgement to define). MICA is the
most difficult method to implement as it requires funda-
mental understanding of Bayesian methods. Although itis not
limited by the acceptance threshold, it does require the user to
have an understanding of the resultant error distribution.
GLUE and MICA are both available in free software packages,
both with detailed user manuals allowing even a novice
programmer to use these tools (see Wagener et al., 2004 and
Doherty, 2003 for MICA). Similarly to GLUE, SCEM-UA is easy
to implement, but similarly to MICA it does require

Table 4 — The efficiency of the four different methods.

GLUE SCEM-UA AMALGAM MICA
Flow module Max E 0.815 0.79 0.805 0.8
Observations within prediction band (%) 47.5 47 48% 45
ARIL 233 1.42 1.17% 1.3
Number of simulations 3500 <2350 3000 3500
TSS module Max E 0.0436 0.0436 0.0435 0.043
Observations within prediction bound (%) 28.8 27.23 22.8 23.18
ARIL 291 2.60 2.21 1.567
Number of simulations 30000 <1600 2500 4500

a Only values with >0.01 m®/s (Measured data) considered.
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Table 5 — Comparison of advantages and disadvantages of methods.

GLUE SCEM-UA AMALGAM MICA
Flow module Coverage of observations + + +* 4
Computational requirements + ++ + F
TSS Module Coverage of observations =+ + +* +
Computational requirements = 4= 4 =
Ability to identify ill-posed models (correlated + + + +
parameters, poor efficiency and low coverage)
Ability to identify sensitive parameters + 4+ +* 4
Availability Software package Code for use in Software package Software package
MATLAB and
OCTAVE
Required programming skills Min Min Max Max
Limitations Subjectivity of Subjectivity of Subjectivity of Knowledge about
acceptance acceptance acceptance error distribution
threshold threshold threshold

+ better/equal performance; — worse performance.

background understanding of Bayesian methods (albeit to
a lesser extent). Furthermore, SCEM-UA is only available as
MATLAB and Octave code, thereby requiring that the user be
sufficlent in programming. Although AMALGAM requires
more skills to use than SCEM-UA (e.g. background on the
different optimisation algorithms used for the multialgorithm
approach), it is available in a free software package.

3.5. Advantages and disadvantages of the tested
methods

Table 5 summarizes the performance of the four methods.
The results presented in the previous sections demonstrate
that the four investigated methods provide similar results in
terms of model performances, with similar levels of
maximum efficiency for both the water quantity and water
quality modules. Differences between the methods were
observed for the parameter distributions, although all
methods were capable of distinguishing sensitive from non-
sensitive parameters. GLUE and SCEM-UA produced the
widest/flattest parameter distributions for the rainfall runoff
module, which although subsequently produced the largest
ARILs did not increase the percentage of observations within
the prediction bands. For the water quality module, there was
not a direct relationship between the width/peakiness of the
parameter distributions (Fig. 2, Table 3) and the ARIL values
(this might be related to the ill-posed nature of this model).
However, the methods which produced the highest ARIL for
the water quality module (GLUE and SCEM-UA) covered
a higher proportion of observations in the prediction bands.

All methods also provided useful information about
parameter correlation and were able to determine that the
water quality module is ill-posed. There were some differ-
ences between the methods when investigating parameter
cross-correlations, but all methods showed similar results for
the most significant correlation (i.e. b and W in the water
quality model).

The most significant differences between the four methods
were computational effort, required skills/method complexity
and reliance on prior expert knowledge. SCEM-UA and
AMALGAM were the most computationally efficient methods
for both the water quantity and water quality modules.

However, AMALGAM provided a lower coverage for the
observations of the ill-posed model (water quality). Both
SCEM-UA and AMALGAM have the limitation of the subjective
acceptance threshold, making it only suitable to those who
have sufficient prior expert knowledge in this area.

One of the key problems that GLUE, SCEM-UA and
AMALGAM face is in the subjectivity of the acceptance criteria
(e.g. there was no objectivity in selecting the threshold value
of E > 0.6 for rainfall/runoff model). The methods are very
sensitive to different threshold values. MICA has an objective
way of selecting ‘good’ parameter sets (more user indepen-
dent), but again the problem arising due to the normality
assumption of the residuals presents another challenge.

GLUE and MICA had the highest computational require-
ments for both the water quantity and quality modules. GLUE
provided better coverage for the ill-posed model (water
quality) but it did require over six times the number of
simulations.

4. Conclusions

A comparison among four different uncertainty techniques
was carried out by employing simplified urban stormwater
quantity and quality models to an Australian case study. For
the well-posed rainfall-runoff model, all the tested tech-
niques provided similar results. The methods generated
similar posterior parameter distributions and predictions’
uncertainty. The influential parameters were likewise identi-
fied and valuable information on parameter interactions was
derived. Search algorithms, such as AMALGAM and SCEM-UA,
were the most efficient methods in terms of computational
requirements.

All the methods highlighted the limitations of the ill-posed
water quality model (low maximum efficiency, low coverage
of observations, and high parameter interaction). Although
the Bayesian approach (MICA), and especially GLUE, required
a higher number of simulations, it was difficult to explicitly
compare computational requirements because of the model’s
ill-posed nature.

The identification of the most appropriate method for
uncertainty estimation is a trade-off between the need for
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a strong theory-based description of uncertainty (but limited
by the requirements on prior knowledge — Bayesian
approach), simplicity (and subjectivity — GLUE) and compu-
tational efficiency (also affected by subjectivity — AMALGAM
and SCEM-UA). It is also suggested that different evaluation
scenarios should be analysed (i.e. different catchments,
models, data, etc).

Based on these conclusions, modellers should select the
method which is most suitable for the system they are
modelling (e.g. complexity of the model’s structure including
the number of parameters), their skill/knowledge level, the
available information, and the purpose of their study. If
a modeller understands the subjectivity of the acceptance
threshold and is applying a simple model (like the ones pre-
sented here), SCEM-UA might be preferred because it: is most
computationally efficient, achieves similar coverage of
observations as other methods, is able to determine sensitive
parameters, can identify ill-posed model structures and is not
complex or difficult to implement. One limitation of SCEM-UA
(and of its recent evolution, i.e. Vrugt et al.,, 2009) is that it is
available only in MATLAB or Octave code, but its theoretical
framework is provided in literature (Vrugt et al., 2003a), and
Vrugt et al. (2003b) provided a step-by-step description of how
this method can be coded in any programming language.
However, it is stressed that the applicability of each method is
also highly case-specific. For example, the Bayesian approach
may be more suitable for highly parameterised models, while
the other methods would demand a greater number of model
runs.
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4.3 Preliminary application of uncertainty method for stormwater flow and
quality modelling

4.3.1 Errata

It should be noted that Figure 6 in Section 4.3.2 is not completely accurate. It presents an incorrect

positive value for one of the Nash and Sutcliffe coefficients (E) in the vertical y axis of the

validation figure (on the right) when 6 months were used for model calibration. The correct value

is -1.48, instead of the erroneous +1.48 as presented in the figure. The correct figure is presented

below.
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Figure 4.1 Figure 6. The effect of different length of data period on calibration and validation.
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Analysis of parameter uncertainty of a flow and quality

stormwater model
C. B. S. Dotto, A. Deletic and T. D. Fletcher

ABSTRACT

Uncertainty is intrinsic to all monitoring programs and all models. It cannot realistically be
eliminated, but it is necessary to understand the sources of uncertainty, and their consequences
on models and decisions. The aim of this paper is to evaluate uncertainty in a flow and water
quality stormwater model, due to the model parameters and the availability of data for calibration
and validation of the flow model. The MUSIC model, widely used in Australian stormwater
practice, has been investigated. Frequentist and Bayesian methods were used for calibration and
sensitivity analysis, respectively. It was found that out of 13 calibration parameters of the
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rainfall/runoff model, only two matter (the model results were not sensitive to the other 11).
This suggests that the model can be simplified without losing its accuracy. The evaluation of the
water quality models proved to be much more difficult. For the specific catchment and model
tested, we argue that for rainfall/runoff, 6 months of data for calibration and 6 months of data

for validation are required to produce reliable predictions. Further work is needed to make similar

recommendations for modelling water quality.

Key words \ calibration, MUSIC, parameter sensitivity, rainfall/runoff, stormwater model,

validation, water quality

INTRODUCTION

The poor quality and altered flow regime of urban storm-
water are major threats to aquatic ecosystems (U.S.
Environmental Protection Agency 2000; Commonwealth
of Australia 2002). The cumulative effect of increased
frequency, volume, and rate of stormwater runoff, together
with elevated pollution concentrations and loads result in
the accelerated degradation of receiving water bodies.
Restoring pre-development stormwater flow and quality is
a driving goal of stormwater management practices in urban
areas. Incorrect estimates of stormwater flows and pollution
concentrations can easily lead to an inadequate design of
stormwater management systems (Vaze & Chiew 2003).
Thus, robust modelling of stormwater discharges and their
associated pollutants is critical. Runoff generation and flow
routing models are now well developed and widely adopted.
However, less well

stormwater quality models are

doi: 10.2166/wst.2009.434

developed. While, successful event based pollutant loads
modelling have been published in the literature (e.g.
Rodriguez et al. accepted). However, continuous modelling,
in which one most probable set of parameters is found, still
remains a challenge.

Uncertainty is intrinsic to all monitoring programs and
all models. It cannot realistically be eliminated, but attempts
can be made to minimise it. For effective management of
uncertainties it is necessary to understand their sources and
consequences. Considerable attention has been given to the
development of global calibration procedures that estimate a
best set of parameters, whereas less attention has been given
to the assessment of the significance of the optimal set of
parameters, and to the quantification of models’ uncertainty.

Improving models and their effectiveness requires the
use of robust methodologies for model calibration and

104



718 C. B. S. Dotto et al. | Analysis of parameter uncertainty of a flow and quality stormwater model

Water Science & Technology—wsT | 60.3 | 2009

validation. Such methods should be able to provide not only
an assessment of the uncertainties in the model’s parameter
values, but also an evaluation of the confidence level of the
model’s predictions (Kanso et al. 2005). High levels of
parameter uncertainty can result from a poor model
structure, including a high level of parameter correlation,
and insensitivity on the part of certain parameters.

The main approaches used for calibration and quanti-
fication of the uncertainty in the estimated parameter values
are the frequentist and Bayesian (Ferguson 1973) methods.
They are fully explained in Gallagher & Doherty (2007). The
Metropolis algorithm (Metropolis et al. 1953), a general
Monte Carlo Markov Chain (MCMC) sampling method,
has been widely used for model calibration and sensitivity
analysis (Kuczera & Parent 1998; Kanso et al. 2003). For
example, Kanso et al. (2003) carried out a successful
application of the Metropolis algorithm for parameter
sensitivity analyses of lumped stormwater quality models.
Contrary to frequentist approaches, the Metropolis algor-
ithm identifies not only a best parameter set, but a
probability distribution of parameters according to
measured data; it estimates the true posterior probability
distribution of parameters, which may differ significantly
from the multinormal distributions used in classical par-
ameter uncertainty estimation methods.

Selection of an appropriate objective function is a
fundamental consideration when estimating model par-
ameters. Previous studies (Diskin & Simon 1977; Servat &
Dezetter 1991) demonstrated that objectives functions
based on the sum of the squared deviations (e.g. sum of
square errors, Nash and Sutcliffe coefficient (Nash &
Sutcliffe 1970) produce the best results for the majority of
applications.

Within this broad issue of model uncertainty there is a
specific problem of the relationship between model uncer-
tainty and the data availability for calibration and vali-
dation. While some work has been now published on
calibration parameter uncertainties in stormwater models
(Beven & Binley 1992; Gaume ef al. 1998; Kanso et al. 2005)
very little is known about the impacts of calibration and
validation data sets on model performance.

The aim of this work is to increase our understanding of
the uncertainties of the parameters in models that are
currently being used for assessment of stormwater quantity

and quality. We focus on the most commonly used
stormwater model in Australia, the Model for Urban
Stormwater Improvement Conceptualization, MUSIC,
(CRCCH 2005). Although the model has been widely used
by the industry and researchers, no work has been done so
far on its uncertainties. This paper presents results of the
uncertainty analysis in MUSIC due to the model parameters
for the rainfall/runoff and pollution generation modules,
and to the availability of data for calibration and validation
for the rainfall/runoff module. In order to achieve the
desired parameter evaluation two different approaches for

model calibration were tested.

METHODS
The data

Urban stormwater quality and quantity data of two urban
catchments, with different sizes and land use, were used.
These catchments are located in the eastern suburbs of
Melbourne, Australia. The data set contains around 200
events for which a range of pollutants was monitored.
Table 1 summarizes the catchment characteristics and
Figure 1 illustrates the sites and their respective rain-
fall and flow gauges. Complete information about the
catchments characteristics is available in (Francey et al.
in press).

For both catchments, flows below certain depth could
not be measured; therefore a flow threshold was set, in
which the flows below the value were regarded as non
reliable. Data were thoroughly checked and only reliable
data were included.

The model

MUSIC was developed for Australian conditions (CRCCH
2005). It predicts stormwater flows from urban catchments
with separate stormwater and sanitary sewers, along with
concentrations of key pollutants (Total Suspended Solids
(TSS), Total Phosphorus (TP) and Total Nitrogen (TN)), as
well as the performance of specific stormwater treatment
measures. The rainfall-runoff algorithm is based on the
SimHyd model developed by Chiew & McMahon (1997).
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Table 1 \ Summary of site details (Francey et al., in press)

Characteristics

Madcden Grove, Richmond Ruffeys Wetland, Doncaster

Catchment size (ha)

Total fraction impervious

Land use

Catchment average slope (%)

Distance to rainfall gauge (from catchment centroid)
Mean annual rainfall

Peak flow (min/max)

Event duration (min/max)

Flow threshold

Parameters sampled

89.2 105.7

0.74 0.51

High-density residential Medium-density residential
35 5.0

600 m 700m

650 mm per year 650 mm per year
65/2,850L/s 140/4,600 L/s

2/25 hours 0.5/36 hours

3L/s 30L/s

TSS, TP, TN TSS

modified to enable
disaggregation of daily runoff into sub-daily temporal

The original daily model was

patterns (Figure 2). Flow from impervious and pervious
areas are modelled separately, with impervious area runoff
being primarily as a function of the proportion of
catchment imperviousness, with an initial loss term. Runoff
from the pervious areas will only occur for large or intense
storm events, when the pervious soil storage is saturated,
and depends on soil properties, provided as a series of
calibration parameters in the model. The model has 13
calibration parameters, listed in Figure 2.

Whilst MUSIC currently simulates pollution gener-
ation using a stochastic approach with dry weather
and wet weather event mean (and standard deviation)

concentrations, uncertainty analysis on such a model is
not really feasible, given its stochastic nature. However,
there is also a trial module, Deterministic Pollution Loads
Generation (DPLG), that estimates the loads within a
timestep as a power function of the rainfall intensity
(Sartor & Boyd 1972):

L =al’

where L, is the pollutant load at time ¢ (Kg/timestep); I, is
the rainfall intensity (average, in mm/hr, over the timestep,
t); a and b are parameters to be calibrated. Once the load
has been calculated, the DPLG back-calculates concen-
tration. Uncertainty analysis was undertaken on this

Figure 1 | Aerial photos of the catchments with the rainfall and flow gauges.
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Figure 2 | MUSIC rainfall/runoff parameters and their default values for Melbourne between brackets (after CRCCH 2005)

Deterministic Pollution Loads Generation module, along
with the rainfall-runoff module.

Calibration and sensitivity analysis

Parameters in urban drainage models can be highly
correlated (commonly the case for water quality models,
e.g. Dotto et al. (2009)), therefore it essential to perform a
global sensitivity of parameters where all parameters are
varied simultaneously. This study included two approaches
for model calibration and sensitivity analysis. The frequen-
tist and Bayesian approaches were adopted, applying two
different tools, as follows.

Bayesian

The search of the probability density functions of the
parameters was undertaken with the software MICA
(Doherty 2003a,b). MICA undertakes a simplified MCMC
analysis and uses a particularly flexible version of the
Metropolis-Hastings algorithm (Hastings 1970). A uniform
prior distribution was assumed for all parameters. The
lower and upper limits of these distributions are established
according to values reported in the literature and/or any
previous knowledge about the parameters. Subsequently
repeated model (rainfall/runoff and DPLG) runs using the
obtained parameter samples were accomplished. In this
manner, several Markov Chains were run in parallel, with
10,000 iterations each. The first 1,000 iterations were
removed, assuming to be the “burn in” period (Berliner1994).

Frequentist

The rainfall/runoff model automatic calibration and initial
sensitivity analysis was undertaken using the optimization
tool PEST (Doherty 2004). The problem of the objective
function surface in parameter space being pitted with
local minima was overcome using one of the PEST
applications (PD_MS2, (Doherty 2003a,b). In this appli-
cation, calibration runs are started from different points in
the parameter space, which are selected in a manner that
minimizes the chance of finding the same local minimum
twice. PEST results include optimized parameter values,
their 95% percent confidence limits, the sum of squared
weighted residuals, the parameter correlation coefficient
matrix and the simulated values with the calibrated
parameters. PEST was initially applied by allowing all
13 parameters of rainfall/runoff model to float within
given ranges. However this process failed and the
calibration was repeated, once the most sensitive par-
ameters were determined from the Bayesian method
(see above); PEST in conjunction of PD_MS2 was run
by floating only the sensitive parameters (EIA and K,
Figure 1), and fixing the less important ones. This way
both approaches could be assessed and compared in
terms of efficiency and runtime.

The misfit between observed and modelled values was
assessed with the Nash and Sutcliffe coefficient (E) for
both approaches. While both MICA and PEST were used
to calibrate and evaluate

rainfall/runoff model, for

both catchments, only MICA was used to evaluate the
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two parameters of DPLG model for the Richmond site,
due to problems discussed below.

Impact of calibration and validation data sets

The last step was to assess the impact of data used in
calibration and validation of the runoff model for only
Richmond catchment. This means that the ‘success’ of
calibration using PEST (and procedure explained above)
and validation were assessed, for different lengths of
calibration and validation data. Different tests are available
for splitting the data for calibration and validation
(Xu 1999). The split-sample test consists of dividing the
data set in two and use half for calibration and half for
validation. Some other tests (e.g. differential split-sample
test) divide the data set according to rainfall rates or some
other variable in order to demonstrate the ability of the
model to predict general conditions. Richmond has two
years of continuous rainfall and flow data available: with
an average of 65mm per month, the months between
June and November characterized the wet period, while the
remaining months had and average of 45mm per month
and were selected as the dry period In this study, the
calibration was done using records of 1, 2, 3, ... 24 months
long. At the same time, validation was performed with
the remaining 23, 22, 21,
A differential split-sample test was naturally generated

1 month long records.

once in several occasions the model was calibrated with
one extreme condition (wet or dry months) and validated
against the opposite extreme condition or even against
periods in which both wet and dry months were included.
The calibration objective function (i.e. the Nash—Sutcliffe
Coefficient) was plotted against the calibration/validation
length of record.

RESULTS AND DISCUSSION
Calibration and sensitivity analysis
Rainfall/runoff modelling

Table 2 summarizes the results from Richmond and Ruffeys
calibration with the two approaches. The values at the
global minimum and the approximations to the 95%

Table 2 \ Summary of PEST and MICA runs for flow madelling

Frequentist (PEST) Bayesian (MICA)

value 95% CI n o

Madden Grove, Richmond

EIA 0.32 0.318-0.326 0.30 0.036
K 20.51 20.30-20.72 20.64 2.68
E 0.80 0.77
Ruffeys wetland, Doncaster

EIA 0.246 0.237-0.255 0.26 0.005
Thres 0.285 0.122-0.449 0.51 0.057
S1Max 117.70 117.17-118.23 106.55 2.344
Slnit 37.48 —2209.20-2284.16"  31.80 3.985
Fc 100.0 —451.387-651.387"  50.05 10.434
Coeff 100.0 89.4173-0.583 183.36 17.490
Sq 1.083 0.920-1.246 1.04 0.016
Rfac 0.028 -0.155-0.211" 0.84 0.055
Bfac 1.0 —62.512-64.512" 0.69 0.045
K 13.80 13.703-13.8973 8.41 2514
E 0.40 0.50

“Out of the upper and/or lower bounds.

confidence intervals (CI) resulting from PEST are pre-
sented, along with the mean (u) values and the standard
deviation (o) obtained with MICA runs.

Figure 3 presents the histograms for selected rainfall/
runoff model parameters (see Figure 2 for their definition).
Such histograms were generated according to the para-
meters mean values generated along with the MICA runs.
The model is very sensitive to effective impervious area,
EIA, for both catchments. For Richmond, the model was
also sensitive to K (the Muskingum Cunge translation
factor), but insensitive to the other 11 parameters. By
contrast, the rainfall/runoff model for Ruffeys catchment
appeared to be very sensitive also to the parameters related
to the pervious area runoff (e.g. S1Max). This was expected
because of the high proportion of pervious areas. It should
be noted that some of the parameter distributions obtained
with the MICA were non-normal (e.g. K), contrary to the
hypothesis of the classical parameter uncertainty estimation
methods (see Kanso et al. 2003 for further details).

Using MICA, the rainfall/runoff model calibrates well
for Richmond, with the best E values being 0.77 (Table 2).
To illustrate the model accuracy, the 5 and 95% prediction
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Madden Grove, Richmond Ruffeys Wetland, Doncaster
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Figure 3 | Sample histograms for selected madel parameters based on MICA runs with
a Nash-Sutcliffe Coefficient (E) higher than 0.5.
limits due to the uncertainty in rainfall/runoff parameters
EIA and K, are presented in Figure 4, for a subset of the
simulation period. For the continuous simulation during
2005, the E between the predicted and observed values was
0.76, 0.81 and 0.69 for the mean, lower and upper 95%
confidence limits, respectively. For Ruffeys, E was only 0.50
using MICA (Table 2). It is hypothesised that this rather low
value may have surged from some periods of null-rainfall
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Figure 4 | The 5 and 95% prediction limits due to the uncertainty in rainfall/runoff
parameters EIA and K for a period of rainfall for continuous simulation at
Richmond.

and flows in the data set, as well as the complexity of the
processes in this catchment with high levels of impervious
areas, and potential extraneous wastewater inputs.

Calibration of the model’s most important parameters
(EIA and K) using PEST resulted in an E of 0.80 for
Richmond (even when the other 11 parameters were fixed).
The same procedure for Ruffeys Wetland catchment
resulted in E values of 0.40 (Table 2).

The model calibrated well for Richmond, and results
from both approaches were similar. However for Ruffeys,
the model did not calibrate very well, with MICA being
slightly more efficient. This is not surprising, since in the
PEST calibration exercise, pervious surface parameters
were kept constant, while they were floated in MICA. The
high correlation between some of the parameters further
complicated the calibration process. For example, the
infiltration capacity coefficient (Coeffy and its exponent
(sq) are highly correlated (R? = 0.93). Most importantly, it
was found that MICA with MCMC methods can be applied
successfully even to models with a large number of
parameters. This approach has the advantage that it shows
the probability structure of parameter space, while PEST
only provides information on a single set of values. On the
other hand, when dealing with a small number of non-
correlated parameters, PEST can achieve the optimal set
with far fewer model runs than MICA, minimizing the
computational time. In the specific case of MUSIC’s
rainfall/runoff model (a rather complex model with 13
parameters), it is suggested that the Bayesian approach is
the most appropriate for calibration and sensitivity analysis.

Water quality modelling

Results are only presented for the DPLG’s application to
Richmond (Table 3 and Figure 5).

Contrary to results for the rainfall/runoff model, the
DPLG module did not calibrate well using the MICA
approach. The DPLG for TSS seemed to be very sensitive to
both a and b, and the global minimum is clearly defined by

Table 3 | Summary of results obtained with MICA runs for water quality modelling

Madden Grove, Richmond TSS TP N

E 0.24 -17.76 -29
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Figure 5 \ Histograms for DPLG parameters for TSS and TN, based on the MICA runs.

the peaks in the histograms (Figure 5). In this case, the non-
normal behaviour of parameters may be possible explained
by the presence of multiple local minimum in the
histograms. However, the E obtained with these parameters
mean values was low (Table 3). Despite the long time
consumed to run the chains with several iterations, MICA
runs for TP and TN did not produce satisfactory results. It is
possible that the limits assumed to the uniform prior
distributions were too wide. Parameters a and b are highly
correlated and different combination of these can lead to
the same results (although they are not always realistic
values); this is believed to be the principal problem. Further
work is being carried to better investigate the global
minimum for DPLG calibration and parameters’ assess-
ment, however at this stage it may be speculated that the
DPLG is an ‘ill-posed model’.

Further work on the choice of different objective
functions approaches, in which the analysis of the pre-
dictive uncertainty and its consistency with the observed
data is considered, would be able to improve the model
calibration and performance (Thyer et al. 2009).

Impact of calibration and validation data sets

Calibration and validation with different length data sets
were carried out for Richmond (Figure 6). The efficiency of
calibration is highly related to the length of the calibration
data period. The E value varied from —1.88 to 0.94 when
calibration was undertaken with one month data. This
variation decreases considerably when six months are used
for calibration; E ranged from 0.51 to 0.84 with an average
of 0.73. It is possible to obtain reasonable values of E by
calibrating with a larger number of months, although the
improvement over calibration conducted with 6 months of
data is not great (calibration with the whole dataset, 24
months resulted in an E of 0.80, Table 2). However, it is not
just the length of data that is important; the nature of data
within the chosen subset is also critical. For example,
calibration resulted in better values of E when the wet
months were included (eg. June, July and August) due to the
larger number of rainfall events with higher volumes.
Figure 6(b) shows that validation results are dependent
on the size of calibration dataset. For instance, when
2 months were used to calibrate, validation was undertaken
with 1 up to 22 months. Results showed that although
reasonable values of E may be achieved in some cases, the
majority of cases produced low E values, with an average of
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Figure 6 | The effect of different length of data period on calibration and validation
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only 0.18. E values for validation are on average 0.42, when
6 months data sets were used for calibration and between
1 and 19 months for validation. It is clearly not advisable
to use a single month to validate the model, given the
variations in storm events from month to month.

We conclude that for this catchment, MUSIC rain-
fall/runoff model, and Melbourne climate, 6 months of data
is needed for calibration and a further 6 months of data for
validation. Further work is needed to identify the data
lengths required for the DPLG water quality module.

CONCLUSIONS

This study investigated uncertainty in a flow and water
quality stormwater model due to the model parameters and
the availability of data for calibration and validation of the
flow model. Frequentist and Bayesian methods were tested
for calibration and sensitivity analysis for the rainfall/runoff
model used in MUSIC. It was clear that this model, with its
13 calibration parameters, is not sensitive to its pervious
area parameters when applied to urbanised catchments.
Therefore, it was suggested that only Effective Impervious
Area (EIA) and routing parameter K need to be calibrated,
with others fixed as defaults. The same does not apply when
the level of urbanization and impervious area fraction is
lower; in this case some of the pervious area parameters
(e.g. S1Max and Fc) also become very important. However,
even including them into the calibration process may not
result in good model performance.

To better understand the performance of stormwater
models and the sensitivity of these models to their
parameters, a comparison between models with different
levels of complexities will be carried out. In which, the same
datasets and calibration/sensitivity analysis approach will
be used.

Considering the model and the catchments dataset
limitations, the rainfall/runoff model was satisfactory
calibrated to both catchments when the Bayesian approach
was applied, while the frequentist approach experienced
some problems. Therefore it is suggested the Bayesian
approach is more appropriate for calibration and sensitivity
analysis of complex stormwater flow models. However,

even this approach was not able to deliver satisfactory

calibration of the stormwater quality DPLG model
Although the model is a simple regression, its parameters
are highly correlated and the initial condition boundaries
need to be further explored. It is not clear whether the
model structure (perhaps over-simplified) or the MICA
method is failing. Further analyses are underway to answer
this question.

For the rainfall-runoff model applied to the Richmond
case-study catchment, we argue that 6 months of data for
each of calibration and validation are required. In a more
general context it is suggested to divide the data in order to
obtain a balance between calibration and validation
efficiency. Further work is necessary to evaluate the impact
of data on calibration and validation in the case of water
quality models.
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4.4 Conclusions
This chapter presented two studies which demonstrated the application and comparison of
different methods for the calibration, sensitivity and uncertainty analysis of stormwater quantity

and quality models.

Firstly, four different sensitivity analysis techniques (GLUE, SCEM-UA, AMALGAM and MICA)
were compared in terms of model performance, predictive uncertainty results and computational
time among other criteria. They were used to evaluate a simple conceptual model rainfall runoff
model with four calibration parameters and a simple regression pollution generation approach (two
calibration parameters). The four different uncertainty analysis methods generated siwilar postetior
parameter distributions and predictive uncertainty. The influential parameters were likewise
identified and valuable information on parameter interactions was derived. The four methods also
highlighted the limitations of the ‘ill-posed” water quality model (low maximum efficiency, low
coverage of observations, and high parameter interaction), highlighting the importance of
understanding structural uncertainties. Search algorithms, such as AMALGAM and SCEM-

UA, were the most efficient methods in terms of computational requirements.

It can be concluded that the identification of the most appropriate method for uncertainty
estimation is a trade-off between the need for a strong theory-based description of uncertainty (but
limited by the requirements on prior knowledge - Bayesian approach, MICA), simplicity (but
limited by the subjectivity - GLUE) and computational efficiency (also affected by subjectivity -
AMALGAM and SCEM-UA). It is also suggested that different evaluation scenarios should be
analysed (i.e. different catchments, models, data, etc). In addition, modellers should select the
method which is most suitable for the system they are modelling (e.g. complexity of the model’s
structure including the number of parameters), their skill/knowledge level, the available

information, and the purpose of their study.

Subsequently, the application of MICA to a rainfall runoff model (with 13 parameters) and a water
quality model verified the potential of the method to assess urban drainage models in urban
catchments of different sizes and land-use types (one highly urbanised and flat and the other
mostly pervious and very steep). MICA was able to calibrate rainfall runoff the models, while
identifying their sensitivity to each of their parameters and producing reasonable predictive
uncertainty bands. It can be concluded that the method can be recommended to explore parameter

calibration, model sensitivity and predictive uncertainties in stormwater models.
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5.1 Introduction

As the literature review (see Section 2.2) demonstrated, a number of conceptual models have been
used to predict stormwater discharges from urban environments. While the rainfall runoff models
are well established, water quality models are far less developed. The performance of different
urban stormwater model structures (mainly in sub-daily timesteps) has not been sufficiently
investigated. In addition, the assessment of the models’ structures and their associated predictive
uncertainty are yet to be fully explored. Therefore, the main aim of this research was to explore
parameter calibration, model sensitivity and the resulting predictive uncertainties in

models with difterent levels of complexity by applying the methods to the same case-study.

This chapter focuses on addressing the following key research questions and hypotheses:

*  What are the key calibration parameters that govern the urban rainfall runoff and water

quality models, and do they depend on the model structure?

0 A well-posed and well-calibrated model (which has influential and identifiable
parameters, see Carrera and Neuman, 1986 for extended definitions) will have a
higher model efficiency. Providing inadequate calibration for a well-posed model

may neglect important processes represented by the model; and,

0 a well-posed and well-calibrated model will be sensitive to all calibration

parameters.

* Do the physical parameters used in stormwater models require calibration (or can they be

reliably determined via specific in situ measurements)?

0 While some parameters are purely conceptual (non-physical, Kuczera et al., 2000),
some parameters are intrinsically related to the physical factors, thus they should

be measured whenever possible (e.g. soil property related parameters).

* Can we use model parameter sensitivity and its associated predictive uncertainties to

understand the appropriateness of the model structure for the given application?

0 Results from a sound model sensitivity analysis will inform if the model is we// or
‘qll-posed’, as the identifiability of parameters, the confidence in the model results

and the existence of model structure and conceptual errors will be determined.

* What is the model predictive uncertainty originated only from parameter uncertainty
(without taking into account other sources of uncertainties such as measurement errors in
input and calibration data), and how does this uncertainty compare to the total

uncertainties in the predicted results?

0 The assessment of the uncertainty originating from model parameters allows a

comprehensive analysis of model structure and parameter interaction.
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Nevertheless, other sources of uncertainties (e.g. input measured data, model
formulation and assumptions and selected objective function) should be

investigated because they impact on the total uncertainties in the modelled results.

The work has been published in three separate journal papers. The first paper presents results from
calibration and sensitivity analysis of MUSIC and a simple regression water quality model, both
presented in Chapter 3. This paper was presented at the 6% International Conference on Water Sensitive
Urban Design and Hydropolis held in Perth, Australia, in 2009, and was subsequently selected for
publication in the Awstralian Journal of Water Resonrces. The peer reviewed version, Calibration and
sensitivity analysis of stormwater models, published in 2011 is included in Section 5.2. The second paper
was initially also a conference paper. It was presented at 8” International Conference on Urban Drainage
Modelling jointly with the 27 International Conference on Rainwater Harvesting and Management held in
Tokyo, Japan, in 2010. The work explored interactions between parameter sensitivity and model
structure uncertainties in three water quality models. It was recommended for publication in Water
Science and Technology and after revision and updates, the paper, Stormmwater quality models: performance
and sensitivity analysis, was published in this journal in 2010. This paper forms the body of text of
Section 5.3. The third paper, Performance and sensitivity analysis of stormmwater models using a Bayesian
approach and long-term high resolution data, was published in Environmental Modelling and Software in 2011
as included in Section 5.4. This comprehensive paper compared parameter sensitivity of the
selected rainfall runoff models (more complex MUSIC and simple KAREN) and water quality
models (build-up/wash-off and simple regressions) and also explores the predictive uncertainty

associated with the rainfall runoff models.
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technical paper

5.2 Parameter sensitivity analysis of stormwater models

85

Calibration and sensitivity analysis of urban
drainage models: MUSIC rainfall/runoff module
and a simple stormwater quality model’

CBS Dotto', A Deletic, DT McCarthy and TD Fletcher
Centre for Water Sensitive Cities, Department of Civil Engineering and eWater CRC,
Monash University, Clayton, Victoria

ABSTRACT:  Model calibration and sensitivity analysis of stormwater models are required to
assess model performance; it is very unlikely that non-calibrated models will lead to reasonable
results. The aim of this paper is fo present results of the calibration and sensitivity analysis of the
key parameters used in flow modelling by MUSIC and parameters of a simple stormwater quality
model. The assessment of the models is undertaken using a Monte Carlo Markoo Chain approach.
We describe the models” performance, provide information on their sensitivity to paramelers and also
discuss the correlation between these parameters. This work will help practitioners to understand
importance of the MUSIC parameters that they usually use without calibration. The information
reported in the results will also help to guide future development of stormwater quality models and

the data needed tfo support it.

1 INTRODUCTION

Restoring pre-development stormwater flow and
quality is a goal of stormwater management practices
in urban areas. In order to provide reasonable
estimates of stormwater flows and pollution
concentrations, robust modelling of stormwater
discharges and their associated pollutants is critical.

In Australia, the Model for Urban Stormwater
Improvement Conceptualisation (MUSIC) (eWater
CRC, 2009) is the most widely used water quality
stormwater model (eg. Elliott & Trowsdale, 2007;
Mitchell et al, 2008). Allowing the assessment of
pollutant generation and performance of stormwater
treatment measures, it is extensively used for the
design of urban development proposals and the
evaluation of their impact on the environment. As
a continuous catchment model, MUSIC generates
the runoff from impervious and pervious surfaces
and simulates simplified channel/pipe flow. While
MUSIC currently simulates pollution generation
using a stochastic approach with dry weather and
wet weather event mean (and standard deviation)
concentrations, there is also a trial module that

* Reviewed and revised version of a paper presented at the

6™ International Water Sensitive Urban Design Conference
(WSUD2009), Perth, Western Australia, May 2009.

Corresponding author Cintia Dotto can be contacted at

-+

estimates the loads within a time-step as a power
function of the catchment’s runoff (as described
in Sartor & Boyd, 1972). However, uncertainties in
MUSIC modelling are not yet well understood, as is
the case for almost all stormwater models used in
practice (both in Australia and worldwide).

One of the key sources of uncertainties in modelling
is caused by model parameters (eg. Lindenschmidt,
2006; Gallagher & Doherty, 2007). Understanding
sensitivity of models to their parameters helps to
understand how inadequately defined parameters
impact upon modelled results. There are a number
of tools that could be used to assess parameter
sensitivity. For example, the Metropolis algorithm
(Metropolis et al, 1953), a general Monte Carlo
Markov Chain (MCMC) sampling method, has been
widely used for calibration and sensitivity analysis
of general hydrological models (eg. Kuczera &
Parent, 1998; Kanso et al, 2003). The robustness of the
Bayesian approach compared with other methods is
apparent from several studies (eg. Makowski et al,
2002; Gallagher & Doherty, 2007; Blasone et al, 2008).

The aim of this paper is to present results of the
sensitivity analysis of the key parameters used in
flow modelling by MUSIC and parameters of a
simple stormwater quality model. This work will
help practitioners to understand importance of the
parameters that they usually use without much
calibration. The information will also help to guide

@© Institution of Engineers Australin, 2011
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future development of stormwater models and the
data needed to support it.

2 METHODS
2.1 Data

Urban stormwater quality and quantity data from
urban catchments, with different sizes and land
uses, were used. These catchments are located in
the eastern suburbs of Melbourne, Australia. Table
1 shows a summary of the characteristics of the
catchments and some descriptive statistics of the
measured data (Francey et al, 2010). Most of the sites
were monitored from January 2004 to December 2005.
All catchments are serviced by separate stormwater
and wastewater systems. Narre Warren is the only
site that contains septic systems (tanks).

Rainfall data was monitored every minute using
0.2 mm tipping bucket rain gauges located as close

as possible to the catchments’ centroid. The mean
annual rainfall in these catchments ranges from 580 to
over 720 mm/year. Continuous flow data (recorded
at the 1 minute interval) were measured at each
catchment and around 300 wet weather events were
monitored for a range of pollutants, including Total
Suspended Solids (TSS) and Total Nitrogen (TN)
(except for Ruffeys Lake, Doncaster (RD) catchment,
where only TSS was monitored). The water quality
samples were collected at the outlet of the catchments
using a discrete sampling methodology.

