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Summary

This project is part of a collaboration between Monash University, the Aus-

tralian Synchrotron (AS), the new FERMI@Elettra project, and the Linac Co-

herent Light Source (LCLS) at the SLAC National Accelerator Laboratory.

The thesis investigates the use of Artificial Intelligence systems and their

applicability to machine optimisation and control for linear accelerators,

and in particular Free Electron Lasers (FEL). This research is motivated by

the need to develop adaptive systems for beam tuning and stabilisation,

in order to meet the increasingly stringent requirements of new generation

light sources.

The thesis begins with the simulation of a feedback system for the

FERMI@Elettra Linac, based on the Proportional - Integral - Differential1

(PID) scheme developed for the LCLS. To facilitate these simulations, a Mat-

lab Graphical User Interface was built in order to incorporate various con-

trol parameters, including possible actuators, observable variables and per-

turbations. These simulations highlight the difficulties encountered with

PID control, which necessitates a more sophisticated approach to the con-

trol of the linear accelerator.

To address the intrinsic limitations of conventional PID control, a com-

bination of a feedforward - feedback system was investigated. The feedfor-

ward component uses a neural network (NNet), which provides a prediction

of the perturbation in the electron beam parameters based on fluctuations

in the voltage and phase of the klystrons2. The feedback component con-

sists of a simple PID algorithm, used to compensate for potential inaccura-

cies of the feedforward correction. Experimental results performed at the

1The PID controller involves three corrective terms: the proportional, the integral and
derivative terms, denoted by P, I, and D, respectively. These terms can be interpreted as
follows: P depends on the present error, I on the accumulation of past errors, and D on a
prediction of future errors. See Secs 2.7 and 5.2.5 for further detail.

2A klystron is an electron tube used to generate or amplify electromagnetic radiation in
the microwave regime by velocity modulation. In a klystron, electrons are accelerated by
the application of a voltage. As the electrons leave the heated cathode of the tube, they are
directed into resonating chambers tuned at or near the tube’s operating frequency. Strong
RF fields are induced in the chambers as the electron bunches give up energy, which are
ultimately collected at the output resonating chamber to feed the cavities of the Linac.

ix



x SUMMARY

AS show the viability of the system, by demonstrating the successful con-

trol of the energy at the end of the Linac. The experiments carried out at the

LCLS show the applicability of the system to a multi-variable system with

the simultaneous control of the energy and bunch length. Although these

results demonstrate the ability of the NNet predictor to compensate for the

deficiencies of the PID algorithm, further refinements of the technique are

required to produce a system that can adapt to changes in machine param-

eters and jitter3 conditions.

To correct the remaining deficiencies of the combined feedforward -

feedback control system, we consider an intelligent system capable of self-

learning. In this scenario the control system is treated from the perspective

of an optimisation problem and a novel optimisation tool is designed, us-

ing state of the art developments in video games. The key principle is to

exploit similarities between the navigation of a game agent in a battlefield

and the navigation of an "optimisation agent" in a search space. This novel

approach was tested using simulations and experiments conducted at the

AS and on the FERMI@Elettra Linac. The experiments conducted at the

AS showed the system’s ability to simultaneously optimise the beam energy

spread and transmission (i.e. the percentage of particles transmitted from

the start to the end of the accelerator). We have demonstrated an increase

in the transmission from 90% to 97% and a decrease in the energy spread of

the beam from 1.04% to 0.91%. Control experiments performed at the new

FERMI@Elettra FEL are also reported, which highlight the adaptability of

the system for beam-based control, in the case where a static perturbation

is applied to the klystron phase. These results show that NNets can be suc-

cessfully exploited to build an optimisation tool that can self-learn from its

interaction with the machine and operate a simple control task. Our results

indicate that this optimisation tool can be used for the stabilisation of the

electron beam parameters when it is subject to time dependent perturba-

tions.

The thesis concludes with suggestions for future work. This includes

the adaptation of the optimisation tool to N-dimensional search spaces,

and the development of a novel control system which merges the NNet pre-

dictor with the structure of the NNet used for optimisation. By combining

these two structures, it is anticipated that the resulting NNet will have the

ability to correct time dependent perturbations, while self-adapting its re-

sponse when machine parameters and jitter conditions change.

3Jitter is formally expressed as the movement of a signal edge from its ideal position in
time and can be deterministic or random. Throughout this thesis the term jitter will be used
to express a deviation from a desired setting, without specifically referring to time.
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Introduction 1

1.1 Project background and motivation

FERMI@Elettra is a new 4th-generation light source located next to the third-

generation synchrotron radiation facility ELETTRA in Trieste, Italy. It is a

single pass Free Electron Laser (FEL) providing high peak-power photon

pulses over the wavelength range from 100 nm (12 eV) to 10 nm (124 eV).

The single-bunch structure electron beam is produced by a high-brightness

RF photocathode with a 50 Hz repetition rate and accelerated to 1.5 GeV.

Two bunch compressors provide the necessary beam brightness1. At the

end of the accelerator, chains of undulators produce the photon beam with

a seeded laser multistage mechanism. A total of 22 undulators provide the

beamlines with tunable output over a range from ∼100 nm to ∼4 nm [2].

In order to ensure that free electron lasing can take place and that the

quality requirements on the produced photon beams are met, a high de-

gree of stability is required for the longitudinal parameters of the electron

beam. For FERMI in particular, a maximum rms energy and peak current2

variation of 0.1% and 10%, respectively has been specified for the electron

bunches in order to guarantee FEL performance [2]. These parameters can

be measured at three locations in the accelerator, i.e. at the two bunch

compressors and the spreader (just before the entrance to the undulator

chamber). They can be corrected using the voltages and phases of the Linac

klystrons. The types of perturbations we expect to encounter include slow

drifts due to temperature fluctuations and changes in the properties of the

1An important parameter describing an electron beam is the brightness, defined as B =
2I0/(π2ϵ2), where I0 is the beam current and ϵ is the emittance. To compare beams of different
energies, it is convenient to use the normalised brightness, defined as Bn = 2I0/(π2ϵ2

n ), where
ϵn = βγϵ is the normalised emittance; β is the ratio of the beam velocity to the velocity of light
and γ is the relativistic factor 1/

√
1 − β2 [1].

2The peak current is defined by I = Q/τ, where Q is the total charge in the electron
bunch and τ is the bunch duration. The peak current is used as a measure of the bunch
length, which is the longitudinal parameter we are interested in stabilising (see Secs. 4.3.3
and 4.3.4).

1



2 INTRODUCTION

accelerator components. Mechanical vibration of the quadrupole magnets

and jitter of the RF accelerating fields are also expected.

A number of control loops are necessary to stabilise the parameters of

the beam (i.e. energy and bunch length for longitudinal control). Although

it is possible to run one local feedback loop for each of the parameters, the

corrections performed by one loop will affect the corrections of the loops

downstream. To ameliorate this problem, it is necessary to implement cas-

caded feedbacks, where the upstream loops communicate the correction

downstream. The basic control algorithm currently used in facilities such

as the Linac Coherent Light Source is a Proportional-Integral-Differential

(PID) controller preceded by a low pass filter. For shot by shot control (i.e.

for a sampling rate equal to the bunch repetition frequency), a maximum

attenuation bandwidth of a few Hz is achievable. Consequently, only low

frequency perturbations and slow drifts can be accommodated [2]. More

sophisticated cascaded local control algorithms can be implemented to en-

sure better control. However, there is a real need to develop adaptive con-

trol systems as requirements on beam quality become increasingly strin-

gent. The beam-based control studies of longitudinal parameters for the

FERMI@Elettra FEL have motivated the research presented in this thesis; in

the next section we discuss the proposed objective of this project.

1.2 Objective

The present thesis investigates the use of Artificial Intelligence (AI) Systems

for optimisation of linear accelerator performance, with a particular focus

on the FERMI Free Electron Laser. Here, the term performance includes

two main aspects of accelerator operation. The first aspect relates to the

necessary stabilisation of the electron beam to ensure that the FEL lasing

process can take place. The second aspect considers the performance of

optimisation procedures used to adjust beam parameters to meet users’ re-

quirements regarding the light produced.

To ensure the performance of the lasing process, it is critical to precisely

control the accelerator parameters in order to produce a high quality elec-

tron beam during acceleration and compression. In particular, the final en-

ergy and peak current are very sensitive to system jitter [3]. To minimise

sensitivity to jitter, a longitudinal feedback system is required [4]. In this

thesis we first consider the beam-based feedback system implemented at

the Linear Coherent Light Source (LCLS), where the correction is computed

with a PID controller (described in Sec. 5.2). Although a PID algorithm is

simple to implement, its tuning can be difficult and it suffers from several

limitations [5, 6], including a lack of adaptability and poor response to high
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jitter frequency (see Sec. 5.5.2). These limitations are observed in the non

suppression or, in some cases, the amplification of jitter frequencies. The

gains of the PID controller also need re-tuning when jitter characteristics

change. A Matlab GUI is developed to implement a PID controller for the

FERMI@Elettra machine (see Chapter 5). This work expands on previous

studies that were done at the LCLS [4] and demonstrates the limitations of

this type of controller. A coupled feedforward - feedback control scheme

based on a Neural Network (NNet) is then proposed (see Chapter 5) to over-

come some of these limitations.

The second aspect of linear accelerator performance optimisation lies in

the fact that, unlike synchrotrons, FELs produce only a specific wavelength,

which is obtained by adjusting of the electron beam parameters. This re-

quires readjustment to elements of the linear accelerator in order to "tailor"

the light produced to the users’ specifications. This is currently performed

by operators and is time consuming. To address this problem an Artificial

Intelligence (AI) based system is considered. In this approach, NNets have

been utilised along with a technique known as Neuro-Evolution of Aug-

menting Topologies (described in Chapter 6), to dynamically adjust their

structure. This method draws on the latest developments in AI for video

games. The present thesis considers how AI technology can be adapted and

applied to optimisation problems for accelerator operation. Moreover, we

show how, by building a system that has the ability to learn through time

and from its interaction with the accelerator, it is possible to build a single

system that can address problems in both beam-based control and beam

line tuning.

1.3 Why neural networks?

NNets have been widely exploited in many domains, such as in astroparti-

cle physics [7], chemistry [8, 9], robotics [10] and finance [11, 12], to name

a few. They have provided solutions to a wide range of problems, includ-

ing: classification problems [13], time series forecasting [14] and speech

recognition [15]. Because NNets are universal approximators, they have the

ability to learn from examples and can work naturally with a large number

of inputs and outputs; in particular NNets are well suited to applications

in control engineering [16]. For example, they have been used in industry

for controlling mechanical disturbances [17] and heating regulation [18].

NNets have also shown facility in solving difficult analysis, designing new

devices and learning from data. Their numerous qualities, as well as their

proven record of success in many different fields make them an attractive

solution to control applications in accelerator science.
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1.4 Neural networks in accelerator science

NNets were first considered in accelerator science in 1987 by Higo et al. [19].

In this work, the application of AI was investigated to maintain a golden or-

bit, with a potential application at the Stanford Linear Collider. This prob-

lem was chosen, because maintaining a system in an orbit state is easier

than achieving this state in the first place. However, the paper did not re-

port a successful experimental implementation of the AI strategy. During

this same year, Weygand [20] reported the development of a knowledge-

based expert system at Brookhaven National Laboratory. The intention of

this project was to help reduce the down time of the Heavy Ion Transfer

Line, after a shut down of the machine, or when operation conditions are

modified. This system showed the capability of simple tuning tasks, but it

was static in the sense that it did not consider changes in the running con-

ditions while tuning the beam.

In 1991 NNets were considered for feedback systems, and in particular

for the stabilisation and optimisation of collisions in the Stanford Linear

Collider (SLC) at SLAC [21]. Although the preliminary simulation results

were promising, the project did not lead to a successful experimental re-

alisation of a beam-based controller. The NNet controller was not able to

operate the control task when presented with data from an operating ac-

celerator environment; despite much effort to address pragmatic issues of

implementation, they remained unresolved3.

In 1992 a NNet-based beam diagnostic system was successfully imple-

mented to detect large errors in measurements of beam parameters (i.e.

faulty diagnostics) and magnetic field defects (i.e. faulty accelerator ele-

ments) [22]. However, this was not applied to control applications. In 1993

an attempt was made to build a NNet controller for orbit correction [23, 24].

Despite promising initial simulations, the implementation of the system

for real-time machine operation was never reported. Another attempt to

built a global orbit feedback using NNets at the Pohang Light Source was

reported in 2000 by Kim et al. [25]. Again, despite encouraging simulations,

a successful implementation of the system for real-time control was never

reported.

A successful implementation of a NNet system for orbit correction was

reported in 2004 by Hitaka et al. [26] at the KEK Proton Synchrotron. In

their approach, a NNet was used to model the relation between beam loss

and magnet settings, in order to optimise the configuration. However, the

training was done off line using recorded data and was not implemented for

real-time feedback.

3H. Shoaee, private communication, January 31, 2008.
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In 1990, Howell et al. [27] reported an attempt to implement a NNet-

based controller for a negative ion accelerator source. In their work a NNet

was trained off line4, with data collected from the ion source in order to

model the response of the machine. This model was in turn used to op-

timise the parameters of the ion source. The approach assumed that the

characteristics of the source did not change over time and that no anoma-

lous operating conditions were encountered. However, in practice this is

not the case and results were of limited utility.

In 1992 a successful NNet implementation for optimisation and con-

trol of a small-angle negative ion source was reported by Mead et al. [28].

Their approach consisted of mapping the operating space of the ion source

coarsely with a scan procedure and fitting the data with a NNet. The sys-

tem was employed over a number of years for tuning the the machine after

short interruptions and cold startups. However, the system was not used

for real-time control.

Between 1992 and 1995 the SETUP project was carried out as a collabo-

ration between CERN and the Petersburg Nuclear Physics Institute [29]. Its

purpose was to diagnose the control equipment of the CERN Proton Syn-

chrotron. To this end, existing control procedures were programmed in an

object-oriented language. When run online, a procedural reasoning sys-

tem made decisions regarding the application of appropriate procedures.

The system performed successful initialisation of accelerator equipment,

but was never utilised to perform real-time beam-based control.

The ARCHON project was implemented at CERN between 1993 and 1996.

This large project in the area of Distributed Artificial Intelligence (DAI) [30]

was developed for the control and diagnosis of faults at the Proton Syn-

chrotron (PS) [31]; it was also used to manage the electricity distribution

system at the Spanish facility Iberdrola [32]. DAI was chosen to handle

problems in highly complex systems, such as particle accelerators, which

monitor thousands of variables. The approach consists of decomposing

the problem into smaller tasks handled by expert systems (agents) and inte-

grating these tasks through interaction and knowledge sharing between the

agents. ARCHON was a successful project that was run online both at the PS

and Iberdrola. However, its applications remained restricted to the detec-

tion and management of faults and was never considered for beam-based

control systems or optimisation applications.

4The training of a neural network can be performed either online or off line. In the
first approach, the network’s parameters will be adjusted in real time as new data become
available. In the second approach the network is only trained once when the whole data set
has been collected.
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In 1995 another attempt was made by Klein et al. [33] to implement

an artificial intelligence system on an accelerator, specifically for beamline

tuning. The system used a combination of methods, included NNets, fuzzy

logic and fuzzy pattern matching, analytical techniques and genetic algo-

rithms [34]. All these methods were incorporated into a single module and

the project was developed over several years [35, 36]. The system prototype

was tested at Brookhaven and Argonne National Laboratories [37]. Despite

promising results, the Department of Energy (DOE) did not proceed with

the project; subsequently developers of the prototype were unable to con-

tinue the research project5.

In 1999 Atanasova et al. [38] proposed a NNet controller to enhance the

stability of power systems. Their work included simulation results but not

experimental outcomes. During that same year, Fortuna et al. [39] reported

the successful implementation of an AI system for the detection of faults

in Tokamaks. The strategy exploited a NNet to model expected sensor re-

sponses in order to help identify faults. The system was complemented with

a fuzzy logic inference system to classify the detected faults. The system was

implemented and reported to have successfully accomplished its tasks. In

2000 Ribes et al. [40] reported another successful system using NNets for

fault diagnosis at the CEA high current linear accelerator in France. In 2001

Buceti et al. [41] reported the implementation of a similar AI system for the

validation of interferometry density measurement at the ENEA-FTU Toka-

mak, confirming the suitability of the methodology.

Another interesting application of NNets in accelerator physics is the

Parametric Universal Non - Linear Dynamic Approximator (PUNDA) model

[42]. PUNDA has been successfully applied for modeling beam optics [43],

beam loss in synchrotron light sources [44], and the phase space of an RF

photoinjector [45]. However, PUNDA has not been applied to control sys-

tems.

In 2007 the use of NNets was reported at the LANSCE accelerator to tune

the gains of a Proportional-Integral (PI) feedback controller for the low level

RF system [46]. The NNet helped solve the tuning problem for the con-

troller, but did not address deficiencies in the PI algorithm.

This brief survey of the literature shows that considerable effort has been

devoted to adapting AI systems for operational accelerator environments

over the past two decades. However, despite successful applications in ac-

celerator science (i.e. data modeling, fault diagnosis or beam line tuning),

to the best of our knowledge, NNets have not yet been successfully applied

to real-time beam-based control. A promising approach by Klein et al. [33]

5P. Clout, private communication, May 4, 2010.
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in 1995 was unfortunately not developed further because of a lack of fund-

ing. Nevertheless, in other areas of science and engineering, NNets have

been utilised for real-time control. The demonstrable interest and need for

these adaptive systems in accelerator science, combined with a successful

record in many other areas of engineering is the principal motivation for

the present thesis.

1.5 Outline of the thesis

Chapter 2

Chapter 2 gives an overview of the theory of control, introducing the nec-

essary definitions that will be used throughout this thesis. The notions of

Laplace and z-transforms are introduced, since they are most important for

the design of controllers. In particular, the PID algorithm will be discussed

and the concept of feedforward compensation introduced.

Chapter 3

The main components of the three Linacs studied in this work are described

in Chapter 3; namely, the Australian Synchrotron Linac, the Linac Coher-

ent Light Source (LCLS) at SLAC, and the FERMI@Elettra Linac. Similarities

and differences between the machines are discussed, as well as the avail-

able beam diagnostic components that are used for control experiments.

Chapter 4

Chapter 4 covers the background on linear accelerator physics relevant to

the control of longitudinal beam parameters. Mathematical expressions are

derived to compute the deviation of the beam energy and peak current re-

sulting from jitter. These equations form the basis for the simulations re-

ported in Chapter 5.

Chapter 5

Chapter 5 focuses on simulation studies for the implementation of a PID

controller at the FERMI@Elettra Linac. Here we expand on earlier work car-

ried out at the LCLS, which is based on the equations governing longitudi-

nal dynamics developed in Chapter 4. This includes the development of a

Matlab Graphical User Interface (GUI), which facilitates the study of real-

istic scenarios, involving more components in the feedback system, e.g., a

range of possible actuators, jitter characteristics and codes to simulate the
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machine. This framework accomodates a range of studies, including jitter,

control strategies and diagnostic systems that can be separately selected in

the GUI.

Chapter 6

The necessary background on NNets is discussed in Chapter 6. The struc-

ture of NNets and the salient training algorithms are described. Advanced

concepts such as genetic algorithms, which are used to evolve the structure

of NNets through time (see Chapter 8) are also introduced.

Chapter 7

Chapter 7 discusses the design of a combined feedforward - feedback con-

trol system that overcomes some of the limitations related to the PID algo-

rithm. Experimental results performed at the Australian Synchrotron are

then presented, followed by coupled energy and bunch length control re-

sults obtained at the LCLS. The performance, limitations and adaptability

of the control scheme are discussed.

Chapter 8

Chapter 8 describes a system that overcomes the limitations of the feed-

forward - feedback control scheme, which was analysed in Chapter 7. The

research is orientated towards developing an evolving controller. We ex-

plore the concept of an evolving NNet. The control system is considered

as an optimisation problem and a tool, based on evolving NNets, is devel-

oped for optimisation purposes. Successful test results are reported for the

tuning of the beam energy spread and beam transmission (i.e. percentage

of electrons transmitted from the start to the end of the linear accelerator)

at the Australian Synchrotron. To complement these studies, we present a

preliminary control test performed at FERMI, which suggests the suitability

of the methodology to beam-based control applications.

Chapter 9

This chapter describes the generalisation of the optimisation tool devel-

oped in Chapter 8 to N variables. Two approaches are proposed to integrate

the systems developed in Chapters 7 and 8, resulting in a single system. We

discuss how the integrated system can learn from its interaction with the

machine in order to enhance the control of the accelerator. Finally, we re-

view the results of the thesis and suggest areas for further investigation.



Elements of control theory 2

2.1 General considerations

This chapter gives an overview of control theory relevant to the work pre-

sented in the thesis. Because the electron beam consists of electron bunches,

rather than a continuous flow of particles the system may be considered to

be discrete in nature. We are therefore interested in intrinsically discrete

time systems, without concomitant issues of sampling. The response of

the longitudinal beam parameters will also be considered to be linear, or

linearisable in the region of interest, for purposes of control. We therefore

consider discrete linear time-shift invariant control systems. We start by de-

scribing the fundamental concepts of control theory, providing definitions

that will be used later to characterise the controller performance. The sys-

tem (in our case the accelerator) and its controller will be described using a

mathematical model. In particular, we discuss the implementation of a PID

controller as it is of particular interest in the work presented in Chapters 5

and 7. Finally, we introduce the salient features of feedforward control,

which is utilised in later chapters.

2.2 Definitions

In control theory there are several factors that characterise a system, which

must be taken into consideration. The most important of these is stabil-

ity of the system. Other characteristics, such as the initial overshoot, the

speed of response, the steady-state error, and parameter sensitivity are also

critical determinants in designing a control system [47]. In what follows we

formally define the notion of stability and describe the two main "regimes"

associated with the response of a control system; namely, the transient and

steady state responses. These two regimes are conceptually important as

they form the basis for characterising a control system.

9
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2.2.1 Stability

The stability of a system relates to its response to inputs or perturba-

tions. A system that remains in a constant state unless affected by an exter-

nal action and which returns to a constant state when the external action

is removed is considered to be stable. The system is said to be unstable

if its output increases without bound [48]. Formally, stability is defined as

follows. Let us consider a system described by the general discrete time dif-

ference equation [49]:

x(i + 1) = f (x(i), u(i), i), (2.1)

where x(i+ 1) denotes the state1 of the system at time step i+ 1 whose input

u(i) in a time series with i = 0, 1...ir. The solution x0(i + 1) of the system is

said to be stable if for any instant i = i0 and for any ϵ > 0 there exists a δ(ϵ, i0)
such that:

||x(i0) − x0(i0)|| ≤ δ, (2.2)

which implies:

||x(i) − x0(i)|| ≤ ϵ, ∀i ≥ i0. (2.3)

Here ||x|| denotes the Euclidean norm. This definition of stability is com-

monly known as Lyapunov stability [49]. It means that the state of the sys-

tem at any time i > i0 is guaranteed to be bounded for an initial state x(i0)
chosen not too far from the nominal solution x0. In control theory, a stronger

form of stability called asymptotic stability is often required. For the dis-

crete time difference equation (2.1), the nominal solution x0(i) is said to be

asymptotically stable if [49]:

1. It is stable in the sense of Lyapunov; and

2. ∀i0 there exists a ρ > 0 such that ||x(i) − x0(i))|| → 0 when i → ∞, and

when the initial deviation is in the region defined by ||x(i0)−x0(i0))|| < ρ.

The stability of a controller is a key criterion and is most often evalu-

ated by applying a step change to a set point or load and evaluating the

settling time, residual and maximum errors [50]. These characteristics are

illustrated in Fig. 2.1, which we will use to define the associated concepts of

residual error, overshoot and rise time.

1The internal state variables are the smallest possible subset of system variables that can
represent the entire state of the system at any given time [49].
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2.2.2 Transient and steady state regimes

The duration of a control process is commonly decomposed into two regimes

following a step change; the transient and the steady-state regimes. The

transient regime is the time required to achieve the output target value. The

corresponding output variation is called the transient response. For exam-

ple, in Fig. 2.1 this limit is set to 10% of the target value. This regime is then

followed by the steady state response.

In control systems we also often refer to the rise time and the settling

time. The rise time is commonly defined as the time for a signal to go from

10% to 90% of its final value [51]. The settling time is the time elapsed from

the application of an ideal instantaneous step input to the time at which the

output evolves to, and remains within a specified error band from the new

set point (target value) as illustrated in Fig. 2.1. This includes a propagation

delay, plus the time required for the output to recover from the overshoot

and to settle within the specified error.

Figure 2.1: Definitions related to the transient and steady state responses.
The transient response starts when a step input is applied and ends when
the error falls below 10% of the target value. The steady state regime corre-
sponds to the response of the system thereafter.

To tune a controller, one must optimise both the transient and the steady

state responses. The optimisation of the transient response consists of min-

imising the maximum initial error, or overshoot, the settling time and the

corresponding speed of response, i.e. to minimising the rise time [50]. To

optimise the steady state response one must minimise the residual errors

between a controlled variable and its set point. In what follows we will in-

troduce the Laplace and z-transforms, which are useful for analysing signals

and control systems, and for optimising the transient and steady responses

of the system.



12 ELEMENTS OF CONTROL THEORY

2.3 Transform analysis

The unilateral Laplace transform is pivotal to the description of linear time-

shift invariant systems; it allows a system to be characterised in the complex

frequency domain. The transform is defined as [52]:

L ( f (t)) =
∫ ∞

0
e−st f (t)dt, (2.4)

where t is the time variable, f is the signal to be transformed and s a complex

(frequency) parameter. The Laplace transform has a number of important

advantages. For example, if g(t) is the response of the system to a unit im-

pulse at t = 0, then the response of the system output y(t) to any input u(t) is

given by the convolution:

y(t) =
∫ t

0
g(t − τ)u(τ)dτ. (2.5)

The Laplace transforms of u(t) and g(t) are denoted by U(s) and G(s),
which allows us to rewrite Eq. (2.5) in the complex frequency domain as:

Y(s) = Gs(s)U(s), (2.6)

where the convolution in the time domain has become a multiplication in

the frequency domain. The ratio Gs(s) = Y(s)/U(s) is commonly referred to

as the transfer function (or more generally the transfer matrix) of the sys-

tem. The Laplace transform allows us to model the properties of a system

in terms of its transfer matrix. The inverse transformation from Y(s) back

to y(t) is not always required to design a controller, as we can use the pole

placement technique, which will be discussed in Sec. 2.7. However, if it is

necessary, the inverse Laplace transform allows us to recover f (t), using:

f (t) = L −1{Gs(s)} = 1
2π j

lim
T→∞

∫ γ+ jT

γ− jT
estGs(s)ds, (2.7)

where j =
√
−1 and γ is a real number chosen so that the integration path

ensures convergence 2 of Gs(s) [53]. For a discrete time system the integral

in Eq. (2.4) is replaced by a summation over the discrete time steps i. This

defines the unilateral z-transform of a discrete time series Y(i):

Z{y(i)} = Y(z) =
∞∑

i=0

z−iy(i), (2.8)

2The convergence region defines the region of t for which the Laplace transform con-
verges, i.e. |

∫ ∞
−∞ g(t)e−st | < ∞ for a continuous time system. For a discrete time system the

integral becomes a summation over the instants i, i.e. |∑+∞i=−∞ g(i)z−i| < ∞.
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where z = Re jθ is a complex number with modulus R and argument θ. If

the z-transform X(z) of a time series x(i) is known analytically, the inverse

z-transform back to the time domain is given by:

x(i) =
1

2π j

∮
|z|=R

X(z)zi−1dz, (2.9)

where the contour integral is evaluated (around the origin) in the complex

plane. In what follows we will be concerned with the z-transform, since

we are interested in discrete time systems. However, many of the results

presented in the following sections are derived from the continuous theory.

2.4 Linear discrete time systems

It often happens that we can only observe a physical system at a sequence

of instants ti, i = 0, 1, 2...ir rather than continuously. This is particularly rel-

evant to an electron beam which consists of distinct bunches rather than a

continuous flow of particles. The bunch index i corresponds to the instant

ti = i/ f , where f is the beam repetition rate. Since we are principally con-

cerned with linear systems, the response of the beam parameters to the ac-

tuators must be linear, or reasonably linearisable in the specified region of

interest, for purposes of control. A general discrete time system is expressed

by the state difference equation (2.1):

x(i + 1) = f (x(i), u(i), i).

The corresponding output of the system y(i) can be written as a function of

the system’s state x(i) and its input u(i):

y(i) = g(x(i), u(i), i). (2.10)

These equations can also be expressed in the following matrix form [49]:

x(i + 1) = A(i)x(i) + B(i)u(i), (2.11)

and

y(i) = C(i)x(i) + D(i)u(i), (2.12)

where in the general case, the parameters x, u and y are vectors whose com-

ponents can have different units. For example, the state x might include the
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beam transverse coordinates (in mm) and the energy (in MeV), while the

input u might include the phase (in degrees) and voltage (in volts) of an ac-

celerating structure. The matrix A describes the relation between the state

of the system x(i + 1) and its past state x(i), while B describes the response

of x(i + 1) to the system input u(i). The response of the system output y(i) is

related to the state of the system x(i) and its input u(i) via the matrices C and

D, respectively. Since the accelerator is considered to be a time-shift invari-

ant system A, B,C and D are time-shift invariant. Applying the z-transform

to Eqs. (2.11) and (2.12) we obtain, for a time-shift invariant system [49]:

X(z) = (zI − A)−1BU(z) + (zI − A)−1zx(0), (2.13)

and

Y(z) = (CB(zI − A)−1 + DU(z) = Gs(z)U(z), (2.14)

where I is the identity matrix, Gs(z) is the transfer matrix of the system, and

x(0) is the first element of the time series, i.e. the initial condition. It can be

shown that [49]:

det[Gs(z)] =
ψ(z)
ϕ(z)

=
ψ(z)

det(zI − A)
, (2.15)

whereψ(z) and ϕ(z) are polynomials in z. The transfer matrix Gs is very useful

for studying the frequency response of the system. Let us write the input of

the system in the complex form:

u(i) = ume jωi, (2.16)

where um is the magnitude of the input andω is the angular frequency of the

input. In can be shown [49] that the general solution of the inhomogeneous

state difference equation (2.11) is given by:

x(i) = Aia + (e jωI − A)−1Bume jωi, (2.17)

where a is a vector of arbitrary constant values. The first term on the right

hand side of Eq. (2.17) is the general solution of the homogeneous differ-

ence equation (2.11), while the second term is a particular solution of that

same equation. We also note that these terms correspond to the transient

and the steady state responses of the system, respectively. If the system is
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asymptotically stable, the first term must vanish as i→ ∞, i.e. as the system

reaches steady state. Introducing Eqs. (2.16) and (2.17) into Eq. (2.12), the

steady state response of the system is then given by:

y(i) = C(e jωI − A)−1Bume jωi + Dume jωi. (2.18)

From Eq. (2.18) the transfer matrix Gs(z) of the system in Eq. (2.14) can

be rewritten as:

Gs(e jω) = C(e jωI − A)−1B + D. (2.19)

It is clear that the transfer matrix of the system depends on the fre-

quency of the input. Because the frequency response of the system Gs can-

not be changed, the controller must be designed to compensate for unde-

sirable frequency responses of the system, such that it can meet the stability

criteria over the specified frequency band. This will be studied in more de-

tail in Sec. 2.7.

In the following section we discuss how the system’s response can be

characterised in order to derive criteria for the evaluation of the controller

performance. The results obtained will be used in Sec. 2.6, where the z-

transform of the transfer function is exploited to design a PID controller.

2.5 Analysis of linear control systems

2.5.1 System description

In what follows we describe the equations that define a closed loop con-

troller and discuss the basic design objectives related to the transient and

steady state responses. First, we define the state equations of the system

and its controller. The system described by Eqs. (2.11) and (2.12) can be

generalised according to the following equations [49]:

x(i + 1) = Ax(i) + Bu(i) + vp(i), (2.20)

x(i0) = x0, (2.21)

y(i) = Cx(i) + vm(i), (2.22)

and

z(i) = Dx(i). (2.23)

where x and u describe the state of the system and the input is defined in

Sec. 2.4. The variable vp(i) is the disturbance, vm(i) is the noise associated
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with the measurement of the variable y(i), and z(i) is the controlled variable.

Here we will consider the general case where vp is a stochastic process. The

matrices A, B and C are those defined in Sec. 2.4, while D defines the re-

sponse of the controlled variable z(i) to the state x(i) of the system. We also

need to define the state equations for the controller, which are written in

terms of the following difference equations:

q(i + 1) = Lq(i) + Krr(i) − K f y(i), (2.24)

q(i0) = q0, (2.25)

and

u(i) = Fq(i) + Hrr(i) − H f y(i). (2.26)

where q(i) is the state of the controller, u(i) is its output, r(i) is the reference

variable and q(i0) is the first element of the controller state in the time series.

The variable u(i) also corresponds to the input of the system as depicted in

Fig. 2.2. The response of the controller state q(i+ 1) depends on its previous

state q(i) and the difference between the reference signal r(i) and the actual

output of the system y(i). The response matrices L,Hr,H f ,Kr and K f de-

scribe the relation between the parameters q, r, u and y. The indexes r and

f refer to the reference and feedback variables, respectively. We note that

these equations correspond to a time-shift invariant system, since the ma-

trices A, B,C,D, F,Hl,Hr,Kl,Kr and L are all time-shift invariant. Figure 2.2

illustrates the system and the controller scheme.

Figure 2.2: Schematic of a closed loop control system. The controller pro-
duces the input u(i) to the system, given a desired reference value r(i). The
system is also subject to disturbances vp(i). The output is y(i), whose mea-
surement can be subject to a disturbance vm. The controlled variable is z(i).

A measure of the system performance is the error between the output

and the desired reference. This error is expressed as:
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e(i) = z(i) − r(i), (2.27)

or in terms of the corresponding z-transform:

E(z) = Z(z) − R(z). (2.28)

In the regulator3 problem, r(i) is constant (r(i) = r0), while according to

Eq. (2.20) the controlled variable z(i) contains the frequency components

of the disturbance vp(i). Since the tracking error e(i) is a function of z(i),
it also contains the frequency components of the disturbance vp(i). More-

over, e(i) still contains information on the frequency components if we con-

sider vp(i) = constant and if r(i) contains the frequency components of vp(i).
This allows us to study the system’s stability as a function of its input rather

than the perturbation vp(i), which simplifies calculations (see Secs. 2.5.2

and 2.5.3). For this, we first decompose the reference variable r(i) into a

constant part r0 and a variable part rv(i):

r(i) = r0 − rv(i). (2.29)

By doing so we can study the response of the system to the reference

variable, which will simplify calculations and let us derive conditions for

the system’s stability. To evaluate the performance of a control system, we

will use the mean square tracking error Ce(i) and the mean square input

Cu(i), defined as follows [49]:

Ce(i) = E{eT (i)We(i)e(i)}, (2.30)

and

Cu(i) = E{uT (i)Wu(i)u(i)}. (2.31)

where E is the expectation value operator, (·)T is the transpose, and We(i)
and Wu(i) are weighting matrices. Usually We(i) is diagonal and Ce is the

weighted sum of the mean square tracking error of the controlled variable.

In particular when We = 1 (matrix of size 1x1) then
√

Ce corresponds to the

rms tracking error. Equations (2.30) and (2.31) are very useful because in a

control system we are required to minimise the mean square tracking error,

while maintaining the mean square input value within reasonable limits.

The mean square input has the following relevance. Consider the need to

3In control theory we distinguish between the tracking problem, where the reference
variable is changing frequently, and the regulator problem, where the reference variable re-
mains constant for a long period of time.
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impose an upper value on the voltage (i.e. the system input) that can be

applied to an RF accelerating cavity. This can limit the range over which

the input voltage can be changed (if the initial value is already close to the

upper limit). Fixing a maximum value on the mean square input ensures

that the input voltage will not exceed the prescribed value.

As described in Sec. 2.2.2, the response of the system has two charac-

teristic regimes, the transient and the steady-state responses. The optimi-

sation of the controller must consider both regimes, which have different

criteria. In the following sections we will show how the transient and the

steady states responses of the control system can be optimised. To do so we

develop Eqs. (2.30) and (2.31) further and derive the conditions that guar-

antee the stability of the control system.

2.5.2 The steady-state response

In this section we study the response of the linear discrete time control sys-

tem described by Eqs. (2.20) - (2.26) to the reference variable r. As discussed

in Sec. 2.2.1 the most important objective of a control system is to ensure

stability. Asymptotic stability can be guaranteed by ensuring that the steady

state mean square tracking error and the steady state mean square input

converge as i → ∞ (corresponding to the the steady state response of the

system). We are thus interested in the limit of Ce(i) and Cu(i) when i → ∞.

We introduce the definitions:

Ce,∞ = lim
i→∞

Ce(i), (2.32)

and

Cu,∞ = lim
i→∞

Cu(i). (2.33)

Now let us decompose the tracking error e(i) into two parts; a determin-

istic or average part ē(i) = E{e(i)} and a non-deterministic part ẽ(i). We write:

e(i) = ē(i) + ẽ(i). (2.34)

Likewise for u(i) we have u(i) = ū(i) + ũ(i). Using these definitions,

Eqs. (2.30) and (2.31) can be rewritten as a sum of deterministic and non-

deterministic contributions [49]:

Ce(i) = ē(i)T We(i)ē(i) + E{ẽ(i)T We(i)ẽ(i)} = Cē(i) +Cẽ(i), (2.35)
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and

Cu(i) = ū(i)T Wu(i)ū(i) + E{ũ(i)T Wu(i)ũ(i)} = Cū(i) +Cũ(i). (2.36)

Moreover, we introduce the following z-transforms:

Z(z) = T (z)R(z), (2.37)

and

U(z) = N(z)R(z), (2.38)

where T (z) and N(z) are the response matrices in the z-domain. Inserting

these equations into Eq.(2.28), the z-transform of e(i) can be written as:

E(z) = (T (z) − I)R(z). (2.39)

Now let us consider Cē(i) and Cū(i), which are the contributions arising

from the constant part of the reference variable (see Eqs. (2.35) and (2.36)).

Using the final value theorem4 and the fact that r0 is constant5, when i→ ∞
Cē(i) and Cū(i) are given by:

lim
i→∞

Cē(i) = E{rT
0 [T (1) − I]T We[T (1) − I]r0}, (2.40)

and

lim
i→∞

Cū(i) = E{rT
0 N(1)T WeN(1)r0}. (2.41)

where we assume that the weighting matrices We and Wu are time-shift in-

variant. Now let us consider the variable part rν(i) of the reference variable

r(i). It can be shown that for a stochastic process ẽ(i) [49]:

E{ẽT (i)Weẽ(i)} = 1
2π

(
tr
∫ π
−π Σẽ(ω)dω

)
, (2.42)

4The final value theorem states that if limi→∞ x(i) exists, then limi→∞ x(i) = limz→1(z−1)X(z).
This theorem is valid only if the poles of (z − 1)X(z) are inside the unit circle.

5The z-transform of 1 is z/(z−1) and since Z(r01) = Z(r0)Z(1), the z-transform of r0 is given
by r0z/(z − 1) .
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where Σẽ(ω) is the power density matrix associated with the stochastic pro-

cess ẽ(i), and tr is the trace operation. Because e(i) = z(i) − r(i), the matrix

Σr̃(ω) is associated with the stochastic process rv, which has a power spectral

density matrix given by [49]:

Σr(ω) =
∞∑

i=−∞
z−iRr(i), (2.43)

where Rr(i−k) = E{[r(i)−r0][r(k)−r0]T } is the covariance matrix of the process,

which in this case is the reference variable r(i). The power spectral den-

sity matrix represents the spectrum of the signal containing the frequency

content of a stochastic process. The power spectral density matrix Σẽ(ω) is

calculated from the "similarity" transformation:

Σẽ(ω) = S (e jω)Σr(ω)S T (e jω), (2.44)

where S is the z-transform matrix such that E(z) = S (z)R(z). From Eq. (2.39)

we identify S (z) = T (z) − I. We can thus write:

Σẽ(ω) = (T (e jω) − I)Σr(ω)(T (e jω) − I)T . (2.45)

Inserting Eq. (2.45) into Eq. (2.42), we obtain Ce,∞ from:

lim
i→∞

Cẽ(i) = tr{ 1
2π

∫ π

−π
[T (e− jω) − I]T We[T (e jω) − I]Σr(ω)dω}. (2.46)

Similar reasoning gives Cu,∞ as:

lim
i→∞

Cũ(i) = tr{ 1
2π

∫ π

−π
N(e− jω)T WuN(e jω)Σr(ω)dω}. (2.47)

Combining Eq. (2.40) with Eq. (2.46) and Eq. (2.41) with Eq. (2.47) we obtain

the final expressions for Ce,∞ and Ce,∞:

Ce,∞ = E{rT
0 [T (1) − I]T We[T (1) − I]r0} + (2.48)

tr{ 1
2π

∫ π

−π
[T (e− jω) − I]T We[T (e jω) − I]Σr(ω)dω},



2.5 ANALYSIS OF LINEAR CONTROL SYSTEMS 21

and

Cu,∞ = E{rT
0 N(1)T WeN(1)r0} + (2.49)

tr{ 1
2π

∫ π

−π
N(e− jω)T WuN(e jω)Σr(ω)dω}.

The preceding analysis allows us to study the stability of the system. For

clarity we consider a single input - single output case and refer to the liter-

ature [49] for the generalisation to multiple input-output systems. We can

draw the following conclusions:

1. To maintain a small tracking error in the steady state, the transmission

matrix T must be designed such that (with We time-shift invariant):

Σr(ω)|T (e jω) − 1|2 ≤ δe, (2.50)

where δe is small ∀ω and is defined according to the control require-

ment, i.e. the maximum mean square tracking error Ce,∞ that can be

tolerated in the steady state. The frequency band of the control system

corresponds to frequencies for which

|T (e− jω) − 1| ≤ ϵ, (2.51)

where ϵ ≪ 1. This frequency band is commonly known as the band-

width of the controller.

