

Faculty of Information Technology

Cost-Efficient Collection and
Delivery of Sensor Data using

Mobile Devices
by

Prem Prakash Jayaraman
(Student No.)

Thesis

Submitted in fulfilment of the requirements for the degree of

Doctorate of Philosophy

Supervisors

Prof. Arkady Zaslavsky

Prof. Jerker Delsing

Prof. David Abramson

Date of Submission: 26th October 2010

© Copyright

by

Prem Prakash Jayaraman

2010

Notice 1
Under the Copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing. In particular no results or
conclusions should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the author.
Proper written acknowledgement should be made for any assistance obtained
from this thesis.

Notice 2

I certify that I have made all reasonable efforts to secure copyright
permissions for third-party content included in this thesis and have not
knowingly added copyright content to my work without the owner's
permission.

Table of Contents

Thesis Outcomes ... i

Abstract ... iv

Declaration .. vi

Acknowledgement .. vii

1 Introduction .. 1

1.1 Preamble ... 1

1.2 Research Motivation ... 3

1.3 Research Objectives and Contributions .. 5

1.4 Thesis Structure .. 9

2 Sensor Data Collection Approaches and

Context Modelling - A Literature Review .. 12

2.1 Introduction ... 12

2.2 Wireless Sensor Networks .. 12

2.2.1 Overview ... 12

2.2.2 Sensor Node Components/Operations .. 14

2.2.3 Sensor Platforms ... 19

2.2.4 Connection-Oriented vs. Connection-Less Sensor Network 19

2.2.5 Sensor Network Applications .. 21

2.2.6 Sensor Networks Challenges: A Roadmap ... 24

2.3 Data Collection in Wireless Sensor Networks .. 26

2.3.1 Static Node-Based Sensor-Data Collection Approaches 27

2.3.1.1 End-to-End Data Collection Approaches .. 28

2.3.1.2 Data Aggregation-Based Collection Approaches 29

2.3.1.2.1 Flat Network Structure‐Based Approaches ... 30

2.3.1.2.2 Cluster‐Based Approaches ... 32

2.3.1.3 Summary of Static Data Collection Approaches 35

2.3.2 Mobile Node-Based Data Collection Approach 36

2.3.3 Mobile Sensor-Based Data Collection .. 40

2.3.4 Mobile Sink-Based Data Collection .. 42

2.3.5 Mobile Data Collector-Based Data Collection .. 46

2.3.6 Summary of Mobile Node-Based Data Collection Approaches 50

2.4 Data Collection employing k-Nearest Neighbour Queries 53

2.4.1 Summary of Data Collection Techniques Employing kNN queries 58

2.5 Context Modelling Approaches .. 59

2.5.1 Context-Aware Computing: Overview ... 59

2.5.2 Situation Reasoning and Context Modelling .. 61

2.6 Summary ... 66

3 sGaRuDa: Sensor Data Collection Using

Heterogeneous Mobile Devices ... 68

3.1 Introduction ... 68

3.2 sGaRuDa: System Architecture Overview ... 71

3.3 sGaRuDa: System Overview .. 73

3.3.1 sGaRuDa: System Framework Black Box .. 73

3.4 sGaRuDa: Mobile Data Mule System Framework 74

3.4.1 Mobile Data Mule Platform .. 74

3.4.2 Data-Collection Platform .. 76

3.4.3 Node Discovery/Management ... 77

3.4.3.1 Bluetooth Discovery: An Analysis .. 78

3.4.3.2 Bluetooth Sensor Discovery: Proposed Technique 80

3.4.3.3 Sleeping Node Problem ... 83

3.4.3.4 Node Discovery and Management: Algorithm 84

3.4.4 Sensor Data Collection .. 86

3.4.4.1 Adaptive Data Collection .. 87

3.4.4.2 Data Exchange: Message Protocol Format .. 93

3.4.5 Data Delivery .. 94

3.5 Sensor Adaptation using Dynamic Activation Schedule 95

3.5.1 Sensor States/Operations and Transitions ... 96

3.5.2 Dynamic Activation Schedule ... 99

3.5.3 Dynamic Activation Schedule: An Example .. 102

3.6 Real-World Applications Scenarios using Mobile Data Mules

as Sensor Data Collectors .. 105

3.7 Summary ... 107

4 3D-KNN: Sensor Data Collection

using Nearest Neighbour Search in 3D Space .. 109

4.1 Introduction ... 109

4.2 kNN Query-based Data Collection .. 111

4.2.1 k-Nearest Neighbour Query Processing in Sensor Networks 112

4.2.2 Overview of Proposed k-Nearest Neighbour Approach 113

4.3 A Theoretical Investigation of Voronoi Diagram-based

k-Nearest Neighbour Search .. 116

4.3.1 Voronoi Diagram and Delaunay Triangulation 117

4.3.2 k-Nearest Neighbour using Voronoi Diagrams 117

4.4 3D-KNN: A kNN Query-Based algorithm for Sensor Data Collection 119

4.4.1 Network Model and Assumptions ... 120

4.4.2 3D-KNN: Boundary Estimation Phase ... 122

4.4.3 3D-KNN: Pre-Routing Phase .. 123

4.4.4 3D-K NN: Neighbour Selection .. 128

4.4.4.1 Mapping Technique ... 128

4.4.5 3D-KNN: Neighbour Prediction ... 131

4.5 Summary ... 135

5 R-CS: Modelling Smart Spaces using Smart Sensing 136

5.1 Introduction ... 136

5.2 Context-Situation Pyramid.. 138

5.3 Theory of Context Spaces ... 139

5.4 Proposed Extensions to Context Spaces ... 141

5.5 Dynamic Situation Modelling ... 142

5.5.1 Situation Partition .. 145

5.5.2 Situation Composition using Dynamically

Discovered Context Attributes ... 150

5.6 Sensor Data Quality and Flexible Attribute Region 154

5.7 Hierarchical Context Attribute Regions .. 158

5.8 Summary ... 161

6 Implementation and Prototyping

of sGaRuDa, 3D-KNN and R-CS .. 163

6.1 Introduction ... 163

6.2 sGaRuDa: Proof-of-Concept Implementation .. 163

6.2.1 Development Tools ... 164

6.2.1.1 Mulle Sensor Node .. 164

6.2.1.2 Software and Hardware Toolkits ... 167

6.2.2 sGaRuDa: A Practical System Prototype .. 169

6.2.2.1 Mulle Sensor Node Platform Implementation 170

6.2.2.2 Mobile Data Mule: Device Implementations 175

6.2.2.3 Data Sink Implementation ... 183

6.3 k-Nearest Neighbour Based Sensor Data Collection - Implementation 185

6.3.1.1 A Scalable Simulation Environment: GloMoSim 186

6.3.1.2 3D-KNN - Implementation in GloMoSim... 187

6.4 R-CS - Implementation ... 193

6.5 Summary ... 200

7 Evaluation of Implemented sGaRuDa, 3D-KNN and R-CS 202

7.1 Introduction ... 202

7.2 sGaRuDa: Implementation Evaluation ... 203

7.2.1 Dynamic Activation Schedule: Implementation Evaluation 204

7.2.2 Evaluating Shortened Bluetooth Discovery .. 206

7.2.3 Window-based Data Collection: Implementation Evaluation 207

7.2.4 Mulle Sensor Node - Energy Consumption Experiments 211

7.2.5 Window-Based Data Collection Algorithm:

Quantitative Evaluation ... 214

7.2.6 Dynamic Activation Schedule: Quantitative Evaluation 219

7.3 3D-KNN: kNN-based Data Collection Using

Mobile Data Mules - Evaluations .. 222

7.3.1 Boundary Estimation Algorithm Evaluation ... 224

7.3.2 Query Processing Latency ... 225

7.3.3 Energy Consumption ... 227

7.3.4 Energy Consumption of Individual Sensor Nodes 229

7.3.5 Energy Consumption with Neighbour Prediction 230

7.4 R-CS (Context Spaces Extensions) - Evaluation 232

7.4.1 Hierarchical Context Attribute Regions- Evaluation 233

7.4.2 Sensor Data Quality and Flexible Attribute Region - Evaluation 235

7.4.3 Dynamic Situation Modelling using Partitioned

Situation Spaces - Evaluation .. 237

7.5 Summary ... 245

8 Conclusions and Future Work .. 246

8.1 Contributions of the Thesis Work ... 246

8.2 Future Work .. 250

References ... 252

Appendix A ... 269

Appendix B ... 275

Glossary .. 276

List of Figures
Figure 1.1: Motivation Scenario Example .. 4

Figure 1.2: Thesis Structure .. 10

Figure 2.1: A Simple Wireless Sensor Network Deployment .. 14

Figure 2.2: Connection-less multi-hop sensor network .. 21

Figure 2.3: Connection-oriented Bluetooth-based sensor network................................... 21

Figure 2.4: Taxonomy of Sensor Network Applications .. 23

Figure 2.5: Sensor Network Challenges- A Roadmap .. 25

Figure 2.6: Broad classification of data collection approaches .. 26

Figure 2.7: End-to-End vs. In-Network Aggregation Approaches 27

Figure 2.8: Taxonomy of Static Node-Based Data Collection Approaches 28

Figure 2.9: Cluster-Based Sensor Network Structure ... 33

Figure 2.10: Mobile Node-Based Data Collection ... 38

Figure 2.11: Classification of Mobile-Node based Data Collection Approaches 40

Figure 2.12: R-Tree representation ... 54

Figure 3.1: Overview of Proposed Data Collection Approach ... 71

Figure 3.2: System Black Framework Overview .. 74

Figure 3.3: Data Collection System Framework ... 75

Figure 3.4: Bluetooth Inquiry Process .. 78

Figure 3.5: Overlapping inquiry time slots of Master and Slave in a

Bluetooth inquiry scan .. 79

Figure 3.6: Bluetooth Discovery Process .. 80

Figure 3.7: Example of proposed sensor naming format .. 82

Figure 3.8: Sleeping Node Problem .. 84

Figure 3.9: XML Schema used to represent sensor

information in the node repository .. 85

Figure 3.10: Node Discovery Module - Pseudo Code .. 85

Figure 3.11: Adaptive Data Collection Algorithm -

(a) Successful Data Transfer (b) Disconnection Handling ... 88

Figure 3.12: Estimating residual time (t) .. 90

Figure 3.13: Sensor Data Collection - Pseudo Code... 92

Figure 3.14: Control and Data Messages Format ... 93

Figure 3.15: Data Delivery-based on message priority - Pseudo code 95

Figure 3.16: Sensor Node Operational State with State Transitions 97

Figure 3.17: Sensor Operational Modes ... 99

Figure 3.18: An Activation Schedule using iCalendar ... 102

Figure 3.19: Algorithm to Decode Activation Schedule .. 103

Figure 3.20: Dynamic Activation Schedule: An Example.. 104

Figure 3.21: Probability of Data Mule Arrival - Poisson Arrival 105

Figure 4.1: Collection Area Illustration .. 111

Figure 4.2: kNN Query processing - Overview ... 113

Figure 4.3: Proposed kNN query-based Data Collection Approach 116

Figure 4.4: Voronoi diagram and Delaunay Triangulation ... 117

Figure 4.5: Dynamically Generated Voronoi diagrams for

different Mobile Data Mule Locations ... 118

Figure 4.6: A Three-Dimensional representation of the

KNN Boundary Estimation Algorithm ... 121

Figure 4.7: Pre-Routing phase - Illustration ... 125

Figure 4.8: Illustration of Pre-Routing .. 126

Figure 4.9: Boundary Estimation and Pre-Routing Phase-

Mobile Data Mule Pseudo Code ... 126

Figure 4.10: Boundary Estimation and Pre-Routing Phase-

Sensor Node Pseudo Code .. 127

Figure 4.11: k-Nearest Neighbour Selection- Pseudo Code ... 131

Figure 4.12: Nearest Neighbour Prediction- An Illustrative Example 133

Figure 4.13: 3D-KNN Neighbour Prediction- Pseudo Code .. 134

Figure 5.1: Context-Situation Pyramid ... 138

Figure 5.2: Three Dimensional (3 context attributes)

illustration of Situations and Context States ... 140

Figure 5.3: Dynamic Situation Composition - Illustrative Example 144

Figure 5.4: Universal Situation Space Partition - Pseudo Code 146

Figure 5.5: Situation partition and temporal situation space - Pseudo Code 148

Figure 5.6: Temporal Situation Weight Re-Computation - Pseudo Code 149

Figure 5.7: Illustration of Situation Composition with Dynamic Context 152

Figure 5.8: Compute newly discovered context attribute’s

relevance and attribute region value - Pseudo Code ... 153

Figure 5.9: CS crisp boundary illustration .. 155

Figure 5.10: Fuzzy Membership Function .. 156

Figure 5.11: Distribution function to compute .. 157

Figure 5.12: Contribution c for a crisp outer region ... 157

Figure 6.1: Mulle Sensor Node (adapted from (Eistec, 2009))....................................... 165

Figure 6.2: Mulle Hardware Architecture (adapted from (Eistec, 2009)) 165

Figure 6.3: Mulle Expansion Board and Mulle Development Environment 167

Figure 6.4: Mulle Sensor Node- Data Flow .. 170

Figure 6.5: Mulle Modules Implemented ... 171

Figure 6.6: eis_config.c - Code Snippet .. 172

Figure 6.7: maintask.c - Code Snippet .. 173

Figure 6.8: bt_spp.c - Code Snippet.. 174

Figure 6.9: data_processor.c - Code Snippet .. 174

Figure 6.10: update_actv_schedule.c - Code Snippet 1 .. 175

Figure 6.11: update_actv_schedule.c - Code Snippet 2 .. 175

Figure 6.12: Package Diagram - Mobile Robot Implemented in JAVA 176

Figure 6.13: Class Group (Package) Diagram - PDA Implemented in .NET CF 177

Figure 6.14: Node Discovery - Code Snippet ... 178

Figure 6.15: Control and Data Messages Format ... 179

Figure 6.16: Data Collection - Code Snippet .. 180

Figure 6.17: Data delivery to sink - Code Snippet .. 181

Figure 6.18: Data Collection Threshold Computation - Code Snippet 183

Figure 6.19: Sink Incoming Data Request Processing - Code Snippet 184

Figure 6.20: Sink implemented in VB.NET – Screenshot .. 184

Figure 6.21: Detailed Class Diagram - Sink Implementation ... 185

Figure 6.22: GloMoSim Sample Configuration File .. 186

Figure 6.23: Message Structure used in Data Exchange... 187

Figure 6.24: GloMoSim Simulator Environment - Screen Dump 187

Figure 6.25: 3D-KNN GloMoSim Simulation Modules .. 189

Figure 6.26: 3D-KNN Implementation -

Message Packet Structures - Code Snippet ... 190

Figure 6.27: 3D-KNN Implementation -

Sending Broadcast Message - Code Snippet .. 190

Figure 6.28: 3D-KNN Implementation -

Sending Uni-cast Message - Code Snippet ... 191

Figure 6.29: 3D-KNN Implementation - nwip.pc - Code Snippet 192

Figure 6.30: 3D-KNN Implementation -

Checking Incoming Broadcast Message - Code Snippet .. 192

Figure 6.31: 3D-KNN Implementation -

Timer Implementation on Sensor - Code Snippet ... 193

Figure 6.32: R-CS Implementation - Package Diagram ... 195

Figure 6.33: R-CS Implementation - Situation Partition - Code Snippet 195

Figure 6.34: R-CS Implementation: Partition-based Situation Reasoning 196

Figure 6.35: R-CS Implementation - Situation Comparison Code Snippet 197

Figure 6.36: R-CS Implementation - Context Attribute Definition 198

Figure 6.37: R-CS Implementation - Flexible Context Attribute Regions 198

Figure 6.38: R-CS Implementation -

Hierarchical Context Attribute Region Definition .. 199

Figure 6.39: R-CS Implementation - User Interface ... 200

Figure 7.1: A Building Scenario used for Evaluation ... 203

Figure 7.2: Activation Schedule Update - Flow Diagram .. 204

Figure 7.3: Activation Schedule Dynamic Update - Mulle Evaluation Screen Shots 205

Figure 7.4: Activation Schedule Dynamic Update - PDA Screen Shot 206

Figure 7.5: Discovery Success Ratio .. 207

Figure 7.6: Window-based Data Collection: Mobile Robot Screen Shot 208

Figure 7.7: Disconnected Data Collection - System Setup ... 208

Figure 7.8: Flow diagram for disconnected Data Collection .. 209

Figure 7.9: Window-based disconnected data collection - Mobile Robot 210

Figure 7.10: Window-based disconnected data collection - PDA 210

Figure 7.11: Experiment1: Bluetooth Mulle Boot-up/idle .. 211

Figure 7.12: Experiment 2: Mulle Sense Operation ... 212

Figure 7.13: Experiment 3: Bluetooth Listen ... 213

Figure 7.14: Experiment 4: Bluetooth Connection ... 213

Figure 7.15: Experiment 5: Comparing Energy Consumption at varying Distances 214

Figure 7.16: Windows -based Data Collection - Experimental Setup 215

Figure 7.17: Experiment1: Non-Window based and

Window-based Data Collection - 1 Data Collection Run ... 217

Figure 7.18: Experiment1: Non-Window based and

Window-based Data Collection - 2 Data Collection Runs ... 217

Figure 7.19: Experiment2: Non-Window based and

Window-based Data Collection .. 218

Figure 7.20: Experimental Setup - Dynamic Activation Schedule 219

Figure 7.21: Experiment 1: Dynamic Activation Schedule .. 220

Figure 7.22: Experiment 2: Discovery Ratio .. 221

Figure 7.23: Experiment 3: Dynamic Activation Schedule .. 222

Figure 7.24: 3D-KNN Experiment 1: Boundary Estimation .. 225

Figure 7.25: 3D-KNN Experiment 2: Query Latency .. 226

Figure 7.26: 3D-KNN Experiment 3: Energy Consumption .. 227

Figure 7.27: 3D-KNN Experiment 4: Neighbour Selection ... 229

Figure 7.28: 3D-KNN Experiment 5: Individual Energy Consumption 230

Figure 7.29: 3D-KNN Experiment 6a: Neighbour Prediction Simulation Setup 231

Figure 7.30: 3D-KNN Experiment 6b: Neighbour Prediction .. 232

Figure 7.31: R-CS Experiment 1: Hierarchical Attribute Region Evaluation 234

Figure 7.32: R-CS Experiment 2: Evaluating Sensor

Data Quality and Flexible Attribute Region ... 237

Figure 7.33: R-CS Experiment 3 - CS Reasoning Results.. 243

Figure 7.34: R-CS Experiment 3 - R-CS Reasoning Results.. 244

Figure 7.35: R-CS Experiment 3: Difference in Confidence of

Reasoned Situations using CS and R-CS .. 244

List of Tables
Table 2.1: Comparing Power from Various Energy Sources ... 15

Table 2.2: Radio Hardware Characteristics .. 17

Table 2.3: Characteristics of microprocessors used in current sensor platforms 18

Table 2.4: Sensor Node Platforms .. 20

Table 2.5: Summary of Static-Node based Data Collection Approaches 36

Table 2.6: Comparison of Mobile Node-Based Data Collection Approaches 53

Table 2.7: Analysis of kNN Query Processing Approaches in Sensor Networks 59

Table 3.1: Data Collection Threshold Computation- Sample Data 91

Table 3.2: Control Bits used during Data Collection .. 94

Table 5.1: Definition of situation “Running” illustrating

hierarchical context attribute regions .. 160

Table 7.1: Activation Schedule Experiment ... 205

Table 7.2: Window-based Data Collection - Evaluation Parameters 209

Table 7.3: Window-based Data Collection - Experiment Parameters 215

Table 7.4: GloMoSim Simulation Parameters .. 223

Table 7.5: R-CS Experiment 1: Situation Running Definition 233

Table 7.6: R-CS Experiment 1: Situation Walking Definition 234

Table 7.7: R-CS Experiment 2: Presentation Situation Definition 235

Table 7.8: R-CS Experiment 2: Comparing CS and R-CS contribution computation 236

Table 7.9: R-CS Experiment 3: Situation definitions for Presentation 238

Table 7.10: R-CS Experiment 3: Situation definitions for Meeting 239

Table 7.11: R-CS Experiment 3: Partitioned Situation

Space definitions for Presentation .. 239

Table 7.12: R-CS Experiment 3: Partitioned Situation

Space definitions for Meeting ... 239

Table 7.13: R-CS Experiment 3: Weight Re-Computation

for Overlapping Regions (Presentation) ... 241

Table 7.14: R-CS Experiment 3: Weight Re-Computation

for Overlapping Regions (Meeting) .. 241

Thesis Outcomes

The research work has resulted in 2 Journal paper (1 under review), 7 peer-

referred international conference papers and 1 peer-refereed international workshop

paper. The paper titled “Intelligent Processing of K-Nearest Neighbours Queries using

Mobile Data Collectors in a Location Aware 3D Wireless Sensor Network” was awarded

the Best Paper Award at The Twenty Third International Conference on Industrial,

Engineering & Other Applications of Applied Intelligent Systems (IEA-AIE 2010). The

research has also contributed to 3 seminar presentations.

Journal Publication

1. Jayaraman, P.P., Zaslavsky, A., Delsing, J. (2010). “Intelligent Mobile Data

Mules for Cost-Efficient Sensor Data Collection”. In International Journal of

Next-Generation Computing, Volume 1, Issue 1, July 2010. pp: 73-90

2. Jayaraman, P.P., Zaslavsky, A., Delsing, J. (2010).” Intelligent Processing of

KNN queries in 3D Wireless Sensor Networks” In The International Journal of

Artificial Intelligence, Neural Networks, and Complex Problem-Solving

Technologies (Submitted, Under Review)

Conference and Workshop Publications

1. Jayaraman, P.P, Zaslavsky, A, Delsing, J. (2007). “Sensor data collection using

heterogeneous mobile devices”. In F. Ozguner & B. Baykal (Eds.), Proceedings of

the IEEE International Conference on Pervasive Services (ICPS 2007), Istanbul

Turkey 15-20 July, pp. 161-164

2. Jayaraman, P.P, Zaslavsky, A, Delsing, J. (2008). “Cost efficient data collection

of sensory originated data using context-aware mobile devices”. In H.-V. Leong,

W.-C. Lee, M. Hauswirth, B. Konig-Ries, W. Mansoor, et al. (Eds.), Proceedings

of Ninth International Conference on Mobile Data Management Workshops

(MDMW 2008), Beijing, China, 27 April, pp. 190-197

3. Jayaraman, P.P, Zaslavsky, A, Delsing, J. (2008). “Smart sensing and sensor data

collection on the move for modelling intelligent environments”. In Proceedings of

the 8th international conference, NEW2AN and 1st Russian Conference on Smart

Spaces, ruSMART on Next Generation Teletraffic and Wired/Wireless Advanced

Networking, St. Petersburg, Russia, Lecture Notes in Computer Science, vol.

5174/2008 pp. 306-317.

4. Jayaraman, P.P, Zaslavsky, A, Delsing, J. (2008). “Coverage area computation on

the run for efficient sensor data collection”. In A. Aggarwal, M. Badra & F.

Massacci (Eds.), Proceedings of the 2nd International Conference on New

Technologies, Mobility and Security (NTMS 2008). Tangier, Morocco, 5-7

November, pp. 1-4

5. Jayaraman, P.P, Zaslavsky, A, Delsing, J. (2009). “Dynamic situation modelling

and reasoning under uncertainty”. In Proceedings of the 2009 international

Conference on Pervasive Services (ICPS 2009), London, United Kingdom, July

13 - 17, 2009, pp 113-122.

6. Jayaraman, P.P, Zaslavsky, A, Delsing, J. (2009), “On-the-Fly Situation

Composition within Smart Spaces”. Lecture Notes in Computer Science. In

Proceedings of the 9th International Conference on Smart Spaces and Next

Generation Wired/Wireless Networking and Second Conference on Smart Spaces,

St. Petersburg, Russia, 2009, pp. 52-65.

7. Jayaraman, P.P, Zaslavsky, A, Delsing, J. (2010), “Intelligent Processing of K-

Nearest Neighbours Queries using Mobile Data Collectors in a Location Aware

3D Wireless Sensor Network”. In The Twenty Third International Conference on

Industrial, Engineering & Other Applications of Applied Intelligent Systems

(IEA-AIE 2010), Cordoba, Spain, N. García-Pedrajas et al. (Eds.): IEA/AIE 2010,

Part III, LNAI 6098, pp. 260–270, 2010 © Springer-Verlag Berlin Heidelberg

(BEST PAPER AWARD).

8. Jayaraman, P.P, Zaslavsky, A, Delsing, J. (2010), “Cost Efficient Data Collection

Approach Using K-Nearest Neighbours in a 3D Sensor Network”, In Proceedings

of the 2010 Eleventh International Conference on Mobile Data Management

(MDM 2010), Kanas City, Missouri, USA, May 23 - 26, pp 183-188.

Seminar Presentations

1. Jayaraman, P.P, “Coverage area computation on the run for efficient sensor data

collection”, at 2nd International Conference on New Technologies, Mobility and

Security (NTMS 2008), Tangier, Morocco, November 2008

2. Jayaraman, P.P, “Data Collection in Sensor Networks: Mobility-based

Techniques”, at Lulea University of Technology, Lulea, Sweden. October 2008

3. Jayaraman, P.P, “Sensor Data Collection using Intelligent Mobile Data

Collectors”, at Caulfield School of Information Technology, Monash University,

Melbourne, Australia. April 2007

Abstract

Wireless sensor networks represent an important component of distributed

pervasive computing infrastructure supporting a range of applications including health,

military, environmental monitoring, civil structure monitoring, smart homes, etc. The

primary factor driving such pervasive real-world applications is availability of data from

sensors distributed in the environment. Traditional way of collecting data is to transmit

the data from sensors to a collection point using wireless radio communications.

However, the traditional approach is expensive and not always efficient.

This thesis addresses a major challenge of cost-efficient collection of data from

wireless sensor networks. Our data collection philosophy is to use mobile devices as

sensor data collectors. The use of mobile devices as mobile data mules facilitates the

formation of a mobile access network that can be used by sensors to connect to the

external world.

We propose, investigate, develop and validate a sensor data collection framework

called sGaRuDa which enables interoperable capabilities and takes advantage of existing

communication and hardware capabilities of the mobile data mule platforms enabling

them to collect sensor data on-the-run. The sGaRuDa framework incorporates intelligent

mobile data mule allowing them to dynamically make data collection and delivery

decisions. The sGaRuDa framework and the corresponding data collection algorithms are

targeted at sensor networks that use short range radio communication technologies like

Bluetooth. We have also proposed, implemented and validated a novel three dimensional

k-Nearest Neighbour query-based sensor data collection approach called 3D-KNN to

address broadcast-based sensor network communication architectures. The 3D-KNN

facilitates multi-hop data collection from infrastructure-less wireless sensor networks

(e.g. Zigbee).

We propose, develop, implement and validate a dynamic smart spaces modelling

approach called Ranked-Context Spaces (R-CS). Our smart spaces modelling approach is

driven by the notion of situation modelling and reasoning about context. Ranked-Context

Spaces is capable of computing situation-based smart spaces model taking into account

changing contextual information. R-CS is proposed as an extension to Context Spaces

theory.

The thesis presents implementation and evaluation details of the proposed

sGaRuDa framework and the 3D-KNN algorithm. We have demonstrated the feasibility

and cost-efficiency of the sGaRuDa system framework in real-world environments by

implementing a proof-of-concept prototype on a range of mobile device platforms,

namely, Personal Digital Assistants and mobile robot. Extensive evaluation and

experimentation have been performed to prove the extent of energy conservation using

the proposed data collection framework and the 3D-KNN algorithm. Finally, we have

implemented the R-CS system to demonstrate its reasoning ability under uncertainty.

Experiments based on synthetic sensor data streams have been performed to evaluate the

proposed Context Spaces extensions incorporated into R-CS.

During the course of the thesis work, 7 peer-refereed international conference

papers, 1 peer-refereed workshop paper and 1 journal paper have been produced. One of

the conference papers was awarded a BEST PAPER AWARD.

Declaration

I declare that this thesis contains no material that has been

accepted for the award of any degree or diploma in any

university or other institution and affirm that to the best of

my knowledge the thesis contains no material previously

published or written by any other person, except where due

reference is made in the text of the thesis.

Prem Prakash Jayaraman

Acknowledgement

 PhD is a great journey that has taught me a lot of things. This journey would
never have been possible without Professor Arkady Zaslavsky, my main supervisor, who
encouraged me to take up the PhD degree. His constant effort, motivation and advice
have helped me face some of the tough challenges during the PhD years. I can never
forget the days when he walked past my office making sure I am focused and working
towards completion. His comments and guidance have been invaluable towards shaping
the research outcome and writing of this thesis. Without his support, this thesis would
have never been completed. I am very grateful to you Sir. You have and will always be
my mentor and well wisher. I am very honoured and fortunate to have been associated
with you over the years.

I thank Professor Jerker Delsing, my second supervisor, for his advice,
supervision and crucial contributions. His insights, knowledge and comments have
greatly helped during the writing of the thesis. He has always made time for discussions
in-spite of his busy schedule and different time zones. The knowledge I imparted during
our discussions will benefit me for a very long time to come. The opportunity to spend
some of the PhD time in Lulea University would not have been possible without your
support. I would also like to extend my sincere thanks to Dr. Jens Elliason from Lulea
University of Technology for his support with Mulle programming.

Special thanks to Professor David Abramson for his support during later stages of
the research project.

A very special thanks to Rob Gray for the outstanding job he did on proof reading
the thesis. His comments, suggestions and corrections have helped significantly in
improving the quality of the thesis. His support and encouragement during challenging
times were invaluable.

I thank Ms. Julie Simon for providing me with timely teaching opportunities at
Monash College. I thank all the administration and technical staff members at Caulfield
School of Information Technology. Their support and interaction during different stages
of the PhD was invaluable. Special thanks to Duke Fonias, Samedin Balla, Rafig
Tjahjadi, See Ngieng, Mirek Szczap, Akamon Kunkongkapun, Allison Mitchell,
Katherine Knight, Michelle Ketchen, Denyse Cove, Cornelia Lioulios, Diana Sussman
and many others that I might have unintentionally left out.

 On a personal front my heartfelt and deepest gratitude to my parents for instilling
in me the confidence to purse the PhD degree. They have constantly motivated me and

have stood by me during difficult times. Thanks for having believed in me and supported
me all these years. I would like to dedicate this thesis to them, for having stood by me and
given me everything I wanted at various stages of my life. But for your love and support
my dear parents, I would not have been where I am today. Words cannot express my
gratitude towards you. I would also thank my twin sister Saroj and our new member of
the family, my brother-in-law Magesh. Her care and affection has helped me stay
motivated. If not for her, I would have been foodless for days. Thanks Saroj, for making
lunch and dinner for me when I used to work long hours in university. Besides them, I
would also like to thank all my friends and cousins specially Gayathri who have been of
great support to me over the years. A special thanks to Sailakshmi for her support and
encouragement.

 I thank all the anonymous reviewers of the published papers for providing
valuable comments which greatly helped in fine tuning the research.

 Finally, I would like to thank everyone who was supportive for the successful
realisation of this thesis and apology for having missed to individually mention them.

 1

1
Introduction

1.1 Preamble

Mark Weiser, widely considered the father of ubiquitous computing (Wikipedia,

2010), expressed a vision for 21st century computing devices (Weiser, 1999). Quoting

Mark Weiser’s vision from (Weiser, 1999) “the most profound technologies are those

that disappear. They weave themselves into the fabric of everyday life until they are

indistinguishable from it.” His vision reflected computing as an integral part of everyday

human activity/life. Wireless Sensor Networks are one such technological advancement

that has revolutionised the way of embedding computing devices in physical spaces.

MIT’s technological review (Huang, 2003) has identified Wireless sensor networks

(WSN) as “one of the top ten technologies that will change the world”.

WSN have attracted a considerable amount of research interest in recent years

(Shen et al., 2001, Culler et al., 2004) facilitated by advances in manufacturing of high

density electronics. Wireless sensor node is a key component of WSN. The wireless

sensor node is a tiny, battery powered computing device with sensing, processing, storage

and communication capability. These aforementioned capabilities of WSN’s have made

them suitable for a number of application domains including domestic (Smart homes,

home health care systems (Baker et al., 2007, Srivastava et al., 2001)), military (Akyildiz

et al., 2002), environmental monitoring (Ramanathan et al., 2005) and

scientific/industrial (Structural Monitoring (Xu et al., 2004)) applications. For example,

Grape Networks(2010), a Wireless Sensor Networking company specialising in

deploying and managing wireless sensor nodes at a commercial scale, have implemented

WSN technology in vineyards to monitor environmental conditions.

2

The tiny low-powered (battery) sensor nodes deployed within an area have the

capability to sense environmental parameters and collaborate with other sensors in the

neighbourhood. Wireless sensor nodes distributed within an area work together to

achieve single or multiple goals (Shen et al., 2001). The sensing property of sensor nodes

allows them to gather information from the physical world (e.g. temperature). The sensor

has on-board capability to process, store or transmit sensed information wirelessly, based

on application requirements. The advent of WSN has enabled the acquisition of data from

physical environments which previously was expensive, difficult or even impossible

(Chu et al., 2006). WSN has paved the way in realising Mark Weiser’s vision for 21st

century computing.

The increased adaptation of WSN across various application domains has resulted

in generation of massive amounts of data (Shen et al., 2001, Culler et al., 2004). Hence

collecting data from sensors has been identified as one of the several challenges that need

to be addressed for large-scale sensor network adoption. The process involving collection

of the sensed data from the sensor nodes is called “sensor data collection”. The resource

constrained nature of sensor nodes make the data collection process more challenging,

hence embodying the need for energy-efficient data collection techniques.

A key application area that uses sensor data as its foundation is smart computing

applications i.e. context-aware systems. Context-aware systems have the capability to

adapt their behaviour (operation) based on real-world contextual information in order to

deliver the best service to the user (Hähner et al., 2004). Context-aware applications

(Loke, 2006) rely on real-world information which is sourced from sensors (physical and

software). The sensor data from wireless sensors are dynamic i.e. they change over time.

Hence, the context-aware applications need to have the ability to adapt to changing

contextual information.

In this research, we focus on the challenge of energy-efficient sensor data

collection. In addressing the sensor data collection challenge, we note that

communication is a major factor that affects sensor lifetime. The lifetime of a sensor

node is the amount of time the sensor can perform its operations before its battery drains.

Further, we extend our research by addressing the challenge of dynamically modelling

 3

smart spaces1 using data collected from sensors that are embedded within the

environment. In particular, we introduce the notion of situation-based smart spaces

modelling where real-world contextual information is used to build a virtual model of the

physical situation. The rest of the chapter is organised as follows: Section 1.2 presents the

research motivation. Section 1.3 presents the research aims and contributions. Finally,

section 1.4 presents a roadmap of the thesis structure.

1.2 Research Motivation

Currently there are around 4 billion mobile phones2 (ITU, 2008) in use in the

world. Many of these devices have enough spare energy to perform operations other than

regular telephony and internet-based services. Moreover, current day mobile platforms

come equipped with a plethora of communication technologies including GSM, Wi-Fi,

Bluetooth, UMTS, etc, capable enough to form a ubiquitous mobile wireless access

network. A survey conducted over three days at an info-security conference 2006 in

London (Gostev, 2006) resulted in discovery of more than 2000 Bluetooth enabled

devices in visible mode. The profuse use of mobile devices equipped with a host of

communication technologies created the foundation of our vision to use day-to-day

mobile computing devices as mobile sensor data collectors. We envision the use of

mobile computing devices as mobile access points for sensor networks. The ubiquitous

presence of mobile devices and increased number of sensor network deployments in

smart environments, facilitates the creation of mobile wireless access networks with

sufficient bandwidth (available from mobile device communication channels, e.g. GSM,

UMTS) to support data originating from sensors.

The use of mobile devices as collectors and carriers of sensor data allows

application developers to access sensor data from any location instantly which otherwise

would require specially designed data-sink infrastructure. We take advantage of short-

range communication technologies available on current day mobile devices. Our proposal

1 Smart space is the term used to represent spaces embedded with computing
infrastructure Satyanarayanan M., 2002. Pervasive computing: vision and challenges.
Personal Communications, vol. 8, no. 4, pages: 10-17.
2 We use the mobile phone as a classic example of widely available mobile device
platforms in everyday life

4

explores the use of mobile devices as a shared access network that can act as data carriers

for sensor nodes. This approach introduces a new sensor network paradigm facilitating a

platform for easy adoption of sensor networks in applications which otherwise required

laborious and expensive network infrastructure. An application scenario illustrating our

motivation is presented in Figure 1.1. The illustration in Figure 1.1 depicts an industrial

environment where sensors are distributed at different locations within a building. The

mobile devices that act as data carriers in the scenario are mobile phones used by factory

workers who move around within the sensor network environment.

Figure 1.1: Motivation Scenario Example

Our motivation is further supported by the widespread acceptance of short-range

communication technologies like Bluetooth. Recent research outcomes validate the

feasibility of Bluetooth for low-powered sensor network operations (Leopold et al.,

2003). The popularity and adoption of Bluetooth has already made it a ubiquitous

technology helping us realise our vision of creating a heterogeneous network comprising

Bluetooth enabled day-to-day mobile devices interacting with sensor nodes deployed

within smart spaces. Moreover, our vision supports a variety of technologies, Zigbee

being one such example. The adoption of 802.15.4 Zigbee (2009a) protocol for wireless

sensor networks and development of Zigbee enabled mobile devices (ZigBee, 2007) has

 5

further strengthened our vision, extending our approach to future mobile devices. The use

of day-to-day mobile devices as a vehicle to collect sensor data exploits a mobile device’s

spare capacity, utilising the mobile access network without the need for dedicated sensor

data collection infrastructure.