2.2  Models
2.2.1 Rainfall/runoff modelling

The rainfall/runoff model implemented in MUSIC
(eWater CRC, 2009), which is based on the SimHyd
model developed by Chiew & McMahon (1997), was
assessed in this study. In MUSIC, the original daily
model was modified to enable disaggregation of

Table 1: Summary of sites and measured data details (Francey et al, 2010).
Site Gilby Rd Richmond | Ruffeys Lake, |Shepherds Narre
(GR) (RICH) Doncaster (RD) | Bush (SB) | Warren (NW)

. : High density Medlgm Medlgm Rural

Primary land use Commercial - . density density - .

residential . | . | residential
residential residential

Area (ha) 28.2 89.1 105.6 38 10.5

Total impervious fraction

(TTF) 0.8 0.74 0.51 0.45 0.2

Catchment average slope (%) 1 3.5 5 4

Time of concentration (min) 23 14 14 16

Dlstance from catch centroid 100 600 700 550 250

to rain gauge (m)

Mean annual rainfall 723 50 650 580 700

(mm /year)

Median maximum event

rainfall intensity (mm/h) 10 7 6 10

Range of event total rainfall |, , 34 ¢ 1.2-40.8 1.6-95.8 0.621.0 0.4-110

(mm)

Mean maximum runoff rate 408 547 73 214 m

(L/s)

Range of event maximum 75-2241 67-3867 164-3069 29-1200 14-90

flow rates (L/s)

Number of events — TSS 49 54 19 41

Maximum TSS concentration 867 1600 1422 1545 9398

(mg/L)

Mean of TSS event mean

concentration (EMC) (mg/L) 716 1251 770 9438 919

Number of events — TN 47 - 17 18

Maximum TN concentration 9 3 15 19

(mg/L)

Mean of TN EMCs (mg/L) 1.17 2.29 - 1.74 3.51

Australian Journal of Water Resources Vol 15 No 1
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daily runoff into sub-daily temporal patterns. Flow
from impervious and pervious areas are modelled
separately, with impervious area runoff being
primarily a function of the proportion of catchment
imperviousness, with an initial loss term. Runoff from
the pervious areas will only occur during large or
intense storm events, when the pervious soil storage
is saturated. Therefore, pervious area runoff depends
on soil properties, provided as a series of calibration
parameters in themodel. The model has 13 calibration
parameters, which are presented in figure 1 according
to their relationship to the flow processes, along with
their default values for Melbourne.

2.2.2 Water quality modelling

The simple regression model adopted in this study
estimates concentrations within a time-step as a
power function of the routed runoff:

C,=aR}

where C, is the pollutant concentration at time
t (mg/L); R, is the routed runoff (average, in
mm/h, over the 6-minute time-step, {); and a and
b are parameters to be calibrated. Although this
approach was proven as unsuitable (Kanso et
al, 2004), derivations of it have been adopted in
several stormwater models, such as XP-AQUALM
(XP-Software, 1999), SWMMS5 (Rossman, 2008) and
P8-UCM (Palmstrom & Walker, 1990). Therefore,
a detailed investigation of this model, in terms of
processes and parameters, provides key information
for the development of more suitable models.

2.3  Calibration and sensitivity analysis

Calibration and sensitivity analysis were undertaken
with the software MICA (Doherty, 2003). MICA
quantifies a parameter’s uncertainty by assuming a
prior and a proposal probability distributions and
subsequently updating this proposal distribution on
the parameter’s samples into a posterior distribution

(PD). PDs of parameters indicate the most probable
value to generate the best model performance, as well
as how the model results depend on this parameter.
A PD with a flat shape shows the insensitivity of
the model to the certain parameter; therefore for a
number of parameter values, the model achieves
similar accuracy. In contrast, if the PD presents a
well-defined peak, it indicates that the model is
very sensitive to the parameter. MICA undertakes a
simplified MCMC analysis and uses a particularly
flexible version of the Metropolis-Hastings algorithm
(Hastings, 1970). A uniform prior distribution was
assumed for all parameters.

24  Evaluation of the model parameters

The calibrated values (using MICA) for the five
studied catchments (table 1) were compared with
values previously reported in literature. MUSIC
parameters have been reported in a number of
studies: the catchment impervious area is suggested
according to thessite’s land usein a Melbourne Water’s
(2004) MUSIC modelling guidelines, while values
for the pervious and baseflow related parameters
(based on the catchment’s top and subsoil conditions)
were suggested by Macleod (2008). Therefore, the
comparison focused on effective impervious fraction
(EIF), soil storage capacity (SMax), field capacity (fc),
infiltration capacity coefficient and exponent (coeff
and sq), daily recharge rate (rfac), daily baseflow
rate (bfac) and daily deep seepage rate (dseep). In
addition, a comparison and evaluation of MUSIC
default values for Melbourne was attempted.

3 RESULTS
3.1  Calibration and sensitivity analysis
3.1.1  Rainfall/runoff modelling

The overall efficiency of the rainfall/runoff model
assessed in this study is represented by the Nash and
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Figure 1:
(after CRCCH, 2005).

MUSIC rainfall /runoff parameters and their default values for Melbourne between brackets
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Sutcliffe coefficient (E) (see Nash & Sutcliffe, 1970, for
definition) in table 2. E, stands for the best E obtained
with the best set of parameters; £ indicates the
mean E derived from all the accepted parameter
sets, which were the sampled values within certain
likelihood to generate the best model’s outputs. The
average efficiency coefficient was 0.61, the best one
was 0.80 for RICH. For the four other catchments,
MUSIC calibrations produced E, ,from 0.49 (NW) to
0.62 (RD) (table 1). It is hypothesised that the lower
values may be due to some gaps in the datasets,
as well as the complexity of the processes in these
catchments with different levels of impervious areas,
and potential cross-connections with sewer system.
MUSIC performance should still be investigated in
the case of a dataset with rainfall events that actually

produce significant pervious area flows, since this was
not evidentin any of the studied catchments’ datasets.
The poor performance for the most impervious
catchment (GR) was unexpected, since the model
was designed for urban conditions. Measurement
errorsin theinputand calibration data, rainfall spatial
distribution and some of the catchment’s intrinsic
characteristics, may be the cause of the poor fit.

The EIF and the Muskingum Cunge translation factor
(K) were found to be very important to MUSIC’s
rainfall runoff model for all the different catchments.
The “best fitting values” are clearly defined by the
peaks in the histograms presented in figures 2(a) and
2(g), respectively.

EIF optimum values ranged from 0.11 (NW) to 0.45
(GR) for the five studied catchments. It is evident
that the model is very sensitive to EIF and also that

Table 2: Rainfall/ runoff models efficiency. some other parameters are related to the EIF values;
MUSIC therefore specification of the EIF requires particular
Catchment TIE atten.tion by the mo@eller. Itis highly .recomme.nded
et e that its value be calibrated. If there is no available
] data for model calibration, the use of satellite
%lll{)y Rd, Mt. Waverley 0.80 0.54 0.51 images to determine the TIF and a brief study of the
(GR) drainage plan (to determine which impervious areas
Madden Grove, 0.74 081 0.77 are directly connected to the drainage network) are
Richmond (RICH) required to give insights on the EIF value. K is the
Ruffeys Lake, 0.51 0.62 0.57 other very significant parameter, it reflects the travel
Doncaster (RD) ) ) ) time of the flood wave throughout the drainage
Shepherds Bush, Glen system. All catchments differ in_ their intrinsic
045 | 057 0.44 properties towards flows translation through the
Waverley (SB) . . °
- catchment (eg. EIF and time of concentration) and
Kilgerron Crt, Narre 0.20 0.49 0.46 the model is very sensitive to it. K optimum values
Warren Sth (NW) ranged from values around 5 (SB) to 24 min (GR).
o Sl - | p s
2 omow ‘ . [____I L———-
5 o0 r‘f A i __‘7 ‘ [-—J '_-—
o P 02t 200 ar & v 2 v ?
(a) () () (d)
o T et e ) e
R ey L 4t ! <0 | |

[
|

1 Ihe &

-

R i

© ® ® 0

Figure 2:

Sample histograms for selected model parameters based on MICA runs — (a) effective

impervious fraction, EIF; (b) soil storage capacity, SMax; (c) field capacity, fc; (d) daily
recharge rate, rfac; (e) groundwater initial storage, gw; (f) daily deep seepage rate, dseep;
(g)translation factor, K; and (h) attenuation factor, 6.
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MUSIC appeared to be sensitive also to the parameters
related to the pervious area runoff (eg. SMax) and to
the Muskingum Cunge attenuation factor for some
other catchments. It should also be noted that some
of the parameter distributions obtained with the
MICA were notnormal, contrary to the hypothesis of
classical parameter uncertainty estimation methods.
Moreover, not all of the parameters can be fitted to
standard distributions.

According to figure 2(b), the SMax optimum values
increased as the catchments’ imperviousness
decreased. It is apparent that the fc may be fixed in
any valued between 10 and 40 mm, or even set to its
default value (20 mm) for the two most urbanised
catchments (GR and RICH). The same parameter
did not show a standard behaviour for the remaining
catchments. The model was sensitive to fc for RD and
NW, butnot for SB (figure 2(c)). From this sensitivity
study, itis recommended that fc should be calibrated
for catchments with EIF lower than 0.3. Similar
patterns and recommendations are valid for the rfac,
bfac and dseep.

It was verified that certain parameters presented
a quite flat distribution, as in the case of the PDs
obtained for the groundwater initial depth (gw),
which are presented in figure 2(e); it is clear that any
value between 10 and 30 may be assumed without
compromising the results. MUSIC presented the
same pattern for two more parameters. The model
was also insensitive to the initial storage level in the
pervious area storage (SIni) and to the infiltration
capacity exponent (sq) for all catchments. These
three parameters may be safely used in any value
between their lower and upper limits adopted for the
prior uniform distribution, or simply fixed to their
default values when the model is applied to urban
catchments with different levels of urbanisation
(figure 1). It is suggested that the results found in
this study can be used for modelling catchments

with similar land use and hydrological behaviour. It
is advised however, that MUSIC should be calibrated
against local flow whenever data is available.

In summary, it was clear that the rainfall-runoff model
MUSIC was not very sensitive to its pervious area
parameters when applied to urbanised catchments.
However, if the impervious area fraction was lower
than 30%, the pervious area parameters (eg. soil
storage and fc) became important. Such findings
are not surprising, as runoff in urban catchments
is driven mainly by impervious area flow and
pervious runoff and/or baseflow were often minor
or even non-existent in the studied catchments. In
this context, the need of a model with such number
of parameters in highly urbanised environments
might be questioned. Dotto et al (2011) investigated
this issue by comparing MUSIC to a single linear
reservoir model, KAREN (Rauch & Kinzel, 2007)
and found that the simple model can perform as well
as MUSIC in terms of long time series simulation.
However, peaks of high volume events are better
captured by MUSIC due to its ability of modelling
pervious area runoff.

3.1.2  Water quality modelling

The efficiency coefficients obtained for the power
function model calibration were low (table 3). Despite
the long time consumed to run the model along
MICA, simulations did not produce satisfactory
results for TSS and TN.

According to figure 4, for TSS, the optimum values
for a ranged from 42 (GR) to 98 (NW), and b varied
from 0.01 (RD and NW) to 0.69 (SB). For TN, the
optimum values for a were between 1.3 (NW) and
2.86 (GR), and branged from 0.05 (SB) to 0.125 (NW).

The high correlation between parameters further
complicated the calibration process. For example, R*
between g and b ranged 0.43 (NW) and 0.91 (GR) for

GR RICH ) RD
. R2=0.91 R=0.89 R?=0.58
o 05] a2 05 %’“@g 050
"R
0 0 . 0 -
0 100 150 0 50 100 150 0 50 100 150
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1 1
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Figure 3:

Simple regression model correlation between parameters for TSS.
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Table 3: Simple regression model efficiency.
C,=aR}
TSS N
Catchment
Ebcsf menn best eatt

Gilby Rd, Mt.
Waverley (GR) 0.03 0.01 |-0.001 | -0.035
Madden Grove,
Richmond 0.07 0.06 | -0.04 | -0.11
(RICH)
Ruffeys Lake,
Doncaster (RD) —0.06 | -0.06 - -
Shepherds
Bush, Glen -0.03 | -0.04 | -0.01 | -0.11
Waverley (SB)
Kilgerron Crt,
Narre Warren -0.01 | -0.02 | -0.09 | -0.41
Sth (NW)

TSS. The same high correlations were observed for
TN. It means that different combination of # and b
can lead to the same results. Examples of correlation
graphs (figure 3) clearly illustrate the “ill-posed”
nature of this model.

However, the model calibration failed, the obtained
values suggested some interesting correlations. For
example, a, b and E are correlated with the EIF with
correlation coefficient (R?) of 0.96, 0.31 and 0.58,
respectively, for TN data. While 2 and E increased
with EIF, b decreased. Same pattern was not observed
for TSS (figure 4). In terms of water quality modelling
approach, it is suggested that the power function
model does not present any advantage than using
mean concentration values and, that in fact, the use
of mean values might represent an improvement.

3.2  Evaluation of the MUSIC
flow model parameters

Melbourne Water (2004) suggests that the EIF should
be calibrated whenever possible. In practice this is

not the case and thus, values for the TIF according
to the catchments’ land use are presented in their
report. [tis usually the case that EIF is usually lower
than the TIF and, therefore, it is advised that the use
of the TIF will lead to an overestimation of the more
frequent flows. According to the land use criteria,
the TIF suggested values for the five catchments
would ranged from 0.2 (NW) to 0.9 (GR) (table 4).
The estimated values for TIF presented in table 2
ranged from 0.2 (NW) to 0.9 (GR), suggesting that
the recommended values in the guidelines are often
a little larger than the estimated one (expect for the
most pervious catchment, NW). As expected, the
EIF calibrated values presented in the histograms
in figure 2 are significantly lower than the ones
presented in table 4.

Regarding the pervious area-related parameters,
the values suggested in the literature are generally
slightly different from the calibrated ones, however,
they are in the same range and most of them are
within the 95% confidence interval (table 4). From
the results obtained in this study, it is suggested that
most parameters are really “calibration parameters”
and some of them are related to the catchment’s EIF
(level of urbanisation). Further work is recommended
for catchments where significant pervious flow is
more apparent and also detailed soil profile studies
are available.

The use of Melbourne’s default values for the
pervious area related parameters may be suitable
(or at least not matter greatly) in the case of highly
urbanised catchments (eg. GR and RICH). However,
it is recommended that the values for some of these
parameters be revised. For example, Melbourne’s
MUSIC default value for fcis 20 mm. The calibration
conducted in this study suggested values ranging
from 34 to 52 mm, and the reported literature values
for fc in the respective soil conditions ranged from
69 to 79 mm. Similar applies for SMax: default
value is 30 mm, literature values according to soil
properties should be in a range between 97 and
175 mm, while the calibrated values are from 89
to 161 mm.
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Figure 4:  Histograms for the water quality model parameters based on MICA runs —

(2) TSS and (b) TN.
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Table 4: Parameters values suggested in literature and calibrated ones with their respective 95%
confidence interval (literature values are from Melbourne Water (2004), CRCCH (2005) and
Macleod (2008)). Values in bold indicate parameters outside of the 95% confidence level.
GR RICH
P Literature Calibrated values Literature Calibrated values
o value mean 95% CI value mean 95% CI
EIF 0.94 0.45 0.33 0.57 0.80* 0.30 0.24 0.38
S1Max 175 115.10 65.75 194 .36 97 89.37 45.77 | 119.98
Fe 74 49.00 10.00 99.00 79 34.60 | 1145 | 7455
Coeff 360 152.69 100.00 197.73 250 160.44 | 105.67 | 198.01
Sq 0.50 1.04 0.91 1.19 1.30 1.04 0.90 1.19
Rfac 1.00 0.63 0.11 0.99 0.60 0.51 0.06 0.98
Bfac 1.00 0.62 0.10 1.00 0.45 0.47 0.02 0.98
Dseep 0.00 0.24 0.05 0.49 0.00 0.28 0.07 0.49
RD SB
P Literature Calibrated values Literature Calibrated values
ar value mean 95% CI value mean 95% CI
EIF 0.60° 0.25 0.21 0.29 0.60° 0.21 0.08 0.33
S1Max 97 149.06 102.22 197.89 139 157.10 | 100.88 | 197.44
Fc 79 35.77 11.00 77.00 69 51.96 10.00 | 100.00
Coeff 250 144.21 100.00 200.00 360 149.68 | 100.00 | 197.94
Sq 1.30 1.06 091 1.20 0.50 1.05 0.90 1.20
Rfac 0.60 0.57 0.20 0.97 1.00 0.56 0.06 0.98
Bfac 0.45 0.72 0.35 0.99 0.50 0.55 0.07 0.97
Dseep 0.00 0.19 0.05 0.45 0.00 0.26 0.05 0.50
NW
Literature Calibrated values Melbourne default .
Par value mean 95% CI values Units
EIF 0.20* 0.11 0.06 0.10 -
S1Max 98 160.83 115.19 198.75 30 mm
Fc 70 43.46 2.00 74.00 20 mm
Coeff 250 156.62 116.23 197.36 200 -
Sq 1.30 1.05 091 1.19 1.00 -
Rfac 0.60 0.58 0.26 0.96 0.25 /100%
Bfac 0.45 0.44 0.15 0.85 0.05 /100%
Dseep 0.00 0.37 0.18 0.50 0.00 /100%
“values in the literature are suggested for the TIF, there is no guidance on values for the EIF.

4 CONCLUSION

A Bayesian method was tested for calibration
and sensitivity analysis for rainfall/runoff and
water quality models. MUSIC rainfall/runoff
module (with 13 parameters) was used in terms of
catchment runoff, while a simple regression model
(two parameters) was tested in terms of catchment
pollution. A comprehensive stormwater dataset,
containing data on stormwater flows and pollution
concentrations from five urban catchments located
in Melbourne, Australia, was used for the analysis.

The efficiency of the calibration and sensitivity
analysis approach was verified in this work. The
approach seems to be promising in generating the
PDs and provided some valuable information on
parameter correlation.

It was clear that the rainfall/runoff model is not
very sensitive to its pervious area parameters
when applied to highly urbanised catchments, in
which pervious area runoff and baseflow are almost
inexistent. For such areas, the need of a complex
model with so many parameters related to the
pervious flow of the catchment is questionable. The
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same does not apply when the level of urbanisation
and impervious area fraction is lower than 30%,; in
this case some of the pervious area parameters (eg.
soil storage and fc) become important. Preliminary
results suggested that most of those parameters
are in fact “calibration parameters” and not ones
which relate to physical characteristics of the
catchment. While some of these parameters are
strongly related to the catchment’s EIF, further work
is required in catchments with significant pervious
flows to understand their soil profile characteristics.
It is suggested that such results can be used for
modelling catchments with similar land use, climatic
characteristics and hydrological behaviour. It is
advised, however, that MUSIC should be calibrated
against local flow whenever data is available.

Even with this robust calibration and parameter
sensitivity approach, it is clear that the tested water
quality model poorly represents reality and presents
a high level of uncertainty. In terms of modelling
approach, it is suggested that the power function
model does not present any advantage than using
mean concentration values; and that in fact the use
of mean values might represent an improvement.
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stormwater quality models: performance and sensitivity
analysis

C. B. S. Dotto, M. Kleidorfer, A. Deletic, T. D. Fletcher, D. T. McCarthy
and W. Rauch

ABSTRACT

The complex nature of pollutant accumulation and washoff, along with high temporal and

spatial variations, pose challenges for the development and establishment of accurate and
reliable models of the pollution generation process in urban environments. Therefore, the search
for reliable stormwater quality models remains an important area of research. Model calibration
and sensitivity analysis of such models are essential in order to evaluate model performance; it is
very unlikely that non-calibrated models will lead to reasonable results. This paper reports on
the testing of three models which aim to represent pollutant generation from urban catchments.
Assessment of the models was undertaken using a simplified Monte Carlo Markov Chain (MCMC)
method. Results are presented in terms of performance, sensitivity to the parameters and
correlation between these parameters. In general, it was suggested that the tested models
poorly represent reality and result in a high level of uncertainty. The conclusions provide useful
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model formulations.
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INTRODUCTION

Stormwater models underpin decision-making processes
in stormwater management. Runoff generation and flow
routing models are now well developed and widely adopted.
On the other hand, stormwater quality models are less well
established. Due to limited data-availability, the perform-
ance of these models is mostly proven on few single events
and the search for reliable models remains the object of
current research endeavours. Understanding the processes
within pollution generation is very important for better
modelling approaches. In general, these processes are very
complex and are influenced by a variety of parameters, such
as: rainfall, runoff, climatic variables, land use and surface
characteristics (Deletic & Maksimovic 1998; Egodawatta
et al. 2007; McCarthy et al. 2007). This complex nature of
pollutant accumulation and washoff, along with high
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Technikerstrasse 13,
A-6020 Innsbruck,
Austria

E-mail:

temporal and spatial variations, generate technical difficul-
ties in the development of accurate and reliable models of
pollutant processes. Different approaches are available for
reproducing the response of the sites in terms of pollutants:
process-based buildup-washoff model as developed by
Sartor et al. (1974), washoff rating curves as tested by
Vaze & Chiew (2003), and Event Mean Concentration
methods as proposed by Duncan (1999). In this context,
model calibration is a “must do” exercise when pollution
generation models are to be applied.

A number of studies have investigated the applicability
and performance of the most popular water quality models.
Vaze & Chiew (2003), for example, compared a number of
simple regression equations and a process-based model,
which estimate event pollutant loads from impervious
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surfaces. Between 14 and 20 events, with rainfall, flow
and concentration data from three urban catchments in
Australia were used in the study. Their results indicated
that, once calibrated, both approaches estimated event
pollutant loads satisfactorily. They also emphasized that
the major problems in pollutant generation modelling are
the lack of water quality data and the large variability in the
pollutant concentration data. Sriananthakumar & Codner
(1992) and (Kanso et al. (2004) are also examples of efficient
estimation of fluxes and total loads from urban catchments.
However, fluxes are driven by flow rates, which generates a
degree of spurious correlation in load-based models and
therefore masks the real predictive capability of the models
(McCarthy 2008). Moreover, false conclusions about the
intrinsic characteristics of pollutants and their sources
could be easily derived. For these reasons, estimation of
concentrations rather than fluxes would be indicated.
Although few studies investigated pollutant concentrations
modelling, they usually utilised a very limited number of
events. Rodriguez et al. (2009), for instance, successfully
tested different buildup-washoff models, nevertheless only
two events were single calibrated.

Model sensitivity analysis is also crucial in order to
estimate realistic stormwater pollutant concentrations and
better understand the model parameters. Robust method-
ologies are currently available for global sensitivity analysis
with the advantage of calibrating the model simultaneously.
The most popular approaches are: (a) the Generalized
Likelihood Uncertainty Estimation (GLUE) methodology
(Beven & Binley 1992), known also as pseudo-Bayesian or
informal Bayesian (Freni et al. 2009), and (b) the formal
Bayesian methods, such as Monte Carlo Markov Chain
(MCMC) methods (Kuczera & Parent 1998). The Metropolis
algorithm (Metropolis et al. 1953), a general MCMC sampling
method, has been widely used for model calibration and
sensitivity analysis (e.g. Kuczera & Parent 1998; Kanso et al.
2003). The robustness of the Bayesian approach compared
to other methods is apparent from several studies
(e.g Makowski et al. 2002; Gallagher & Doherty 2007).

The aim of this paper is to present results of parameter
calibration, sensitivity analysis and performance of three
water quality models in order to define their reliability for
different domains and applications. Two simple regressive

equations and one buildup-wash off based model currently

used to predict pollution generation in urban catchments
were chosen. This study is based on comprchensive storm-
water dataset which contains rainfall, stormwater flows and
pollutant concentrations from five urban catchments, in
Melbourne, Australia. The information from the paper will
also guide future development of such models and indicate
the data required to support their development and
application.

METHODS
Data and models

Three empirical continuous concentration models derived
from those used in practice, such as US Army Corps’s
STORM model (USACE 1977), SWMM (Rossman 2008),
P8-UCM (Palmstrom & Walker 1990) and XP-AQUALM

(1999)
parameters are summarised in Table 1.

have been investigated. Their equations and

Model 1 and Model 2 are simple regressive models, in
which concentrations are estimated within a timestep as a
power function of rainfall intensities and routed runoff,
respectively. In these models, C; is the pollutant concen-
tration at time ¢ (mg/L); I, is the rainfall intensity (mm/hr,
over the timestep, ?), R, is the routed runoff (average, in
mm/hr, over the timestep, f); a and b are parameters to be
calibrated. Model 3 is a buildup-washoff based approach
(Sartor et al. 1974). Buildup is the process in which
pollutants accumulate in the surface over a dry weather
period, whereas washoff is the process of removing this
accumulated pollution load by rainfall and incorporating it
to the surface runoff. Buildup during dry periods was
calculated after Sartor & Boyd (1972) and (Deletic et al.
(2000) as presented in Table 1. Where M(?) is the amount of
the pollutant available on the surface averaged over the
area (g/m?) during the dry weather period (t;), My is the

Table 1 | water quality models

Models Parameters
Model 1 C;=al? aand b
Model 2 C;= aRi7 aand b
Model 5 Buildup : MW — k.1, - ¥(D) Mo and
Washof : SCCHD _ ) M@ a4, Ry and ks
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maximum amount of the pollutant that can be stored at the
surface (g/m?) and k; is an accumulation constant (day ).
Consequently, the calibration parameters for buildup are
M, and k,. Washoff during wet weather was calculated
directly from rainfall intensity (not runoffy after an
exponential function, in which C is the washoff concen-
tration (mg/1), M(f) is the amount of solids available on the
surface averaged over the area according to the buildup
equation, I(f) is the rainfall intensity (mm), A; is the
impervious area (m?), k, is the washoff coefficient and ks
is the washoff exponent. The models were calibrated using
concentrations rather than loads given the reasons dis-
cussed in the introduction section.

Such models were applied to a comprehensive storm-
water dataset, which contains rainfall, stormwater flows
and pollutant concentrations from five urban catchments of
different land uses and sizes located in Melbourne,
Australia. Mean annual rainfall in the studied catchments
ranged from 600 to 800 millimetres per year. Hundreds of
events were available for which Total Suspended Solids
(TSS) and Total Nitrogen (TN) were monitored (except for
one catchment, where only TSS was monitored). TSS
average Event Mean Concentration (EMC) between sites
ranged from 71.6 to 125.1 mg/L, and TN was between 1.17
and 3.51mg/L. All catchments are serviced by separate
stormwater and wastewater systems, but some cross-con-
nections between systems are expected. Narre Warren is the
only site in that contains septic systems (tanks). Table 2
summarises the catchment characteristics and detailed
description is available in Francey et al. (2010).

The Effective Impervious Fractions (EIFs) presented in
Table 2 and the flow rates used in Model 2 were obtained
from the calibration of a rainfall/runoff model; detailed

Table 2 | Summary of the catchment characteristics

description of the rainfall/runoff model and results for the
specific catchments are available in Dotto et al. (2009).

Calibration and sensitivity analysis

Calibration and sensitivity analysis were undertaken with
the software MICA (Doherty 2003). MICA undertakes a
simplified MCMC analysis and uses a particularly flexible
version of the Metropolis-Hastings algorithm (Hastings
1970). Parameter’s uncertainty is quantified following a
Bayesian approach by assuming a prior probability distri-
bution and subsequently updating this prior on the
parameter’s samples into a Posterior Distribution (PD).
Prior distributions specify the previous knowledge about the
parameter values and/or ranges. This knowledge is often
limited, mainly in the case of conceptual models, in which
the variables are only empirical. A uniform distribution was
assumed as prior distribution for all parameters and their
lower and upper limits were chosen according to pre-
calibration information. PDs of parameters indicate the
most probable value that generates the best model perform-
ance (the expected value of the distribution), as well as how
the model results depend on this parameter (the dispersion
of the distribution). A PD with a flat shape reveals the
insensitivity of the model to such parameter; therefore for a
vast number of parameter values the model achieves similar
accuracy. In contrast, if the PD presents a well defined
‘peak’, it indicates that the model is very sensitive to the
parameter. Multiple local optima can be identified by
multiple peaks in the PD.

For evaluating calibration performance (i.e. comparing
the i measured (M) and simulated (S) data points) the Nash-
Sutcliffe efficiency coefficient E (Nash & Sutcliffe 1970)

No. of events

Site Primary land use Area (ha) TIF EIF TSS N
Gilby Rd (GR) Commercial 282 0.8 0.45 49 47
Richmond (RICH) High density residential 89.1 0.74 0.30 40 39
Ruffeys Lake, Doncaster (RD) Medium density residential 105.7 0.51 0.25 54 -
Shepherds Bush (SB) Medium density residential 38 0.45 0.21 19 17
Narre Warren (NW) Low density 10.5 0.2 0.11 41 18

TIF is the total impervious fraction of the catchment and EIF is the effective impervious fraction.
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was chosen:
n QN2
E=1 ——ZflfM‘ Si) —oo|1]
S M — M)

Where: E is related to least square error, but for better
appreciation it is normalized by 37, (M; — S;)? where M; is
the mean value of the observed data points.

RESULTS AND DISCUSSION

Contrary to rainfall and flow data, water quality data
obtained by discrete sampling is not continuous, which
makes pollution model calibration very complex and
difficult; indeed, data availability represents one of the key
obstacles to calibration of water quality models. Despite the
long time consumed for the MICA runs, the models did not
perform well and very low efficiency coefficients (E) were
obtained (Tables 3 and 4). The buildup-washoff model
generally performed slightly better than the others, simpler
models, suggesting that there is some merit in accounting for
the buildup-washoff processes. In general, calibration failed,
suggesting that the model structure requires improvement.
In addition, information on model efficiency is often limited
in the literature. There are few studies, in which E values are
presented, but they are not comparable to the present one as
the models in those studies were calibrated against fluxes
(e.g. Vaze & Chiew 2003; Kleidorfer ef al. 2009).

Figure 1 presents the parameter histograms produced by
the MICA runs for TSS (Figure 1(a)) and TN (Figure 1(b)).
Such histograms belong to Model 2, in which pollutant
concentrations are predicted as a power function of the
runoff rate. The clear peaks in the histograms indicate that
the model was sensitive to both a and b parameters. The
same histograms suggested that parameters were generated
with a high level of uncertainty as evidenced by their wide

Table 3 | Nash and Sutcliffe coefficient (€) obtained for the models—TSS

Site Model 1 Model 2 Model 3
Gilby Rd (GR) —0.04 0.03 0.07
Richmond (RICH) -0.10 0.07 0.12
Ruffeys Lake, Doncaster (RD) 0.06 0.14 0.22
Shepherds Bush (SB) 0.26 -0.03 0.06
Narre Warren (NW) -0.04 -0.01 0.46

Table 4 | Nash and Sutcliffe coefficient (£) obtained for the models—TN

Site Model 1 Model 2 Model 3
Gilby Rd (GR) -0.07  —0001 004
Richmond (RICH) -0.30 -0.04 0.09
Ruffeys Lake, Doncaster (RD) - - -
Shepherds Bush (SB) -0.38 -0.01 0.26
Narre Warren (NW) -0.01 -0.09 0.36

confidence intervals. The same outcome was observed in
the results for both pollutants (TSS and TN) using Model 1
(not shown).

The optimum values of parameter a obtained for
Model 2 during the TSS calibration ranged from 42 (GR)
to 98 (NW) while parameter b varied from 0.01 (RD and
NW) to 0.69 (SB) (Figure 1(a)). The changes in a between
sites illustrate the effect of TSS sources on the model
calibration. Higher TSS concentrations would be expected
in more urbanised catchments. However, results in this
study suggested the opposite; i.e. the inverse relationship
between a and the catchments’ imperviousness (as seen in
Figure 1(a)). Few reasons might support this finding. For
example, the minimum value achieved for GR may be
explained by the fact that this is essentially a commercial
area thus generating lower TSS concentrations than areas
where residential activities are taken place (Duncan 1999).
On the other hand, the maximum a value obtained for the
most pervious catchment (NW) is probably due to the
presence of some cross-connections between the storm-
water and wastewater systems in this catchment. The
optimum values for b varied from 0.01 (RD and NW) to
0.69 (SB) for TSS modelling. This indicates the effect of the
kinetic energy of the rainfall in detaching TSS from the
surface. For TN, the optimum values for a were between 1.3
(NW) and 2.86 (GR) and b ranged from 0.05 (SB) to 0.125
(NW). Parameter b values near zero indicate that TN
modelling is mainly driven by parameter a, suggesting that
TN concentrations are independent of the kinetic energy of
the rainfall and highly dependent on the sources of such
pollutant. This is in accordance to the literature, given the
highly dissolved nature of nitrogen in urban stormwater
(Taylor 2006). Other interesting correlations were ident-
ified. For instance, parameter a and the effective impervious
fraction (EIF) were again inversely proportional to one
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Figure 1 \ Histograms for Model 2 with the parameters based on MICA runs—TSS and TN.

another for TN with Model 1 and 2. It is a rather interesting
finding compared to Tong & Chen (2002). The authors
found that the total amount of nitrogen was higher in
impervious urban areas than in pervious ones. The contrast
between findings could be possibly explained by the fact
that Tong & Chen (2002) calibrated their water quality
model against fluxes and therefore, areas with higher runoff
produced higher loads.

Figure 2 reveals the correlation between parameters for
TSS with Model 2. It is evident that the high correlation
between parameters further complicated the calibration
process. For example, R 2 between a and b ranged from 0.43
(NW) and 0.91 (GR) for TSS. The same high correlations
were observed for TN, both for Models 1 and 2. This means
that different combinations of a and b can lead to the same
results. Figure 2 clearly illustrates the ‘ill-posed’ nature of
these models.

Contrary to the simple regression models, the distri-
butions obtained for the buildup-washoff model did not
indicate one clear peak, instead resulted in multiple local
optima for TSS as seen in Figure 3(a). Several peaks in
these distributions suggest that several combinations of
parameters are possible, confirming the problems of
equifinality (Beven & Freer 2001) that may plague urban
stormwater quality models. Distributions of calibration
parameters for TN modelling are presented in Figure 3(b)
and showed clearer peaks for three of the four calibration
parameters. The model was insensitive to parameter k; for
all catchments and therefore, indicates less influence of the
dry wheatear processes. Parameter ks was close to zero,
with all values lower than 1, once again implying that TN
concentrations are independent of the kinetic energy.

6 005 115 2 25

TN

It is interesting to note that there is no correlation
between parameter sensitivity (seen in Figure 3) and
maximum calibration performance (highest E—seen in
Tables 3 and 4). Although, NW’s calibration parameters
seemed to be the least sensitive among the sites, it achieved
the highest efficiency E.

The efficiency of the calibration and sensitivity analysis
approach was also verified in this work. The approach
seems to be promising in generating the posterior distri-
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Figure 2 | Correlation between parameters for Model 2—TSS.
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butions and gave some valuable information on parameter
correlation. Further work should be done to investigate how
the nature of the proposal distribution impact on the
posterior distribution generated with the multiple runs.

CONCLUSIONS

Even with this robust calibration and parameter sensitivity
approach, it is clear that the water quality models tested
here poorly represent reality and result in a high level
of uncertainty. It is not clear whether the structure of the
power function models (perhaps over-simplified) is the main
cause of their poor performance. However, the outcomes
provide useful information for the improvement of existing
models and also offered insights for the development of new
model formulations. For example, it is recommended that
future efforts be put into the development of models which use
routed runoff or rainfall intensities, rather than the models
which use ‘unrouted’ variables. Whilst routing essentially
introduces extra model parameters, the temporal accuracy
gained is likely to outweigh the calibration costs. The next step

is to investigate the relationship between pollutants and some
possible explanatory factors, such as: antecedent climatic
variables, stormwater rainfall and flow variables in order to
develop more efficient pollution generation model.

The study developed was also very important to verify
the efficiency of the calibration and sensitivity analysis
approach. The method presented seems to be promising in
terms of generating the posterior parameter distributions
and also gave some valuable information on parameter
interaction. However, it is suggested that further work
should be done to investigate the impact of the proposal
distribution on the posterior distribution generated with the
MCMC procedure, particularly in the case where highly
correlated parameters are present.
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Stormwater models are important tools in the design and management of urban drainage systems.
Understanding the sources of uncertainty in these models and their consequences on the model outputs
is essential so that subsequent decisions are based on reliable information. Model calibration and
sensitivity analysis of such models are critical to evaluate model performance. The aim of this paper is to
present the performance and parameter sensitivity of stormwater models with different levels of
complexities, using the formal Bayesian approach. The rather complex MUSIC and simple KAREN models
were compared in terms of predicting catchment runoff, while an empirical regression model was
compared to a process-based build-up/wash-off model for stormwater pollutant prediction. A large
dataset was collected at five catchments of different land-uses in Melbourne, Australia. [n general, results
suggested that, once calibrated, the rainfall/runoff models performed similarly and were both able to
reproduce the measured data. It was found that the effective impervious fraction is the most important
parameter in both models while both were insensitive to dry weather related parameters. The tested
water quality models poorly represented the observed data, and both resulted in high levels of parameter

uncertainty.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and background

Stormwater models are important tools in stormwater
management practice, being used to predict flow rates and water
quality of discharges from urbanised areas. Stormwater flow
models are currently well developed and widely adopted in prac-
tice. They range from simple models such as KAREN (Rauch and
Kinzel, 2007) or CityDrain (Achleitner et al., 2007) that take into
account only runoff from impervious surfaces, to very complex
urban drainage models. Examples of the latter are MOUSE (DHI,
2002), Infoworks (Wallingford Software, 2009) or CANOE (INSA/
SOGREAH, 1999) that model both complex surface runoff and
channel/pipe flow, including transition from unpressurised to
pressurised pipe flow. There are models that fall in between these
two groups, such as the Australian tool MUSIC — Model for Urban
Stormwater Improvement Conceptualisation (CRCCH, 2005) or
HSPF — Hydrologic Simulation Program Fortran (Bicknell et al.,
2001). These are distributed catchment models that include

* Corresiondini author. Deiartment of Civil Eniineerini, Buildini 60, Room 153,

1364-8152/$ — see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.envsoft.2011.03.013

runoff generation from impervious and pervious surfaces and
simulate simplified channel/pipe flow. However, all the runoff
models, no matter how complex, contain calibration parameters
that need to be determined for each specific catchment. It is rec-
ognised that the uncertainty in these parameters is one of the
sources of error in the model’s outputs (e.g. Lindenschmidt, 2006;
Gallagher and Doherty, 2007b).

