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Abstract 
Stormwater models are powerful tools to aid the planning, design and performance of different 
stormwater management strategies. Although these models provide a great platform for decision 
making, they all have an intrinsic level of uncertainty. Little is understood about the sources and 
magnitude of this uncertainty, which could be due to the errors in measured data (input and 
calibration data) and/or due to the model itself. To better understand these sources and their 
impacts on the model predictions, robust model calibration and sensitivity analysis should be 
performed. The methodologies used for such an exercise should not only be able to provide an 
assessment of the uncertainties in the model’s parameter values and an evaluation of the 
confidence level of the model’s predictions, but also be able to identify and propagate the different 
sources of uncertainties.  

The main aim of this research project is to assess uncertainties in conceptual urban stormwater 
flow and pollution generation models, with different levels of complexity, by evaluating the impact 
of different sources of uncertainties on the model predictions and parameter sensitivity. The 
research focuses on three main steps: (i) identifying suitable global sensitivity analysis method(s) to 
perform parameter calibration, model sensitivity and uncertainty analysis in stormwater models; (ii) 
exploring parameter calibration, model sensitivity and the resulting predictive uncertainties in 
models with different level of complexities; and, (iii) investigating the impact of measured input 
and calibration data uncertainty on the performance, sensitivity and predictive uncertainty of 
stormwater models.  

Four methods were applied for calibration, sensitivity and uncertainty analysis of a simple 
stormwater (quantity and quality) model: one is a formal Bayesian approach, and three are methods 
based on Monte Carlo simulations coupled with different sampling and acceptance criteria. While 
the application of the four methods generated similar posterior parameter distributions and 
predictive uncertainty, results indicated that the selection of the most appropriate method is a 
trade-off between the need for a strong theory-based description of uncertainty (but limited by the 
requirements on prior knowledge), simplicity (but limited by the subjectivity) and computational 
efficiency (also affected by subjectivity). The results also suggested that modellers should select the 
method which is most suitable for the system they are modelling, their skill/knowledge level, the 
available information, and the purpose of their study. Further analysis of the application of the 
Bayesian approach verified the potential of the method to assess urban drainage models (with 
different level of complexities) in urban catchments of different sizes and land-use types. The 
tested Bayesian approach was selected to be used in the remaining activities of this research. 

The likelihood function in the applied Bayesian approach assumes that the model errors (residuals) 
are normally distributed. This study demonstrated that this assumption is often not met in 
stormwater modelling (i.e. model residuals are not normally distributed), and therefore, the data 
was transformed (Box-Cox) to ensure the normality of the model residuals. The main finding was 
that the parameter sensitivity varied significantly between the scenarios in which the normality 
assumption of the residuals was verified or not. The main reason for this being the fact that the 
data transformation method to meet the assumption altered the intrinsic content of the measured 
data, which then influenced the emphasis on various parts of the hydrograph.  

The Bayesian approach was used to assess two conceptual catchment rainfall runoff models 
(MUSIC, which simulates runoff from both impervious and pervious areas as a series of reservoirs; 
and, KAREN that simulates runoff from impervious surfaces using the time-area method) and few 
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simple stormwater quality models (empirical regressions and build-up/wash-off based models). 
Results from parameter calibration and sensitivity analysis of the rainfall runoff models 
demonstrated that the effective impervious fraction is the main parameter governing the prediction 
of runoff in urbanised catchments. Other key parameters are those related to the time of 
concentration. Indeed, the analysis indicated that the pervious area parameters play a secondary 
role when modelling highly urbanised catchments, which implies that the tested models could be 
simplified. The uncertainty analysis showed that the total predictive uncertainty bands (i.e. the total 
uncertainty derived from the specific modelling application) was considerably larger than the 
uncertainty bands contributed from parameter uncertainty alone, indicating that there are other 
prominent sources of uncertainty for these models. The water quality models were shown to be ‘ill-
posed’ and unable to reproduce the pollutant processes in the catchment.  

The impact of both input and calibration data errors on the parameter sensitivity and predictive 
uncertainty was evaluated by means of propagating these errors through the selected urban 
stormwater model (rainfall runoff model KAREN coupled with a build-up/wash-off water quality 
model). It was found that random errors in measured data had minor impact on the model 
performance and sensitivity. Systematic errors in input and calibration data impacted the parameter 
distributions (e.g. changed their shapes and location of peaks). In most of the systematic error 
scenarios (especially those where uncertainty in input and calibration data was represented using 
‘best-case’ assumptions), the errors in measured data were fully compensated by the parameters. 
For example, when rainfall was systematically under or overestimated, the effective impervious area 
parameter varied systematically to compensate for the changes in the input data. Parameters were 
unable to compensate in some of the scenarios where the systematic uncertainty in the input and 
calibration data were represented using extreme worst-case scenarios. As such, in these few worst 
case scenarios, the model’s performance was reduced considerably. Systematic errors in the 
calibration data error did not significantly impact the parameter probability distributions of the 
water quality model, mainly because the model cannot even reproduce TSS concentrations when 
the ‘true’ data is used. This finding suggested that the current main limitation in water quality 
modelling is related to poor model structure, and not to errors in measured data. 

This research provides a comprehensive study of the propagation of different sources of 
uncertainties through stormwater models. It identifies how the different uncertainty sources impact 
on parameter sensitivity and the predictive uncertainty. In addition, the analysis of model 
parameters and their interactions provides practical recommendations for refining and further 
developing stormwater rainfall runoff and pollution generation models. 
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Preface 

This thesis presents the results of the research into parameter sensitivity and uncertainties in urban 

drainage models in the form of seven journal papers (all with the PhD candidate as the lead 

author), of which five have been published and two have been submitted for review. These papers 

are accompanied by introduction, literature review, and discussion and conclusion chapters. The 
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following areas: (i) urban stormwater modelling approaches; (ii) sources of uncertainties in urban 

drainage models; (iii) uncertainties in urban drainage data; and, (iv) methods used to assess model 

uncertainties. The first and second papers, Comparison of different uncertainty techniques in urban 

stormwater quantity and quality modelling (Water Research - 2012) and Analysis of parameter uncertainty of a 

flow and quality stormwater model (Water Science and Technology - 2009) investigate and test the most 

suitable methods for parameter calibration, model sensitivity and uncertainty analyses that could be 

used in urban drainage modelling. The third, fourth and fifth papers, Calibration and sensitivity analysis 

of stormwater models (Australian Journal of Water Resources - 2011), Stormwater quality models: 

performance and sensitivity analysis (Water Science and Technology - 2010) and Performance and sensitivity 

analysis of stormwater models using a Bayesian approach and long-term high resolution data (Environmental 

Modelling and Software - 2011) investigate parameter sensitivity and model uncertainty of a 

number of  urban drainage models using a Bayesian approach. The sixth paper, Uncertainty analysis 

in urban drainage modelling: should we break our back for normally distributed residuals? (currently in press in 

Water Science and Technology) explores possible shortcomings of the Bayesian approach on 

model sensitivity and uncertainty. The seventh paper, Impacts of measured data uncertainty on urban 

stormwater models (submitted to Journal of Hydrology), presents results of an approach for 

propagating input and calibration data errors in stormwater models by taking into account the 

errors in the data sets and investigating their impact on parameter sensitivity and model predictive 

uncertainty. Finally, concluding remarks are given and possible future work is discussed. 

In addition to the seven papers included in the thesis, the candidate co-authored a paper (Deletic et 

al, 2012) that is included as appendix. This paper is result of a major effort of International 

Working Group on Data and Models (that works under Joint Committee on Urban Drainage of 

IWA and IAHR) on development of a framework for assessing uncertainties in urban drainage 

models. The candidate also produced 6 conference papers (not included in the thesis), that she 

presented at major international conferences across the world.  
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1.1 Introduction 

Non-point sources of pollution such as runoff from urban stormwater and agricultural areas are 

currently a significant concern all over the world. Among the diffuse pollution sources, stormwater 

runoff is one of the major sources of water pollution across urban areas. In the late 90s, runoff 

from urban areas was the fourth largest contributor of water pollution in rivers and streams in the 

United States (USEPA, 1998). However, due to investments made in management of point sources 

of pollution (such as industrial and domestic wastewater), as well as reduction in agricultural runoff 

pollution,  stormwater became the leading source of pollution; e.g. it is recognised to be the 

number one source of pollution in many areas of the USA (USEPA, 2012). In Australia, the 

situation is not different, and stormwater is currently the main cause of coastal pollution 

(Department of  Environment and Heritage NSW, 2012). In Melbourne, around 400 GL per year 

of stormwater flows down drains and into the Yarra River and surrounding creeks, finishing in the 

Port Phillip Bay (Melbourne Water, 2012). As such, stormwater management is at the forefront of 

many policies in Australia (as well as other developed countries), with increasing government 

funding becoming available (Department of  Environment and Heritage NSW, 2012; USEPA, 

2012). In Australia, the focus is not only on treating stormwater, but also realising its potential as 

an alternate water source. Indeed, many major Australian cities have just recovered from a severe 

and extended drought, from which stormwater emerged as viable source of water supply. 

Therefore, management of stormwater for both pollution protection of receiving waters and as a 

water resource is becoming regular practice in our cities (Wong et al., 2011). This is known as 

Water Sensitive Urban Design (WSUD) stormwater management in Australia (City of Melbourne, 

2012), or implementation of Sustainable Urban Drainage Systems (SUDS) in the UK, or Low 

Impact Development (LID) strategies in the USA. 

Stormwater models are powerful tools to aid the planning, design, and performance of different 

stormwater management strategies. Indeed, the Model for Urban Stormwater Improvement 

Conceptualisation (MUSIC model developed in 2001 for the conceptual assessment of stormwater 

management - eWater CRC, 2012) has enabled Australia to lead the world WSUD implementation; 

MUSIC now underpins the decision making process in urban water management, policies and 

regulation. Similar models exist around the world that are used in a similar way (e.g. SWMM 

(USEPA, 2007) in USA). 

Although these models provide a great platform for decision making, they all have an intrinsic level 

of uncertainty, regardless of their formulations (e.g. whether they are physically based or purely 

statistical) (Bertrand-Krajewski et al., 2002). Understanding this uncertainty is important; in fact, 

incorrect estimates of stormwater flows and pollution concentrations would easily lead to an 

inadequate design of stormwater management systems. Little is understood about the sources and 

magnitude of this uncertainty, which could be due to the errors in measured data (input and 

calibration data) and/or due to the model structure and parameters. As a result, improving models 
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and the confidence in their results requires more robust methodologies for model calibration, 

sensitivity and uncertainty analysis. These methodologies should not only be able to provide an 

assessment of the uncertainties in the model’s parameter values and an evaluation of the 

confidence level of the model’s predictions, but also be able to identify and propagate the different 

sources of uncertainties.  

1.2 Uncertainties in stormwater models  

As stated above, uncertainties are present in all models, yet it is often not addressed because 

uncertainty analysis is considered to be a difficult and time consuming activity. In most cases, it is 

avoided among practitioners because it actually reveals that the results are, in fact, highly unreliable 

(Larssen et al., 2007), or in other cases, the opposite, it is avoided because the uncertainty in the 

results seems very complex to deal with. In this context, if the different sources of errors 

compromise the level of accuracy of any model’s output, then assessing uncertainties in stormwater 

models due to different sources of errors is crucial for advancing urban drainage modelling 

practice.  

Typically, four key sources of uncertainties are identified: (1) uncertainty due to calibrated 

parameter values, (2) errors due to incomplete or biased model structure and (3) random and 

systematic errors in the measured input data and (4) errors in calibration data (Butts et al., 2004). In 

terms of stormwater modelling and related fields (e.g. environmental modelling), these sources of 

uncertainties are interlinked (Beck, 1987; Walker et al., 2003; Kleidorfer et al., 2009), suggesting 

that assessing the impacts of a single source is not enough and that simultaneous propagation of 

key sources of uncertainty is required.  

As with most models, the calibration of urban drainage models rarely results in one unique 

parameter set, and instead many equally plausible parameter sets are obtained, which reduces the 

confidence in modelled results during the prediction period (Kuczera and Parent, 1998). Global 

sensitivity analysis methods have the advantage of performing uncertainty analysis while providing 

information about the most likely parameter sets to calibrate the model. However, there is no 

indication of the most suitable method to assess stormwater models. Therefore, the comparison of 

different methods to perform parameter calibration, model sensitivity and uncertainty analysis will 

identify the most suitable for stormwater models. 

While a range of models have been applied worldwide to predict flows and pollution generation 

from stormwater, the assessment of the uncertainty associated with model structure has not been 

sufficiently explored. Furthermore, there is no standard method to evaluate structural uncertainty. 

Different approaches to evaluate structural uncertainties must be explored, even if from a heuristic 

perspective. Exploring parameter calibration, model sensitivity and the resulting predictive 

uncertainties in models with different levels of complexity will provide information about the 

models’ limitations (including the existence of model structure and conceptual errors). 
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Measured data such as rainfall, flow rates and pollutant concentrations are required for the 

application of urban drainage models. However, these measured data are plagued with uncertainties 

(i.e. due to a range of random and systematic errors). As such, there is a need to understand the 

impacts of these uncertainties on the performance, sensitivity and predictive uncertainty of 

stormwater models. This will contribute to further understanding their consequences in the 

modelling exercise. 

1.3 Overall aim  

This research improves our understanding of the uncertainties in urban rainfall runoff and 

pollution generation models in order to define their reliability. The specific aim is to assess 

uncertainties in stormwater flow and pollution generation models (with different levels of 

complexity) and the impact of different sources of uncertainties on the models’ results and 

parameter sensitivity. The findings of this research will be useful to inform stormwater 

management practices, such as: risk assessment, urban planning, design of stormwater facilities, 

optimisation of data monitoring campaigns (i.e. which kind and how much of data should be 

prioritised) and issues related to model under and over-parameterisation to the development of 

more accurate models.  

The following are the main objectives of this study: 

1. identify suitable method(s) to perform parameter calibration, model sensitivity and 

uncertainty analysis in stormwater models;  

2. explore parameter calibration, model sensitivity and the resulting predictive 

uncertainties in models with different levels of complexity; and,  

3. explore the impact of measured input and calibration data uncertainty on the 

performance, sensitivity and predictive uncertainty of stormwater models. 

1.4 Scope of the thesis 

The dataset used in this study has been previously collected as part of other research projects. The 

dataset contains long term and high resolution data on rainfall, flows and TSS and TN 

concentrations collected at the outlet of five urban catchments around Melbourne, Australia. The 

work was focused on separate storm drainage systems; i.e. the systems that collect and transport 

stormwater only (in Australia we do not have combined systems where stormwater and sewage are 

mixed).  

Among the models representing the different processes happening in the catchment, only 

stormwater flow and pollution generation models are considered in this research. Treatment 

efficiency models are not included and should be part of future research projects in the field.  
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While a number of models and approaches to simulate discharges from urban catchments are 

available, it is not possible to cover all of them. They range from simple empirical equations 

(usually over-simplified and not able to illustrate the physical process) to complex models (that 

have a large number of calibration parameters and require a large number of input data). There is a 

group of conceptual models that falls in between; they do not represent the actual physical 

processes occurring in the catchment, but include equations describing the concept of the 

processes occurring in the system. Being widely used in practice (Butler and Davies, 2000; Wagener 

et al., 2004), conceptual rainfall runoff and pollution generation models ranging from simple to 

moderate complexity are the focus of this research.  

A number of global sensitivity analysis method(s) is applied to a simple rainfall runoff model 

coupled with a simple pollution generation model. The most suitable methods are identified, 

however only one is selected to be used through the remaining of the research.  

1.5 Outline of the thesis 

Chapter 2 provides a review of the published literature, identifies the current research gaps, and 

presents the objectives and main hypotheses underlined in the present thesis. The review on urban 

drainage modelling is organised in terms of three major topics: modelling urban stormwater, 

sources of uncertainties in urban drainage models and assessing uncertainty in urban drainage 

models. 

Chapter 3 provides an overview of the dataset and stormwater models employed in this study. The 

dataset was collected by former Monash University PhD students, thus only the key aspects of the 

monitoring are summarised. The selection of the models was done so that both water quantity and 

quality were included. 

Chapter 4 explores different methods for parameter calibration, model sensitivity and uncertainty 

analyses of urban drainage models. Not only the results with respect to model parameter sensitivity 

and predictive uncertainty are presented, but the interaction between the complexity of the method 

used, computational time required and the knowledge/skill level of the modeller is also considered. 

Chapter 5 further investigates parameter calibration, model sensitivity and uncertainty analysis in 

models with different levels of complexity by means of a Bayesian approach. The models’ 

sensitivity to the different parameters is presented and the models’ predictive uncertainty, 

originating from parameter uncertainty, is also reported.  

Chapter 6 investigates the main impacts of verifying (or not) the assumed structure of model 

errors on model parameter sensitivity and associated predictive uncertainty of stormwater models, 

and it also explores alternative strategy to mitigate such impacts. 

Chapter 7 applies a novel method for propagating input and calibration data errors in stormwater 

models using a Bayesian approach. The results are then presented by means of evaluating the 
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impact of the input and calibration data errors on the sensitivity and predictive uncertainty of 

stormwater quantity and quality models.  

Chapter 8 provides a summary of the key findings, a discussion of the strengths and weaknesses of 

the thesis and a summary of the areas requiring further investigation. 

Appendix A encloses a journal paper co-authored by the candidate, which relates to the methods 

used in the research conducted within this thesis. 

Appendix B includes a glossary with the definition of the terms related to stormwater modelling 

uncertainty that were widely used throughout this thesis.   
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2.1 Introduction  

A large number of flow and pollution generation stormwater models are currently used worldwide. 

Regardless of whether they are physically based or purely statistical, they all have a high level of 

uncertainty (Bertrand-Krajewski et al., 2002). However, little is understood about the sources and 

magnitude of this uncertainty, which could be due to the errors in the measured data (input and 

calibration data) and/or due to the model structure and parameters. Improving the models and 

their effectiveness requires more robust methodologies for model calibration, sensitivity and 

uncertainty analysis. Such methodologies should not only be able to provide an assessment of the 

uncertainties in the model’s parameter values and an evaluation of the confidence level of the 

model’s predictions, but also be able to identify and propagate the different sources of errors.  

Within this context, this chapter aims to present a review of literature on uncertainty analysis in 

urban drainage models and also on the related topics. Firstly, an introduction about stormwater 

models (their different principles and levels of complexity) is provided and the different sources of 

uncertainty in such models are then presented. Subsequently, the methods currently used to 

evaluate model uncertainty are summarised. Finally, the knowledge gaps in the topic are identified 

and the main research question is introduced.  

2.2 Modelling urban stormwater 

Stormwater models are essential in urban water management; they enable the quantification of 

urban discharges and the design of stormwater treatment and harvesting technologies. Moreover, 

they underpin the decision making process regarding water resource policies and regulations. The 

standard components of stormwater models are: (a) a rainfall runoff module to generate the runoff 

from the precipitation excess; (b) a water quality module to estimate the pollutant generation; (c) a 

transport modelling approach to route flows and pollutants through the system (channels/pipes); 

and, (d) a treatment module to design and analyse the performance of stormwater treatment and 

harvesting strategies. The outputs of each module are commonly used as inputs for the next one. 

For example, modelled flows might be used to estimate pollutant loads, which can be used to 

design treatment technologies. Rainfall runoff models are currently well developed and widely 

adopted in practice (Elliott and Trowsdale, 2007); they range from simple empirically-based to 

complex physical-based models. Contrary to the rainfall runoff models, reliable stormwater 

pollution generation models are almost non-existent (Elliott and Trowsdale, 2007). The available 

approaches for modelling water quality range from simple regression equations to conceptual 

models based on the concepts of build-up and wash-off processes (examples in McAlister et al., 

2006).  

Stormwater models simulating the catchment’s runoff and pollution generation are reviewed in this 

section. Firstly, a general modelling approach scheme is presented, from which the main modelling 

components and tasks are identified. Then a description of the main modelling principles is 
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presented. This is followed by an introduction to the common general stormwater modelling 

protocol (i.e. main tasks involved in the modelling exercise). The review of these general points is 

important to provide background for the next sub-sections that review the approaches currently 

used to model flows and pollution generated from urban stormwater.  

2.2.1  General modelling concepts 

A general modelling approach, presented in Figure 2.1, was adopted to describe the main 

components and tasks in the modelling exercise. The following components can be identified: 

model structure, model parameters, measured input and calibration data, calibration algorithms 

with objective functions and model outputs. In addition, model calibration and application are 

represented in the framework. This sub-section focuses on describing the main principles related to 

the model structure and the main required protocol in most of stormwater modelling routines. The 

remaining components in Figure 2.1 will be described later in this literature review.  

 

 

Figure 2.1 General modelling framework (after Deletic et al., 2012). 

The different principles regarding the model structure are well known and established between the 

modelling community, and therefore they are only summarised in this section. 

Deterministic models describe a physical process in the catchment in terms of mathematical 

equations that transform a certain set of input data into outputs. If however, one or more factors 

within the model (e.g. process description and/or model parameters) have a random nature, the 

model is classified as stochastic (Abbott and Refsgaard, 1996). Contrary to deterministic models, 

stochastic models will not generate the same outputs even if the same set of input data and/or 
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parameters are used, as one or more variables are randomly sampled from a distribution (Parker et 

al., 2010). Stochastic models have the advantage of accounting for irreducible uncertainty by 

attempting to reproduce the natural variability of the processes, which is useful when the process 

being modelled is not fully understood. On the other hand, they might have limited application for 

some studies because the random variables are restricted to certain probability distributions 

(Zoppou, 2001). In addition, stochastic models do not allow a complete control of the user over 

the results, which imposes limitations for further model calibration, validation and sensitivity 

analysis. Meanwhile, deterministic models are accurate when the process being modelled is well 

described by the model. Deterministic models have become the standard approach in many areas 

(Butler and Davies, 2000).  