1.3 Research Objectives and Contributions

The introduction of day-to-day mobile devices as sensor data collectors opens up

a number of application possibilities. We use the term day-to-day to embody the class of

mobile devices available in current day-to-day human activities. These mobile devices

include smart mobile phones, personal device assistants (PDA), tablets, laptops, mobile

robots, etc. We aim to take advantage of existing networking capabilities available on

mobile devices to form a ubiquitous mobile device-based dynamic sensor data collection

infrastructure. We term these mobile devices mobile data mules.

Our proposed approach creates the platform for tiny low-powered sensors to

connect to an access network using mobile devices available within the environment.

Recent research in the area of Bluetooth-based sensor networks (BSN) have spawned

new application opportunities (Deventer et al., 2009, Eliasson et al., 2008, Eliasson et al.,

2007) by which, individual sensors connected to the internet provide a range of services

to the end-user. The wide acceptance of Bluetooth technology and its pervasiveness

across current day mobile device platforms has helped in realising our vision presented in

the previous section. Further, advances in the development of Zigbee-based mobile

devices (ZigBee, 2007) and the large availability of Zigbee-based sensors

(CrossbowTechnology, 2010a), introduce the need for data collection protocols to suit a

wide range of sensor network platforms. Hence, in this thesis, we propose data collection

algorithms targeted at a wide range of sensor network platforms, namely, sensor networks

with broadcasting capability (Zigbee-based) and sensor networks without broadcasting

capability (Bluetooth-based). Our approach takes advantage of ubiquitous availability of

mobile devices within human environments. Hence, it is important and challenging to

develop energy-efficient data collection protocols that can work on low-powered sensor

nodes. Moreover, the data collection protocols need to have the capability to work on

current day mobile devices without modifying the device platform.

6

Further, to validate the importance of the collected sensor data in smart

environments, we also explore a dynamic smart spaces modelling approach. We use the

term smart spaces to define pervasive environments embedded with computing device

having the capability to react to environmental changes. Sensor networks play an

important role in current world smart spaces as they are the source of valuable data. The

thesis explores the possibility of a dynamic smart spaces model that adapts to changing

sensor data (collected by mobile data mules).

Hence, the aim of this thesis can be summarised as follows: to study, develop,

implement and evaluate cost-efficient sensor data collection approaches that suit a wide

range of sensor network platforms using day-to-day mobile devices as mobile data mules

and to implement and develop a smart spaces modelling technique that adapts

dynamically using sensor data collected by mobile data mules.

The aim of this thesis is driven by both real-world sensor network applications

that require cost-efficient ubiquitous data collection approaches and sensor network

research which so far has not addressed sensor data collection using day-to-day mobile

devices highlighted in section 2.3.6. This research can be applied to many application

domains including health-care and intelligent road networks, to name a few, and has the

capability to spawn new applications (e.g. district heating application presented in section

3.6) within the area of pervasive computing. We briefly highlight how the research

presented in this thesis can benefit health-care. Bluetooth-based sensors have been

identified to revolutionise health care devices (Wodajo, 2010). Wodajo et.al. (Wodajo,

2010) puts forward the use of disposable sensors embedded on health care devices that

can provide real-time patient data to doctors. The use of disposable sensor nodes renders

a constantly changing sensor network environment that requires new data collection

approaches. This research addresses the sensor data collection challenge by taking

advantage of existing mobile device infrastructure available in most urban areas (e.g.

health care centre). The mobile devices collect the data generated by the health-care

devices embedded with Bluetooth sensors. The approaches investigated in this thesis

advances the research in sensor data collection by proposing an architecture that can

bridge sensor nodes and ubiquitously available mobile devices. In section 3.6 we present

detailed descriptions of two real-world applications that can take advantage of the sensor

 7

data collection technique proposed in this thesis. The real-world examples presented in

section 3.6 may lead to a new class of sensor network applications which may have not

been possible in the past.

To further simplify the overall aim of this thesis we breakdown the objective into

three research questions. They are:

1) Is it possible to use day-to-day mobile devices as an energy-efficient

alternative to collect data from a Bluetooth-based sensor network embedded

within the environment?

2) Is it possible to extend the mobile device-based data collection algorithms to

suit a wider range of sensor network communication architectures

(broadcasting-based)?

3) Is it possible to develop a dynamic smart spaces model using newly generated

sensor data?

To address these three research questions, the thesis proposes techniques that

achieve cost-efficient sensor data collection from a class of sensor network platforms.

Further, we propose a situation-based dynamic context modelling approach based on

Context Spaces (Padovitz et al., 2004, Padovitz, 2006, Padovitz et al., 2005) that models

smart spaces using sensor originated data. Our notion of smart spaces modelling is

governed by situation modelling. The thesis makes the following contributions to address

the three research questions.

1) A sensor data collection framework, namely, sGaRuDa (Jayaraman et al.,

2008a, Jayaraman et al., 2008c, Jayaraman et al., 2008b, Jayaraman et al.,

2007) that can be implemented on day-to-day mobile devices enabling them to

discover, negotiate, collect and deliver sensor data. The proposed system

framework incorporates

a. Algorithms for energy-efficient discovery of Bluetooth-based sensors

b. A sliding window inspired data collection algorithm to collect data

from sensors in the presence of multiple independent mobile data

mules

8

2) A dynamic sensor duty cycle adaptation (activation schedule) (Jayaraman et

al., 2008a, Jayaraman et al., 2008c, Jayaraman et al., 2008b, Jayaraman et al.,

2007) algorithm used to modify the sensor’s duty cycle on-the-fly, using the

mobile data mule with the objective to increase the sensor discovery ratio,

hence reducing sensor energy consumption. The proposed sGaRuDa system

framework facilitates on-the-fly exchange of the activation schedule.

3) A novel k nearest neighbour query based sensor data collection algorithm,

namely, 3D-KNN (Jayaraman et al., 2010a, Jayaraman et al., 2010c,

Jayaraman et al., 2010b) targeting sensor nodes with broadcasting capabilities

(e.g. Zigbee). The proposed 3D-KNN algorithm has the ability to work in a

three dimensionally distributed sensor network. The 3D-KNN algorithm takes

into consideration sensor location and communication channel quality in a 3D

space to identify the best set of energy-efficient sensors neighbouring the

mobile data mule. The 3D-KNN algorithm uses multi-hop sensor data

collection. The proposed 3D-KNN algorithm is a pioneering work in using

mobile data mules to employ kNN queries for sensor data collection in a 3D

sensor network.

4) A dynamic situation modelling approach, namely, R-CS (Jayaraman et al.,

2009b, Jayaraman et al., 2009a, Jayaraman et al., 2008c), proposed as an

extension to Context Spaces (Padovitz, 2006, Padovitz et al., 2004, Padovitz

et al., 2005) that allows dynamic composition of situations based on collected

sensor data.

Further, to verify, validate and evaluate the proposed data collection algorithm

and the smart spaces modelling approach, the thesis makes the following contributions:

1) Prototype implementation of the sGaRuDa framework and its data

collection algorithms on real-world mobile devices validating the function

feasibility of the system.

2) Demonstrates the cost-efficiency of sGaRuDa by extensive real-world

experimentations.

 9

3) Demonstrates the cost-efficiency of the proposed 3D-KNN algorithm by

extensive evaluations and experimentation over large-scale wireless sensor

network environments.

4) Implements, validates and evaluates the dynamic situation modelling

extensions incorporated to Context Spaces (Padovitz, 2006).

Our research methodology is driven by proposing, developing, implementing and

testing the proposed algorithms and protocols to address the three research questions. Our

proposed approaches are supported by extensive evaluation outcomes in real-world and

simulator environments.

1.4 Thesis Structure

The thesis is organised into 7 chapters excluding introduction. An illustration of

the thesis structure is presented in Figure 1.2.

Chapter 2 presents a literature background on sensor data collection techniques.

We present a broad background on current state-of-the art wireless sensor networks.

Further, we present an in-depth literature review of mobile and non-mobile based data

collection approaches, identifying their shortfalls and building an argument for our

proposed approaches. Finally, we present a literature review of situation-based context

modelling approaches identifying the need for a dynamic smart situation modelling

approach.

Chapter 3 presents in-depth discussion of the proposed sensor discovery, data

collection and sensor management algorithms. This chapter is partly based on the

published papers (Jayaraman et al., 2008a, Jayaraman et al., 2008c, Jayaraman et al.,

2007, Jayaraman et al., 2010b). We propose our system framework, namely, sGaRuDa.

The proposed system framework can be implemented on current generation mobile

devices. The system framework primarily targets Bluetooth-based sensors nodes while

the algorithms proposed for data collection can be extended with relative ease to non-

Bluetooth based networks.

10

Figure 1.2: Thesis Structure

Chapter 4 extends the proposed system framework by introducing k nearest

neighbour-based three dimensional sensor data collection (3D-kNN) algorithm using

mobile data mules. This chapter is based on published papers (Jayaraman et al., 2010a,

Jayaraman et al., 2010c, Jayaraman et al., 2010b, Jayaraman et al., 2008b). The proposed

3D-kNN algorithm aims at cost-efficient discovery and data collection from broadcast-

based sensor nodes. We present a detailed discussion of the sensor discovery and multi-

hop data collection algorithms.

Chapter 5 presents the proposed Context Spaces extensions that are implemented

in our R-CS reasoning system. This chapter is based on the published papers (Jayaraman

et al., 2009b, Jayaraman et al., 2009a, Jayaraman et al., 2008c). The proposed extension

allows R-CS to compose situations on-the-fly enabling increased reasoning accuracy. We

also discuss introduction of additional metrics into R-CS to increase the reasoning

confidence under uncertainty.

Chapter 6 presents implementations of the proposed system framework

(sGaRuDa), the 3D-kNN algorithm and R-CS (Context Spaces extensions). We present a

detailed discussion of sGaRuDa (the proposed data collection framework)

 11

implementation on real-world devices (personal digital assistant) and sensor node

(Mulle). The 3D-kNN algorithm has been implemented within a simulator environment.

We present a detailed discussion of the simulator environment and the 3D-kNN

implementation. Finally, we present the details of JAVA implementation of R-CS.

Chapter 7 presents extensive evaluations and experimental results of the systems

presented in Chapter 3, Chapter 4 and Chapter 5 respectively. We perform real-world

experimentations to prove the feasibility of sGaRuDa supported by real-world evaluation

outcomes to validate the efficiency of the proposed algorithms. Similarly, we discuss the

results of extensive evaluation of the 3D-kNN algorithm in our simulator environment

simulated over large-scale sensor networks. The outcome of the 3D-kNN algorithm is

compared with a non-mobile kNN-based sensor data collection algorithm to validate its

cost-efficiency. Finally, we present evaluation results of R-CS comparing the

experimental outcomes with Context Spaces validating the proposed extensions.

Chapter 8 concludes the thesis with pointers to possible future works.

12

2
Sensor Data Collection

Approaches and Context
Modelling - A Literature Review
2.1 Introduction

A major focus of this dissertation is to address key challenges in sensor data

collection. The advent of sensor networks, primarily driven by advances in

manufacturing of high density electronics, is hindered by slow developments in battery

technologies. The energy (battery power) constrained nature of sensors is a major

consideration in the development of data collection protocols. This chapter presents a

survey on sensor data collection techniques available in the literature. In section 2.2, we

present an overview on wireless sensors network (WSN) operations identifying key

challenges. Sections 2.3 and 2.4 present current literature on sensor data collection

approaches. Finally, sections 2.5 and 2.5.2 discuss current literature on situation-based

context modelling and reasoning approaches identifying the importance of dynamic

situation modelling.

2.2 Wireless Sensor Networks

2.2.1 Overview

A wireless sensor network (WSN) is a collection of components that work

together to achieve single or multiple goals (Vieira et al., 2003, Burke et al., 2006). A

major component of WSN is distributed, autonomous, tiny devices called wireless sensor

nodes. Wireless sensor nodes are equipped with on-board sensing, communication and

 13

data processing capabilities (Akyildiz et al., 2002). The sensor essentially is an atomic

unit (Kumar, 2003) comprising the capabilities mentioned earlier. Kumar (Kumar, 2003)

uses the term “Atomic Computing Particle” to describe sensors. Sensor networks help

forming a fully connected information space (Kumar, 2005, Kumar, 2003). The research

in the area of sensor networks was pioneered by UC Berkeley researchers (Culler et al.,

2004) who were instrumental in developing the MICA mote sensor platform

(CrossbowTechnology, 2010a) . The sensor node has the capability to work with a

variety of sensors ranging from mechanical, thermal, biological, chemical, optical and

magnetic sensors (Yick et al., 2008). In most cases, the primary power source of a sensor

node is a battery though recent research initiatives have explored secondary power

sources like solar panels (Alippi et al., 2008, Kansal et al., 2007). Going by Moore’s Law

(Pinto, 2002) - number of transistors on a chip doubles every 18 months and Gilder’s

Law (Pinto, 2002) – communication bandwidth triples every year – a theory for battery

life prediction is unavailable. This limitation in power always remains the primary

challenge in sensor design and operation.

Early research in wireless integrated network sensor (sensor networks) (Pottie et

al., 2000, Asada et al., 1998, Bult et al., 1996) was motivated by pervasive computing

application requirements to bridge the physical and virtual worlds. Sensors are an

excellent technological advancement that made this requirement a reality. They

facilitated monitoring and collecting physical world parameters that were fed into virtual

world pervasive applications. The Smart kindergarten (Srivastava et al., 2001) project is

one such example of a pervasive application dependent on sensor inputs. A simple

wireless sensor network is illustrated in Figure 2.1. Though sensor networks share a

number of ad-hoc network characteristics (Frodigh et al., 2000), algorithms employed in

traditional ad-hoc networks cannot be straight-forwardly adapted to sensor network

requirements.

A typical WSN has little or no network infrastructure information (Yick et al.,

2008). In most applications WSN’s are deployed within a dense area in an ad-hoc

manner. Based on the type of network deployment, they can be classified into structured

and un-structured. A deployment depicted in Figure 2.1 is classified as un-structured

while planned deployment in specific locations is classified structured. The

14

sink/gateway/base station is another important component of WSN. It is a centralized

component to which sensed data is transmitted for further processing/decision making. In

this thesis, we use the terms sink and base station interchangeably.

Figure 2.1: A Simple Wireless Sensor Network Deployment

2.2.2 Sensor Node Components/Operations

A sensor node is made of four main components, namely, physical sensor, battery,

communication radio and processor each associated with a key operation:

Sensing: The process of measuring the physical phenomenon is sensing. A wireless

sensor can be equipped with different types of sensors based on applications

requirement. The sensing unit in a sensor may have more than one type of sensor

installed. The sensing unit is responsible in managing various sensors converting

electrical signals generated by changes in physical environment into raw sensed

data. This raw data can be saved to an on-board memory or transmitted to a central

processing station wirelessly. For example, a temperature sensor has the ability to

measure temperature within the deployed environment. Sampling performed by the

sensor i.e. sensing the change in the parameter measured can be classified into

Periodic and On-Request. A periodic sampling of data is performed over a time

cycle (e.g. sample temperature every 2 minutes). This involves waking-up the

sensing device, measuring the parameter and storing the raw data. On-Request

sampling of data is controlled by the application. This is on-demand sampling

where the sensor performs sampling after receiving a request from the application.

 15

Power Management: Power Management manages available power sources by

performing energy-efficient sensor operations. Sensors are energy-constrained

devices that depend on efficient battery usage for extended lifetimes. Power

management schemes employed can use battery voltage information to extend the

life of the sensor (Park et al., 2002). The most common energy source for sensor

nodes is battery while concurrent research into harvesting energy from the

environment is being explored. Amirtharajah et al. (2004) and Roundy et al. (2004)

explore harvesting energy from environmental vibrations while (Kansal et al., 2007,

Kansal et al., 2003, Alippi et al., 2008) investigates solar cells. Table 2.1 provides a

summary of power density available from various energy sources. The data

presented in Table 2.1 is a summary of experimental results obtained from (Rabaey

et al., 2000, Vieira et al., 2003).

Energy Source Power Density Energy Density

Battery (rechargeable
lithium)

 300 mWh/cm3 (3
- 4 V)

Solar (outdoors) 15 mW/cm2 (direct sun)

0.15mW/cm2 (cloudy day)

Solar (indoors) 0.006 mW/cm2 (standard
office desk)

0.57 mW/cm2 (< 60W desk
lamp)

Vibrations 0.01 - 0.1 mW/cm3

Table 2.1: Comparing Power from Various Energy Sources

Power-efficient sensor operation is by far the most important design constraint and

requires every protocol, function of the sensor to abide with this design

consideration. A number of Dynamic Power Management (DPM) approaches are

presented in (Lin et al., 2006, Passos et al., 2005, Sinha et al., 2001, Wang et al.,

2001). The principle behind DPM is to dynamically shutdown sensor components

when no events occur. An event is defined as a variation in the sensed

phenomenon. A key issue is when to turn-off/on the sensor components. For

example, while performing a periodic sensing operation, turning off the processor

during non-sensing period would save energy. On the other hand returning the

16

sensor components from sleep consumes energy and time. Hence, there is always a

trade-off between energy and time spent in turning-off and turning-on the sensor

components (Lin et al., 2006).

Communication: The sensor node is equipped with a radio that allows it to exchange

data with neighbouring sensors and the base station (sink). The data exchange

between sensors or a sensor and base station takes place in three possible ways: 1)

unicast: one-to-one - one sender communicates with one receiver, 2) multi-cast:

one-to-group - one sender communicates with a selected group of receivers and 3)

broadcast: one-to-all - one sender communicates with all receivers that are within

the communication range. We argue, communication is the major energy

consuming component in a sensor node compared to the other functional

components (Raghunathan et al., 2002). Simulation results presented in (Shnayder

et al., 2004) validate our argument. Hence energy-efficient use of the radio is the

primary criterion for any communication protocol design. The sensor radio

component determines its communication characteristics. Though radio frequency

(RF) has been the widely used transmission media (Pottie et al., 2000,

CrossbowTechnology, 2010a) optical medium has also been employed by

SmartDust (Kahn et al., 1999) sensor platform. The antenna size used in RF

communication needs to be a fraction of the wavelength for efficient operation and

coverage (Warneke et al., 2002). The miniature design of sensor nodes allows only

small antennas, thus reducing the size of the antenna results in low antenna gain.

This design outcome reduces the communication range of sensor nodes. For

example, a sensor equipped with a Bluetooth (2010c) radio like the Mulle (Eliasson

et al., 2008) has a communication range of 10 to 100m. A number of

communication standards have been proposed for sensor networks focusing on

sensor design requirement for low power consumption. These standards, to name a

few, include IEEE 802.15.4 (Howitt et al., 2003), Zigbee (2009b), Wibree

(BluetoothSIG, 2010b), IEEE 802.15.3 (IEEE, 2003.). We have presented a

summary of radio hardware characteristics in Table 2.2 currently available on most

sensor platforms. The source of data is a combination of datasheets

(TexasInstruments, 2010, TexasInstruments, 2007) and experiments (Shnayder et

 17

al., 2004, Cordeiro et al., 2006, EISLab, 2010, Polastre et al., 2005). Few radio

hardware technologies presented in Table 2.2 have the capability to dynamically

change the receiver sensitivity to improve communication reliability.

Processing: The processing unit is the brain of the sensor node performing the

computation and operations of controlling and coordinating the various system

components. The primary function of the processing unit is to process raw data3

obtained from the sensing unit and transmit it over the communication channel to

the network base station (sink) for further processing.

Characteristic
s

Radio Device

Carrier
Frequency

Receiver
Sensitivity

Data
Rate
(kbps

)

Range
(n)

Current
Consumption

(RX)/(TX)
(mW)

TR1000
(MICA Mote)

916.5 MHz -97dBm 40 100 12 /36 @0dBm

CC1000
(MICA 2 /

BTnode rev3)

300 to 900
MHz

-98dBm 38.4 100 29 / 42 @0dBm

CC2420
(MICA 2/
MICAz /

Telos/ Sun
SPOT/ TMote

Sky)

2.4 GHz

IEEE
802.15.4

-95dBm 250 50 /30
(indoor)

125 /100
(outdoor)

38 / 35 @ 0dBm

Mitsumi
WML-C46

AHR (Mulle)

2402 -
2480MHz
(Bluetooth

v1.2)

-80dBm 721 10 47.9

Table 2.2: Radio Hardware Characteristics

The energy consumed by the processor to perform operations like process raw

sensor data, prepare the data for transmission, control the sensor components is

relatively low compared to the energy spent in communication (Raghunathan et al.,

2002). For example, the MICA mote consumes about 720nJ/bit to transmit data and

110nJ/bit to receive data while it consumes only 4nJ to perform a single operation

3 Raw data refers to the analog data sensed by the sensing unit which is converted to digital data using
Analog to Digital convertor (ADC)

18

(Srivastava, 2002). As processing is less expensive compared to communication, it

is appropriate to process, validate and compress raw data before transmitting it to

the base station (sink). A number of power management approaches have been

employed to dynamically change the processor’s speed for energy-efficient

operation. Dynamic voltage scaling is one such technique employed to dynamically

change the processor’s voltage resulting in lower clock frequencies depending on

computational loads (Gutnik et al., 1997). A performance evaluation of energy

consumed against dynamic clock frequencies is presented in (Chandrakasan et al.,

2002). Table 2.3 presents taxonomy of microprocessor characteristic used in

current sensor node platforms. The CPU on most sensor platforms has access to

onboard memory (RAM-Random Access Memory) used to store sensor data.

Characteristic
s

Micro-
processor

Bits Clock
Freque

ncy

Operat
ing

Voltag
e

Power (Idle
Mode)

mA

Power (Active
Mode)

mA

Flash
(Byte

s)

ATmega128L
(MICA2 /
MICAz)

8 8 MHz 2.7 -
5.5V

2.5mA @ 3V,
4MHz 11mA

@ 5V, 8MHz -

5.5mA@ 3V,
4MHz -

19mA @ 5V,
8MHz

128K

TI
MSP430F16X
(Telos / Tmote

Sky)

16 8MHz 1.8 -
3.6 V

95μA @ 3V,
1MHz

22μA @ 3V,
0MHz

600μA @ 3V,
1MHz

20μA @ 3V,
4,096Hz

48K

Renesas
M16C / 62C

(Mulle)

16 24MHz
(Mulle

@
10MHz

)

2.7 to
5.5 V

1.8 μA @ 3V,
32kHz (wait

mode), 0.7 μA
@ 3V (stop

mode)

14mA @ 5V,
24MHz

8mA @ 3V,
10MHz

256
K

Atmel
AT91RM9200
(Sun SPOT)

32 180
MHz

1.65V -
3.6 V

13.8mA @
3.3V, 180MHz

24.4mA @
3.3V, 180MHz

128K

Table 2.3: Characteristics of microprocessors used in current sensor platforms

The data Table 2.3 has been tabulated from different datasheets (SunMicrosystems,

2007, Atmel, 2009a, Atmel, 2009b) and experimental outcomes (EISLab, 2010,

Polastre et al., 2005, Shnayder et al., 2004). The characteristics of microprocessors

 19

widely used in sensor platforms presented in Table 2.3 validate Moore’s law i.e.

Sun SPOT (SunMicrosystems, 2007) uses a 180MHz, 32 bit processor as compared

to first-generation MICA motes (8 MHz).

2.2.3 Sensor Platforms

The previous section provided an introduction to sensors identifying the key

functional units and their corresponding operations. A number of sensor node hardware

has been developed in recent years taking into consideration the key design criteria: 1)

energy-efficient hardware, 2) energy-efficient sensor operation and 3) energy-efficient

sensor software (operating system/ algorithms). Table 2.4 is an in-depth analysis of

current state-of-the-art sensor platforms. The summarised data presented in Table 2.4 is

from Crossbow (CrossbowTechnology, 2010a, CrossbowTechnology, 2010b), ETH

Zurich (ETH-Zurich, 2007), EISLAB (EISLab, 2010) and Moteiv (Moteiv, 2006).

2.2.4 Connection-Oriented vs. Connection-Less Sensor
Network

In this subsection, we classify sensor network platforms based on the

communication architecture employed. We use the term “connection-oriented” and

“connection-less” to classify sensor network platforms. The connection-less approaches

use radio that relies on fixed communication frequency (channel). This communication

channel is shared by a number of nodes within the communication radius. The

connection-oriented approach consists of sensors that use Bluetooth (BluetoothSIG,

2010a) radio for communication, where each node in the network uses a separate

channel to transfer data. Figure 2.2 and Figure 2.3 illustrate the connection-less and

connection-oriented approach.

The connection-less approach enables data broadcast without establishing a prior

connection while the connection-oriented approach requires a connection to be set up

before any data transfer. The connection-oriented approach came into being with the

wide acceptance of Bluetooth technology. Bluetooth specification (Erricson, 2010) was

first developed in 1994 by Ericsson. Bluetooth was initially proposed as a cable

replacement technology allowing devices to communicate wirelessly.

20

Sensor Platform CPU Radio Available
Sensors

Memory Operatin
g System

MICA 2
2001

(CrossbowTechnol
ogy, 2010a,

Cordeiro et al.,
2006)

Atmel
Atmega

128L

433 MHz or
868/916 MHz

Accelerometer

Ambient Light

Pressure &
Temperature

GPS

Microphone

Photo-resistor

Humidity &
Temperature

Thermostat

4K
RAM,

128
Flash

Tiny OS

MICAz

2004
(CrossbowTechnol

ogy, 2010a,
Cordeiro et al.,

2006)

Atmel
Atmega

128L

2.4 GHz IEEE
802.15.4

4K
RAM,

128
Flash

Tiny OS

Telos 2004 (ETH-
Zurich, 2010,

CrossbowTechnolo
gy, 2010b)

TI
MSP43
0F1611

2.4 GHz IEEE
802.15.4

Humidity

Temperature

10K
RAM,

48K
Flash

Tiny OS

Moteiv Tmote Sky
(Moteiv, 2006)

TI

MSP43
0F1611

2.4 GHz IEEE
802.15.4

Humidity

Temperature

Light

10K
RAM,

48K
Flash

Tiny OS

BTNode
rev3(ETH-Zurich,

2007)

Atmel
ATmeg
a128L

433-915 MHz

&

Zeevo ZV4002
Bluetooth

 64K
RAM,

128K
Flash

BTnut
System

Software
and

TinyOS

Mulle (EISLab,
2010)

Renesa
s

M16C/
62

Mitsumi
Bluetooth 2.0

OR

802.15.4 -
ZigBee

Infra Red (IR),
Temperature,

Acceleration/
Seismic

GPS (Lassen
iQ)

Pulse (Polar)

20K
RAM,

256 K

Flash

Proprieta
ry

Software.

TinyOS
and

Contiki
(Dunkels,

2010)
support

Table 2.4: Sensor Node Platforms

The Bluetooth Special Interest Group (SIG) (2010c) created in 1998 allowed a

large number of companies to collaborate to improve and standardise the Bluetooth

specifications. Bluetooth specification allows connectivity between devices from

different vendors, hence, delivering interoperability across a variety of devices. The

 21

Bluetooth specifications are constantly reviewed and updated by the Bluetooth SIG

(BluetoothSIG, 2010c) with current version being 3.0 + HS. A new version 4.0 of the

specification is to be released by the end of 2010 (BluetoothSIG, 2010c). Bluetooth uses

frequency-hopping spread spectrum (BluetoothSIG, 2010a) with time division

multiplexing access (TDMA). It operates in the 2.4-2.4835 GHz band. The Bluetooth

radio operates by hopping between 79 frequency channels of 1 MHz each, 1600 times,

every second. Each time slot has duration of 0.625ms. The Bluetooth specification

available from Bluetooth.com (BluetoothSIG, 2010a, BluetoothSIG, 2010c) provides

detailed functioning of Bluetooth.

Figure 2.2: Connection-less multi-hop sensor network

Figure 2.3: Connection-oriented Bluetooth-based sensor network

2.2.5 Sensor Network Applications

Sensor networks have certain unique characteristics that open the door for a wide

range of applications. These characteristics are:

22

Low-powered: This characteristic of sensor network is both a feature and a design

requirement. As elaborated in previous section, the sensor components (primarily

hardware) need to be designed with the focus of low-powered operation. This

allows the sensor to survive on battery for longer time periods. This is useful, for

example in traffic monitoring applications (iRoad, 2010, Coleri et al., 2004) that

require extended periods of operations without frequent recharging.

Self Organising / Autonomous: This characteristic of sensor networks makes them

an excellent choice for applications where manual network configuration is not

possible. The self organizing capability allows the sensor to adapt itself into the

existing infrastructure or in new infrastructures. This is useful for example in

environmental monitoring applications (Steere et al., 2000, Ramanathan et al.,

2005, Rytter, 2003, Werner-Allen et al., 2006, Xu et al., 2004) that require sensors

deployed in remote locations (forests) to autonomous form a network.

Wireless Communication: The wireless communication available on the sensor

allows applications to connect to the sensor without the need to be physically

present within the monitored environment. This has created opportunities for new

applications including environmental monitoring, health-care and traffic monitoring

that depend on data from different locations, something that was previously not

feasible.

Distributed Sensing and Processing: We characterise sensor networks as a

distributed data sensing and processing platform due to their sensing and processing

characteristics.

The above characteristics of sensor networks enable acquisition of data from

distributed locations which previously were expensive, difficult or even impossible (Chu

et al., 2006). To summarise sensor network applications we have created taxonomy of

applications presented in Figure 2.4. We classify sensor network applications based on

their operating characteristics, namely:

 23

Figure 2.4: Taxonomy of Sensor Network Applications

Pro-Active: The sensor wakes up at periodic intervals, collects data and transmits it to

the base station. The sensor also reacts to events i.e. sudden change in the value of

the sensed attribute.

Reactive: In addition to the pro-active functions, the sensor employs actuators to react

to any sudden change in the parameters monitored. For example, in case of fire in a

Sensor
Networks

Pro-
Active

Habitat
Tracking

ZebraNet

Great Duck Island Reserve

Traffic
Monitoring

iRoad

Traffic-Dot

Health
Monitoring

Smart Sensors and
Integrated

Microsystems(SSIM)

Heart@Home, LISTSENse

Body Sensor Network

Enivornmental
Monitoring

Environment Observation
and Forecasting System

Volcanic monitoring

Structural Monitoring
(Bridges, Buildings)

Water, Soil, Air Monitoring
Military

Underwater
Sensor

Networks

Reactive

Smart
Homes/Offices

Context-aware homes

Smart Kindergarten

Human-Centric
Application

MAX

CenWits

Mote-based Voting

24

building, the pro-active mode reports the fire while the reactive mode activates the

sprinklers within the area of the fire. This mode refers to wireless sensor and actor

networks (Akyildiz et al., 2004) where the actors perform certain system operations

based on sensed inputs.

The list of applications presented in Figure 2.4 range from Habitat monitoring

(Zhang et al., 2004, Mainwaring et al., 2002), Military Applications (Li et al., 2002, He et

al., 2004), Traffic Monitoring (iRoad, 2010, Coleri et al., 2004) including Vehicular

Accident Monitoring and Notification (Acharya et al., 2008), Health Monitoring (Baker

et al., 2007, Yang, 2010), Environmental and Structural Monitoring (Steere et al., 2000,

Ramanathan et al., 2005, Rytter, 2003, Werner-Allen et al., 2006, Xu et al., 2004),

Underwater Sensors (Vasilescu et al., 2005) to Smart Home/ Office applications (Meyer

et al., 2003, Srivastava et al., 2001, Rabaey et al., 2000) and Human-Centric applications

(Yap et al., 2005, Huang et al., 2005). The examples provided for each application

domain highlight some important projects in the area while a plethora of sensor network

applications surveyed is available in the literature (Arampatzis et al., 2005, Gharavi et al.,

2003, Shen et al., 2001, Xu, 2009).

2.2.6 Sensor Networks Challenges: A Roadmap

The previous sections presented a roadmap on sensor operations, current state-of-

the-art sensor platforms and applications. The early adoption of WSN’s across a varied

range of applications has introduced a series of challenges that need to be addressed for

long-term adoption of sensor networks. We classify the challenge faced by sensor

networks into hardware and software. A taxonomical representation of our classification

is presented in Figure 2.5. Research in the past decade has addressed major challenges

facing sensor networks including self-organization, data-centric routing, low-power

hardware design, efficient power management, security, etc. A major focus of this

dissertation is sensor data collection. A detailed discussion on sensor data collection is

presented in sections 2.3 and 2.4.

 25

Figure 2.5: Sensor Network Challenges- A Roadmap

Sensor Network
Challanges

Hardware

Low-power Design

Robust Miniature
Fabrication

Low Cost

Energy Source

Software

Network -Lifetime

Self-Organisation &
Localisation

Routing

Data Dissemination/
Collection

Power Management

Security

Fault Tolerance

Data Processing

Middleware

Synchronisation

E
n

er
gy

 a
n

d
 C

os
t

E
ff

ic
ie

n
t

O
p

er
at

io
n

26

2.3 Data Collection in Wireless Sensor Networks

Section 2.2 presented a background on sensor network development and

operations identifying the wide range of sensor applications. We identified the key

requirement of sensor networks is energy-efficient operation which influences both

hardware and software design/development. The advent of pervasive computing (Weiser,

1999) and pervasive computing applications (Burke et al., 2006) has attracted enormous

research interest in sensor networks.

The word pervasive which means to pervade4 is defined as “to become diffused

throughout; every part of”. This definition suits well within the sensor network paradigm

as deployed sensors fuse themselves within the environment. The data generated by

sensor nodes is highly valuable. Hence, sensor networks are referred as data-centric

networks (Al-Karaki et al., 2004) i.e. data is obtained from the sensor network based on

application requirements. For example, if the requested information is area where

humidity > 80%, sensors that have humidity reading greater than 80% need to respond.

These operations of sensor networks require energy-efficient protocols for data collection

and delivery. We classify sensor data collection approaches into two categories presented

in Figure 2.6.

Figure 2.6: Broad classification of data collection approaches

Static Node-Based: We use the term static node-based data collection to classify the

data collection approaches that employ static sensors/ sinks for data collection.

4 http://www.merriam‐webster.com/dictionary/pervade

Sensor-Data
Collection

Approaches

Static Node-
Based

Mobile Node-
Based

 27

Mobile Node-Based: We classify the data collection approaches that employ mobile

data collectors to collect data from sensors as mobile node-based.

2.3.1 Static Node-Based Sensor-Data Collection Approaches

The static node-based data collection approaches adapt the operation of ad-hoc

network routing protocols. The basic principle is to propagate a query into the sensor

network from the sink and wait for the network to respond with the appropriate data. The

sensed data can then use two approaches for data delivery, namely, end-to-end and

aggregated. The end-to-end and data aggregation approaches are illustrated in Figure 2.7.

The end-to-end approach, as depicted in the Figure 2.7, delivers the un-modified data

from the source to the sink using a multi-hop strategy, i.e. all the sensed data is routed to

the sink. The aggregated approach, as depicted in Figure 2.7, employs data aggregation

i.e. data is combined by intermediate sensors nodes eliminating redundant transmissions.

As illustrated in Figure 2.7, the end-to-end approach has higher communication

overheads compared to the in-network aggregation approach which fuses incoming data

packets from different nodes into one single outgoing data packet. The in-network

aggregation techniques have proved to be more energy-efficient (Krishnamachari et al.,

2002) than the end-to-end data collection techniques. The in-network aggregation allows

sensors to inspect relayed packets instead of acting as mere forwarding agents. The data

collection approaches that employ in-network aggregation techniques can be classified

based on the type of network infrastructure. Figure 2.8 presents taxonomy of these data

collection approaches.

Figure 2.7: End-to-End vs. In-Network Aggregation Approaches

28

Figure 2.8: Taxonomy of Static Node-Based Data Collection Approaches

2.3.1.1 End-to-End Data Collection Approaches

The end-to-end data collection approaches are adaptation of ad-hoc techniques to

suit sensor network requirements (Orecchia et al., 2004, Williams et al., 2002,

Hedetniemi et al., 1988). These approaches are initial research efforts in the area of

sensor data collection and focus more on data routing which we classify under data

dissemination and collection i.e., propagating a request into the network and creating a

route to deliver the collected data. Gossiping and flooding are the classic sensor data

relaying techniques (Orecchia et al., 2004, Hedetniemi et al., 1988).

Flooding (Williams et al., 2002) is a simple but expensive technique for sensor

data collection. It uses a one-to-all (broadcasting) approach. The sink creates a broadcast

packet that is sent to the entire network. Sensors that are part of the request respond to the

broadcast message. Sensors which do not belong to the request forward it to neighbouring

nodes. This approach as stated earlier is very expensive as it requires the entire network

to be listening to broadcast packets. It also faces the following drawbacks (Heinzelman et

al., 1999):

Implosion: Nodes receiving multiple copies of the broadcast messages and sensed

data.

Overlap: Nodes covering same region results in data redundancy

Resource Blindness: The approach is not adaptive and resource aware, hence depleting

sensor energy rapidly.

Static Node-Based
Data Collection

End-to-End

Aggregation-Based

Flat Network-Based

Cluster-Based

 29

Gossiping (Haas et al., 2002, Hedetniemi et al., 1988) is an enhancement

proposed to solve the drawbacks of flooding approach. It solves the implosion problem

by using random forwarding of a broadcast message to a selective list of neighbours. This

random selection of neighbours reduces the number of broadcast messages but increases

response latency. Though gossiping reduces the number of messages exchanged within

the sensor network, it only manages to reduce the rate of energy depletion. Moreover,

data overlap problem is not addressed by gossiping.