2. Since the first term in Eq. (2.49) is constant, to obtain a small mean

square input in the steady state, the time-shift invariant control sys-

tem should be designed such that (with Wu time-shift invariant):

Σr(ω)|N(e− jω)|2 ≤ δu, (2.52)

where δu is small ∀ω and is defined according to the control require-

ments, i.e. the maximum mean square input Cu,∞ that can be tolerated

in the steady state.

We can formulate the transfer matrices N and T in terms of the matri-

ces A, B,C,D, F,Hr,H f ,Kr,K f , L that describe the system according to Eqs.

(2.20) - (2.26). Doing so will allow us to design the controller to meet the

requirements of Eqs. (2.50) and (2.52). First, we write the z-transform of the

difference equations (2.20)-(2.23) of the system as:
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X(z) = D(zI − A)−1BU(z) + (zI − A)−1zx0, (2.53)

Y(z) = C(zI − A)−1BU(z), (2.54)

and

Z(z) = DX(z). (2.55)

Similarly, the z-transform of the controller equations (2.24)-(2.26) are given

by:

Q(z) = (zI − L)−1zq0 + (zI − L)−1KrR(z) − (zI − L)−1K f Y(z), (2.56)

and

U(z) = FQ(z) + HrR(z) − H f Y(z). (2.57)

Here we impose the initial conditions x0 = q0 = 0. To simplify the above

equations we define the following:

K(z) = D(zI − A)−1B, (2.58)

H(z) = C(zI − A)−1B, (2.59)

G(z) = F(zI − L)−1K f + H f , (2.60)

and

P(z) = F(zI − L)−1Kr + Hr. (2.61)

Using these definition and substituting Eq. (2.56) into Eq. (2.57), we can

write:

U(z) = P(z)R(z) −G(z)Y(z), (2.62)

Y(z) = H(z)U(z), (2.63)

and

Z(z) = K(z)U(z). (2.64)

Using the definitions of T and N in Eqs. (2.37) and (2.38), and by eliminating

the appropriate variables we obtain:
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T (z) = K(z)
(

I +G(z)H(z)
)−1

P(z), (2.65)

and

N(z) =
(

I +G(z)H(z)
)−1

P(z). (2.66)

We have thus arrived at expressions for N and T as a function of the ma-

trices A, B,C,D, F,Hr,H f ,Kr,K f , L that characterise the system and its con-

troller. We now discuss how the stability of the controller depends on these

matrices. As mentioned previously, A, B,C and D are intrinsic to the system

and can therefore not be modified. According to Eq. (2.24), the state of the

controller q(i + 1) depends on its past state q(i), and a term Krr(i) − K f y(i),
which is a function of the reference variable r(i) and the output variable y(i).
Similarly, the output of the controller u(i) depends on its state q(i), and a

term Hrr(i) − H f y(i) (see Eq. (2.26)). The matrices Kr and K f are related to

the properties of the sensors of the accelerator, whereas H f and Hr relate

to the properties of the actuators of the accelerator and must be designed

according to these requirements.

From Eq. (2.26) one can see that F has the form of a gain matrix between

the controller output u(i) and its state q(i). The matrix L defines how the past

state of the controller influences its future state. When all the elements of L
approach zero, the state of the controller depends entirely on the measured

error between the output and its set point. In this case the controller out-

put can experience major fluctuations, when the output measurement has

significant levels of noise. On the other hand, as the elements of the matrix

L increase, the contribution of the past state has an increasing influence

on the future state in compared to the measured error. In this case, the re-

sponse of the controller becomes very slow. Similar considerations apply to

the gain matrix F. The design of F and L thus determines the sensitivity of

the controller. According to Eqs. (2.65) and (2.66), T (z) = K(z)N(z) and K(z)
is a function of D, which means that the response of the input variable and

the controlled variable depend on L and F in exactly the same way; how-

ever, the response of the controlled variable can also be determined by the

matrix D.

2.5.3 The transient response

To optimise the controller one must also optimise the transient response.

This requires one to reduce the rise time and the associated overshoot, so

that the system can reach its steady state in minimum time. An estimate of
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the settling time τs can be calculated by considering the response of the sys-

tem to the constant part of the reference variable r(i). In this case a change

in r(i) corresponds to a step function. For the system described in Sec. 2.5.1,

the solution of the state difference equation (2.20) is given by [49]:

x(i) = Φ(i, i0)x(i0) +
i−1∑
j=0

Φ(i, j + 1)Bu( j), (2.67)

where Φ(i, i0) is the transition matrix defined by:

Φ(i, i0) =

 A(i − 1)A(i − 2)...A(i0) if i ≥ i0
I for i = i0.

(2.68)

If the matrix A is time-shift invariant the transition matrix becomes:

Φ(i, i0) = Ai−i0 . (2.69)

The corresponding solution for the system output is given by:

y(i) =
i∑

j=i0

K(i, j)u( j). (2.70)

with

K(i, j) =

 CΦ(i, i0)B if j ≤ i − 1
0 for j = i.

(2.71)

Suppose that the matrix A has n eigenvalues λ1, λ2, ..., λn with correspond-

ing eigenvectors g1, g2, ..., gn, from which we form the matrices Ω = diag(λ1,

λ2,..., λn), and T = (g1, g2, ..., gn), respectively, where T−1 = (h1, h2, ...hn)T and

h1, h2, ...hn are row vectors. The transition matrix (2.69) can thus be rewritten

as:

Φ(i, i0) = TΩi−i0T−1. (2.72)

The solution to the difference equation (2.67) is now given by:

x(i) =
n∑

k=1

λi−i0
k gkhk x0, (2.73)

where x0 = x(i0). Equation (2.73) shows that all responses are linear com-

binations involving the eigenvalues λk. If the system is asymptotically sta-

ble, the response of all elements of the state variable x(i) are exponentially

damped with time constants corresponding to the eigenvalues λ1, λ2, ...λn [49].

The response of a linear system output can thus be written as:
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y(i) =
n∑

k=1

Ckeiλk , (2.74)

where the coefficients Ck are defined by the initial conditions. Since the 1%

settling time τs of the eigenvalue λk is given by 4.6/λk, we can estimate the

upper limit on τs as:

τs,1% ≤ 4.6 max
k

1
|λk|

, (2.75)

where the max operation selects the largest value of 1/|λk| among all the

eigenvalues λk. In most cases this provides a good estimate of the settling

time. However, this method can poorly represent the real behavior of the

system in the discrete time case. This is because, although the system’s be-

havior is satisfactory at the sampling instants, it can exhibit significant over-

shoot between samples. This is particularly evident when the variable part

rv(i) is non-zero. In our case this is not as important issue, since we are in-

terested in the bunch-by-bunch control, i.e. there is no data loss since we

can measure the parameters of every bunch.

Alternatively, the settling time can be obtained by calculating and plot-

ting the values of Ce(i). Suppose that we want to calculate this for the con-

trolled variable z(i), with corresponding reference variable r(i). We can write:

Ce(i) = E{[z(i) − r(i)]2} = E{z2(i)} − 2E{z(i)r(i)} + E{r2(i)}. (2.76)

To calculate this we define the variance matrix:

Q(i) = E{ε(i)εT (i)}, (2.77)

where ε(i) is the state vector x(i) of the system augmented with the reference

variable r(i); we assume that the latter can be written in the form:

r(i + 1) = crr(i) + w(i). (2.78)

Here w(i) represents a stochastic process and cr is a constant. In this case

ε(i) can be written as:

ε(i + 1) = Mε(i) + Nw(i). (2.79)

In the simplest situation, ε(i) contains the controlled variable and its refer-

ence variable, i.e. ε(i) = (z(i), r(i))T . The corresponding variance matrix is:

Q(i) =

 z2(i) z(i)r(i)
r(i)z(i) r2(i)

 . (2.80)
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Using the definition in Eq. (2.77), the mean square tracking error in Eq. (2.76)

can be rewritten in terms of the elements Qkl of the variance matrix. In par-

ticular, if ε(i) only contains the controlled variable and the reference vari-

able we can utilise Eq. (2.79) to write:

Ce(i) = Q11(i) − 2Q12(i) + Q22(i). (2.81)

It can also be established that the variance matrix Q(i) obeys the following

relation [49]:

Q(i + 1) = MQ(i)MT + NVNT . (2.82)

The mean square tracking error can thus be calculated for each time

step i, using Eqs. (2.81) and (2.82). Plotting the results allows the settling

time to be determined. This method is more laborious than the simple

method leading to Eq. (2.75), but it has the advantage of being more reli-

able, since it contains the response to both the constant and variable part

of the reference variable r(i).

2.6 Feedback control

In this section we present the mathematical basis for discrete linear feed-

back systems. In what follows we assume that the state x(i) of the system can

be accurately measured at all times and is available for feedback. In what

follows we consider the "regulator problem", which refers to the problem

of maintaining the state of the system at a chosen value. This corresponds

to our control problem, since we wish to maintain the beam parameters as

constant as possible. We first consider the system defined by:

x(i + 1) = Ax(i) + Bu(i), (2.83)

with the controlled variable given by:

z(i) = Dx(i), (2.84)

and with linear control defined by:

u(i) = −Fx(i). (2.85)

This is a particular case of the general system described in Sec. 2.5.1,

where the controller state corresponds to the system state but with opposite

sign. The matrices A, B and D are those defined in Sec. 2.5.1, and F is a

feedback gain matrix. We note that the control is asymptotically stable if

the system described by:
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x(i + 1) = (A − BF)x(i), (2.86)

is asymptotically stable [49]. If F = constant, the stability is determined by

the eigenvalues of (A − BF). These can be placed at arbitrary points in the

complex plane by designing F accordingly.

To optimise the controller, we must establish how to bring the system

from its initial state to its final state as quickly as possible. This can be ex-

pressed as an optimisation problem, for which we use the following quadratic

minimisation criterion [49]:

Γ =

i1−1∑
i=i0

[zT (i + 1)Raz(i + 1) + u(i)T R2(i)u(i)] + xT (i1)P(i1)x(i1), (2.87)

where Ra(i + 1) > 0 and R2(i) > 0 for i = i0, i0 + 1, ..., i1 − 1 and P(i1) ≥ 0 are

weighting matrices. The three terms in Eq. (2.87) have the following inter-

pretation. The first term is a measure of the extent to which the state devi-

ates from the zero state; the Ra weighting matrix determines the respective

weight of each component of the state vector. The second term in the sum

is a measure of the deviation of the input from the optimal input and the

matrix R2 determines the respective weight of each component of the input

vector. This term is important since the sum of the input deviations over

time reflects how rapidity stabilisation can be achieved. Moreover, because

the input must be bounded, the minimisation of this sum ensures a reduced

overshoot. The third term reflects the fact that the final state x(i0) must be

as close as possible to the zero state. We also note that in Eq. (2.87) the two

terms in the summation are indexed differently. This is because the value of

the controlled variable z(i0) is entirely dependent on the initial state x0 and

cannot be changed, i.e. it is a constant which does not need to be included

in the sum; we will discuss this in more detail in Sec 2.7.

To minimise Eq. (2.87) let us assume that at the instant i0 − 1 the input

u(i0−1) is chosen arbitrarily, but at all subsequent instants i0, i0+1, ...i1−1 the

inputs are optimally chosen, such that the corresponding terms in Eq. (2.87)

are minimised. The sum of these optimised terms is denoted by σi. The

summation in Eq. (2.87) can therefore be written as the sum of the first ele-

ment of the time series (instant i0) and σi (the sum over all other instants),

i.e.

Γ = [zT (i0 + 1)Raz(i0 + 1) + u(i0)T R2(i0)u(i0)] + σi. (2.88)

To minimise Eq. (2.88), we must minimise the first two terms of the right

hand side of the equation. Since σi is already a sum of minimised terms,
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only the first term needs to be minimised. It can be shown that the con-

troller gain matrix F has a unique solution [49]:

F(i) = {R2(i)+BT (i)[R1(i+1)+P(i+1)]B(i)}−1BT (i)[R1(i+1)+P(i+1)]A(i), (2.89)

where

R1(i) = DT (i)Ra(i)D(i). (2.90)

Here P is the matrix difference equation defined by:

P(i) = AT (i)[R(i + 1) + P(i + 1)][A(i) − B(i)F(i)]. (2.91)

We can use Eq. (2.89) to design a controller with a gain matrix F that min-

imises the mean square tracking error and the mean square input.

2.7 Controller design and PID control

Here we discuss how a controller can be designed using the z-transform,

and how pole placement affects the system’s stability. Consider the control

system depicted in Fig. 2.3. The basic idea of such a system is to make the

control output y(i) follow a reference input r(i). The desired transfer func-

tion for the control system can therefore be expressed in the z-domain as

Tc(z) = 1, where:

Tc(z) =
Y(z)
R(z)

. (2.92)

Here R(z) is the z-transform of the reference input and Y(z) is the z-transform

of the system output. From the schematic in Fig. 2.3 we have the following

relations:

E(z) = R(z) − Hs(z)Y(z), (2.93)

and

Y(z) = Gs(z)E(z). (2.94)

Utilising these conditions, Eq. (2.92) can be rewritten as:

Tc(z) =
Y(z)
R(z)

=
Gs(z)

1 +Gs(z)Hs(z)
=

(z − z1)...(z − zm)
(z − p1)...(z − pn)

, (2.95)
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where m < n. The poles of the system can be found by setting the denomi-

nator in Eq. (2.95) to zero, i.e. Gs(z)Hs(z) + 1 = 0. All coefficients of the poly-

nomials Y(z) and R(z) are real, therefore the poles and zeros must be either

purely real, or appear in complex conjugate pairs, i.e. a ± jb. The unforced

response of a linear system to a set of initial conditions is:

y(i) =
n∑

k=1

Cke−iλk , (2.96)

where the coefficients Ck are determined by the initial conditions and λ1,

λ2,..., λn are the eigenvalues of R(z). According to Eq. (2.96), we can draw the

following conclusions regarding the effect of the location of the poles on the

stability of the system:

• A real pole a in the left-half of the complex (a < 0) plane defines an

exponential decay, whose rate is determined by the pole location. The

farther from the origin, the more rapid the decay;

• A real pole a in the right-half of the complex plane (a > 0) generates

an exponentially increasing response, rendering the system unstable;

• A complex pair of poles± jb on the imaginary axis generates an oscilla-

tory response, whose constant amplitude is determined by the initial

conditions;

• A complex conjugate pair of poles a± jb in the left-half of the complex

plane (a < 0) combine to generate a response that is a decaying sinu-

soid of the form Ae−aisin(bi + ϕ) and whose decay rate and frequency

of oscillation are determined by a and b, respectively. The amplitude

A and the phase ϕ are determined by the initial conditions;

• A complex pair of poles a ± jb in the right-half of the complex plane

(a > 0) generates an exponentially increasing response.

These outcomes are illustrated in Fig. 2.4. In summary, the system is

stable if the poles lie in the left-half of the z-plane. In an unstable system

with a bounded input, the output becomes unbounded when the poles lie

in the right-half of the z-plane.

The stability of the feedback system depicted in Fig. 2.3 can be improved

with the addition of a controller Gc(z), as shown in Fig. 2.5. By adding this

controller, it is thus possible to modify the system’s response by ensuring

that all the poles are in the left-half of the z-plane.

With the addition of the controller Gc, the z-transform of the system out-

put is Y(z) = Gc(z)Gs(z)U(z). The corresponding transfer function of the sys-

tem can be written as [51]:
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Figure 2.3: Schematic of a feedback control loop. Gs(z) is the transfer matrix
of the system and Hs(z) is the feedback gain matrix.

Figure 2.4: Pole placement and corresponding system response. To be sta-
ble the poles must lie in the left-half of the complex plan. When a pole is
placed on the imaginary axis this corresponds to critical stability, where the
perturbation is not damped or amplified. Figure adapted from [51].

Tc(z) =
Y(z)
R(z)

=
Gc(z)Gs(z)

1 +Gc(z)Gs(z)Hs(z)
. (2.97)

Now consider Eq. (2.97) when Hs(z) = constant. One can see that increas-

ing the gain of the controller Gc(z), such that Gc(z)Gs(z) ≫ 1, is enough to

ensure that Tc(z) � 1. If the controller block Gc(z) is independent of z (i.e. is

a constant gain), the controller is called a proportional or "P" controller. By

increasing the gain of the P controller, the rise time of the system can be de-

creased, allowing the output to follow the input more quickly. This method

however, has a major drawback. When the gain is increased, the overshoot

of the output is increased causing a damped oscillatory output. When the

gain is increased further, the system reaches a critical point where the os-
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cillation is not damped or amplified and the system is said to be critically

stable. This corresponds to the poles of the closed-loop transfer function

lying on the imaginary axis of the z-plane as shown in Fig. 2.4. For Re(z) > 0
the system is unstable. Another limitation of the "P" controller is that a

constant gain tends to amplify high-frequency noise [51]. For these rea-

sons, the proportional gain is often complemented with an integral and/or

differential gain.

Figure 2.5: Schematic of a modified feedback control loop. The system is
described by the transfer matrix Gs(z), whilst the controller is described by
Gc(z).

To reduce the rise time without increasing the overshoot, it is possible

to add a derivative term to the proportional controller. The transfer func-

tion of the controller can then be written as a sum of the proportional and

derivative terms, with gains Pg and Dg, respectively, i.e.

Gc(z) = Pg + Dgz. (2.98)

When Dg is properly tuned, the overshoot is avoided. In addition, it is

also important to reduce the steady state error. For this we can use an inte-

gral term "I", with gain Ig. This term acts as a "memory", whence Eq. (2.98)

becomes:

Gc(z) = Pg +
Ig

z
+ Dgz =

Dgz2 + Pgz + Ig

z
. (2.99)

The integral term allows the PID controller to have a non-zero output for

a zero input and ensures that the steady state error can be reduced to zero.

This allows us to eliminate offsets. However, the addition of this term has

two drawbacks. First, the integrator introduces another pole, which might

reduce the stability of the system. Second, this term acts as a low-pass fil-

ter and reduces the transient response of the system. Because of this, and

because the derivative term amplifies high-frequency noise, two or more

poles must be added to ameliorate the response at higher frequencies. Ad-



32 ELEMENTS OF CONTROL THEORY

ditional zeros may also be needed to obtain a specific frequency response

for the controller6.

2.8 Feedforward compensation scheme

In feedback control a correction signal is applied based on the measure-

ment of differences between the desired outputs (set points) and the actual

outputs. Consequently, it is not possible for a feedback controller to en-

tirely suppress a perturbation and the residual deviation will increase with

frequency. This is illustrated in Fig. 2.6, where two sinusoidal perturbations

with the same amplitude are plotted; one with a 2 Hz frequency and a sec-

ond with 4 Hz frequency. At step k, the two perturbations have zero ampli-

tude. At step k + 1 however, the deviation is larger for the 4 Hz perturba-

tion. As the signal frequency is higher, the perturbation has "more time"

to oscillate, which corresponds to the controller having "less time" to make

adjustments.

Figure 2.6: Perturbations with the same amplitude but different frequen-
cies: 2 Hz (in blue) and 4 Hz (in green) are plotted over 1 second.

To eliminate higher frequency perturbations, control can be performed

in feedforward. In feedforward control, changes are detected at the input

and an anticipating corrective signal is applied before the output is affected.

The success of a feedforward system will depend on its ability to measure

6The frequency response of the system is obtained by evaluating T (z) for z = eiθ. From
Eq. (2.95), the magnitude of the frequency response is governed by the ratio of two polyno-
mials involving zeros and poles in the z-plane, with θ going from 0 to π. It is thus possible
to shape the frequency response by placing poles at distances that will produce the desired
response.
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and predict the perturbation, and on accurate knowledge of the effect of the

perturbation on the system [48, 54]. A feedforward compensation scheme

is shown in Fig. 2.7, where some of the command signal is injected into the

control signal without being affected by feedback. It can provide a way to

speed up a system’s transient response without impacting on its stability.

Figure 2.7: Feedforward control scheme with transfer matrix F(z). Feed-
forward provides an extra input to the system, in addition to the feedback
controller output.

The system transfer function for the feedforward compensation scheme

shown in Fig. 2.7 is:

Tc =
(F +Gc)Gs

1 +GcGs
. (2.100)

Stability is determined by the poles of Tc, as discussed in Sec. 2.7. Con-

ventional feedforward techniques consist of designing filters for F(z) to re-

ject specific frequencies or frequency bands. Filters are categorised as ei-

ther finite impulse response (FIR) filters or infinite impulse response (IIR)

filters. The response of a FIR filter is said to be finite because its response

settles to zero in a finite number of samples; unlike an IIR filter, which has

an internal feedback. A FIR filter is described at instant k by the following

difference equation [55]:

y(k) =
N∑

i=0

bix(k − i), (2.101)

where x(k) is the input signal at instant k and y(k) is the output. The bi (i =
0, 1, ...,N) are the filter coefficients (also called the tap weights) and N is the

order of the filter. Consider the response of the FIR filter to a (Kronecker)

delta impulse x(k) = δ(k). Equation (2.101) becomes:

y(k) =
N∑

i=0

biδ(k − i) = bk. (2.102)

The corresponding z-transform of the FIR filter is given by:
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Tc(z) =
∞∑

k=−∞
y(k)z−k =

N∑
k=0

bkz−k. (2.103)

In contrast, the output of an IIR filter is described at instant k by the

following difference equation [55]:

y(k) =
N∑

i=0

bix(k − i) −
M∑
j=0

a jy(k − j), (2.104)

where a j ( j = 0, 1, ...,M) are the feedback coefficients of the IIR filter and

M is the order of the filter. Unlike the FIR filter, the output of the IIR filter

incorporates M past outputs. The corresponding transfer function of the

filter is given by [55]:

Tc(z) =
Y(z)
X(z)

=

∑N
i=0 biz−i

1 +
∑M

j=1 a jz− j
. (2.105)

The stability of the IIR filter is determined by the location of its poles,

as discussed previously in the context of feedback controllers. Filter design

requires coefficients to be selected to ensure that the system has specific

characteristics; in particular the coefficients determine the frequency re-

sponse of the filter. There are different methods to find the coefficients cor-

responding to specific frequency requirements;. These include the Least

Mean Square (LMS) [56], Filtered-x Least Mean Square (FXLMS) [57], or the

Augmented Error Algorithm [55]. In general FIR filters are simpler to im-

plement as they only require knowledge of the present and past values of

the input and are inherently stable. The disadvantage of FIR filters is that

because of the lack of poles it is difficult to model a complicated transfer

function, and a large number of taps may be required to model a dynamic

system. The disadvantage of an IIR is that the presence of poles can make

the system unstable during the adjustment of the coefficients. An algorithm

is then required to monitor the stability of the filter during its optimisation

and this process can be computationally expensive.

Combinations of feedback - feedforward control are also commonly used

and have been applied successfully in many areas, such as in interferome-

try [58] and in automotive control systems [59]. They have the advantage of

combining both the stability of feedback control and the ability of the feed-

forward to take corrective actions before the perturbation affects the system

output - thus enabling the correction of higher frequency perturbations.

The feedback loop eliminates offsets due to inaccuracies in the feedforward

compensation and handles residual errors. Moreover, feedback systems are

best adapted to those systems that are subject to unexpected disturbances.
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For the feedforward method to be effective it is important that the effect of

an actuator on the variable to control is well known.

2.9 Discussion

In this chapter we discussed the fundamental principles used for the con-

trol of linear time-shift invariant systems. In Sec. 2.2 we introduced im-

portant definitions related to the response of a control system, including

a formal definition of stability. The control problem was divided into two

parts - the transient response and steady state response of the system (see

Sec. 2.2.2). The system was then formally described in Sec. 2.5.1, which al-

lowed us to derive the conditions necessary to design a controller, in par-

ticular those conditions that ensure stability. The notion of the z-transform

was also introduced in Sec. 2.3 and used to describe the transfer function

of the system and its controller (see Sec. 2.7). The z-transform allows us to

categorise the stability of the system in terms of the location of the poles in

the z-plane. The PID algorithm was also discussed, which will be exploited

in Chapter 5. Finally, we introduced the concept of feedforward control,

which will be used in Chapters 7 and 8.





The machines 3

3.1 General considerations

This chapter describes the three machines that were used for simulation

and experimental work in the thesis; namely, the Australian Synchrotron

(AS) Linac, the Linac Coherent Light Source (LCLS) Linac, and the FERMI

Linac. Our intention is to provide a concise overview of the main features of

the accelerators. The reader is referred to [2, 60, 61] for a detailed technical

account of these machines. The diagnostics used for experiments are dis-

cussed, including transmission measurements (fast current and wall cur-

rent monitors), energy measurements (using screens and beam position

monitors) and bunch length measurements (using coherent synchrotron

radiation detectors). Information on other diagnostic components can be

found in the corresponding design reports, i.e. reference [60] for the Aus-

tralian Synchrotron, [61] for the LCLS and [2] for the FERMI@Elettra.

3.2 The Australian Synchrotron Linac

3.2.1 Electron source

The electrons are generated in a 90 kV DC electron gun with a thermionic

cathode. A grid is used to modulate electron pulses when the system is trig-

gered. The electron gun can operate either in short pulse mode (SPM)1 or

in long pulse mode (LPM). In the first case the pulse duration will be shorter

than 1 ns, filling only one single 500 MHz bucket in the booster. Using this

mode the Linac will supply the booster with a 1ns pulse at a repetition rate

of 1 Hz.

1In the short pulse mode, also referred to as single bunch mode, a single bunch is de-
fined as a train of no more than three S-band micro bunches that are to be injected into
a single 500 MHz RF bucket of the booster. In multi-bunch operation the trains consist of
single bunches.

37
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In the second case, the LPM will deliver a beam at 500 MHz, with a pulse

duration of 150 ns and at a repetition rate of 1 Hz to 5 Hz. The total charge

in a train is ∼3.1 nC. The maximum length of the trains does not exceed 1

µs, while the number of bunches and the inter-bunch distance are variable.

3.2.2 Pre-bunching and bunching systems

A sub-harmonic, pre-bunching system (SPB) working at 500 MHz is used to

ensure good single bunch purity2 in the booster. It also serves the purpose

of increasing the modulation depth from the gun, i.e. of compressing the

bunches. The pre-buncher consists of an RF accelerating cavity followed

by a drift space. As a stream of particles passes through the pre-buncher,

rear particles get accelerated and front particles are decelerated depending

on the phase of the electric field in the pre-buncher at the time of passage.

Concentrating particles by utilising the optimal phase maximises the par-

ticle density in the bunch. When the particles pass through the drift space

bunching of the particle distribution occurs, which reaches a maximum at

some distance L, corresponding to the chosen length of the drift space.

The 3 GHz primary buncher (PBU) increases the mean energy of the

beam from 90 keV to approximately 300 keV and bunches the beam into

a 3 GHz structure. It is followed by the 3 GHz final buncher, which provides

the final bunching and increases the beam energy from about 300 keV to

above 3 MeV. Figure 3.1 shows the different elements of the Australian Syn-

chrotron Linac.

3.2.3 Accelerating sections

Two identical 3 GHz structures (which will be referred to as ACC1 and ACC2)

are used in order to increase the beam energy up to 100 MeV and to ensure

that the system meets reliability requirements. The first accelerating sec-

tion (ACC1) brings the beam energy up to 50 MeV, while the second section

increases it to 100 MeV. The phase of the second section is usually employed

for adjusting the beam energy.

3.2.4 Focusing magnets

Solenoids and quadrupoles are used to ensure that most of the beam is kept

in a radius of less than 0.5 cm from the beam axis. Thirty one solenoids are

2The bunch purity is defined as the percentage of particles in the central micro-bunch.
Because the gun emits electrons at 500 MHz and the bunching sections operate at 3 GHz,
a longitudinal modulation of the particle distribution occurs within the bunch. As a result
of the modulation, the bunch consists of a main central part (the central microbunch) and
adjacent microbunches or buckets [62].
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Figure 3.1: Layout of the Australian Synchrotron Linac. SPB, PBU, FBU pro-
vide the bunching, while ACC1 and ACC2 accelerate the beam to 100 MeV.
Figure adapted from [63].

used in the low energy region (below 10 MeV); these are located between the

gun and the first accelerating section. Quadrupoles are used in the high en-

ergy region (above 10 MeV) as they are the most efficient for beam focusing.

Three quadrupoles form a focusing triplet where the beam reaches 50 MeV

along the accelerator, between ACC1 and ACC2. This provides full trans-

mission through ACC2; it also ensures that the required transverse beam

parameters are met at the exit and provides the transfer line with the capac-

ity to shape the beam for matching into the booster. Another quadrupole

triplet is located directly after ACC2.

Two dipoles are located in the bend of the Linac-to-Booster Transfer

Line, which adjust the beam trajectory. A quadrupole is placed in the mid-

dle to provide an achromatic bend, preventing the beam position from mov-

ing off axis due to energy fluctuations.

3.2.5 Diagnostic components

A removable Faraday Cup (FC) is located just after the electron source to al-

low the charge and pulse structure to be measured with a fast oscilloscope.

The FC consists of an electrically isolated copper cup, which is connected

to ground via a resistor. The induced voltage across the resistor, due to the

passage of the beam, is a measure of the electron beam current. The inte-

grated current is used to determine the number of particles [60].
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A wall current monitor (WCM) is installed immediately after the elec-

tron source, which allows for a non-destructive measurement of the beam

charge. When a bunch of electrons passes through the conducting beam

pipe, image charges are created on the latter to cancel the field created by

the electrons in the bunch (see Sec. 4.2.3). The WCM measures the result-

ing image current induced in the vacuum beam pipe [64]. A ceramic gap of

a few mm is introduced into the beam pipe, which is bridged by a number

of resistors. The wall current produces a voltage across these resistors. As

with the Faraday cup, the WCM is suitable for time resolved measurements.

It is incorporated into a stainless steel housing containing a ferrite ring to

reduce excitation of the eigenmodes of the housing.

Four removable screens and cameras have been installed; one after the

electron source, a second between the SPB and the bunching section and

one each in front of the accelerating structures [60] (see Fig. 3.1). The screens

are installed for a destructive measurement of the electron beam position

and its transverse profile. The fluorescent screens convert the spatial dis-

tribution of the beam flux into visible radiation. The screens are viewed

through a zoom lens with a CCD camera, whose spatial resolution is 30-µm.

The CCD camera can be triggered externally and is able to digitise, store,

and display a particular frame in real-time. The decay time of the fluores-

cent screen is of the order of milliseconds, which is important for injectors

with a low repetition rate, since the image on a TV monitor can be "frozen"

until the next shot arrives [64].

A fast current transformer (FCT) is located at the end of the Linac (as

shown in Fig. 3.1), just after the second accelerating section. This allows

non-destructive measurements of transmission3 in combination with the

WCM. The FCT consists of a main single turn toroid through which the

beam passes and a secondary coil (with a variable number of turns). When

the beam passes through the main core it produces a magnetic flux, which

then induces a current in the secondary coil. The transformer yields a signal

amplitude that is nominally proportional to the beam current and inversely

proportional to the number of turns of the secondary coil, i.e.

V ∝ Ibeam

Nturns
. (3.1)

The Linac is equipped with a stripline beam position monitor (BPM),

provided by Sincrotrone Trieste (from a former transport line) to allow rel-

ative energy measurements; this will be discused in Chapter 7. The beam

position monitor consists of four stripline electrodes attached to either side

3In this work the transmission of the beam is defined as the percentage of particles that
are still contained in the electron bunch after a given section of the accelerator.
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of the beam tube. When the electron beam passes through the BPM, an im-

age charge that uniquely depends on the position of the beam is induced

on each of the four electrodes. The position P(x, y) of the electron beam can

then be determined knowing the voltage induced at the electrodes V(e1, e2,

e3, e4), where ei (i = 1, 2, 3, 4) denotes the ith electrode (see [65] for more

details). In order to make relative energy measurements possible, the

quadrupole current in the achromatic bend is tuned to produce dispersion

at the BPM. The spatial resolution of the BPM is of the order of 50 µm.

3.3 The Linac Coherent Light Source

3.3.1 The photoinjector and Linac sections

Figure 3.2 shows the various components of the Linac Coherent Light Source

(LCLS). The electrons are generated with a RF photocathode driven gun.

The system operates in pulse mode, generating 6 MeV electron bunches at

repetition rates of 10 Hz, 30 Hz or 120 Hz. Two linear accelerating structures

each 3 metres in length (L0-A and L0-B, which are referred to collectively as

Linac L0) bring the beam energy up to 135 MeV.

In order to Landau damp the micro-bunching instability4, a laser heater

(LH) is installed before the first bunch compressor, where the beam reaches

135 MeV (immediately after the L0 Linac). It consists of a 0.5 metre long un-

dulator located within a chicane, which allows an external IR laser to seed

the electron beam. This provides a controlled increase of the uncorrelated

energy spread to 40 keV rms [66]. When particles interact with the laser

they gain an energy modulation, i.e. the energy of a particle in the elec-

tron bunch is a function of its position in the bunch. However, the corre-

sponding particle density modulation is negligible. Because the induced

energy/position correlation is "smeared" by the transverse motion in the

chicane, the laser/electron interaction leads to an effective heating of the

beam. More details on this process can be found in [67].

The three main Linac sections L1, L2 and L3 accelerate the electrons

to a maximum of 14.3 GeV, before being injected into the undulator line.

Figure 3.2 shows the LCLS layout and the energy reached at each stage of the

machine. The working points for the voltage and phase of the accelerator

used for simulations in Chapter 5 are summarised in Table 3.1.

4Micro-bunching instabilities occur during the bunch compression and are driven by
coherent synchrotron radiation (CSR) and longitudinal space charge (LSC). These instabili-
ties can significantly degrade the beam quality [66].
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Figure 3.2: Layout of the LCLS linear accelerator. The setup consists of four
Linac sections, L0, L1, L2, L3, two bunch compressors, BC1 and BC2, and
an X-band lineariser X. It has two dispersion regions corresponding to the
dog legs denoted by DL1 and DL2.

Table 3.1: Voltage and phase set points for the LCLS Linac.

Element Setting
Linac-1 :voltage (V1) 144 MeV
Linac-1 :phase (ϕ1) 337.7◦

X-band :voltage (Vx) 20 MeV
X-band :phase (ϕx) 200◦

Linac-2 :voltage (V2) 4.3 GeV
Linac-2 :phase (ϕ2) 324◦

Linac-3 :voltage (V3) 60 MeV
Linac-3 :phase (ϕ3) 0◦

Two solenoids are placed after the electron gun and at the start of the

L0A section for focusing. A quadrupole triplet is also placed before the first

dog leg (DL1), where space charge is important [68].

3.3.2 X-band lineariser

The RF acceleration and wake fields create an energy chirp of the electron

beam. In the energy/position representation of the beam this has the form

of a "banana" when the quadratic order term dominates and the form of a

"S" shape when the cubic term dominates (see Fig. 3.3). The energy δ(z) of

a particle in the bunch is a function of the position z of this particle within

the bunch, where z = 0 corresponds to the front of the bunch.

The longitudinal wake fields, in combination with off-crest accelera-

tion, are used to cancel the linear energy chirp. The quadratic energy chirp,
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Figure 3.3: Representation of the different energy chirps induced by RF cur-
vature. (a) Linear chirp only. (b) Positive linear and quadratic energy chirp
(dδ/dz > 0 and d2δ/d2z > 0). (c) Positive linear and negative cubic energy
chirp (dδ/dz > 0 and d3δ/d3z < 0).

which increases the energy spread, can in principle be canceled by the use

of an X-band cavity. This shorter 0.6 m structure works at the fourth har-

monic (11.424 GHz) of the S-band frequency (2.856 GHz). It can be shown

that there is a solution (in terms of the X-band phase and voltage) for which

the second and third order terms cancel [69].

Undesirable effects, resulting from the cubic term, produce a decrease

in compression efficiency, possible deterioration of transverse emittance

and energy distribution, and additional excitation of the wake field by the

edges. When the beam is compressed, a negative cubic energy chirp will

lead to a "two horn" density spectrum, whereas a positive cubic term will

produce a "one horn" structure (see Fig. 3.4), as the edges are over com-

pressed and create current spikes [70].

Figure 3.4: Undesirable effect due to remaining cubic chirp [71]. (a) "One
horn" current profile after compression of a beam leading to a positive cu-
bic energy chirp (d3δ/d3z > 0). (b) "Two horn" current profile after com-
pression of a beam produces a negative cubic energy chirp (d3δ/d3z < 0).
The spikes are due to over compression of the edges .
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An analytical solution exists that allows us to correct for both the quadratic

and the cubic terms [61]. However, this solution corresponds to a signifi-

cant voltage for the X-band cavity, which results in a loss of beam energy,

since the X-band decelerates the beam to compensate for the linear chirp.

Therefore the X-band can only be used to compensate for the cubic chirp.

The LCLS X-band lineariser operates at 180◦ and decelerates the beam by

22 MeV, setting the BC1 compression energy at 250 MeV.

3.3.3 Bunch compressors

The bunch has to be compressed by a factor of about 50, thereby reducing

the initial bunch length from about 1 mm after the RF gun to 22 µm after the

second bunch compressor (BC2), where it enters the undulator [61]. As de-

picted in Fig. 3.2, the LCLS accelerator has two bunch compressors; namely,

BC1 and BC2. Each of these two compressors consists of four dipoles of

equal length as illustrated in Fig. 3.5.

Figure 3.5: Structure of the four bending magnet bunch compressor, which
constitutes BC1 and BC2. The characteristic lengths are given for both com-
pressors (BC1 and BC2).

The energies at the compressors (0.25 GeV at BC1 and 4.3 GeV at BC2)

have been chosen high enough to avoid space charge effects, but low enough

to minimise wake field effects [61].

3.3.4 Diagnostic components

Energy variations are determined with stripline BPMs (with a 5-10 µm spa-

tial resolution) placed at high dispersion points in each of the following

bending regions: DL1, BC1, BC2 and DL2. At DL1, a combination of three

BPMs is used to distinguish energy variations from betatron oscillations [61].

For BC1 and BC2, a single BPM is placed at the centre of the chicane. Finally,
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the DL2 energy measurement utilises two BPMs to cancel any betatron os-

cillation component from the signal.

To adjust the compression it is necessary to measure and control the

electron bunch length after BC1 and BC2. This is realised by using non in-

vasive relative measurements of the bunch length. To accomplish this we

use the coherent synchrotron radiation (CSR) emitted by electrons passing

through a chicane. Typically, only wavelengths larger than the beam size

are coherently enhanced, i.e. λ > 2πσz, where σz is the rms bunch length.

Two types of detectors are used, depending on the bunch length to be mea-

sured, i.e. RF diodes and pyrodetectors. Pyrodectectors are used for small

bunches, while diodes are used for longer bunches due to their higher sen-

sitivity in the sub-THz range.

At wavelengths comparable to the bunch length, the radiated power in

the pyrodetector will vary as a function of the bunch length. Filters are used

to select wavelengths around the expected bunch wavelength (λ ± ∆λ); this

avoids high frequency components (above 4 THz) arising from the double

horn structure as a consequence of compression. In this way the radiated

power measured by the detector does not depend on the temporal structure

of the bunch. Because the light needs to be transported from the beam

pipe to the detector (using a diaphragm, a window and filters), it is difficult

to evaluate the signal loss. Therefore the CSR signal is not calibrated, but

nevertheless it can be used to maintain a given value of the peak current

using phase and voltage actuators [72].

After BC1 the wavelength corresponding to the bunch length is around

1 mm (300 GHz), while after BC2 it is about 100 µm (3 THz). The two types

of relative bunch length monitors are installed after BC1; namely, a ceramic

gap with waveguide coupled diodes and a pyroelectric detector [73]. The

ceramic gap is simple to build and provides a good bunch length signal,

but is not suitable for the higher frequencies required for BC2. The sec-

ond bunch compressor uses a system similar to the pyroelectric detector

for BC1. The pyroelectric detector includes millimetre wave filters to con-

trol the signal bandwidth.

3.4 The FERMI@Elettra Free Electron Laser Linac

3.4.1 The photoinjector and Linac sections

The FERMI photocathode radio-frequency (RF) electron gun uses a metal-

lic photocathode illuminated by an intense 263 nm wavelength UV laser. A

first stage gun is designed for a pulse repetition rate of up to 10 Hz, whereas

an upgraded version will reach 50 Hz. The first stage gun is designed to pro-

vide a peak accelerating gradient of 110 MV/m, and an output beam energy
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of about 5 MeV at 10 Hz. Figure 3.6 shows the layout of the machine. Ex-

ternal emittance compensating solenoid magnets provide focusing to help

transport the beam from the gun to the entrance of the main Linac struc-

tures. Part of the injection system into the main accelerator requires two

short Linac sections L0A and L0B, which follow the gun and bring the beam

energy up to 100 MeV.

Figure 3.6: Layout of the FERMI linear accelerator. The accelerator includes
four main Linac sections, an X-band lineariser located in the middle of
Linac 1, and two bunch compressors (BC1 and BC2). The L1 and L2 Linacs
were obtained from CERN, whereas the L3 and L4 sections were specifically
designed for FERMI.

The main accelerator structure includes four Linac sections. The first

two Linacs are composed of four and three sections, respectively. These

were obtained from CERN after the decommissioning of the LEP Injector

Linac. Linac 3 and Linac 4 are new elements built specifically for the FERMI

project. A bend region, at the end of the accelerator (known as the spreader)

allows for energy measurement and feedback. The voltage settings of the

Linacs were chosen to achieve the desired compression and cancelation of

the final energy chirp. Table 3.2 gives the working points for the voltage

and phase of the Linacs. These settings will be used for our simulations in

Chapter 5. Like the LCLS, the FERMI design includes a laser heater installed

at the section where the beam energy is 100 MeV (before the first main Linac

L1); this provides an increase in the uncorrelated energy spread of the order

of 10 keV rms to 20 keV rms.

For FERMI, the remaining cubic chirp (described in Sec. 3.3.2) has a sig-

nificant impact on the final current profile [74]. For this reason, the current

distribution of the beam at the exit of the photoinjector is shaped, such that

the cubic term is compensated for by the beam itself. This requires a ramp

current distribution as shown in Fig. 3.7, which was evaluated using reverse

tracking5.