Empirical models do not represent the physical process of a system and their parameters are not 

directly related to the physical processes (i.e. parameters have to be inferred by model calibration) 

(Wagener et al., 2004). Conceptual models, on the other hand, include equations that describe at 

least the concept of the processes occurring in the system. Their parameters might (a) have a 

physical background and therefore be estimated from measured data, and/or (b) not have any 

physical background and thus have to be calibrated (Wagener et al., 2004). The most complex 

group of models are process based (Wagener et al., 2004), where mathematical equations 

represent the actual physical processes occurring in the catchment and their parameters are also 

physically based (i.e. parameters can be easily estimated from the measured data). This group of 

models usually generates more accurate outputs (closer to reality). However, their formulations are 

often complex, their numerical solution might not be explicit (which can lead to numerical 

instabilities) and they also demand long computational times. Conceptual models are the most used 

in practice (Butler and Davies, 2000; Wagener et al., 2004) as they are a compromise; they represent 

the physical processes by simplified concepts and require less input data, a lower level of expertise 

from the user and a lower level of understanding of the fundamental processes when compared to 

the process based models. 

Lumped models represent the study area as one homogeneous block (Beven, 2001). Only one set 

of parameters is required to generate the response for the whole area and therefore the spatial 

variability of the area is ignored. On the contrary, the spatial variability is better represented by 

distributed models, which disaggregate the study area in sub-areas with similar characteristics 

(Beven, 2001). In general, distributed models can represent the different processes to be modelled, 

while lumped models assume that all processes are punctual (in space and time). They use mean 

values for the various processes, and therefore are indicated to be applied with large temporal 

scales in which a detailed description of the processes is not important (Zoppou, 2001). However, 

it is often the case that point-based measured data is collected to represent the whole area. In this 

case, the benefits of subdividing the area are not significant.  
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In general, models can be applied for a range of temporal scales and timesteps. In the water related 

fields, continuous models simulate the system’s response over a period of time (e.g. weeks, 

months, years) and therefore, account for the overall water balance in the system; continuous 

models can represent the event antecedent conditions. Models based on event simulation can only 

estimate the system’s response from discrete events and cannot account for any between event 

characteristics (McAlister et al., 2006). 

In most cases, the accuracy of stormwater models increases as the modelling timestep decreases, 

and the choice of an inadequate timestep can compromise the model results (Einfalt et al., 2002; 

McCarthy, 2008; eWater CRC, 2009).  For example, if the model is used with a timestep larger than 

the transient time of the process in the catchment, results will not reflect reality (eWater CRC, 

2009).  

The majority of models require calibration prior to their application, especially those which have 

an empirical or conceptual structure (refer to Figure 2.1 for a schematic of model calibration in the 

general modelling framework). It is very unlikely that non-calibrated conceptual models will be able 

to reproduce reality (Wagener et al., 2004). In practice, urban stormwater models can be used 

without calibration (Rauch et al., 2002b). This is mainly because of the lack of accurate 

measurements required to calibrate and evaluate the performance of such models (Bertrand-

Krajewski et al., 1993; Gaume et al., 1998). In the cases where sufficient measured data is available 

and models can be calibrated, the following concepts are used: measured input data is used as the 

input to the model, which is used to generate the outcomes (output data). The model is then 

calibrated through calibration algorithms and objective functions that are used to compare the 

modelled outputs to the measured calibration data. The choice of calibration datasets and objective 

function is critical as they tune the parameters to characterise different parts of the hydrograph or 

pollutograph (e.g. low or peak flows) (Diskin and Simon, 1977; Yapo et al., 1996; Madsen et al., 

2002; Guinot et al., 2011). In addition, as with most models, the calibration of urban drainage 

models rarely results in one unique parameter set, and instead many equally plausible parameter 

sets are obtained. This effect is called equifinality (Beven and Freer, 2001) and is caused by several 

factors: (i) the parameter space presents several local minima regions; (ii) often the model is not 

equally sensitive to all the calibration parameters, in fact some models are over-parameterised and 

present a large number of insensitive parameters; and, (iii) parameters can present a high degree of 

correlation (usually non-linear interactions as per Wagener et al., 2004). The equifinality (mainly 

related to the influential parameters) effect drastically reduces the confidence in modelled results 

(Kuczera and Parent, 1998).  

Model validation should be performed to verify if the model is able to reproduce the simulated 

process outside the calibration data (Mourad et al., 2005a; Mourad et al., 2005c). For validation, 

data management is a major task as the choice of how to split the data for calibration and 
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validation may influence our understanding of the model’s predictive ability (McCarthy, 1976; 

Klemes, 1986; Vaze and Chiew, 2003; Wagener et al., 2004). Finally, the model application is the 

process of using the model with the calibrated parameter sets to predict outside the calibration and 

validation scenarios (Figure 2.1).  

The following two sub-sections use the concepts and processes reviewed in this sub-section to 

present a review of the different rainfall runoff and water quality models currently adopted. 

2.2.2 Review of rainfall runoff models 

Empirical models 

The Soil Conservation Service curve number, mostly used to predict peak flows (SCS, 1956), and 

the polynomial equations and time-series methods used to generate the catchment’s runoff (Chiew 

et al., 1993) are examples of empirical models. They have the advantage of being easy to apply and 

hence no hydrologic knowledge is required. While they produce reasonable results when applied to 

the simulation of urban developments with monthly and annual volumes, these models are too 

simple to represent the within-event characteristics of the processes being modelled. In other 

words, they are not able to reproduce the processes within events and consequently are not suitable 

for small timesteps (Chiew et al., 1993).  

Conceptual models  

The runoff is generated by assuming the catchment as a number of interlinked storages with 

mathematical functions describing the movement of water entering and leaving them (Boyd et al., 

1994). These models produce reasonable results even when applied in small timesteps (e.g. sub-

daily to few minutes) and range from simple to very complex urban drainage models. 

The simplest conceptual models focus on the simulation of the impervious area runoff only, which 

is modelled as a single reservoir (Schueler, 1994). They are lumped models ideal for the estimation 

of total volumes, but they might not be very informative when the modeller is interested in a 

detailed study of the catchment’s hydrological processes (e.g. baseflow). Such models are easy to 

use, computationally fast and usually involve a small number of parameters. The Rational Method, 

which generates runoff as a function of the rainfall and imperviousness of the catchment (Schueler, 

1994) forms the basis for many continuous conceptual models. KAREN (Rauch and Kinzel, 2007) 

is an example of a conceptual simple model based on the Rational Method (Schueler, 1994). It is a 

continuous model designed to estimate flows from urban areas and presents only four parameters 

to be calibrated. The model was recently calibrated for two Australian urban catchments and 

resulted in reasonable estimates of urban flows, with the Nash-Sutcliffe efficiency coefficients 

(Nash and Sutcliffe, 1970) higher than 0.6 (Kleidorfer et al., 2009).  

There is a range of models that are distributed catchment models and include runoff generation 

from impervious and pervious surfaces and simulate simplified channel/pipe flow. P8-UCM (P8-
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Urban Catchment Model) by Palmstrom and Walker (1990) and MUSIC (Model for Urban 

Stormwater Improvement Conceptualisation) by eWater CRC (2012) are examples of this category. 

These models are based on continuous simulation and represent a simplified description of the 

rainfall runoff processes by a series of reservoirs. P8 UCM works with hourly timesteps and 

MUSIC allows a minimum of 6 minutes timestep. MUSIC is of particular interest because it was 

developed for Australian conditions, can operate at a range of temporal and spatial scales and has 

been widely used in Australia mainly for the conceptual design of drainage systems (Ladson, 2008; 

Mitchell et al., 2008), in particular treatment technologies (Walsh et al., 2005). While a number of 

studies contributed to the enhancement of MUSIC’s stormwater treatment module (Scholes et al., 

2008; Hatt et al., 2009), the rainfall runoff model is usually applied without calibration. Moreover, 

validation of MUSIC’s rainfall runoff model has not been explored.  

Some studies looked into the comparison of different conceptual models. For example, Chiew et 

al. (1993) compared six rainfall/runoff models, which ranged from a simple polynomial equation to 

a more complex conceptual model (MODHYDROLOG - Chiew and McMahon, 1994). They 

compared the models in terms of daily, monthly and annual volumes. Their results are in 

agreement with the fact that simple models can only be applied for the large timesteps (monthly or 

annual). The conceptual models were able to predict total daily flows and the rather complex 

MODHYDROLOG was the only one able to depict the low flows in the catchments. The 

performance of these different conceptual model structures in sub-daily timesteps has not 

been explored.  

There is another group of more complex models, which contain representations of surface runoff, 

subsurface flow, evapotranspiration, and channel flow. However, they can be far more complicated 

due to their complex nature. MOUSE (DHI, 2004), Infoworks (Wallingford Software, 2009), 

CANOE (INSA/SOGREAH, 1999) and SWMM (USEPA, 2007) are examples of such models. 

They model both complex surface runoff and channel/pipe flow, including transition from 

unpressurised to pressurised pipe flow. These models can be applied to a wide range of temporal 

and spatial distributions and are suitable for a vast range of applications. However, they are 

probably too complex to be used by the general public or non-modelling professionals (Elliott and 

Trowsdale, 2007). They have the option of different concepts to estimate the catchment’s hydraulic 

responses. These conceptual complex models range from linear reservoir routing routines to 

solving the full Saint-Venant equations for dynamic wave routing. As any other type of model, 

these are unlikely to perform well if not calibrated, but unlikely the simpler ones, these present a 

large number of parameters. Moreover, the required input data (topographic, geological, climatic, 

etc) is not very often available, mainly for practical industrial application.  

Elliott and Trowsdale (2007) reviewed the qualitative strengths, weakness and potential uses of ten 

widely used conceptual urban stormwater models. They demonstrated that the popular MOUSE 
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(DHI, 2002c; 2004), MUSIC (eWater CRC, 2012), SWMM (USEPA, 2007) and P8-UCM 

(Palmstrom and Walker, 1990) are the only spatially distributed models with a link-node drainage 

network. Moreover, only MOUSE (DHI, 2002c; 2004), SWMM (USEPA, 2007) and MUSIC 

(eWater CRC, 2012) showed the capability of predicting flow rates from small catchments due to 

their distributed sub-hourly temporal scale. On the other hand, routing flow through the 

channel/pipe is available in the majority of models. In terms of potential use, MOUSE (DHI, 

2002c; 2004) and SWMM (USEPA, 2007) were the most suitable for a large range of applications 

with the disadvantage of being complex, requiring a large amount of data and parameters to be 

measured or calibrated, and hence unlikely to be used by the practitioners.  

The effects of long term simulations with the complex CANOE (INSA/SOGREAH, 1999) and 

the simple KAREN (Rauch and Kinzel, 2007) on the design of CSO structures and storage tanks 

was studied by Gamerith (2006). Interestingly, both models, with different levels of complexity, 

generated similar results. The author argued that this result was due to the simplicity of the sewer 

system and the large size of the sewer sections, which prevented flooding. Such result is in 

agreement with previous literature on hydrological models, which suggests that conceptual models 

are suitable for predicting steamflow, volumes or loads at the catchment scale (Refsgaard and 

Knudsen, 1996; Rauch et al., 2002b), while more complex cases, for example where spatial 

representation is important, would require more highly parameterised complex models (Refsgaard 

and Abbott, 1996).  

Summary  

While the empirical equations are usually over-simplified and cannot describe the physical process, 

the complex models require a large amount of input data and have a large number of (a) physical 

parameesters to be measured in the field or (b) conceptual parameters to be calibrated. Moreover, 

these data and parameter sets will only be valid for a specific area and thus, the models are not 

transferable for other catchments. In this context, conceptual models are preferred and are 

currently the most used in the field (Butler and Davies, 2000; Wagener et al., 2004). However, the 

assessment of these models’ structures and their associated predictive uncertainty under 

the same conditions has not been explored. 

2.2.3 Review of pollution generation models 

Stormwater quality models are important tools to control pollution generation, evaluate pollutant 

loads and investigate and rank alternative approaches for stormwater quality management (Ahyerre 

et al., 1998; Marshall et al., 2005). Different approaches are available to attempt reproducing the 

response of urban catchments in terms of pollutants generation (Huber, 1985; Huber, 1986):  

• event mean concentration (EMC) models; 

• continuous stochastic models; 



 

 18   
 

• empirical regression models; 

• process based build-up/wash-off models; and,  

• physical models. 

The current most used softwares such as P8-UCM (Palmstrom and Walker, 1990), XP-AQUALM 

(XP-SOFTWARE, 1999), SWMM (USEPA, 2007) and MUSIC (eWater CRC, 2009) usually 

include one or more of these approaches. The different approaches are reviewed in this section. 

Event Mean Concentration (EMC) Models 

These are the simplest modelling approaches for estimating pollution generation in urban drainage. 

Such group of model uses monitored data to associate the catchment’s physical or hydrological 

characteristics with measured concentrations and loads (Charbeneau and Barrett, 1998) and assume 

that the constituent concentration is well represented by an event mean concentration (i.e. constant 

throughout an event). It can relate the parameters of an event (e.g. average rainfall intensity, rainfall 

total, etc) and climatic parameters (e.g. antecedent dry weather period, average previous day 

temperature, etc) to an EMC for a certain pollutant (e.g. Duncan, 1995; 1999; McCarthy, 2008; 

Dembélé et al., 2010). Duncan (2005), for example, reported a power relationship between the 

event load and the rainfall intensity. McCarthy (2008) found a strong relationship between E. coli 

EMCs and antecedent temperatures (and evaporation). EMC based models statistically describe the 

long-term pollution generation process in the system and thus, are able to evaluate the long-term 

impact of pollutants in the receiving bodies, i.e. annual loads can be estimated (Charbeneau and 

Barrett, 1998; Francey, 2010). The disadvantages of such models are that they do not represent any 

pollutant processes in the catchment and also they are not easily transferable to other areas without 

extensive data collection/calibration. This is due to the great variance of EMC values between 

sites, even when they have similar characteristics. 

Stochastic and semi-stochastic models 

These models are commonly used to represent the stochastic nature of pollutant inputs into the 

system, or our lack of understanding of the process (Butler and Davies, 2000; Rossi et al., 2005). 

For example, in MUSIC (eWater CRC, 2009) the pollutant distribution is defined by specifying the 

mean and standard deviation of a log-normal distribution, from which concentrations are 

stochastically generated for each timestep. XP-Storm (XP-SOFTWARE, 1977) and SWMM 

(USEPA, 2007) use a similar approach, in which a random EMC value is sampled from the 

measured data distribution of the pollutant at the beginning of each event; this value is then used 

as a constant throughout the specific event. A similar approach is available in XP-AQUALM (XP-

SOFTWARE, 1999) for estimating the daily loads in the catchment. In addition to the group of 

semi-stochastic models there is a new approach proposed by Bach et al. (2010), in which water 

quality concentrations are predicted using the first flush theory.  
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Regression models 

Simple or multiple regression models are another group of models to quantify discrete pollutant 

concentration in the catchment (Letcher et al., 2002). The wash-off rating curves proposed by 

Duncan (1995) are examples of this group. They can be used as event based or continuous models. 

These models generally relate the pollutant concentration or loads to some storm characteristics 

such as rainfall intensity, total rainfall and flow (Vaze and Chiew, 2003; Mourad et al., 2005a). For 

example, the kinetic energy of falling raindrops in the detachment of surface pollutants is 

considered in the power relationship between the event loads and the rainfall intensities (Duncan, 

1995). Variations of this model include, for instance, the replacement of the rainfall intensities by 

the catchment runoff, in which the transport of the pollutants is represented by the shear stress 

generated by flow (Letcher et al., 2002). Vaze and Chiew (2003) and Francey (2010) tested a 

number of simple regression equations to estimate event pollutant loads from impervious surfaces. 

Results on total loads were reported to be promising when the models were tested in terms of TSS 

and its associated pollutants, TN and TP. Several popular stormwater models have the option of 

regression equations in their algorithms: XP-AQUALM (XP-SOFTWARE, 1999), SWMM 

(USEPA, 2007) and P8-UCM (Palmstrom and Walker, 1990). The drawback of such approach is 

that no build-up consideration is made and hence, the accumulation of pollutants on the surface is 

neither considered nor characterised. In addition, the unexplained variability in concentrations and 

loads are so large that the predictive power of deterministic empirical models becomes 

questionable (Vogel et al., 2005; Shaw et al., 2010). 

Process-based build-up/wash-off models 

The first build-up/wash-off model was proposed by Sartor and Boyd (1972) and its variations are 

currently used in some of the popular stormwater models, such as SWMM (USEPA, 2007) and 

MOUSE (DHI, 2004). In addition, these models have been subject of a number of studies (e.g. 

Deletic et al., 2000; Kanso et al., 2006; Hossain et al., 2010; Shaw et al., 2010). For instance, Kanso 

et al. (2006) tested variations of the original model in terms of TSS concentrations for two urban 

catchments in France. It was concluded that the model was unable to represent the complexity of 

the system at the scale of urban sub-catchments. In contrast, Gaume et al. (1998) used a build-

up/wash-off model to simulate TSS concentrations from stormwater in an urban catchment and 

reported a good agreement between measured and modelled values. Vaze and Chiew (2003) 

compared a number of build-up/wash-off models to estimate event pollutant loads from 

impervious surfaces. Between 14 and 20 events, with rainfall, flow and concentration data from 

three urban catchments in Australia were used in the study. Their results indicated that, once 

calibrated, both approaches estimated event pollutant loads satisfactorily. The predictive power of 

these models in terms of concentration has been less explored. 

Physical models 
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 There are also attempts to develop physical models (e.g. Shaw et al., 2006), which have the 

advantage of better characterising the pollutant transport process within the catchments. These are 

not quite established and therefore their application is very limited. For example, a model based on 

the advection dispersion equation was developed by Mannina and Viviani (2010). The results 

suggested the model is promising in terms of modelling approach. However, the model with eleven 

parameters was calibrated with only five events, which makes it difficult to assess the quality of the 

model and highlights the importance of adequate datasets for model calibration. This group of 

models can only be tested and validated if a comprehensive measured input data set is available, 

which is usually not the case for water quality data.  

Model application –temporal scale 

In general, models can be applied for a range of temporal scales and timesteps. In the water related 

fields, continuous models simulate the system’s response over a period of time (e.g. weeks, 

months, years) and therefore, account for the overall water balance in the system; continuous 

models can represent the event antecedent conditions. Models based on event simulation can only 

estimate the system’s response from discrete events and cannot account for any between event 

characteristics (McAlister et al., 2006). 

In most cases, the accuracy of stormwater models increases with as the modelling timestep 

decreases, and the choice of an inadequate timestep can compromise the model results (Einfalt et 

al., 2002; McCarthy, 2008; eWater CRC, 2009).  For example, if the model is used with a timestep 

larger than the transient time of the process in the catchment, results will not reflect reality (eWater 

CRC, 2009).  

Summary 

While EMC based and stochastic models are adopted as an option in a number of stormwater 

models, they do not provide information about the physical processes of pollutants in the 

catchment. Simple regressions that relate pollutant concentration to some hydrological variable to 

model wash-off and process based build-up/wash-off models are preferred as they are not overly 

complex, yet attempt to reproduce the main processes of pollutants in the system. Due to the high 

variability of stormwater quality processes and pollutants both between and within events, 

continuous simulation is recommended over event based (Hossain et al., 2010; Shaw et al., 2010).  

2.2.4 Summary 

There are a number of approaches to represent the rainfall runoff and pollutant generation 

processes in urban stormwater. However, the physical process occurring in the systems are plagued 

with so many uncertainties that the ability of models to represent reality is very limited (Mourad et 

al., 2005a).  
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The general rainfall runoff mechanisms in the catchment are understood and there is a plethora of 

rainfall runoff models available to predict general figures as mean annual flows and total volumes, 

and also a number of models are formulated to quantify and represent the processes within and 

between events (Elliott and Trowsdale, 2007). The conceptualization errors in this models are 

related either to an over simplification of physical processes or to the complexity of some 

formulations used in physical models (Elliott and Trowsdale, 2007).  

The context of water quality is much worse (Ahyerre et al., 1998; Rauch et al., 2002a). The 

mechanisms governing the processes and dynamics of accumulation and wash-off of pollutants are 

not well understood, especially in the sources and processes of pollution generation in drainage 

systems (Kanso et al., 2005; Rossi et al., 2005; Park and Roesner, 2012). The sum of all these 

factors leads to large model conceptualization errors, which results in models with low accuracy 

and a high level of uncertainty (Ahyerre et al., 1998; Bertrand-Krajewski and Bardin, 2002).  

In this context, the uncertainties related to the misfit between measured and model data due to the 

model structure are immense and should be addressed (Butts et al., 2004; Refsgaard et al., 2006; 

Doherty and Welter, 2010). However, uncertainties were often ignored in the urban drainage field 

and only recently they have been addressed (Vezzaro and Mikkelsen, 2011; Vezzaro and Mikkelsen, 

2012). As such, it is clear that a complete, but yet simple, exercise of assessing model 

uncertainty through rigorous parameter calibration, model sensitivity and estimation of the 

uncertainty associated with the model’s predictions is required (Beven and Binley, 1992; 

Kuczera and Parent, 1998; Wagener et al., 2004). The following section reviews the different 

sources of uncertainties associated with modelling urban drainage and related fields. 

2.3 Sources of uncertainties in urban drainage models 

2.3.1 Introduction 

During the last decades, a number of studies have been done on the uncertainty associated to 

groundwater, wastewater, environmental and hydrological modelling (O'Donnell and Canedo, 

1980; Canale and Seo, 1996; Krzysztofowicz and Kelly, 2000; Refsgaard, 2000; McIntyre et al., 

2005; Belia et al., 2009). But the uncertainty associated with urban drainage modelling was only 

recently approached (Kanso et al., 2006; Vezzaro and Mikkelsen, 2012). To advance the uncertainty 

analysis in stormwater model, it is important to understand the different sources of uncertainties. 

This sub-section introduces the main sources of uncertainties in urban drainage models and related 

fields.  