Contrary to the water quantity models, reliable stormwater
pollution generation models are almost nonexistent (Elliott and
Trowsdale, 2007). For example, conceptual build-up and wash-off
models (mainly based on work of Sartor and Boyd, 1972) or
simple regression equations (as used in SWMM; (Rossman, 2008)),
seem unable to accurately reproduce pollutant behaviour (Beck,
1987; Kanso et al., 2005b; Egodawatta et al., 2007). Simple statis-
tical models, such as investigated by Cohn et al. (1992) and
Thierfelder (1999), cannot be used outside catchments for which
they are developed. It has been recognised that one of the main
problems in establishment of these models is the high level of
uncertainty in their calibrated parameters (Kanso et al., 2005a).

Similarly to other modelling practices, understanding the
uncertainties associated with the stormwater model parameters is
crucial for advancing urban drainage modelling practice. The
parameter uncertainty may result from: (1) a poor fit between
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model outcomes and measured data (Yapo et al., 1996), (2) a high
level of parameter correlation (Lindenschmidt, 2006), and/or (3)
the insensitivity or identifiability problem due to certain param-
eters (Afonso and da Conceicdo Cunha, 2002). A comprehensive
investigation on these sources is available in Deletic et al. (2009).
Many methodologies are available to evaluate the model sensi-
tivity while quantifying the uncertainty associated with the
parameters. The most popular approaches are (a) the Generalized
Likelihood Uncertainty Estimation (GLUE) methodology (Beven
and Binley, 1992), known also as pseudo-Bayesian or informal
Bayesian (Freni et al., 2009), and (b) the formal Bayesian methods,
such as Monte Carlo Markov Chain (MCMC) methods (Kuczera and
Parent, 1998).

GLUE has largely been applied to uncertainty assessment in
general hydrological models (e.g. Montanari, 2005). The principle
of GLUE is to generate parameters samples from a uniform distri-
bution in order to provide a scan of the parameters’ space. The
method requires a large number of Monte Carlo simulations, while
the criteria for accepting a parameter set is subjective and is
defined by the user. Bayesian inference based on MCMC methods
express the uncertainties associated with parameters and model
outputs in terms of probability. Samples are generated from the
Markov Chains, which will converge to the posterior distribution of
the parameters. One of the most used MCMC methods is the
Metropolis-Hasting algorithm (Hastings, 1970), which uses an
adaptive proposal distribution to sample parameters and is thus
better at finding the high posterior density region. Its effectiveness
is now well established (e.g. Bates and Campbell, 2001). For
example, a comparison of the GLUE and MCMC methods in regards
to a simplified crop model with 22 parameters was demonstrated
by Makowski et al. (2002). Both methods presented similar results,
but the authors recommend the use of the Metropolis-Hasting
algorithm. This method will converge to the true posterior distri-
bution even if the model includes a large number of parameters,
while in this case GLUE struggles due to a large number simulation
runs required for discretisation of the parameter space. The fact
that GLUE has a user-defined threshold for “accepting” parameter
sets is also problematic and Freni et al. (2008) found that their
results were very sensitive to the choice of this threshold.

MCMC procedures also have problems and a misspecification of
the error structure (or likelihood function) in the Bayesian approach
can lead to an erroneous quantification of the model prediction
uncertainty (Beven et al., 2008). However, In a comprehensive
analysis of the nature of structural noise Doherty and Welter (2010)
demonstrated that model-to-measurement misfit in most real-
world modelling circumstances will possess statistical properties
of unknown type, with unknown amounts of serial correlation. This,
unfortunately, is an outcome of the imperfect nature of any simu-
lation model, and the fact that these imperfections are likely to
introduce structural noise with a singular covariance matrix. They
discuss the fact that this places some limitations on the degree to
which model predictive uncertainty and confidence intervals can be
subject to quantitative evaluation, with all such evaluation assuming
anecessarily heuristic component. They also argue that the choice of
objective function, rather than the exact nature of the statistical
characterisation of model-to-measurement misfit, becomes an issue
of critical importance in the model calibration process. In particular,
the choice of an objective function that “tunes” a model to make
predictions of a certain type can lower the uncertainty associated
with predictions of that type. On the other hand, choice of an
objective function that endows the model with an ability to make all
types of predictions equally well is a luxury that is not available
when dealing with imperfect models.

A number of studies used the above approaches to inspect
parameter uncertainties in particular urban drainage models (e.g.

Gallagher and Doherty, 2007a; Freni et al., 2009). However, very few
studies have been published which compare the performance and
parameter uncertainty of different quantity and quality models using
long-term high resolution data. To fill this gap, this paper presents
results on model sensitivity and parameter uncertainty of storm-
water models with different levels of complexities, using a Bayesian
approach. A rather complex model, MUSIC (CRCCH, 2005) and
a simple model, KAREN (Rauch and Kinzel, 2007) were compared in
terms of catchment runoff. It is expected to provide information not
only on the model parameters but also on model choice and appli-
cability. An empirical regression model was compared to a process-
based build-up and wash-off model for stormwater pollutants.
Although these approaches were previously proven as unsuitable,
derivations of their equations have been adopted in several storm-
water models, such as XP-AQUALM (XP-SOFTWARE, 1999) and
SWMM (Rossman, 2008). Therefore, a detailed investigation of these
models, in terms of processes and parameters, provides key infor-
mation for the development of more suitable models. A large dataset,
collected at five catchments of different land-uses in Melbourne,
Australia, was used for the analysis.

2. Methodology
2.1. Rainfall runoff models

2.1.1. MUSIC rainfall/runoff model

For a given rainfall and evapotranspiration time series, MUSIC
continuously simulates, at a user-specified timestep (from 6 min to
24 h) catchment discharges. The algorithm is based on the SimHyd
model developed by Chiew and McMahon (1997), which was
modified to enable disaggregation of daily runoff into sub-daily
temporal patterns.

As shown in Fig. 1(a), flow from impervious and pervious areas
are modelled separately. There are two parameters related to
impervious area runoff: (1) the Effective Impervious Fraction (EIF)
which corresponds to the areas that are directly connected to the
drainage system, and (2) the initial loss, known as the rainfall
threshold (Thres), which defines the minimum daily rainfall before
surface runoff occurs from the impervious area. Runoff from the
pervious areas occurs when the pervious soil storage is either
saturated or its infiltration rate is exceeded. The pervious area
runoff related parameters are mainly described by: (1) soil storage
capacities, the maximum soil storage (SMax) and the initial storage
level (SIni), (2) field capacity (fc), and (3) infiltration factors (coeff
and sq). Water from the soil store is lost due to actual evapo-
transpiration, which is a function of the current day’s potential
evapotranspiration and the ratio of water currently in the pervious
store to its capacity. Groundwater is modelled as a store which is
recharged when the level in the pervious soil store exceeds the field
capacity. The rate of this recharge (rfac) is a set percentage of the
water in the soil store. This store is emptied via baseflow, which is
modelled as a percentage of the water within the groundwater
store, also a model parameter, bfac. In a similar way, deep seepage
(dseep) is set as a percentage of the groundwater store. The
Muskingum Cunge routing method is applied for the routing of
flows through the drainage system; the translation (K) and the
attenuation (#) both require calibration. All the model’s parameters
are summarised in Table 1 and a full description is available in the
MUSIC manual (CRCCH, 2005). All parameters described above
require calibration (13 in total).

2.12. KAREN

A simple linear reservoir model KAREN (Rauch and Kinzel,
2007) was adopted, due to its simple modular design. The model
requires the catchment area and a rainfall time series as inputs to
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Fig. 1. MUSIC rainfall/runoff model (after CRCCH, 2005) (a), and KAREN (b).

generate a series of flows originating from impervious areas only.
The pervious components of the catchments are not considered.
A schematic presentation of the rainfall/runoff model imple-
mented in KAREN is given in Fig. 1(b). The effective impervious area
of the catchment is calibrated as the EIF parameter. Runoff from
impervious areas occurs after a rainfall threshold has been exceeded.
This threshold is represented by the initial loss parameter (li) and it is
modelled as a single reservoir, similar to that found in MUSIC. While
MUSIC's impervious runoff threshold is calculated and reset on
a daily basis, KAREN’s initial loss is calculated continuously and fills
during rainfall and is drained during dry weather by a permanent loss
calibration parameter (ev). Surface runoff volume is calculated using
the linear time-area method, which is similar to the unit hydrograph
method (Sherman, 1932). At the beginning of a rainfall event, the
effective impervious area is increased according to the flowtime on
the catchment surface until the whole catchment contributes to
runoff after time of concentration (another calibration parameter TC).

The model’s parameters are summarised in Table 1 and a detailed
description is provided in the manual (Rauch and Kinzel, 2007).

2.2. Water quality models

A process-based build-up/wash-off model was compared to an
empirical regression model for stormwater pollutants. Both models
predict pollutant concentrations at the outlet of the catchment and
none of them consider the transport processes in the catchment
and drainage network.

2.2.1. Build-up/wash-off model

The generation of pollutants in the runoff from an impervious
surface is often described and modelled using the concepts of
build-up and wash-off. The attempt to model both of these
processes was proposed by Sartor and Boyd (1972) and is sum-
marised in Sartor et al. (1974). The key equations are:

Table 1
Rainfall/runoff model parameters.
Component Parameter name Unit Prior Default
distribution value
MUSIC Parameters
Impervious Effective impervious fraction (EIF) % U[0 1]x100 -
Area Rainfall threshold (Thres) mm ulo 3] 1.0
Pervious Area Soil storage capacity (SMax) mm U[30 250] 30°
Initial storage (SIni) % U[0 50] 30
Field capacity (fc) mm U[0 100] 20°
Infiltration capacity coefficient (coeff) U[100 200] 200
Infiltration capacity exponent (sq) - U[0.91.2] 1
Groundwater Daily recharge rate (rfac) % U[0 1]x 100 25%
Daily baseflow rate (bfac) % U[0 1]x 100 5%
Groundwater initial storage (gw) mm U[0 30] 10
Daily deep seepage rate (dseep) % U[0 0.5]x 100 0
Muskingum Translation and factor (K) min U[0 50] 30
Cunge Attenuations factor (4) - U[0.1 0.49] 0.25
KAREN Parameters
Impervious Effective impervious fraction (EIF) % U[0 1]x100 -
Area Time of concentration(TC) min U[1 10,000] -
Initial loss (li) mm u[o 10] 1
Evapotranspiration (ev) mm/day U[0 10] 15

@ MUSIC default values for Melbourne.
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Table 2
Water quality model parameters.

Component Parameter name Unit Prior
distribution

Build-up — washoff model

Build-up Maximum amount of pollutant My g/m?* U[0 100]
Accumulation constant k; day! U[0 100]
‘Washoff Washoff coefficient k> - U[o 100]
Washoff exponent k3 - U[0 100]

Regression model

Water quality scale coefficient (a) (g-s?)/m31 b U0 150]

‘Water quality shape coefficient (b) U[0 2.5]
Build up - MO _ k. Mo — WD) )
dty
Wash — off : % b MO0 A @)

where M is the amount of pollutant available on the surface aver-
aged over the area (g/m?), C is the concentration in runoff (mgj/l),
I is the rainfall intensity (mm/hour over the timestep), and A; is the
impervious area (m?). The calculated concentration s shifted by the
flowtime tf, which is the average flowtime of concentration on
catchment surfaces and in sewer pipes.

In this study tf was regarded as a constant which was not varied
during Bayesian inference. Prior simulation runs showed that
avariation of tf disturbs generation of posterior distributions of the
other calibration parameters and the MCMC procedure does not
converge. This means tfis not only a highly sensitive parameter but
reasonable simulation results can only be achieved by fixing tf to
certain value, which was found during calibration prior to Bayesian
inference. The authors expect that this is caused by the timestep
discretisation of the model. The pollutograph of model output can
only be shifted by whole timestep of 6 min while intermediate
values have no effect model results.

The build-up calibration parameters are My, which is the maximum
amount of pollutant expected on the surface (g/m?) and k;, which is an
accumulation constant (day ). According to Equation (2), the cali-
bration parameter k; is the wash-off coefficient and kj3 is the wash-off
exponent. In total, there are 4 calibration parameters (Table 2).

2.2.2. Regression model
The simple regression model adopted in this study was used in
conjunction observed runoff data. Derivations of this regression

model are used in practice in several stormwater models, such as
XP-AQUALM (XP-SOFTWARE, 1999), SWMM5 (Rossman, 2008) and
P8-UCM (Palmstrom and Walker, 1990). The model estimates
concentrations, within a timestep, as a power function of the
measured runoff:

G = ar? (3)

where C; is the pollutant concentration at time t (mg/L); R; is the
measured runoff (average, in mm/hr, over the timestep, t); a and
b are calibration parameters as outlined in Table 2.

2.3. Data set

A comprehensive stormwater dataset, containing data on
stormwater flows and pollution concentrations from 5 urban
catchments located in Melbourne, Australia (Fig. 2), was used for
the analysis. Table 3 shows a summary of the characteristics of the
catchments and some descriptive statistics of the measured data
(McCarthy, 2008; Francey et al., 2010).

Rainfall data was monitored every minute using 0.2 mm tipping
bucket rain gauges located as close as possible to the catchments’
centroid. The mean annual rainfall in these catchments ranges from
370 to over 720 mm per year. Continuous flow data (recorded at the
1 min interval) were measured at each catchment and around 300
wet weather events were monitored for a range of pollutants,
including Total Suspended Solids (TSS) and Total Nitrogen (TN)
(except for RD catchment, where only TSS was monitored). The
water quality samples were collected at the outlet of the catch-
ments using a discrete sampling methodology and the variability of
TSS and TN concentrations between sites was quite large as shown
by their coefficient of variation (CV) (Table 3). In terms of pollut-
ants, these large coefficient values also indicate the log nature of
these pollutants. The average Event Mean Concentration (EMC) for
TSS ranged from 72 to 125 mg/L between sites, and for TN this was
between 1.17 and 3.51 mg/L.

Most of the sites were monitored from January 2004 to
December 2007. Rain and flow data collected between 2004 and
2005 was used for calibration, while data from 2006 to 2007 was
used for validation. Table 3 reports on the characteristics of
events used for model calibration (general figures), and also on the
events used or validation (between square brackets). The calibra-
tion of the water quality models resulted in very low performance
during calibration and therefore, validation of these models would
not make sense and was not carried out.

Fig. 2. Aerial photographs of each catchment showing the relative positions of the centroid, rainfall gauge and flow gauges (¥ rainfall gauge location, gk catchment centroid

and @ flow gauge location) (after McCarthy, 2008).
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Table 3

1229

Summary of sites and measured data details (Francey et al,, 2010). The characteristics the events are presented while the characteristics of events used for validation are given

in brackets [ |.

Site Gilby Rd Richmond Ruffeys Lake, Shepherds Narre
(GR) (RICH) Doncaster (RD) Bush (SB) Warren (NW)
Primary Land Use Commercial High Density Medium Density Medium Rural
Residential Residential Density Residential
Residential
Area (ha) 282 89.1 105.6 38 105
IR 0.8 0.74 0.51 045 0.2
Catchment Average slope (%) 1 35 5 4
Time of concentration (min) 23 31 14 14 16
Distance from catch centroid to rain gauge (m) 100 600 700 550 250
Mean annual rainfall (mm/year) 723 [536] 650 [500] 650 [370] 580 700 [400]
Mean event maximum rainfall intensity (mm;/hr) 10[7.5] 10[8.4] 9(7] 6 108]
Range of event maximum rainfall (mm/hr) 2-86 [2—-36] 2—60 [2—44] 2-44 [2-28] 2-60 2.5-86.3 [2-32]
Mean event maximum runoff rate (L/s) 408 [50] 547 [212] 723 [165] 214 44 [20]
Range of event maximum flow rates (Lfs) 75-2241 [30-200] 67—3867 [25—1430] 164—3069 [20-908] 29-1200 14-90 [10-58]
N. of events — TSS 49 40 54 19 41
Maximum TSS concentration (mgfL) 867 1600 1422 1545 2398
TSS CVP (%) 151.46 164.05 183.12 153.54 182.87
Mean of TSS EMC's® (mg/L) 716 125.1 77.0 94.8 919
N. of events — TN 47 39 - 17 18
Maximum TN concentration (mg/L) 9 26 - 15 19
TN CVP (%) 83.18 101.32 85.22 76.82
Mean of TN EMC's® (mg/L) 117 229 = 1.74 351

@ Total impervious fraction (TIF).
Coefficient of variation (CV).
¢ Event Mean Concentration (EMC).

Rainfall data used in this study was processed to cope with gaps
and time drifts, which are inherent in any battery controlled
logging device. Flow data was checked for any discrepancy (e.g.
backflow effects indicated by negative velocities).

2.4. Calibration, parameter sensitivity analysis and validation

Calibration and sensitivity analysis were undertaken with the
software MICA (Doherty, 2003). A least squares objective function
was used for model calibration and sensitivity testing, which is
based on the sum of the squared deviations and is the most adopted
in the field (e.g. Feyen et al., 2007; Freni et al., 2009). Further, for
evaluating calibration performance (i.e. comparing the measured
and modelled data points) the Nash-Sutcliffe efficiency coefficient
(E) (Nash and Sutcliffe, 1970) was used. Both the least squares
objective function and E place emphasis on medium/large values,
which are often the goals for stormwater management practices
(i.e. high volumes (e.g. Chiew and McMahon, 1999)).

MICA quantifies a parameter’s uncertainty following a Bayesian
approach, in which the prior information about the parameters is
updated to generate the Posterior Distribution (PD). It undertakes an
MCMC analysis with the Metropolis-Hastings algorithm (Hastings,
1970). A full description of the MICA application is available in the
software manual {Doherty, 2003), and is only briefly outlined below.
Firstly, the model is run with the initial parameter values, which are
sampled from a uniform initial prior distribution. The estimated
values are compared with the observed data, and the likelihood of
such parameters is calculated. Subsequently, the model is run with
anew setof parameters derived from the proposal distributions and
the likelihood of the new set of parameters is calculated. The Bayes’
Theorem is used to calculate the PD and parameters are accepted or
rejected according to the acceptance ratio. The ratio is calculated as
afunction of three ratios representing the model fit, the prior and the
proposal densities. The process is repeated until the R criterion of
Gelman et al. (1995) is reached: if the scale reduction score was less
than 105, the Markov Chain was considered to be converged
(Doherty, 2003). However, the process would not terminate before
a minimum of 5000 iterations was achieved, which was set to

guarantee that the extremities of the parameter PD are also sampled.
The number of simultaneous Markov chains and the maximum
number of iterations were chosen after some initial testing. Ten
Markov chains, with a maximum of 10,000 iterations each, were
sufficient to generate the parameter PDs for the rainfall/runoff
model(i.e.15 or 20 chains with 20,000 iterations did not improve the
outcomes). The water quality models required more exploration of
the parameter space and therefore, these models were run using 20
Markov chains, each with a maximum of 10,000 iterations. The
parameter sets were updated for each chain and thus, each iteration
required a number of runs equal to the number of chains. The
proposal probability functions are updated by means of the statistics
calculated from parameter samples taken up to the moment.
A*“burn-in” period was excluded from any analysis to ensure that the
remaining values were true samples from the parameter PD. The
number of iterations which was classified as the “burn-in” period
was computed according to the statistics recorded by MICA as it
implements the MCMC process. For instance the stabilization of
means and standard deviations for all monitored parameters is
a sign that the MCMC “burn-in” period may be over.

The likelihood function used in MICA assumes that the residuals
between the measured and modelled values have a normal distri-
bution (e.g.Gilks et al., 1996). This is a trait of many uncertainty/
sensitivity procedures (see Bates and Campbell, 2001; Yang et al.,
2008) and not checking such an assumption is common in the
literature (e.g. Makowski et al,, 2002; Varella et al,, 2010). In cases
when the assumptions are checked, they are usually not met (e.g.
Feyen et al., 2007; Thyer et al., 2007). In this paper, the normality of
the residuals was checked using normal probability plots and
statistical inferences (Chakravarti and Roy, 1967). For one catch-
ment (RICH), a Box-Cox (Box and Cox, 1964) transformation was
applied to the measured and modelled flow rates (from KAREN), in
order to meet the normality assumption of the residuals. The
MCMC procedure was repeated using the transformed datasets,
and PDs for each parameter were generated and compared to that
found using the untransformed data.

Using the parameter PDs it was possible to verify the model
sensitivity to each of its parameters according to the shape of their
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distributions. Whilst in theory in a well-posed model the PDs are
expected to be unimodal, this will not be the case in poorly-posed
models. A PD with a flat shape (uniform distributed parameter)
shows the insensitivity of the model to this parameter since the
model achieves similar accuracy for any value of the parameter. In
contrast, if the model parameter PD has a well defined ‘peak’, the
model is very sensitive to that parameter. Multiple local optima can
be identified by multiple peaks in the PDs and are likely to occur in
‘ill-posed’ models representing some parameter interaction and/or
compensation.

Initial calibration results showed that KAREN and MUSIC
produced very similar model efficiencies, even though MUSIC
explicitly represents pervious area runoff. Also, these initial results
showed that impervious parameters were more sensitive than
pervious parameters. To investigate these findings, individual
event calibration was conducted on the five largest events where
pervious runoff was known to occur (these events were taken
from RICH and NW). This was used to determine whether MUSIC's
pervious parameters were significantly contributing to the
prediction during pervious runoff events. This method also
showed whether KAREN could cope in these events without
pervious area representation.

While the parameter distributions provide an indication of
their sensitivity, an apparent lack of sensitivity could also be
caused by parameter interaction and parameter identifiability
issues. As such, each non-sensitive parameter was varied, one at
a time, by sampling from its generated PD, while keeping all other
parameters fixed at their optimised values. Model efficiency values
from this procedure were then compared to that of the fully
calibrated model to determine whether this parameter is truly
non-sensitive or whether, for example, parameter interaction is
occurring.

The rainfall/runoff models were validated with the second half
of the datasets, in most cases including between 14 and 23 months;
and the model predictions were obtained by running the model
with the parameter values randomly sampled from the PDs
obtained during calibration.

2.5. Modelling uncertainties

2.5.1. Parameter uncertainty

For both calibration and validation, the predictive uncertainty
resulting from parameter uncertainty was obtained by running the
models with 1500 parameter sets, randomly sampled from the
generated parameter PDs. It is emphasised that the predictive
uncertainty in this case originates only from the parameter
uncertainty and does not include other sources of uncertainty.
Currently, the procedures to include these other sources are not
well developed, especially when dealing with those which origi-
nate from the model structure (Doherty and Welter, 2010).

Table 4
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2.5.2. Total uncertainty

A common approach for estimating the total uncertainty (i.e.
parameter and all other sources) is adding a constant Gaussian
error term to the model predictions (e.g. Feyen et al, 2007).
However, this method does not take into account the serial corre-
lation which exists between data points (e.g. Yang et al., 2008) and
should only be applied when the residuals are normally distributed
(which was not the case for most of these simulations). To over-
come these issues, the total predictive uncertainty was calculated
as follows.

—

. The residuals between the measured and the simulated values

were calculated.

The simulated values and their corresponding residuals were

grouped in different bins according to the simulated values’

magnitudes

. The 2.5 and 97.5 percentiles of the residuals in each bin were

plotted against their corresponding simulated values, and two

linear relationships were verified (one for the 2.5 and one for
the 97.5 percentile).

The error terms were calculated as functions of the simulated

values and these error terms were added to the simulated

values at each timestep.

. This process was repeated for the 1500 parameter sets,
randomly sampled from the generated parameter PDs. The 2.5
and the 97.5 percentiles of all 1500 simulations with the added
error terms was obtained and used to represent the total
uncertainty bounds.

34
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3. Results and discussion
3.1. Rainfall/runoff modelling

3.1.1. Model performance — calibration

The overall efficiency of both rainfall/runoff models assessed in
this study is represented by the Nash — Sutcliffe efficiency criterion
(E)inTable 4. The models were run with the best parameter sets and
the time series of the modelled outflows were plotted against the
corresponding measured data (Fig. 3 shows this for three catch-
ments). Coefficients of determination (R%) and the best efficiencies
between measured and modelled, Epest, are shown in these graphs.

Considering the fine temporal resolution used (6 min) and that
all measured data have some uncertainty (see McCarthy et al.,
2008), the runoff models calibrated well (all Epes; values were
either very close to, or over 0.5). It is hypothesised that the rela-
tively low value (Epest = 0.49) achieved at NW with MUSIC may be
due to the complexity of the processes in this catchment, which
presents the lowest level of impervious area and potential extra-
neous wastewater inputs. There was also not much difference
between the two models; calibration was performed with very
similar efficiency for all catchments with MUSIC and KAREN.

Rainfall/runoff models’ efficiency: Epes: is the best E obtained during the entire calibration/validation procedure; Enyean is the mean E derived from all the accepted

parameter sets.

Catchment TIF MUSIC KAREN

Calibration Validation Calibration Validation

Epest Emean Ebest Emean Epest Emean Ebest Emean
Gilby Rd (GR) 0.80 0.54 0.53 031 —0.02 0.53 0.26 041 0.04
Richmond (RICH) 0.74 0.81 0.75 0.70 0.60 0.75 0.71 0.71 061
Ruffeys Lake, Doncaster (RD) 051 0.62 0.55 0.32 —0.06 0.63 0.28 039 —0.56
Shepherds Bush (SB) 0.45 0.57 0.61 - - 0.61 0.52 - -
Narre Warren (NW) 0.20 0.49 0.60 —0.05 —0.69 0.60 0.12 -1.01 -5.19
Mean (E) 0.61 0.62 0.33 —0.04 0.62 0.38 0.13 -1.28
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Fig. 3. Measured versus calibrated modelled flows: (a) MUSIC; (b) KAREN. R? is the correlation between measured and modelled, and Eyes, is the best model efficiency achieved.

However, for the relatively highly impervious GR and RICH catch-
ments, the MUSIC model produced more accurate results than the
KAREN model, whilst for the relatively more pervious RD, SB and
NW it was the opposite. This is an interesting finding, considering
that MUSIC has the ability to represent pervious areas. It was
therefore concluded that the simple KAREN model, which does not
simulate processes in pervious surfaces, could still be successfully
calibrated for any urban development, since flow generation is
mainly governed by impervious surfaces.

The above finding is further confirmed by the results from the
single events calibration procedure. The model efficiency obtained
for large events, which are known to include runoff from pervious
surfaces, was similar for both models (Egxaggn = 0.93 and
Emusic = 0.95; Fig. 4). As expected, MUSIC was able to predict flow
peaks during this event more accurately than KAREN. While this
could be due to MUSIC's modelling of pervious surfaces, it is also
possible that this is caused by the over-parameterisation of the
MUSIC model for this event (i.e. the model is not representing
reality and is instead behaving like a black-box). It is hypothesised
that the reason why MUSIC's pervious area parameters were not
contributing as much as others is due to a combination of factors:
(1) model structural noise, (2) measured data errors and (3)
selection of objective function.

Flow (m¥s)
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3.1.2. Parameter sensitivity

The histograms (PDs) of the selected MUSIC parameters are
presented in Fig. 5 and for KAREN parameters in Fig. 6. It can be
noticed that some of the parameter distributions were non-normal,
and that not all of the parameters can be fitted to standard
distributions.

3.1.2.1. MUSIC. The effective impervious fraction (EIF) and the
Muskingum Cunge translation factor (K) were the most sensitive
for all catchments, since their PDs had clear peaks.

The PDs obtained for the groundwater initial depth (gw) were
very flat (as shown in Fig. 5(e)) and any value between the specific
range may be assumed without compromising the results. MUSIC
presented the same pattern for two more parameters: initial
storage level in the previous area storage (SIni) and to the infiltra-
tion capacity exponent (sq). Therefore these three parameters can
be fixed to any value from the studied range (Table 1) without
impacting on the model performance. It is suggested that the model
is over-parameterised and therefore the dimensionality of the
model could perhaps be reduced.

The rainfall threshold (Thres) parameter had a peculiar behav-
iour. It was suggested that any value higher than 1 was linked to the
worst optimisation results and that a value between 0 and 1

0

— Rainfall 1
+ Measured flows g
=-===KAREN flows (E=0.93) 2 "_\;;
— - -MUSIC Flows (E=0.95) | 3 &

4

26/10/2004 21:48

27/10/2004 6:06

27/10/2004 14:24

Time (timestep = 6min)

Fig. 4. Richmond example hydrograph with measured versus modelled flows for the single event calibration.
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Fig. 5. Histograms for selected MUSIC parameters (units according to Table 1).

generally leads to similar reasonable results for all catchments. It is
suggested that the default value of 1 is a practical option for the
catchments and dataset used in this study.

The model seemed insensitive to the Muskingum Cunge atten-
uation factor (¢) for most catchments (Fig. 5 (h)). To check this, this
parameter was varied while fixing all other parameters at their
optimised values. For some catchments (GR, RD, NW), significantly
lower E values were generated when different values of # were
replaced in the calibrated model (e.g. E decreased from 0.62 to 0.49
for RD), indicating possible parameter interaction. However, for
other catchments (RICH, SB) changing ¢ values did not make major
differences in the model outputs, suggesting that this parameter is

actually insensitive and any value between 0.1 and 0.3 can be used
with equal success.

It is apparent that the field capacity (fc) may be fixed at any
valued between 10 and 40 mm or even set to its default value
(20 mm) for the two most urbanised catchments (GR and RICH).
The same parameter did not show a consistent behaviour for the
remaining catchments. The model was sensitive to fc for RD and
NW, but not for SB (Fig. 5(c)). From this sensitivity study;, it is rec-
ommended that fc should be calibrated for catchments with EIF
lower than 0.3 to predict reliable estimates. The same pattern and
recommendation are valid for the daily recharge rate (rfac), daily
baseflow rate (bfac) and for the daily deep seepage rate (dseep).
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Fig. 6. Histograms for KAREN parameters (units according to Table 1).
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According to Fig. 5(b) the soil storage capacity (SMax) optimum
values increased as the catchments’ imperviousness decreased.
This could be caused by the fact that a catchment with a higher
level of imperviousness typically has a higher population which
could lead to more compact soils (foot traffic, etc) and thus lower
soil storage capacity (McCarthy, 2008). On the other hand,
a previous study developed by Dotto et al. (2009) suggested that
this parameter is indeed a “calibration parameter” rather than a soil
related property in the case of highly urbanised catchments as the
ones used in this study and therefore, parameter compensation is
expected at some extend, depending on their range of values.

3.1.2.2. KAREN. Analysis of parameter sensitivity (Fig. 6) of this
model shows similar results as MUSIC. The most important cali-
bration parameter is EIF followed by the time of concentration (TC
representing similar processes as K in MUSIC) and the initial loss (/).

The model was insensitive to the evapotranspiration (ev)
parameter for all catchments. This parameter only controls the
drainage of the initial loss volume during dry weather periods. It
follows that this parameter is only important for events which have
a similar magnitude as the initial loss volume. For example,
a 30 mm rainfall event with an initial loss of 1 mm would not be
sensitive to the initial loss (because it is just 3% of the total rainfall)
and therefore be insensitive to ev. Since the selected objective
function emphasises peak flow rates (or events), it is reasonable
that the ev parameter is not sensitive. Such insensitivity was also
tested by varying ev within a range from 1 to 10 (mm/d) while
keeping the other parameters fixed at their calibrated values. This
had only a minor effect on E values. For instance, E for RICH varied
from 0.75 to 0.70.

The time of concentration (TC) and the initial loss (li) parameters
were only relevant in the case of the three most impervious
catchments (Fig. 4). A relationship between the model sensitivity to
these parameters and the catchment area was also apparent. The
model was sensitive to them in the case of the largest catchments
(e.g. RICH and RD) and insensitive for the smallest one (NW). This
can be explained by the way in which runoff volume is calculated
from rainfall according to the time-area method. The proportion of
the catchment contributing to runoff continuously increases with
each timestep until the whole catchment contributes to runoff once
the TC is reached. Further discussion on the variability of TC and its
estimation can be found in (McCarthy, 2008).
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The insensitivity of initial loss (/i) for mainly pervious catch-
ments was not expected as usually losses are higher in pervious
parts of a catchment. A possible reason for this effect could be that
small values for initial loss represent losses on impervious parts
and higher values represent losses on pervious parts and conse-
quently a wider range of initial loss is experienced “on average” of
the whole catchment.

No major correlations between calibration parameters could be
identified for any of the catchments analysed. The large variation
encountered in the histograms for several parameters indicates
some difficulty in obtaining clear values for such parameters. It may
again be speculated that input and calibration data errors are
possible causes. It is suggested that these uncertainties need to be
quantified in order to define more reliable outcomes.

3.1.3. Error structure

A few assumptions trigger the application of methods, in which the
structure of the model residuals has to be known according to a chosen
likelihood measure. According to the methods used in this study, the
residuals were assumed to be independent and normally distributed.
However, the residuals between untransformed measured and
modelled data were found to be non-normal for all four models and for
each of the five catchments. None of them passed the Kolmogor-
ov—Smirnov test at 5% significance level. As an example, Fig. 7 (a)
shows Richmond’s normal probability plot of the residuals between
the measured data and the outputs of the optimised KAREN model
(( @) — untransformed data was used).

Similarly to that found in the literature (see Feyen et al., 2007;
Yang et al, 2008), a Box—Cox transformation of both the
measured and modelled flows ensured that the assumption of
normality in the residuals was met. Fig. 7(a) shows Richmond'’s
normal probability plot of the residuals between the transformed
measured data and outputs of the optimised KAREN (O). Such
figure indicates that the transformed residuals nearly match to
a normal distribution, which was also verified by the Kolmogor-
ov—Smirnov test at 5% significance level. However, this data
transformation also effectively changes the objective function from
one which emphasises peak flows (i.e. least squares) to one which
considers all parts of the hydrograph similarly. This resulted in
a decrease in model efficiency (from E = 0.75 to E = 0.57) which is
logical since E is based on a least squares fit, and transforming the
data means that the objective function is no longer of a least
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Fig. 7. (a) The normal probability plot for the mean untransformed (®) and transformed residuals (O ) obtained from MICA runs for KAREN with RICH data, and (b) example of
KAREN sensitivity when MICA was run with the Box—Cox transformed data for RICH catchment.
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squares type. Model PDs also changed significantly (Fig. 7(b)),
showing the importance of objective function on parameter
sensitivity and optimised parameter values.

A change in objective function is not desirable, especially when
it has been carefully chosen for the specified modelling purpose, as
was done in this study. For the procedure outlined here, it is
impossible to obtain normality in the residuals when trying to
maintain the chosen objective function. To solve this, another
sensitivity testing procedure, which does not have to meet the
normality assumption, could be used (e.g. GLUE by Beven and
Binley, 1992). However, alternate sensitivity methods also have
other limitations, including subjective cut-off criteria and large
simulation requirements (Freni et al., 2008; Doherty and Welter,
2010). In any case, the authors have compared the parameter
distributions obtained from GLUE to those obtained in this paper
and found no significant differences (data not shown).

3.14. Model performance — validation

The performance achieved with both models during the vali-
dation period is presented in Table 4 and the results indicate that
the validation results were not very promising, except for RICH and
possibly GR. A plausible explanation for these poor results is that
the climatic patterns observed in the calibration period differed to
that in the validation period (Table 3). As an extreme example, the
mean event maximum runoff rate for the calibration period was
723 L/s at RD, while 165 L/s was registered for the validation period
(Melbourne was experiencing a severe drought during this period).
In addition, the fact that the models were calibrated with a least
squares objective function, which places more emphasis on
medium to high values, the models were not calibrated to represent
the subsequent low runoff rates observed in the validation period.
Different techniques are available to split the data for calibration
and validation (Xu, 1999). Xu (1999) emphasised that models
should be able to reasonably predict the system’s responses from
drier to wetter conditions and vice-versa. Therefore, an extreme
validation period was chosen to truly test the models in terms of
predictive capability in different climatic/hydrological periods.

3.1.5. Practical outcomes for calibration of rainfall/runoff models

Both models were highly sensitive to effective impervious area,
EIF. 1t is therefore important to examine this parameter in more
detail, and derive some suggestions for its reliable assessment
(particularly given the difficulty and often subjectivity in its phys-
ical assessment).

All optimised values of EIF with MUSIC and KAREN were found
to be significantly lower than the total impervious area, TIF as
shown in Fig. 8. Such figure presents the mean and standard
deviation values for each catchment, as obtained from the PDs
(presented in Figs. 5 and 6). Optimised KAREN EIF values exceeded

those obtained from MUSIC with an average ratio of 1.5 (Fig. 8 far
right), probably because KAREN’s runoff is restricted only to
impervious areas, hence compensation occurs to represent the rare
runoff from pervious areas. Moreover, EIF is an example of a cali-
bration parameter which not only depends on catchment and
rainfall characteristics, but if it is used as a model parameter
(whether it may be input or a calibration parameter), its value will
also depend on model structure. When comparing the standard
deviations for EIF-MUSIC with EIF-KAREN a clear difference may be
recognised. The standard deviation of EIF in KAREN simulations is
considerably higher. The reason for this might also be the disregard
of pervious catchment area in KAREN. This is an example of the
contribution to uncertainty introduced by model structure. As in
this study, different sources of uncertainties are not regarded
explicitly, they are reflected by uncertainties in estimating cali-
bration parameters. Therefore, different model structures can lead
to different calibration parameters (although they represent the
same physical background) as uncertainties are, to some extent,
compensated during calibration.

