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Abstract

Critical roles of return higher moments in financial activities, which have been
increasingly documented, suggest that it is worthwhile to analyze the behavior of the
financial return distributions under various market conditions. The aim of this thesis is
to model the responses of stock and currency return distributions to exogenous shocks
under various forms of news which hit the financial markets. Specifically, this thesis is
concerned with three scenarios: (i) when each of the return higher moments is shocked;
(if) when the hidden information arrives; and (iii) when the overall sovereign credit

ratings change.

Chapter 2 examines the linkages within-between stock and currency (FX) markets
via three higher moments: realized volatility, skewness and kurtosis using the
Generalized Impulse Response within a Fractionally Integrated Vector Autoregressive
(FIVAR) framework. We find evidences of positive linkages within stock and FX
markets via all three higher moments in both emerging and developed groups.
However, the spread of the FX markets linkages via their 2" and 4™ moment is broader
in the developed regions compared with the emerging regions. For the cross-assets
linkages, the stock and FX markets in emerging groups are more likely to be negatively
linked through the 3™ moment; whereas, those in developed groups are positively
transmitted through the 2™ and 4™ moment. Finally, in developed markets, the cross-
assets linkages are often found to be weaker than the same asset linkages in terms of the

magnitude.

xii



Limitations of methodology used in Chapter 2, where the endogenous variables in
a FIVAR model need to be fractionally differenced before using the impulse response
analysis of a VAR model, lead us to develop a new approach in Chapter 3. We based on
the spirit of Peseran and Shin (1998) to derive a generalized impulse response function
for the FIVAR model. Chung (2001) has the same purpose but he makes use of the
orthogonalized approach proposed by Sims (1980). Our method is different from the
methodology shown in Chung (2001) in a sense that it does not require us to
orthogonalize the error vector and, therefore, is independent of the ordering of the
variables in the system. Consistent with Chung (2001) and the long memory behavior,
we show that generalized and orthogonalized impulse responses of FIVAR evolve
slowly at the same hyperbolic rates. However, we also note that they are different in a
number of aspects. For the purpose of statistical inference in empirical studies, we
derive asymptotic theories for both functions. We summarize the results for two
scenarios associated with one- and two-step estimation methods, respectively.
However, our simulations’ results support an application of the two-step estimation
procedure in generating the generalized and orthogonalized impulse responses of a

FIVAR model.

Chapter 4 utilizes the methodology developed in Chapter 3 to reassess influences
of trading volume on stock and FX return distributions while allowing the possibility of
interactions among return higher moments. Given the evidence of the higher moments’
inter-relationship, the chapter extends the analysis by exploring how trading volume
affects the dynamic structure of higher moments’ inter-relationship. Our reassessment
of volume - volatility interaction supports a complementary property among

information theories and further contributes evidence of cross — market relations

Xiil



between volume and volatility. The result for the volume — skewness relationship in
conjunction with previous studies leads to a hypothesis that direct impact of volume on
the level of negative skewness is less significant for a better diversified portfolio. We
further find that the negative interaction between volume and kurtosis can be explained
by the differences of opinion hypothesis. Although behavior of the inter-relationship
towards significant events and new policies are robust, its strength is mostly decreased
by the trading volume. Fundamentally, this finding is consistent with the prominent
result found in the volume — GARCH effect literature, which suggests that trading

volume is a source of heteroskedasticity in the return volatility.

In Chapter 5, we investigate the effects of credit rating agencies (CRASs)’
sovereign credit assessments on stock and currency return distributions by developing a
framework that allows a multivariate system of long memory processes to be
conditional on specific credit rating regimes. We find heterogeneous effects of
sovereign rating actions across regimes, implying the usefulness of our proposed model
in accommodating both long memory and regime switching features. Furthermore, we
reveal that the total effects (both direct and indirect forces) of sovereign credit
assessments on the realized moments can be different to their direct effects. Hence, we
develop an impulse response of a transfer function, which can capture these total
effects, to investigate which agency has the greatest impact on the EU financial return
distributions. We find that the rank orders of CRAS are not unique across rating regimes

and even in each realized moment.

Xiv



Chapter 1

Introduction

1.1 Background and motivation

It has been widely accepted that financial return distributions usually exhibit
characteristics of asymmetry and excess kurtosis, which have violated the regular
assumption of a normal distribution of financial returns. These stylized facts, thus,
exemplify that alongside volatility risk, the asymmetric and fat-tail risks have also
played critical roles in many financial activities, such as asset pricing, Value-at-Risk
(VaR) calculation and asset allocation. Harvey and Siddique (2000) document that asset
returns can be explained by the conditional skewness. Athayde and Flores (2003) point
out the importance of skewness and kurtosis in portfolio optimization. Further,
Jurczenko and Maillet (2006) use the four-moment CAPM to demonstrate that a
presence of skewness and kurtosis can considerably affect the asset pricing. In addition,
Mandelbrot and Hudson (2004) suggest that the estimation of VaR may be flawed if
either of the higher moment risks is ignored. Most recently, Brunnermeier and Pedersen
(2009) and Conrad et al. (2012) have also emphasized on the importance of the higher

moments in financial activities.
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An increasing evidence of significant roles of higher moments suggests that it is
worthwhile to analyze the behavior of the financial return distributions under various
market conditions. However, this type of investigation would require consistent and
robust estimates of higher moments of the return distributions. Since the introduction of
the Autoregressive Conditional Heteroskedasticity (ARCH) model (Engle, 1982), the
volatility clustering behavior of financial return distributions has been successfully
described. Thus, the conditional volatility has been extensively measured using the
ARCH model and its extensions, for example the family of Generalized ARCH
(GARCH) models (first extended by Bollerslev, 1986) and the multivariate GARCH
family of models (see Frances and VanDijk, 2000). Inheriting a success of the ARCH
model, the other higher moments have been conditionally modeled within parametric
frameworks such as the family of time-varying conditional skewness and kurtosis
models (see for example, Harvey and Siddique, 1999; Guermat and Harris, 2002;
Korkie et al., 2006; Lanne and Saikkonen, 2007; Hashmi and Tay, 2007; and
Wilhelmsson, 2009). Utilization of parametric models might be useful for the cases of
low frequency data (e.g., monthly, daily data). However, a drawback of the parametric
approach has been well recognized that the estimates of conditional higher moments
rely heavily on the underlying model assumptions. In addition, this may be more
problematic when we come up with a multivariate system due to the large number of
parameters that need to be estimated (see Pagan, 1996).

The recent development in methodologies and the increasing availability of high
frequency data have provided a better alternative for measuring the higher moments
non-parametrically from intraday returns. The use of intraday data compared to daily
closing data may lead to a better representation and more robust estimate of the actual

price behavior (see for instance, Andersen et al., 2003; Barndorff-Nielsen and Shephard
2



Chapter 1: Introduction

2004a, 2004b). The realized higher moments, which are the higher moments
constructed from intraday returns, can be treated as observable variables and, therefore,
are able to be modeled directly within an econometric framework. Further, as estimated
non-parametrically, the realized higher moments are free from the distributional and
other parametric model assumptions. Therefore, an introduction of the realized
measures has facilitated an investigation of the behavior of the financial return
distributions.

This thesis exploits the advantages of the realized higher moments to investigate
how financial return distributions react to an exogenous shock under various forms of
news which hits the financial market. Due to the critical roles of higher moments which
have been discussed earlier, a focus on the financial return distributions would help to
explain the role of the informational transmission mechanism of the exogenous shock
in a variety of financial activities. More specifically, we are mainly interested in the
transmission mechanism of the higher moments between financial markets as well as
the impacts of hidden information arrival and sovereign credit ratings news on financial
return distributions. In other words, our core purposes are to investigate the reactions of
financial return distributions under three scenarios: (i) when there is an exogenous
shock in each of the higher moments; (ii) when there is an arrival of hidden information
to the market; and (iii) when there is a change in the overall sovereign credit quality

assessment.

1.2 Research questions

1.2.1 How do financial markets link and cross-link via higher moments?

The recent financial turbulences exemplify the importance of financial market

linkages due to an increase in the level of integration among markets. It is likely that
3



Chapter 1: Introduction

one market would be affected by a shock coming to other markets. For example, the
recent failures in financial markets around the world were originated from issues in the
U.S mortgage markets. Hence, a better understanding of financial markets linkages
would be beneficial in forecasting the markets’ reaction and managing potential risks in
an ever more integrated financial world. In addition, emphasizing on the linkages via
higher moments helps to explain the transmission mechanism of volatility, asymmetric
and fat-tail risks among financial markets.

Even though empirical evidence of volatility transmission has been extensively
witnessed in the literature (e.g., Kearney and Patton, 2000; Speight and Mc Millan,
2001; Cai et al., 2008; and Bubak et al., 2011), it is worthwhile to re-evaluate the issue
under different markets’ properties (e.g., developed markets vs. emerging markets;
stock markets vs. foreign exchange markets). This is due to the introduction of the
realized estimates of higher moments and the increasing availability of intraday data as
mentioned previously. Besides, the limited number of studies about the transmission of
asymmetric and fat-tail risks does not correspond with their importance and motivates

to explore these issues in depth.

1.2.2 How does the hidden information arrival affect financial returns

distributions?

According to the market microstructure perception, the primary factors that cause
movements of assets’ price are the arrival of new information and the procedure that
incorporates this information into the market (Andersen, 1996). As a proxy of the
arrival of hidden information, the trading volume has been widely used to investigate
the role of information arrival in determining the financial returns distributions. The

relevant information theories, including the mixture of distributions hypothesis (e.g.,

4



Chapter 1: Introduction

Clark, 1973; Epps and Epps, 1976; and Tauchen and Pitts, 1983), the sequential arrival
of information hypothesis (e.g., Copeland, 1976, 1977) and the differences of opinion
hypothesis (e.g., Shalen, 1993; and Harris and Raviv, 1993), suggest a positive and lead
— lag relationship between the trading volume and the return volatility. Hong and Stein
(2003) employed the differences of opinion hypothesis in conjunction with short — sales
constraints to propose that the negative skewness of return will be greater conditional
on a high trading volume.

Regarding the volume — volatility relation, empirical studies have consistently
confirmed a positive and lead — lag linkage in terms of same — asset markets (within
stock or foreign exchange markets) (e.g., Kalev et al., 2004; Bjennes et al., 2005;
Bauwens et al., 2005; and Chan and Fong, 2006). However, the cross — asset markets
perspective has not yet received corresponding attention. Besides, a mixture of
empirical results is reported for the volume — skewness relationship (see, Chen et al.,
2001; Hutson et al., 2008; Hueng and McDonald, 2005; and Charoenrook and Daouk,
2008). Additionally, lack of study on the volume — kurtosis relation in the literature
provides further issues which need to be investigated to comprehensively model the

impacts of information arrivals on financial return distributions.

1.2.3 How do the sovereign credit quality assessments affect the financial

returns distributions?

Sovereign credit ratings are expected to have effects on the behavior of asset
prices, especially during the financial turbulences (see for example, Brooks et al., 2001;
Ferreira and Gama, 2007; Alsakka and ap Gwilym, 2012). However, the credit rating
agencies, providers of specialist information about the credit quality of a sovereign,

have often been complained about based upon their slow reaction to the international
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financial crises as well as their inability to forewarn the market participants (see Mora,
2006; and Gorton, 2008). Hence, it is necessary to evaluate the impact of agency ratings
on the stability of financial markets, specifically financial returns distributions.
Emphasizing on the financial returns distributions helps to fully understand the role of
the informational transmission procedure of sovereign credit ratings in financial
decision marking. This is due to the critical roles of return higher moments in financial
activities as discussed previously.

The impact of sovereign ratings changes on the first moment of asset returns
distributions have been widely studied in the literature (see for example, Brooks et al.,
2004; Gande and Parsley, 2005; Ferreira and Gama, 2007; and Hill and Faff, 2010a).
Yet, there is a shortage of investigation focusing on the higher moments. A possible
reason was the shortcomings of the parametric models used in estimating the
conditional higher moments. At present, the utilization of the realized higher moments,
constructed non-parametrically from intraday data, should facilitate analyses to fill this
gap in the literature. However, it would raise a new challenge in econometric modeling
in terms of the rating literature. A set of flexible fractional degrees of integration should
be allowed in an econometric framework to accommodate for both short — memory (in
cases of realized return and skewness) and long — memory (in cases of realized
volatility and kurtosis) behaviors. Simultaneously, the regime switching property of the

rating data should also be captured by the framework.

1.3 Outline of the thesis

Chapter 2 provides an assessment on the financial markets linkages via higher
moments with a particular focus on stock and currency markets. In this chapter, we
utilize the high frequency data to construct the realized volatility, skewness and kurtosis

6
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non-parametrically. We investigate their spill-over effect to understand how the
financial markets are linked via their higher moments. The fractionally integrated
Vector Autoregressive (FIVAR) model is employed to capture any long memory
behavior of the realized higher moments. The generalized impulse response function
and its bias-corrected bootstrap confidence interval within a VAR (filtered from the
FIVAR) model are then obtained for the purpose of statistical inference of the spill-over
effect.

In chapter 3, we develop a generalized impulse response (GIR) function for the
FIVAR model using the Pesaran and Shin (1998) approach. This function helps to
overcome the limitation in terms of methodology used in chapter 2, where the available
generalized impulse response function can only be computed in a VAR model. We also
reformulate the orthogonalized impulse response (OIR) function developed by Chung
(2001) for a comparison purpose. To facilitate statistical inferences in empirical studies,
we derive asymptotic theories for both the orthogonalized and generalized functions.
We summarize the results for two scenarios associated with one- and two-step
estimation methods. Simulation results are also provided in this chapter.

Chapter 4 makes use of methodologies developed in chapter 3 to investigate
influences of trading volume on stock and FX return distribution while allowing the
possibility of interactions among return higher moments. This chapter also analyses
how trading volume affects the dynamic structure of linkages between higher moments
of asset returns. These issues are explored in conjunction with the implications of
relevant information theories, namely the mixture of distributions hypothesis (MDH),
the sequential arrival of information hypothesis (SAIH) and the differences of opinion

hypothesis (DOH).
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Chapter 5 develops a framework that allows a multivariate system of long
memory processes to be conditional on specific regimes. The model is applied to
examine the effects of credit rating agencies (CRAS)’ sovereign credit re-ratings on
European stock and currency return distributions via their first four realized moments.
An impulse response of a transfer function is also proposed in this chapter to
investigate which agency has the greatest impact on the European stock and currency
return distributions.

Chapter 6 concludes the thesis by summarizing the key findings of the main
research questions. It also discusses some limitations and provides some directions for

the future research.



Chapter 2

Financial Markets Linkages via Higher

Moments: A Realized Spill-over Approach

2.1 Introduction

A profound comprehension about the financial markets linkages has been even
more crucial due to an increase in the integration of national markets into international
markets. For example, the Subprime Mortgage crisis followed by the recent Global
Financial crisis has caused a meltdown in financial markets around the world. More
specifically, the contagion originated from the U.S to the rest of the world has almost
brought down the global financial market. Accordingly, the clear understanding of
financial markets linkages can assist investors, managers and policy makers in
forecasting the markets’ reaction and managing potential risks if there are adverse
shocks coming in. However, whilst to date there has been an extensive empirical
research studying on the linkages of financial markets via their volatility, how they
interact through their skewness and kurtosis has not been well understood. This chapter

aims to contribute directly to this strand of literature by investigating the volatility,
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skewness and kurtosis transmission while allowing for comparisons between different
markets’ properties (e.g., developed markets vs. emerging markets, stock markets vs.

FX markets).

2.2 Literature review

The information on volatility linkages helps investors, researchers and policy
makers in understanding the transmission of volatility risk between financial markets.
Meanwhile, the skewness linkages explain how markets are linked through the level of
asymmetry of the return distribution. Therefore, the spill-over of downside (upside) risk
between financial markets is revealed. Likewise, studies of kurtosis linkages provide
better insights into the spread of fat tail risk across financial markets since they provide
knowledge about markets’ relationship through the occurrence of extreme events.
Whilst the importance of volatility risk and downside (upside) risk towards almost all
markets’ participants and policy makers is well known, the problem of fat tail risk
attracts more concerns from hedge funds. This is because of hedge funds’ mixed
strategies including derivative trading, short selling and illiquidity assets investment
which lead to much higher excess kurtosis and fatter tail in returns than a normal
distribution'. However, since the performance of hedge funds can have a significant
impact on the stability of the whole financial system?, the risk of fat tail also deserves a

significant consideration.

The literature has witnessed extensive empirical evidence of volatility

transmission across financial markets. Some examples are Hamao et al. (1990), Engle

! See Fung and Hsieh (2001) and Amin and Kat (2003) for example.

% This fact can be seen clearly from the collapse of Long Term Capital Management L.P. in 1998.
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et al. (1990), Kim and Rogers (1995), Alexander (1995), Speight and McMillan (2001),
and Wang et al. (2002). These studies normally investigate the spill-over effect by
using parametric models, for instance, the GARCH model developed by Bollerslev
(1986) and its extension. More specifically, a two-step estimation approach is generally
applied whereby the univariate GARCH models are estimated at the first stage, and the
volatility spill-over is subsequently investigated by using the fitted conditional variance
(in lagged terms) as an independent variable in the GARCH equation for one or more
return series. The main disadvantage of this approach is that it may not be fully
efficient and the estimated conditional volatility relies heavily on the underlying model
assumptions. These drawbacks of the two-step estimation approach have led to a more
efficient method, the multivariate GARCH family of models (see Engle and Kroner,
1995; Frances and VanDijk, 2000). Examples of studies using the multivariate GARCH
model are Karolyi (1995), Longin and Solnik (1995), Darbar and Deb (1997), Kearney
and Patton (2000), and Scheicher (2001). However, the problem of dimensionality may
arise in a multivariate GARCH model due to the large number of parameters that need
to be estimated (see Pagan, 1996). This suggests that multivariate GARCH is
practically applicable only to a small dimensional system.

However, recent development in methodologies for estimating volatility and the
increasing availability of high frequency data allow researchers to overcome these
problems. These methods, called realized volatility, are fully non-parametric and model
free, where volatility is considered to be observable and can be calculated directly from
the intraday return®. This is in contrast with the parametric models mentioned earlier
where volatility is estimated from its past values and treated as an unobserved variable.

The new approach, therefore, allows the realized volatility series to be input data for

® See for example, Andersen et al. (2003) or Barndorff-Nielsen and Shephard (2004a, 2004b)
11
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standard econometric techniques. The literature shows that most parametric models,
which treat volatility as a latent variable, fail to adequately explain a number of
observed stylized facts of financial variables (see among others, Bollerslev, 1987;
Carnero et al., 2004; and McAleer and Medeiros, 2008). Besides, Wongswan (2006)
states that although the utilization of relatively low-frequency data (such as, daily or
weekly data) can provide much useful information, both the short-run adjustment
effects as well as the effect of fast-processed information may be overlooked. On the
other hand, the use of high frequency data helps to improve estimation of volatility and,
consequently, the inference about realized volatility’s transmission is improved (Bubak
et al., 2011). Examples of recent research using realized volatility to investigate the
spill-over effect are Cai et al. (2008), Kim and Doucouliagos (2009), McMillan and
Speight (2010), and Bubak et al. (2011). Those empirical studies, however, limit their
concern to the spill-over in futures markets or across foreign exchange markets. This
chapter extends the context by investigating the realized volatility spill-over effect not
only within stock and foreign exchange markets but also between them across
countries. This scope allows us to understand whether the spill-over effect behaves
differently in different types of market. Further, it provides knowledge about the
linkages between stock and foreign exchange via realized volatility.

In contrast with the literature on volatility spill-over, there is limited study
focusing on the area of skewness and kurtosis linkages in financial markets. Regarding
the skewness transmission, whilst Korkie et al. (2006) provides supports of skewness
persistence within equity markets, Hashmi and Tay (2007) find little evidence of a
skewness spill-over effect from the global and regional factors. In term of kurtosis
linkages, most papers have investigated the issue via the interaction of the occurrence

of extreme returns between markets. Examples include Longin and Solnik (2001) and
12
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Cumperayot et al. (2006). The common result found is that the occurrence of extreme
returns in one market is likely to be positively correlated with that in other markets.
These studies analyse the transmission of asymmetric and fat-tail risks in the national
country-by-country context by using the parametric and semi-parametric models with
low frequency data*, which rely heavily on the underlying model assumptions as
explained earlier. To the best of our knowledge, there has not been any study which
makes use of intraday data to analyse the skewness and kurtosis linkages. Further, since
Dacorogna et al. (2001) suggests other higher moment measures can be constructed by
using intraday return, we extend the idea of realized volatility to estimate realized
skewness and realized kurtosis non-parametrically. The realized skewness and realized
kurtosis, therefore, are treated as observed variables and they can be used to analyse

spill-over effects with standard econometric techniques.

The contribution of this chapter is a thorough investigation of financial markets
linkages using the high frequency data in a global context, particularly for within-
between stock and FX markets. This analysis involves a broad range of countries in
terms of both geography and market development, which allows better comparisons
between the linkages due to different markets’ properties (e.g., developed markets vs.
emerging markets, stock markets vs. FX markets). Further, we investigate the linkages
via their three higher moments, which are volatility, skewness and kurtosis, to
understand the transmission of volatility risk, downside (upside) risk and the fat tail
risk, respectively. In this study, markets’ linkages are defined as the spill-over effects

which we assess subsequently through the GIR analysis proposed by Pesaran and Shin

* For example, Time varying Conditional Skewness model and Extreme Value Theory for the case of

skewness and kurtosis spill-over, respectively.
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(1998) within a FIVAR model. For a more accurate statistical inference about the
existence of a spill-over effect, we construct the 95% bias-corrected bootstrap

confidence interval as proposed in Efron and Tibshirani (1993).

The remainder of this chapter is organized as follows. Section 2.3 explains the
construction of data for analysis. Section 2.4 describes the estimation of the degree of
fractional integration for three realized measures. Section 2.5 and section 2.6 discuss
the FIVAR model and the GIR employed, respectively. Section 2.7 provides the

empirical results of realized spill-over effects and section 2.8 concludes.

2.3 Data and construction of realized measures

We employ 5-minute interval intraday stock and foreign exchange (FX) market
data from the Thomson Reuters database via the Securities Industry Research Centre of
Asia-Pacific (SIRCA). The use of 5-minute returns can avoid the problem of
measurement error and reduce microstructure biases (see Andersen and Bollerslev,
1998, and Andersen et al., 2001b). In the FX market, the USD is used as the base
currency. The sample range is from 01/01/1997 to 20/05/2010. Data on weekends are
excluded. Countries are then grouped as suggested by Thomson Reuters. We
investigate five main regions, namely Asia Pacific Developed, Asia Pacific Emerging,
Asia Emerging, America and Europe Developed. Asia Pacific Developed markets
include Australia, New Zealand, Hong Kong, Japan and Korea. Asia Pacific Emerging
markets include Indonesia, Malaysia, Philippines, Taiwan and Thailand. Asian
Emerging markets include China, India, Pakistan, Taiwan and Thailand. American

markets include Brazil, Chile, Peru, Argentina, Canada and the United States. European
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Developed markets include Austria, Belgium, France, Germany, Greece, Ireland,
Norway, Portugal, Spain, Switzerland, Sweden and the United Kingdom.

In the American market, we also investigate the sub-group, Latin American
countries, which represent the American emerging markets in Latin America.
Additionally, we divide European developed countries into three sub-groups: North
Europe includes Ireland, Sweden, the UK and Norway; South Europe includes Greece,
Portugal and Spain; Western Europe includes Austria, Germany, France, Switzerland
and Belgium.

Since the stock market is not a non-stop trading market, we consider a trading day
as that part of the day when stock markets are open®. We therefore define our trading
hours as 22:00 GMT to 8:00 GMT for Asia Pacific Developed markets; 1:00 GMT to
9:30 GMT for Asia Pacific Emerging markets; 1:00 GMT to 10:30 GMT for Asian
Emerging markets; 7:00 GMT to 17:30 GMT for European markets and 12:00 GMT to
21:00 GMT for American markets®. As such, in the Asia Pacific Developed markets,
the period from Monday 22:00 GMT to Tuesday 8:00 GMT is considered as our
Tuesday sample.

The 5-minute intraday returns are calculated as the change in natural logarithmic
of the mid prices. The mid-price, which is the midpoint quote between the Bid and Ask

price, is employed to minimize the effect of Bid-Ask bounce (see Roll, 1984). For the

® Hansen and Lunde (2005) propose to estimate the realized volatility of a stock market for the whole day
to account for the potential latent information during non-trading time. However, since the scope of our
study is to analyze the spill-over effects in a wide range of countries, this methodology is not applicable
because of different trading and non-trading time in GMT in different stock markets.

® Details of GMT Offsets and Stock Markets Trading Times (GMT) for all countries are reported in

Table 2.1.
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countries in the European Union, we use prices of their own currencies to calculate
intraday returns before the day they joined the Union and prices of EUR are used after
that day. From the intraday return, we then construct the realized measures for analysis.

The daily realized volatility is computed as proposed by Andersen et al. (2003):

RV, = Z r2 (2.1

where ri; denotes a ith 5-minute return during day t and D denotes the total number of

5-minute return intervals during any trading day.

As suggested in Dacorogna et al (2001), other higher moment measures can also
be constructed by using intraday returns. We follow the formula presented in Chen,
Hong, and Stein (2001) to compute the realized skewness. The daily realized skewness

for any day tis:

D(D-1*2(>.° 1)

RS, =— -
(D-)(D-2)(Q. ., r3)*"

(2.2)

This is the negative of the third moment of returns divided by the cubed standard
deviation of returns to standardise for differences in variances. The negative sign is
included to make sure that an increase in the daily skewness corresponds to an asset
return having a more left-skewed distribution (Chen et al., 2001). Therefore, by using
this formula we focus on the importance of the downside risk in analysing the spill-over

effect.

To compute realized kurtosis, we extend the idea of the realized volatility’s

methodology. Since the realized volatility is the second moment of realized return, the
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realized kurtosis, defined as the standardized 4™ moment of realized return, can be

calculated as:

RK, = -5 (2.3)

Additionally, due to different holidays in different markets included in the model,
the Catmull-Rom Spline, a family of the Cubic Spline Interpolation method, is
employed to reconstruct missing data due to holidays and days when the number of
trades is equal to zero. The Spline Interpolation method has been found to be useful in
empirical studies which deal with missing observations in time series data (see
Damsleth, 1980; and Pavlov, 2004). The Catmull-Rom Spline can be applied

straightforwardly as follows:

Yo = QA =32 +1)y + (A =22 + )Y — Vin)
- (213 - Bﬁz)ym + (}LS - /12)(yt+z ~ Y1) (2.4)

where y; is the missing observation at time t that needs to be filled in, A is the relative
position of the missing observation divided by the total number of missing observations
in the series. yi+1 and yi+, are the next two non-missing observations. yi; and y;., are the
previous two non-missing observations. In this case, y; can be the daily series of
realized volatility, realized skewness or realized kurtosis which are computed according

to the formulas given earlier.
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The descriptive statistics of (logged) realized volatility, realized skewness and
(logged) realized kurtosis of some selected markets are reported in Table 2.2°.
Normally, as shown in Andersen et al. (2003), the realized volatility estimates of many
markets are approximately normal since their skewness and kurtosis are respectively
close to 0 and 3. However, this fact does not hold for all markets examined, since we
observe the distribution of realized volatility in some markets are much more
leptokurtic (e.g., Brazil stock market or Belgium and France FX market®). Regarding
the realized skewness measure, despite approximately showing a symmetric shape, its
distribution is usually leptokurtic. Interestingly, after transforming to its natural
logarithm, the distribution of realized kurtosis is approximately normal in many

countries since its skewness and kurtosis are close to 0 and 3, respectively.

The Ljung-Box statistics indicate strong serial correlation in all cases for the
realized volatility and most of the cases for the realized kurtosis. In terms of realized

skewness, the long-range dependence presents in some cases according to the Ljung-

" The realized volatility and kurtosis are transformed to their natural logarithm. The use of realized
logarithmic volatility in analysis is supported extensively in the literature (e.g., Andersen and Bollerslev,
1998, Andersen et al., 2001a, and Andersen et al., 2003). In addition, we use realized logarithmic
kurtosis to achieve the similar scale of the impulse response analysis between three realized measures in
later stage. Therefore, from this stage when we refer to realized volatility and kurtosis, we discuss their
natural logarithm.

& As we observe, significant extreme values of realized volatility of Brazil stock market mostly appear
before the year of 2003. This may be due to the fact that BOVESPA created the New Market in around
2002 to improve market’s transparency and, consequently, reduce uncertainties in the capital market.
Likewise, in the Belgium and France FX markets, a considerable number of extreme values of realized
volatility are observed before the year of 2002, when Belgium and France had not yet switched their

currencies to the Euro.
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Box test statistics. Hence, the features we observe from realized volatility are consistent
with previous studies such as Andersen et al. (2003). However, to our knowledge, the
stylized facts of realized skewness and kurtosis have not been pointed out in the
literature. Further, it is noteworthy that across all three realized measures, the
magnitude of the Q(20) statistics of stock markets are smaller than those of FX markets
in almost all countries. Additionally, the Q(20) statistics of the realized volatility are the
largest and those of realized skewness are the smallest overall. These findings reflect
the fact that realized measures of the stock market constitute more noisy proxies
compared with those of FX markets. Likewise, the realized skewness comprises more
noisy proxies relative to the realized kurtosis and realized volatility. In other words,
there are more latent dynamic components of realized measures of stock markets
hidden in the noises than that of FX markets. Similarly, the noises mask more
underlying dynamics of realized skewness than that of realized volatility or kurtosis.
Therefore, these findings imply a higher degree of predictability for realized measures
of FX markets than that of stock markets. Further, the predictive degree for realized
skewness is lower than that for realized volatility and kurtosis. This implication can be
explained as a generalisation drawn from Andersen et al. (2004), which evaluates and
compares the forecast performance of various volatilites with different degree of serial

correlation.

2.4 Estimation of fractionally integrated degree

The evidence of strong serial correlation in realized measures suggests the need to
analyse their degrees of fractional integration before estimating any model. A number
of recent studies have indicated that the long-range dependence can be efficiently

captured by a long-memory, or fractionally-integrated, process (e.g., Ding, Granger and
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Engle, 1993; and Andersen and Bollerslev, 1997). The long memory process describes
the temporal dependence behaviour in a time series which can be considered as an
intermediate between the two classical processes, the short-memory and the unit root
processes. In these traditional processes, the degree of integration (d) is equal to 0 and 1
in case of short-memory (known as 1(0)) and unit root (the so-called 1(1)), respectively.
In case of a long memory process, d, which can receive value of a fractional number, is
called as the degree of fractional integration. If d > 0, the autocovariances of a time
series decay to O very slowly that they are not summable. When d < 0, although the
autocovariances are summable, they still die out more slowly than the exponential rate
as shown in the stationary and invertible ARMA processes. In our study, we employ the
definition of Brockwell and Davis (1995), and use the term “long memory” whenever
the degree of fractional integration d # 0. Further, the use of fractional degree requires
the idea of fractional differencing for an estimation purpose. The fractional difference
was defined by Granger and Joyeux (1980) and independently by Hosking (1981). The
time series x; is the d’th fractional difference of time series y; if it satifies,

X, =(@-L)"y,, where L is the lag operator. Operationally, the term (1—L)“can be

generated by the following binomial expansion:

Cyd N Ci+d) i & @i
=0 _zr(d)l“(i+1)L_Z_;‘V/i -

i=0
where T'(.) is the gamma function; ” =1, and v® =0, for i = 0.