Orecchia et al. (2004) handles the drawbacks of gossiping and flooding by

proposing an Irrigator protocol that pre-computes one-hop neighbours to form a virtual

topology of the network. Then a gossip based broadcasting protocol, namely, Fireworks

is used to propagate broadcast messages within the virtual network topology. Irrigator

approach employs a controlled broadcast, i.e. messages are disseminated to a subset of

nodes rather than the entire sensor network. The Fireworks protocol decides to broadcast

a message by tossing a coin. A message is broadcasted to all neighbours with a

probability p while it is broadcast only to a set of neighbours with the probability 1-p.

Orecchi et al. (2004) approach to broadcast packets within a restricted set of neighbours

reduces message transmission but does not reduce energy consumption rather delays the

energy decay process.

2.3.1.2 Data Aggregation-Based Collection Approaches

Data aggregation is a widely accepted paradigm for data-centric sensor networks

(Krishnamachari et al., 2002, Solis et al., 2006) as opposed to the end-to-end approach

discussed earlier. Data aggregation combines data from various sources aiming to reduce

redundancy and hence reducing the number of transmissions required to deliver the data

to the sink. Data aggregation has been employed in sensor networks by processing data

within the network, namely, employing the technique called in-network aggregation. The

three major aggregation techniques (Kulik et al., 2008) are: 1) Packet Merging

(Concatenation), 2) Partial Aggregation (Aggregator) and 3) Suppression.

The packet merging (concatenation) technique going by its name combines data

from different sensors into a single data packet. The partial aggregation (Aggregator) is

used when data from different sources needs to be combined to compute one output. For

30

example, combining humidity readings from various sensors in the surrounding and

transmitting only the average value. The suppression technique employs suppression

operation by discarding redundant data. For example, if a sensor reading does not change

from previous measurements, the data is not transmitted.

2.3.1.2.1 Flat Network Structure-Based Approaches

The flat network structure is a single tier sensor network. The flat network

structure is also termed a tree-based approach (Nath et al., 2004, Kulik et al., 2008). In

tree-based approaches, the root node is responsible for sending a query into the network.

Leaf nodes i.e. child nodes perform data sensing and aggregation while relaying data

back to the root node. Hence, data from one leaf node propagates to the root via other

intermediate leaf nodes.

Sensor Protocol for Information via Negotiation (SPIN) (Kulik et al., 2002,

Heinzelman et al., 1999) is one of the early approaches for sensor data collection. The

SPIN approach tries to overcome the shortfalls faced by flooding and gossiping

approaches by introducing sensor negotiations. The sensor negotiation allows sensors to

advertise availability of data with interested sensors subscribing to receive data. The

SPIN protocol works in the following way. Each source sensor node advertises data

availability to neighbouring nodes. Nodes that are interested in the data send a request to

receive data. On receiving a request, the source transmits actual data to interested nodes.

The data advertisement contains meta-data descriptors that describe the available data. To

achieve this function, SPIN uses three messages, ADV message to advertise meta-data,

REQ message to place a request and DATA message to send the actual data. The energy

consumption of SPIN is due to frequent propagation of ADV, REQ and DATA messages

among interested neighbours. The advertising mechanism of SPIN makes it unsuitable for

many applications as sensor data is made available only to sensors that are interested. For

example, if the nodes interested in the data and the source node providing the data are

separated by intermediate sensors that are not interested in the source data, the data may

never reach the sensors that are interested. Moreover, frequent exchange of negotiation

messages increases communication overheads.

 31

Intanagonwiwat et al. (2000) propose Directed Diffusion, a well-known paradigm

for sensor data dissemination and collection. Directed Diffusion is a data-centric protocol

that diffuses data through the sensor network using naming schemes. The protocol

functions as follows. An interest message is propagated by the sink into the network

through neighbouring nodes. The interest message is a query containing parameters like

location, attribute-value pair, alive-duration, etc. Every receiving node forwards the

interest packet to its neighbours setting up a gradient path. A gradient path is a reply-link

path identifying the source of the interest packet. The gradient path is then used to

determine the route between the sensor data source and the sink. In directed diffusion,

sensor nodes within the network have the ability to perform data aggregation. Directed

Diffusion approach enables the network to compute multiple routes to data source from

the sink, dynamically avoiding overheads to maintain permanent routes. The

communication involved in Directed Diffusion is only between neighbouring nodes and

hence does not require a single node to have a map of the entire network infrastructure.

The energy cost of Directed Diffusion is from computing the gradients dynamically.

Directed Diffusion differs from SPIN in terms of data collection approach. Directed

Diffusion uses queries propagation while SPIN requires the sensor to advertise data

availability.

Tiny AGgregation (TAG) (Madden et al., 2002) is another popular aggregation

scheme for sensor data collection. TAG functions in two phases Distribution and

Collection. The distribution phase is used to distribute the query within the network and

the collection phase handles collecting aggregated data. To collect data, the sink appoints

itself as root of the tree. It then broadcasts its level and identifier to the surrounding

sensors. Each sensor with unassigned level assigns itself a level as an increment to the

one in the broadcast message. This message is further broadcast with new identifier and

level. This process continues until the entire network is reached. The parent node sets a

receive time interval during which it listens to the channel for responses from child

nodes. Each child node uses the parent’s time interval for synchronisation. In the data

collection phase, data from the child nodes are gradually propagated towards the sink

during each parent’s receive interval. Aggregation operation is performed in TAG at

every level. The primary energy consumption in TAG is the requirement for parent nodes

32

to constantly listen to the channel. To further optimize TAG, Madden et al. propose

semantic routing tree (SRT) (Madden et al., 2005, Madden et al., 2003) algorithm. SRT

further optimizes TAG by selectively propagating the broadcast message to a set of

sensors which fall within the scope of the query. SRT optimizes the distribution phase of

TAG by reducing the number of messages broadcast. To achieve this, each parent that

receives the query forwards it to its children only if it satisfies a given predicate. The

SRT approach is energy-efficient with assumption that parent’s nodes are aware of the

entire child node’s attributes (sensed values). Maintaining this network infrastructure is

expensive due to the overheads involved in frequent message exchange.

2.3.1.2.2 Cluster-Based Approaches

Cluster-based network structure employs physical clustering techniques i.e.

sensors are grouped into physical clusters where cluster heads are elected to handle data

processing, aggregation and additional communication operations. A number of

clustering techniques employed in sensor networks are presented in the literature (Abbasi

et al., 2007, Younis, 2004, Bandyopadhyay et al., 2003, Younis et al., 2002, Ghiasi et al.,

2002, Lindsey et al., Heinzelman et al., 2000, Moussaoui et al., 2005). Each cluster

encloses child nodes that transmit sensed data to the cluster head for further processing

and delivery. A typical cluster with cluster heads and child nodes is illustrated in Figure

2.9. The data from the child nodes are transmitted to the cluster head (indicated by the

lines connecting cluster head and child nodes). The cluster head delivers the data

collected from the child nodes to the sink. Clustering techniques are similar to tree-based

techniques but have specific clustering protocols to group sensors into physical clusters.

The cluster establishment is based on number of parameters e.g. residual energy,

geographic location, sensor type, etc. The cluster-based approaches also employ a

different communication strategy than tree-based approaches. In tree-based approaches,

each sensor in the network transmits the data to the base station (sink) using direct or

multi-hop technique. In a cluster-based approach, cluster members transmit data to the

cluster head which transmits the data to the base station directly or via other cluster heads

(multi-hop clusters).

 33

Chien-Chung et al (2001) present Sensor Information Network Architecture

(SINA), a sensor data collection approach based on querying. In SINA, the sensor

network is conceptually viewed as a collection of massively distributed objects. SINA

employs hierarchical clustering in order to improve network lifetime and performance.

The cluster heads perform information filtering, fusion and data aggregation. SINA uses a

spreadsheet paradigm for querying and monitoring. In the spreadsheet paradigm, each

sensor node maintains a logical datasheets consisting of cells. Each cell is uniquely

named and represents an attribute of the sensor node (e.g. remaining battery power). The

value stored in a cell can be queried by other nodes in the network using a sensor query

and tasking language (SQTL), a procedural scripting language designed to be flexible and

compact. SINA plays the role of a middleware responsible for fetching information from

the sensor network based on the user queries.

Figure 2.9: Cluster-Based Sensor Network Structure

Low-Energy Adaptive Clustering Hierarchy (LEACH) (Heinzelman et al., 2000,

Heinzelman, 2000) was an initial effort towards an adaptive clustering scheme in sensor

networks. LEACH employs random cluster head rotation to efficiently balance the sensor

network energy. LEACH operates in multiple rounds with each round performing the

34

operation of cluster formation and data transmission. In cluster formation, a node

becomes a cluster head based on certain probability. The cluster is then computed taking

minimum communication energy factor into consideration i.e. a node decides to

participate in a cluster if the communication energy to communicate with the cluster head

is least compared to other cluster heads. During data transmission, all nodes transmit data

to the cluster head at specific time intervals. The cluster head performs data fusion

(aggregation) before forwarding it to the sink (base station). A variant of LEACH,

LEACH-Centralised (LEACH-C) is proposed in (Heinzelman et al., 2002), that employs

a centralised clustering algorithm to reduce the energy spent by non-cluster heads to

transmit data to cluster heads. To achieve this, sensors transmit location and energy

information to the base station. The base station then determines average energy

threshold above which a sensor can become a cluster head. This information is then

propagated back into the network. LEACH approach is energy-efficient but does not

guarantee equal distribution of cluster heads. LEACH-C performs better than LEACH

(Heinzelman et al., 2002), nevertheless a centralised approach may not be feasible for

many applications.

Power-Efficient Gathering in Sensor Information Systems (PEGASIS) (Lindsey et

al., 2005) is a chain-based clustering protocol proposed as an improvement to LEACH.

PEGASIS employs a greedy algorithm to organise nodes into a chain. In each round,

exactly one node transmits data to its neighbouring node. This is done using a simple

token mechanism. Each node receiving data from the neighbour fuses it with its own data

into a single packet and forwards it to the base station. Nodes in the chain take turns to

transmit the data to the base station hence spreading the energy consumption uniformly

across the entire network. PEGASIS like LEACH requires global network knowledge to

compute the chain.

Hybrid Energy-Efficient Distributed Clustering (HEED) (Younis, 2004) is

proposed as an improvement to LEACH by focusing on efficient cluster formation.

HEED is a multi-hop clustering algorithm i.e. multiple cluster heads are used to relay the

data to the base station rather than a cluster head - base station communication. HEED

aims to reduce overheads of cluster head election hence, extending the overall network

lifetime. It computes clusters based on sensor residual energy and intra-cluster

 35

communication cost. The sensor residual energy is used to elect cluster heads while the

intra-cluster communication cost is used by members to determine the cluster to join.

HEED evaluation results are favourable compared to LEACH and its variants,

nevertheless the approach still needs to re-elect cluster heads periodically which proves

energy inefficient.

A number of research approaches similar to LEACH, HEED and PEGASIS have

been proposed extending single level clustering to multi-level clustering. Bandyopadhyay

et al. (2003) present a hierarchal clustering algorithm that computes multi-level clusters

enabling multi-hop clustering. Moussaoui et al. (2005) proposes a distributed energy-

efficient clustering hierarchy protocol (DECHP) that uses ideas similar to

(Bandyopadhyay et al., 2003), employing multi-level cluster heads to relay data from

cluster members to the base station (sink). The experimental observations of both

approaches show improved energy-efficiency with increasing clustering levels. On

contrary, the multi-level clustering approaches introduce additional overheads in constant

cluster maintenance.

2.3.1.3 Summary of Static Data Collection Approaches

This section presented a summary of research in static node-based sensor data

collection. The use of data aggregation in static node-based data collection has evolved

into an energy-efficient sensor data collection paradigm. Cluster-based approaches have

efficiently employed data aggregation to further improve the energy efficiency in data

collection over tree-based approaches. The major drawback of static-node based

approaches is the overheads involved in collecting data using a fixed base station.

Cluster-based approaches introduce more overheads caused by cluster maintenance,

hence increasing energy consumption. A comparison of the static node-based approaches

is presented in Table 2.5.

36

Technique

Characteristics

Flooding /
Gossiping

Flat Network-Based
Approach

Cluster Based Approach

Data Aggregation NO YES YES

Query Based NO YES (Certain Approaches) YES

Energy
Consumption

HIGH HIGH Better than Flat
Network-Based but
consumes energy in
cluster maintenance

Global Network
Knowledge

NO NO YES (Most methods
require global

information to compute
efficient clusters)

Features Simple
protocol
extended

from ad-hoc
networking

Robust operation for node
failures.

Multi-route capability.

Does not require global
network knowledge.

Single/ Multi-Hop data
delivery

Clusters adaptation
based on sensor residual

energy.

Multi-Hop clustering
capabilities

Single/ Multi-Hop
cluster to base station

communication

Limitations Leads to
broadcast

storms
(Tseng et al.,

2002).

Does not
scale well for
large sensor

deployments.

Energy inefficient for
changing network

conditions.

Some approaches result in
broadcast storms (Tseng et

al., 2002).

Requires Global
Network Knowledge.

Energy consumption
during cluster head

rotation.

Table 2.5: Summary of Static-Node based Data Collection Approaches

2.3.2 Mobile Node-Based Data Collection Approach

The static node-based approaches discussed in the previous section introduced

energy-efficient data collection approaches for sensor networks with a fixed sink.

Recently, mobility-based approaches have been explored as an alternative to static node-

based approaches. The mobility-based techniques aim to further improve energy-

efficiency of the data collection process. We use the term “mobile node” to represent the

 37

class of mobility enabled platforms/devices that are employed for sensor data collection.

Introducing mobility to collect sensor data has certain advantages namely:

Coverage/Connectivity: Use of mobile nodes facilitates data collection from

disconnected sensor networks. This is applicable in both sparse and dense sensor

network deployments. In sparse networks two nodes may not be in communication

range hence requiring sensors to be equipped with long range radio communication

hardware (Anastasi et al., 2009c, Venkitasubramaniam et al., 2004, Jenkins et al.,

2007, Shah et al., 2003, Jain et al., 2006). This requirement solves coverage

problems but imposes high energy requirements. In dense networks the problem of

coverage arises when relay sensors fail or have different duty cycles isolating

specific parts of the network. One solution to this approach is periodic

synchronisation between the sensors. Though this is a viable option, it is also high

energy consuming (Dini et al., 2008).

Sensor Lifetime: The single-hop/multi-hop strategies employed by static data

collection approaches depend on intermediate nodes to deliver the data to the sink.

These approaches were acceptable as early research in sensor networks assumed a

sensor model with fixed sensor nodes and static sinks, as depicted in Figure 2.9.

The static node-based multi-hop data collection strategies deplete the energy of

relay sensor nodes transmitting the data. More specifically, sensor nodes near the

sink deplete energy at a higher rate than other nodes in the network (Kansal et al.,

2004). Employing mobility-based data collection leverages the idea of mobile

nodes moving closer to sensor nodes, reducing the number of hops involved in

transmissions. Reducing multi-hop transmissions reduces the number of packets

exchanged within the sensor network, hence reducing the overall energy

consumption. As stated previously communication is a major energy consuming

operation hence, reducing the overall packet transmission plays a substantial role in

increasing sensor lifetimes.

Deploy/ Calibrate/ Recharge Sensors: The introduction of mobility can help to assist

in a number of sensor operations which previously were impractical. LaMarca et al.

38

(2002a, 2002b) present a novel way of using mobile robots to deploy, calibrate,

recharge and maintain WSN. Rahimi et al. (2003) present the use of mobility to

harvest energy. The technique employs mobile sensors with capability to discover

rechargeable energy sources delivering energy to static energy-depleted sensors.

(Eliasson et al., 2006, Elson et al., 2003) propose different approaches for time

synchronization in sensors.

The range of applications that can take advantage of mobile nodes in sensor

networks is vast many of which are not practical using static sink-based techniques. A

typical mobile node-based data collection scenario is presented in Figure 2.10. The

mobile node moves along a path around the sensor network area collecting data from

nearby nodes delivering it to the sink.

Figure 2.10: Mobile Node-Based Data Collection

We classify mobility in sensor networks into the following three types:

Mobile Sensors: Mobile sensors represent a class of sensors that have the capability to

move within the sensor network autonomously. The mobile sensors are part of the

network deployment infrastructure performing operations including mobile sensing,

 39

data collection from non-mobile sensor nodes, etc. Mobile sensors inherit the

advantages of mobility but have specialised requirements for practical realisation

including specialised hardware for mobility, energy resources to sustain mobility,

increased costs in design and development and protocols for autonomous

operations.

Mobile Sinks: Mobile sink approach exploits mobility by introducing sink/base station

mobility. This allows the base station (sink) to move around the sensor network

performing data dissemination and collection. Though making base stations mobile

is a viable option, it involves overheads in constantly updating the entire network

with the base station’s location/movements.

Mobile Data Collectors: Mobile data collectors exploit the existence of mobile nodes

within the environment to collect sensor data. For example, introducing a specially

designed mobile robot for data collection (Kansal et al., 2004) or using existing

mobility enabled objects (e.g. bus, cars) as data collectors (Shah et al., 2003). The

mobile data collector acts as a relay node to deliver the data to the sink. It does not

have sink capabilities.

Mobile node-based data collection approaches are further classified on the basis

of mobility pattern employed. The sensor mobility pattern can be broadly classified into

Random Mobility, Controlled Mobility and Predicted Mobility (Schindelhauer, 2006).

Our classification is presented in Figure 2.11.

In random mobility (Shah et al., 2003, Jain et al., 2006) mobile nodes with

random movement patterns collect sensor data e.g. humans, cars, animals, etc. In

predicted mobility the mobile node’s movement pattern is fixed (pre-known), for

example, a data collector mounted on shuttle buses within the campus (Chakrabarti et al.,

2003). In controlled mobility the movement of the mobile node is controlled by the

application (Basagni et al., 2007, Jea et al., 2005, Kansal et al., 2004) adding flexibility to

the data collection process.

40

Figure 2.11: Classification of Mobile-Node based Data Collection Approaches

2.3.3 Mobile Sensor-Based Data Collection

Mobile sensor networks comprise a distributed collection of sensor nodes with

locomotion capabilities. These sensors have the same functionality as the static sensors

with added capabilities for localisation, navigation, path planning, etc.

Zebranet (Zhang et al., 2004, Juang et al., 2002) project is a classic example of a

mobile sensor network. Zebranet system focuses on wildlife tracking, with real life

implementation monitoring of Zebras. In Zebranet, each animal is equipped with a

special collar that includes a global positioning system (GPS), dual radio (a short range

and long range radio), solar panels and rechargeable battery. Data collected from each

zebra is delivered when the zebra comes within communication proximity of the fixed

base station (sink). The system also facilitates inter-zebra communication allowing multi-

hop data collection/delivery. The communication protocol employed is simple flooding

which is energy consuming. Hence, to save energy, a history-based data collection

scheme is proposed that employs mobile node hierarchies. The hierarchy determines each

mobile node’s (Zebras) data delivery rate. A higher value indicates higher

communication contact with the base station and vice-versa. Mobile nodes within

communication range request for hierarchy level information of peer nodes. Data is

Random
Mobility

Controlled
Mobility

Predicted
Mobility

Mobile-Node Based Data
Collection

Mobile - Sink

Mobile Sensors

Mobile Data Collectors

 41

offloaded to the mobile node with the highest hierarchy level value. This facilitates better

data delivery rates with lesser energy consumption. The simulation outcomes presented in

the paper validate the energy-efficient performance of the history-based data collection

protocol over the flooding approach. A similar approach is extended in (Small et al.,

2003) employing whales as mobile sensors. Small et al (2003) propose Shared Wireless

Infostation Model (SWIM), a networked architecture that facilitates information

propagation by means of mobile sources. To this end, the SWIM approach has been

studied within the scope of biological information acquisition, targeting whale

monitoring. SWIM employs mobile base stations (termed SWIM stations) that float within

the area of whale movement. When the whale arrives within close contact of the SWIM

station, it offloads data collected to the SWIM station.

More recent research with focus on mobility enabled sensor platforms can be

found in the literature (Paredis et al., 2002, McMickell et al., 2003, Bergbreiter et al.,

2003, Dantu et al., 2005). Most of these approaches introduce mobility by means of

specially designed hardware rather than the Zebranet and SWIM approaches discussed

earlier. The MetroSense project at Dartmouth (Campbell et al., 2006) is one approach that

focuses on collecting data from mobile sensors. The mobile sensors in this case are high

powered devices e.g. personal digital assistant (PDA) equipped with sensors. The project

focuses on people-centric sensing, a term used to represent collaborative data sensed

from people. CarTel (Hull et al., 2006) is another example of a distributed mobile sensor

system. CarTel is designed to collect process and deliver data obtained from mobile

sensors to a central store for further processing and visualisation. The system itself is

equipped with sensors with imaging and location abilities installed on commuter cars. As

these commuter cars move randomly, the sensors collect local information (e.g. pictures

of streets/roads) delivering it to a central sink using delay-tolerant opportunistic networks

(e.g. WiFi available within the commuter car’s range). The CarTel project aims to

augment content provided to user with rich valuable information, e.g. a photo of a house

rather than information about the house’s location. As the CarTel hardware is installed on

cars, energy-efficient operation is not a key concern for such type of mobile sensors. This

allows them to be equipped with more powerful communication hardware e.g. WiFi

cards. Adding mobility to sensors introduces additional challenges of controlling sensor

42

movement autonomously. Use of random mobility eases this problem, but in applications

where mobile sensors are introduced, the area of mobile sensor research maps closely

with robotics (Howard et al., 2002).

2.3.4 Mobile Sink-Based Data Collection

Mobile Sink approaches discussed in the literature employ mobility to solve the

problem of non-uniform energy depletion in the sensor network i.e. reduce the burden on

sensor nodes placed around the sink. These sensors placed around the sink drain energy

faster than other sensor nodes in the network. A SEnsor Network with Mobile Access

points (SENMA) is proposed in (Venkitasubramaniam et al., 2004). SENMA employs

powerful mobile access points equipped with long-range radio communication hardware

to communicate and collect data from low-powered sensor nodes. An example of one

such power access point is an unmanned aircraft flying over the sensor network terrain.

Data collection is done by the mobile access point by sending a wake-up beacon to

sensors within the terrain. Each sensor activated by the mobile AP starts sending a packet

with a probability p. SENMA considers single hop data collection using mobile sinks.

This work is further extended in (Mergen et al., 2006) by optimizing network parameters,

namely, coverage area, flying altitude and mobile access point trajectory aiming to

improve data collection efficiency. Some interesting insights highlight the importance of

channel quality (signal-to-noise ratio) to maximize network lifetime. SENMA approach

falls within controlled mobility as the case study employing unmanned aircraft presented

in the paper can be controlled to optimize the data collection process.

Liang et al. (2005) explores sink mobility in dense sensor networks as against

SENMA which primarily focuses on sparsely deployed sensor network. They propose

multiple nodes transmission scheduling algorithm (MTSA-MSSN) that handles

transmission from multiple nodes that use a single channel for communication. The

mobile sink modelled in this proposal moves with specific velocity and direction

collecting data at pre-defined time intervals (predicted mobility). MTSA-MSSSN

requires nodes to have certain signal-processing capabilities to participate in the

scheduling process. SENMA focuses more on random channel access while MTSA-

MSSSN focus on time synchronized multiple channel access with higher efficiency.

 43

Some mobile sink-based data collection approaches formulate the data collection

problem as a Linear Programming problem. Gandham et al. (2003) explores mobile sink

placements using an integer linear programming (ILP) approach in a multi-hop sensor

network. The data collection operation is divided into rounds and at the beginning of each

round, the best location for mobile sink placement is determined. The ILP formulation

aims at minimizing the maximum energy spent by the sensor node during each round to

communicate with the sink. Gandham et al. (2003) achieves energy-efficient data

collection by reducing the maximum energy spent at each node which helps as an

indicator towards the overall network lifetime. Alternatively, Wang et al. (2005) presents

a similar mobile sink solution that directly formulates the ILP on the overall network

lifetime. In this approach, sensors are modelled in a two-dimensional square grid. The

mobile sink moves within the grid spending a fixed time interval collecting sensor data.

The objective of the ILP is to determine which node needs to be visited next by the

mobile sink and the optimal sojourn time at each point. The results of evaluations from

(Wang et al., 2005, Gandham et al., 2003) indicate the performance improvements using

mobile sink over static sink approach. Specifically, Wang et al. (2005) claims 500%

improvement in network lifetime over static sink based approach. The proposed ILP

approaches mostly follow random mobility patterns with the assumption that mobile sink

appears equally at every node location (same frequency of visits). Finally,

Chatzigiannakis et al. (2006) present a mobile sink-based data collection approach with

focus on studying the impact of mobility patterns and data collection strategies. The

mobility patterns simulated in the paper include random and predicted mobility while

data collection strategies explore passive, limited and complete multi-hop routing.

Kansal et al. (2004) propose the use of mobile robots to achieve sink mobility. To

this end, the authors propose a prototype implementation of a mobile base station with

the ability to move within the sensor network along a specific path. The mobile base

station used (also termed mobile router) is a rugged multi-terrain unmanned ground

vehicle, namely, Packbot. The robot’s movement is controlled using Simple Interface for

Robots (SIR), a generic development platform. The robot is equipped with a Stargate

node processing platform running Linux and a mica mote interface hardware. The

interface hardware is a mica-mote that can communicate with sensors in the surrounding

44

area. The mobile base station’s movement can be controlled to increase system

performance. The prototype implementation uses a mica mote (CrossbowTechnology,

2010a) sensor node. Further, Kansal et al. (2004) explores the following challenges

involved in data collection when the mobile base station is on-the-move: 1) mobile base

station’s movement speed influencing data collection and 2) data Collection protocol to

enable multi-hop data collection. While previously discussed approaches require the base

station to stay at the node’s location for a constant time, Kansal et al. (2004) employs

speed control algorithms that can vary the mobile base station’s velocity based on sensor

nodes in the environment. The algorithm works as follows. An initial exploration round is

used to determine and collect state information from the set of node within the vicinity of

the mobile base station. The state information is further used to partition the sensors into

two sets based on data delivery success percentage. The mobile base station employs a

stop-and-collect approach for sensor nodes in the first set and a slow-down-and-collect

approach for sensor nodes in the second set. Finally, a data collection (communication)

protocol based on directed diffusion (Intanagonwiwat et al., 2000) is proposed to enable

multi-hop data collection. Nodes that are not in direct contact with the mobile base

station (sink) offload their data to a node that is in direct contact with the mobile base

station. The communication protocol employs an acknowledgement scheme to notify

nodes of successful data delivery. Nodes failing to receive an acknowledgement will re-

transmit their data. Unlike previously discussed sink-based mobile data collection

approaches, Kansal et al. (2004) present results obtained from real-world experiments

using the proposed system prototype. Experimental results validate the advantages of

employing mobility by achieving better data success rate at lesser energy using the

adaptive speed control algorithm and the modified, directed diffusion approach.

Jea et al.(2005) extends Kansal et al. (2004) work by introducing multiple mobile

base stations to alleviate latency in data collection process. Two issues discussed are

choice of number of mobile base stations and handling shared nodes (nodes within the

range of both mobile base stations). They propose a load balancing algorithm that

uniformly distributes the load of the data collection process among available mobile base

stations. The load balancing process is divided into five parts namely: initialization,

leader election, load balancing, assignment and data collection. The end result of the load

 45

balancing operation is a node list that each mobile base station needs to service (data

collection operation). This list avoids conflicts from sharable nodes as each shared node

is assigned specifically to only one mobile base station. The data collection involves the

mobile base station traversing the network collecting data from its assigned node list. The

mobile base station sends acknowledgement to nodes it services, which registers the base

station information. This avoids responding to new broadcast beacons from other mobile

base stations.

Somasundara et al. (2006) further explore controlled mobile base station approach

by proposing a cluster-based communication protocol to collect data from sensor nodes

that are not in direct contact with the mobile base station. The clustering protocol

proposed involves a set of network layer algorithms that are responsible for establishing

clusters during initial exploration of the sensor network by the mobile base station. The

clusters formed are rooted at the mobile base station. Sensors within the cluster offload

their data to the cluster heads. The cluster head then employs a round robin delivery

approach to transfer the data to the mobile base station. The adaptive speed control

algorithm previously introduced is further extended to be adaptive based on information

collected from the network. For example, the mobile base station spends more time

collecting data from the congested part of the network while spending relatively less time

within uncongested parts of the network. The analytical energy comparison of the mobile

base station approach validates the use of mobile base station as a viable option for data

collection in dense sensor networks.

Ren et al. (2006) present a data collection approach using mobile sinks in a hybrid

mobile wireless sensor network model. A hybrid wireless sensor network comprises low-

level sensors and high-level mobile devices that perform data sink operations. They

investigate the influence of number of mobile sinks, velocity, communication radius and

data collection delay. The delay during the end-to-end data collection is dominated by the

time the senor node waits for mobile sink to come within communication range. The

simulation studies three performance metrics, namely, average data delivery delay, data

success rate and lifetime of the network. The sensor model is assumed to be both sparse

and densely populated. The simulation also explores data collection using multi-hop

strategy. The outcomes show significant savings in energy using mobile sink employing

46

single or multi-hop data collection strategy over static approaches. The mobile data sink

approach proposed does not investigate any system architectures or data collection

protocols that can be used in real-world situations. Further, no discussion on the specifics

of the multi-hop communication strategy employed is presented.

The main drawback with the sink-based approaches is the need for the entire

network to be aware of the sink’s changing positions. The ILP-based approach presented

in (Luo et al., 2005) explores the use of optimal data routing to handle changing sink

locations with the assumptions that sensors are aware of sink trajectory and the entire

network topology. Wang et al. (2005) assumes sensors are deployed in a square grid

while (Gandham et al., 2003) requires network flow (traffic) information at each node to

decide the best route to the mobile sink. Moreover, the ILP-based approaches require

sensor network topology information to find an optimal solution for the linear

programming problem. Further, the sensor nodes need to have the capability to solve the

ILP in finite time to obtain the best result if not the optimal result. The controlled

mobility-based (Somasundara et al., 2006, Kansal et al., 2004, Jea et al., 2005) data

collection approaches provide a good understanding of the challenges involved in

designing and implementing a real-world mobile base station (sink). This approach

requires introduction of specially designed mobile hardware with capability to

continuously traverse the network collecting sensor data. Also, the entire model is based

on the assumption of the availability of a dedicated mobile base station within the sensor

network. This requirement may not be feasible in many applications. The basic and

extended speed control algorithms incorporating network parameters to control the

mobile base station’s velocity require a training phase for efficient functioning.

Moreover, multi-hop data collection is efficiently achieved using clustering which

introduces the drawbacks of cluster-based approaches. In addition clustering introduces a

training phase to group sensors into different clusters.

2.3.5 Mobile Data Collector-Based Data Collection

Mobile data collector synonymously referred to as mobile relays (Anastasi et al.,

2008) or data mules (Shah et al., 2003) by various authors take advantage of mobility for

energy-efficient sensor data collection. The previously discussed sink-based mobility

 47

approaches focus on reducing the load of sensor nodes around the sink. To achieve

network load balance, sinks move randomly or in pre-defined path over time within the

sensor network reducing the effect of non-uniform energy depletion. The use of mobile

data collectors has been explored in the literature (Jenkins et al., 2007, Shah et al., 2003,

Chakrabarti et al., 2003, Di Francesco et al., 2010, Curino et al., 2005, Henkel et al.,

2006). The mobile data collector collects data from sensors within its communication

range. Such a wireless sensor network contains both a sink and a mobile data collector as

part of the network infrastructure. The data collected by the mobile data collector is

delivered to the base station/sink which handles further processing of data. Mobile data

collectors employed for data collection can be introduced into the infrastructure with the

goal to improve data collection efficiency. This kind of approach gives the system the

ability to optimise the characteristics of the mobile data collector to achieve pre-defined

performance goals. For example, changing the path of the mobile data collector

(controlled mobility environment) aiming to improve the data collection rate within

certain parts of the network. The base station-based mobility presented in (Kansal et al.,

2004) is one such approach. But this method requires the sink to be constantly available

within the sensor network. By separating the sink and the data collector, we introduce

more flexibility into the sensor network architecture.

Chakrabarti et al. (2003) propose a pioneering effort in employing mobile data

collectors for sensor data collection. They employ predicted mobility-based technique to

collect data from sensors that are distributed within an area. In this case, an observer

whose path is fixed (pre-known) moves around the sensor network periodically. When

the observer is within the range of the sensor, it initiates communication. Since the sensor

nodes communicate with the observer only when it is in range, the energy spent in

collecting data is significantly reduced. The observer is not power-constrained and is

equipped with long range radio enabling single hop data collection. Hence, each node

needs to be within the range of the observer to off-load their data. Sensor nodes exploit

the availability of observer’s path/arrival time to efficiently listen to the communication

channel only when the observer is within its communication range. The communication

protocols employed for data collection works in three phases, namely, start-up, steady

state and failure. The start-up phase operates in two cycles. In the first cycle, sensors

48

listen to the channel waiting for an observer. Once an observer arrives within range, the

sensors estimate the duration the observer is within range and the frequency of arrival. In

the second cycle, the observer transmits a beacon to which sensors respond with RTS

(Request to send). The observer receiving the RTS from a sensor responds with CTS

(Clear to send). The sensor responds with a small information packet which is

acknowledged by the observer. Cycle one and two are repeated until the entire network is

covered. During the steady phase, the data is collected from the sensors by the observer

by transmitting a wake signal. As the information about sensors and their sleep schedule

is available with the observer, it prioritizes data collected based on available information.

A mathematically formulated power comparison between the mobile observer based

model and static node-based model is presented. Three classic cases are considered,

namely, mobile observer model, a static sensor model with single hop communication

and a static sensor model with multi hop strategy. The mobile observer approach

produces power savings of up to 300 times over single hop static data collection and up to

3 times over multi hop data collection. Though this approach uses existing mobility to

collect sensor data energy efficiently, the primary requirement for the proposed system is

the training phase. This requirement may not be feasible in many application scenarios.

Further, the approach only characterises single hop data collection. This creates the issue

of network coverage i.e. every sensor must be equipped with radios powerful enough to

reach the mobile observer in one hop.

Shah et al. (2003) propose a data collection architecture that exploits random

mobility to efficiently collect data from a sparsely deployed sensor network. The data

collection architecture is made up of three-tiers: 1) lower tier occupied by sensors that

periodically sense data within the environment, 2) middle tier consisting of Mobile

Ubiquitous LAN Extensions (MULE). MULE’s are mobile entities that travel around the

sensor network collecting sensed data when within communication range and 3) top tier

consisting of access points. The access point is a bridge between the MULE and the sink.

Data collected from sensors is offloaded to the access point when the MULE is within

communication range of the access point. The lower tier sensors await the arrival of the

MULE to off-load collected data. This requires them to be continuously monitoring the

communication channel. The MULE move independently using a Discrete Random Walk

 49

mobility model. The MULE arrival and data collection process is modelled on queuing

theory. The system is analysed over key performance metrics, namely, data success rate

and sensor buffer size. The use of short range one-hop communication technique reduces

the energy consumed during data transmission. Moreover, the introduction of MULE-

based data collection architecture alleviates the problem of coverage i.e. the requirement

to either introduce additional access points or deploy more sensors to completely cover

sparsely deployed sensor networks.

Jain et al. (2006) further extends the MULE architecture by addressing some of

the shortfalls of the MULE model (Shah et al., 2003) making it more energy-efficient.

The previous approach (Shah et al., 2003) worked under the assumption that sensors are

always listening to the communication channel. This operation is expensive and highly

energy consuming. Hence, Jain et al. (2006) explore efficient sensor discovery allowing

sensor to implement duty cycling. The use of duty cycle can further enhance the lifetime

of the sensor. Moreover, they investigate the data collection phase by analysing the

influence of MULE’s contact time with the sensor. The contact time is the time the sensor

and the MULE are within communication range. Finally, the system is analysed with

various sensor duty cycles and MULE movement patterns. Interestingly, the analytical

model shows that efficiency in data collection is not substantially affected by low duty

cycles. Simulation outcomes exhibits energy savings of up to two-orders of magnitude

using the MULE approach over traditionally static data collection approaches.

The MULE architecture is the basic foundation in the use of mobile data

collectors. But, the proposed approach has certain drawbacks. They are: 1) the sensor

needs to listen to the channel continuously to detect MULE arrival, 2) the system is

analytically modelled on parameters like sensor buffer, MULE buffer, MULE arrival rate

with little attention on the actual data collection process, 3) the system model is assumed

to be distributed in a two dimensional grid where sensors, MULEs and access points

occupy specific points in the grid. At every clock tick, MULE moves within the grid from

one point to another, 4) the system model also assumes an error free communication

channel and 5) the MULE architecture handles only direct (single-hop) communication,

hence requiring the MULE to cover the entire sensor network. These challenges need to

be addressed to implement the MULE architecture in real-world applications. The MULE

50

architecture is best suited for delay-tolerant networks (Shah et al., 2003, Jain et al., 2006)

as the MULE needs to wait until it arrives near an access point to deliver the data. This

approach causes delay and is also not reliable as MULE might sometimes not arrive at

the access point at all.