The sources of uncertainties in environmental and hydrological models were extensively mapped in 

the literature (Beck, 1987; Melching, 1995; Refsgaard, 2000; Walker et al., 2003; Wagener et al., 

2004; Gourley and Vieux, 2006). While these sources have been named or grouped differently in 

some of the mentioned studies, the content was the same. The general modelling framework in 

Figure 2.1 can be used to help map those sources of uncertainties in urban drainage models:  
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i. model structure uncertainty is the limitation of the model structure in representing real 

physical processes, usually because of a lack of knowledge about the process being 

modelled, the model assumptions and boundary conditions. In addition, models usually 

reproduce different aspects of the system with different parameters, which often leads to 

high level of parameter interaction. 

ii. measured data uncertainty is related to the errors in data measurements, including 

collection, handling and post-processing of model input and calibration data. It can also 

relate to some variables that are “estimated” rather than measured data (e.g. catchment 

area); 

iii. model calibration uncertainty is about the methods used for calibration, also including 

the selection of the objective functions and data selection; and,  

iv. model calibration parameter uncertainty relates to the calibrated model parameters;  

The following sub-sections describe each of them in more detail. 

2.3.2 Model structure 

The causes of this uncertainty are numerous and include: conceptualisation errors, such scale-issues 

or omitting key processes; equations, which could be ill posed and thus inadequately represent the 

process; and, numerical methods and boundary conditions, which can be ill defined leading to 

inaccurate solutions (Refsgaard et al., 2006).  

Renard et al. (2008) presented a Bayesian based framework that is promising in quantifying 

uncertainties arising from structural errors (among other sources). However, its application is not 

straightforward and very computationally demanding (Renard et al., 2008). As an attempt to deal 

with structural errors, Refsgaard et al. (2006) and Wagener et al. (2003) proposed frameworks to 

assess uncertainty due to model structure errors. The proposed schemes differ about method and 

criteria, but both suggest that comparing model structures is the way of assessing this source of 

uncertainty. Nevertheless, the causes of this source of uncertainty are very complex, and there is no 

generic approach to evaluate model structure uncertainty (Refsgaard et al., 2006; Doherty and 

Welter, 2010).  

It is also true that model validation is very important to assess the model’s efficiency in simulating 

specific physical processes outside the calibration period (McCarthy, 2008), and therefore could 

also be used as an indication of the model structure error. The assessment of the model structure is 

sometimes performed by accepting or rejecting a model structure depending on the number of 

observations covered in the predictive uncertainty bands (Freni et al., 2009). However, this method 

is too subjective, as it depends on how wide confidence bands are (e.g. 65%, 95% or 99% 

confidence interval) (Refsgaard and Henriksen, 2004). In addition, is rejecting the model the best 
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way to go? There might be cases that results from less accurate models are still useful (Refsgaard 

and Henriksen, 2004). 

In summary, it is suggested that comparing results from different model structures when 

applied to the same case study could be a starting point to evaluate model structure 

uncertainty in stormwater models. 

2.3.3 Measured data 

This source refers to the uncertainty in any measured or estimated data used as model input or for 

model calibration. Independent of the model type, all models require some input measured dataset 

which will inherently contain a certain degree of error. Furthermore, to calibrate models, another 

measured dataset is required, which also includes some error. Finally, models often require extra 

information as input to the model, which also contains a degree of uncertainty: e.g. catchment 

characteristics (e.g. area and slope) and/or extra climate data (e.g. evapotranspiration and 

antecedent dry weather periods). Uncertainties in the measured data are generally caused by (i) 

systematic and/or (ii) random errors. The following paragraphs outline the uncertainties inherent 

in the major data sources used in rainfall runoff and water quality modelling of stormwater 

systems.  

The most common input to rainfall runoff and water quality models is rainfall intensity, and it is 

usually required in time-series format (Achleitner et al., 2007; McCarthy, 2008; eWater CRC, 2012). 

Tipping bucket rainfall gauges are the standard and most used device for measuring rainfall data 

(Sevruk, 2002). The main sources of uncertainties in the data measured with these gauges are 

related to both catching and counting errors (Molini et al., 2005b). While splashing losses were 

found to be only up to 2% and evaporation losses were up to 4%, the wind losses were found to 

be inversely proportional to the rain intensity and were up to 30% for rainfall intensities around 

0.25 mm/h (Sevruk, 1982). Battery, logger and computer clock failures are significant source of 

errors in rainfall measurements. Time drifts are inherent to any battery controlling logging devices 

and values around 0.07 min/day were reported by McCarthy (2008). The spatial variability of 

rainfall is another issue. It is common that the point rainfall measured with the tipping bucket is 

different from the average rainfall calculated if several gauges were installed along the catchment. 

To address spatial rainfall distribution radar rainfall data can be used. But this also requires a 

calibration on rain gauge measurements to reduce the radar uncertainties (Einfalt et al., 2004). 

Measured flow data is often used for the calibration of rainfall runoff models (e.g. Sherman, 1932; 

Marshall et al., 2004; Refsgaard et al., 2006; Huard and Mailhot, 2008), and is sometimes used as 

input into water quality models (e.g. Kanso et al., 2003; Vaze and Chiew, 2003). The errors in flow 

data are usually related to the measurement equipment and installation methods. Flow 

measurement uncertainties for the velocity-area method are caused by the uncertainties in the 

estimation of the channel’s cross section and velocity estimates. The Law of Propagation of 
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Uncertainty (LPU) (Taylor and Kuyatt, 1994), which is used to propagate and combine individual 

sources of uncertainties, can be used to estimate this uncertainty associated with the measured 

flows (Bertrand-Krajewski and Muste, 2007).  Values of ±20% were reported in the literature for 

flows with the velocity-area method (Ahyerre et al., 1998; Harmel et al., 2006a). Uncertainties in 

flow measurements due to systematic errors were not explored. They are related to the height 

measurement and an inaccurate velocity calibration or incorrect probe set-up (McCarthy, 2008).  

To adequately calibrate stormwater quality models, water quality samples need to be taken and 

analysed for the parameter of interest (or in-situ probes are utilised). However, monitoring 

stormwater quality is plagued by a wide range of errors, including those related to sampling, storage 

and analytical /laboratorial analysis (Harmel et al., 2006a). While the errors relating to sampling 

methods (i.e. the process of actually extracting the sample from the water source) are significant for 

TSS measurements (e.g. up to 33%), they are often less significant for dissolved pollutants (Harmel 

et al., 2006a). Some pollutants are also impacted by storage uncertainties; for example, uncertainties 

of up to 50% were found for TN concentrations, even for those samples which were stored 

appropriately (iced <6hrs)  (Kotlash and Chessman, 1998). Uncertainty related to the laboratorial 

analysis was less explored, but values from -9.8 % to 5.1 % have been reported for TSS (Harmel et 

al., 2006a) while 10.4 % has been reported for TN (Donohue and Irvine, 2008). 

In general, uncertainties in measured input and calibration data can be characterised and assessed 

according to international standards as ISO (1993; 1995; 2007; 2008; 2009a; b). In these standards, 

uncertainty is defined as the variable associated with a measurement result which characterises the 

dispersion of the values that could be reasonably attributed to the measured variable, LPU (Taylor 

and Kuyatt, 1994) is an example.  

Errors in measured data could strongly impact the model outputs (Andreassian et al., 2001; 

Haydon and Deletic, 2009). Mainly systematic errors would propagate the error over an over 

through the model (Ahmad et al., 2010). For example, if the rainfall data is constantly over- or 

under-estimated and/or the data logger is suffering from time drifts, the modelled flows or 

pollutant concentrations would systematically suffer/respond for these errors. Errors in discrete 

pollutant concentrations can lead to an inadequate design of stormwater treatment technologies 

(Vaze and Chiew, 2003).  

2.3.4 Model calibration 

Introduction 

The confidence of the model outputs relates to the model uncertainty remaining after the model 

has been calibrated. Therefore, there is a need for robust and reliable automatic calibration 

procedures (Beven and Freer, 2001; Moore and Doherty, 2005). However, even when using 

complex algorithms, which are capable of calibrating highly non-linear functions, there is never 
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certainty that the best solution (or global optimum) will always be found (Beven and Freer, 2001; 

Wagener et al., 2004).  

Auto-calibration methods 

Two approaches are extensively used for the estimation of parameters. These are the frequentist 

and Bayesian approaches. In the frequentist approach, unknown parameters are assumed as fixed 

and a calibration dataset is used to estimate their values. One disadvantage of such methods is that 

they usually depend on the initial parameter values assumed at the beginning of the calibration 

process, which might compromise the optimisation by not searching all the possibilities in the 

parameter space. Old optimization tools such as downhill simplex method (Nelder and Mead, 

1965), the pattern search method (Hooke and Jeeves, 1961) and the rotating directions method 

(Rosenbrock, 1960) can easily fail because their search for the best estimates can considerably float 

according to the choice of the initial values and therefore get stuck in some random local 

minimum. Some gradient based methods that start calibration from different points in the 

parameter space, which are selected in a manner that minimizes the chance of finding the same 

local minimum twice, can overcome the problem of the objective function surface in parameter 

space being pitted with local minima. PEST (Doherty, 2004) is one example of this type of tool. 

Many studies reported successful applications of the software for calibrating conceptual 

hydrological models (Doherty and Johnston, 2003; Kunstmann et al., 2006; Skahill and Doherty, 

2006).  

The Metropolis algorithm (Metropolis et al., 1953), a general Monte Carlo Markov Chain (MCMC) 

sampling method, has also been widely used for model calibration and sensitivity analysis of 

models in related fields (e.g. conceptual hydrological models - Kuczera and Parent (1998) and 

Feyen et al. (2007) and water distribution hydraulic models - Kapelan et al. (2007)). Contrary to 

frequentist approaches, the Metropolis algorithm identifies not only a best parameter set, but a 

probability distribution of parameters according to measured data; it estimates the true posterior 

probability distribution of parameters, which may differ significantly from the multinormal 

distributions used in classical parameter uncertainty estimation methods. This is a major advantage 

of this method, as it can overcome the identifiability problem (Kuczera and Parent, 1998). In 

addition, it is possible to account for model uncertainty while evaluating model performance.  

Objective function  

The choice of appropriate objective functions is a fundamental consideration when estimating 

model parameters. Different objective functions influence the calibrated parameter distributions 

and the uncertainty of model predictions. All objective functions sacrifice the fit of a certain 

portion of the dataset to achieve a good performance in another portion (Diskin and Simon, 1977; 

Sorooshian et al., 1983; Servat and Dezetter, 1991; Wagener et al., 2004). It is a common view that 

the selection of the most appropriate objective function is not an easy task and should reflect the 
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modelling aims (Madsen et al., 2002; Krause et al., 2005). In addition, Croke (2009) recommended 

that objective functions should consider the uncertainties in the measured and modelled data. As 

such, he suggested that accounting for the non-homoscedastic and serial correlation of the model 

residuals (i.e. misfit between the measured and modelled data) can reduce the uncertainty in the 

estimated parameters and improve the ability of evaluating the model performance. In the same 

context, Doherty and Welter (2010) added that the choice of objective function, rather than the 

exact nature of the statistical characterisation of model-to-measurement misfit, becomes an issue of 

critical importance in the model calibration process. In particular, the choice of an objective 

function that tunes a model to make predictions of a certain type can lower the uncertainty 

associated with predictions of that type. The potential and benefits of multi-objective methods to 

calibrate models have been investigated and a review of these approaches can be found in 

Efstratiadis and Koutsoyiannis, (2010). Multiple objective functions have some disadvantages as 

increasing the number of objective functions can turn the problem of model calibration into a 

decision-making process (Khu and Madsen, 2005).  

Least square based objective functions place emphasis on medium/large values, which are 

often the goals for stormwater management practices (i.e. high volumes - e.g. Chiew and 

McMahon, 1999). In addition, its statistical background is rather simple, which is the 

reason why they are still the most adopted functions in the field (e.g. Feyen et al., 2007; 

Freni et al., 2009). 

Calibration data availability  

While the uncertainty in measured calibration data was covered in the previous section, the 

relationship between model uncertainty and the data availability for calibration and validation is 

addressed here. Model predictions depend on calibration and calibration depends on data. For 

example, Gaume et al. (1998) used a build-up/wash-off model to simulate TSS concentrations 

from stormwater in an urban catchment and reported a good agreement between measured and 

modelled values. The limitation was that the authors used eight events, all over summer, to 

calibrate the model (with four calibration parameters). It could be argued that if their events were 

more evenly distributed along the year (or more events evenly distributed through the year) the 

model would behave differently. Similarly Rodríguez et al. (2010), obtained satisfactory TSS 

estimations when applying different build-up/wash-off formulations for a small urban catchment 

in Bogota, Colombia. Nevertheless, only two events were taken into account for calibration.  

In addition, the influence of the calibration data availability is reflected in the uncertainty of a 

model’s prediction outside the calibration period (Vaze and Chiew, 2003; Mourad et al., 2005b), 

and also on model’s parameter probability distributions (Larssen et al., 2007). For example, 

Mourad et al. (2005a; 2005c) found that the commonly used build-up/wash-off and multiple 

regression models were sensitive to the amount of calibration data (i.e. number of events) and that 
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more data should be allocated for model calibration in comparison to the amount of data for 

model validation. An alternative to decrease this dependence is to use datasets that include 

different contexts, such as data from different seasons, to better represent the natural variability of 

the natural process (Bertrand-Krajewski, 2007; Renard et al., 2008). However, the objective 

functions do not endow the model with the ability to make all types of predictions equally, and 

therefore it is unlikely that the model will be able to capture the differences. 

More recently, Sun and Bertrand-Krajewski (2012) proposed few methods to select representative 

calibration datasets in order to optimise the performance of selected regression models. They 

concluded that the method that uses multiple-dimension information of the measured inputs is 

more effective than the methods that consider only one-dimension information of the outputs. In 

the context of flows, Yapo et al. (1996) concluded that sensitivity of the calibration to the data 

length (e.g. data availability) and period selection (e.g. wet or dry periods) was determined by the 

different objective functions. Boughton (2007) found that the estimates for long term runoff are 

more data-dependent than model-dependent when short periods of data are used for calibration. It 

is important to remember that such finding might be study or data dependent and not a general 

finding, as the model structure does represent a significant source of errors in models.  

In summary, some studies have examined how to divide the available data into calibration 

and validation sets (McCarthy, 1976; Klemes, 1986; Vaze and Chiew, 2003; Wagener et al., 

2004). No specific protocol was found yet, but the overall suggestion is that datasets 

should include data covering a range of intrinsic content (e.g. different climate seasons 

and hydrologic behaviours). 

Variables to be calibrated 

Most water quality models have been calibrated against fluxes and total loads from urban 

catchments (Sriananthakumar and Codner, 1992; Charbeneau and Barrett, 1998; Dembélé, 2010; 

Francey, 2010). However, fluxes are driven by flow rates, which generate a degree of spurious 

correlation in load based models, and therefore mask the real predictive capability of the models 

(Vogel et al., 2005; Shivers and Moglen, 2008; McCarthy et al., 2011). Moreover, false conclusions 

about the intrinsic characteristics of pollutants and their sources could be easily derived. For these 

reasons, estimation of concentrations rather than fluxes would be indicated. Although few studies 

investigated pollutant concentrations modelling, they usually utilised a very limited number of 

events.  

Summary 

The choice among different auto-calibration methods, objective functions, calibration datasets and 

variables to be calibrated, impacts the model results and uncertainties, and therefore influences the 

model calibration parameters.  
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2.3.5 Model calibration parameters 

Understanding the uncertainties associated with the stormwater model parameters is crucial for 

advancing urban drainage modelling practice. For example, the high level of uncertainty in the 

calibrated parameters has been recognised as one of the main problems in the establishment of 

water quality models (Kanso et al., 2003; Kanso et al., 2005). The parameter uncertainty may result 

from (1) a poor fit between model outcomes and measured data (Yapo et al., 1996), (2) a high level 

of parameter correlation (Vanrolleghem and Keesman, 1996; Lindenschmidt, 2006); and/or, (3) the 

insensitivity or practical identifiability problem (Vanrolleghem et al., 1995).  

The model sensitivity to its parameters is usually determined by either local (Deletic, 2001; Haydon 

and Deletic, 2007) or global sensitivity methods (Beven and Binley, 1992; Kuczera and Parent, 

1998). While local sensitivity methods can identify how the model results change with the different 

parameter values, they usually do not provide information about the global influence of the 

different sets of model parameters (Saltelli, 2005). Global sensitive methodologies are preferred as 

they allow all parameters to vary simultaneously over a wide range of possible parameter values 

(Neumann et al., 2009; Varella et al., 2010; Vezzaro and Mikkelsen, 2012) and provides information 

not only about the different parameter sets, but also about parameter interaction. In addition, they 

can provide insights about the model structure, because most of the methods valuate the model 

sensitivity while quantifying the uncertainty associated with the parameters (Kuczera and Parent, 

1998). Model sensitivity analysis is one of the main interests of this research and is further reviewed 

in detail in Section 2.4.2.  

2.3.6 Summary 

Measured data used for input and calibration of stormwater models are not free of errors. 

Therefore, it is likely that the model’s responses will reflect those uncertainties and consequently, 

the model’s calibration parameters will also be impacted. In addition, the combination of different 

calibration methods and objective functions determines which parts of the dataset the model is 

tuned to reproduce and these modelling setup choices impact the values of the calibrated 

parameters. As such it seems clear that the sources of uncertainties in models are interlinked and 

eventually they all impact the model parameters. It is hypothesized that some of these sources can 

add-up or compensate for each other, suggesting that assessing the impact of a single source is not 

enough and that simultaneous propagation of key sources of uncertainties is required.  

2.4 Assessing uncertainty in urban drainage models  

2.4.1 Introduction 

Model sensitivity and uncertainty analysis are imperative prior to model application. While the 

uncertainty analysis quantifies the uncertainty in the model results, sensitivity analysis complement 

the uncertainty analysis by providing information about the importance and relevance of model 

parameters in determining the change in the results (model outputs). This section introduces and 
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compares the most common adopted methods for model sensitivity and uncertainty analysis in 

urban drainage models and related fields.  

2.4.2 Model sensitivity 

Model sensitivity analysis reveals how sensitive the model outputs are to each parameter or input. 

The results can be used just to screen for the most important parameters (Weijers and 

Vanrolleghem, 1997; Reichl et al., 2006; Haydon and Deletic, 2007; Kleidorfer et al., 2009) or, as in 

most cases, model sensitivity results can be used to estimate confidence intervals around the 

model’s results (Feyen et al., 2007; Yang et al., 2008; Li et al., 2010). This sub-section reviews the 

most popular sensitivity analysis methods in the area and related fields. 

Global uncertainty analysis  

Adequate sensitivity analyses have to include an investigation over the full range of plausible 

parameter values and their interactions (Saltelli, 2005). In summary, global sensitivity analysis is the 

assessment of how the variation in the model outputs can be assigned to the uncertainty in the 

model parameters (Vezzaro and Mikkelsen, 2012). Methods including the variance based measures 

and Monte Carlo approaches (Ratto et al., 2001; Dorini et al., 2011) have been used in different 

fields (Saltelli, 2005). During the last decades, a number of studies investigated the uncertainty 

associated with groundwater, environmental and hydrological modelling (Beck, 1987; Beven and 

Binley, 1992; Canale and Seo, 1996; Krzysztofowicz and Kelly, 2000; Refsgaard, 2000; Reichert and 

Vanrolleghem, 2001; Refsgaard et al., 2007). McIntyre et al. (2005) analysed uncertainty in a semi-

distributed catchment nutrient model, focusing on the spatial significance of parameters and model 

outputs, and associated uncertainties. Results suggested that even the most influential parameters 

suffered from high uncertainty due to (i) spatial inconsistencies in the estimated optimum values; 

(ii) the sampling error associated with the calibration method; and, (ii) parameter equifinality. A 

number of studies compiled and qualitatively compared different methods used in integrated 

environmental modelling (Matott et al., 2009). Makowski et al. (2002), Willems (2008) and Yang et 

al. (2008) compared the application of different uncertainty analysis techniques in different fields 

and concluded that modellers should choose the method which is most suitable for the system they 

are modelling (e.g. complexity of the model’s structure including the number of parameters), their 

skill and knowledge level and the purpose of their study.  

Uncertainty associated with urban drainage modelling was only recently investigated (Kanso et al., 

2006; Kleidorfer et al., 2009; Lindblom et al., 2011; Vezzaro et al., in press). Some studies have 

assessed the impact of uncertainties in model parameters (e.g. Kanso et al., 2003; Thorndahl et al., 

2008). The key methods and concepts already used in water resources modelling were adopted for 

urban drainage models and many methodologies (some packed in software tools) are now available 

to evaluate the model sensitivity, while calibrating and quantifying the uncertainty associated with 

the parameters. They range from formal Bayesian approaches (Bayes, 1763) as the Markov Chain 
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Monte Carlo (MCMC) approaches (e.g. MICA by Doherty (2003), or DREAM by Vrugt et al. 

(2008)) to less formal likelihood methods as the Generalized Likelihood Uncertainty Estimation 

(GLUE) by Beven and Binley, (1992).  

Bayesian inference based on MCMC methods express the uncertainties associated with parameters 

and model outputs in terms of probability. Samples are generated from the Markov Chains, which 

will converge to the posterior distribution of the parameters. One of the most used MCMC 

methods is the Metropolis-Hasting algorithm (Hastings, 1970), which uses an adaptive proposal 

distribution to sample parameters and is thus better at finding the high posterior density region. Its 

effectiveness is now well established (e.g. Bates and Campbell, 2001). GLUE has largely been 

applied to uncertainty assessment in general hydrological models (e.g. Montanari, 2005). The 

principle of GLUE is to generate parameter samples from a uniform distribution in order to 

provide a scan of the parameters’ space. The method requires a large number of Monte Carlo 

simulations, while the criteria for accepting a parameter set (the choice of a certain threshold, 

usually based on a measure of the model performance, that defines which of the sampled 

parameter sets will be considered for further analysis) is subjective and is defined by the user. In 

addition, the results obtained with GLUE are very sensitive to this acceptance threshold, which 

places some limitation in the application of such methodology (Mantovan and Todini, 2006; Freni 

et al., 2008).  