On the basis of above terminologies, we obtain the degree of fractional integration
(d) using the Geweke and Porter-Hudak (1983) (GPH) log-periodogram regression
estimator. Table 2.3 and 2.4 report estimates of d as well as the associated t test statistic

of their significance for the stock and FX markets in all countries, respectively.
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estimator. Table 2.3 and 2.4 report estimates of d as well as the associated t test statistic

of their significance for the stock and FX markets in all countries, respectively.

At the 5% significance level, the estimates of d of realized volatility are all
significantly greater than O; whereas, there are 25 out of 27 stock markets and 26 out of
27 FX markets showing significant d for the realized kurtosis. In terms of realized
skewness, only limited cases show significant estimates of d (9 out of 27 stock markets
and 13 out of 27 FX markets). Further, we observe that the estimates of d of stock
markets are normally smaller than those of FX markets across all three realized
measures. Likewise, the estimates of d for realized volatility are the largest and those of
realized skewness are the smallest. Hence, these estimates are consistent with the
findings we point out from the Q(20) statistic in the previous section. In addition, in
each category of realized measures, the estimates of d are quite close in terms of stock
or FX markets, indicative of a common long-run dependence within each type of

market (stock or FX markets).

Figure 2.1 provides a graphical illustration and confirmation of the long-memory
results for the three realized measures of a selected stock and FX market. Figure 2.1
graphs the sample autocorrelations of realized volatility, skewness and kurtosis for a lag
of 100 days, respectively. For the realized volatility, the evidence of strong serial
dependence is shown by the slow hyperbolic autocorrelation decay. On the contrary,
the sample autocorrelation of realized skewness decays to zero quickly and then
fluctuates around zero during the displacement of 100 days, supportive of the short-
memory behaviour. In terms of realized kurtosis, although its sample autocorrelation
decays slowly to zero in most cases, the rate of decrease is greater than that of realized

volatility. This result indicates that the serial correlation in realized kurtosis is not as
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strong as in realized volatility. However, the result still confirms the existence of long-

memory behaviour of realized kurtosis in most cases.

Figure 2.1 also shows the sample autocorrelations of the realized measures,
fractionally differenced by applying the filter (1—L)% , where d; is the degree of

fractional integration of the i market. Evidently, this single fractional differencing
operator eliminates appropriately the bulk of the serial correlation in the realized
volatility and kurtosis series since their sample autocorrelations decay quickly then

fluctuate around zero.

2.5 A Fractionally Integrated VAR for modeling the realized

measures

The finding of long-range dependence of realized measures, especially realized
volatility and kurtosis, pointed out in the previous section suggests that a long-memory
model is appropriate to capture those features. Accordingly, Andersen et al. (2003)
introduces a simple long-memory K-dimensional VAR for modeling the realized

volatility (VAR-RV):
A(L)L-L)Y, = ¢, (2.5)
where A(L)=1, —AL-AL*—..—AL", Ajis the KxK matrix of coefficients, p is

the order of the lag polynomials in A(L), Y, = (V. Yars- Vi)' IS the K x1 vector of

endogenous variables at day t and &,isa K x1 vector of white noise.

Hence, under this form, VAR-RV only allows one common value of d for all

endogenous variables in the system. This model, therefore, provides a good description
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of the dynamics when the estimate of d of each endogenous variable is close to each
other. In other words, it is not applicable for a high dimensional system with a wide

range of values of d.

As highlighted in the previous section, in our sample the estimates of d in stock
markets are significantly different from FX markets. Therefore, with the purpose of
providing a broad analysis of spill-over effect within-between stock and FX markets,
we apply an extension of the VAR-RV, called the Fractionally Integrated VAR
(FIVAR). The FIVAR overcomes the limitation of VAR-RV by allowing more than
one value of d in the system. The K-dimensional FIVAR is expressed in the following

form®:

A(L)D(L)Y, =v +¢, (2.6)

where D(L) is a diagonal K x K matrix: D(L) :diag{(l— L)%, 1-L)%,...,(1- L)dK}
and v is the K x1 vector of intercepts. The elements of the Y; vector are the realized

measures.

The specification of FIVAR has been discussed previously in Sela and Hurvich
(2009). In fact, the model can be considered as a subclass of the vector autoregressive
fractionally integrated moving average (VARFIMA(p,d,q)) which has been studied
initially by Sowell (1989). Subsequently, the estimations of VARFIMA and FIVAR

have received large attention from researchers (e.g., Luceno, 1996; Martin and Wilkins,

° For estimation purpose, a further restriction, ;] <% forall j = 1,2,...,K, needs to be satisfied to make
the model stationary. This condition can always be obtained by taking an appropriate number of

differences. For example, if% <d; < %then the first-differenced series has a degree of integration less
than % in absolute value.

23



Chapter 2: Financial Markets Linkages via Higher Moments

1999; and Chiriac and Voev, 2010). One of the most widely used estimation procedures
is the exact time domain maximum likelihood estimation (EMLE) which aims to
estimate d, v and A; simultaneously. Although the EMLE has its own advantages, such
as asymptotic efficiency, it is extremely time-consuming for a high dimensional and
higher-order system as well as for large sample sizes. Further, as pointed out in Diebold
and Rudebusch (1989), the simultaneous maximum-likelihood estimation of d, v and
A may be inconsistent under misspecification of A;. Accordingly, as the scope of our
analysis requires a high dimensional system, we extend the univariate two-step
estimation procedure suggested by Geweke and Porter-Hudak (1983) to the
multivariate case to estimate the FIVAR model. In the first stage, we obtain a consistent
and asymptotically normal estimate of d using the GPH log-periodogram regression
estimator. This consistent estimate of d, therefore, does not depend on the lag orders
and parameterizations of the A; in FIVAR. We then transform Y; to

X, = (X Xy neer Xy ) DY @pplying the relationship™:

a-u"y, i d <>

Xit - 1 3 (27)
a-n**a-Ly, if 5 < d, < 5

Later, we apply the OLS equation-by-equation to estimate the following

unrestricted VAR:

A(L)X, =v+e¢, (2.8)

%We do not transform realized skewness according to (2.7) since the analysis in section 2.4 reveals its

short memory behavior.
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So, the model (2.8) is stationary if all the roots of the estimated polynomial
|A(z)|=0are outside the unit circle. The orders of the lag polynomials (p) in A(L) is
chosen based on the AIC criteria. In addition, the correlograms of the residuals are also
investigated to make sure each of their elements mimics the white noise process. Since
Y. is the realized measures, X; can be interpreted as the filtered realized measures after
removing the effect of structural changes, crises and other elements which can cause

the long-memory behavior.

2.6 Generalized impulse response function for investigating the

spill-over effect

To examine the spill-over effect within-between stock markets and FX markets,
we conduct the GIR proposed by Pesaran and Shin (1998) within model (2.8) to avoid
difficulties in ordering the endogenous variables in a high dimensional system. The

GIR can be outlined as follows,
Given the assumption of covariance stationarity, X; can be rewritten as the infinite

moving average representation,

Xi=w+Y Mg, t=12..T (2.9)

i=1

where w:(IK—ZipzlAi)*lv, and K x K coefficient matrices IT, can be computed

recursively using the relationship,

' mA i=12,.
I, =1 <07 o _ P (2.10)
j:lHHAj 1>p
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where TT, =1,.

The GIR function of X; at horizon h is defined as the difference between the
conditional expectation of X+ at time t+h after incorporating the shock’s effect at time
t and that conditional expectation without the shock’s effect, given the information set

available at time t-1, Q, .
GIR(h,0,Q,) = E(Xt+h|8t =0,Q,) - E(Xt+h|Qt—1) (2.11)

where & =(6,,9,,...,0 ) denotes the K x1vector of shocks hitting the economy at time

t.

Pesaran and Shin (1998) introduce a new approach to calculate the impulse
response directly from (2.11) by shocking only one element, say the jth element of ¢, ,
and then extracting the effects of other shocks. This approach, therefore, makes the GIR
unique and invariant to the order of variables in the system. The GIR function of X; at

horizon h is now defined as:

GIR(h,5,,Q, ;) = E(X,,,

€4 =0, Q) —E(X.4]Q) (2.12)
Using (2.12) in (2.9), we have
GIR(h,éj,QH):HhE(gt‘gjt =35,) (2.13)
With the assumption that & has a multivariate normal distribution, it can be seen that:
E(gt‘gjt =6,)=(01,,05,-:0y;) 056, = 26,056, (2.14)

where e;isa K x1selection vector with unity as its jth element and zeros elsewhere.
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1

By setting the unit shock as a one standard deviation shock™, which is 5, = o2,

from (2.13) and (2.14) we can obtain the GIR function by
~ 1
0,(h) = oI, e, h=0.12,... (2.15)

For statistical inference about the existence of the spill-over effect, the bias-
corrected bootstrap method presented in Efron and Tibshirani (1993) is employed to
construct a 95% confidence interval for the GIR. The bootstrap method has been
extensively applied and found to be useful in many econometrics studies (see
Berkowitz and Kilian, 2000; and MacKinnon, 2002). The steps to construct a

confidence interval can be summarized as follows.

Step 1: Given the filter realized measures X;, we estimate model (2.8) based on

the Least Squares method. The estimator of A= (v, A, A,,...,A)) and the variance-
covariance matrix of the error term, X _, are Aand is respectively. The residual vector,
£,, can also be obtained. From Aand ig, we construct the GIR, #, according to the
formula (2.15).

Step 2: Draw a residual bootstrap sample, gtB, by random sampling &, with
replacement. From the first p values of the original realized measures data and gtB we

generate the pseudo data through the following recursion:

XE=0+AXE +..+A X2 +B (2.16)

1 As such, in this study we refer to the “unit” shock as a shock with size equal to one standard deviation.
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Step 3: Re-estimate model (2.8) with the bootstrap realized data, X2, then

o
calculate the bootstrap generalized impulse response ° . Repeat step 2 and step 3 for
2000 times, which is sufficiently large for the bootstrapping confidence interval (Efron
and Tibshirani, 1993). We then obtain a series of bootstrap generalized impulse

response, {9212

The 100(1-2a)% bias-corrected bootstrap confidence interval for 6 can be

constructed as the interval:
BC: [0,.0,,]1=[6° (), 0% (a,)] (2.17)

where 6%(q) is the g™ percentile from the bootstrap distribution of {éf’}f‘ﬁo;

a, =27, +2)) and a, = ®(2Z, +z"*). ®(.) is the standard normal cumulative

distribution function and z® is the 100a™ percentile of a standard normal distribution.

Further, Z,is called the bias-correction which measures the difference between the

median of the bootstrap generalized impulse response, 6, and the original estimate,é,

in the normal unit. The bias-correction can be calculated directly from the proportion of

bootstrap replications less than the original estimate 6,

il(éf‘<é)

A

7, =D MT (2.18)

@' (.) is the inverse function of a standard normal cumulative distribution function. 1(.)
indicates the indicator function and B is the number of bootstrap replications, in this

chapter it is set to be 2000.
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2.7 Realized spill-over effect

The order of the FIVAR model is chosen based on AIC criteria. In addition, we
also investigate the correlogram of the residuals to ascertain that each of their elements
mimics the white noise process. The estimated FIVAR coefficients are mostly
significant, and all the roots of the estimate of the matrix lag polynomial A(L) are
outside the unit root circle, an indication of covariance stationarity*?. Therefore, the
GIR can be adequately applied to investigate the spill-over effect, which we use as a
representation of the markets linkages. In our analysis, the spill-over effect is defined as
an effect on one variable in next periods that is caused by an exogenous shock to
another variable in the current time. Table 2.5 summarizes the existence and the

magnitude of the spill-over effect in Panel A and Panel B, respectively.

2.7.1 Realized Volatility Spill-over

Considerable evidence of a realized volatility spill-over effect within-between
stock and foreign exchange (FX) market across countries can be found. Figure 2.2
provides a graphical illustration of the effect in some selected markets. In general, these
effects, if they exist, are on a two-way basis and they remain significantly positive for
about 3 days then die out quickly. This result is consistent with the behaviour of the
short memory as we filtered out the long range dependence of realized volatility in the
earlier stage by applying the single fractional differencing operator.

Panel A of Table 2.5 indicates that there is more evidence of a volatility spill-

over effect in developed countries than in emerging countries. However, these

2 Due to unavailability of data, we do not include the China FX market, Pakistan FX market, Belgium
stock market and Portugal stock market in this analysis. Further, to conserve space, we do not report the

estimated FIVAR coefficients. However, the full set of results is available upon request.
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differences mostly come from the FX market linkages (i.e., spill-over effect within FX
markets) and the stock-FX market linkages (i.e., spill-over effect between stock and FX

markets).

Analyzing the stock market linkages (i.e., spill-over effect within stock markets)
via their 2" moment, which is the realized volatility, we observe a similar pattern
between developed and emerging markets. The linkages exist in all cases analyzed in
most of regions, except for Asian Emerging and West European Developed group,

which show evidence in 44% and 81% of cases, respectively.

Regarding the FX market linkages and the stock-FX market linkages via their 2™
moment, the empirical results consistently show greater evidences of a volatility spill-
over effect in developed markets than in emerging markets. Especially, when we
exclude the two developed countries, which are the United States and Canada, from the
American group to investigate the Latin American group, the rates of spill-over’s
existence drop from 44% and 54% to 38% and 41% for the FX market linkages and the
Stock-FX market linkages, respectively. In addition, no emerging region can offer
evidence of the FX and the stock-FX linkages in at least 50% of the cases; whereas all
developed regions show evidence in greater than 70% of the cases. Particularly, we
note the evidence of the FX market linkages in all cases analysed in all European
developed groups. This is consistent with our expectation as many FX markets of
European countries have been driven by common dynamics since they joined the
European Union.

Panel B of Table 2.5 shows no obvious difference in the magnitude of the
volatility spill-over effect is observed for within-between stock and FX markets

linkages in emerging market groups. In developed market groups, however, the
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magnitude of the volatility spill-over effect within FX markets is the largest; followed
by the effects within stock markets whose magnitude approximately equals to that of

the effects between stock and FX markets.

2.7.2 Realized Skewness Spill-over

Empirical results summarized in Panel A of Table 2.5 provide support for the
existence of markets linkages via their 3" moment in many cases. Figure 2.3 illustrates
the GIR analysis in some selected markets. Generally, despite appearing significant
initially, the realized skewness spill-over effects die out quickly after 1 to 3 days. This
finding is consistent with the short memory behaviour of realized skewness which we
discussed earlier. Further, the cross-asset linkages (i.e., spill-over effect between stock
and FX market) via their 3" moment, if it exists, are negative; whereas, these linkages
of the same assets (i.e., spill-over effect within stock or FX markets) are positive.
Interestingly, it is likely to have more evidence of stock-FX markets linkages via their
3" moment in emerging market groups than in developed market groups. However,
there is no apparent difference between these two types of groups in terms of both stock
markets and FX markets linkages.

Regarding the linkages of the stock markets via their 3 moment, most of the
regions show evidence in all cases, except for the Asian Emerging group which
provides supports in 88% of cases. A similar pattern can be seen from the empirical
results of the FX markets linkages, where existences of skewness spill-over effects are
observed in all cases in almost all regions. The exceptions are American (or Latin
American) and Asia Pacific Developed groups, which exhibit evidence in around 70%

of cases.
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An interesting finding comes from the investigation of the linkages between stock
and FX markets via their 3" moment. These relationships are found to be negative in all
cases and greater evidence is observed in emerging market regions rather than in
developed market regions. The rate of the existence of the relationship in emerging
market groups is usually greater than 75%; whereas, it is regularly less than 45% in
developed market groups. Since our calculation of skewness focuses on the downside
risk, this finding suggests a good strategy for investors to diversify the downside risk is
by combining the stock and FX assets in their portfolios, especially in emerging
markets. Further, this result is also consistent with the literature which discusses the
importance of the downside risk in emerging markets (see Estrada, 2002; and
Galagedera and Brooks, 2007).

In terms of the linkages’ strength, Panel B of Table 2.5 displays no clear
difference between three types of skewness spill-over effects in emerging market
groups. However, in developed market groups, we observe a consistent result that the
magnitude of the linkages between stock and FX markets is the smallest. Meanwhile,
the strength of stock markets and FX markets linkages are approximately equal. This
finding suggests that in developed markets, the linkages of the same assets via the

downside risk are greater than those of the cross-assets in terms of the magnitude.

2.7.3 Realized Kurtosis Spill-over

The GIR of realized kurtosis with a 95% bias-corrected bootstrap confidence
interval in some selected markets is illustrated in Figure 2.4. The existence of the
kurtosis spill-over effects is summarized in Panel A of Table 2.5. The empirical results
provide support for the existence of realized kurtosis spill-over effects in many cases.

These effects, if they exist, are all positive but only last a short period of time, about 2-
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3 days. Similar to the realized volatility spill-over effect, this finding confirms the short
memory behaviour of the filtered realized kurtosis. Further, the empirical result of a
positive kurtosis spill-over effect is consistent with previous studies, which found a
positive correlation of extreme returns between markets (see Longin and Solnik, 2001;
and Cumperayot et al., 2006).

Generally, we observe more evidence about markets linkages in terms of both the
same assets and cross-assets via their 4™ moment in developed countries rather than in
emerging countries. In addition, both types of group consistently show more evidence
of the same asset markets linkages than that of the cross-asset markets linkages.

Regarding the stock markets linkages via their 4™ moment, evidence of the
linkages can be observed in all cases analysed in all developed market regions.
Meanwhile, the emerging market regions provide support in around 65% of the cases,
except for the Asia Pacific Emerging group which exhibits significant spill-over effects
in all cases. Likewise, in terms of the FX markets linkages, developed market regions
also provide strong support for kurtosis spill-over effects since they exist in all cases in
3 out of 4 regions. However, the rates of existence of these linkages are about 40% in
the emerging market regions. A similar pattern can be seen from the stock-FX markets
linkages as greater evidence is often observed in the developed market groups rather
than the emerging market groups.

Additionally, it is noteworthy to point out the fact that there is more evidence of
stock markets linkages via their 4" moment than that of FX markets in emerging
market groups; whereas, no obvious difference is observed in developed market groups.
Further, all regions consistently show greater evidence of the same asset markets

linkages than that of the cross-asset markets linkages.
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Panel B of Table 2.5 shows mixed results about the magnitude of the developed
market linkages. However, they all agree that the magnitude of the stock-FX markets
linkages is the smallest. Regarding the emerging markets linkages, no apparent

difference in the magnitude of the spill-over effects is observed.

2.7.4 Discussion of results

The strong evidence of the linkages of stock markets via all three higher moments
describes their tight relationship in both emerging and developed market groups. The
empirical results confirm that the stock markets are positively linked not only through
the standard deviation but also through the asymmetric level and the tails of their return
distribution. In other words, if there is a shock to a stock market which raises the
standard deviation, the level of asymmetry and the occurrence of extreme events of its
return distribution, then a broad spill-over effect should be expected to cause an
increase in those of other stock markets.

A similar scenario is anticipated for the FX markets linkages. However, the
spread of the linkages via the 2" and 4™ moment is narrower in the emerging market
regions compared with the developed market regions. The developed market groups
provide significantly greater evidence of volatility and kurtosis spill-over effects than
the emerging market groups. This result possibly indicates that majority of funds are
invested in developed FX markets rather than in emerging FX markets. Further,
investors are making FX transactions in order to get in and out of the developed
markets more frequently than in the emerging markets. Hence, this result is consistent
with our expectation as major currencies are much more liquid than non-major

currencies.
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In addition, for emerging markets, more evidence of spill-over effects is observed
in stock markets rather than in FX markets in terms of all three realized measures. This
finding implies that emerging stock markets are more liquid than emerging FX markets
counterpart due to benefits of international portfolio diversification.

Regarding the relationship between stock and FX markets, more evidence of the
linkages via the 3 moment are found in the emerging markets rather than in the
developed markets; whereas, the developed regions provide greater support for the
linkages via the 2" and 4™ moment. Further, in emerging markets, the rates of linkages’
existence via the 3 moment are normally greater than that via the 2" and 4™ moment.
Meanwhile, these numbers are regularly the smallest in developed markets. Therefore,
in emerging countries, the cross-asset markets linkages are more likely to be
transmitted through the asymmetry of the return distribution; whereas, they spread out
through the standard deviation and the tail of return distribution in developed countries.
These results are consistent with the importance of the downside risk in emerging
markets as pointed out in the literature (e.g., Estrada, 2002; and Galagedera and
Brooks, 2007). In addition, the negative value of the linkages via the 3" moment
suggests an option for investors to diversify the downside risk by combining the stock
and currency assets in their portfolio. However, this strategy might only be applicable
for the emerging markets since the developed markets provide greater evidence of
linkages via the 2" and 4™ moment rather than via the 3 moment.

In terms of the strength of the linkages via all three higher moments, while the
emerging market groups often show no obvious difference, the developed market
groups consistently display that the magnitude of the same asset markets linkages is
normally greater than or at least equal to that of the cross-assets markets linkages. This

result is consistent with our expectation since there are more common economic factors

35



Chapter 2: Financial Markets Linkages via Higher Moments

connecting the same asset markets than the cross-assets markets. Further, along with a
lower degree of market transparency, emerging markets often contain much more noisy
information than developed markets. Therefore, the difference between impacts of
common economic factors on same asset linkages and that on cross-asset linkages is
possibly insignificant in emerging markets but significant in developed markets. In fact,
this interpretation is consistent with the suggestion in Morck et al. (2000), which states
that emerging markets act as less useful processors of economic information than
developed markets, particularly in terms of stock markets™.

Additionally, our significant evidence of spill-over effects via higher moments in
terms of both same and cross-assets markets emphasize the necessity to involve the
measurement of market linkages via higher moments in many financial activities,
especially asset pricing, value-at-risk (VaR) calculation and asset allocation. Jurczenko
and Maillet (2006) claim an appearance of skewness and kurtosis risk can significantly
affect the asset pricing by introducing the four-moment CAPM model. Likewise, higher
moment risks can also have technical implications on VaR models. Thus, the estimation
of VaR may be flawed if either of those risks is ignored (see Mandelbrot and Hudson,
2004). Further, a miscalculation in asset pricing or VaR can directly result in an

inappropriate asset allocation decision. Therefore, due to the increasing integration

3 Recently, Biittner et al. (2012) and Hanousek et al. (2009) have documented a close linkage between
emerging markets and developed markets which facilitates emerging markets to process information to a
large extent. These studies base on the markets of the Czech Republic, Hungary and Poland; which have
benefited from the plan of European Union Enlargement 2004-2007. The enlargement plan has led a
transfer of massive financial products and assistances from Western European developed markets to
European emerging markets during this period. Therefore, their findings may differ from our

interpretation and the suggestion of Morck (2000) for the cases of our employed emerging markets.
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between countries, an ignorance of markets linkages via higher moments can lead to an
underestimation of skewness and kurtosis risk and, consequently, an incorrect financial

decision.

2.8 Concluding remarks

This chapter assesses the financial markets linkages with particular focus on stock
and FX markets by investigating the spill-over effect not only in the context of
volatility but also skewness and kurtosis using high frequency data. The long memory
behaviour of realized volatility and kurtosis is well captured by the FIVAR model. For
statistical inference, we construct the 95% bias-corrected bootstrap confidence interval
for the GIR. The empirical results provide strong support for positive linkages within
stock markets via all three higher moment in terms of both emerging and developed
markets. Similar properties of the linkages are obtained for the FX markets. However,
the spread of the linkages via the 2" and 4™ moment is broader in the developed market
regions in comparison with the emerging market regions. In term of cross-assets
markets linkages, the stock and FX markets in emerging market groups are more likely
to be linked through the 3 moment; whereas, those in developed market groups are
transmitted through the 2" and 4™ moments. Further, the magnitude of the cross-assets
markets linkages is often found to be less than that of the same asset markets linkages
via all three higher moments. In addition, the fact of negative linkages via the 3"
moment between stock and FX markets suggests that investors can hedge the downside
risk by combining both stock and currency assets in their portfolio, especially in
emerging markets. Finally, our study highlights the importance of the measurement of
financial markets linkages via higher moments in many financial activities, especially

asset pricing, VaR estimation and asset allocation.
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2.9 APPENDIX

Table 2.1: GMT Offsets and Stock Markets Trading Times (GMT) for all countries examined

Countries GMT Offset GMT Trading Hours
Standard time DST Standard time DST

Australia +10 +11 0:00-6:00 23:00-5:00
New Zealand +12 - 22:00-4:00 -
Hong Kong +8 - 2:00-8:00 -
Japan +9 - 0:00-6:00 -
Korea +9 - 0:00-6:00 -
Indonesia +7 - 2:30-9:00 -
Malaysia +8 - 1:00-9:00 -
Philippines +8 - 1:30-4:00 -
Taiwan +8 - 1:00-5:30 -
Thailand +7 - 3:00-9:30 -
China +8 - 1:30-7:00 -
India +5.5 - 3:30-10:00 -
Pakistan +5 - 4:30-10:30 -
Taiwan +8 - 1:00-5:30 -
Thailand +7 - 3:00-9:30 -
Austria +1 +2 8:30-16:30 7:30-15:30
Belgium +1 +2 8:00-16:30 7:00-15:30
France +1 +2 8:00-16:30 7:00-15:30
Germany +1 +2 8:00-16:30 7:00-15:30
Greece +2 +3 9:00-14:00 8:00-13:00
Ireland 0 +1 8:00-16:30 7:00-15:30
Portugal 0 +1 9:00-17:30 8:00-16:30
Spain +1 +2 8:00-16:30 7:00-15:30
Switzerland +1 +2 8:00-16:30 7:00-15:30
The UK 0 +1 8:00-16:30 7:00-15:30
Norway +1 +2 9:00-15:30 8:00-14:30
The USA -5 -4 14:30-21:00 13:30-20:00
Brazil -3 -2 13:00-20:00 12:00-19:00
Chile -4 -3 13:30-21:00 12:30-20:00
Peru -5 - 13:30-21:00 -
Argentina -3 - 14:00-21:00 -

Note: DST denotes Daylight Saving Time.
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Table 2.3: Estimation of fractionally integrated degree for stock markets

Realized Volatility

Realized Skewness

Realized Kurtosis

Country d t-stat p-value d t-stat p-value d t-stat p-value
Argentina 054 5.75 0.00 0.06 0.69 0.49 041 437 0.00
Brazil 037 3.93 0.00 -0.03 -0.29 0.77 032 346 0.00
The US 058 6.20 0.00 010 1.02 0.31 0.27 289 0.01
Chile 0.48 5.12 0.00 0.18 197 0.05 030 3.19 0.00
Peru 0.46 493 0.00 021 228 0.03 040 429 0.00
China 058 6.18 0.00 0.04 042 0.67 011 1.20 0.24
India 0.47 5.05 0.00 010 1.06 0.29 023 251 0.01
Pakistan 0.43 4.56 0.00 0.24 258 0.01 039 414 0.00
Taiwan 072 7.71 0.00 035 3.69 0.00 026 277 0.01
Thailand 072 7.71 0.00 035 3.69 0.00 0.26 277 0.01
Indonesia 0.45 4.80 0.00 0.09 098 0.33 028 299 0.00
Malaysia 051 543 0.00 011 114 0.26 033 347 0.00
Philippines 0.46 4.90 0.00 027 284 0.01 0.61 6.47 0.00
Australia 0.53 5.67 0.00 0.07 0.73 0.47 0.24 253 0.01
Hongkong 0.66 7.05 0.00 0.00 -0.04 0.97 021 220 0.03
Japan 0.61 6.56 0.00 029 3.14 0.00 015 160 0.12
Korea 073 7.79 0.00 -0.05 -050 0.62 022 234 0.02
New Zealand  0.56 5.95 0.00 0.05 0.57 0.57 040 433 0.00
Ireland 057 6.10 0.00 023 250 0.02 054 577 0.00
Norway 059 6.31 0.00 019 198 0.05 0.24 255 0.01
The UK 0.63 6.69 0.00 011 119 0.24 054 581 0.00
Greece 0.47 4.98 0.00 030 325 0.00 056 5.96 0.00
Spain 055 591 0.00 019 2.02 0.05 1.00 10.69  0.00
Austria 059 6.30 0.00 015 156 0.12 031 335 0.00
France 0.45 4.76 0.00 016 175 0.09 040 425 0.00
Germany 0.61 6.48 0.00 011 122 0.23 038 411 0.00
Switzerland 0.62 6.59 0.00 021 221 0.03 033 348 0.00

Note: d denotes for the degree of fractional integration obtained by using GPH (1983) long-periodogram regression

estimator. t-stat and associated p-value are the test statistic and its associated significance value result from testing

the null hypothesis Hy:d=0 against the alternative Ha: d # 0.
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Table 2.4: Estimation of fractionally integrated degree for FX markets

Realized Volatility

Realized Skewness

Realized Kurtosis

Country d t-stat p-value d t-stat p-value d t-stat p-value
Argentina 092 9.82 0.00 0.10 1.04 0.30 0.81 8.66 0.00
Brazil 068 7.30 0.00 0.36 3.80 0.00 071 758 0.00
Canada 0.78 838 0.00 0.18 1.92 0.06 039 4.16 0.00
Chile 069 737 0.00 0.18 1.92 0.06 047 5.01 0.00
Peru 067 7.14  0.00 0.09 091 0.37 021 225 0.03
India 081 869 0.00 0.26 2.75 0.01 059 6.35 0.00
Indonesia 082 873 0.00 0.28 2.97 0.00 054 579 0.00
Malaysia 070 745 0.00 036 3.82 0.00 0.75  8.02 0.00
Philippines 054 576 0.00 0.08 0.84 040 027 290 0.01
Taiwan 061 653 0.00 0.26 2.83 0.01 0.78 8.36 0.00
Thailand 082 873 0.00 -0.02 -0.26 0.80 053 5.65 0.00
Australia 067 7.15 0.00 0.07 0.73 0.47 029 3.06 0.00
Hongkong 068 7.28 0.00 011 1.20 0.23 050 5.29 0.00
Japan 057 6.12 0.00 -0.01 -0.16 0.88 020 2.09 0.04
Korea 062 6.62 0.00 020 215 0.04 0.68 7.26 0.00
New Zealand 0.65 6.93  0.00 0.03 0.27 0.79 019 201 0.05
Ireland 0.77 819 0.00 0.18 1.93 0.06 049 5.22 0.00
Norway 073 7.79 0.00 021 223 0.03 028 3.01 0.00
The UK 0.74 787 0.00 0.08 0.90 0.37 0.44 465 0.00
Greece 0.76 812 0.00 0.17 1.82 0.07 031 335 0.00
Portugal 070 748 0.00 0.24 253 0.01 0.48 5.12 0.00
Spain 069 7.33 0.00 0.24 251 0.01 040 433 0.00
Austria 068 731 0.00 0.29 3.07 0.00 033 349 0.00
Belgium 073 782 0.00 025 272 0.01 026 2.80 0.01
France 069 732 0.00 021 2.28 0.03 0.28  3.00 0.00
Germany 068 7.23 0.00 0.27 2.87 0.01 0.25 2.69 0.01
Switzerland  0.69  7.38  0.00 0.03 0.28 0.78 028 3.03 0.00

Note: d denotes the degree of fractional integration obtained by using GPH (1983) long-periodogram

regression estimator. t-stat and associated p-value are the test statistic and its associated significance

value result from testing the null hypothesis Hy:d=0 against the alternative Ha: d # 0.
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Figure 2.1: Sample Autocorrelations of Realized Measures
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Notes: The figure graphs the sample autocorrelation of daily Australian stock (in red) and

FX (in blue) realized measures for a displacement of 100 days. The solid lines give the

autocorrelation function of realized measures; whereas the dashed lines refer to the

autocorrelation function of realized measures, fractionally differenced by applying the

fitter (1— L)%,

with d; is the degree of fractional integration of the i market. The black

dotted lines are the confidence bands.
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Chapter 3

Generalized Impulse Response Analysis in a

Fractionally Integrated VAR Model

3.1 Introduction

In recent years, studies of fractionally integrated processes have increasingly
attracted attention from both theoretical and empirical researchers. A fractional process
can effectively provide a suitable description of temporal dependence behaviour in a
time series which is shown as an intermediate between two classical processes, short-
memory (also known as 1(0)) and unit root processes (the so-called 1(1)). Accordingly,
the growth of literature on fractional processes can provide more flexible alternatives
for modelling the long-memory behaviour in a time series. Empirical studies have
found evidence that fractionally integrated processes perform well in describing
characteristics of economic and financial data, including volatility of financial asset
returns, forward exchange market premia, inflation rates and the interest rate
differential (see Henry and Zaffaroni, 2003). In addition, a multivariate framework of

fractional processes is able to provide more general tools to investigate the
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interdependence and feedback relationships between series. One of the most widely

used methodologies is the well-known impulse response function.