In the present work, a consistent ratio between EIF and TIF was
suggested for the two models (averages of 0.5 and 0.72 for MUSIC
and KAREN, respectively). As seen in Fig. 8, the main outlier in this
trend is RICH catchment, which has a TIF of 74% and EIF around 30%.
However, this difference could be explained by the age of the
catchment and its associated infrastructure; this catchment was
developed primarily in the early 1920s and it is possible that a great
portion of roof runoff is not connected to stormwater sewers, or
that there are major leaks from the stormwater infrastructure into
surrounding soils and groundwater.

Consistent with previous findings in the literature (see Zaghloul,
1983; Zoppou, 2001), it can be concluded, for both models, that the
highly sensitive parameter EIF should be calibrated whenever
possible. If data for model calibration is not available, the use of
satellite images to determine the TIF and a GIS analysis of the
drainage plan are required to assess EIF. For a city or region, the
regressions such as those shown in Fig. 8 for Melbourne could be
developed, for a specific rainfall/runoff model, and then used for
ungauged catchments. However, further verification with a larger
number of catchments is highly advised.

MUSIC was very sensitive to K (the translation factor in the
Muskingum Cunge routing method) for all catchments, and KAREN
was also sensitive to TC (the time of concentration parameter) for
most of the catchments. It is recommended that these parameters
should be calibrated whenever possible in order to maximize the
performance of the flow routing method.

MUSIC was insensitive to some of the dry weather associated
parameters for all catchments (coeff, sq, Sini and gw). Stormwater
models mainly need impervious area related parameters because
that is where most of runoff occurs in urban catchments. Similarly,
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Fig. 8. Correlation between the total impervious fraction (TIF) and the calibrated effective impervious fraction (EIF).
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KAREN was insensitive to its evapotranspiration, ev parameter.
Although this indicates that rainfall events, for these studied sites,
could be regarded independently instead of continuous simulation,
more complex systems will still demand continuous simulation.

3.1.6. Modelling uncertainty

The total uncertainty was estimated based on the error term,
which was estimated in function of the modelled flows. Fig. 9
presents sample hydrographs during the calibration (left) and
validation (right) period, at the RICH site with MUSIC (top) and
KAREN (bottom). The events shown in these figures illustrate how
the calibration period was characterised for higher volumes than
the validation period (as Table 3 shows the calibration period
included far larger events than the validation period).

It was identified that some observations were not covered in
the parameter uncertainty bounds; which suggest that more
accurate predictions might be obtained if the model structure and/
or the measured data is improved. Moreover, the large total
uncertainty bounds indicate that the uncertainty due to other
sources than parameter uncertainty (e.g. measured input data
including spatial rainfall distribution, model formulation and
assumptions and selected objective function) are significant and
cannot be neglected.

Table 5

Efficiencies of water quality models: Eyes, is the best E obtained during the entire MCMC procedure; Epean is the mean E derived from all the accepted parameter

3.2. Water quality modelling

3.2.1. Model performance — calibration

Table 5 summarises all efficiencies of the two water quality models
tested for both TSS and TN for all five catchments. Both models per-
formed poorly, with the 4-parameter build-up/wash-off model per-
forming slightly better than the 2-parameter regression model.

In general no trend between performance of water quality
models and performance of the runoff modelling was found. While
the best rainfall/runoff E was achieved for RICH (Emusic = 0.81,
Exaren = 0.75), E for TSS for build-up/wash-off model was only 0.12.
For the NW catchment with the lowest E for runoff (Eyusic = 0.49,
Exagen = 0.60), the E for TSS was the highest (Epuild-upwash-off = 0.46).

Nash Sutcliffe efficiencies for TN modelling were similar to TSS,
with best values around O for the catchments GR and RICH and slightly
better results for SB and NW and build-up/wash-off model (Table 5).

Fig. 10(a) shows examples of scatter plots of calibration param-
eters for GR as an example for this catchment but these parameters
behave similarly for the other parameters and catchments. Cali-
bration parameters for the build-up/wash-off model do not corre-
late, which is contrary to past findings by Kanso et al. (2006). They
also used the Metropolis algorithm, however their results were
based on just 11 events on a small street catchment (160 m?).

sets.

Build-up/wash-off Model

Regression Model

Catchment TSS ™ TSS ™

Ebest Emean Epest Emean Ebest Emean Ebest Emean
Gilby Rd (GR) 0.07 —0.51 0.04 —245 0.093 0.010 —0.009 —0.204
Richmond (RICH) 0.12 -0.64 0.09 -1.06 0.043 0.015 —-0.109 —0.265
Ruffeys Lake, Doncaster (RD) 022 -0.37 - - —-0.003 -0.032 - -
Shepherds Bush (SB) 0.06 —0.56 0.26 —153 0.252 0235 -0.027 —-0.257
Narre Warren (NW) 0.46 -1.72 0.36 -1.03 0.031 0.013 —0.001 —-0.157
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Fig. 10. Correlations between water quality model parameters: (a) Sample parameters for the build-up/wash-off model for TSS at GR, (b) Sample catchments for the simple

regression model for TSS.

The high correlation between parameters of the regression
model further complicated the calibration process (Fig. 10(b)), and
illustrated the ‘ill-posed’ nature of this model. For example,
R? between a and b ranged from 0.43 (RD) and 0.93 (RICH) for TSS
indicating that different combinations of a and b can lead to the
same results. Correlations were not very strong for TN, in which
b values were generally close to zero.

3.2.2. Parameter sensitivity

3.2.2.1. Build-up/wash-off model. For TSS, the distributions obtained
for the build-up/wash-off model did not indicate one clear peak
while giving multiple local optima (Fig. 11-top). Several peaks in
these distributions suggest that different combinations of parame-
ters are possible, confirming the problems of equifinality (Beven
and Freer, 2001) that may plague urban stormwater quality models.
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Fig. 11. Histograms for the build-up/wash-off model parameters, for TSS (top) and TN (bottom) (units according to Table 2).
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Fig. 12. Histograms for the regression water quality model parameters.

It is interesting to note that there is no link between parameter
sensitivity and maximum calibration performance (see Table 5 and
Fig. 11). Whilst NW’s calibration parameters seemed to be the least
sensitive of all the sites, it achieved the highest efficiency E. The
effect of these less sensitive parameters is also reflected in the
mean E of NW which is the lowest of all the catchments, although
the best E at this site is the highest. This indicates problems of the
MCMC simulation of “rejecting” model results with low likelihood
and might be related to a complex response surface of the likeli-
hood function of that nonlinear dynamic model.

Contrary to TSS, distributions of calibration parameters for
mainly dissolved TN (Fig. 11 — bottom) show clearer peaks for three
of four calibration parameters. Expected values for Mp range mainly
from 10 to 30 g/m?, k, ranges from 5 to 50 (SB) and kj is close to
zero with values lower than 1. Only k; is insensitive for all catch-
ments. This is interesting as the results of the rainfall/runoff
modelling are also insensitive to the parameter ev, which is also
pertinent only during dry periods. This indicates that modelling of
surface runoff can be done on independent events and a continuous
simulation might not be necessary. This has also been suggested
previously in the literature for stormwater quality models (Duncan,
1999; Vaze and Chiew, 2003).

3.2.2.2. Simple water quality regression model. Contrary to the
build-up/wash-off model, the simple regression model was sensi-
tive to both parameters for the two pollutants. The global minimum
is clearly defined by the peaks in the histograms for both TSS and
TN (Fig. 12). However, the models failed during calibration (Table 5),
suggesting that the model structure requires improvement. The
discussion below explores the improvements required.

The most probable values for a obtained during the TSS calibra-
tion ranged from 20 (GR) to 100 (RD) (Fig. 12 — left). The change in
a illustrates the impact of TSS sources between sites on the model
calibration. The minimumvalue achieved for GR may be explained by
the fact that this is essentially a commercial area thus generating
lower TSS concentrations than areas where residential activities are
taken place (Duncan, 1999). The maximum values obtained for RD
suggest the presence of wastewater cross connections and/or some
wastewater leakage and infiltration into the stormwater system. For
TN, the optimum values for a were between 1.3 (GR) and 3.5 (NW).
There is a clear increase in a values with perviousness which is
a rather interesting finding if compared to Tong and Chen (2002).
They found that the total amount of nitrogen was higher in imper-
vious urban areas than previous ones. The contrast between findings
is possibly explained by the fact that Tong and Chen (2002) calibrated
their water quality model against fluxes and therefore areas with
higher runoff will produce higher loads.

Optimum values for b, for TSS modelling, varied from 0.10 (RD
and NW) to 0.79(SB), indicating the effect of the kineticenergy of the
rainfall for detaching TSS from the surface. Very low value (around
zero) was obtained for RD hence the power function would almost
always result in value close to 1 and that the model is not using
runoff as a predictive variable. From this result, it may be speculated
that in less urbanised areas, the relatively denser vegetation may
intercept the rainfall affecting the process more than kinetic energy
of the rainfall on the surface. In addition, the outlier low value of
aand high value of b for SB indicated some parameter compensation
in the model. Most likely values of b were around 0.001 for all
catchments during the model calibration for TN. Once again, values
of b near zero indicate that TN modelling is mainly led by parameter
a, suggesting that TN concentrations are independent of the kinetic
energy of the rainfall and highly dependent on the sources of such
pollutant. It also suggests that TN does not vary much at these
catchments, as can be seen by comparing b to the coefficient of
variation (CV) values found in Table 3.

The average CV value for TSS concentrations was 167%, while for
TN it was 86%. The higher TSS CV values might explain the higher
TSS b values and vice-versa for TN.

4. Conclusions

Two rainfall-runoff models were compared; MUSIC, which is
a catchment model that simulates runoff from both impervious and
pervious areas, as well as detention of flow in pipes, and the simple
KAREN model that simulates only runoff from impervious surfaces
using the time-area method. It was found that the effective
impervious fraction, EIF, is the most important parameter in runoff
prediction from both models. EIF should be calibrated whenever
possible. It was clear that rainfall-runoff model MUSIC is not very
sensitive to its pervious area parameters when applied to urbanised
catchments. However, if the impervious area fraction is lower than
30%, the pervious area parameters (e.g. soil storage and field
capacity) become important. In simple models where pervious
areas of a catchment are not simulated (like KAREN), this is
compensated by an increase in EIF. This is a good example of the
impact of model structure uncertainties and exemplifies that cali-
brated parameters estimated for one model cannot be transferred
to other models without a new model calibration, even if they
represent the same physical background.

MUSIC was very sensitive to the translation factor in the
Muskingum Cunge routing method (K) for all catchments, and
KAREN was sensitive to the time of concentration parameter (TC)
for most of the catchments; these parameters representing similar
processes also require special consideration. It is recommended
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that K should be calibrated whenever possible in order to maximize
the performance of the flow routing method. TC was an important
parameter in the case of the three most impervious catchments.

Both models were insensitive to a few dry weather related
parameters for all catchments. Although this indicates that rainfall
events could be regarded independently instead of continuous
simulation, more complex systems will still demand continuous
simulation.

It was verified that the residuals between measured and
modelled data, for all models and catchments, were not satisfying
the normality assumption required by the likelihood measure used
in the MCMC method. A Box-Cox transformation of both the
measured and modelled flows ensured that the assumption of
normality in the residuals was satisfied. However, this data trans-
formation also significantly changed the objective function from
one which emphasised peak flows (i.e. least squares) to another
which considered all parts of the hydrograph similarly. This was not
advantageous, especially when the objective function was chosen
for the specified modelling purpose. It was concluded that, for the
procedure outlined here, it is not possible to obtain normality in the
residuals when trying to maintain the chosen objective function.
However, we also advise that more work is needed to verify these
findings and to develop a tool to assess uncertainties which are
flexible, accurate and efficient.

In terms of total uncertainty, with the adopted approach,
a number of observations were not covered in the parameter
uncertainty bounds; which suggest that more accurate predictions
might be obtained if the model and/or the measured data are
improved. Moreover, the large total uncertainty bounds indicates
that the uncertainty due to other sources than parameter uncer-
tainty (e.g. input measured data, model formulation and assump-
tions and selected objective function) are significant and cannot be
neglected.

The most widely used water quality models, the build-up/wash-
off and a simple flow regression model, were tested. Even with the
robust calibration and parameter sensitivity approach used, it is
clear that these models poorly represent reality and have a high
level of uncertainty. It was concluded that build-up wash-off model
parameters are not very sensitive. However, it was surprising to
notice that they are not cross-correlated, which conflicts with
previous findings. The two parameters of the simple model pre-
dicting pollutant concentration in a timestep as a function of runoff
(which totally failed to calibrate) were very sensitive and had high
levels of cross-correlation. This latter observation clearly indicates
that the model is ‘ill-posed’. In general, the presently most often
applied water quality models cannot represent complex reality of
pollution generation and therefore, new models should be
developed.

Acknowledgements

The authors would like to acknowledge eWater CRC and CAPES
for the scholarship provided and hydro-IT GmbH for software
support.

References

Achleitner, S., Moderl, M., Rauch, W., 2007. CITY DRAIN® — an open source approach
for simulation of integrated urban drainage systems. Environmental Modelling
& Software 22 (8), 1184—1195.

Afonso, P, da Conceicdo Cunha, M., 2002. Assessing parameter identifiability of
activated sludge model number 1. Journal of Environmental Engineering 128
(8), 748—754.

Bates, B.C., Campbell, E.P,, 2001. A Markov Chain Monte Carlo scheme for parameter
estimation and inference in conceptual rainfall-runoff modeling. Water
Resources Research 37 (4), 937—947.

Beck, M.B., 1987. Water quality modeling: a review of the analysis of uncertainty.
Water Resources Research 23 (8), 1393—-1442.

Beven, K., Binley, A, 1992. The future of distributed models: model calibration and
uncertainty prediction. Hydrological Processes 6 (3), 279-298.

Beven, K., Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation
in mechanistic modelling of complex environmental systems using the GLUE
methodology. Journal of Hydrology 246, 11-29.

Beven, KJ., Smith, PJ., Freer, .E., 2008. So just why would a modeller choose to be
incoherent? Journal of Hydrology 354 (1—4), 15—32.

Bicknell, BR,, Imhoff, ].C,, Kittle, ]J.L, Jobes, TH., Donigian, A.S., 2001. HSPF User’s
Manual. Aqua Terra Consultants, Mountain View, California.

Box, GEP, Cox, DR, 1964. An analysis of transformations. Journal of the Royal
Statistical Society Series B 26 (2), 211—252.

Chakravarti, L., Roy, 1967. Handbook of Methods of Applied Statistics. John Wiley
and Sons, New York.

Chiew, FH.S., McMahon, TA, 1997. Modelling daily runoff and pollutant load from
urban catchments. Water (Journal of the Australian Water and Wastewater
Association), 16—17.

Chiew, FH.S.,, McMahon, T.A., 1999. Modelling runoff and diffuse pollution loads in
urban areas. Water Science & Technology 39 (12), 214—248.

Cohn, T.A, Caulder, D.L, Gilroy, EJ., Zynjuk, L.D., Summers, R.M., 1992. The validity
of a simple statistical model for estimating fluvial constituent loads: an
empirical study involving nutrient loads entering Chesapeake Bay. Water
Resources Research 28 (9), 2353-2363.

CRCCH, 2005. MUSIC Version3-User Guide. Cooperative Research Centre for
Catchment Hydrology.

Deletic, A., Dotto, CB.S., Fletcher, TD., McCarthy, D.T., Bertrand-Krajewski, J.,
Rauch, W, Kleidorfer, M., Freni, G., Mannina, G., Tait, S., 2009. Defining uncer-
tainties in modelling of urban drainage systems. In: Proceedings of the 8th
International Conference on Urban Drainage Modelling Jointly with the 2nd
International Conference on Rainwater Harvesting and Management, Tokyo,
Japan.

DHI, 2002. MOUSE Surface Runoff Models Reference Manual. D. Software, Horsolm,
Denmark.

Doherty, ., 2003. MICA — Model-Independent Markov Chain Monte Carlo Analysis
— User Manual, Watermark Numerical Computing. U.S. EPA.

Doherty, J., Welter, D., 2010. A short exploration of structural noise. Water Resources
Research 46, W05525. doi: 10.1029/2009WR008377.

Dotto, C.BS., Deletic, A, Fletcher, T.D., McCarthy, D.T., 2009. Parameter sensitivity
analysis of stormwater models. In: The 6th International Water Sensitive Urban
Design Conference and 3rd International Hydropolis. Perth, Western Australia.

Duncan, H.P, 1999. Urban Stormwater Quality: a Statistical Overview. Cooperative
Research Centre for Catchment Hydrology, Melbourne, Australia, 80 pp.

Egodawatta, P, Thomas, E., Goonetilleke, A., 2007. Mathematical interpretation of
pollutant wash-off from urban road surfaces using simulated rainfall. Water
Research 41 (13), 3025—-3031.

Elliott, AH., Trowsdale, S.A,, 2007. A review of models for low impact urban
stormwater drainage. Environmental Modelling & Software 22 (3), 394—405.

Feyen, L., Vrugt, JA, O Nualldin, B., van der Knijff, J., De Roo, A., 2007. Parameter
optimisation and uncertainty assessment for large-scale streamflow simulation
with the LISFLOOD model. Journal of Hydrology 332 (3—4), 276—289.

Francey, M., Fletcher, T.D., Deletic, A, Duncan, H., 2010. New insights into water
quality of urban stormwater in South Eastern Australia. Journal of Environ-
mental Engineering 136 (4), 381-390.

Freni, G., Mannina, G., Viviani, G., 2008. Uncertainty in urban stormwater quality
modelling: the effect of acceptability threshold in the GLUE methodology.
Water Research 42 (8—9), 2061-2072.

Freni, G, Mannina, G., Viviani, G., 2009. Urban runoff modelling uncertainty:
comparison among Bayesian and pseudo-Bayesian method. Environmental
Modelling & Software 24 (9), 1100—1111.

Gallagher, M., Doherty, J., 2007a. Parameter estimation and uncertainty analysis for
a watershed model. Environmental Modelling & Software 22 (7), 1000—1020.

Gallagher, M., Doherty, J., 2007b. Parameter interdependence and uncertainty
induced by lumping in a hydrologic model. Water Resources Research 43.
doi:10.1029/2006 WR005347 W05421.

Gelman, A, Carlin, J.B,, Stern, H.S., Rubin, D.B.,, 1995. Bayesian Data Analysis.
Chapman and Hall, New York.

Gilks, W.R,, Richardson, S., Spiegelhalter, DJ., 1996. Markov Chain Monte Carlo in
Practice. Chapman and Hall, New York.

Hastings, WK, 1970. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57, 97—-109.

INSA/SOGREAH, 1999. CANOE: Manuel D'utilisation. ALISON, INSA LYON, Villeur-
banne, France.

Kanso, A., Chebbo, G., Tassin, B., 2005a. Stormwater quality modelling in combined
sewers: calibration and uncertainties analysis. Water Science & Technology
52 (3), 63—71.

Kanso, A., Chebbo, G., Tassin, B., 2006. Application of MCMC-GSA model calibration
method to urban runoff quality modeling. Reliability Engineering & System
Safety 91 (10—11), 1398—1405.

Kanso, A, Tassin, B., Chebbo, G., 2005b. A benchmark methodology for managing
uncertainties in urban runoff quality models. Water Science & Technology
51 (2), 163—170.

Kuczera, G., Parent, E., 1998. Monte Carlo assessment of parameter uncertainty in
conceptual catchment models: the Metropolis algorithm. Journal of Hydrology
211 (1-4), 69—85.

154



C.BS. Dotto et al. / Environmental Modelling & Software 26 (2011) 1225—1239

Lindenschmidt, K.E., 2006. The effect of complexity on parameter sensitivity and model
uncertainty in river water quality modelling. Ecological Modelling 190, 72—86.

Makowski, D., Wallach, D., Tremblay, M., 2002. Using a Bayesian approach to
parameter estimation; comparison of the GLUE and MCMC methods. Agrono-
mie 22 (81), 191-203.

McCarthy, D.T., 2008. Modelling Microorganisms in Urban Stormwater. Civil Engi-
neering. PhD Thesis: 488. Monash University, Melbourne, Australia.

McCarthy, D.T., Deletic, A., Mitchell, V.G., Fletcher, T.D., Diaper, C, 2008. Uncer-
tainties in stormwater E. coli levels. Water Research 42 (6—7), 1812—1824.
Montanari, A., 2005. Large sample behaviours of the generalized likelihood
uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff

simulations. Water Resources Research 41 (8), W08406.

Nash, J.E., Sutcliffe, ].V., 1970. River flow forecasting through conceptual models part
1 — a discussion of principles. Journal of Hydrology 10 (3), 282—290.

Palmstrom, N., Walker, WW],, 1990. P8 Urban Catchment Model: User’s Guide.
Program Documentation, and Evaluation of Existing Models, Design Concepts,
and Hunt-Potowomut Data Inventory, T. N. B. P. R. N. NBP-90-50.

Rauch, W, Kinzel, H.,, 2007. KAREN — User Manual, Hydro-IT GmbH Innsbruck.
(in German).

Rossman, LA, 2008. Storm Water Management Model — User’s Manual Version 5.0.
National Risk Management Research Laboratory — U.S. Environmental Protec-
tion Agency, Cincinnati, Ohio.

Sartor, ].D., Boyd, G.B.,, 1972. Water Pollution Aspects of Street Surface Contami-
nants. Rep. EPA-R2-72-081. U.S. Environ. Prot. Agency, Washington, DC.

Sartor, ].D., Boyd, G.B., Agardy, FJ., 1974. Water pollution aspects of street surface
contaminants. Journal of the Water Pollution Control Federation 46 (3),
458—467.

Sherman, LK., 1932. Stream-flow from rainfall by the unit-Graph method. Engi-
neering News-Record 108, 501-505.

1239

Thierfelder, T, 1999. Empirical/fstatistical modeling of water quality in dimictic
glacial/boreal lakes. Journal of Hydrology 220 (3—4), 186—208.

Thyer, M.A., Renard, B., Kavetski, D.N., Kuczera, G.A., Srikanthan, S., 2007. Bayesian
total error analysis for hydrological models: preliminary evaluation using
multi-site catchment rainfall data. In: Proceedings of the MODSIMO7. Interna-
tional Congress on Modelling and Simulation, Christchurch, New Zealand.

Tong, ST.Y., Chen, W, 2002. Modeling the relationship between land use and
surface water quality. Journal of Environmental Management 66 (4), 377—393.

Varella, H, Guérif, M., Buis, S., 2010. Global sensitivity analysis measures the quality
of parameter estimation: the case of soil parameters and a crop model. Envi-
ronmental Modelling & Software 25 (3), 310-319.

Vaze, ]., Chiew, FH.S., 2003. Comparative evaluation of urban storm water quality
models. Water Resources Research 39 (10), 1280.

Wallingford Software, 2009. Infoworks €S Help. Wallingford Software, United
Kingdom.

XP-SOFTWARE, 1999. XP-AQUALM — Technical Description. XP Software, Australia.

Xu, C-y., 1999. Operational testing of a water balance model for predicting climate
change impacts. Agricultural and Forest Meteorology 98—99, 295—304.

Yang, J., Reichert, P, Abbaspour, K.C,, Xia, ], Yang, H., 2008. Comparing uncertainty
analysis techniques for a SWAT application to the Chaohe Basin in China.
Journal of Hydrology 358 (1-2), 1-23.

Yapo, P.O.,, Gupta, HV., Sorooshian, S., 1996. Automatic calibration of conceptual
rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology 181
(1-4), 23-48.

Zaghloul, N.A., 1983. Sensitivity analysis of the SWMM runoff-transport parameters
and the effects of catchment discretisation. Advances in Water Resources 6 (4),
214-223.

Zoppou, C., 2001. Review of urban storm water models. Environmental Modelling &
Software 16 (3), 195—231.

155



5.5 Conclusions
This chapter presented three studies that explored parameter calibration, model sensitivity and the
resulting predictive uncertainties in urban rainfall runoff and pollution generation models with

different level of complexities.

It was found that the effective impervious fraction is the most important parameter in runoff
prediction. This was followed by the parameters related to the time of concentration. Therefore,
such parameters should be calibrated whenever possible. The results showed that MUSIC
rainfall/runoff model was not very sensitive to its pervious area parameters when applied to highly
urbanised catchments, in which pervious area runoff and baseflow are almost inexistent and that
some soil related parameters could be fixed to any value between the obtained posterior
distribution ranges. So it can be argued that the model can be simplified when applied for highly

urbanised catchments.

In addition, results suggested that the pervious area parameters in MUSIC (e.g. soil storage and
field capacity) are in fact “calibration parameters” and ate not really related to physical
characteristics of the catchment. Whilst some of these parameters are strongly related to the
catchment’s effective impervious fraction, further work is required in catchments with significant
pervious flows to understand their soil profile characteristics. It was suggested that such results can
be used for modelling catchments with similar land use, climatic characteristics and hydrological
behaviour. It is advised however, that MUSIC should be calibrated against local flow whenever

data is available.

The water quality models were shown to be ‘ill-posed’ and unable to reproduce the pollutant
processes in the catchment. While the water quality models were sensitive to all wet weather related
parameters, the build-up/wash-off model was not sensitive to the dry weather related parameters.
In general, the water quality models presented a high level of uncertainty. However, the outcomes
provided useful information for the improvement of existing models and also offered insights for
the development of new model formulations. For example, it is recommended that future efforts
be put into the development of models which use routed runoff or rainfall intensities, rather than
the models which use ‘unrouted’ variables. Whilst routing essentially introduces extra model

parameters, the temporal accuracy gained is likely to outweigh the calibration costs.

Results from the uncertainty analysis showed that some observations were not covered in the
parameter uncertainty bounds; which suggest that more accurate predictions might be obtained if
the model structure and/or the measured data were improved. Motreover, the large total
uncertainty bounds indicates that the uncertainty due to other sources than parameter uncertainty

(e.g. measured input data including spatial rainfall distribution, model formulation and
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assumptions and selected objective function) are significant and cannot be neglected. This topic is

explored in Chapter 7.

Also as a result of this work, it was verified that the underlying assumption of the applied
uncertainty analysis method (about distribution of the model errors) was not met, and that the
method applied to verify the assumption significantly influenced the sensitivity of the model

parameters. Further investigation about this is in Chapter 6.
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6.1 Introduction

Bayesian approaches require the use of likelihood functions which estimate the model’s parameters
given the measured and modelled datasets. This process often demands a number of assumptions
be met, including normally distributed, non-correlated and heteroscedastic residuals (Schoups and
Vrugt, 2010). However, most studies do not check these required assumptions (Larssen et al., 2007;
Varella et al., 2010). In the cases where they are checked, it is commonly found that these
assumptions are not met and are still presented ‘as is’. In the literature, a transformation of
measured and modelled data (e.g. log or Box-Cox transformation) is used by some modellers to
ensure that the assumption of normally distributed residuals is met (Gallagher and Doherty, 2007;
Yang et al., 2008). However, as presented in Section 5.4, all transformation methods change the
content of the observations (Beven et al.,, 2008), which then influences the emphasis on various
parts of the hydrograph (or pollutograph). This is sometimes not desired if the modelling purpose
is to focus on specific parts of the dataset (e.g. flood prediction is linked with peak flows, which are
deemphasised when using Box-Cox transformations) (Doherty and Welter, 2010). Furthermore, all
observed data have uncertainty, and this should be taken into account in the likelihood function so
that the parameters are estimated appropriately; indeed, it is important that the function places
more emphasis on data which has lower uncertainty. Weighting strategies can be used to re-adjust
how the likelihood function emphasises various parts of the dataset to (1) consider measured data
uncertainty and (2) compensate for the Box-Cox transformation which may have adjusted the

emphasis in an undesirable way.

This context of data transformation to verify the normality assumption of the model residuals and
its consequence in the modelling exercise has not been explored in the urban drainage field. This
chapter focuses on assessing the impacts of verifying the assumed structure of model errors
(here the assumption that the model residuals follow a normal distribution) on model
parameter sensitivity and associated predictive uncertainty of stormwater models, and it

also explores an alternative strategy to mitigate such impacts.

This study addresses the following key research questions and hypotheses:

*  What are the implications with respect to model efficiency, parameter sensitivity and
predictive uncertainty of verifying the assumption that the model residuals follow a normal

distribution?

0 Verifying the undetlying assumption of the sensitivity and uncertainty analysis
method will result in the most comprehensive understanding of the model’s

uncertainty.

* To what extent can a weighting strategy used to account for the measured data uncertainty
also compensate for the impacts caused by the data transformation methods used to

ensure normally distributed residuals?
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0 Box-Cox transformation will reduce the emphasis on peak measured data, yet
these peaks (i.e. peak flows for rainfall/runoff models and peak concentrations for
water quality models) are considered important in urban drainage modelling
because these pose the highest risks. However, at the same time, these peak values
often have the lowest relative uncertainty (see McCarthy et al., 2008). As such, it is
hypothesised that a weighting strategy used to account for measurement
uncertainty in the likelihood function will simultaneously reduce the influence of

the Box-Cox transformation process.

This investigation has been collated into one journal paper, which mainly investigated the impacts
of verifying the assumption of normally distributed residuals on parameter sensitivity and its
associated predictive uncertainty in two urban rainfall-runoff models. The paper was initially
presented at the 9% International Conference on Urban Drainage in Belgrade, Serbia, in 2012 and was
subsequently selected for publication in Water Science and Technology. The manuscript, Uncertainty
analysis in urban drainage modelling: should we break onr back _for normally distributed residuals?, is currently in

press and forms the body of text of Section 6.2.
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6.2 Uncertainty analysis in urban drainage modelling: should we break our
back for normally distributed residuals?
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Uncertainty analysis in urban drainage modelling: should
we break our back for normally distributed residuals?
C. B. S. Dotto, A. Deletic and D. T. McCarthy

ABSTRACT
This study presents results on the assessment of the application of a Bayesian approach to evaluate ﬁ ;L';mw (corresponding auithor)
the sensitivity and uncertainty associated with urban rainfall runoff models. The software MICA was D. T. McCarthy
R R L. ) ; CRC for Water Sensitive Cities & Monash Water for
adopted, in which the prior information about the parameters is updated to generate the parameter Liveability,

Department of Civil Engineering,
Monash University,

Victoria 3800,

Australia

Posterior Distribution. The likelihood function adopted in MICA assumes that the residuals between
the measured and modelled values have a normal distribution. This is a trait of many uncertainty/
sensitivity procedures. This study compares the results from three different scenarios: (i) when
normality of the residuals was checked but if they were not normal then nothing was done
(unverified); (i) normality assumption was checked, verified (using data transformations) and a
weighting strategy was used that gives more importance to high flows; and, (iii) hormality
assumption was checked and verified, but no weights were applied. The modelling implications of
such scenarios were analysed in terms of model efficiency, sensitivity and uncertainty assessment.
The overall results indicated that verifying the normality assumption required the models to fit a
wider portion of the hydrograph, allowing a more detailed inspection of parameters and processes
simulated in both models. Such outcome provided important information about the advantages and
limitations of the models’ structure.

Key words | Bayesian approach, normality assumption, uncertainty analysis, urban drainage models

INTRODUCTION

Although all models have errors, they can still provide valu-
able information as long as these errors are understood.
Uncertainty analysis techniques are powerful tools because
they provide information about the model sensitivity while
estimating the confidence intervals around the model’s out-
puts. A number of methods have now been tested to evaluate
urban drainage models, nevertheless they each have their
inherent limitations and disadvantages (Dotto et al. 2012).
For example, the GLUE methodology (Beven & Binley
1992) is easy to implement, however the method requires a
large number of Monte Carlo simulations and uses a subjec-
tive acceptance threshold to distinguish behavioural from
non-behavioural simulations. While Bayesian approaches
are not limited by this acceptance threshold, the user
needs to understand the distribution of the model errors
and verify certain assumptions against this error structure.
Indeed, it has been noted that a misspecification of the
error structure can lead to an erroneous quantification of
the model prediction uncertainty when using these methods

doi: 10.2166/wst.2013.360

(Beven et al. 2008). Yet, the robustness of the Bayesian
approach compared to other methods is apparent from
several studies (e.g. Bates & Campbell 2001).

Many Bayesian approaches assume that the model
errors (or residuals between the measured and modelled
values) are normally distributed. However, this assumption
is often not checked; this is the case for both scientific litera-
ture (e.g. Kanso ef al. 2006; Varella ef al. 2010) and modelling
practitioners, who are often not fully acquainted with uncer-
tainty procedures. In the cases where these assumptions are
checked, it is commonly found that the error does not follow
any specific distribution and the results are still presented ‘as
is’ (Dotto et al. 201). In the literature, a transformation of
measured and modelled data (e.g. log or Box-Cox trans-
formation) is used by some modellers to ensure they meet
the assumptions (Gallagher & Doherty 2007; Yang et al.
2008). However, it is noted that all transformation methods
will intrinsically change the implied information content of
the observations (Beven et al. 2008). For example, in an
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urban drainage model, using a log or Box—Cox transform-
ation to meet normality of residuals will place more
emphasis on different parts of the hydrograph (i.e. lower
flow rates), which in turn significantly influences the sensi-
tivity of the model parameters (Yang et al. 2008; Dotto
et al. 20m).

In summary, previous studies have identified that most
of modelling applications do not result in normally distribu-
ted residuals (e.g. Doherty & Welter 2010) and that the
common methods used to adjust the simulation to match
the distribution of the model errors significantly influences
the sensitivity of the model parameters (Yang ef al. 2008;
Dotto et al. 2011). However, the impacts of verifying the nor-
mality assumption on the model sensitivity and associated
parameter uncertainty are not understood. This study inves-
tigates such impacts with respect to urban rainfall runoff
models.

METHODOLOGY
Models and data

MUSIC (eWater CRC 2012). MUSIC requires the catchment
area and both rainfall and evapotranspiration time series as
input data to continuously simulate flows from urban areas.
The model has 13 calibration parameters related to imper-
vious and pervious areas, and a groundwater store. Flows
from impervious and pervious areas are modelled separ-
ately, with impervious area runoff being primarily as a
function of the proportion of catchment imperviousness
(EIF), with an initial loss term (Thres). Runoff from the per-
vious areas will only occur for large or intense storm
events, when the pervious soil storage is either saturated
or its infiltration rate is exceeded. The pervious area
runoff related parameters are mainly described by:
(1) soil storage capacities, the maximum soil storage
(SMax) and the initial storage level (SIxi), (2) field capacity
(fc), and (3) infiltration factors (coeff and sg). Groundwater
is modelled as a store which is recharged when the level in
the pervious soil store exceeds the field capacity. The rate
of this recharge (rfac) is a set percentage of the water in
the soil store (gw). This store is emptied via baseflow,
which is modelled as a percentage of the water within
the groundwater store, also a model parameter, bfac. In a
similar way, deep seepage (dseep) is set as a percentage
of the groundwater store. The Muskingum Cunge routing
method is applied for the routing of flows through the

drainage system; the translation (K) and the attenuation
(6) factors require calibration.

KAREN (Rauch & Kinzel 2007). KAREN is a simple
linear reservoir model, which requires the catchment area
and a rainfall time series as inputs to generate a series of
flows originating from impervious areas only. The effective
impervious area of the catchment is calibrated as the EIF
parameter. Runoff from impervious areas occurs after a
rainfall threshold has been exceeded. This threshold is
represented by the initial loss parameter (/i) and it is mod-
elled as a single reservoir, similar to that found in MUSIC.
While MUSIC’s impervious runoff threshold is calculated
and reset on a daily basis, KAREN’s initial loss is calculated
continuously and fills during rainfall and is drained during
dry weather by a permanent loss calibration parameter
(ev). Surface runoff volume is calculated using the linear
time-area method, which is similar to the unit hydrograph
method. At the beginning of a rainfall event, the effective
impervious area is increased according to the flow time on
the catchment surface until the whole catchment contrib-
utes to runoff after time of concentration (another
calibration parameter TOC).

Dataset. The data used in this study consist of 2 years of
continuous flow and rainfall measurements (in 6 minutes
timestep) from an urban catchment in the inner eastern sub-
urbs of Melbourne, Australia. The catchment is drained by a
separate stormwater system, with measurements taken
within the outlet pipe. The site has a total area of 89 ha,
the land use is high-density residential with a total imper-
viousness of 74% and an average slope of less than 0.1%.
The event total rainfall ranges from 1.2 to 40.8 mm, and
the mean maximum event runoff rate is 547 L/s.

Model sensitivity and uncertainty analysis

The parameter posterior distributions (PDs) of the model
parameters were generated with the software MICA (Doh-
erty 2003). MICA undertakes a Markov Chain Monte
Carlo (MCMC) analysis with the Metropolis—-Hastings algor-
ithm (Hastings 1970) by sampling mainly in areas of high
likelihood, but also allowing exploration of low likelihood
areas. The likelihood function adopted in MICA is least
square based and assumes that the residuals between the
measured and modelled values have a normal distribution
(e.g. Gilks ef al. 1996). The performance of the model was
evaluated using the Nash-Sutcliffe efficiency criterion (E)
(Nash & Sutcliffe 1970) corresponding to the minimum
least square value achieved with MICA. Both the least
square likelihood function and E place emphasis on
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medium/large values, which are often the goals for stormwater
management practices (i.c. high volumes - e.g Chiew &
McMahon 1999). Three scenarios were assessed to
compare the implications of verifying normality assumption
(or not) in the model sensitivity and its associated uncer-
tainty: (i) normality of the residuals was checked but not
verified (‘Unverified’); (ii) normality assumption was verified
and a weighting strategy that gives more importance to high
flows in the likelihood function was applied (‘Verified?’);
and, (iii) normality assumption was verified, but no weights
were applied to the data (‘Verified2’).