The most recent work in the area of mobility-based data collection in sparse

sensor network has been presented by Anastasi et al. (2009b, 2009a). Their (Anastasi et

al., 2009a) work is motivated by the MULE architecture discussed previously with focus

on sensor-MULE discovery and data transfer protocol. The problem of sensor-MULE

discovery arises when sensors working at different duty cycles miss contact with the

MULE. To this end, they propose a discovery scheme based on periodic wakeups and

data transfer protocol based on Automatic Repeat ReQuest (ARQ). This approach

investigates a single-hop data collection strategy where MULE communicates with

sensors when within communication range. The system model simulates realistic

message losses experienced in real-world situations. The discovery scheme sends

periodic beacons allowing sensors within the range to respond. The sensors within the

range employ an asynchronous sleep/wakeup pattern i.e. sensors wake independently of

each other, listen to the channel for beacons from the MULE and return to sleep state.

The data transfer protocol uses a windowing technique where messages are segmented

into windows. Each windows of messages successfully received is acknowledged by the

MULE and messages that are lost are retransmitted in subsequent rounds. The simulation

outcomes based on the analytical model provides a good understanding of duty cycle

influence on data collection efficiency. The efficiency here is more linked towards data

success rate i.e. ratio of amount of data available against amount of data collected.

2.3.6 Summary of Mobile Node-Based Data Collection
Approaches

The previous section presented a detailed discussion on mobile node-based data

collection approaches. As discussed, the use of mobility is advantageous and has a

number of benefits that have been highlighted. The mobility-based data collection

approaches discussed in literature are more energy-efficient than static sink-based

approaches. However both groups of approaches have advantages and drawbacks. For

 51

example, the controlled mobility approach requires the introduction of a specially

designed mobile sink. The mobile sink approach is rewarding but the absence of a static

sink might result in the network overflowing with collected data when the mobile sink is

unavailable. Similarly, the mobile sensor-based approaches are suitable for specific

applications as sensors need to be equipped with appropriate hardware for mobility.

Finally, the random mobility based approaches use mobile data collectors that exist

within the environment to perform data collection. These approaches are mostly

analytical models with little attention on the energy consumed in the actual data

collection process. Moreover, the proposed mobile data collectors require specific

hardware to enable them to talk to sensors in the surroundings, for example, short range

ultra wide band radio (Shah et al., 2003). This may not suit pervasive environments as the

cost of deploying special hardware on mobile data collectors like buses, cars might be

expensive. Further, the random mobility-based approaches rely on single-hop

communication with the requirement that sensors within the network will come in direct

contact with the MULE. This may not be always practical. We present a comparative

summary of the previously discussed approaches in Table 2.6 identifying the key merits

and de-merits of each approach.

The previously presented literature on mobile node-based data collection has

addressed the challenges introduced by mobility, namely: 1) mobile node arrival rate

based on type of mobility i.e., controlled, predicted or random, 2) data success rate based

on mobile node’s velocity and 3) sensor-data collector discovery. The data collector

approaches mostly focus on single hop data collection with less or no discussion on

multi-hop data collection. One of the major contributions of this dissertation is the

proposal to employ k-Nearest Neighbour queries to collect data from multi-hop sensor

networks. In the next section, we discuss work related to k-Nearest Neighbour query

processing in sensor networks.

52

Mobility
Category

Mobile Sensor Mobile Sinks Mobile Data
Collectors

Algorithms Zebranet (Zhang
et al., 2004),

SWIM (Small et
al., 2003), Cartel

(2006)

Controlled Mobility (Kansal et
al., 2004),

Hybrid Mobility (Ren et al.,
2006),

SENMA(Venkitasubramaniam
et al., 2004),

MULE (Shah et
al., 2003)

Predicted
Mobility

(Chakrabarti et
al., 2003)

Anastasi et al.
(Anastasi et al.,

2009b)

Communication
Mode

Mostly Single-
Hop. Some
approaches
incorporate
Multi-hop

Single-Hop. Multi-Hop
approach achieved using

clustering

Single-Hop
(Direct)

Mobility Type Random Controlled. Sink decides next
location

Random /
Predicted

Infrastructure
Cost

High High Medium

Data
Collection/

Delivery Delay

Medium - High Low - Medium High

Query Based No Partial/ No No

Radio Type Connection-Less Connection-Less Connection-Less5

Cost-Efficient
Metrics

No No No

Sensor Type Connection-Less Connection-Less Connection-Less

Merits Suitable for
certain

applications
where sensors

need to be
mobile. For

example Zebra
monitoring.

Reduces multi-hop
communication, hence

uniform energy depletion
within the network.

Employing clustering can
leverage on multi-hop data

collection

Good energy savings
compared to static approaches

Short range single
hop

communication.

Considerable
energy savings
due to direct

communication.

MULE approach,
a pioneering work

5 Approaches based on connection-less radio techniques namely radio with

broadcast channel capability requiring constant listening to the channel (E.g. Mica Mote).

 53

(up to 100% improvement in
network lifetime)

in proposing
three-tier data

collection
architecture

De-Metrics High
infrastructure

cost.

Requires special
hardware to

sustain mobility
(except in cases

where mobility is
achieved by
applications
nature. E.g.
Zebranet)

Sink is static and
hence requires

the mobile sensor
to arrive at the

sink.

Sink require specialized
hardware for mobility.

Sink location needs to be
updated within the network.

Require complex scheduling
approaches to achieve low

delay and good data success
rate.

Clustering approach used for
multi-hop data collection
requires training and has
drawbacks of classical
clustering approaches.

MULE needs to
be equipped with

hardware to
communicate
with sensors.

MULE’s
analytical model
is restricted by

two-dimensional
grid-based sensor

occupancy.

Table 2.6: Comparison of Mobile Node-Based Data Collection Approaches

2.4 Data Collection employing k-Nearest
Neighbour Queries

k-Nearest Neighbour (kNN) queries have been explored as a solution for sensor

data collection. kNN queries are a class of spatial queries technique traditionally

employed in databases to retrieve spatially distributed data (Mouratidis et al., 2005a,

Mouratidis et al., 2005b, Roussopoulos et al., 1995). A typical kNN query retrieves a list

of k objects that are closest to a query point Q. For example, find the nearest set of

restaurants from a given location. The query point is sometimes referred to as the point-

of-interest. The use of kNN queries to determine proximity (closest object) requires some

form of distance definition (Becker et al., 2005). This can be geometric coordinates (e.g.

GPS) or symbolic coordinates (e.g. cell-Ids, wireless LAN positioning). In traditional

databases, a centralised/distributed index has been used to efficiently process kNN

queries. R-trees (Guttman, 1984) is one such dynamic indexing technique employed in

54

spatial data search. R-tree is a height-balanced tree whose leaf nodes point to individual

data objects. The idea behind R-tree is to generate a spatial index for a group of objects

which are geographically related. This index is then used to perform fast spatial search.

The R-tree is a centralised index maintenance technique that has the feature of

updating/deleting index entries when object properties change. A search operation

involves traversing the tree finding results that match the query. Roussopoulos et al.

(1995) present a branch and bound search technique to process kNN queries over R-trees.

An R-tree representation is presented in Figure 2.12. Figure 2.12 (left) is the R-tree for

the corresponding minimum bounding rectangle (MBR) in Figure 2.12 (right). A MBR is

a minimal rectangle that encompasses all child nodes grouped by their geographical

location. In case of datasets in databases, the grouping metric can be based on Euclidian

distance between data objects.

A sensor network is a classic example of spatially distributed data where kNN

queries can be employed to improve data collection efficiency. kNN queries are highly

relevant to sensor network applications (Winter et al., 2004) as they require instantaneous

retrieval of data for queries like “get the temperature reading of 5 nearest sensor from Q”.

The use of kNN queries has been studied in sensor networks (Soheili et al., 2005, Winter

et al., 2005, Wu et al., 2007, Yao et al., 2009, Yao et al., 2006, Demirbas et al., 2003).

The kNN query processing in sensor networks can be broadly classified into

infrastructure-based and infrastructure-less approaches. Infrastructure represents the

topological information (indices) maintained by the sensors to respond to kNN queries.

A

X

Y

B

P
Q

R

C

G

H

Figure 2.12: R-Tree representation

A B C

X Y G HP Q R

 55

Murat et al., (2003) present Peer-trees, a peer-to-peer index structure to process

kNN queries in sensor networks. Peer-tree is an energy-efficient de-centralised adaptation

of R-trees. The peer-tree technique partitions the sensor network into rectangle-shaped

clusters based on number of nodes. A split operation is employed to split nodes into

multiple clusters if a given cluster has too many nodes. In peer-tree, the kNN query can

originate from any point in the network moving towards the root. Since, partition

information is available to cluster heads the query propagates to other clusters only when

a result is not found within that cluster. This approach reduces network broadcasting.

Soheili et al. (2005) propose SPatial IndeX (SPIX), a distributed spatial index approach

for processing kNN queries. SPIX like R-tree maintains index structures on each sensor

node allowing it to respond to queries efficiently. The spatial index is created using

flooding and further maintenance is performed by sensors periodically. The key energy

consuming function of the index-based approaches is the overhead involved in creating

and maintaining indices.

Yao et al. (2006, 2009) propose a technique to track an object closest to the query

point Q using nearest neighbour queries in sensor networks. The sensor network is

partitioned into a two-dimensional grid with each node within the grid sending sampled

data to the grid index node - a node which is closest to the grid centre. The sampled data

is the location of the tracked object which is sent to the grid index node only when the

object’s location changes. The search boundary is estimated by routing the query to each

grid cell until at least one object is found. The distance between the query point and the

grid cell in which at least one object is found becomes the search area (boundary). An

expanded search is performed within the estimated search boundary to determine the

object that is closest to the query point Q. The primary area of energy consumption with

this approach is the overhead involved in the grid maintenance. Further, grid index nodes

are assumed to communicate with one another during query computation. This might

require communication involving nodes around the grid index node leading to non-

uniform energy consumption.

Winter et al. (2005, 2004) propose partial-infrastructure-based and infrastructure-

based kNN algorithms. The infrastructure-based algorithm is based on the Geo-Routing

Tree (GRT) protocol. The GRT is similar to R-tree requiring spatial indices to process

56

kNN queries. Each sensor node in the GRT maintains a minimum bounding rectangle

(MBR) encompassing it and its child nodes. The MBR is computed using geographical

proximity between sensors. The GRT algorithm works by pruning sensor nodes in MBR

which are farther away from the query point Q. To prune the sensors that are outside the

kNN region, it uses MINDIST (Roussopoulos et al., 1995) principle. The MINDIST is the

distance between the query point P and the closest edge of the MBR. An illustration of

the MBR was presented previously in Figure 2.12. The issue with the index-based

approach in dense sensor networks is a large storage requirement to maintain index

structures on individual nodes. It also has the drawback of high overheads involved in

maintaining index structures when sensor nodes fail. To improve the performance of the

GRT based kNN algorithm Winter et al. (2005) propose a partial-infrastructure-based

kNN algorithm, namely, KBT. KBT uses Greedy Perimeter Stateless Routing (GPSR)

protocol to route sensor information. The partial-infrastructure-based approach adapts

well within dynamic environments, e.g. network with mobile sensor networks. The GPSR

employs perimeter routing when a path to a specific node does not exist i.e. nodes that are

not in direct contact are reached by forwarding the request along the perimeter of the

sensor network. KBT employs some approaches including maximum hop distance

(MHD), NeighbourClass and NeighbourClass2 to determine the kNN search boundary.

The boundary estimation approaches use the information collected when the query travels

from the sink to a node close to the query point Q. Further, restricted flooding and timers

based on fixed TreeHeight are employed to collect data from the sensors. The TreeHeight

determines the time the parent node needs to wait before its child nodes respond. The

TreeHeight in simple terms is the maximum hop distance from the query point that

encloses the set of k nearest neighbours. KBT uses static TreeHeight allocation for data

collection. Simulation and evaluations results show that KBT performs better than GRT

for dynamic sensor environments. Moreover, KBT exhibits better energy efficiency than

its counterpart GRT approach. The use of fixed TreeHeight restricts KBT’s operation.

The approaches discussed so far require some sort of network

partition/infrastructure information to process kNN queries. Further, certain approaches

require cluster formation and maintenance for successful creation/maintenance of indices.

When a cluster head fails, a re-election algorithm is used to re-elect new cluster heads.

 57

These requirements are energy consuming and introduce communication overheads.

Adapting index-based approaches in sensor networks is expensive due to the amount of

communication involved in maintaining indices. Moreover, index-based approaches are

vulnerable to network topology changes. Hence, infrastructure-less sensor query

processing approaches (Xu et al., 2006, Wu et al., 2007) have been explored to overcome

index maintenance problems.

Xu et al. (2006) propose an infrastructure-less technique to process window

queries in sensor networks. The window query is different from a kNN query as window

queries focus on collecting data from a set of sensors that are within a query window.

Though this approach does not investigate kNN query processing directly, it explores

window query-based data collection which involves identifying sensors within a query

window in an infrastructure-less sensor network. The query window represented as a

rectangular region defines the data collection area. To this end, they propose an itinerary

based data collection scheme called itinerary-based window query execution (IWQE).

IWQE employs Geo-Routing protocol to route the query towards the query window.

IWQE introduces the concept of Query nodes (Q-nodes) and Data nodes (D-nodes). The

Q-node forwards the query to adjacent Q-node within the query window while the D-

nodes respond with sensed data. By employing the itinerary-based forwarding among Q-

nodes, network flooding is reduced improving the energy efficiency of the IWQE

technique. Performance evaluations of IWQE protocol show improved energy efficiency

over the infrastructure-based query processing protocols.

Wu et al. (2007) present an infrastructure-less itinerary-based kNN query

processing algorithm, namely, DKINN. The DKINN approach is motivated by Xu et al.

(2006) itinerary-based window query processing technique. DKINN propagates the kNN

query from the sink to a node closest to the query point P. DKINN employs the concept

of Q-nodes and D-nodes introduced previously to route the query from the source to a

node adjacent to Q. While the query routes to the nearest node, it collects network

information along the path. The kNN boundary is estimated by using the information

collected during the query propagation phase. The estimated kNN search boundary is then

searched to compute the k nearest neighbours. The performance evaluation of DKINN

has been compared with the GRT approach proposed by Winter et al (2005). With

58

assumptions that itinerary-based query propagation is feasible, DKINN seems to perform

better than GRT approach with good savings in energy.

The DKINN and IWQE techniques depend on itinerary information to propagate

query through the network. The itinerary creation and maintenance is feasible only if the

sensor network is trained to forward data based on pre-computed trajectories (Niculescu

et al., 2003). The trajectory provides the path the query needs to take, to reach the node

adjacent to the query point Q. The trajectory computation results in the election of Q-

nodes and D-nodes which are the basis for DKINN and IWQE execution. To pre-

compute the trajectory, the sensors need to be equipped with specialized hardware

(parallel array antennas) (Niculescu et al., 2003). Further, Q-nodes are similar to cluster

heads and are responsible for forwarding the query to the next Q-node while collecting

information from D-nodes within the neighbourhood. Query propagation happens only

between Q-nodes resulting in non-uniform energy depletion of the sensor network.

Finally, the requirement of specialized hardware to compute trajectory may not be

feasible in every sensor network application. Hence, we conclude that window query

processing technique IWQE and more specifically the kNN query processing technique

DKINN may apply only to a specific class of sensors. Table 2.7 presents our comparative

analysis of kNN query processing approaches.

2.4.1 Summary of Data Collection Techniques Employing
kNN queries

The previous section presented the literature on kNN query-based data collection

techniques in sensor networks. The plethora of research on kNN query processing

depends on sensor network infrastructure knowledge to efficiently process the query.

Moreover, the infrastructure-less approaches are tailored for a specific class of sensor

network applications with special hardware requirements. They assume a classic sensor

network model i.e. the sink acts as the query source and nodes within the network assume

the role of co-ordinators managing query processing. Further, current kNN query-based

data collection approaches assume a two dimensional sensor network. Our proposed

approach discussed in depth in Chapter 4, investigates the feasibility and efficiency of a

kNN query-based sensor data collection approach in a three dimensional sensor network

 59

using mobile data collectors that have no prior knowledge of the sensor network

topology.

Approa
ch

Sensor
Mobilit

y

Mobil
e Data
Collec

tors

Cost
Efficien

cy
Metrics

Advantages Limitations

Infrastr
ucture-
Based

NO NO NO Better query
execution

efficiency due to
the maintenance of

indices

Uses in-network
aggregation for
energy-efficient
query processing

High cost in maintaining
indices

Does not adapt well for
dynamic networks i.e. cases

where sensor nodes
fails/disappear

Requires training phase to
generate network index

Sink based query origination

Infrastr
ucture-

less

YES NO NO Adapts well for
dynamic networks
e.g. mobile sensors

On-request
computation of

nearest neighbours

Energy-efficient
than infrastructure-
based approaches

Current approaches (Wu et
al., 2007, Xu et al., 2006)

require pre-computed
trajectory to compute routing

paths.

Query originates from the
sink.

A single node close to the
point-of-interest needs to be

elevated to successfully
process the query.

Table 2.7: Analysis of kNN Query Processing Approaches in Sensor Networks

2.5 Context Modelling Approaches

One of the contributions in this thesis is the proposal of a dynamic situation

modelling approach based on Context Spaces (Padovitz et al., 2004) theory. Context

Spaces is a theoretical approach for modelling and reasoning about context, based on

situations. In the following subsections, we present an overview of context-aware

computing and explore existing context modelling approaches.

2.5.1 Context-Aware Computing: Overview

Mark Weiser’s vision for 21st century computing devices (Weiser, 1999), laid the

foundation for the pervasive era of computing - a new computing system paradigm. He

60

coined the term “ubiquitous computing” with the vision of embedding user environments

with communication and computing capabilities yet making them transparent. Research

into various streams of pervasive computing has begun to look into various challenges

concerning realisation of smart pervasive systems. These challenges range from

architectural and technological challenges (Yoshimi, 2000, Pascoe et al., 1999) to

security, privacy and social issues (Satyanarayanan, 2000, Bellotti et al., 1993). Of the

various significant research areas investigated, context-aware computing was identified

as a key ingredient in realising the pervasive computing vision (Satyanarayanan, 2002).

In the context of pervasive computing, context-aware computing enables a system to

adapt its behaviour dynamically in changing environments. The dictionary meaning of

the term context refers to “That which surrounds, and gives meaning to, something

else6”. The interest in context-aware computing has given rise to number of definitions

for context (Brown et al., 1997, Abowd et al., 1999, Chalmers, 2002). A broader

definition of context given by Dey and Abowd (Abowd et al., 1999) is

“Context is any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and

applications themselves.”

Chalmers (2002) provides another abstraction of context from a more user-based

perspective as a “circumstances relevant to the interaction between a user and their

computing environments”. This definition fits into Dey and Abowd’s (1999) generic

description of context. In real-world situations, context can represent any information that

enables a system to adapt its operation to achieve pre-defined system goals. For example,

current temperature in a room is the contextual information that can be used by a heating,

ventilating and air-conditioning (HVAC) system to adapt its performance to achieve

ambient temperature settings. Other context includes location of user, location of device,

current time, device resource e.g. battery level, signal strength, etc. Some example of

context-aware applications within the domain of pervasive computing that have utilized

6 Dictionary Reference of context: http://dictionary.reference.com/browse/context

 61

contextual information to adapt system operations include Active Badges (Want et al.,

1992), Cyberguide (Abowd et al., 1997), Smart Kindergarten (Srivastava et al., 2001).

Active badge (Want et al., 1992) is a location system designed to compute

location of people within an office environment. Specially designed badges worn by staff

in an office are responsible for transmitting information regarding location to a

centralised server. Cyberguide (Abowd et al., 1997) is another example of a system that

captures user’s physical location and orientation as contextual information to provide

appropriate information on user’s current location. An envisioned application is a

museum tour guide that provides users with information on exhibits based on their

location and direction in which they are facing. Smart Kindergarten (Srivastava et al.,

2001) envisions an individualised learning environment to enhance education in a smart

kindergarten. The system comprises sensor-enhanced toys that interact wirelessly with

other toys and a back-end middleware service that offers data management services. The

contextual information used in this application includes object locations, children

location and relative location information i.e. child A is near toy B. Location

management is a key to context-aware applications. Becker et al. (Becker et al., 2005)

presents location models for pervasive computing systems for different types of location-

based queries, namely, range queries (e.g. object within a specific area), nearest

neighbour queries (e.g. find the closest printer), positions queries (e.g. location of

buildings, bus stops, etc.) and navigational queries (e.g. route from one location to

another).

2.5.2 Situation Reasoning and Context Modelling

A situation is generally defined as “the combination of circumstances at a given

moment7”. We perceive situation as a combination of contextual information that best

matches its real-world counterpart. Context modelling is the process of representing

situations in a system that best symbolises its real-world counterpart. Reasoning allows

inferring situation occurrence defined in the context model, based on contextual

information sensed from real-world environments. Hence, situations are high level

7 Dictionary Reference of situation: http://dictionary.reference.com/browse/situation

62

abstractions of context inferred from single/multiple sources based on rules or reasoning

techniques.

Akman et al. (1997) present a situation theory based context model. The situation

theory is a mathematical theory of information that allows situations to be represented as

discrete items of information (infons). Two types of infons represent situations and their

relations, namely, factual infons, stating the facts and conditional infons that have rules

relating facts. Goslar et al. (2004) considers contextual representation of situations based

on topic maps (Topicmap, 2010). Topic maps allow creation of relationships between

objects located inside and outside the system. Dey (2001) discusses the importance of

understanding context by defining situations as an abstraction that describe the states of

relevant entities. The object oriented Context Composition (CoCo) model (Buchholz et

al., 2004) uses classes, factory-nodes, operator-nodes and scales (data formats) to

represent context and situations. Padovitz et al. (2004, Padovitz, 2006) defines situation

as meta-level description of real-world situations that is inferred from available context.

Context in this case is a fusion of raw data collected from low-level sensors. Context

gives relation and meaning to raw data streaming from sensor sources.

Situation-based reasoning approaches have to take into consideration varying

degrees of uncertainty. Uncertainty in this case deals with the inherent gap between

representations of context in real-world against context perceived by the system. A

context model is a generic way of representing information that can be used to reason

about context As mentioned before, one of the research challenges addressed in this

thesis is dynamic situation composition using Context Spaces theory (Padovitz et al.,

2004, Padovitz, 2006, Padovitz et al., 2005). Hence, in this section, we provide a review

of context modelling techniques based on their underlying principle and inference

technique. We justify our choice of Context Spaces over other context modelling

approaches, identifying scope for improvement in Context Spaces which is later

addressed in this thesis.

Bayesian reasoning is a statistical inference technique in which known evidence is

used to compute a degree of belief (probability) of an underlying hypothesis. (Bayes et

al., 1763). In (Fox et al., 2003), a Bayesian technique is used for location estimation

 63

using inaccurate sensor reading. Castro et al. (2000) present another Bayesian approach

to compute location of indoor devices using signal-to-noise ratio (SNR) between devices

and base stations. Dempster-Shafer is considered a generalised Bayesian statistical theory

(Wu et al., 2003). It allows computation of support for a proposition (e.g. this is a

meeting) using an upper and lower bound of probabilities defined as confidence interval.

Jian et al. (2007) present a Dempster-Shafer evidence theory-based context-aware

architecture. The proposed architecture uses planes to group sensors that produce similar

contextual information. A Dempster-Shafer approach is preferred over Bayesian

reasoning due to the ability of Dempster-Shafer to account for general uncertainty.

Further, aggregators and registrars are used to process low-level sensor information and

present it to context-aware applications that require adaptation advice. Wu et al. (2002)

present a weighted Dempster-Shafer evidence combination rule to deal with context from

multiple sensor sources. The idea of using weights introduces the concept of sensor-

reliability. The weights are computed from historical observations on correctness of

sensor data. This effort is further extended in (Wu et al., 2003) by introducing dynamic

weights which is adapted continuously based on sensor performance using Kalman

filtering.

Fuzzy based approaches have been employed for reasoning about situational

context. Mäntyjärvi et al. (2002) propose a fuzzy based approach that adapts context

aware applications based on multiple fuzzy contexts. The use of fuzzy logic (Mendel,

1995) allows context-aware applications to adapt to state transitions e.g. changing from

walking state to running state. Byun et al. (2003) extends fuzzy approach by using fuzzy

decision trees and historical context to handle uncertainty. The use of historical context

makes the system proactive allowing it to predict user actions intuitively. More recently,

Haghighi et al. (2009) propose the incorporation of fuzzy logic in Context Spaces

(Padovitz, 2006). Their approach aims to identify delta level changes in situations useful

in medical applications.

Ontology based reasoning approaches have also been explored in the literature

(Ko et al., 2008, Gu et al., 2004, Chen et al., 2003). Ontology is a formal representation

of concepts and its relationships within a particular domain (Chen et al., 2003). Ontology

provides a way to precisely describe domain knowledge and situation information (Ko et

64

al., 2008). Concepts (information) are represented in ontology using ontology languages

such as OIL8 (Ontology Interface Layer) or DAML9 + OIL (DARPA Agent Markup

Language). A further standardised language used to represent ontology is Web Ontology

Language (OWL) which is based on DAML+OIL (Chen et al., 2003, Gu et al., 2004).

Chen et al. (2003) propose an ontology-based Context Broker Architecture (CoBra)

which employs agents to acquire, reason and share context. The ontology is divided into

four categories, namely, people, agents, places and events. The ontology is also used to

describe the relationship between categories. The architecture is domain specific and

reasoning deals with detecting and solving inconsistencies between facts. Ranganathan et

al. (2004) uses predicates to represent context with associated confidences. DAML+OIL

are used to specify the predicate structure and semantics. The context architecture Gaia

(Ranganathan et al., 2004), facilitates reasoning using various mechanisms including

fuzzy logic, probabilistic and Bayesian networks.

Parallel to context modelling, research in context-aware computing investigates

context-aware frameworks that ease the task of developing context-aware applications.

Dey et al. present (2001) Context ToolKit, a framework that allows creation of interfaces

between devices and software entities that provide contextual information. Five context

abstractions, namely, Widgets, Interpreters, Aggregators, Services and Discoverers can

be used by context-aware application developers to prototype applications. The widgets

acquire data from sensors, interpreter interprets that into high level information and

aggregator collects related context for a specific entity. Services execute behaviours and

discoverers maintain a list of services available to the application. Applications use

discoverers to find specific components or a set of component that match certain criteria.

This work is extended by Dey and Mankoff (2005) to handle ambiguous context. They

use the term mediation to refer to the process involved in solving ambiguous context

involving human computer interaction. In a shell, mediation allows the system to 1)

identify ambiguous context, 2) provide/obtain feedback to/from the application/user on

ambiguous context and 3) store feedback and re-use for final context interpretation. A

plethora of research that facilitates context-aware application development can be found

8 www.ontoknowledge.org/oil/
9 www.daml.org/

 65

in the literature (Khedr et al., 2005, Capra et al., 2001, Glassey et al., 2003, Bagci et al.,

2004).

Review of context modelling approaches presented previously show that current

approaches are application specific, making it difficult to provide a generic approach for

context modelling under changing situations. Bayesian approach has the limitation of

knowing prior probabilities which in many cases may not be feasible. The Fuzzy logic-

based approaches can determine situation states in terms of percentages which may not

always be useful. For example, concluding that a person has 60% cold and 40% flu may

not help in many applications. The ontology-based approaches have been used to

represent context within specific domains. Though ontology-based approaches provide a

deep understanding of specific domains it may not be feasible to use generic ontology to

represent a host of domains i.e. a generic representation.

These shortfalls have been addressed by Context Spaces (Padovitz et al., 2004,

Padovitz, 2006). Context spaces, is a spatial metaphor-based context modelling approach.

It uses situations to reflect real-world situations. A situation is represented as a collection

of context attributes. It uses Multi Attribute Utility Theory (MAUT) based sensor data

fusion algorithm (ConSpaF) to fuse data from multiple sensor sources. It provides

powerful reasoning technique to infer situations based on current contextual information.

Context Spaces Algebra based on Context Spaces model is used to manipulate relations

between situations. The reasoning approach of Context Spaces takes uncertainties in

sensed values and significance of context attributes across different application domains

to compute a confidence measure. The strength of Context Space is its ability to

generically represent context using spatial metaphors of state and space. Moreover,

Context Spaces model is developed on the basis of sensor originated data. In this thesis

we propose techniques for energy-efficient sensor data collection. We then look to extend

our approach by exploring ways in which collected sensor data can be used to

dynamically model situations aiding the reasoning process. These strengths of Context

Spaces supported our choice to use Context Spaces as our basic context model for further

investigation.

66

2.6 Summary

Pervasive computing applications are highly dependent on real-world data for

efficient decision making. These real-world data are available from sensors embedded in

pervasive environments. In this section, we identified sensor networks as a key

technology that drives current pervasive computing applications. This opens up the area

of research that addresses the challenges involved in energy-efficient data collection. The

energy and processing limitations of sensor nodes justifies the need for energy-efficient

data collection strategies. In this chapter, we have presented a background on sensor

networks identifying the current state-of-art technologies. A discussion on current sensor

node platforms from an energy perspective has been presented identifying the major

components that drain sensor energy. We identified communication as one of the primary

energy consuming operations making it a key design consideration for data collection

protocols.

We reviewed current data collection approaches based on a broad classification of

static node-based and mobile-node based techniques. The static node-based approaches

have been identified to cause sensor hot-spots i.e. sensor nodes near the sink deplete

energy quickly. Introducing mobility leverages the fact that a mobile node can move

close to sensor node’s location to collect data. The literature has reviewed mobile data

collection approaches by broadly classifying them into sink, sensor and data collector

mobility. The mobile sink approaches are energy rewarding but are more feasible in

sensor networks that have specifically designed infrastructures. Mobile sensor nodes

introduce the limitation of specially designed hardware for mobility. Hence, in this

dissertation, we explore a mobile data collector-based approach. Our mobile data mule

approach complements Data Mule (Shah et al., 2003) approach and also addresses the

shortfalls of Data Mule approach elaborated in the literature. Further, we explore a kNN

based data collection approach using mobile sensor data collectors.

Mobile data collector-based approaches to sensor data collection using kNN are in

their infancy. Further, system framework for data collection using mobile data collector

has not been addressed elaborately in the literature. Our objective is to investigate kNN

based mobile data collection as a cost-efficient alternative for sensor data collection.

 67

More specifically, we note that current approaches in data collection are missing the

following desirable characteristics:

 A sensor data collection system framework with energy-efficient sensor

data collection algorithms applicable in real-world pervasive

environments.

 A data collection protocol for energy-efficient multi-hop sensor data

collection using mobile data mules that have the ability to compute data

collection decisions on-the-run.

Finally, we reviewed context modelling and situation-based reasoning approaches

as a high level application of collected sensor data. We identified Context Spaces

(Padovitz, 2006) as our choice of context model due to its generic representation of

context using spatial metaphors. We note that Context Spaces model can be improved

further by incorporating:

 A dynamic situation model that can be composed on-the-fly with

capability to incorporate newly discovered context (using the above

discussed data collection techniques)

 Incorporating additional sensor quality information leveraging on existing

sensor measurement inaccuracies.

68

3
sGaRuDa10: Sensor Data

Collection Using Heterogeneous
Mobile Devices

3.1 Introduction

Evolution of pervasive computing paradigm has given rise to the integration of

intelligent computing devices into physical spaces turning them into smart

spaces/environments (Lewis, 2004). Sensors are a key element for continual existence of

smart spaces. We presented a literature survey in Chapter 2 on current approaches that

addressed challenges involved in sensor data collection. In this thesis, we will be

employing a mobility-based sensor data collection approach. We identified the key

benefits in using mobile data collectors for sensor data collection in Chapter 2. The

introduction of mobility opens up new dimensions in approaching the sensor data

collection. We also identified gaps in existing approaches and room for improved data

collection. More specifically we identified the following in current approaches:

(1) Focus on connection-less sensor network, i.e. sensors equipped with radio

hardware that have broadcasting capabilities. Research in the area of using

mobility to collect and deliver sensor data from Bluetooth-based sensor nodes

is still immature

(2) Employ mobile sinks for data collection which require frequent location

updates from the sink to the sensors. This problem has diverged into mobile

10 sGaRuDa is the name of the proposed system. It signifies sensor data carrier

 69

sink scheduling problem (Somasundara et al., 2004, Gu et al., 2006). Though

mobile element scheduling handles energy-efficient sink mobility, the

approach is specific to sensor network applications where mobile sinks can be

controlled.

(3) Absence of a software-based system framework for sensor data collection that

can be implemented on today’s heterogeneous 11mobile devices.

(4) Focus on data collection protocols for broadcast-based networks with

sufficient support lacking for connection-oriented networks (e.g. Bluetooth-

based sensor networks).

Summing up, current data collection approaches employing mobility lack support

for connection-oriented sensor networks (Bluetooth-based) as the operation of these

networks differ significantly from connection-less networks (refer 2.2.4) . Our choice to

investigate Bluetooth-based sensor networks is driven by the ubiquitous acceptance of

Bluetooth technology available on most mobile device platforms. Moreover, studies of

the feasibility of employing Bluetooth-based sensor networks (Nachman et al., 2005,

Lundberg et al., 2005, Leopold et al., 2003) have shown that with proper use of Bluetooth

low-power mode (Lundberg et al., 2005), the lifetime of Bluetooth-based sensors can be

considerably extended. The widespread adaptation of Bluetooth and research initiatives

in the area of Bluetooth-based sensor networks (BSN) open up a new dimension of sensor

network applications that can be deployed within pervasive environments with ease.

In this chapter, we propose sGaRuDa, a system framework that can be

implemented on multitude of day-to-day computing devices e.g. smart phones, Personal

Digital Assistants (PDA), laptops, etc, giving them the capability to discover, collect and

deliver sensor data on-the-fly. Summing up our proposed approach:

We propose, investigate, implement and evaluate a system framework (sGaRuDa)

that can run on a multitude of current generation heterogeneous mobile device platforms

that require no additional hardware to perform cost-efficient sensor data collection.

11 Heterogeneity represents the plethora of different mobile device platforms (hardware and software)

70

The term “cost-efficient” is used to define the overall data collection cost which

includes both time (processing efficiency) and energy parameters. We use the term

“heterogeneous” to represent the class of different mobile device platforms. A good

sensor data collection system framework needs to have the following desired

characteristics to achieve cost-efficient sensor data collection:

Dynamic Device Discovery: The mobile devices in our proposed model are

current day computing devices. The Bluetooth discovery protocol differs from broadcast-

based sensors. Hence, it is important to analyse and efficiently use the Bluetooth

discovery protocol to increase system efficiency.

Data Collection/Delivery Protocol: The use of Bluetooth-based network puts

forward the requirement to establish a connection before data can be transferred. The

connection process in Bluetooth is sometimes time consuming, hence requiring protocols

that can efficiently and effectively use the Bluetooth baseband radio. Further, data

delivery protocols address delivering sensor data to the sink.

Intelligence/Context: We defined the term “context” in the literature as “That

which surrounds, and gives meaning to, something else12”. Context within our

framework represents sensor and mobile device parameters that are used to arrive at data

collection decision. For example, sensor location, residual energy, amount of data to be

transmitted represent sensor context while mobile device location, mobile device velocity

(state: static/moving), mobile device capabilities (communication) represent mobile

device context.

The rest of the chapter is organised as follows. Section 3.2 presents an overview

of our proposed system. Section 3.3 elaborates on the system components presenting

details of algorithms proposed for device discovery, data collection and delivery. Section

3.4 presents examples of real-world application where the proposed approach can be

employed. The chapter concludes with a summary presented in section 3.5. The system

framework and the corresponding data collection and sensor adaptation algorithms

presented in this chapter are extended versions from the following published papers

12 Dictionary.com meaning, http://dictionary.reference.com/browse/context

 71

(Jayaraman et al., 2007, Jayaraman et al., 2008a, Jayaraman et al., 2008c, Jayaraman et

al., 2010b).

3.2 sGaRuDa: System Architecture Overview

A recent article by Wodajo (2010) on application of the new Bluetooth

specification v4.0 in health care sensor devices that require low-powered operations is a

classic real-world example of the widespread adoption of Bluetooth in pervasive

environments. The application discussed in (Wodajo, 2010) requires sensors fitted on

patients to monitor and deliver data over Bluetooth to fixed access points. The low cost of

Bluetooth hardware (Warneke et al., 2002) and increasing applications have led to a new

class of disposable wireless sensors requiring new approaches to collect and deliver data.

Our proposed data collection approach is illustrated in Figure 3.1. The sGaRuDa system

addresses challenges related to collecting data from a connection-oriented sensor network

with some similarity and differences from the Data Mule (Shah et al., 2003) architecture.

The architecture consists of three layers:

Figure 3.1: Overview of Proposed Data Collection Approach

Sensor layer: The sensor layer comprises of heterogeneous sensors i.e. sensors with

different sensing capabilities from various manufactures. The sensors in this layer

72

mostly share the common sensor characteristics of low-powered operation but

might differ in their hardware specification. For example, the layer might comprise

a combination of Mulle (EISLab, 2010), BTnode (ETH-Zurich, 2007) or Intel mote

(Nachman et al., 2005). The sensors in this layer primarily use Bluetooth for

communication while they might be equipped with alternative radios.

Intelligent Mobile Data Mule Layer: This layer comprises of mobile data mules. The

mobile data mule represents the class of day-to-day mobile devices that are widely

available in pervasive computing environments. We term these devices

“intelligent” since they have the capability to compute data collection decisions

based on information available within the environment. The data mule is a powerful

energy-rich device with recharging capability.

Sink/Base Station Layer: This layer comprises sink/base station responsible for further

analysis of sensor data. We use the term base station in parallel with the term sink

since, in the proposed architecture, when the data collector is a mobile phone, the

base station the mobile device is connected to performs the operation of a sink. The

sink/base station may or may not have complete knowledge about the sensor

network architecture but learns it over time. For example, let us consider the case of

the disposable sensor for medical purposes. When replacing the old sensor with a

new sensor, sensor information changes. This change is automatically propagated

to the sink/base station when data from new sensor is delivered by the data mule.