3.2 Literature review

An analysis based on impulse response functions helps to understand the
“persistence effect of shocks” on variables of a system (see Koop et al., 1996). More
specifically, it tells us about the dynamic response of a variable to an exogenous shock
(impulse) in another variable in a system (Litkepohl, 2005). Generally, three types of
impulse response functions can be employed in a reduced form of a multivariate time
series model (for example, a VAR model), namely non-orthogonalized impulse
response, orthogonalized impulse response and generalized impulse response function.
An utilization of the non-orthogonalized impulse response function requires that the
errors (innovations) in the model are contemporaneously uncorrelated, which is
practically unusual in a reduced form since economic time series are more likely to be
inter-dependent to some extent. Hence, the non-orthogonalized impulse response is
normally employed in a structural form, where the variance-covariance matrix of errors
is diagonal. As we focus on a reduced form of a multivariate time series model, we
solely emphasize on discussions about the orthogonalized and generalized impulse
response functions.

The orthogonalized impulse response function (see Sims, 1980) and the
generalized impulse response function (see Koop et al., 1996, and Pesaran and Shin,
1998) both accommodate for the fact that innovations in a reduced form of a
multivariate time series model are contemporaneously correlated. However, they use
different approaches to address the problem of the choice of shocks to a system. The

orthogonalized approach decomposes the variance-covariance matrix of errors
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according to the Cholesky decomposition to orthogonalize the shocks. The process of
this decomposition, however, requires an implicit assumption that endogenous variables
in a system are in the correct order. In other words, the direction of the instantaneous
causalities among endogenous variables needs to be correctly identified before the
decomposition. Incorrect orderings of endogenous variables may lead to mistaken
conclusions drawn from orthogonalized impulse response analyses (see Lutkepohl,
2005). Nevertheless, this issue may be easily solved in a low dimensional system,
where economic theories can be employed to justify the chosen order of endogenous
variables. The problem can be more complicated in a case of a high dimensional
system, where clear economic guidance on a suitable ordering is not available. In this
sense, the generalized approach is developed to overcome the difficulty. Instead of
using the Cholesky decomposition to address the choice of shocks, the generalized
approach chooses to shock only one element of the error vector, and extract effects of
other shocks. Hence, the generalized impulse response is unique and independent of the
ordering of the endogenous variables (see Pesaran and Shin, 1998).

In the literature, impulse response functions and their asymptotic distribution are
well analysed in a VAR model (e.g., Sims, 1980; Baillie, 1987; Litkepohl, 1989, 1990;
Pesaran and Shin, 1998; and Benkwitz et al., 2000); they, however, have not been
widely investigated in a multivariate long memory framework (e.g., fractionally
integrated VAR model). More specifically, even though many papers have attempted to
develop and apply the estimation and inference of impulse response functions within a

univariate long memory model (e.g., autoregressive fractionally integrated moving
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average (ARFIMA) model) to study economic series’*, only Chung (2001) to date
considers the issue within a multivariate long memory model.

Chung (2001) developed an impulse response generating function for the vector
fractionally integrated autoregressive moving average (VARFIMA) model. To resolve
the problem of the choice of shocks to a system, this methodology follows the
suggestion in Sims (1980) by using orthogonalization of shocks, which results from the
Cholesky decomposition of the error variance-covariance matrix. As discussed earlier,
the underlying requirement of this approach is to determine the most appropriate
direction of the contemporaneous relationship between endogenous variables.
Alternative re-parameterizations may lead to different results of the impulse response
function (see Lltkepohl, 2005, section 2.3.2).

In this chapter, following the Pesaran and Shin (1998) generalized approach; we
develop an alternative impulse response function for a FIVAR model. The main
advantage of the generalized function is that it is unique and invariant to different
orderings of variables in the system. Therefore, the generalized approach provides a
good alternative to the orthogonalized approach in the case of an investigation of a
high-dimensional system where there is no clear economic guidance on a suitable
ordering. Particularly, we show that the generalized and orthogonalized impulse
response function for the FIVAR model evolve at the same rate. Therefore, according
to the previous work of Chung (2001), the generalized impulse response of the FIVAR
model changes at a slow hyperbolic rate. Further, the generalized and orthogonalized
impulse response functions for the FIVAR model are equivalent in the case of the

diagonal error variance-covariance matrix. When the variance-covariance matrix of

14 See for example Diebold et al. (1991), Diebold and Rudebusch (1991), Cheung (1993), Baillie et al.

(1996), Wright (2000) and Baillie and Kapetanios (2012).
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error term is non-diagonal, the two functions generate a coincident response of the
system to the first shock but different responses to all other shocks.

To ease the statistical inference of the impulse response functions within a
FIVAR framework, we also derive asymptotic theories for both generalized and
orthogonalized approaches. Although the bootstrap and Monte Carlo simulation
methods can be employed to construct the confidence interval for the impulse response
functions, the computational burdens of multivariate fractionally integrated models’
estimation procedures make them much less efficient than asymptotic theories.
Regarding the orthogonalized impulse response, we introduce a different form for its
variance-covariance matrix in comparison with Chung (2001), which we believe can
facilitate computational programming. We derive these asymptotic distributions under
two different scenarios corresponding to two estimation methods of a FIVAR model. In
the first scenario, we assume that degrees of fractional integration are consistently pre-
determined before estimating other parameters in a FIVAR model. The results
generated in this case, therefore, are applicable for the two-step estimation methods of a
FIVAR model. In another scenario, we develop the asymptotic theories when all the
parameters of a FIVAR model are estimated simultaneously. Hence, we expect that our
results can facilitate the statistical inference and interpretation for the interdependence
as well as feedback relationships between endogenous variables in a FIVAR

framework.

The remainder of this chapter is organized as follows. In section 3.3, we develop
the generalized impulse response function for a FIVAR model and reform the
orthogonalized function of Chung (2001) to ease its implementation. We discuss the

relationship between the two functions in section 3.4. In section 3.5, we provide an
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empirical investigation of the realized volatility spill-over effect in Australian stock and
currency markets to illustrate our method. Section 3.6 is built up with their asymptotic
theories for the purpose of statistical inference. We make some remarks in section 3.7.

Section 3.8 presents the simulations’ results and we draw conclusions in section 3.9.

3.3 Generalized and orthogonalized impulse response function

for FIVAR

3.3.1 The infinite moving average representation of a FIVAR model

Consider a vector of jointly determined dependent variables Y, = (Y,,Y, s, Yio)'
that follows a K-dimensional FIVAR(d, p) framework:

A(L)D(L)Y, =&, t=12,.,T. (3.1)

where L is the lag operator, & is a Kx1 vector of error term. The operator

AL)=1, —ZipzlAi L', where A; is the KxK matrix of coefficients. The operator D(L) is

a diagonal KxK matrix characterized by the K-dimensional vector of degrees of

fractional integration d =(d,,d,,...,d, )" as follows:

1-L)% 0 0
py=| 0 @b .0 (32)
0 0 oo (I-L)%

Operationally, the term (1—L) ™ can be generated by the following binomial
expansion:

~ = I(i+d;) i_w @)y i
a-u° Zr(ol )i +1) =2yt 33
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where T'(.) is the gamma function; ” =1, and y® =0, for i = 0.

As suggested in Sowell (1992), Litkepohl (2005) and Nielsen (2005), the

following standard assumptions have been made:

Assumption 3.1: E(¢,) =0, E(s.&) =Z, for all t, where X, ={o;;i,j=12,...,K}
is an KxK positive definite matrix, E(¢,&,) =0, forall t=s.

Assumption 3.2: All the roots of [A(z)|=

e —ZipzlAizi‘zo fall outside the unit

circle and ‘dj‘ <% forall j=12,...,K.

Assumption 3.3: Let Z =(Y/;,..,Y, )" be the Kpx1l vector collecting all

explanatory variables at time t, the spectral density of Z; exists and satisfies,
f,(A)~A'GA™ as 10",

where A=1,®A(d), with ® denotes Kronecker product; A(d) = diag{A" ..., 1™}

and G is a KpxKp real, symmetric and positive definite matrix.

The Assumption 3.3 is to ensure no multicollinearity condition within the
components of Z; (see Nielsen, 2005 and Nielsen and Frederiksen, 2011). Further,
under the Assumption 3.2%°, we can represent the model (3.1) under the form of the
infinite moving average according to the following two-step process. From (3.1) we

have:

Y, =DL)A M (L)e, (3.4)

15 For the specification and estimation of the matrix G, we refer to Shimotsu (2007).
18 Our method can be extended to the case of |d;| > %since the condition |d;| <%can be obtained by
taking an appropriate number of differences.
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Step 1: Set TI(L) = A™*(L), where I1(L) =~ I1,L' . The coefficients of the two
sequences are matched subsequently. Therefore, the KxK matrices IT, can be computed

recursively using the relationship,

LA i=12,0p
m={< _ (3.5)
j:lni—jAj I>p

where T1, = I, and Ik is the KxK identity matrix.

Step 2: Specify d(L)=D*(L)II(L), where d(L)=>Y"" ®L'. Thus, it can be

easily seen that V(L) =(1- L)fd"e’jH(L), j=12...K, where D@ indicates the j"

row of the & matrix and ¢; is a Kx1 vector with unity as its jth element and zeros
elsewhere.

Accordingly, from (3.3) we have:
D (L) = (iy/fd”u j(ie'jniuJ (3.6)
i—0 i—0
Expanding the multiplication, we have:
Dep(L) =e'IT, +{iwi(dj)egnlijL+...+[Zh:y/i(dj)e;HhijL" +... (3.7)
=0 0

Matching the coefficient matrices of the lag polynomial ®(L) with the expansion

of D™ *(L)II(L), then

or
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h
DI, h=12,..

D, =& (3.8)
I1, h=0
where W@ s the diagonal KxK matrix with 1" as the j diagonal element.
Hence, the infinite moving average representation of (3.1) can be written as,
Y, = Z(Digt—i (3.9)
i=0

3.3.2 Generalized impulse response function for FIVAR

Building on the Pesaran and Shin (1998) approach, we define the generalized

impulse response function of FIVAR for h-periods ahead as,

GIRFIVAR (h) 55 Qtfl) = E(Yt+h

£ =0,Q,)— E(Yt+h|Qt—l) (3.10)

where 6 =(9,,0,,...,0, )" denotes the Kx1 vector of shocks hitting the economy at time

t, and Q, , is the information set available at time t-1.

As suggested by Pesaran and Shin (1998), we shock only one element, say the j™"

element of ¢ , then extract the effects of other shocks to make the GIRgar

independent of the ordering of endogenous variables in the system. The GIRgyar NOW

becomes:

GIRgvar (h15j Q) =E(Y,, i = 5]‘ Q) - E(Yt+h|Qt—l) (3.11)
Using (3.9) in (3.11), we have:
GIRFIVAR(h15j!Qt—l)=(DhE(gt‘gjt :51') (3.12)
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With the assumption of a multivariate normal distribution of &, , it can be seen that"":
E(gt‘gjt = 5j) = (0'lj 0y ,...,aKj)'O'ilé'j = dejaﬁlé'j (3.13)

By setting the unit shock as a one standard deviation shock, which is 5, = /o ,

from (3.12) and (3.13) we can obtain the scaled GIRgvar Of the effect of a shock in the

j™ element at time t on the expected value of Y at time t+h as

1

GIRqy e (N, 6.2, ,) = @hzgeja} h=0,12,.. (3.14)

Accordingly, the matrix of response of Y at time t+h to a one generalized

standard deviation shock in the system at time t can be fully captured by
GIR, (N, 6,0, ,)=0 =0 2 ==, B h=0,12,.. (3.15)

where = is a diagonal KxK matrix characterized by the standard deviation of &,

- ;
o 0 0
1
== 0 o2 ... O (3.16)
1
| 0 0 O

3.3.3 Orthogonalized impulse response function for FIVAR

Chung (2001) develops an impulse response analysis for the FIVAR model by

using the orthogonalized approach, which is similar to the suggestion in Sims (1980).

"As pointed out in Pesaran and Shin (1998), when the distribution of &, is unknown or non-normal, the
conditional expectation E(£t|£]~t = 6]-) can be obtained by stochastic simulations or by resampling
techniques.
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This methodology resolves the problem of the choice of § by using the Cholesky
decomposition of of £_,%_=PP’, where P is a KxK lower triangular matrix.

Under Assumption 3.2, model (3.1) can be rewritten as an infinite moving
average process,

Y, = B(L)u, (3.17)

where u, =P~z and B(L)=)_" B,L'with B, =1,.

Finally, Chung (2001) shows that any h impulse response in a FIVAR model can
be obtained from the h coefficients of “a finite-order power series resulting from

truncated power series multiplication and inversion”:
h .
B,(L)=) BL' = W(L)A™(L)P (3.18)
i=0

where = denotes the operation of truncating the series (see Chung, 2001);

h [
W)=Y wOU .

3.4 The relationship between generalized and orthogonalized

impulse response of a FIVAR model

By using the Cholesky decomposition of X , the orthogonalized impulse

response function of FIVAR (OIRgvar) depends on how the endogenous variables are
ordered in the system. Generally, many alternative orderings of the variables could be
employed to calculate the OIRgagr, but there is no clear guidance on which ordering
should be used. Hence, this approach would raise difficulties in choosing the suitable

parameterization, especially in a high dimensional system. Conversely, as noted in

Pesaran and Shin (1998), the GIRgar IS unique and invariant to alternative re-
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parameterizations. Further, the historical relationships observed between different
shocks are still fully captured. Apart from this main difference, the two types of
impulse responses have a close relationship, which has been pointed out in the

following propositions.
Proposition 3.1

The generalized impulse response of FIVAR model evolves at the similar

hyperbolic rate with the orthogonalized impulse response of FIVAR.

Proof. Transform A™*(L) to II(L) according to (3.5), then (3.18) becomes,

Bh(L):Zh:Bi L' = ¢ (L)II(L)P (3.19)

Let specifyAh(L):Z:LOAiLi = YO (L)II(L), then B, (L)=A,(L)P. It can be

easily seen that,

DA, ()= (iwﬁd”t‘ J{ZeHLJ (3.20)

i=0

where DA (L) indicates the j row of the A, matrix obtained from A, (L), where

j=1.2,..K.

Similar to (3.6) and (3.7), we have,

i=0

) 1 h
DA, (L) = €T, + (zy/i“i)e;nl_i jL +ot (Zy/f“i’egnh_i th (3.21)
i=0

Thus,
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h
My e, h=12..
i=0

elll, h=0

(A, =

or

h
YOI, . h=12,..
Ah: ; i h—i
I, h=0

(3.22)

Accordingly, the matrix of response of Y at time t+h to a one orthogonalized

standard deviation shock in the system at time t can be fully obtained by
O =A,P (3.23)

Since P, X_and = are constant, the evolving rates of GIRgvar and OIRrvar are

determined by ® and A respectively. From (3.8) and (3.22), we note that
®, =A,,VheN, . Therefore, the GIRgvar and OIRgvar €evolve at the similar

hyperbolic rate. m

Proposition 3.2

In the case where X _is diagonal then the generalized and orthogonalized impulse
responses of FIVAR are equivalent. If X _is non-diagonal then ©](j)=®;(j) for

j=2,3,...K,and ®(j)=0:(j) forj = 1, where ©, (j)denotes the j"" column of ©,

Proof. In the case where X, is diagonal: X, =diag{c;; j =1.2,...,K}, it can be seen

that,
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Jo. 0 .. 0
RO @20

0 ... o |

[\
[1]
I
o
I

o

Further, ®, =A,, Vhe N, ; so from (3.15) and (3.23) we obtain @) =0, . =

In the case where X, is non-diagonal, the proof is similar to Pesaran and Shin
(1998). However, we still provide the proof here for completeness. We extract the j™"

column of ®{ and @ as,
0, (j)=®,2,Ze;and O;(j) =A,Pe;, for j=12..,K,

where @, =A,, Vhe N, . We note that,

1
L. Ee; =0 (Glj,azj,...,aKj)’, forj=12,..,K,

£=Y]

Pe, = (Py1s Pogsees Pra) s P8 = (0,00, P sy Pig)'ses PEG =(0,...,0, Pryc )’
~X,Ze; #Pe; and ©p(j)=0O;(j) forj=2,3,...,K.
Forj=1,

1

% Ze, = 0,2 (0),, O g Oy)' (3.25)

&

[1]

Matching the 1% column of the parityX,_ = PP’, we have,

1

(014,050 01) = (plzl’ P1yPogsees Py Pia)’s Py = 0'151 (3.26)
NDIMSES pl_ll(plzl’ Pu1 Porsees Py Prs) = (Pigs Poysees Pry) = PEY
0l =03(). »
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3.5 Illustration

We illustrate our approach by investigating the realized volatility spill-over effect
in Australian markets. First, we construct the daily realized volatility for Australian
stock and currency markets from 02/01/1997 to 20/5/2010 as proposed by Andersen et

al. (2003)*%:

where ri denotes a ith 5-minute return during day t and D denotes the total number of

5-minute return intervals during any trading day.

We subsequently model the realized volatility using a bivariate FIVAR
framework as specified in (3.1). The estimation is carried out using the two-step
estimation procedure. At the first stage, we obtain a consistent estimate of d using the
Gweke and Porter-Hudak (1983) (GPH) log-periodogram regression estimator. We then
replace d into the FIVAR model and apply OLS equation-by equation to estimate

remaining coefficients.

As can be seen from Table 3.1, estimates of d are both significantly greater than
0, indicative of long memory behaviour. Additionally, since both estimates of d are
greater than 0.5, in the second step of the estimation we transform the realized
volatilities by applying the filter (1 — L)4~1 to their first difference. The estimation of

remaining coefficients in A(L), therefore, is consistent.

The FIVAR’s lag length order of 4 is chosen according to the SIC criteria. After

consistently estimating coefficient matrices of A(L), we turn to estimate the GIRgar

80ur data is extracted from the Securities Industry Research Centre of Asia-Pacific.
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and OIRgagr. Figure 3.1 shows that both GIRgvar and OIRgvar confirm the existence
of a realized volatility spill-over effect within-between Australian stock and currency
market. The spill-over effect remains positive for a long period of time, which is

consistent with the long range dependencies behaviour.

Additionally, the behaviour of GIRgyar and OIRgar IS consistent with
propositions pointed out in previous sections. Both GIRgvar and OIRgar €volve
slowly at a very similar hyperbolic rate. Further, the GIRgvar and OIRgar Of the
system to the shock in realized volatility of Australian stock market are the same;

whereas, all other responses are different between the GIRgyar and OIREvar.

3.6 Asymptotic theories for the impulse response functions of a

FIVAR model

We derive the asymptotic distribution of impulse response functions of FIVAR

by using the result from Serfling (1980, p. 122) (also noted in Litkepohl, 1990, 2005).

Let 8 is an nx1 vector of parameters and £ is an estimator satisfying,
VT (B-B—2>N(0,3)),
da
where — denotes convergence in distribution, N (0, Zﬁ) denotes the multivariate normal

distribution with mean vector 0 and covariance matrix 2[3.

Then,

p 1 og a9’
JTlod)-9(8)] ,N(o, % Mj
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where g(5) =(9,(S),....9,,(f))’is a continuously differentiable function with values in
m-dimensional Euclidean space and og; /93" = (09, / 63;) is non-zero at the true vector

g,fori=1,2,...,m.
In addition, we use the following notation shown in Baillie (1987) and Litkepohl

(1990, 2005) to facilitate our derivation,

a =Vec(A,..,A,)

(K?px1)

A A - AL A
I, 0 0 0
(prm::? I_K 0 0
0 0 1, 0]
<o '=vech(Z,)
=[l,:0:---:0]

(Kxkp)
where vec denotes the column stacking operator and vech is the corresponding operator
that stacks only the elements on and below the main diagonal of a square matrix.

As usual, we denote ® as the Kronecker product; Ly is the m(m+1)/2xm?
elimination matrix such that, for any mxm matrix G, vech(G) = L ,vec(G) . Further, we
define Dy, as the m*xm(m+1)/2 duplication matrix satisfying D,,vech(G) = vec(G) for a
symmetric mxm matrix G; and Ky, is the mnxmn commutation matrix such that, for
any mxn matrix F, K vec(F) =vec(F’).

In addition, we define a m*xm? matrix Sp, which we call the diagonal-stacking
matrix such that, for a mxm matrix G and a diagonal mxm matrix H, whose main

diagonals are identical, vec(H) = S, vec(G) . The computation of the diagonal-stacking
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matrix Sp, is relatively convenient since it can be calculated as, S, = E, E ., where E

m—m?’

is a m*xm matrix of 0 and 1 represented as,

'
elel
€,

E. =| ~.° |,

(m?xm)

'
€nlm

where e; is the mx1 vector with 1 in the j” element and 0 elsewhere.
3.6.1 Processes with known order and pre-determined degrees of

fractional integration

In this section, we consider the FIVAR(d, p) processes where the lag order p is
known and degrees of fractional integration, d :=(d,,d,,...,d, )", are consistently

determined before the estimation of remaining parameters in the processes. The result
generated, therefore, is applicable to the two-step estimation of a fractionally integrated
model, which consistently estimates the differencing parameters in the first step and
other parameters in the second step. In the first step, the degrees of fractional
integration can be estimated in several ways under an univariate framework, for
example, by using log-periodogram regression (see Geweke and Porter-Hudak, 1983),
local Whittle estimator (see Kiinch, 1987), partial autocorrelation function (see Chong,
2000) or exact local Whittle estimator (see Shimotsu et al., 2005, Shimotsu, 2010). In
addition, the d vector can also be estimated under a multivariate framework (see
Shimotsu, 2007, and Nielsen, 2011). In the second step, the FIVAR(d, p) model can be
transformed to a VAR(p) model by applying, for example, the time domain
transformation (see Hosking, 1981) or the frequency domain transformation (see
Geweke and Porter-Hudak, 1983) and remaining parameters can be subsequently

estimated by standard econometric techniques such as multivariate Least Squares or the
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maximum likelihood estimator. Therefore, under this estimation procedure, the

information about the asymptotic distribution of d is not necessarily involved in

deriving the asymptotic distribution of the FIVAR impulse response functions. We

have the following proposition,
Proposition 3.3

Suppose

Then,

JTvec(T, —T1,)—=>N(0,G,%,G/) h=12,...
where,

G, = —a"eacglh) = :Z;J (A" T, ;

JTvec(®, — @, ) —2>N(0,V,=,V,) h=12,...
where,

h-1 h—i-1

v, = VeeD) hzl:[(l ®W)G,,|=Y Y I(A) T @ WO, ;

’
oa i=0 m=0

JTvec(©9 —08)— 5> N(O,H,2,H/ +H,Z,H/)  h=12,...

where,
9
H, = 2200 _grg 1, v, and
oa
o g
q, ;=w: = ®@®,3,)S, Dy +(E®D,)D, ;
(o2

JTvec(©° -09)—L>N(0,C,2,C/ +C,=,C))  h=12,..

where,

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)
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(0]
C, :=%:(P'®IK)\/h'and
a
_ ovec(®° , s
C, =) 1, @)Ll 0, + kP IOL T

3.6.2 Processes with known order but degrees of fractional integration

are not pre-determined

Besides the two-step estimation of a FIVAR(d, p) process, a simultaneous
estimation of all FIVAR’s parameters has also increasingly attracted researchers’
attention. Hosoya (1996) extended the univariate procedure to a multivariate case by
proposing a quasi-maximum likelihood estimator in the frequency domain. Ravishanker
and Ray (1997) presented a Bayesian inference for Gaussian fractionally integrated
VARMA (VARFIMA) process using Markov chain Monte Carlo methods. Martin and
Wilkins (1999) used indirect estimation for univariate and vector ARFIMA models to
avoid likelihood functions. Sela and Hurvich (2009) employed the preconditioned
conjugate gradient algorithm to perform the maximum likelihood estimation for the
FIVAR model. They also provide simulations to compare their approach with the most
commonly used approximation to the likelihood, the Whittle’s method.

In the case when d:=(d,,d,,...d,)", o and o of a FIVAR process are

estimated simultaneously given the information of lag order of the process, the
asymptotic distribution of d needs to be considered in a derivation of the asymptotic
distribution of the impulse response functions.

Along with the result from Serfling (1980, p. 122), we use the following
proposition to derive the asymptotic distribution of FIVAR’s impulse response

function.
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Proposition 3.4
Given the asymptotic approximation formula of the gamma function (see

Abramowitz and Stegun, 1972, section 6.1.39),

1
I'(az +b) ~ v/27e ¥ (az) "2 aeN',beZandzeR,

then,

8F(Z) ~J2ze 7" 2(Inz——)

oT(z+1) ~27ez i2(Inz+2'_1) for ieN,,
0z 27
i-1
—o oyl |- fori=12,...
Vi T (i-1)! _
0 fori=0

Proposition 3.5
Given V,,H,,H,,C, and C, are defined in Proposition 3.3, we have the

following results.

Suppose

o,
|

>. 0 0

d d
~a|—>N|0l 0 X, 0
O 0 0 Z&

\/?

>

Q>

Then,

JTvec(®, -@,)—>N@O,V, X, V, +V, 2.V,)  h=12.. (3.5.1)

where,

Vo= avegéc,b) z[(n ®1,)AY]
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with A is a K®xK matrix where its (j+(j-1)K, j) elementis ", j=1, 2, ..., K; and 0

dj

elsewhere. 1/_/,( * can be calculated by following Proposition 3.4.

JTvec(@f -09)— >N (O,H, L H, +H,Z,H, +M, Z.M}) h=12... (352)
where,

ovec(®?) , —
h::T'h:(B ®IK)Vh’
JTvec(@f -09)—2>N(0,C,2,Cl +C,Z,C/ +W, X, W) h=12... (353)

where,

W o ovec(®y)

Tl GL WS

3.7 Remarks

Remark 1: From Proposition 3.3 and 3.5, approximate variances of the estimated
generalized and orthogonalized impulse responses can be simply obtained by dividing
the diagonal elements of the asymptotic variance-covariance matrices by the sample
size T. Therefore, as usual the approximate variances are approaching zero when the
sample size increases.

Remark 2: Following comments in Litkepohl (1990), we note that some matrices
of partial derivatives can be zero. For example, in the case when a Kx1 vector
X, =(Xy-.- X ) such that, X, =D(L)Y, is white noise; if a FIVAR(1) is fitted
although the true order p is zero, then G, =JA'® I, +JI, ®TI, =0 because A=A =0
and IT, = A =0. Therefore, a degenerate asymptotic distribution with a zero variance-

covariance matrix is obtained for +/Tvec(I1,—TI1,) . This failure occurs when some

variables do not respond to the shock in other endogenous variables in the system and,
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therefore, there are no causal linkages in a particular part of the system. In fact, this
problem is similar to that in a VAR system previously discussed in Benkwitz et al.
(2000). Further, the potential problems resulting from a degenerate asymptotic
distribution are also illustrated in Lutkepohl (2005, section 3.7.1).

Remark 3: If the two-step estimation procedure is applied, after the first step of
consistently estimating the degree of fractional integration, the FIVAR(p) process can

be transformed to a VAR(p) process, A(L)X, =g, . Subsequently, the transformed

VAR process can be estimated as usual by Multivariate Least Squares (LS) or a
Maximum Likelihood (ML) estimator. Let us assume that the VAR(p) process X; is
covariance stationary, the & is Gaussian white noise and the assumption of the
Proposition 3.3 holds, then as shown in Litkepohl (1990) and Litkepohl (2005, chapter

3), the variance-covariance matrix of the asymptotic distribution of the parameters are,

3, =0, ®,,
where,
Xt
Xt—l ' '
Ny =E [ XX oall,
(KpxKp) :
Xt—p+1

can be obtained from,

vecl, =(1.,—A®A)"vecy,,

(Kp)?
., 0

X, = ,
(Kp x Kp) 0 O

¥, =2D;(2,®2,)D;,

(e}

and,

where D; = (D} D, )" D is the Moore-Penrose inverse of the duplication matrix Dx.
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Remark 4: In the Proposition 3.4, instead of using the asymptotic approximation

of the gamma function, one can apply numerical methods to derive sz) ,

l;_(z):ar(zn)[ 1 j_ar(z)( F(z+i)J

' oz \T()r(i+1) oz \T?*()r(i+1)
where,
0 7-1,-X
ol (z) _ J- oxe dx
0z y oz
= J‘xz’le’X In x dx,
0
or(z+i)  fox* e dx
0z 0z

z+i-1

X" e ™ Inx dx

ot—8 o=—3

Remark 5: In the case where all vectors of parameters d, & and o are estimated

simultaneously by using the ML estimators, Proposition 3.5 is applied and the variance-
covariance matrix of the asymptotic distribution of the parameters can be derived by
using the following maximum likelihood theory.