5Reverse tracking consists of tracking the desired final beam shape from the end to the
start of the machine [75].
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Table 3.2: Voltage and phase set points for the FERMI Linacs [2].

Element Setting
Linac-1 :voltage (V1) 188 MV
Linac-1 :phase (ϕ1) 54◦

X-band :voltage (Vx) 18 MV
X-band :phase (ϕx) -90◦

Linac-2 :voltage (V2) 141 MV
Linac-2 :phase (ϕ2) 70◦

Linac-3 :voltage (V3) 240 MV
Linac-3 :phase (ϕ3) 70◦

Linac-4 :voltage (V4) 600 MV
Linac-4 :phase (ϕ4) 109◦

Figure 3.7: Ramped current distribution at the end of the FERMI photoin-
jector, which leads to the flat peak current distribution (in Fig. 3.4 (b)) at the
end of the accelerator (case of medium length bunch).

3.4.2 Bunch compressors

As with the LCLS, the FERMI layout initially required two bunch compres-

sors (BC1 and BC2), in order to achieve the desired compression factor.

However, its design was revised for a lower compression factor and there-

fore only required the first bunch compressor (BC1). The installation of the

second chicane (BC2) is foreseen for the study of micro bunching instabili-

ties. This second chicane will therefore be movable. Both chicanes are 8 m

long and comprises four 0.35 m long dipole magnets. The distance between

the first two and last bending magnets is 2.5 m.
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3.4.3 Diagnostic components

Dispersive beamlines (also known as spectrometer lines) are foreseen for

the measurement of the beam charge, energy, energy spread and longitudi-

nal phase space parameters. The two spectrometer lines that are used for

experiments in this thesis (see Chapter 8) are located after the laser heater

and the first bunch compressor. Typically, a spectrometer line consists of a

bending magnet to extract the beam to the beamline, BPMs, screens, and a

Faraday Cup placed at the end of the line for charge measurement. The rms

energy spread is expected to be in the range 100 keV - 300 keV. The design

goal for the spectrometers is to measure the energy with 1% resolution [76].

The diagnostics used for the FERMI longitudinal beam-based control

(including the energy and the bunch length) are essentially of the same type

as those described for the LCLS (see Sec. 3.3.4). Stripline beam position

monitors are used to measure the beam energy at the bunch compressors

and the end of the accelerator, with a spatial resolution of 5-10 µm. The en-

ergy measurement is performed using the BPM placed in the center of the

bunch compressor, as this is a dispersion region. In the spreader region,

where the electron beam is deviated towards one of the two FEL undulator

chains, the energy is measured by combining the readings of two BPMs lo-

cated in positions with high absolute dispersion (0.1 m) and opposite signs.

Scintillation screens (with a spatial resolution better than 10 µm) are also in-

stalled to measure the transverse profile of the electron beam at low energy

in the photoinjector.

The peak current is measured using a ceramic gap with RF diodes and

a CSR power detector as described for the LCLS [77]. Assuming that the

bunch charge is almost constant, the peak current is controlled by measur-

ing the bunch length. As for the LCLS, CSR monitors are used at the end

of each bunch compressor, providing a relative accuracy of about 5% in the

measurement of the peak current. The central wavelength of the pyrode-

tector is ∼470 µm (∼1.5 THz) at BC1 [78].



Longitudinal dynamics in
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4

4.1 General considerations

As discussed in Chapter 1, the electron beam parameters that require con-

trol are the beam energy and the bunch length. In order to perform sim-

ulation studies to evaluate control strategies, we first need to identify the

potential sources of perturbation in these parameters and model the dy-

namics of the acceleration process. Section 4.2 introduces the three main

physical effects that need to be taken into account in the computational

modeling of longitudinal dynamics. These include compression, RF curva-

ture and wake field effects. Based on these results we derive expressions for

the energy and bunch length deviations of the beam in the presence of per-

turbations (see Sec. 4.3). These equations will be calculated using Matlab in

Chapter 5, where we perform energy and bunch length control studies. In

the present chapter we assume a uniform particle distribution. More real-

istic particle and wake field distributions require the use of tracking codes

such as LiTrack 1 or Elegant2, as discussed in Chapter 5.

4.2 The key physical components

4.2.1 Compression

The electron beam can be represented in terms of the 6D phase space vector
−→
X = (x, x′, y, y′, z, δ), where x, y, z are the spatial coordinates, x′ and y′ are the

angular coordinates, and δ = (pz − pz,0)/pz,0 is the error in the momentum pz

1LiTrack is a fast 2D code used to study longitudinal dynamics without considering
transverse focusing. It is a Matlab-based code that employs a Graphical User Interface
(GUI). RF acceleration and bunch compression are calculated up to 3rd order [79] in the
phase space coordinates (see Eq.(4.1)).

2Elegant is a C-based 3D particle tracking code used for linear accelerator simulations.
The beam line elements are described by transport elements up to 3rd order [80] in the phase
space coordinates (see Eq.(4.1)).
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relative to the design momentum pz,0 (i.e. the particle momentum without

deviations). By convention z = 0 corresponds to the head of the bunch and

the longitudinal position of any particle within the bunch has z < 0. When

passing through an accelerator element, the transformation from the initial

coordinates (start of the accelerator element) to final coordinates (at the exit

of the element) X0 → X f , can be represented to arbitrary order by a power

series expansion of the phase space coordinates [81]:

(X f )i = Ri j(X0) j + Ti jk(X0) j(X0)k + Ui jkl(X0) j(X0)k(X0)l + ..., (4.1)

where Ri j, Ti jk and Ui jkl ( j, k, l = 1, ..., 6) are the transport matrices of first, sec-

ond and third order, respectively. The elements of these matrices are the co-

efficients of the Taylor expansion of the dynamical equations transforming

initial coordinates into final coordinates for a specific accelerator element

(e.g., bending magnet, quadrupole, etc). The index i (i = 1, 2, ...6) refers to

the element of the final phase space vector
−→
X f , approximated by the Taylor

expansion around the initial phase space vector
−→
X 0. For example, the ele-

ment R12 is the coefficient by a Taylor expansion of x around x′0 (first order).

Similarly, the element T134 is the coefficient for the Taylor expansion of x
around x′0 and y′0 (second order). The expansion assumes small deviations

in the coordinates of any particle from the optimum design particle (i.e. the

particle with the ideal phase space coordinates). The matrices U and T are

therefore small corrections to the linear transport described by the matrix

R.

Since we are concerned with the transformation of the longitudinal phase

space of the beam, we only consider the phase space coordinate z (i.e. i = 5).

The dominant terms in Eq. (4.1) are related to the longitudinal dispersion,

which are dependent on the momentum error δ (i = 6). Therefore we can

approximate the expression for z up to the third order terms as [81]:

z = z0 + δ(R56 + T566δ + U5666δ
2), (4.2)

where z0 and z are the internal coordinates of the particle before and af-

ter compression, respectively. The coefficient R56 is also called the "com-

pression factor" and is given by R56 = αcompL, where L is the length of the

compressor and αcomp is the compression factor. For a compressor chicane

(small bending angles) we have T566 = −3
2 R56 [69]. Equation (4.2) will be

used to derive the expression for the bunch length in Sec. 4.3.3.
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4.2.2 RF curvature

As illustrated in Fig. 4.1, the intrinsic sinusoidal form of the RF acceleration

creates an energy curvature of the beam. Due to the finite longitudinal size

of the bunch not all the particles can have the same phase on the RF wave-

form (see Fig. 4.1); some particles will receive more energy and some less.

This results in an energy deviation from the reference particle at zre f (i.e. the

particle at the ideal phase of the RF field). Moreover, altering the phase or

the amplitude of the RF field will modify it, thereby modifying the energy

deviation.

Figure 4.1: Energy chirp caused by the RF acceleration field. Because of
the harmonic form of the RF acceleration field, a quadratic energy chirp is
induced between the head and the tail of the bunch.

In what follows we derive an expression for the slope of this curvature as

a function of the deviation in the phase and voltage of the RF field. This will

allow us to calculate the relative energy deviation of the beam in the pres-

ence of perturbations in the amplitude and phase of the RF field [61]. The

energy∆E0,i+1 gained by an electron passing through the (i+1)th accelerating

structure with RF phase ϕ and amplitude (voltage) V is given by:

E0,i+1 = eVi+1cos(ϕi+1). (4.3)

From Eq. (4.3), the overall energy gained by an electron at position z
within the bunch, from its passage through the (i+1)th accelerating structure

of the accelerator, in the presence of jitter can be written as:

Ei+1(z) = Ei(z)+ eVi+1
[

1 +
(
∆V
V

)
i+1

]
cos(ϕi+1 +∆ϕi+1 + ki+1z+ ki+1c∆ti), (4.4)
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where Ei(z) is the energy of the electron at the exit of the ith accelerating

structure and ki+1 = 2π/λi+1 is the RF wave number of the (i + 1)th accel-

erating structure. The voltage jitter (in the (i + 1)th accelerating section) is

included in the term ∆Vi+1, while the total phase jitter is comprised of a lo-

cal RF phase jitter ∆ϕi+1 and the timing jitter from the gun ∆ti+1. The energy

of the reference electron (where z = zre f refers to the position of the design

particle) without jitter is therefore given by (∆t = ∆ϕ = ∆V = 0):

Ei+1(zre f ) = Ei(zre f ) + eVi+1cos(ϕi+1). (4.5)

The energy deviation of an electron located at z (from the design particle) is

given by:

δRF,i+1(z) =
Ei+1(z) − Ei+1(zre f )

Ei+1(zre f )

=
eVi+1

Ei+1(zre f )

[ [
1 +
(
∆V
V

)
i+1

]
cos(ϕi+1 + ∆ϕi+1 + ki+1z + ki+1c∆ti) − cos(ϕi+1)

]
.

(4.6)

Since the bunch only occupies a small portion of the RF waveform, the

energy deviation of the whole bunch caused by the RF curvature can be

approximated by the following linear relation:

δRF,i+1 ≡ ΓRF,i+1∆z, (4.7)

where ∆z =
√

12σz is the bunch length for a uniform longitudinal bunch,

σz is the corresponding rms bunch length, and ΓRF,i+1 is the slope of the RF

accelerating field given by:

ΓRF,i+1 =
(

∂δRF
∂z

)
i+1

= − 2π
λi+1

[
1 − Ei(z0)

Ei+1(z0)

] [
1 +
(
∆V
V

)
i+1

] sin(ϕi+1 + ∆ϕi+1 + 2πc∆ti/λi+1)
cos(ϕi+1)

. (4.8)

The energy deviation will also be affected by the chirp induced by wake

fields created by the interaction of the electrons with the vacuum chamber,

which is discussed in the next section.
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4.2.3 Wake fields

When a bunch of electrons travels through the vacuum chamber an image

charge is created in the beam pipe to cancel the field created by the electron

bunch. The field created by the bunch is transverse to the beam trajectory

and only a small section of the beam pipe will have an image charge. To

entirely cancel the field created by the electrons in the bunch, the image

charge should travel at the speed of light. Because of electrical resistance

in the beam pipe, this is not achieved and a temporal lag is created, lead-

ing to imperfect cancelation and a remanent field, called the wake field.

The effective field seen by an electron in the beam is the superposition of

individual field contributions created by upstream electrons. This field pro-

duces an energy deviation in the beam causing energy loss. The effect of the

wake field on the beam is amplified when the surface of the beam pipe has

irregularities. In this case, the path traveled by electrons near the surface

of the beam pipe is lengthened (since the electrons follow the shape of the

irregularities), producing a temporal lag and modifying the remaining field

seen by the electrons in the bunch. A example relevant to our study is the

periodic array of cavities that form the structure of the accelerating section.

In this case the longitudinal wake field function at a given position is given

by [82]:

w(z) =
Z0c
πa2 e−

√
z/s0 , (4.9)

where Z0 is the characteristic impedance of the vacuum, s0 is the spatial

extent of the wake field and a is the mean iris radius of the accelerating sec-

tion. A particle at z will experience an induced voltage due to the wake field

created by all the particles ahead of it. The induced voltage is thus given by

a convolution integral involving the wake field and the particle distribution

within the bunch:

V(z) = −NeL
∫ z

0
w(z − z′) f (z′)dz′, (4.10)

where L is the Linac length, N is the number of electrons in the bunch, e is

the magnitude of the charge of the electron, and f (z) is the particle distribu-

tion function of the bunch. We note that the limits of integration are from

0 to z, where z = 0 corresponds to the head of the bunch. The position of

the particle experiencing the induced voltage is at z, as depicted in Fig. 4.2.

To a first approximation f (z) can be represented by a uniform distribution,

although we could consider a Gaussian distribution. The beam generated

by the RF gun at the LCLS and FERMI has a more complicated distribu-
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tion; namely a "ramped parabolic" distribution designed to compensate for

wake fields. Complicated distributions can be convolved numerically; how-

ever, here we only consider the simple case of a uniform distribution. For

a uniform particle distribution in a bunch with extent ∆z, the distribution

function is:

f (z) =

 1
∆z if 0 ≤ |z| ≤ ∆z
0 otherwise.

(4.11)

Equation (4.10), thus becomes:

V(z) = −NeL
∆z

∫ z

0
w(z − z′)dz′, (4.12)

which gives, after integration:

V(z) = −2NeLZ0cs0

πa2∆z

[
1 − (1 +

√
z/s0)e−

√
z/s0
]
. (4.13)

The energy deviation associated with the induced voltage for the entire

bunch is eV(∆z)/Ei+1(zre f ). In the approximation of small bunches ∂/∂z ≈
1/∆z and we can write the slope of the energy chirp caused by the wake field

as:

ΓW,i+1 =
(

∂δW
∂z

)
i+1
≈
( eV(∆z)
∆zEi+1(zre f )

)
uni f orm

=

− 2Ne2LZ0cs0

πa2(∆z)2Ei+1(z0)

[
1 − (1 +

√
∆z/s0)e−

√
∆z/s0

]
. (4.14)

The slope corresponds to the energy deviation caused by the wake field.

The presence of wake fields will also cause an energy loss of the beam and

therefore affect its mean energy. Equation (4.14) will be used in Sec. 4.3.1

to compute deviations in the mean energy of the beam. Moreover, the en-

ergy chirp associated with the wake field adds to the chirp caused by the RF

curvature and will also affect the energy deviation. Since the bunch length

is a function of the energy deviation, Eqs. (4.8) and (4.14) will be used to

calculate the bunch length and the peak current in Secs. 4.3.2 and 4.3.3,

respectively.

4.3 Observables

In the following sections we derive the formulas that give the "Observables"

which the feedback aims to control. By Observable we mean a measurable
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Figure 4.2: Induced voltage of the wake field for a uniform particle distribu-
tion. By convention z = 0 corresponds to the head of the bunch and z < 0
to any particle within the bunch. A particle at position z within the bunch
will experience a voltage induced by all the particles ahead, corresponding
to the gray region of the bunch.

quantity that parameterises the beam, which can be modified by using ap-

propriate actuators. As mentioned earlier, we are interested in controlling

the mean energy of the beam and its bunch length. While the mean en-

ergy is an Observable (directly measurable), the peak current is an Observ-

able related to the bunch length (since the bunch length cannot be directly

measured in a non-destructive way). To calculate the peak current, we will

derive the expression for the energy deviation in Sec. 4.3.2 and use this re-

sult to derive an expression for the bunch length in Sec. 4.3.3, which in turn

is used to calculate the peak current in Sec. 4.3.4.

4.3.1 Mean energy deviation

The relative mean energy deviation of the beam passing through the ith ac-

celerating section is defined as:

(
dE
E

)
i
=
(

E−E0
E0

)
i
, (4.15)

where E and E0 are the perturbed and unperturbed beam energies, respec-

tively. The mean energy deviation after the (i + 1)th Linac can be expressed

as a sum of the energy deviation at the ith Linac, plus a term associated with

the energy gain and jitter occurring in the (i + 1)th section:

(
dE
E

)
i+1

Ei+1 =
(

dE
E

)
i
Ei +
(

dE
E

)
jitter,i+1

Egain,i+1, (4.16)
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where (dE/E) jitter,i+1 is the relative energy deviation due to voltage and phase

jitter in the (i + 1)th Linac and Egain,i+1 is the net energy gain:

Egain,i+1 = (Ei+1 − Ei) + Eloss,i+1. (4.17)

Here Eloss,i+1 = −Ei+1ΓW,i+1
σz
2 is the energy loss in the (i+1)th cavity due to the

wake fields. A deviation in the mean energy can arise due to a perturbation

in the phase (dϕ) of the RF field or in its amplitude (∆V). From Eq. (4.3), the

unperturbed energy is:

E0,i+1 = eVi+1cos(ϕi+1). (4.18)

Using Eq. (4.18), the perturbed energy can be written as:

Ei+1 = e
[

Vi+1 + ∆Vi+1

]
cos(ϕi+1 + dϕi+1) (4.19)

Using Eqs. (4.18) and (4.19), we obtain the energy deviation due to voltage

and phase jitter. This is given by:

(
dE
E

)
jitter,i+1

=
Ei+1 − E0,i+1

E0,i+1
=
[

1 +
(
∆V
V

)
i+1

] [ cos(ϕi+1+dϕi+1)
cos(ϕi+1) − 1

]
, (4.20)

where dϕi+1 = dti c
λi+1
+dϕi is the total local phase error (gun and Linac/chicane

plus local RF). Assembling all terms one obtains [61]:

(
dE
E

)
i+1
=(

dE
E

)
i

Ei

Ei+1
+
[

1 − Ei
Ei+1
− ΓW,i+1

σz
2

] [ [
1 +
(
∆V
V

)
i+1

]
cos(ϕi+1+dϕi+1)

cos(ϕi+1) − 1
]
.

(4.21)

This expression gives the relative mean energy deviation caused by phase

and voltage perturbations in the accelerating sections. A relative measure

is used to specify the machine stability. For example, the maximum energy

deviation that can be tolerated at the entrance of the undulator chamber

for FERMI is specified as 0.1% of the final beam energy.



4.3 OBSERVABLES 57

4.3.2 Relative energy deviation

The relative energy deviation is directly related to the bunch length and

consequently the peak current. This is because an energy deviation cor-

responds to a position deviation of a particle from the design particle. The

relative energy deviation of a particle at zi within the bunch after the ith ac-

celerating section is defined as:

δi =
Ei(zi) − Ei

Ei
. (4.22)

To calculate the deviation induced by an accelerating section, we write

the energy deviation after the (i+ 1)th Linac as a sum of the energy deviation

after the ith section plus the contribution δz,i+1Ei+1 of the RF curvature and

wake field of the (i + 1)th Linac:

δi+1Ei+1 = δiEi + δz,i+1Ei+1, (4.23)

where the deviation can be written as the sum of the RF and the wake field

contributions:

δi+1Ei+1 = δiEi + Ei+1zi+1(ΓRF,i+1 + ΓW,i+1). (4.24)

Here ΓW and ΓRF are the slopes of the linearized energy chirp, due to the

wake field and RF curvature, respectively. The expression for ΓRF is given in

Eq. (4.8) and the expression for ΓW is given in Eq. (4.14) for a uniform distri-

bution. The relative energy deviation after the (i+1)th stage of the accelerator

can be rewritten as:

δi+1 = δi
Ei

Ei+1
+ Γi+1zi+1, (4.25)

where Γi+1 = ΓW,i+1 + ΓRF,i+1 is the total slope along the bunch. Using the

definition of the standard deviation3, the energy deviation is given by [61]:

σ2
δ,i+1 = Γ

2
i+1σ

2
z,i +
(

Ei
Ei+1

)2
σ2
δ,i + 2Γi+1

(
Ei

Ei+1

)
⟨ziδi⟩ . (4.26)

This result will be used to calculate the bunch length in the next section.

3The standard deviation σXY of the sum of two variables X and Y is given by σ2
xy =

VAR(X + Y) = VAR(X) + 2COV(X, Y) + VAR(Y), where the variance is defined by: VAR(X) =
E(X2) − (E(X))2 and the covariance is defined by COV = E(XY) − E(X)E(Y), with E the expec-
tation value operator.
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4.3.3 rms bunch length

Here we derive the expression for the bunch length that will be used to com-

pute the value of the peak current, which is the second Observable we are

interested in. We start by noting that for a relativistic beam, the energy E is

related to the momentum pz:

E2 = (pzc)2 + (m0c2)2, (4.27)

where m0 = 0.511 MeV/c2 is the electron rest mass and c is the speed of light

in vacuum. For beams of a few hundreds MeV the second term in Eq. (4.27)

can be neglected and the momentum deviation is thus equal to the energy

deviation, since E ≃ pzc. Equation (4.2) can thus be rewritten as a function

of the energy deviation δ. To second order this is given by:

zi+1 = zi + δi+1R56 + δ
2
i+1T566 � zi + δi+1R

′

56, (4.28)

where the term linear in R
′

56,is defined by [81]:

R
′

56 = R56 + 2T566
(

dE
E

)
i+1

. (4.29)

Substituting for δi+1 from Eq. (4.25), we can write Eq. (4.28) as:

zi+1 = (1 + Γi+1R
′

56)zi + R
′

56
Ei

Ei+1
δi. (4.30)

According to the definition of the standard deviation, the rms bunch length

is given by:

σ2
z,i+1 = (1 + Γi+1R

′

56,i+1)2σ2
z,i + (R

′

56,i+1)2
(

Ei
Ei+1

)2
σ2
δ,i

+ 2R
′

56,i+1(1 + Γi+1R
′

56,i+1)
(

E
Ei+1

)
⟨ziδi⟩ . (4.31)

This result will be used to compute the peak current of the beam in the next

section.

4.3.4 Peak current

We can now derive an expression for the peak current in the case where

the particles are uniformly distributed within the bunch. The total current

in the bunch is I = Ne/τ, where N is the total number of electrons and τ

is the bunch duration. In the case of a uniform particle distribution on the
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interval [z0, z f ], representing the edges of the electron bunch, the rms bunch

length isσz = 1/
√

12(z f −z0). Since the electrons are relativistic, after the first

chicane the bunch duration can be written as τ = (z f − z0)/c, and the peak

current is:

I =
Ne
τ
=

Nec
√

12σz
, (4.32)

where σz is the rms bunch length given in Eq. (4.31). The measure of the

peak current allows us to obtain a relative measurement of the bunch length

in a non-destructive way, as discussed in Sec. 3.3.4. In this thesis, when we

refer to peak current control it is understood that the beam parameter we

wish to control is the bunch length, but experimentally the control is based

on values of peak current measurements.

4.4 Controllables

The notion of "Controllable" refers to adjustable quantities used to correct

an Observable value. Controllables are used to exert control over the beam

energy and bunch length (the Observables). In Sec. 4.3 we identified that jit-

ter in the phase and the voltage of the accelerating sections will be the most

important source of perturbations for the beam energy and peak current.

Since we can control the phase and the voltage of the accelerating section it

makes sense to use these parameters as our Controllables.

The relation between Observables and Controllables is expressed using

a response matrix. A simple approach is to assume linearity of the Observ-

ables to the Controllable in the range of interest for the control, i.e. the coef-

ficients of the response matrix are assumed constant. However, as simula-

tions will show in Chapter 5, this simplistic approach can degrade the qual-

ity of control. In Chapter 5, a Graphical User Interface is built with Matlab

in order to determine the effects of the Controllables over the Observables,

which will help us to determine appropriate Controllables for feedback.
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5

5.1 Motivation and objectives

A feedback system includes many parameters, such as different Control-

lables (Linac phase and voltage settings), Observables (energy and peak

current), and jitter types; consequently, a systematic approach is essential

to determine the optimal feedback system. To facilitate such a study, a Mat-

lab Graphical User Interface (GUI) has been developed. The schematic of

the GUI is given in Fig. 5.1; its components are numbered to correspond to

the numbers in Sec. 5.2.

Figure 5.2 shows the stages for the LCLS longitudinal feedback system [4].

The numbering (i = 1, 2, ..., 5) corresponds to the five stages of the machine.

A stage includes an accelerating structure and a dog leg (or chicane). For

example, the first stage (i = 1) includes Linac 0 and the first dog leg.

The FERMI feedback structure shown in Fig. 5.3 is based on the LCLS

and comprises five stages. At each stage the energy and the peak current

are computed, which will allow us to study the ability of the PID control al-

gorithm to reduce deviations in these parameters. In practice, the energy

and the peak current cannot be measured at these five stages, because not

all stages contain a dispersion region (dog leg or chicane). According to

Fig. 5.3, energy measurements can only be made at stages i = 2 (first bunch

compressor), i = 4 (second bunch compressor) and i = 5 (end of the accel-

erator). Peak current measurements can only be made at stages i = 2 and

i = 4. For the LCLS, the accelerator comprises two more dog legs, thereby

allowing for additional energy measurements. FERMI was also modelled as

a five stage structure thereby obviating the need to adapt the script written

for the LCLS. However, this will not affect the results, as only those stages

where measurements of the peak current and/or energy are used for com-

puting corrections with the PID algorithm.

61
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Figure 5.1: Schematic of the GUI for the FERMI simulation feedback system.
The user can select the Observables and Controllables to be included in the
feedback, the jitter characteristics, the control strategy, and some graphical
outputs options. The hidden part of the code includes the response matrix
of the selected Observables and Controllables, and the feedback loop. The
feedback loop contains the PID algorithm and the machine to be simulated;
it computes the equations developed in Chapter 4, or utilises tracking codes
such as LiTrack and Elegant.

5.2 The elements of the Matlab GUI simulation

framework

5.2.1 Controllables and Observables

Observables and Controllables can be selected from the GUI. For simplicity,

the same number of Controllables and Observables will be used. Depend-

ing on the machine configuration (i.e. the number of bunch compressors

used) there will be more or less freedom in the choice of Controllables.
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Figure 5.2: Five stage feedback structure for the LCLS machine. The LCLS
control scheme includes five stages, encompassing the accelerating sec-
tions and bunch compressors [4].

Figure 5.3: Five stage feedback structure for the FERMI machine. Energy
feedback can be operated on stages 2, 4 and 5, whilst peak current feedback
can be operated on stages 2 and 4 (if the machine configuration uses two
compressors).

5.2.2 Jitter inputs

It is important to first identify the origin of jitter in the energy and bunch

length. The beam energy jitter is clearly dominated by the Linac phases and

voltages, since the energy gained by an electron passing through the accel-

erating section is E = eVcos(ϕ). Moreover, the bunch length is a function of

the energy deviation (see Eq. (4.31)). The bunch length deviation is there-

fore also a function of the Linac phases and voltages. We develop a model

for the perturbation in the energy and the bunch length as a function of the

Linac phases and voltages [4], i.e.

dV
V

[%] = Avrand(1) +
Nv∑
i=1

Bv,isin(2π fv,it) +Cvt + Dv

Nstep∑
j=1

H(t − tstep, j) (5.1)

and
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dϕ[◦] = Aϕrand(1) +
Nϕ∑
i=1

Bϕ,isin(2π fϕ,it) +Cϕt + Dϕ

Nstep∑
j=1

H(t − tstep, j). (5.2)

The first term in the right hand side of Eqs. (5.1) and (5.2) is a uniformly

distributed random error, representing white noise that can arise from mea-

surements or which originates in the phase and voltage of the Linac. The

second term is a sum of sinusoids, reflecting periodic variations (e.g., a

cyclic variation in the cooling system) that can affect the phase and voltage

of the Linac. The third term is a slow drift that can occur because of acceler-

ator components heating over time or when the machine is restarted after

a shut down. The last term represents sudden jumps that might occur; for

example, in a power supply feeding several accelerator components, such

as klystrons and magnets. When a change of load occurs (e.g., a compo-

nent is turned on or off), this will cause a jump in the power supply output,

if the regulation system is not fast enough. The characteristics of the jitter

described in Eqs. (5.1) and (5.2) can be selected and modified with the GUI.

5.2.3 Response matrix

The response of a Controllable to a change in the value of an Observable, is

described by a response matrix. Initially we had assumed that the Observ-

able - Controllable relation is linear, or acceptably linearisable in the region

of interest for operating the control. However, further investigation showed

that, in some cases, the Observable-Controllable relation is strongly non-

linear. Details of these studies will be given in Sec. 5.3. The response matrix

can either be evaluated analytically, as with the LCLS, or by using a tracking

code, such as LiTrack or Elegant. The matrix elements are scanned and their

linear(ised) forms included in the GUI scripts. Each time the Observable-

Controllable configuration is modified, the elements are automatically re-

arranged to form the corresponding new response matrix. The response

matrix is defined as follows:

[Oi] = [Mi j][C j], (5.3)

where Mi j = ∂Oi/∂C j, Oi is the ith element of the Observable vector O and

C j is the jth element of the Controllable vector C. For the FERMI machine,

and for the one bunch compressor configuration, this expression takes the

following explicit form:
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, (5.4)

where dEBC1/EBC1 and dIBC1/IBC1 are the relative deviations in the energy

and the peak current from their desired settings at the first bunch compres-

sor. dES pr./ES pr. is the relative energy deviation at the spreader (i.e. at the

end of the accelerator). The Controllable vector includes the deviations in

the voltage and the phase of the X-band lineariser and the four main accel-

erating structures, as shown schematically in Fig. 5.3.

5.2.4 Machine simulation codes

Three different codes can be selected in the GUI to simulate the machine.

The first is a fast Matlab script (FMS) that was implemented at the LCLS

[4] and adapted to include the characteristics of the FERMI machine. This

code computes the main equations describing longitudinal dynamics dis-

cussed in Chapter 4, i.e. RF acceleration, second order compression, and

wake fields. Although it is not very accurate, the FMS code has the advan-

tage of being very fast (2-3 seconds for the computation of 1000 bunches)

and gives good insight into the trends of the system response.

A second means to simulate the machine is LiTrack. This tracking code

also accounts for the main longitudinal dynamics, but with more preci-

sion, including a third order compression term. For more realistic scenarios

LiTrack reads particle and wake field distributions from files produced by

other simulation codes (such as ASTRA1), whereas the FMS code assumes a

uniformly distributed beam at the end of the photoinjector.

The third code uses Elegant, which is C-based and takes much longer to

run than the two preceding codes. Typically, a LiTrack run will take 7 to 8

seconds, whereas Elegant will take 3 to 4 minutes depending on the speed

1ASTRA is a space charge tracking algorithm. It tracks the bunch as a distribution of
macro particles through the combined external and self induced fields generated by the
charged particles. It is used for beams where space charge effects are important [83].
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of the processor. Unlike the other codes, Elegant models the machine as a

sequence of physical components, in which parameters are read from a se-

quence file. For this reason, Elegant and LiTrack produce different outputs

for the compressors.

5.2.5 Feedback algorithm

A Proportional-Integral-Differential (PID) algorithm was first implemented

because of its simplicity and demonstrable robustness [84]. From Chapter 2

we recall the PID algorithm in the discrete time domain is defined by:

u(i) = Pge(i) + Ig

i∑
is=0

e(is) + Dg(e(i) − e(i − 1)), (5.5)

where e(i) = r(i) − y(i) is the tracking error, with y(i) the measured output

and r(i) the desired output. The response is obtained by adjusting the three

parameters Pg, Ig and Dg, also called the PID gains (see Chapter 2). Stability

can often be ensured using only the proportional term Pg. The integral term

Ig permits the rejection of a step disturbance. The derivative term Dg is used

to provide damping or shaping of the response. In the GUI, the controller

gains can be modified for each particular Controllable along the machine.

5.2.6 Simulation outputs of Observables/Controllables

When launched, the main GUI panel looks as shown in Fig. 5.4. One can

recognise the options described above. A complementary "Detector and

Actuator" panel serves to adjust the characteristics of the CSR detector.

After Matlab has performed the simulation, it launches the display panel

shown in Fig. 5.5. On the far right, one can select the display of a specific

Controllable response. The blue curve shows the chosen Controllable be-

havior without feedback, whereas the green curve gives the Controllable re-

sponse when feedback is on.

On the left side of the panel shown in Fig. 5.4 two columns of four graphs

are displayed. The four graphs in the left column show the deviations in the

system Observables when the feedback is off, whereas the deviations in the

Observable responses with feedback on are displayed in the right column.

The displayed Observables are the energy (first row), the peak current and

corresponding power in the CSR detector current (second and third row)

and the timing jitter (fourth row). The Observable can be displayed for each

stage of the machine.
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Figure 5.4: Main GUI simulation panel. The upper left "Machine" panel al-
lows the user to choose between the LCLS and FERMI machines, as well as
the code to be used (fast longitudinal computation, LiTrack or Elegant). The
lower left "Jitter" panel allows us to enter jitter parameters according to the
model given in Eqs. (5.1) and (5.2). Feedback strategies and their specifica-
tions can be accessed via the "Controller" panel, whereas Observables and
Controllables can be selected from the bottom right panel.
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Figure 5.5: GUI simulation display panel. The left side of the panel displays
two columns of four graphs. The deviations in the Observables (energy,
peak current and timing) with feedback off are shown in the left column,
while the deviations in the Observables with feedback on are displayed in
the right column. The display corresponds to the machine stage selected
in the "Observable" menu. A specific Controllable can be displayed on the
far right plot by selecting it from the "Controllable" menu located below the
corresponding graph.
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5.3 Evaluation of the response matrix elements

The response matrix is a function of the chosen Controllables and Observ-

ables. To find which Controllables are best suited for control, their response

is examined. A Controllable should provide a linear response in the Observ-

able it aims to correct. When the response is not linear the elements of the

response matrix are a function of the machine settings and should be fitted

from measurements. Results show that the response of some of the ele-

ments exhibit strong non-linearities that can result in a lack of accuracy in

the correction. Moreover, the sensitivity of an Observable to a change in a

Controllable is also important. Sufficient sensitivity is required to ensure a

fast response and to avoid saturation of the klystrons. On the other hand,

over sensitivity of a corrector might cause a non acceptable overshoot dur-

ing correction.
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Figure 5.6: Calculation of the relative peak current deviation dIBC1/IBC1 at
BC1 for FERMI versus the deviation in the phase of Linac 1 dϕ1. The simula-
tion was performed with LiTrack and Elegant. The shape and amplitude of
the response is preserved, with a phase shift due to differences in compres-
sor implementation between LiTrack and Elegant.

For the FERMI machine, the response matrix was calculated using both

LiTrack and Elegant. Whilst the two codes gave identical results for matrix

elements for a Controllable located downstream from the bunch compres-

sor, Figs. 5.6 and 5.7 show that they give different results for matrix elements

associated with a Controllable located before the bunch compressor. As an

example, one can see from Fig. 5.6 that the response of the relative peak

current deviation is non-linear, with a maximum phase shift at -1.1◦ and
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−1.8◦ from the initial settings using LiTrack and Elegant, respectively. Look-

ing at the response of the relative energy deviation at the end of the ma-

chine (Fig. 5.7) one sees the slope of the response is changed, whereas both

curves are linear with a change in their slope at around -1.5◦. These effects

are due to differences in modeling the compressor between the two codes.

As discussed in Sec. 5.2.4, LiTrack computes only longitudinal dynamics,

whereas Elegant requires detailed information on the transverse lattice of

the accelerator in order to compute the transverse dynamics.
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Figure 5.7: Evaluation of the relative energy deviation dES pr./ES pr. at the end
of the FERMI accelerator versus the deviation in the phase of Linac 1 dϕ1.
A rotation of the curve between Elegant and LiTrack is due to differences in
the way the two codes model the compressor.

Table 5.1 summarises the response matrix elements predicted by Ele-

gant for the one bunch compressor configuration of FERMI. They were cal-

culated for a ±4% change in the voltages of the Linacs and a ±1.5◦ change

in the phases (to avoid the peaks). The results indicate that the relative de-

viations in the energy and the peak current at the bunch compressor are

most affected by a change in the voltage of the first Linac (M11 = 0.612 and

M21 = 16.2). Similarly, the relative energy deviation at the end of the ma-

chine is most affected by the voltage of Linac 4 (M34 = 0.487). The system is

therefore very sensitive to jitter in the voltages of Linac 1 and Linac 4.

For comparison the LCLS matrix elements were derived using LiTrack.

Compared to FERMI, the LCLS accelerator structure includes two bunch

compressors and two dog legs, which allow for energy measurements at

more locations along the machine. The results indicate very good linear-

ity for all the energy dependent matrix elements over a relatively wide con-
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Table 5.1: FERMI response matrix elements evaluated with Elegant for a
±4% change in voltage and a ±1.5◦ change in phase. The first column iden-
tifies the matrix elements as defined in Eq. (5.4). Columns 2 and 3 are the as-
sociated Controllables and Observables, respectively; while column 4 gives
the actual values of the elements.

Element Controllable Observable Element value
M11 V1 EBC1 0.612
M15 Vx EBC1 -0.0835
M16 ϕ1 EBC1 0.0128
M110 ϕx EBC1 -0.000743

M21 V1 IBC1 16.2
M25 Vx IBC1 -2.52
M26 ϕ1 IBC1 -0.849
M210 ϕx IBC1 0.227

M31 V1 ES pr. 0.0667
M32 V2 ES pr. 0.126
M33 V3 ES pr. 0.214
M34 V4 ES pr. 0.487
M35 Vx ES pr. -0.00893
M36 ϕ1 ES pr. 0.00458
M37 ϕ2 ES pr. 0.000715
M38 ϕ3 ES pr. 0.00122
M39 ϕ4 ES pr. 0.00491
M310 ϕx ES pr. -0.00878

troller range (i.e. ±10% in voltage and ±3◦ in phase). However, matrix ele-

ments related to the peak current Observable exhibit significant non-linear

behavior. The results also illustrate that the initial machine settings (work-

ing point in terms of cavity voltages and phases) are critical for determining

the peak current response to jitter. In Fig. 5.8 the relative deviation of the

peak current exhibits a maximum for a +2.5% deviation in dV0/V0 (i.e. the

voltage of Linac 0 from its initial setting). At that particular setting the rel-

ative peak current deviation dIBC2/IBC2 = 8, which corresponds to a relative

deviation of 800% from the initial set point for the peak current (at BC2 the

set value of the peak current is 3.2 kA). In Fig. 5.9 one can see similar behav-

ior, with the shift being to the left. However, the peak is reached for a larger

deviation from the initial settings of Linac 2 (-7%). Therefore one would

chose the voltage of Linac 2 to correct the jitter rather than Linac 0, since it

is linear over a larger voltage range.
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Figure 5.8: Calculation of the relative deviation in the peak current
dIBC2/IBC2 at BC2, for the LCLS, versus dV0/V0 (the relative deviation of
the voltage of Linac 0). The simulation was performed with LiTrack. The
relative peak current deviation (after the second bunch compressor) to a
change in the second Linac voltage shows a maximum for a +2.5% change
in the voltage of Linac 0. At this setting the peak current has a relative devi-
ation of 800% from its initial setting.

Figure 5.10 shows the response of the relative peak current deviation at

BC2 to a shift in the phase of Linac 2. An ill-defined peak is observed at

around -2.2◦. For a -2.2◦ deviation in the phase of Linac 2 the peak current

experiences a 8000% deviation from its set point of 3.2 kA, which is almost

ten times the amplitude of the deviation experienced by the peak current to

a shift in the voltage of Linac 2 (see Fig. 5.9). Consequently, any change in

the machine’s initial settings will play an important role in the feedback per-

formance and one must give careful consideration to the range over which

a matrix element is defined. If the necessary corrections exceed ±4% of the

voltage, or ±1.5◦ of the phase, the matrix elements need to be re-evaluated.



5.3 EVALUATION OF THE RESPONSE MATRIX ELEMENTS 73

−0.1 −0.05 0 0.05 0.1
−2

0

2

4

6

8

10

dV
2
/V

2

dI
B

C
2/I B

C
2

Figure 5.9: Calculation of the relative deviation in the peak current
dIBC2/IBC2 at BC2, for the LCLS, versus dV2/V2 (the relative deviation of the
voltage of Linac 2). The simulation was performed with LiTrack. Changes
in the voltages of Linac 2 and Linac 0 produce a maximum of similar mag-
nitude to that shown in Fig. 5.8. However, the maximum is reached for a
larger deviation in the initial voltage setting of Linac 2, i.e. at about -7.5%.
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Figure 5.10: Calculation of the relative deviation in the peak current
dIBC2/IBC2 at BC2, for the LCLS, versus dϕ2 (the deviation in the phase of
Linac 2). The simulation was performed with LiTrack. The peak current af-
ter the second bunch compressor is evaluated for a change in the phase of
Linac 2. This shows an ill-defined peak around -2.2◦. For such a deviation
the peak current experiences a relative deviation of 8000% from its initial
setting, which makes the Linac 2 phase a critical parameter to control for
peak current stabilisation.
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5.4 Feedback configuration for one bunch compressor

Because the first stage of the FERMI accelerator comprises one bunch com-

pressor, there are only three Observables (see Eq.(5.4)); consequently we

investigate a feedback configuration that consists of three Controllables.

As two of the three Observables (energy and peak current) are measured

at the bunch compressor, two of the three Controllables must be chosen

among the phases and voltages of Linac 1 and the X-band section (located

upstream from the compressor). The X-band cavity is much shorter than

Linac 1 and its contribution to the beam energy is much smaller, thereby

necessitating large changes in its phase or amplitude to correct for jitter.

Moreover, because the phase and amplitude of the X-band cavity must re-

main stable to compensate for wake field effects, this cavity is not suitable

for control. Therefore, the first two Observables must be the voltage and

the phase of Linac 1. This leaves only one more Controllable to choose. It

is sensible to directly consider the voltage and phase of the last Linac, since

this section contributes the largest fractional change to the total energy of

the beam (compared to the other Linacs). Therefore Linac 4 will allow for

smaller changes in the phase and voltage in order to achieve the desired

corrections to the energy and peak current of the beam. According to Ta-

ble 5.1, the phase and voltage have a similar ability to attenuate jitter. How-

ever, since the voltage actuators have a much faster response (of the order

of 5% of the initial value per µs) than the mechanical phase shifter, whose

response is slower than the beam repetition rate, we will consider the volt-

age of Linac 4 as our third Controllable.