For the unverified scenario (‘Unverified’), while normal-
ity was checked, both measured calibration and modelled
flow datasets were used without modification (as in Dotto
et al. (2om)). For the verified scenarios, the measured calib-
ration and modelled data series were transformed using a
Box-Cox transformation (Box & Cox 1964) to achieve
homoscedascity and ensure the residuals are normality
distributed (through Kolmogorov-Smirnov test). The para-
meters for the Box-Cox transformation (please refer to
Box & Cox (1964) detailed description) were set to values
determined in preliminary calibration stage. However, a
by-product of this transformation is that the used likelihood
function now provides more emphasis to lower values,
which significantly influences the sensitivity of the model
parameters (Yang ef al. 2008; Dotto ef al. 2011). To overcome
this issue, a weighting strategy which gives higher flows
more importance in the likelihood function (as suggested
by Gallagher & Doherty 2007) was applied (‘Verified?’).
The weights were computed based on the inverse of the
relative uncertainty in the measured data (i.e. the relative
error in the measured flow rates calculated using the Law
of Propagation of Uncertainties; see McCarthy et al. (2008)
for more information). In order to analyse the impacts of
data transformation alone (i.e. without a weighting strategy)
we tested a third scenario in which no weights were applied
to the data (‘Verified2’).

Probabilistic predictions of the hydrograph were
obtained by estimating the prediction uncertainty originated
only from parameter uncertainty and from parameter plus
other sources. The percentage of observations covered
within the bounds was also calculated.

Parameter uncertainties. For both scenarios, the predic-
tive uncertainty resulting only from parameter uncertainty
was obtained by running the models with 1,500 parameter
sets sampled from the parameter PDs as adopted by Feyen
et al. (2007) and Dotto et al. (2o1). For the verified scenarios,
the residuals between the transformed measured and mod-
elled for each of the 1,500 datasets were computed and

inspected to ensure that the data transformation was effec-
tive and that the parameters’ PDs properly represent the
parameter uncertainty. In addition, a modified version of the
Average Relative Interval Length (ARIL as per Vezzaro &
Mikkelsen (2012)) was used to compare the parameter uncer-
tainty results and is the relative width of the uncertainty
bounds:

N

. Limitypper; —
ARIL = Median 1M pper, 9
i=1

LimitLuwer,t

1

where, Limitypper; and Limit;ower; are respectively, the
upper and the lower boundary values of the 95% confidence
interval; Q; is the ith modelled value with the most likely
parameter set; and, N is the number of timesteps.

Total uncertainties. The total uncertainty (i.e. parameter
and all other sources) was estimated according to the
method proposed by Dotto et al. (201) for the Unverified
scenario, while the methodology adopted by Feyen et al.
(2007) was used for the Verified1 and Verified2 scenarios.
A step-by-step application of both methods is provided in
the referred papers, but their application is summarised
below:

e Unverified. The total uncertainty term was estimated as a
function of the modelled flows. After calculating the
residuals, the simulated values and their corresponding
residuals were grouped in different bins according to
the magnitude of simulated values. The 2.5 and 97.5 per-
centiles of the residuals in each bin were grouped and
plotted against their corresponding simulated values,
from which two linear relationships were estimated
(one for each of the used percentiles). The error terms
were calculated as functions of the simulated values
and were added to the simulated values at each time
step. The process was repeated for all parameter sets ran-
domly sampled from the generated parameter PDs. The
2.5 and the 97.5 percentiles of all simulations with the
added error terms were obtained and used to represent
the total uncertainty bounds.

e Verified. In the data transformed space, the standard
deviation of the error model is assumed constant and is
obtained from the RMSE between the transformed
observed and simulated values using the most likely para-
meter set. The total uncertainty was estimated by adding
this constant Gaussian error (equal to +1.96 x RMSE) to
the transformed predictions at each timestep. The
obtained prediction limits in the transformed space
were then back-transformed to the original data space.
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RESULTS
Model performance

The overall efficiency of both rainfall runoff models is rep-
resented by the Nash-Sutcliffe efficiency criterion (E).
Figure 1 presents E values and shows plots of modelled
versus measured flows for both MUSIC and KAREN when
the most likely parameter set from each of the scenarios
was used (Unverified on the left, Verified1 in the middle
and Verified2 on the right); the bottom plots are in logarith-
mic scale to provide a better representation of the lower
values.

In terms of model efficiency (i.e. E), MUSIC and
KAREN performed very similarly under the three scenarios;
both models showed high efficiency in the Unverified scen-
ario, with this decreasing in Verified1 and more so in
Verified2 scenario. This decrease in performance was
expected; indeed, E is biased toward peak flows, yet the like-
lihood functions used to generate the optimised parameter
sets in both Verified scenarios are geared to reduce the
emphasis placed on these peaks (i.e. least-squares using
transformed data). This is clearly shown in the bottom
graphs of Figure 1 where the lower flows were more accu-
rately represented using Verified scenarios (hence lower E),
while different parts of the hydrograph (medium/higher
flows) were better calibrated in the Unwverified scenarios
(hence higher E). The slightly higher efficiency found in Ver-
ified1 (as compared to Verified2 scenario) reflects the
weighting strategy applied, which slightly re-emphasises

the peaks after transformation (see methods). The difference
between the Unverified and the Verified1 scenarios suggests
that the weighting strategy applied in Verified1 scenario was
not sufficient to counteract the effect that the transformation
had on emphasising different parts of the hydrograph.

Model sensitivity

The changes in parameter PDs are significant between the
three scenarios (Figure 2). When the residuals are normally
distributed (i.e. Verified scenarios), three of the four para-
meters in KAREN exhibited much narrower PDs when
compared to the Unwerified scenario. Furthermore, the
shift in the most likely parameter values between the scen-
arios also shows that the data transformation is changing
the emphasis placed on certain parts of the hydrograph,
even though a weighting strategy was used to solve this
issue in Verified1 scenario.

For both KAREN and MUSIC, the most probable EIF
values were reduced in both Verified scenarios when com-
pared with the Unverified scenario. It was proposed that
this shift was caused by the higher runoff-coefficients
found in larger events; for example, using the measured
data, the largest 5% of events (ranked according to maxi-
mum flow) had runoff-coefficients which were around 50%
larger than the runoff-coefficients of the remaining 95% of
events. As such, the Unverified scenario places most empha-
sis on higher flows/events, which in turn have higher runoff
coefficients and therefore cause the most-probable value of
EIF to increase. The opposite is true for the Verified

MUSIC KAREN
Unverified Verified1 Verified2 Unverified Verified1 Verified2

E 0.81 0.54 0.48 0.8 0.58 0.46
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Figure 1 | Model efficiency (E) and measured versus modelled flows. The first three pair of plots (in grey) represent MUSIC: Unverified (left) and Verified1 (middle) and Verified2 (right) Q3

scenarios; and the last three pair of plots (in black) represent KAREN: Unverified (left) and Verified1 (middle) and Verified2 (right) scenarios. The bottom plots are in logarithmic

scale.
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Figure 2 | Sample histograms for MUSIC (top) and KAREN (bottom) parameter PDs for the three scenarios.

scenarios. A similar explanation was found for the shift in
the TOC and K parameters for the two models between
the three scenarios; indeed, the measured data showed
that the lag-time between the rainfall hyetograph and
runoff hydrograph was smaller for larger events (hence
emphasising large flows/events would produce lower TOC
and K values).

The changes in parameter PDs for KAREN’s [i and ev
parameters can also be explained by the change in emphasis
of the different portions of the hydrograph between the three
scenarios. The ev is the constant rate that the initial loss (1)
volume drains during dry weather periods and it is only
important for events that have a similar magnitude as the
initial loss volume. For the Verified scenarios, li values
expanded towards higher values than the ones compared
to the Unwerified scenario. The model showed to be sensitive
to ev for the Verified scenarios, in which the focus on low
flows could represent events with smaller magnitudes
similar to these higher /i values. This is even more evident
in the Verified2 scenario, in which no weighting strategy
was applied to compensate the data transformation.

Interestingly, MUSIC’s Thres (the initial loss related para-
meter) had similar behaviour in all scenarios as it was
found that it can be fixed at any value between 0 and 1
(values above 1 impact on the model performance for all
the scenarios - data not shown). Figure 2 also illustrates
that MUSIC was not sensitive to the baseflow related par-
ameters (g and dseep) in the Unwerified scenario, but
sensitive to the same parameters when the model is required
to represent a wider portion of the hydrograph in Verified
scenarios.

Modelling uncertainty

It was found that the PDs of parameters, obtained with the
Verified scenarios, adequately described the parameter
uncertainty. This is illustrated by the normality plots pre-
sented in Figure 3, in which the mean transformed
residuals (mean transformed residuals of the 1,500 simu-
lations) from both models closely meet a normal
distribution. The figure represents the Verifiedl, while
Verified2 looked very similar - results not shown).
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Figure 3 | Normal probability plots of the mean transformed residuals in the Verified1 scenario.

Table 1 reports the percentage of observations covered by
the parameter and total uncertainty bounds for the three
scenarios for both models, while Figure 4 presents sample
hydrographs with the prediction uncertainty bounds. Cover-
age from parameter uncertainties was always lower than
the percentage coverage for the total uncertainty; similar
results were found by Li ef al. (2010) who showed that cover-
age obtain for parameter uncertainty was around 20% while
for total uncertainty this was around 80%. This significant
increase in coverage reflects the fact that there are possibly
more significant uncertainties prevalent in the model than
parameter uncertainties (e.g. input measured data, observed
data, model structure, formulation and assumptions).

The coverage from total uncertainties was significantly
different for the Verified and Unverified scenarios. The cover-
age from parameter uncertainties varied significantly between
models and between each scenario. For MUSIC, the number
of observations covered by the parameter uncertainty for the
Unwerified scenario was smaller than the number covered by
Verified scenarios; the opposite trend was observed for the
KAREN model. The coverage from parameter uncertainties
is directly linked to the shape and form of the parameter
PDs shown in Figure 2; as such, it is logical that since we
see clear differences in parameter PDs between models and

Table 1 | Summary of the observations within the uncertainty bounds

scenarios, the percentage coverage also varies both with
model type and between Unverified and Verified scenarios.
For example, KAREN’s parameter PDs in the Unverified scen-
ario are mostly wider/flatter which produce wider uncertainty
bounds and hence higher coverage; this is compared with the
Verified scenarios which have narrower/sharper parameter
distributions which produce narrower bounds and therefore
lower coverage.

DISCUSSION

In the Unverified scenario, the least square likelihood func-
tion placed emphasis on medium/large flows. The results
above indicated that in the Unwverified scenario both
MUSIC and KAREN were driven primarily by parameters
which describe the effective imperviousness and time of
concentration effects (MUSIC K and KAREN TOC), while
the other parameters played a secondary role. This suggests
that only some of the processes represented by each model
are being utilised, while others lay dormant. In fact, it is
hypothesised that in the Unverified scenario, both models
are behaving as ‘black-box’ models, and simply attempt to
represent peak flows without trying to accurately represent

Music KAREN

Unverified Verified1 Verified2 Unverified Verified1 Verified2
Observations within the parameter uncertainty bound (%) 32 55 61 45 9 5
Observations within the fotal uncertainty bound (%) 98 73 80 99 63 71
ARIL parameter uncertainty 0.91 1.45 2.14 1.23 0.12 0.07
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Figure4 | Sample hydrographs with the prediction uncertainty (23rd April 2004). The dark dots represent the observed data while the black line is the modelled data with the optimised
parameter set (according to least squares); the shaded area shows the total predictive uncertainty associated with the total error related to the modelling residuals.

reality. However, the results suggest that, even in this state,
the models can represent these peak flows, with very similar
performances obtained from both models; it is noted though
that verification (a true test of a model’s performance) has
not been performed here as this was conducted elsewhere
(Dotto et al. 2011).

When a Box-Cox transformation was applied to the
measured and modelled data (Verified1 and Verified2 scen-
arios), the likelihood function placed more emphasis on
different parts of the hydrograph and the low flows started
playing a bigger role. To account and represent such lower
values, parameters which were deemed insensitive in the
Unwerified scenario began to influence the models” outputs.
For example, KAREN’s /i and ev parameters became sensi-
tive in the Verified scenarios suggesting that initial/

depression loss processes were active, while MUSIC’s per-
vious area related parameters (and hence processes) also
started responding and influencing the model outcomes.

It is hypothesised that using transformations can more
adequately calibrate the models as more of the fundamental
processes are activated during this calibration procedure. As
a result, in the Verified scenarios, MUSIC was capable of
predicting the lower flows with more accuracy (as the
base-flow processes were activated); this is reflected in
Figure 1 with the predicted and measured low flows being
more closely aligned. Further proof might be gauged from
Table 1, which shows MUSIC’s coverage (from parameter
uncertainty) increased to over 50% in the Verified scenarios.
This increase in coverage is directly related to an increase in
the width of the uncertainty bands (see ARIL, Table 1);
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ARIL in the Verified scenarios is at least 50% greater than
that of the Urnwerified scenario. These wider bands are
simply a by-product of the fact that the model is being
asked in the Verified scenarios to represent a wider portion
of the hydrograph, not just peak flows.

CONCLUSIONS

This paper investigated the application of a Bayesian
approach, MICA, to evaluate the sensitivity and uncertainty
associated with urban rainfall runoff models when the
assumption about the normality of the residuals is verified
or not. The study compared the results from three different
scenarios: (i) normality of the residuals was checked but
not verified; (ii) normality assumption was verified and a
weighting strategy that gives more importance to high
flows in the likelihood function was applied; and, (iii) nor-
mality assumption was verified, but weights were not
applied to the data. The modelling implications of such scen-
arios were analysed in terms of model efficiency, sensitivity
and uncertainty assessment.

The overall efficiency of both rainfall runoff models was
similar under the tested scenarios. Both models showed high
efficiency in the scenario in which the normality assumption
was not verified, with this decreasing in the scenarios that
the assumption was verified. This decrease confirmed that
the data transformation modified their implied information
content, which also reflects a change in the likelihood func-
tion. In addition, the changes in parameter PDs were
significant between the scenarios. The evident shift in the
most likely parameter values between the scenarios, also
showed that the data transformation is altering the emphasis
placed on certain parts of the hydrograph, not only when no
weights are applied but also when a weighting strategy was
used.

It is hypothesised that verifying the normality assump-
tion can more adequately calibrate the models as more of
the fundamental processes are activated during this calib-
ration procedure. This is explained by the fact that the
verified scenarios activated most of the parameters pro-
cesses (e.g. dry weather related) in the models, while the
unverified scenario was driven by one main parameter
(representing the impervious runoff in the catchment). As
such, MUSIC, a model that represents impervious, pervious
and base-flows was probably better calibrated in the verified
scenarios. The inspection of measured and modelled data
points and the larger parameter uncertainty coverage
revealed that the model better simulated the lower flows,

which are the most frequent in the dataset. As opposite, in
the unverified scenario, the low flows were not well pre-
dicted while the peak flows (which are the minority in the
dataset) were more accurately modelled. This being a conse-
quence of the least square likelihood function that favours
peaks, but scarifies the remaining parts of the hydrograph.
In addition, verifying the normality helped to identify
some structure errors. KAREN was sensitive to most of its
parameters in the verified scenario, however it seems that
model structure does not incorporate sufficient processes
to represent reality when lower flows were favoured in the
likelihood function. In summary, the results indicated that
verifying the normality assumption required the models to
fit a wider portion of the hydrograph, allowing a more
detailed inspection of parameters and processes simulated
in both models. Such outcome provided important infor-
mation about the advantages and limitations of the
models’ structure.
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6.3 Conclusions
This chapter studied the impacts of verifying the assumption around the distribution of the model
errors on the parameter sensitivity and its associated predictive uncertainty of two rainfall runoff

models.

Ensuring the residuals were normally distributed produced different model efficiencies, posterior
parameter distributions and prediction bounds than when the residuals were not correctly
distributed. The main reason for this was that the data transformation used to meet the normality
assumption altered how the likelihood function emphasised various parts of the measured dataset
and the fact that the weighting strategy based on measurement uncertainties could not entirely
compensate for this alteration. Results also indicated that verifying the normality assumption could
more adequately calibrate the models; indeed, when the normality assumption was verified, most of
the model’s processes were activated (resulting in more influential parameters), while only few
parameters drove the outputs when the normality assumption was not verified (i.e. only some
parameters were influential). As such, the data transformation approach coupled with the

weighting strategy was chosen for further application of the method in Chapter 7.
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Chapter 7

Impact of input and calibration data uncertainties on the
sensitivity and uncertainty of stormwater models
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7.1 Introduction

Measured data is imperative for the application of any model. While rainfall data is the main input
for most rainfall runoff models, flow data is used to calibrate and validate these models (Achleitner
et al., 2007; McCarthy, 2008; eWater CRC, 2012). In water quality modelling, rainfall intensities or
runoff rates are usually the input for the models and pollutant measured concentrations are used
for model calibration and validation (Beck, 1987; WP Software, 1995). Uncertainties are inherent to
any data monitoring and the predictive performance of stormwater models is limited by the
uncertainty in measured data. Therefore these uncertainties and their impacts on the models should
be explored. Thus, the main aim of this study was to explore the impact of measured input and
calibration data uncertainty on the performance, sensitivity and predictive uncertainty of

stormwater quantity and quality models.
This chapter focuses on addressing the following key research question and hypotheses:

*  What are the impacts of input and calibration data uncertainties on the sensitivity and

predictive uncertainty of stormwater models?

0 the model parameters can entirely compensate for the uncertainty in input and

calibration data; and,

0 systematic errors in measured data will have more impact on the model sensitivity
and uncertainty than random errors because they are time-dependent, and

therefore they will be continuously propagated through the model.

In order to explore the impact of input and calibration data uncertainty on the sensitivity and
predictive uncertainty of stormwater models, it is important to first understand the sources of
uncertainties in this data. An introduction of the main sources of uncertainties in the measured
data was presented in Subsection 2.3.3. A summary of the main sources of uncertainties in the
measured variables of interest and a review of their quantification are presented in Sections 7.2 to
7.4. Based on the values compiled in these sections, error models were developed to represent
measured data uncertainty in the modelling exercise (Section 7.5). The investigation of the impact
of the input and calibration measured data uncertainty (here, estimated through the error models)
on the model sensitivity and predictive uncertainty is presented in a journal paper, Impacts of
measured data uncertainty on urban stormwater models submitted to Journal of Hydrology. This paper forms

the body of text of Section 7.6.
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7.2 Rainfall data uncertainty

Tipping bucket rainfall gauges are the standard and most used device for measuring rainfall data
(Sevruk, 2002). The main sources of uncertainties in the data measured with these gauges are
related to both catching and counting errors (Molini et al., 2005b). The total amount of daily,
monthly or longer period rainfall tend to be underestimated due to the effect of evaporation,
wetting, splashing and wind occurring within or on the top the bucket (Molini et al., 2005b).While
splashing losses were found to be only up to 2% and evaporation losses were up to 4%, the wind
losses were found to be inversely proportional to the rain intensity and were up to 30% for rainfall

intensity around 0.25 mm/h (Sevruk, 1982).

Counting errors are related to the inherent mechanical errors of the tipping bucket. As opposite to
the catching errors, the counting errors have stronger impact on rainfall intensities than on total
rainfall amount. For example, the gauge delays to respond to quick changes in the rainfall
intensities because of the time requited for the bucket to fill up and dispense. In addition, the
rainfall intensities tend to be underestimated during extreme intense events because the bucket
cannot tip fast enough (some rainwater is lost during the tipping movement of the bucket) (Molini
et al., 2005b; Wang et al., 2008). Some manufactures claim that the maximum error range for their
tipping bucket device for rainfall intensities between 2 to 400 mm/h is between -5% and 5%.
However, this type of errors was reported to induce an error of -10 to -15% for rainfall intensities

higher than 200 mm/h (Molini et al., 2005b).

It is often assumed that the rainfall intensity [ is simply calculated by assuming a linear gauge
response (Maksimovic et al., 1991). However, the linear relationship can be quickly revoked as the
volume of water that tips is not constant, but a function of the rainfall intensity, and at higher
intensities tipping buckets usually underestimate rainfall because water is lost during the tipping
movement. It follows that the relationship between rainfall intensity and tipping rate is not always
linear and Molini et al. (2005a) reported that neglecting these systematic mechanical errors

impacted the assessment of the design rainfall for urban scale applications.

Dynamic calibration of the tipping bucket was carried out by many to determine the form, shape
and parameters of such a relationship (Niemczynowicz, 1986; Maksimovic et al., 1991; Simic and
Maksimovic, 1994; Molini et al., 2005a; Molini et al., 2005b; Pavlyukov, 2007). Results of these

many studies confirmed that a simple power relationship works well:

I = aNP Equation 7.1
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where [ is the rainfall intensity (mm/min), N the number of tips per time (tips/min); and, a and 8
are parameters depending on the tipping bucket. In this context, it seems that the main source of

errors comes from:

* relying on the nominal value for water volume (e.g. 0.2 mm), which influences the N term

in Equation 7.1; and,
* assuming a linear relationship between I and N .

Measured rainfall data can also be influenced by the fact that the tipping bucket device cannot
always grasp some of the rainfall temporal distribution. For example, it is possible that the rainfall
may stop before the collector has tipped. Moreover the relationship between the real rain drop rate
and tipping rate is not necessary linear. For this reason different approaches have been proposed
and tested for the estimation of rainfall intensities from rainfall recorded tips (McCarthy, 2008;

Wang et al., 2008).

Battery, logger and computer clock failures are significant source of errors in rainfall
measurements. Time drifts are inherent to any battery controlling logging devices and values

around 0.07 min/day were reported by McCarthy (2008).

In summary, except for the catching errors that are physics-based, most of the errors in rainfall
measurements can be detected or fixed though calibration. On the other hand, the inadequate or
lack of calibration can cause systematic errors due to the same sources. Stransky et al. (2000)
demonstrated that the flows modelled with a rainfall runoff model were impacted by inadequate

and/or lack of static and dynamic calibration of tipping bucket rain gauges.

The spatial variability of rainfall is another issue. It is common that the point rainfall measured with
the tipping bucket is different from the average rainfall calculated if several gauges were installed
along the catchment. Haydon and Deletic (2009) reported variations of up to 30% for the rainfall

from three rain gauges in a rural catchment.

All these errors associated to the rainfall data eventually propagate through the models and most of
the time the modeller is not even aware of them. Some studies (most in the hydrologic field - Vrugt
et al. (2008) and Thyer et al. (2009b)) introduced an error model with calibration parameters to
correct the rainfall to achieve better model performance. While this is very important, the impact
of erroneous rainfall data on the model performance and sensitivity was less addressed. For the
purpose of this research, error models were developed to replicate the random and systematic

errors in measuring rainfall; they are presented in subsection 7.5.1.

7.3 Flow data uncertainty
Uncertainties in flow measurements are very much related to the measurement equipment. Harmel

et al. (2006a) reviewed and compiled uncertainties in individual stream flow measurements with a
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range of different methods and reported that the velocity-area method was the most accurate
among other available methods. The flow rates are calculated by the product between the wetted

cross sectional area and the velocity as follows:

Rad — h )
Q=v [RadzArc cos (W) — (Rad — h)v/2Rad h — hz] Equation 7.2

where v is the measured stormwater velocity (m/s); Rad is the measured radius of the pipe (m);

and, @Q is the calculated flow (m3/s).

Flow measurement uncertainties for the velocity-area method ranged from 2% to 20% depending
on efforts spent for the measurements (e.g. financial and personnel resources) and the hydrologic
conditions. The uncertainty sources of this type of measurement are in the estimation of the:
channel's cross section (the radius, Rad for circular pipes, depth (h) and velocity (v)).The errors

from these three soutces can be estimated/calculated using multiple measurements or can be based
on scientific literature values. The variables i1, v and Rad, measured with different instruments, are

assumed independent and not correlated. Under these conditions, the law of propagation of
uncertainty can be used to estimate the combined standard uncertainty (Bertrand-Krajewski and
Muste, 2007). The Law of Propagation of Uncertainty (LPU - Taylor and Kuyatt, 1994) propagates
these sources of uncertainty through Equation 7.1 to estimate the uncertainty in the flow

measurements. The LPU is only outlined, but is fully described in Taylor and Kuyatt (1994).

Often a measurand Y is obtained as a function of n other quantities that can be directly measured
X1,X5, .. Xy such that Y = f(X1, X5, ... Xp). As X; and Yare not really known, they can be
estimated as x; and y (with y = f (X1, X3, ... X). Usually x; is the mean of the n repeated measure
of X;. The uncertainty, u(x;) associated to X; is the standard deviation of the mean. The true, but

yet unknown X; has about 95% chance of being within the interval [x; — 2u(x;), x; + 2u(x;)].
For independent uncortelated variables (as the case of fI, v and Rad) the uncertainty u(y) is

calculate as a first order Taylor seties approximation of Y = f (X1, Xp, ... Xp):

n 2

u(y)? = Z (j—;) u? (x;) Equation 7.3

i=1
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While the random errors can be propagated using the LPU, very little knowledge on the actual
systematic measurement error of flow is available. Nevertheless, three main potential errors are

known:

* height measurement 'zero-point' drift - drift is common in many flow measurement
devices, and is usually avoided using regular calibration; In general, pressure probes are

more susceptible to zero drifts than ultrasound;

* inaccurate (re-)calibration of height measurement - when the probe requires recalibration
(or even when the initial calibration of the probe is conducted) the calibration might be
biased (i.e. include systematic error). For example, the crew may always over-estimate or

underestimate the actual depth of water; and,

* inaccurate velocity calibration or incorrect probe set-up - the probe may always over or

under-estimate due to factory default errors or by improper positioning within the pipe.

Prodanovic (2009) explained that different Doppler velocity probes use different water level
measurements. Mostly, they use either pressure type sensors or ultrasonic, or they have the option
to use an external level sensor. In general, pressure probes are susceptible to zero drifts more than
ultrasonic probes. Also, the reference air pressure measurement is required, and as a result of
added deposit on the sensor, the frequency response of the probe is changed over time, so it will
become ‘slower’. Furthermore, the ultrasound level measurement depends on the water
temperature and concentration of suspended solids as the velocity is not the same for clean and
dirty water. Considering the velocity measurement, the equipment manufacturers usually provide
the accuracy of the probes, although they are usually not realistic values. For instance, an error of
2% is suggested by the manufacturer of the Sigma 950 flow meter. However, Prodanovic (2009)
advised that the uncertainty associated to the velocity measurement is in reality dependent on how
the software in the probe handles the dropdowns in signal (situation when there is no echo from
measured volume). As such, the height measurement zero-point’ error can be detected and fixed

through regular calibration, but the two other errors are unlikely to be really eliminated.

As with the rainfall data errors, the errors associated with the measured flow data also propagate
through the models. Some studies on hydrological modelling developed error models to correct the
flow measurements (Vrugt et al., 2008; Thyer et al., 2009b); however, the impact of erroneous flow
calibration data on the model performance and sensitivity has not been addressed in the urban
drainage field. Similarly to the previous subsection, error models were developed to account for the

random and systematic errors in flow measurements and they are described in subsection 7.5.2.

7.4 Uncertainty in pollutant discrete samples (TSS)
The uncertainty associated with discrete stormwater quality parameters (pollutant concentrations)

originate from a wide range of sources (McCarthy et al., 2008):
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1. sampling methods;
2. storage methods; and,
3. analytical/laboratory methods.

Substantial research has been developed to characterise the uncertainties associated to TSS discrete
samples, e.g. Ahyerre et al. (1998), Harmel et al. (2006), Rode and Suhr (2007), and McCarthy
(2008). In these studies the authors presented the uncertainty associated with each source for

different pollutants. Some figures resultanting from their work are summarised in Table 7.1.

Sampling uncertainties are related to the fact that a sample is often taken from just one position
within the water cross-section and is usually assumed to represent the entire water column. It is
most common to collect samples from a point near to the bottom of the stormwater pipe. The
position of the intake tubing in the water cross section influences particulate pollutants more so
than soluble pollutants as the particulates tend to settle and the dissolved ones have a more even
distribution along the water column. In addition, sampling uncertainty can be also caused by a poor
setup of auto-samplers (e.g. alignment of the suction tube) or other sampling issues. Sampling
uncertainty associated with TSS concentrations was reported to range between 2 to 33% (Harmel

et al., 2006a).

Storage uncertainties are related to the time period between the sampling time and when the
samples are analysed in the laboratory. The storage environment (i.e. if the samples are well
preserved and/or refrigerated) can help reduce storage uncertainty for some pollutants (e.g. using
refrigerated autosamplers for the collection of samples for microorganisms is often recommended).
However, these storage requirements vary for different pollutants, and are mainly driven by the
physical and chemical properties of the pollutant. The uncertainty due to storage and transport of
samples to the laboratory has been reported as minimal for TSS, but significantly larger for
dissolved pollutants (e.g. TN) (Kotlash and Chessman, 1998). For example, the range of -16 to
49% was reported for TN samples, even when they were kept in ice and analysed within 6 hours

(Kotlash and Chessman, 1998).

Analytical uncertainty is associated with all the processes related to the laboratory analysis. Sample
handling, preparation, staff expertise, analytical method and equipment are some examples of
sources of error in the laboratory. Potentially, the uncertainties associated to TSS are lower than
other pollutants because of the low complexity of the analytical technique used for TSS (simple

filtration and weighing).

The magnitude of the systematic errors in pollutant discrete samples have also been computed and
reported in previous studies (Gordon et al., 2000; Harmel et al., 2006a; Harmel et al., 2009;
McCarthy et al., 2009). For example, Ahyerre et al. (1998) reported a difference of 15% between

TSS concentrations sampled with two different samplers working at the same time (Table 7.1).
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Table 7.1 Summary of literature with the different TSS discrete sample uncertainties.

Systematic errors

Uncertainty (%
y (%) Source of literature

(1) Sampling Range Median
- ) o 14 33 20 Martin et al. (1992)

;‘;}2“"“ of sampling point in the . ,30 149 McCathy et al. (2009)
2 12 Rode and Suhr (2007)

Total sampling uncertainty Range of unc for diff
events
Min Max Median

""""""""""""""""""""""""" 21.61 4006 3163  Huangetal 2010)

15 20 17.5 Martin et al. (1992)
12 26 19 Harmel et al. (2009)

Range of unc for diff
events

(2) Storage Min Max Median

Total storage uncertainty 10 Bertrand-Krajewski and Bardin (2002)

Uncertainty (%)

(3) Analytical uncertainties Range Median

9.8 51 -49 to -2.5 Gordon et al. (2000)

40 Ahyerre et al. (1998)

Total analytical uncertainty z::ﬁz of unc for diff

Min Max Median

<8 Harmel et al. (2009)
Cumulative - Combining sources (Ie{vt:ﬁ: of unc for diff

Min Max Median

14 104 23 Harmel et al. (2009)
Random errors Range of unc

+25to £ 30 Bertrand-Krajewski and Bardin (2002)

+ 12% to £26% Harmel et al. (2009)

Random errors associated with the discrete stormwater quality parameters have often been
reported in the literature. While Bertrand-Krajewski and Bardin (2002) and Bertrand-Krajewski et
al. (2003) reported values between 25 and 30% for random errors in TSS, Harmel et al. (2009)

presented values ranging from 12 to 26% (with median of 18%) for the same pollutant.

The impact of erroneous TSS calibration data on the model performance and sensitivity has not

been explored. Similatly to the previous subsections, error models were developed to account for
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the random and systematic errors in TSS discrete samples and they are described in subsection

7.5.3.

7.5 Error models

Error models were developed to disturb measured data with errors to evaluate the impact of errors
in input and calibration model sensitivity and uncertainty. The error models were developed based
on the information about the uncertainty in rainfall, flows and pollutants data as provided in the
previous section. Different error models were created for random and systematic errors in each of

the variables.

7.5.1 Rainfall error model

Rainfall random errors

The random error for rainfall data due to wetting, splashing, evaporation and wind effects was
sampled from a uniform distribution in the range of [-0.5, 0.5] as previously adopted in the
literature (Rauch et al., 1998; Haydon and Deletic, 2009). Additionally, the random effect of the
spatial variation of the rainfall was also evaluated; for this each event was disturbed by a different
factor sampled from a uniform distribution in the range of [-0.7, 1.3]; this is a rather simplistic
approach and was designed to reflect a local spatial variation (around the gauge) and not spatial

variation throughout the whole catchment.

Rainfall systematic errors

For the systematic errors, two main sources of errors were considered: time drifting and

mechanical errors. The development of the error model is explained next.

Time drift - the first step was to account for the time drifting effect in the rainfall loggers. It was
assumed that the rain gauge is calibrated regularly, and that the logger time drift is linear with a rate
of tarife (mm/day). The time between successive calibrations is called tyeger (month). After whic,
the logger time becomes equal to the real time and the time drift re-start from zero. In other
words, the time logger will drift according to tgrift = trrue — tiogger> here assumed as a constant
rate, every day until the rain gauge is re-calibrated in every £.q50; month(s) and the logger time is
adjusted to the real time trrye = tipgger- The rate of £0.07 min/day was assumed for this study.
The re-calibration time t,ggor Was assumed to be 1 and 6 months for best and worst case scenarios,
respectively. Finally, a time drifting effect of £0.14 minutes/day was assumed in the rainfall and

tlow loggers.

Mechanical errors - an offset of £30% was assumed to represent the error in the 0.2 mm nominal
volume of the tipping bucked used in this study. This offset is realistic when compared to the

values reported in the literature; previous studies showed that values between 0.17 and 0.25 mm
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are very common (e.g. Niemczynowicz, 1986). In addition, the rainfall error model was also

formulated according to the power based relationship in Equation 7.1:
I* = 4+30% aNF Equation 7.4

where: I" is the disturbed rainfall; £30% represents the error in the nominal volume of a 0.2 mm
tipping bucket; and, & and f are parameters depending on the tipping bucket. @ and 8 are values
of 0.1848 and 1.047, respectively, adopted from literature (Niemczynowicz, 1986; Molini et al.,
2005a). Within this context and assumptions, the error model to account for systematic errors in

rainfall data is a function of tgrift, treser, VOl, @ and .

In addition, a single offset £30% was applied to the rainfall data. This constant error was

previously adopted by Rauch et al. (1998) and Kleidorfer et al. (2009).

The different rainfall scenarios generated a set, in which the coefficient of variance of the mean

annual rainfall was 29.4%, and 32.2% for the mean event maximum rainfall intensity.

7.5.2 Flow error model

Flow random errors and the LPU
The flow measurements used in this research were collected in the pipes located at the outlets of
each catchment. As described in Subsection 7.3, the random errors from the radius of the pipe,

(Rad) and uncertainty in the water depth (h) and velocity (V) estimates can be calculated based
on accuracy of the measuring equipment. For this work, it was assumed that the variables Rad, h

and v that are measured with different instruments, are independent and not correlated. Under
these conditions, the law of propagation of uncertainty can be used to estimate the combined

standard uncertainty u(Q):

u(Q)? = u(Rad)? (%)2 + u(h)? (g—i)z + u(v)? (Z—g)z Equation 7.5

where

(5mc

h
M) = 2 v Rad Arccos (1 — —)

Rad Equation 7.6

—2v Rad+2Rad h — h?
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9 |
(%) — _2vRad+2Rad h— k? Fquation 7.7

(aQ)—RdZA (1 h) Rad
5,) = Ra rccos Rad (Ra

—h)v2Rad h — h?

Equation 7.8

The true discharge Q; has approximately 95% probability of being within the range of Q * 2u(Q).
The standard uncertainties in the three variables Rad, I and v are used as previously proposed in

the literature by Bertrand-Krajewski and Muste (2007): u(Rad) = 0.002 m u(h) = 0.003 m and
u(w) = 0.1 m/s.

To account for random errors in flow data, the disturbed flow values for each timestep are
sampled from a normal distribution, in which the mean is the measured Q value with u(Q) as the

standard deviation. The random error scenario is made up of 10 different samples.

Flow systematic errors

Very little knowledge on the actual systematic measurement error of flow is available. However, it
is assumed that the incorporation of a fitted flow error model of calibration data errors is crucial in
order to provide reasonable model estimations uncertainty. For the development of a flow error

model, the main sources of systematic error in flows data were considered:

As follows, the flow disturbed by systematic errors Qg is calculated using the disturbed height

measurement h*and disturbed velocity measurement v*, which can be written as:

Rad* — h*

= v [Rad 2are cos (FL =1
Qs =v*|Ra recos\ —p

) — (Rad™ — h*)\/ZRad* h* — h*?| Equation 7.9

Estimating h* - the ‘zero’ point in the height measurement may drift with time. We assume that the
equipment is calibrated regularly, and that the probe drift is linear with a rate of @ (m/month). The
time between successive calibrations is called tygge¢ (months). Although it might be assumed that
the readings will re-start from zero error, this zero point cannot be measured with complete

accuracy, so a systematic shift C might also result for the period between calibrations.
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Figure 7.1 Schematic of the flow error model.

Figure 7.1 presents a schematic of the flow error model, in which  is the measured depth; h*is the

perturbed !; C; is a random number sampled from a uniform distribution between pre-established

values every time t treser = 0; and, a is a constant representing the slope (i.e. the drift rate, e.g. 0.5
m/month). From practical experience in managing flow gauges, it is known that at a good site a
drift rate of 2 mm/month or less might be expected (Prodanovic, 2009); whereas at an ‘average’
site, up to 10 mm/month is possible and only a “flawed’ site would have worse than this (Fletcher,

2008). As such, these values were adopted for the best and worst case scenarios, respectively.

Velocity - 1t is not possible to effectively and fully calibrate a Doppler sensor. Therefore a constant
and linear noise was assumed. Values of 10% and 30% were used for best and worst case

scenarios, respectively.

vi=v+tev Equation 7.10

where e is the constant and linear noise. The flow disturbed by systematic errors Qg is then

calculated as a function of C, @, tyeget, €.