Given the log-likelihood function Inl which is a differentiable function of &,

where @ is the vector of parameters, 8 :=(d’,a’,c’), the information matrix for € is

defined as,

Q(H)Z_E{ézlnl}

0006

and the asymptotic information matrix for ¢ , if it exists, is,

0, (0) = limQ(9)/T ,

then under general regularity conditions, the ML estimator 6 for 0 is consistent and,
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T (6-6)—5>N(0,Q,(6)™).
Hence, if the assumption of the Proposition 3.5 holds, we can analytically obtain

the following results,

7t - o _ B
%, :{?25 ot -(z,w rxllng)oz;} (3.7.1)
3, =I,"®, (3.7.2)
>, =2D;(Z,®z,)D; (3.7.3)

where ¥ = (¥,,...,¥,)" , ¥, :Zj; j'w and o denotes the Hadamard product.

References for proofs and the missing links are provided in the Appendix part B.

In addition, instead of above analytical expressions, numerical methods can also
be used to compute the asymptotic variance-covariance matrix of the ML estimate of &
as the negative inverse of the observed Hessian matrix.

Remark 6: For the purpose of convenience, Y; in (3.1) is assumed to have zero
mean and no polynomial trend or seasonal component. However, we note that all the
propositions remain unchanged if a nonzero mean, a polynomial trend or a seasonal

component is removed before estimating the FIVAR’s parameters.

3.8 Simulations

In this section, we conduct some simulations to examine the finite sample
performance of the generalized and orthogonalized impulse response as well as their
asymptotic distributions in cases of one- and two-step estimation methods. The sample
size was chosen to be T = 100, 200, 500, 1000 and 1500, respectively. We obtain the
simulation results based on 1000 replications. The multivariate time series Y; was

simulated to follow the 2-dimensional FIVAR(d, 1) model as below,
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Lo tHa mh e e ()

In a FIVAR(d, 1) process, we note that the matrix of coefficients is A =[a;],

hence, a=vec(A) . The parameters are randomly drawn from the following

distribution:
d 24 0 0
a|—>Nl0j 0 X, 0
o o 0 X

To simulate a 2-dimimensional FIVAR(d, 1) model, we choose:

0.43 0.62
X, = ,
0.62 091

(044 014 051
$,=[014 096 -061|,
1051 —0.61 1.25

[ 023 036 -0.04 0.09
036 179 0.08 -0.59
“ |-0.04 008 015 -0.18]|
009 -059 -0.18 0.55

Further, each element of d =(d,,d,)" is restricted to be in the range (0.5, 0.5)
and the variance - covariance matrix of &,, X, , is forced to be positive definite. We then

obtain,

_[— 0.125 0.032

0.735 0.065
= , d=(0.138,0.246)" and T_= .
~0.129 -0.117

0.065 0.870
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We estimate the FIVAR(d, 1) models using the two-step estimation method, the
Maximum Likelihood estimation proposed by Sela and Hurvich (2009) and the Whittle
likelihood estimation, respectively®. In terms of the two-step estimation method, we
estimate the vector of degrees of fractional integration, d, in the first step under a
multivariate framework proposed by Shimotsu (2007) to capture possible dependencies
among the fractional degrees. We then transform the simulated series Y; to X; using the

relationship, X, = D(L)Y,. Remaining parameters are subsequently estimated using the
Multivariate LS method in a VAR(1) model, X, =AX,, +¢,.

We present the Root Mean-Squared Errors (RSME) of estimates of the
parameters in Table 3.2. We denote the 2-step as the estimates obtained from the 2-step
estimation method, S-H as the Sela — Hurvich Maximum Likelihood Estimates and
Whittle as the Whittle Maximum Likelihood Estimates. As can be seen, the 2-step and
the Whittle estimation method do better than the S-H estimation method in estimating
the off-diagonal elements of A;. The RSMEs of off-diagonal estimates of A; produced
by the 2-step estimation method are even slightly smaller than those obtained from the
Whittle estimation method. Regarding the diagonal elements of A;, the Whittle
estimation performs worst in almost cases, whereas, the 2-step and S-H estimation

methods are relatively comparable. Similarly, in estimating the elements of X_, the

Whittle estimation does worst among three methods. Estimations of vector d are fairly
equivalent among the three estimators. Our results of a comparison between the S-H
and the Whittle MLEs are consistent with the outcomes of simulations performed in

Sela and Hurvich (2009).

9 For a description of the Maximum Likelihood estimation proposed by Sela and Hurvich (2009) and the

Whittle likelihood estimation, we refer to Sela and Hurvich (2009) section 1.3 and section 4.
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In general, the 2-step estimator, therefore, seems to be our best candidate to
calculate the generalized and orthogonalized impulse response of a FIVAR model. To
determine our ultimate choice of the estimation method, we compare the RSME of the
impulse response estimates and their asymptotic standard errors generated by the three
estimators. We calculate the overall RMSE as an average of the RMSEs of 10 periods
ahead generalized and orthogonalized impulse response estimates. In Table 3.3 and 3.4,
we report the RMSEs of the impulse response estimates and their asymptotic standard
errors, respectively. These results show that the 2-step estimation method generally
performs better than the S-H and the Whittle estimation methods in computing both the
generalized and orthogonalized impulse response. Regarding the estimates of
asymptotic standard errors of the impulse responses, the 2-step estimation produces
comparable estimates with whichever method performs better between the S-H and
Whittle.

Overall, we find that the 2-step estimation method produces better estimates of
the impulse responses in a FIVAR model; whereas, the estimates of asymptotic
standard errors of the impulse responses produced by the 2-step method are as good as
either S-H or Whittle method, whichever performs better. In addition, another
significant advantage of the 2-step estimation method is that it takes much less time
than the maximum likelihood estimation to execute. Accordingly, on a basis of our
simulations’ results, we would suggest an application of the 2-step estimation method

in generating the generalized and orthogonalized impulse response of a FIVAR model.

3.9 Conclusion

In this chapter, the impulse response analysis within a multivariate long memory

model has been generalized to be unique and invariant with alternative orderings of
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variables in the system. This specification of the generalized function is particularly
valuable in case of a high-dimensional system where there is no clear economic
guidance on a suitable ordering. Further, we even make the implementation of both
generalized and orthogonalized impulse response analysis within a FIVAR framework
easier by reforming them to more simple representations, which we believe can ease
processes of computer programming. For the purpose of statistical inference, we derive
the asymptotic theories of both generalized and orthogonalized functions. We
summarize results under two situations. First, we assume that the degrees of fractional
integration are pre-determined. The second situation allows for the case where the
differencing parameters are not pre-determined. However, for both situations, our
results are all under the common assumption that the order (p) of FIVAR model is
known. Practically, this assumption can be satisfied by using the information criteria
such as AIC, HQ or SC to determine a suitable p for a FIVAR model. Hence, the results
generated in the first situation are applicable in the case that the two-step estimation
procedures are applied, where the degrees of fractional integration are consistently
determined before the remaining parameters of FIVAR are estimated in a later stage.
Meanwhile, the results reported for the second situation can be applied for the case
when all parameters of the FIVAR are estimated simultaneously. In addition, we also
summarize the available results of asymptotic theories of the FIVAR’s parameters in
the literature and provide missing links to make our results readily exploitable for both
scenarios. According to our simulations’ outcomes, we suggest that the two-step
estimation method would be the best choice to generate the impulse responses of a
FIVAR model. Hence, our results should facilitate the application of impulse response
functions in analysing the interdependence and feedback relationships between

fractional processes.
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3.10 APPENDIX

Part A - Tables and figures

Table 3.1: Fractionally integrated degree of realized volatility of Australian markets

Name d t-stat P-value

Stock market 0.53 5.67 0.00
Currency market  0.67 7.15 0.00

Note: d denotes the degree of fractional integration obtained
by using GPH (1983) long-periodogram regression estimator.
t-stat and associated p-value are the test statistic and its
associated significance value result from testing the null

hypothesis Hy:d=0 against the alternative Ha: d # 0.
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Part B - Proofs

B1. Proof of proposition 3.3

The result of (3.3.1) is documented previously in Baillie (1987), Lutkepohl

(1990) and Lutkepohl (2005). However, our proof is provided for completeness.

Note that: TT, = JA"J’ (see Litkepohl, 2005, section 2.1.2). So,

hqr h
ovec(IT,) _ ovec(JA"J") _(1®J) ovec(A") , (3.29)
oa' oa' oa’
Since,
ovec(A") & . ovec(A)
— = AT ® AT [———= 3.30
~ {2( ) ) (3.30)
Then,

aVec(l_lh) _ S ry h-1-m m aveC(A) _ & ry h-1-m m aVGC(A)
o =(J ®J)L§(A) ® A }—aa' _LZ:OJ(A) ® (JA )}—805’

(3.31)
It can be seen that,
avgc(’A) 1, ®7
(04
So,
h-1 h-1
_aveg(gh) =Y I(AY T IAT) = Y I(A) T T, (3.32)
a m=0 m=0
For (3.3.2), we have,
g
ovec| » W, VII, ;
ovec(®,) _ < ") Z“: ovec(w11, ;) (3.33)
oa' oa' - oa' '

It can be seen that,
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8vec(‘Prfd’H0): 0
oo’
So,
h-1 (d) h-1 h-1
ovec(®,) _ 8vec(‘Pi I, .)= (IK ®LPI(d))aVEC(Hh D | [(IK P O)G, I]
805' i=0 805' i=0 8a’ i=0
(3.34)
Therefore,
h-1| h-i-1
aveC(q) ) (l ‘ ® \Pi(d))( ZJ (Ar)h—i—l—m ®Hmj:|
i=0 | m=0
h-1 / h—i-1 )
_ z‘] (A/)h—l—l—m ® \Pi(d)HmJ
i=0 \_ m=0
h-1 h-i-1 i
J (A,)h,kl,m ®\Pi(d)Hm.
i=0 m=0
For 3.3.3, we have,
g
avec((?h) _ aVec(q)’hB) =(B'®]I )M =(B'®1,)V, (3.35)
oa oa
Further,
g
ovec(©]) _ ovec(®,B) (1, ®0 )5V€C(B) (3.36)
oo’ oo’ oo’
We have,
Y E = 2
aec(B) B (1, 03,) 2E) | (@, ) X (337)
oo oo oo’
where,
ovec(z,) oD, vech(Z,) _D, (3.38)

dc'  ovech(z,)’
Additionally, it can be easily seen that,
vec(Z7%) =S, vec(Z,)
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- Vec(EZ°) = S, vec(Z,)

Since = is a symmetric and diagonal matrix then,
(E°® 1, )vec(E) = S vec(Z,)
~vec(Z)=(E*®1,)S,D,vech(Z,) . vec(Z,) = D, vech(Z,)

_ovec(Z)  ovec(Z)
0o’ ovech(z,)

=(=E*®1,)S, Dy (3.39)

Replace (3.37), (3.38) and (3.39) in (3.36), we have,

ovec(®})

= ®0,){(1, ®%,)(E ®1,)S,D¢ ]+ (E®1, )Dy |

=(I,®0,3,)[E*®1,)S,Dy |+ E®®,)D,

=E'®d,2,)S. Dy +(E®®D,)D,

For 3.3.4, we have,

(0]
ovec(®y ) =avec(<DhP) =(P'®]I )M_(P 1)V, (3.40)
oa' oa’
Further,
(6]
dvec(®y) _ dvec(®,P) (1, ® )GVGC(P) (3.41)
oo’ oo’ oo’
Lutkepohl (1989) and Liitkepohl (1990) show that,
a"gc(P) L [Le (1 + K )P TOLL T (3.42)
(o)

So, replace (3.42) in (3.41) we obtain,

ovec(©7)

= (1 90 ML + K )P ® 1)L m
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B2. Proof of proposition 3.4

Using the asymptotic approximation formula of the gamma function, it can be

easily seen that,
21
I'(z) ~+2mez 2,

1
[(z+i) ~«27ze*z 2 forieN,.

Applying Leibniz and the generalized power rule for differentiation, we obtain,

1
1 1 -
ag(z) ~—2re 7 2 ++27e7 2| —2+Inz
z z
2L 1
~N27ze*z ?(Inz——)
21
Similarly,
. 1 .
631“(z+|)~\/ﬂe,ZZ 5(Inz+2|_1),
oz 22
Further,
I'(z+i)

—@ oyl T+l or(z+i) 1 _a(2)( T(z+i)
Vi T oz oz \r@ri+1)) o \D2(ri+1)
- 7 2i-1 117
Yy, ~—|Inz+——=|-|Inz—— |—

I! 22 2z) 1!

i-1
) - fori=12,..
N (E] - ;
0 fori=0
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B3. Proof of proposition 3.5

For 3.5.1 we have,

h
ovec| > WOIT, .
7w ovec(®,) _ (; i h'j :Zh:avec(\P‘(d)HhiLZh: (. ®1 ovec(W )
" ad od’ “ od’ ) LK od’

It then can be seen that,

ovec(¥”) _ A©
od’ L

7, =Yl @101

For 3.5.2 we have,

g
M, o ovec(®p) _ ovec(®,B) _ (B'® IK)Gvec(q)h)
od’ ad’ T

M, =B ® 1, V,;
For 3.5.3 we have,

(0]
W, = ovec(®y) _ ovec(®,P) _ P®Il,) ovec(®d,)
od’ od’ Tad

LW =PRI, ..
B4. Proof of results in remark 5 of section 3.7

Proof of (3.7.1) is documented in Nielsen (2004) given a note that, since

X, =D(L)Y, the infinite moving average of Y can be writtenas, Y, ="~ ¥“L'X,.

In addition, to prove (3.7.2) and (3.7.3), along with the assumptions that the p
pre-sample values for each variable of Y, Y_p+1, ... Yo, are available and the & is

Gaussian white noise, we establish some following extra notations,
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(KLﬂT)::(gl,...,gT)

Xt
xo =| 1
(Kpx1) :

Xt—p+1

i 0 0

(Kggn._(xo, LX)
(K)X(T)':(Xl""’XT)
y :(Yll‘ 'YT)
(KxT)
X :=vec(x)
y = vec(y)

Since x=D(L)y then x=[l, ® D(L)]y . Let call f,(x) and f,(y) are the

probability density of x and y, respectively. We have,

s (%) =|1, ®D(L)

f,(y) = 3y

f,(x),

Since X; follows a VAR(p) process, Litkepohl (2005, section 3.4) shows the

probability density of x as,

1

fx(X)=(2ﬂ)—Km

I, ®2,

iz xexp{—%(x—(X'@ L )a) (I; ®Z ) (x—(X'® IK)a)}

So,
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-1/2

1

1(x—<><'®IK)a)’<IT®z;)(x—(><'®lK)a)}

exp| ——
<o) -

Hence, we get the log-likelihood function,

T

Inl(d,a,2,) =K In|D(L)|—K—2TIn27z—EInZ£
k- @ 1)a] (1 9 )x-(X'®1,)a] (3.43)

By using the relationship between the vec and the trace (tr) operator,
tr (ABC) =vec(A")' (I ® B)vec(C)

and note that, x—(X'®I,)a=vec(x-AX) , where A=(A,...,A)) ; the log-

likelihood function can also be represented as,

s,

Inl(d, a2 )= KIn|D(L)|—K—2TIn27r—TEIn —%tr[(x—AX)’Zj(x—AX)] (3.44)

With the representation of (3.43) and (3.44), we can easily obtain the following

second order partial derivatives of the log-likelihood?,

2

0 '”'(d’“;Ee):_(xx@Z;l) (3.45)
oada

2

0" Inl(d,a,%,) ol letery-tetesiuust)
loledolom 2 2

—%(zjuwz; ®2;)} Dy (3.46)

0 For details involved in these derivations, we refer to Liitkepohl (2005, section 3.4).
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Let the assumption of the Proposition 3.5 holds, the asymptotic variance-

covariance matrix of « is,

LT TCRES ) R U
2&_—TE( . J =-TE[- (xx'®=)]

Noting that E(XX'/T)=T", , because when T — oo the impact of assumed initial

p pre-sample values, Y p+1,...,Yo, vanishes. Therefore,
T, =I'®%,,
This completes the proof of (3.7.2).

Similarly, the asymptotic variance-covariance matrix of o is,

62Inl(d,a,28)j_l

X, =-TE
Ooc oo’

Since E(UU') =TZX_ then from (3.46) we have,

2
E 0 |n|(d,0hzg) :D&‘:—I(Z:@zsl):lDK
ledolon 2

Hence, the asymptotic variance-covariance matrix of o can be expressed as,
z, =2oy (£ @37,

Finally,
¥, =2D;(Z,®z,)D;.

This completes the proof of (3.7.3).
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Chapter 4

How does trading volume affect financial

return distributions?

4.1 Introduction

Influences of trading volume on financial return distributions have been
increasingly examined in the finance literature. From the market microstructure point of
view, new information arrival and the mechanism that incorporates this information are
primary factors causing movements in asset prices (see Andersen, 1996). Since trading
volume is widely accepted as a proxy for the arrival of hidden information to the
market, knowledge about volume’s impact on return distributions helps in
understanding the role of information arrival in asset pricing. Fundamentally, these
potential interactions between trading volume and return distributions (captured by
volatility, skewness and kurtosis) can be explained by three relevant information
theories in the literature, including the mixture of distributions hypothesis (MDH), the
sequential arrival of information hypothesis (SAIH) and the differences of opinion

hypothesis (DOH).

92



Chapter 4: How does trading volume affect financial return distributions?

4.2 Literature review

In the literature, a number of information theories have been presented to explain
a causal relationship between trading volume and asset prices. The MDH was initially
provided by Clark (1973) in an attempt to explain the relationship between trading
volume and volatility. Basically, the MDH states that the trading volume and asset
prices are jointly driven by common latent information. Clark (1973) argues that
trading volume is contemporaneously correlated with the volatility since it can be
considered as a proxy for the arrival of events “happen at a random rate over time” (see
Mougoué and Aggarwal, 2011). However, Clark (1973) does not directly model this
causality. The theory of MDH was then described by different approaches (e.g., Epps
and Epps, 1976; Tauchen and Pitts, 1983; and Harris, 1987). While Epps and Epps
(1976) model the price change of an individual transaction conditional on the trading
volume of that transaction; Tauchen and Pitts (1983) and Harris (1987) formulate the
trading volume to be contemporaneously proportional to volatility and vice versa, with
their relationship depending on changes of information flow. More recently, Andersen
(1996) modifies the MDH by including the liquidity requirements and informational
asymmetries among investors, where a stochastic volatility process is employed to

model the information flow.

A different approach for justifying the relationship between trading volume and
asset prices is the SAIH, which was first introduced by Copeland (1976) and
subsequently extended by Jennings et al. (1981) and Smirlock and Starks (1988). The
theory of SAIH states that information is circulated to different investors at different
times such that the final equilibrium is reached after a sequence of provisional

equilibriums. Hence, the SAIH implies a lead-lag relationship between trading volume
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and volatility, whose strength is determined by levels of dissemination and importance

of the information.

Alternatively, the relationship between trading volume and asset prices can be
explained by the theory of DOH. The DOH hypothesis may be referred to as the
dispersion of beliefs hypothesis (e.g., Chen and Daigler, 2008) or the investor
heterogeneity hypothesis (e.g., Hong and Stein, 2003; and Hutson et al., 2008). The
DOH was developed by Shalen (1993) for future markets and generalized later by
Harris and Raviv (1993). The theory of DOH supposes that different types of investors
may interpret the same information differently according to their own signals (e.g.,
private information and knowledge). Hence, they may have different expectations about
the fundamental values of assets, which consequently lead to greater variability in price
changes. It is, therefore, expected that the trading volume and volatility are positively
related. Hong and Stein (2003) extend the DOH by incorporating short-sales constraints
to explain the relationship between trading volume and return asymmetries (skewness).
This extension is known as the investor heterogeneity hypothesis, which predicts a
positive causality between trading volume and negative skewness of return. In other
words, because of the short-sales constraints, high trading volume causes a greater level

of negative return skewness, which in turn becomes a source of market crashes.

In summary, the theories of MDH (e.g., Clark, 1973; Epps and Epps, 1976;
Tauchen and Pitts, 1983) and DOH (e.g., Shalen, 1993; Harris and Raviv, 1993)
suggest a positive contemporaneous linkage between trading volume and volatility;
whereas, a lead-lag relationship between them is added by an implication of SAIH (e.g.,
Copeland, 1976, 1977). Empirically, these theories have been widely tested and

accepted in many studies conducted within stock or FX markets (e.g., Kalev et al.,
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2004; Bjgnnes et al., 2005; Bauwens et al., 2005; Chan and Fong, 2006). However, an
empirical test of the cross — market relation between volume and volatility has received
limited attention so far. Hence, we contribute new findings on the volume — volatility

relationship within and between stock and FX markets.

In terms of the volume — skewness relationship, the DOH theory predicts that the
negative skewness of return will be greater conditional on a higher trading volume as
mentioned earlier (see Hong and Stein, 2003). However, different from the volume —
volatility literature, empirical studies on the volume — skewness relationship show
mixed results. The theory of Hong and Stein (2003) is supported by Chen et al. (2001)
and Hutson et al. (2008) but not supported in Hueng and McDonald (2005) and
Charoenrook and Daouk (2008). While a direct volume — skewness relationship is
verified with firm — level data, the use of market level data shows little support for the
relationship. Even though Hutson et al. (2008) provide empirical evidence on the theory
postulated in Hong and Stein (2003) with national stock market data, the direct effect of
volume on skewness only exists in 3 out of 11 cases. Therefore, we raise a conjecture
that level of portfolio diversification is probably responsible for the difference in
results. In this study, we aim to verify our conjecture by reassessing the direct volume —

skewness relationship with a particular focus on a regional analysis.

In addition, we further contribute to the literature by testing for the existence of
volume — kurtosis interactions and whether it is consistent with the aforementioned
information theories. The possibility of a volume — kurtosis relationship is supported
from a market microstructure perspective. Since the price movements are mainly
caused by new information arrival, an occurrence of extreme returns may be influenced

accordingly.
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Besides, instead of re-examining volume’s impacts on higher moments distinctly,
we allow for the possibility of interactions among them in our analysis due to several
reasons. A growing integration of national economies with their regions and the rest of
the world, collapses of financial institutions and recent financial turbulence consistently
suggest that evaluation of a risk needs to be conducted not only in isolation but also by
allowing for the possibility that it can interact with and spill-over to amplify other risks.
For example, the collapse of Long Term Capital Management L.P. has highlighted the
important of hedge fund risks, including fat-tail risk and (possibly) its interaction with
other risks (see Fung and Hsieh, 2001; Feix, 2003). Further, a sequence of recent
financial crises, including the Sub-prime Mortgage Crisis in 2007 in the U.S, the 2008
Global Financial Crisis and most recently, the European Sovereign Debt Crisis suggest
that the assessment of a financial risk is much more complex than just viewing it
separately from other risks. A higher degree of integration between economies leads to
faster and stronger contagion effects with recent evidence that a downgrade of U.S
treasury bonds in late-mid 2011 significantly affected global financial markets. The
contagion effects should not only highlight the transmission of a risk across countries
but also allow the probability of interaction between risks across markets. Empirically,
some preliminary examinations using the correlation approach have revealed
prospective interdependence among higher-moment risks (e.g., Cooley et al., 1977;
Gupta et al., 2004). In our study, we support this prospect in a more complete context in
terms of both static (impulse response analysis) and dynamic (spill-over index)

approaches.

Additionally, this evidence of interconnections between higher moments

motivates the need to investigate the influences of trading volume on the dynamic
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structure of cross-moment inter-relationships. The appearance and importance of
higher-moment risks have been increasingly recognized in many financial activities,
such as asset pricing, value-at-risk calculation and asset allocation (see Athayde and
Fl6res, 2003; Mandelbrot and Hudson, 2004; Jurczenko and Maillet, 2006 among
others). Therefore, such financial activities can benefit from our analysis since the
result from our study may help to evaluate volatility risk, downside risk and fat-tail risk

under influences of new information arrival more precisely.

We base our study on intraday data to produce a better representation and more
robust estimates for higher moments of asset returns. Further, the use of intraday data is
also consistent with the aforementioned market microstructure perspective as the
market microstructure literature mainly pays attention to intraday patterns rather than
inter-day dynamics. The remainder of this chapter is organized as follows. Section 4.3
explains data employed and the construction of variables for analysis. Section 4.4
outlines the econometric framework. Section 4.5 discusses the empirical results of our
reassessment of volume’s impacts on financial return distribution. Section 4.6 analyses
the influence of trading volume on the dynamic structure of the inter-relationships

among higher moments and finally, section 4.7 concludes.

4.3 Data

We extract 5-minute intraday mid prices for stock market indexes and FX
transactions in 18 countries from the Thomson Reuters Tick History (TRTH) database
provided by the Securities Industry Research Centre of Asia-Pacific (SIRCA). The use
of 5-minute intervals can overcome the problem of measurement error and reduce
microstructural biases (see Andersen and Bollerslev, 1998, and Andersen et al., 2001b).

In the FX market, we use the US dollar (USD) as the base currency against which
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national local currencies are priced in. For stock market indexes, we use the prices
denominated in local currencies. The sample extends from January 1, 2002 to February
15, 2010. Data on weekends are excluded. Furthermore, we base our analysis on two
sub-sample periods: from January 1, 2002 to Jun 29, 2007 (the ‘Stable period’) and
from July 2, 2007 to February 15, 2010 (the “Volatile period’)?'. For the purpose of
conducting regional analyses, we divide our sample countries into four regional
grouping, namely Latin America, Asia Pacific Emerging, Asia Pacific Developed and
Western Europe. Furthermore, since the stock market is not a non-stop trading market,
we consider a trading day as that part of the day when stock markets are open?.

We compute the 5-minute intraday returns of each market as the log change in the
mid prices. For sample countries in the European Monetary Union (EMU), we use the
prices of their own national currencies to calculate intraday returns before they adopted
the Euro and prices denominated in Euros thereafter. The intraday returns of regional
portfolios are constructed as value-weighted averages of the intraday returns of
individual markets in each region where the country weights are based on gross

domestic product (GDP)?:

%! Hence, our Volatile period covers both the Sub-prime mortgage crisis in 2007 and the Global Financial
Crisis in 2008. In addition, as can be seen from Figure 4.1, the realized volatilities behave differently
across the two periods.

%2 Hansen and Lunde (2005) propose to estimate the realized volatility of a stock market for the whole
day to account for the potential latent information during non-trading time. However, since our study
focuses on a regional context with different countries, this methodology is not applicable because of the
different trading and non-trading times in GMT in different stock markets.

¥ We summarize the details for individual countries in each region, country weights based on GDP and

trading hours for all regions in Table 4.1. Besides, we prefer to weight countries by GDP rather than by
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Fie = Zwi Fijit (4.1)

where rj; denotes the jth 5-minute regional portfolio return during day t, w; is the
weight of market i, r;;; denotes the jth 5-minute return of market i during day t and q is
the number of markets in the region.

Similar to Chapter 2, section 2.3, we calculate the realized higher moments of

regional portfolio return as follow

RV, =}, (4.2)

~ DO-H*(X]r)
(D-D(O-2) 7, r7)>?

RS, = (4.3)

RK, = (4.4)

where D denotes the total number of 5-minute return intervals during any trading day.

Regarding the realized skewness (RS;), we note that the negative sign is included
to make sure an increase in the daily skewness corresponds to an asset return having a
more left-skewed distribution (Chen et al., 2001). Therefore, by using this formula we
focus on the importance of downside risk in analysing the interdependence with other
moments and trading volume. Hence, an utilization of this formula facilitates a
comparison between our empirical results and the investor heterogeneity theory of

Hong and Stein (2003).

market capitalization since the GDP figures are likely to be more stable compared to stock market

performance with peaks and troughs (see Figure 4.1).
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We employ the number of trades as a proxy for trading volume. Furthermore, our
choice is also supported by Chan and Fong (2006), who find that the number of trades
contains more hidden information than other proxies for volume (e.g., trade size and
order imbalance). Theoretically, this is consistent with the hypothesis of stealth trading,
which suggests that informed traders may divide a large trade into many smaller
transactions to hide their private signals (see for example, Barclay and Warner, 1993,
and Chakravarty, 2001). Therefore, we calculate the daily trading volume of a regional
portfolio by summing up the total number of trades across all markets within the region

over all 5 minute intervals during the day:

Vi :ZD:Zm:WiVi,j,t (4.5)

j=1 i=1

where v;; denotes the jth 5-minute number of trades of market i during day t, w; is the

weight of market i calculated based on its country’s GDP.

Additionally, as a result of different holidays in different countries, linear
interpolation is employed to reconstruct missing data due to holidays and days of
unusually light trading volume. The interpolation method has been found to be useful in
empirical studies which deal with missing observations in time series data (see

Damsleth, 1980 and Pavlov, 2004).

Table 4.2 and 4.3 provides descriptive statistics for the (logged) realized

volatility, realized skewness, (logged) realized kurtosis and (logged) trading volume of
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FX and stock markets®*. As expected, the mean levels of realized volatility and realized
kurtosis are consistently higher in the Volatile period than in the Stable period for both
stock and FX markets. In addition, the distributions of all the realized measures
generally deviate from the normal distribution with some level of asymmetry and
excess kurtosis. However, in line with the literature (e.g., Andersen et al., 2003) the
distribution of realized volatility is close to normal in many cases. Interestingly, we
observe that this fact also applies to realized skewness and realized kurtosis constructed
from our international dataset. The Ljung-Box statistics (Q(20)) confirm the
significance of autocorrelation up to 20 lags in all cases for realized volatility and
trading volume. Furthermore, we also observe the existence of a serial correlation
problem in most of the cases for realized kurtosis but only in limited cases for realized
skewness. In fact, the long-range dependence behaviour of realized volatility and
trading volume has been previously documented in the literature (see for example,
Andersen et al., 2001a, 2001b, 2003; and Fleming et al., 2011). However, the long

memory behaviour of realized kurtosis has not been documented to date.