The feedback will therefore use the Linac 1 phase and voltage, and Linac

4 voltage as the set of Controllables. The Observables will comprise the en-

ergy and peak current at the bunch compressor, together with the energy at

the end of the accelerator.

5.5 Performance of the PID algorithm

We present results for the simplest of the three available codes, i.e. the FMS

code, which includes longitudinal dynamics. For this simple case we evalu-

ate the residual energy and peak current jitter over 1500 bunches, for a set of

proportional and integral gains ranging from 0.1 to 1.5 in steps of 0.05, and

for only one Observable and Controllable at a specific jitter frequency. The

same studies with Elegant are more computationally intensive and fewer

results are presented. In general, we will use Elegant in order to validate the

results of the simpler FMS code.
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5.5.1 Optimisation of the PID gains

The usual way to tune the gains of a PID controller is to first tune the pro-

portional gain Pg, then the integral gain Ig, and finally the differential gain

Dg [85]. The gain Dg is used to compensate for high frequency jitter by in-

creasing the system’s response and is the most difficult to tune correctly.

This is why many controllers use proportional and integral gains only. In

conventional control theory, methods are given to tune PID controllers

which assume the system is at least of first order. However, in our case the

system is modeled with the response matrix, which is of zero order. For this

reason, scans of the residual energy and peak current jitter were made as a

function of the gain settings in order to tune the gains of our PID controller.

Three types of scans were carried out. The first scans aimed to optimise the

combination of integral gain only (gain Pg and Dg are zero). A second set of

scans combined Pg and Ig gains for the different Observables to see the ef-

fect of the proportional gain. Finally, the last scans investigated the efficacy

of the gain Dg.

Scans of integral gain

In the first set of scans, the standard deviations of the relative peak current

and energy deviation were evaluated for combinations of the integral gains,

Ig(V1) (Linac 1 voltage), Ig(V4) (Linac 4 voltage) and Ig(ϕ1) (Linac 1 phase).

The scans were performed with the FMS code and compared with Elegant.

In both cases a combination of sinusoidal perturbations with frequencies

of 0.1 Hz and 1 Hz was applied to both the phase and the voltage of Linac 1,

with amplitudes of 1◦ and 1%, respectively. Figure 5.11 compares the results

obtained with the FMS code and Elegant. The relative energy deviation at

the bunch compressor was evaluated as a function of the integral gains on

the voltages of Linac 1 and Linac 4. Figures 5.12 and 5.13 show the standard

deviation of the relative peak current and energy deviations at the end of

the accelerator. Note that since there is no second compression stage the

peak current is the same after the bunch compressor and the end of the

accelerator.

The low resolution in Figs. 5.11, 5.12 and 5.13 is due to the significant

time required to run Elegant. Although better resolution can be achieved

with the FMS code, for purpose of comparison, the same resolution was

used in comparing the FMS code and Elegant. The scans were performed

for gains ranging from 0.2 to 1, with a step size 0.2 (giving a total of 30 plots).

In what follows we present the plots obtained for a fixed gain Ig(ϕ1) = 0.2.
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This choice was made because the corresponding plots clearly show the in-

terplay of the gains (i.e. the effect of a combination of gains on the control).

Figure 5.11: Standard deviation of the relative energy deviation
std(dEBC1/EBC1) at BC1 for FERMI, calculated with the FMS code (left)
and Elegant (right) as a function of Ig(V1) and Ig(V4). Both the fast code and
Elegant show that an increase in Ig(V1) reduces the standard deviation in
the peak current, while an increase in Ig(V4) has no effect, since Linac 4 is
located downstream of the bunch compressor.

Figure 5.11 shows good agreement between the results obtained with

the FMS code and Elegant. Both codes predict that a higher Ig(V1) will re-

duce the relative energy deviation. An increase in Ig(V4) has no effect, since

Linac 4 is located downstream of the bunch compressor. However, Fig. 5.12

shows the opposite trend, i.e. the FMS code predicts a high value of Ig(V1)
should reduce the relative peak current deviation, while Elegant predicts

that a low gain should produce better results. This can be explained by the

differences in the way the compressor is modeled in the two codes. Ig(V4)
has no effect since Linac 4 is located downstream of the bunch compressor.

In Fig. 5.13 Elegant and the fast code both predict that high Ig(V1) and Ig(V4)
gains minimise the deviation. However, the effect of Ig(V1) is small com-

pared to Ig(V4), since Linac 1 provides much less energy to the beam than

does Linac 4.

The FMS code shows that there is an interplay between the gains (see

Fig. 5.13). It appears that a combination of high gains for both actuators

provides the best correction. Nonetheless, a combination of high Ig(V1) and

low Ig(V4) (and vice versa) amplifies the perturbation. Indeed, a gain of 0.2

for both actuators gives rise to a lower residual perturbation than for the

low-high gain combination. This effect can have different causes. First, as it
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Figure 5.12: Standard deviation of the relative peak current deviation
std(dIBC1/IBC1) at BC1for FERMI, calculated with the FMS code (left) and El-
egant (right) as a function of Ig(V1) and Ig(V4). Left: High Ig(V1) provides
better reduction of the peak current. Right: Elegant shows that lower Ig(V1)
provides better attenuation of the perturbation. Ig(V4) has no effect since
Linac 4 is located downstream of the bunch compressor.

will be shown in Sec. 5.5.2, the gain is frequency dependent. Second, there

is also a dependence on the machine settings. In the previous section it was

shown that some elements of the response matrix are strongly non-linear,

especially M26, which corresponds to the slope of the relative deviation of

the peak current to the phase of Linac 1 (see Fig. 5.6). We note that that

the relative deviation in the peak current at BC1 and at the spreader (end

of the accelerator) are equal, since there is no second compression stage

here. In fact, for a deviation just above 1◦ in amplitude, the response matrix

element derived with LiTrack changes sign. Thus, the gain used for ϕ1 can

either amplify or damp the perturbation, depending on the jitter amplitude

in ϕ1.

Table 5.2 lists the optimised gains and their corresponding performance

in terms of residual energy and peak current deviation. As one can see, the

optimised gains are very similar for both codes. Whilst it is expected that El-

egant would give higher residual deviations, this is only true for the energy.

Indeed, the residual peak current deviation is smaller (5.65%) with Elegant

than it is with the FMS code (6.3%).

Scans of proportional and integral gains

Here we consider the combined effect of the proportional and integral gains

on ϕ1, which is used to correct the deviations in the beam energy at the

bunch compressor and at the end of the accelerator. A 0.5 Hz jitter fre-

quency was applied to the voltage and to the phase of Linac 1, with am-
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Figure 5.13: Standard deviation of the relative energy deviation
std(dES pr./ES pr.) at the end of the FERMI accelerator, calculated with
the FMS code (left) and Elegant (right), as a function of Ig(V1) and Ig(V4).
Left: A decrease in Ig(V1) reduces the energy standard deviation (for small
Ig(V4)). Right: High Ig(V4) achieves better attenuation of the energy jitter,
while Ig(V1) does not attenuate the perturbation significantly.

Table 5.2: Optimised integral gains, residual energy and peak current devia-
tions obtained with the fast computation code (FMS) and Elegant for a jitter
comprising 0.1 Hz and 1 Hz components.

FMS code Elegant

Linac 1 voltage integral gain Ig(V1) 1.1 1.0
Linac 1 phase integral gain Ig(ϕ1) 1.0 1.0
Linac 4 voltage integral gain Ig(V4) 0.8 1.0

std(dES pr./ES pr.) 0.064 % 0.079%
std(dIBC1/IBC1) 6.30 % 5.65%

plitudes of 1◦ and 1%, respectively. The integral gains on the voltages of

Linac 1 and Linac 4 were set to 0.5, while their proportional and differential

gains were all set to 0. It was found necessary to include non-zero integral

gains for the voltages of Linac 1 and Linac 4 (V1 and V4) of the feedback

configuration, otherwise no correction was observed at the end of the ac-

celerator. The value of 0.5 for Ig(V1) and Ig(V4) was chosen to ensure that the

effect of Pg(ϕ1) and Ig(ϕ1) could be observed (gain sufficiently low) and such

that the system does not become unstable (gain too high). The need to in-

clude non-zero integral gains for the voltages of Linac 1 and Linac 4 reflects

the fact that a one Observable - one Controllable configuration located at

the beginning of the machine is unable to overcome jitter occurring down-

stream. This can be understood by examining the values of the response

matrix elements M34 and M36 listed in Table 5.1. This shows that there is a
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factor of 100 between the values of these two elements, with M34 = 0.487
and M36 = 0.00458, respectively. This means that to correct a 1% deviation

in the beam energy at the end of the accelerator, a 1% change in the voltage

of Linac 4 is required, while a change of 100◦ in the phase of Linac 1 would

be required. Similarly, to correct a 1% perturbation in the voltage of Linac

4, using the phase of Linac 1, would require a 100◦ phase change. The re-

sults observed at the bunch compressor are shown in Fig. 5.14, where the

proportional gain reduces the energy deviation.
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Figure 5.14: Standard deviation of the relative energy deviation
std(dEBC1/EBC1) at BC1 for FERMI as a function of the gains Pg(ϕ1) and
Ig(ϕ1) (for a 0.5 Hz jitter). Integral gains of 0.5 were used on the voltages of
Linac 1 and Linac 4. The use of an integral gain increases the amplitude of
the deviation, whereas the proportional gain reduces it. The addition of an
integral correction to the proportional correction produces an increase in
the residual energy perturbation at the bunch compressor.

However, Fig. 5.15 shows the opposite trend for the energy at the end of

the accelerator. As was observed in the study of the integral gain, there is an

interplay between the gains that causes the energy deviation at the end of

the accelerator to be further reduced when large integral gains are applied.

This leads us to conclude that gains optimising the reduction of the peak

current jitter will not be the same as those optimising the reduction of the

energy jitter at the end of the machine. Consequently, it is difficult to arrive

at general rules regarding the optimum values of the gains.
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Figure 5.15: Standard deviation of the relative energy deviation
std(dES pr./ES pr.) at the end of the FERMI accelerator as a function of
gains Pg(ϕ1) and Ig(ϕ1) (with a 0.5 Hz jitter). Integral gains of 0.5 were used
on the voltages of Linac 1 and Linac 4. Unlike the energy deviation after
the bunch compressor, the use of an integral gain decreases the amplitude
of the deviation, whereas the proportional gain has little effect. Better jitter
reduction is achieved at the end of the Linac if only the integral gain is used.

Scans of differential and integral gains

Scans were performed in order to investigate the effect of the differential

gain Dg combined with the integral gain Ig. The differential gain tends to

make the system highly sensitive to instabilities and amplify jitter. No useful

information could be extracted from these scans, which would allow us to

determine the required differential gains for attenuating the perturbation.

Moreover, considering the difficulty in tuning the integral and proportional

gains (see Sec. 5.5), we will not pursue further study of the differential gain.

5.5.2 Bode plots

The feedback performance can be expressed in terms of bandwidth. For

this, a Bode plot is used to express the attenuation in the energy and peak

current jitter. The attenuation factor η is defined by:

η = 20log10

(
(dES pr./ES pr.)on
(dES pr./ES pr.)o f f

)
, (5.6)
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where (dES pr./ES pr.)on is the residual relative deviation in the energy at

the end of the accelerator when the feedback is on and (dES pr./ES pr.)o f f is

the relative deviation when the feedback is off. A similar formula is used for

the peak current. The Bode plot was recorded over 30 Hz to reveal a 10 Hz

periodicity corresponding to the beam repetition rate. The PI gains used for

this scan corresponded to those used to attenuate a 0.1 Hz jitter frequency

in the Linac 1 voltage, i.e. Ig(V1) = 0.5, Ig(ϕ1) = 1.5 and Ig(V4) = 0.8.

The Bode plot shows a symmetry at 5 Hz, corresponding to the Nyquist

frequency fNyquist (see Fig. 5.16). When a sinusoid of frequency f is sampled

with frequency fs, the resulting samples are indistinguishable from those of

another sinusoid of frequency f ′(N) = | f − N fs|, with N ∈ Z. All signal fre-

quencies with N > 0 will have the same effect on the beam as those with

f ′(N = 0). Because of this effect, jitter with frequencies higher than the

Nyquist frequency (N > 0) cannot be distinguished from those with fre-

quencies lower than the Nyquist frequency (N = 0). Consequently, it is

sufficient to design a PID controller whose frequency range extends up to

fNyquist.

Figure 5.16: Bode plot of the relative energy deviation dES pr./ES pr. at the end
of the FERMI accelerator, obtained with the FMS code. The 10 Hz periodic-
ity corresponds to the bunch repetition rate.

To ensure the lasing process can take place in the FERMI FEL, the en-

ergy stability is required to be dE/E ≤ 0.1%, with peak current stability of

dI/I ≤ 10% [2]. These criteria correspond to an attenuation factor η of about

-13 and -8, for the energy and the peak current, respectively. The red hori-

zontal line in Fig. 5.16 represents zero attenuation (η = 0), whereas the green
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line represents the minimum attenuation (η = −13) one has to achieve in or-

der to meet the jitter attenuation requirements (the same criteria are used

for the peak current in Fig. 5.17). Only the points lying below the green line

in these figures are sufficiently attenuated. From these figures one can see

that the correction is satisfactory only for a narrow window, i.e., energy jitter

up to around 1 Hz and less than 0.5 Hz for the peak current. As discussed in

Sec. 2.8, when feedback control is implemented2, the missing information

between the last pulse and the pulse that receives the correction leads to

a residual deviation. The higher the jitter frequency, the higher the resid-

ual perturbation, since the perturbation can affect the beam more rapidly.

Because of this, the PID algorithm is unable to attenuate the perturbation.

Here this limit was approached around 1.5 Hz.

The Bode plot of the peak current shows a local minimum at the Nyquist

frequency and another local minimum at half the Nyquist frequency (2.5

Hz). These features are due to the relation between the peak current and

the frequency f of the voltage jitter: ∆V( f ) = V0 − Va sin(2π f t), where Va is

the jitter amplitude and V0 is the unperturbed value of the voltage (with

Va << V0). From Eq. (4.21), one can see that the energy deviation is directly

proportional to the voltage deviation dE/E( f ) ∼ ∆V( f ). However, the peak

current is a function of the rms bunch length I ∝ 1/σz (see Eq. (4.32)), which

is a function of ΓRF ∝ ∆V( f ), i.e. the energy chirp induced by the RF cur-

vature given by Eq (4.8). Based on Eq. (4.31) the rms bunch length has the

formσz =

√
a0 + a1ΓRF + a2Γ

2
RF , where a0, a1 and a2 are constants introduced

to simplify the form of Eq. (4.31). The peak current is a function of the volt-

age deviation, I( f ) ∝ 1/
√

a0 + a1∆V( f ) + a2∆V2( f )), which relation explains

the more complex shape of the Bode plot for the peak current (Fig. 5.17).

5.6 Discussion

Our simulations have shown that optimised gains for the PID controller de-

pend on the frequency of the system jitter and the settings of the machine

parameters. These dependencies, in combination with the interplay of the

gains themselves, makes it difficult to draw general conclusions for design-

ing a PID controller. Moreover, the FMS code is not reliable for accurately

simulating the machine, whereas Elegant is too time consuming. For exam-

ple, the study with Elegant in Sec. 5.5.1 took one month (one data point tak-

ing about six hours), for the study of a limited range of integral gains and for

the case of fixed jitter frequencies. Scanning the set of integral gains used

2Unlike the feedforward approach, the feedback correction uses past values of the devi-
ations in the beam parameters and does not anticipate the deviation.



5.6 DISCUSSION 83

Figure 5.17: Bode plot of the relative peak current deviation dIS pr./IS pr. at
the end of the FERMI accelerator, obtained with the FMS code. The 10 Hz
periodicity corresponds to the bunch repetition rate.

in Sec. 5.5.1, for the frequency range 0 Hz - 5 Hz in steps of 0.1 Hz would

take about 4 years. Further, any change in the machine parameters from

the design settings would invalidate the results. Elegant is thus not suitable

for the determination of the PID gains.

In addition to the difficulty in tuning the PID gain, the control system

had a limited bandwidth and was unsuitable for frequencies above 1 Hz or

2 Hz. These limitations call for a more sophisticated approach to beam-

based control. In the following chapters we address these deficiencies by

considering more complex control systems that do not have bandwidth re-

strictions, are able to correct high frequencies, and can adapt their behavior

when jitter conditions change, or when the machine settings are modified.

The limited measurement precision of the diagnostics (e.g., BPM and

CSR detectors) was not taken into account in these studies. Unfortunately,

the diagnostic characteristics were not available when the work reported

in this chapter was carried out. Nevertheless, including the measurement

precision of the diagnostics would be of interest, allowing us to evaluate its

potential impact on the performance of the control algorithm, which will

eventually be implemented.





An overview of neural
networks

6

6.1 General considerations

As it was discussed in Chapter 5, the limitations of a simple PID controller,

in combination with the more demanding requirements on beam stability

in new generation Light Sources calls for more sophisticated control strate-

gies. Moreover, as discussed in Chapter 1, NNets have been widely adopted

in many domains of science and industry, including applications in control

[17, 18]. However, to the best of our knowledge, NNets have not been suc-

cessfully applied to the implementation of a beam-based control system,

which is capable of adapting to the dynamics of the system through time

and learning from its interaction with the accelerator.

The present chapter describes how NNets can be used for accelerator

control. Section 6.2 gives a description of the structural components of

NNets. Section 6.3 focuses on the principles used to evolve the structure

of these systems, and in particular a method known as the Neuro-Evolution

of Augmenting Topologies, developed by Stanley et al. [86]. Finally, in Sec.

6.5 we provide information on the integration of available information into

the NNet structure.

6.2 Neural network architecture and learning

techniques

An artificial NNet consists of an interconnected group of artificial neurons,

based on a mathematical model of biological neurons. In most cases it is

an adaptive system that changes its structure based on external or inter-

nal information that flows through the network during the learning phase.

A schematic diagram of an artificial neuron is shown in Figure 6.1. Just as

a biological neuron receives signals from the dendrites of other neurons,

the artificial neuron (or node) receives stimuli from other nodes. Each of

85
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these inputs to a node has a "weight" w associated with it. A node has an

activation function, which, like the threshold potential of a biological neu-

ron, tells a node when to fire. A neuron may also have a "bias" value θ;

the weighted inputs and any bias is passed through the activation function,

with the resulting value made available as the node output.

The type of activation function that is used depends on the application.

For example, the linear function f (x) = x may be used to find a linear ap-

proximation to a non-linear function, while the step function f (x) = sign(x),
may be used to classify input vectors by dividing the input space into two

regions [87]. The hyperbolic tangent, f (x) = tanh(x), and the sigmoid, f (x) =
1/(1 + ex), are common choices in modeling and control, especially when

it comes to non-linear applications [16]. Radial Basis Function (RBF) Net-

works, f (x) = f (||x − c||), where c is the coordinate vector of the centre of the

radial1 function, are often used for modeling [88] or forecasting [89, 90]. An

example of a radial basis function is the Gaussian, f (x) = e||x−c||2 . Figure 6.2

shows plots of the activation functions and corresponding mathematical

expressions for each of the functions discussed above. A symbolic represen-

tation of a node with the associated activation function is also shown below

each corresponding equation. These symbolic representations will be used

throughout this thesis to specify a node’s activation function in NNet dia-

grams.

Figure 6.1: Schematic of an artificial neuron. The jth node in a given layer
receives n inputs u1 j, u2 j, ..., un j from other nodes, which are multiplied by
their respective weights w1 j,w2 j, ...,wn j and fed into the activation function
with a bias θ. The result is the node’s output. Figure adapted from [63].

1By definition, the value of a radial basis function only depends on the radial distance
from the centre c, so that ρ(x, c) = ρ(||x − c||) [16].
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Figure 6.2: Commonly used activation functions. (a) The ramp, (b) the step
function, (c) the sigmoid,(d) the hyperbolic tangent, and (e) a radial basis
function. A node is represented schematically by a circle, which depicts the
corresponding transfer function.

In an artificial NNet, neurons are arranged in input, output and hid-

den layers as shown in Fig. 6.3. The nodes in the input layer are passive

since they do not modify the data; their only function is to relay the val-

ues from the single input to multiple outputs. In comparison, the nodes of

the hidden and output layers are active as they modify the input data. Hid-

den layers are used to introduce additional non-linearities to the network’s

behavior; one hidden layer is enough to approximate any function with an

arbitrary level of precision, given an appropriate number of nodes in the

hidden layer [16].

NNets are classified as either feedforward or recurrent. In the first case,

the information moves in only one direction (forward), from the input nodes,

through the hidden nodes (if any) to the output nodes. There are no cycles

or loops in the network. While a feedforward network propagates data lin-

early from input to output, recurrent networks (RN) propagate data from

later processing stages to earlier stages.
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Once one has decided on a network architecture, a training algorithm

is chosen. Learning techniques can be classified into three categories [91];

namely, (i) supervised learning, (ii) reinforcement learning, and (iii) self or-

ganisation or unsupervised learning.

In the first case, sets of inputs and outputs are presented to the network,

i.e. the network receives an input vector and produces an output vector.

This output vector is compared to the desired output vector and the net-

work weights are then adjusted by the learning algorithm. The process is

repeated for the entire set of input and output training vectors.

In supervised learning it is assumed that there is a target output value for

each input value. However, in many situations there is less detailed infor-

mation available. Reinforcement learning is a particular case of supervised

learning, where the network is trained by receiving appreciations2 rather

than target values. Supervised and reinforcement learning methods will be

discussed in more detail in Secs. 6.2.1 and 6.2.3; these methods will be used

in Chapters 7 and 8 to perform control and optimisation experiments.

Unsupervised learning is also referred to as self-organisation, in the

sense that it self-organises data presented to the network to uncover corre-

lations. Unlike supervised training, which uses the output vector, the input

vector is compared with the weight vectors. The node with a weight vec-

tor most closely matching the input vector is called the winning node. The

weights of the winning node and those of nodes within a certain neighbor-

hood are then updated, such that the next time a similar vector is presented

to the network, the node is more likely to win; conversely it is less likely to

win with a different input vector. After training, each input vector of the

training set will only activate a distinct output node. This type of training is

often used for classification or recognition problems [93].

NNets are best suited to problems where there is no, or only a very com-

plex analytical solution, but for which a significant amount of data is avail-

able. They are sensitive to statistical regularities in the input data and can

therefore derive implicit relationships within the data (i.e. correlations be-

tween inputs and outputs). The fact that they are parallel processing ele-

ments increases the computation speed. Further, the distribution of mem-

ory elements makes them fault tolerant in a hardware implementation [94].

6.2.1 The back propagation algorithm

A number of supervised training algorithms have been developed, e.g., the

Delta rule [95], Widrow-Hoff algorithm [96] and the backpropagation algo-

2An appreciation can take the form of a number between 0 and 1, which tells the NNet
how well it performed, but without any information on the correct output [92].



6.2 NEURAL NETWORK ARCHITECTURE AND LEARNING TECHNIQUES 89

Figure 6.3: The three layers of a NNet: inputs, outputs and intermediate
layers hidden between the two layers. Figure adapted from [63].

rithm. Here we describe the backpropagation algorithm used for training

in our control and optimisation experiments. This algorithm also forms

the basis for more advanced algorithms using the gradient descent tech-

nique [96].

As depicted in Fig. 6.1, the jth artificial neuron in a given layer receives an

input vector3 u j = [u1 j, u2 j, ..., un j] from n other nodes in the network. Each

of these inputs has a "weight" associated with it, from which we form the

weight vector w j = [w1 j,w2 j, ...,wn j]. The weighted sum at the jth neuron is:

z j = w j · u j, (6.1)

and the output is:

yj = f j(zj), (6.2)

where f j is the activation function of the node. For the jth node in the output

layer, the sum-squared error at the output is defined by:

E =
1
2

∑
o∈Outputs

(yo − ŷo)2, (6.3)

where yo is the output produced by the network at the oth node of the output

layer and ŷo is the corresponding desired value (i.e. the corresponding value

in the training set).

The change in weight ∆wi j is calculated using the gradient descent tech-

nique [95]:

∆wi j = −µ
∂E
∂wi j

, (6.4)

3For example, if one is to model the energy of the electron beam at the end of a linear
accelerator (which would correspond to the NNet’s output), relevant inputs would include,
but are not limited to, the phase and voltage of the accelerating sections.
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where µ is a positive constant representing the learning rate. For the output

layer one can write (Note that the summation convention does not apply):

∂E
∂wi j

=
∂E
∂z j

∂z j

∂wi j
=
∂E
∂z j

ui j. (6.5)

For the other layers we can expand the error of the hidden node in terms of

its posterior nodes using the chain rule:

∂E
∂wi j

=
∑

k<Output

∂E
∂zk

∂zk

∂ f j(zk)
∂ f j(zk)
∂z j

∂z j

∂wi j

=
∑

k<Output

∂E
∂zk

∂zk

∂ f j(zk)
∂ f j(zk)
∂z j

ui j. (6.6)

The weights of the hidden and output layers are then updated by using

Eqs. (6.5) and (6.6) with wi j + ∆wi j → wi j. The process is repeated for the

whole training set until there is either convergence of the weights to a local

minimum, or until the remaining error given by Eq. (6.3) falls below a spec-

ified limit [16]. At the start of training all the weights are initialised to small

random numbers. With the gradient descent technique the accuracy with

which a NNet can reproduce training data depends on the initial weights of

the network. This is illustrated in Fig. 6.4, where the global minimum Eg is

reached for the residual error starting with a weight w2, whereas only the lo-

cal minimum El is reached when one starts with a weight w1. This effect can

be compensated for, by allocating more neurons to the network. However,

this tends to overfit the data, a problem that will be discussed in Chapter 7.

6.2.2 Training of RBF neural networks

The weights applied to the RBF function outputs, as they are passed to the

summation layer, are determined by the training algorithm. However, the

RBF training also determines the number of neurons in the hidden layer

and the coordinates of the centre of each hidden neuron in the network. In

practice, the centres are often chosen to be a random subset of the train-

ing data set, which leads to a network with poor performance or having a

large number of hidden nodes. In what follows we describe two training

methods that overcome this problem by training both the weights and cen-

tres of the NNet. The first method is called the Orthogonal Least Squares

(OLS) method. With this method, nodes are added to the network until the

sum-squared error falls below an error goal, or until a maximum number of

nodes has been reached. The second method is based on the least squares

algorithm and only trains the weights of the network.
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Figure 6.4: Local minimum in backpropagation training. During training
with the gradient descent technique the accuracy attained by the NNet de-
pends on the value of the initial weights of the network. Starting with an ini-
tial weight w2, the global minimum Eg of the sum-squared error is reached,
whereas only the local minimum El is found when starting with weight w1.
The arrows indicate the direction in which the weights are adjusted by the
backpropagation algorithm.

Orthogonal least squares training

Let us consider the RBF network depicted in Fig. 6.5. The network receives

J1 inputs forming the vector x = [x1, x2, ..., xJ1] and has J3 outputs forming

the vector y = [y1, y2, ...., yJ3]. It has J2 hidden nodes, with radial basis func-

tions ϕk(x) = ϕ(x − ck), (k = 1, 2, ..., J2), forming the vectorΦ = [ϕ1, ϕ2, ..., ϕJ2].
The weights connecting the hidden layer to the output layer are given by

the matrix W, where the element wki connects the kth hidden node to the

ith output node. With these definitions, the ith output of the RBF network is

given by:

yi(x) =
J2∑

k=1

wkiϕ(||x − ck||). (6.7)

As with the backpropagation algorithm, the Orthogonal Least Squares

(OLS) methods aims to minimise the error E between the NNet’s output

and the outputs of the training set, where

E =
1
N
||Y −WTΦ||2F , (6.8)
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Figure 6.5: Schematic of a radial basis function neuron. The NNet contains
J1 input nodes, J2 hidden nodes and J3 output nodes.

Here Y = [y1, y2, ..., yN], N is the number of input/output samples in the

training set and || · ||F is the Forbenius norm4. When all the centres are dis-

tinct,ΦT can be decomposed as follows [97]:

ΦT = Q


R
...

0

 , (6.9)

where Q is an N × N orthogonal matrix and R is a J2 × J2 upper triangular

matrix. Because this matrix is orthogonal, Eq. (6.8) can be rewritten as:

E =
1
N
||QT YT −QTΦT W||2F . (6.10)

Now let rewrite the first term in the right hand side of Eq. (6.10) as:

QT YT =


B̃
...

B̄

 , (6.11)

where B̃ and B̄ are J2 × J3 and (N − J2) × J3 matrices, with elements b̃i j and

b̄i j, respectively. With this, Eq. (6.10) becomes:

E =
1
N

∥∥∥∥∥∥∥∥∥∥


B̃ − RW
...

B̄


∥∥∥∥∥∥∥∥∥∥

2

F

. (6.12)

From this equation one can see that the weights of the system that min-

imise the error E are such that RW = B̃. The OLS algorithm adds one neuron

at a time to determine the weights and centres of the NNet. The centres are

4The Frobenius norm of a vector H is defined as ||H||2F = tr(HT H), where tr is the trace
operation.
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chosen from the training set. For this, we introduce the error reduction ratio

for the kth neuron being implemented in the hidden layer [98]:

ϵk =

( ∑J3
i=1 b̃2

ki

)
qk

T qk

tr(YYT )
. (6.13)

Equation (6.13) is evaluated for each sample of the data set and the sam-

ple that results in the largest decrease in the error ϵk is selected. The crite-

rion to stop the centre selection (and the addition of a new neuron) is a

threshold ρ ∈ (0, 1) such that:

1 −
J2∑

k=1

ϵk < ρ. (6.14)

Training stops when the error criterion (6.14) is satisfied (via incorporat-

ing neurons in the hidden layer). A drawback of the OLS algorithm is that

it is computationally intensive for large data sets, scaling as O(N, J2
2); this is

due to the complexity of the orthogonal decomposition. On the other hand,

because hidden nodes are added one at a time, it avoids incorrectly sized

networks, i.e. a NNet with too few neurons will show poor fitting proper-

ties, while a NNet that is too large will overfit the data.

Least squares training

Consider how the gradient descent technique can be used for the train-

ing. Unlike the OLS method, this method does not determine the num-

ber of neurons in the hidden layer, but trains the centres and weights of a

pre-determined number of hidden nodes. We first write the error function

as [99]:

E =
1
N

N∑
n=1

J3∑
i=1

(en,i)2, (6.15)

where en,i is the error at the ith node for the nth pair of input/output samples

of the training set, and is given by:

en,i = yn,i −
J2∑

m=1

wmiϕ(||xn − cm||). (6.16)

Taking the first derivatives of E with respect to wmi and cm, we obtain:

∂E
∂wmi

= − 2
N

N∑
n=1

en,iϕ(||xn − cm||), (6.17)
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and

∂E
∂cm
=

2
N

J3∑
i=1

wmi

N∑
n=1

en,iϕ̇(||xn − cm||)
xn − cm

||xn − cm||
. (6.18)

Using Eqs. (6.17) and (6.20), the update equations for the weights and

centres are thus given by:

∆wmi = −η1
∂E
∂wmi

, (6.19)

and

∆cm = −η2
∂E
∂cm

, (6.20)

where η1 and η2 are the learning rates. With this method, the centres and

weights of the networks are selected randomly at first, and then updated

until the error E falls below a specified limit. Although this method is not

as computationally demanding as the OLS method, the number of hidden

neurons must be pre-determined.

In general, radial basis networks tend to have many more nodes than a

comparable network constituted of sigmoidal or hyperbolic tangent neu-

rons in the hidden layer. This is due to the fact that sigmoidal neurons can

have outputs over a large region of the input space, while RBF neurons only

respond to relatively small regions of the input space. As a result, the larger

the number of inputs, the more RBF neurons are necessary [87].

6.2.3 Reinforcement learning

Reinforcement learning is used when data is not directly available for su-

pervised training. In this case the NNet is connected to its environment via

perception and action. At each step k of a time series, the network receives

a set of inputs that define its state Tk ∈ T in the environment, where T rep-

resent the set of possible states. It then chooses an action ak ∈ A to produce

an output, leading to a new state Tk+1 (A is the set of possible actions). The

state transition is then evaluated and its value communicated to the NNet

through a reinforcement signal. This signal is a value that we denote by Rwk,

and which rewards or penalises the NNet for its actions. A reward is defined

by Rwk > 0, and a penalty by Rwk < 0. The value of Rwk is often an integer,

linked to the outcome of the action. For example, in a video game, an agent

would receive a positive signal Rwk = 1 for shooting an enemy and a nega-

tive signal Rwk = −2 for being shot itself. The NNet is not told at any stage

what the ideal action would have been. Based on these interactions, the



6.2 NEURAL NETWORK ARCHITECTURE AND LEARNING TECHNIQUES 95

network must develop a policy5, π : T → A that maximises the total reward

Rtot =
∑

k Rwk in the long term. In order to develop the optimum policy, it

is necessary for the network to gather experience about the possible system

states, actions, transitions and rewards.

This can be illustrated with the following simple example. Consider a

video game, where an game agent must shoot its enemies while avoiding

being shot itself. The actions of the agent can be directed by a NNet receiv-

ing sensor inputs, which provide information on the proximity of obstacles

and enemies. These inputs define the state Tk of the network in its envi-

ronment. The agent can then take an action ak, such as moving forward,

turning or shooting. After the network has taken an action, it receives a re-

ward or penalty Rwk, according to the outcome of its action. For example,

it will receive positive points for having shot an enemy, or negative points

for not moving when a sensor indicated an enemy was firing in the agent’s

direction.

This concept is of particular interest for control purposes in an opera-

tional accelerator environment. Indeed, let’s assume that we wish to de-

velop a control system to stabilise the beam energy using a NNet to act on

the phase of the klystrons. If supervised training is used and a shift occurs

in the absolute phase of an accelerating cavity, the system would require

re-training (i.e. re-adjustment of the NNet’s weights). This would require

the detection of the phase shift and the gathering of data for new train-

ing. The amount of data required for training increases exponentially6 with

the number of cavities, becoming a highly time consuming task. Instead, it

would be highly desirable to build a system that develops policies to adapt

its behavior through time. In Chapter 8 we will discuss the implementation

of such a system for optimisation purposes and in Chapter 9 we discuss its

adaptation to control applications.

In what follows we build and train NNets using the Matlab programming

language and its neural network toolbox. This choice is based on the use of

Matlab for communication with the machine actuators and diagnostics at

the AS, the LCLS and FERMI.

5In the context of a neural network a policy is a map that defines the action ak that should
be taken at every step, given the state Tk [100].

6To obtain training data for one phase ϕ, an interval of interest [ϕa, ϕb] is divided into
nL segments of identical lengths, where (nL + 1) corresponds to the number of data points
required for training. For two phases ϕ1 and ϕ2, if the number of segments are identical (i.e.
(nL1 + 1) = (nL2 + 1)), the number of data point is (nL1 + 1)(nL2 + 1) = (nL + 1)2. Similarly, for N
phases, the number of training data points is (nL + 1)N .
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6.3 Neuro-Evolution of Augmenting Topologies

(NEAT)

In practical control or optimisation applications, environmental conditions

are subject to change through time. For example, a robot might have a faulty

sensor connection or an airplane may loose an engine and there is no op-

portunity to re-train the controller. To perform optimally in such situations,

adaptation of the controller is necessary.

In nature, organisms encounter new situations frequently and learn from

them by changing their policies. This is possible because their nervous sys-

tem is not static. Instead, new connections can arise and some connec-

tions can become more or less stimulated depending on the environments.

This motivates us to develop an evolving NNet that can adapt its structure

through learning from interactions with the environment. Promising ad-

vances have been made in this domain by Stanley et al. [101]. This ap-

proach, called Neuro-Evolution of Augmenting Topologies (NEAT), com-

bines the use of genetic algorithms to encode and evolve the NNets’ struc-

tures with reinforcement learning to select the most promising elements

amongst a population of NNets. In a similar way to natural organisms, the

artificial NNet can therefore adapt its structure through interacting with its

environment. NEAT has already proven to be highly effective, outperform-

ing other neuro-evolution methods [102]. The development of NEAT has

been motivated by current limitations of contemporary video games, where

game agents show a high level of graphical realism and in their actions, but

lack the ability to adapt to new situations. Their actions quickly become

predictable and this results in a loss of interest from the player . The method

has been used successfully in the NERO7 video game [101, 103, 104, 105] and

the roving eye for Go8 [106].

NEAT is based on the three following key ideas. First, the network struc-

ture must be genetically encoded in an efficient way [86]. This is described

in Sec. 6.3.1, which also discusses a method used to keep track of each gene

during evolution, called "historical marking". Second, because in a pop-

7NERO is a new style of game that requires the training of intelligent armies. At the start
of the game, each player trains his own robots to form a team for combat. The agents thus
created gain their fighting techniques from the guidance of the player and not from a pre-
programmed algorithm [101].

8Go is an ancient two-player Chinese board game where black and white pieces are
placed alternately at intersection points on the grid by two players. The purpose of the game
is to control more territory than the opponent. Any region of the board totally surrounded
by one player’s pieces is counted as that player’s territory. Although Go has very simple rules
it is very difficult to master and it is a popular and challenging testbed for different AI tech-
niques.
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ulation of NNets some individuals might take more time to optimise their

structure, it is important to protect them from being eliminated too early

during evolution, before they can be competitive with the population at

large. This is addressed by protecting innovation through speciation as is

explained in Sec. 6.3.2. Finally, NEAT starts the evolution process from a

minimum NNet architecture9, only increasing the complexity of the struc-

ture when necessary. The initial population consists of simple networks

with no hidden nodes, which become more complex through evolution to

create increasingly sophisticated behaviors. The fittest networks of a popu-

lation are selected using a fitness function, which is based on reinforcement

learning. This is described in Sec.6.3.3.

6.3.1 Genetic encoding and historical marking

The structure of a NNet must be encoded in an efficient way. For this, NEAT

encodes the nodes and their connections separately. The node’s genes iden-

tify the node and its type (input, output, bias or hidden). The connection

genes must include information on the start and end nodes of the connec-

tion, its associated weight and whether the connection is activated or dis-

abled [107]. Figure 6.6 shows an example of encoding for a network com-

prised of three inputs, one output and one hidden neuron.

During evolution, mutations can occur in both the weights and the struc-

ture of the network. Structural changes act on nodes and connections. A

connection can be created or inactivated. When a new node appears, it is

introduced where there is an existing connection. That connection is then

split into two new connections in order to integrate the new node into the

structure. To minimise the non-linearity introduced by the addition of the

new node, the weight of the input connection is set to 1 and the output

connection is assigned the weight of the old connection. In this manner the

functionality of the newly created network is only slightly modified [107].

Evolution takes place in the following way. For each generation, the per-

formance of each network in the population is assessed by evaluating the

fitness function (discussed in Sec. 6.3.3). The fittest individuals are then se-

lected to generate the next generation by crossing over. When this occurs,

genes of both parents are compared and those that do not match are either

disjoint or in excess, depending on whether they occur within the reach10

9The architecture includes not only the NNet’s weights but also the number of nodes in
the hidden layer(s) and the connections. In NEAT, the first generation of the NNet consists
of input and output nodes only (i.e. no hidden nodes).

10 The reach of one parent is defined as the highest innovation number possessed by that
parent. A gene is said to be in excess when its innovation number is higher than the other
parent’s highest innovation number, otherwise it is disjoint.
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Figure 6.6: Example of a NNet structure encoded with NEAT. The node
genes include the node identity number and its corresponding type (input,
output, bias or hidden). The connection genes identify the in and out nodes
for this connection, its weight, and specifies whether the connection is ac-
tive. A unique innovation number is also attributed to each gene in order to
track its introduction through evolution [108]. Figure taken from [109].

of the other parent (see Fig. 6.7). Genes that are present in both parents

will be randomly selected from both parents to form the offspring. Genes

that are in excess or disjoint will be selected from the fittest parent, or ran-

domly from both parents if they share the same fitness. Each time a new

gene appears it is assigned a global "innovation number" that allows for the

easy identification of matched and unmatched genes during cross-over (i.e.

when two parents are selected and their genes used to create an offspring).

This mechanism is called "historical marking" and avoids having a connec-

tion copied multiple times [109].

6.3.2 Protection of innovation

Because structures can take time to be optimised, NEAT divides the pop-

ulation into species. In that way, networks will be competing against indi-

viduals of the same species before competing with the population at large.

For this, individuals are re-assigned to a species on the basis of their archi-

tectural similarities (number of hidden nodes, connections and weights) at

each generation. A topological distance is used to quantify the structural

differences between two individuals. This distance is calculated as a linear

combination of the number of in excess and disjoint genes (E and D, respec-

tively) and the average weight differences for the matching genes (W̄) [86]:



6.3 NEURO-EVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) 99

Figure 6.7: Cross-over with NEAT. The genes of both parents are aligned
and matching genes are randomly selected from both parents to form the
offspring. Disjoint or in excess genes are chosen from the most fit parent, or
randomly chosen from both parents if their fitness is identical. Figure taken
from [109].

δ =
c1D
N
+

c2E
N
+ c3W̄, (6.21)

where N is the number of genes of the larger genome (between the two par-

ents). The three constants c1, c2 and c3 are used to adjust the importance of

the different contributions. At the start of each generation, networks are

evaluated one after another and placed in the first species for which δ < δt,

where δt is a threshold value that defines how similar two networks must be

in order to be considered the same species. If the network does not match
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an already existing species a new species is created. This first network will

then be the "reference" network from which the distance δ of other net-

works is calculated according to Eq. (6.21). Moreover, each species is al-

lowed to have a maximum number of offspring nk, based on their average

fitness. This number is given by:

nk =
F̄k

F̄tot
|P|, (6.22)

where F̄k is the average fitness of individuals in species k, |P| is the size of

the population, and F̄tot =
∑

k F̄k is the sum of the average fitnesses of all the

species. This prevents the number of individuals in the population from

continuously increasing through evolution. At each generation, the best

individuals are then selected to create new individuals, and after cross-over

the entire population is replaced by the new offspring.