In addition, a single offset of =30% was applied to the whole flow time series.
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Discussion

A flow threshold was set at 3 L/s; the flow below this value is regarded as non reliable. The mean
relative uncertainty in measured flows was 78% (Coefficient of variance of 60%). Although this
number is high when compared to the ones in the literature for similar measuring devices (e.g. 5-
25% in Ahyerre et al. (1998) and 2-20% in Harmel et al. (2006)) by the low flows which have a
large relative uncertainty, mainly due to the high uncertainty in the low velocities measurements.
Even when we discard flows lower then 3 L/s, some higher flows had larger uncertainty because of
the velocities (it is probably because the uncertainty associated with low velocities is so significant
that a large number of velocities were incorrect). In addition, velocities under 0.1 m/s generated
relative uncertainties of over 180% independently of the depth, (h). Figure 7.2 illustrates this

discussion.

700 " ; .

i e

5OOfs- ——— = - - - - - - ——————— o=

] e LR,

]

200F -

Relative uncertainty (%)

100 - NC -~~~

0 . " oo ee o
0 0.5 1 1.5 2

Velocity (m/s)

Figure 7.2 Measured velocities in m/s versus the flow relative uncertainty.

The mean event maximum runoff rate generated with the different rainfall scenarios ranged from
0.3 to a little over 3000 L./s and the coefficient of variation for the mean event maximum runoff
rate was 42%. Figure 7.3 presents the flow duration curves for the different flow scenarios

(mm/min).
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Figure 7.3 Flow duration cutves with the different flow scenatrios (mm/min). Section 7.6 presents a
detailed description of the scenarios.

7.5.3  Discrete samples error model
Based on the values presented in Table 7.1 the error model was developed to account for all

sources of uncertainties in TSS concentrations.

Discrete samples random errors

TSS concentrations were disturbed with a value sampled from a uniform distribution in the range

of [-0.28, 0.28].

Discrete samples systematic errors

The systematic errors in the discrete samples were accounted for by combining the systematic
source values presented in the literature (Table 7.1). The best case scenarios were generated by
picking the median uncertainty values and the worst case scenarios were generated by selecting the

extreme uncertainty values.

Final values of -9% and +26% were obtained for the best case scenarios and were applied to the
entire concentration dataset. Final values of -28% and +50% were the extreme values reported and
were used for the worse case scenarios by means of applying these values to the entire
concentration dataset. In addition, a single offset of £20% was applied to the TSS concentrations,

in which 20% was the median of the means reported by reviewed studies.

Figure 7.4 presents the Probability of exceedence plots during wet weather at RICH with the

different TSS scenarios.
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Figure 7.4 Probability of exceedence plots during wet weather at RICH with the different TSS
scenarios (mg/L). Section 7.6 presents a detailed desctiption of the scenarios.
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7.6 Impacts of measured data uncertainty on urban stormwater models
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ABSTRACT

Assessing uncertainties in models due to different sources of errors is crucial for advancing urban
drainage modelling practice. This paper explores the impact of input and calibration data errors on the
parameter sensitivity and predictive uncertainty by propagating these errors through an urban
stormwater model (rainfall runoff model KAREN coupled with a build-up/wash-off water quality
model). Error models were developed to disturb the measured input and calibration data to reflect
common systematic and random uncertainties found in these types of datasets. A Bayesian approach
was used for model sensitivity and uncertainty analysis. It was found that random errors in measured
data had minor impact on the model performance and sensitivity. In general, systematic errors in input
and calibration data impacted the parameter distributions (e.g. changed their shapes and location of
peaks). In most of the systematic error scenarios (especially those where uncertainty in input and
calibration data was represented using ‘best-case’ assumptions), the errors in measured data were
fully compensated by the parameters. Parameters were unable to compensate in some of the scenarios
where the systematic uncertainty in the input and calibration data were represented using extreme
worst-case scenarios. As such, in these few worst case scenarios, the model’s performance was

reduced considerably.

KEYWORDS. Input and calibration data; Urban drainage; Modelling measurement errors;

Sensitivity analysis; Bayesian inference, Parameter probability distributions; Uncertainties.
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1 Introduction and background

Stormwater models underpin the decision making process in urban water management, policies and
regulations. Moreover, they are key tools for the quantification of urban discharges and also for the
design of stormwater treatment technologies. Uncertainties, however, are intrinsic to all models and it
is hypothesised that the level of accuracy of any model’s output is often compromised if the different
sources of errors are not considered during the modelling exercise. Therefore, assessing uncertainties
in models due to different sources of errors is crucial for advancing urban drainage modelling
practice. Typically, three sources of random and systematic uncertainties are identified: errors in the
measured input and calibration data, and errors due to incomplete or biased model structure (Butts et
al., 2004). While the uncertainty in the calibrated parameter values combines the different sources,
the impact of calibration and uncertainty analysis methods, different objective functions and
calibration data availability on the model sensitivity are also recognised (Mourad et al., 2005; Dotto et

al., 2012; Kleidorfer et al., 2012).

As with most models, the calibration of urban drainage models rarely results in one unique parameter
set, and instead many equally plausible parameter sets are obtained, which reduces the confidence in
the models when they are used for prediction (Kuczera and Parent, 1998). The uncertainty related to
the model calibration parameters and its impact on the model outputs has been extensively studied
(e.g. Kanso et al., 2003; Feyen et al., 2007). Global sensitivity analysis methods have been applied to
estimate the confidence intervals around the model’s prediction while revealing the sensitivity of the
model outputs to each parameter (e.g. Feyen et al., 2007; Yang et al., 2008). Many methodologies are
available to conduct these uncertainty/sensitivity analyses, including informal Bayesian methods (e.g.
GLUE by Beven and Binley (1992)) and formal Bayesian approaches (e.g. MICA by Doherty (2003)
and DREAM by Vrugt et al. (2009)). Comparisons have been made between these methods in various
research areas (e.g. Yang et al., 2008; Matott et al., 2009), including urban drainage modelling (Dotto
et al., 2012). These comparisons suggest that modellers should choose the method which is most

suitable for the system they are modelling (e.g. complexity of the model’s structure including the
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number of parameters), their skill and knowledge level, the available information, and the purpose of

their study.

Measured data such as rainfall, flow rates and pollutant concentrations are needed for the application
of urban drainage models. While rainfall data is the main input for most urban drainage models, flow
rates and pollution concentration data are required for model calibration and validation. These
measured datasets have inherent uncertainty and it has been shown that this uncertainty increases the
data requirements for model calibration (Mourad et al., 2005). The input data used in stormwater
modelling could be highly uncertain. For example, the main sources of uncertainties in rainfall
intensities, commonly measured using tipping bucket rain gauges, are related to both rainfall catching
and counting errors (Molini et al., 2005b). While splashing losses were found to be only up to 2% and
evaporation losses were up to 4%, the wind losses were found to be inversely proportional to the rain
intensity and were up to 30% for rainfall intensities around 0.25 mm/h (Sevruk, 1982; Rauch et al.,
1998). Battery, logger and computer clock failures are also significant source of errors in rainfall
measurements. For example, time drifts are inherent to any battery controlling logging device and
values around 0.07 min/day were reported by McCarthy (2008). The spatial variability of rainfall
often is a large source of errors when point source measurement methods are used (such as tipping
bucket gauges). To address this issue radar rainfall data can be used to estimate precipitation, but
radar data is also subject of several assumptions that introduce a number of errors (Einfalt et al.,

2004).

While addressed in related fields (e.g. hydrologic models: Krzysztofowicz and Kelly, 2000; Haydon
and Deletic, 2009), the impacts of input data uncertainties on urban drainage models are largely
unknown. Only a few studies evaluated the propagation of input data uncertainties through urban
drainage models (Rauch et al., 1998; Bertrand-Krajewski et al., 2003) and in all of them, the models
were first calibrated assuming that measured inputs and outputs are without error, and the impacts of
input data uncertainties were then propagated through the models, while keeping the model

parameters fixed. Kleidorfer et al. (2009) developed this further by assessing the impact of input data
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uncertainties on model parameters and found that the parameters of both flow and pollution models

were influenced by systematic errors in input data.

In addition, the techniques used to measure urban discharges and associated water quality parameters,
that are needed for calibration of stormwater models, also contain error (Bertrand-Krajewski et al.,
2003; Harmel et al., 2006; McCarthy et al., 2008). For example, uncertainties in stormwater flow data,
commonly measured using velocity-area measurement method, range from 2% to 20% (Harmel et al,
2006). While these random errors can be estimated, uncertainties in flow measurements due to
systematic errors (often related to the height measurement and inaccurate velocity calibration or

incorrect probe set-up) were not explored (Harmel et al, 2006).

Errors in water quality data are far larger than for flows or rainfall. Sampling, storage and
analytical/laboratory methods all have inherent errors which contribute to the uncertainty in the final
sample’s pollutant concentration(Harmel et al., 2006). While sampling errors, related to the position
of the probe, are significant in TSS measurements, with values up to 33%, they are not significant for
dissolved pollutants that do not settle (ITarmel et al., 2006). Some dissolved pollutants are more
impacted by storage uncertainties; values up to 49% were reported for TN even for samples which are
kept iced and are analysed within 6 hours (Kotlash and Chessman, 1998). Uncertainty related to the
laboratorial analysis was less explored, but values from -9.8 % to 5.1 % have been reported for TSS
(Harmel et al., 2006). Although these uncertainties are acknowledged in the urban drainage field, the

impact of them on stormwater models has not been explored.

In addition, the combined impact of input and calibration data on urban stormwater models is
unknown. However, valuable information can be obtained from related studies on modelling of large
natural catchments. For example, Renard et al. (2008) and Thyer et al. (2009) applied the Bayesian
Total Error Analysis methodology (BATEA proposed by Kuczera et al., 2006) to evaluate the
uncertainties in hydrological models arising from model input, output and structural errors. The

BATEA framework is based on hierarchical Bayesian models and is very comprehensive and
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transferable (Renard et al., 2008). However, it is rather difficult for application, since it requires a
large number of extra calibration parameters (that are associated with modelling the errors), is
computationally demanding, and requires a significant level of understanding of the tested model

structure (Renard et al., 2008).

In summary, the combined effect of input and calibration data uncertainty on the parameters and
outputs of urban drainage models has not been explored. Recently, the International Working Group
on Data and Models of the Joint Committee on Urban Drainage that works under IWA and TAHR
proposed an overarching framework that could address this issue (Deletic et al., 2012). However, the
framework has never been tested, lacking practical details on the methodology. This paper is the first
attempt to test the proposed framework for assessing the impact of both input and calibration data
errors on the parameter sensitivity and predictive uncertainty of an urban rainfall runoff and water

quality model using a rich Melbourne dataset.

2 Methods

2.1 Adopted stormwater models

Rainfall runoff model. KAREN (Rauch and Kinzel, 2007) was selected for the study because of its
simplicity and proven performance for urbanised catchments (Kleidorfer et al., 2009). KAREN is a
linear reservoir model, which only requires the catchment area and a rainfall time series as inputs to
generate a series of flows originating from impervious areas only. The effective impervious area of
the catchment is calibrated as the EJF parameter. Runoff from impervious areas occurs after a rainfall
threshold has been exceeded (calibration parameter /i). The initial loss is calculated continuously and
fills during rainfall and is drained during dry weather by a permanent loss calibration parameter (ev).
Surface runoff volume is calculated using the linear time-arca method, which is related to the unit
hydrograph method (Sherman, 1932). At the beginning of a rainfall event, the effective impervious
area is increased according to the flow time on the catchment surface until the whole catchment

contributes to runoff after the catchment’s time of concentration (calibration parameter 70C).
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Water quality model. A very well researched and widely adopted build-up and wash-off model
(initially proposed by Sartor and Boyd, (1972) was used to model TSS concentrations in catchments
discharges. It was selected because of its widespread use in practice; e.g. it is used in SWMM
(USEPA, 2007). The original model was slightly modified and hence the key equations are presented

in Table 1 (formatted for a 6 min timestep).

Table 1 The governing equations of the build-up/wash-off model.

The main modification from the original is in the wash-off stage. The concentration of pollutants in

the runoff within a timestep (€ in mg/L) is a power function of the catchment runoff modelled with

KAREN (g in mm/h) divided by the catchment runoff coefficient (RC - here assumed as the EIF

calibrated with KAREN). RC was included to represent wash-off only from impervious surfaces,
which is a safe assumption because majority of runoff from urban catchments are originated from
impervious surfaces (Chiew and McMahon, 1999). If instead of ¢ rainfall intensities were used, the
model would have to include a routing algorithm (e.g. linear reservoir routing) resulting in an
additional parameter(s). A transport related parameter () was used to represent the small lag time
which is often noted between the hydrographs and the pollutographs (Vaze and Chiew, 2003). The
amount of pollutants washed from the surface (W in kg) is then calculated in function of the predicted
concentration and the volume (Vol in L). In total, there are 5 calibration parameters: Mp, (kg), k; (day
") ko ks and, r(timesteps).

2.1.1 Catchment and Dataset

An urban catchment, located in Richmond, an eastern suburb of Melbourne, Australia, was used. The
site has a total area of 89 ha, the land use is high-density residential with a total imperviousness of
74% and an average slope of less than 0.1%. The catchment is drained by a separate stormwater

system.
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Rainfall is measured using a standard 0.2 mm/tip tipping gauge located 600 m from the catchment
centroid. Flows were measured with the American Sigma/HACH area-velocity 950 sensor (HACH,
2008) installed in the outlet pipe. The water quality samples (TSS) were also collected at the outlet of
the catchments by autosamplers using flow-based intervals and each sample being analysed for TSS.
Details on the catchment, monitoring program and the datasets are available in Francey et al. (2010).
Rainfall and flow data collected between 2004 and 2005, and 44 TSS pollutographs (approximately
250 samples) were used for calibration. The event total rainfall ranged from 2 to 60 mm, the mean
maximum event runoff rate was 547 L/s and the average of the TSS Event Mean Concentration
(EMC) was 125 mg/L (The EMCs were calculated using the discrete TSS concentrations with their
associated volumes as per Leecaster et al., 2002). Rainfall and flow data collected from 2006 to 2007
were used for model validation; the event total rainfall ranged from 2 to 44 mm and the mean
maximum event runoff rate was 212 L/s. The calibration of the water quality model resulted in very

low performance, and therefore validation of this model would not succeed and was not carried out.

2.2 Assessing global uncertainties

The proposed framework (Figure 1) is a further development of the general framework proposed by
the International Working Group on Data and Models (see Deletic et al, 2012). Firstly, the model is
fed with a certain set of input data (X). The model then generates its outputs (Y) as a function of X
and a set of calibration parameters (). By means of an appropriate uncertainty analysis method and a
certain objective function (OF), the model is run repeated times until the misfit (g) between the
measured data (O) and the modelled data (Y) is reduced. Through this process, the parameter
probability distributions (PDs) are generated. Finally, the model predictive uncertainty bands are
obtained. To test the influence of input and calibration data uncertainties on the modelling procedure,
both datasets were disturbed using error models. The classical approach is again employed, but this
time using these disturbed datasets (disturbed input X* and calibration O* data). The parameter
distributions and the predictive uncertainty bands produced using these disturbed datasets are then

compared with those produced when using the undisturbed data; the differences are used to assess the
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impacts of these errors. To become operational, this untested/unapplied framework, had to be

developed further as explained in the consequent sections.

Figure 1 Propagation of input and calibration data errors through models (after Deletic et al, 2012).

2.2.1 Method used for uncertainty analysis

A Bayesian approach was selected for evaluation of the model parameter sensitivity, since it has some
important advantages when used for stormwater modelling (Dotto et al, 2012). The PDs of model
parameters were generated using the outputs of the software package MICA (Doherty, 2003), which
uses a Markov Chain Monte Carlo (MCMC) method with the Metropolis-Hastings algorithm sampler.
The likelihood function adopted in MICA is least square based and assumes that the residuals between
the measured and modelled values have a normal distribution (e.g. Feyen et al., 2007); as such, the
measured calibration and modelled data series were transformed using a Box-Cox transformation
(Box and Cox, 1964) to achieve homoscedasticity and normally distributed residuals. However, all
transformation methods change the content of the observations (Beven et al., 2008), which then
influences the emphasis on various parts of the hydrograph (or pollutograph). This is sometimes not
desired if the modelling purpose is to focus on specific parts of the dataset (e.g. flood prediction is
linked with peak flows, which are deemphasised when using Box-Cox transformations) (Doherty and
Welter, 2010). Furthermore, all observed data have uncertainty, and this should be taken into account
in the likelihood function so that the parameters are estimated appropriately; indeed, it is important
that the function places more emphasis on data which has lower uncertainty. Weighting strategies can
be used to re-adjust how the likelihood function emphasises various parts of the dataset to (1) consider
measured data uncertainty and (2) compensate for the Box-Cox transformation which may have
adjusted the emphasis in an undesirable way. Therefore, the weights were computed based on the
inverse of the relative uncertainty in the measured (untransformed) data (i.e. the relative error in the
measured flow rates calculated using the Law of Propagation of Uncertainties; see McCarthy et al.,
2008 for more information). The serial correlation between the data points was not considered

because the current used methods to account for autocorrelation (e.g. first order model) are not
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effective for small timesteps as used in this study (e.g. Yang et al., 2008; Métadier and Bertrand-
Krajewski, 2012).

The performance of the model was evaluated using the Nash-Sutcliffe efficiency criterion (E) (Nash
and Sutcliffe, 1970) corresponding to the minimum least square value achieved with MICA; it is
noted that E was calculated using data which had been back-transformed to the original data-space
and ignoring the weighting strategy.

The predictive bounds resulting from parameter uncertainty were obtained by running the models with
parameter sets generated with MICA for each of the specific scenarios. The total predictive
uncertainty was computed according to Feyen et al. (2007). In the data transformed space, the
standard deviation of the model errors is assumed constant and is obtained from the root mean square
error (RMSE) between the transformed observed and simulated v alues using the most likely
parameter set. The total uncertainty was estimated by adding this constant Gaussian error (equal to
+1.96xRMSE) to the transformed predictions at each timestep. The obtained prediction limits in the
transformed space were then back-transformed to the original data-space.

In order to provide some information about the potentiality of the rainfall runoff model to predict data
outside the calibration period, some validation was performed. Specifically, to investigate how the
model, calibrated for unbiased and biased data, perform in predicting unbiased data. As such, the
model was run for specific scenarios with the parameter sets generated for each of the specific
scenarios. The data in this simulation was used without introducing any error and, the Nash-Sutcliffe
coefficients, corresponding to validation period, were computed by comparing the modelled data
using the validation data without introducing any errors. Similarly, the predictive uncertainties were
computed as described above, except that the validation dataset was used without adding any bias.
This was done to provide some insights on how the observed validation data can be covered (or not)
by the predictive uncertainty bands (generated with the parameter distributions) obtained for the

calibrated period under the different scenarios.
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2.2.2  Error models of input and calibration data uncertainty

Error models were developed to disturb the measured input and calibration data (i.e. to generate X*
and O* in Figure 1) by reflecting common systematic and random uncertainties found in these types
of datasets. Multiple scenarios were developed using these error models, ranging from best-case
scenarios (i.e. low errors, corresponding to adequate instrumental calibration) to worst-case scenarios
(i.e. high errors, when instruments are rarely checked or calibrated). These scenarios, shown in Tables
2 and 3, are then used to assess the impact of input and calibration data uncertainties on model

performance, parameter sensitivity and predictive uncertainty.

Error models for the rainfall runoff modelling

Input (rainfall) data error models. The following main sources of errors (as reported in literature)
have been taken into accounts: (i) the stochastic nature of the measurement instrument (Rauch et al.,
1998; Sevruk, 2002; Molini et al., 2005a; Haydon and Deletic, 2009); (ii) the systematic mechanical
errors associated with the measurement device (e.g. Simic and Maksimovic, 1994), which was
reported to induce an error of -10 to -15% for rainfall intensities higher than 200 mm/h (Molini et al.,
2005a); and (iii) the randomness caused by the variability of rainfall over a catchment area and using
a single gauge to represent this variability (Chaubey et al., 1999).

Combining these sources, eight scenarios were developed as reported in Table 2. The ‘Random error
only scenario’ was developed to simulate the effects of only random errors on the modelling process.
To apply this scenario, each data point in the measured rainfall dataset was disturbed by adding a
random number between -0.5 mm and 0.5 mm (i.e. sampled from the uniform distribution [-0.5, 0.5]).
Ten disturbed rainfall datasets were generated using this procedure - RREr (x10). The ‘Random
spatial distribution’ was used to understand spatial errors areal approximations of rainfall using one
rainfall gauge and was applied by multiplying all rainfall measurements within an event by a random
number in the range of [-0.7, 1.3]; this number was kept constant within an event, but was re-sampled
between events. Again, this procedure was used to create ten disturbed rainfall datasets - RainSD
(x10). The ‘Systematic constant offset’ was used to simulate a worst case scenario, where systematic

errors are not corrected during the monitoring program and hence applied to all of the measured
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dataset (e.g. incorrectly calibrated bucket which was never re-calibrated, incorrect positioning of the
rainfall gauge under a tree, etc.). Two disturbed rainfall datasets were generated: one where all rainfall
rates in the measured dataset were reduced by 30% and the other where the rainfall rates were

increased by 30%.

The ‘Rain gauge maintenance scenarios’ were used to simulate ‘good” and ‘poor’ calibration
methods, including: the time period between re-calibration (frse(), the direction of the time drift of the
rain gauge logger between the re-calibration (tyqq) and the re-calibration error for the bucket volumes
(bucket volume error). The error in the 0.2 mm nominal volume of the tipping bucket used in this
study was represented by an offset of £30%. The disturbed rainfall intensity was estimated according
to the relationship between the rainfall intensities and the number of tips:

I" = +30% a NP Equation 1
where I is the disturbed rainfall intensity; £30% represents the error in the nominal volume of a 0.2
mm tipping bucket; N is the tipping rate (number/min); and, « and § are parameters depending on the
tipping bucket. Here these values were assumed according to the literature (Simic and Maksimovic,
1994; Molini et al., 2005a; Molini et al., 2005b) and were equal to 0.185 and 1.047, respectively. Four
disturbed datasets were generated for these scenarios (Table 2). As an example, for the Rainl
scenario, the disturbed dataset was generated by applying the -30% form of Equation 4, applying a
time drift of 0.14 min/day and considering that the rain gauge was re-calibrated every month (which
characterises the best case scenarios). In total, the eight input rainfall error scenarios generated 26
disturbed rainfall datasets, which were then applied to the modelling procedure outlined in Figure 1.
These were compared with the base-case scenario when using the raw measured rainfall data (i.e. no

errors).

Table 2 Summary of the tested error scenarios for the KAREN rainfall runoff model.

Calibration (flow) data error models. The measured flow data was also disturbed by both random and

systematic errors to create O*, using seven scenarios (Table 2). The uncertainty sources associated
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with the Doppler area-velocity method are: measuring the channel's cross sectional area, depth and
velocity (Harmel et al., 2006). For the ‘Random error only’ scenario, each measured flow in the time
series was disturbed by a random error term derived using the Law of Propagation of Uncertainty
(fully described in Taylor and Kuyatt, 1994) as per McCarthy et al. (2008). As with the input data, ten
disturbed datasets were generated for this scenario - FREr (x10). ‘Systematic constant offset” was
considered a worst-case scenario, where the flow measurements were always either underestimated or
overestimated by +30% (Harmel et al., 2006) and were not corrected for the entire monitoring period
(hence producing two disturbed calibration datasets). The ‘Flow gauge maintenance scenarios’ were
developed to test the influence of ‘good’ and ‘poor” calibration and maintenance regimes, including
the systematic effects of: the level drift of the instrument (assumed to occur linearly with time; £2 and
+10 mnvmth for best and worst case scenarios, respectively; Harmel et al., 2006), which occurs
between the maintenance interval (trse), the error which occurs when the level sensor is recalibrated at
each t. (£5 and £20 mm for best and worst case scenarios, respectively; Harmel et al., 2006) and
the velocity error which would occur if the probe is incorrectly positioned within the pipe (£10% and
+30% for best and worst case scenarios, respectively). Four disturbed datasets were generated for
these scenarios; the disturbed water depth was calculated according to the equation:
RE)=h+(C+at) Equation 2

where h” is the disturbed water depth in mm; # is the measured water depth in mm; C is the level drift

in mm; a is the drift rate in mm/mth; and, 7 is the time in months, after re-calibration; As an example,
Flow1’s disturbed dataset was generated by applying the following equation:

r*(t) = h + (U[-5mm, +5mm] — 2t) Equation 3
and applying constant and linear noise of -10% to the measured velocities. In this scenario it is
assumed that level sensor is recalibrated every 1 month. For the seven scenarios tested, 16 disturbed
datasets were generated and propagated through the process outlined in Figure 1. These were

compared with the base-case scenario when using the raw measured flow data (i.e. no errors).
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Combined input (rainfall) and calibration data (flow) error models. Rainfall (input) and flow
(calibration) data scenarios were combined to evaluate their joint impact on the model sensitivity and
uncertainty (Table 2). “Systematic constant offsets’ scenarios were generated by combining the +£30%
rain and flow scenarios. ‘Rain and flow gauges maintenance scenarios’ were developed by combining

the individual rain and flow worst-case scenarios.

Error models for the water quality modelling

Input (modelled flow) data error models. The input data required for the water quality model is a time
series of KAREN’s modelled flows. Ten scenarios were developed to incorporate the possible errors
of these modelled flows. The ‘Input parameter error scenario’ was used to understand how various
parameter sets which could equally calibrate KAREN impact on the water quality model. As such,
instead of using only the ‘optimal’ parameter set as input in the water quality model, six sub-sets of
KAREN parameters sampled from their PDs determined by Bayesian inference of the rainfall runoff
model were used to model flows that were subsequently used as inputs for the water quality model

(WQPar (x6) in Table 3).

For the ‘Random error only’ scenario, 10 sets of modelled flows with KAREN when using the most
likely parameter sets obtained in each of the 10 realisations for the rainfall random error (RREr (x10)
in Table 2) were used — WQMFRETr (x10). “Systematic constant offset’ scenarios were developed
using the worst-case scenarios from KAREN testing, where the modelled flows using the four
disturbed calibration datasets generated with the combined rain and flow £30% scenarios were used.
‘Modelled flows with rain and flow gauges maintenance’ scenarios were used to test the influence of
the systematic effects and inappropriate calibration/maintenance of measurement devices associated
with the modelled flows. For that, the flows modelled using the most likely parameter values obtained
with the four ‘Rain and flow gauges maintenance scenarios’ in Table 2 were used as input to the

water quality model.
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Table 3 Summary of the tested error scenarios for the water quality model (see Table 2 for further
explanations for some model errors).

Calibration (TSS) data error models. The measured discrete TSS samples were disturbed by both
random and systematic errors, using seven scenarios (see Table 3). ‘Random error only’ was
estimated according to the uncertainty values presented in literature (e.g. Bertrand-Krajewski et al.,
2003) and the TSS concentrations were disturbed with a value sampled from a uniform distribution in
the range of [-0.28, 0.28] (mg/L). As with the previous data, ten disturbed datasets were generated for
this scenario — TSSREr (x10). Two ‘Systematic constant offset” TSS data sets were generated to test
the influence of systematic errors associated with the TSS measurements (e.g. positioning of the
sample suction tubing placed at either the top or bottom of the water cross-section). In these scenarios,
measured TSS concentrations were either all reduced or increased by 20%. The ‘Discrete samples —
combining all the systematic sources’ scenario was developed by combining the values reported in
the literature for the key error sources (e.g. Harmel et al., 2006; Rode and Suhr, 2007; McCarthy et
al., 2008); the best case scenarios were generated by compiling mean values (final values of -4.9%
and +25% were applied systematically to the entire concentration dataset) and the worst case
scenarios were generated by compiling the extreme reported values (final values of -9.8% and +40%

were applied to the entire concentration dataset).

Combined input (modelled flow) and calibration (TSS) data error models. Four ‘Systematic constant
offset’ scenarios were created (Table 3) where KAREN’s modelled flows were generated with rainfall
(input) and measured flow (calibration) data with a systematic error of £30%, while the TSS were
underestimated or overestimated by 20%. The ‘Modelled flows with rain and flow gauges
maintenance scenarios combined with systematic constant offset” were generated to assess impact of
systematically faulty rain and flow measures (poorly calibrated gauges) combined with TSS errors

(Table 2 and Table 3 explain the tested combinations).
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3 Results and discussion

The overall efficiency of both the rainfall runoff and the water quality models, for calibration period,
is represented by the Nash-Sutcliffe efficiency criterion (E) in Table 4 and 5, respectively. These
values correspond to the optimised MICA parameters, which were obtained when the minimum
weighted least-square likelihood function was achieved (Ewrs). The maximum Nash-Sutcliffe
efficiency values recorded by the MICA process is also noted in these tables (Eucep); While these do
not represent the ‘best” parameter set according to the chosen likelihood function (i.e. weighted least

squares - WLS), it still represents a ‘behavioural’ parameter set.

The Ewis value for KAREN with undisturbed input and calibration datasets (NoError) was 0.56; when
the input and calibration data were disturbed, this efficiency was maintained in all except, five
scenarios. As such, none of the data errors has effect on the model performance (in case of pure
random errors) or the model can compensate for most of the input and calibration data error scenarios
tested; for example, the +30%R-30%F scenario (where rainfall was overestimated by 30% and flow
was underestimated by 30%) yielded the same model efficiency as when using the undisturbed
dataset. This demonstrates the flexibility of these models to compensate for systematic errors (i.e.
model parameters are adapted). When the uncertainty becomes too large (i.e. worst-case scenarios
associated with significant drifts in the data), KAREN is no longer able to compensate hence
producing significantly lower E values; e.g. for the Rain4Flow4 combination scenario (Table 2) which
does not only contain a constant systematic error but also a growing error between maintenance
intervals which cannot be compensated by parameter adaption.

The Ey,s for the build-up wash-off model were consistently low, independent of whether or not the
input or calibration data were disturbed (E s between 0.12 and 0.19). These low values might reflect
structural errors in the model, which limits the model’s performance. There were just three scenarios
which yielded a significantly lower efficiency values, all again representing worst-case situations

where the model is no longer able to compensate for large measurement errors.
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Table 4: Overall efficiency for the different scenarios of rainfall runoff model KAREN - Ey, 5 stands
for the maximum efficiency corresponding to the minimum weighted least-squares; E.c., stands for
the maximum efficiency from all the MICA accepted parameter sets.

Table 5 Overall efficiency for the different scenarios of the build-up/wash-off stormwater quality
model - Ews stands for the maximum efficiency corresponding to the minimum weighted least-
square; B, stands for the maximum efficiency from all the MICA accepted parameter sets; RC
stand for the runoff coefficient.

The overall model efficiency varied in the validation data period. The fact that the model performed
different in the validation period is not surprising and can be explained by different factors related, for
example, to the form of the likelihood function used for calibration associated with different climate
conditions during calibration and validation period, and to the level of parameter compensation in the
different scenarios. Considering the NoError scenario, the Nash-Sutcliffe efficiency obtained with the
parameter set corresponding to the minimum weighted least-square likelihood function (in the
calibration period - Ew;s) dropped from 0.58 in the calibration to 0.52 in the validation. And this
could be explained by the fact that the validation data period was much drier then calibration data
period and the model that was calibrated with a least square likelihood function could not predict the
lower flows from the validation data period (please refer to Dotto el al, 2011 for further discussion).
An example of a more drastic drop was found for the -30%R+30%F scenario, in which the same
efficiency measure dropped from 0.58 to 0.1. This drastic droop can be explained by the fact that the
model that was calibrated to deal with a much higher amount of runoff (in -30%R+30%F) was
obviously not able to predict the low flows observed during the validation period. The opposite was
observed for Raind, in which the model was calibrated to less runoff and therefore was able to better
predict the lower flows corresponding to the validation period (in which the Nash-Sutcliffe increased

from 0.4 to 0.5).

3.1 Model performance and parameter sensitivity
The results, for both rainfall runoff and water quality models, are presented according to the impact of

the error types (i.e. No error, Random error and Systematic error) on each of the calibration
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parameters of the two models. For each error type, we start by discussing the impacts of input data
errors, then calibration data errors, and finish by discussing the impacts of the joint propagation of

input and calibration data errors.

3.1.1 No error analysis
The PDs of parameters revealed that KAREN is quite sensitive to the effective EIF, TOC and ev,

while less influenced by /i (see Figure 2), which is in line with previous studies (Dotto et al, 2012).
The build-up/wash-off model is sensitive to My, ks, k; and r, but not very influenced by 4;. In addition,
it was verified that M, and k; are very correlated mainly due to the model structure arrangement as

previously described by Kanso et al. (2003).

3.1.2 Random error impact in input and calibration data

Rainfall runoff model - KAREN. Random errors in measured input and calibration data did not
significantly impact on the model’s performance (Tables 4 and 5) and sensitivity. For example, Ews
ranged from 0.55 to 0.58 for the 10 sets of data generated with KAREN rainfall random errors. The
PDs of KAREN parameters for the rainfall random errors scenario have very similar shape as those
for the ‘NoError’ scenario (Figure 2, top). The same was observed when disturbing the rainfall input
for spatial distribution errors (RainSD) and the flow data for random errors in measurements (FRETr).
While Kleidorfer et al. (2009) propagated the random input data errors in the same stormwater model
in a slightly different way, the conclusion, that random errors do not represent a major impact in the
model sensitivity, was the same. For this reason, the random errors in both input and calibration data
were not assessed further (i.e. were not combined with the systematic errors).

Water quality model - Build-up/wash-off. Similarly, the build-up wash-off model PDs were
unchanged when applying random errors to the input and calibration data (Figure 2, bottom). Again,
Kleidorfer et al. (2009) found similar results when analysing TSS and TN loads with a simple

regression equation. As such, these errors were not combined with the systematic errors.

Figure 2 Histograms for KAREN parameters (top) obtained from the “NoError’ scenario and from the
10 sets of data generated with KAREN rainfall random errors — RREr (x10); and histograms for the
build-up/wash-off model parameters (bottom) obtained from the *“WQNoError’ scenario and from the
10 sets of data generated with TSS random errors — TSSREr (x10) (see Table 2 for abbreviations).
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3.1.3 Systematic errors in input and calibration data

Rainfall runoff model - KAREN., Impact of systematic errors on parameter sensitivity (visualised in
the parameter distribution) is shown in Table 6. When rainfall is systematically overestimated (e.g.
+30%Rain), or flow is underestimated (e.g. -30%Flow), EIF decreases or increases, (to compensate
for these errors), respectively. These shifts were either compensated or accentuated when combining
these rainfall and flow errors; for example, in the -30%R+30%F and +30%R-30%F scenarios,
pronounced shifts in EIF were observed, while in the -30%R&F and +30%R&F scenarios little
differences were seen in the PDs as compared with the ‘NoError® scenario. These results reflect the
ability of the model parameter E/F to entirely compensate for systematic errors found in the measured
datasets. Similar trends were observed for the E/F PDs in the sensor maintenance scenarios; when the
maintenance scenario overestimated rainfall (Rain2 and Rain 4), or underestimated flow (Flow1 and
Flow3), the resultant EJF PD was shifted to accommodate these changes. There is little difference
between worst-case and best-case rainfall sensor maintenance scenarios (i.e. PDs are the same for
Rainl vs. Rain 2, Rain2 vs. Rain 4), probably because these scenarios only differ by their
recalibration frequency (1 month versus 6 months). Larger differences were seen in PDs for best and
worst case flow sensor maintenance scenarios, most likely because of the differences in the magnitude
of the systematic velocity errors. EIF was also adjusted when both input (rainfall) and calibration
(flow) data errors were combined. For example, if both rain and flow were underestimated by 30% (-
30%R&F), EIF kept fairly constant reflecting the combined reduction in rain and flow volumes. This
is an example of how different sources of uncertainties compensate for each other, which is again

similar to the results found by Kleidorfer et al. (2009).

Other parameters were less influenced than ETF, perhaps because EIF is the most influential
parameter in KAREN. TOC was not influenced when only the rainfall data was systematically
disturbed by +30% (which is not surprising since no timing errors were introduced by these
scenarios). Contrarily, the TOC PDs were impacted in all scenarios where flow was systematically
disturbed. For the rainfall gauge sensor maintenance scenarios, longer periods between maintenance

events (i.e. higher tr.: = 6 months) resulted in larger time drifts in the measured data which is
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therefore reflected by the change in the TOC parameter. If the rainfall logger has a slow clock (i.c.
Rainl and Rain3) TOC increases to account for this drift (and vice-versa in Rain2 and Rain4). The
best-case flow sensor maintenance scenario had little impact on 7OC, again because timing issues
were not introduced. The worst-case flow sensor maintenance scenarios did impact TOC, probably
because the incremental error added/subtracted to/from the level measurements altered the measured
hydrographs which changed the probability distribution of TOC. When both input and calibration
datasets were systematically disturbed, the resulting PDs are similar to the ones obtained for the flow

scenarios.

The initial loss (/i) reveals PDs that are distributed among realistic values for this parameter (i.e.
values between 0.5 and 2 mm are usually adopted in similar urban storm models; (e.g. Chiew and
McMahon, 1999). Introducing systematic errors into the rainfall data (i.e. £30%Rain) slightly
influenced the /i PDs, while systematic flow errors (i.e. £30%Flow) seemed to have no observable
influence. When both rainfall and flow datasets were systematically disturbed simultaneously (i.e.
+30%R&F, -30%R+30%F and +30%R-30%F), the resultant /i PDs resembled those of the rainfall
only scenarios. Similar results were found when testing various maintenance scenarios; overestimated
rainfall led to higher /i values and vice-versa for both best and worst case scenarios. While the best-
case flow sensor maintenance scenarios (Flow1 and Flow2) yielded no effect on PDs of /i, the worst-
case scenarios, including the combined input and calibration data errors (e.g. RaindFlow4)
significantly impacted them. It is hypothesised that these results are directly linked to EIF’s
behaviour, which compensated for the dramatic increase in flow measurements in Flow4 and its
related scenarios; indeed, it is common to see a relationship between E/F and /i, as they are

intrinsically linked in the model structure (Boyd et al., 1993).