4.4 Econometric framework

The evidence of long-range dependence in realized measures and trading volume

supports the utilization of fractional integration techniques, as fractionally integrated

 Realized volatility, kurtosis and trading volume are transformed into their natural logarithm since their
non-negativity condition needs to be satisfied when they are modeled. Besides, the use of realized
logarithmic volatility in empirical analysis is well supported in the literature (e.g., Andersen and
Bollerslev, 1998; Andersen et al., 2001a; and Andersen et al., 2003). In addition, we use realized
logarithmic kurtosis and logarithmic trading volume to achieve a similar scale for the subsequent impulse
response analyses. Therefore, when we refer to realized volatility, kurtosis and trading volume in our

study, they are in their natural logarithmic form.
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processes have been found to efficiently capture the long memory behaviour of
financial time series (see Ding et al., 1993; and Andersen et al., 1997). Under a
fractional process, a series that is an intermediate between a short-memory and an unit
root process can be effectively described. Furthermore, in order to investigate the
interdependence and feedback relationships in a system including both long- and short-
memory series, a multivariate fractional process allowing for multi-memory parameters

is useful. Hence, in our study, we consider the specification of a FIVAR model.

4.4.1 Model specification
Suppose a vector of jointly determined dependent variables Y, = (Y,Y,,,...,Y,) that
follows a K-dimensional FIVAR framework®:

A(L)D(L)Y, =&, t=12,..,T. (4.6)

where L is the lag operator and &; is a Kx1 vector of error term, which is assumed to be
white noise and multivariate normally distributed. The variance-covariance matrix of &;

denoted as X, ={o;i, j=12,...,K}is a KxK positive definite matrix.

The operator A(L) =1 —ZipzlAi L', where A; is the KxK matrix of coefficients
and p is the order of the lag polynomials in A(L). All the roots of

[A@)| =

o —Zip:lAzi‘ =0 are assumed to fall outside the unit circle. The operator D(L)

% According to Equation (4.6), Y, is assumed to have no trend and drift. Hence, before modelling the
realized measures and the trading volume with FIVAR, they are demeaned and detrended whenever the
drift and the trend are statistically significant. Details for the existence of a trend in the realized measures

and trading volume series are reported in Table 4.2 and 4.3.
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is a diagonal KxK matrix characterized by the K elements in the degree of fractional

integration vector d =(d,, d,,...,d, )" as follows®

1-L)*% 0 0
ppy-| 0 e O
0 0 oo (I-L)%

Operationally, we can generate the term (1— L) with the following binomial

expansion:

o, I(i+d)) T aWChN
= _Zr(d (i +1) U=t (47)

i i=0
where T'(.) is the gamma function; {” =1, and ® =0, for i 2 0.

4.4.2 Model estimation

As discussed in Chapter 3, section 3.6, there are two prominent approaches to
estimate a multivariate fractional process. The first approach aims to estimate all the
parameters simultaneously (e.g., Hosoya, 1996; Martin and Wilkins, 1999; Nielsen,
2004; Pai and Ravishanker, 2009); whereas, the second approach separates the
estimation procedure into two steps, whereby the memory parameters are consistently
determined in the first step and the estimation of remaining parameters is subsequently

performed with standard econometric techniques. Regarding the second approach, the

% For estimation purposes, a further restriction, Id;] <% for all j = 1,2,...,K, needs to be satisfied to
make the model stationary. This condition can be obtained by taking an appropriate number of

differences. For example, if% <d; < %then the first-differenced series has a degree of integration less

1.
than Zin absolute value.
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degrees of fractional integration can be estimated under an univariate or a multivariate
framework (e.g., Geweke and Porter-Hudak, 1983; Kiinch, 1987; Chong, 2000;

Shimotsu et al., 2005; Shimotsu, 2007; and Nielsen, 2011).

In general, despite its asymptotic efficiency, the simultaneous estimation
procedure is time-consuming in cases of high dimensional systems or large sample
sizes. Further, simulations’ results provied in Chapter 3 suggest an application of the 2-
step estimation method in estimating the impulse response within a FIVAR model.
Hence, we employ the 2-step estimation approach, in which the memory parameters are
estimated under a multivariate framework proposed by Shimotsu (2007) to capture
possible dependencies between them. Shimotsu (2007) derives a Gaussian
semiparametric estimator of a multivariate fractionally integrated process by using a

general form of the spectral density of Y.

Let us define the discrete Fourier transform and the periodogram of Y; evaluated

at frequency 4 as,

w(d) = \/_ ZY e, 1(A) =w()W (1),

where i is the imaginary unit, w*(1) denotes the conjugate transpose of w(A).

For the Fourier frequencies A, =2za/T with a=1...,m where m is the band

parameter determined as m=0(T), Shimotsu (2007) shows the spectral density of Y; as,

F(4) ~ A, ()G, A, (d),
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where A, (d) = diag(A,; (d)) with A, (d) = 4,"e™"? j=1..K; A7 (d) denotes the

conjugate transpose of A_(d); and,

G, =%Z Re[A, ()% 1(2,)A%(d)]
a=1
The objective function can be subsequently obtained as,

K m
R(d) = logdet G, —ZZdjiZIog/lal ,

j=1 a=1
Then, the estimator of the memory parameter vector is defined as,
d= argminR(d) .

In order to draw statistical inferences about the significance of the fractional
degrees, we employ the asymptotic normal theory built for the estimator. Let dy denote

the true value of d then the asymptotic normal distribution of d is defined as,

2

Jmd-d,)—5>N(0,21), =, =2{Gs oGl +1, +%(GS oGl-1,)],

G.—>G,,

S S

where o denotes the Hadamard product.

After consistently estimating d, we transform Y; to X, = (Xy, Xy -, X)) DY

applying the relationship:

a-1)"y, itd, <>

X, (48)

- 1 3
1-L)%ta-L)y, if=<d <>
A-L)""@-L)y, 5 <4 <3
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Later, we apply OLS equation-by equation to estimate the following unrestricted

Vector Autoregressive (VAR) model:
A(L)X, =¢, (4.9

So, model specification (4.9) is stationary if all the roots of the estimated

polynomial |A(z)|:0are outside the unit circle. We determine the orders of the lag

polynomials (p) in A(L) based on the lowest AIC. In addition, the correlograms of the
residuals are also investigated to ensure each of their elements mimics the white noise

process.

4.4.3 Generalized impulse response function and its asymptotic theory

One of the most prevalent tools used to investigate the interdependence between
variables in a system is the impulse response function (IRF). The function illustrates
how a variable responds to a shock in itself or other variables?’. Hence, this illustration
reveals information regarding feedback relationships between variables under
investigation. Generalized IRF (GIRF) and its asymptotic distribution within a FIVAR
model developed in Chapter 3 enables us to analyse the inter-relationship among and

between short memory and long memory series within a single system.

The GIRF and its asymptotic theories within a FIVAR model are detailed in
equation (3.15) and Proposition 3.3. However, we provide a summary of results here to

ease reading.

The GIRF for FIVAR at the horizon h can be expressed by,

2 In impulse response analyses, a shock in a variable is usually referred to as a one standard deviation

shock.
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0!=0,> =Z=0,B h=012,.. (4.10)

-, -
2
oy 0 0
L
- 2
== 0 05, 0
L
2
0 0 Ok

and,

h
_Dowin,, h=12..
T ]i=0

I, h=0

@,

where W@ is the diagonal KxK matrix with 1" as the j™ diagonal element, and the
KxK matrices I'T, can be computed recursively using the relationship,

_— j:lHi_jAj i=12,..p
' "1 A i>
j=t =i P
where IT, =1.

Hence, the {(i, j),i, j =1,2,..., K }element in the matrix of impulse responses ©¢ is
interpreted as the response of the ith variable to an innovation in the jth variable at
horizon h.

In addition, for statistical inference on the existence of the relationship, we

employ the asymptotic theory of the GIRF as summarized below.
Let (:)ﬁ denotes the estimator of the true impulse response matrix ®;, and,
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H,=(B'® |K)[hz_fth(A')“i“ QY11 j}

i=0 j=0
H,=E®®,X,)S,D, + E®®,)D,,

where ® denotes the Kronecker product, D, is the K?xK(K +1)/2 duplication
matrix, S, is defined as the K? x K? diagonal-stacking matrix, S, =E,E} . Ex is a

K2xK matrix of 0 and 1 represented as,

!

elel
€,€)
EK = . )
(K2xK) .
'
eKeK

where ¢ is the Kx1 vector with 1 in the i element and 0 elsewhere.

Matrix A and J are represented as,

Al A2 ' Ap—l Ap
I, O 0 O
=0 I, -~ 0 0|,
kexkp) | S
|0 0 I 0]
. =[l,:0:---:0],
Furthermore, we denote,
2, =0, ®2,,
where I’y can be obtained from,
vecly =(1 . —A®A) "vecE,,
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£, 0
5, = ,
(Kp x Kp) 0 0

and,

¥, =2D;(2,®2,)D;,

o

where D; = (D} D, )" D is the Moore-Penrose inverse of the duplication matrix D.

With these notations, the asymptotic distribution of the generalized impulse

responses for a FIVAR model can be written as,

VTvee(©9 —08)—5>N(O,H,2, H/ +H,Z,H/)  h=12... (4.11)

4.5 Inter-relationship between trading volume and realized

higher-moments

4.5.1 Model estimation outputs

For the purpose of analysing the interdependence between trading volume and
realized higher-moments as well as the interaction across stock and FX markets, we
estimate all the realized measures and trading volumes for both stock and FX markets
in one system. Therefore, we have four FIVAR systems (one for each geographical

region) with 8 equations (3 higher moments and trading volume for stock and FX

markets). For all systems, we choose the band parameter m=T %% as suggested by
Shimotsu (2007) through the simulation experiments. We report the estimated degree of
fractional integration and its associated z-statistics as well as the optimum lag lenghts

(p) in Table 4.4.

The estimated values of memory parameters are generally consistent with
information extracted from the Q(20) statistics in our preliminary analysis, which
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indicates that the realized volatility, kurtosis and trading volume series all strongly
exhibit long memory behaviour. Furthermore, realized skewness is mostly a short-
memory series. Among the long-memory measures, realized kurtosis has the lowest
degree of fractional integration. Higher values of memory parameters for realized
volatility and trading volume may imply a higher degree of predictability than for
realized kurtosis or skewness. This is due to greater persistence in realized volatility
and trading volume. In addition, we observe higher degrees of fractional integration for
all long memory measures during the Volatile period than in the Stable period for stock
markets. Hence, these measures are more serially correlated during the volatile period

than in the tranquil period.

The optimal lag lengths identified are reasonably small, which may indicate that
the long memory behaviour is well captured for Y; and the filtered series in X; are,
therefore, free from long range dependence problems. Hence, the VAR specification
used for X; in Equation (4.9) is correctly specified. We confirm this implication by
inspecting the sample autocorrelation of X; (not shown) and see that the autocorrelation
dies out quickly and then fluctuates around zero, an indication of short memory
processes. In addition, many of the estimated FIVAR coefficients are statistically
significant and all inverse roots of the estimate of the lag polynomial matrices in A(L)
are inside the unit circle, an indication of covariance stationarity®®. Therefore, we can

employ the GIFR to capture dynamic linkages within the FIVAR system.

We define the generalized impulse response as the spill-over effect (i.e., an

exogenous shock in the ith variable at the current time, which causes a significant

% To conserve space, we do not report the estimated coefficients in the lag polynomial A(L) and their

inverse roots. However, the full set of results is available upon request.
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change of the jth variable in next periods). Hence, we summarize the spill-over effects
from realized volatility, skewness, kurtosis and trading volume to other variables in
Tables 4.5, 4.6, 4.7 and 4.8, respectively. In our study, we focus on the existence, the
sign and the direction of the spill-over in explaining the properties of the
interdependence among and between realized measures and trading volume. The
existence and the sign of the spill-over effects are inferred from whether the impulse
responses are significantly greater or smaller than zero at the 5% significance level.
Further, as mentioned earlier, we also conduct sub-sample analyses to analyse the

differences between stable and volatile periods in financial markets.

4.5.2 Inter-relationships between trading volume and higher moments

The Volume — volatility inter-relationship

Tables 4.5 and 4.8 generally document a positive relationship between trading
volume and realized volatility. In terms of the relationship within the same asset
markets, we find a bidirectional spill-over effect between the two measures in all cases.
Besides, across asset markets, a bidirectional relationship is also found between trading
volume in FX markets and realized volatility in stock markets in nearly all cases®.
However, we uncover a unidirectional spill-over from trading volume in stock markets
to realized volatility in FX markets during the volatile period. In fact, the bidirectional
relationship between the two measures within the same asset markets has been shown
in the literature (e.g., Mougoué and Aggarwal, 2011). Furthermore, the positive
volume-volatility relationship is also widely supported in previous empirical studies

conducted within stock and FX markets (see Melvin and Yin, 2000; Bauwens et al.,

# The only exception is in the Western European region, which shows a unidirectional spill-over from

trading volume in FX markets to stock market realized volatility.
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2005; Bjgnnes et al., 2005, for examples of FX markets and Kalev et al., 2004; Chan
and Fong, 2006, for examples of stock markets). However, no study has addressed the
volume-volatility relationship between stock and FX markets which is important for

better understanding financial market linkages.

Our findings about the volume-volatility relationship can be explained by the
MDH, which predicts that volume and volatility should be positive correlated since
they are characterized by the same latent information flows. This explanation is in line
with the theory of heterogeneity of beliefs among investors, which shows that new
information arrivals in the market may lead to different interpretations between
different types of traders. Therefore, traders experience different expectations regarding
the fundamental values of assets, which subsequently results in greater variability in
price changes (see Shalen, 1993). Furthermore, our results, drawn from an impulse
response analysis, imply lead-lag relations between trading volume and realized
volatility, which is also consistent with the SAIH. We support the view of Chen and
Daigler (2008), who consider the SAIH as being a complementary explanation for the
volume-volatility relationship. Information flows may come in sequence to different

traders at different times.

The Volume — skewness inter-relationship

Empirical results shown in Tables 4.6 and 4.8 indicates that trading volume has
no effect on realized skewness, thus providing a lack of support for the conclusion of
Hong and Stein (2003) at the regional level. The only exception that we observe is the
case of the Asia Pacific Emerging region during the volatile period, in which the

trading volume of stock markets has a positive impact on the realized skewness of FX
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markets **. The investor heterogeneity theory of Hong and Stein (2003), used in
explaining the positive impact of volume on negative skewness (i.e., higher trading
volume may lead to more negative skewness of returns), is strongly supported in
empirical studies using firm-level data (e.g., Chen et al., 2001). However, when the
market-level data are employed, the relationship tends to disappear (e.g., Chen et al.,
2001; Hueng and McDonald, 2005). More recently, Hutson et al. (2008), in using
national stock market indices, provides some empirical evidence on the theory.
However, the direct effect of volume on negative skewness only exists in 3 out of 11
cases, implying a weak support for the theory at the national level. Therefore, in
conjunction with our findings at the regional level, we hypothesize that the direct
influence of trading volume on negative skewness is less significant for a portfolio that
is more diversified, conditional on the same market conditions. In order to give some
intuition for this hypothesis, we examine the consequences of differences of
expectation among investors; say, investor A and investor B (see Hong and Stein,
2003). Assume that both investors have their own private information, where investor B
gets more negative signals, so that his expectation about the asset’s price is lower than
A’s. Due to the short-sales constraint, investor B will sell all of his assets and sit out of
the market. Hence, there is only trade between investor A and the arbitrageurs, that
leads to the asset price at this time only reflecting the information of investor A but not
investor B. When some of the previously hidden signals of B are revealed in the market,
the asset price will drop as investor A wants to get out of the market at the price
matching with what the arbitrageurs learn from when investor B gets into the market.

Hence, the more pessimistic information of B is released, the more an asset’s price will

% In this specific case, our result is consistent with the theory of Hong and Stein (2003) since we

emphasize on the downside risk by utilizing Equation (4.3) to calculate realized skewness.
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drop, which leads to higher negative skewness of the return. Therefore, the higher the
degree of differences in investors’ opinions is, the level of negative skewness will be
higher, conditional on high trading volume and vice versa. Intuitively, if a portfolio is
better diversified, we should expect a lower degree of differences in investors’
valuations of the portfolio’s price. Accordingly, the impact of trading volume on the

level of negative skewness should be less significant for a better diversified portfolio.

Regarding the opposite direction of the volume-skewness relationship, we find
some (but not strong) evidence of the spill-over effect from realized skewness to
trading volume during the volatile period. Specifically, realized skewness has a positive
impact on trading volume in terms of both within the same and cross-asset markets®".
One possible explanation is that during the volatile periods, risk-averse investors tend
to be more sensitive and panic in response to market downturns, which leads them to
evaluate asset prices well below fundamental values. Therefore, they hope to get out of
the market before the market gets worse. However, the risk-neutral arbitrageurs are not
that pessimistic and are willing to buy at the price at which risk-averse investors want

to step out. Therefore, the market experiences an increase in trading volume.

The Volume — kurtosis inter-relationship
Empirical results presented in Tables 4.7 and 4.8 show some evidence of the

inter-relationship between trading volume and realized kurtosis. We find a negatively

1 We find a positive spill-over from realized skewness of FX markets to trading volume of FX markets
in cases of Asia Pacific Emerging and Developed regions; and to stock market trading volume in cases of
the Asia Pacific Emerging region. Further, similar effects are also observed between realized skewness of
stock markets and trading volume of FX markets in cases of Latin American and Asia Pacific Developed
regions; and between realized skewness and trading volume within stock markets in the Asia Pacific

Developed region.
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bidirectional spill-over effect between the two measures within the FX market during
both stable and volatile periods in cases of emerging regions. Furthermore, within stock
markets, a negatively unidirectional spill-over effect from trading volume to realized
kurtosis is observed in Latin American and Western European regions during the
volatile period. However, we do not find significant evidence of the cross-asset market
relationship between trading volume and realized kurtosis. The negativity of the inter-
relationship between the two measures may also be due to the heterogeneity of beliefs
among traders, which is used to explain volume-volatility relationships. When a new
information flow (e.g., macroeconomic announcements) arrives in the market, different
types of traders with their private signals may have different interpretations of the same
information. Therefore, dispersion of beliefs among traders appears and leads to
different valuations for an asset’s price. The more uninformed (noise) traders are
present in the market, the higher degree of dispersion of beliefs among traders. Higher
dispersion of beliefs, in turn, leads to a lower degree of concentration of price changes
around its average value, which is revealed as a decrease in the kurtosis of the return’s
distribution. Hence, the negative inter-relationship between trading volume and realized
kurtosis is, in fact, consistent with the heterogeneity of investors’ beliefs in the

literature.

4.5.3 Interactions among realized higher moments

Empirical results presented in Table 4.6 consistently show no support for the
spill-over effect from realized volatility to realized skewness in all cases. However,
regarding the opposite direction of the spill-over effect as shown in Table 4.6, we find
some distinctive results between different types of markets as well as for different

periods. The spill-over from realized skewness of FX markets to realized volatility (of
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both stock and FX markets) tends to be negative during the volatile period but
insignificant in the stable period. Meanwhile, the realized volatilities of both stock and
FX markets respond positively to an innovation in stock market realized skewness.
However, the spill-over from stock market realized skewness to FX market realized
volatility is only significant during the volatile period; whereas, we observe the
unidirectional spill-over from realized skewness to realized volatility in all cases within

stock markets.

As can be seen from Tables 4.5 and 4.7, there is strong evidence of a positively
bidirectional spill-over effect between realized volatility and realized kurtosis during
both tranquil and volatile periods for all regions. However, we only observe this
relationship within stock or FX markets but not across asset markets. Hence, the finding
indicates that, the volatility risk and fat-tail risk are more likely to interact with each
other within the same asset markets. Furthermore, since the interaction is positive, it
implies that an innovation in the return’s volatility will contribute an increase to the
likelihood of extreme events in subsequent periods. Conversely, if there is a shock to

the occurrence of extreme events, we should expect a rise in the dispersion of returns.

In contrast with the relationship between realized volatility and realized kurtosis,
the results shown in Tables 4.6 and 4.7 do not support the linkages between the 3"
moment (skewness) and the 4™ moment (kurtosis). In nearly all cases there is no spill-
over effect between realized skewness and realized kurtosis, implying that downside
risks and the fat-tail risks are generally not related to each other. However, we observe
some exceptions, which are only found in emerging regions during the stable period.
We find that there is a positively bidirectional spill-over effect between realized

skewness and realized kurtosis within FX markets of the Asia Pacific Emerging region.
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Further, a positively unidirectional spill-over from realized skewness of stock markets

to realized kurtosis of FX markets exists in the Latin American region.

4.6 Volume impacts on the inter-relationship among higher

moments

The evidence of interactions between higher moments motivates the necessity to
investigate volume impacts on not only each of the higher moments separately but also
the inter-relationship among them. Additionally, based on some recent evidence of
time-varying volatility spill-over effects (e.g., Diebold and Yimaz, 2009; Bubék et al.,
2011), we are interested in analysing the issue dynamically. Due to both the recent
turbulence and evolution of financial markets, a static analysis may only capture the
‘average’ properties of the inter-relationship for the full-sample but not the behaviour
over time. Therefore, it is likely to overlook dynamics of the interactions that are

possibly associated with some significant events.

4.6.1 Methodology

The models

In order to model the dynamic influence of trading volume on the inter-
relationship among higher moments, we compare the strength of the inter-relationship
without and after controlling for the effects of volume. With regards to the case when
the volume impact is not controlled for, we employ a FIVAR model as discussed earlier
where all realized measures are endogenous variables. To control for the volume
impacts, we consider all realized measures and trading volumes as endogenous and
exogenous variables in a FIVARX framework, respectively. The specification of a

FIVARX model can be represented as follows,
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A(L)D(L)Y, =VD, (L)V, +¢,, t=12,..T. (4.12)

where V is the K x2 matrix of coefficients; D, (L) = diag{(1— L)% ,(1-L)**} and
V, =V, V)"V, (V,,) and d,, (d,,)are stock (FX) trading volume and its degree of

fractional integration, respectively®.
Spill-over index

For the purpose of a dynamic analysis, we construct the time-varying spill-over
index of the inter-relationship among higher moments as a proxy of its strength. This
measure is motivated by some recent studies (e.g., Diebold and Yilmaz, 2009, and
Bubak et al., 2011). In these studies, the evolution of volatility spill-over is investigated
using the spill-over index, which measures the proportion of the h horizontal forecast
error of a variable’s volatility that can be assigned to innovations in other variables
within a VAR framework. Accordingly, this idea, in fact, can be applied to construct
not only the volatility spill-over index but also the index for other types of
interdependence. However, a drawback of the method proposed in Diebold and Yilmaz
(2009) is the requirement to determine the contemporaneous relationship between
variables of a system in the first stage. This method, therefore, may face some
difficulties in cases of a high dimensional system, where there is no clear economic
guidance to order the direction of the contemporaneous relationships between

endogenous variables. Hence, we incorporate the method proposed in Diebold and

%2 Since V, is no longer an endogenous variable in the system, we employ an univariate framework in
Shimotsu et al. (2005) to estimate its degree of fractional integration (d,; and d,;). This method can be
considered as a special case of a multivariate estimation presented in Shimotsu (2007), which is outlined

in section 3. We, therefore, omit a description of the univariate estimation of a fractional degree here.
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Yilmaz (2011) in a FIVAR model to investigate these issues. Originally, Diebold and
Yilmaz (2011) derived the formula based on the generalized variance decomposition of
a VAR process. However, we find that it is in fact straightforward to apply this
technique in a FIVAR(X) model when the generalized variance decomposition of a

FIVAR(X) model is available.

Similar to the idea of a generalized variance decomposition of a VAR model (see
Pesaran and Shin, 1998), we can easily obtain the {(i, j),i, j =1,2,..., K} element in the

matrix of the h step-ahead variance decomposition of a FIVAR(X) process using the

generalized approach as follows**,

1h—l
iy (edz e )?
0; (h) = —7— (4.13)
> (@2, dle)

i
1=0

This variance decomposition matrix can be subsequently used to derive the spill-
over indices as presented in Diebold and Yilmaz (2011). The total spill-overs index is
computed as,

>'65(h)

ij=1

S9(h) :”"Txloo (4.14)

¥ We omit the derivation of the variance decomposition for FIVAR(X) since it is similar to what has

been shown in Pesaran and Pesaran (2009, section 22.6.2) with a note that, for a FIVAR process Y, has a

moving average representation as, Y, = ZCDigl_i , (see Chapter 3, section 3.3.1).
i=0
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where éjg(h) is the (i, j) element of the variance decomposition matrix normalized by

the row sum,

o 02
K

205 (h)

-1

The total spill-overs index evaluates the contribution of all spill-over effects from
the innovations across all variables to the total forecast error variance. Therefore, this
index can help us to explain the time-varying behaviour of the interdependence among
all realized higher-moments. However, since this index cannot separately identify the
contribution of spill-overs from shocks in each variable, we also calculate the
directional spill-overs index to investigate the contribution of each of the realized
higher-moments to the total degree of the inter-relationship among them. The
directional spill-overs from variable i to all other variables in the system can be

estimated as,

2.0, (h)
S%(h) :Txloo (4.15)

4.6.2 Empirical results

We construct dynamic spill-over indices for total and directional effects from
1/1/2004 to 15/2/2010 by utilizing the 520-day rolling sample with a 1 step-ahead

forecast horizon in a FIVAR(X) model®*.

% The choice of window size as 520 (approximately equals to 2 years) is for consistency with the

Shimotsu (2007) in estimating the FIVAR model. Given that the choice of window size is somewhat
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Time-varying interdependence among realized higher-moments

We first investigate the time-varying behaviour of the interdependence among
higher-moment risks by constructing the total spill-over index in a FIVAR system,
which includes all realized measures of both stock and FX markets but not the trading
volume. The index, a proxy for the degree of the inter-relationship among all realized
measures, is graphed in Figure 4.2. As can be seen, the degree of the inter-relationship
is clearly changing over time. On average, we observe a higher degree of
interdependence in developed regions (ranging from 20-28%) in comparison with
emerging regions (varying from 16-24%). Furthermore, we find remarkable movements
and radically different properties of the inter-relationship, corresponding to significant

economic events®,

We often find a period with a higher degree of the interaction among higher-
moment risks within the region when countries of the region tend to be more integrated.
The higher degree of integration between countries may be because of new policies,
agreements that enhance the incorporation between national economies and the regional
or international economies (e.g., the European Union enlargement plan 2004-2007,
Letter of exchange establishing the Japan-ASEAN integration fund in March 2006 and
the 2" ASEAN integration work plan 2009-2015); it can be also due to the highly
volatile periods (e.g., the U.S sub-prime mortgage crisis in 2007, Global financial crisis

in 2008 and the uncertainty surrounding the onset of the European Sovereign Debt

arbitrary, we also construct the spill-over indices with other window sizes. However, we find that the
results are similar to our original choice.
% We provide details of the economic events in accordance with periods of high and low degree of the

inter-relationship in Figure 4.2.
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crisis around the end of 2009). Furthermore, we also find evidence of a sudden increase
in the degree of the interaction among higher-moment risks associated with an arrival
of pessimistic information in the market (e.g., IMF warnings about the Australian

banking system in late 2006).

In the converse situation, a decrease in the degree of the interdependence among
higher-moment risks usually starts with events, which lead to a higher degree of an
economy’s transparency (e.g., database of ASEAN non-tariff measures regularly
updated from 2007); or a lower degree of integration between economies (e.g., tight
monetary policy of Brazil in Sep 2004, establishment of South America Community of
Nations in December 2004 which limits the influence of the U.S on the Latin American

region).

To address the contribution of each of higher-moment risks to the total degree of
the interdependence among them, we decompose the total spill-over index to the
directional spill-over indices, which are plotted in Figures 4.3-4.6. The directional spill-
over plot tells us how much (%) of a shock in a realized measure contributes to the
forecast error of the whole system. Roughly speaking, we can interpret it as the spill-
over from one realized measure to all other measures in the system. As can be seen, the
realized volatility and kurtosis of FX markets have contributed the largest spill-over
effect to the total degree of the interdependence in developed regions (staying around 5-
8%); whereas, the realized skewness of stock and FX markets are the lowest
contributors among all (varying from 0.5-3%). Regarding the emerging regions, we
find that the realized kurtosis of FX markets tends to have the largest impact on the
total spill-over of the system, which varies around 5-7%. However, it is difficult to

distinguish between contributions of other realized measures as they are close to each
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other. Another critical point that we observe is the consistent behaviour of realized
skewness of both stock and FX markets in Asia Pacific Developed and Latin American
regions. In these regions, the downside risks are likely to have more impact on the total
spill-over effect during the high volatility periods. This finding is consistent with our
expectation as investors tend to be more sensitive and panic when an extreme loss

occurs during the financial turmoil.
Volume impacts

After controlling for the influence of trading volume, the main findings about the
dynamic structure of the total spill-over index (e.g., an association with events and new
policies) as well as the level of contribution of each realized measure are basically
consistent with what has already been discussed in the previous sub-section. Apart from
those, Figure 4.2 clearly reports that trading volume has an impact on the strength of

the inter-relationship among higher moments.

In particular, trading volume decreases the total spill-over indices of Asia Pacific
Developed, Western European Developed and Asia Pacific Emerging region in most
times during the analysed period. More specifically, we observe from Figures 4.3-4.5
that this difference is mainly due to a decline in the proportion (%) of spill-over effects
from realized kurtosis to other moments. Equivalently, this means that trading volume
increases the proportion (%) of spill-over effects from realized kurtosis to itself in

future periods®. Since realized kurtosis measures the occurrence of extreme returns

% The spill-over from one variable is built on two components: (1) spill-over to all other variables in the
system and (2) spill-over to itself. The first (1) component is the proportion (%) that a shock in the
variable contributes to the forecast error of all others; whereas, the second (2) component is the

proportion (%) that a shock in the variable contributes to the forecast error of itself.
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(fat-tailedness), such increases may cause more clusters of return volatility, which last
for longer periods of time. Therefore, our finding can be fundamentally explained by a
prominent result found in the trading volume — GARCH effect literature (initially
reported in Lamoureux and Lastrapes, 1990), which indicates trading volume is a

source of heteroskedasticity (volatility clustering).

An exceptional case is the Latin American region, where we observe the inter-
relationship among higher moments to increase with shocks to trading volume. Even
though the behaviour of realized kurtosis under the volume impact is consistent with
the above cases, significant elevations in spill-over effects from realized volatilities of
both stock and FX market to other higher moments lead to phenomenon major

difference between Latin America and other regions.

4.7 Conclusion

This chapter comprehensively examines the effects of trading volume on financial
return distributions in a regional context. We assess not only how trading volume
affects each higher moments but also how volume impacts on their dynamic inter-
relationship. We shed new light on the volume — skewness relationship with a regional
portfolio analysis based on high-frequency data. The use of high-frequency data
provides us with more robust estimates and treats higher moment return measures as
observable variables, which can be appropriately modelled in a FIVAR(X) framework.