6.3.3 The fitness function

During evolution, an individual’s fitness is assessed according to how well

it has performed on a given task. This fitness is evaluated by a fitness func-

tion, which serves to select and evolve the most promising networks of a

population through successive generations. The performance is evaluated

on the basis of reward and penalty points that are accumulated by an indi-

vidual during the evaluation phase; this is based on the principle of rein-

forcement training discussed in Sec. 6.2.3.

Because evolution aims to increase an individual’s fitness, it is very im-

portant to carefully define the notion of fitness. It is necessary to have a

clear idea of what succeeding in a task means, be able to quantify it, and

accordingly reward or penalise actions taken by a network during its evalu-

ation. This is discussed in more detail in Chapter 8, where a fitness function

is constructed to evolve a NNet that has to navigate within a search space

without crossing pre-set boundaries.

6.4 Real-time Neuro-Evolution of Augmenting

Topologies (rtNEAT)

As described above, NEAT is designed to be run offline. This means that all

the individuals of a population have to be evaluated before a new genera-

tion of neural networks can be generated. This method is not suited to a

video game involving many game agents. Indeed, this implies that all the

agents would be replaced at the same time, which would look incongruous

to the player and precludes interaction with the agents as they evolve [103].
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To overcome these limitations, the real-time adaptation of NEAT replaces

an individual in the game every few game ticks (interval of time in the game)

with an offspring created from the fittest individuals. The real-time adap-

tation of NEAT (i.e. rtNEAT) includes the following refinements. First, the

fitness fi of an individual must be adjusted to the number of individuals |S |
in its species. We define the "sharing" fitness as [104]:

fs,i =
fi
|S | . (6.23)

This adjustment of the fitness is necessary to keep the same dynamics

as in NEAT. Indeed, if the size of the species was not taken into account, in-

novation would no longer be protected and new species would be removed

as soon as they appear. After a given number of game ticks the agent with

the worst shared fitness is removed from the game. However, it is important

not to remove agents that are too young, and for this reason only agents who

have been playing for m game ticks will be chosen. To evaluate the appropri-

ate number of game ticks between replacements we introduce the fraction

of agents I too young to be replaced. This is expressed as a fraction of the

population that is ineligible after the evolution has reached a steady state:

I =
m
|P|n . (6.24)

From Eq. (6.24) we can determine the number of game ticks before re-

placement [103]:

n =
m
|P|I . (6.25)

For example, in the NERO video game I is typically chosen to be 50%.

Before a new agent can enter the game it is necessary to perform a few op-

erations in order to preserve the dynamics of NEAT. First, the average fitness

F̄k of individuals in species k must be recalculated when the worst agent is

removed. This is important because F̄k is used in the next step to chose

the parent species for the new individual. Next, one must chose the parent

species. Previously this was done by determining the number nk of offspring

that a species could generate (c.f. Eq. (6.22)). In our case, since only one in-

dividual is generated when a replacement occurs, we define the probability

Pr(S k) of choosing a species S k as [103]:

Pr(S k) =
F̄k

F̄tot
. (6.26)

In rtNEAT the number of species is kept relatively stable by adjusting

a threshold Ct that determines the compatibility of an individual with a
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species. If too many species exist, the threshold can be increased so that

more individuals belong to the same species. Similarly, if there are too few

species, the threshold Ct is decreased. When Ct is modified the entire pop-

ulation must be reassigned to the different species.

6.5 Knowledge integration into the network’s

structure

As discussed earlier, NEAT starts its search from a minimal NNet structure.

If the task is complex, evolving a NNet with a structure that can accom-

plish that task can take considerable time. For example, evolving a NNet

that implements the binary operation XOR11 takes a few tens of genera-

tions, while evolving a NNet structure that can navigate in 2D space with-

out crossing fixed boundaries can take up to a few hundred generations

(this structure will be discussed in Chapter 8). Moreover, it is sometimes

possible to decompose a problem into a series of actions that should be

taken by the NNet in order to carry out a task correctly under specified

conditions [110]. Whenever possible, it is desirable to integrate functional

structures into the minimal NNet that NEAT will evolve. Even if only partial

knowledge is available it will provide a basis for evolution and can save con-

siderable time [111]. There are two basic structures we will highlight here,

as they are the most relevant to the analysis in Chapter 8.

The first structure corresponds to the "if-then" rule. This structure is

depicted in Fig. 6.8 (a). The first node receives the conditional inputs and

depending on the response of that node, Action 1 or Action 2 will be trig-

gered. For this structure to work, the correct weights must be determined.

To illustrate its use, consider the example of a video game agent that has the

task of navigating through a battlefield. Let us also assume that the NNet is

provided with an input that gives the distance of the agent to an obstacle

located in front of it. If that obstacle is detected, the agent should turn in

order to avoid it. This information will therefore lead to a conditional action

of the type: "if there is an obstacle, then go forward and turn, otherwise go

straight ". The integration of this structure into the NNet will be discussed

in Chapter 8.

Similar reasoning can be applied to the "while-then-repeat" action. The

corresponding structure is illustrated in Fig. 6.8 (b). In this case two nodes

receive the "while" and "until" conditions. The when-condition node is

directly connected to the repetition-rule node, whereas a negation node

11The XOR binary operation yields 1 if exactly one of the two binary inputs is 1, and 0
otherwise.



6.5 KNOWLEDGE INTEGRATION INTO THE NETWORK’S STRUCTURE 103

Figure 6.8: Building blocks used to construct knowledge-based structures.
(a) The "if" structure is built using two hidden neurons (shown in green and
red). The first hidden neuron (in green) receives the conditions. Depend-
ing on the activation of this neuron Action 1 will be triggered or Action 2 by
the application of a negation node (in red). (b) The "while" structure uses
five hidden neurons (two shown in green, one in red, one in yellow and one
in blue). The two neurons of the first hidden layer (in green) receive the
"when" and "until" conditions. When both conditions are true Action 1 is
activated and the last repeat state is recorded by the recurrent connection
(on the yellow node). Otherwise Action 2 is activated because the until con-
dition is "true", which means the repeat action is inactivated, or the "when
conditions" are no longer valid [111].

is used to connect the until-condition node to maintain the repeat-action

node. The structure that connects the right green node to the red, blue and

yellow nodes is similar to the "if-then" structure described above. Indeed, if

the "until condition" is true, the "then" action rule will be activated. In this

case, the negation gives a "false" input that will inhibit the repeat-action

rule. If the until condition is "false" this means that the condition to stop

is not met, and the negation node will provide an excitatory input to the

repetition-rule node. This structure can be used, for example, to tell the

game agent to keep moving forward until it encounters an enemy. It will be

exploited in Chapter 9 for the optimisation of the transmission and energy

spread of the electron beam, and for the control of the beam energy when a

static perturbation is applied to the phase of an accelerating structure.





Building a NNet hybrid
feedforward - feedback
control system

7

7.1 Motivation and objectives

The work presented in Chapter 5 demonstrated the limitations of conven-

tional PID controllers, including poor response for high jitter frequencies

and limited bandwidth. The present chapter considers the development of

a feedforward-feedback type of controller in order rectify these deficiencies,

while still ensuring robustness of control.

The chapter is organised as follows. Section 7.2 describes the proposed

controller structure, while Sec. 7.3 presents the method used to define an

appropriate topology for the NNet. Sections 7.4 and 7.5 show real-time con-

trol tests carried out at the Australian Synchrotron and the Linac Coherent

Light Source.

7.2 The controller structure

The controller scheme is shown in Fig. 7.1. It consists of two distinct parts,

a NNet predictor (feedforward part) and a conventional control algorithm

(feedback part). The NNet is used to make a prediction for the perturbation

of the next bunch (i.e. energy and/or bunch length) in order to anticipate

corrective action, while the conventional controller ensures that the resid-

ual jitter (not corrected by the feedforward algorithm) is attenuated by a

feedback action. Thus, if the feedforward should fail, the feedback will still

ensure partial control. An important feature of a NNet lies in the fact that

its response is bounded, due to the nature of the activation function. This

is relevant to control systems because it ensures that the actuators cannot

be driven beyond fixed limits.

As discussed in Chapter 4, the main source of jitter for the beam en-

ergy and bunch length comes from perturbations occurring in the phase

and voltage of the accelerating structures. Records of these variables will be

105
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used to compute future deviations in the beam parameters. For example,

consider the case where a first klystron (klystron 1) is subject to phase and

voltage jitter and a second klystron (klystron 2) is used to correct for the en-

ergy deviations induced by the first klystron. The delay operator D in Fig. 7.1

provides the NNet predictor with m delayed input values of the voltage jit-

ter dV1 and n delayed input values of the phase jitter dϕ1 of the first klystron

(dV1 and dϕ1 are deviations from the set points of the voltage and phase of

klystron 1). For the bunch number k of a time series, the pth delayed phase

value (or lag) is given by D(−p)(ϕ(k)) = ϕ(k − p), with p ranging from 1 to n.

The NNet output in Fig. 7.1 is a prediction of the deviation in the horizontal

position dx(k + 1), measured at a BPM, and corresponds to a prediction in

the energy deviation of the beam.

Figure 7.1: Feedforward-feedback control scheme consisting of a NNet pre-
dictor (left block), connected in series to a control algorithm (right block).
The predictor receives m lagged values of dV1 and n lagged values of dϕ1 (the
voltage and phase jitter of the first klystron). The predicted horizontal de-
viation dx(k + 1) in the beam position is used by the control algorithm in
the right block to compute the forward correction (red block). The feed-
back correction (green block), with user specified gains (Pg and Ig) and sum
range (R) uses measurements of the deviations in the current and the past
bunches. The sum range specifies the number of bunches taken into ac-
count in the integral correction. Figure adapted from [63].

The chosen control algorithm is based on a Proportional-Integral (PI)

algorithm, where the gains Pg, Ig and the number of elements R in the sum

of the integral term are chosen externally. The gain Dg is not considered in

this study because of the tuning difficulty and its tendency to make the sys-

tem unstable. Moreover, this term is often used to compensate for higher

frequency jitter, which is taken care of here by the NNet structure. The fac-
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tor M is the response coefficient of the deviation in the klystron voltage (in

mm/kV). When the NNet provides predictions for multiple variables, it does

so by providing a control proportional to the predicted variation. This is

complemented by a feedback term to ensure stability. In Fig. 7.1 the feed-

back control is applied to the voltage (of klystron 2), but it could also be

applied to its phase.

More generally, a network can be trained to directly operate the control,

acting as the inverse of the system model. The network’s outputs are then

used directly for control in an additive feedforward path [112, 113].

7.3 Determining the NNet predictor structure

The success of the feedforward control is determined by the ability of the

network to predict disturbances. In principle, an arbitrary level of precision

can be achieved as long as the network has a sufficient number of hidden

neurons [16]. The quality of the training set (i.e. the amount of data avail-

able and its relevance) will contribute as well. If the training is too long or

the number of neurons too large, over fitting may result. Similarly, if the

training set or number of neurons is insufficient, fitting will be poor [114].

One problem often associated with the use of a NNet is that there is no way

to determine in advance an appropriate architecture and training method

for a specific problem. In this section we describe the method used in order

to ensure that the control network has an appropriate size and is adequately

trained.

If records of the inputs to the accelerating process u(t) (i.e. phase and

voltage of the klystrons) and outputs y(t) (i.e. beam energy and bunch length)

are available, the network can be assigned a number of lagged values for

the input variables, output variables or a combination of both as its input

nodes. In the case where outputs are used, a model of the noise is often

required, otherwise the resulting predictor might be biased [115, 116]. In

such a case, the model would operate well on training data, but poorly on

data that was not presented to the network during its training phase. In

our case, since the bunch-to-bunch correlation (output history) would be

much weaker than the input-output correlation, there would be no point to

feed the network lagged outputs. Thus, it was decided not to include past

outputs of the predictor model to the network.

In what follows, we describe the systematic approach that was adopted

to define the number of lagged inputs (for each input variable) and hidden

neurons. The number of hidden neurons will be denoted by Nh. To begin

with, we introduce the error index (E.I.), which is a measure of the quality
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of the prediction [115]:

E.I. =
( ∑

(ŷ(t)−y(t))2∑
y2(t)

)1/2
, (7.1)

where ŷ(t) is the model output and y(t) is the target value. Alternatively, the

number of lagged input and output values can be evaluated by using cor-

relation tests. If only lagged inputs are used, the relevant correlation tests

are ϕuϵ(τ), ϕu2ϵ(τ) and ϕu2ϵ2(τ) (see [115, 116] for more details), where τ is the

sample time difference (from the current time). In our case τ is the time

interval separating two bunches in the beam. If a correct number of lags is

assigned, the following conditions are valid [115]:

ϕuϵ(τ) = E(ϵ(t)u(t − τ)) = 0, (7.2)

ϕu2ϵ(τ) = E(ϵ(t)(u2(t − τ) − ū2(t))) = 0, (7.3)

ϕu2ϵ2(τ) = E(ϵ2(t)(u2(t − τ) − ū2(t))) = 0, (7.4)

where E is the expectation value operator, ϵ(t) is the error between the net-

work prediction and its desired output value and u(t) is the input variable

(e.g., the voltage and phase of klystron 1). The sample correlation function

between two sequences is given by:

ϕuϵ(τ) =
∑N−r

t=1 u(t)ϵ(t + τ)( ∑N
t=1 u2(t)

∑N
t=1 ϵ

2(t + τ)
) 1

2

. (7.5)

To understand the significance of the correlation functions (7.2)-(7.4),

let us consider the general case where we model a non-linear system subject

to some noise e(t). The noise e(t) is additive to the output when, for example,

it arises from the measurement of ŷ(t) (e.g., noise in a BPM reading); it is not

additive when it is internal to the system (e.g., noise in the magnetic field of

a bending magnet). The output ŷ(t) of the system at time t can be modeled

with the following polynomial [117]:

ŷ(t) = Gu[u(t)] +Gue[u(t), e(t)] +Ge[e(t)], (7.6)

where Ge[e(t)] =
∑N

n=1 anen(t) and Gu[u(t)] =
∑M

m=1 amum(t) are polynomials in

e(t) and u(t), and Gue[u(t), e(t)] =
∑N

n=1
∑M

m=1 anamen(t)um(t) contains all cross

products. The polynomial coefficients are denoted by am and an.
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When the model of the system (7.6) is incomplete (i.e. polynomial terms

are missing), the third correlation test ϕu2ϵ2(τ) detects missing polynomial

terms in Gu[u(t)] and Gue[u(t), e(t)]. When the system is correctly modeled

ϕu2ϵ2(τ) = 0 for all τ [117]. When ϕu2ϵ2(τ) , 0, it is necessary to detect odd

and even polynomial terms that should be included in the model. This is

achieved by using the first and second correlation tests, ϕuϵ(τ) and ϕu2ϵ(τ),
which detect odd and even terms, respectively. Sometimes, when the terms

u2(t) and ϵ2(t) are small, the correlation ϕu2ϵ2(τ) may also be small although

u2(t) and ϵ2(t) are correlated. It is therefore important to evaluate the tests

ϕuϵ(τ) and ϕu2ϵ(τ) [117].

In practice the correlations cannot be zero, so we refer to the 95% inter-

val of confidence defined by 95/
√

N [%], where N is the number of samples.

In what follows Eqs. (7.2), (7.3) and (7.4) will be refereed to as tests 1, 2 and

3, respectively.

7.4 Energy control results at the Australian

Synchrotron Linac

7.4.1 Description of the experiment

An experiment was carried out to test the ability of the NNet to predict devi-

ations in the beam energy, which can then be used for corrective action. Be-

cause the Australian Synchrotron Linac is not equipped with bunch length

measurement diagnostics, this first study is limited to energy control us-

ing the beam position monitor (BPM) that was provided by Sincrotrone Tri-

este. Perturbations of different amplitudes and frequencies were injected

into the phase and voltage of the first klystron (see Fig. 7.2), and corrected

by the second klystron. The energy deviation of the beam is measured as a

deviation in the horizontal position of the beam at the BPM.

Two types of networks were tested to validate the predictions: a hyper-

bolic tangent (HT) network and a radial basis function (RBF) network (the

type of network is defined by the activation function in the hidden layer,

as discussed in Chapter 6). The HT network was used for single frequency

jitter control and to evaluate the use of the combined feedforward - feed-

back algorithm; however both networks were evaluated for the control of

multiple frequency jitter.
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Figure 7.2: Simplified layout of the Australian Synchrotron Linac shown in
Fig. 3.1. The phase and voltage of klystron 1 are used to induce a perturba-
tion in the beam energy, while the phase and voltage of klystron 2 are used
to correct for it. The resulting beam energy perturbation is measured as a
horizontal deviation of the beam position, recorded at the BPM.

7.4.2 Collecting data

Three sets of data were collected in order to evaluate the network struc-

ture and its training. The first data set, consisting of 115 sequences of 100

bunches each, was recorded to evaluate appropriate NNet topologies for

the single frequency case. The bunch repetition rate was 1 Hz. For each se-

quence, different jitter frequencies and amplitudes are introduced to excite

the first klystron phase and voltage (i.e. ϕ1 and V1). The maximum ampli-

tude was chosen to be 3◦ rms for the phase and 0.5 kV rms for the voltage. In

both cases the maximum jitter frequency introduced was 0.1 Hz. We chose

an upper limit for the frequency that was quite low due to the slow response

of the klystron and the information travel time from the control room to the

actuators. For each sequence the position deviation and the phase and volt-

age of klystron 1 were recorded.

A second data set, consisting of 16 sequences of 100 bunches, was then

recorded. This set was used for training the network. The induced single-

frequency jitter ranged from 0.05 kV to 0.08 kV and from 0.05 Hz to 0.08 Hz

(with steps of 0.01 kV and 0.01 Hz, respectively), for the first klystron voltage.

The phase jitter was maintained at 3◦ amplitude at 0.05 Hz.

The last set of measurements consisted of 40 sequences of 100 bunches,

each with 3 induced frequencies ranging from 0.01 Hz to 0.07 Hz, and with

amplitudes ranging from 0.04 kV to 0.06 kV. The phase jitter was again main-

tained at 3◦ amplitude at 0.05 Hz. This data set was used to evaluate the

topology and train a HT network and a RBF network in our multi-frequency

study.
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7.4.3 Determination of the network structure

NNet structure for a single frequency

In order to determine if the topology depends on the jitter frequency, the

network was first trained for a specific frequency. Since one hidden layer

has been shown to be adequate for fitting any function to an arbitrary de-

gree of accuracy [16], the network comprises one input layer, one hidden

layer and one output layer. There is one output (see Fig. 7.1), which corre-

sponds to the position deviation recorded at the BPM. The activation func-

tions for the hidden layer and the output layer were chosen to be hyperbolic

tangents.

In what follows we present results for one of the sequences of the data

set, with a voltage jitter of 0.96 kV at 0.078 Hz and phase jitter of 1.6◦ at 0.018

Hz (for klystron 1). The recorded data from the machine, which was used

for the evaluation, is shown in Fig. 7.3. The deviation ranges from 0 mm to

1.8 mm corresponding to a deviation of 2 MeV in amplitude, or 2% since the

unperturbed beam energy is 100 MeV.

0 50 100
−2

0

2

time(s)

dV
1 (

kV
)

0 50 100
−5

0

5

time (s)

dφ
1 (

°)

0 50 100
−2

0

2

time (s)

dx
 (

m
m

)

Figure 7.3: Example of a single sequence recorded for training the NNet
predictor. The data includes records of the excited voltage jitter: 0.96 kV
at 0.078 Hz (upper left plot), the excited phase jitter: 1.6◦ at 0.018 Hz (up-
per right plot), and the induced horizontal beam position jitter at the BPM
(lower left plot). Figure adapted from [63].

Equations (7.2)-(7.4) were used to evaluate the required number of dV1

and dϕ1 lags. To do this, these equations were evaluated for combinations

of 1 to 12 lags of dV1 and dϕ1, with τ = [−30,−29, ..., 0, 1, 2, ..., 29, 30]. For

each combination, the standard deviation (over τ) of the results were plot-

ted against the number of dV1 and dϕ1 lags (see Fig. 7.4). It was noticed that

the number of phase input lags only has a small influence on the results due

to the small effect of the phase jitter compared with the voltage jitter. This
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is seen in Fig. 7.4, where the first correlation test ϕuϵ(τ) given in Eq. (7.2) was

evaluated for the input variable u = dV1. This figure shows that at least 3

or 4 lagged values of dV1 are required to minimise the correlation between

dV1 (the input variable) and ϵ (the error between the NNet prediction for

the position deviation and the actual deviation). The other two correlation

tests (Eqs. (7.3) and (7.4)) showed the same trends.
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Figure 7.4: Standard deviation for the first correlation function given in
Eq. (7.2), evaluated for the input variable u = dV1, as a function of the in-
put lags dV1 and dϕ1. The HT network had 6 hidden nodes and was trained
for the data shown in Fig. 7.3. The results show that at least 3 to 4 lagged
values of dV1 are necessary to minimise the correlation between dV1 and ϵ,
while the number of dϕ1 lags is not relevant. Figure adapted from [63].

The error index was evaluated using Eq. (7.1). Figure 7.5 plots the index

error as a function of the number of hidden neurons Nh and lagged values

of dV1. The error index does not decrease further for 6 hidden neurons and

5 to 6 lagged voltage inputs. Similar results are obtained with dϕ1, showing

that the phase has little influence on the error index and that no further de-

crease is achieved above 2 lagged values. Tests were repeated for a range of

frequencies and amplitudes, which showed that the network performance

(in terms of error index) and topology are frequency independent. Based

on these results we chose a topology comprised of 5 lagged voltage input

values and 2 lagged phase input values.

The performance of the network was then studied when the whole data

set was used for training the network. The network received 5 lagged val-

ues of dV1 and 2 lagged values of dϕ1 as its inputs. Results for different se-

quences (see Fig. 7.6), show that the error index increases with decreasing

amplitude of the jitter. As one can see from Fig. 7.6, the two upper curves
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Figure 7.5: Error index (E.I) given in Eq. (7.1) as a function of the number
of neurons in the hidden layer Nh and the numbers of lagged values of dV1.
The HT network received 2 lagged values of dϕ1 and was trained for the data
shown in Fig. 7.3. The error index is minimised for 5 to 6 lags of dV1 and 6
hidden neurons. Figure adapted from [63].

correspond to a low jitter amplitude (0.25 kV and 0.13 kV), whereas the two

lower curves correspond to a higher amplitude (0.86 kV and 0.96 kV). This

is directly related to the network training algorithm, which it is designed to

minimise the error between the network output and its desired output in a

least squares sense. The residual error in the output (beam position) for dif-

ferent data sequences will be of similar magnitude, and consequently will

be independent of the amplitude of the input data (phase and voltage). If

the network is trained over a wide range of input amplitudes, the smaller

the amplitude the larger the residual error. With a sufficient number of hid-

den neurons (Nh > 12), the error index will be similar for all amplitudes.

Although one is tempted to increase the number of neurons in order to im-

prove the network performance, this may result in over fitting of the back-

ground white noise in the BPM measurements.

Whilst error indices indicate how well the network performs, correla-

tion tests will confirm the appropriateness of our choice for the number of

lagged inputs. From Fig. 7.7 it appears that at least 4 to 5 hidden neurons

are needed in order for the standard deviation of the correlation tests to re-

main below about 0.05, corresponding to the 95% confidence interval. In

fact, 6 hidden neurons is adequate to minimise the correlation and will be

chosen for the NNet predictor.
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Figure 7.6: Error index (E.I.) as a function of the number of hidden neurons
Nh for various jitter characteristics. The HT network was provided with 2
lagged values of dϕ1 and 5 lagged values of dV1. Higher voltage jitter ampli-
tudes result in a lower error index (blue curve and green data points). Figure
adapted from [63].
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Figure 7.7: Standard deviation of the correlation functions (7.2)-(7.4) for the
input variable u = dV1 versus Nh. The HT network was provided with 2
lagged values of dϕ1 and 5 lagged values of dV1, and was trained with the
data shown in Fig. 7.3. There is no significant reduction in the correlations
when Nh > 6. Figure adapted from [63].

The correlation tests shown in Fig. 7.8 correspond to the evaluation of

the topology for the recorded data given in Fig. 7.3. These tests were evalu-

ated for each sequence in the collected data set; all results were within the

95% confidence interval. This confirms that the topology is viable for any

combination of voltage and frequency in the data set.
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Figure 7.8: Evaluation of the correlation functions (7.2)-(7.4) for the
input variables dV1 (green curves) and dϕ1 (blue curves) for τ =

[−30,−29, ...,−1, 0, 1, ..., 29, 30]. These results were obtained for a HT net-
work consisting of 6 hidden neurons, receiving 5 lagged voltage inputs and
2 lagged phase inputs; the network was trained with the data shown in
Fig. 7.3. All three correlation tests are within the 95% confidence interval,
delimited by the horizontal dashed red lines. Figure adapted from [63].

NNet structure for multiple frequencies

The structure of the network for the multi-frequency case was evaluated

with the same procedure as for the single frequency case, using the criteria

outlined in Sec. 7.3. Studies were carried out for a HT and a RBF network.

(a) Hyperbolic tangent network

The evaluation of the topology for the multi-frequency case is not as ob-

vious as for the single frequency case. First, it was noted that the number of

neurons does not have a significant impact on the error index as one can see

from Fig. 7.9. This figure also shows that the error index is not significantly

affected by the number of dV1 lags.

A better indication of the appropriate number of lagged values of dV1

and dϕ1 is given by the correlation tests. Figure 7.10 shows that including 4

to 6 lagged values of dV1 reduces the correlations, whereas the number of

lagged dϕ1 values does not have a significant effect.
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Figure 7.9: Error index (E.I.) versus number of dV1 lags for 1 (red curve), 6
(blue curve) and 12 (dashed green curve) hidden neurons of an HT network.
The network was provided with 2 lagged values of dϕ1. The number of neu-
rons in the hidden layer has a negligible effect on the error index for the
whole range of lagged values of dV1. Figure adapted from [63].

Figure. 7.11 shows the correlation tests for a HT network with 6 hidden

neurons, 6 lagged values of dV1 and 2 lagged values of dϕ1. The upper two

graphs show some points outside the 95% confidence bands, indicating a

residual correlation with the last 10 bunches. This was observed for differ-

ent numbers of lagged inputs and neurons. Typically, when the correlation

tests show a peak for a given τ, this means that the network is lacking some

information at that specific time difference. The solution is to simply add

the corresponding lag to the network inputs. In our case, if the correlation

is to be decreased further, some of the lagged values could be given to the

network a second time (i.e. another input can be added to the NNet to feed

the same lagged value a second time). However, since the level of correla-

tion was not significant it was decided to proceed with the same network

topology. Therefore we chose a topology for online testing consisting of 6

hidden neurons, receiving 5 lagged values of dV1 and 2 lagged values of dϕ1

as its inputs.
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Figure 7.10: Standard deviation for the first correlation function given in
Eq. (7.2), evaluated for the input variable u = dV1, as a function of the in-
put lags dV1 and dϕ1. The HT network was trained for the data shown in
Fig. 7.3. These results show that 4 to 6 lagged values of dV1 reduce the corre-
lation, while the number of dϕ1 lags does not have a significant effect. Figure
adapted from [63].
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Figure 7.11: Evaluation of the correlation functions (7.2)-(7.4) for the
input variables dV1 (green curves) and dϕ1 (blue curves) for τ =

[−30,−29, ...,−1, 0, 1, ..., 29, 30]. The HT network consisted of 6 hidden neu-
rons, receiving 6 lagged values of dV1 and 2 lagged values of dϕ1. The net-
work was trained for a sequence with jitter frequencies 0.015 Hz, 0.05 Hz
and 0.065 Hz, with respective amplitudes of 0.55 kV, 0.4 kV and 0.45 kV.
Points between τ = −10 and τ = 0 lie slightly outside the 95% confidence
bands for the two first correlation functions (upper plots).
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(b) Radial basis function network

For a hyperbolic tangent network one specifies the number of inputs,

outputs and hidden neurons that constitute the network. Then a training

algorithm is used to adjust the weights of the network, reproducing desired

outputs for given inputs. However, RBF networks are constructed by adding

one neuron at a time, until the sum-squared error falls below an error goal

[87, 118]. Consequently, the error index estimated using the training set

is nearly constant over the whole range of dV1 and dϕ1 lags, since training

stops as soon as the goal is attained. Therefore, only the number of lags

needs to be determined using the correlation tests.

Figures 7.12 and 7.13 show the results for the first correlation test given

by Eq. (7.2). This is the most relevant of the three tests since it is likely to lie

outside the confidence bands. The tests were carried out at frequencies 0.01

Hz, 0.02 Hz and 0.07 Hz, and for an amplitude of 0.06 kV. Larger correlations

in Fig. 7.12 (c.f. Fig. 7.13), reflect the higher sensitivity of the system to the

voltage. According to Fig. 7.12, the voltage correlation is reduced with a

small number of lagged dϕ1 and dV1 inputs, i.e. 5 to 6 lagged voltage values

and 1 to 3 lagged phase values.
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Figure 7.12: Standard deviation for the first correlation function given in
Eq. (7.2), evaluated for the input variable u = dV1, as a function of the in-
put lags dV1 and dϕ1. The RBF network was trained for a single sequence
of the data set (i.e. 0.06 kV at 0.01 Hz, 0.02 Hz and 0.07 Hz and 3◦ at 0.05
Hz). Increasing the number of dϕ1 lags leads to an increase in the correla-
tion, while the number of dV1 lags does not have a significant effect. Figure
adapted from [63].
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Figure 7.13: Standard deviation for the first correlation function given in
Eq. (7.2), evaluated for the input variable u = dϕ1, as a function of the in-
put lags dV1 and dϕ1. This evaluation was carried out using a RBF network
trained with a single sequence of the data set (i.e. 0.06 kV at 0.01 Hz, 0.02 Hz
and 0.07 Hz and 3◦ at 0.05 Hz). Increasing the number of dϕ1 lags decreases
the correlation, while the number of dV1 lags does not have a significant
effect.

The correlation in the phase is minimised for two or three lagged val-

ues (see Fig. 7.13). The number of lagged voltages has less effect, tending to

reduce the correlation as more lags are added. However, it was found that

the voltage correlation tends to increase with the number of lagged dV1, de-

pending on the test data sequence. An upper limit of 5 lagged inputs was

found to be a good compromise in these cases.

Based on these observations the network topology was configured to in-

clude 5 lagged values of dV1 and 2 lagged values of dϕ1. The absolute value

of the correlation can be reduced by setting a lower error goal during train-

ing, without affecting the trends of the correlation tests (as functions of the

number of the dV1 and dϕ1 lags). However, to ensure an optimum error goal

is attained, the error between the network outputs and the training outputs

should be comparable to the rms amplitude of the white noise of the BPM.

Imposing this criterion on the training phase ensures that over fitting the

white noise does not occur.



120 BUILDING A NNET HYBRID FEEDFORWARD - FEEDBACK CONTROL SYSTEM

The whole data set was then presented to the network for training. Ac-

cording to Fig. 7.12, when the network is trained for a single sequence, in-

creasing the number of lagged values of dϕ1 increases the correlation; how-

ever, it is only slightly affected by the number of lagged values of dV1. These

trends remain when the network is trained for the whole data set, as shown

in Fig. 7.14. The average number of neurons used for training on a single

data sequence was 60 to 75. For training over the whole data set, an upper

limit of 150 neurons was utilised together with an error goal correspond-

ing to the level of white noise at the BPM. The training stopped when the

network size reached 150 neurons, before the error goal was reached. Con-

sequently, the network prediction error is larger than the white noise and

correlations show some points outside the confidence bands. This is illus-

trated in Fig. 7.15, where the three tests are represented for one specific se-

quence, using 5 lagged voltage values and 2 phase input lags.
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Figure 7.14: Standard deviation for the first correlation function given
in Eq. (7.2), evaluated for the input variable u = dV1 and for τ =

[−30,−29,−28, ..., 29, 30]. This evaluation was carried out for a RBF network
trained using all sequences of the data set. An increasing number of dϕ1
lags leads to an increase in the correlation, while the number of dV1 lags
does not have a significant effect. Figure adapted from [63].
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Figure 7.15: Evaluation of the correlation functions (7.2)-(7.4) for the
input variables dV1 (green curves) and dϕ1 (blue curves) for τ =

[−30,−29, ...,−1, 0, 1, ..., 29, 30]. The RBF network consisted of 150 hidden
neurons, receiving 5 lagged values of dV1 and 2 lagged values of dϕ1. The
network was trained using the whole data set. Points lying outside the 95%
confidence bands for the three correlation functions are due to the inter-
ruption of training before the error goal was reached (i.e. before the maxi-
mum number of hidden neurons was reached).

7.4.4 Control of a single frequency jitter

Here we evaluate the real-time performance of the topology discussed in

Sec. 7.4.3. The NNet was trained for jitter frequencies ranging from 0.05 Hz

to 0.08 Hz and with amplitudes ranging from 0.05 kV to 0.08 kV, using steps

of 0.01 Hz and 0.01 kV, respectively. The upper limit of 0.08 Hz is due to the

slow response of the actuators. The response of klystron 2 was measured

and found to be linear in the region of interest, with the correction propor-

tional to the network prediction. The performance index (P.I.) is computed

as:

P.I.(%) =
(

1 − std(dx f )−WN
std(dxi)−WN

)
× 100, (7.7)

which takes into account the irreducible white noise (WN) present, even

when no jitter is excited in klystron 1. Here std(dx f ) and std(dxi) denote the

standard deviations of the final (under NNet control) and initial (without

control) horizontal deviations. Thus, jitter is entirely canceled if the residual

standard deviation is of the same magnitude as the white noise.
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Figure 7.16 shows the resulting performance index, as a function of the

excited jitter amplitude and frequency. Training used a record of 100

bunches, however, the evaluation of the network was done with 1000

bunches. The performance index was evaluated for amplitudes and fre-

quencies different from the training data, but included in the training range,

from 0.045 Hz to 0.075 Hz and with amplitudes ranging from 0.055 kV to

0.085 kV; steps of 0.01 Hz and 0.01 kV were used for the frequency and

amplitude, respectively. The performance decreases with increasing fre-

quency, which is not due to the network itself, but to the slow response of

the actuators. In fact, the phase and voltage of the first klystron are needed

for the NNet to compute predictions before their values reach the set point.

Thus, the information is sent too early to the network and its prediction is

shifted in time. Because of the time shift the network acts as a feedback

system and not predominantly in the feedforward mode. The network was

trained on a range of small amplitudes; however, there were no significant

performance differences between sample sequences.
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Figure 7.16: Performance Index (P.I.) versus jitter amplitude AV1 and fre-
quency fV1 induced in klystron 1. The P.I. was evaluated over 1000 bunches.

Figure. 7.17 shows an example of recorded data acquired during evalu-

ation. The induced jitter is a sine wave of amplitude 0.05 kV and frequency

0.05 Hz. The solid red curve corresponds to the data recorded for training

the network, whereas the dashed blue curve corresponds to the network

prediction. The residual deviation with NNet control is given by the green

circles and has a rms deviation of 0.116 mm, which corresponds to the back-

ground noise level. Figure 7.18 shows the Fast Fourier Transform (FFT) for

the controlled jitter sequence (lower green curve) with data points indicated

by stars; the uncontrolled jitter (upper red curve) is represented by crosses.

This confirms that the 0.05 Hz perturbation was suppressed.
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Figure 7.17: Example of real-time control operated over 100 bunches for a
jitter of 0.05 kV and 3◦ at 0.05 Hz. The red curve shows a record of the per-
turbed beam position (training data), the dashed blue curve shows the fit
of the NNet and the green circles show the record of the position deviation
when the NNet operated the control. Figure adapted from [63].
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Figure 7.18: FFT for controlled jitter (lower green curve) and uncontrolled
jitter (upper red curve), corresponding to the data in Fig. 7.17. Figure
adapted from [63].
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7.4.5 Control of multiple frequency jitter

Although the evaluation of network topology is more difficult for the control

of multiple frequency jitter, the results of real-time control for the multi-

frequency case were comparable to the single frequency case. Tests were

made for both hyperbolic tangent and Gaussian (RBF) networks.

(a) Hyperbolic tangent network

The network was trained over a set of 200 bunches with excited jitter of

0.01 Hz, 0.02 Hz and 0.05 Hz, each of 0.06 kV amplitude (see recorded data

in the upper plots of Fig. 7.19). The network consists of 6 hidden neurons

receiving 6 lagged values of dV1 and 2 lagged values of dϕ1 as its inputs. The

online control results are shown in Fig. 7.19 (middle plots), where it is ev-

ident that the residual noise is at the background level. Thus, the network

with the same topology is performing for the multi-frequency jitter as well

as for a single frequency. Fourier analysis shown in Fig. 7.19 indicates that

there is no obvious residual component of jitter frequency.

As a second test, the network was trained over a set of 24 sequences with

frequencies ranging from 0.01 Hz to 0.05 Hz and with amplitudes ranging

from 0.04 kV to 0.06 kV. The network was then tested in real-time by induc-

ing frequencies and amplitudes different from the training set, but included

within the training range. Each sequence was 250 bunches long. The stan-

dard deviation of each of the 16 test samples was below 0.09 mm rms, cor-

responding to the background noise level. (The white noise was measured

to be 0.085 mm rms at the time of this experiment). For each sample test,

all frequencies were suppressed. This confirms the ability of the network to

interpolate its prediction when encountering frequencies that are different

from the training set, but included within the training range.

(b) Radial basis function network

The RBF network, consisting of 76 hidden neurons, was trained using

the same sample data as for the hyperbolic tangent network. The data was

required to be fitted with a precision of 0.085 mm rms (corresponding to the

background noise level).

The trained RBF network was then tested for the same jitter conditions

as for the HT network, i.e. same jitter frequencies and amplitudes. Although

the residual noise is slightly higher than for HT network, Fourier analysis

reveals that the frequency components were successfully suppressed (see

lower plots in Fig. 7.19). This test was repeated several times for both the
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HT and RBF network. The residual noise is always slightly lower using the

HT network. Moreover, the RBF network does not totally cancel the fre-

quency components; the RBF network shows better results when less data

is presented in the training phase. Usually one to two periods of the slowest

jitter component is enough.

As for the HT network, the controller was trained over a set of 24 se-

quences with frequencies ranging from 0.01 Hz to 0.05 Hz and amplitudes

ranging from 0.04 kV to 0.06 kV. The same 16 jitter configurations were tested

over 250 bunches. The standard deviation of each of the 16 test samples

was comparable to the background noise level, which corresponds to the

successful cancelation of all frequencies for all sequences.
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Figure 7.19: Example of real-time control operated over 1000 bunches, for
voltage jitter frequencies of 0.01 Hz, 0.02 Hz and 0.05 Hz. Each frequency
has an amplitude of 0.06 kV. The phase jitter was 1.5◦ at 0.05 Hz. The up-
per plots give the recorded BPM readings (left) and the corresponding FFT
(right) without control. The middle and lower plots give the BPM reading
and the corresponding FFTs, when the control is operated with the hyper-
bolic tangent network (HTN) and the radial basis function network (RBFN),
respectively. Figure adapted from [63].
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7.4.6 Feedforward-feedback combined control

To minimise the residual jitter, in those situations where the NNet predic-

tions are not accurate enough to totally cancel the perturbation, it is pos-

sible to couple the network to a feedback control. A very simple scheme

consists of using a Proportional-Integral (PI) control as shown in Fig. 7.1.

The total correction is given by:

dV2(k + 1) = −M−1dx(k + 1) − PgM−1dx(k)

−IgM−1
k∑

l=k−R

dx(l), (7.8)

where dV2 is the correction applied to the voltage of klystron 2 and M
is the response of the horizontal position dx of the beam to a change in

the voltage of klystron 2. The PI gains are denoted by Pg and Ig, and R
is the sum range (i.e. the number of past bunches taken into account in

the sum of the integral correction). If the NNet is operating correctly, the

residual deviation is small and there will be very little feedback correction.

When the network performance is decreased, the sum of deviations over

time will increase, and so too will the feedback correction term. In those

situations where the network is not performing optimally, the combination

of feedforward-feedback will ensure stability of the system; in this case its

mis-predictions can be compensated by a feedback term.

The system was tested for the case of a single frequency jitter. A HT net-

work with 6 hidden neurons, 5 lagged values of the voltage and 2 lagged

values of the phase was trained over a sequence of 200 bunches with a jit-

ter of 0.1 kV at 0.04 Hz in klystron 1. The PI gains were then coarsely tuned

with no additional control from the NNet. A control test showed that both

the NNet and the PI controller were able to entirely suppress the perturba-

tion; no peak could be identified from the FFT and the rms deviation of the

beam position corresponded to the white noise level (0.92 mm rms for the

NNet control and 0.090 mm rms for the PI control). The combined con-

troller was not tested since the perturbation was entirely suppressed by the

NNet. These results are listed in Table 7.1.

To evaluate the system response, the network was used to correct jitter

with frequency and amplitude different to the training set. In the first ex-

periment, a jitter of 0.1 kV and 0.06 Hz was excited in klystron 1 (different

frequency to the training set but with the same amplitude). In a second ex-

periment the excited jitter was 0.2 kV at 0.04 Hz (different amplitude to the

training set but same frequency). The residual standard deviation and peak

amplitudes of the FFT are listed in Table 7.1.
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Table 7.1: Recorded rms deviation and FFT peak values in mm, for a change
in jitter frequency (second column) and amplitude (third column) from the
training set (first column). The deviation was evaluated for 1000 bunches.

AV1 = 0.1 kV AV1 = 0.1 kV AV1 = 0.2 kV
fV1 = 0.04 Hz fV1 = 0.06 Hz fV1 = 0.04 Hz

No control (rms dev.) 0.153 0.150 0.250
NNet control (rms dev.) 0.092 0.089 0.146
FFT peak value - 0.056 0.165
PI control (rms dev.) 0.090 0.113 0.146
FFT peak value - 0.081 0.177
Combined control (rms dev.) - 0.087 0.120
FFT peak value - 0.039 0.126

In the first experiment (with increased frequency) the PI operates better

than the NNet. The combined system only leads to a small improvement

in the total rms deviation, since it is already close to the white noise level.