The communication network deals with communications between sensors, mobile

data mules and base stations/sinks. The communication between the sensor and mobile

data mule in our architecture is primarily Bluetooth but our approach can be extended to

accommodate other radio technologies e.g. Zigbee (2009b). The communication between

the mobile data mule and the sink/base station can use any existing communication

infrastructure, namely, GSM/GPRS, UMTS, Wi-Fi, WiMAX etc. The choice of

communication depends on communication technology available on the data mule.

The smart phone in Figure 3.1 represents the plethora of mobile devices that have

the capability to act as intelligent mobile data mules. These devices in real-world may

 73

include laptops, PDAs, cars equipped with Bluetooth, etc. We assume that data mules are

not controlled. But, in situations where the mobile data mule can be controlled, the

architecture provides flexibility to implement additional modules to take advantage of

controlled mobility.

3.3 sGaRuDa: System Overview

Classic data collection architectures employing Bluetooth (Nachman et al., 2005,

Handy, 2004) depend on piconets and scatternets. The use of piconets and scatternets

(refer 2.2.4) enables multi-hop connection-oriented communication without the need of a

Bluetooth access point. This approach has certain drawbacks: 1) slave nodes need to be

constantly synchronised (maintain active connection) with the master, 2) dynamic route

generation requires frequent inquiry and paging which consumes energy and 3) in

disconnected networks it may not be feasible to install multiple Bluetooth access points

within the network. This problem worsens when the Bluetooth radio used by the sensors

is Class B (10 Meters).

The energy consumption of the connection-oriented (master/slave) operation is

validated by experimental results presented by Nachman et al. (2005). Nachman et al.

(2005) concludes that lifetime of the sensor node is reduced to a few days when working

under a connected network scenario. We introduce mobility-based data collection

strategy to overcome these drawbacks leveraging on mobility available within the

environment.

3.3.1 sGaRuDa: System Framework Black Box

Figure 3.2 presents an overview of the proposed system framework. The main

operations involved are discovery, data collection and delivery. The sink is a simple

representation of a data store which can be extended based on application needs. For

example, the sink can be a data centre that provides information to a community of users

depending on user/application requirements. The proposed system can work in

disconnected mode i.e. the sensor discovery and data collection does not require the

ubiquitous presence of the centralised sink. But, the availability of the sink can be

leveraged upon to increase the data collection efficiency. In a disconnect mode, sensor

74

discovery is done locally by the mobile device which is later synchronised with the sink

whenever sink connectivity becomes available.

The mobile data mule can employ a range of communication technologies

including Wi-Fi, WiMAX, GSM, UMTS, etc to communicate with the sink. We illustrate

the discovery process by a short arrow labelled Discover due to the connection-oriented

operation of Bluetooth-based sensor network (BSN) presented in section 2.2.4, i.e. device

discovery does not establish a connection.

Figure 3.2: System Black Framework Overview

3.4 sGaRuDa: Mobile Data Mule System
Framework

Figure 3.3 illustrates the proposed system framework. The system is divided into

two platforms Mobile Data Mule platform and Data-Collection platform. The Data-

Collection platform is device independent, allowing it to be ported across any mobile

device. The Mobile Data Mule platform is device dependent hence taking advantage of

specific mobile device capabilities. For example, if the mobile computing device is a

mobile robot the device dependent implementation might include a robot control module.

3.4.1 Mobile Data Mule Platform

The Mobile Data Mule Platform comprises Location Manager, Communication

Manager and Profile Manager. The mobile data mule platform acts as an interface

exposing mobile platforms capabilities to the Data-Collection platform. These

components are developed based on mobile device capabilities. The Mobile Data Mule

 75

platform facilitates easy integration of additional device-specific plug-ins. The

components of the Mobile Data Mule Platform are discussed below:

Location Manager: The location manager provides an interface to the mobile data

mule’s location subsystem. The location subsystem in its simplest form can be a

GPS or cellular-based (Cell ID) that provides the Data-Collection platform with

mobile data mule’s path. The capability allows interfacing with other external

location providing services e.g. real time location service. The interface also

determines what sort of location information will be available to the Data-

Collection platform.

Figure 3.3: Data Collection System Framework

Communication Manager: The communication manager is an interface to the mobile

device’s communication hardware. The minimum communication facility that is

available on the data mule is Bluetooth allowing it to communicate with underlying

sensors. The data mule can be equipped with other communication technologies

like Wi-Fi, UMTS, GSM, etc. The communication capability of the data mule

determines the data delivery latency. For example, if the data mule is equipped only

76

with Bluetooth and Wi-Fi capability it has to wait till it is within a Wi-Fi network

to transmit the collected data to the sink/base station. This is acceptable in cases

where data collection latency is acceptable. In applications where this is not

acceptable the data mule will not participate in data collection.

Profile Manager: Our approach is to use day-to-day mobile devices for data

collection. The priority of the mobile devices is to provide the user with primarily

device functionality. Sensor data collection is performed only when the device is

idle or has the resources available for data collection. The profile manager provides

the Data-Collection platform with information of the data mule’s availability. This

availability for example may be resource oriented i.e. below a certain battery

threshold the data mule will not participate in sensor data collection. The system

provides capabilities to define additional parameters.

Mobile Device-Specific Plug-in: Mobile device-specific plug-ins is used to expose

specific mobile device capabilities to the Data-Collection platform. This feature

introduces flexibility in the proposed system framework. For example, the mobile

device platform for mobile robot platform is a robot movement controller module.

This module may be used by the Data-Collection platform to adapt the robot’s

speed to increase data collection efficiency. This of course will require additional

modules to be integrated into the Data-Collection platform.

3.4.2 Data-Collection Platform

The Data-Collection platform is the core component of the proposed system

framework. It performs three primary functions, namely: 1) sensor node discovery, 2)

sensor data collection and 3) sensor data delivery. The three main modules Node

Discovery, Data Collector and Sink Manager are responsible for handling one of the

three primary functions. The Central Controller module coordinates between the primary

modules and is responsible for computing data collection decisions. A detailed discussion

of each function module is presented in the following sections.

Node Discovery/Management: The node discovery and management module

performs handles sensor node discovery and management. The discovery process is

 77

used to identify sensor nodes within the vicinity of the mobile data mule. For

example, in a Bluetooth-based sensor network the mobile data mules use Bluetooth

discovery technique. The node repository is responsible to store sensor node

information. Newly discovered sensor nodes are added to the repository. The node

repository periodically synchronises sensor node information with the sink.

Data Collector: The data collector module is responsible for establishing connection

with the sensor and collection data from the sensor. The connection is established

using information collected during the node discovery phase. The Data Collector

employs a multi-part data collection algorithm. This algorithm facilitates collection

of sensor data by independent multiple mobile data mules.

Sink Manager: The sink manager is responsible for buffering and delivering the

collected data. The buffering operation simply stores collected data from the sensor

in temporary storage before offloading the same to the sink. It employs techniques

to identify the communication medium that needs to be employed to deliver data

efficiently.

Central Controller and Context Manager: The central controller co-ordinates the

operations of the above modules. It uses the context manager to store context i.e.

information relating to the mobile data mule. For example, current location

(updated as data mule moves), trajectory (path/direction of the mobile data mule),

communication capabilities, resource availability (battery level). The central

controller manages the node discovery and the data collection, storage and delivery.

3.4.3 Node Discovery/Management

The node discovery module handles node discovery and management. The

discovery process involves periodic discovery of sensor nodes within the environment. It

comprises a node-information repository that is used to maintain a local copy of

discovered sensor information. This information includes sensor id/name, location, duty

cycle, last successful data collection time, sensor residual energy during last successful

data collection cycle and sensor Bluetooth address. The node discovery function

78

Bluetooth-based sensor network differs from broadcast-based sensor networks. Hence, in

the next subsection we analyse the working of the Bluetooth discovery protocol.

3.4.3.1 Bluetooth Discovery: An Analysis

A Bluetooth radio has three primary states, namely: STANDBY, CONNECTION,

PARK; and seven sub-states, namely: page, page scan, inquiry, inquiry scan, master

response, slave response and inquiry response (BluetoothSIG, 2010d). The inquiry and

the inquiry scan sub-states belong to the device discovery phase. We present an analysis

of the inquiry and inquiry scan states as this determines the Bluetooth discovery time.

The device that wants to be discovered, namely, the sensor enters an inquiry scan

sub-state. The device performing discovery, in this instance, the mobile data mule enters

the inquire sub-state. The sensor acts as the slave while the mobile data mule (inquiring

node) assumes the role of the master. The slave node when in the inquiry scan sub-state

listens repeatedly for an inquiring node (master). The master node in inquire sub-state

sends periodic inquiry messages on 32 (dedicated) of the 79 frequencies. This choice of

frequencies and hopping sequence is determined using the General Inquiry Access Code

(GIAC) address (BluetoothSIG, 2010d). In each send operation, inquiry messages are

transmitted in two consecutive time slots of 312.5μs each. The same operation is

performed during the listen phase resulting in one send/listen time slot lasting for 625μs.

The inquiry process is illustrated in Figure 3.4.

.

Figure 3.4: Bluetooth Inquiry Process

The 32 frequencies used to broadcast the inquiry message are divided into two

sets of 16 frequencies, namely, train A and train B. The time taken to send inquiry

messages across the 16 frequencies (one train) is 10ms. The Bluetooth specification

suggests each train be repeated at least 256 times (BluetoothSIG, 2010d). Hence, the

 79

inquiry on a single train lasts for 2.56 seconds. The sensor node (slave) in the inquiry

scan sub-state performs two types of scans, namely, standard and interlaced. In standard

scan, the slave node scans the channel for one time interval of 11.25ms. In interlaced

scan, two back-to-back scans of 11.25ms time slots is performed. The inquiry scan is

performed over the 32 dedicated frequencies. The 11.25ms inquiry scan window used by

the slave node increases the chance of it receiving the inquiry message from the master

node whose window lasts 10ms. After an inquiry scan, the slave node enters a sleep mode

before scanning the channel again. This value Tscan according to the specification can be

less or equal to 2.56s. The master slave inquiry operation is depicted in Figure 3.5.

Figure 3.5: Overlapping inquiry time slots of Master and Slave in a Bluetooth
inquiry scan

The master sends inquiry messages over consecutive train A’s via frequencies

each lasting 10ms. The slave scanning the channel every Tscan seconds on receiving the

inquiry packet responds to the master within that time slot. The Bluetooth discovery

operation involving the mobile data mule (master) and the sensor (slave) is illustrated in

Figure 3.6. The sensor responds to the mobile data mule after successful reception of

inquiry message. The operation presented in Figure 3.5 illustrates the timeslots overlap

during the inquiry process while Figure 3.6 illustrates the detailed communication that

takes place between the sensor and the mobile data mule within one time slot. The

Frequency Hopping Synchronization (FHS) packet shown in the figure is a special packet

(BluetoothSIG, 2010d) containing Bluetooth device address, page scan mode, clock

information (used for synchronisation), etc.

80

Figure 3.6: Bluetooth Discovery Process

3.4.3.2 Bluetooth Sensor Discovery: Proposed Technique

The Bluetooth discovery process (inquiry procedure) lasts 10.24 seconds. This

delay is acceptable in applications where Bluetooth is used as a cable replacement

technology. Within the scope of sensor network operations more specifically within the

proposed mobile data mule-based data collection technique, the inquiry scan operation is

too long. From the previously presented analysis of the Bluetooth discovery protocol, we

have identified the primary reasons for the long inquiry operation. They are: 1) the sensor

nodes (slaves) need to back-off Tscan seconds before it can perform another inquiry scan

and 2) the Bluetooth specification (BluetoothSIG, 2010d) indicates that for a successful

discovery, the inquiry process needs to be performed over 4 alternating trains which adds

up to 10.24 seconds. Hence, we propose to use the following two techniques to reduce the

inquiry time namely:

1) Use interlaced scan with a Tscan interval of 0 seconds. This allows the

sensor to continuously scan the channel for short independent durations.

The use of 0 second back-off increases the probability of a successful

inquiry by the mobile data mule

2) Reducing the inquiry time interval. The recommendation of 10.24 second

inquiry interval includes a back-off interval (Tscan) of 2.56 seconds. By

 81

reducing the back-off interval to 0 seconds, the inquiry can be performed

in 2.56 seconds i.e. 4 times less than the normal inquiry interval. We

validate our proposal by experimental evaluations presented in Chapter 7.

Bluetooth discovery process uses the inquiry scan to collect sensor information

that is further used by the Data-Collection platform to compute data collection decision.

Bluetooth device’s information is propagated to the master as a part of the inquiry

process. This information is part of the FHS packet previously discussed. Apart from this,

a friendly name parameter of size 248 bytes is transmitted by the slave device (sensor).

Classic Bluetooth operations use the user-friendly names to identify other Bluetooth

devices. We propose a modified usage of the friendly name parameter. We use the

friendly name to transmit sensor meta-data i.e. data that describes the particular sensor.

The 248 byte long friendly name is encoded using UTF-8 standard (BluetoothSIG,

2010d). This allows a typical Latin character to be encoded in 1 byte. We propose the

following naming strategy:

൏ , ݁݉ܽ݊_ݎݏ݊݁ݏ ,ݑݎ݃_ݎݏ݊݁ݏ ,݁ݕݐ_ݎݏ݊݁ݏ ,ݔ ,ݕ ,ݖ ,ݕ݃ݎ݁݊݁_݈ܽݑ݀݅ݏ݁ݎ ݏ݈݂݃ܽ

sensor_name: Identifies the sensor name. This information is defined before the

sensor is deployed, though it is not a requirement. The sensor, once deployed, has

the capability to self-assign a name during the initialisation phase.

sensor_group: This information identifies the group to which the sensor belongs. The

grouping can be geographical location based or sensor_type based. This parameter

can assume a null value during initial sensor deployment.

sensor_type: The sensor type identifies the kinds of sensors equipped on the particular

sensor node. For example, sensors of type 1 comprises temperature sensor and

sensors of type 2 comprise temperature and humidity sensor.

x,y,z: The sensor location is represented using the three parameters. This information

is hard-coded in sensor that are within structured deployments while is determined

using sensor localisation techniques in un-structured deployments.

82

residual_energy: This information indicates the sensors remaining energy. This

information is updated by the sensor periodically.

residual_data: This information indicates the remaining number of packets that needs

to be collected and delivered.

flags: Flags are application dependent values that vary based on requirements. We

define certain flags but allow room for extension. The flags that may be pre-defined

include C-critical, and I-ignore respectively. The critical and ignore flags are used

to indicate the importance of data stored at the sensor node.

Figure 3.7 gives an illustrative example of the proposed sensor naming format.

The total number of bytes used in the given example is 41. The maximum length of the

name field is 10 bytes with a 3 byte constant that is appended to all sensors allowing 7

bytes for sensor specific name. As mentioned earlier, this name need not be hardcoded

but can be computed during deployment. For example, the Bluetooth device address,

sensor location and sensor type may be used to generate the friendly-name. Since the

device address is unique, the generated name inherits its uniqueness. The prefix “EIS” in

the given example is used to identify specific sensors, in this case a Mulle (EISLab,

2010) sensor developed at EIS labs Sweden. The separator operator “@” is used by the

mobile data mule to parse the friendly-name.

Figure 3.7: Example of proposed sensor naming format

Reducing the inquiry time only solves one part of the discovery problem. The

second challenge with discovery involves timely discovery of sensor nodes by the mobile

data mule i.e. the sensor node needs to be available for communication when the data

mule is within the communication/collection range. This problem has been analysed by

 83

some researchers as a data mule scheduling problem (Somasundara et al., 2004, Gu et al.,

2006) which involves adapting the data mule’s arrival rate to the sensor network’s data

generation rate. This approach is promising but its scope may be limited to mobile data

mules that work within a controlled sensor network environment. We use the term

controlled sensor network environment to represent the class of sensor network

applications that have a dedicated mobile data collector whose movement can be

controlled by the application. Our approach addresses the scheduling problem by

proposing an application-based sensor duty cycle adaptation approach to improve sensor

discovery rate.

3.4.3.3 Sleeping Node Problem

The sleeping node problem occurs when a node that is passive (sleeping) to one

mobile data mule (may be active to another mobile data mule) is declared inactive. The

proposed data mule-based data collection approach is targeted at mobile devices that are

part of smart space environments. Hence, mobile data mule’s arrival is independent of

each other. This mode of operation significantly differs from previously proposed

approaches which assume coordinated operation (Shah et al., 2003, Jea et al., 2005). The

sleep node problem is illustrated in Figure 3.8. Consider a sensor node S which

communicates with mobile data mule M1 at time t and mobile data mule M2 at time t2. If

at time t2 + t when mobile data mule M1 tries to communicate with sensor S and does

not receive a response there arises two possible cases: 1) sensor S is dead 2) sensor S is in

sleep mode as it offloaded its data at time t2 to M2.

To handle the sleeping node problem, we propose a sink-assisted synchronisation

approach. The reason we propose a centralised technique is attributed to the fact that no

single mobile data mule has complete information about the sensor network. Moreover,

the mobile data mules perform data collection independent of one another. Hence, it is

not practical to assume ad-hoc communication capabilities among mobile data mules that

are part of the network. When a data mule is unable to discover/connect to a sensor, it

sets an inactivity counter for that particular sensor. The inactivity counter is a value

associated with each sensor. When the mobile data mule is unable to discover/connect to

a sensor, it increments the inactivity counter value associated with the sensor. The

84

inactivity counter value of each sensor is synchronised with the sink during the data

delivery operation. The synchronisation operation compares the inactivity counter value

stored at sink with the value obtained from the mobile data mule. The final inactivity

counter value for the sensor S is computed by:

ሻࡿሺ࢘ࢋ࢚࢛ࢉ ࢚࢚࢟࢜ࢉࢇ

ൌ ൝

, ࢋ࢚࢜ࢉࢇ݊݅ݏ ൌ
,ࢋ࢚࢜ࢉࢇ࢙ ࢋ࢚࢜ࢉࢇ݊݅ݏ ࢋ࢚࢜ࢉࢇࢋ࢛ࢇ࢚ࢇࢊ

,ࢋ࢚࢜ࢉࢇࢋ࢛ࢇ࢚ࢇࢊ ࢋ࢚࢜ࢉࢇ݊݅ݏ ൏ ࢋ࢚࢜ࢉࢇࢋ࢛ࢇ࢚ࢇࢊ

 (3-1)

Figure 3.8: Sleeping Node Problem

3.4.3.4 Node Discovery and Management: Algorithm

The node management module maintains the list of discovered sensor nodes. It

uses this information to perform data collection during subsequent arrivals. We use XML

to store the sensor information on the mobile data mule. The use of XML allows us to

easily share this information with the centralised sink and in certain special cases, with

other mobile data mules. A sample XML schema is presented in Figure 3.9.

The mobile data mule’s location tag is used to store location information of the

data mule. This helps in mapping the list of sensors that were discovered at various data

 85

mule locations. The XML schema presented is only a sample with scope for extensions.

Figure 3.10 presents the node discovery/management module pseudo code. The node

discovery/management handles sensor node discovery/storage and the sleep node

problem. A description of the algorithm is presented following Figure 3.10.

Figure 3.9: XML Schema used to represent sensor information in the node
repository

Figure 3.10: Node Discovery Module - Pseudo Code

Pseudo Code: Node Discovery/Management
Input: Node List LN (Node Repository)
Output: discovered_list
BEGIN Discover Node

1 discovered_list = discover(inquiry_time)
2 for each node n in discovered_list
3 search for n in LN
4 if found then
5 Set inactive_counter = 0
6 Else
7 Add n to LN
8 end if
9 end for
10 for each node n in LN not in discovered_list
11 if (location(n) is within location(mobile_data_mule)
12 inactive_counter +=1
13 end if
14 end for
15 connect to sink
16 synchroniseSink(LN)

END

<?xml version="1.0">
<sensor_info>
 <sensor_id></sensor_id>
 <location>
 <x></x>
 <y></y>
 <z></z>
 </location>
 <sensor_group></sensor_group>
 <sensor_type></sensor_type>
 <residual_energy></residual_energy>
 <mobile_data_mule_location_id>
 <mobile_data_mule_location>
 <x></x>
 <y></y>
 <z></z>
 </mobile_data_mule_location>
</sensor_info>

86

Step 1 performs the Bluetooth discovery for the specified inquiry time. Steps 2 to

9 check newly discovered sensor nodes against the node repository. If an existing sensor

node is discovered, its inactivity counter is set to 0. If a new sensor node is discovered,

the sensor information is added to the node repository. Steps 10 to 12 increment the

inactivity counter for sensor nodes that were previously discovered around the mobile

data mule’s current location. For example, consider the sensor node S was discovered

when the mobile data mule was at location (x1, y1, z1). S is marked inactive if discovery

of S fails when the mobile data mule revisits the location (x1, y1, z1). The vicinity in this

case is determined by the Euclidean distance using a radius of 30 to 100 meters

(Bluetooth radio range). Step 15 and 16 performs the synchronisation of sensor nodes

with the sink i.e. synchronising LN with the sink. The synchronise function employs the

logic presented in section 3.4.3.3 to resolve sensor node inactivity.

3.4.4 Sensor Data Collection

The sensor data collection operation involves establishing connection with

discovered sensors based on information collected during the discovery process. The

Data Collector module handles this operation. Bluetooth employs the technique called

paging (BluetoothSIG, 2010d) to establish a connection between the master and slave

device. The process of paging is similar to the inquiry process described earlier. A

successful paging operation indicates a successful connection. Since, our chosen sensor

network platform is Bluetooth-based, establishing a connection is the most energy

expensive operation. Hence, the challenge is to efficiently collect data by reducing the

number of connections between the sensor and the data mule. In the proposed approach,

we consider two cases: 1) a single mobile data mule can collect all the data from the

sensor and 2) multiple mobile data mules collect data from sensors in parts. The use of

mobility does not always guarantee single successful data transfer. The Data Mule (Shah

et al., 2003, Jain et al., 2006) discussed in the literature work under the assumption that

case 1 is likely feasible in most situations. Moreover, predicted (Chakrabarti et al., 2003)

and controlled mobility approaches (Somasundara et al., 2006, Kansal et al., 2004, Jea et

al., 2005) assume a controllable data mule. Our proposed approach employs independent

mobile data mules as data collectors that may or may not be controllable. Hence, the data

 87

collection strategy needs to be independent of data mule control. It also needs to facilitate

data collection from sensors by independent mobile data mule’s i.e. mobile data mules

that are not coordinated. To handle data collection using independent data mules we

propose an adaptive data collection strategy. The mobile data mule is aware of its current

location, movement direction, velocity and future location. Further, information from the

sensor is collected during the discovery phase which includes sensor location, amount of

data remaining, residual energy, etc. To handle the aforementioned data collection criteria

we propose a sliding window (Tanenbaum, 2002) protocol inspired data collection

algorithm. The connection-oriented operation of Bluetooth networks eliminates channel

sharing problem as a dedicated channel is used between the mobile data mule and the

sensor node. The proposed approach breaks the data transfer operation into multiple

rounds. By breaking the data transmission into multiple parts/rounds, the sensor is able to

clear its buffer partially, instead of waiting for a single data mule to collect all the data.

3.4.4.1 Adaptive Data Collection

The proposed adaptive data collection strategy uses contextual information to

determine sliding window acknowledgement intervals. The window determines the

number of packets transmitted between acknowledgements. Since, Bluetooth is

connection-oriented, a disconnection is detected by the Bluetooth link layer

(BluetoothSIG, 2010d). Once a disconnection is detected, the sensor stops sending any

further packets. Figure 3.11(a) presents an illustration of successful data collection using

the proposed adaptive data collection algorithm. The start (w) parameter is used to signal

the sensor to start sending data packets. The parameter w determines the size of the

window after which the sensor needs to wait for an acknowledgement from the mobile

data mule. Due to the connection-oriented operation of Bluetooth, data packets

transmitted between the sensor and the mobile data mule arrive sequentially. The type of

Bluetooth packet used is application dependent. Figure 3.11(b) illustrates the operation of

the adaptive data collection when a Bluetooth disconnection occurs during data

transmission. In the figure, a Bluetooth disconnection occurs when packet 4 is being

transmitted. The Bluetooth disconnection is depicted as a cross. When mobile data mule

88

2 begins data collection, the adaptive data collection algorithm resumes data transmission

from packet 3 as it successfully received acknowledgement for packets 1 and 2.

(a) (b)

Figure 3.11: Adaptive Data Collection Algorithm - (a) Successful Data Transfer (b)
Disconnection Handling

The primary consideration for the proposed adaptive algorithm is to determine the

window size w i.e. the acknowledgement interval. A window size of one (w = 1) would

be the most reliable but not efficient while a window size of n (w = n), where n is a very

large integer, will prevent the acknowledgement from reaching the sensor before

disconnection. Hence, it is important to use an efficient window size. To this end, we

propose the use of contextual information available to the mobile data mule to compute a

window size on-the-fly. The contextual information represents a set of mobile data mule

parameters such as speed, trajectory and signal-to-noise ratio (SNR). The context

information is used to compute a data collection threshold that determines if the mobile

 89

data mule has the capability to collect sensor data. Based on the threshold value, a

suitable window size is computed. The threshold is used to determine the best mobile

data mule among the available set of mobile data mules. Since, mules are independent

and we do not assume inter-mule communication, the threshold computation is done at

the mobile data mule-based on available context information with little or no assistance

from the sink.

Consider a set P of context parameters ሼଵ, ,ଶ ଷ ሽ with a set V of…

valuesሼݒଵ, ,ଶݒ ଷݒ ሽ. Each context parameter in set P has an associated best case valueݒ…

given byሼݔܽ݉_ݒଵ, ,ଶݔܽ݉_ݒ ଷݔܽ݉_ݒ ሽ. Set V represents the value of the contextݔܽ݉_ݒ…

parameter at a specific instance in time. Set P represents the ideal case value of the

corresponding context parameter in set P used to compute the influence (weight) of the

context parameter. To determine the influence ܫ ∈ ሺ0,1ሻ for a value in set V, we use the

formulae given below.

ࡵ ൌ ൞

࢜
࢞ࢇ_࢜

, ࢜ ࢇ࢚࢘࢘ ࢚ ࡵ

 െ
࢜

࢞ࢇ_࢜
, ࢜ ࢙࢟࢘ࢋ࢜ ࢇ࢚࢘࢘ ࡵ ࢚

 (3-2)

The computation of I is dependent on the relation between I and v. I

and v are said to be inversely proportional if increase in value v reduces data

collection efficiency. Similarly they are directly proportional if increase in v

increases the data collection efficiency. For example, increase in distance

would increase the data collection time while increase in SNR indicates better

channel quality reducing data collection time. To compute the data collection

threshold (), we propose the use of weighted average. The weights assigned

to the context parameters are pre-defined and are shared across every mobile

data mule. The data collection threshold is given by equation (3-3).

 ൌ
ܑܟ ∗ ۷ܑ
ܑܟ

ܖ

ܑୀ

 (3-3)

Example: Consider a sensor S with contextual information: residual energy er,

location (x, y, z) and a mobile data mule M with context information current location (x,

90

y, z), trajectory vector ܶ
ሬሬሬሬԦ, velocity VL, signal-to-noise ratio SNR. The residual time t is

defined as the remaining time the mobile data mule will stay within the coverage of the

sensor node calculated using the velocity VL and mobile data collector’s trajectory

information ܶ
ሬሬሬሬԦ. The calculation of the residual time t can be further explained with the

help of illustration presented in Figure 3.12. The distance before which the sensor leaves

the boundary can be estimated as Rd. Since the mobile data mule’s velocity is known, the

residual time is given by:

ሻ࢚ሺ ࢋ࢚ ࢇ࢛ࢊ࢙ࢋࡾ ൌ ࢉ࢚ࢇ࢚࢙ࢀ
ࢊࡾ
ࡸࢂ

 (3-4)

The parameter Tstatic is estimated as the time the mobile data mule is stationary at

the specified location. We assume the Tstatic information is available as part of context

within the environment. For example, consider a data mule waiting at an intersection.

Using available traffic information obtained from active traffic management systems

(UTMS, 2010) the time the mobile data mule will be stationary at the intersection can be

determined.

Figure 3.12: Estimating residual time (t)

To calculate the value v_max for residual time i.e. maximum time required to

transmit all the data, we use (5)

࢚࢞ࢇ_࢜ ൌ
࢞

 (3-5)

 91

where x is the amount of data to be transferred and C is the channel capacity. The unit for

the quantities in this specific example is bits and bits per second. Since, the computation

of v_max varies for each parameter a generic approach cannot be followed. For example,

v_max for distance parameter may be maximum radio range. As the value v for radio

range nears its v_max, the influence I for the parameter distance will tend to 0. Table 3.1

provides sample data based on the example scenario presented earlier. In the sample data

we assume total bits to be transferred is 1120 kb and the channel capacity is 56 kb/sec.

The data collection threshold () for each case is computed.

Parameters

Sample
Data

Distance
(m)

wi = 0.1

Residual
Time

(seconds)

wi = 0.5

Residual
Energy

(%)

wi = 0.2

SNR

(dB)

wi = 0.2

Data
Collection
Threshold

ሺሻ

1 30 10 80 20 0.476

2 20 20 70 40 0.806

Table 3.1: Data Collection Threshold Computation- Sample Data

The data collection threshold is determined by the mobile data mule independent

of each other. In a typical real-world situation multiple mobile data mules might compete

to collect data from the sensor. Hence, we propose a data collection threshold that will

enable a mobile data mule to collect data. If multiple mobile data mules have data

collection threshold higher than the pre-set threshold, the data collection mechanism

employs a first-in-first-out policy. We propose a simple technique used to dynamically

improve the data collection threshold. More complex techniques e.g. genetic algorithms

(Mitchell, 1998) may be employed to further improve this process. A basic approach

could employ a first-in-first-out (FIFO) policy i.e. the first mobile data mule at the

location collects the data since no initial threshold value is available. Subsequently, the

threshold value along with the data collected is delivered to the sink. The sink compares

reported threshold value by all mobile data mules for each sensor. With the condition that

sensor’s energy status is healthy (above 30%) the sink updates mobile data mules with

new threshold value. The new threshold value is determined to be the highest among

reported thresholds. As the sensor energy begins to deplete or when the data arrival

latency of a sensor increases, the sink dynamically reduces the data collection threshold.

92

This operation can also be performed by the sensor by using the flags (refer to section

3.4.3.2). By setting the flag I (ignore) to 1 the data will be collected by the next available

mobile data mule ignoring data collection threshold computation.

The computed data collection threshold is used to determine the window size. The

higher the threshold, the higher the window size can be and vice versa. Since the

threshold value is heavily dominated by the residual time t, our observation stands true

and is supported by experimental runs. The actual mapping of window size to the data

collection threshold is application dependent i.e. for a threshold range of 0.5 to 0.6 the

window size can be 10 while for a threshold greater than 0.8 the window size is 20. This

value is application dependent and can be dynamically updated. The adaptive sensor data

collection algorithm is presented in Figure 3.13.

Figure 3.13: Sensor Data Collection - Pseudo Code

Step 1 calls the previously described discover node module which provides the

list of discovered nodes in the surrounding along with the initial sensor contextual data.

Step 2 - 3 iterates through the nodes in the discovered list computing the data collection

threshold for each sensor in the list. Step 4 performs a search in the node list repository to

determine a minimum threshold for the particular sensor. As we can see, this operation

works in a disconnected fashion i.e. it does not require the sink’s assistance to complete.

Step 5 checks if the computed threshold is greater than the pre-defined threshold for the

particular sensor. Step 6 calls a function that handles establishing connection and

collecting data from the sensor using the defined window size w.

Pseudo Code: Sensor Data Collection
Input: Node List LN (Node Repository)
BEGIN Data Collection

1 Discover Node
2 while k < n (number of nodes in discovered_list)

3 calculate
୩
 ൌ ∑

୵∗ ୍

୵

୬
୧ୀଵ

4 search for (k in LN)
5 if ୩ > ሺk in Lሻ or (k in LN) = nothing
6 establishConnection(w)
7 end if
8 end while

END

 93

3.4.4.2 Data Exchange: Message Protocol Format

The previous subsection presented the adaptive data collection algorithm. In this

section we present details of the proposed data exchange protocol. There are two types of

messages used for communication, control messages and data messages. The message

parser component of the data collector module takes care of parsing messages that are

exchanged between the sensor and the mobile data mule.

The control messages are used to initiate the data exchange process. Some of the

control messages include sending window size, requesting sensor to start streaming data,

sending acknowledgement, etc. Further, the control messages allow dynamic upload and

download of activation schedule which is discussed later. The data message is used to

wrap the sensed data with application specific information. For example, in applications

where the time and date of the sensor data is important, data sensed by the sensor is

wrapped with time and date parameters. In applications where sensed data over a time

period is required, the message header information contains timestamp periods. Since a

generic method may not be applicable for the plethora of sensor network applications, we

allow room for application specific definition. The control data bit used by the sensor and

the mobile data mule is 3 bits in length. The message format is depicted in Figure 3.14

and the control bits used for negotiation are presented in Table 3.2. The control message

has an optional payload which is used in cases when the window size needs to be

negotiated with the sensor.

Figure 3.14: Control and Data Messages Format

94

Control Bit Operation

000 Start Data

001 Window_Size

010 Acknowledgement

011 Wait

100 Activation_Schedule - Upload

101 Activation_Schedule - Download

110 End

Table 3.2: Control Bits used during Data Collection

3.4.5 Data Delivery

The data delivery operation is performed by the sink manager. The data delivery

handles delivering the collected sensor data to the sink in a timely manner. The data

delivery modes are restricted by the communication medium available on the mobile data

mule. For example, a mobile data mule with GSM/GPRS capability can deliver data

immediately while a mobile robot with WLAN capability needs to wait till it reaches an

access point to deliver the data. In the proposed approach, the assumption is that mobile

data mule has sufficient buffer capacity to store sensor data.

The data delivery module is responsible for identifying when and how data is to

be delivered to the sink. The data exchange between the sink and the mobile data mule

uses XML representation. This facilitates easy sharing of sensor data across multiple data

sinks. The data format as mentioned earlier is application specific. The mobile data mule

is not responsible for parsing collected data. It only acts as an intermediate relay between

the sensor and the sink. The sensor data message illustrated in Figure 3.14 uses flags to

indicate message priority. The sink manager only unpacks the header to determine the

message delivery priority. It uses appropriate data delivery medium based on message

priority. The pseudo code for data delivery based on message priorities is presented in

Figure 3.15.

The sensor data store connected to the sink manager is a temporary sensor data

buffer where data collected from the sensor is stored. This buffer is cleared when the data

is delivered to the sink. The urgent data messages are delivered using priority

communication that may incur cost e.g. GSM/GPRS. Sensor data that is not urgent is

 95

buffered until a cheaper communication source is available e.g. wireless local area

network (WLAN). The introduction of urgent message aims to reduce the data delivery

latency which is incurred in approaches proposed in the literature, where the mobile data

mule needs to wait until it reaches the base station to off-load the data. The range of

communication technologies available on day-to-day mobile devices alleviates this

problem allowing timely delivery of high priority sensor data. In the next section we

propose a novel dynamic sensor adaptation technique. This approach ensures timely

sensor node discovery (by the mobile data mule) which results in increased sensor node

lifetime.

Figure 3.15: Data Delivery-based on message priority - Pseudo code

3.5 Sensor Adaptation using Dynamic Activation
Schedule

The discovery process requires the sensor to be constantly listening to the

communication channel. Continuous listening to the channel increases discovery rate but

reduces sensor lifetime. As identified in the literature, radio is one of the major energy

consuming components of the sensor. Our proposed approach facilitates sensor

adaptation using mobile data mules to improve sensor discovery rate. The term “sensor

adaptation” refers to the process of changing the sensor’s operational state based on

application needs. To adapt sensors dynamically we propose the use of activation

schedule that allows sensors to modify its operations on-the-fly. The term “activation

Pseudo Code: Sensor Data Delivery
Input: Collected Data
BEGIN Data Delivery

1 for each received message
2 unpack header data
3 if urgent_flag is set
4 while delivery = done
5 delivery data immediately using quickest

 medium
6 end while
7 delete data from buffer
8 else
9 read header timestamp
10 store (timestamp, data)
11 end if

END

96

schedule” refers to a set of instructions that determines the sensor’s operational state. The

assumption is that activation schedule is generated at the sink using powerful data mining

(Chong et al., 2008) algorithms. The key challenge is to distribute the activation schedule

across the entire sensor network. We propose the use of mobile data mules as a solution

to this problem. The proposed mobile data mule-based dynamic sensor adaptation

technique has number of applications other than improving discovery rate. For example,

increasing sensing interval during specific time period based on application requirement.

The following sections focus on: 1) activation schedule format 2) protocol for

dynamic exchange and decoding of the activation schedule between sensor and mobile

data mule and 3) incorporating capabilities into the system to support activation schedule

exchange. We begin our discussion by providing an overview on sensor operational states

and transitions.