Empirical findings in our volume — volatility analysis provide support for current
information based theories. Hence, we support Chen and Daigler (2008), who interpret
these theories as complementary hypotheses rather than treating them as opponents.
Further, we add to the literature on volume — volatility relations by also providing

evidence of their positive and lead-lag relationship across stock and FX markets.
124



Chapter 4: How does trading volume affect financial return distributions?

Regarding the volume — skewness interaction, the lack of support of Hong and Stein’s
(2003) conclusion in our regional-level analyses leads us to hypothesize that the direct
impact of trading volume on the level of negative skewness is less significant for a
better diversified portfolio. This hypothesis, however, may be explained by extending
the theory of DOH used in Hong and Stein (2003) with an intuitive expectation that a
better diversified portfolio should generate a lower degree of the difference between
investors’ opinions about its fundamental value. Although this expectation has not been
tested in this paper, it suggests an exciting future research direction to extend the theory
of Hong and Stein (2003). Additionally, in terms of volume — kurtosis relations, we find
evidence of a negatively bidirectional interdependence within the FX markets but
unidirectional spill-over from trading volume to kurtosis within stock markets. We
suppose that the negativity of the interaction between trading volume and kurtosis may
imply an application of the DOH, where higher dispersion of beliefs among traders
leads to lower concentration of asset returns around its mean value.

Lastly, we investigate the impact of trading volume on the dynamic linkages
between higher moments by using a spill-over index. We find clear evidence that the
strength of the linkages between higher moments is affected by trading volume. The
level of the inter-relationship in Asia Pacific Developed, Western European Developed
and Asia Pacific Emerging region decreases with shocks to trading volume. This is
mainly due to a decline in the proportion (%) of spill-over from realized kurtosis to
other moments; or equivalently, an increase in the proportion (%) of spill-over from
realized kurtosis to itself in next periods. This has policy implications for financial
market regulations (like the imposition of short-selling bans) that affect trading volume

and in turn, financial return distributions and risks.

125



Chapter 4: How does trading volume affect financial return distributions?

4.8 APPENDIX

Table 4.1: Regions, country weights and GMT trading time

Regions Countries  Average Weight Trading time (GMT) @
GDP®  Value  Standard time DST
Latin America Argentina 295 0.14 14:00-21:00 -
Brazil 1,558 0.73 13:00-20:00 12:00-19:00
Chile 169 0.08 13:30-21:00  12:30-20:00
Peru 121 0.06 13:30-21:00 -
Asian Pacific Emerging Indonesia 511 0.33 2:30-9:00 -
Malaysia 199 0.13 1:00-9:00 -
Philippines 163 0.11 1:30-4:00 -
Taiwan 395 0.26 1:00-5:30 -
Thailand 262 0.17 3:00-9:30 -
Asian Pacific Developed Australia 962 0.14 0:00-6:00 23:00 - 5:00
Hong Kong 209 0.03 2:00-8:00 -
Japan 4,830 0.68 0:00-6:00 -
Korea 956 0.13 0:00-6:00 -
New Zealand 126 0.02 22:00-4:00 -
Western Europe Austria 373 0.06 8:30-16:30 7:30-15:30
France 2,571 0.38 8:00-16:30 7:00-15:30
Germany 3,304 0.49 8:00-16:30 7:00-15:30
Switzerland 469 0.07 8:00-16:30 7:00-15:30

Note: (1) The average GDP of each country is computed by using its GDP (in billion USD) from 2006
to 2010. We download most of the GDP data from the World Bank, except for Taiwan which

we sourced from the Australian Government’s — Department of Foreign Affairs and Trade.

(2) We convert the trading times of each stock market to GMT time. In addition, DST denotes
the Daylight Saving Time.
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Figure 4.1: Plots of daily realized volatility weighted by GDP and Market
Capitalization

Asian Pacific Developed Region Western European Developed Region
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Note: We plot the daily realized volatility of stock markets for each region in terms of market weights
by GDP and Market Capitalization, respectively. The plot indicates that realized volatility estimates
based on GDP weight tends to be smaller than which based on Market Capitalization. This may be due
to the GDP figures are likely to be more stable compared to stock markets’ performance with peaks and
troughs. Further, as can be seen, the realized volatility estimates behave differently from mid-2007 in
comparison with previous periods in most of regions.
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Figure 4.2: Dynamic inter-relationship among realized higher moments
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(1) In October 2006, the International Monetary Fund (IMF) started warning Australian Banks

about their fragilities, which causes almost immediately worries in Australian markets.

Further, as ranked the 3 and 4™ in total investment in Australia at that time, Japan and

Hong Kong are also affected because of the bad news, respectively.

()

The subprime mortgage crisis started in the U.S around mid-2007 then spread globally as

the Global Financial Crisis from 2008, which has caused one of the greatest global

recessions in financial history.

3)

Fear of a European sovereign debt crisis has risen from late 2009 since many European

countries faced a huge problem with budget deficits. Although it is analytically separate

from the Global Financial Crisis in 2008, the two crises are linked because many European

banks held assets in American banks, which were facing financial troubles.
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(4)

()

(6)

(")

(8)

European enlargement plan from 2004 to 2007 led Western European developed countries
to transfer massive financial products (and assistances) to less developed countries during
that period.

In March 2006, a Letter of Exchange was established between Japan and the Association of
Southeast Asian Nations (ASEAN), which stated that Japan would provide a fund of ¥7.5
billion to support ASEAN’s integration efforts.

In January 2007, ASEAN started to regularly update the database of its non-tariff measures
to enhance transparency.

In early 2009, ASEAN launched the Integration work plan 2 for the period from 2009 to
2015. The plan aims to narrow the development gap and increase the integration between
ASEAN’s members by allowing the free flow of goods/ services, investment capital and so
on.

In late 2004, Brazil had tightened its monetary policy (September 2004) and led to reinforce
the MERCOSUR by establishing the South America Community of Nations (December
2004). The community acted as a southern hemispheric alternative to NAFTA, which,
therefore, limited the influence of the U.S on the Latin American region. Probably, all of
these actions would slow down the integration progress of regional members to the U.S and

to the international economies.
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Figure 4.3: Directional Spill-over effects in the Asia Pacific Developed region
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Note: RV, RS and RK denote realized volatility, skewness and kurtosis, respectively. Further, FX and

ST denote the Foreign Exchange and stock markets, respectively.
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Figure 4.4: Directional Spill-over effects in the Western European Developed region
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Note: RV, RS, RK and Volume denote realized volatility, skewness, kurtosis and trading volume

respectively. Further, FX and ST denote the Foreign Exchange and stock markets, respectively.
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Figure 4.5: Directional Spill-over effects in the Asia Pacific Emerging region
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Figure 4.6: Directional Spill-over effects in the Latin American region
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Chapter 5

Sovereign credit ratings impacts on financial

return distributions: A multivariate regime

switching long memory approach

5.1 Introduction

Sovereign credit ratings, which publicly reveal opinions of specialist information
intermediaries about the credit quality of a national government, are expected to have
influences on the behavior of asset prices, especially during periods of market
uncertainty and financial instability. Yet, the credit rating agencies (CRAS), providers
of this information, have often been criticized for their slow responses to international
financial crises as well as their inability to forewarn market participants of impeding
crises (see, e.g., Mora, 2006; Gorton, 2008). It is, therefore, neccessary to assess the
informational value of sovereign credit assessments and the impact of agency ratings on
the stability of financial markets as represented by moments of asset return
distributions. Focusing on financial return distributions enables a much deeper

understanding of the role of sovereign ratings information in asset pricing, and hence,
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can also improve other financial activities such as Value-at-Risk calculation and asset
allocation. This is due to the dynamics of higher return moments such as variance,
skewness and kurtosis are evidenced to influence asset prices (see among others,

Harvey and Siddique, 2000; Athayde and Fléres, 2003; Mandelbrot and Hudson, 2004).

5.2 Literature review

Whilst prior studies have extensively documented the more direct and immediate
effects of sovereign credit rating revisions on stock and bond returns (see Reisen and
VVon Maltzan, 1999; Kaminsky and Schmukler, 1999, 2002; Brooks et. al., 2004; Gande
and Parsley, 2005; Pukthuanthong-Le et al., 2007; and Ferreira and Gama, 2007), there
is less substantive evidence on the effects on currency markets. To the best of our
knowledge, the only exception is Alsakka and ap Gwilym (2012), who investigate the
issue in currency markets. As financial crises are invariably related to fluctuations in
currency values, this void clearly needs to be addressed to aid our understanding of
whether CRAs are capable of playing a stabilising role across different financial
markets and under all market conditions.

One of the key findings of the literature on the market impact of rating changes
(see for instance, Brooks et. al., 2004) is the asymmetric nature of rating changes, in
that rating downgrades have a more significant effect than do upgrades. A natural
extension of this finding is to explore whether there are also asymmetries in the rating
impacts on currency markets. Also, the findings on stock markets would lead us to
predict an asymmetric response to ratings news in currency markets, in that rating
downgrades (upgrades) will considerably increase (decrease) currency market
volatilities. However, financial impact of rating downgrades on currency volatility is

likely to be more significant than that of rating upgrades due to its “bad news” content
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during financial crises. Thus, this chapter specifically focuses on the effects of
sovereign credit assessments on equity and currency markets in the spirit of studies like
Brooks et al. (2004), Ferreira and Gama (2007) and Alsakka and ap Gwilym (2012) but
in a more completed context by also considering all first four moments of the return
distribution.

The existing literature has traditionally examined the effect of sovereign rating
changes on the first moment of asset return distributions on a daily data basis (see, e.g.,
Brooks et al., 2004; Gande and Parsley, 2005; Ferreira and Gama, 2007; Hill and Faff,
2010a; Alsakka and ap Gwilym, 2012); whereas, there is a dearth of attention on the
impacts on higher return moments. One possible reason is the limitations of the
parametric methods used in estimating the conditional higher moments®’. In recent
times, an increasing availability of high frequency data has facilitated a better
alternative for measuring the higher moments non-parametrically from intraday returns
as suggested by previous studies (e.g., Dacorogna et al., 2001; Andersen et al., 2003;
Barndorff-Nielsen and Shephard, 2004a, 2004b; Amaya et al., 2011; Neuberger, 2012).
The use of intraday data compared to daily closing data can give us a better
representation and more robust estimate of the actual price behavior (see for instance,
Andersen et al., 2003). The realized higher moments, which are the moments
constructed from intraday returns, can be treated as observable variables and, therefore,

are able to be modeled directly within an econometric framework. As a result, the

¥ Due to limited availability of the high frequency data, the higher moments were often estimated
conditionally based on the well-known Generalized Autoregressive Conditional Heteroskedastic
(GARCH) models and its variants. The estimates of conditional volatility, skewness and kurtosis,
therefore, rely heavily on the underlying model assumptions. In addition, the problem is magnified
within a multivariate system due to the large number of parameters that need to be estimated for

extracting the outputs of conditional higher moments.
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properties of realized higher moments should be taken into account in the empirical
modeling process. Our preliminary analyses show that realized returns and skewness
exhibit short memory behavior; whereas, realized volatility and kurtosis are more likely
to be long memory processes ®. A long memory process is considered as an
intermediate between two classical processes, the short-memory (1(0)) and the unit root
process (1(1)). More precisely, it is defined corresponding to the case of a fractional
degree of integration. Therefore, in order to focus on financial return distributions via
the first four realized moments, our proposed model allows flexible fractional degrees
of integration which can capture both short- and long-memory behavior.

Regarding the sovereign credit ratings, a significant number of studies have
modeled sovereign credit rating transitions due to its critical role in modern credit risk
management, valuation and international asset allocation (see among others, Bangia et
al., 2002; Lando and Skgdeberg, 2002; Fuertes and Kalotychou, 2007; Hill et al.,
2010b). The estimation of the rating transition probabilities matrix has indicated a
regime switching behavior in credit ratings which needs to be accounted for in the
modeling of financial market impacts of sovereign credit ratings. In essence, credit
ratings, either in levels or first differences (i.e., ratings change), can be categorised into
regimes (states), for example, states of ratings level can be defined as each of its letter
designations (AAA, AA+,...); whereas, states of ratings changes may include stable

(i.e., no change), downgrades or upgrades. Hence, we aim to develop a framework that

*® Figure 5.3 illustrates the long memory behavior of realized volatility and kurtosis since their
autocorrelations die out slowly and their spectral densities are unbounded at the origins; whereas, the
realized return and skewness evolve as short memory processes because of their immediate died out
autocorrelations and their bounded spectral densities at the origins. This is also consistent with the
literature, which documented the stylized fact of realized volatility (e.g., Andersen et al., 2000, 2003),

and our findings in Chapter 2 and 4.
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not only allows a flexible set of fractional degrees of integration for endogenous
variables as mentioned earlier but that also captures the regime switching behaviour of
sovereign credit ratings.

We contribute to the existing literature by proposing a new empirical framework
that allows a multivariate system of long memory processes to be conditioned on
observable regimes, which are defined by characteristics of sovereign credit quality
assessments. By accommodating both the long range dependencies of realized higher
moments and the regime switching feature of sovereign credit assessments, the
properties of these measures can be fully accounted for. An inclusion of both long
memory and regime switching properties in one system is challenging. The past studies
claim that under certain conditions, non-linear features (such as regime switching) of a
time series can be spuriously identified as long memory when measured by the degree
of fractional integration (see among others, Granger and Ding, 1996; Bos et al., 1999;
and Granger and Hyung, 2004). However, the necessity of combining these features
within one framework has been supported in the recent literature, for instance, Diebold
and Inoue (2001), Haldrup and Nielsen (2006) and Haldrup et al. (2010). Haldrup and
Nielsen (2006) develop an univariate model that allows process to have different
degrees of fractional integration in two separate observable regimes. The feature of
observable regimes in this model is opposed to the assumption of latent regimes in the
traditional Markov switching model proposed by Hamilton (1989, 1990). However, due
to some similarities (e.g., the switching behavior), Haldrup and Nielsen (2006) still
place their model in the class of a regime switching model. Haldrup et al. (2010) further
advances the work of Haldrup and Nielsen (2006) by proposing a bivariate model to
analyse the co-movement of two time series, while it still preserves the combination of

long memory and regime switching features. To some extent, the work of Haldrup et al.
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(2010) can be considered as an extension of the Markov Switching Vector
autoregressive framework developed by Krolzig (1997). However, similar to the
univariate case discussed earlier, the states in the model of Haldrup et al. (2010) is
assumed to be observable, which is different with the latent states identified in Krolzig
(1997).

Our model inherits some characteristics of the Haldrup et al. (2010)’s model when
it allows a multivariate long memory process to behave differently (i.e., different
degrees of fractional integration) across observable states. Yet, the model of Haldrup et
al. (2010) mostly focuses on the endogenous variables and employs an estimation
procedure that objective functions are optimized over all parameters of the model. We
distinguish our approach by allowing for a presence of exogenous variables. This
feature is important in the case that we aim to investigate the impact of a variable (e.g.,
sovereign ratings) which is not determined by the system of endogenous variables (e.g.,
realized moments). We further advantage our model by proposing a different approach
used in the estimation procedure. The proposed technique, which concentrates the
likelihood function on fractional degrees of integration, may help to facilitate our model
in the case of high dimensionality since the objective function is numerically optimized
over a smaller number of parameters in a comparison with existing techniques.

We illustrate our new approach by empirically investigating the impact of
sovereign credit assessments on European stock and FX return distributions. We
examine the sample period from January 1996 to July 2012, to cover the lead up to the
introduction of the Euro and the recent European sovereign debt crisis (hereafter,
EDC). All CRAs have been particularly active in downgrading European sovereigns
during the debt crisis with on average, nearly 70% of all rating downgrades in our

sample taking place since December 2008 (the onset of the EDC) (see Figure 5.1). We
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aim to contribute comprehensive and new evidence of sovereign rating impacts on
European financial markets during the EDC. Moreover, we employ sovereign ratings
data from Standard and Poor’s, Moody’s and Fitch — the three main CRAs in the world
- in order to find out which agency has the greatest impact on entire financial return
distributions captured by their first four realized moments. Although previous studies
have indicated the largest impact is usually from Standard and Poor’s (e.g., Reisen and
Von Maltzan, 1999; Brooks et al., 2004), recent activities of the CRAs during the EDC
may change their rank orders. In line with this view, Alsakka and ap Gwilym (2012)
find that over the period from 1994-2010, Fitch’s sovereign credit signals induced the
most timely currency market responses. Furthermore, previous studies based their
analyses on causality tests and event studies, which may only capture the direct effects
of CRAS’ re-rating activities. We argue that the market impact of the CRAs should be
measured in terms of their total effects, which include both direct and indirect forces.
In a multivariate framework, where the inter-relationships among realized moments are
captured, we define the indirect effects of the CRAs on a realized moment as the
spillover effect that goes through other realized moments. In this way, we can
comprehensively capture the full effects of sovereign credit re-rating activity on entire
asset return distributions to reveal which agency truly elicits the greatest market
reactions (i.e., has the most influence on the financial return distributions in our
context). We believe this is the first study to distinguish between the direct and indirect
effects of sovereign credit information in financial markets. This is important given the
reliance on rating-contingent financial regulation such as the Basel 1l and 111 accord for
assessing capital adequacy requirements and for prescribing investment grade only

holdings by financial institutions.
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The remainder of this chapter is organized as follows. We describe the data
construction in section 5.3. Section 5.4 proposes the new econometric model and its
estimation procedure. We discuss the findings of our empirical analysis of the EU
financial markets in section 5.5. An impulse response of a transfer function is
developed to find out the most influential CRA in section 5.6. Finally, we conclude the

chapter in section 5.7.

5.3 Data

We capture 5-minute intraday stock and FX market mid prices in some European
Union (EU) countries from the Thomson Reuters Tick History (TRTH) database
provided by the Securities Industry Research Centre of Asia-Pacific (SIRCA). By using
a high frequency of 5-minute intervals, we can minimise the problem of measurement
error and reduce microstructure biases®. The sample period studied is from January
1996 to July 2012, which covers the period from pre- Asian Financial Crisis until the
recent European Sovereign Debt crisis (EDC). In terms of FX markets, we include data
from 21 countries: Austria, Belgium, Bulgaria, Cyprus, Czech, Denmark, France,
Germany, Greece, Hungary, Ireland, Latvia, Malta, Netherlands, Poland, Portugal,
Romania, Slovakia, Spain, Sweden and the United Kingdom. However, the intraday
data was only available for 10 stock markets in the European Union (EU), being
Austria, France, Germany, Greece, Hungary, Ireland, the Netherlands, Romania, Spain

and the United Kingdom.

In addition, we employ historical long-term foreign currency sovereign credit

rating and credit outlook and watches from three leading CRAs, Standard and Poor’s,

% See Andersen and Bollerslev (1998) and Andersen et al. (2001).
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Fitch and Moody’s. This will enable an assessment on which CRA influences European
stock market returns the most via its rating actions. Due to the irregular timing of
ratings announcement, we focus our analysis on a monthly basis. We follow the
approach of Gande and Parsley (2005) and Ferreira and Gama (2007) among others to
transform the sovereign rating and credit outlook and watches into linear scores as
presented in Table 5.1. We summarize all rating news released during each month using
the comprehensive credit rating (CCR) measure®. Figure 5.1 illustrates how active the
CRAs are in re-rating EU sovereign obligors. As can be seen, the CRAs have more
often upgraded than downgraded EU countries over the entire sample period but not
surprisingly most of the downgrade news on EU nations have been released during the
most recent sovereign debt crisis (around 70% of all downgrade rating news). Among
the three CRAs, Fitch seems to be the least active agency in downgrading the rating
level of the EU sovereigns; whereas, the number of upgrades released by Moody’s for
EU countries is the smallest suggesting that they are the most conservative of the major
CRAs. Overall, the absolute number of rating announcements has indicated that
Standard and Poor’s can be considered as the most active rating agency for countries in
the EU (corroborating with prior studies that compare across rating agencies such as

Brooks et al., 2004)*".

To construct a proxy for the opinion of a CRA about the sovereign credit quality

of the EU overall, we utilise the sovereign rating drift measure, which is the difference

“0 The CCR is calculated as the sum of linearised sovereign credit ratings and the credit outlook/watches
following the approach of Gande and Parsley (2005).
* Standard and Poor’s released 112 downgrade and 124 upgrade rating news. Meanwhile, Moody’s

made 109 downgrades and 109 upgrades. Besides, Fitch announced 91 downgrades and 115 upgrades.
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between rating upgrades and rating downgrades averaged by the number of sovereigns

in our sample. The rating drift across the EU can be calculated as,

> ACCR,

SRD, = = (5.1)
m

where ACCR, is the first difference of the CCR measure of country i, and m is the

number of countries used to construct the rating drift. Since we aim to assess the
opinion of a CRA about the whole EU overall, we include historical sovereign ratings
data of all 27 EU countries to construct the drift measure. The sovereign rating drift
adequately reflects the view of a CRA on the average trend in the credit quality of all
sovereign obligors in the EU region on the whole. The plots of the sovereign credit
rating drifts for the three major CRAs shown in Figure 5.2 indicate that the rating drifts
can be classified into three observable regimes or states over time, which are zero,
positive and negative zones. These three zones can be inferred as the regimes of stable,
upward and downward trends in sovereign credit quality across the EU as perceived by
each of the CRAs. Furthermore, it can be observed that most of the negative rating
drifts are in the period of the sovereign debt crisis, consistent with what has been shown
in Figure 5.1. We can, therefore, consider the regime of downward sovereign credit

quality as primarily the episode of the European sovereign debt crisis (EDC).

To model the stock market and FX return distributions, we construct their higher
moments based on intraday returns rather than employing daily close to close prices
since the use of intraday data provides us with more consistent and efficient measures
(see, e.g., Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2001;

Andersen et al., 2003 among others).
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The daily realized returns constructed from intraday returns are identical to the

usual daily returns calculated from daily close to close prices,
D
= z Fit (5.2)
i=1

where r;; denotes the ith 5-minute return during day t and D denotes the total number of

5-minute return intervals during any trading day.

The realized higher moments of returns, namely the realized volatility (RV;),

realized skewness (RS;) and realized kurtosis (RK;) are respectively defined as**,

D
RV, = Z r (5.3)
i=1
\/BZ? r3
RS = v (5.4)
DZ_D r'
RK, = —==—~ 55
! RV,? (5:5)

To facilitate empirical testing, the monthly realized measures are then simply

constructed as averages of corresponding daily realized series.

We graph the sample autocorrelations and spectral densities of realized returns,

(logged) realized volatility, realized skewness and (logged) realized kurtosis for a lag of

“2 The properties of realized volatility as defined in Equation (5.3) are well analyzed in the literature
(e.g., Andersen and Bollerslev, 1998; Andersen et al., 2003). Meanwhile, the limits of realized skewness
and kurtosis under the forms of Equation (5.4) and Equation (5.5) are recently assessed in Amaya et al.,

(2011).
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50 months in Figure 5.3*. There is evidence of long memory behaviour in the realized
volatility and realized kurtosis series (ie., second and fourth moments)revealed by the
slow hyperbolic autocorrelation decay and the most mass at the zero frequency of the
spectral densities. Meanwhile, the sample autocorrelations of realized return and
realized skewness fluctuates around zero during the displacement of 50 months,
exhibiting the property of short memory processes. We can further confirm a high
degree of serial correlation in both realized volatility and kurtosis by examining the

Ljung-Box statistics in all cases.

5.4 Econometric modelling

The properties and features of the four realized moments of financial returns and
the sovereign rating drifts discussed in the previous section, motivate us to develop a
flexible multivariate framework that can capture both long memory and regime

switching behavior in these series.

Although there have been some studies debating the interchange between the long
memory and the non-linear models**, it is necessary in our case to simultaneously
accommodate both long range dependencies and regime switching in order to separate
the properties of our variables of interest. The recent literature also supports the

importance of including these features within a single framework, for instance, Diebold

* We utilize the natural logarithm of realized volatility and kurtosis in our analysis since their
applications are extensively supported in the literature (e.g., Andersen and Bollerslev, 1998; Andersen et
al., 2003). Further, the use of realized logarithmic volatility and kurtosis help us to avoid the non-
negativity conditions in modeling. Therefore, when we refer to the realized volatility and kurtosis
measures, they are in natural logarithmic forms.

* See for example, Granger and Ding (1996), Bos et al. (1999) and Granger and Hyung (2004).
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and Inoue (2001), Haldrup and Nielsen (2006) and Haldrup et al. (2010). In our case,
the sovereign rating drifts are clearly distinguished by three separate regimes, which
represent the periods of stable, upward and downward trends in sovereign credit
quality®. In the stable period, sovereign rating drift has no impact on the financial
return distribution as it is equal to zero. On the other hand, in the upward and
downward periods, the impact of sovereign ratings drift on the financial return
distribution as well as the characteristics of the financial return distribution itself can be
very different. Accordingly, it would not be a good decision to fix the long memory
behavior of the realized moments of asset returns across the three regimes. We should
rather allow long memory behavior under the form of fractional integration to vary

across these regimes.

Hence, we propose a multivariate long memory model with exogenous variables
that are allowed to switch between different regimes. We model the realized moments
of asset returns as endogenous variables in the system and we take the view that the
sovereign ratings drift is not necessarily explained by the system of those realized
moments. The sovereign ratings drift is rather determined by the public information as
well as the private information owned and subjectively assessed by the CRAs.
Therefore, we treat the sovereign ratings drift as an exogenous variable, which defines
the states (regimes) and may help to explain the realized return-based measures. Our
model is different to the existing models in the literature (e.g., Haldrup and Nielsen,
2006; Haldrup et al., 2010) in the sense that it allows for the existence of exogenous
variables. We further distinguish our model by proposing a different technique used in

the estimation procedure. This technique enables our model to be applicable for a

> We can also interpret these regimes as the periods in which CRAs release good news and bad news

regarding sovereign credit quality across the EU.
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higher dimensional system, which is also an advantage over existing models. Instead of
numerically optimizing the objective likelihood function with regards to all parameters
as in the literature, we further concentrate the objective function with regards to the
degrees of fractional integration. Hence, the numerical optimization procedure is much

faster and, perhaps, more reliable than previously possible.

5.4.1 Model specification and assumptions

Let the K-dimensional time series, Y, =(Y,,....Y,,)", follow a Markov Regime
Switching and Fractionally Integrated Vector Autoregressive model with n exogenous

variables (MS-FIVARX), R, = (R,R,,...R,)":

A(s‘)(L)D(SI)(L)Yt = V(sl)Rt +8t, t =1’21---1T (5'6)

We define s, €{L2,..,M} as the observable regime variable which is

characterized by the behaviour of one of the exogenous variables R; and follows an

ergodic M-state Markov chain process with an irreducible transition probability matrix,

Pi1 P - P
P .p21 .p22 .p2M ,
Pui P - Pum

M
where, p; =Pr(s,,, = j|s, =i) and z p; =L Vi, je{l2,.,M}. In other words, pj is

j=1

the probability that a regime i is followed by a regime j.

p _
The operator, A® (L) =1, -> A®™L', where p is the lag order of the lag
i=1

polynomial and A is the KxK matrix of coefficients associated with the endogenous
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variables. V& is the Kxn matrix of coefficients associated with the exogenous

variables. The operator D' (L) is a diagonal KxK matrix characterized by the K-

dimensional vector of degrees of fractional integration, d® = (d,(s,),...,d, (s,))’,

@1-L)ne 0 e 0
1 )%06)
o= ;DT
0 0 e (L)

We can employ the binomial expansion to operationally generate the term

(1-L) 9" gs,

LA+0,60) |1 aco (5.7)

45050 _
-0 - Z r(d; (s))I'(i+1) i—0

i=0
where T'(.)is the gamma function; w{” =1, and ® =0, for i = 0.
As in the representation of the MS-FIVARX, all the coefficient matrices, the

degrees of fractional integration as well as the variance — covariance matrix of error

terms are assumed to be regime dependent, which means that they are conditional on s,

for example,

v® ifs =1
v(st) — :
viW if s, =M

Further, since Y; is assumed to be dependent on regime s; the conditional

probability density function of Y; is regime dependent,
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f(Y 1Q.6) ifs =1
FOY1Q,8) = ,

f(Y 1Q.60y) ifs=M
where 6, is the vector of parameters associated with regime i, and Q,_; is the

information set available at time t-1.

To ensure the adequacy, stationarity and to avoid the multicollinearity problems,

the following additional assumptions have been made for our MS-FIVARX model:

Assumption 5.1: ¢ |s, ~N(0,=%)) ; =™ ={c!;i,j=12,.,K} are (KxK)

]

positive definite matrices, E(e, ¢! |s,)=0,forall r #s.

P ,
Assumption 5.2: All the roots of ‘A(st)(z)‘ :‘IK =y A7

i=1

=0 fall outside the

unit circle and d*  (-0.5,0.5) forall j=12,..., K.

Assumption 5.3: Y has no deterministic trend.Y, ,,Y, ,,...,Y,_, are not perfectly

collinear and each element of R, = (R, R,,,...,R,;)"is independent of each other.

5.4.2 Estimation of transition probabilities

Since the regime variable s; is assumed to be observable and determined by the
behaviour of the exogenous variable R;, we may exploit R; to count the number of the
observations in each regime as well as the number of transitions among regimes. These
figures subsequently can be used to estimate the transition probability matrix P.
Therefore, the maximum likelihood estimates (MLES) of the transition probabilities are

simply given as,
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by =l Vi, jefl2...M} (5:8)

2N

m=1

where nj; is the number of times we observe a regime i that is followed by a regime j.

5.4.3 Estimation of the model’s parameters

We obtain the estimates of remaining parameters in the model by using the quasi
maximum likelihood via the concentrated log-likelihood function (CLF). For a specific
regime, model specification (5.6) follows a Fractionally Integrated Vector
Autoregressive framework with exogenous variables (FIVARX). Hence, the CLF of
our MS-FIVARX model in a specific regime can borrow the form of the CLF of a

FIVARX model.

For simplicity, we ignore the term s; in constructing the CLF of a MS-FIVARX
model in a specific regime since it is in fact under the representation of a FIVARX

model. Let us consider,

A(L)D(L)Y, = VR, +¢&,, t=12,..,N (5.9)

Further, we assume that the p pre-sample values of each endogenous variable,

Y

_piren Yo, are available. The following notations are employed to facilitate our

derivation,

Xt = D(L)Yt )

X =Xy, Xprn X)),

(KxN)

B =(A.A...A

(Kx(Kp-+n))

V),

p!
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Xt
Z, = ,
(kpenp) | X pi1
L Rt i

Z  =(ZgsZys),

((Kp+n)xN)

U =(&,&,48y),
(KxN)

Lemmab.1:

Let the assumptions 5.1, 5.2, 5.3 hold and the variance-covariance matrix of

error terms is written as a function of all parameters as,

£,(d,B)=N"Y (e.e)) =N ‘%{[A(L)D(L)Yt - VR JA(L)D(L)Y, - VR, ]')

t=1 t=1

For a given memory parameter d,

%, (d,B)|can be denoted as [z, (d,B)| , then

the following results hold,

%, (d, B)| is minimized at B = XZ'(2Z")*, and,

%,(d.B)| :‘N’l(x ~BZ)(X - BZ)/.