However, the peak at 0.06 Hz is further decreased as shown in Fig. 7.20.
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Figure 7.20: FFTs of the response of the PI controller, NNet and combined
controller to a 0.1 kV jitter at 0.06 Hz, tuned to a 0.1 kV jitter at 0.04 Hz.
The change in jitter frequency results in a 0.081 mm and 0.056 mm peak
when the control is operated by the PI controller (blue curve) and the NNet
(red curve), respectively. The combined controller (green curve) decreases
the residual peak to 0.039 mm. The results are listed in Table 7.1. Figure
adapted from [63].

For the second experiment (with increased amplitude), the NNet con-

troller and the PI controller (using the same gains as the first experiment)

show similar performance in terms of rms deviation. The combined con-
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troller gives improved performance, decreasing the total rms noise from

0.25 mm to 0.12 mm. Similarly, the peak value in the FFT is lower in the

combined controller (0.126 mm) than it is with the PI controller (0.177 mm),

or the NNet alone (0.165 mm).

The combined controller showed a reduction in the rms deviation and

the FFT peak value compared to the NNet or the PI controller alone. This

was the case for both a change in the frequency and amplitude. Even though

adding a PI controller requires more tuning of the system, it can easily be

re-tuned automatically when the control system is initialised. However, be-

cause of its limited performance at high frequency, the PI controller is only

capable of reducing low frequency jitter. The high frequency regime is then

left entirely to the NNet, and training in this frequency regime will require

special attention. One way to proceed consists of pre-training the NNet for

a wide range of frequencies and in the expected range of amplitudes that

might occur (this should be specified by the performance of the low level

feedback acting on each klystron separately). "Final" training of the net-

work can then be done using the latest recorded data, so that minor weight

adjustments can be made for specific frequencies.

7.5 Energy and bunch length control results at the

LCLS

7.5.1 Description of the experiment

The experiments conducted at the LCLS extended on the earlier work car-

ried out at the Australian Synchrotron. The principal objective was to test

the system for simultaneous control of the energy and bunch length. The

first experiment was carried out to confirm that the NNet is capable of op-

erating individual control of the beam energy and the peak current. To this

end, multi-frequency jitter was introduced in the phase and voltage of the

L0A section. The induced energy and peak current deviations were mea-

sured at the first bunch compressor (BC1), while the correction was applied

to the voltage and the phase of the L0B section. Due to the slow response

of the actuators of L0 and L1, the simultaneous control of the beam en-

ergy and peak current was performed using the L2 sections, powered by

six klystrons; namely, 24-1, 24-2, 24-3, 24-4, 24-5 and 24-6 (see Fig. 7.21).

Only the phases of klystrons 24-1, 24-2 and 14-3 were allocated for beam-

based control. The jitter was injected into the phases of klystrons 24-1 and

24-2, while the correction was applied to the phase of klystron 24-3. The

induced energy and peak current deviations were observed at the second

bunch compressor (BC2).
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Figure 7.21: Simplified layout of the LCLS Linac shown in Fig. 3.2. For indi-
vidual control of the beam energy and peak current, jitter is introduced into
the phase and the voltage of L0A, while the correction is operated using L0B;
the induced beam energy and peak current deviations are measured at BC1.
For simultaneous control, jitter is introduced into the phases of klystrons
24-1 and 24-2, while the correction is operated using the phase of klystron
24-3; the induced deviations in the beam energy and peak current are mea-
sured at BC2.

Unlike the Australian Synchrotron Linac, the Linac sections in the LCLS

are powered by several klystrons. In our study we will apply a change to all

the klystrons of a section simultaneously, except when using the L2 section

for the simultaneous control of the beam energy and peak current. Mea-

surements were also conducted to compare the performance of the PI con-

troller with the combined control system.

7.5.2 Collecting data for training

Machine data were acquired to determine an optimal network topology as

described in Sec. 7.4.3. The data set comprises records of the phase and

voltage of the L0A section, records of the horizontal beam position (mea-

sured at BC1) and peak current deviation (measured at BC1). A 3-frequency

jitter was induced in the phase and voltage of the L0A klystron, with fre-

quencies ranging from 0.1 Hz to 0.6 Hz. The horizontal deviation at BC1

varies from about -1.1 mm to 1.1 mm and the peak current ranges from

∼230 A to ∼330 A.
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7.5.3 Determination of the network structure

The number of hidden neurons and lagged inputs was determined follow-

ing the procedure developed for the Australian Synchrotron Linac described

in Sec. 7.4.3. For the individual control (either horizontal position or peak

current deviation), the optimal topology has 6 hidden neurons and 6 phase

lags of the L0A section with 6 voltage lags. For the simultaneous control ex-

periments (horizontal position and peak current deviation), the NNet com-

prises 8 hidden neurons, 8 voltage lags and 8 phase lags.

7.5.4 Results of real-time control application

Individual energy and bunch length control at BC1

First, the energy and peak current controls were evaluated individually. A

deviation was induced in the phase and voltage of the L0A section. It com-

prised 0.05 Hz, 0.1 Hz and 0.3 Hz components, with voltage amplitudes of

0.1 MV, 0.2 MV and 0.15 MV, respectively, and a phase amplitude of 0.5◦. The

control was operated over 1000 bunches at 5 Hz and the voltage of the L0B

section was used as the corrective actuator. Figure 7.22 shows the FFTs of

the induced perturbation (dashed red curve) and the corrected beam (solid

green curve).
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Figure 7.22: Results of individual energy control at BC1, measured in terms
of the horizontal deviation of the beam. A 3-frequency jitter (0.05 Hz, 0.1 Hz
and 0.3 Hz) was injected into the phase and the voltage of the L0A section
and corrected using the voltage of L0B. The dashed red curve shows the
FFT of the uncorrected positional deviation, while the green curve shows
the FFT of the positional deviation when the correction is operated by the
NNet. Figure adapted from [119].
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For the peak current, the same jitter amplitudes were introduced, while

the frequency components were increased to 0.1 Hz, 0.2 Hz and 0.6 Hz,

respectively. To operate the simultaneous control with the L0B voltage as

the energy actuator, the L0B phase was used as the peak current actuator.

Unlike the energy, the FFT of the peak current reveals a modulation (see

Fig. 7.23), which originates from the limited time response of the actuator.

This modulation will be discussed further in Sec. 7.5.4.
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Figure 7.23: Results of individual bunch length control at BC1, measured in
terms of the deviation in the peak current of the beam. A 3-frequency jitter
(0.1 Hz, 0.2 Hz and 0.6 Hz) was injected into the phase and the voltage of
L0A and corrected using the phase of L0B. The dashed red curve shows the
FFT of the uncorrected peak current deviation, while the green curve shows
the FFT of the peak current deviation when the correction is operated by
the NNet. Figure adapted from [119].

Limitations of the actuators

It was observed that jitter control was unsuccessful for frequencies above

0.6 Hz, when the L0B voltage was the actuator; control was unsuccessful

above 1 Hz when the L0B phase was the actuator. These limitations were

due to a combination of slow communication with the actuators (via chan-

nel access using Matlab) and the klystrons running close to saturation.

When saturation occurs, a delay is caused, since a large change in the

klystron input voltage is required to generate a small change in its output RF

amplitude. As a result, the klystron response becomes non-linear and the

voltage exhibits a slower response than the phase (see Fig. 7.24). Because

the computation of the correction (Eq. (7.8)) assumes linearity of the actua-

tor response, the calculated correction is under-estimated, leading to resid-

ual perturbations (i.e. perturbations due to incomplete corrections). This

effect is shown in Fig. 7.25, where the theoretical correction (obtained by

subtracting the uncorrected beam data from the NNet prediction) is plot-
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ted against the actual correction of a 3-frequency energy jitter induced in

L0A and observed at BC2. In this experiment all frequency components (0.2

Hz, 0.4 Hz and 1 Hz) had the same amplitude and the voltage of the L1 sec-

tion was used as the actuator. The amplitudes of the two lower frequency

components (0.2 Hz and 0.4 Hz) are larger than the background level due to

the klystron running in the saturation regime.

Figure 7.24: Time response of the phase and voltage of the LCLS Linac
1. The phase (upper plot) can respond to a 0.5 Hz square wave, whereas
the voltage (lower plot) is not able to follow a 0.2 Hz square wave. Figure
adapted from [119].

The slow response of the actuators, which in part is due to accessing

the actuators using Matlab, results in a delayed correction. In this situation

the system acts in feedback mode, which in turn results in poorer response

with increasing frequency. This effect is seen in Fig. 7.25, where the NNet

correction should have eliminated all frequency components (dashed green

curve), but where the FFT of the controlled beam still shows a peak at 1 Hz

(solid red curve). The travel time through the Matlab channel access layer

can also lead to a loss of information. This is illustrated in the phase record

(upper plot) of Fig. 7.24, which shows a triangular rather than rectangular

signal shape at t ≃ 7s due to missing data points.

In order to improve the communication channel, the Low Level RF (LLRF)

smoothing factor1 was increased from 0.4 (its nominal setting) to 1. Al-

though this helps with the phase actuators it does not lead to a significant

improvement in the amplitude because of saturation effects.

1The smoothing factor sets the percentage of the correction that is implemented in one
step. A smoothing factor of 1 means that the full correction (i.e. difference between the
current reading and the new set point) is applied in one step.
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Figure 7.25: Effects of klystron saturation and slow actuator response. The
voltage of L1 was used to correct a 3-frequency jitter induced in the phase of
L0A, which perturbs the horizontal position of the beam at BC2. The jitter
frequencies were 0.2 Hz, 0.4 Hz and 1 Hz. The dashed green curve shows
the FFT for the correction that should have been achieved at BC2 with the
NNet if the actuators were responding correctly, while the red curve shows
the FFT for the actual control. The lower frequencies (0.2 Hz and 0.4 Hz)
were almost suppressed, while the 1 Hz perturbation was not attenuated.
Figure adapted from [119].

As alluded to in Sec. 7.5.4, in some cases a modulation can be observed

in the FFT data. This modulation is due to the slow response of the actua-

tors and reading devices. Figure 7.26 (a) displays the record of a 0.2 Hz si-

nusoidal perturbation imposed on the L1 phase (dotted green line) and the

corresponding readback of the actuator (solid red curve). The latter con-

tains repeated hard steps showing that the actuator reading is not updated

frequently enough. The induced square waveform translates into a modu-

lation in the frequency domain as shown in Figs. 7.26 (b) and (c). The 0.2 Hz

modulation seen in the FFT corresponds to the period of the square wave-

form in Fig. 7.25. In the control results given in Sec. 7.5.4 (see Figs. 7.22

and 7.23), only the peak current shows such a modulation. This is because

the energy, unlike the peak current, is relatively insensitive to the changes

in the voltage of L0B. The implementation of the control system on local

control boards using C++ should ameliorate limitations with the actuator

speed.

Simultaneous energy and bunch length control at BC2

To overcome the slowness of the correcting actuators at L0 and L1 (located

before BC1), a simultaneous energy-peak current experiment was performed



134 BUILDING A NNET HYBRID FEEDFORWARD - FEEDBACK CONTROL SYSTEM

20 40 60 80 100 120 140

−22

−21.5

−21

time (s)
φ L1

 (
°)

(a)

 

 
L1 phase readback
L1 phase setpoint

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

frequency (Hz)

|d
φ L1

| (
°)

(b)

 

 

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.05

0.1

0.15

0.2

frequency (Hz)

|d
φ L1

| (
°)

 

 

(c)

Figure 7.26: Set point, readback records and FFTs of the phase of the L1
section ϕL1. (a) Induced jitter with frequency 0.2 Hz and amplitude of 0.2◦.
(b) FFTs for the induced jitter shown in (a). (c) FFTs for an induced jitter
with 1 Hz and an amplitude of 0.2◦. Figure adapted from [119].

at BC2, using the klystrons in the L2 section. Three out of the six klystrons in

this section (i.e. 24-1, 24-2 and 24-3) were allocated for beam-based control

and their phases manipulated. These klystrons respond much faster, since

they are controlled in an open loop mode and are therefore much better

candidates for high frequency jitter experiments. A 3-frequency jitter was

injected into the phase of klystron 24-1, comprising 0.3 Hz, 0.4 Hz and 0.6

Hz components. The phases of klystrons 24-2 and 24-3 were chosen as cor-

rective actuators for the energy and peak current, respectively. Figure 7.27

shows successful suppression of the perturbation for both the energy and

the peak current.

PI versus NNet at BC2

Figure 7.28 compares the performance of the NNet feedforward controller

with the conventional PI controller. The NNet was re-trained for each fre-

quency and the PI gains also re-tuned for each frequency. First, the sum

range R (i.e. the number of past bunches) in the third term on the right

hand side of Eq. (7.8) was chosen such that the correction does not result in
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Figure 7.27: Simultaneous control of the energy and bunch length, mea-
sured in terms of the deviation of the beam position (upper plot) and peak
current (lower plot), respectively. The three induced frequencies, 0.3 Hz, 0.4
Hz and 0.6 Hz (dashed curves) are successfully suppressed (solid curves) by
the NNet controller. Figure adapted from [119].

excitation of higher frequencies when operating the control. The residual

rms deviation was evaluated by scanning the Pg and Ig gains from 0.1 to 0.8

in order to find an optimal combination. Since the proportional gain tends

to make the system unstable it was not used. Optimal integral gains ranged

from 0.2 to 0.4 for the chosen frequency range 0.6 Hz - 2.4 Hz.
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Figure 7.28: Comparison of the PI controller (blue curve) versus the NNet
controller (green curve) for energy control at BC2. The jitter was induced
in the phase of L1 and the control was operated using the phase of klystron
24-1. The dotted red line indicates the white noise level observed when no
jitter was induced. Figure adapted from [119].
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According to Fig. 7.28 both systems have similar operational performance

at low frequencies (i.e. below 1.5 Hz). The dashed red line represents white

noise, which fluctuates between 0.55 mm and 0.65 mm. From about 1.5 Hz

the NNet starts to show better performance. The initial induced jitter had a

rms amplitude of 0.98 mm.

System adaptability and dynamic response matrix

Until now it was assumed that the machine remained in a fixed state (in

terms of the phase and voltage of the klystrons), and the response matrix

was measured for that particular state. The response matrix was therefore

static and re-measured for different machine states. However, during real-

time operation, the machine parameters will change, due to phase drifts,

resets, or in order to meet different beam energy or peak current require-

ments. One way to deal with this is to record enough data to train the NNet

to recognise the machine state and reconstruct the related response matrix.

In practice this approach is not feasible as there are too many parameters

on which the machine state depends. To address this problem, we intro-

duce a dynamic response matrix, in which the elements are re-calculated

with the help of a model, when the settings of the klystrons change. The

model uses the FMS code (See Chapter 5) that computes the main longi-

tudinal dynamics comprising the RF acceleration, compression and wake

fields, as discussed in Chapter 4.

To test the model, the phase of klystron 24-2 was scanned from 0◦ to

360◦. The measured and modeled energy and peak current at the second

bunch compressor are shown in Figs. 7.29 and 7.30, respectively.

Figure 7.29 shows good agreement between the model and the mea-

sured positional deviations. Differences appear when the deviation is large,

i.e. more than ±12 mm. This is due to BPM saturation when the beam

is away from the pipe axis, which translates to an under-estimate of the

deviation. The theoretical and real-time response of the horizontal beam

position to a change in the phase of klystron 24-2 is given by the slope

dxBC2/dϕ24−2 of the curves in Fig. 7.29.

Figure 7.30 shows the modeled and measured peak current. Despite

good qualitative agreement between the curves, the model produces a max-

imum of 3 kA when the machine actually reaches 5 kA. Consequently, the

corresponding slope dIBC2/dϕ24−2 differs significantly between the model

and the machine (see Fig. 7.31).

To compensate for inaccuracies in the correction, for example, due to

mis-prediction of the model in the non-linear region of the BPM, the fol-

lowing algorithm was used for online operation. Every 200 bunches the
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Figure 7.29: Modeled (dashed blue curve) and measured (solid green curve)
deviation in the horizontal position of the beam at BC2 as a function of the
phase of klystron 24-2. Figure adapted from [119].
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Figure 7.30: Modeled (dashed blue curve) and measured (solid green curve)
peak current of the beam at BC2 as a function of the phase of klystron 24-2.
Figure adapted from [119].

FFT of the energy and/or the peak current are/is computed. If the am-

plitude of the jitter is above the white noise threshold, the response ma-

trix element is modified to further decrease the residual perturbation. To

determine whether to increase or decrease the response matrix element, a

slight change is first implemented. Next we take the corresponding sign and

amplitude of the first iteration into account and then make further adjust-

ments.
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Figure 7.31: Theoretical (blue curves) and real-time machine response (red
curves) for the horizontal position of the beam (upper plot) and peak cur-
rent deviations (lower plot). Figure adapted from [119].

In our experiments the phase of klystron 24-2 is first set to 60◦, where,

according to Fig. 7.31 (upper plot) the response of the horizontal position

of the beam to the phase of klystron 24-2 is dxBC2/dϕ24−2 = 0.32 mm/◦. The

NNet is then trained to recognise a single 0.6 Hz frequency energy jitter in-

troduced in klystron 24-1. The phase of klystron 24-2 is then changed to

300◦, where dxBC2/dϕ24−2 = −0.3 mm/◦(according to Fig. 7.31). To test the al-

gorithm, we assume an incorrect prediction of the model and initialise the

dynamic matrix element to dxBC2/dϕ24−2 = −0.1 mm/◦. In this case the re-

sponse is sufficiently different from the real machine response so that the

full correction cannot be achieved. The algorithm then searches for adjust-

ments that reduce the peak in the FFT to the background noise level. Fig-

ure 7.32 illustrates the process. The algorithm first applies a small positive

change to dxBC2/dϕ24−2 from -0.1 mm/◦ to -0.08 mm/◦. As the 0.6 Hz peak of

the second FFT (solid red curve) is higher than the first (dashed blue curve),

the algorithm implements a correction of opposite sign. The difference in

amplitude between the first two FFTs is also taken into account by the algo-

rithm to compute the next correction.

This experiment showed that inaccuracies in the correction, due to er-

rors in the prediction of the beam energy deviation, or in the estimate of the

response matrix elements, can be successfully corrected by a simple online

algorithm. The method can take a few thousands bunches before the cor-

rection is completed. However, if the algorithm operates at 120 Hz (beam

repetition rate), this is only a matter of seconds.
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Figure 7.32: FFT of the deviation of the beam position at BC2 for real-time
adjustments of the response of the beam position to the phase of klystron
24-2. A change in the phase of klystron 24-2 (from 60◦ to 300◦) causes a
change in the response of the beam position to this actuator, causing a
residual jitter (blue curve). The algorithm makes a first attempt to adjust
this response, leading to an increased deviation in the beam position (red
curve). A second attempt decreases the amplitude of residual deviation
(dotted black curve), while the last attempt (green curve) brings the resid-
ual amplitude of the deviation down to the white noise level. Figure adapted
from [119].

7.6 Discussion

In this chapter we discussed how to minimise residual jitter using a feedfor-

ward system that anticipates deviations for fixed settings of the machine.

The experiments performed at the Australian Synchrotron demonstrated

the ability of the NNet to predict perturbations occurring in the klystrons;

this provides a useful augmentation of feedforward control by a PI con-

troller. Similarly, the results obtained at the LCLS have shown that the NNet

hybrid controller can simultaneously operate the control of the energy and

bunch length. A comparison of the combined feedback-feedforward con-

troller with a simple PI controller also showed enhanced performance of

the combined control system.

It was also shown that it is possible to derive the response matrix ele-

ments of the machine using a simulation code (LiTrack, Elegant and the

FMS). However, because the response matrix elements cannot be derived

with a high level of precision, it is necessary to adjust the matrix elements

to ensure the accuracy of the control. This can be achieved with a second

NNet whose output would slightly modify the response matrix elements.

A possible structure would consist of providing the NNet with records of
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the response matrix elements and the corresponding residual perturbation

in the beam parameters. The outputs would be the values of ∆Mi j, corre-

sponding to the correction to the response matrix elements Mi j.

Current limitations in testing the correction at higher frequencies are

due to the slow response of the actuators via the Matlab Process Variables

(PVs). To study the performance of the system at higher frequencies will

require the algorithm to be implemented on the low level RF control units

using compiled C/C++ code.



Using neuro-evolution to
build an adaptive control
system

8

8.1 Motivation and objectives

Previous chapters demonstrated how NNets can be used to predict and con-

trol perturbations in an electron beam. However, as discussed in Chapter 7,

there is a need to develop a system that can take into account the dynamic

response matrix. Ideally, it would be desirable for the system to continu-

ously learn from its interaction with the environment. This would avoid re-

training the NNet, should the jitter conditions change. To do this, we con-

sider beam stabilisation as an optimisation problem, where the aim is to

minimise the deviation in the beam parameters from their desired settings.

To proceed, we develop an online optimisation tool for beam tuning (i.e.

optimising the beam parameters by adjusting the settings of the accelera-

tor) and discuss its adaptation to control problems.

Implementing an online beam tuning tool is also of great interest for FEL

operation. As synchrotron radiation has a wide range of wavelengths; spe-

cific spectral components can be selected using monochromators for dif-

ferent beamline applications. However, in SASE FELs, a single wavelength

is produced by Self-Amplified Spontaneous Emission (SASE) occurring as

the beam passes the undulator magnets. The production of different wave-

lengths therefore requires re-optimisation of the linear accelerator param-

eters. Currently, operators optimise the machine parameters to meet users’

requirements. This is accomplished by loading the closest known configu-

ration and making adjustments to the machine settings. This procedure is

tedious and can be very time consuming.

The present chapter shows how to build an optimisation tool based on

an Artificial Intelligence (AI) system that learns the response of beam pa-

rameters to actuators. The system must be computationally inexpensive

and must not require prior knowledge of the machine, except for limits

placed on the actuators. We will show how such an AI system can be used to

141
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operate feedback tasks. The system discussed in this chapter can perform

optimisations in a 2-dimensional search space; however, its generalisation

to an N-dimensional search space will be discussed in Chapter 9.

8.2 The approach

The approach used here is inspired by the work of Miikkulainen et al. [86].

These authors use NNets which are genetically evolved to create "game

agents" that can learn from their environment (see Chapter 6). The game

agents learn to develop skills in shooting, avoiding enemies and navigat-

ing in a maze. Here we make parallels between the evolution of such a

game agent in a battlefield and the evolution of an "optimisation agent"

in a search space. The optimisation agent must develop skills to navigate

in the search space to find the global maximum of an objective function1,

while staying within specified boundaries (i.e. between the lower and up-

per limits of each machine parameter in the search space). This is similar to

a game agent that must navigate in the battle field and develop skills to win

in combat. The basic idea is to implement an intelligent system that can

mimic the actions an operator would take to optimise beam parameters in

real-time, when the only available knowledge of the system is the actuators’

limits. In what follows, the optimisation agent is equipped with sensors that

will serve to provide inputs to the NNet. The decisions the agent makes (i.e.

change in the actuators’ settings) are dictated by the NNet outputs.

To perform an optimisation one would explore the local search space

by making small changes, which tend to improve the value of an objec-

tive function. Moreover, one would choose to explore a given region of the

search space based on past trials. This region is changed when a local max-

imum is encountered that is not optimum2. We can summarise the actions

of an operator as follows:

1. Ensure that the machine remains within the actuators’ limits;

2. Move in the direction that is most likely to increase the value of the

objective function;
1In order to solve a control problem or beam tuning optimisation problem, we use an

objective function H, which is a function of the parameters to be optimised, subject to cer-
tain constraints.

2To determine whether a solution is optimum, one must set a goal (or value) for the
objective function H. For example, in the case where the transmission T (i.e. the number
of particles transmitted from the start to the end of the accelerator) is to be optimised (see
Sec. 8.4), we could set 95% as a goal. In this case the value of the objective function must be
T ≥ 95% (since H = T ).



8.2 THE APPROACH 143

3. Jump to another location in the search space when the optimisation

agent is trapped at a local maximum.

The goal is to evolve a system with these characteristics. In order to en-

sure that each of the three actions is correctly addressed, the problem is

decomposed into three distinct parts, each of which is handled by a sub-

structure of the NNet. This is similar to the structure of the brain, where

different regions have different functionalities. Our three structural parts

are called: the boundary navigation substructure, the performance naviga-

tion substructure and the local maximum avoidance substructure. The first

and second substructures handle actions 1 and 2, while actions 3 is han-

dled by the third substructure. Because not crossing boundaries is essen-

tial, the boundary navigation substructure will take over the two other sub-

structures whenever the optimisation agent is within a chosen threshold

distance from a boundary. The performance navigation substructure is oth-

erwise the active substructure, i.e. the response of the optimisation agent

at a given time step is given by only one of the three substructures, which is

referred to as the "active" substructure. The local maximum avoidance sub-

structure is only activated when the density of trial points exceeds a given

threshold. When this occurs, re-localisation of the optimisation agent’s po-

sition within the whole search space takes place. This decision process is

illustrated in Fig. 8.1.

Figure 8.1: Decision processes of the optimisation agent. Before the op-
timisation agent takes a step in the search space, it verifies that it is not
trapped at a local minimum; this task is handled by the the local maximum
avoidance substructure. If not, it checks for the proximity of boundaries. If
a boundary is not in the local neighborhood (i.e. within a given radius of
the optimisation agent), the agent’s next step is based on the decision of
the NNet’s performance navigation substructure. Otherwise, the next step is
calculated by the boundary navigation substructure.
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Each substructure is discussed in detail below, but first, we must estab-

lish the basic parameters that define the state of the optimisation agent in

the search space; these parameters are common to all substructures. For vi-

sualisation purposes the system is depicted using a two-dimensional search

space. Figure 8.2 (a) shows the optimisation agent’s position in the search

space at step k of a time series k ∈ [1..N]. The state of the agent is defined by

its position P⃗k = (xk, yk) (corresponding to the values of actuators X and Y)

and the angle θk, giving the direction faced, as illustrated in Fig. 8.2 (a).

For the agent to find optimum settings, the outputs of the NNet must

be related to the next position in the search space, P⃗k+1 = (xk+1, yk+1). In

analogy with a game agent, we limit the step size that can be taken by the

optimisation agent. For this reason it is convenient for the outputs of the

NNet to correspond to "move forward" and "turn" actions from the current

position P⃗k in the search space. The NNet’s outputs will be denoted by rk

and ϕk, corresponding to the step size and direction, respectively, as illus-

trated in Fig. 8.2 (a). With this definition, the new state parameters of the

optimisation (at step k + 1) can be expressed in terms of the NNet’s outputs

ϕk and rk:


xk+1 = xk + rkcos(θk + ϕk)

yk+1 = yk + rk sin(θk + ϕk)

θk+1 = θk + ϕk.

(8.1)

Note that the outputs of the NNet range from -1 to 1 for the sigmoid ac-

tivation function used in NEAT. In practice, the outputs of the NNets need

to be re-scaled such that ϕk ∈ [ϕmin, ϕmax] and rk ∈ [rmin, rmax]. In our study we

chose ϕk ∈ [0, π/2], with rmin and rmax corresponding to 2% and 5% of the size

of the search space. For example, if the lower and upper values of an actu-

ator are denoted by Xmin and Xmax, respectively, then rmin = 0.02(Xmax − Xmin)
and rmax = 0.05(Xmax − Xmin). The search aims to explore the local neighbor-

hood from the current location, rather that the whole search space at once

(i.e. the value of the actuators can only by changed by a limited amount at

each step). This principle is key to the methodology since it reduces dra-

matically the amount of data that must be considered and therefore the

computation time at each iteration.



8.3 THE THREE SUBSTRUCTURES OF THE NNET 145

8.3 The three substructures of the NNet

8.3.1 Substructure one: boundary navigation

The necessary inputs

First, it is necessary to determine the inputs that must be provided to avoid

crossing boundaries. Just as a game agent needs to detect the presence of

a wall, an optimisation agent must have sensors that detect the proximity

of boundaries. Our optimisation agent is equipped with five sensors to de-

tect the proximity of boundaries; one in front, two at ±45◦ (left and right)

and two at ±90◦ (left and right) as depicted with blue arrows in Fig. 8.2 (b).

Each sensor provides the NNet with an input ranging from 0 (when there

is no boundary detected) to 1 (when the current position is already on the

boundary). The ith input at step k, denoted by Ii,k (with i = 1, 2, .., 5 depicted

in Fig. 8.2 (b)) is given by:

Ii,k = 1 − di,k

R
, (8.2)

where di,k is the distance of the optimisation agent in the search space to

the boundary in the direction of the ith sensor at step k (see Fig. 8.2), and R is

the maximum distance at which a boundary can be detected by the sensor.

Figure 8.2: (a) State parameters of the optimisation agent in a 2D search
space. At step k the state of the optimisation agent is defined by its posi-
tion (xk, yk) in the search space (shown with a red dot) and the direction it
is facing, specified by the angle θk (indicated with the brown arrow). The
new position P⃗k+1 is calculated from the NNet’s outputs ϕk+1 and rk+1, giving
the new direction and step size (see Eq. (8.1)). (b) The NNet receives inputs
proportional to the distance to the boundary, in front, at ±45◦ (on the left
and right) and ±90◦ (on the left and right). For example, the distance of the
game agent to the boundary in the direction of sensor number 2, and at step
k is d2,k. Figure adapted from [120].
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Building a fitness function

In what follows we describe the fitness function discussed in Sec. 6.3.3, which

is implemented using a genetic algorithm3 to evolve the boundary-based

substructure. We need to consider situations that can be encountered by

the optimisation agent during its navigation through the search space. At

each step, the new position can be classified as:

(A) Away from all boundaries (within the search space);

(B) Facing a boundary (in this case only input I3,k is non-zero);

(C) Close to, but not facing a boundary;

(D) Facing a corner (intersection of two boundaries); or

(E) Anywhere outside the region defined by the upper and lower limits of

the search space parameters, i.e. outside the boundaries.

For cases (A) to (D), the position of the optimisation agent is contained

within the boundaries, otherwise we must consider case (E). The fitness

function takes these different cases into account and rewards or penalises

the actions of the NNet accordingly, as discussed in Secs. 6.3.3 and 6.2.3. To

do this, we consider what decisions an operator would make in the above

situations and formulate them to attribute reward and penalty units for the

agent’s actions. At each step taken by the optimisation agent, the NNet re-

ceives a reinforcement signal ranging from -1 to 1, which reflects how well

the agent has performed in the above situations. Since case (A) is han-

dled by the performance-based substructure, the boundary navigation sub-

structure must handle situations (B) to (E) only.

Let us first consider the presence of a boundary detected ahead (case

B). This case corresponds to inputs I1,k = 0, I2,k = 0, I4,k = 0, I5,k = 0 and

I3,k , 0 (inputs at the kth step in a time series defined by Eq. (8.2)), i.e. only

the sensor pointing in the direction θk detects a boundary. To make sure

the region close to the boundary is explored (the agent must not cross a

boundary but must be able to get sufficiently close to it), the optimisation

agent should turn through an ideal angle ϕid,k, proportional to its proximity

to the boundary. The ideal angle will be zero when the boundary is detected

at a distance d3,k = R from the agent and equal to ϕmax (the maximum angle

3We evolve the boundary navigation substructure of the NNet using a genetic algorithm,
specifically using the NEAT technique discussed in Sec. 6.3. This method encodes the struc-
tures of the NNets and includes mutations, such as adding or removing connections and
nodes from the NNet.
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the agent can turn through) when the agent is already on the boundary, i.e.

d3,k = 0. With these conditions, the ideal angle at step k is given by:

ϕid,k =
(

1 − d3,k
R

)
ϕmax. (8.3)

Now let us consider how to reward and penalise the NNet, according

to the actions taken by the optimisation agent. A positive reward unit4 is

assigned if the agent turns though the ideal angle ϕid and a negative reward

unit (penalty) is given when the difference between the ideal angle ϕid,k and

the angle ϕk taken by the agent is equal to ϕmax. According to this, the reward

or penalty received by the NNet in relation to the angle it turns though is

given by:

fB,ϕk = 1 − 2||ϕk| − ϕid,k|
ϕmax

, (8.4)

where ϕid,k is the ideal angle specified by Eq. (8.3). Note that ϕk can

be of either sign, which is reflected by using the absolute value of ϕk in

Eq. (8.4). This is because the optimisation agent can turn left or right, since

no boundary is detected on either side. There is therefore no reason to re-

ward/penalise the agent for turning in one direction rather than the other.

The NNet must also be rewarded or penalised for the step size it takes.

Intuitively, the ideal step size corresponds to a maximum rk = rmax when

d3,k = R and a minimum rk = rmin when d3,k = 0. We can write the ideal step

size as:

rid,k =
d3,k

R
(rmax − rmin) + rmin. (8.5)

The optimisation agent should also be given a positive reward unit when

it takes a step of ideal size (rk = rid,k); likewise a negative reward unit should

be given when the difference between the size of the step rk and the ideal

step rid,k is equal to rmax − rmin. The reward or penalty received by the NNet

for the step size it therefore given by:

fB,rk =
(

1 − 2|rk−rid,k |
rmax−rmin

)
. (8.6)

The reward or penalty received by the NNet at step k consists of the re-

ward received for the angle through which the optimisation agent turns and

4In reinforcement learning (see Chapter 6), the NNet is rewarded by receiving positive
units or penalised by receiving negative units. For example a game agent would score -2 for
being shot by an enemy and +4 for killing an enemy. The sum of individual actions gives the
score of the game agent at the end of its evaluation. In the above case the NNet would score
two reward units.
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the size of the step it takes. When equal weights are given to both contribu-

tions, the reward or penalty received by the NNet is given by (using Eqs. (8.4)

and (8.6)):

fB(k) =
1
2

fB,ϕk +
1
2

fB,rk (8.7)

=
1
2

(
1 − 2||ϕk |−ϕid,k |

ϕmax

)
+

1
2

(
1 − 2|rk−rid,k |

rmax−rmin

)
,

where ϕmax = π/2 is the maximum angle the optimisation agent can turn

at each step (from its current direction θk). A boundary is detected on one

side when the sum of the inputs exceeds the sum of the inputs on the other

side. Moreover, either I1,k or I5,k must be zero. If this is not the case and d3,k =

0 the agent is on the boundary and the reward will be computed according

to Eq. (8.7). If d3,k , 0 the agent encounters a corner and case (D) is relevant.

The following conditions define the presence of a boundary on either the

left or the right:  Le f t : I1,k + I2,k > I4,k and I5,k = 0
Right : I2,k < I3,k + I4,k and I1,k = 0.

(8.8)

When a boundary is detected on either the left or right (case C), the NNet

receives a reward when the optimisation agent turns away from the bound-

ary and a penalty when it turns towards it. We express this by introducing

the ideal angle, which is proportional to the distance the optimisation agent

is from the boundary. The ideal angle is expressed as:

ϕ⊥id,k = ϕmax
(

1 − d⊥,k
rmax

)
, (8.9)

where d⊥,k is the distance perpendicular to the boundary from the cur-

rent position and rmax is the maximum step size the optimisation agent can

take. At step k the reward or penalty can be expressed as:

fC(k) = −δ0,DT
|ϕk|
ϕmax

+ δ1,DT

(
1 − |ϕk−ϕ⊥id,k |

ϕmax

)
, (8.10)

where DT = 0 if a turn is taken towards a boundary and DT = 1 other-

wise; here δz,DT (z = 1, 0) is the Kronecker delta symbol.

In the case of a corner (case D), the most appropriate response can be

characterised by a maximum angle ϕk = ϕmax, in combination with a min-

imum step size, since turning through a small angle with a large step size

increases the chances of falling outside the boundaries. If a corner is en-

countered at step k, the reward or penalty is given by:



8.3 THE THREE SUBSTRUCTURES OF THE NNET 149

fD(k) =
3
4

(
2 |ϕk |
ϕmax
− 1
)
+

1
4

(
1 − 2 rk−rmin

rmax−rmin

)
. (8.11)

Intuitively, turning through an angle close to the ideal angle (8.9) should

have more importance than the exact step size; consequently we introduce

the empirical factors 3
4 and 1

4 in Eq. (8.11), which assign three times more

importance to the angle compared to the step size. The agent is free to turn

either left or right, which is accounted for by using the absolute value of ϕk

in Eq. (8.11).

Finally, when case (E) is relevant, the NNet receives a penalty unit (out(k) =
1). If the optimisation agent remains within the boundaries (out(k) = 0), the

NNet will receive a reward unit. This can be expressed as follows:

fE(k) = (−1)δ1,out(k) . (8.12)

At each step in the search space, the position of the optimisation agent

is classified according to cases (A),(B),(C),(D) or (E). Therefore, the fitness

Findiv. of a NNet (or individual5) over a number of steps is equal to the av-

eraged sum of the fitnesses for each case. Because case (A) does not have

any reward or penalty associated with it (since no boundary is detected), its

contribution to the fitness of an individual over any number of steps is zero.

The fitness function can be expressed by combining Eqs. (8.7), (8.10), (8.11)

and (8.12) to give:

Findiv. =
b

N f ront

N f ront∑
n f=1

fB(n f ) +
c

Nside

Nside∑
ns=1

fC(ns)+

d
Ncorner

Ncorner∑
nc=1

fD(nc) +
e

Nout

Nout∑
no=1

fE(no), (8.13)

where N f ront is the number of times a boundary is faced (case B), Nside

is the number of times a boundary is detected but not faced directly (case

C), Ncorner is the number of times a corner is faced (case D), and Nout is the

number of times the optimisation agent steps outside the boundaries of

the search space (case E). The corresponding weighting factors b, c, d and

e take values between 0 and 1 and can be adjusted to enhance the impor-

tance of a certain behavior. For example, it is more important to remain

within boundaries than to take the ideal turning angle when facing a cor-

ner; therefore we choose e > d. Also, since the fitness ranges from −1 to 1,

we have b + c + d + e = 1, and each term in the sum ranges from −1 to 1. In

5In Sec. 6.3, we define an individual as a NNet in a population, which is evolved using
the NEAT technique.
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what follows we describe the different terms and their importance in more

detail. Introducing Eqs. (8.7), (8.10) and (8.12) into Eq. (8.13), the fitness

function of an individual is given by:

Findiv. =
2b

N f ront

N f ront∑
n f=1

[
1
2

(
1 − 2||ϕk |−ϕid,k |

ϕmax

)
+ 1

2

(
1 − 2|rk−rid,k |

rmax−rmin

) ]
+

c
Nside

Nside∑
ns=1

[
−δ0,DT

|ϕk |
ϕmax
+ δ1,DT

(
1 − |ϕk−ϕ⊥id,k |

ϕmax

) ]

+
d

Ncorner

Ncorner∑
nc=1

[
3
4

(
2 |ϕk |
ϕmax
− 1
)
+ 1

4

(
1 − 2 rk−rmin

rmax−rmin

) ]
+

e
Nout

Nout∑
no=1

(−1)δ1,out(k) .

(8.14)

Running NEAT

What level of fitness should an individual achieve in order to be consid-

ered successful in a navigation task? Whilst the fitness function expressed

in Eq. (8.14) describes the "ideal" behavior it is not necessary to achieve a

fitness of 1 to succeed in a navigation task. In fact, the main goal is to re-

main within the boundaries at each step. If this criterion can be satisfied,

regardless of the starting point (x0, y0) and direction θ0 in the search space,

the NNet structure is functional. For a number of configurations Ncon f of the

starting points (x0,y0) and angles θ0, the sum of reward units accumulated

by the NNet for case (E) must satisfy the condition:

Ncon f∑
nt=1

fE(nt) = e. (8.15)

Thus, a NNet is successful as long as the condition (8.15) is met. The

case where Findiv. < e can occur when the sum of the contributions from

the terms b, c and d in Eq. (8.14) is negative. This happens when, for exam-

ple, a NNet accumulates negative rewards because the optimisation agent

turns towards a boundary instead of turning away. Whether the optimisa-

tion agent finds the ideal angle to turn through when it encounters a bound-

ary, or corner, is therefore not the key criterion, but an indication of the fit-

ness of the NNet (i.e. the fitter the NNet the more the optimisation agent

will turn through the ideal angle with the ideal step size). In order to avoid

a NNet getting "lucky", because the optimisation agent never has to avoid
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facing a boundary or a corner, it is necessary to operate the selection over

different starting points and angles. The fitness of an individual tested over

Ncon f is defined as the average of the fitnesses obtained for each configura-

tion, i.e.

Findiv =
1

Ncon f

Ncon f∑
nt=1

Findiv.(nt). (8.16)

In our evaluation the optimisation agent is typically required to start

from 40 different locations in the 2D search space (the search space is nor-

malised such that its values range from 0 to 1 for each parameter). These

start locations were selected such that the optimisation agent is located

close to a boundary or corner at the start of its evaluation. The coordi-

nates (x0, y0) of the chosen start locations are given by four sets of ten points

each: (x0 = 0.05, y0 = b(l)), (x0 = 0.95, y0 = b(l)), (x0 = b(l), y0 = 0.05) and

(x0 = b(l), y0 = 0.095), where b(l) is the lth element of the coordinate vec-

tor b = [0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95]. For each start

position, the start angle θ0 was chosen randomly.

Simulation results

In this section we present results that were obtained when NEAT was eval-

uated using two different approaches. First, we evolve the NNet from the

knowledge-based (KB) structure illustrated in Fig. 8.3 using the "if" build-

ing block described in Sec. 6.5. Only the NNet’s weights are evolved with

NEAT. Second, we evolve a NNet from a minimum structure (without any

hidden neurons). In this case the initial NNet is fully connected, i.e. each

node in the input layer is connected to all output nodes.

When the knowledge-based NNet structure was evolved, we found that

even with a single configuration and one generation, it is possible for the

optimisation agent to remain within the boundaries at each step. NEAT was

run nine times for populations containing between 100 and 500 individuals;

for each run the corresponding percentages of successful NNets are listed

in Table 8.1. The percentage of NNets capable of accomplishing the task,

ranges from 1.2% to 1.7%. The fact that some individuals in the first gener-

ation remain within the boundaries indicates that the structure of the NNet

is already operational, i.e. there is no need to evolve the number of hidden

nodes and their connections.