Many likelihood functions used in some Bayesian approaches assume that the model errors (or 

residuals between the measured and modelled values) are normally distributed. However, this 

assumption is often not checked; this is the case for both scientific literature (Maksimovic et al., 

1991; Kanso et al., 2006; Varella et al., 2010) and modelling practitioners, who are often not fully 

acquainted with uncertainty procedures. In the cases where these assumptions are checked, it is 

commonly found that the error does not follow any specific distribution and the results are still 

presented ‘as is’. In the literature, a transformation of measured and modelled data (e.g. log or Box-

Cox transformation) is used by some modellers to ensure they meet the assumptions (Gallagher 

and Doherty, 2007; Yang et al., 2008). However, it is noted that all transformation methods will 

intrinsically change the implied information content of the observations (Beven et al., 2008). For 

example, in an urban drainage model, using a log or Box-Cox transformation (Box and Cox, 1964) 

to meet normality of residuals will place more emphasis on different parts of the hydrograph (i.e. 

lower flow rates), which in turn significantly influences the sensitivity to the model parameters 

(Yang et al., 2008). The impacts of verifying, or not verifying these assumptions on the 

model sensitivity and associated parameter uncertainty have not been studied.  

According to Freni et al. (2009), the classical Bayesian method is more effective at discriminating 

models according to their uncertainty, but the GLUE approach performs similarly when it is based 

on the same founding assumptions as the Bayesian method. However, this conclusion is still 
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debated (Beven, 2009; Vrugt et al., 2009). The different approaches have also been compared in 

related fields other than urban drainage; for example, Makowski et al. (2002) compared GLUE and 

Markov Chain Monte Carlo (MCMC) methods (in particular the Metropolis-Hasting sampling 

approach) using a simplified crop model with 22 parameters. Both methods presented similar 

results, but the authors recommend the use of the Metropolis-Hasting algorithm. This is because 

the Metropolis-Hasting method converges to the true posterior distribution even if the model 

includes a large number of parameters, while GLUE found this challenging because it required a 

large number of simulation runs. Nevertheless, MCMC procedures also have their own limitations 

and a misspecification of the error structure (or likelihood function) in the Bayesian approach can 

lead to an erroneous quantification of the model predictive uncertainty (Beven et al., 2008). 

Although these insights are valuable, it is difficult to relate the results between different 

comparison studies, as they employ different models and different datasets.  

In summary, the reviewed global uncertainty analysis methods have the advantage of performing 

uncertainty analysis while providing information about the most likely parameter sets that calibrate 

the model. They do, however, have disadvantages (Bayesian - assumption or knowledge about the 

likelihood function and GLUE - subjective parameter acceptance criteria) that might limit their real 

potential of performing sensitive analysis. Nevertheless, there is no information in the 

literature which suggests which is the most suitable method to assess parameter 

uncertainties in urban drainage models.  

2.4.3 Propagation of measured data uncertainty in stormwater models  

The sensitivity analysis methods reviewed in the above section (Section 2.4.2) are used to identify 

the most influential parameters and also to assess the model predictive uncertainty due to 

parameter uncertainty. Nevertheless, the measured data and model structure are other sources of 

uncertainty that should be considered (as summarised in Sub-section 2.3.3). 

Impacts of input data uncertainties on urban drainage modelling are largely unknown, although 

their importance in other related fields was already noted (e.g. hydrologic models: Krzysztofowicz 

and Kelly, 2000; Haydon and Deletic, 2009). Korving and Clemens (2005) evaluated the sensitivity 

of a distributed hydrologic model to parameter and radar rainfall uncertainty. Among other results, 

they found that as the drainage area increased, the uncertainty in flows modelled with the 

distributed model also increased. Some work has been done on the propagation of input data 

uncertainties through urban drainage models, mainly by methods based on Monte Carlo 

simulations (Rauch et al., 1998; Bertrand-Krajewski et al., 2003; Korving and Clemens, 2005). 

However, in these studies, the models were first calibrated assuming that measured inputs and 

outputs are without error, and the impact of input data uncertainties were then propagated through 

the models, while keeping the model parameters fixed. Kleidorfer et al. (2009) developed this 

further by assessing the impact of input data uncertainties on model parameters. The techniques 
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used to measure urban discharges and associated water quality are of limited accuracy (Harmel et 

al., 2006b; Bertrand-Krajewski, 2007; McCarthy et al., 2008). However, the impact of this 

contribution to the model’s overall uncertainty is not well understood. The effect of input and 

calibration data uncertainty on the parameters and outputs of urban drainage models has 

not been explored.  

While most of the existing studies about input and calibration data uncertainty on the outputs have 

been restricted to hydrologic models of large natural catchments, the methods used are complex 

and as a result have limited practical application for urban stormwater models. For example, 

Renard et al. (2008) and Thyer et al (2009a; 2009b). applied the Bayesian Total Error Analysis 

methodology (BATEA proposed by Kuczera et al., 2006) to evaluate the uncertainties in 

hydrological models arising from model input, outputs and structural errors. The BATEA 

framework is based on hierarchical Bayesian models, in which each source of uncertainty is 

explicitly considered. The model input errors, structure errors and calibration errors are considered 

to be independent, and the error from one source should not be compensated by another one 

(Kuczera et al., 2006; Thyer et al., 2009b). For example, the uncertainty in the model inputs should 

not be compensated by re-calibrating the model and adjusting the parameters. Uncertainties are 

considered at their source and therefore different parameters should not compensate for each 

other. This methodology has significant advantages for estimation of predictive uncertainties when 

circumstances change. For example, changes in the availability of data (e.g. use of new 

measurement devices, installation of more rain gauges) can easily be implemented by adapting the 

specific error model without the requirement for a complete new calibration of the model (Renard 

et al., 2008). On the other side, the model can be changed, improved or extended without changing 

error models (Renard et al., 2008). This is attractive for urban drainage modelling because the 

systems are continuously changing with the changes in the urban infrastructure. In BATEA, error 

models are used to improve the model predictions. One of the disadvantages of this approach is 

the inclusion of a large number of extra parameters from the error models and there is a chance 

that the relationship between the number of parameters to be calibrated and the amount of 

measured data is such that it generates spurious results (Kleidorfer, 2010). In addition, validation of 

the estimated uncertainty is limited as BATEA is a probabilistic approach and the estimates are 

made in terms of predictive distributions. The approach seems very promising; however, its 

application is not straightforward, is computationally demanding and requires a significant level of 

expertise about model structures and probabilistic approaches, which might limit the range of users 

(Renard et al., 2008). Perhaps a less complex approach is required to assess urban drainage 

models.  
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2.5 Conclusions from the literature review 

There are a vast variety of modelling approaches to simulate stormwater processes in the urban 

drainage system. While rainfall runoff models are well established, water quality models are still 

being researched, as the existing ones are unable to adequately represent the pollutant processes in 

stormwater systems. Furthermore, there are a wide range of uncertainties which can impact the 

modelling results. For further improvement of urban drainage models, it is imperative that these 

uncertainties are acknowledged and evaluated.  

The key findings of this literature review are summarised as follows:  

1. a number of rainfall runoff and pollution generation models have been used to predict 

flows and pollutants from stormwater. Independently of the modelling approach, 

conceptualisation errors will always be present. This is even more evident for pollution 

generation models because the related processes are not yet fully understood. It is assumed 

that such errors lead to a large amount of uncertainty in these models; 

2. the uncertainties associated with urban drainage models have not been fully investigated. 

Therefore, there is a need to further explore this field of research. First, the sources of 

uncertainty in urban drainage models have to be understood, then their impact on the 

model’s predictions can be evaluated; 

3. model calibration parameters are likely to respond to all sources of uncertainty in the 

model; consequently, rigorous assessment of the uncertainty associated with model 

parameters is required, and robust methodologies should be used for this task; 

4. global sensitivity analysis methods have the advantage of performing uncertainty analysis 

while providing information about the most likely parameter sets to calibrate the model. 

However, there is no indication of the most suitable method to assess stormwater models. 

Therefore, the comparison of different methods to perform parameter calibration, model 

sensitivity and uncertainty analysis will identify the most suitable one for stormwater 

models; 

5. while a range of models have been applied worldwide to predict flows and pollution 

generation from stormwater, the assessment of the uncertainty associated with model 

structure has not been explored in any great detail. Furthermore, there is no standard 

method to evaluate this source of uncertainty. Different approaches are required to 

evaluate structural uncertainties, even if from a heuristic perspective. Testing models with 

different formulations (levels of complexity) through the application of a sound global 

sensitivity analysis method will provide information about the model structure (e.g. under 

or over parameterised, ability of representing (or not) different processes); 
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6. there are various assumptions made about global sensitivity analysis methods, and while 

these assumptions need to be verified, in practice it is common that such assumptions are 

not even checked. Research is required to determine the impact of verifying (or not) 

assumptions on the model sensitivity and predictive uncertainty. The comparison of 

scenarios in which the method assumption is verified and unverified will guide the 

approach to future applications; and, 

7. input and calibration data are plagued with uncertainties. As such, there is a need to 

understand the impacts of these uncertainties on the performance, sensitivity and 

predictive uncertainty of stormwater models. This will contribute to further understanding 

their consequences in the modelling exercise.  

2.6 Research aims and objectives 

As stated in Chapter 1, the overall aim of this thesis is to further understand the impact of different 

sources of uncertainties on urban drainage models. The underlying hypothesis is that the sources 

of uncertainty are linked and that the model parameters respond to all the different uncertainty 

sources.  

2.6.1 Specific aims and hypotheses 

The literature review found that significant knowledge and data gaps exist in order to better 

understand uncertainties in urban drainage models. The overall aim presented above will be 

accomplished by completing a number of more specific objectives and hypotheses as follows:  

(I) identify suitable method(s) to perform parameter calibration, model sensitivity and 

uncertainty analysis in stormwater models.  

• it is hypothesised that different uncertainty analysis methods lead to different results 

with respect to model parameter sensitivity and predictive uncertainty because they 

rely on different formulations (e.g. formal probabilistic or not) and assumptions (e.g. 

assumption about the model errors structure, such as the assumption that the residuals 

are independent and normally distributed). 

• it is hypothesised that there is a complex interaction between the complexity of the 

method used, computational time required and the knowledge/skill level of the 

modeller;  

• it is hypothesised that verifying the underlying assumption of the sensitivity and 

uncertainty analysis method will result in the most comprehensive understanding of 

the model’s uncertainty; 

(II) explore parameter calibration, model sensitivity and the resulting predictive 

uncertainties in models with different levels of complexity; 



 

 35   
 

• it is hypothesised that a well-posed and well-calibrated model (which has influential 

and identifiable parameters) will have a higher model efficiency. Providing inadequate 

calibration for a well-posed model may neglect important processes represented by the 

model; 

• it is hypothesised that the results from a sound model sensitivity analysis will indicate 

if the model is well or ‘ill-posed’, as the identifiability of parameters, the confidence in 

the model results and the existence of model structure and conceptual errors will be 

determined.  

• the assessment of the uncertainty originating from model parameters allows a 

comprehensive analysis of model structure and parameter interaction. Nevertheless, 

other sources of uncertainties (e.g. input measured data, model formulation and 

assumptions and selected objective function) should be investigated because they 

impact on the total uncertainties in the modelled results. 

(III) explore the impact of measured input and calibration data uncertainty on the 

performance, sensitivity and predictive uncertainty of stormwater quantity and quality 

models; 

• it is hypothesised that the model parameters can entirely compensate for the 

uncertainty in input and calibration data. As such, if the model parameters are 

considered initially as reflecting reality, then these uncertainties will reduce this 

representation; and, 

• it is hypothesised that systematic errors in measured data will have more impact on the 

model sensitivity and uncertainty than random errors because they are time-

dependent, and therefore they will be continuously propagated through the model. 

2.6.2 Methodology used to complete the aims 

In total, there are eight main chapters in this thesis, each contributing to one, or more, of the 

above listed aims.  

Figure 2.2 provides an overview of how the chapters of the thesis are organised to achieve the 

major aim described at the beginning of Section 2.6. Data collected from different urban 

catchments in Melbourne, Australia, were used to complete many of the above aims and 

hypotheses. Assessing model sensitivity and uncertainty analysis forms the major part of the overall 

thesis.  
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Figure 2.2 Flow chart describing the chapters of the thesis, the main roles they play in achieving 
the aim and how the papers fit in each of the chapters and objectives. 
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The information collated in the literature review will assist in the selection of different urban 

stormwater rainfall runoff and pollution generation models to be tested. Model calibration, 

sensitivity and uncertainty analyses will be conducted using an array of different methods. The 

most suitable one will be used to assess different models and sources of uncertainties.  

2.6.3 Thesis by publication 

This is a thesis by publication, and the results of this research are presented in the form of journal 

papers that are integrated within the chapters. Figure 2.2 shows how these journal papers are 

incorporated into the thesis and how they meet the key objectives.  

The search for suitable global sensitivity analysis method(s) to perform parameter calibration, 

model sensitivity and uncertainty analysis in stormwater models is presented in Chapter 4 in the 

form of two journal papers: (1) Comparison of different uncertainty techniques in urban stormwater quantity 

and quality modelling; and, (2) Analysis of parameter uncertainty of a flow and quality stormwater model.  

Next, parameter calibration, model sensitivity and predictive uncertainties (originating from 

parameter uncertainties), in models with different formulations, are extensively investigated in 

Chapter 5 through three journal papers: (3) Calibration and sensitivity analysis of urban drainage models: 

MUSIC rainfall/runoff module and a simple stormwater quality; (4) Stormwater quality models: performance and 

sensitivity analysis; and, (5) Performance and sensitivity analysis of stormwater models using a Bayesian approach 

and long-term high resolution data.  

This is followed by an evaluation of the main assumption of the sensitivity analysis method in 

Chapter 6. This is presented in one journal paper: (6) Uncertainty analysis in urban drainage modelling: 

should we break our back for normally distributed residuals? The last part of this research focuses on 

propagating measured data uncertainty through stormwater models and this is presented in 

Chapter 7 through the following journal paper: (7) Impacts of measured data uncertainty on urban 

stormwater models. Finally, the last chapter presents the main conclusions and summarises the main 

topics for further investigation (Chapter 8).  
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3.1 Introduction 

This chapter provides an overview of the dataset and stormwater models employed in this study. 

The data collection was conducted by two former Monash University PhD students, and the full 

details of the monitoring campaigns can be found in their thesis: McCarthy (2008) and Francey 

(2010). The key aspects of the monitoring are summarised in this section.  The models selection 

was done so that both water quantity and quality were included. The models were of different 

complexities and reliabilities to investigate impacts of model structure on the results.  

3.2 Overview of the monitoring sites 

The study sites used in this thesis were part of a large monitoring program which focused on the 

measurement of rainfall and flow data and on the collection of typical stormwater pollutants, such 

as Total Suspended Solids (TSS) and Total Nitrogen (TN) (Francey, 2010; Francey et al., 2010). 

Four out of the five sites also included a comprehensive data set on E. coli (McCarthy, 2008). The 

sites were selected to represent different characteristics of urban catchments, which included the 

coverage of: 

• different catchment sizes; 

• different levels of development (i.e. from high density developments to low density 

developments), which reflects the various levels of imperviousness; 

• different types of land-uses (i.e. industrial, commercial and residential land-uses); and,  

• relatively established catchments to ensure that construction or other development works 

were kept to a minimum during the sampling period. 

In addition, the security of the sampling point and the proximity of the sites to the research team 

were also taken into account when selecting the sites. According to these criteria, five study 

catchments in the inner suburbs of Melbourne, Australia were selected (McCarthy, 2008; Francey, 

2010). 

Table 3.1 shows a summary of the characteristics of the catchments. The total impervious fraction 

of the sites (TIF) ranges from 0.2 to to 0.8 and catchment areas ranges from just 10 to over 100 ha. 

The level of development of the catchments is also diverse. Figure 3.1 presents the aerial 

photographs of each catchment showing the relative positions of the centroid, rainfall gauge and 

flow gauges. All catchments are serviced by separate stormwater and wastewater systems, but some 

cross-connections between systems are expected. Narre Warren and Doncaster are the only sites 

that contain septic systems (tanks). 
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T
able 3.1  

 

Table 3.1 Summary of the characteristics of the catchments (McCarthy, 2008; Francey, 2010). 

Site Gilby Rd (GR) Richmond (RICH) Ruffeys Lake, Doncaster (RD) Shepherds Bush (SB) Narre Warren (NW) 

Primary Land Use Commercial High Density Residential Medium Density Residential Medium Density Residential Rural Residential 

Area (ha) 28.2 89.1 105.6 38 10.5 

TIF* 0.8 0.74 0.51 0.45 0.2 

Catchment Average slope (%) 1 3.5 5 4 4 

Time of concentration (min) 23 31 14 14 16 

* Total Impervious Fraction (TIF) 
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3.3 Overview of the monitoring programs 

0.2 mm tipping bucket rainfall gauges were used in all the sites and the bucket size volume was 

regularly calibrated. The gauges were installed in areas where they were not obstructed by trees or 

buildings, as close as possible to the catchment’s centroid, accessible by monitoring staff, and safe 

to leave unattended (Francey, 2010). Figure 3.1 shows the location of each of the rainfall gauges in 

relation to the catchments’ centroids.  

Rainfall loggers were installed next to each rainfall gauge and were programmed to count the 

number of tips which occur during each minute. Visual inspection of each of the loggers and 

rainfall gauges were made on each visit and if this inspection revealed any inconsistency then the 

loggers and rainfall gauges were re-calibrated and tested.  The rainfall intensities were then 

calculated taking into account the time passed between the recorded tips and the number of tips 

registered (see Chapter 3, Section 3.1.1 of McCarthy, 2008 for full details).                

Flows were measured with the American Sigma/HACH area-velocity 950 sensor (HACH, 2008) 

installed in the outlet pipes of each of the sites. Figure 3.1 shows the location of each of the flow 

meters on the aerial photographs of each site. The Sigma 950 uses a submerged area velocity 

sensor probe containing a pressure transducer to measure depth of flow in conjunction with 

ultrasonic transducers for velocity measurement. Subsequently the flow rates were calculated by the 

product between the wetted cross-sectional area and the velocity. Flow loggers were installed close 

to the flow meter and were programmed to measure the instantaneous average cross sectional 

velocity (m/s) and depth (m) of the stormwater and these readings were recorded at the end of 

every minute. Visual inspection of each of the loggers and flow gauges were made on most the 

fortnightly visits and if this inspection revealed any inconsistency (e.g. debris, etc.) then the loggers 

and flow gauges were re-calibrated and tested.     
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Gilby Rd (GR) Richmond (RICH) 

Ruffeys Lake, Doncaster (RD) Shepherds Bush (SB) 

 

Narre Warren (NW)  

 

Figure 3.1 Aerial photographs of each catchment showing the relative positions of the centroid, 
rainfall gauge and flow gauges (after McCarthy, 2008). 

The water quality samples were collected at the outlet of the catchments using a discrete sampling 

methodology. Non refrigerated autosamplers were used to withdraw samples from the stormwater 

using peristaltic pumps through reinforced suction tubes. The suction tubes were placed at a 

continuous gradient from the autosampler to the stormwater pipe, to avoid any ponding of water 
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within the tube. A flow-weighed sampling approach was used, which means that subsequent 

samples were taken after predetermined volumes passed through the pipe. In general, pollutant 

concentrations vary considerably during the ascending peak of the hydrograph and regularise 

during the descending peak (Leecaster et al., 2002). As such the trigger volumes were set to allow a 

representative coverage of the event with the sample intervals becoming larger as the event 

progresses (e.g. see Figure 3.2). 

 

 

Figure 3.2. Example hydrograph and sampling points for Richmond catchment (RICH) taken on 
14th of April 2005. 

An event was considered to be representative if four or more samples were collected. The starting 

point of an event was considered to be at 3 hours before the first sample and the end point after 3 

hours past from the last sample. In addition, the event was ended if rainfall or runoff did not occur 

for two hours or more.  

3.4 Overview of the data used in this study 

Most of the sites were monitored from January 2004 to December 2007. Rain and flow data, 

collected between 2004 and 2005, were used for model calibration (used in Chapters 4, 5, 6 and 7), 

while data collected from 2006 to 2007 was used for model validation (see Chapter 5). Table 3.2 

reports on the characteristics of events used for model calibration, and also on the events used for 

validation (these are presented in square parentheses).The validation of the water quality models 

was not performed as preliminary tests and previous studies (e.g. Kanso et al., 2006) confirmed the 

models’ very low performance even during calibration. As such, validation of these models would 

not make sense and therefore data is not presented.  
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Water quantity data: The mean annual rainfall in these catchments ranges from 370 to over 720 

millimetres per year. From the rainfall figures in Table 3.2, it is possible to note that the data used 

for validation reflects the severe draught that Melbourne went through during 2006 and 2007. The 

mean rainfall among all the catchments that was 661 mm for the data period used for calibration 

(and reflects the normal average rainfall in Melbourne) went down to 452 mm during the period of 

data used for validation. 

Figure 3.3 presents the flow duration curves for each catchment in mm/min (i.e. flow per 

catchment area) during the period used for calibration, 2004 and 2005 (on the left) and validation, 

2006 and 2007 (on the right). Again the effects of the severe draught are identified in the flow 

duration curves.  

 

 

Figure 3.3 Flow duration curves for each catchment (mm/min) - calibration (left) and validation 
(right) period. 