Following Lemma 5.1, we can obtain the CLF with regards to the memory

parameter d of a FIVARX model as presented in the proposition,

158



Chapter 5: Sovereign credit ratings impacts on financial return distributions

Proposition 5.1:

Let the assumptions 5.1, 5.2, 5.3 hold, the concentrated log-likelihood function
with respect to the vector of memory parameters d = (d,,...,d, )" of a FIVARX model

is,

c KN N
Ievarx (d) = _T[In(Z”) +1]—?|I’l

z,(d)

where,
z_(d) =T *X(I N -Z2'(2z"Y'Z)X’

and the estimators are obtained by,

A

d= arg max IEIVARX (d)
de(-05,0.5)

B=XZ'(zz")™

According to Proposition 5.1, we can obtain the conditional log-likelihood
functions of our MS-FIVARX model, apart from constants, for a specific regime i as

follows,

I d6) ==Y '(Stzz Din

z,(d*),

where (s, =1) is the indicator function returning 1 if s, =i and 0 otherwise.

The full-sample CLF of a MS-FIVARX model with respect to the vector of

memory parameters is given by,
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|°(d)=i|°(d<st‘>),

Alternatively, we can reform the 1°(d) for the purpose of convenient programing.
We collect all the information of the regimes during the sample period in a M x1

vector &,

I(s, =1)
| Wsy=2)
I(st.:M)

Further, the variance-covariance matrices of error terms concentrated on memory

parameters, > _(d ), for M regimes are collected in the K x MK matrix =,
T=[2,(d%?),..,2, @),

Hence, it can be easily seen that,
2,[d") =2 ® 1),

Accordingly, the regime-specific concentrated log-likelihood function can be

represented as,

o= 5 oy

The full-sample concentrated log-likelihood function with respect to the memory

parameters can be obtained as,

1°(d) :iIC(d(st—i)) :_{%imp(g A1 )[1(s, =) +1(s,=2) +...+ 1 (s, = M)]},
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At every specific timet €{1,2,..., T}, we always achieve,
[(s,=D)+1(s,=2)+...+1(s, =M) =1,

Therefore, we have the ultimate representation of the full-sample CLF of a MS-

FIVARX model as,
1 T
1°(d) = _§Z|”|Z(§t ® IK)| (5.10)
t=1

At the first stage, the memory parameters d *’can be obtained by numerically

maximizing the 1°(d) with respect to d

d®) = argmax 1°(d) ,
de(-05,05)

Remaining parameters B for each regime are extracted conditional on estimator

d ) using the results obtained in Proposition 5.1.

5.5 Empirical results

We utilize our proposed model by employing realized return-based measures
constructed in section 5.3 to investigate the impact of the sovereign ratings drifts on
stock market and FX return distributions within the EU. Since the preliminary analyses
performed in section 5.3 affirmed the short memory behaviour of realized returns and
skewness, we restrict their memory parameters to be zero. The fractional degrees of
integration for realized volatility and kurtosis are allowed to vary across regimes. As
discussed in previous sections, we distinguish the relationship between realized return
moments and CRA sovereign rating changes into three regimes which are defined by

the properties of the sovereign rating drifts. These regimes can be considered as the
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periods of stable, upward and downward assessments of sovereign credit quality,
corresponding to zeros, positive and negative values on sovereign ratings drifts
respectively. We focus on the results obtained in the upward and downward regimes.
Also, as noted in section 5.3, the time series plots of the sovereign ratings drifts (Figure
5.2) indicate that the period of the EDC is prominent and covers almost the entire
downward regime. We, therefore, consider the downward state as a representation of

the European sovereign debt crisis.

More importantly, to facilitate the interpretation of the effects of downward
sovereign rating drifts on each realized moment, we employ the absolute values of the
downward drifts in modelling. Hence, a positive relationship between the drifts and the
realized return in the downward regime, for example, can be interpreted as more
negative assessments of sovereign credit quality will lead to an increase in the realized

return consistent with the basic risk-return trade-off in finance theory.

We choose the optimal lag length p for the model so that the innovations mimic
the white noise processes and the parsimonious criteria is satisfied. We, therefore, end
up with the lag length of order 1 for our models. This result is reasonable as both
characteristics of the measures, the long memory and regime switching features, which
may require a large number of lag orders have been captured by the specification of the
proposed model. The estimated results show that all the roots fall outside the unit circle
and the memory parameters are in the range from -0.5 to 0.5, an indication of

stationarity®.

¢ We do not report the full set of our estimation results to conserve space. However, full details are

available upon request.
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5.5.1 The transition probability matrices

As the regimes are observable, we can easily calculate the estimates of transition
probabilities for each regime according to formula (5.8). We present the estimated

results of the transition probability matrices in Table 5.2.

The estimates indicate an average level of persistence of the regimes. The
probabilities that the sovereign rating drifts stay in one regime are at most 0.5. Among
all, the probabilities of staying in the upward regime are the lowest (i.e., 0.25, 0.38 and
0.28 for the Standard and Poor’s, Fitch and Moody’s respectively). There is a relatively
high likelihood of remaining in the stable state (i.e., 0.38, 0.48 and 0.49 for Standard
and Poor’s, Fitch and Moody’s respectively) compared to either upward or downward
states, consistent with the view that CRAs provide long-term assessments on sovereign
credit quality and the practice of rating through the cycle. These figures in conjunction
with the probabilities of residing in the upward regime, however, imply somewhat that
the CRAs have not been active in re-assessing sovereign credit quality across the EU
prior to the onset of the EDC. In contrast, there are relatively high levels of persistence
in the downward regime (i.e., 0.45, 0.50 and 0.39 for Standard and Poor’s, Fitch and
Moody’s respectively) indicating that CRAs seem to have learnt lessons from the
Global Financial Crisis and have become more active in downgrading sovereign credit

quality throughout the EDC.

5.5.2 Impact of the sovereign credit assessments on financial return

distributions

In this section, we analyse the direct impacts of the sovereign ratings drift on

each realized moment of the EU stock and FX return distribution by using the Granger
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Causality test. Hence, we extract the estimates of the vector V& and their

corresponding t-statistics.*’
Direct impacts on European stock and FX realized returns

We report the effects of sovereign credit quality assessments on stock and FX
realized returns across both the upward and downward regime in Table 5.3 and 5.4. As
can be seen, the sovereign ratings drifts are likely to have insignificant impacts on stock
market realized returns in both upward and downward regimes. This result implies that
the overall assessments of CRAs on European sovereign creditworthiness have limited
direct contribution to changes in realized stock market returns across the EU. However,
if we focus on the direction instead of the significance of the relationship, we find a
negative impact of the upward rating drifts on realized stock market returns while
downward rating drifts tend to have positive effects. This finding is consistent with the
basic risk-return trade off theory in finance since the upward trend in the sovereign
credit quality evaluation reveals a tendency of lower credit risk; whereas, the downward

trend indicates increasing credit risk.

Interestingly, we find that realized FX returns react significantly to Standard and
Poor’s re-ratings in the upward regime but respond more to Moody’s re-ratings in the
downward regime (during the EDC). Even though the positive reactions of FX realized
returns in the downward regime are consistent with the case of stock realized return,
their positive responses to Standard and Poor’s rating drifts in the upward regime are

surprising results.

" For the purpose of calculating the t-statistics, we obtain the asymptotic covariance matrix of the

concentrated maximum likelihood estimates as the negative inverse of the observed Hessian matrix.
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Direct impacts on European stock market and FX realized volatility

The effects of sovereign credit assessments on stock and FX realized volatility
across both upward and downward regimes are shown in Table 5.5 and 5.6. It can be
observed that the sovereign rating drifts have limited impacts on both stock and FX
realized volatility in the upward regime. However, there is more evidence of their
significant effects in the downward regime. This result indicates that the assessments of
the CRAs on sovereign credit quality across the EU have greater effects on the
uncertainty and/or the dispersion of opinions with respect to the value of European

stocks and currencies during the recent EDC.

As expected, we find a consistently negative relationship between the upward
rating drifts and realized volatility in both stock and FX markets. Meanwhile, the
downward rating drifts have significant and positive effects on realized volatility. The
results unambiguously indicate that improvements in CRAS’ assessments on sovereign
credit quality across the EU reduces stock and FX market uncertainty; whereas
continuing negative assessments will increase market uncertainty. This finding is
consistent with the empirical results which we obtained in analysing the direct impacts
of ratings drift on realized returns from the previous sub-section. The explanation for

this consistency can be based on the risk-return trade off theory in finance.

Direct impact on European stock and FX realized skewness

Table 5.7 and 5.8 report the effects of sovereign credit assessments on realized
skewness in stock and FX markets across both upward and downward regimes. For the
stock market, we find that the case of Standard and Poor’s sovereign ratings drift
provides strong evidence of the direct effects in the upward regime; whereas, in the

downward regime, more evidence of the direct effects is revealed for Fitch’s sovereign
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ratings drift. This result indicates that Standard and Poor’s assessments on sovereign
creditworthiness within the EU have relatively broader impacts on the asymmetry of
stock market return distributions during periods of financial stability. Meanwhile, Fitch
has evidently played a more critical role in this regard during the recent EDC. In the FX
market, we observe the reverse situation since Fitch’s ratings delivers greater direct
effects in the upward regime; whereas, Standard and Poor’s rating effects are stronger

in the downward regime.

Interestingly, in terms of both stock and FX markets, we mostly find a positive
relationship between sovereign ratings drift and realized skewness in both upward and
downward regimes. Hence, regardless of the upward or downward direction, as long as
the ratings drift changes (i.e., more rating news are released), the magnitude of the

positive extreme returns in EU stock and FX markets is larger (more right-skewed).

Direct impact on European stock and FX realized kurtosis

The effects of sovereign credit assessments on stock and FX realized kurtosis
across both upward and downward regimes are summarized in Table 5.9 and 5.10. We
find limited evidence of significant effects in the upward regime but greater evidence of
the significant relationship between sovereign ratings drifts and realized kurtosis can be
found in the downward regime. Hence, the results show that the assessments of the
CRAs on overall sovereign creditworthiness across the EU have greater impacts on the

occurrence of extreme returns in stock and FX markets during the EDC.

In addition, we mostly find the negative relationship between the sovereign
ratings drift and realized kurtosis in the downward regime; whereas, the upward rating
drifts tend to positively affect realized kurtosis. These results indicate that an upsurge in

the downward (upward) trend of the CRA’s assessments on EU sovereign obligors will
166



Chapter 5: Sovereign credit ratings impacts on financial return distributions

significantly lower (increase) the peak of stock and FX return distributions for
European countries. This result is consistent with what we have found in the analysis of
the direct impacts of sovereign credit assessments on realized volatility. This is because
a return distribution with a lower (higher) peak corresponds to a distribution with more
(less) return dispersion. Besides, as mentioned in the previous sub-section, we note that
an increase in the downward (upward) rating drift will heighten (decrease) stock and

FX market volatility across the EU.

5.6 The most dominant credit rating agency

The empirical results discussed so far confirm certain impacts of each CRA’s
sovereign ratings on financial return distributions via its first four realized moments. It,
however, remains questionable which CRA has the largest effect on financial markets.
In section 5.5, we assessed the direct impact of CRAS’ assessments using Granger
Causality tests. Yet, this method is not applicable to address the issue of dominance
amongst the CRAs as this should be reflected by their total effects including both direct
and indirect forces. Because of the inter-relationship among realized moments, which is
also captured in our multivariate system, the indirect effects of the sovereign rating
drifts on a realized moment is the spillover effect that goes through other realized
moments in the system. In this section, we develop a tool, which we call the impulse
response of a transfer function (IRTF), to capture those total effects of the CRAS’
assessments. The IRTF describes how endogenous variables react when there is an
exogenous shock to the exogenous variables. The function, therefore, is ideal for
capturing the total responses of a financial return distribution to a change in the
sovereign ratings drift since such a change is usually caused by a shock from outside

arriving under the form of public or private information which is assessed by the CRAs.
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5.6.1 Impulse response of a transfer function

Under the basic assumptions which have been made in previous sections, we can
rewrite model specification (5.6) under an infinite moving average representation

(MA()). Similar to what has been derived in Chapter 3, section 3.3, we can easily

obtain:

Y, =® (LR, + ™ (L)g, (5.11)

where,

@ist)(L) — V(St) + Z(Dﬁst)v(st)Li ,

h=1

PW(L) =1 +> DL,

h=1

The KxK coefficient matrix @™ can be calculated using the following relationship,

h
d(s) 7 (st) _
- > yieni h=12,..
ht =< i=0

g h=0

where W¢®) is the diagonal (KxK) matrix with "’ (noted in formula (5.7)) as the

j™ element, and 1™ is obtained according to the following recursive relationship,

St St i —
DAL i=12,.,p
j=1
p
Hi(st) — ZHS‘])AES‘) i> p
j=1
I i=0
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Based on the MA() representation of a MS-FIVARX model, we employ the
generalized approach proposed by Koop et al. (1996) to develop our IRTF. The IRTF at
a horizon h is, therefore, defined as the difference between the conditional expectation
of Ywn, given the information set available at time t-1 (after incorporating the effect of
the shock on exogenous variables) and the conditional expectation without the effect of

the shock,
IRTFh = E(Yt+h | Rt = 5’9171) - E(Yt+h |Qt—1) (5-12)

where 6 = (9,,...,0,)"is (nx1) vector of exogenous shocks on the exogenous variables

Rt.

Derive Y according to representation (5.11) and replace in (5.12). Under an

additional assumption that E(R,) =0, we ultimately obtain the full matrix of impulse

responses of a transfer function as,
IRTF,™ = 0HV™E, (5.13)

where =, is a (nxn) diagonal matrix characterized by elements of the shocks,

s 0 0
_ o s, 0
0 0 5

Accordingly, we can interpret the (i, j) element of IRTF,* as the response of the

i endogenous variable at horizon h (i.e., at time t+h) to a shock hitting the j"

exogenous variable at time t.
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It can be easily seen that under equation (5.13), the indirect effects of the

exogenous shock in R; on Y; are captured in the matrix ®™ ; whereas, the direct effects

are captured by the matrix vV,

5.6.2 Empirical results on impulse response analyses

We calculate the IRTF based on a one standard deviation shock in the sovereign
ratings drift as this is the usual choice in the literature featuring impulse response
analyses. We report the average responses of EU stock market and FX realized
moments to the shock in the sovereign ratings drift for 20 periods ahead in Figure 5.4

and 5.5, respectively.

As can be seen, Standard and Poor’s assessments have the greatest impact on
stock market realized returns and skewness for the first 5 periods ahead in the upward
regime. This result is consistent with the literature, for example, Reisen and Von
Maltzan (1999) and Brooks et al. (2004) also find that the rating actions of Standard
and Poor’s affect stock market returns more than other CRAs. However, the case of
higher moments has not been investigated to date. In our analysis, the empirical results
show that the sovereign rating drifts constructed from Fitch ratings have the largest
effect on stock market realized volatility in the upward regime; whereas, the magnitude
of effects on stock market realized kurtosis is not clearly distinguishable among the

major CRAs.

In the most recent sovereign debt crisis represented largely by the downward
regime, the rank of the CRASs regarding the magnitude of the effects on realized
moments has changed. We find interesting results that Moody’s assessments on overall

EU sovereign creditworthiness have the greatest impact on almost all stock market
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realized moments around the first 5 periods. The only exception is the effects on
realized volatility, for which Moody’s shares the 1* ranking with Fitch ratings since

their effects are quite comparable.

In terms of the FX market, we consistently observe that Standard and Poor’s and
Fitch’s ratings drifts have the greatest impact on FX realized higher moments in both
upward and downward regimes. Meanwhile, the magnitude of effects on FX realized

returns is negligible for all CRAs.

In addition, we note that there is a contradiction in the result between the IRTF
(in this section) and the Granger Causality test (in the previous section) in the case of
the effects on realized returns in an upward regime. For example, we find a negative
relationship between sovereign ratings drift and the stock market realized returns in the
upward regime using the Granger Causality test. However, the IRTF confirms this is a
positive relationship. The difference in result supports their complementary property.
While the Granger Causality only tests the direct causal effect, the IRTF captures both

the direct and the indirect effects.

5.7 Conclusions

We have developed a multivariate framework to precisely capture the full effects
of CRA sovereign credit assessments on return distributions by allowing endogenous
long memory variables to be conditional on observable regime switching in exogenous
variables. The model is motivated by the necessity to fully investigate the impacts of
sovereign credit quality assessments on financial return distributions as there is a dearth
of attention on the impacts of CRA announcements beyond the second moments of

asset returns. The consistent and robust estimates of moments of the distribution (i.e.,
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the realized moments) exhibit the long memory behaviour, and the regime switching
feature of sovereign ratings has been widely documented. Thus, our proposed model is
designed to capture both of these features in order to separately account for the

properties of the variables of interest.

We apply our model to investigate the effects of trends in sovereign credit
assessments on stock market and FX return distributions within the EU via their first
four realized return moments. The empirical results confirm the heterogeneous effects
of rating actions across regimes, which are defined to correspond to the upward and
downward trends in sovereign credit assessments by individual CRAs. Hence, these
results imply the usefulness of the proposed model since misleading conclusions may
be made if the process is not allowed to be conditional on separate states of
creditworthiness. More specifically, we mostly find a negative relationship between the
overall EU sovereign credit assessments and realized returns in the upward regime, yet
the positive relationships are observed in the downward regime. These findings are
consistent with the basic risk-return trade off in finance, and are further confirmed by
the results of sovereign rating impacts on realized volatility. The evidence mostly
shows negative effects of rating drifts on realized volatility in the upward regime but
positive effects in the downward regime. Regarding the impacts on realized skewness,
as long as the trend (both upward and downward) in overall sovereign credit quality
changes, the stock and FX return distributions are more right-skewed. Meanwhile, in
terms of realized kurtosis, we find an upsurge in the downward (upward) EU sovereign
rating drifts will significantly lower (increase) the peak of the EU stock and FX return
distributions. The finding is consistent with empirical results obtained in analysing the

impacts on realized volatility.
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In this chapter, we also note that the total effects of the sovereign credit
assessments on realized moments can be different from their direct effects. This is due
to the indirect effects, which are caused by the inter-relationships among the realized
return moments. Therefore, we argue that the total effects, rather than the direct one,
should be employed to investigate which CRA provides the greatest impact on financial
return distributions. We find that the rank orders among the CRAs are not consistent
across credit regimes and even in each realized moment. In the periods of financial
stability, the assessments of Standard and Poor’s have the greatest effect on stock
market realized returns and skewness; whereas Fitch’s rating actions have the largest
impact on stock market realized volatility across the EU. Meanwhile, Moody’s rating
activities dominate during the recent European sovereign debt crisis. Besides, we
consistently find that Standard and Poor’s and Fitch share the 1% rank order in having
the largest effects on FX realized higher moments. This is possibly due to Fitch being

the only major CRA based outside of the US.
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5.8 APPENDIX

Part A - Tables and figures

Figure 5.1: Rating activities of the three credit rating agencies
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Note: The first chart summarizes the number of rating downgrades and upgrades released by the three
credit rating agencies (CRAs), namely Standard and Poor’s ( S&P), Fitch and Moody’s during our full
sample period. The second chart reports the proportion of rating events that the CRAs released during
the European sovereign debt crisis beginning from October 2008.
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Figure 5.2: The European Union sovereign ratings drift
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Note: This figure reports the sovereign ratings drifts constructed according to formula (5.1) from
historical long-term foreign currency sovereign credit ratings data for all 27 EU countries covered by
Standard and Poor’s, Fitch and Moody’s.
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Figure 5.3: Sample autocorrelation functions and spectral densities of the realized moments
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Note: This firgure presents sample autocorrelations and spectral densities of a representative stock
market realized return, (logged) realized volatility, realized skewness and (logged) realized kurtosis for a

lag of 50 months.
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Figure 5.4: Average responses of the EU stock realized moments to the sovereign rating drift
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Figure 5.4a: Average responses of the EU stock realized moments to the shock in upward rating drifts
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Figure 5.4b: Average responses of the EU stock realized moments to the shock in downward rating drift
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Figure 5.5: Average responses of the EU FX realized moments to the sovereign rating drift
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Figure 5.5b: Average responses of the EU FX realized moments to the shock in downward rating drift
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Chapter 5: Sovereign credit ratings impacts on financial return distributions

Table 5.3: Direct impact of sovereign rating drifts on the EU stock realized return

Upward rating drift Downward rating drift
Countries

S&P Fitch Moody's S&P Fitch Moody's

Austria -0.483 -0.445 0.066 -0.009 -0.367 -0.188
(-0.970) (-0.747) (0.354) (-0.023) (-0.893) (-0.679)

France 0.371 0.334 0.432 -0.202 0.268 -0.138

(1.103) (1.315)  (3.291)*** (-0.768) (0.933) (-0.626)

Germany -0.309 0.410 0.300 -0.002 0.415 0.343

(-0.640) (0.881) (1.630) (-0.006) (1.325) (1.593)

Greece -2.357 -0.516 0.192 0.571 1.704 0.009

(-2.342)**  (-0.651) (0.765) (1.292) (3.889)*** (0.020)

Ireland 0.135 -0.058 0.186 0.030 0.411 0.233

(0.290) (-0.141) (1.386) (0.134) (1.446) (0.906)

Netherlands  -0.238 -0.045 0.392 0.044 0.338 0.368
(-0.619) (-0.115)  (2.924)x** (0.173) (1.397) (2.081)**

Spain 1.946 0.973 0.099 -0.139 0.495 0.063

(4.994)***  (2.718)***  (0.500) (-0.377) (1.486) (0.276)

The UK -0.492 -0.139 -0.047 -0.526 0.041 0.462
(-1.193) (-0.525) (-0.370) (-2.849)*** (0.131) (2.871)***

Hungary -0.704 -1.020 0.096 0.343 0.261 -0.042

(-1.167)  (-2.494)** (0.467) (1.324) (0.945) (-0.147)

Romania -1.084 1.116 0.132 0.512 -0.016 -0.099

(-1.062) (1.752)* (0.356) (1.298) (-0.019) (-0.291)

Note: This table presents the estimates of the first element of the vector V&) and its associated t-
statistic (in parentheses). These estimates are interpreted as the impact of upward and downward
sovereign ratings drifts on the EU stock realized return as computed in formula (5.2). The sovereign
rating drifts, which represent the assessments of the CRAs on overall EU sovereign credit quality, are
constructed as in formula (5.1) from ratings data provided by Standard and Poor’s (S&P), Fitch and
Moody’s. *, ** and *** denote significance at the 10, 5 and 1% levels, respectively.
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Chapter 5: Sovereign credit ratings impacts on financial return distributions

Table 5.4: Direct impact of sovereign rating drifts on the EU FX realized return

Upward rating drift Downward rating drift

Countries S&P Fitch Moody's S&P Fitch Moody's

Austria 0.384 0.015 0.032 -0.013 -0.038 0.190
(2.967)*** (0.096) (0.444) (-0.139) (-0.275) (1.915)*

Belgium 0.348 -0.110 0.101 0.018 0.174 0.086

(2.619)*** (-0.683) (1.376) (0.220) (1.441) (0.931)

Bulgaria 0.808 0.249 0.285 0.056 0.050 0.118

(3.482)*** (1.622) (2.605)*** (0.564) (0.365) (1.271)

Cyprus 0.082 -0.017 -0.032 -0.008 -0.007 0.165
(0.552) (-0.105) (-0.393) (-0.097) (-0.062) (1.846)*

Czech 0.529 -0.213 -0.002 0.050 0.141 0.017

(2.283)** (-0.888) (-0.016) (0.282) (0.742) (0.114)

Denmark 0.342 0.024 0.048 -0.043 -0.053 0.159
(1.350) (0.169) (0.790) (-0.423) (-0.413) (1.804)*

France 0.427 -0.085 0.070 0.022 0.172 0.161
(3.174)** (-0.565) (1.010) (0.234) (1.467) (1.702)*

Germany 0.361 -0.055 0.016 0.023 0.118 0.188
(2.769)*** (-0.366) (0.231) (0.249) (0.930) (2.021)**

Greece 0.385 -0.034 0.066 -0.031 0.070 0.210
(2.645)*** (-0.225) (0.931) (-0.301) (0.398) (2.429)**

Hungary 0.617 0.487 0.061 0.138 0.150 0.396
(2.550)** (2.408)** (0.438) (0.664) (0.615) (2.144)**

Ireland -0.098 -0.137 -0.019 0.092 0.091 0.181
(-0.494) (-0.726) (-0.230) (1.130) (0.683) (1.857)*

Latvia 0.657 -0.030 0.068 0.057 0.066 0.126

(6.429)*** (-0.232) (1.332) (0.569) (0.451) (1.489)

Malta 0.265 0.025 -0.207 0.105 0.079 0.272
(1.633) (0.120) (-2.636)*** (0.990) (0.530) (2.945)***

Netherlands 0.266 -0.002 -0.001 0.028 -0.063 0.060

(2.172)** (-0.014) (-0.014) (0.314) (-0.467) (0.560)

Poland 0.516 -0.575 0.054 0.111 0.137 0.017

(2.315)** (-2.215)** (0.434) (0.491) (0.500) (0.082)

Portugal 0.303 0.093 0.138 0.076 -0.038 0.200
(2.215)** (0.595) (1.978)** (0.883) (-0.247) (2.085)**

Romania 0.831 0.070 0.019 0.033 0.273 0.121

(5.035)*** (0.310) (0.163) (0.257) (1.767)* (1.093)

Slovakia 0.426 -0.096 0.023 0.056 0.318 0.166

(2.284)** (-0.569) (0.314) (0.511) (2.414)** (1.368)

Spain 0.349 0.089 0.155 0.007 0.169 0.235
(2.270)** (0.550) (2.015)** (0.077) (1.393) (2.394)**

Sweden 0.468 0.122 0.019 0.018 0.101 0.045

(2.565)*** (0.638) (0.262) (0.151) (0.690) (0.321)

UK 0.260 -0.001 -0.012 -0.006 0.008 -0.011

(2.029)** (-0.006) (-0.214) (-0.066) (0.076) (-0.138)

Note: This table presents the estimates of the first element of the vector V(s‘) and its associated t-statistic (in
parentheses). These estimates are interpreted as the impact of upward and downward sovereign rating drifts on the
EU FX realized return as computed in formula (5.2). The sovereign ratings drifts, which represent the assessments of
the CRAs on overall EU sovereign credit quality, are constructed as in formula (5.1) from ratings data provided by
Standard and Poor’s (S&P), Fitch and Moody’s. *, ** and *** denote significance at the 10, 5 and 1% levels,
respectively.
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Chapter 5: Sovereign credit ratings impacts on financial return distributions

Table 5.5: Direct impact of sovereign rating drifts on the EU stock realized volatility

Upward rating drift Downward rating drift
Countries
S&P Fitch Moody's S&P Fitch Moody's
Austria -1.120 -1.152 -0.430 0.379 1.234 1.071
(-1.214) (-1.188) (-1.857)* (1.611) (7.442)***  (6.860)***
France 0.945 0.165 -0.255 0.860 0.969 0.711
(1.740)* (0.210) (-0.636) (B.191)***  (3.224)x**  (3.479)***
Germany 0.783 0.378 0.053 0.737 0.356 -0.121
(1.165) (0.731) (0.150) (2.124)** (0.986) (-0.320)
Greece 1.508 -0.912 -0.506 0.757 2.242 1.498
(1.427) (-1.072) (-1.290) (2.473)**  (6.465)***  (6.154)***
Ireland -0.233 -1.440 -0.138 0.134 0.394 0.592
(-0.273)  (-3.001)***  (-0.457) (0.345) (1.411) (2.263)**
Netherlands 1.525 0.076 -0.224 0.550 0.798 -0.228
(2.228)** (0.089) (-0.988) (1.602) (1.920)* (-0.926)
Spain 2.640 -0.667 -0.262 0.834 2.054 0.637
(1.901)* (-0.690) (-0.581) (1.225) (2.609)*** (1.343)
The UK -0.158 -0.636 -0.421 0.389 0.733 0.598
(-0.122) (-0.973)  (-2.037)** (1.692)* (1.929)* (2.383)**
Hungary 0.842 -0.993 -0.277 0.203 1.534 0.696
(0.948) (-1.382) (-0.782) (0.469) (4.131)*** (1.774)*
Romania -0.443 -2.193 -0.077 -0.414 0.523 0.091
(-0.531)  (-2.821)***  (-0.187) (-1.549) (1.178) (0.211)

Note: This table presents the estimates of the second element of the vector V&) and its associated t-
statistic (in parentheses). These estimates are interpreted as the impact of upward and downward
sovereign ratings drifts on realized stock market volatility as computed in formula (5.3). The sovereign
ratings drifts, which represent the assessments of the CRAs on overall EU sovereign credit quality, are
constructed as in formula (5.1) from ratings data provided by Standard and Poor’s (S&P), Fitch and
Moody’s. *, ** and *** denote significance at the 10, 5 and 1% levels, respectively.
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Chapter 5: Sovereign credit ratings impacts on financial return distributions

Table 5.6: Direct impact of sovereign rating drifts on the EU FX realized volatility

Upward rating drift Downward rating drift

Countries S&P Fitch Moody's S&P Fitch Moody's

Austria -0.799 -1.140 -0.082 0.679 1.599 0.774
(-1.207) (-2.406)** (-0.337) (2.895)***  (5.294)x** (2.949)***

Belgium -0.768 -1.410 -0.132 0.871 1.430 1.364
(-1.228) (-3.015)x** (-0.514) (3471)***  (4.359)%** (4.804)***

Bulgaria -0.374 -1.014 -0.044 0.263 0.590 0.314

(-0.470) (-1.213) (-0.120) (0.608) (1.317) (0.708)

Cyprus -0.532 -0.828 -0.126 0.038 0.764 0.457

(-1.129) (-1.889)* (-0.629) (0.144) (2.247)** (1.302)

Czech -1.969 -0.285 -0.413 0.711 0.719 0.476
(-2.814)*** (-0.456) (-1.532) (2.728)y***  (3.596)*** (2.270)**

Denmark -0.630 -1.143 0.048 0.590 0.672 0.896
(-1.501) (-2.253)** (0.179) (3.148)***  (3.113)*** (4.089)***