NEAT was then run five times to evolve 200 individuals over 800 gener-

ations and five times to evolve 700 individuals over 800 generations. These

numbers were chosen so that the smaller population ensures initial topo-
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Table 8.1: Percentage of individuals in the initial population of NNets for
which the optimisation agent successfully remains within the boundaries.
During each test the optimisation agent is required to detect a boundary
100 times.

Num. Individuals 100 150 200 250 300 350 400 450 500
Success rate [%] 1.20 1.13 1.60 1.67 1.23 1.34 1.25 1.20 1.36

logical diversity, while the larger population was not significantly more com-

putationally intensive. The number of generations was chosen to ensure

that the populations have enough time to evolve their structure. The max-

imum fitnesses are listed in Table 8.2. For each run, the NNets were evalu-

ated with four configurations (i.e. starting position and angle) correspond-

ing to the optimisation agent facing each corner. According to Table 8.2,

increasing the number of individuals in the initial population increases (on

average over the five runs) the fitness from 0.69 to 0.71. The maximum fit-

ness varies slightly between runs, but is consistently between 0.70 and 0.74.

An example of a typical run is given in Fig. 8.4 (blue curve) and shows that

most of the improvement in fitness is achieved within the first 100 to 200

generations. Figure 8.5 shows a typical path followed by an optimisation

Figure 8.3: Knowledge-based structure of the NNet exploiting the "if" struc-
ture described in Sec. 6.5. The five inputs (nodes 1 to 5) are calculated ac-
cording to Eq. (8.2). The two outputs correspond to the "turn" and "move
forward actions" of the optimisation agent. This structure is inspired by the
structure used for the NERO video game [121].
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agent navigating within the 2D search space. As one can see from this fig-

ure the optimisation agent does not follow a straight line when it is away

from boundaries. This is due to a non-zero bias for the "turn" output of the

NNet.

Table 8.2: The fitnesses attained for five runs of NEAT over 800 generations
with the knowledge-based structure. An increase in the number of indi-
viduals in the initial generation shows a slight improvement in the fitness.
Further, this improvement is only achieved when the NNet is evolved over
a larger number of generations.

200 Individuals 700 Individuals

Run Fitness Generation Fitness Generation

1 0.67 207 0.70 588
2 0.70 154 0.74 915
3 0.71 775 0.70 827
4 0.72 190 0.72 844
5 0.67 687 0.70 573

Average: 0.69 403 0.71 750
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Figure 8.4: Evolution of fitness through generations for the knowledge-
based structure and the minimal structure. NEAT evolved the weights of
200 individuals over 800 generations for the KB structure (blue curve). The
structure of 300 individuals was evolved over 150 generations for the mini-
mal structure (red curve).

In the second approach NEAT was run five times. The initial population

contained 300 individuals that were evolved over 150 generations. These

numbers were chosen based on the time required to perform the simula-

tions (a typical run takes around 20 hours) and the fact that most of the
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Figure 8.5: Example of a NNet succeeding in a navigation task. This utilised
the knowledge-based structure. The arrows show the direction in which a
boundary is detected. The search was started from the center of the search
space at (0.5,0.5). Figure adapted from [120].

fitness improvement appears within the first 100 to 200 generations. The

number of individuals was chosen to ensure topological diversity, while

the number of generations was limited to 150 as the computation time in-

creases rapidly with generational number, i.e. the number of connections

and nodes in the NNet increases at each generation. In this approach the

whole structure is evolved, which results in the appearance of species6 with

more complex structures, and therefore an increase in the computation

time to evaluate their performance. Table 8.3 presents results obtained for

the five runs.

Figure 8.6 shows a typical structure obtained with NEAT. After 34 genera-

tions a fitness of 0.65 was achieved (see Fig. 8.4). The initial population (first

generation) of NNets had no hidden neurons; all inputs and the bias were

connected to both output neurons. During evolution, apart from adjusting

the weights of the existing connections, NEAT made two structural modi-

fications. First, a hidden neuron (node 9 in Fig. 8.6) was added to connect

the "boundary ahead" input node (node 1) to the "move forward action"

(node 8). In this figure the corresponding connections are shown in black.

Because the inputs range from 0 to 1 and the hidden node is connected to

a bias, the hidden node’s output will necessarily be below 0.75, according

to the definition of the sigmoid transfer function (Sec. 6.2). Moreover, the

connection of the hidden neuron to the output node also has a weight that

6Every individual in a population of NNets is assigned to a "species" (see Sec. 6.3.2)
based on topological similarities (i.e. individuals of a species have similar numbers of con-
nections, nodes, weights, etc).
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ranges between 0 and 1. This structure therefore acts as a "moderator" that

decreases the step size (output rk) taken by the optimisation agent when

a boundary is detected ahead. Evolution chose this structure because the

optimisation agent tends to be more at risk of crossing a boundary when it

directly faces it. In this way, the optimisation agent is given more time to

proceed in a different direction.

Figure 8.6: Structure evolved with NEAT. The gray connections are already
present in individuals in the initial generation. The black connections, as
well as node 9, were added by NEAT. All initial connections were unchanged
by NEAT, except for the connection from node 6 (bias) to node 8 (move for-
ward output), which was removed.

NEAT also de-activated the connection from the bias to the "move for-

ward" output; whereas the connection from the bias to the "turn action"

remains active. This evolution can be interpreted using the expression for

the fitness function. When navigating within the search space, boundaries

are most likely to be classified as being on the side (case C) or at a corner

(case D), rather than being in front (case B); the condition for a boundary

to be ahead is that only node 1 in Fig. 8.6 has a non-zero input. Therefore,

the third term on the right hand side of Eq. (8.14) will have the most in-

fluence in the evolution of the NNet’s structure. The positive reward term

related to the step size (output node 8, Fig. 8.6) shows a linear dependence

in 1 − rk/(rmax − rmin), with rmax − rmin = R and which is similar to the expres-

sion used to define the inputs (Eq. (8.2)). In other words, there is a linear

relation linking the positive reward in the fitness function and the inputs to

the NNet. The nodes that constitute the NNets also have a sigmoid trans-

fer function; the addition of a bias tends to make the system operate in the
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non-linear region of the sigmoidal function. This is contrary to the assump-

tion that there is a linear relation between the inputs and positive rewards,

which explains why evolution tends to deactivate that connection. On the

other hand, the positive rewards related to the turning angle are not pro-

portionally related to the inputs, which explains why the bias connection

remains activated.

Table 8.3: Finesses for five runs of NEAT starting from the minimum struc-
ture. Both the weights and the structure of a population containing 300
individuals was evolved over 150 generations.

300 Individuals

Run Fitness Generation

1 0.65 34
2 0.72 12
3 0.70 32
4 0.69 33
5 0.71 56

For both the knowledge-based structure and the structure evolved with

NEAT, the maximum fitness function did not exceed 0.76, whilst the max-

imum fitness that could in principle be reached is 1. This can be under-

stood as follows. The fitness function is built from the contributions of

cases (B),(C),(D) and (E). In particular, cases (C) and (D) (see Sec. 8.3.1)

contribute significantly to the fitness function, because they arise statisti-

cally more often than case (B). When the agent is close to a boundary (case

C), it should turn away through an angle proportional to the distance to the

boundary. However, when a corner is faced (case D), the optimisation agent

should turn through the maximum angle. Because the NNet only receives

inputs proportional to the distances from the boundaries it cannot decide

between these two cases, and there is a contradiction between both require-

ments. Evolution attempts to reconcile this contradiction, which impacts

on the optimisation of the fitness function (Eq. (8.14)). The contribution of

the corners ranges between -0.05 and -0.1, whilst the maximum contribu-

tion should be 0.2. This explains why the maximum fitness ranges between

0.70 and 0.75. To correct this, the second and third term terms on the right

hand side of Eq. (8.14), corresponding to cases (C) and (D), should be writ-

ten in such a way to avoid this contradiction.
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8.3.2 Substructure two: performance-based navigation

Basic approach

When the optimisation agent navigates within the search space, it must be

provided with relevant information to decide which direction is more likely

to improve the value of an objective function7. A simple and intuitive ap-

proach consists of providing an input that informs the NNet whether the

value of the objective function has increased or decreased since the last

step. This input is written as a difference between the values of the objec-

tive function H at steps k and k − 1, normalised by the maximum decrease

∆Hmax that can occur, i.e.

Input = ∆H(k)/∆Hmax = (H(k) − H(k − 1))/∆Hmax. (8.17)

Intuitively, if the value of the objective function increases (∆H(k) > 0),

the optimisation agent should take a step of maximum size, i.e. rk = rmax

and keep going in the same direction, i.e. ϕk = 0. Similarly, if the value of

the objective function decreases (∆H(k) < 0), the optimisation agent should

take a step of minimum size, i.e. rk = rmin and turn through an ideal angle

ϕid,k, defined as follows. When ∆H(k)/∆Hmax = −1 (maximum decrease that

can occur), the optimisation agent should turn through a maximum angle

ϕmax. When ∆H(k)/∆Hmax = 0, the value of the objective function neither

decreases or increases, an angle of zero is applied. Accordingly, the ideal

angle is given by:

ϕid,k = ±ϕmax
∆H(k)
∆Hmax

, (8.18)

where the ideal angle can have either sign, since the optimisation agent

can decide to go either left or right. Based on these considerations, we build

a fitness function that includes two terms, one for ∆H(k) > 0 and a second

for ∆H(k) < 0:

Findiv. =

N∑
k=1

[
δ1,p(k)

(
1
2

rmax−rk
rmax−rmin

+ 1
2

(
1 − |ϕk |

ϕmax

) ) ]
+ (8.19)

N∑
k=1

[
δ−1,p(k)

(
1
2

rk−rmin
rmax−rmin

+ 1
2

(
1 − |ϕk−ϕid,k |

ϕmax

) ) ]
,

where N is the total number of steps taken by the optimisation agent in

evaluating the fitness of the NNet and p(k) = sign(∆H(k)). The two Kronecker

7The form of the objective function H depends on the optimisation problem to be solved
and the parameters to be optimised.
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Figure 8.7: Simple structure used for the performance-based decision pro-
cess. This structure decides on the new direction and step size taken by the
optimisation agent based on its performance ∆H(k)/∆Hmax.

delta symbols correspond to an increase and a decrease in the value of the

objective function, respectively. Thus, ∆H(k) > 0 activates the first term of

Eq. (8.19), whereas ∆H(k) < 0 activates the second term; if ∆H(k) = 0 no

action is taken. According to the first term, the NNet scores one reward unit

when the optimisation agent takes a step of maximum size rmax and does

not turn. A reward of zero is given when the optimisation agent takes a step

of minimum size rmin and turns through a maximum angle ϕmax. Based on

the second term, one reward point is given if the optimisation agent turns

through the ideal angle ϕid,k. A reward of zero is given when the difference

between the ideal angle ϕid,k and ϕk is equal to ϕmax.

Although the substructure could be evolved with NEAT it can also be

built according to the structure in Fig. 8.7. As depicted in Fig. 8.7, the NNet

receives∆H(k)/∆Hmax at the single input (node 1) connected to output nodes

3 and 4, corresponding to the move forward (rk) and turn actions (ϕk), re-

spectively. A bias (node 2) is also connected to both outputs. For nodes

with a linear activation function, the NNet outputs can be written as a func-

tion of the weights for the biases (b1 and b2) and the inputs (w1 and w2) as

depicted in Fig. 8.7:

 ϕk = w1∆H(k)/∆Hmax + b1 : node 3

rk = w2∆H(k)/∆Hmax + b2 : node 4.
(8.20)

The weights w1, w2 and biases b1 and b2 can be calculated by considering

the boundary conditions. When ∆H(k)/∆Hmax = −1 (maximum decrease in

performance) the output of node 3 should be a maximum (turn through a

maximum angle) and the output of node 4 should be a minimum (smallest

step size). Similarly, when ∆H(k)/∆Hmax = 1 the output of node 3 should
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be a minimum (zero turning angle) and the output of node 4 should be a

maximum (maximum step size). Thus, the boundary conditions are:

ϕk =

 0 if ∆H(k)/∆Hmax = 1
1 if ∆H(k)/∆Hmax = −1,

(8.21)

and

rk =

 1 if ∆H(k)/∆Hmax = 1
0 if ∆H(k)/∆Hmax = −1,

(8.22)

where the angle and the step size range from 0 to 1, since we do not

need to re-scale the NNet outputs to calculate the weights and biases (i.e.

the outputs of the NNet range from 0 to 1 for a sigmoid activation function).

Introducing conditions (8.21) and (8.22) into Eq. (8.20), we construct a sys-

tem of four equations and four unknowns. The solutions for w1, w2, b1 and b2

are listed in Table 8.4. The optimisation agent can be tested using an objec-

tive function that has minima and maxima. In this way we can easily verify

whether the three substructures are able to complete their specific tasks. In

what follows we use the following simple test function8:

H(x, y) =
sin(6πx)

x
− sin(7πy)

2y
. (8.23)

Table 8.4: Connection genes for the structure depicted in Fig 8.7, corre-
sponding to a fitness of 1 (see Eq. (8.19)). The first two rows identify the
start and end nodes for each connection. The third row gives the weights
according to Eq. (8.20) and the conditions given by Eqs. (8.21) and (8.22).

Connection from 1 1 2 2
Connection to 3 4 3 4
Weight −1

2
1
2

1
2

1
2

An example of a run using the performance navigation substructure is

shown in Fig. 8.8. Although the optimisation agent can find its ways towards

a maximum the method is not optimal. Because the optimisation agent

only takes the last step into consideration, it can sometimes approach the

global maximum, but not reach it without taking multiple turns. This sug-

gests that we need a more sophisticated approach to navigating in the 2D

search space.

8Tests were performed for a range of smooth objective functions. Here we present the
results for a typical function, which has local maxima and maxima, and a global maximum.
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Figure 8.8: Example of navigation in a 2D search space using the NNet struc-
ture depicted in Fig. 8.7, starting at (0.53,0.63) and ending at (0.2, 0.15).
Although the optimisation agent finds the global maximum, the search
method is not optimal.

A more effective approach

The decisions made by the optimisation agent should ideally be guided by

a "local map" of the search space based on past trials. Indeed, since the op-

timisation agent has a limited range of actions, it is not necessary to build

a map of the whole search space. Because data containing information on

past trials are available to train a NNet, it is more convenient to proceed

with a conventional NNet rather than using reinforcement learning, which

requires modeling a fitness function. Re-training the NNet is a fast process

when the amount of data is small and the NNet’s structure is not large. This

is ensured when the NNet models the objective function for only a small

region of the search space, including past trials within a given radius of the

optimisation agent’s location. At each step, the NNet will be re-trained with

new data corresponding to past trials within a given radius of the current

location of the optimisation agent. Points taken within this radius are then

selected, and the value of the objective function is evaluated with the model

built using the NNet. The coordinates of the point that are most likely to in-

crease the value of the objective function are then selected for the next step

(i.e. inverse modeling). The NNet that is used to perform the modeling task

consists of two input nodes (for the x and y coordinates of a past trial), one

output node corresponding to H(x, y) and four hidden nodes. The number

of hidden neurons is arbitrary and further investigation is required to de-

termine the optimum number.
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Figure 8.9 shows two examples for the test objective function given in

Eq. (8.23). In both cases the search starts from the center of the 2D space

at (0.5, 0.5). On the left figure, the optimisation agent is able to find its way

towards the global maximum. In the right figure, however, the optimisa-

tion agent is trapped at a local maximum. This shows the necessity for a

substructure to handle local maxima. The difference in behavior between

the two simulations comes from the initial weight configuration of the per-

formance navigation substructure. When the NNet is re-trained, there are

multiple solutions to the NNet’s weights that fit the available data. This

leads to differences in the local maps of the objective function fitted by the

NNet. This is similar to the decisions taken by different operators when per-

forming an optimisation task. It is only when more data are available in the

same region that the fit becomes more accurate.

Figure 8.9: Examples of a search with the performance-based substructure.
The search starts at (0.5,0.5) with θ0 =

3
4π. On the left, the optimisation agent

finds its way towards the maximum, whereas on the right, it is trapped at a
local minimum.

8.3.3 Substructure three: local maxima avoidance

The optimisation agent needs to be able to move to a different region of the

search space when the local density of trials is too high (for example, when

there is a local maximum). The input to this substructure is a Boolean vari-

able, which is set to 1 when the local density Dk of trials (at step k) in the

search space exceeds a given threshold Dthres., otherwise it is set to zero.

When this Boolean variable is "true" (i.e. equal to 1), the optimisation agent

must decide on a new region of the search space to explore, based on past

trials for the entire search space. The approach is based on what the ac-

tions of an operator are. An operator would look at the distribution of the
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explored parameters in the search space and start the actuators in an un-

explored (or a lower density) region. To accomplish this, the NNet must be

able to identify new regions of the search space that have not yet been ex-

plored.

To detect a new region in the search space we proceed as follows. When

the local density sensor is activated (i.e. local density exceeds a given thresh-

old), a "long distance" density sensor is activated in order to detect a new

region to re-initialise the search. This sensor evaluates the local density for

points located between the current location of the optimisation agent and

the boundary it faces (at step k the direction is given by θk). The new point

must be located at a minimum distance from the current location to avoid

climbing back to the same maximum and the new local density must be less

than Dthres.. This process is illustrated in Fig. 8.10.

Figure 8.10: Identification of a local maximum by the optimisation agent.
When the density of trials in the local neighborhood (blue region) exceeds a
given threshold, the density sensor is activated to find a lower density region
in the direction faced at the current step. If no satisfactory region is found,
the optimisation agent rotates with no forward motion and senses regions
in another direction (i.e. rk+1=rk and θk+1=θk+∆θ, where ∆θ is a small angle
generated randomly). This continues until a new region is found.

Figure 8.11 shows examples of searches where the three substructures

of the NNet were utilised. In these examples the search started from the

middle of the search space with θ0 =
3
4π. On the left figure, the optimisa-

tion agent first gets trapped at the maximum located around (x,y)=(0.6,0.6).

It then relocates to the vertical right boundary around (0.85, 0.65). At the

second step the boundary is detected and the optimisation agent decides

to take a right turn. It then follows the boundary until it detects an in-

crease in the value of the objective function at (0.9, 0.25), leading it to the

local maximum located at (0.6, 0.15). When it reaches (0.45, 0.2), the opti-
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misation agent just misses the local maximum; however, the performance-

based navigation substructure of the NNet redirects the search towards that

local maximum. Upon reaching (0.62, 0.05), the boundary is detected by the

agent’s boundary sensors and for a few steps the navigation is operated by

the boundary navigation substructure. The optimisation agent then works

its way to the top of the global maximum.

In the second example (right figure of Fig. 8.11), the optimisation agent

slowly goes towards the top right corner at (1, 1). The density of points ex-

ceeds the density threshold Dthres. and the optimisation agent decides to

jump to (0.57, 0.11). Navigation through the search space is then directed by

the boundary navigation substructure until it reaches the region containing

the global maximum. The performance navigation substructure takes over

and directs the optimisation agent towards the global maximum.

Figure 8.11: Examples of searches that utilise the local maximum avoidance
substructure. The search starts from (0.6,0.6) and (0.5,0.5) on the left and
right figures, respectively. In both cases the optimisation agent is able to
find its way towards the global maximum, using: the boundary navigation
substructure to remain within boundaries, the performance-based naviga-
tion substructure to detect maxima, and the local maxima avoidance sub-
structure to re-initialise the search, when the local density of past trials ex-
ceeds a threshold Dthres.. Figure adapted from [120].

8.3.4 Global structure of the system

The final structure of the whole system is shown in Fig. 8.12. From left to

right, the eight inputs correspond to the local density Dk, the five boundary

sensor inputs (as depicted in Fig. 8.3) and two vectors x⃗k and y⃗k giving the

coordinates of past trials in the local neighbourhood. The first input (node

1) is connected to a Boolean node B1 (far left in the second middle layer)
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that is also connected to the bias (on the far left of the figure). This node

will therefore only fire if Dk exceeds Dthres.. When this occurs, a long distance

density sensor is activated in order to find a new region to re-initialise the

search (see Sec. 8.3.3), until a new region of the search space is found. This

is represented by a red circle with clockwise arrows.

Figure 8.12: Structure of the entire optimisation NNet. The three groups of
inputs correspond to the three substructures. The first input node (node
1) is used by the local maxima avoidance substructure. The next five in-
puts (nodes 2 to 6) correspond to the five boundary sensors and are used by
the boundary navigation substructure. The last two inputs (nodes 7 and 8)
receive the coordinate vectors x⃗k and y⃗k of past trials in the local neighbour-
hood of the optimisation agent and are used by the performance-based
navigation substructure.

Inputs 2 to 6 are used to feed the knowledge-based boundary navigation

substructure described in Sec. 8.3.1. The boundary navigation substructure

has two outputs ϕ1,k and r1,k (the left two orange nodes in Fig. 8.12), corre-

sponding to the "move forward" and "turn" actions of the boundary navi-

gation substructure. The bias that connects to the two output nodes of this

structure is used to increase or decrease the sensitivity of the response. In-

put nodes 2 to 6 are also connected to the Boolean node B2 (far right in the

first middle layer). When the bias connection to node B2 is zero, the neuron
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fires if any of the sensors have detected a boundary. The sensitivity of this

neuron can then be decreased by the addition of a value to the bias connec-

tion. The neuron will only fire when the sum of the inputs exceeds the value

of the bias. The output of node B2 is used as a Boolean weight for the sub-

structure connection from ϕ1,k and r1,k to the final outputs ϕk and rk of the

NNet. When the sum of inputs 2 to 6 exceeds a set threshold, the NNet’s final

outputs are based on the boundary navigation substructure. This Boolean

node is also connected to a second "negation" Boolean node B3. The out-

put of node B3 will serve as a weight that activates or deactivates the output

of the performance navigation substructure. When the output of node B2 is

0 (no boundaries are detected), the output of node B3 is 1, which activates

the performance-based navigation substructure.

Input nodes 7 and 8 (the coordinates of the past trials) feed the per-

formance navigation substructure represented by the large green circle in

Fig. 8.12. The clockwise arrows indicate that this substructure is re-trained

when new data are available to the system to update the model of the ob-

jective function. The outputs used for the training exploit the vector H⃗k

containing the values of the objective function for the past trials with co-

ordinate vectors x⃗k and y⃗k. Inverse modelling is used to evaluate the value

of H for a series of points (angles ϕ and distances r from the current loca-

tion) within reach of the optimisation agent (i.e. within a radius R from the

location of the optimisation agent in the search space), and select the co-

ordinates of the search space that are most likely to improve the value of

H.

8.4 Optimisations at the Australian Light Source

8.4.1 Experimental setup and calibration

A schematic of the Linac at the Australian Synchrotron is shown in Fig. 8.13

(see Sec. 3.2.2 for more details). In what follows we consider the optimisa-

tion of the energy spread and transmission as a function of the phase of the

primary and final bunchers (shown in red in Fig. 8.13).

The energy spread measurement is calibrated in the following way. The

bending section from the Linac to the LTB contains two dipoles (see

Fig. 8.13). Because a direct measurement of the beam energy is not avail-

able, we emulate a change in the beam energy by decreasing the current

of the first dipole and measure the beam displacement on the LTB1 screen.

The current of the dipole is decreased in steps of 0.5% down to 93% of its

nominal value. Decreasing the current further would cause loss of the beam

from the screen. For each point, an image of the beam is taken and a Gaus-
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Figure 8.13: Simplified schematic of the Australian Synchrotron Linac (see
also Fig. 3.1). The parameters for our 2D search space are the phases of
the PBU and FBU. The first dipole in the LTB is used to calibrate the energy
spread measured on the LTB1 screen.

sian profile fitted to the horizontal projection as shown in Fig. 8.14. The

mean value of the fit corresponds to the position of the center of the beam

(in pixels), while the width corresponds to the energy spread (in pixels); the

latter is converted to a percentage of the beam energy.

To establish the calibration, the mean of the Gaussian is plotted against

the relative change (in [%]) of the magnet’s current as shown in Fig. 8.15.

Since a decrease of 1% in the current of the dipole results in a decrease of

1% in the beam energy, the conversion factor corresponds to the gradient

of the calibration curve. The calibration gives:

Fcal. = 18 ± 0.5
Pixels

Energy Change [%]
. (8.24)

The energy spread is then obtained by converting the width of the Gaus-

sian from pixels to a [%] using the conversion factor (8.24).

The transmission is measured using the wall current monitor in concert

with a fast current transformer, which measures the beam charge at the end

of the Linac (as described in Sec. 3.2.5). The calibrated transmission is di-

rectly available through a Matlab PV.

8.4.2 Experimental results of the energy spread and transmission

optimisation

In this section we present the results obtained when the beam energy spread

δE and transmission T were first optimised independently and then opti-

mised simultaneously.
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Figure 8.14: Image of the beam taken at the LTB1 screen. Gaussian profiles
are fitted to the beam projections. The energy spread is given by the width
of the horizontal projection, while the beam energy is determined from the
mean of the horizontal projection.

Independent energy spread optimisation

Figure 8.16 shows the result obtained for the minimisation of the energy

spread. The boundaries were set to ±10 ◦ from the nominal phase settings,

φPBU = 107◦ and φFBU = 128◦. This latter point is denoted by a large cyan di-

amond in Fig. 8.16 and corresponds to an energy spread of 1.030%± 0.035%.

The search started from the arbitrary point φPBU = 113◦ and φFBU = 134◦,
represented by a large brown square in Fig. 8.16. The different colors in this

figure help identify the way the search was operated. For example, the evo-

lution in the search space can easily be followed by looking at the left plot

in Fig. 8.18. At some point the density of trials (represented by the group

of black dots) exceeded the set threshold and the search was relocated to

φPBU = 99◦ and φFBU = 133◦ (in the region represented by the group of blue

dots). When the density of trials exceeds a pre-determined threshold, the

search was relocated to φPBU = 114◦ and φFBU = 133◦, represented by the

group of yellow dots. Because the direction of decreasing energy spread was

a region that had already been explored (represented by the black dots), an-
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Figure 8.15: Calibration curve for the measurement of the energy spread.
The current of the first dipole is scanned from its nominal value down to
-7% from this value. The position of the center of the beam on the LTB1
screen is calculated from a Gaussian fit to the horizontal projection of the
beam.

other jump was made to φPBU = 110◦ and φFBU = 121◦. After a few trials the

optimisation agent identifies the direction of decreasing energy spread and

pursues the search in that direction, eventually achieving an energy spread

of 0.912% (green dots). Each point is the average of five measurements

(i.e. five bunches), which results in a reduction in the error from 0.080%
to ±0.035%. The experiment took about 30 minutes. This is mainly due to

a waiting time of 3 sec/◦ imposed to stabilise the phases of the bunching

sections after each adjustment, as well as the fact that five measurements

are made for each point.

Independent transmission optimisation

Figure 8.17 shows the results obtained for the independent optimisation of

the transmission. The search space was initially set to the same boundaries

as for the energy spread (i.e. ±10◦ from the nominal phase settings). Since

the transmission was not very sensitive in this region, the search was ex-

tended to ±20◦ from the nominal settings (i.e. φPBU = 107◦ and φFBU = 128◦).

Each point in Fig. 8.17 is the average of 30 measurements. This results in a

decrease of the rms error in the transmission measurement from 2.8% to

0.5%.

The search started in the region represented by the group of black dots,

and proceeded until the density became too high, whence it was relocated

to φPBU = 90◦ and φFBU = 135◦ (see the right plot in Fig. 8.18). The search

then continued in the region represented by the group of blue dots, until

the density of points became too high. The search was once again relocated,
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Figure 8.16: Independent optimisation of the energy spread δE. The initial
energy spread of the machine (before optimisation) is represented by the
cyan diamond. The large brown square indicates where the search started
and the large green star indicates the energy spread that was achieved.
The different colors correspond to the regions searched by the optimisation
agent.

this time to the region represented by the group of green dots around φPBU =

94◦ and φFBU = 114◦. A few more points were taken until the maximum

number of iterations was reached. The whole run took just under one hour,

which is dictated by the waiting time imposed on each phase adjustment

and the number of measurements taken for each point.

Figure 8.18 shows the 2D representation of the energy spread and trans-

mission. Both plots have the same limits (±20◦ from the initial settings),

although the search space for the energy spread (±10◦) was half that of the

transmission (±20◦) on each axis. From this figure it is seen that both the

energy spread and transmission are improved for lower values of the PBU

phase. According to Fig. 8.16 increasing the FBU phase clearly reduces

the energy spread while the transmission is not significantly affected

(see Fig. 8.17). The simultaneous optimisation of the energy spread and

the transmission should therefore require lower values of the PBU phase.
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Figure 8.17: Independent optimisation of the transmission T . The large
brown square shows the starting point, while the large blue star indicates
the transmission that was achieved. The initial transmission of the machine
(before optimisation) is represented by the cyan diamond.

The transmission was measured for the phases that optimised the en-

ergy spread and vice versa. Results are listed in Table 8.5. In the first case

the energy spread optimisation also leads to an improvement in the trans-

mission of about 3%. On the other hand, the energy spread was not affected

by the changes in the phase that optimised the transmission.

Table 8.5: Results of the independent optimisation of the energy spread and
transmission. A 0.12% decrease in the energy spread is achieved together
with a 3% increase in transmission for the energy spread optimisation. A 5%
transmission improvement was achieved for the independent transmission
optimisation with no significant change in the energy spread.

Nominal Settings δE optim. T optim.

PBU Phase [◦] 107 98.5 89.9
FBU Phase [◦] 128 130.2 121.2
δE [%] 1.030±0.035 0.910 ±0.035 1.000 ±0.035
T [%] 83.5 ±0.6 86.6±0.5 88.8 ±0.5
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Figure 8.18: 2D representation of the optimisation of the energy spread
(left) and transmission (right). The transmission search space was double
the size of the energy spread.

Simultaneous energy spread and transmission optimisation

In order to optimise both the energy spread and transmission we must es-

tablish an objective function. Assuming that we give equal importance to

the energy spread and the transmission, the objective function will contain

two terms with identical weights of 1/2. Since the transmission T ∈ [0, 1], an

objective function H(T, δE) ∈ [0, 1] will contain a term directly proportional

to T . This is represented by the first term on the right hand side of Eq. (8.25).

The energy spread is δE ∈ [δEmin, δEmax] and in order to cover this range it

is necessary to ensure that δEmin and δEmax are sufficiently low and high, re-

spectively. Moreover, it is important that relative changes in the value of

the energy spread and transmission contribute nearly equally to the value

of the objective function. Considering that the smallest and largest energy

spread observed were around 0.9% and 3.0%, respectively, we set limits of

δEmin = 0.5% and δEmax = 3.8%. Upon re-normalising the contribution to

the energy spread, so that it ranges from 0 to 1, the objective function can

be written as:

H(T, δE) =
1
2

T +
1
2

(
1 − δE−δEmin

δEmax−δEmin

)
(8.25)

Simultaneous optimisation was performed for a range of 50◦ in both the

PBU and FBU with φPBU ∈ [77◦, 127◦] and φFBU ∈ [98◦, 148◦]. In order to re-

duce the error on the transmission measurement, each point is the average

of 30 measurements (for both the energy spread and the transmission). A

total of 150 points were taken at 1 Hz with a run time of about 90 mins. This



172 USING NEURO-EVOLUTION TO BUILD AN ADAPTIVE CONTROL SYSTEM

duration is due to the number of measurements taken per point and the

necessary waiting time imposed to stabilise the phases of the sections after

each adjustment.

Results are shown in Fig. 8.19 and listed in Table 8.6. It is important to

note that this optimisation was performed after a shutdown of the machine.

Although the energy spread of the beam did not seem to be affected by the

shutdown, we recorded a higher transmission. Indeed, while the nominal

settings of the PBU and FBU gave 83.5% transmission before shutdown, the

same settings resulted in 90.0% transmission after shutdown. The beam

transmission is sensitive to the field imposed by focusing magnets. Since

all magnets remained powered during the shutdown period the difference

is most likely due to temperature variations in the cooling system of the

focusing magnets between the two measurements.

The search can be divided into six parts that are represented by dif-

ferent colors in Fig. 8.19. It was started with the arbitrary phases φPBU =

117◦, φFBU = 138◦; this is denoted by a large brown square in Fig. 8.19. The

progression through the search space can be followed from the projection

in Fig. 8.19 (a). The search moved from the region represented by the black

dots to the region represented by the green dots, corresponding to smaller

values of the PBU phase with no major change in the FBU phase. The op-

timised settings were found at the 75th trial in the region containing the

green dots, with the optimal point given by the large green star. Because

the density of trials exceeded the density threshold in this region, and the

maximum number of steps had not yet been reached, the search was redi-

rected to φPBU = 107.4◦, φFBU = 102.7◦, represented by the group of blue

dots. Figure 8.19 (d) shows that this region corresponds to a local minimum

of the energy spread, or a local maximum in the objective function (see

Fig. 8.19 (b)), whereas the transmission does not vary significantly. Once

the local maximum in the objective function is identified, the search is relo-

cated to φPBU = 83◦, φFBU = 113.5◦, corresponding to the region contain-

ing the orange dots. Only a few points were taken before the density of

trials exceeded the threshold, resulting in the search being re-directed to

φPBU = 103◦, φFBU = 143.5◦, corresponding to the region containing the red

dots. Again, after a few trials the density exceeded the threshold and the

search was relocated to φPBU = 82◦, φFBU = 114◦ (region containing the pink

dots). Finally, the optimisation relocated to ϕPBU = 79◦, φFBU = 105◦, corre-

sponding to the region containing the yellow dots; the search was stopped

once the limit of 150 trials was reached. The optimisation resulted in an

increase in the transmission from 90% to 97% and a decrease in the energy

spread from 1.04% to 0.91%, demonstrating the efficacy of the technique.
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Figure 8.19: Simultaneous optimisation of the energy spread and transmis-
sion. (a) Points in the projected PBU-FBU search space. Different colors
identify regions of the search space, which are arrived at by re-direction
when the density of points exceeds a given threshold. (b) The objective
function defined in Eq. (8.25) used by the NNet to perform the simultane-
ous optimisation. (c) Corresponding values of the transmission during the
optimisation. (d) Corresponding values of the energy spread during the op-
timisation. Figure adapted from [120].
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8.5 Optimisations at FERMI

8.5.1 Energy spread minimisation at the laser heater

spectrometer

The compression of the beam depends critically on the energy spread δE in

the region of the laser heater; to achieve the compression factor required by

the design of the FERMI machine, it is highly desirable to be able to set the

energy spread to a chosen value. In the experiments at FERMI, we chose

to search for a minimum energy spread at the laser heater (LH) spectrom-

eter, while maintaining the energy E of the beam within given limits, i.e.

E ∈ [Emin, Emax]. Although we could have chosen to set the energy spread

to a given value, we decided to investigate the lowest value that could be

achieved. The photoinjector consists of the accelerating structure L0, which

is composed of two identical accelerating structures L0A and L0B powered

by klystron K02 as shown in Fig. 8.20. The phases of L0A and L0B can be

controlled by the phase of K02 and the phase shifter of L0B. The phase of

the K02 klystron and the phase of the shifter were chosen as adjustable

parameters to minimise the energy spread. A Matlab script implemented

for the commissioning of the FERMI machine was available for the mea-

surement of the energy and energy spread at different locations, including

the spectrometer line of the laser heater and the spectrometer line of the

first bunch compressor. The energy is calculated using the dispersion in

the bend, while the energy spread is calculated from the beam size on the

screen located at the first spectrometer line (see Fig. 8.20).

To conduct our optimisation studies an objective function H(E, δE) must

be defined. We give equal importance to changes in the energy and the en-

ergy spread of the beam. Consequently, the objective function consisted

of two terms, one for the energy and a second for the energy spread, with

identical weights of 1/2. Both terms measure the deviation from the initial

Table 8.6: Results of the simultaneous optimisation of energy spread and
transmission show a reduction in the energy spread of 0.13% and improve-
ment of 7% in the transmission from the nominal settings.

Nominal Settings Simultaneous optim.

PBU Phase [◦] 107 80.7
FBU Phase [◦] 128 135.4
δE [%] 1.04 ± 0.009 0.91 ± 0.009
T [%] 90.0 ± 0.6 97.0 ± 0.6
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Figure 8.20: FERMI RF layout up to BC1. The Linac 0 is powered by klystron
K02 equipped with a phase shifter. Klystrons K03 and K05 power the first
two and last two sections of Linac 1, while K04 powers the X-band cavity.
Two spectrometer lines at the laser heater and the bunch compressor allow
for measurements of the beam energy and the energy spread.

settings, expressed as a percentage. Deviations in the energy and energy

spread are measured and normalised against the maximum values of the

deviations. The maximum deviation in the energy is specified by the lim-

its Emin and Emax, while the maximum variation of the energy spread δEmax

was set to 1% (based on experimental observations). The search is stopped

when the energy falls outside the set limits, at which the value of the ob-

jective function is set to 2. This value was arbitrarily chosen to ensure wide

coverage of the search space. The objective function is given by:

H(E, δE) =

 1
2

1
|Eb−E0 | |E − E0| + 1

2
δE

δEmax
if E ∈ [Emin, Emax]

2 otherwise,
(8.26)

where E0 refers to the nominal energy of the beam, E is the measured

energy, δE is the energy spread, δEmax is the maximum energy spread we

can tolerate, which is determined by the actuators, and:

Eb =

 Emin if E < E0

Emax if E > E0.
(8.27)

In our first experiment the nominal energy was E0 = 85 MeV, with ϕK02 =

320◦ and ϕK02,shi f ter = 218◦, corresponding to the values of the phase and

phase shifter of klystron K02, respectively. The initial absolute energy spread

was measured to be 0.4 MeV and the run was operated over a range of ±4◦
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from the nominal settings of both phases. Figure 8.21 shows the results of

the optimisation. The NNet successfully processes the information, allow-

ing the optimisation agent to navigate through the search space and op-

timise the objective function. However, when using the settings found by

the optimisation agent, the beam exhibited a large spread on the camera.

Figure 8.22 illustrates this, where the left image shows the beam before the

optimisation and the right image shows the beam after optimisation.
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Figure 8.21: Minimisation of the energy spread at the laser heater of the
FERMI machine. (a) Energy of the beam. (b) Corresponding energy spread
of the beam. (c) The objective function defined in Eq. (8.26), which is
used by the NNet to perform the optimisation. (d) Points in the K02-K02
shifter search space. The search started at (ϕK02, ϕK02,shi f ter) = (323◦, 213◦)
and moved to (322◦, 219◦), where the density of points caused the search to
relocate to (317◦, 217◦) and then to (319◦, 211◦).

The spread in the beam image was identified to be directly related to

the measurement script. Because the beam has neither a Gaussian or a

parabolic profile, the energy spread cannot be obtained from a direct fit

based on these functions. To establish the beam size on the screen, an al-

gorithm is used to select the region of interest from the image that contains
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the beam spot. The image is first resized and a low pass filter is used to elim-

inate noise and smooth the image. To identify the region of interest (ROI)

that contains the beam, the image is divided into equal sections and the

mean intensity is calculated for each section. The intensity scale is divided

into equal intervals, and the number of sections falling into each interval

is plotted against the intensity intervals. The algorithm defines the transi-

tion between the beam and the background as the point where the intensity

derivative is 40% of the maximum derivative of the plot. The correspond-

ing transition in terms of the intensity threshold is then calculated. The

algorithm9 identifies the region of interest (from the center of the beam)

corresponding to those sections with intensity values above the threshold.

Figure 8.22: Images of the FERMI beam at the laser heater spectrometer.
Left: image of the beam taken with the initial settings. Right: image of the
beam for the settings found by the NNet. The beam appears smeared out
because of invalid energy spread measurements.

The experiment was repeated on a different day in order to compare the

results when the ROI was ON and OFF. The beam energy for these settings

was 92 MeV, with initial phases ϕK02 = 350◦ and ϕK02,shi f ter = 265◦. The phase

range was ±5◦ from the nominal settings of both phases, but only a small

portion of that search space was required. Figures 8.23 and 8.24 show the

results with the ROI turned ON and OFF.

When the ROI option is turned OFF, the measurement of the energy

spread is carried out by subtracting the background from the beam image.

In each of the two runs the optimisation agent takes a slightly different path

in order to minimise the objective function. In both cases the values of ϕK02

and ϕK02,shi f ter were decreased from their initial settings. Checking the im-

age of the beam while the optimisation tool was running revealed that the

9Although this algorithm has been employed at FERMI, it is not appropriate for delineat-
ing the region of interest containing the beam. A more sophisticated method would utilise
differential edge detection or morphological edge detection.
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problem persisted when the whole image was used for measurement. Turn-

ing the ROI option OFF did not resolve the problem and it is expected that

the algorithm selecting the ROI must be revised. It should be emphasised

that this algorithm was not pivotal to the work reported in the thesis. How-

ever, since the same script is used to control the energy spread at the bunch

compressor it is imperative to review the algorithm that measures the en-

ergy spread.
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Figure 8.23: Minimisation of the energy spread with the automatic ROI
selection turned ON. (a) Energy of the beam. (b) Corresponding energy
spread of the beam. (c) The objective function defined in Eq. (8.26), which
is used by the NNet to perform the optimisation. (d) Points in the K02-K02
shifter search space. Settings that minimise the energy spread tend to de-
crease both the phase and the phase of the shifter of klystron K02.
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Figure 8.24: Minimisation of the energy spread with the automatic ROI op-
tion turned OFF. (a) Energy of the beam. (b) Corresponding energy spread
of the beam. (c) The objective function defined in Eq. (8.26), which is used
by the NNet to perform the optimisation. (d) Points in the K02-K02 shifter
search space. These results show the same trends as Fig. 8.23, suggesting
that the region of the image containing the beam is not selected regardless
of whether the ROI is turned ON or OFF.