Although measures were taken to avoid measurement errors, uncertainty can only be minimised 

but not eliminated. Therefore, rainfall data used in this study was processed to cope with gaps and 

time drifts, which are inherent in any battery controlled logging device. Flow data was checked for 

any discrepancy (e.g. backflow effects indicated by negative velocities). As such, these ‘corrected’ or 

validated datasets are used for the subsequent chapters (see Chapter 3, Section 3.1.1 of McCarthy, 

2008 for full details).  
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T
able 3.2 

  

Site
Gilby Rd

(GR)

Richmond

(RICH)

Ruffeys Lake,

Doncaster (RD)

Shepherds 

Bush (SB)

Narre

Warren (NW)

Distance from catch centroid  to rain gauge (m) 100 600 700 550 250

Mean annual rainfall (mm/year) 723 [536] 650 [500] 650 [370] 580 700 [400]

Mean event maximum rainfall  intensity (mm/hr) 10 [7.5] 10 [8.4] 9 [7] 6 10 [8]

Range of event maximum rainfall intensity (mm/hr) 2 - 86 [2 - 36] 2 – 60 [2 - 44] 2 - 44 [2 – 28] 2 - 60 2.5 - 86.3 [2-32]

Mean event maximum runoff rate (L/s) 408 [50] 547  [212] 723 [165] 214 44 [20]

Range of event maximum flow rates (L/s)
75 – 2241 
[30 - 200]

67 -3867
[25 - 1430]

164 - 3069
[20 - 908]

29 – 1200
14 -90
[10 – 58]

N. of events - TSS 49 40 54 19 41

Maximum TSS concentration (mg/L) 867 1600 1422 1545 2398

TSS CV** (%) 151.46 164.05 183.12 153.54 182.87

Mean of TSS EMC’s*** (mg/L) 71.6 125.1 77.0 94.8 91.9

N. of events - TN 47 39 - 17 18

Maximum TN concentration  (mg/L) 9 26 - 15 19

TN CV** (%) 83.18 101.32 85.22 76.82

Mean of TN EMC’s*** (mg/L) 1.17 2.29 - 1.74 3.51

* Total impervious fraction (TIF)
**Coefficient of variation (CV)
*** Event Mean Concentration (EMC) 

Table 3.2 Summary of measured data details (McCarthy, 2008; Francey, 2010). The characteristics of events used for model calibration are 
presented while the characteristics of events used for validation are given in brackets [ ].
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A time series of areal potential evaporation (PET) was also required for this study. The values are 

based on the evaporation data from the Australian Bureau of Meteorology (BOM, 2012) and were 

used in a daily format (mm/day). However, the time series was obtained from a long-term average, 

in which the monthly values are constant through the year. Figure 3.4 shows the constant daily 

values for Melbourne; as expected a seasonal pattern was observed with higher PET during the 

summer.  

 

 

Figure 3.4 Melbourne daily PET (mm). 

Water quality data: Approximately 20 to 50 pollutographs are available for each site, each event 

containing between 5 and 30 discrete samples. At each site, a range of pollutants were available. 

For this study we used pollutographs of Total Nitrogen (TN) and mostly pollutographs of Total 

Suspended Solids (TSS) for all catchments, except for RD where only TSS samples were available. 

These two pollutants were selected as TSS represents pollutants that are associated with particles, 

while TN is mainly dissolved in water (Taylor, 2006). The variability of TSS and TN concentrations 

between sites was quite large as shown by their coefficient of variation (CV) in Table 3.2 and 

Figure 3.5. These large coefficient values also indicate the log nature of these pollutants. The mean 

Event Mean Concentration (EMC) for TSS ranged from 72 to 125 mg/L between sites, and for 

TN this was between 1.17 and 3.51 mg/L.  
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Figure 3.5 Probability of exceedence plots for TSS (left) and TN (right) concentrations measured 
during wet weather events at each site (mg/L).  

3.5 Models used in the study 

This research focuses on modelling flows and pollution generation from urban areas located in 

Melbourne, Australia. For such purpose, the selected models should be able to predict flow rate 

(rainfall-runoff models) and TSS and TN concentrations (quality models) during wet weather 

events.  

Stormwater models with different levels of complexity were used in order to evaluate their 

performance and applicability to different domains. Flows and stormwater quality were simulated 

separately with distinct models. After a thorough literature review (see Chapter 2), two conceptual 

models MUSIC (eWater CRC, 2012) and KAREN (Rauch and Kinzel, 2007) were selected for 

runoff modelling, while a process-based build-up/wash-off model (Sartor and Boyd, 1972) and a 

few empirical regression models (as used in SWMM - USEPA, 2007) were compared in terms of 

stormwater pollutant modelling. The following subsections summarise the rationale behind this 

selection and present the description of the selected models.  

3.5.1 Rainfall runoff models 

The choice of conceptual models over simple empirical or complex process based ones was 

founded on the advantages and disadvantages presented in Section 2.2.2. For example, empirical 

models are not suitable for daily and smaller timesteps, which is the focus of this research. In 

addition, no information on the catchment’s hydrologic response is obtained. On the other hand, 

complex process based models require a large number of inputs and parameters that are not usually 

available in practice. Conceptual models describe the main processes in the catchment, providing 

not only reasonable runoff generation, but also information on the catchment’s imperviousness 

and hydrological behaviour (e.g. flow regimes).  
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MUSIC 

The algorithm in MUSIC – Model for Urban Stormwater Improvement (eWater CRC, 2012) is 

based on the originally daily urban SimHyd model developed by Chiew and McMahon (1999), 

which was initially developed for large natural catchments. This SimHyd model was modified to 

enable disaggregation of daily runoff into sub-daily temporal patterns. The model is a simplified 

description of the rainfall runoff processes in urban catchments and involves the concepts of the 

impervious area and soil moisture storage. For given rainfall and evapotranspiration time series, 

MUSIC continuously simulates catchment discharges. MUSIC was designed to operate at a range 

of temporal and spatial scales, suitable for catchment areas from 0.01 to over 100 km2. The model 

operates at timesteps from 6 minutes to 24 hours to match the spatial scale of the catchment being 

modelled. Previous studies suggested that MUSIC is among the models suitable and recommended 

for prediction of flow rates from small catchments and also for conceptual or preliminary design at 

either a subdivision or catchment scale (McAlister et al., 2006; Elliott and Trowsdale, 2007). Flows 

from impervious and pervious areas are modelled separately (see Figure 3.6). The model 

components, as well as the main relationships, are explained in the following subsections.  

The parameters involved in each of the modelled processes are summarised in Table 3.3 and a full 

description of the model is available in the MUSIC manual (eWater CRC, 2012). In addition to 

abbreviations and units, the table refers to the description of each parameter and also reports the 

default values. Default values were initially obtained based on results from manual calibration of 

the model with few catchments along the southeast of Australia (e.g. Chiew and McMahon, 1999; 

eWater CRC, 2012). In Melbourne, for example, MUSIC was calibrated for one single catchment. 

Table 3.3 also suggests ranges of values that are based on the manual and also on more recent 

studies that reported MUSIC parameters for different regions (Brisbane City Council, 2006; Gold 

Coast City Council, 2006; Macleod, 2008).  

 

 

Figure 3.6 Schematic of MUSIC rainfall runoff model and its parameters (after CRCCH, 2005). 



 

63 

Impervious area component. The impervious area runoff is primarily a function of the 

proportion of catchment imperviousness with initial loss playing a small part. The effective 

impervious fraction �����, which corresponds to the areas that are directly connected to the 
drainage system, is a calibration parameter. Surface runoff from impervious areas occurs after the 

rainfall in the catchment exceeds the runoff threshold ����	
� parameter, which defines the 

minimum daily rainfall before surface runoff occurs from the impervious area according to 

Equation 3.1: 

 

 ��� � ����0, ���� � ���	
�  Equation 3.1 

 

where ��� is the surface runoff rate from impervious areas (mm); ���� is the rainfall incident on 
the catchment (mm) and,  ���	
 is the initial loss parameter (mm/day).  

Pervious area component. The pervious area represents the fraction of the catchment in which 

infiltration occurs. The infiltration rate ����� is defined as an exponential function of the soil 
moisture storage. Runoff from the pervious areas occurs when the pervious soil storage is either 

saturated ������� or its infiltration rate ����� is exceeded �������. The pervious area runoff 
related parameters are mainly described by: (1) soil storage capacities, the maximum soil storage 

������ and the initial storage level ������, in which the second is expressed as a percentage of 
the first, and (2) infiltration factors (��	�� and 
 ). Water from the soil storage is lost due to 

actual evapotranspiration ����, which is a function of the current day’s potential 

evapotranspiration �!��� and the ratio between the water currently in the pervious store and its 
capacity ��/�����. Equations 3.2 to 3.5 describe the processes in the pervious area:  
 

 ��� � ������	��,  	#$%&'()*�(+,- ., ����� Equation 3.2 

 

 ����� � �������� � ����, 0� Equation 3.3 

 

 ����� � ���� � ��� Equation 3.4 

 

 �� � ��� /10�������� , !��1 Equation 3.5 
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where ��� is the pervious soil storage infiltration rate (mm); ��	�� and 
  are the infiltration 
capacity coefficient and exponent, respectively; ���� is the initial storage level (mm); ���� is the 
maximum storage capacity of the pervious area store (mm); Rain is the rainfall incident on the 

catchment (mm); ���� is the saturation excess (mm); ����� is the infiltration excess (mm); �� is 
the water lost to atmosphere by evaporation (mm); and, !�� is the current daily 

evapotranspiration (mm/day).  

Baseflow component. Groundwater is modelled as a store that is recharged when the level in the 

pervious soil storage exceeds the field capacity ����. The rate of this recharge is a percentage of 
the water in the store, which is the calibration parameter ����. This store is emptied via baseflow, 

which is modelled as a percentage of the water within the store, the model parameter ����. The 
rate of this recharge is a percentage of the water in the store, which is the calibration parameter 

����. In similar way, deep seepage is set as a percentage of the groundwater store, which is the 

model parameter 2
		3. Equations 3.6 to 3.8 represent these groundwater processes. Baseflow 
becomes part of the catchment outflow, deep seepage, on the other hand, is permanently lost from 

the catchment.  

 

 4� � ����0, ���� ' �� � ���� Equation 3.6 

 

 5�
�6 � 7��� ' 89 Equation 3.7 

 

 �		3 � 2
		3 ' 89 Equation 3.8 

 

where 4� is the groundwater recharge; �� is the field capacity (mm); ���� is the daily groundwater 
daily recharge from the soil store (expressed as a percentage of the volume above the �� in the 
store); 5�
�6 is the baseflow (mm); 89 is the volume of the groundwater store at the start of the 

simulation (mm); 7��� is the daily baseflow rate (expressed as a percentage of the initial 
groundwater storage 89); �		3 is the deep seepage; and, 2
		3 is the daily deep seepage rate (also 
expressed as a percentage of the initial groundwater volume 89).  
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T
able 3.3 Table 3.3 MUSIC rainfall runoff model - Summary of model parameters. 

Component Parameter name Description Unit 
Default 
value 

Comments** 

Impervious Area 

Effective impervious 
fraction (EIF) 

Fraction of areas that are directly connected to the drainage 
system 

% - - 

Rainfall threshold (Thres) Minimum daily rainfall before surface runoff occurs from the 
impervious 

mm 1.0 Values from 0 to 5 

Pervious  
Area 

Soil storage capacity (SMax) Maximum soil storage mm 30* Values from 30 to 500 

Initial storage (SIni) Initial storage level as a percentage of the Soil storage capacity % 30 Values from 0 to 50 

Field capacity (fc) 
When the level in the pervious soil store exceeds the field 
capacity, groundwater store starts being recharged 

mm 20* Values from 10 to 200 

Infiltration capacity 
coefficient (coeff) 

Maximum infiltration loss  200 Values from 0 to 400 

Infiltration capacity 
exponent (sq) 

Infiltration loss exponent - 1 Values from 0 to 7 

Groundwater 

Daily recharge rate (rfac) 
Rate of groundwater recharge as percentage of the water in the 
store 

% 25% - 

Daily baseflow rate (bfac) 
Rate that the groundwater empties via baseflow as a percentage of 
the groundwater store % 5% - 

Groundwater initial storage 
(gw) Volume of the groundwater store at the start of the simulation mm 10 Values from 0 to 100 

Daily deep seepage rate 
(dseep) Deep seepage rate as a percentage of the groundwater store % 0 - 

Muskingum Cunge 
Translation and factor (K) 

Related to the travel time for the flood wave through the channel 
reach in minutes min 30 

Values larger than 1/3 of the 
chosen timestep 

Attenuations factor (θ) Dimensionless flow weighting factor; lower the value, lager the 
attenuation 

- 0.25 Values from 0.1 to 0.3  

*MUSIC default values for Melbourne 
**Compiled values from Brisbane City Council (2006), Gold Coast City Council (2006), Macleod (2008) and eWater (2012) 
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Routing routine. The Muskingum Cunge routing method (Cunge, 1969) is applied for the routing 

of flows through the drainage system. The method is based on the continuity of mass equation 

within a channel reach. The basic equations are presented in this subsection and complete 

discussion of the method can be found in Cunge (1969) and Bedient and Huber (1992). Given the 

inflow into the channel reach and the outflow from the channel reach, the variation of the  volume 

of water in storage within the channel reach (as illustrated in Figure 3.7) is expressed as:  

 

    �     �   

  
 Equation 3.9 

 

where ��* is the inflow into the channel reach; �:;< is the outflow from the channel reach; � is the 
volume of water in storage within the channel reach; and,� is the time.  

The total volume of water in the storage within the channel reach can be expressed as a function of 

the flow rates entering and leaving the reach:  

 

 �:;< � � � =>��*
1 � >  Equation 3.10 

where = is approximately equal to the travel time for the flood wave through the channel reach in 

minutes. It is recommended that = should not assume values less than one third of the chosen 

timestep. > is a dimensionless weighting factor that has a value between 0 and 0.5, and is generally 

between 0.1 and 0.3 for natural channels. When > is zero, the volume of water in storage is purely 

a function of the outflow. A value of 0.5 produces no attenuation and the flood wave is purely 

translated by a time value equals to =. MUSIC assumes that the values of = and > remain constant 

within a reach throughout the simulation and are considered as model calibration parameters 

(Table 3.3).  

 

 

Figure 3.7 Schematic of storages in a channel reach (after CRCCH, 2005). 
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KAREN 

KAREN is a simple linear reservoir model (Rauch and Kinzel, 2007). For a given rainfall time 

series, the model generates a series of flows originating from impervious areas only. The pervious 

components of the catchments are not considered. The main relationships are explained in this 

section. Table 3.4 presents a summary of the parameters included in the model. For a full 

description of the model, see the manual (Rauch and Kinzel, 2007). In addition, Table 3.4 presents 

a description of each parameter. Whenever available, the table reports the default values of 

parameters (according to the manual - Rauch and Kinzel, 2007). A schematic presentation of the 

rainfall runoff model implemented in KAREN is given in Figure 3.8.  

 

 

Figure 3.8 Schematic of KAREN rainfall runoff model and its parameters(Kleidorfer et al., 2009). 

The model is similar to that found in MUSIC but neglects all processes/parameters relating to 

runoff from pervious areas. Again, the effective impervious area of the catchment is an important 

parameter ����� to be calibrated. Runoff from impervious areas is generated depending on 

whether a certain rainfall threshold has been exceeded. Such threshold is represented by the initial 

loss parameter �6�� and it is modelled as a single reservoir. Furthermore, here the initial loss is not a 

minimum daily rainfall sum but a total (time-independent) value, which fills during rainfall and 

drains during dry weather periods depending on a permanent loss, which is the evaporation 

calibration parameter �	?� . The effective rainfall is calculated as the difference between the 
measured rainfall and an initial loss:  

 

 �@ � � �  6�  Equation 3.11 

 

where �@ is the effective rainfall intensity (mm); � is the measured rainfall intensity (mm); and, 6� 
is the initial loss parameter (mm).  

The initial loss is drained during dry weather periods, in each timestep t depending on a permanent 

loss:  
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 6�< � 6�<$A � 	?  Equation 3.12 

 

where 6�< is the initial loss at the timestep t; 6�<$A is the initial loss at the previous timestep; and, 	? 
is a permanent loss through evaporation (mm/day).  

Surface runoff concentration is calculated using the linear time-area method, which is similar to the 

unit hydrograph method (Sherman, 1932). At the beginning of a rainfall event, the effective 

impervious area ����� is increased according to the flow time on the catchment surface until the 

whole catchment contributes to runoff after the time of concentration, which is a calibration 

parameter ��BC�. The runoff is calculated as: 
 

 �* � D �@,
*E+

FA
 G*$HA 10$I Equation 3.13 

 

where �* is the runoff (m3/s), � is the index of the runoff; � is the effective rainfall intensity 
(mm/s); � is the index of the rainfall; and, G is the current effective impervious area (m2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

69 

T
able 3.4    

Table 3.4 KAREN rainfall runoff model - Summary of model parameters. 
Component Parameter name Description Unit Default value 

Impervious Area 

Effective impervious fraction (EIF) 
Fraction of areas that are directly connected to the 
drainage system 

% - 

Concentration time (TOC) 
Related to the time that the whole catchment 
contributes to runoff 

Min - 

Initial loss (li) 
Minimum rainfall before surface runoff occurs from 
the impervious  

mm 1 

Evapotranspiration (ev) Permanent loss during dry weather  mm/day 1.5 
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3.5.2 Water quality models 

Contrary to the water quantity models, reliable stormwater pollution generation models are almost 

non-existent (Elliott and Trowsdale, 2007). Understanding the processes within pollution 

generation is very important for the development of better modelling approaches. In general, these 

processes are very complex and are influenced by a variety of factors, such as: rainfall, runoff, 

climatic, land use and surface characteristics (Deletic and Maksimovic, 1998; Vaze and Chiew, 

2002; Egodawatta et al., 2007; McCarthy et al., 2011). This complex nature of pollutant 

accumulation and wash-off, together with high temporal and spatial variations, generates technical 

difficulties in the development of accurate and reliable models of pollutant processes. Few 

approaches are available for reproducing the catchment’s response in terms of pollutants (e.g. 

Sartor and Boyd, 1972; Vaze and Chiew, 2003).  

The approaches vary among the popular modelling packages (Elliott and Trowsdale, 2007). For 

example, MOUSE (DHI, 2002c; 2004) and SLAMM (Pitt, 1998) use the build-up/wash-off 

method (based on work of Sartor and Boyd, 1972). Empirical power rating curves for 

concentration as function of rainfall intensity and flow rate are also included in some of the models 

(e.g. SWMM -USEPA, 2007). However, they are difficult to calibrate and validate as they seem 

unable to accurately reproduce the pollutant’s behaviour in the systems (Beck, 1987; Kanso et al., 

2006; Egodawatta et al., 2007). MUSIC (eWater CRC, 2012), SLAMM (Pitt, 1998) and XP-SWMM 

(WP Software, 1995) come with a stochastic component, which has been widely used. This poses a 

challenge for calibration as the models always generate different values. Simple statistical models, 

such as investigated by Blasone et al. (2008) and Lee and Heaney (2003) cannot be used outside 

catchments for which they are developed. To advance these models it is important to understand 

the sources of their uncertainties. It has been recognised that one of the main problems in the 

establishment of water quality models is the high level of uncertainty in their calibrated parameters 

(Fletcher et al., 2004; Francey et al., 2010). 

A process-based build-up/wash-off model and a few empirical regression models were compared. 

Although poor performance of these models is expected, they are commonly used in practice 

(Palmstrom and Walker, 1990; XP-SOFTWARE, 1999; USEPA, 2007), and were assessed in terms 

of parameter calibration and model sensitivity analysis in order to (i) guide future development of 

such models and indicate the data required to support their development and application, and (ii) 

test the applicability of different sensitivity analysis methods to ‘ill-posed’ models. 

Build-up/wash-off model 

The generation of pollutants in the runoff from an impervious surface is often described and 

modelled using the concepts of build-up and wash-off. The attempt to model these both processes 

was proposed by Sartor and Boyd (1972) and is summarized in Sartor et al. (1974). It has been 

tested (Deletic et al., 2000; Shaw et al., 2010) and derivations have been adopted in several 
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stormwater softwares, such as SWMM (USEPA, 2007) and the US Army Corps’s STORM model 

(XP-SOFTWARE, 1977). A modified version, of the one originally proposed by Sartor and Boyd 

(1972), was tested. The build-up of pollutants during dry weather periods is calculated as  

 

 JKLMN � KO:    ���Q� �    �R  · �1 � 	$ TUVAWWR<X� Equation 3.14 

 

where � is the amount of pollutant on the surface (in g/m² in Chapters 4 and 5 and kg in Chapter 

8) and �Q is the dry period in, here being the 6 minutes timestep. Again, this equation has two 

calibration parameters: �R, which is the maximum amount of solids expected at the surface (in 

g/m² in Chapters 4 and 5 and kg in Chapter 7) and YA that represents an accumulation constant 

(day-1).  

Two versions of the wash of model were used. The first represented by the Equation 3.15: 

 

 Z[\] � ^__: C��� �    Y` · ���� · ����Ua · G Equation 3.15 

 

where Cb is the concentration in runoff (mg/L), I is the rainfall intensity (mm/hr), and, A is the 

impervious area (m²). The calibration parameters are Y`, the wash-off coefficient and YI, which is 
the wash-off exponent. In total, there are four calibration parameters (summarised in Table 3.5). 

Another modified wash-off model, which includes a transport component was also tested. It 

calculates the amount of pollutants washed from the surface and the concentration of pollutants in 

the runoff within a timestep as a power function of the catchment’s runoff (runoff rate and 

volume): 

 

 
Z[\]� ^__: C��� �    Y` · ���Q� ·  

�C �� � ��Ua 

                          c��� � 10$T d C��� d e�6��� 

Equation 3.16 

Equation 3.17 

where C is the concentration of pollutants (mg/L);   is the modelled runoff (mm/hr) and �C is 
the catchment runoff coefficient, here assumed as the effective impervious fraction of the 

catchment obtained from the rainfall runoff model, ���). RC was included to represent wash-off 
only from impervious surfaces, which is a safe assumption because the majority of runoff from 

urban catchments originates from impervious surfaces (Chiew and McMahon, 1999). Modelling 

water quality with modelled   values is widely used in practice where measured data are scarce or 
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not available. If instead of  , rainfall intensities were used, the model would have to include a 

routing algorithm (e.g. linear reservoir routing method) which means an additional equation and at 

least one extra parameter to attenuate the rainfall. In addition, the uncertainty in the model would 

increase due to the errors in extra input data (rainfall records).  And finally the use of modelled   
and e�6 accounts for the changes in the time of concentration existing between different events 

(Vezzaro et al., in press). As in the original approach, two calibration parameters are involved in 

the wash-off process: k2 as the washoff coefficient, and k3 which is the washoff exponent. In 

addition, a transport related parameter ��� was added into the model to represent the small lag 

time which is often noted between the hydrographs and the pollutographs (Vaze and Chiew, 2003). 