France -0.719 -1.286 -0.135 0.774 1.401 0.544
(-1.113) (-2.683)*** (-0.514) (2.924)%**  (4.467)*** (1.849)*

Germany -0.752 -1.665 -0.171 0.671 1.455 0.738
(-1.213) (-3.457)*** (-0.817) (2.842)***  (5.970)*** (2.961)***

Greece -0.498 -1.295 0.048 0.952 1.970 1.057
(-0.755) (-2.621)*** (0.177) (3.728)***  (B.624)*** (3.615)***

Hungary -1.586 -1.006 -0.026 0.553 1.227 0.535

(-2.424y** (-1.497) (-0.105) (1.854)* (4.066)*** (1.466)

Ireland -0.883 -0.971 0.023 0.932 1.826 0.461

(-1.366) (-2.017)** (0.085) (4.033)***  (6.375)*** (1.493)

Latvia -1.916 -0.131 -0.060 0.670 0.871 0.615

(-2.667)*** (-0.194) (-0.186) (1.845)* (2.288)** (1.421)

Malta -1.857 -2.402 0.178 0.677 0.942 0.766
(-1.456) (-2.708)*** (0.448) (1.723)* (2.296)** (2.315)**

Netherlands -0.868 -1.604 -0.187 0.592 1.554 1.470
(-1.401) (-3.288)*** (-0.777) (2.305)** (5.421)*** (5.268)***

Poland -0.181 -1.175 0.072 0.679 1.461 0.598

(-0.200) (-1.552) (0.180) (2.035)** (3.187)*** (1.624)

Portugal -0.807 -1.107 -0.145 0.612 2.195 0.965
(-1.255) (-1.954)* (-0.513) (2.056)** (7.594)*** (3.413)***

Romania 0.325 0.081 -0.232 0.327 1.994 -0.427

(0.230) (0.065) (-0.425) (0.600) (3.318)*** (-0.804)

Slovakia -2.038 -0.953 -0.079 0.633 1.001 0.378

(-3.361)*** (-1.621) (-0.274) (2.056)** (4.268)*** (0.890)

Spain -0.843 -1.164 -0.113 0.945 1.333 0.986
(-1.223) (-2.085)** (-0.421) (3.843)***  (3.888)*** (3.294)***

Sweden -0.188 -0.746 -0.165 0.359 0.848 0.426
(-0.373) (-1.864)* (-0.850) (1.961)** (3.397)*** (2.051)***

UK -1.216 -1.785 -0.159 0.128 0.574 0.240

(-2.415)%*  (-3.541)*** (-0.686) (0.546) (2.299)*** (1.149)

Note: This table presents the estimates of the second element of the vector V(s‘) and its associated t-statistic (in
parentheses). These estimates are interpreted as the impact of upward and downward sovereign rating drifts on the
EU FX realized volatility as computed in formula (5.3). The sovereign rating drifts, which represent the assessments
of the CRAs on overall EU sovereign credit quality, are constructed as in formula (5.1) from ratings data provided by
Standard and Poor’s (S&P), Fitch and Moody’s. *, ** and *** denote significance at the 10, 5 and 1% levels,
respectively.
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Chapter 5: Sovereign credit ratings impacts on financial return distributions

Table 5.7: Direct impact of sovereign rating drifts on the EU stock realized skewness

Upward rating drift

Downward rating drift

Countries

S&P Fitch Moody's S&P Fitch Moody's

Austria 1.089 -0.620 -0.021 0.027 0.148 -0.213

(3.453)*** (-0.784) (-0.103) (0.116) (0.556) (-0.974)

France 0.557 -0.033 0.248 -0.065 0.027 -0.009

(1.225) (-0.108)  (1.970)** (-0.319) (0.134) (-0.066)

Germany 0.307 -0.321 0.105 0.146 0.487 0.329
(1.069) (-0.974) (0.669) (0.510) (3.082)*** (2.135)**

Greece -0.034 1.503 0.698 0.051 0.898 -0.194

(-0.035) (2.641)***  (3.159)*** (0.154) (3.308)*** (-0.482)

Ireland 0.834 1.019 -0.007 0.333 0.700 0.202

(1.699)*  (2.693)***  (-0.038) (1.884)*  (3.849)*** (0.966)

Netherlands 0.950 -0.411 0.307 0.109 0.302 0.290
(2.832)*** (-0.985)  (2.089)** (0.595) (L.715)* (2.115)**

Spain 3.790 0.839 0.019 -0.094 0.456 0.585
(7.638)*** (1.353) (0.087) (-0.252) (1.650)* (2.731)***

The UK -0.446 -1.312 -0.178 -0.296 -0.064 0.466
(-0.724) (-2.199)**  (-0.829) (-1.916)* (-0.304) (2.951)***

Hungary 0.622 0.719 0.216 0.223 0.115 -0.124

(1.645)*  (2.613)***  (1.258) (1.249) (0.743) (-0.573)

Romania -1.836 0.933 0.252 0.792 0.805 0.292

(-1.878)* (1.541) (0.730) (271)**  (2.567)** (0.741)

Note: This table presents the estimates of the third element of the vector V&) and its associated t-
statistic (in parentheses). These estimates are interpreted as the impact of upward and downward
sovereign rating drifts on the EU stock realized skewness as computed in formula (5.4). The sovereign
ratings drifts, which represent the assessments of the CRAs on overall EU sovereign credit quality, are
constructed as in formula (5.1) from ratings data provided by Standard and Poor’s (S&P), Fitch and
Moody’s. *, ** and *** denote significance at the 10, 5 and 1% levels, respectively.
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Table 5.8: Direct impact of sovereign rating drifts on the EU FX realized skewness

Upward rating drift Downward rating drift

Countries S&P Fitch Moody's S&P Fitch Moody's

Austria 0.481 0.392 0.286 0.154 0.226 0.028

(1.915)* (1.811)* (2.754)*** (1.585) (1.884)* (0.230)

Belgium 0.371 0.502 0.291 0.225 0.386 0.035

(1.576) (2.392)**  (2.962)*** (2.723)*** (3.366)*** (0.372)

Bulgaria 0.508 0.837 0.407 0.184 0.162 0.055

(1.746)* (3.729)***  (2.824)*** (1.670)* (1.284) (0.625)

Cyprus 0.050 -0.353 -0.135 0.167 0.228 0.099

(0.191) (-1.201) (-1.319) (1.951)* (2.026)** (1.054)

Czech -0.060 -0.181 0.330 0.132 0.165 0.188
(-0.158) (-0.598) (2.929)**=* (0.984) (1.270) (2.093)**

Denmark 0.184 0.257 0.089 0.057 0.230 0.269
(0.107) (1.310) (0.979) (0.479) (2.136)** (2.833)**=*

France 0.418 0.467 0.332 0.211 0.336 0.050

(1.685)* (2.323)**  (3.530)*** (2.318)** (2.857)*** (0.501)

Germany 0.320 0.416 0.185 0.189 0.262 0.065

(1.350) (2.150)** (1.797)* (2.021)** (2.302)** (0.625)

Greece 0.264 0.262 0.262 0.180 0.206 0.137

(1.273) (1.300) (2.633)*** (1.817)* (1.566) (1.592)

Hungary -0.551 0.563 -0.015 0.051 -0.228 -0.085

(-1.453) (2.267)** (-0.101) (0.351) (-1.034) (-0.605)

Ireland -0.335 -0.254 0.012 0.254 0.254 0.138

(-1.070) (-1.074) (0.112) (3.293)*** (2.099)** (1.468)

Latvia 0.637 0.323 -0.045 0.053 0.108 0.144
(4.068)*** (2.561)** (-0.529) (0.821) (1.024) (2.344)**

Malta -0.172 -0.147 -0.240 0.278 0.180 0.224
(-0.382) (-0.366) (-1.450) (2.129)** (0.932) (1.753)*

Netherlands 0.364 0.538 0.213 0.172 0.155 0.066

(1.659)* (2.516)** (2.017)** (1.723)* (1.243) (0.606)

Poland -0.373 -0.699 -0.174 -0.106 -0.244 -0.205

(-0.914) (-1.995)** (-1.166) (-0.600) (-1.203) (-1.417)

Portugal 0.317 0.416 0.341 0.266 0.198 0.122

(1.361) (2.034)**  (3.212)*** (3.003)*** (1.604) (1.051)

Romania 1.459 0.560 0.026 0.224 0.313 0.147

(2.234)** (0.781) (0.112) (1.499) (1.432) (0.503)

Slovakia 0.650 0.532 0.312 0.204 0.252 0.131

(2.434)** (2.544)**  (3.319)*** (1.491) (2.204)** (0.691)

Spain 0.391 0.651 0.362 0.236 0.328 0.192
(1.459) (3.123)***  (3.487)*** (2.766)*** (2.901)*** (2.051)**

Sweden 0.246 0.713 0.110 0.194 0.149 -0.114

(0.984) (2.223)** (1.120) (1.735)* (1.174) (-1.041)

UK 0.564 0.076 0.049 0.130 -0.043 -0.004

(2.512)** (0.272) (0.490) (1.140) (-0.328) (-0.030)

Note: This table presents the estimates of the third element of the vector V(S‘) and its associated t-statistic (in
parentheses). These estimates are interpreted as the impact of upward and downward sovereign ratings drifts on the
EU FX realized skewness as computed in formula (5.4). The sovereign ratings drifts, which represent the
assessments of the CRAs on overall EU sovereign credit quality, are constructed as in formula (5.1) from ratings data
provided by Standard and Poor’s (S&P), Fitch and Moody’s. *, ** and *** denote significance at the 10, 5 and 1%
levels, respectively.
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Table 5.9: Direct impact of sovereign rating drifts on the EU stock realized kurtosis

Upward rating drift Downward rating drift
Countries
S&P Fitch Moody's S&P Fitch Moody's
Austria -0.516 -0.308 0.112 -0.196 -0.467 -0.423
(-1.232) (-0.631) (1.014) (-1.308)  (-3.650)***  (-5.133)***
France -0.386 -0.290 0.297 -0.673 -0.418 -0.512
(-1.255) (-0.755) (1.541) (-4.689)***  (-2.368)**  (-4.008)***
Germany -0.475 -0.446 -0.061 -0.455 -0.180 -0.019
(-1.380) (-1.636) (-0.302) (-2.369)** (-0.874) (-0.094)
Greece -1.736 0.879 0.374 -0.155 -0.821 -1.060
(-3.064)***  (2.264)**  (2.755)*** (-0.683)  (-3.891)***  (-6.451)***
Ireland -0.335 0.675 -0.039 -0.191 -0.346 -0.432
(-0.883) (2.955)***  (-0.321) (-1.151) (-2.033)**  (-3.247)***
Netherlands -0.711 -0.027 0.171 -0.574 -0.367 0.132
(-2.063)** (-0.059) (1.672)* (-3.329)***  (-1.535) (1.172)
Spain -0.201 -0.224 0.069 0.158 0.807 0.577
(-0.263) (-0.312) (0.307) (0.412) (2.680)***  (2.353)**
The UK 0.243 0.072 0.254 -0.462 -0.593 -0.440
(0.363) (0.208) (2.804)*** (-3.763y***  (-2.928)***  (-3.150)***
Hungary -0.066 0.269 0.117 -0.126 -0.650 -0.318
(-0.171) (0.806) (0.783) (-0.560)  (-3.215)***  (-1.648)*
Romania 0.421 1.102 -0.090 0.177 -0.122 0.111
(0.946) (2.402)** (-0.429) (0.745) (-0.214) (0.384)

Note: This table presents the estimates of the fourth element of the vector V&) and its associated t-
statistic (in parentheses). These estimates are interpreted as the impact of upward and downward
sovereign rating drifts on the EU stock realized kurtosis as computed in formula (5.5). The sovereign
rating drifts, which represent the assessments of the CRAs on overall EU sovereign credit quality, are
constructed as in formula (5.1) from ratings data provided by Standard and Poor’s (S&P), Fitch and
Moody’s. *, ** and *** denote significance at the 10, 5 and 1% levels, respectively.
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Table 5.10: Direct impact of sovereign rating drifts on the EU FX realized kurtosis

) Upward rating drift Downward rating drift
Countries S&P Fitch Moody's S&P Fitch Moody's
Austria 0.241 0.458 0.084 -0.046 -0.199 -0.183

(0.913) (2.413)** (0.669) (-0.451) (-1.234) (-1.410)

Belgium 0.134 0.461 0.083 -0.282 -0.530 -0.339
(0.432) (1.989)** (0.545) (-2.231)** (-2.964)*** (-2.471)**

Bulgaria -0.073 0.677 -0.246 0.074 -0.090 -0.192

(-0.168) (1.966)** (-0.915) (0.393) (-0.374) (-0.837)

Cyprus 0.436 0.002 0.128 0.231 0.223 0.070

(1.551) (0.008) (0.958) (1.704)* (1.148) (0.512)

Czech 0.830 0.253 0.168 -0.124 -0.107 0.055

(2.384)** (0.776) (1.469) (-0.913) (-0.540) (0.373)

Denmark 0.361 0.201 0.044 -0.087 0.026 -0.316

(2.540)** (0.736) (0.351) (-0.716) (0.158) (-2.733)

France 0.031 0.304 0.089 -0.163 -0.456 -0.134

(0.108) (1.396) (0.612) (-1.471) (-2.902)*** (-1.076)

Germany 0.112 0.319 0.106 -0.025 -0.197 -0.255
(0.501) (1.702)* (1.245) (-0.246) (-1.640) (-2.404)**

Greece 0.375 0.397 0.003 -0.220 -0.468 -0.421
(1.562) (1.927)* (0.023) (-2.092)** (-3.391)***  (-3.661)***

Hungary 0.666 0.296 0.429 -0.261 -0.846 -0.379
(2.505)** (1.021) (3.732)*** (-1.429) (-4.224)*** (-1.983)**

Ireland 0.179 0.347 0.045 -0.321 -0.633 -0.321
(0.653) (1.759)* (0.319) (-2.832)y***  (-4.14B)*** (-2.111)**

Latvia -0.185 -0.396 -0.015 -0.008 0.086 0.161

(-0.785) (-1.752)* (-0.136) (-0.064) (0.712) (1.419)

Malta 0.363 0.922 0.108 -0.345 -0.455 -0.414
(0.765) (2.449)** (0.606) (-1.840)* (-1.427) (-2.115)**

Netherlands 0.091 0.382 0.094 0.016 -0.175 -0.320
(0.392) (1.689)* (0.889) (0.155) (-1.250) (-2.697)***

Poland 0.305 0.569 0.068 -0.232 -0.654 -0.061

(0.621) (1.529) (0.332) (-1.323) (-3.577)x** (-0.317)

Portugal 0.389 0.306 0.081 -0.308 -0.465 -0.413
(1.224) (1.066) (0.506) (-2.074)** (-2.964)*** (-2.560)**

Romania -0.717 -0.080 -0.116 -0.308 -0.831 -0.434

(-0.996) (-0.097) (-0.357) (-0.825) (-2.429)** (-1.295)

Slovakia 0.736 0.355 0.090 -0.127 0.007 -0.205

(2.909)*** (1.383) (0.647) (-0.902) (0.047) (-1.340)

Spain 0.291 0.151 0.107 -0.391 -0.613 -0.413
(0.889) (0.537) (0.647) (-3.104y%**  (-3.234y%**  (-3.040)***

Sweden 0.403 0.348 0.113 -0.027 -0.172 -0.257
(1.882)* (2.008)** (1.115) (-0.241) (-0.975) (-2.407)**

UK 0.340 0.370 0.084 0.042 -0.145 -0.123

(1.666)* (2.102)** (0.771) (0.371) (-1.127) (-1.187)

Note: This table presents the estimates of the fourth element of the vector V(s') and its associated t-statistic (in
parentheses). These estimates are interpreted as the impact of upward and downward sovereign rating drifts on the
EU FX realized kurtosis as computed in formula (5.5). The sovereign rating drifts, which represent the assessments
of the CRAs on overall EU sovereign credit quality, are constructed as in formula (5.1) from ratings data provided by
Standard and Poor’s (S&P), Fitch and Moody’s. *, ** and *** denote significance at the 10, 5 and 1% levels,
respectively.
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Part B - Proofs

B1. Proof of Lemma 5.1

Under the notations presented in section 5.4.3, the model (5.9) can be written in a

compact form as,

X =BZ +U (5.14)

Given a fixed d, we have B = XZ'(zZ')™ as the Multivariate LS estimator of the

model (5.14), then the estimated residuals are, U =X —BZ. We derive the following

relationship,
X-BZ=X-BZ+BzZ-BZ=U+(B-B)Z

Therefore,

(X —BZ)(X -BZ) =(U +(B-B)z U + (B-B)z) =UU'+ (B - B)zZ'(B - BY
It then can be seen that,

£,4(d,B)| =[N (X - BZ)(X - BZ)|=|N (00" +(B-B)zz'(B - B)’)‘ >[N 00"

Hence, the minimum of [<,,,(d, B) is‘T “JU', or equivalently,

, which is achieved at B = Xz'(zz)™.

3,(d,B) = \N-l(x ~BZ)(X - Bz)'

This completes the proof of Lemma 5.1.
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B2. Proof of Proposition 5.1

Under the representation (5.9), the conditional probability density function of Y; is

expressed as,
(Y, 1Q) = @2) 2|5, [ exp{—%[A(L)D(L)Yt ~VR] ZAL)DL)Y, - VR ]}

where Z, is the variance-covariance matrix of ¢, in the case of FIVARX model.
The log likelihood function is,

KN

I(d.B)=-—"~

Z«E‘

In(Zﬂ)—%ln —%EN: ([A(L)D(L)Yt “VR] £ [A(L)D(L)Y, - VR, ])

t=1

It can be easily to prove that,

% , ([A(L)D(L)Yt ~vR] £ [AL)DL)Y, —VRID :%tr[Zng(d,B)]

t=1
where the tr(.) indicates the trace operator.

Hence, the log likelihood function can be rewritten as,

I(d,B) Z—%M(Zﬂ')—%m

28

—%tr[Z;lZg (d,B)]

Following Lemma A.6 of Johansen (1995) and the linearity of the trace operator
and the strict concavity of a natural logarithm of a matrix determinant noted in Magnus
and Neudecker (1988, p.222), the log likelihood function 1(d,B) is uniquely maximized

by,>. =% _(d,B).

We have a concentrated log likelihood function with respect to X _(d, B) as,
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1°(d,B) = —%In(Zﬂ)—%ln ¥ (d, B)|—%
So,
1°(d, B) =—%[In(2;z)+l]—%ln26(d,B)| (5.15)

According to Lemma 5.1, the variance-covariance matrix of error term

concentrated on d can be represented under the form as,

s (d) =T (X -BZ)(X —BZ)’

=TX(1, -2'(zz")*z)x’ (5.16)

Replace (5.16) in (5.15), the concentrated log-likelihood function with respect to
the vector of memory parameters d of a FIVARX model is represented under the form

as,

I varx (d) :_%[In(Z”)"‘l]_%lnzg(dﬂ (5.17)

This completes the proof of Proposition 5.1.
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Conclusion

6.1 Introduction

This thesis aims to model the responses of financial return distributions to
exogenous shocks under various forms of news which hit the financial markets. More
specifically, our studies focus on three scenarios: (i) when there is an exogenous shock
in each of the higher moments; (ii) when there is an arrival of hidden information to the
market; and (iii) when there is a change in the overall sovereign credit re-ratings.
Whilst the issues related to the first moment of return distribution are readily and
widely investigated, analyses regarding the higher moments are more challenging as
they are unobservable. Traditionally, higher moments of a financial return distribution
are conditionally estimated by employing parametric or semi-parametric models.
However, this approach may face some drawbacks which have been discussed in
previous chapters. Recently, an introduction of realized higher moments, which are the
higher moments constructed non-parametrically from intraday returns, has provided an

alternative approach to overcome the problems. Hence, we exploit the advantages of

192



Chapter 6: Conclusion

these realized measures to serve our investigations of the behavior of the financial
return distributions under various market conditions.

As realized measures exhibits a mixture of long- and short-memory behaviors, it
is a need to employ a family of multivariate long memory framework, which allow for
a set of flexible memory degrees (degrees of fractional integration), for modeling
purposes. Similarly, to further capture for the regime switching behavior of the overall
sovereign credit assessment in our third analysis, we also propose a multivariate
framework that allows for not only a mixture of long- and short-memory but also a
Markov regime switching property. Yet, there has not been a suitable tool within the
frameworks to aid our investigations, where impulse response analyses need to be
conducted but contemporaneous relationships between variables cannot be theoretically
pre-determined. Hence, we develop a generalized impulse response function and its
asymptotic distribution within a multivariate long memory framework to satisfy our
need. This function does not require us to determine the contemporaneous relationships
between endogenous variables at the first stage. Still, it provides an unique result
regardless of alternative orderings of endogenous variables in the system. Further, the
function can adequately captures a mixture of the long- and short-memory properties.

Our studies are important as they can be beneficial for other financial activities
such as asset pricing, value-at-risk measurement and asset allocation. This is because
the dynamics of higher return moments have been documented to significantly affect
asset prices as mentioned in previous chapters. Our research further emphasizes policy
implications in light of the increased role of informational transmission mechanism
(e.g., higher moment risks transmission, trading volume impacts and sovereign credit

ratings impacts) under the Basel Il and Ill banking regulatory framework for assessing
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capital adequacy requirements and for prescribing investment grade in financial
institutions.

The remainder of this concluding chapter is organized as follows. Section 6.2
summarizes key findings in a relation to the research questions noted in Chapter 1.
Section 6.3 provides a brief discussion of some issues that require further analysis and

some recommendations for future research.

6.2 Key findings

We provide an investigation of the financial markets linkages via higher moments
with a particular focus on stock and currency markets in Chapter 2. Chapter 3 develops
a new methodology of the impulse response analysis in a multivariate long memory
framework to facilitate empirical analyses conducted in Chapter 4, which aims to
answer the question “How does trading volume affect the financial return
distributions?” in terms of both static and dynamic approach. In Chapter 5, a study on
how EU financial return distributions react to overall EU sovereign credit re-ratings
changes is conducted by employing our new proposed framework, which allows a
multivariate system of long- and short-memory processes to be conditional on

observable regimes.

Overall our empirical results show differences in the behavior of developed
versus emerging market groups with stronger impacts on realized volatility and realized
kurtosis in developed markets and realized skewness in emerging markets. In addition
our results show important differences in the behavior of stock and foreign exchange
markets, and also the key roles played by trading volume and sovereign credit rating
changes in and across markets. A summary of answers for the research questions stated

in Chapter 1 is presented as follows.
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6.2.1 How do financial markets link and cross-link via higher moments?

Empirical results in Chapter 2 show strong evidence of the positive linkages
among stock markets via all three higher moments (i.e., volatility, skewness and
kurtosis) in both emerging and developed market groups. Similar results are found
regarding the FX markets linkages. However, the developed FX market groups provide
considerably greater evidence of realized volatility and kurtosis linkages than the
emerging FX markets group.

Regarding the cross-link between financial markets, stock and FX markets in
emerging countries groups are more likely to be linked via realized skewness; whereas,
their cross-linkages in developed countries groups tend to be established through
realized volatility and kurtosis. These results are consistent with the importance of the
downside risk in emerging markets, which was documented in the literature (e.g.,
Estrada, 2002; Galagedera and Brooks, 2007). Notably, the cross-asset market linkages
via realized volatility and kurtosis are positive but negative via realized skewness. This
empirical result suggests an option for investors to diversify the downside risk by
combining both stock and currency assets in their portfolio, especially in emerging
markets.

In terms of the strength of the linkages via all three higher moments, whilst the
emerging market groups often show no obvious difference, the developed market
groups consistently display that the magnitude of the same asset markets linkages is
usually greater than or at least equal to that of the cross-asset markets linkages. This is
consistent with our expectation as there are more common economic factors that drive
the same asset markets than the cross-assets markets. In addition, emerging markets,
with its low degree of market transparency, often contain much more noisy information

than developed markets. Hence, there may be insignificant difference between impacts
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of common economic factors on same asset linkages and that on cross-asset linkages in

term of emerging market groups.

6.2.2 How does the hidden information arrival affect financial returns

distributions?

To answer the question, Chapter 4 employs trading volume as a proxy of hidden
information arrival into the market and investigates its impacts on financial return
distributions in a regional context. Our empirical findings support the volume —
volatility literature, which evidences their positive relationship within stock or FX
markets. By the impulse response analyses, we interpret the information based theories
(i.e., MDH, SAIH and DOH) as complementary hypotheses and enhance the volume —
volatility literature with evidence of their positive and lead-lag relationship not only
within but also between stock and FX markets.

We find lack of support for the volume — skewness interactions in regional-level
analyses, which leads us to hypothesize that the direct impact of trading volume on the
level of negative skewness is less significant for a better diversified portfolio. This
hypothesis has not been tested yet, it, however, provide an exciting direction for our
future research.

In addition, we find a negative relationship between trading volume and realized
kurtosis. We suppose that this result may imply an application of the DOH, where
higher dispersion of beliefs among traders leads to lower concentration of asset returns
around its mean value.

The evidence of interactions among higher moments leads us to extend the
analysis by also investigating an impact of trading volume on such inter-relationships.

By using the spill-over index as a proxy for a dynamic structure of the higher moments’
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inter-relationship, empirical results in this regard provide understandings about how
trading volume alters spill-over from one higher moment risk to others. We find that
although behaviors of the inter-relationship towards significant events and new policies
are robust, its strength is mostly reduced by the trading volume. This is mainly due to a
decline in the proportion (%) of spill-over from realized kurtosis to other moments; or
equivalently, an increase in the proportion (%) of spill-over from realized kurtosis to
itself in next periods. This finding can be fundamentally explained by a prominent
result found in the volume — GARCH effect literature (e.g., Lamoureux and Lastrapes,
1990), which documents trading volume is a source of heteroskedasticity problem in

the return volatility.

6.2.3 How do the sovereign credit quality assessments affect the financial

returns distributions?

The sovereign credit quality assessments are found to have heterogeneous effects
on financial return distributions across regimes, which are defined to correspond to the
upward and downward trends in sovereign rating drifts by individual CRAs. More
specifically, we mostly find a negative relationship between the overall EU sovereign
credit assessments and realized returns in the upward regime, yet positive relationships
in the downward regime. Even though these relationships tend to be statistically
insignificant, their negativity is consistent with the basic risk-return tradeoff theory in
finance. This consistency is further confirmed by the empirical results of sovereign
ratings impacts on realized volatility, which show negative effects in the upward regime
but positive effects in the downward regime. In addition, more evidence of statistically
significant effects of sovereign ratings on realized volatility in the downward regime

compared to the upward regime indicate an asymmetric response to rating news in both
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EU stock and FX markets. In conjunction with the positive direction of effects in the
downward regime, ratings may be particularly destabilizing financial markets during
chaos periods. Regarding the impacts on realized skewness, the EU stock and FX return
distributions will be more skewed to the right as long as the trend of overall EU
sovereign credit quality changes, regardless of the direction. Meanwhile, the peak of the
EU stock and FX return distributions will be significantly lower (higher) corresponding
to an increase in the downward (upward) sovereign rating drifts.

In term of the CRA’s reputation, we find that the Standard and Poor’s rating
actions have the greatest impact on stock market realized return and skewness; whereas,
assessments of Fitch have strongest effects on stock market realized volatility across
the EU. Meanwhile, Moody’s rating activities most influence the EU financial return
distributions during the recent European sovereign debt crisis. In the FX markets,

Standard and Poor’s and Fitch, however, are consistently the most dominant CRAs.

6.3 Future research

6.3.1 Portfolio diversification and volume - skewness relationship

Empirical findings related to the volume — skewness relationship in Chapter 4
lead us to hypothesize that the level of portfolio diversification should be incorporated
in the investor heterogeneity hypothesis proposed by Hong and Stein (2003). More
specifically, we conjecture that trading volume’ impact on the negative skewness is less
significant for a better diversified portfolio. Although this hypothesis has not been
tested in this thesis, its rationale is briefly explained in Chapter 4, section 4.5.2. Hence,
in our future research, it would be interesting to perform empirical tests for the
proposed hypothesis under different markets and market’ conditions. In case the

hypothesis is successfully verified, we would extend the model of Hong and Stein
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(2003) to accommaodate the level of portfolio diversification in capturing the volume —
skewness relationship.

However, how to correctly measure the degree of portfolio diversification would
be challenging. One possible approach is to use a proxy of the portfolio diversification
such as portfolio residual variance, which is calculated as the difference between the
total portfolio variance and the market-related variance, (see for example, Klemkosky
and Martin, 1975). Another approach is to construct an index of portfolio
diversification (e.g., Woerheide and Persson, 1993; Rudin and Morgan, 2006).
Nevertheless, its efficiency and reliability are still questionable. Our plan is first to
construct a consistent and reliable proxy for capturing the degree of the portfolio
diversification. The two following approaches are then can be employed to verify our
hypothesis. Firstly, regression analysis is utilized to capture the interaction between
realized skewness and trading volume with and without controlling the degree of
portfolio diversification. The empirical results would answer the question whether the
level of portfolio diversification plays role in the volume — skewness relationship.
Secondly, the dynamic interactions between realized skewness and trading volume can
be captured by the spill-over index using the methodology presented in Chapter 4,
section 4.6.1. The two indices (i.e., index of portfolio diversification and the spill-over
index) are then used to investigate the long- and short-run relationships by performing
the (fractional) cointegration and Error Correction Model depending on their degrees of

(fractional) integration (see for example, Johansen, 1995; Johansen and Nielsen, 2012).

6.3.2 Estimation in a multivariate long memory model: a hybrid approach

As we have discussed in Chapter 2 and 3, methods for estimating the FIVAR

model can be generally classified into two broad classifications: the one- and the two-
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step estimation approach. Each approach has its own advantages and disadvantages.
Although the one-step estimation method, such as the exact maximum likelihood
estimation, is theoretically efficient, it is practically limited by the sample size and the
dimension of the system. Likewise, even though the two-step estimation method does
not accommaodate the specification of the model in the first step which aims to estimate
the vector of fractional degrees, the optimization procedure converges much faster than
the one-step estimation method. Being experienced a difficult choice among the
possible estimation methods in Chapter 2; our future plan is to develop an alternative
procedure which may overcome the limitations of both methods. In a spirit of Chapter
5, Proposition 5.1, we obtain the conditional log likelihood function of a FIVAR model
then concentrate it with respect to the vector of fractional degrees. The concentrated log
likelihood function is subsequently maximized to obtain the fractional degrees using the
numerical optimization procedure. In the latter stage, estimates of fractional degrees
can be used to extract the estimates of remaining parameters. According to this
proposed approach, we may preserve the benefit of two-step estimation method (e.g.,
speed of optimization procedure). Meanwhile, we can still take an advantage of the
one-step estimation approach by including the specification of the model in the

estimation of the fractional degrees.
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