8.5.2 Beam transverse size sensitivity

The optimisation tool was also used as a diagnostic to identify potential cor-

relations between jitter in the energy of the beam and the settings of the

focusing magnets. During commissioning an abnormally high energy jitter

was observed in the transverse size of the beam, as measured on a screen

located immediately after the L0 section. Determination of the transverse

size of the beam is needed at this location, since it used to measure the

emittance (by employing quadrupole scans). Jitter at this location is im-

portant because the upstream beam trajectory is corrected to compensate

for a misalignment of the accelerating cavities. The optimisation agent was

used to determine whether it is possible to attenuate the jitter by adjusting

the current in the gun solenoid and the field of one of the vertical correc-
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tors located before the L0 structure. To investigate correlations between the

magnets and the energy jitter, we need to define an objective function for

the measured energy jitter; the optimisation agent should then aim to min-

imise this objective function. Since the energy deviation can be expressed

as a percentage of the beam energy, the objective function is taken to be

the ratio of the average deviation of the transverse beam size and its mean

transverse size:

H(δσX) =
δσX

σX
, (8.28)

whereσX is the mean transverse size of the beam taken from a sample of

25 bunches and δσX is the average noise for the same sample. The optimi-

sation agent was run with changes of ±5% in the actuators from the initial

settings of the magnets. The results are shown in Fig. 8.25, where there is no

obvious trend, which could be exploited to attenuate the jitter; even with

averaging the noise remains significant.
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Figure 8.25: Relative deviation of the transverse beam size, measured at the
end of the L0 accelerating structure, as a function of the gun solenoid cur-
rent and the field of a vertical corrector, located before the L0 structure. The
optimisation agent searched for a minimum in the relative deviation with a
range of ±5% from the initial settings of the magnets. The plot shows a scat-
ter of points without any particular trend.
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8.5.3 Beam energy control test

The optimisation agent can be used as a feedback controller for the correc-

tion of a static perturbation. In particular, we consider a perturbation in the

form of a step function. Such a perturbation can originate from a jitter in

the machine parameters (such as the phase and voltage of the klystrons),

or from a desired change in the beam requirements (for example, the beam

energy).

In what follows, we consider the stabilisation of the beam energy at the

bunch compressor when a 10◦ jump is imposed on the phase of K02. The

phases of the L1 section are used as correcting actuators. This section is

powered by two klystrons K03 and K05, feeding the first two and the last

two cavities, respectively (see Fig. 8.20). The phases of these klystrons will

serve as correctors. We note that each of the klystrons provides about 100

MeV to the beam, which reaches about 320 MeV at the bunch compressor.

To use the optimisation agent as a controller, we need to define an objec-

tive function. As with the controller, the optimisation agent should aim to

minimise the difference between the desired value and the measured value

of the energy. This difference can be used as the objective function:

H(E) = E − E0, (8.29)

where E0 is the desired energy and E is the measured energy. The goal

set for this experiment was to obtain a residual deviation lower than 0.05

MeV. The nominal phases of K03 and K05 were 281◦ and 325◦, respectively.

Figure 8.26 shows the results for two runs with different sized search spaces.

In Fig. 8.26 (a) the optimisation agent was allowed to search in a region of

±8◦ from the nominal settings of K03 and K05. In Fig. 8.26 (b) the optimi-

sation agent was only allowed to search within a region of ±5◦. One can

see from these two plots that the initial overshoot has an amplitude that

increases with the size of the search space. This is due to the fact that the

optimisation agent takes steps of sizes expressed as a percentage of the di-

mension of the search space. In Fig. 8.26 (a), because the search space is

larger, the steps taken are larger as well. The optimisation agent must sam-

ple a few points before identifying that a particular direction taken in the

search space is leading to the overshoot. The larger the step size, the larger

the resulting overshoot caused by the optimisation agent as it navigates the

search space. This behavior can easily be modified so that the optimisa-

tion agent takes steps that are independent of the dimensions of the search

space. In both cases the energy of the beam is successfully brought back to

its initial setting.
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Figure 8.26: Beam energy control tests. A jump is imposed on the phase
of klystron K02 at t ≃ 50s. At t ≃ 95s the optimisation agent starts taking
corrective action by adjusting the phases of K03 and K05. (a) The search
space is set to ±8◦ from the initial phase settings. (b) The search space is set
to ±5◦ from the initial phase settings. Figure adapted from [120].

This beam energy control experiment is simple because a jump imposes

a fixed perturbation. That is, the correction is operated after the jump has

occurred and the response of the actuators to the objective function is not

time dependent. However, in the case of a periodic variation, the optimisa-

tion agent must be able to recognise time correlations within the data. In

Chapter 9 we will discuss how it is possible to adapt the optimisation agent

to learn to correct for periodic perturbations.

8.6 Discussion

The experiments carried out at the Australian Synchrotron showed that it is

possible to build an optimisation agent capable of optimising the accelera-

tor parameters. First, the optimisation agent performed independent opti-

misations of the transmission and energy spread (see Secs. 8.4.2 and 8.4.2,

respectively). This resulted in a 5.3% increase in the transmission (from

83.5% to 88.8%) and a 1.12% decrease in the energy spread (from 1.03%

to 0.91%). Second, a simultaneous optimisation of the transmission and

energy spread was implemented using an objective function that assigned
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equal weights to both parameters (see Sec.8.4.2). A 7.0% increase was ob-

tained for the transmission (from 90% to 97%) and a 0.13% decrease in the

energy spread (from 1.04 to 0.91%). These results demonstrate the efficacy

of the method.

Experiments carried out on the FERMI accelerator showed that the opti-

misation agent can be used as a controller (see Sec. 8.5.3), which is capable

of restoring the energy of the beam to its initial setting when a static jump is

applied to the phase of one of the accelerating sections. Since a controller

attempts to minimise the amplitude of a perturbation, in this case the ob-

jective function was the difference between the desired value of the beam

energy and its measured value. The optimisation agent acts as a controller,

and experimental results demonstrated the successful suppression of the

energy perturbation.

Experiments carried out at FERMI also showed that the optimisation

agent can be used as a diagnostic tool to find potential correlations between

variables. Section 8.5.2 reports an experiment that was conducted to min-

imise the energy jitter after the L0 section, by trying to adjust the strength of

the gun solenoid and a vertical corrector located between the gun and the

L0 section. However, no correlations were observed between the settings

of the magnets and the observed energy jitter, i.e. the optimisation agent

could not find trends during the search.

In the present work the optimisation agent is designed to operate with

time independent parameters and is limited to 2D search spaces. Indeed,

the perturbation applied to the phase of the L0 section was a step function.

However, if a cyclic (harmonic) perturbation is applied, the control system

would not work, because for fixed settings of the machine (i.e. phase of the

accelerating section), the perturbation would have a different effect on the

beam, depending on the phase of the sinusoid at the time of the measure-

ments. In Chapter 9 we propose two approaches to extend the optimisa-

tion tool to handle time dependent parameters and work in N-dimensional

search spaces.
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9.1 General considerations

In Chapter 7 we demonstrated the use of NNets to predict a deviation in the

energy and bunch length of the beam, thereby allowing for corrective ac-

tions. In Chapter 8 NNets were used to build an optimisation tool, which

was employed to maximise beam transmission and minimise the energy

spread of the beam. This tool was tested for static perturbations applied

to the phase of one of the accelerating structures. In the present chapter

we extend the control system in order to build a controller that can adapt

to changes in jitter conditions and machine settings. Building on the ideas

developed in Chapters 7 and 8, we propose a controller that does not re-

quire the use of a response matrix. Such a system combines the following

properties of the NNet predictor and the optimisation agent, developed in

Chapters 7 and 8. Specifically, we require a controller that will:

• Overcome the problem of limited bandwidth and poor response at

high frequencies;

• Have a limited range of action and is bounded, thereby ensuring a re-

sponse that avoids instability in the beam parameters;

• Have a selective memory that allows it to only use data relevant to the

current state of the optimisation agent, thereby making it computa-

tionally inexpensive;

• Be able to learn online from its interaction with the accelerator and

through time.

In addition to the above requirements, the controller should address the

limitations of the NNet predictor and the optimisation tool. In the feed-

forward - feedback control scheme developed in Chapter 7, the system re-

quired knowledge of a response matrix. As discussed in Sec. 7.5.4, the ele-

ments of this matrix should be updated dynamically, as they are functions

185
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of the accelerator parameters (i.e. phase and voltage of the accelerating

structures). Measurements of, and computations with, this matrix bring

unwanted errors that degrade the accuracy of the controller (see Sec. 7.5.4);

it would therefore be advantageous to construct a system that does not re-

quire the use of the response matrix.

In the experiments reported in Chapter 7, the energy and the bunch

length were controlled at a single location along the accelerator (i.e. ei-

ther at a dog leg or at a bunch compressor, but not both simultaneously).

However, as described in Sec. 5.1, the energy and the bunch length must

be stabilised at different locations (stages) of the machine. It is therefore

necessary to construct a controller that can operate the control at multiple

stages, since accounting for upstream corrections will influence the out-

come of downstream corrections.

In Chapter 8, the system was designed to operate in a 2D search space.

This limitation must also be addressed so that the optimisation agent can

account for any number of parameters of the accelerator. The controller

should have the following additional properties; namely, it should:

• Not require prior training, nor tuning and avoid using a response ma-

trix;

• Be able to operate multi-stage control through a multi-step learning

process;

• Not be limited in the number of adjustable parameters that can be

accommodated.

In what follows we propose two possible schemes to address the above

requirements. The first scheme consists of a NNet that receives lagged val-

ues of the actuators, in a similar way to the system described in Chapter 7.

In that scheme, the NNet models the relation between the actuators and

the residual deviations in the beam parameters as a function of time. New

settings of the actuators are then chosen using inverse modeling (as dis-

cussed in Sec. 8.3.2). The second approach is based on rtNEAT, the real-

time adaptation of NEAT (see Sec. 6.4). Here, the NNet’s output correspond

directly to new settings of the actuators. A major difference with the first

approach is that the training must be operated with reinforcement learning

(see Sec. 6.2.3).

The present chapter is organised as follows. Section 9.2 describes how

to augment the optimisation agent to include searches in an N-dimensional

space. Sections 9.3 and 9.4 describe the substructures of the system, which

accommodates the desired additional properties listed above.
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9.2 Generalisation of the optimisation agent to an

N-dimensional search space

An important extension of the system consists in generalising the technique

from a 2D search space to a N-dimensional search space, without imposing

limitations on N. To accomplish this generalisation, all of the three sub-

structures described in Sec. 8.3 need to be revisited.

9.2.1 Boundary-based navigation substructure

Let us first consider the boundary-based navigation substructure. Because

this substructure was initially built for a 2D search space it requires signif-

icant adaptation. Previously the NNet had two outputs rk and ϕk, corre-

sponding to the "move forward" and "turn" actions taken at step k. The

choice of polar coordinates was related to the knowledge-based struc-

ture that encodes instructions such as "if boundary in front then turn"

(see Sec. 6.5). Now let us consider what happens when we try to gener-

alise this scheme to a 3D case with spherical coordinates. The situation is

illustrated in Fig. 9.1. The position of the optimisation agent in the search

space at step k is given by P⃗k = (xk, yk, zk), where xk, yk and zk are the corre-

sponding values of the actuators X, Y and Z, respectively. The vector −→r dir.,k

gives the orientation of the optimisation agent at step k and is defined by
−→r dir.,k = P⃗k−1 − P⃗k. In spherical coordinates the outputs of the NNet are rk,

ϕk and ψk. We also denote by −→u r,k, −→u ϕ,k and −→u ψ,k the unit vectors associated

with the variables rk, ϕk and ψk, respectively (see Fig. 9.1).

In the 2D scheme the NNet was fed with 5 inputs whose values were

inversely proportional to the distance to a boundary (see Sec. 8.3.1). These

inputs were chosen by considering that the optimisation agent could only

move through a maximum angle of ±π2 from the direction it is facing (see

Fig. 8.2). This choice was arbitrary and if we were to choose an angle ±π, the

structure would include the eight inputs numbered in Fig. 9.1 (i.e. 0, ±π2 , ±π4 ,

±3π
4 and π, with reference to the optimisation agent’s direction vector −→r dir,k),

contained in the plane defined by the unit vectors −→u r,k and −→u ϕ,k (shown in

gray in Fig. 9.1).

With the third variableψk, we define four planes with anglesψk = 0,±π4 ,
π
2 ,

where ψk = 0 corresponds to the plane defined by the unit vectors −→u r,k and
−→u ϕ,k (see Fig. 9.1). We also denote by −→u 37,k, the axis containing the input

vectors 3 and 7 (see Fig. 9.1). When the plane is rotated around this axis (by

an angle ψ), all four planes have the input vectors 3 and 7 (shown in blue)

in common. Therefore there will be 8 distinct inputs for the first plane and
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6 distinct inputs for the three other planes. That makes a total of 26 inputs

to the NNet. Without rotating the plane around a particular axis −→u 37,k we

would have to provide the NNet with 32 inputs, as we would have 8 distinct

input vectors for each plane. Adopting this technique, in 1D we would re-

quire 2 inputs (one in each direction), in 2D we would require 8 inputs and

32 in 3D. The number of inputs consequently increases very rapidly with

the dimension N of the search space, according to:

ninputs = 22N−1. (9.1)

Figure 9.1: Spherical coordinates for the boundary-based navigation sub-
structure of the optimisation agent. At step k, the optimisation agent is lo-
cated at P⃗k = (xk, yk, zk). In the plane (shown in gray) containing the vectors
−→u r,k and −→u ϕ,k, we define eight inputs. A total of four planes are defined with
angles ψ = 0,±π/4, π/2 from the plane defined by −→u r,k and −→u ϕ,k, correspond-
ing to a total of 26 independent inputs.

Both the system of inputs described for the 2D search space (with po-

lar coordinates) and the 3D search space (with spherical coordinates) are

defined from the direction −→r dir,k faced by the optimisation agent at step k.

Because −→r dir,k changes at each step, the associated input vectors will also

change direction. This is useful for a game agent in 2D that needs to de-

tect "obstacles" as illustrated in Fig. 9.2. This figure compares a game agent

receiving inputs with fixed directions in cartesian coordinates (left panel)

and a game agent receiving inputs in polar coordinates, defined from the
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direction −→u dir,k faced by the agent. When a the agent (in blue) goes towards

the obstacle (in grey), the agent with fixed input vectors (Fig. 9.2 (a)) cannot

detect the obstacle, whereas the agent receiving inputs in polar coordinates

(Fig. 9.2 (b)) can identify the obstacle. However, when there are only fixed

upper and lower boundaries, it is sufficient to use input vectors with fixed

directions. This is illustrated in Fig. 9.2, where both agents (in brown) with

fixed (Fig. 9.2 (a)) and dynamical (Fig. 9.2 (b)) input vectors can identify the

upper and lower boundaries.

Figure 9.2: Comparison of navigation schemes. (a) The NNet receives in-
puts in cartesian coordinates, independent of the state of the optimisation
agent (i.e. the direction it faces). (b) The NNet receives inputs depending
on −→r in polar coordinates with reference to the position of the optimisation
agent in the search space.

For optimisation purposes we are only concerned with remaining within

upper and lower limits of the actuators. We can therefore use cartesian co-

ordinates in order to reduce the number of inputs. By doing so, the out-

puts of the NNet correspond to some displacement in x and y in the search

space. As illustrated in Fig. 9.2, the NNet only needs two inputs for each di-

mension; one to detect an upper limit and a second to detect a lower limit.

The number of inputs thus increases as:

ninputs = 2N. (9.2)

For N = 8 dimensions the NNet only requires 16 inputs, whereas accord-

ing to Eq. (9.1) 32,768 inputs would be required with the previous scheme.

Figure 9.3 shows the minimal structure for the proposed navigation sub-

structure in cartesian coordinates. With this substructure the NNet has 2N
inputs (two inputs for each dimension of the search space), and N outputs
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(one output for each dimension). Each pair of inputs (D−i ,D+i ) detects the

presence of an upper or lower boundary, respectively, in the ith dimension

of the search space. The output Di gives the size of the step to take in the

ith dimension. Because the input vectors are either perpendicular or par-

allel to the boundaries (i.e. each input vector can detect one boundary

only), there is a priori no need to connect inputs and outputs related to

different dimensions (i.e. inputs (D−i ,D+i ) only need to be connected to out-

put Di). The scheme shown in Fig. 9.3 is therefore the minimal structure

and it is expected that only the weights of this structure should need to be

evolved by NEAT. However, future studies need to be carried out to confirm

whether this structure is sufficient, or if more than just the weights need to

be evolved.

Figure 9.3: Boundary-based navigation structure of the NNet using carte-
sian coordinates. The NNet has 2N inputs providing information on the
presence of an upper or lower boundary and has N outputs, each corre-
sponding to the step in each dimension Di with i = 1, 2, ...,N.

9.2.2 Performance-based navigation and local maxima avoidance

substructures

The performance-based navigation substructure depicted in Fig. 8.12 must

be augmented to accommodate N input vectors, where each input vector

corresponds to one of the search space variables. However, there is still a

single output, corresponding to the value of the objective function. As with

the 2D case, past trials used for training this substructure are selected if they

are within a certain radius R of the optimisation agent in the search space.

In an N-dimensional search space, the distance between two points x⃗1, x⃗2 ∈
RN is given by the Euclidean metric:
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d =
√

(x1
1 − x1

2)2 + (x2
1 − x2

2)2 + ...... + (xN
1 − xN

2 )2, (9.3)

where the superscript is the dimension index. To summarise, the only

changes to this substructure consist of increasing the number of inputs to

the NNet and selecting the points according to their distance R from the

optimisation agent using Eq. (9.3).

Equation (9.3) is also required in order to generalise the local maxima

avoidance substructure to N-dimensions. As for the 2D case, when the den-

sity of trials reaches a given threshold Dthres., the local minimum avoidance

substructure must relocate the optimisation agent to a new region in the

search space as described in Chapter 8. In N-dimensions, the distance be-

tween a past trial and the optimisation agent is calculated using Eq. (9.3). If

the distance is less than a given radius R from the optimisation agent, the

trial is taken into account to calculate the local density Dk. The substructure

of the NNet itself (i.e. number of inputs and outputs) does not need to be

modified, as the only change required to adapt the local maximum avoid-

ance substructure to N-dimensions consists of calculating distances using

Eq. (9.3). The generalisation of the performance navigation and avoidance

substructures are therefore straightforward. Consequently, the optimisa-

tion agent can be adapted to a search space with an arbitrary number of

dimensions.

9.3 Building a time-dependent optimisation agent for

control

Now that we have described how to generalise the optimisation agent to N-

dimensional search spaces, we need to consider how to adapt its structure

to correct for time-dependent perturbations. In Sec 8.5.3 it was shown that

the optimisation agent can be used as a controller to correct a static pertur-

bation. However, for a periodic (harmonic) perturbation the NNet must be

provided with inputs that contain the necessary information on the time-

dependent perturbation in order to produce the appropriate response of

the actuators. In Chapter 7 the NNet predictor was provided with lagged

values of the accelerator parameters (phase and voltage) to predict a future

deviation in the beam parameters (energy and bunch length). In what fol-

lows we show how the structure of the NNet predictor described in Chap-

ter 7 can be combined with the optimisation agent in Chapter 8 to produce

a real-time optimisation agent.
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In Chapter 8 the performance-based substructure of the NNet built a lo-

cal map of an objective function H for a 2D search space, using past trials

within a given radius R of the optimisation agent’s location. This substruc-

ture received two input vectors,
−→
X 1 and

−→
X 2, containing the coordinates of

the past trials in the search space (see Sec. 8.3.4):

Inputs =


−→
X 1 = [x1

1, x
1
2..x

1
l ]

−→
X 2 = [x2

1, x
2
2..x

2
l ],

(9.4)

where xi
j (with j = 1, ..., l and i = 1, 2) is the coordinate of the jth trial in the

ith dimension and l is the total number of past trials in the local neighbor-

hood (within a given distance R from the optimisation agent). In Chapter 8

we assumed that the relation between the beam parameters (and conse-

quently the objective function) and the variables X1 and X2 (i.e. the settings

of the actuators) was time invariant. However, to correct a time-dependent

perturbation, it is necessary to include the time dependence in our model.

We can rewrite the inputs to the NNet given in Eq. (9.4) as a function of the

step k of a time series and generalise the number of inputs to N-dimensional

search spaces, spanned by X1, X2, ..., XN . At step k the inputs to the NNet are

given by the following vectors:

Inputs =



−→
X 1(k) = [x1

1(k), x1
2(k)..x1

l (k)]
−→
X 2(k) = [x2

1(k), x2
2(k)..x2

l (k)]
...
−→
X N(k) = [xN

1 (k), xN
2 (k)..xN

l (k)].

(9.5)

Now let us consider what information a time-dependent optimisation

agent should receive. In Chapter 7 we used NNets to predict a deviation in

the energy of the beam, which required n lagged values of the voltage V and

m lagged values of the phase ϕ of an accelerating section (see Sec. 7.2). The

NNet was thus fed with n inputs for the voltage lags, V(k),V(k−1), ...,V(k−n−
1) and m inputs for the phase lags, ϕ(k), ϕ(k−1), ..., ϕ(k−m−1). To be consistent

with the notation used in Eq. (9.5), we denote the voltage variable V and the

phase variable ϕ by X1 and X2, respectively. Using this notation the NNet is

fed with the following inputs:
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Inputs =



X1(k)
X1(k − 1)
...

X1(k − n − 1)
X2(k)
X2(k − 1)
...

X2(k − m − 1),

(9.6)

Note that each of these inputs corresponds to a single value of the phase

and voltage of the accelerator, i.e. they are not records of past trials. We can

generalise these inputs to N variables X1,X2...XN , denoting by ni the number

of lags used for the variable Xi:

Inputs =



X1(k)
X1(k − 1)
...

X1(k − n1 − 1)
X2(k)
X2(k − 1)
...

X2(k − n2 − 1)
...

...

XN(k)
XN(k − 1)
...

XN(k − nN − 1),

(9.7)

where Xi (with i = 1, 2, ...,N) is the value of the ith parameters of the ac-

celerator (i.e. phase or voltage of the accelerating sections). To merge the

structure of the NNet predictor with the NNet used for the optimisation

agent, each input in Eq. (9.7) must contain the coordinates (values) of all

the past trials for each lag. The inputs in Eq. (9.7) must therefore be vectors

containing the coordinates of the past trials in the local neighborhood. Ev-

ery time the optimisation agent takes a step in the search space, the past

trials within the local neighborhood change. At step k, the correspond-

ing number of past trials is l(k). Replacing each of the values Xi(L) (where

L = k − 1 − n, k − n, ..., k and n is the number of lags) with the corresponding

vectors
−→
X i(L) containing the coordinates of the past trials (9.5), we obtain:
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Inputs =



−→
X1(k) = [x1

1(k), x1
2(k)...x1

l(k)(k)X]
−→
X1(k − 1) = [x1

1(k − 1), x1
2(k − 1)...x1

l(k)(k − 1)]
...
−→
X1(k − n − 1) = [x1

1(k − n − 1), x1
2(k − n − 1)...x1

l(k)(k − n − 1)]
−→
X2(k) = [x2

1(k), x2
2(k)...x2

l(k)(k)]
−→
X2(k − 1) = [x2

1(k − 1), x2
2(k − 1)...x2

l(k)(k − 1)]
...
−→
X2(k − n − 1) = [x2

1(k − n − 1), x2
2(k − n − 1)...x2

l(k)(k − n − 1)]...
...

...
−−→
XN(k) = [xN

1 (k), xN
2 (k)...xN

l(k)(k)]
−−→
XN(k − 1) = [xN

1 (k − 1), xN
2 (k − 1)...xN

l(k)(k − 1)]
...
−−→
XN(k − n − 1) = [xN

1 (k − n − 1), xN
2 (k − n − 1)...xN

l(k)(k − n − 1)],
(9.8)

In Eq. (9.8) all the variables have the same number of lags n. This is be-

cause it is necessary to provide all the coordinates of past trials to the NNet

in order to model the objective function. According to Eq. (9.8), the in-

puts consist of n vectors (lags) for each variable of the N-dimensional search

space, which contains the coordinates of the past trials for a given lag.

Figure 9.4 shows a schematic of the proposed NNet for a 2D scheme. The

NNet models the relation between the value of the objective function H(k)
at step k, given the vectors containing the coordinates of the past trials for a

series of n lags. Unlike the NNet predictor developed in Chapter 7, here the

NNet does not produce a prediction of H(k + 1), given past lagged inputs.

Predicting H(k + 1) given the inputs in Eq. (9.6) would not be of interest,

since it would require knowledge of the response matrix to calculate the

appropriate correction. Instead, we need to directly predict what settings

of the actuators x1(k+1) and x2(k+1) would best attenuate the perturbation.

This is done by evaluating the value of the objective function for a series of

points P = [p1, p2...pq], with coordinates pi = (x1
i (k), x2

i (k)) chosen within a

given radius of the optimisation agent. The new settings (x1(k+1), x2(k+1) =
(x1

s , x2
s)) for the actuators are then chosen such that H(x1

s , x
2
s) = min(H(P)),

where (x1
s , x

2
s) ∈ P.
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This scheme has the advantage of calculating new values for the settings

of the actuators without requiring knowledge of the response matrix. This

avoids errors related to the measurement of the matrix, particularly since it

must be re-measured whenever there is a change in the settings (phase and

voltage) of the accelerator (see Sec. 7.5.4).

Figure 9.4: Control scheme using the time-dependent optimisation agent.
The NNet is fed with the vectors containing the coordinates of past trials
for n lags and models the corresponding response of the objective function.
Points in the local neighborhood of the NNet (current location in the search
space) are then evaluated and the configuration that is most likely to in-
crease the value of the objective function is applied to the machine. The ef-
fect of the new settings on the beam (e.g., the energy E(k + 1)) are recorded
and used to further train the NNet.

Another advantage of the proposed scheme is that no training is re-

quired before bringing the system online, unlike the system discussed in

Chapter 7, where data had first to be recorded in order to train the NNet.

The real-time optimisation agent will try different configurations of the ac-

tuators and learn from these trials. Also, the number of actuators is not

limited, since the optimisation agent can be generalised to N dimensions.

In order to develop the time-dependent optimisation agent, the following

steps need to be implemented:
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1. Adapt the number of inputs to the agent. Inputs should include n
lagged vectors containing the coordinates of past trials for each of the

N dimensions of the search space.

2. Adapt the optimisation algorithm. The time-dependent optimisation

agent should not be able to relocate in the search space when acting

as a controller. However, relocation should be permitted when it is

used to re-tune the machine parameters (i.e. when the requirements

on the beam parameters are changed).

3. Carry out real-time training. This training is essentially the same as

for the static optimisation; at every step new data are collected and

the NNet is trained with past trials contained within the local neigh-

borhood of the time-dependent optimisation agent. The controller

can be built using Matlab, by adapting the code already implemented

for the optimisation agent described in Chapter 8.

9.4 Using the rtNEAT technology for control

We present a more sophisticated approach to building a NNet controller

with the properties listed in Sec. 9.1. The intention is to combine the char-

acteristics of the NNet predictor and the optimisation agent, so that the

NNet’s outputs directly correspond to the new settings of the actuators (i.e.

without requiring the inverse modeling used in Sec. 9.3). In the previous

section, the NNet was used to model the objective function H(k) as a func-

tion of past trials for a series of n lags:

H(k) = H(
−→
X 1(k),

−→
X 1(k − 1), ...,

−→
X 1(k − n − 1), (9.9)

−→
X 2(k),

−→
X 2(k − 1), ...,

−→
X 2(k − n − 1),

...,

−→
X N(k),

−→
X N(k − 1), ...,

−→
X N(k − n − 1)),

where the vectors
−→
X i(L) (with i = 1, 2, ...,N and L = k − n − 1, k − n, ..., k)

constitute the inputs to the NNet defined by Eq. (9.8). In order to avoid

calculating the new settings of the actuators by inverting the model of the

objective function built by the NNet, the present scheme uses a NNet to

directly model the optimised values of the actuators’ settings, i.e., (x1
opt.(k+1),

x2
opt.(k + 1), ..., xN

opt.(k + 1)). To do this the NNet must correlate the values

obtained for the objective function with past trials. At step k the value of the
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objective function for the jth past trial ( j = 1, 2, ..., l(k)) can be written as a

function of the coordinates of that trial:

H j(k) = H(x1
j (k), x2

j (k), ..., xN
j (k)). (9.10)

The vector containing the values for the l(k) past trials in the local neigh-

borhood at step k can be written as:

−→
H(k) = [H1(k),H2(k), ...,Hl(k)(k)]. (9.11)

To correlate past trials in the search space with the corresponding val-

ues of the objective function, the NNet is fed with the coordinates of the past

trials and the corresponding values of the objective function. Since the lo-

cation of the optimisation agent in the search space changes at every step,

we must provide the NNet with lags for the past trials and objective func-

tion. For each lag, the NNet is provided with the coordinate vectors of the

past trials and the vector containing the corresponding values of the objec-

tive function. We can write the coordinates of the optimised values of the

actuators (x1
opt.(k+ 1), x2

opt.(k+ 1), ..., xN
opt.(k+ 1)) as a function of the past trials

FNNet and the corresponding values of the objective function (for a series of

lags) as:

(x1
opt.(k + 1), x2

opt.(k + 1)...xN
opt.(k + 1)) = FNNet(

−→
X 1(k),

−→
X 1(k − 1)...

−→
X 1(k − n − 1),

−→
X 2(k),

−→
X 2(k − 1)...

−→
X 2(k − n − 1),

...,

−→
X N(k),

−→
X N(k − 1)...

−→
X N(k − n − 1),

−→
H(k),

−→
H(k − 1)...

−→
H(k − n − 1)),

(9.12)

where each input vector to the NNet is given by:
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Inputs =



−→
X1(k) = [x1

1(k), x1
2(k)...x1

l (k)]
−→
X1(k − 1) = [x1

1(k − 1), x1
2(k − 1)...x1

l (k − 1)]
...
−→
X1(k − n − 1) = [x1

1(k − n − 1), x1
2(k − n − 1)...x1

l (k − n − 1)]
−→
X2(k) = [x2

1(k), x2
2(k)...x2

l (k)]
−→
X2(k − 1) = [x2

1(k − 1), x2
2(k − 1)...x2

l (k − 1)]
...
−→
X2(k − n − 1) = [x2

1(k − n − 1), x2
2(k − n − 1)...x2

l (k − n − 1)]...
...

...
−−→
XN(k) = [xN

1 (k), xN
2 (k)...xN

l (k)]
−−→
XN(k − 1) = [xN

1 (k − 1), xN
2 (k − 1)...xN

l (k − 1)]
...
−−→
XN(k − n − 1) = [xN

1 (k − n − 1), xN
2 (k − n − 1)...xN

l (k − n − 1)]
−→
H(k) = [H1(k),H2(k)...Hl(k)]
−→
H(k − 1) = [H1(k − 1),H2(k − 1)...Hl(k − 1)]
...
−→
H(k − n − 1) = [H1(k − n − 1),H2(k − n − 1)...Hl(k − n − 1)].

(9.13)

These inputs correspond to those given in Eq. (9.8), augmented with the

vectors containing the values of the objective function. Because we do not

know in advance what the optimised settings of the actuators should be,

we cannot use supervised training (such as the backpropagation algorithm

discussed in Sec. 6.2.1). Indeed, we do not know the relation between the

objective function and the response matrix, or the jitter conditions. The op-

timisation agent must try to adjust the accelerator to correct a deviation in

the beam parameters. We need a way to tell it how well it has performed.

This corresponds to reinforcement learning discussed in Sec. 6.2.3, where

the NNet is not told what the outputs should be, but where an apprecia-

tion is given. When the time-dependent optimisation agent takes an ac-

tion, it is rewarded or penalised according to the outcomes of its actions

(see Sec. 6.2.3). For example, let us assume that we want to stabilise the en-

ergy of the beam and train the NNet with reinforcement learning. At step k
the optimisation adjusts the actuators in order to reduce the energy devia-

tion. The outcome is either an increase or a decrease in the residual devia-

tion of the beam energy from its desired value. The residual deviation can

be used as a reinforcement signal, with the NNet rewarded if the deviation
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decreases and penalised if it increases. In this case the objective function

H(k) can be written as a function of the residual energy deviation and used

to train the NNet.

Providing information on both the actuators’ settings and the correspond-

ing values of the objective function is important to ensure that the NNet is

always provided with information on the perturbation. This is illustrated

with the following simple example. Let us assume that we want to correct

an energy deviation from a reference energy E0 with actuator X only. We use

the objective function in Sec. 8.5.3 for the FERMI experiment:

H(E(k)) = E(k) − E0. (9.14)

The measured energy is considered to have a harmonic perturbation of

the form:

E(k) = E0 + dEsin(2π f kT ), (9.15)

where f is the jitter frequency, dE is the jitter amplitude and T the time

interval separating bunches (i.e. 1/T is the bunch repetition rate). The ob-

jective function (9.14) now becomes:

H(E(k)) = dEsin(2π f kT ), (9.16)

which has the same sinusoidal time dependence as the jitter. When the

perturbation is entirely canceled H(E(k)) = 0, for all k. Since we know the re-

sponse of the actuators is linear in the region needed to operate the correc-

tion, one can write dE(k) = AdX(k), where A is the proportionality constant.

To achieve H(E(k)) = 0 (for all k), the response of the actuator X(k) must be:

X(k) = −dE(k)
A

sin(2π f kT ). (9.17)

This means that if the NNet operates its task correctly, the information

on the jitter is contained within the data of past values of the actuator X.

Now let us consider the case where the time-dependent optimisation agent

starts the control and the NNet is untrained. The information on the jitter is

no longer contained in the inputs; however, it is still contained in the lagged

values of the objective function H(E). By feeding the NNet with lagged val-

ues of H(E), we allow it to make correlations between the settings of the ac-

tuators and the corresponding values of the objective function. When the

time-dependent optimisation agent is able to perform the control task, the

values of the lags H(k − n − 1),H(k − n)..H(k) will be zero and the information

on the jitter will be contained in past values of the correctors only. Thus,

lagged values of the actuators and lagged values of the objective function
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provide complementary information and must both be fed to the NNet. Al-

ternatively, lagged values of the remaining perturbations could be fed to

the NNet when the control is operated at different stages of the accelera-

tor. This is particularly important for multi-stage control, where the NNet

must distinguish between the effects of the actuators at different stages of

the machine.

Reinforcement training can be applied to a NNet with fixed topology

(i.e. fixed number of neurons and connections). However, the appropri-

ate topology of the NNet depends on many parameters, including the num-

ber of inputs and the desired level of precision. Since these parameters can

change over time, NEAT is a good candidate as it evolves the whole NNet

structure. However, NEAT is not adapted to real-time applications, but its

variant rtNEAT can be used. As discussed in Chapter 6, rtNEAT was devel-

oped for real-time evolution of agents in video games. The major difference

is that in rtNEAT individuals are tested one at a time and for a restricted

period (i.e. the interaction of the game agent with its environment is re-

stricted to a fraction of the time taken for the whole game). Although one

could argue that testing a whole population can be very time consuming,

in an accelerator the bunch repetition rate is very high (10 Hz to 120 Hz

depending on the machine), and the sampling frequency can match these

rates if the communication with the actuators and diagnostics permits it.

Consequently, the interaction time can be extremely short, since the NNet

agent interacts with the machine at the beam rate. The LCLS is a particu-

larly good candidate for future experiments to explore this strategy, since it

can operate at 120 Hz. The limit is determined by the lowest frequency the

NNet is able to recognise - the lower the frequency, the longer the training

time.

At each step k of a time series, the rtNEAT controller applies some change

to the accelerator settings (i.e. changes to the phase or voltage of the accel-

erator) and the corresponding effects on the beam parameters are recorded

(e.g., the energy or bunch length). The vectors containing these records are

then fed to the NNet (see Fig. 9.5). The NNet computes output values that

correspond to the next settings of the actuators. The effects of that action

are measured and the value of the objective function is calculated to tell the

NNet how well it has performed. If the NNet has decreased the deviation

it will be rewarded, otherwise it is penalised according to the fitness func-

tion. Input vectors are then updated to take into account the results of the

last step and the cycle continues until the NNet has finished its evaluation

phase. A new NNet is then loaded for evaluation and rtNEAT selects the

fittest individuals to create offspring. The process continues until a NNet

reaches the level of fitness required to act as the operating controller.
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Figure 9.5: Structure of a rtNEAT-based neuro controller. The NNet is pro-
vided with lagged values of the actuators and lagged values of the objective
function. Its output gives the values of new settings of the actuators, which
are applied to the accelerator. The effect is measured on the beam (for ex-
ample the energy E(k)) and used as a reinforcement signal to train the NNet
with rtNEAT.

An important advantage of this method, compared to the approach de-

veloped in Chapter 7, is that the system does not require prior knowledge of

the jitter source. Indeed, in Chapter 7 the NNet was trained with data con-

taining the jitter (i.e. klystron phase and voltage). The occurrence of jitter

in any other component would have invalidated the control. However, the

system learns the relation between actions taken by the actuators and their

effects on the beam parameters through the objective function.

In the NERO video game, agents learn to take different actions in stages

[122]. For example, they are first trained to go around obstacles, then learn

how to shoot, to jump, etc. This is because developing one attribute at a

time is easier than developing all of them at once. This is relevant here since

the controller needs to be operated at several stages along the machine (for

example at a dog leg or a bunch compressor), as discussed in Chapter 7. Be-

cause of this, upstream corrections will affect the outcome of downstream

corrections. Since the same NNet must take this effect into account, it is

sensible that it should learn to operate the control at the first stage, then

the second stage, and so on.
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Last, we must consider the controller’s response to a change in the ma-

chine RF components. Here the response of the system, or response matrix,

is integrated into the response of the NNet, which operates the control di-

rectly. This means that a NNet trained for some machine settings will not

be successful at operating the control at different settings. The optimisa-

tion agent developed in Chapter 8 can be used to bring the machine from

one configuration to another, since it is a static step. At the new set point

the rtNEAT controller should then take over. We then have two options:

first, when the performance of the NNet is not sufficient for the new set

point (which will be the case if the NNet is not trained for unseen machine

settings), rtNEAT should restart the training, since the inputs of the NNet

in Fig. 9.5 do not have a memory of past states of the machine. A second

possibility consists of feeding the NNet with the values of settings that can

affect the Observable that should be controlled. For the beam energy this

includes the voltage and the phases of accelerating sections, other than the

actuators. To summarise the following steps should be taken in order to

develop the time-dependent optimisation agent based on rtNEAT:

1. Adapt the number of inputs to the NNet. Inputs should include n
lagged values of the actuators and the perturbed variables. The num-

ber of lags is determined by the lowest frequency that we want to cor-

rect.

2. Implement the optimisation agent (e.g., in C++) and integrate it with

rtNEAT.

3. Test the structure of the system, in particular the type of inputs that

should be fed to the NNet. For example, it might be more relevant to

feed the NNet with lagged values of the observable errors rather than

the objective function. This is particularly relevant when the control

is operated at multiple stages of the machine (i.e. bunch compressors,

dog legs, etc).

4. Test the use of inputs that identify machine settings and determine

the time required to retrain the NNet when settings are changed.

9.5 Conclusions

In Chapter 7, NNets were used in a feedforward-feedback scheme to com-

pensate for limitations of the PID algorithm, which is currently used to con-

trol the longitudinal parameters (energy and bunch length) of the electron

beam in Free Electron Lasers. These limitations include the poor response

for high frequency jitter and limited bandwidth (frequency range for which
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the PID gains do not need re-tuning). The proposed stabilisation scheme

based on a NNet was first tested on the Australian Synchrotron Linac for

the control of a single variable - the beam energy. Further experiments were

carried out at the Linac Coherent Light Source (at SLAC), demonstrating the

adaptability of the NNet controller to multiple variables, i.e. the simultane-

ous control of the energy and the bunch length.

We identified the limitations of the NNet-based feedforward-feedback

scheme. These include the use of a response matrix to compute the cor-

rection and the need to re-train the NNet when changes in jitter conditions

and machine parameters occur. To rectify these deficiencies we considered

the control problem as an optimisation problem and built a NNet-based

optimisation tool inspired by video game technology (see Chapter 8). This

tool was successfully tested for the optimisation of the energy spread of the

beam and beam transmission at the Australian Synchrotron Linac. Exper-

iments were also carried out at the new FERMI@Elettra facility, using the

optimisation tool to correct a static deviation in the energy of the electron

beam. These experiments demonstrated the ability of the system to learn

online and from its interaction with the machine, by making small adjust-

ments to the parameters of the accelerator. Moreover, the experiments car-

ried out on the FERMI machine showed the suitability of the system for con-

trol purposes.

In order for the optimisation tool developed in Chapter 8 to compen-

sate for time-dependent perturbations (e.g. periodic jitter), we discussed

briefly how to merge the structures of the NNet feedforward-feedback sta-

bilisation scheme with the structure of the NNet used for optimisation. The

resulting system is expected to form a NNet-based optimisation tool with

the following important features:

1. It can learn online, from its interaction with the accelerator and through

time.

2. It has a limited range of actions and is bounded, which ensures a smooth

response of the beam parameters.

3. It has a selective memory, that allows it to use data relevant to its cur-

rent state, which makes it computationally inexpensive.

4. It does not require prior training, nor tuning and avoids the necessity

for a dynamic response matrix.

5. It overcomes the problem of limited bandwidth and the concomitant

poor response at high frequencies.

6. It does not require knowledge of what parameters caused the jitter.

7. It is not limited in the number of adjustable parameters it can accom-

modate.
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8. It can operate multi-stage control from multi-step learning.

9. Its operation does not depend on the beam repetition rate.

Further work is necessary to complete this research project and provide

an operational system, as well as to demonstrate its robustness and adapt-

ability. The expected outcomes of this system are a novel adaptive control

and optimisation tool, which does not require tuning and can accommo-

date any number of adjustable parameters. It is anticipated that the system

can also be used for any kind of machine (i.e. it is not limited to Linac ap-

plications), and can be used to optimise and control any variable (i.e. not

limited to the control and optimisation of longitudinal parameters of the

electron beam). For example, this tool could be employed for beam tuning

on Synchrotrons and beamlines.

In summary, this thesis has demonstrated the feasibility of NNets for the

control and optimisation of beam parameters, using both simulations and

realistic operational accelerator environments. The work has shown that

NNets can be usefully employed in accelerator physics, and the outcomes

have the potential to improve the performance of Synchrotrons and Free

Electron Lasers.
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