The runoff is translated by a number of timesteps in min. The amount of pollutants washed from 

the surface (  in kg) is then calculated in function of the predicted concentration and the runoff 

volume (Vol in L). Table 3.5 presents a summary of the parameters included in the model.  
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T
able 3.5 Table 3.5 Build-up/wash-off model versions 1 and 2- Summary of model parameters. 

Component Parameter name Interpretation Unit    Comments 

Build-up 

Maximum amount of 
pollutant ) 

Maximum amount of pollutant on 
the surface before a rain event 

g/m² (Version 1) 
kg (Version2) 

• Values from 3 and 18 g/m² for suspended solids in urban stormwater 
(Sriananthakumar and Codner, 1992; Tomanovic and Maksimovic, 1996; 
Hossain et al., 2010) 

• Values from 200 to 560 kg for suspended solids and from 2.6 to 3.5 kg 
for TN in stormwater alley (Alley and Smith, 1981) 

 

Accumulation 
constant (k1) 

Accumulation rate of pollutant 
during dry weather period 

day-1 

• Values of 0.098 and 0.38 for suspended solids in combined sewers 
(Kanso et al., 2003) 

• Values from 0.015 to 0.2 for sediments in stormwater (Alley and Smith, 
1981; Sriananthakumar and Codner, 1992; Tomanovic and Maksimovic, 
1996) 

•  Values of 0.05 and 0.08 for TN in stormwater (Sriananthakumar and 
Codner, 1992) 

 

Wash-off 

Wash-off coefficient 
(k2) 

Related to the sources of pollutants 
in the catchment - 

• Values of 0.049 and 0.073 for concentration of suspended solids in 
combined sewers (Kanso et al., 2003) 

• Values from 0.002 to 0.2 for loads of suspended solids (from impervious 
surfaces) in urban stormwater (Hossain et al., 2010)  

 

Wash-off exponent 
(k3) 

Related to the kinetic energy of the 
rainfall in detaching pollutant from 
the surface or to the shear stress 
generated by flow 

- 

• Values of 1.3 and 1.2 for concentration of suspended solids in combined 
sewers (Kanso et al., 2003) 

• Values from 0.3 to 0.7 for loads of suspended solids (from impervious 
surfaces) in urban stormwater (Hossain et al., 2010) 

• Value of approximately 0.29 for sediments in stormwater. (McCarthy et 
al., 2011) 

 

Translation factor 
 

Represents the lag between the 
hydrographs and the pollutographs 

min x number of 
timesteps 

         - 
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Regression models 

The simple regression models adopted in this study estimate concentrations within a timestep as a 

power function of either the catchment’s runoff or rainfall intensity. Derivations of this regression 

models are used in practice in several stormwater models, such as XP-AQUALM (XP-

SOFTWARE, 1999), SWMM (USEPA, 2007) and P8-UCM (Palmstrom and Walker, 1990). Three 

different equations were tested:  

 

 C��� � �  ����k  Equation 3.18 

 

 C��� � �  ����l:;<@Qk    Equation 3.19 

 

 C��� � �   ���k  Equation 3.20 

 

where C is the pollutant concentration (mg/L) at time t. � is the rainfall intensities (mm/hr). The 

calibration parameters are � and 7. In which � relates the amount of pollutants on the surface of 

the catchment and 7 relates to the kinetic energy of the rainfall in detaching pollutant from the 

surface (Equation 3.18 and Equation 3.19) or to the shear stress generated by flow (Equation 3.20). 

Because the build-up is not considered, these wash-off curves assume that the amount of available 

material in the catchment before every event is constant.  �l:;<@Q  is the routed rainfall intensities 
(mm/hr). The intensities were translated and attenuated with the Muskingum Cunge routing 

method described in the Section 3.5.1.   is the measured or modelled runoff (mm/hr), for which 

= and > parameters have to be calibrated. Table 3.6 presents a summary of the model parameters.  
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T
able 3.6 

Table 3.6 Regression models - Summary of model parameters. 
Parameter name Description Unit Comments 

Water quality scale 
coefficient  ( ) 

Related to the sources of pollutants in the catchment -  

Water quality shape 
coefficient  ( ) 

Related to the kinetic energy of the rainfall in detaching 
pollutant from the surface or to the shear stress generated by 
flow 

- 
Value of approximately 0.29 for sediments in stormwater. 
(McCarthy et al., 2011) 
 

Translation and factor (K) Related to the translation of the pollutograph through the 
channel reach 

min - 

Attenuations factor (θ) 
Related to the attenuation of the pollutograph through the 
channel reach 

- - 
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As described in this section, the models were arranged to predict pollutant concentrations from 

urban catchments. In the literature, however, the models have been often calibrated for pollutant 

loads (e.g. Vaze and Chiew, 2003; Francey, 2010). Very little is available for concentrations, mainly 

in separate sewer systems.  

3.6 Chapter summary 

This chapter focused on presenting the data and models used for this research. Five study 

catchments, located in Melbourne Australia, were used to represent the different land-uses 

(industrial/commercial and residential), catchment areas (from 10 to 100 ha) and levels of 

development/imperviousness (total impervious fraction varying from 0.2 to 0.8). Data on rainfall, 

runoff flows and concentrations of TSS and TN recorded from 2004 to 2007 were used for this 

research.  

Two rainfall runoff models were selected for the study. MUSIC was chosen mainly due to its 

widespread application in Australia and KAREN was adopted due to its simpler design. Both 

MUSIC and KAREN are used to estimate the runoff generated from urban areas continuously and 

require a series of rainfall and the catchment area as the main inputs. The difference in the number 

of calibration parameters and the processes that are simulated in each of the models exemplify the 

difference in their complexity. MUSIC presents thirteen parameters to be calibrated, while 

KAREN presents only four. MUSIC estimates flows from impervious and pervious areas 

separately as a series of reservoirs, while KAREN predicts the runoff only from impervious areas 

using a single reservoir model. The evaluation of such models will define their applicability to 

different domains.  

Two conceptual process-based build-up/wash-off models and three empirical regression models to 

quantify stormwater pollutant concentrations were described. They were chosen for this study 

because they are usually adopted in the most used stormwater modelling packages. The process-

based models account for both build-up and wash-off processes, while the regressions estimate 

only wash-off. Evaluation of these models will help to guide their future improvement and indicate 

the data required to support new model development and application. The described models will 

be used through the thesis for a variety of tasks.  
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4.1 Introduction 

As the literature review demonstrated (see Sections 2.3 and 2.4), different methods have been 

applied for parameter calibration, model sensitivity and uncertainty analysis in stormwater 

management practice and related fields (e.g. environmental and hydrological modelling). Although, 

some of these approaches have been used in assessment of urban drainage models, the application 

and comparison among methods have not been systematically investigated. Therefore, the first aim 

of this research was to identify suitable global uncertainty analysis method(s) to perform 

parameter calibration, model sensitivity and uncertainty analysis in stormwater models.  

The objectives were to address the following key research questions and hypotheses: 

• Given that all global uncertainty analysis methods have advantages and limitations, which 

methods generate more comprehensive results with respect to model calibration and 

predictive uncertainty (e.g. results from more formal mathematical based methods or more 

information about parameter interaction)? 

o Different uncertainty methods lead to different results with respect to model 

parameter sensitivity and predictive uncertainty because they rely on different 

formulations (e.g. formal probabilistic or not) and assumptions (e.g. assumption 

about the model errors structure, such as the assumption that the residuals are 

independent and normally distributed). 

• What are the main requirements of different methods in terms of computational resources 

and modeller skill/knowledge level?  

o There is a complex interaction between the complexity of the method used, the 

computational time required and the knowledge/skill level of the modeller. 

The aims, methods and results of this assessment have been published as two separate journal 

papers. In order to address the knowledge gap that the application and comparison among 

uncertainty methods have not been systematically investigated in the urban drainage field, an 

international research project commenced in 2008 to address this gap. The main objective was to 

compare different methods often used for uncertainty assessment of the parameters in urban water 

related fields. The project was led by the candidate who coordinated work of research teams from 

Australia, Italy, Austria, Denmark and Germany. The project went for two years and the results, 

Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling, are now 

published in Water Research. This paper is the body of text of Section 4.2.  Subsequently, a 

preliminary application of the uncertainty method (a Bayesian approach) for stormwater flow and 

quality modelling is provided. This work, Analysis of parameter uncertainty of a flow and quality stormwater 

model, was first presented at the 11th International Conference on Urban Drainage, held in Edinburgh, 
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Scotland in 2008 and it was subsequently selected for publication in Water Science and Technology. 

This paper was published in 2009 (cited 14 up-to-date) and it is included in Section 4.2.  
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4.2 Comparison of different uncertainty techniques in urban stormwater 
quantity and quality modelling 
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4.3 Preliminary application of uncertainty method for stormwater flow and 
quality modelling  

4.3.1 Errata 

It should be noted that Figure 6 in Section 4.3.2 is not completely accurate. It presents an incorrect 

positive value for one of the Nash and Sutcliffe coefficients (E) in the vertical y axis of the 

validation figure (on the right) when 6 months were used for model calibration. The correct value 

is -1.48, instead of the erroneous +1.48 as presented in the figure. The correct figure is presented 

below. 

 

 

Figure 4.1 Figure 6. The effect of different length of data period on calibration and validation. 
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4.3.2 Analysis of parameter uncertainty of a flow and quality stormwater model 
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4.4 Conclusions 

This chapter presented two studies which demonstrated the application and comparison of 

different methods for the calibration, sensitivity and uncertainty analysis of stormwater quantity 

and quality models.  

Firstly, four different sensitivity analysis techniques (GLUE, SCEM-UA, AMALGAM and MICA) 

were compared in terms of model performance, predictive uncertainty results and computational 

time among other criteria. They were used to evaluate a simple conceptual model rainfall runoff 

model with four calibration parameters and a simple regression pollution generation approach (two 

calibration parameters).  The four different uncertainty analysis methods generated similar posterior 

parameter distributions and predictive uncertainty. The influential parameters were likewise 

identified and valuable information on parameter interactions was derived. The four methods also 

highlighted the limitations of the ‘ill-posed’ water quality model (low maximum efficiency, low 

coverage of observations, and high parameter interaction), highlighting the importance of 

understanding structural uncertainties. Search algorithms, such as AMALGAM and SCEM-

UA, were the most efficient methods in terms of computational requirements.  

It can be concluded that the identification of the most appropriate method for uncertainty 

estimation is a trade-off between the need for a strong theory-based description of uncertainty (but 

limited by the requirements on prior knowledge - Bayesian approach, MICA), simplicity (but 

limited by the subjectivity - GLUE) and computational efficiency (also affected by subjectivity - 

AMALGAM and SCEM-UA). It is also suggested that different evaluation scenarios should be 

analysed (i.e. different catchments, models, data, etc). In addition, modellers should select the 

method which is most suitable for the system they are modelling (e.g. complexity of the model’s 

structure including the number of parameters), their skill/knowledge level, the available 

information, and the purpose of their study. 

Subsequently, the application of MICA to a rainfall runoff model (with 13 parameters) and a water 

quality model verified the potential of the method to assess urban drainage models in urban 

catchments of different sizes and land-use types (one highly urbanised and flat and the other 

mostly pervious and very steep). MICA was able to calibrate rainfall runoff the models, while 

identifying their sensitivity to each of their parameters and producing reasonable predictive 

uncertainty bands. It can be concluded that the method can be recommended to explore parameter 

calibration, model sensitivity and predictive uncertainties in stormwater models. 
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5.1 Introduction 

As the literature review (see Section 2.2) demonstrated, a number of conceptual models have been 

used to predict stormwater discharges from urban environments. While the rainfall runoff models 

are well established, water quality models are far less developed. The performance of different 

urban stormwater model structures (mainly in sub-daily timesteps) has not been sufficiently 

investigated. In addition, the assessment of the models’ structures and their associated predictive 

uncertainty are yet to be fully explored. Therefore, the main aim of this research was to explore 

parameter calibration, model sensitivity and the resulting predictive uncertainties in 

models with different levels of complexity by applying the methods to the same case-study.  

This chapter focuses on addressing the following key research questions and hypotheses: 

• What are the key calibration parameters that govern the urban rainfall runoff and water 

quality models, and do they depend on the model structure? 

o A well-posed and well-calibrated model (which has influential and identifiable 

parameters, see Carrera and Neuman, 1986 for extended definitions) will have a 

higher model efficiency. Providing inadequate calibration for a well-posed model 

may neglect important processes represented by the model; and, 

o a well-posed and well-calibrated model will be sensitive to all calibration 

parameters. 

• Do the physical parameters used in stormwater models require calibration (or can they be 

reliably determined via specific in situ measurements)? 

o While some parameters are purely conceptual (non-physical, Kuczera et al., 2006), 

some parameters are intrinsically related to the physical factors, thus they should 

be measured whenever possible (e.g. soil property related parameters).  

• Can we use model parameter sensitivity and its associated predictive uncertainties to 

understand the appropriateness of the model structure for the given application? 

o Results from a sound model sensitivity analysis will inform if the model is well or 

‘ill-posed’, as the identifiability of parameters, the confidence in the model results 

and the existence of model structure and conceptual errors will be determined.  

• What is the model predictive uncertainty originated only from parameter uncertainty 

(without taking into account other sources of uncertainties such as measurement errors in 

input and calibration data), and how does this uncertainty compare to the total 

uncertainties in the predicted results? 

o The assessment of the uncertainty originating from model parameters allows a 

comprehensive analysis of model structure and parameter interaction. 
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Nevertheless, other sources of uncertainties (e.g. input measured data, model 

formulation and assumptions and selected objective function) should be 

investigated because they impact on the total uncertainties in the modelled results. 

The work has been published in three separate journal papers. The first paper presents results from 

calibration and sensitivity analysis of MUSIC and a simple regression water quality model, both 

presented in Chapter 3. This paper was presented at the 6th International Conference on Water Sensitive 

Urban Design and Hydropolis held in Perth, Australia, in 2009, and was subsequently selected for 

publication in the Australian Journal of Water Resources. The peer reviewed version, Calibration and 

sensitivity analysis of stormwater models, published in 2011 is included in Section 5.2. The second paper 

was initially also a conference paper. It was presented at 8th International Conference on Urban Drainage 

Modelling jointly with the 2nd International Conference on Rainwater Harvesting and Management held in 

Tokyo, Japan, in 2010. The work explored interactions between parameter sensitivity and model 

structure uncertainties in three water quality models. It was recommended for publication in Water 

Science and Technology and after revision and updates, the paper, Stormwater quality models: performance 

and sensitivity analysis, was published in this journal in 2010. This paper forms the body of text of 

Section 5.3. The third paper, Performance and sensitivity analysis of stormwater models using a Bayesian 

approach and long-term high resolution data, was published in Environmental Modelling and Software in 2011 

as included in Section 5.4. This comprehensive paper compared parameter sensitivity of the 

selected rainfall runoff models (more complex MUSIC and simple KAREN) and water quality 

models (build-up/wash-off and simple regressions) and also explores the predictive uncertainty 

associated with the rainfall runoff models.  
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5.2 Parameter sensitivity analysis of stormwater models 
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5.3 Stormwater quality models: performance and sensitivity analysis 
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5.4 Performance and sensitivity analysis of stormwater models using a 
Bayesian approach and long-term high resolution data 
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5.5 Conclusions 

This chapter presented three studies that explored parameter calibration, model sensitivity and the 

resulting predictive uncertainties in urban rainfall runoff and pollution generation models with 

different level of complexities. 

It was found that the effective impervious fraction is the most important parameter in runoff 

prediction. This was followed by the parameters related to the time of concentration. Therefore, 

such parameters should be calibrated whenever possible. The results showed that MUSIC 

rainfall/runoff model was not very sensitive to its pervious area parameters when applied to highly 

urbanised catchments, in which pervious area runoff and baseflow are almost inexistent and that 

some soil related parameters could be fixed to any value between the obtained posterior 

distribution ranges. So it can be argued that the model can be simplified when applied for highly 

urbanised catchments.  

In addition, results suggested that the pervious area parameters in MUSIC (e.g. soil storage and 

field capacity) are in fact “calibration parameters” and are not really related to physical 

characteristics of the catchment. Whilst some of these parameters are strongly related to the 

catchment’s effective impervious fraction, further work is required in catchments with significant 

pervious flows to understand their soil profile characteristics. It was suggested that such results can 

be used for modelling catchments with similar land use, climatic characteristics and hydrological 

behaviour. It is advised however, that MUSIC should be calibrated against local flow whenever 

data is available. 

The water quality models were shown to be ‘ill-posed’ and unable to reproduce the pollutant 

processes in the catchment. While the water quality models were sensitive to all wet weather related 

parameters, the build-up/wash-off model was not sensitive to the dry weather related parameters. 

In general, the water quality models presented a high level of uncertainty. However, the outcomes 

provided useful information for the improvement of existing models and also offered insights for 

the development of new model formulations. For example, it is recommended that future efforts 

be put into the development of models which use routed runoff or rainfall intensities, rather than 

the models which use ‘unrouted’ variables. Whilst routing essentially introduces extra model 

parameters, the temporal accuracy gained is likely to outweigh the calibration costs.  

Results from the uncertainty analysis showed that some observations were not covered in the 

parameter uncertainty bounds; which suggest that more accurate predictions might be obtained if 

the model structure and/or the measured data were improved. Moreover, the large total 

uncertainty bounds indicates that the uncertainty due to other sources than parameter uncertainty 

(e.g. measured input  data including spatial rainfall distribution, model formulation and 
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assumptions and selected objective function) are significant and cannot be neglected. This topic is 

explored in Chapter 7.  

Also as a result of this work, it was verified that the underlying assumption of the applied 

uncertainty analysis method (about distribution of the model errors) was not met, and that the 

method applied to verify the assumption significantly influenced the sensitivity of the model 

parameters. Further investigation about this is in Chapter 6.  
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6.1 Introduction 

Bayesian approaches require the use of likelihood functions which estimate the model’s parameters 

given the measured and modelled datasets. This process often demands a number of assumptions 

be met, including normally distributed, non-correlated and heteroscedastic residuals (Schoups and 

Vrugt, 2010). However, most studies do not check these required assumptions (Larssen et al., 2007; 

Varella et al., 2010). In the cases where they are checked, it is commonly found that these 

assumptions are not met and are still presented ‘as is’. In the literature, a transformation of 

measured and modelled data (e.g. log or Box-Cox transformation) is used by some modellers to 

ensure that the assumption of normally distributed residuals is met (Gallagher and Doherty, 2007; 

Yang et al., 2008). However, as presented in Section 5.4, all transformation methods change the 

content of the observations (Beven et al., 2008), which then influences the emphasis on various 

parts of the hydrograph (or pollutograph). This is sometimes not desired if the modelling purpose 

is to focus on specific parts of the dataset (e.g. flood prediction is linked with peak flows, which are 

deemphasised when using Box-Cox transformations) (Doherty and Welter, 2010). Furthermore, all 

observed data have uncertainty, and this should be taken into account in the likelihood function so 

that the parameters are estimated appropriately; indeed, it is important that the function places 

more emphasis on data which has lower uncertainty. Weighting strategies can be used to re-adjust 

how the likelihood function emphasises various parts of the dataset to (1) consider measured data 

uncertainty and (2) compensate for the Box-Cox transformation which may have adjusted the 

emphasis in an undesirable way. 

This context of data transformation to verify the normality assumption of the model residuals and 

its consequence in the modelling exercise has not been explored in the urban drainage field. This 

chapter focuses on assessing the impacts of verifying the assumed structure of model errors 

(here the assumption that the model residuals follow a normal distribution) on model 

parameter sensitivity and associated predictive uncertainty of stormwater models, and it 

also explores an alternative strategy to mitigate such impacts.  

This study addresses the following key research questions and hypotheses: 

• What are the implications with respect to model efficiency, parameter sensitivity and 

predictive uncertainty of verifying the assumption that the model residuals follow a normal 

distribution?  

o Verifying the underlying assumption of the sensitivity and uncertainty analysis 

method will result in the most comprehensive understanding of the model’s 

uncertainty.  

• To what extent can a weighting strategy used to account for the measured data uncertainty 

also compensate for the impacts caused by the data transformation methods used to 

ensure normally distributed residuals?  
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o Box-Cox transformation will reduce the emphasis on peak measured data, yet 

these peaks (i.e. peak flows for rainfall/runoff models and peak concentrations for 

water quality models) are considered important in urban drainage modelling 

because these pose the highest risks. However, at the same time, these peak values 

often have the lowest relative uncertainty (see McCarthy et al., 2008). As such, it is 

hypothesised that a weighting strategy used to account for measurement 

uncertainty in the likelihood function will simultaneously reduce the influence of 

the Box-Cox transformation process. 

This investigation has been collated into one journal paper, which mainly investigated the impacts 

of verifying the assumption of normally distributed residuals on parameter sensitivity and its 

associated predictive uncertainty in two urban rainfall-runoff models. The paper was initially 

presented at the 9th International Conference on Urban Drainage in Belgrade, Serbia, in 2012 and was 

subsequently selected for publication in Water Science and Technology. The manuscript, Uncertainty 

analysis in urban drainage modelling: should we break our back for normally distributed residuals?, is currently in 

press and forms the body of text of Section 6.2.  
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6.2 Uncertainty analysis in urban drainage modelling: should we break our 
back for normally distributed residuals?  
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6.3 Conclusions 

This chapter studied the impacts of verifying the assumption around the distribution of the model 

errors on the parameter sensitivity and its associated predictive uncertainty of two rainfall runoff 

models.  