The ev parameter reflected some of the model limitations. While common values for evaporation in
Melbourne are around 4 mm/day, the parameter PDs were in the range of 0.01 and 0.15 mm/day for
most of the scenarios. In fact, ev was expected to increase when the rainfall was overestimated

(+30%Rain, Rain2 and Rain4). While the +30%Rain scenario does illustrate such change, Rain2 and
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Raind scenarios indicated that when rainfall was overestimated and the time drift was introduced in
the data error more parameter interaction was identified (mainly between ev and /i) and the calibrated
values were far from the expected ones. In general the shape of ev PDs, and most likely values, did

not change much within the various scenarios.

In summary, the results from this sensitivity analysis showed that the systematic errors in input and
calibration data (individual or combined) influenced most of the parameters’ distributions. It also
demonstrated that the parameters were able to compensate for most of the scenarios, mainly for the
best case ones. The fact that the model parameters’ compensate for most rainfall errors was also found
by Younger et al. (2009) when evaluating the impact of rainfall data error in a hydrologic rainfall
runoff model. They found that while the peak flows changed significantly for the different scenarios,
the model performance did not. Furthermore, the propagation of input and calibration data errors

provided new information about the model structure and its parameters.

Table 6 Rainfall runoff model KAREN - Histograms of parameter PDs for the different error
scenarios. The variation in the x axis is to facilitate the visualisation of specific scenarios.

Water quality model - Build-up/wash-off. The impact of systematic etrors on parameter sensitivity is
shown in Table 7. Results from the input data error scenarios showed that M, is directly linked to the
runoff volume; its PDs shifted towards higher values in all input data error scenarios where modelled
flows were overestimated (WQ+30%R&F WQ-30%R+30%F, WQRain3Flow4 and WQRain4Flow4)
and towards lower values when modelled flows were underestimated (-30%R&F WQ+30%R-30%F,
WQRain3Flow3 and WQRain4Flow3). Similarly, M, was sensitive to calibration data error, and
varied according to the increase (or decrease) in the TSS concentrations for each scenario. The impact
of combined input and calibration data errors on M, parameter indicated a clear ‘additive’ effect for
different sources of uncertainties. For example, the combined increase in both volumes and TSS
concentration (WQ+30%RF+20%TSS) shifted M, for the 10% difference as the model does not need
to compensate for the +20% in both data. Following the same pattern, Mj shifts the most when the

volumes are increased and TSS decreased (WQ+30%RF-20%TSS).
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The PDs for the k;, parameter were skewed towards the upper limit of the parameter value (i.e. 5 day™)
for most of the scenarios, which reflects the modelling boundary conditions (i.e. model structure
limitation). However, testing conducted with MICA confirmed that this parameter will always skew
toward the upper bound of its boundary condition (data not shown). As values of k; higher than Sday™
are unrealistic (i.e. quick build-up of mass on the surface), 5 was still used as the upper bound. These
results suggest that the build-up of TSS occurs extremely quickly, which confirms that the wash-off
during typical rainfall events remove only a very small portion of solids accumulated in the surface
(e.g. Vaze and Chiew, 2003). Results from the scenarios where Flow4 was included were different;
i.e. the model was insensitive to k; indicating that the errors were compensated by the other
parameters. It is hypothesised that these results would be different if other pollutants were being
modelled, for example the antecedent conditions in the catchment influences the amount of pathogens

available on the surface (McCarthy et al., 2011).

Results from the individual input and calibration data error scenarios, and also from the combined
error scenarios indicated that the peaks in the PDs of & shifted to the opposite direction of shift in A4,
PDs. Again, the high correlation between these two parameters is illustrated. Moreover, the model
sensitivity to k> (Table 7) confirms the wash-off variability within the event, as larger amounts of TSS

are washed in the beginning of the event.

PDs of k; varied with the input data scenarios and did not change at all for the calibration data error
scenarios. This is because the k; parameter is linked to the input data in Equation 2. Besides &; only
responds to changes in variability of the data; this means that only scaling the input or output data
(constant offset scenarios) does not impact on this parameter. In fact, this wash-off exponent is related
to the kinetic energy of the rainfall, represented here using the modelled effective runoff rates, in
mm/hr, from impervious areas. k; ranges from 0.25 in WQ+30%RF and WQRain4Flow4 to 0.42 in
Rain3Flow3+20%TSS, which is in accordance to the 0.29 value found by McCarthy et al. (2011) for

sediment transport. For the combined input and calibration data error scenarios, k; only ranged for the
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scenarios in  which the volumes were overestimated (e.g. WQ+30%RF-20%TSS and

WQ+30%RF+20%TSS).

While the change in the translation parameter » was not significant for most of the input, calibration
and combined error scenarios, it was extreme for the specific cases in which the flow worst case
scenario in the rainfall runoff model was included (input data error: WQRain3Flow4 and
WQRain4Flow4; combined data error: WQRain3Flow4+20%TSS). These major shifts are due to the
fact that Flow4 was the scenario that implied the worst ‘Flow gauge maintenance scenario’. The 6
months period for re-calibration of the sensor (both timing and level/velocity) significantly changed
the properties and location of the modelled hydrograph. As a consequence r was affected. For
example, r shifted from 3 timesteps (18 mins) in the ‘NoError” scenario to more than 10 timesteps (1

hour) in WQRain3Flow4 and WQRain4Flow4.

The five parameters of the build-up/wash-off model were not significantly impacted when the flows
modelled with sub-sets of parameters from KAREN PDs were used to generate TSS concentrations
(Figure 3). This might be because the PD generated for the most sensitive parameter EIF in the
‘NoError’ scenario was very narrow (e.g. Figure 2), and thus different combinations of KAREN

model parameters had very little effect on the model flows.

Figure 3 Histograms for the build-up/wash-off model parameters obtained with the input parameter
error scenarios; i.e. Modelled flows with KAREN with sub-sets of parameters from the PDs - WQPar
(x6).

In summary, the results indicated that while the sensitivity of the model to its parameters did not alter
significantly (i.e. the shape of the parameter distributions remained the same) the model parameters
were able to compensate for the errors in measured input and calibration data (i.e. parameter values or

the position of the distributions changed).
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Table 7 Build-up/wash-off - Histograms of parameter PDs for the different modelled flows, TSS
concentrations and combined systematic error scenarios. The variation in the x axis is to facilitate the
visualisation of certain scenarios.

3.2 Modelling uncertainty

Figure 4 and Figure 5 present the predictive uncertainty for an event with different error scenarios for
KAREN and the build-up/wash-off model, respectively. Table 8 shows a summary of the observations
(corresponding to each scenario) which fall within the uncertainty bounds for example scenarios
(representing some of the different worst case scenarios). In general, the coverage from parameter
uncertainties for KAREN was very low. This is a reflection of the shape and form of the parameter
distributions shown in Figure 4; indeed, KAREN’s most influential parameters have a very narrow
distribution for most of the scenarios. This was thought to be caused by KAREN’s limited ability to
represent pervious surface flows and baseflow; without these processes, the model was unable to
predict these lower flows (which dominate the dataset in terms of absolute number of data points)
meaning that its coverage was very low (i.e. coverage equally weights all data points in the dataset).
Furthermore the fact that the number of observations within the parameter uncertainty bands is the
same or very similar for the ‘NoError’ scenario and the -30%Rain, Rain4 and, -30%R+30%F

indicates that the effect of measured data uncertainty is small.

Figure 4 KAREN - predictive uncertainty for an event sample hydrograph for the calibration data
period. The dark dots represent the observed data, the black line is the modelled data with the
optimised parameter set, while the two shaded areas (of different grey) show the predictive
uncertainty due to parameters and the total predictive uncertainty associated with the total error
related to the modelling residuals.

Figure 5 Build-up/wash-off - predictive uncertainty for an event sample pollutograph. The dark dots
represent the observed data, the black line is the modelled data with the optimised parameter set,
while the two shaded areas (of different grey) show the predictive uncertainty due to parameters and
the total predictive uncertainty associated with the total error related to the modelling residuals.

The total uncertainty associated with both models varied with the different scenarios. The percentage

of observations within the total uncertainty bound for the build-up/wash-off model varied and was

almost linearly correlated with the relative number of observations within the parameter uncertainty
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limits (Error! Reference source not found.). KAREN on the other hand, did not present such a clear
pattern. It seems that the total uncertainty was intrinsically related to the scenario characteristics. For
example, for Flow3 scenario, which is the worst case scenario underestimating flows, the coverage of
the parameter uncertainty increased when compared to the ‘NoError’ scenario, while the total

uncertainty decreased.

Table 8 Summary of the observations within the uncertainty bounds for sample scenarios (validation
period results for the rainfall runoff model are given between brackets).

As seen in Table 8 and Figure 6, the coverage from parameter uncertainties was lower during the
validation data period, which indicates that some parameter compensations obtained in the calibration
process are not good as the simple model (i.e. not based on the detailed physics of the urban drainage
systems) is not able to extrapolate the calibration results into the future.

Figure 6 KAREN - predictive uncertainty for an event sample hydrograph for the validation data
period. The dark dots represent the observed data, the black line is the modelled data with the
optimised parameter set, while the two shaded areas (of different grey) show the predictive

uncertainty due to parameters and the total predictive uncertainty associated with the total error
related to the modelling residuals.

4 Conclusions

The paper presented the application of a simple approach for global assessment of uncertainties in
urban drainage models, which propagates errors in input and calibration data and evaluates how they
impact the model calibration performance, sensitivity and predictive uncertainty. The approach was
tested for a coupled urban stormwater model (a simple rainfall runoff model coupled with a
commonly used build-up/wash-off model).

Results suggested that random errors in all input and calibration data had minor impact on the model
performance and sensitivity. Systematic errors in input and calibration data on the other hand,
influenced the model sensitivity (represented by the parameter distributions). In most of the scenarios
(especially those where uncertainty in input and calibration data was represented using ‘best-case’

assumptions), the errors in measured data were fully compensated by parameter calibration. For
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example, when rainfall was systematically under or overestimated, the effective impervious area
parameter varied systematically to compensate for the changes in the input data. In addition the model
predictive uncertainty was also compensated in most of the cases as the number of observations
within the parameter uncertainty bound kept fairly constant. It should then be noted that if the model
parameters were considered initially as reflecting reality, this representation was reduced when input
and calibration data errors were considered. Parameters were unable to compensate only in some of
the scenarios where the uncertainty in the input and calibration data were represented using extreme
worst-case scenarios. As such, in these few worst case scenarios, the model performance was reduced
considerably. These cases were generally linked to scenarios in which mainly the time drifts in the
battery logger device and calibration of water column levels were ignored for long periods. Results
suggested that re-calibration once a month is sufficient.

The fact that uncertainties were assessed in such ‘ill-posed’ water quality models is a major weakness
of this research as the obtained results are likely to be compromised. Nevertheless, the combination of
evaluating ‘ill-posed’ models with such a large dataset allowed us to confirm that the model structure
is the main reason for the poor performance of water quality models, and not the lack of measured
data

The results obtained with the assessment of uncertainties in the build-up/wash off model are likely to
be compromised because the model is ‘ill-posed’ (i.e. cross correlated parameters and model
performance suggests the structure is not appropriate to represent stormwater sediment levels). While
this is a limitation of this study, the combination of evaluating an ‘ill-posed’ model with a large
dataset allowed us to confirm that the model structure is the main reason for the poor performance of
water quality models, and not the lack of measured data. In this context, it seems that deterministic
approaches currently used to model water quality could be re-considered and that the stochastic nature

of the pollution generation process could be taken into account when modelling stormwater quality.
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Table 1 The governing equations of the build-up/wash-off model.

Process and model equation Unit Equation no.

Build-up during dry weather:

6k
M(ty) = M, - (1-e7Tei%) (ke) !
Wash-off during wet weather:

CH= kMl o+ (mg/L)

W(t) = 1076 * C(t) * Vol(t) (kg) 3

M(tq) is the mass of solids which accumulate on the surface during dry weather periods (ts) within a
timestep in kg; M, is the maximum amount of accumulated solids in kg, k; represents the

accumulation constant in day™; C is the concentration of pollutants in the runoff at the time t in mg/L;
k, and k5 are the wash-off coefficient and exponent, respectively; g is the runoff in mm/h, RC is the
catchment runoff coefficient; and, r in number of timesteps in min is used to correct for the fact that

pollutograph precedes the runoff hydrograph (Chiew and McMahon, 1999); W(t) is the wash-off of
TSS from the surface ; and, Vol is the runoff volume in L.
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837  Table 2 Summary of the tested error scenarios for the KAREN rainfall runoff model.
Base scenario Name
No error NoError
Input data error scenarios - Rainfall error scenarios
Random error only*® Randorp n'umber sampled from U[-0.5, 0.5] for RREr (x10)
B eachraintimestep
Random spatial Distribution* Random offset sampled from U[-0.3, 0.3] for RainSD (x10)
________________________________________________ eachrainevent
Systemati ant offset -30% offset to entire rainfall dataset -30%Rain
e 130% offset to entire rainfall dataset +30%Rain_
Rain gauge maintenance and bucket volume error scenarios
[ — Lo Bucket volume error
Imonth -0.14min/day -30% Rainl
Imonth +0.14min/day +30% Rain2
6 months -0.14min/day -30% Rain3
6 months +0.14min/day +30% Rain4
Calibration data error - Flow error scenarios
Random erroronly?  _.........LawofPropagationofUncertainty == FREr(xl0)
Systematic constant offset -30% offset to entire flow dataset -30%Flow
. 730%offSet to entire flow dataset 30%Flow
Flow gauge maintenance scenarios
Hooser Height drift Re-calibration shift Velocity error
1 month -2mm/mth U[-5.5] -10% Flowl
1 month 2mm/mth U[-5.5] 10% Flow2
6 months -10mm/mth U[-20,20] -30% Flow3
6 months 10mm/mth U[-20,20] 30% Flow4
.Combination of input (rainfall) and calibration (flew) error scenarios
-30% offset to entire rainfall & flow datasets -30%R&F
B +30% offset to entire rainfall & flow datasets +30%R&F
Systematic constant offsets L
-30% rainfall & +30% flow -30%R+30%F
+30% rainfall & -30% flow +30%R-30%F
Rain3 & Flow3 Rain3Flow3
Rain and flow gauges Rain3 & Flow4 Rain3Flow4
maintenance scenarios Rain4d & Flow3 RaindFlow3
Rain4 & Flow4 RaindFlow4
*10 random sets were generated and 10 MICA realisations were performed
838
839
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840  Table 3 Summary of the tested error scenarios for the water quality model (see Table 2 for further
841  explanations for some model errors).

Base scenario Name
No error WQNoError

Input parameter error scenarios
Modelled flows with KAREN with sub-sets of parameters from the PDs WQPar (x6)

842
843 Input data error scenarios - Modelled flows with KAREN

Random error only* WQMFREFr (x10)

WQ-30%R&F
WQ+30%R&F
WQ-30%R+30%F
WQ+30%R-30%F

WQRain3Flow3
. . ) . WQRain3Flow4
Modelled flows with rain and flow gauges maintenance scenarios
WQRain4Flow3
WQRaindFlow4
844
Calibration data error - TSS Concentrations
Random number sampled from U[-0.28,0.28] for TSSREr
Random error only* .
eeeeeemmmmmeenmsmeeeemnneeeeenoeeen.. oo CACh discrete sample (x10) _
Systematic constant offset -20% offset to entire concentration dataset -20%TSS
e .720%offset to entire concentration dataset ________+20%TSS_
-4.9% offset to entire concentration dataset TSS1
Discrete samples — combining all the +25% offset to entire concentration dataset TSS2
systematic sources -9.8% offset to entire concentration dataset TSS3
+40% offset to entire concentration dataset TSS4
Combination of input (modelled flow) and calibration (TSS) scenarios
WQ-30%R&F-20%TSS
. . WQ-30%R&F+20%TSS
Systematic constant offsets
WQ+30%R&F-20%TSS
WQH30%R&F+20%TSS
Rain3Flow3-20%TSS
Modelled flows with rain and flow gauges maintenance scenarios combined Rain3Flow3+20%TSS
with systematic constant offset Rain3Flowd-20%TSS
Rain3Flow4+20%TSS
*10 random sets were generated and 10 MICA realisations were performed
845
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862  Table 6 Rainfall runoff model KAREN - Histograms of parameter PDs for the different error
863  scenarios. The variation in the X axis is to facilitate the visualisation of specific scenarios.

Scenarios . .
EIF (%) TOC (min) Ii (mm) ev (mm/day)
—Noerror
40 40 40 40
M-30%Rain
+30%Rain
0
%% a0 6o T 110 125 4.5 % 0125 025
40 40 40 40,
B-30%Flow
+30%Flow
%20 40 60 g 110 725 45 % 0125 025
40 40, 40 40
H-30%R+30%F
L
920 40 60 ST 110 025 45 % 0z 025
40 20— 40— : 40,
B-30%R&F
+30%R8&F l\ H m
.
T T ) =90 110 0725 45 & 01 025
40 40 40 40,
WRain1
o | i il
% 40 60 g0 Tio 07 25 45 & oA 025
40 40 40 40
HRain3 ]
Rain4 H_J [
%% 40 60 g0 110 7 25 45 G 0i5 02
40 40 40 40
HFiow1 |
Flow2 || r _~| Th_‘_
025 40 60 ST 110 0725 45 & 0125 025
40, 40 40, 40 40, 40,
BFlow3
Flow4 l l E
%2030 Y95 o9 63 168 0 %
90110 162 168 1 25 45 0125 025
40 40 40 40 40 40,
BRain3Flow3
Rain3Flow4 . 'D
%530 %95 99 90110 162168 05 25 4% G 0izs 025
40 40 40 40 40 40,
BRain4Flow3
Rain4Flow4 ]
03m@0 ‘sz @8 80 110 162168 OST25 45 G 025 025
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865
866
867

Table 7 Build-up/wash-off - Histograms of parameter PDs for the different modelled flows, TSS
concentrations and combined systematic error scenarios. The variation in the x axis is to facilitate the
visualisation of certain scenarios.

Scenarios

M, (k Kk, (day™ Kk k r (timeste
— Noerror o (kg) 1 (day™) 2 3 ( p)
70 50 50, 50, 50
BWWQ-30%R&F f f
WQr30%RSF Vrﬂﬂi H 2 25 H
100 2000 4000 @ 25 5 0 0.3 06 0 03 o6 Js 6
70 50 5 5 50
WWQ-30%R+30%F d
WQ+30%R-30%F WW
T i , il 14
100 2000 4000 O 25 5 % 0.3 0.6 0.3 06 Ja 6 3
70 50 50 50 5
W -20%TSS
+20%TSS
| W I
100 2000 4000 0 25 5 0 03 06 % 03 o6 s 6
70 50 50 50 5
BWQ-30%R&F-20%TSS
WQ-30%R&F +20%TSS
T . L
100 2000 4000 0 25 5 % 03 06 % 03 ~os s 6
70 50 50 50 50
BWQ+30%R&F-20%TSS r
WQ+30%R&F +20%TS¢E EU m
T H —
100 2000 4000 0 2.5 5 % 0.3 08 % 03 os s 6
70 50 50— 5 50
BwWQRain3Flow3
WQRain3F low4
il Al
100 2000 4000 O 25 s § 0.3 06 03 06 I8 6 3
70 50 . 50 50 5
BWQRain4Flow3 1
WQRain4Flow4 Tﬁ
s e |
100 2000 4000 O 25 & %03 a5 b T3 o 9a 8
70 50 50 50 5
LIERH d
TSS2 ﬂ-ﬂ
100 2000 4000 0 2.5 5 % 0.3 06 % 03 os s %
70 50 50 50 5
WTSS3 i
| - Ao W
0
100 2000 4000 0 2.5 5 0 03 06 % 03 os 8 6 3
70 50 50 50 5
WRain3Flow3-20%TSS H |
Rain3Flow3+20%TSS m ﬂ
100 2000 4000 0 25 5 % 0.3 0.6 % 0.3 0.6 S8 6 @
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868

869

870
871

872

873

874

70 50, 50 1 50,

B Rain3Flow4-20%TSS

0,
Rain3Flow4+20%TSS | Il
ula- J_I[WHL _.ifﬂmhh‘
6 3

100 2000 4000 0 25 & %03 a5 b 03 oe s

Table 8 Summary of the observations within the uncertainty bounds for sample scenarios (validation
period results for the rainfall runoff model are given between brackets).

Rainfall Runoff KAREN
NoError -30%Rain Rain4 Flow3 -30%R+30%F

Observations within the

parameter uncertainty 9 [8] 911] 612] 2012] 912]
bound (%)

Observations within the

total uncertainty bound 63 [30] 87 [98] 91 [30] 59 [30] 84 [100]
(%)

Build-up/Wash-off
WQNoError WQRain3Flow3  TSS4 WQ-30%RF+20%TSS

Observations within the

parameter uncertainty 48 15 53 19
bound (%)

Observations within the

tofal uncertainty bound 72 40 79 42
(%)
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876  Figure 1 Propagation of input and calibration data errors through models (after Deletic et al, 2012).
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1 No error - NoError
KAREN - Rainfall random errors s Rainfall random errors - RREr

B
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[S 1)
S= 25 25 25 25
(3]
b '
= 0 0 0 0
& 25 30 35 80 100 120 0 25 5 0 01 0.2
EIF (%) TOC (min) li (mm) ev (mm/day)

1 No error - WQNoError

- Build-up/wash-off TSS random errors momm 7SS random errors - RSSREr
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Mo (kg) k1 (day'1) k2 K, r (timestep)

Figure 2 Histograms for KAREN parameters (top) obtained from the “NoError” scenario and from the
10 sets of data generated with KAREN rainfall random errors — RREr (x10); and histograms for the
build-up/wash-off model parameters (bottom) obtained from the ‘WQNoError’ scenario and from the
10 sets of data generated with TSS random errors — TSSREr (x10) (see Table 2 for abbreviations).

) . . [——"INo error - WQNoError
Build-up/wash-off input parameter error SCenario g Input parameter eror scenarios - ParWQ

60 60

60 60 80

30 30 30 30

(%) of accepted
values
w
o

0 0 0 0 0 ‘
400 1400 0 25 5 0 02 04 0 03 06 -5 0 5
IVIO (kg) |.;1 (day’*) k2 l-:3 r (timestep)

Figure 3 Histograms for the build-up/wash-off model parameters obtained with the input parameter
error scenarios; i.e. Modelled flows with KAREN with sub-sets of parameters from the PDs - WQPar
(x6).
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892  Figure 4 KAREN - predictive uncertainty for an event sample hydrograph. The dark dots represent the
893  observed data, the black line is the modelled data with the optimised parameter set, while the two
894  shaded areas (of different grey) show the predictive uncertainty due to parameters and the total
895  predictive uncertainty associated with the total error related to the modelling residuals.
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899  Figure 5 Build-up/wash-off - predictive uncertainty for an event sample pollutograph. The dark dots
900  represent the observed data, the black line is the modelled data with the optimised parameter set,
901  while the two shaded areas (of different grey) show the predictive uncertainty due to parameters and
902  the total predictive uncertainty associated with the total error related to the modelling residuals.
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Figure 6 KAREN - predictive uncertainty for an event sample hydrograph for the validation data
period. The dark dots represent the observed data, the black line is the modelled data with the
optimised parameter set, while the two shaded areas (of different grey) show the predictive
uncertainty due to parameters and the total predictive uncertainty associated with the total error
related to the modelling residuals.
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7.7 Conclusions

This chapter started with a summary of the main sources of uncertainties in the measured variables
that are commonly needed for the application of urban drainage models. Specifically, the
uncertainties associated with as rainfall, flow rates and TSS concentrations were reviewed. This was
followed by an investigation of the impact of these input and calibration measured data uncertainty

(here, estimated through the error models) on the model sensitivity and predictive uncertainty.

Results suggested that random errors in all input and calibration data had a minor impact on the
model performance and sensitivity. Systematic errors in input and calibration data influenced the
model sensitivity (represented by the parameter distributions). In most of the scenarios (especially
those where uncertainty in input and calibration data was represented using ‘best-case’
assumptions), the model performance was fully compensated by the parameters. For example,
when rainfall was systematically under or overestimated, the effective impervious area parameter
varied systematically to compensate for the changes in the input data. In addition the model
predictive uncertainty was also compensated in most of the cases as the number of observations
within the parameter uncertainty bound was kept fairly constant. It should then be noted that if the
model parameters were considered initially as reflecting real characteristics of the catchment (i.e.
not only mere calibration parameters values), this representation was reduced when input and
calibration data errors were considered. Parameters were unable to compensate only in some of the
scenarios where the uncertainty in the input and calibration data were represented using extreme
worst-case scenarios. As such, in these few worst case scenarios, the model performance was
reduced considerably. These cases were generally linked to scenarios in which the time drifts in the
battery logger device was ignored for long periods, which indicates that rain and flow gauges
should be regularly recalibrated. From the results presented, it is suggested that re-calibration once

a month is sufficient.

The results obtained with the assessment of uncertainties in the build-up/wash-off model are likely
to be compromised because of its ‘illl-posed’ nature. While this is a limitation of this study, the
assessment of the uncertainties in such a widely used model (with a large number of events)
confirmed that the pollution generation processes in the catchment are quite variable. This suggests
that the determinist approaches currently used to model water quality should be re-considered and
that the stochastic nature of the pollution generation processes should be taken into account when

modelling stormwater quality.
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Chapter 8

Discussion, conclusions and further investigation







8.1 Introduction

The objective of this research project was to advance the current understanding of the
uncertainties in urban rainfall runoff and pollution generation models in order to better define their
reliability. The study concentrated on the main following areas: (i) identifying suitable global
uncertainty analysis method(s) to perform parameter calibration, model sensitivity and uncertainty
analysis in stormwater models; (i) exploring parameter calibration, model sensitivity and the
resulting predictive uncertainties in stormwater models with different level of complexities; and,
(i) investigating the impact of measured input and calibration data uncertainty on the
performance, sensitivity and predictive uncertainty of stormwater models. This chapter begins with
an assessment of the strengths and weaknesses of the presented research (Section 8.2). The key
conclusions gained from the study (i.e. the major findings from each of the chapters in the thesis)
are then presented in Section 8.3. Finally, opportunities for further work are discussed in Section

8.4.

8.2 Strengths and weaknesses of the evidence

Methods for global sensitivity and uncertainty analysis

The comparison of methods for global sensitivity and uncertainty analysis contribute to better
understand the limitations and advantages of each method. A strength of this research is that the
tested methods were based on the current available knowledge on uncertainty of stormwater
models, as well as on the state of the art approaches used for uncertainty analysis in related fields
(including both ‘“formal’ and ‘informal’ Bayesian approaches). The work was done in close
collaboration with another four research groups who are all recognised as international leaders in

the urban drainage research.
Method assumptions — checking and validating

The likelihood function in the adopted formal Bayesian approach assumes that the model errors
(or residuals between the measured and modelled values) are independent, homoscedastic and
normally distributed. Some of the main weaknesses of this thesis are that such assumptions were
not verified at the start of the activities and that the normality assumption was only verified in the
later stages. Nevertheless, the fact that we studied the impact of the normality assumption on the
results (Chapter 6), and even attempted to develop a more rigorous way of applying the
methodology (Chapter 7), is a strength of this research (as this is often not addressed in the similar

studies).

Another weakness of the current project is that the other assumptions regarding the error model
were not verified: model residuals were assumed to be independent (not correlated) and
homoscedastic. This is a major limitation as the model residuals are very likely to be correlated.

However, the serial correlation between the data points was not considered in this study because
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the current used methods to account for autocorrelation (e.g. first order model) were proven to be
ineffective for small timesteps as used in this research. The homoscedasticity assumption of the
model errors does not seem much of a problem as the data transformation resulted in normal

distributions (with constant mean and standard deviation).
Parameter calibration, model sensitivity and the resulting predictive uncertainties

This thesis was the first in the field to compare the sensitivity and predictive uncertainty of
conceptual stormwater models with different levels of complexity. It also provided a
comprehensive analysis of model parameters and their interactions. Such analysis offered practical

recommendations for developing new stormwater models and for refining of existing ones.

Another strength of this research was the ability to assess uncertainties in stormwater modelling on
five urban catchments (with different areas, land-uses and levels of development) using a long term
and high resolution dataset (mainly for water quality data, which used to be scarce so far). Testing
the models using this large dataset meant that the models had to demonstrate their ability (or
inability) of representing the variability in the data with the possible contexts and ranges of events
and values (e.g. if the model is able to explain the hydrological responses from a specific urban

catchment during the different seasons).

A weakness was that the number of models tested was limited (although it is also acknowledged it
is hard to cover all available models in the one thesis). Further, although the tested pollution
generation models were chosen for being the most adopted in urban drainage models, the results
demonstrated that they were not able to represent reality. The fact that uncertainties were assessed
in such ‘ill-posed’ water quality models is a major weakness of this research as the obtained results
are likely to be compromised. Nevertheless, the combination of evaluating ‘ill-posed’ models with
such a large dataset allowed us to confirm that the model structure is the main reason for the poor
performance of water quality models, and not the lack of measured data (as was the case previously

in the urban drainage modelling community).
Impact of measured input and calibration data uncertainty

This thesis tested a new framework for joint assessment of the impacts of key sources of
uncertainties on the modelled results. Although the application of the framework to assess the
input and calibration data errors demands significant computational time, the applied approach is
relatively simple and far less complex than other similar frameworks (that are in fact very rare), and
could be adopted and/or adapted for assessing the errors in other conceptual based models with a
low number of calibration parameters. However, the procedure is still too computationally

demanding to allow its application for more deterministic models.

One main limitation of this framework is that the sources of errors are lumped, and therefore the

changes in one specific source cannot be accounted independently. Again, assessment of
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uncertainties in the ‘ill-posed” water quality model is a weakness of this research task. However, the
strength of the study is that it confirmed the suggestion that the pollution generation processes in
the catchment are stochastic, and that the physically based conceptual approaches (currently used

to model water quality) should be re-considered.

8.3 Conclusions

Global sensitivity analysis methods in stormwater modelling

On the search for suitable global uncertainty analysis methods to perform parameter calibration,
model sensitivity and uncertainty analysis in stormwater models, the main contribution of this
thesis was that the application of different methods produced fairly similar results. It should be
noted that these results might be severely compromised as the tested uncertainty analysis methods
rely on a number of assumptions and subjectiveness. As such, the appropriateness of these

methods is questionable.

Results from this research task recommended that the selection of the most appropriate method
for uncertainty estimation is a trade-off between the need for a strong theory-based description of
uncertainty (but limited by the requirements on prior knowledge about the structure of the model
errors - Bayesian approach, MICA), simplicity (but limited by the subjectivity - GLUE) and
computational efficiency (also affected by subjectivity - AMALGAM and SCEM-UA). It is also
suggested that different evaluation scenarios should be analysed (i.e. different catchments, models,
data, etc). Modellers should also select the method which is most suitable for the system they are
modelling (e.g. complexity of the model’s structure including the number of parameters), their

skill/knowledge level, the available information, and the purpose of their study.

The Bayesian approach was suggested to be more suitable for uncertainties in stormwater
modelling because it is more efficient (or at least less time consuming) to evaluate models with
larger number of parameters and also because of its statistical rigour. Further application of the
tested Bayesian approach confirmed the potential of the method to assess different urban drainage

models (i.e. with different level of complexities) in urban catchments of different sizes and land-use
types.

However, the likelihood functions in the applied Bayesian approach assumes that the model errors
(residuals) are normally distributed. This study demonstrated that this assumption is often not met
in stormwater modelling (i.e. model residual are not normally distributed). In order to verify the
normality assumption, a data transformation approach was adopted. While Box-Cox
transformation solved the normality issue, it drastically influenced the sensitivity of the model
parameters. Consequently we decided to assess the impacts of verifying the normality assumption

of the model errors on the model parameter sensitivity and its associated predictive uncertainty.

241



In addition, all observed data have uncertainty, and this should be taken into account in the
likelihood function so that the parameters are estimated appropriately; indeed, it is important that
the function places more emphasis on data which has lower uncertainty. Weighting strategies were
used to re-adjust how the likelihood function emphasises various parts of the dataset to (1)
consider measured data uncertainty and (2) compensate for the Box-Cox transformation which had

adjusted the emphasis in an undesirable way.

It was found that the overall efficiency of the models was different and that the changes in
parameter distributions were significant between the scenarios in which the normality assumption
of the residuals was verified or not. The main reason for such results is the fact that the data
transformation used to meet the normality assumption altered the data, which then influenced the

emphasis on various parts of the hydrograph.

Another interesting finding from the thesis was that pursuing the normality assumption by
adequate data transformation seemed to better calibrate the models. It was found that when the
normality assumption was achieved, most of the model’s processes were activated (resulting in
more sensitive parameters), while only few parameters drove the outputs when the normality

assumption was not achieved (i.e. only some parameters were sensitive).
Parameter calibration, model sensitivity and the resulting predictive uncertainties

The comparison between two catchment rainfall runoff models with different levels of complexity
demonstrated that both models performed similarly and that the effective impervious fraction is
the most important parameter in runoff prediction. Other key parameters are those related to the
time of concentration. It is interesting to note that the calibrated parameter values were different
for each model, which demonstrated that parameters estimated for one model cannot be
transferred to other models without a new model calibration, even if they represent the same
physical background. However, this is not surprising as only simplified conceptual models were
tested. In addition, the analysis indicated that the pervious area parameters played a secondary role
when modelling highly urbanised catchments. This suggests that, for practical applications,
parameters relating to the pervious areas do not have to be calibrated and default values could be

used when applied to urbanised catchments.

The most widely adopted water quality models, the build-up/washoff and simple regression
equations, were tested. Even with the robust calibration and parameter sensitivity approach used, it
was clear that these models poorly represent reality and their predictions presented a high level of
uncertainty. This opposes to most of publications that showed a good agreement between
measured data and simulated data, but is explained by the fact that such studies were based on a
few single events. While the two water quality models tested were both sensitive to wet weather
related parameters, the build-up/wash-off model was not very sensitive to the dry weather related

parameters. Recommendations were made to aid the improvement of existing models and also the
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development of new model formulations. For example, results indicated that future work on the
development of better water quality models should focus on formulations that use routed variables

(e.g. routed rainfall or runoff) rather than ‘unrouted’ variables.

The uncertainty analysis showed that the total predictive uncertainty bands were larger than the
uncertainty bands resulting from parameter uncertainty only. While the total uncertainty bands
covered the bands resulting from parameter uncertainty only, it was observed that the contribution
of the later was minor. This indicates that the predictive uncertainty due to other sources is more
important (e.g. measured input data including spatial rainfall distribution, model formulation and

assumptions and selected objective function).

In summary, one of the main contributions of this work was to demonstrate the limitations of the
currently used stormwater models as they all presented large uncertainty, mainly on the side of

water quality modelling.
Impact of input and calibration data uncertainties on stormwater models

The impact of the input and calibration data uncertainties on stormwater models in terms of
performance, sensitivity and predictive uncertainty was assessed by means of a rather simple
approach for global assessment of uncertainties in urban drainage models. A coupled urban
stormwater model (a simple rainfall runoff model was coupled with a commonly used build-
up/wash-off model) and error models were developed to estimate the uncertainty associated with

input and calibration data.

It was demonstrated that random errors in all input and calibration data had a minor impact on the
model performance and sensitivity. Another finding was that systematic errors in input and
calibration data influenced the model sensitivity (represented mainly by the position of the peak of
parameter distributions). In most of the scenarios, the model performance was fully compensated
by the parameters. Parameters were unable to compensate only in some scenarios where the
uncertainty in the input and calibration data were represented using extreme worst-case scenarios.

As such, in these few worst case scenarios, the model performance was reduced considerably.

Results specifically from the water quality modelling suggested that the model sensitivity was not
significantly impacted by the calibration data errors, which might be due the fact that the model
cannot reproduce TSS concentrations even when the ‘true’ measured dataset is used. One of the
main contributions of this research task was to demonstrate that the current main limitation in
water quality modelling is related to poor model structure, and that, even though it is still

important, the main limitation may not be errors in measured data.

8.4 Future work
This research has provided a comprehensive overview of the different sources of uncertainties in

stormwater models (with different level of complexities) and how the different sources impact on
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parameter sensitivity and the resulting predictive uncertainty. Future research, however, is needed

to extend the understanding of the different sources of uncertainties in stormwater models.
Methods for global sensitivity and uncertainty analysis in stormwater modelling

Results from this thesis suggested that the methods currently used to assess uncertainties in
stormwater models are uncertain themself, mainly because of their subjectivity (e.g. user defined
thresholds). In the author’s opinion, there is a lack of appropriate uncertainty analysis methods,
and therefore future studies should focus on the development of more robust and far less
subjective global sensitivity and uncertainty analysis methods. In addition, attention should be paid
to the development of methodologies to assess uncertainties in the absence of measured data (i.e.

ungauged systems), that in fact is the main problem in hydrological modelling field.

The main issue with most of the Bayesian approaches is related to the fact that they rely on a
number of assumptions related to the structure of the model errors (residuals). The data
transformation used here to meet the normality assumption altered the data by influencing the
emphasis on various parts of the hydrographs (to obtain a more even distribution of the flows).
This means that, in the transformed space, the chosen least square based likelihood function no
longer focuses on the peaks (as initially desired), but on medium and low flows. Future work
should always ensure that all assumptions are verified, for such future studies should focus on
other data transformation methods, and on the investigation of alternative formal likelihood

functions to accommodate correlated and non - normal model residuals.
Sources of uncertainties in stormwater modelling

The impact of calibration data availability (i.e. different sections of the calibration dataset) on the
model sensitivity and predictive uncertainty should be evaluated and incorporated into the global
approach for modelling uncertainties. Besides contributing to a better understanding of the impact
of calibration data availability on the total model uncertainty, this would be useful to guide future
applications of the model, mainly when only a limited number of events is available in the

calibration dataset.

Future work should focus on the evaluation of structural errors (mainly related to the model
conceptualisation, equations, numerical methods and boundaries) as they seem to be a major

contribution to the total model uncertainty.