3.5.1 Sensor States/Operations and Transitions

The duty cycle Dc can be defined as the fraction of time the sensor is in an active

state within a given time window given by (3-6)

ࢉࡰ ൌ
ࢋ࢚࢜ࢉࢇࢀ
࢝ࢊࢃࢀ

 (3-6)

Tactive is the amount of time the sensor is in active state and TWindow is the total time

interval. For example, the duty cycle is 10% if the sensor is active for 6 minutes within a

60 minute time window. The cumulative duty cycle of the sensor can be estimated by the

total amount of time the sensor is active. Figure 3.16 presents different sensor states

modelled using finite state machine (FSM) representation. Each active state of the sensor

corresponds to a specific sensor operation. The states illustrated in Figure 3.16 are

highlighted to signify the amount of energy consumed during each corresponding

operation. The sensor states are:

Sleep: This is the most power-efficient state where the sensor’s components are put

into continuous sleep. The only active component during this state is a real time

clock that sends an interrupt to the microcontroller unit (MCU) when needed. This

state is also referred to as low-power state.

 97

Sense: The sense state represents the operation when the MCU requests the on-board

sensor (temperature sensor) to perform a sampling operation. This involves the use

of analog-to-digital convertor (ADC) to convert analog data to digital data. This

state corresponds to the third most expensive operation performed by the sensor.

Radio Listen: In this state the MCU turns on the radio device into listening mode. In

listening mode the sensor node performs a periodic inquiry scan of the channel until

a successful connection is made. This state corresponds to the second most energy

consuming operation performed by the sensor.

Transmit: In this state the connection between the sensor node and the mobile data

mule is established and data transfer operation is performed. This is the most (first)

energy expensive operation performed by the sensor.

Figure 3.16: Sensor Node Operational State with State Transitions

The sense, radio listen and transmit states are cumulatively termed “active states”

while the sleep state can be termed “passive state”. Since each sensor state consumes

energy with the sleep state being the most energy-efficient, the sensors need to constantly

change its state for energy-efficient operation. The state transitions represented in Figure

3.16 determines how the sensor changes from one state to another. As illustrated in

Figure 3.16, except for the transmit state, the rest of the states are recursive i.e. the sensor

98

can recursively extend its operation in the specific state. The state transitions are

described below:

Sleep-Sense: The sensor moves from sleep state to sense state and vice-versa to

perform the sense operation. Allowing the sensor node to remain permanently in

the sense state is energy-expensive. On the contrary extended sleep might result in

data (sensed data) loss. The trade-off between sleep and the sense state is

determined by the sensor network application. From his state the sensor can switch

back to sleep state or change to radio listen state.

Sense-Radio Listen: This transition happens when the sensed data needs to be

transmitted immediately to the base station. The radio listen state may switch to the

sleep state if a successful connection is not made within a pre-determined time

window.

Radio Listen-Transmit: This transition happens when the sensor makes a successful

connection with a data mule in the surrounding. The states transition defines how

the sensor moves from listen to connected state.

Each sensor state except the transmit state can switch to the sleep state at any

point in time. The state transitions depicted as arrows in Figure 3.16. When in the

transmit state, the sensor has to return to the radio listen state before returning to the sleep

state. This is done to avoid state transition when a connection (data transfer) is in

progress. The total active duty cycle is computed as the cumulative sum of time the

sensor spends in active states. The total energy consumed by the sensor is computed by

the active and passive duty cycle duration given by (3-7).

ࢊࢋ࢛࢙ ࢟ࢍ࢘ࢋࡱ ࢇ࢚ࢀ
ൌ ࢋ࢙ࢋ࢙ࡱ ∗ ሻࢋ࢙ࢋ࢙ሺࡰ ࢋ࢚࢙ ࢊࢇ࢘ࡱ ∗ ሻࢋ࢚࢙ ࢊࢇ࢘ሺࡰ

 ࢚࢙ࢇ࢚࢘ࡱ ∗ ሻ࢚࢙ࢇ࢚࢘ሺࡰ ࢋࢋ࢙ࡱ ∗ ሻࢋࢋ࢙ሺࡰ
(3-7)

In the above equation the total energy spent by the sensor in each operational state

is denoted by E<state> and the total active time in a particular state is given by Dc(<state>).

 99

3.5.2 Dynamic Activation Schedule

The previous section identified sensor states and corresponding state transitions.

Further, we propose two modes of sensor operations that employ frequent sensor state

transitions to maximise energy efficiency. The operating modes depicted in Figure 3.17

are:

Passive-Reactive mode: In passive mode, the sensor switches the radio to listen state

permanently. This allows the data to be transferred immediately but is highly

energy consuming.

Time Synchronous mode: In time synchronous operation the sensor switches states

periodically. The time synchronous operation efficiently uses the active and passive

states. This results in energy-efficient sensor operation. On contrary, alternating

between passive and active states may result in sensing/data delivery delays.

Figure 3.17: Sensor Operational Modes

100

In time synchronous operational mode the sensor periodically performs state

transitions at pre-defined time intervals. The use of time synchronous operation mode

guarantees energy efficiency but may not always guarantee successful sensor discovery

(by the mobile data mule). This is because the classic time synchronous operation is not

adaptive. Hence, the sensor listen duty cycle period may not match the mobile data

mule’s arrival. This results in extended listening periods or sensor buffer overflow

(collected data overflow). To address these issues we propose a dynamic time

synchronous operation mode. The dynamic time synchronous operation enables on-the-

fly adaptation of sensor’s duty cycle (active and passive states). The proposed framework

facilitates on-the-fly sensor duty cycle adaptation. We introduce the term activation

schedule to define the dynamic time synchronous operation. An activation schedule

provides the sensor with duty cycle time periods i.e. the duty cycle for each sensor

operation (state). By mapping the sensor’s listen operation based on the arrival of the

mobile data mule increases the probability of sensor discovery. Our proposal handles the

challenges involved in updating the sensor with a new activation schedule. The

distribution of the activation schedule is performed by the mobile data mule. We assert:

By enabling sensor adaptation using the proposed dynamic activation schedule

approach, the sensor discovery rate can be improved.

To facilitate the exchange of activation schedule between the mobile data mule,

the sensor and the sink we use an open source iCalendar (Dawson et al., 1998) format.

The iCalendar allows us to define sensor operations over certain time periods. The use of

iCalendar also facilitates easy sharing of the activation schedule among mobile data

mules and sinks. Further, the iCalendar can be published on the internet with relative

ease. This provides the user with the ability to visualise the entire sensor network. To

encode sensor operations, namely, sense, listen and sleep into the iCalendar, we use the

following constructs given by iCalendar specifications (RFC):

BEGIN: The entry point of the calendar is identified by the BEGIN keyword

followed by a delimiter and VCALENDAR keyword.

END: The end of the calendar entry is identified by an END keyword followed by

a delimiter and a VCALENDAR keyword

 101

VERSION: This value determines the version of the iCalendar used.

VEVENT: It is a calendar component that defines a specific event. An event is an

operation that is performed periodically over time. It starts with a BEGIN keyword and

ends with an END keyword. In short, a VEVENT is a daily remainder. Within the

VEVENT, the following values are used to define the event properties:

DTSTART: This value is used to identify the date from which the new schedule

needs to be applied.

RRULE: This value is used to repeat an operation periodically forever based on

certain conditions identified by frequency and repetition time. The RRULE has number of

sub values that can be used to finitely define the frequency of event repetition. We use

FREQ and BYMINUTE. The FREQ defines how frequent the operation needs to be

repeated determined by a value. The value can be SECONDLY/MINUTELY/

HOURLY/DAILY/WEEKLY/MONTHLY/YEARLY. The BYMINUTE allows the system to

define how often the operation needs to be repeated within the specified frequency. For

example, perform sensing every 20 minutes daily.

DESCRIPTION: This is used to define the sensor operation.

We use VEVENT’s to define multiple time intervals for various sensor operations.

As mentioned previously, the proposed framework facilitates easy exchange of activation

schedule between the sensor and mobile data mule. It also provides protocols and

algorithms for activation schedule update and exchange. Figure 3.18 is an example of an

activation schedule using the iCalendar format. The activation schedule has rules for

radio listen and sense operation. The rule for radio_listen specifies that sensor needs to

enter listen state every 30 minutes. The radio needs to stay in listen state for a period of

100 seconds. The COUNT parameter is used to indicate duration. A similar observation

can be extended to the sense rule.

The mobile data mule receives activation schedule updates from the sink for an

individual/group of sensors. The proposed system framework allows upload/download of

activation schedule to and from the sensor node. The sink can take advantage of the

availability of computing resources and complex data mining algorithms to compute the

102

activation schedule. Classical sensor self-adaptation approaches (Somasundara et al.,

2004, Younis, 2004, Bandyopadhyay et al., 2003) depend on cluster heads to compute the

activation schedule. The self-adaptation requires the sensor to collect additional

adaptation information in addition to its intended sensing operation (e.g. environmental

monitoring). Moreover, the sensor may not be efficient for the sensor to perform complex

computations given its resource-constrained operation. Our proposed approach eliminates

such requirements reducing the workload on individual sensors. Using the proposed

approach the sensor only needs to have the capability to decode the activation schedule

(iCalendar). The algorithm presented in Figure 3.19 is used by the sensor to decode the

activation schedule. The proposed activation schedule only specifies when and how long

the sensor needs to perform a specific operation. The default state transition after

performing a specific operation is the sleep state.

Figure 3.18: An Activation Schedule using iCalendar

3.5.3 Dynamic Activation Schedule: An Example

The proposed dynamic activation schedule can be employed in real-world

scenarios. The sink computes activation schedules and the mobile data mule updates the

sensors with the newly computed activation schedule. We further provide a

comprehensive example of the dynamic activation schedule operation. We use the

scenario depicted in Figure 3.20. The scenario is a traffic intersection where sensors are

deployed to measure environmental phenomena. The sensors do not measure the flow of

traffic.

BEGIN:VCALENDAR
VERSION:1
BEGIN:VEVENT
DTSTART:20100511T21000Z
RRULE:FREQ=DAILY;BYMINUTE=30;COUNT=100
DESCRIPTION: RADIO_LISTEN
END:VEVENT
BEGIN:VEVENT
DTSTART:20100511T21000Z
RRULE:FREQ=DAILY;BYMINUTE=20
DESCRIPTION: SENSE
END:VEVENT
END:VCALENDAR

 103

Figure 3.19: Algorithm to Decode Activation Schedule

We model the mobile mule arrival as a Poisson process (Cogill, 2009, Virtamo,

2010) where, a large population of independent mobile data mules arrive between time

interval ሺ0, ଵሻ. Using the previously described Poisson arrival process, the probability ofݐ

seeing m mobile data mules can be computed using (3-8).

ሻ,࢚ሺ ൌ
ሺ࢚ࣅሻ

!
࢚ࣅିࢋ ሻ (3-8)

Where, is the arrival rate, m is the expected number of mobile data mule’s and t1

is the time interval. The function p (t1, m) gives the arrival probability of exactly m data

mules within the time interval (0, t1). To determine the activation schedule it is important

to compute the arrival probability of the mobile data mule. This can be computed by first

determining the probability that no arrival occurs (m=0). Using the computed probability

for (m=0) the probability that a mobile data mule will arrive within t1 is given by:

Algorithm 1: Decode Activation Schedule
Input: iCal.ics (Activation Schedule)
Output: start, period, duration, operation
BEGIN Decode_Activation_Schedule

1. open iCal.ics
2. while not EOF
3. ei = read line
4. switch (SecondElement ei)
5. case “VEVENT”
6. ej = read line
7. while FirstElement (ej) not equal “END”
8. switch (FirstElement(ej))
9. case “DSTART”
10. Set start
11. case “RRULE”
12. Set period
13. Set duration
14. case “Description”
15. Set operation
16. end
17. do
18. end
19. setActivationSchedule(start, period,

duration, operation)
20. do

END

104

,࢚ሺ ൌ ሻ ൌ െ ൫࢚ࣅିࢋ൯ (3-9)

Figure 3.20: Dynamic Activation Schedule: An Example

For example, consider the arrival rate of mobile data mules at an intersection

(Figure 3.20) is 50 every 60 minutes (1.666 mules/minute). The graph in Figure 3.21

presents the mobile data mules arrival probability for the time periods (1, 10) minutes.

From the graph, it can be inferred that for the given data mule arrival rate, the probability

of data mule arrival every 10 minutes is 0.99. Hence, the sensor can be adapted to listen

to the communication channel every 10 minutes when frequent data delivery is required.

By contrast, the sensor can be adapted for a 30 minute listen interval when data delivery

latency is acceptable. In both cases, the Poisson arrival process is used to adapt the

sensors listen state. This approach results in extended sensor lifetimes and guarantees

sensor discovery with high probability. Further, the adaptation algorithm employed at the

sink can use additional parameters like variable arrival rates during day and night to

enhance the adaptation outcome.

 105

Figure 3.21: Probability of Data Mule Arrival - Poisson Arrival

3.6 Real-World Applications Scenarios using
Mobile Data Mules as Sensor Data
Collectors

In this section, we discuss two applications where the proposed mobile data mule

based data collection can be employed without any special infrastructure set up.

iRoad (iRoad, 2010): iRoad is an on-going research project at Luleå University of

Technology, Sweden. The project aims in making roads intelligent by integrating road

surfaces with low-powered, autonomous wireless sensor nodes. The sensors embedded

into the roads enable sensing parameters that can only be measured physically on the road

surfaces. The use of sensor networks allows the sensed data to be transferred wirelessly

for further analysis that would form the backbone of future traffic management systems.

The sensor used in the iRoad project is the Mulle (EISLab, 2010) sensor node that uses

Bluetooth for communication. The current Mulle used in the iRoad prototype

implementation measures road temperature and uses vibration sensor to detect vehicle

movement in the surroundings. Currently, this approach uses a fixed gateway to relay

data to the centralised server for further processing and analysis. The Mulle sensor

installed as a part of the iRoad system is equipped with solar cells allowing the sensor to

harvest energy from the environment. Though energy is harvested from the environment

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Data Mule Arrival Probability ‐ A Poisson Arrival
Process

Probability

106

installing a gateway over current road network is a painstaking and expensive task.

Further, if the sensor is not able to harvest enough energy for sustained functioning

(typical in countries like Sweden e.g. solar panel covered with snow) it needs to survive

on battery to transmit the data. Our proposed system is a potentially advantageous cost-

efficient alternative to the existing iRoad data collection architecture where vehicles can

act as mobile data mules. Figure 3.21 is a typical example scenario of iRoad system with

the proposed mobile data mule-based data collection technique. In the iRoad system the

mobile data mule can be a mobile phone, a laptop or as a futuristic vision a car with the

capability to use its inbuilt Bluetooth radio hardware. Our approach makes the

assumption that data collection happens during times when availability of mobile data

mules is abundant. During non-peak times, the sensor buffers data waiting for mobile

data mule arrival. Our proposed approach can

1 Reduce infrastructure and installation cost by using existing mobile

devices as mobile data mules. These devices are part of the existing

infrastructure.

2 Allow adaptation of sensors using dynamic activation schedule. This

enables sensors to adapt its operation based on mobile data mules’

arrivals (e.g. traffic information).

3 Adapt the sensors based on climatic conditions e.g., the sensors can

dynamically increase its sensing rate if it can infer with the assistance of

the mobile data mule the probability that next day is a sunny day. This

information can be used by the sensor to increase sensing rate and reduce

data delivery latency as with certain probability it is guaranteed to

recharge itself the following day.

District Heating (Deventer et al., 2009): District heating is another key

application area currently studied at the Luleå University of Technology, Sweden. District

heating enables heating of house spaces and provides hot water from a single energy

source to many buildings. The energy from the primary source is routed using pipes to

apartments and buildings. A heat exchanger installed within the building, called the

secondary circuit, is used to transfer the energy (Deventer et al., 2009) from the primary

 107

source. At the secondary circuit the amount of energy is controlled using a control valve

which calculates the energy used. The primary and the secondary unit in the current

system are disconnected. Deventer et al. (Deventer et al., 2009) propose a wireless sensor

network-based architecture to efficiently control the amount of energy used by the

secondary circuit.

A key requirement with the district heating system (currently used in Sweden)

(Deventer et al., 2009) is to provide online energy usage statistics to end users. Deventer

et al. (Deventer et al., 2009) have used Mulle sensor nodes to connect the primary and the

secondary circuits. This integration is built into the secondary circuit which controls

energy requirement in real-time. The Mulle used in the current approach requires a fixed

base-station to communicate with the rest of the world. This is feasible in test

deployments but may not scale well in real-world scenarios. We propose the mobile data

mule-based data collection approach as a suitable cost-efficient alternative. The mobile

data mule within the scope of this application may be a mobile phone. The mobile phone

when within the house can communicate with the Mulle collecting data and deliver it to

the centralised sink using in-house communication capabilities e.g. wireless local area

network (WLAN). The proposed dynamic activation schedule technique can be further

employed to match sensor operation with the mobile device user’s presence. This

approach further enhances the energy-efficiency of the sensor node.

3.7 Summary

This chapter has presented our proposed system framework for sensor data

collection using independent intelligent mobile data mules. Our framework targets the

use of day-to-day mobile devices available within pervasive environments as sensor data

collectors. This architecture is made feasible with the advent of Bluetooth-based sensor

networks (BSN) and the widespread acceptance of Bluetooth technology. The proposed

approach employs a restricted Bluetooth discovery protocol to reduce Bluetooth inquiry

time used to discover sensor nodes within the surrounding. A sliding window based data

collection algorithm is proposed to achieve sensor data collection using multiple

independent mobile data mules. Our proposed approach does not require the introduction

of any special hardware within the sensor network environment/infrastructure. The

108

proposed system architecture can be implemented on any day-to-day mobile device

without any specific hardware modifications. Moreover, our proposed approach

computes data collection decisions on the mobile data mule hence reducing the

computations on the sensor. Finally, we have proposed the use of dynamic activation

schedule to adapt the sensor’s duty cycle to increase discovery rate. The activation

schedule is uploaded from/downloaded to the sensor on-the-fly. A detailed description of

the activation schedule format and algorithms to supports its exchange between sensor,

mobile data mule and sink was presented.

The proposed system framework can be easily adapted in real-world with iRoad

and District Heating applications as examples. Summing up, our proposed approach is a

cost-efficient unified architecture for sensor discovery, data collection and delivery using

day-to-day mobile devices. The proposed system framework works in a decentralised

fashion making use of the centralised sink resources when available. The proof-of-

concept implementation and evaluation of the sGaRuDa framework is presented in

Chapter 6.

 109

4
3D-KNN: Sensor Data

Collection using Nearest
Neighbour Search in 3D Space

4.1 Introduction

In this chapter, we propose 3D-KNN, a k-Nearest Neighbour based approach for

sensor data collection employed on the mobile data mule. Traditionally, k-Nearest

Neighbour query has been used to compute a set of nearest object to a given location with

the assumption that the object are on the same place (two-dimensional). Hence, most k-

Nearest Neighbour approaches employ only distance to compute the nearest neighbour.

Different from current approaches, we propose the 3D-KNN algorithm that can account

for sensor distribution in three-dimensional spaces. Moreover, the use of k-Nearest

Neighbour queries to collect data from sensors has not been used extensively. Further, the

sGaRuDa framework and the corresponding algorithms proposed in Chapter 3 focus on

Bluetooth-based sensor networks. Due to large growth and acceptance of Bluetooth, we

see a potential for the proposed architecture in current pervasive environments. We

leverage the availability of Bluetooth-based devices to achieve cost-efficient sensor data

collection. Though we see Bluetooth-based sensor networks as one of the future enablers

of pervasive environments, in this chapter we propose data collection algorithms that suit

sensor networks that have broadcasting capabilities. We identify certain limitations of our

previously proposed data collection system framework before introducing the 3D-KNN

algorithm. The limitations of the sGaRuDa framework proposed in Chapter 3 are:

110

1) The use of Bluetooth solves the problem of sharing a frequency between

multiple sensors and mobile data mules. This is good in cases where the

sensor network is sparsely deployed. In dense sensor network deployments

Bluetooth can only support a maximum of seven simultaneous connections.

This restricts data collection in densely deployed large-scale sensor networks.

2) The use of Bluetooth also restricts multi-hop data communication. The use of

multi-hop data communication requires additional network setup involving

maintenance of master and slave nodes. This introduces the challenge of

identifying the master node within the data collection coverage area.

3) The advent of Zigbee-based sensors (CrossbowTechnology, 2010a, ZigBee,

2009a) and Zigbee based mobile devices (ZigBee, 2007) have created new

opportunities for deploying sensors in smart spaces. For example, sensor

nodes with dual radios (ETH-Zurich, 2007, EISLab, 2010) i.e. Bluetooth and

Zigbee, have opened the doors for techniques that use Zigbee based multi-hop

data routing for control information and Bluetooth for data transfer.

The proposed sensor data collection approach employs independent mobile data

mules to facilitate cost-efficient multi-hop data collection. Our data collection approaches

are still driven by notion of mobility. The proposed 3D-KNN algorithm uses k-Nearest

Neighbour (kNN) queries for cost-efficient data collection. The use of kNN allows the

mobile data mule to select a subset of sensors to collect data from. The data collection

algorithm efficiently uses the underlying sensor network’s broadcasting capability to

facilitate multi-hop data collection. Our proposed data collection philosophy is further

supported by the development and availability of Zigbee-based sensors

(CrossbowTechnology, 2010a, ZigBee, 2009a) and Zigbee-based mobile computing

devices (ZigBee, 2007). The rest of the chapter is organised as follows. Section 4.2

provides an overview of kNN query-based data collection with focus on sensor networks.

Section 4.3 presents a theoretical investigation of Voronoi-based kNN queries motivating

the need for the 3D-KNN algorithm Section 4.4 presents in-depth discussion of the 3D-

KNN algorithm. Section 4.5 presents a chapter summary. The 3D-KNN algorithm and

the Voronoi-based kNN queries presented in this chapter are from the following published

 111

papers (Jayaraman et al., 2008b, Jayaraman et al., 2010a, Jayaraman et al., 2010c,

Jayaraman et al., 2010b).

4.2 kNN Query-based Data Collection

The proposed data collection approach based on k-Nearest Neighbour queries is

used to determine a subset of sensors within the sensor network around the mobile data

mule. We term this subset that encompasses the k nearest neighbours as “collection

area”. The collection area used in the context of this thesis refers to the area (surface area

or volume) of the three-dimensional space that encompasses the k nearest sensor nodes.

The collection area is computed on-the-fly by the mobile data mule. Hence, the boundary

and the size of the collection area shrinks/expands based on the mobile data mule’s

movement. Figure 4.1 presents an illustration of the collection area identified by the

spheres CA1 and CA2 with radius R1 and R2.

Figure 4.1: Collection Area Illustration

The line marked as trajectory represents the movement path of the mobile data

mule. As illustrated in the figure the radius of the spheres vary depending on sensor

coverage and mobile data mule location. The sensor data collection approaches using

mobile data mules discussed in the literature (Shah et al., 2003, Jain et al., 2006,

Somasundara et al., 2006, Kansal et al., 2004, Chakrabarti et al., 2003) make specific

112

assumptions that sensor network deployment is two-dimensional. Some approaches (Shah

et al., 2003, Jain et al., 2006) assumes an error and obstacle free grid-based environment.

The assumption of three-dimensional space introduces the challenge of energy-efficient

data collection across different planes given the omni-directional characteristics of radio

transceivers. The illustration in Figure 4.1 is a classic example of a three-dimensional

space. For example in Figure 4.1 at the first location the collection area encompasses

sensors that are above, below and on the mobile data mule’s movement plane. This omni-

directional communication property of radio hardware requires approaches that need to

compute nearest neighbours, taking into consideration radio communication metrics

rather than just distance. By introducing radio characteristics with distance, we state that

collection area comprises a subset of sensor nodes that are not just close but are also

energy-efficient (good communication channel characteristics) to communicate with.

4.2.1 k-Nearest Neighbour Query Processing in Sensor
Networks

We discuss the theory of k-Nearest Neighbour (kNN) queries more specifically in

the context of sensor networks without mobile data mules. k-Nearest Neighbour queries

have been used in sensor networks to retrieve data from sensors surrounding a point of

interest. The point of interest is a specific location within the sensor network around

which sensed data is collected. This location is computed by the application running at

the sink. Chapter 2 discussed the classification of kNN query processing in a sensor

network based on available network topology information. This infrastructure

information is maintained using indices as used in traditional databases. Each sensor

encompasses a set of child nodes grouped by their geographical location. A typical kNN

query processing in sensor networks illustrated in Figure 4.2 involves the following steps:

Query Creation: This is the stage where the query request is generated by the

application. The query contains the point of interest (P) location.

Query Propagation: The generated query is propagated within the sensor network

until it reaches a correspondent node adjacent to the point of interest P.

 113

Boundary Computation: The sensor node s is now responsible for processing the kNN

query. To process the query, it first needs to compute a kNN boundary around P.

Data Collection: Once the boundary is computed, sensor data within this boundary is

collected and the result is routed to the correspondent sensor node.

Query Result Propagation: The query result is propagated by the sensor node to the

sink.

The correspondent node in Figure 4.2 is depicted in orange. The correspondent

node is responsible for processing the query on the sink’s behalf. Its operations include

boundary estimation, query propagation, nearest neighbour selection and result

propagation. The arrow marks represent the flow of data within the sensor network.

Figure 4.2: kNN Query processing - Overview

4.2.2 Overview of Proposed k-Nearest Neighbour Approach

In this subsection, we present an overview of the proposed multi-hop data

collection approach using kNN queries. We employ kNN queries to a) compute the

114

collection area that comprises a set of sensors around the mobile data mule and b) collect

data from a subset of sensors within the collection area. We explore multi-hop data

collection using kNN queries in a sensor network where mobile data mules collect sensor

data.

Classic broadcast-based kNN query processing approaches discussed in the

literature employ static sinks to process kNN queries. Some approaches (Soheili et al.,

2005, Demirbas et al., 2003, Guttman, 1984) depend on the availability of spatial indices

to process kNN queries while others assume physical clustering (Abbasi et al., 2007,

Younis, 2004, Bandyopadhyay et al., 2003). The mobility-based data collection

(Somasundara et al., 2006, Kansal et al., 2004, Jea et al., 2005) approaches that explore

multi-hop sensor data collection also require physical clusters. Further, other mobility-

based data collection approaches (Chakrabarti et al., 2003, Shah et al., 2003) presented in

the literature do not deal with multi-hop data collection. They work under the assumption

that mobile data mule comes in direct contact with sensor nodes. We present a short

summary to identify the key differences between the proposed data collection approach

and (Shah et al., 2003, Jain et al., 2006, Somasundara et al., 2006, Kansal et al., 2004,

Chakrabarti et al., 2003). The summary is an analysis of mobile and static sink-based

approaches presented in chapter 2.

1) The mobile data mule functions independently. Each data mule has the

capability to compute data collection area dynamically. Our proposed system

does not allocate mobile data mules to specific groups of sensors i.e. fixed

sensor collection area based on geographical location.

2) The proposed kNN algorithm does not depend on network infrastructure

(spatial indices) information to process kNN queries. This reduces the

overheads introduced by index maintenance.

3) The proposed kNN algorithm does not require the existence of cluster heads

within the sensor network infrastructure. Current approaches assume the

existence of high-powered sensor nodes which act as cluster heads

(Somasundara et al., 2006, Kansal et al., 2004, Jea et al., 2005). The use of

 115

clusters introduces the need for a training phase during which the mobile data

mule (Jea et al., 2005, Somasundara et al., 2006) collects cluster information.

This requirement introduces additional overheads caused by cluster

maintenance. Moreover, this approach is advantageous in the existence of a

dedicated sensor data collector. In our scenario, we assume the data mules are

not controlled and act independently. The probability that a data mule may

visit the same set of sensor nodes is less likely.

4) The proposed algorithm functions within three-dimensional sensor network

spaces which is typical of current day sensor network environments e.g.

buildings. Our approach to investigate a three-dimensional sensor network

space is motivated by recent research that concludes that sensors are spatially

distributed (Ganesan et al., 2004). To this end, we propose data collection

metrics that take into consideration energy consumed while communicating in

the presence of obstacles (e.g. ceilings, walls). To the best of our knowledge

our project is a pioneering effort in addressing sensor data collection in three-

dimensional spaces.

The proposed data collection approach based on kNN queries can be further

elaborated using the illustration in Figure 4.3. In our proposed approach, the point of

interest is the mobile data mule. The aim of the query is to compute a set of sensors that

are around the mobile data mule from which data is collected cost-efficiently. We use the

term “cost-efficiency” to represent a function of cost parameters including: 1)

communication (energy), 2) query processing latency (performance) and 3) overall

network lifetime (total energy consumed). The proposed approach avoids the need for

cluster heads/correspondent nodes. The mobile data mule performs the tasks of the

cluster head/correspondent node. The introduction of the mobile data mule removes the

need for query propagation and result propagation stages as the mobile data mule is

responsible for collecting and delivering the data to the sink. The mobile data mule has

the capability to dynamically compute the collection area on-the-run using available

sensor network infrastructure information. As sensor infrastructure information is

collected on-the-fly the proposed approach adapts well for changing sensor network

116

topologies. The capability of the mobile data mule to compute the collection area is

presented in detail in section 4.4.

Figure 4.3: Proposed kNN query-based Data Collection Approach

4.3 A Theoretical Investigation of Voronoi
Diagram-based k-Nearest Neighbour Search

In this section, we present a computational geometry (Mulmuley, 1993) inspired

approach to process kNN queries. The technique we employ is Voronoi diagrams

(Aurenhammer, 1991, Sen et al., 2010) and its Delaunay Triangulation. Voronoi

diagrams have been used to efficiently cluster static sensor networks (Bandyopadhyay et

al., 2003, Ghiasi et al., 2002) and have been applied to solve (Butler et al., 2003) sensor

network coverage problems. The sensor network coverage problem addresses placement

of sensors within the environment such that environmental changes are detected

uniformly. We explore the use of Voronoi diagram and Delaunay triangulation for

Bluetooth-based sensor networks.

 117

4.3.1 Voronoi Diagram and Delaunay Triangulation

Definition 4-1: (Voronoi diagram): Given a set P with p1 … pn points on a plane,

a Voronoi diagram partitions the plane into n convex polygons confining one point each

such that any point comprising the polygon is always closer to the point pi in the within

polygon than any other point in the set P.

The Delaunay triangulation (Aurenhammer, 1991, Sen et al., 2010) is a dual to

Voronoi diagram and is obtained by connecting the points that share the same vertices in

the polygon. The Delaunay triangulation, once computed from Voronoi diagram, can be

used to compute the nearest neighbours and the path connecting them. Figure 4.4 shows

an example of a Voronoi diagram and the corresponding Delaunay triangulation

generated in MATLAB.

4.3.2 k-Nearest Neighbour using Voronoi Diagrams

We employ Voronoi diagrams to compute the k nearest neighbours around the

mobile data mule. In the proposed data collection approach the mobile data mule is

responsible for computing the Voronoi diagram.

Figure 4.4: Voronoi diagram and Delaunay Triangulation

The Bluetooth inquiry process is used to discover the nodes around the mobile

data mule. Once this information is available, a Voronoi diagram is computed by the

mobile data mule. The sensor characteristics collected during the discovery phase are

used to convert the Voronoi diagram into a weighted Delaunay graph. The weight of the

Delaunay graph is assigned to the edge that connects the sensor node and the mobile data

mule. This value is computed using the threshold approach proposed in Chapter 3. The

threshold takes into consideration the sensor’s distance, its residual energy, amount of

data, etc. The Voronoi diagram and the Delaunay graph are used to compute the

118

collection area that comprises the k nearest sensor nodes. The data collection is

performed using the previously proposed multi-part data collection algorithm (refer

Chapter 3). The Voronoi diagram is not stored at the sensors due to the space complexity

of Voronoi diagrams (Aurenhammer, 1991). The proposed approach is a theoretical

investigation of the feasibility of Voronoi diagrams for kNN computation. Our proposed

Voronoi-based data collection approach is illustrated in Figure 4.5. The Voronoi

diagrams were computed using MATLAB. Figure 4.5 (left) is an illustration of a sensor

network with a mobile data mule. The red line depicts the mobile data mule’s trajectory.

Figure 4.5 (right) shows the corresponding Voronoi diagram. We assume the mobile data

mule computes collection area at specific locations within the sensor network. These

locations are marked as red arrows in Figure 4.5.

In our proposed system, we do not assume a dedicated mobile data mule. Hence,

when computing the Voronoi diagram two types of sensor nodes need to be taken into

consideration. They are sensors that are pre-known (node repository) and sensors that are

newly discovered. Newly discovered nodes can fall into two categories: newly deployed

and sensors that were passive/sleeping/inactive during previous visits by the mobile data

mule. Given the dynamic nature of sensor networks and unavailability of network

topology information, the Voronoi diagram needs to be recomputed at each instance. The

cost in re-computing the Voronoi diagram is highlighted later in this section.

Figure 4.5: Dynamically Generated Voronoi diagrams for different Mobile Data
Mule Locations

The Voronoi-based data collection approach satisfies a static sensor network that

has the availability of a dedicated mobile data mule. With multiple independent mobile

data mules, constant re-computation of the Voronoi diagram is expensive. This issue

 119

worsens when the size of the sensor network increases. Moreover, the complexity of the

Voronoi diagram is O(n2 log n) with the best-case complexity using a divide-and-conquer

approach being O(n log n) (Sen et al., 2010). Also, the Voronoi diagram has a space

complexity of O(n). The above observations are based on Voronoi computation using

Fortune’s algorithm (Fortune, 1986). Based on these observations, we identify that

Voronoi diagrams are more suitable for cases where the re-computation involved is

minimal e.g. to partition the network (Bandyopadhyay et al., 2003, Ghiasi et al., 2002).

The use of Voronoi in mobile sensor networks can be justified by the argument that

mobile sensors are a permanent part of the sensor network, reducing re-computations. In

our proposed approach the mobile data mules that perform data collection are not

necessarily part of the sensor network infrastructure. Moreover, there is no guarantee that

a mobile data mule might periodically visit a specific set of sensors. Further, a single

mobile data mule might not have information on the entire sensor network. It is hence

essential to compute the collection area dynamically during every data collection process.

We investigated the feasibility of Voronoi-based approach for a Bluetooth-based

sensor network as the number of nodes that mobile data mule can communicate

simultaneously is restricted to seven. This feature of Bluetooth-based sensor networks

reduces time and space complexity in computing Voronoi diagrams. In densely deployed

broadcast-based sensor networks, there is no restriction on the number of simultaneous

connections. Hence, the time and space complexity of computing Voronoi diagrams

increase by the order of n. Due to the space and time complexity of Voronoi diagrams for

changing sensor network topologies, we propose a kNN query processing algorithm that

uses simplified search and sort techniques with a time complexity of O (log n). In the

next section, we discuss our proposed kNN-based data collection algorithm within the

scope of a broadcast-based wireless sensor networks.

4.4 3D-KNN: A kNN Query-Based algorithm for
Sensor Data Collection

In this section, we propose our novel three-dimensional k-Nearest Neighbour

algorithm, namely, 3D-KNN, for a broadcast-based sensor network. The 3D-KNN

computes a dynamic collection area using sensor information collected on-the-fly. Our

120

proposed algorithm addresses real-world distribution of sensors by adopting a three-

dimensional sensor network model. The proposed 3D-KNN algorithm considers the

following:

1) The mobile data mule is centred about the collection area which encompasses

a group of sensor nodes

2) The mobile data mule has no prior knowledge of the sensor network topology

required to process the kNN query

3) Query dissemination and data collection is done by the mobile data mule

4) Sensors employ in-network aggregation to collect data from neighbouring

nodes. Further, sensors do not have prior knowledge of neighbours as this is

learned during query execution

5) Use of real-world radio signal propagation characteristics while computing

nearest neighbours i.e. taking effect of obstacles and planes in three-

dimensional space

In the following sections, we first present our sensor network model. Secondly we

present the proposed 3D-KNN algorithm. Finally, we extend the proposed algorithm by

introducing a prediction approach based on mobile data mule’s path to improve the data

collection efficiency.

4.4.1 Network Model and Assumptions

An illustration of the 3D sensor network model with the presence of a mobile data

mule is depicted in Figure 4.6. We segment the three-dimensional space into planes. For

example, in a building environment the planes correspond to the floors/levels. We assume

that mobile data mule moves along a specific plane and sensor nodes are distributed

within the three-dimensional space separated by levels (ceiling/walls). Sensor nodes are

assumed to be location aware. Since radio range has no boundary, the discovered nodes

can belong to different planes i.e. planes above the mobile data mule or planes below the

mobile data mule. These planes are represented as plane 1, plane 2 and plane 3 in Figure

4.6. For illustration purposes, we consider three planes while the approach can be

extended to p planes. The 3D-KNN algorithm employed by the mobile data mule uses a

 121

metric to determine the set of cost-efficient groups of sensor nodes. This metric is

modelled taking into consideration real-world radio characteristics of sensors collected

during the discovery process. To simplify our discussion, we assume that sensors

deployed within the three-dimensional space are homogeneous i.e. they are identical,

having the same hardware and radio range. However using heterogeneous sensors

requires no modification to the 3D-KNN algorithm.

Figure 4.6: A Three-Dimensional representation of the KNN Boundary Estimation
Algorithm

The mobile data mules in the proposed approach are independent of each other

and the availability of a sink is not ubiquitous i.e. mobile data mules have the ability to

work in disconnected mode. In the rest of the chapter, we focus on “Single-Shot” kNN

queries. Single-Shot kNN queries are issued once and the results are computed based on

the response. A subsequent kNN query is not issued from the same physical location. This

differs from continuous kNN queries where multiple queries are broadcasted into the

network addressed to the same location. This satisfies our initial claim of mobile data

mules being independent of each other i.e. result of a query is not shared with other

mobile data mules in the system. The lifetime of these single-shot KNN queries is

determined by the amount of time the mobile data mule stays at that location. The

proposed 3D-KNN algorithm functions in three phases:

Boundary Estimation: This phase handles estimating the search boundary that

encompasses the k nearest neighbours. The boundary is computed as a sphere with the

mobile data mule in the centre.