Ensuring the residuals were normally distributed produced different model efficiencies, posterior 

parameter distributions and prediction bounds than when the residuals were not correctly 

distributed. The main reason for this was that the data transformation used to meet the normality 

assumption altered how the likelihood function emphasised various parts of the measured dataset 

and the fact that the weighting strategy based on measurement uncertainties could not entirely 

compensate for this alteration. Results also indicated that verifying the normality assumption could 

more adequately calibrate the models; indeed, when the normality assumption was verified, most of 

the model’s processes were activated (resulting in more influential parameters), while only few 

parameters drove the outputs when the normality assumption was not verified (i.e. only some 

parameters were influential). As such, the data transformation approach coupled with the 

weighting strategy was chosen for further application of the method in Chapter 7.  
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7.1 Introduction 

Measured data is imperative for the application of any model. While rainfall data is the main input 

for most rainfall runoff models, flow data is used to calibrate and validate these models (Achleitner 

et al., 2007; McCarthy, 2008; eWater CRC, 2012). In water quality modelling, rainfall intensities or 

runoff rates are usually the input for the models and pollutant measured concentrations are used 

for model calibration and validation (Beck, 1987; WP Software, 1995). Uncertainties are inherent to 

any data monitoring and the predictive performance of stormwater models is limited by the 

uncertainty in measured data. Therefore these uncertainties and their impacts on the models should 

be explored. Thus, the main aim of this study was to explore the impact of measured input and 

calibration data uncertainty on the performance, sensitivity and predictive uncertainty of 

stormwater quantity and quality models. 

This chapter focuses on addressing the following key research question and hypotheses: 

• What are the impacts of input and calibration data uncertainties on the sensitivity and 

predictive uncertainty of stormwater models?  

o the model parameters can entirely compensate for the uncertainty in input and 

calibration data; and, 

o systematic errors in measured data will have more impact on the model sensitivity 

and uncertainty than random errors because they are time-dependent, and 

therefore they will be continuously propagated through the model. 

In order to explore the impact of input and calibration data uncertainty on the sensitivity and 

predictive uncertainty of stormwater models, it is important to first understand the sources of 

uncertainties in this data. An introduction of the main sources of uncertainties in the measured 

data was presented in Subsection 2.3.3. A summary of the main sources of uncertainties in the 

measured variables of interest and a review of their quantification are presented in Sections 7.2 to 

7.4. Based on the values compiled in these sections, error models were developed to represent 

measured data uncertainty in the modelling exercise (Section 7.5). The investigation of the impact 

of the input and calibration measured data uncertainty (here, estimated through the error models) 

on the model sensitivity and predictive uncertainty is presented in a journal paper, Impacts of 

measured data uncertainty on urban stormwater models submitted to Journal of Hydrology. This paper forms 

the body of text of Section 7.6. 
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7.2 Rainfall data uncertainty 

Tipping bucket rainfall gauges are the standard and most used device for measuring rainfall data 

(Sevruk, 2002). The main sources of uncertainties in the data measured with these gauges are 

related to both catching and counting errors (Molini et al., 2005b). The total amount of daily, 

monthly or longer period rainfall tend to be underestimated due to the effect of evaporation, 

wetting, splashing and wind occurring within or on the top the bucket (Molini et al., 2005b).While 

splashing losses were found to be only up to 2% and evaporation losses were up to 4%, the wind 

losses were found to be inversely proportional to the rain intensity and were up to 30% for rainfall 

intensity around 0.25 mm/h (Sevruk, 1982). 

Counting errors are related to the inherent mechanical errors of the tipping bucket. As opposite to 

the catching errors, the counting errors have stronger impact on rainfall intensities than on total 

rainfall amount. For example, the gauge delays to respond to quick changes in the rainfall 

intensities because of the time required for the bucket to fill up and dispense. In addition, the 

rainfall intensities tend to be underestimated during extreme intense events because the bucket 

cannot tip fast enough (some rainwater is lost during the tipping movement of the bucket) (Molini 

et al., 2005b; Wang et al., 2008). Some manufactures claim that the maximum error range for their 

tipping bucket device for rainfall intensities between 2 to 400 mm/h is between -5% and 5%. 

However, this type of errors was reported to induce an error of -10 to -15% for rainfall intensities 

higher than 200 mm/h (Molini et al., 2005b).  

It is often assumed that the rainfall intensity � is simply calculated by assuming a linear gauge 

response (Maksimovic et al., 1991). However, the linear relationship can be quickly revoked as the 

volume of water that tips is not constant, but a function of the rainfall intensity, and at higher 

intensities tipping buckets usually underestimate rainfall because water is lost during the tipping 

movement. It follows that the relationship between rainfall intensity and tipping rate is not always 

linear and Molini et al. (2005a) reported that neglecting these systematic mechanical errors 

impacted the assessment of the design rainfall for urban scale applications. 

Dynamic calibration of the tipping bucket was carried out by many to determine the form, shape 

and parameters of such a relationship (Niemczynowicz, 1986; Maksimovic et al., 1991; Simic and 

Maksimovic, 1994; Molini et al., 2005a; Molini et al., 2005b; Pavlyukov, 2007). Results of these 

many studies confirmed that a simple power relationship works well: 

 

 � � mno Equation 7.1 
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where � is the rainfall intensity (mm/min), n the number of tips per time (tips/min); and, m and p 
are parameters depending on the tipping bucket. In this context, it seems that the main source of 

errors comes from: 

• relying on the nominal value for water volume (e.g. 0.2 mm), which influences the n term 

in Equation 7.1; and, 

• assuming a linear relationship between � and n .  
Measured rainfall data can also be influenced by the fact that the tipping bucket device cannot 

always grasp some of the rainfall temporal distribution. For example, it is possible that the rainfall 

may stop before the collector has tipped. Moreover the relationship between the real rain drop rate 

and tipping rate is not necessary linear. For this reason different approaches have been proposed 

and tested for the estimation of rainfall intensities from rainfall recorded tips (McCarthy, 2008; 

Wang et al., 2008). 

Battery, logger and computer clock failures are significant source of errors in rainfall 

measurements. Time drifts are inherent to any battery controlling logging devices and values 

around 0.07 min/day were reported by McCarthy (2008). 

In summary, except for the catching errors that are physics-based, most of the errors in rainfall 

measurements can be detected or fixed though calibration. On the other hand, the inadequate or 

lack of calibration can cause systematic errors due to the same sources. Stransky et al. (2006) 

demonstrated that the flows modelled with a rainfall runoff model were impacted by inadequate 

and/or lack of static and dynamic calibration of tipping bucket rain gauges. 

The spatial variability of rainfall is another issue. It is common that the point rainfall measured with 

the tipping bucket is different from the average rainfall calculated if several gauges were installed 

along the catchment. Haydon and Deletic (2009) reported variations of up to 30% for the rainfall 

from three rain gauges in a rural catchment.  

All these errors associated to the rainfall data eventually propagate through the models and most of 

the time the modeller is not even aware of them. Some studies (most in the hydrologic field - Vrugt 

et al. (2008) and Thyer et al. (2009b)) introduced an error model with calibration parameters to 

correct the rainfall to achieve better model performance. While this is very important, the impact 

of erroneous rainfall data on the model performance and sensitivity was less addressed. For the 

purpose of this research, error models were developed to replicate the random and systematic 

errors in measuring rainfall; they are presented in subsection 7.5.1. 

7.3 Flow data uncertainty 

Uncertainties in flow measurements are very much related to the measurement equipment. Harmel 

et al. (2006a) reviewed and compiled uncertainties in individual stream flow measurements with a 
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range of different methods and reported that the velocity-area method was the most accurate 

among other available methods. The flow rates are calculated by the product between the wetted 

cross sectional area and the velocity as follows: 

 

 � � ? q��2`G�� cos /��2 � �
��2 1 � ���2 � ��t2��2 � � �`v Equation 7.2 

 

where ? is the measured stormwater velocity (m/s); ��2 is the measured radius of the pipe (m); 

and, � is the calculated flow (m3/s).  

Flow measurement uncertainties for the velocity-area method ranged from 2% to 20% depending 

on efforts spent for the measurements (e.g. financial and personnel resources) and the hydrologic 

conditions. The uncertainty sources of this type of measurement are in the estimation of the: 

channel's cross section (the radius, ��2 for circular pipes, depth ��� and velocity �?�).The errors 
from these three sources can be estimated/calculated using multiple measurements or can be based 

on scientific literature values. The variables , ? and ��2, measured with different instruments, are 

assumed independent and not correlated. Under these conditions, the law of propagation of 

uncertainty can be used to estimate the combined standard uncertainty (Bertrand-Krajewski and 

Muste, 2007). The Law of Propagation of Uncertainty (LPU - Taylor and Kuyatt, 1994) propagates 

these sources of uncertainty through Equation 7.1 to estimate the uncertainty in the flow 

measurements. The LPU is only outlined, but is fully described in Taylor and Kuyatt (1994).  

Often a measurand w is obtained as a function of � other quantities that can be directly measured 

xA, x`, … x* such that w � ��xA, x`, … x*�. As x� and ware not really known, they can be 
estimated as �� and z (with z � ���A, �`, … �*�. Usually �� is the mean of the � repeated measure 

of x� . The uncertainty, {���� associated to �� is the standard deviation of the mean. The true, but 

yet unknown �� has about 95% chance of being within the interval |�� � 2{����, �� } 2{����~. 
For independent uncorrelated variables (as the case of , ? and ��2) the uncertainty {�z� is 
calculate as a first order Taylor series approximation of w � ��xA, x`, … x*�: 
 

 {�z�` � D/�����1
`
{`

*

�FA
���� Equation 7.3 



 

183 
 

While the random errors can be propagated using the LPU, very little knowledge on the actual 

systematic measurement error of flow is available. Nevertheless, three main potential errors are 

known: 

• height measurement 'zero-point' drift - drift is common in many flow measurement 

devices, and is usually avoided using regular calibration; In general, pressure probes are 

more susceptible to zero drifts than ultrasound; 

• inaccurate (re-)calibration of height measurement - when the probe requires recalibration 

(or even when the initial calibration of the probe is conducted) the calibration might be 

biased (i.e. include systematic error).  For example, the crew may always over-estimate or 

underestimate the actual depth of water; and, 

• inaccurate velocity calibration or incorrect probe set-up - the probe may always over or 

under-estimate due to factory default errors or by improper positioning within the pipe. 

Prodanovic (2009) explained that different Doppler velocity probes use different water level 

measurements. Mostly, they use either pressure type sensors or ultrasonic, or they have the option 

to use an external level sensor. In general, pressure probes are susceptible to zero drifts more than 

ultrasonic probes. Also, the reference air pressure measurement is required, and as a result of 

added deposit on the sensor, the frequency response of the probe is changed over time, so it will 

become ‘slower’. Furthermore, the ultrasound level measurement depends on the water 

temperature and concentration of suspended solids as the velocity is not the same for clean and 

dirty water. Considering the velocity measurement, the equipment manufacturers usually provide 

the accuracy of the probes, although they are usually not realistic values. For instance, an error of 

±2% is suggested by the manufacturer of the Sigma 950 flow meter. However, Prodanovic (2009) 

advised that the uncertainty associated to the velocity measurement is in reality dependent on how 

the software in the probe handles the dropdowns in signal (situation when there is no echo from 

measured volume). As such, the height measurement ‘zero-point’ error can be detected and fixed 

through regular calibration, but the two other errors are unlikely to be really eliminated. 

As with the rainfall data errors, the errors associated with the measured flow data also propagate 

through the models. Some studies on hydrological modelling developed error models to correct the 

flow measurements (Vrugt et al., 2008; Thyer et al., 2009b); however, the impact of erroneous flow 

calibration data on the model performance and sensitivity has not been addressed in the urban 

drainage field. Similarly to the previous subsection, error models were developed to account for the 

random and systematic errors in flow measurements and they are described in subsection 7.5.2. 

7.4 Uncertainty in pollutant discrete samples (TSS)  

The uncertainty associated with discrete stormwater quality parameters (pollutant concentrations) 

originate from a wide range of sources (McCarthy et al., 2008): 
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1. sampling methods; 

2. storage methods; and, 

3. analytical/laboratory methods. 

Substantial research has been developed to characterise the uncertainties associated to TSS discrete 

samples, e.g. Ahyerre et al. (1998), Harmel et al. (2006), Rode and Suhr (2007), and McCarthy 

(2008). In these studies the authors presented the uncertainty associated with each source for 

different pollutants. Some figures resultanting from their work are summarised in Table 7.1. 

Sampling uncertainties are related to the fact that a sample is often taken from just one position 

within the water cross-section and is usually assumed to represent the entire water column. It is 

most common to collect samples from a point near to the bottom of the stormwater pipe. The 

position of the intake tubing in the water cross section influences particulate pollutants more so 

than soluble pollutants as the particulates tend to settle and the dissolved ones have a more even 

distribution along the water column. In addition, sampling uncertainty can be also caused by a poor 

setup of auto-samplers (e.g. alignment of the suction tube) or other sampling issues. Sampling 

uncertainty associated with TSS concentrations was reported to range between 2 to 33% (Harmel 

et al., 2006a).  

Storage uncertainties are related to the time period between the sampling time and when the 

samples are analysed in the laboratory. The storage environment (i.e. if the samples are well 

preserved and/or refrigerated) can help reduce storage uncertainty for some pollutants (e.g. using 

refrigerated autosamplers for the collection of samples for microorganisms is often recommended). 

However, these storage requirements vary for different pollutants, and are mainly driven by the 

physical and chemical properties of the pollutant. The uncertainty due to storage and transport of 

samples to the laboratory has been reported as minimal for TSS, but significantly larger for 

dissolved pollutants (e.g. TN) (Kotlash and Chessman, 1998). For example, the range of -16 to 

49% was reported for TN samples, even when they were kept in ice and analysed within 6 hours 

(Kotlash and Chessman, 1998). 

Analytical uncertainty is associated with all the processes related to the laboratory analysis. Sample 

handling, preparation, staff expertise, analytical method and equipment are some examples of 

sources of error in the laboratory. Potentially, the uncertainties associated to TSS are lower than 

other pollutants because of the low complexity of the analytical technique used for TSS (simple 

filtration and weighing). 

The magnitude of the systematic errors in pollutant discrete samples have also been computed and 

reported in previous studies (Gordon et al., 2000; Harmel et al., 2006a; Harmel et al., 2009; 

McCarthy et al., 2009). For example, Ahyerre et al. (1998) reported a difference of 15% between 

TSS concentrations sampled with two different samplers working at the same time (Table 7.1).  
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Table 7.1 Summary of literature with the different TSS discrete sample uncertainties. 
Systematic errors 

   

 
Uncertainty (%) 

Source of literature 
(1) Sampling Range Median 

Position of sampling point in the 
pipe 

14 33 20 Martin et al. (1992)  

4.7 23.8 14.0 McCarthy et al. (2009)  

2 12  Rode and Suhr (2007)  

Total sampling uncertainty 
Range of unc for diff 
events  

 
Min Max Median 

 

 
21.61 40.06 31.63 Huang et al. (2010)  

 
15 20 17.5 Martin et al. (1992) 

 
12 26 19 Harmel et al. (2009) 

     

 
Range of unc for diff 
events  

(2) Storage Min Max Median 
 

Total storage uncertainty   10 Bertrand-Krajewski and Bardin (2002) 

     

 
Uncertainty (%) 

 (3) Analytical uncertainties Range Median 

 
-9.8 5.1 -4.9 to -2.5 Gordon et al. (2000) 

   40 Ahyerre et al. (1998) 

Total analytical  uncertainty 
Range of unc for diff 
events  

 
Min Max Median 

 

 
<8 

  
Harmel et al. (2009) 

     
Cumulative - Combining sources 

Range of unc for diff 
events  

 
Min Max Median 

 

 
14 104 23 Harmel et al. (2009) 

     
Random errors Range of unc 

 

 
± 25 to ± 30 

 
Bertrand-Krajewski and Bardin (2002) 

 
± 12% to ±26% Harmel et al. (2009) 

 

Random errors associated with the discrete stormwater quality parameters have often been 

reported in the literature. While Bertrand-Krajewski and Bardin (2002) and Bertrand-Krajewski et 

al. (2003) reported values between 25 and 30% for random errors in TSS, Harmel et al. (2009) 

presented values ranging from 12 to 26% (with median of 18%) for the same pollutant.  

The impact of erroneous TSS calibration data on the model performance and sensitivity has not 

been explored. Similarly to the previous subsections, error models were developed to account for 



 

186 
 

the random and systematic errors in TSS discrete samples and they are described in subsection 

7.5.3. 

7.5 Error models  

Error models were developed to disturb measured data with errors to evaluate the impact of errors 

in input and calibration model sensitivity and uncertainty. The error models were developed based 

on the information about the uncertainty in rainfall, flows and pollutants data as provided in the 

previous section. Different error models were created for random and systematic errors in each of 

the variables.  

7.5.1 Rainfall error model  

Rainfall random errors 

The random error for rainfall data due to wetting, splashing, evaporation and wind effects was 

sampled from a uniform  distribution in the range of [-0.5, 0.5] as previously adopted in the 

literature (Rauch et al., 1998; Haydon and Deletic, 2009). Additionally, the random effect of the 

spatial variation of the rainfall was also evaluated; for this each event was disturbed by a different 

factor sampled from a uniform distribution in the range of [-0.7, 1.3]; this is a rather simplistic 

approach and was designed to reflect a local spatial variation (around the gauge) and not spatial 

variation throughout the whole catchment.  

Rainfall systematic errors 

For the systematic errors, two main sources of errors were considered: time drifting and 

mechanical errors. The development of the error model is explained next. 

Time drift - the first step was to account for the time drifting effect in the rainfall loggers. It was 

assumed that the rain gauge is calibrated regularly, and that the logger time drift is linear with a rate 

of �Q���< (mm/day). The time between successive calibrations is called ��@%@< (month). After whic, 

the logger time becomes equal to the real time and the time drift re-start from zero. In other 

words, the time logger will drift according to �Q���< � �<�;@ � ��:��@�, here assumed as a constant 

rate, every day until the rain gauge is re-calibrated in every ��@%@< month(s) and the logger time is 

adjusted to the real time  �<�;@ � ��:��@�. The rate of ±0.07 min/day was assumed for this study. 

The re-calibration time ��@%@< was assumed to be 1 and 6 months for best and worst case scenarios, 

respectively. Finally, a time drifting effect of ±0.14 minutes/day was assumed in the rainfall and 

flow loggers. 

Mechanical errors - an offset of ±30% was assumed to represent the error in the 0.2 mm nominal 

volume of the tipping bucked used in this study. This offset is realistic when compared to the 

values reported in the literature; previous studies showed that values between 0.17 and 0.25 mm 
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are very common (e.g. Niemczynowicz, 1986). In addition, the rainfall error model was also 

formulated according to the power based relationship in Equation 7.1: 

 

 �d � �30% mno Equation 7.4 

 

where: �d is the disturbed rainfall; �30%  represents the error in the nominal volume of a 0.2 mm 

tipping bucket; and, m and p are parameters depending on the tipping bucket. m and p are values 
of  0.1848 and 1.047, respectively, adopted from literature (Niemczynowicz, 1986; Molini et al., 

2005a). Within this context and assumptions, the error model to account for systematic errors in 

rainfall data is a function of  �Q���< , ��@%@< , e�6, m ��2 p. 
In addition, a single offset ±30% was applied to the rainfall data. This constant error was 

previously adopted by Rauch et al. (1998) and Kleidorfer et al. (2009). 

The different rainfall scenarios generated a set, in which the coefficient of variance of the mean 

annual rainfall was 29.4%, and 32.2% for the mean event maximum rainfall intensity. 

7.5.2 Flow error model 

Flow random errors and the LPU 

The flow measurements used in this research were collected in the pipes located at the outlets of 

each catchment. As described in Subsection 7.3, the random errors from the radius of the pipe, 

���2� and uncertainty in the water depth ��� and velocity �?� estimates can be calculated based 

on accuracy of the measuring equipment. For this work, it was assumed that the variables ��2,  

and ? that are measured with different instruments, are independent and not correlated. Under 

these conditions, the law of propagation of uncertainty can be used to estimate the combined 

standard uncertainty {���: 
 

 {���` � {���2�` / ��
���21

`
} {���` /����1

`
} {�?�` /���?1

`
 Equation 7.5 

where 

 

 
/ ��
���21 � 2 ? ��2 G����
 /1 � �

��21

� 2 ? ��2 t2��2 � � �` 

Equation 7.6 
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 /����1 � �2 ? ��2 t2��2 � � �`  Equation 7.7 

 

 
/���?1 � ��2` G����
 /1 � �

��21 � ���2

� �� t2��2 � � �` 

Equation 7.8 

 

The true discharge �< has approximately 95% probability of being within the range of � � 2{���. 
The standard uncertainties in the three variables ��2,  and ? are used as previously proposed in 
the literature by Bertrand-Krajewski and Muste (2007): u(��2� � 0.002 m u(�� � 0.003 m and 

u(?� � 0.1 m/s. 

To account for random errors in flow data, the disturbed flow values for each timestep are 

sampled from a normal distribution, in which the mean is the measured � value with {��� as the 
standard deviation. The random error scenario is made up of 10 different samples.  

Flow systematic errors 

Very little knowledge on the actual systematic measurement error of flow is available. However, it 

is assumed that the incorporation of a fitted flow error model of calibration data errors is crucial in 

order to provide reasonable model estimations uncertainty. For the development of a flow error 

model, the main sources of systematic error in flows data were considered: 

As follows, the flow disturbed by systematic errors �(d is calculated using the disturbed height 
measurement �dand disturbed velocity measurement ?d, which can be written as:  
 

 �(d � ?d q��2d`G�� cos /��2
d � �d

��2d 1 � ���2d � �d�t2��2d �d � �d`v Equation 7.9 

 

Estimating �d - the ‘zero’ point in the height measurement may drift with time.  We assume that the 

equipment is calibrated regularly, and that the probe drift is linear with a rate of � (m/month). The 

time between successive calibrations is called ��@%@<  (months).  Although it might be assumed that 

the readings will re-start from zero error, this zero point cannot be measured with complete 

accuracy, so a systematic shift C might also result for the period between calibrations. 
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Figure 7.1 Schematic of the flow error model. 