The proposed framework used to evaluate the impact of the input and calibration data on the
sensitivity and uncertainty of the tested stormwater models should be applied to other stormwater
models. In addition, alternative error models to estimate the errors associated with measured data
should be developed and tested. These would be useful to further validate the application of the

method for a range of models and data.
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Improving water quality modelling

It is very likely that semi-physically based conceptual models are just not able to cope with the
stochasticity of the pollution generation processes. As such, further work should focus into

development of radically different water quality models to those currently used in practice.
Engagement with stormwater professionals

In the author’s opinion, it is crucial that the researchers working with the assessment of
uncertainties in stormwater models should engage with other stormwater professionals (e.g.
decision makers, planners, etc.) in order to discuss the best ways to communicate and use the
quantified uncertainty. This would be mainly beneficial to provide strategic directions for the

future of uncertainty assessment in the urban drainage field.

245






Appendix A

Journal paper co-authored by the candidate

Deletic, A., Dotto,C. B. S., McCarthy, D. T., Kleidorfer, M., Freni, G., Mannina, G., Uhl, M.,
Henrichs, M., Fletcher, T. D., Rauch, W., Bertrand-Krajewski, J. L. and Tait, S. (2012). Assessing
uncertainties in urban drainage models. Physics and Chemistry of the Earth, Parts A/B/C 42-44(0): 3-
10.






Physics and Chemistry of the Earth 42-44 (2012) 3-10

journal homepage: www.elsevier.com/locate/pce

Contents lists available at ScienceDirect

Physics and Chemistry of the Earth

Assessing uncertainties in urban drainage models

A. Deletic**, C.B.S. Dotto?, D.T. McCarthy?, M. Kleidorfer®, G. Freni ¢, G. Mannina¢, M. Uhl¢,
M. Henrichs®, T.D. Fletcher?, W. RauchP, ].L. Bertrand-Krajewski, S. Tait®
2 Department of Civil Engineering, Centre for Water Sensitive Cities, Monash University, Victoria 3800, Australia

Y Unit of Environmental Engineering - University Innsbruck, Technikerstrasse 13;6020 Innsbruck, Austria
€ Facolta di Ingegneria ed Architettura, Universita di Enna “Kore”, Cittadella Universitaria, 94100 Enna, Italy

4 Dipartimento di ia Civile, Ambientale ed Aer

Universita di Palermo, Viale delle Scienze, 90128 Palermo, Italy

€ Laboratory for Water Resources Management, Muenster University of Applied Sciences, Department of Civil Engineering, Corrensstr. 25, FRG 48149 Muenster, Germany
fUniversité de Lyon, INSA Lyon, Laboratoire de Génie Civil et d’Ingénierie Environnementale, 34 avenue des Arts, F-69621 Villeurbanne cedex, France
£ Pennine Water Group, The University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom

ARTICLE INFO ABSTRACT

Article history:

Received 31 January 2011
Accepted 13 April 2011
Available online 19 April 2011

The current state of knowledge regarding uncertainties in urban drainage models is poor. This is in part
due to the lack of clarity in the way model uncertainty analyses are conducted and how the results are
presented and used. There is a need for a common terminology and a conceptual framework for describ-
ing and estimating uncertainties in urban drainage models. Practical tools for the assessment of model
uncertainties for a range of urban drainage models are also required to be developed. This paper, pro-
duced by the International Working Group on Data and Models, which works under the IWA/IAHR Joint
Committee on Urban Drainage, is a contribution to the development of a harmonised framework for
defining and assessing uncertainties in the field of urban drainage modelling. The sources of uncertainties
in urban drainage models and their links are initially mapped out. This is followed by an evaluation of
each source, including a discussion of its definition and an evaluation of methods that could be used
to assess its overall importance. Finally, an approach for a Global Assessment of Modelling Uncertainties
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1. Introduction

Uncertainty is intrinsic in any modelling process and originates
from a wide range of sources, from model formulation to the collec-
tion of data to be used for calibration and verification. Uncertainties
cannot be eliminated, but their amplitude should be estimated and,
if possible, reduced. It is necessary to understand their sources and
impact on model predictions. For example, the confidence level of
amodel’s predictions should be included in every modelling applica-
tion. Beven (2006) reported that there are many sources of uncer-
tainty that interact non-linearly in the modelling process.
However, not all uncertainty sources can be quantified with accept-
able levels of accuracy, and the proportion of uncertainty sources
being ignored may be high in environmental modelling investiga-
tions (Harremoés, 2003; Doherty and Welter, 2010).

In the literature, the following sources of uncertainties are listed
(e.g. Butts et al., 2004): (i) model parameters, (ii) input data,
(iii) calibration data, and (iv) model structure. The impacts of

* Corresponding author.

calibration methods and data availability are also recognised. Each
of these sources is discussed below.

When dealing with complex urban drainage models, calibration
may lead to several equally plausible parameters sets, reducing
confidence in the model predictions (Kuczera and Parent, 1998).
The concept that a unique optimal parameter set exists should
therefore be replaced by the concept of ‘“equifinality” (Beven,
2009) in which more than one parameter set may be able to pro-
vide an equally good fit between the model predictions and obser-
vations. Many published studies have dealt with the impact of
uncertainties on model parameters, also known as sensitivity anal-
ysis (Kanso et al., 2003; Thorndahl et al., 2008; Dotto et al., 2009).
Some studies used the results of a model sensitivity analysis to
produce parameter probability distributions (PDs), which reflect
how sensitive the model outputs are to each parameter (e.g.
Marshall et al., 2004; Dotto et al., 2010a; McCarthy et al., 2010);
while other studies used the sensitivity analysis to screen param-
eters for further analysis (e.g. Reichl et al., 2006; Haydon and
Deletic, 2007). In most cases, model sensitivity results were also
used to estimate confidence intervals around the model’s outputs
(e.g. Yang et al., 2008; Li et al., 2010).

1474-7065/$ - see front matter Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.pce.2011.04.007



4 A. Deletic et al./Physics and Chemistry of the Earth 42-44 (2012) 3-10

Impacts of input data uncertainties on urban drainage model-
ling are far less understood. Their importance, however, is widely
studied in related areas (Kuczera et al., 2006). For example, the im-
pact of systematic rainfall uncertainties on the performance of
non-urban catchment models was recognised and assessed by
Haydon and Deletic (2009). Work has also been completed on
the propagation of input data uncertainties through urban drain-
age models (Rauch et al,, 1998; Bertrand-Krajewski et al., 2003;
Korving and Clemens, 2005). However, in these studies, the models
were first calibrated assuming that measured inputs and outputs
were true (no-error), and the impacts of input data uncertainties
were then propagated through the models, while keeping the mod-
el parameters fixed. Recently, Kleidorfer et al. (2009a) and Freni
et al. (2010) attempted to assess how input data uncertainties im-
pact model parameters, investigating the interactions between
these two sources of uncertainties. Freni and Mannina (2010) at-
tempted to isolate the contribution of different sources of uncer-
tainty in a complex integrated urban drainage model.

Research on the impact of calibration data on the accuracy of
drainage models has focused on the effectiveness of the calibration
and verification processes. Many studies have examined how to di-
vide the available data into calibration and verification sets (McCarthy,
1976; Klemes, 1986; Vaze and Chiew, 2003; Wagener et al., 2004).
A few recent papers (e.g. Mourad et al., 2005; Dotto et al., 2009)
evaluated how the number of events used in calibration and
verification of urban drainage models impacts on their predictive
uncertainty. On the other hand, there is little work reporting on
how uncertainties in measured calibration data impact on the mod-
el's predictive capacity. However, large uncertainties in measured
urban discharges and water quality have often been reported (e.g.
Bertrand-Krajewski, 2007; McCarthy et al., 2008), thus clearly dem-
onstrating that calibration data sets may in themselves be a signifi-
cant source of uncertainty in the model calibration process. In fact,
McCarthy (2008) showed the influence of calibration data uncer-
tainty on the calibration of a simple rainfall-runoff model.

There are many studies on the effectiveness of calibration algo-
rithms. For example, Gaume et al. (1998) showed that different cal-
ibration methods can lead to different parameter sets, which
demonstrate a similarly good fit between measured and simulated
data. This can occur as a result of difficulties in finding a global
minima, especially for systems where the objective/criteria func-
tion surface is nonlinear. It is evident that these problems become
more important as model complexity increases (Silberstein, 2006),
or where models are ill-posed (Dotto et al., 2009). Therefore it
is not surprising that some calibration algorithms simply cannot
find the global minima in rather complex urban drainage models
(Kanso et al., 2003).

Given the wide range of communities and applications in which
uncertainty is studied, there is no general consensus in the litera-
ture with regard to the terminology used. For example, the terms
“sensitivity” and “uncertainties” are often used interchangeably
and yet have distinctly different meanings. A further example is
that some input variables that could be measured, but are also re-
fined through calibration processes (such as, effective impervious-
ness in rainfall-runoff modelling), are sometimes regarded as fixed
inputs and at other times as model parameters. These terminology
problems need to be addressed so as to improve the communica-
tion between research groups, thus the coherence and applicability
of future studies.

Despite previous work attempting to unify definitions and ap-
proaches of uncertainty evaluation (e.g. Walker et al., 2003), no
universal framework and methodology for categorising and assess-
ing modelling uncertainties has been accepted. Indeed, Montanari
(2007) stated that uncertainty assessment in hydrology suffers
from a lack of a coherent terminology and hence a systematic
approach.

This paper is a contribution in the debate to develop common
terminology and a conceptual framework for accounting for uncer-
tainties in urban drainage modelling. It outlines a Global Assess-
ment of Modelling Uncertainties (GAMU), which presents a new
framework for mapping and quantifying sources of uncertainty in
urban drainage models.

2. Methods

The International Working Group on Data and Models, which
works under the IWA/IAHR Joint Committee on Urban Drainage
(JCUD), conducted several workshops focused on uncertainties in
monitoring and modelling of urban drainage systems:

(1) ‘Integrated Urban Water Management Modelling: Chal-
lenges and Developments’, Melbourne, Australia, 2006, in
conjunction with the 7th Urban Drainage Modelling and
4th Water Sensitive Urban Design conferences (7UDM &
4WSUD);

(2) ‘Uncertainties in data and models’, Lyon, France, 2007, as
part of the 6th Novatech conference; and,

(3) ‘Challenges in monitoring and modelling of stormwater
treatment systems’, Edinburgh, UK, 2008 as part of the
11th International Conference on Urban Drainage (11ICUD).

This paper represents the outcome of these workshops. The lit-
erature, guidelines and standards on uncertainties in measure-
ments (Bich et al., 2006; ISO, 2008, 2009a,b) were also consulted,
as well as recent relevant work on uncertainties. This paper thus
presents a review of the state of the art, and an attempt to harmo-
nise concepts, definitions and protocols.

3. Proposed framework for a Global Assessment of Modelling
Uncertainties (GAMU)

The first step in the proposed uncertainty framework is to map
the sources of uncertainty and their links; their contribution and
significance are then evaluated. Finally, the propagation of all
sources simultaneously provides an analysis of their effect on the
model sensitivity and consequently on the uncertainty of the mod-
el predictions.

3.1. Mapping uncertainties

The majority of urban drainage models require calibrating prior
to use. This calibration process is referred to as the ‘inverse prob-
lem’ (Gallagher and Doherty, 2007), whereby parameter values
are determined from measured calibration input data, calibration
output data and the model structure by applying an objective func-
tion. When using models for prediction outside of calibration, or
when models are simply used with estimated parameter values
(from expert knowledge, literature or defaults), the process is
known as the ‘forward problem’.

A generic modelling framework was therefore adopted, for
which the following information is needed (Fig. 1): model struc-
ture MS (i.e. relationships, linkages and numerical methods), input
data ID (e.g. rainfall or potential evapotranspiration time series)
and model parameters P (e.g. effective impervious area, linear res-
ervoir lag-time parameters in rainfall-runoff conceptual models).
For the inverse problem, the following information is also needed:
calibration input data (e.g. rainfall intensity time series), measured
calibration output data (e.g. flow time series), calibration algo-
rithms CA and objective functions OF selected by the modeller
according to the model requirements (e.g. sum of the squared
errors).
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Fig. 1. General modelling framework.

Three key groups of uncertainty sources mapped in this frame-
work are outlined below and in Fig. 2.

(I) Model input uncertainties: Inputs that are required to run
either a calibrated or a non-calibrated model can be grouped
into the following categories, which their associated uncer-
tainties should be propagated through the model:

1. Input data (ID) - both random and systematic effects
have to be assessed in the input data collection process
(these may be described statistically using the actual
measurement information or simply estimated).

2. Model parameters (P) - uncertainty in their calibrated

values or estimates.

Calibration uncertainties: That are related to the processes

and data used in model calibration. This source is mainly

due to:

3. Calibration data uncertainties due to measurement
errors in both inputs and outputs (CD-M), that are
dependent on the quality of the monitoring program
and instruments used in the collection of the data sets,
including the temporal resolution of the time series, data
collection and validation procedures and data manipula-
tion protocols.

4. Selection of appropriate calibration input and output
datasets (CD-S), which is linked to the choice of the cal-
ibration variable (e.g. the of use concentrations or loads

(1

to calibrate a water quality model) and the amount of
data available for calibration (e.g. number of storm
events, length of time series).

5. Calibration algorithms (CA), which depends on the algo-
rithm used for finding the appropriate sets of
parameters.

6. Objective functions (OF) used in the calibration process;
these need to be appropriate for the modelling
application.

Model structure uncertainties: Which depend on how well

the model simulation represents the systems and pro-

cesses. These can include:

7. Conceptualisation errors, such scale-issues or omitting
key processes.

8. Equations, which could be ill posed and thus inade-
quately represent the process.

9. Numerical methods and boundary conditions, which can

be ill defined leading to inaccurate solutions (e.g. numer-

ical dispersion or instabilities).

(1

Fig. 2 indicates that sources of uncertainties are interlinked. For
example, uncertainties in input data and calibration procedures
will at the same time impact on the model’s sensitivity to its cali-
bration parameters. In fact, all identified sources of uncertainties

(1) Model structure uncertainties

(1) Model input uncertainties

| 7. Conceptualisation l

1. Input data (ID)

| 8. Equations |

9. Numerical methods
and boundaries

2. Model
Parameters (P)

3. Calibration data
measurements (CD-M)

4. Calibration data
selection (CD-S)

5. Calibration
Algorithm (CA)

6. Objective
Functions (OF)

(1) Calibration uncertainties

Fig. 2. The key sources of uncertainties in urban drainage models and links between them.
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will impact the model parameter values. Further, the model devel-
opment and calibration process needs to be strongly related to the
model application. A model used to predict average annual dis-
charge might be built and calibrated differently to a model used
to predict hydrographs and pollutographs. As discussed in the
Introduction, the model structure (e.g. conceptualisation, choice
of equations and numerical methods) impacts on this process,
since ill-posed models are notoriously difficult to calibrate. There-
fore, in Fig. 2, the model parameter uncertainties are placed at the
intercept of all three categories.

3.2. Model input uncertainties

In general, depending on their type and use in the model, model
inputs can either be measured or estimated. The two identified
sources (Fig. 2) are discussed below in detail.

Source (1): Input data uncertainties (ID) are defined as uncertain-
ties in any input data that can be either measured or estimated. In
the first case, input data are measured using appropriate monitoring
protocols and instruments (e.g. rainfall intensities measured by a
rain gauge). Uncertainties in the measured input data are generally
caused by (i) systematic and/or (ii) random errors. If input data are
not directly measured, their uncertainty can be elucidated using ac-
cepted statistically based methods (Garthwaite et al., 2005): in both
cases, they can be described by probability distributions. For exam-
ple, typical probability distributions for measured and estimated in-
put data are Gaussian and uniform PDs, respectively. In urban
drainage applications, effective impervious area is one of the most
common inputs that can be estimated using GIS/terrain maps asso-
ciated with drainage plans, but is often also used as a calibration
parameter (see Source (2) below) depending on the modelling ap-
proach. It is frequent in urban drainage modelling that some input
data, although theoretically measurable, are either estimated or re-
placed by the use of a model parameter which is then calibrated.

Uncertainties in measured input data can be characterised and
assessed according to international standards (ISO, 2007, 2008,
2009a,b) or related literature such as Bertrand-Krajewski and
Muste (2007). In these standards, uncertainty is defined as the var-
iable associated with a measurement result which characterises
the dispersion of the values which could be reasonably attributed
to the measured variable. As a first approximation in normal distri-
butions, uncertainty can be considered as equivalent to the stan-
dard deviation. This probabilistic approach allows measurement
result to be provided as a most probable mean value given with
its 95% confidence or coverage interval, or as a most probable mean
value given with its probability distribution (see ISO (2008,
2009a,b) for more details). In simple cases where normal distribu-
tions can be assumed, uncertainty is estimated as the standard
deviation derived from repeated measurements. This is usually re-
ferred to as the Type A method to evaluate uncertainties. In most
frequent cases in urban drainage, repeated measurements are not
possible and uncertainties are estimated by means of two other
methods: (1) the Type B method which applies the Law of Propa-
gation of Uncertainties (LPU) when the required underlying
hypotheses (linearity, normality, and narrow distributions) are
verified, and (2) the Monte Carlo method which propagates proba-
bility distributions of any type (uniform, normal, log-normal,
empirical, etc.) and is the most generic method with less restrictive
hypotheses for its application. In this case, probability distributions
are determined for each variable used in the measurement process
from the best available knowledge.

Input data uncertainties are often propagated in model applica-
tions by methods based on Monte Carlo simulations. As a first step
example, one may multiply the measured variable with the factor

IDracror = f(9,€) (1)

in which ¢ is a systematic variability (e.g. an offset value, or results
from an error model application) and ¢ is a random variability, ide-
ally sampled from a distribution that represents random input
uncertainties. This means that an input data error model with
two additional model parameters ¢ and ¢ is introduced. The values
for ¢ and the distribution for ¢ should be assessed using the best
knowledge on the monitoring protocol applied (e.g. following ISO
standard and by gathering additional data on possible systematic
uncertainties); or it can be estimated together with model parame-
ters in an inverse modelling approach. In the forward modelling ap-
proach, uncertainties in the input data can be propagated through
the model to the output by using Monte Carlo methods. For exam-
ple, for rainfall data, an IDracror can be assumed as a simple sum of
&, which is an approximated constant, and &, which is sampled from
a uniform distribution (e.g. Rauch et al., 1998; Haydon and Deletic,
2009). However, this approach is rather simplistic and the uncer-
tainties in the input data are better modelled using our best knowl-
edge about the measurement process (e.g. information on the
accuracy in the equipment used, sampling procedure, etc.).

Both measured and estimated input data can be affected by
additional “long-term prediction uncertainties” which occur when
trying to predict long-term environmental change effects (e.g.
land-use, climate change effects). Such predictions often contain
substantial uncertainties, but as they cannot be compensated dur-
ing model calibration they are not covered here.

It should be noted that the method described above differs from
that typically used to quantify measurement uncertainty, since it is
not only the measurement uncertainty that needs quantification,
but rather how uncertainty in input data impacts model results.
This difference is necessary since the assessment of measurement
uncertainties requires that the measurements first be corrected for
all recognised systematic errors (ISO, 2009a). ISO (2009a) states
that since the measurements have been corrected for systematic
errors using a calculated correction factor or offset value, they
now contain (1) the random errors affecting the chosen correction
value since it cannot be exactly known and (2) the same random
errors that existed prior to the correction. As such, there is no dif-
ference in nature in the uncertainties derived from a random error
and those originating from a correction factor used to adjust the
dataset for systematic errors (hence both error types are to be
propagated similarly).

In the case of model application (forward problem in Fig. 1), the
propagation of uncertainties associated to input data is often pro-
cessed to the PDs by means of Monte Carlo methods, where inputs
are perturbed using, for example, Eq. (1) (or any other appropriate
function) for thousands of possible realisations. In other words, the
inputs are multiplied by IDracror and the model is run many times.
The results are then represented by constructing mean and 95%
confidence intervals for each model output. If the confidence inter-
vals are small, it can be concluded that uncertainties do not signif-
icantly impact the model results, and vice versa. Small intervals are
usually possible if input uncertainties are small, or if the model cal-
ibration compensates these uncertainties. As in all other analyses,
it is important to propagate all inputs simultaneously because of
possibilities that uncertainties in different variables are not inde-
pendent and interact. Accounting for correlated input data and
their correlated PDs is of particular importance when attempting
to estimate an overall uncertainty.

Source (2): Model calibration parameter uncertainties (P). This is
also referred to as the “sensitivity of a model to its parameters”.
The aim is to derive probability distributions for the given param-
eters, and the extent and shape of the confidence region of model-
ling predictions around a specified measured output variable. Since
parameters in urban drainage models can be highly correlated
(commonly the case for water quality models, e.g. Dotto et al.,
2010b), it is essential to perform a global sensitivity of parameters
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where all parameters are varied simultaneously over the whole
range of possible parameter values (as opposed to the local sensi-
tivity analysis where sensitivity is only investigated at one point in
parameter space and one-at-a-time (OAT) methods where one
parameter is varied with others held fixed).

The literature on sensitivity of general hydrological models is
extensive, and the key methods and concepts already used in water
resources modelling are applicable to urban drainage. Many of
these methods, applied in model calibration (inverse problem in
Fig. 1), refer more or less strictly to Bayes’ (1763) principle. They
range from formal Bayesian approaches (e.g. Markov Chain Monte
Carlo - MCMC, like MICA (Doherty, 2003) or DREAM (Vrugt et al.,
2008)) to less formal likelihood methods (e.g. Generalized Likeli-
hood Uncertainty Estimation; GLUE - (Beven and Binley, 1992)).
According to Freni et al. (in press), the classical Bayesian method
is more effective at discriminating models according to their
uncertainty, but the GLUE approach performs similarly when it is
based on the same founding assumptions as the Bayesian method.
However, this conclusion is still debated (e.g. Beven, 2009; Vrugt
et al., 2009).

The International Working Group on Data and Models is cur-
rently working on comparison of some of the most popular calibra-
tion and sensitivity analysis approaches, including: (1) GLUE
developed by Beven and Binley (1992), (2) The Shuffled Complex
Evolution Metropolis algorithm (SCEM-UA) by Vrugt et al. (2003),
(3) Amultialgorithm, genetically adaptive multiobjective method
(AMALGAM) by Vrugt and Robinson (2007), and (4) The classical
Bayesian approach based on a MCMC method (implemented in
the software MICA by Doherty, 2003). These methods were tested
for both a simple rainfall-runoff model (KAREN - Rauch and Kinzel,
2007) and a simple water quality model using the same datasets
collected at a single site in Melbourne, Australia. Preliminary re-
sults showed that all methods tested are eligible to analyse uncer-
tainties of urban drainage models, to estimate parameter
sensitivity, parameter probability distributions and consequently
uncertainty bands of model output. However, each method has
its specific advantages and drawbacks. Special attention has to be
given to the computational efficiency (i.e. number of iterations re-
quired to generate the PDs of parameters) as computational time is
often a limiting factor of uncertainty analysis. So far it was found
that MICA and AMLAGAM produce results quicker than GLUE.
However, GLUE requires the lowest modelling skills and is easy
to implement. An important step in the application of all methods
is comprehensive posterior diagnostics of parameter distributions
and uncertainty bands obtained to ensure that the distributions
have converged and implicit assumptions are valid. Further inves-
tigations are being undertaken in order to provide insights on the
advantages and disadvantages of different approaches.

3.3. Calibration uncertainties

Source (3): Measured calibration data uncertainties (CD-M) are
uncertainties in the measured data collected for possible use dur-
ing calibration (e.g. flow and pollutants times eries). As in all other
measured variables, errors could be systematic and/or random, and
probability distributions are used to describe their uncertainty, as
for input data. So Eq. (1), or the other approaches discussed under
Source (1), could be applied to estimate measured calibration data
uncertainties.

It is well understood that the techniques used to measure urban
discharges and associated water quality are of limited accuracy
(e.g. Bertrand-Krajewski, 2007; McCarthy et al., 2008). However,
the propagation of these uncertainties has not been widely applied
in practice. Recently, Freni and Mannina (2010) assessed the differ-
ent components of uncertainty in an integrated urban drainage
model using a variance decomposition method. Interestingly, they

found that the uncertainty contribution of calibration data pro-
gressively reduced from upstream to downstream sub-models as
they became overwhelmed by other error sources. Others in the lit-
erature which have considered calibration data uncertainty usually
assess model accuracy by plotting the uncertainty bars (usually
95% confidence interval or just one standard deviation) around
the measured data, alongside the model outputs. In general, it is
proposed that the model is doing well if its outputs fall within
the uncertainty bars around the measured data. However, this can-
not be regarded as a proper and rigorous propagation of calibration
uncertainties. It is therefore proposed that this should be im-
proved, and that the calibration data uncertainties be explicitly ac-
counted for while the parameters are calibrated.

Source (4): Calibration data selection (CD-S) is focussed on using
the appropriate calibration variables and associate data sets that
will best suit the model application (e.g. selecting the right amount
of data for model assessment). For example, there has been discus-
sion on whether to calibrate load models using pollutant concen-
trations or fluxes, with fluxes most commonly used. McCarthy
(2008) demonstrated that using instantaneous concentrations for
calibration produced more accurate predictions than using instan-
taneous fluxes. This was thought to be caused by the fact that the
flux calibration process is affected by poorer quality input data be-
cause measured flow rates are used to estimate measured fluxes,
whilst modelled flow rates (which are calibrated to measured flow
rates) are used in the prediction of modelled fluxes. However,
Dembélé (2010) observed that calibrating various types of models
for a wide range of pollutants using event loads gives more accu-
rate predictions than calibrating them using event mean concen-
trations. This indicates conclusions based on some data sets,
models and calibration variables are difficult to be generalised:
more research is needed to identify the most appropriate calibra-
tion parameters to use.

If calibration data are not representative (i.e. do not represent
all possible contexts and ranges of phenomena and values to be
simulated by the model), the calibrated model parameters will
not be accurately estimated for the range of applicability of the
model (e.g. calibrating a rainfall-runoff model during summer peri-
ods will produce model parameters which will likely not reflect
winter period processes). For example, Mourad et al. (2005) used
a random sampling methodology to understand the impact of data
availability (i.e. number of events) on the calibration of several ur-
ban stormwater quality models. They found that, in order to ade-
quately calibrate these models, it was often required to use the
majority (between 60% and 100%) of the available dataset during
calibration.

In the case of spatially distributed systems, it is neither possible
nor sensible to measure the complete system characteristics, and
the question is raised about how many measurement sites are nec-
essary. Kleidorfer et al. (2009b) evaluated the impact of the num-
ber of measurement sites used for calibration of combined sewer
systems and showed that the number of required sites is influ-
enced by the time period used for calibration. For example, a sim-
ilar calibration performance can be reached when using 30% of all
available sites for calibration and a time period of one year, as com-
pared to using 60% of all available sites with five single events.

Furthermore, calibration data availability impacts not only the
uncertainty of a model’s prediction outside the calibration period
(Vaze and Chiew, 2003; Mourad et al., 2005; McCarthy, 2008), but
also the model’s parameter probability distributions (McCarthy,
2008).

The assessment of this type of uncertainty on a model should be
incorporated into the global approach for modelling uncertainties,
and the method presented by Mourad et al. (2005) could be easily
incorporated for this purpose. For example, for a rainfall-runoff
model, a number of events could be randomly (or systematically)
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selected and these events could then be used to perform a sensitiv-
ity analysis of the model outputs to parameter values. These results
could then be compared with the results obtained when all the
data was used for the analysis, to determine the impact of data
availability. For example, Dembélé (2010) applied the Leave-One-
Out Cross Validation (LOOCV) method (Rudemo, 1982), which is
particularly useful when only a limited number of events is avail-
able in the calibration dataset.

Source (5): Calibration algorithms (CA) used during model
parameter optimisation can produce significant uncertainties in
the model’s predictive performance (Beven and Freer, 2001). There
are many calibration algorithms available which can automatically
calibrate model parameters. However, even when using such com-
plex algorithms, which are capable of calibrating highly non-linear
functions, there is never certainty that the best solution (or global
optimum) will always be found (Beven and Freer, 2001; Wagener
et al., 2004). This can be caused by several conditions, but calibra-
tion which results in a non-global optimum can often be the fault
of the user, who has (1) incorrectly ‘wrapped’ the calibration algo-
rithm around the chosen model, and/or set incorrect boundary
conditions, or (2) chosen an algorithm which cannot solve the
specified model (e.g. a linear algorithm used to solve a nonlinear
function). Several tools can now calibrate models using a range
of different algorithms, the results of which could be used to help
quantify this type of uncertainty. Therefore, the best approach is to
use several calibration algorithms for a specific model and its
application and select the best outcome. Ideally, the algorithm or
algorithms tested will have been selected based on the suitability
of their criteria for the particular model. Another possibility is
the use comprehensive uncertainty analysis techniques (see Source
2) to explore the likelihood surface in a wider range of the param-
eter space and to identify local minima which can cause problems
in the calibration process.

Source (6): Objective functions (OF) used in the calibration pro-
cess. Models are often calibrated without considering the implica-
tions of the selected criteria/objective function (see Wagener et al.,
2004). Different objective functions can influence parameter distri-
butions (magnitude and shape), and therefore impacting the
apparent sensitivity of the modelled results to each parameter
and the general uncertainty of model predictions. All objective
functions sacrifice the fit of a certain portion of the dataset, to
achieve a good performance in another portion (Wagener et al.,
2004). McCarthy (2008) found that using a least-squares objective
function to calibrate an urban rainfall-runoff model over-empha-
sised peak flow rates, resulting in poor predictive performance of
events which only had smaller flows. However, changing this
objective function to a less biased function (similar to Chi-squared)
decreased the model’s performance slightly for peak estimation,
but substantially increased the accuracy of low flow estimation.
The choice of objective function can also impact on how well the
model will predict outside its calibration dataset, with certain
objective functions resulting in better estimates of the parameter
distributions. As such, it is essential that objective functions are
matched to the purpose and requirements of the modelling
application.

Most calibration tools (e.g. PEST - (Doherty, 2004); CALIMERO -
(Kleidorfer et al., 2009a); KALIMOD - (Uhl and Henrichs, 2010))
and model uncertainty assessment tools (e.g. MICA, GLUE) can
use alternate or multiple objective functions, and, as such, these
tools should be used to assess the impact of different objective
function choices on model results. It may also be considered that,
for a given model, different sets of parameters could be applied
for different contexts, e.g. one set for dry weather and another
set for storm weather. With this approach, the aim is not to iden-
tify the unique model for all contexts, but to distinguish models for
specific ranges of application.

3.4. Model structure uncertainties

Uncertainties are introduced through simplifications and/or
inadequacies in the description of spatially and temporally distrib-
uted real-world processes. Three main sources (see Fig. 2) are iden-
tified, but it is possible that other factors could be causing
inaccuracies, as well as coarse mistakes. Human error in model
development (e.g. derivation of equations, coding, etc.) may be
the major problem that cannot easily be evaluated. However, the
authors recognise that it is very difficult, and sometimes not possi-
ble (e.g. in the case of human error), to distinguish between these
causes. In general, it is a complex task, which requires a very ad-
vanced understanding of the processes of the system and model
development. Even if the estimation of model structure uncer-
tainty for a single model is not feasible and most of the time has
to be assessed heuristically, we suggest to compare the perfor-
mance of different models and thus establish which can better rep-
resent the system under investigation.

3.5. Global Assessment of Modelling Uncertainties (GAMU)

Assessing single sources of uncertainties independently from
others is not appropriate, since there are often strong links be-
tween the sources (Fig. 2). Therefore, the approach for a Global
Assessment of Modelling Uncertainties is recommended (Fig. 3)
that has recently been proposed by Dotto et al. (2010b). The GAMU
has three distinctive steps:

Step 1: Choosing analysis tools and datasets to minimise uncertain-
ties: Each model application may require different analysis calibra-
tion tools/algorithms (CA), criteria/objective functions (OF), and
datasets (CD-S) to minimise errors in the evaluation methods.
Unfortunately, due to the long computational times required for
detailed urban drainage models, it is very time consuming to deter-
mine the most apporpriate CA, OF and CD-S while still having to
propagate the other uncertainties through the model (i.e. conduct
Step 2 (below) for every possible CA, OF and CD-S). Therefore, it is
necessary to select CA, OF and CD-S in a preliminary study. For
example, it could be done by using simplified response surface
based methods (Schellart et al., 2010) to estimate combined uncer-
tainties. Tools such as CALIMERO or KALIMOD could be used to
compare effectiveness of algorithms and OFs for the given model
and its application, as well as to select adequate data sets for the
next step of the analysis. It could be speculated that in this ap-
proach at least some uncertainnties due to sources CA, OF and
CD-S will be minimised.

Step 2: Creating probability distributions of model parameters
while simultaneously propagating all data uncertainties: The param-
eter PDs should be created by simultaneously propagating input
data uncertainties (ID) and measured calibration data uncertainties
(CD-M), as outlined in Fig. 3. The uncertainties in these data sets
are assessed as outlined above; e.g. both the input data and calibra-
tion data uncertainties could be modelled by estimating their most
probable parameters ¢ and ¢ in Eq. (1) and creating probability dis-
tributions of possible inputs and calibration data at any given time.
The PDs of all model parameters are then generated using a Bayes-
ian method (e.g. MICA, DREAM, GLUE, etc.) by sampling from the
input and calibration data assumed distributions. In this approach,
uncertainties due to Sources (5) and (6) (CA and OF) are replaced
by uncertainties caused by the Bayesian method being used. There-
fore, this leads to the fully calibrated model with the parameter
PDs derived by taking into account uncertainties in inputs and cal-
ibration data, while using tools/algorithms that hopefully impose
the smallest possible uncertainty. The process also yields informa-
tion on the misfit between modelled and observed output datasets,
known as residuals.
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Fig. 3. A total error framework for urban drainage models.

The calibrated model is then used to determine model predic-
tion uncertainties, typically for a dataset not used for calibration.
This is done in the ‘forward approach’ (Fig. 1) where the model is
applied to a new input dataset using the derived PDs of the model
parameters to create the prediction bounds. The residuals from the
calibration process are also used to understand the total predictive
uncertainty, obtained by the addition of the error term to the sim-
ulated values.

Step 3: Comparing models: As discussed earlier, the authors are
of the opinion that systematic and random effects due to model
structure could be assessed only by comparing the performance
of models applied for the same situation. Ideally, the proposed ap-
proach should be run for given models and situations and their
effectiveness compared.

4. Conclusions

This paper presents an attempt of the JCUD International Work-
ing Group on Data and Models to develop and promote a frame-
work for accounting and estimating the uncertainties in urban
drainage models. The following key sources of uncertainties are ac-
counted for: (I) Model input uncertainties including (1): input (mea-
sured and estimated) data uncertainties, (2): model parameter
uncertainties; (II) Calibration uncertainties due to (3): measured
calibration data uncertainties, (4): measured calibration data selec-
tion (availability and choice), (5): calibration algorithms, (6):
objective functions used in the calibration process; and (III) Model
structure uncertainties in conceptualisation, equations and numeri-
cal methods. They are highly interlinked, suggesting that assessing
the impact of a single source is not going to be adequate and that
simultaneous propagation of key sources of uncertainties is re-
quired. The importance of minimising uncertainties due to tools
that are used in model assessment is also recognised. Framework
for Global Assessment of Modelling Uncertainties (GAMU) is thus
recommended, containing three major steps:

Step 1: Selecting analysis tools and data sets to minimise
uncertainties;

Step 2: Creating probability distributions of model parameters
while simultaneously propagating all data uncertainties; and
Step 3: Comparing different models for similar scenarios.

Due to the large computational times required for applying this
approach, it is not expected that this method will be a standard
procedure in everyday engineering practice. However, this method

will contibute to an enhanced system understanding, and thus an
improved assesment of the reliability of modelling results, espe-
cially when using new models or working under limited data
availability.
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Appendix B

Glossary







B.1 Glossary

The following definitions are not new and are established in various guidelines (Taylor and Kuyatt,
1994; Kacker and Jones, 2003; Michelson et al., 2005; Bertrand-Krajewski and Muste, 2007; ISO,
2009a; b) and studies referenced thought the thesis.

Calibration is an iterative process of matching or minimizing the difference between observed

values against simulated responses by means of an objective or a likelihood function.

Calibration algorithm is the method used to calibrate the model (i.e. to minimise the difference

between measured calibration data and modelled values).

Calibration data is the measured input data required to calibrate the model (i.e. measured data to

be compared to the modelled values).

Conceptual parameters are those quantities that are unobservable and can only be inferred

through calibration.
Error is the difference between a true value and a modelled/observed value.
Input data is the measured input data required by a model.

Measurand is a particular quantity subject to measurement. A result of measurement is a value

attributed to the measurand.

Model sensitivity is the sensitivity of the model outcomes to changes in the model parameters. It

is also referred as parameter sensitivity.
Model structure refers to the formulation, assumptions and initial conditions if the model.

Model validation is the processes of assess how well (or not ) the model can perform outside the

calibration period.

Objective function is a function representing the errors between the measured calibration data

and modelled values.

Physical parameters are parameters that can be estimated by measurements independently of

observable catchment responses.

Random error is the result of a measurement minus the mean that would result from an infinite
number of measurements of the same measure carried out under repeatability conditions (because
only a finite number of measurements can be made, it is possible to determine only an estimate of

random error).

Sensitivity analysis is the process of varying model calibration parameters within a reasonable
interval and observing the relative change in model responses (the parameters that are most likely

to significantly affect relevant outputs are determined).
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Standard uncertainty is the uncertainty of the result of a measurement and is expressed by the

standard deviation.

Systematic error is an error which results from some bias in the measurement process and is not

due to chance, in contrast to random etror.

Uncertainty characterizes the dispersion of the values within which the true value is believed to lie
with a pre-established level of confidence (e.g. it can be expressed by a standard deviation, or a

given multiple of it, or the width of a confidence interval).

Uncertainty analysis is the term used to describe the exercise of identifying the uncertainty in the

model results.
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