122

Pre-Routing: The pre-routing phase handles broadcasting initial request messages

within the estimated kNN boundary. Sensors employ in-network data aggregation to

reduce the amount of information transmitted.

Neighbour Selection: This phase selects the cost-efficient k neighbours within the

estimated kNN boundary. The output of the neighbour selection phase is the cost-

efficient set of sensors.

4.4.2 3D-KNN: Boundary Estimation Phase

Definition 4-2: (KNN Boundary Set S): Given a set N of i sensor nodes, location L

of mobile data mule, a subset S of j sensor nodes represents the KNN Boundary set where

S N and |S| ≤ |N| such that for each sensor sj S and each sensor si N - S, DIST (sj,

L) ≤ DIST (si, L) and DIST (sj, L) ≤ KNN_BOUNDARY.

The set N is the set of all nodes within the sensor network. The subset S of j

sensors that fall within the kNN boundary is computed from N. The kNN boundary

determines the perimeter of the data collection area. In short, the radius of the collection

area is given by the KNN_BOUNDARY. It is within the kNN boundary, the search for the

k nearest neighbours is performed. The subset S introduced in definition 2 is depicted as a

coloured sphere in Figure 4.6. The straightforward approach to compute the kNN

boundary is to employ flooding-based techniques (Hedetniemi et al., 1988). By flooding

the network with broadcast packets, the mobile data mule will have network information

about the entire sensor network which can be further used to determine the k nearest

neighbours. Though this approach is reliable, it is expensive, as the entire network is

flooded with broadcast packets from the mobile data mule. Hence, a more efficient

approach is to broadcast packets to a subset of sensors (S) within the sensor network. In

our model, the initial query Q is propagated by the mobile data mule. In our scenario the

mobile data mule is the point-of-interest. The 3D-KNN boundary estimation algorithm

computes a sensor boundary around the data mules’ location. We term our boundary

estimation approach “inside-out” method i.e. the boundary estimation is performed by the

mobile data mule which is the point-of-interest. Hence, the broadcast query originating at

the point-of-interest (inside) propagates outwards towards surrounding sensors. This is

 123

different from traditional sink approach where the broadcast query originates outside the

network (from the sink).

The kNN boundary estimation is one of the challenging steps in an infrastructure-

less sensor network. Since an assumption of uniform distribution over the entire sensor

network is not appropriate, we assume that nodes are uniformly distributed within the

computed kNN boundary. This assumption aids in accurately computing the number of

nodes within the kNN boundary. With this assumption we can determine the density of

nodes (ND) within the sensor network. The density of the network is the total number of

sensors within the network and not just active sensors. Hence, to determine the kNN

boundary that encompasses at least sj sensors, we use (4-1) to compute the surface area

covered by sj sensors such that sj S (S) satisfies the condition loc (sj) is within A

(area covered by the 3D space). A is the area of the 3D collection space (collection area)

and loc (sj) is the location of the sensor node sj. Since radio range is represented as a

sphere, we use equation (4-2) to compute the radius R of the sphere covering at least sj

sensors. The KNN_BOUNDARY is given by the radius R. Sensors node within the

KNN_BOUNDARY comprise the set S.

ࢇࢋ࢘ ࢋࢉࢇࢌ࢛࢘ࡿ ࢋࢉࢇࡿ ࡰ ࢋࢎ࢚ ࢌ ሺሻ ൌ
ࢋࢊࡺ ࢚࢙࢟ࢋࡰ ࡰࡺ ሺ ࢘ࢋ

ሻ

ࡺ ࢌ ࢙ࢋࢊ
 (4-1)

ࢅࡾࡰࡺࢁࡻ_ࡺࡺࡷ ൌ ࢙࢛ࢊࢇࡾ ࡾ ൌ ඨ
ࢇࢋ࢘ ∗

 ∗ ૈ

 (4-2)

4.4.3 3D-KNN: Pre-Routing Phase

Our key assumption is that no network topology information is required to

process the kNN query. Hence, node discovery needs to be performed within the

computed kNN boundary. The pre-routing phase performs the following functions:

 Collect sensor information which includes node location, signal-to-noise

ratio (a cumulative function for each hop from mobile data mule to

destination sensor node) and hop distance (from mobile data mule).

124

 Dynamically compute route information to each sensor within the kNN

boundary

 Compute perimeter nodes that form the boundary of the collection area.

To achieve the above functions, a broadcast message is sent by the mobile data

mule with its location l and KNN_BOUNDARY that determines the radius of the

collection area. Each broadcast message sent by the mobile data mule has an associated

broadcast-id which is derived from the mobile data mule’s MAC address to maintain

uniqueness. Each broadcast message is also associated with a time to live (TTL) to avoid

delayed arrival of data packets which is typical of real-world communications. The pre-

routing phase function is depicted in Figure 4.7. Note that while we have used a single

mule representation, this approach can be scaled to multiple mobile data mules. The

mobile data mule depicted in Figure 4.7 is represented as the yellow star and sensors as

X. The sensors highlighted in green identify the border nodes i.e. nodes that form the

perimeter of the kNN boundary. We use a two-dimensional illustration to represent the

working of the pre-routing phase.

A sensor node X on receipt of a broadcast message checks if the broadcast

message was received from the mobile data mule or other sensors. This operation ensures

that nodes that are in one hop distance from the mobile data mule do not use

neighbouring nodes to communicate. If the message source is other sensors, the first

arriving message is saved and the rest of the messages are discarded. The sensor uses the

TTL value of the broadcast message to identify delayed message arrivals.

On receipt of a new broadcast message, the sensor nodes use the information in

the message to determine its distance (D) from the mobile data mule. This distance (D) is

used to determine if the sensors are within the kNN boundary. Sensors within the kNN

boundary re-broadcast the message to neighbouring sensors. The re-broadcast message is

appended with the node’s identification. This information is useful to compute the

dynamic route. The route information is used by sensors to determine a reverse path to

the mobile data mule and vice-versa. In order to save energy over multi-hop

communications, the sensors employ in-network data aggregation. Data aggregation is

 125

performed using timers. The timer value is determined as a function of the kNN boundary

and the node’s distance given by:

ሻ࢞ࢃሺ ࢘ࢋࢀ ࢚ࢇࢃ ൌ
ࢅࡾࡰࡺࢁࡻ_ࡺࡺࡷ

࢞ࡰ
 (4-3)

Figure 4.7: Pre-Routing phase - Illustration

Sensor nodes that are outside the kNN boundary cease broadcasting messages

further into the network. These sensors which are at the border or just outside the kNN

boundary form the perimeter of the data collection area. The perimeter nodes are shaded

nodes in Figure 4.7. These nodes initiate response to the broadcast message (query) by

sending their location and signal-to-noise ratio to the neighbouring node through which it

received the broadcast message. The same process is performed at each node until the

requested information reaches the mobile data mule. Sensors that do not receive any

response from neighbours on timer expiry, forward their information back to the mobile

data mule. For example, consider the illustration presented in Figure 4.8. For easier

illustration, only a section of the collection area is shown. In this case, the sensor node X1

receives the broadcast message from the mobile data mule and forwards it to the

neighbouring nodes X2, X3, X4. X1 computes a timer value using (4-3). From (4-3), we

can deduce that timer value of X1 will be greater than the timer values of nodes X2, X3

and X4 respectively. The node X2, X3 and X4 identifies itself to be outside the kNN

boundary. Hence, it stops re-broadcasting the message and returns the requested data to

126

node X1. Since X4, X3 and X2 are at varying distances from the mobile data mule their

timer expiry will result in a tiny offset that helps to avoid contention while

communicating with X1. The boundary estimation and pre-routing phase pseudo code is

presented in Figure 4.9 and Figure 4.10. The algorithm is divided into two parts, the

mobile data mule part and the sensor node part. The sensor node implementation is

developed taking into consideration their low-powered and resource-constrained nature.

The 3D-KNN avoids the necessity to run complex algorithms on the sensor nodes. We

present a description of the boundary estimation and pre-routing pseudo code employed

by the mobile data mule in the paragraph following Figure 4.8. The description of the

sensor node pseudo code is presented in the paragraph following Figure 4.10.

Figure 4.8: Illustration of Pre-Routing

Figure 4.9: Boundary Estimation and Pre-Routing Phase- Mobile Data Mule Pseudo
Code

3DKNN – Boundary Estimation and Pre-Routing Phase- Mobile Data Mule
Pseudo Code
Input: Surface Area of the 3D space (A), total number of sensors
(n), l location of mobile data mule
Output: SNR, location and hop information of node
BEGIN

1 Compute ND = N/AT
2 Get k
3 Compute A such that A = k/ND

4 Compute ܴ ൌ ට
 ∗ଷ

ସ∗ గ

య

5 Compute maxKNNDIST = DIST(l ± R)
6 Send initial broadcast message(msgID, route, TTL, maxKNNDIST,

l)
7 Repeat
8 listen to channel
9 Until all data received or TTL reached

END

 127

Step 1, 2 and 3 is used to compute the kNN boundary using sensor network

density and required k. In step 4, the radius (R) of the sphere enclosing the nearest

neighbours is computed. Step 5 computes the maximum distance a sensor can be from the

mobile data mule. This value determines the kNN boundary. Step 6 performs the

operation of preparing and sending the broadcast messages. Step 7, 8 and 9 perform the

operation of listening to the channel until all responses from neighbouring nodes are

received. This operation expires when the TTL of the broadcast message is reached.

Figure 4.10: Boundary Estimation and Pre-Routing Phase- Sensor Node Pseudo
Code

Step 1 handles new broadcast messages arriving at the sensor node. Step 2 checks

if the received broadcast message already exists. Step 3 discards the message if it exists.

Step 5 computes the distance of the sensor node from the mobile data mule. Step 6

3DKNN – Boundary Estimation and Pre-Routing Phase- Sensor Node
Input: Broadcast Message m
Output: SNR, location and hop count
BEGIN

1 For each broadcast message m
2 if m not from source and m is received
3 discard m
4 else
5 Compute distance D = DIST(n, l)
6 If D < maxKNNDIST
7 set timer = maxKNNDIST / distance
8 add nodeID to route
9 hopcount ++
10 if neighbourList (neci) available
11 forward broadcast message neci
12 else
13 forward broadcast message
14 end if
15 Else
16 mark perimeter node
17 hopcount ++
18 add nodeID to route with a END mark
19 return location, snr to next node in route
20 End if
21 End For
22 On Timer Expiry
23 aggregate results of location and snr
24 return result to next node in route
25 End

END

128

checks if this distance is within the kNN boundary. Step 7 sets a timer for data

aggregation. Steps 8 and 9 add the node’s identification to the broadcast message and

increments the hop counter. Step 10 checks if a neighbour list exists at the sensor node.

This is not a requirement for the functioning of the 3D-KNN algorithm. Steps 11 and 13

handle rebroadcasting of the message to neighbouring nodes. If the sensor node is

outside the kNN boundary, step 16 adds the sensor as a perimeter node. Steps 17 and 18

increment the hop count and adds the node identification to the route part of the broadcast

message. Finally step 19 initiates return of data (SNR and the location information).

Steps 22, 23 and 24 describe the timer expiry procedure. When the sensor timer expires,

it returns aggregated data to its parent node (obtained from the route part of the broadcast

message). The parent node is the sensor from which the broadcast message was received.

This process is repeated until the mobile data mule is reached.

4.4.4 3D-K NN: Neighbour Selection

The outcome of the pre-routing phase provides the mobile data mule with sensor

information within the estimated kNN boundary (collection area). To determine the set K

of k sensors, we propose a sensor selection metric based on sensor information collected

during the pre-routing stage.

Definition 4-3: (k-Nearest Neighbours): Given a set S of j sensor nodes, location

L of mobile data mule, a subset K of k nodes where K S and j ≤ k such that for each

sensor sk K and each sensor sj S - K, KNN-METRIC (sk, L) ≤ KNN-METRIC (sj, L).

The KNN-METRIC is used to map sensors on different planes onto mobile data

mule’s plane. We term this approach “plane rotation” i.e. we virtually rotate sensors on

various planes to a single plane based on the KNN-METRIC metric.

4.4.4.1 Mapping Technique

The mapping algorithm uses sensor parameters signal-to-noise ratio (SNR) and

distance collected during the pre-routing phase to compute a single-valued metric. This

single valued metric is used to effectively map sensors on different planes (as depicted in

Figure 4.6) to a reference plane based on real-world radio signal propagation

characteristics. The reference plane is the plane in which the mobile data mule moves.

 129

This plane is the zero reference plane in which, the value of z axis is zero while x and y

change based on mobile data mule’s movement pattern. Sensors above the reference

plane take a positive value for z while sensors below the reference plane take a negative

value for z. The sensors themselves are calibrated based on the reference point governed

by the deployed space. For example, in a building, sensors z value represents the level in

which they are present.

We introduce the term “KNN-METRIC”- a metric computed using sensor nodes

characteristics including channel quality, interference caused by obstacles and distance.

The distance (D) is Euclidian distance computed as the distance between the mobile data

mule and the sensor node given by (4). The location of the mobile data mule and the

sensor node are given by the coordinates (X1, Y1, Z1) and (X2, Y2, Z2) respectively. The

KNN-METRIC applied in sensor mapping is computed using (4-5)

ࡰ ࢋࢉࢇ࢚࢙ࡰ ൌ ඥሺࢄ െ ሻࢄ
 ሺࢅ െ ሻࢅ

 ሺࢆ െ ሻࢆ
ሻ (4-4)

ࡵࡾࢀࡱࡹെࡺࡺࡷ ൌ ࢉ ∗
ࢻ ∗ ࡾࡺࡿ

ࢼ ∗ ࢋࢉࢇ࢚࢙ࡰ ሺࡰሻ
 (4-5)

The SNR value is collected during the pre-routing phase. The SNR for sensors

that are more than one hop away is computed as a cumulative sum of SNR values

between each hop. The SNR and the distance parameters are inversely proportional i.e.

higher SNR represents better channel quality while greater distance increases

retransmission reducing reliability. These parameters are taken into consideration as they

are good indicators of energy consumed during communication. For example, with poor

SNR the sensor needs to increase its radio power to successfully complete the data

transfer. The same can be observed at the mobile data mule even though energy is not a

primary concern for the mobile data mule. With the aim to reduce the energy-consumed

during communication, it is important to select a set of sensors that are energy-efficient to

communicate. The value c is a constant and α, β are pre-assigned weights. The weights

are assigned by the sink based on application requirements. To compute a value for the

constant c, we assume ideal case (computed from simulation outcomes) values for SNR

and distance such that KNN-METRIC = 1. The ideal case values and hence the value of

130

the constant c can be changed for different deployment environments. We determine c

from (4-6).

ࢉ ൌ ∗
. ∗

. ∗
ൌ . (4-6)

The KNN-METRIC provides a value that is used to map sensors around the data

mule based on sensor characteristics. At the end of the mapping stage, the k cost-efficient

sensor neighbours are computed by using sorting techniques, based on the computed

KNN-METRIC. Current work discussed in Chapter 2 dealing with kNN queries assumes

two-dimensional sensor distribution with no consideration for communication channel

characteristics. They only rely on Euclidian distance for computing nearest neighbours.

Though the extension of distance-based approaches is straight-forward in 3D planes, we

argue it is not necessarily energy-efficient. For example, consider a sensor A at a distance

D1 in a plane below the mobile data mule and sensor B at distance D2 in the same plane

as the mobile data mule such that D2>D1. Given the channel quality (computed using

SNR) for B is better than A, the two-dimensional distance-based approach would neglect

the channel quality parameter influenced by plane separation. It would select A as the

nearest neighbour. The proposed KNN-METRIC based sensor mapping approach selects

sensors as a function of both distance and channel quality (SNR), hence selecting sensor

B as the energy-efficient nearest neighbour. Moreover, current approaches (Yao et al.,

2009, Yao et al., 2006, Winter et al., 2005, Wu et al., 2007) consider error-free

communication channel which does not hold true in real-world scenarios. Our approach

can be easily extended to incorporate additional sensor metrics that can improve cost-

efficiency of data collection. For example, introducing the sensor residual energy

parameters into the KNN-METRIC will result in a set of sensors with the following

characteristics: 1) distance from the mobile data mule is least, 2) has good

communication channel quality (SNR) and 3) sufficient energy to successfully complete

data collection. Further, the selection parameters can be correlated to improve sensor

selection accuracy i.e. a correlation between the SNR and distance metric can be used to

dynamically recompute the weights α and β respectively. The algorithm for the k-Nearest

Neighbour selection phase is presented in Figure 4.11.

 131

Figure 4.11: k-Nearest Neighbour Selection- Pseudo Code

4.4.5 3D-KNN: Neighbour Prediction

The k nearest neighbours computed during the selection phase form the set of

energy-efficient sensors within the collection area. To further improve the energy-

efficiency of the data collection process, we propose an extension to the 3D-KNN

algorithm. We propose the introduction of neighbour prediction. The neighbour

prediction technique further filters the set K to identify the most cost-efficient set of

sensor neighbours.

Definition 4-4: (Predicted Set of Nearest Neighbours PT): The predicted set of

nearest neighbours P is a set of p nodes where P K and p ≤ k such that for every sensor

sp P and every sensor sk K-P, DIST (sp, LT) ≤ DIST (sk, LTi) where i = 1 to x and

hopcount (sp, LT) > 2.

LT represents the mobile data mule’s current location at time T and LTi represents

future locations at time T1, T2...Tx. The hopcount represents the number of hops between

the sensor node and the mobile data mule. A node sp is said to belong to the set P if and

only if its distance D from the data mule’s current location LT at time T is the less than its

distances D1, D2, D3 … Dx at time T1, T2, T3 .. Tx. We follow the following rules to

compute the set P from set K.

1) Add all sensor sk of set K to set P

3DKNN – k-Nearest Neighbour selection
Require: S subset of nodes, k required number of neighbours, mobile
data mule reference plane and location P (X,Y,Z) and for each node I
in S its SNR and location X, Y, Z
BEGIN

1 For each node I in S
2 determine current plane
3 compute Distance D with reference to P

4 ID = ඥሺܺଶ െ ଵܺሻ
ଶ ሺ ଶܻ െ ଵܻሻ

ଶ ሺܼଶ െ ܼଵሻ
ଶ

5 compute KNN-METRIC = 2.5 * (0.4 * ISNR / 0.6 * ID)
6 add KNN-METRIC to S
7 End For
8 Sort S based on KNN-METRIC
9 if k < S
10 return top k results from S
11 end if

END

132

2) Consider a sensor sp as a future neighbour if and only if

a. Hop distance between sp and mobile data mule’s current location is

greater than two

b. Hop distance between sp and mobile data mule’s future locations at

time T1, T2, T3... Tx is less than two hop distance.

The above conditions can be satisfied as it is feasible to estimate the maximum

hop count between the mobile data mule and the sensor node at time T1, T2, T3 .. Tx using

the sensor’s radio range and computed distance. For example, if the radio range is 30

meters and distance is 50 meters then the sensor is at least 1 hop away from the mobile

data mule. Further, we use a hop count value of 2 as it is less likely that a sensor at a

future location would be an energy-efficient choice if it is more than two hops away.

Moreover, the probability of reaching a sensor that is two hops away is much less. The

radio range is given by the maximum distance between the sensor node and the mobile

data mule at which direct communication is possible.

For example, consider the illustration in Figure 4.12. The mobile data mule is

identified by the yellow coloured star and the sensors are identified by X. The trajectory

provides the path of the mobile data mule. The two locations represented by the yellow

star are the locations T and T1 where the mobile data mule stops to compute nearest

neighbours.

We consider two cases identified by the node in green and red respectively. In

case 1, the sensor node X in green is closer at time T1 rather than at time T. Hence, the

prediction algorithm selects it as a candidate for data collection at time T1. In case 2, the

previously stated rules are applied. The sensor node X in red is at the same hop distance

from locations T and T1. Assume the distance between the sensor node and the mobile

data mule at time T and T1 are 90 and 80 respectively. In terms of distance, the sensor is

closer at time T1 but the mobile data mule would still require two intermediate hops.

Hence, it would be more advantageous to collect data from that sensor at time T. The

nodes that satisfy the two rules are added to the mobile data mule’s predicted next hop

collection set KLTx where LTx represents future locations and time combinations.

 133

Figure 4.12: Nearest Neighbour Prediction- An Illustrative Example

The set P is an optimised energy-efficient set of sensor nodes from which data is

collected by spending least overall energy. The prediction algorithm computes distances

between sensor locations (obtained from kNN query) and the mobile data mule’s future

locations. Hence, actual SNR values may not be available. Once the mobile data mule

arrives at location L at time Tx, it piggy-backs the list of nodes whose distances were pre-

computed with the new kNN broadcast message. Each node receiving the message checks

its node-id against the node list in the broadcast message. If the node-id does not exist,

the kNN pre-routing phase continues by broadcasting the message to other neighbours. If

the node-id matches the sensor’s id, it checks for any neighbours that are part of the list.

In scenarios where a neighbour list does not exist, the sensor node re-broadcasts the

message and sets a timer based on the kNN boundary. If a neighbour exists, it forwards

the message to the selected neighbour. On timer expiry, the aggregated data is returned to

the mobile data mule. The 3D-KNN neighbour prediction algorithm is presented in

Figure 4.13. A description of the algorithm is presented in the following paragraph.

134

Step 1 iterates through each node sk in the set K which comprises the selected k

nearest neighbours. Step 2 computes the hop count between sk and the mobile data mule.

Step 3 checks if the hop count is greater than 2. The nodes that have hop count greater

than 2 are considered to be possible future neighbours. Step 4 and Step 5 computes the

distance between the sensor node and the mobile data mule. The DIST function computes

the Euclidian distance. Step 6 iterates through subsequent locations (L) of the mobile data

mule given by the vector movሬሬሬሬሬሬሬሬԦ. Step 7 computes the distance between the mobile data

mule’s subsequent location and sensor sk. Step 8 is used to determine the hop count

between the mobile data mule’s future location and sensor k. Step 9-11 uses the function

minimum to find the least of the two computed distance metrics. Step 13 checks if the

sensor node’s distance from the mobile data mule’s current location is the minimum

compared to the mobile data mule’s subsequent locations. Step 15 adds the node to the

current location’s predicted set if the condition is true. Step 17 appends the sensor k and

the mobile data mule’s future location (location) to the predicted set PTi.

Figure 4.13: 3D-KNN Neighbour Prediction- Pseudo Code

3DKNN – Energy Efficient Set of Nearest Neighbour Prediction P
Input: K set of sk nearest nodes, mobile data mule future Locations
(L) in a Vector ݉ݒሬሬሬሬሬሬሬሬԦ, mobile data mule current location loc
Output: Predicted set P
BEGIN

1 for each node sk in K
2 h = hopcount(k, data mule)
3 if h > 2 then
4 current_metric= DIST (sk, loc)
5 min_metric = current_metric
6 for each L in ݉ݒሬሬሬሬሬሬሬሬԦ
7 kDL = DIST (sk, L)
8 if (kDL / radioRange <= maxHop)
9 min_metric = MINIMUM (current_metric,

 min_metric)
10 set location = L
11 end if
12 end for
13 end if
14 if (min_metric = current_metric)
15 Add node to P
16 else
17 Add node to PTi (location, sk)
18 end if
19 end for

END

 135

4.5 Summary

In this chapter we have applied the theory of nearest neighbour search in our

mobile data mule-based sensor data collection. We proposed a novel k-Nearest

Neighbour based multi-hop sensor data collection algorithm namely, 3D-KNN. The 3D-

KNN has the capability to account for channel quality, distance and sensor parameters in

a three-dimensional environment. Our proposed 3D-KNN algorithm is an extension to the

mobile data mule-based data collection architecture presented in Chapter 3. More

specifically, we focused on extending our data collection approach to a connection-less

broadcast-based sensor network. The 3D-KNN approach incorporates algorithms to

discover, collect and deliver sensor data on-the-fly. The 3D-KNN algorithm employed on

the mobile data mule has the following features:

a. Employs energy-efficient techniques for sensor node discovery within

the scope of a connection-less sensor network

b. Employs a sensor mapping algorithm that maps sensors in different

planes to a reference plane using the proposed KNN-METRIC

c. Compute and process kNN queries on-the-fly

d. Incorporates sensor prediction to further improve the energy efficiency

of the sensor data collection process.

136

5
R-CS: Modelling Smart Spaces

using Smart Sensing
5.1 Introduction

Space is defined by Dictionary.com as “the unlimited or incalculably great three-

dimensional realm or expanse in which all material objects are located and all events

occur.13”A space may be an enclosed area e.g. meeting room, or an open area e.g.

courtyard. Smart space is the term used to represent spaces embedded with computing

infrastructure (Satyanarayanan, 2002). Embedding physical spaces with computing

infrastructure enables sensing and controlling of one world by the other. This computing

embedded physical space can be visualised as a fully connected information space where

data flows from one point to another (Kumar, 2005). Applications that work within smart

spaces depend on contextual information to perform various tasks. These smart space

applications are also called context-aware applications (Loke, 2006, Hähner et al., 2004).

Context is defined as “that which surrounds, and gives meaning to, something else14”.

Smart spaces are reactive and proactive i.e. they have the capability to react to

environmental changes by monitoring and analysing the data generated within the

physical space. For example, controlling the air-conditioning system depending on

occupants profiles or controlling the software on the occupant’s mobile phone depending

on his/her location.

The low-level data required to compute contextual information within smart

spaces originate from individual or multiple software/hardware-based sensors. Sensor

13 Space: http://dictionary.reference.com/browse/space
14 Context: The Free On‐line Dictionary of Computing

 137

networks play a vital role in smart spaces as they provide sensing capabilities. Our smart

spaces philosophy is driven by the availability of sensor data which is used to infer high

level context. For example, using data collected from a temperature sensor, high level

context like “comfortable temperature” can be reasoned.

In this chapter, we present a situation-based context reasoning approach. The

situation-based context model is used to reason about real-world situations based on

available contextual information. Situation awareness is a flavour of context-aware

computing that allows applications to adapt to changing environmental situations. For

example, a situation meeting in the real-world can be defined in the virtual world as a

collection of context attributes light status, noise and projector status (Padovitz, 2006).

The values of the context attributes (at a specific time), may be used to infer the

occurrence of the situation meeting. The possible values for the occurrence of the

situation meeting can be bright for light, 5 for noise (noise ranges from 0-silent to 5-

noisy) and off for projector status. The values bright, 5 and off are computed from

hardware/software sensors.

In previous chapters of this thesis we proposed techniques for cost-efficient

sensor data collection. The data collection framework, namely, sGaRuDa, facilitates data

collection from sensors embedded within smart spaces using mobile devices. We term

our data collection approach smart sensing. The data collected from sensors is dynamic

i.e. it changes over time. Further, the widespread adoption of sensor networks leads to

more sensor data generated, stored, processed and used. To address the dynamic

characteristic of sensor data, we propose a dynamic situation modelling approach that

composes situation definitions at run-time, based on available sensor data.

Proposing/exploring a new context model in itself is a big challenge. Hence, in this

chapter, we choose to extend an existing situation-based context modelling framework,

namely, Context Spaces (Padovitz, 2006). We propose extensions to Context Spaces to

enable situation composition on-the-run. This chapter is divided into two main sections.

The first section provides an overview of Context Spaces. The second section presents

the proposed Context Spaces extensions published in the following papers (Jayaraman et

al., 2008c, Jayaraman et al., 2009b, Jayaraman et al., 2009a).

138

5.2 Context-Situation Pyramid

Our notion of a situational context model can be best captured by the context

situation pyramid (Padovitz, 2006, Padovitz et al., 2004) depicted in Figure 5.1.

Figure 5.1: Context-Situation Pyramid

Sensor (Raw Data): This is the lowest level of the context model representing the raw

data collected from sensory sources. Data at this level does not convey any

meaning. e.g.: a temperature sensor reporting a value 24.50 C.

Context: The middle level represents a collection of information, facts and predictions

combined with algorithms to interpret and process context. The contextual

information can be used to represent the state of the system. The state of the system

changes as context information changes over time. The context is used to compute

a constrained view of the physical world.

Situation: The meta-level notion above context which is derived by analysing

available contextual information. A situation is a more detailed view of the physical

world situation inferred by reasoning about context.

 139

5.3 Theory of Context Spaces

The theory of Context Spaces (Padovitz, 2006, Padovitz et al., 2004, Padovitz et

al., 2005) has been proposed on the philosophy of the context situation pyramid. Context

Spaces use state-space models and geometrical metaphors to represent situations and

system states in a multi-dimensional space. Context spaces provide the following

definitions:

Context Attribute (a): A context attribute is any type of data with a corresponding

value. A virtual or physical sensor determines the value of the context attribute, e.g.

temperature is a context attribute. A context attribute is a virtual world representation of a

hardware/software sensor available within the smart space.

Application Space (): A universal set of disclosure (UOD) contains all possible

context attributes with associated value ranges for any specific application domain.

Context State (CT = (ܽ
்)): A context state is a set of context attributes and their

corresponding values at time T. For example, the context state at time T might comprise

context attributes temperature and humidity with sensor values 200 C and 70%

respectively.

Situation Space (S =ܣ
)): A situation space comprises a set of context attributes

and their corresponding acceptable attribute region values. The context attributes are used

to define the situation such that it best represents its real-world counterpart. For example,

a situation meeting can be defined using context attributes light and noise with

corresponding attribute region values (on, mild) and (5 - 8) respectively.

Attribute Region (ܣ
): The attribute region defines the possible values the

corresponding context attribute ai can have within the defined situation. For example, the

attribute region values for the context attribute noise in a situation meeting can range

from 5 to 8.

Figure 5.2 illustrates the Context Spaces approach. In this example, the situation

is defined using three context attributes (a1, a2, a3). Each context attribute corresponds to

a specific dimension. The context state at time t1 is represented as C1 and at time t2 as C2

140

respectively. Situation reasoning is performed by comparing the context state at time T

against pre-defined situation definitions.

Figure 5.2: Three Dimensional (3 context attributes) illustration of Situations and
Context States

In Figure 5.2, at time t1 the context state C1is within the situation definition S1

while at time t2, the context state C2 does not conform to any pre-defined situations. For

example, suppose a situation presentation is defined over the context attribute projector

status with corresponding attribute region value on. At time T, if the context state value

of the projector (computed from sensor attached to the projector) is on, then the context

state matches the situation definition. This information is used to reason the occurrence of

the situation presentation. Context spaces proposes Context Spaces Fusion (ConSpaF)

(Padovitz, 2006), an algorithm to fuse sensor data with context. This algorithm extends

the geometry-based state-space reasoning approach by incorporating additional heuristics

that increase Context Spaces ability to reason under uncertainty. We focus on the

following two heuristics:

1) Incorporating sensor error caused by sensor inaccuracies

2) Relevance and contribution functions that identify importance of context

attributes within a situation.

The first heuristic identified allows the Context Spaces model to adapt to sensor

inaccuracies. The second heuristic has two parts, the relevance and the contribution

 141

function. The relevance determines the importance of a context attribute within the

situation i.e. is the attribute important enough to determine the outcome of the reasoned

situation? Context Spaces uses weights to denote the relevance of a context attribute

within the situation. The contribution function is used to determine if the context

attribute’s current context state value falls within the situation’s attribute region

definition. The contribution function computes a contribution value (0 or 1) for a context

attribute ai over the region ܣ
 defined in the situation space Sj. To fuse context attributes’

relevancies and contributions, Context Spaces propose the use of multi-attribute utility

theory (MAUT) (Winterfeld et al., 1986). MAUT combines different contributions into a

single utility value. The single utility value, computed by fusing multiple context

attributes, determines the certainty of situation being inferred. This certainty is termed

confidence.

Example: Consider two contextual attributes a1 and a2, a situation S1 with the

attribute region values A1 and A2. Let the weights w1, w2 and contributions c1, c2 represent

the context attribute’s importance and contribution in situation S1. The weights are any

values between 0 and 1 such that w1 + w2 = 1. The MAUT based utility, confidence for

situation S1, is computed using ݓଵ ∗ ܿଵ ݓଶ ∗ ܿଶ.

In the next section, we present the proposed extensions to Context Spaces.

5.4 Proposed Extensions to Context Spaces

The first proposed extension to Context Spaces is the introduction of partitioned

situation spaces. The situation space is partitioned based on the relevance of the context

attributes. At runtime, a temporal situation is computed from the partitioned situation

space based on available contextual information (context state) within the smart space.

The second extension to Context Spaces is the use of flexible attribute regions.

The attribute region determines the contribution factor of a corresponding attribute. This

contribution factor influences the overall confidence in the situation being reasoned. The

proposed extension adds flexibility to the crisp attribute region definition used in Context

Spaces. Additionally, we introduce sensor quality metrics, namely, data freshness in the

error computation algorithm of Context Spaces.

142

The third proposed extension to Context Spaces is the introduction of hierarchical

situation space definitions. The hierarchical situation space provides a way to define

relations between attribute regions within a situation.

We call our proposed system R-CS depicting the use of ranking and partitioning

in Context Spaces. A detailed description of the proposed extensions is presented in the

following sections.

5.5 Dynamic Situation Modelling

The situation space in Context Spaces (CS) (Padovitz, 2006) is defined using a

fixed set of context attributes (a1, a2… an) and corresponding attribute region values (A1,

A2… An). The relevance of each context attribute within the situation is given by weight

wi such that

࢝

ୀ

ൌ ܑ ܖ (5-1)

We argue that in smart spaces, the application must cope with changing

contextual information. The fixed situation space definition of Context Spaces makes it

difficult to incorporate new context attributes on-the-fly. The dynamic situation

composition arises from our argument that fixed situation-based reasoning may not cater

to smart space applications where new context information appears and disappears over

time.

We define a generic situation space called the universal situation space (SU) that

consists of all possible context attributes and their corresponding attribute region values.

The universal situation space is an extension to Context Spaces situation space definition.

The difference is that universal situation space has all possible context attributes that may

be used to infer the situation while Context Spaces (CS) situation space contains a

restricted set of the most relevant context attributes. For example, suppose a situation

meeting is defined in CS over the highly relevant context attributes light, people, and

noise, the same situation is defined in R-CS over the range of context attributes light,

people, noise, temperature, door status, humidity, floor pressure (sensor), etc. Some of

 143

the context attributes defined in the universal situation space may not have high relevance

but may be used to determine the situation outcome. E.g. a possible reason for the

situation car accident could be acute stomach pain for the person driving the car. This

possibility is rare but cannot be excluded. The universal situation space can be considered

the universal set of all possible context attributes that represent the situation. The

proposed R-CS approach does not use the universal situation space during the reasoning

process as opposed to CS approach. A temporal situation is composed by selecting

context attributes that are available within the context state and has a corresponding

attribute region defined in the universal situation space definition. The temporal situation

space (ST) definition changes over time based on the context state value. For example,

suppose at time T, the context state value for the context attributes light, temperature and

humidity are only available, the temporal situation space is composed with attribute

region definitions corresponding to light, temperature and humidity.

The temporal situation space computed from the universal situation is used during

the reasoning process. The context attribute’s relevance given by weight wi is defined as a

value between a lower and an upper boundary. The lower and upper boundary is

application specific, e.g., a value 0 to denote least relevance and a value 10 to denote high

relevance. At runtime, when the temporal situation space (ST) is computed, the weights

associated with the context attributes are normalised.

Definition 5-1: Universal Situation Space (SU) – A universal situation space

consists of all possible sets of context attributes and corresponding attribute region

values with their associated relevance (importance).

܃܁ ൌ ሼܟۯ,ܟۯ ሽܖۯܖܟ… (5-2)

݊݅݉ ݁ݎ݄݁ݓ ݓ maxܽ݊݀ 1 ݅ ݊

Definition 5-2: Temporal Situation Space (ST) – A temporal situation space at

time T represents the real world situation that has m context attributes derived from the

universal situation space SU that matches the context state at time T.

܂܁ ൌ ሼܟۯ,ܟۯ ሽܕۯܕܟ… (5-3)

144

 ࢚ࢇࢎ࢚ ࢎࢉ࢛࢙ ൏ ∑, ࢝ ൌ , ࢁࡿ ࢀࡿ ࢊࢇ
ୀ

The temporal situation space ST provides the situation definition at time T. It is a

subset of the universal situation space SU . The context attributes of ST are derived from

the universal situation space. The temporal situation space changes as context state

evolves. The use of a universal situation space allows context-aware applications to

define all possible context attributes that best describe the situation. Our proposed

dynamic temporal situation composition is illustrated in Figure 5.3.

Figure 5.3: Dynamic Situation Composition - Illustrative Example

For example, consider a situation definition with attributes a, b, c and d. Suppose,

at time T, if the context state value for the context attribute c is unavailable, CS considers

the contribution to be 0 hence influencing the overall confidence computation. This is

attributed to the fact that CS works on fixed situation definitions. The proposed temporal

situation will dynamically compose a temporal situation based on available context state

values for context attributes a, b and d. This is illustrated in Figure 5.3 (bottom left) using

spatial representation. The temporal situation adapts to the smart environment by

computing a situation with a set of context attributes that best represents the real-world

situation.

The universal situation space SU comprises n number of context attributes and

corresponding attribute region values. To compute the temporal situation space, a

 145

straightforward though expensive approach is to use brute force, in other words, search

all available context attributes defined within the universal situation space. As the

number of context attributes increase the search complexity increases. Hence, to handle

this problem, we propose a partitioned universal situation space technique. The

partitioned approach divides the universal situation space into multiple partitions based

on the context attribute’s relevance.