Figure 7.1 presents a schematic of the flow error model, in which  is the measured depth; �dis the 

perturbed ; C� is a random number sampled from a uniform distribution between pre-established 

values every time � ��@%@< � 0; and, � is a constant representing the slope (i.e. the drift rate, e.g. 0.5 
m/month). From practical experience in managing flow gauges, it is known that at a good site a 

drift rate of 2 mm/month or less might be expected (Prodanovic, 2009); whereas at an ‘average’ 

site, up to 10 mm/month is possible and only a ‘flawed’ site would have worse than this (Fletcher, 

2008). As such, these values were adopted for the best and worst case scenarios, respectively.  

Velocity - It is not possible to effectively and fully calibrate a Doppler sensor. Therefore a constant 

and linear noise was assumed. Values of 10% and 30% were used for best and worst case 

scenarios, respectively.  

 

 ?d � ? } 	 ? Equation 7.10 

 

where 	 is the constant and linear noise. The flow disturbed by systematic errors �(d is then 
calculated as a function of C, �, ��@%@< , 	. 
In addition, a single offset of ±30% was applied to the whole flow time series. 

*
h

Time (months)

Ci-1
a

treset

a

a

Ci

Ci+1

While t <  treset  (treset = time is reset according to regular calibration) 
 
�d � � } �C� } �. ��  i=1, 2,… to ntreset 
 
Then treset = 0 
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Discussion 

A flow threshold was set at 3 L/s; the flow below this value is regarded as non reliable. The mean 

relative uncertainty in measured flows was 78% (Coefficient of variance of 60%). Although this 

number is high when compared to the ones in the literature for similar measuring devices (e.g. 5-

25% in Ahyerre et al. (1998) and 2-20% in Harmel et al. (2006)) by the low flows which have a 

large relative uncertainty, mainly due to the high uncertainty in the low velocities measurements. 

Even when we discard flows lower then 3 L/s, some higher flows had larger uncertainty because of 

the velocities (it is probably because the uncertainty associated with low velocities is so significant 

that a large number of velocities were incorrect). In addition, velocities under 0.1 m/s generated 

relative uncertainties of over 180% independently of the depth, ��). Figure 7.2 illustrates this 
discussion. 

 

 

Figure 7.2 Measured velocities in m/s versus the flow relative uncertainty. 

The mean event maximum runoff rate generated with the different rainfall scenarios ranged from 

0.3 to a little over 3000 L/s and the coefficient of variation for the mean event maximum runoff 

rate was 42%. Figure 7.3 presents the flow duration curves for the different flow scenarios 

(mm/min). 
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Figure 7.3 Flow duration curves with the different flow scenarios (mm/min). Section 7.6 presents a 
detailed description of the scenarios. 

7.5.3 Discrete samples error model 

Based on the values presented in Table 7.1 the error model was developed to account for all 

sources of uncertainties in TSS concentrations. 

Discrete samples random errors 

TSS concentrations were disturbed with a value sampled from a uniform distribution in the range 

of [-0.28, 0.28]. 

Discrete samples systematic errors 

The systematic errors in the discrete samples were accounted for by combining the systematic 

source values presented in the literature (Table 7.1). The best case scenarios were generated by 

picking the median uncertainty values and the worst case scenarios were generated by selecting the 

extreme uncertainty values. 

Final values of -9% and +26% were obtained for the best case scenarios and were applied to the 

entire concentration dataset. Final values of -28% and +50% were the extreme values reported and 

were used for the worse case scenarios by means of applying these values to the entire 

concentration dataset. In addition, a single offset of ±20% was applied to the TSS concentrations, 

in which 20% was the median of the means reported by reviewed studies. 

Figure 7.4 presents the Probability of exceedence plots during wet weather at RICH with the 

different TSS scenarios. 
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Figure 7.4 Probability of exceedence plots during wet weather at RICH with the different TSS 
scenarios (mg/L). Section 7.6 presents a detailed description of the scenarios. 
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7.6 Impacts of measured data uncertainty on urban stormwater models 
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7.7 Conclusions 

This chapter started with a summary of the main sources of uncertainties in the measured variables 

that are commonly needed for the application of urban drainage models. Specifically, the 

uncertainties associated with as rainfall, flow rates and TSS concentrations were reviewed. This was 

followed by an investigation of the impact of these input and calibration measured data uncertainty 

(here, estimated through the error models) on the model sensitivity and predictive uncertainty. 

Results suggested that random errors in all input and calibration data had a minor impact on the 

model performance and sensitivity. Systematic errors in input and calibration data influenced the 

model sensitivity (represented by the parameter distributions). In most of the scenarios (especially 

those where uncertainty in input and calibration data was represented using ‘best-case’ 

assumptions), the model performance was fully compensated by the parameters. For example, 

when rainfall was systematically under or overestimated, the effective impervious area parameter 

varied systematically to compensate for the changes in the input data. In addition the model 

predictive uncertainty was also compensated in most of the cases as the number of observations 

within the parameter uncertainty bound was kept fairly constant. It should then be noted that if the 

model parameters were considered initially as reflecting real characteristics of the catchment (i.e. 

not only mere calibration parameters values), this representation was reduced when input and 

calibration data errors were considered. Parameters were unable to compensate only in some of the 

scenarios where the uncertainty in the input and calibration data were represented using extreme 

worst-case scenarios. As such, in these few worst case scenarios, the model performance was 

reduced considerably. These cases were generally linked to scenarios in which the time drifts in the 

battery logger device was ignored for long periods, which indicates that rain and flow gauges 

should be regularly recalibrated. From the results presented, it is suggested that re-calibration once 

a month is sufficient.  

The results obtained with the assessment of uncertainties in the build-up/wash-off model are likely 

to be compromised because of its ‘ill-posed’ nature. While this is a limitation of this study, the 

assessment of the uncertainties in such a widely used model (with a large number of events) 

confirmed that the pollution generation processes in the catchment are quite variable. This suggests 

that the determinist approaches currently used to model water quality should be re-considered and 

that the stochastic nature of the pollution generation processes should be taken into account when 

modelling stormwater quality. 
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8.1 Introduction 

The objective of this research project was to advance the current understanding of the 

uncertainties in urban rainfall runoff and pollution generation models in order to better define their 

reliability. The study concentrated on the main following areas: (i) identifying suitable global 

uncertainty analysis method(s) to perform parameter calibration, model sensitivity and uncertainty 

analysis in stormwater models; (ii) exploring parameter calibration, model sensitivity and the 

resulting predictive uncertainties in stormwater models with different level of complexities; and, 

(iii) investigating the impact of measured input and calibration data uncertainty on the 

performance, sensitivity and predictive uncertainty of stormwater models. This chapter begins with 

an assessment of the strengths and weaknesses of the presented research (Section 8.2). The key 

conclusions gained from the study (i.e. the major findings from each of the chapters in the thesis) 

are then presented in Section 8.3. Finally, opportunities for further work are discussed in Section 

8.4.  

8.2 Strengths and weaknesses of the evidence 

Methods for global sensitivity and uncertainty analysis 

The comparison of methods for global sensitivity and uncertainty analysis contribute to better 

understand the limitations and advantages of each method. A strength of this research is that the 

tested methods were based on the current available knowledge on uncertainty of stormwater 

models, as well as on the state of the art approaches used for uncertainty analysis in related fields 

(including both ‘formal’ and ‘informal’ Bayesian approaches). The work was done in close 

collaboration with another four research groups who are all recognised as international leaders in 

the urban drainage research.  

Method assumptions – checking and validating 

The likelihood function in the adopted formal Bayesian approach assumes that the model errors 

(or residuals between the measured and modelled values) are independent, homoscedastic and 

normally distributed. Some of the main weaknesses of this thesis are that such assumptions were 

not verified at the start of the activities and that the normality assumption was only verified in the 

later stages. Nevertheless, the fact that we studied the impact of the normality assumption on the 

results (Chapter 6), and even attempted to develop a more rigorous way of applying the 

methodology (Chapter 7), is a strength of this research (as this is often not addressed in the similar 

studies).  

Another weakness of the current project is that the other assumptions regarding the error model 

were not verified: model residuals were assumed to be independent (not correlated) and 

homoscedastic. This is a major limitation as the model residuals are very likely to be correlated. 

However, the serial correlation between the data points was not considered in this study because 
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the current used methods to account for autocorrelation (e.g. first order model) were proven to be 

ineffective for small timesteps as used in this research. The homoscedasticity assumption of the 

model errors does not seem much of a problem as the data transformation resulted in normal 

distributions (with constant mean and standard deviation). 

Parameter calibration, model sensitivity and the resulting predictive uncertainties 

This thesis was the first in the field to compare the sensitivity and predictive uncertainty of 

conceptual stormwater models with different levels of complexity. It also provided a 

comprehensive analysis of model parameters and their interactions. Such analysis offered practical 

recommendations for developing new stormwater models and for refining of existing ones.  

Another strength of this research was the ability to assess uncertainties in stormwater modelling on 

five urban catchments (with different areas, land-uses and levels of development) using a long term 

and high resolution dataset (mainly for water quality data, which used to be scarce so far). Testing 

the models using this large dataset meant that the models had to demonstrate their ability (or 

inability) of representing the variability in the data with the possible contexts and ranges of events 

and values (e.g. if the model is able to explain the hydrological responses from a specific urban 

catchment during the different seasons).  

A weakness was that the number of models tested was limited (although it is also acknowledged it 

is hard to cover all available models in the one thesis). Further, although the tested pollution 

generation models were chosen for being the most adopted in urban drainage models, the results 

demonstrated that they were not able to represent reality. The fact that uncertainties were assessed 

in such ‘ill-posed’ water quality models is a major weakness of this research as the obtained results 

are likely to be compromised. Nevertheless, the combination of evaluating ‘ill-posed’ models with 

such a large dataset allowed us to confirm that the model structure is the main reason for the poor 

performance of water quality models, and not the lack of measured data (as was the case previously 

in the urban drainage modelling community).  

Impact of measured input and calibration data uncertainty 

This thesis tested a new framework for joint assessment of the impacts of key sources of 

uncertainties on the modelled results. Although the application of the framework to assess the 

input and calibration data errors demands significant computational time, the applied approach is 

relatively simple and far less complex than other similar frameworks (that are in fact very rare), and 

could be adopted and/or adapted for assessing the errors in other conceptual based models with a 

low number of calibration parameters. However, the procedure is still too computationally 

demanding to allow its application for more deterministic models. 

One main limitation of this framework is that the sources of errors are lumped, and therefore the 

changes in one specific source cannot be accounted independently.  Again, assessment of 
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uncertainties in the ‘ill-posed’ water quality model is a weakness of this research task. However, the 

strength of the study is that it confirmed the suggestion that the pollution generation processes in 

the catchment are stochastic, and that the physically based conceptual approaches (currently used 

to model water quality) should be re-considered. 

8.3 Conclusions 

Global sensitivity analysis methods in stormwater modelling 

On the search for suitable global uncertainty analysis methods to perform parameter calibration, 

model sensitivity and uncertainty analysis in stormwater models, the main contribution of this 

thesis was that the application of different methods produced fairly similar results. It should be 

noted that these results might be severely compromised as the tested uncertainty analysis methods 

rely on a number of assumptions and subjectiveness. As such, the appropriateness of these 

methods is questionable.  

Results from this research task recommended that the selection of the most appropriate method 

for uncertainty estimation is a trade-off between the need for a strong theory-based description of 

uncertainty (but limited by the requirements on prior knowledge about the structure of the model 

errors - Bayesian approach, MICA), simplicity (but limited by the subjectivity - GLUE) and 

computational efficiency (also affected by subjectivity - AMALGAM and SCEM-UA). It is also 

suggested that different evaluation scenarios should be analysed (i.e. different catchments, models, 

data, etc). Modellers should also select the method which is most suitable for the system they are 

modelling (e.g. complexity of the model’s structure including the number of parameters), their 

skill/knowledge level, the available information, and the purpose of their study.  

The Bayesian approach was suggested to be more suitable for uncertainties in stormwater 

modelling because it is more efficient (or at least less time consuming) to evaluate models with 

larger number of parameters and also because of its statistical rigour. Further application of the 

tested Bayesian approach confirmed the potential of the method to assess different urban drainage 

models (i.e. with different level of complexities) in urban catchments of different sizes and land-use 

types.  

However, the likelihood functions in the applied Bayesian approach assumes that the model errors 

(residuals) are normally distributed. This study demonstrated that this assumption is often not met 

in stormwater modelling (i.e. model residual are not normally distributed). In order to verify the 

normality assumption, a data transformation approach was adopted. While Box-Cox 

transformation solved the normality issue, it drastically influenced the sensitivity of the model 

parameters. Consequently we decided to assess the impacts of verifying the normality assumption 

of the model errors on the model parameter sensitivity and its associated predictive uncertainty.  
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In addition, all observed data have uncertainty, and this should be taken into account in the 

likelihood function so that the parameters are estimated appropriately; indeed, it is important that 

the function places more emphasis on data which has lower uncertainty. Weighting strategies were 

used to re-adjust how the likelihood function emphasises various parts of the dataset to (1) 

consider measured data uncertainty and (2) compensate for the Box-Cox transformation which had 

adjusted the emphasis in an undesirable way. 

It was found that the overall efficiency of the models was different and that the changes in 

parameter distributions were significant between the scenarios in which the normality assumption 

of the residuals was verified or not. The main reason for such results is the fact that the data 

transformation used to meet the normality assumption altered the data, which then influenced the 

emphasis on various parts of the hydrograph.  

Another interesting finding from the thesis was that pursuing the normality assumption by 

adequate data transformation seemed to better calibrate the models. It was found that when the 

normality assumption was achieved, most of the model’s processes were activated (resulting in 

more sensitive parameters), while only few parameters drove the outputs when the normality 

assumption was not achieved (i.e. only some parameters were sensitive). 

Parameter calibration, model sensitivity and the resulting predictive uncertainties 

The comparison between two catchment rainfall runoff models with different levels of complexity 

demonstrated that both models performed similarly and that the effective impervious fraction is 

the most important parameter in runoff prediction. Other key parameters are those related to the 

time of concentration. It is interesting to note that the calibrated parameter values were different 

for each model, which demonstrated that parameters estimated for one model cannot be 

transferred to other models without a new model calibration, even if they represent the same 

physical background. However, this is not surprising as only simplified conceptual models were 

tested. In addition, the analysis indicated that the pervious area parameters played a secondary role 

when modelling highly urbanised catchments. This suggests that, for practical applications, 

parameters relating to the pervious areas do not have to be calibrated and default values could be 

used when applied to urbanised catchments.  

The most widely adopted water quality models, the build-up/washoff and simple regression 

equations, were tested. Even with the robust calibration and parameter sensitivity approach used, it 

was clear that these models poorly represent reality and their predictions presented a high level of 

uncertainty. This opposes to most of publications that showed a good agreement between 

measured data and simulated data, but is explained by the fact that such studies were based on a 

few single events. While the two water quality models tested were both sensitive to wet weather 

related parameters, the build-up/wash-off model was not very sensitive to the dry weather related 

parameters. Recommendations were made to aid the improvement of existing models and also the 
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development of new model formulations. For example, results indicated that future work on the 

development of better water quality models should focus on formulations that use routed variables 

(e.g. routed rainfall or runoff) rather than ‘unrouted’ variables. 

The uncertainty analysis showed that the total predictive uncertainty bands were larger than the 

uncertainty bands resulting from parameter uncertainty only. While the total uncertainty bands 

covered the bands resulting from parameter uncertainty only, it was observed that the contribution 

of the later was minor. This indicates that the predictive uncertainty due to other sources is more 

important (e.g. measured input data including spatial rainfall distribution, model formulation and 

assumptions and selected objective function).  

In summary, one of the main contributions of this work was to demonstrate the limitations of the 

currently used stormwater models as they all presented large uncertainty, mainly on the side of 

water quality modelling. 

Impact of input and calibration data uncertainties on stormwater models 

The impact of  the input and calibration data uncertainties on stormwater models in terms of  

performance, sensitivity and predictive uncertainty was assessed by means of  a rather simple 

approach for global assessment of  uncertainties in urban drainage models. A coupled urban 

stormwater model (a simple rainfall runoff model was coupled with a commonly used build-

up/wash-off model) and error models were developed to estimate the uncertainty associated with 

input and calibration data.  

It was demonstrated that random errors in all input and calibration data had a minor impact on the 

model performance and sensitivity. Another finding was that systematic errors in input and 

calibration data influenced the model sensitivity (represented mainly by the position of the peak of 

parameter distributions). In most of the scenarios, the model performance was fully compensated 

by the parameters. Parameters were unable to compensate only in some scenarios where the 

uncertainty in the input and calibration data were represented using extreme worst-case scenarios. 

As such, in these few worst case scenarios, the model performance was reduced considerably.  

Results specifically from the water quality modelling suggested that the model sensitivity was not 

significantly impacted by the calibration data errors, which might be due the fact that the model 

cannot reproduce TSS concentrations even when the ‘true’ measured dataset is used. One of the 

main contributions of this research task was to demonstrate that the current main limitation in 

water quality modelling is related to poor model structure, and that, even though it is still 

important, the main limitation may not be errors in measured data.  

8.4 Future work 

This research has provided a comprehensive overview of the different sources of uncertainties in 

stormwater models (with different level of complexities) and how the different sources impact on 
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parameter sensitivity and the resulting predictive uncertainty. Future research, however, is needed 

to extend the understanding of the different sources of uncertainties in stormwater models.  

Methods for global sensitivity and uncertainty analysis in stormwater modelling 

Results from this thesis suggested that the methods currently used to assess uncertainties in 

stormwater models are uncertain themself, mainly because of their subjectivity (e.g. user defined 

thresholds). In the author’s opinion, there is a lack of appropriate uncertainty analysis methods, 

and therefore future studies should focus on the development of more robust and far less 

subjective global sensitivity and uncertainty analysis methods. In addition, attention should be paid 

to the development of methodologies to assess uncertainties in the absence of measured data (i.e. 

ungauged systems), that in fact is the main problem in hydrological modelling field.  

The main issue with most of the Bayesian approaches is related to the fact that they rely on a 

number of assumptions related to the structure of the model errors (residuals). The data 

transformation used here to meet the normality assumption altered the data by influencing the 

emphasis on various parts of the hydrographs (to obtain a more even distribution of the flows). 

This means that, in the transformed space, the chosen least square based likelihood function no 

longer focuses on the peaks (as initially desired), but on medium and low flows. Future work 

should always ensure that all assumptions are verified, for such future studies should focus on 

other data transformation methods, and on the investigation of alternative formal likelihood 

functions to accommodate correlated and non - normal model residuals.   

Sources of uncertainties in stormwater modelling 

The impact of calibration data availability (i.e. different sections of the calibration dataset) on the 

model sensitivity and predictive uncertainty should be evaluated and incorporated into the global 

approach for modelling uncertainties. Besides contributing to a better understanding of the impact 

of calibration data availability on the total model uncertainty, this would be useful to guide future 

applications of the model, mainly when only a limited number of events is available in the 

calibration dataset.  

Future work should focus on the evaluation of structural errors (mainly related to the model 

conceptualisation, equations, numerical methods and boundaries) as they seem to be a major 

contribution to the total model uncertainty.  

The proposed framework used to evaluate the impact of the input and calibration data on the 

sensitivity and uncertainty of the tested stormwater models should be applied to other stormwater 

models. In addition, alternative error models to estimate the errors associated with measured data 

should be developed and tested. These would be useful to further validate the application of the 

method for a range of models and data.  
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Improving water quality modelling 

It is very likely that semi-physically based conceptual models are just not able to cope with the 

stochasticity of the pollution generation processes. As such, further work should focus into 

development of radically different water quality models to those currently used in practice.  

Engagement with stormwater professionals 

In the author’s opinion, it is crucial that the researchers working with the assessment of 

uncertainties in stormwater models should engage with other stormwater professionals (e.g. 

decision makers, planners, etc.) in order to discuss the best ways to communicate and use the 

quantified uncertainty. This would be mainly beneficial to provide strategic directions for the 

future of uncertainty assessment in the urban drainage field.  
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B.1 Glossary 

The following definitions are not new and are established in various guidelines (Taylor and Kuyatt, 

1994; Kacker and Jones, 2003; Michelson et al., 2005; Bertrand-Krajewski and Muste, 2007; ISO, 

2009a; b) and studies referenced thought the thesis.  

Calibration is an iterative process of matching or minimizing the difference between observed 

values against simulated responses by means of an objective or a likelihood function.  

Calibration algorithm is the method used to calibrate the model (i.e. to minimise the difference 

between measured calibration data and modelled values). 

Calibration data is the measured input data required to calibrate the model (i.e. measured data to 

be compared to the modelled values). 

Conceptual parameters are those quantities that are unobservable and can only be inferred 

through calibration. 

Error is the difference between a true value and a modelled/observed value.  

Input data is the measured input data required by a model. 

Measurand is a particular quantity subject to measurement. A result of measurement is a value 

attributed to the measurand.  

Model sensitivity is the sensitivity of the model outcomes to changes in the model parameters. It 

is also referred as parameter sensitivity.  

Model structure refers to the formulation, assumptions and initial conditions if the model. 

Model validation is the processes of assess how well (or not ) the model can perform outside the 

calibration period.  

Objective function is a function representing the errors between the measured calibration data 

and modelled values.  

Physical parameters are parameters that can be estimated by measurements independently of 

observable catchment responses.  

Random error is the result of a measurement minus the mean that would result from an infinite 

number of measurements of the same measure carried out under repeatability conditions (because 

only a finite number of measurements can be made, it is possible to determine only an estimate of 

random error). 

Sensitivity analysis is the process of varying model calibration parameters within a reasonable 

interval and observing the relative change in model responses (the parameters that are most likely 

to significantly affect relevant outputs are determined).  
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Standard uncertainty is the uncertainty of the result of a measurement and is expressed by the 

standard deviation.  

Systematic error is an error which results from some bias in the measurement process and is not 

due to chance, in contrast to random error. 

Uncertainty characterizes the dispersion of the values within which the true value is believed to lie 

with a pre-established level of confidence (e.g. it can be expressed by a standard deviation, or a 

given multiple of it, or the width of a confidence interval).  

Uncertainty analysis is the term used to describe the exercise of identifying the uncertainty in the 

model results. 
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