5.5.1 Situation Partition

Relevance given by weight (wi) determines the importance of the context attribute

in the universal situation space. The universal situation space is partitioned over the

context attribute’s relevance. We use a partition function to determine the context

attribute’s partition membership. The partition function is defined as follows:

Definition 5-3: A partition function determines the partition membership of a

context attribute ai with associated relevance given by wi.

The partition function provides an approach to split the universal situation space

into multiple partitions. The partition function is defined as a set of conditions over the

context attribute’s relevance. For example, suppose a situation S1 is defined using context

attributes a1, a2 and a3 and associated relevance (wi) 55, 20 and 60 (0 identifying least

significant and 100 identifying maximum significant). The partition function defined with

the conditions () 50 < wi ≤ 100 and 0 < wi ≤ 50 will partition the universal situation

space into two partitions, partition 1 comprising a1, a3 and partition 2 comprising a2.

The temporal situation space is computed by initially considering the context

attributes in the first partition. The confidence for the situation being reasoned is

computed using the temporal situation space definition. If the computed confidence is

below the confidence threshold (defined as the minimum confidence value used to infer

the occurrence of the situation), the search continues into subsequent partitions. Hence,

the temporal situation space shrinks and grows dynamically. The pseudo code to partition

the universal situation space is presented in Figure 5.4.

Step 1 iterates through the attribute regions within the situation space. Step 2 and

3 checks if the relevance associated with the context attribute region satisfies the

146

conditions defined in. Step 4 adds the partition number to the attribute region defined in

the universal situation space.

Figure 5.4: Universal Situation Space Partition - Pseudo Code

The condition for the partition function is determined by the application designer

while its value can be improved by learning reasoning outcomes at runtime. Genetic

algorithm (Mitchell, 1998) based techniques may be employed to aid this process. The

reason we chose a partitioned situation space approach is to reduce the complexity in

iterating through all context attributes defined within the situation when the required

confidence can be reached by considering some partitions. The confidence threshold is

application defined constant and can be varied. The higher the threshold value the higher

the confidence in the inferred situation.

To further improve the reasoning ability of the R-CS approach, we propose a

weight (relevance) re-distribution technique. The weight re-distribution recomputes

weights among context attributes within the temporal situation space. The proposed

weight re-distribution approach is applicable in cases where situations being reasoned

cannot co-exist.

Definition 5-4: Orthogonal Situations (Padovitz, 2006): Situation spaces Si and Sj

are orthogonal denoted by Si ≠ Sj if they do not overlap.

Orthogonal situations cannot co-exist i.e. they cannot occur in parallel.

Orthogonal situations Si and Sj may share context attributes but the context state value of

the same context attribute will not satisfy (contain) respective context attribute regions

(region of acceptable values) in Si and Sj at the same time. The contain operation refers to

Pseudo Code: Universal Situation Space Partition

Input: Universal Situation Space (SU), Partition Condition
Output: Partitioned Situation Space
Begin

1. for each wi Ai in SU
2. for each condition C in
3. if wi satisfies C
4. add partition number to Ai SU
5. end if
6. end for
7. end for

End

 147

the context state value of a context attribute falling within the respective attribute region

in Si. For example, suppose two situations are studying and presentation in a smart room.

The situation presentation would require the projector to be turned on (attribute region)

while the situation studying may not require the projector (off). In this case, the situations

share the context attribute projector but the context state value for projector at time T

which can either be on or off satisfies only one situation. Given that a studying activity is

occurring, the situation presentation cannot occur.

The use of dynamic weight re-computation is to reduce the relevance of context

attributes whose context state value satisfies (contained) respective attribute regions in

orthogonal situations (cannot co-exist). For example, suppose situations running and

walking are defined over the context attribute speed with corresponding attribute region

values 1 to 3 km/h and 3 to 6 km/h. At time T the context state value for the attribute

speed is 3. Given, the situations are orthogonal the context state value satisfies attribute

regions of both situations. Going by definition 4 this is not possible as orthogonal

situations do not overlap. Since the overlap influences the confidence computation

(equally satisfying both situations), the proposed weight re-computation aims to reduce

the effect of overlapping context state values for orthogonal situations. The weight

reduction factor v is computed using:

࢜ ൌ
࢞ࢇࡹ ሺ࢝ሻ െ ࡹ ሺ࢝ሻ

࢞ࢇࡹ ሺ࢝ሻ ࡹ ሺ࢝ሻ
 (5-4)

wi denotes the relevance of the context attributes in the temporal situation space

(ST). The max and the min functions compute the maximum and minimum weights of the

available context attributes. The weights assigned to the context attribute in the temporal

situation space ST is derived from the universal situation space SU but, the re-computation

of weights are performed only within the temporal situation space. The re-computed

weight is not stored in the universal situation space. Hence, the original weight

distribution of context attributes in SU is preserved. Further, this approach ensures that

outcome of the temporal situation space weight re-computation adapts to changing

context states.

148

For example, consider two situations S1and S2 with the context attributes regions

ଵܣ
ଵ, ܣଶ

ଵ, ܣଷ
ଵ and ܣଵ

ଶ, ܣଶ
ଶ, ܣଷ

ଶ with respective relevance (weights) ݓଵ
ଵ, ݓଶ

ଵ, ݓଷ
ଵ and ݓଵ

ଶ, ݓଶ
ଶ,

ଷݓ
ଶ are defined as orthogonal situations. Suppose the context state CT for the shared

context attributes ܽଵ
ଵ and ܽଵ

ଶ satisfies the corresponding attribute regions ܣଵ
ଵ and ܣଶ

ଵ. The

outcome of the reasoned situations will be influenced by the relevance of the shared

context attribute. Since the situations are orthogonal, we argue that by reducing the

relevance of shared context attribute, the reasoning outcome can be improved. Hence, we

compute the value v using the weights ݓଵ
ଵ, ݓଶ

ଵ, ݓଷ
ଵ and ݓଵ

ଶ, ݓଶ
ଶ, ݓଷ

ଶ. The value v is then

added to the context attributes that do not have overlapping context states (satisfying

attribute regions of both situations).

The pseudo code for the temporal situation space computation and the weight re-

computation is presented in Figure 5.5 and Figure 5.6. The use of partition introduces

flexibility by which the application developer can define a range of context attributes

based on historic information. In most cases, context attributes with the highest relevance

determine the situation outcome. In cases when the highly relevant context attribute does

not produce sufficient confidence, other partitions which are less relevant are explored.

The paragraph following Figure 5.5 gives a description of the temporal situation space

computation algorithm.

Figure 5.5: Situation partition and temporal situation space - Pseudo Code

Pseudo Code: Temporal Situation Space Composition
Input: Universal Situation Space SU
Output: Temporal Situation Space ST
Begin

1. Declare temporal Situation ST
2. for each partition p in SU
3. for each Ai in p
4. if Context State CT of ai satisfies Ai

 add region to ST
5. end if
6. end for
7. computeConfidence(ST)
8. if confidence > threshold
9. break
10. end if
11. end for
12. return ST

End

 149

Step 1 declares a temporary situation space. Step 2 iterates through each partition

of the universal situation space SU. Step 3, 4 and 5 add the context attribute and the

corresponding region to the temporal situation space if a matching context state value is

found. Step 7 computes the confidence for the current situation being reasoned using the

temporal situation space. Step 8 checks if the computed confidence has reached the

required threshold. If the threshold value is not reached, the temporal situation space

expands into the next partition. This process is repeated till the required confidence is

reached.

Figure 5.6: Temporal Situation Weight Re-Computation - Pseudo Code

We present a description of the weight re-computation algorithm depicted in

Figure 5.6. Step 1 and 2 determine if the situations S and S' are orthogonal (cannot co-

exist). Steps 3 -10 iterate through every attribute region of the situation spaces S and S' to

check if the attribute regions overlap. The compare function in step 5 checks if the

current context state value for a corresponding context attribute overlaps i.e. does the

current context state value lies within the attribute regions range of the context attribute.

Step 11 computes the reduction factor v taking into consideration the relevance (weights)

associated with the context attribute regions in the situation S. Step 12-16 re-computes

Pseudo Code: Weight Re-Computation
Inputs: Temporal Situation Space S, Temporal Situations SS
Begin

1. for each situation S' in SS
2. if S and S' are orthogonal
3. for each attribute-region Ai in S
4. for each attribute-region Aj in S
5. if compare(Ai , Aj)
6. overlap (Ai)= true
7. end if
8. end for
9. end for
10. end if

11. compute v ൌ
ୟ୶ ሺ୵ሻି ୧୬ ሺ୵ሻ

ୟ୶ ሺ୵ሻା ୧୬ ሺ୵ሻ

12. for each Ai in S
13. if (overlap(Ai) = false))
14. wi = wi + v
15. update wi for Ai
16. end if
17. end for
18. return S

End

150

the weights of each context attribute region in Situation S that are not overlapping. Step

18 returns the new temporal situation space S.

5.5.2 Situation Composition using Dynamically Discovered
Context Attributes

One of the key challenges of context-aware systems is to manage uncertainty.

Uncertainty is the result of incomplete or inadequate information to reason about context.

Uncertainty can be reduced by discovering additional evidences (contextual information)

that help the reasoning process. In the previous section, we proposed temporal situation

spaces that best represent the current situation based on available contextual information.

As an extension to the partitioned situation spaces, we consider the problem of

introducing dynamically discovered context into the situation space definition at runtime.

Dynamically discovered context is defined as information that is available within the

smart space situation at time T with no corresponding attribute region definition in the

universal situation space. The challenge involved in such scenarios is:

1. Computing the relevance of the newly discovered attribute in the current

situation

2. Computing the attribute region, also called region of acceptable values,

used to compute the contribution of the context attribute

For example, suppose the situation presentation is defined over the context

attributes a1, a2 and a3. At time T, if a new context attribute a4 is discovered within the

smart space, the challenge is to determine the attribute region A4 and relevance w4 of the

context attribute. We investigate a theoretical solution to this problem using situation

relationships defined in Context Spaces (Padovitz, 2006).

Context Spaces defines situation relations containment, equi-containment and

partial containment. We provide a definition of each situation relationship. We refer to

the two situations as S, S' and the corresponding attribute regions as Ai, Aj' where 1 ≤ i ≤ n

and 1 ≤ j ≤ m.

Containment: A situation S is contained in S', iff for each attribute region (Ai) in S

there is a corresponding attribute region (Aj') in S' such that Ai Aj'

 151

Equi-Containment: Two Situations S and S' are equi-contained, iff Ai = Aj'

Partial Containment: Two situations S and S' are partially-contained iff S and S' are

not contained and some attribute regions in S are defined over the same region of

acceptable value in S'.

For example, suppose a song is part of an album. The song is defined over the

context attributes singer and the album is defined over the context attributes singer and

composer. The song is contained in album since its region of acceptable values (singer) is

contained within its respective region in album. If we remove the context attribute

composer from album, the situations will become equi-contained. Alternatively, by

adding the context attribute lyricist to song, the song and album become partially

contained as there is not matching attribute region for lyricist in album.

Our proposed approach performs a search over related situations which have

matching regions of acceptable values. We argue, by searching related situations it might

be feasible to compute the attribute region value and relevance (weight) of a context

attribute. Suppose song and album are partially-contained (refer previous example). A

new context attribute composer in song will have not have a corresponding region of

acceptable values. Since song and album are partially-contained, by searching album, a

suitable region of acceptable value for composer can be computed. We use the terms

similar and co-exist to represent the type of situation containment. Since there can be

many partially-contained, contained and equi-contained situations, we use the Jaccard

similarity coefficient (Doan et al., 2002) to compute similarity between situations.

),(),(),(

),(

)(/)(),(

YXPYXPYXP

YXP

YXPYXPYXtCoefficienSimilarity

 (5-5)

X and Y are two situations. P(X, Y) is the number of attribute regions that are

similar in both situations. ܲሺ തܺ, ܻሻ is the number of attribute regions in X similar to

attribute regions in Y and ܲሺܺ, തܻሻ is the number of attribute regions in Y similar to

attribute regions in X. We go by the assumption that in a specific application domain, the

relevance and attribute region values of a context attribute are shared among similar

152

situations. The Jacard’s coefficient provides a way to find situations in the application

space that best matches the situation being reasoned. The set of situations that share one

or more context attribute regions with the situation being reasoned, constitute a situation

closure. The similar situations are ranked based on Jacard’s similarity co-efficient which

is then used to determine the best sets of relevance and acceptable region of values for the

context attribute. The newly discovered attribute’s relevance and attribute region values

are incorporated into the temporal situation space. The confidence is recomputed using

the newly computed temporal situation space. The situation composition using

dynamically discovered context is illustrated in Figure 5.7. The situation defined using

two attributes a1 and a2 evolves spatially by incorporating newly discovered context a3.

Figure 5.7: Illustration of Situation Composition with Dynamic Context

For example, consider the situations presentation and lecture in a smart room.

These two situations are assumed to have some form of containment (co-exist). The

situation presentation is defined with the following context attributes and corresponding

attribute region values projector (on), noise (4 - 7), people (5 - 30) and light (dim). The

situation lecture is defined with the following context attributes and corresponding

attribute region values projector (on), noise (1 - 2) and light (dim, bright). At time T, the

context state values for the following context attributes projector, noise, light and people

are available. Using the context state values at time T the situation lecture can be

reasoned within the smart space. While reasoning the situation lecture, the context

 153

attribute people is the newly discovered attribute with no corresponding context attribute

region definition. Using the proposed similarity-based reasoning, the situation

presentation closely matches the definition of situation lecture. Hence, the attribute

region and the relevance for the context attribute people are derived from the similar

situation presentation. The new context attribute is then added to the temporal situation

space computed at time T. As an extension to the above technique, at a much higher

level, when sufficient similarity is not reached between situations, ontology-based (Gu et

al., 2004) matching may be used to strengthen the reasoning process. The pseudo code

that computes the relevance and the corresponding attribute region value, for the

dynamically discovered context attribute, is presented in Figure 5.8. A description of the

pseudo code is presented in the paragraph following Figure 5.8.

.

Figure 5.8: Compute newly discovered context attribute’s relevance and attribute
region value - Pseudo Code

Step 1 computes the list of situations that can co-exist with the situation being

reasoned. Step 2 and 3 iterates through each situation in the application space. Step 4

computes the similarity coefficient between the reasoned situation and the situation in the

application space. This is denoted as C(S) containing the list of situations similar to the

reasoned situation S. Step 7 - 9 sorts the situation list (C(S)) based on the similarity

coefficient. The relevance and attribute region values of the highest ranked situation are

returned.

PሺS, sሻ

PሺS, sሻ PሺSത, sሻ PሺS, s̅ሻ

Pseudo Code: Compute relevance and attribute region for newly
discovered context attributes
Input: New Context Attribute ai, Reasoned Situation (S)
Begin Compute Similar Situations (C(S))

1. for each situation s in Application Space()
2. if context attribute ai s
3. similarity_coefficient =

4. end if
5. end for
6. rank (C(S))
7. obtain attribute relevance and attribute region
8. return relevance, attribute region

End

154

5.6 Sensor Data Quality and Flexible Attribute
Region

The second extension proposed to Context Spaces (CS) is the introduction of

sensor data quality and flexible attribute regions. These parameters help in computing the

context attribute’s contribution in the reasoned situation. The contribution determines the

influence of the context attribute on the outcome of the reasoned situation. For example,

suppose a situation presentation is defined over the context attribute light with attribute

region values (dim, bright). If at time T, the context state value for the context attribute

light is dim, then the contribution of the attribute light in the situation presentation is 1.

Alternatively, if the context state value is off, then the contribution is 0. The contribution

of a context attribute is used as evidence to infer the situation.

To compute the contribution, CS takes into consideration the context attributes

region and its context state value at time T. If the context state value for the context

attribute is within the attribute region, it results in a contribution value of 1, otherwise 0.

The contribution of a context attribute (ai) within the situation S in CS (Padovitz, 2006) is

computed as

ࢉ ൌ ଙෝࢇሺܚ۾ ሻ (5-6)

In equation (5-6), Pr is the probability that context attribute ai is within the

corresponding attribute region Ai. ai represents the sensed value (context state) for the

context attribute at time T. ܽపෝ represents the error corrected value given by

ଙෝࢇ ൌ ࢇ ࢋ (5-7)

ei is the error in the sensor reading. CS assumes that error is obtained from the

sensor or from a probability distribution function based on historic sensor data collected.

The probabilistic approach ensures error/deviation in sensor data does not influence the

reasoning process. The function used by CS to compute the contribution value is a

crisp/rigid function i.e. it follows the following criteria

 155

ࢉ ൌ ൜
, ଙෞࢇ

, ݁ݏ݅ݓݎ݄݁ݐ
 (5-8)

This assumption of CS reduces its reasoning capability in situations where the

context state value for the context attribute ai at time T is marginally outside the attribute

region value. For example, suppose the context attribute temperature is defined in the

situation meeting with a corresponding attribute region value 24 - 27. CS crisp boundary

approach computes a contribution of 1 if the context state value of temperature is

between 24 and 27 and 0 if it is outside this range (e.g. 27.01). An illustration of the

Context Spaces crisp boundary is provided in the earlier example is depicted in Figure

5.9.

Figure 5.9: CS crisp boundary illustration

One approach to convert the crisp context attribute region definition into a more

flexible approach is to use Fuzzy logic and Fuzzy membership functions (Mendel, 1995).

A typical fuzzy logic-based membership function is depicted in Figure 5.10. Though

fuzzy logic can be used to compute varying membership values, it is not very useful in

many application scenarios where a decision has to be made with certain confidence. For

example, it is not very helpful for a context-aware application to conclude that it is 0.6

hot and 0.4 cold. Further, the use of fuzzy logic requires precise definition of fuzzy sets

and membership functions to determine the context attribute’s membership. Moreover,

fuzzy does not provide a likelihood of occurrence of an event or condition but merely

provides a value between 0 and 1 where 0 represents no membership, 1 represents

complete membership and a value between 0 and 1 represents partial membership.

We propose a fuzzy like approach by extending the crisp region of Context

Spaces to a flexible-crisp region i.e. defining extended boundary regions around the

existing attribute region definition. We define outer regions to mean existing attribute

156

region definition but allowing certain deviation while computing the contribution. Our

contribution function is computed using the following rule

ࢉ ൌ ቐ

, ଙෞࢇ
, ଙෞࢇ ሺ ଙሻ
, ݁ݏ݅ݓݎ݄݁ݐ

 (5-9)

The value is the contribution if the context state value of the sensor is within

the outer attribute region (ܣప). The value is application defined which gives the

application developer the ability to define contributions for context attribute when its

context state value is just outside the CS defined crisp attribute region.

Figure 5.10: Fuzzy Membership Function

Example: Consider a context attribute temperature defined with a context

attribute region value of 22 - 250 C for the situation “GOOD OPERATION”. If the

context state value for the context attribute temperature is 25.05, CS approach will return

0. This results in the context-aware application concluding that operating condition is not

good. This is primarily attributed to the crisp attribute region definition of CS. We apply

the proposed approach to the same scenario. We define an outer context attribute region

 ଙሻ of 0.5. In this case, the context state value of 25.05 for the context attribute)

temperature would return the value rather than 0 as in the case of CS. The proposed

outer region-based approach allows the application to incorporate deviations in the

context attribute region definitions.

The value is computed using a fuzzy inspired approach. Instead of using fuzzy

membership functions the context state value in the outer region can be fitted into a

simple distribution function which can be used to determine the values of. Figure 5.11

is an illustrative example of how can be computed using the different distributions. In

 157

case 1, the outer region is defined as a crisp region while in case 2, the outer region is

characterised as a normal distribution. Figure 5.12 illustrates the computation of for

different context state values. We have assumed a value of 0.5 for.

Figure 5.11: Distribution function to compute

Figure 5.12: Contribution c for a crisp outer region

The next proposed extension incorporated in CS is sensor data quality. The sensor

error heuristic employed by CS relies on pre-defined error probability to compute sensor

errors given by (6) and (7). The error value ei is adjusted with the sensed value for the

context attribute ai to compute the error corrected value ܽపෞ. We introduce sensor data

freshness parameter to determine the quality of the data collected. By data freshness we

try to answer the question how recent the data is? We do not change our focus into

quality of context (Buchholz et al., 2003) as that is a topic of research by itself. Our

approach uses sensor data freshness to identify old sensor data. Sensor data quality is

important in pervasive environments especially in cases where sensor data is collected

using mobile data mules. The mobile data mules have their own schedule to deliver data

to the sink. Hence, the sensor data may not be always recent. By using data freshness

parameter, the context-aware application obtains the ability to distinguish between old

and current data. Incorporating the flexible attribute region value and sensor data

freshness, the new contribution function is given by

ࢉ ൌ ଙෝࢇሺܚ۾ ሻ ∗ (5-10) ࢙࢙ࢋࢎ࢙ࢋ࢘ࡲ

158

The function Pr represents the modified sensor error probability that takes into

consideration outer attribute region definitions. The Freshness metric is defined using a

predicate Fp(ai). The outcome of the Freshness metric is given below.

࢙࢙ࢋࢎ࢙ࢋ࢘ࡲ ൌ ൜
, ࢙ࢋࢌ࢙࢚ࢇ࢙ଙෞࢇ ࡲ
, ݁ݏ݅ݓݎ݄݁ݐ

 (5-11)

For example, let the predicate Fp(ai) be defined as 0 ≤ hour ≤3. The predicate

hour is the data freshness metric’s unit. Sensor data for the corresponding context

attribute ai will result in a contribution value 0 if the data is more than 3 hours old. The

contribution function given by (5-10) makes the sensor inaccuracy heuristics and the

sensor data freshness dependent. The sensor inaccuracy heuristic also incorporates

flexible attribute regions. To handle scenarios where high degree of independence is

required between sensor error and data quality, we define a modified contribution

computation function below

ࢉ ൌ ࢊ ∗ ଙෝࢇሺ࢘ࡼ ሻ ࢊ ∗ (5-12) ࢙࢙ࢋࢎ࢙ࢋ࢘ࡲ

d1 and d2 are weights assigned to each sensor heuristics, making them independent

of each other. Hence, an application can decide which heuristic needs to have a major

impact on the contribution computation function. Making d2 = 0 will remove the

influence of sensor data freshness heuristic and vice-versa.

5.7 Hierarchical Context Attribute Regions

The final extension proposed to Context Spaces (CS) (Padovitz, 2006) is the

introduction of hierarchical context attribute regions. CS defines single level context

attribute regions. This approach falls short in exactly capturing real-world situations

where context attribute regions are related. By relation, we create the notion of

dependence i.e. the outcome of one context attribute is based on another. Since situations

in CS are defined using context attribute regions, we propose a hierarchical approach that

facilitates relationships between context attribute regions.

For example when reasoning the situation person running using the context

attribute speed, CS approach uses context attribute region to define speed for the running

 159

person which can range from 5 to 10 km/h. This reasoning approach is sufficient when

situations are defined at high-level i.e. person running. When situations are required to be

defined at much finer granularity, the outcome of the person running situation becomes

highly dependent on the person type i.e. the speed of the person is dependent on the age

of the person. The value for speed would vary for a person in the age group 15 to 25 and

a person in the age group 45 to 50. Current CS approach does not provide a way to reason

situations based on such relationships.

The proposed hierarchical context attribute regions allow defining relationships

between attribute regions. The proposed hierarchical attribute region approach has the

following merits: 1) define situations with finer granularity helping the virtual world to

model the real-world situation with improved accuracy, 2) improve the reasoning ability

of the context-aware system. To incorporate multi-level context attribute relationships,

we introduce the terms “parent” and “child” context attribute regions. Every parent

attribute region has a corresponding range for its child attribute regions. For example, if

the parent context attribute region age is between 15 and 25, then the child context

attribute region speed may have a value 5 to 10 km/h, alternatively, if the parent context

attribute region age is between 45 and 60, then the child context attribute region speed

may have the value range 3 to 5 km/h.

The similar situation can be defined in CS but independently i.e. a situation for a

person between the age 15 and 25 and a situation for a person between the age 45 and 60.

Suppose age and speed have a weight of 0.5 assigned to them respectively and the

attribute region definition defined independently as 45 to 60 and 3 to 5 km/h. For a

context state value of speed = 6 and age = 50, CS will compute a confidence of 0.5 for

the situation running. The 0.5 computed by CS can be misleading as the context-aware

application may not be able to completely exclude the occurrence of the situation

running. Using the proposed hierarchical attribute region relationships, the contribution

of the parent context attribute is computed as a function of the child context attributes.

Hence, the overall contribution using R-CS would be 0. The R-CS approach aids in

negating the occurrence of the situation running with higher certainty.

160

The proposed approach allows definition of multiple corresponding attribute

regions for a context attribute within the situation space. Hence, based on the primary

context attribute’s predicate, the child context attributes predicate changes within the

situation definition. Further, the overall contribution of the parent attribute is computed

by computing the cumulative contribution of the child attributes. A real-world situation

definition using the proposed hierarchical context attribute regions approach is presented

in Table 5.1.

Situation: Running Relevance

Context
Attribute

Context
Attribute
Regions

(weights)

0 to 5

Location "=GYM" "=PARK" "!=OFFICE" 2

Age Sub Regions "20 - 30" "40 - 50" 5

 Speed ≥ 6 & ≤ 8 ≥ 2 & ≤ 4 5

 Heart Rate ≥93 & ≤146 ≥83 & ≤131 5

 Systolic BP ≥108 & ≤122 ≥112 & ≤130 5

Table 5.1: Definition of situation “Running” illustrating hierarchical context
attribute regions

Consider the primary context attribute ai associated with attribute regions ܣ
ௗ and

its related sub-attributes adk with associated attribute regions Adk. The notation d

represents the number of sub attribute regions for the context attribute ai. Each Adk is

associated with a weight wk that represents the relevance of the context attribute adk

within the situation. The contribution of each context attribute adk within the situation is

computed using (5-12). The total contribution of the primary context attribute (ai) is

given by

ሻࢇሺࢉ ൌ ࢊ࢝

࢘

 ୀ

ሻࢊࢇሺࢉ ܌ (13-5) ܖ

The contribution c (adk) determines the contribution of the kth
 context attribute

whose corresponding context attribute region is given by the dimension d of the parent

context attribute ai. As illustrated in Table 5.1, the context attribute (ai) has ܣ
ௗ

 161

corresponding attribute regions. d takes the value 2 in the example given in Table 5.1. In

a generic form, we can represent the attribute region relationship in a matrix given by

 …
ࢊ

 …
ࢊ

 …
ࢊ

 (5-14)

The header row represents the number of context attribute region dimensions

along with their predicates for the context attribute ai. The rows represent the number of

dependent context attribute regions for the parent attribute ai with corresponding attribute

region values.

5.8 Summary

Sensors both physical and virtual are the key source of data in smart spaces.

Hence, we require approaches that are capable of modelling real-world situations (smart

spaces) based on available sensor information. Moreover, these models need to have the

capability to represent the real-world situations with great detail, allowing context-aware

applications to reason situational context, i.e. reasoning with the notion of situations. In

this chapter, we proposed extensions to Context Spaces incorporating dynamic reasoning

based on available sensor data. Context Spaces’ is a generic context modelling approach

that uses situations-based reasoning. Since sensor data changes over time and not all data

are available ubiquitously, it is important for a context model to have some level of

adaptation. We have proposed the following extensions to Context Spaces with the goal

to introduce dynamic situation adaptation.

(1) A dynamic situation-composition approach that models real-world situations

based on available sensor data. We proposed a technique that employs

similarity measures to compute relevance and attribute regions for context

attributes that are dynamically discovered within the smart space. Our

dynamic situation composition employs situation partitioning, temporal

situation composition and dynamic weight re-computation algorithms to

improve reasoning capability under uncertainty.

162

(2) The use of flexible attribute region approach against a crisp attribute region

definition employed by Context Spaces. This approach aids the reasoning

process by adding more flexibility and tolerance to sensor values that lie

within the border of attribute region definition.

(3) Additional sensor inaccuracy metrics, namely, data freshness. This attribute

addresses the problem of out-of-date sensor data, increasing the accuracy of

the reasoning process.

(4) Hierarchical (multi-level) context attribute regions that facilitate defining

relationships between contextual attributes. The multi-level context attribute

provides applications with the ability to define situations with finer

granularity.

 163

6
Implementation and Prototyping
of sGaRuDa, 3D-KNN and R-CS
6.1 Introduction

In the previous chapters, we proposed a system framework, namely, sGaRuDa

that enables mobile devices to collect data from sensors distributed within pervasive

environments. We extended the proposed architecture to suit a wider range of sensors by

proposing 3D-KNN, a k nearest neighbour-based sensor data collection algorithm.

Finally, we proposed a situation-based smart spaces modelling approach, namely, R-CS.

The modelling approach allows dynamic adaptation of situations based on available

sensor data.

In this chapter, we present prototype and algorithm implementations of the

proposed sensor data collection and smart spaces modelling approaches. This chapter is

divided into three major sections focusing on the three main contributions of this thesis.

In each section, we initially present an overview of the development tools followed by

details of system/algorithm implementations. This chapter is organised as follows:

Section 6.2 presents the implementation details of the proposed data collection system

framework sGaRuDa. Section 6.3 presents the implementation of the k-Nearest

Neighbour based data collection approach namely, 3D-KNN. Finally section 6.4 presents

the implementation details of the R-CS system.

6.2 sGaRuDa: Proof-of-Concept Implementation

Chapter 3 proposed sGaRuDa, a system framework for mobile data mule-based

sensor data collection. As stated in Chapter 3, our proposed approach does not rely on

164

prior network infrastructure information for sensor data collection. Moreover, the

proposed system framework does not require any specialised hardware to communicate

with the underlying sensor network infrastructure. sGaRuDa achieves sensor data

collection without the need for a fixed data collection infrastructure. The proposed data

collection algorithms were targeted at Bluetooth-based sensor networks. The use of

Bluetooth-based sensor networks leverage on the abundant existence of Bluetooth-based

mobile devices in current real-world environments. This is primarily attributed to the

wide acceptance of Bluetooth (BluetoothSIG, 2010a) technology across a multitude of

mobile device platforms (Eliasson et al., 2008, Nachman et al., 2005, Leopold et al.,

2003).

In this section, we present details of our system prototype implemented on real-

world mobile devices that belong to smart spaces. The implementation on mobile devices

(PDA) proves the functional feasibility of our proposed sensor data collection

architecture without the need for specialised hardware for data collection and delivery.

The implementation scenario is presented in detail in Chapter 7. The detailed discussion

of implementation and prototyping of sGaRuDa, 3D-KNN and R-CS presented in this

Chapter is extended from the following published papers (Jayaraman et al., 2007,

Jayaraman et al., 2008a, Jayaraman et al., 2008c, Jayaraman et al., 2009b, Jayaraman et

al., 2009a, Jayaraman et al., 2008b, Jayaraman et al., 2010a, Jayaraman et al., 2010c,

Jayaraman et al., 2010b)

6.2.1 Development Tools

6.2.1.1 Mulle Sensor Node

The underlying sensor network used in our implementation is the Mulle sensor

node platform. Mulle is a Bluetooth-based sensor node developed at EIS Labs, Lulea

University of Technology Sweden (EISLab, 2010). The Mulle is a low-powered wireless

sensor node with the capability to transmit sensor data over Bluetooth (v3.1) or/and

802.15.4 (Zigbee) (v5.2). Figure 6.1 presents a Mulle sensor node.

 165

Figure 6.1: Mulle Sensor Node (adapted from (Eistec, 2009))

Hardware: The physical size of the sensor node is 24x26x5mm weighing 5 grams. It

has a 10MHz Renesas M16 (Renesas, 2008) microcontroller. The radio

communication hardware available on the Mulle is a Mitsumi Bluetooth module [4]

and/or an 802.15.4 Zigbee module. The Mulle requires DC power in the range of

3.5V - 5.5V. The Mulle is equipped with a real-time clock (RTC) which serves the

following purposes: 1) provides the MCU with a sub-clock and 2) generates timer

interrupts. The Mulle is also equipped with an onboard flash memory of 2 MB. The

Mulle has an onboard Dallas DS600 temperature sensor and provides an optional

26 pin connector to connect a multitude of sensors. The batteries used to power the

Mulle sensor node are lithium or lithium-ion with capacity ranging from 120 mAh

to 2200 mAh. The Mulle hardware platform architecture is presented in Figure 6.2.

Figure 6.2: Mulle Hardware Architecture (adapted from (Eistec, 2009))

Software: The Mulle comes with open-source software written in C programming

language. The current available firmware on the Mulle is developed using the IAR

166

workbench (IARSystems, 2008). The software architecture of Mulle allows it to

efficiently use the Bluetooth low-power modes, Park and Sniff to reduce the overall

energy consumption hence greatly improving the lifetime of the sensor node. The

software module provides the capability to change the MCU clock speed from

10MHz to 1MHz. The Mulle is provided with an expansion board that is used to

program the Mulle to application requirements. The expansion board is connected

by USB to the computer running the IAR workbench. A M16C-Flasher

(M16CFlasher, 2008) is used to reprogram the Mulle using the expansion board.

Figure 6.3 shows the Mulle expansion board (left) and a screenshot of the M16C

Flasher application used to reprogram (right) the Mulle. The Mulle software stack

uses standardised TCP/IP over Bluetooth to transfer sensor data. The use of TCP/IP

allows Mulle to become part of existing internet infrastructure. This feature though

requires the availability of a permanent Bluetooth access point to relay sensor data

from the Mulle to the internet. The Bluetooth stack used by the Mulle is a

lightweight Bluetooth stack implementation, namely, lwBT (Ohult, 2006). The

stack supports the following Bluetooth profiles, namely: Dial-up Networking

(DUN), Serial Port Profile (SPP), Personal Area Networking (PAN) and Local Area

Network Access Profile (LAP).

We chose the Bluetooth-based Mulle sensor node platform for prototype

implementation and experimentation because:

1) Bluetooth sensor nodes have been proved feasible for low-powered operations

hence making them suitable for sensor network applications (Leopold et al.,

2003). The Mulle sensor platform belongs to the category of low-powered

sensor nodes. The operational power characteristics of Mulle is much efficient

(Lundberg et al., 2005) than other popular Bluetooth-based sensor nodes like

BTnode (ETH-Zurich, 2007) and iMote (Nachman et al., 2005). The Mulle’s

sleep time energy consumption is 0.012mW compared to 9.9mW for BTnode

and 9mW for iMote sensor platforms respectively. A detailed analysis of

Mulle’s power consumption is presented in the evaluation section of the

thesis.

 167

2) Mulle uses C programming with open source stack implementation making it

feasible to extend/develop new functionality.

Figure 6.3: Mulle Expansion Board and Mulle Development Environment

3) The use of standardised Bluetooth stack and Bluetooth profiles provides

interoperable capabilities. This feature allows Mulle to communicate with

current-day consumer mobile devices with no additional hardware/software

requirements. The BTnode and the iMote software architectures use

customised Bluetooth stack to communicate with other sensors and the base

station. Hence, inter-operability with current day mobile device platforms may

not be directly possible.

6.2.1.2 Software and Hardware Toolkits

The data collection framework presented in Chapter 3 has been implemented on

two classes of mobile devices: 1) A personal digital assistant (PDA) which exemplifies

the class of current day smart mobile device platforms and 2) A mobile robot that

represents the class of mobility-enabled devices that could be part of future pervasive

environments. The mobile robot used in our implementation is assumed to be part of the

pervasive environment and requires no special hardware to communicate with the sensor.

Further, the mobile robot implementation is also used as an emulator to emulate smart

mobile devices movements in real-world scenarios. The software and hardware

development tools/kits used in the development of the system prototype includes:

168

1) Microsoft.NET Framework and Microsoft .NET Compact Framework (CF)

(Microsoft.NET, 2010): We have used the Microsoft.NET and .NET CF

platforms to develop our system prototypes. The .NET CF allows

development of managed applications for resource constrained devices like

PDA. We have used the .NET framework to simulate a simple sink operation.

The collected sensor data is delivered by the mobile data mule to the sink. The

.NET CF based application can be ported to a multitude of current-day smart

mobile device platforms. Our proposed system architecture is not restricted by

the development platform and can be migrated to any other mobile device

platforms e.g. Symbian (Java) (SymbianFoundation, 2010), Android (Google,

2010), etc. The development in .NET CF was done using VisualBasic.NET

platform.

2) BTAccess.NET (BTAccess, 2008) and BlueCove (BlueCove, 2007): The

BTAccess.NET software development kit (SDK) provides mobile devices

running the .NET CF platform the ability to communicate and control the

Bluetooth hardware. The BTAccess.NET provides, application programmable

interfaces (API) to managed applications hiding the underlying un-managed

Bluetooth code functions. We have used BlueCove library (BlueCove, 2007)

for the robot-based sensor data collector implementation. BlueCove is a Java

library (JSR-82) for Bluetooth that works on most devices that support Java

and has a supporting Bluetooth stack implementation. BlueCove stack is used

to communicate and control the Bluetooth hardware present on the robot

platform.

3) ER1 Robot Platform(Evolution-Robotics, 2010): The ER1 is an off-the-shelf

robot platform developed by Evolution Robotics. The ER1 build is completely

customisable based on application requirements. The robot hardware is

equipped with infrared sensors for obstacle avoidance, a web-camera for

vision and two motors controlling the robot’s movement. ER1 comes

equipped with a software development kit, the Evolution Robotics Software

Platform (ERSP). ERPS allows software based control of the ER1 hardware.

The heart of the ER1 is a laptop that controls the entire system functionality.

 169

4) Ekahau Positioning Engine (Ekahau, 2010): Ekahau position engine (EPE) is

a software-based location system that uses wireless access point to triangulate

device locations. In our implementation, we use EPE as an indoor global

positioning system (GPS) providing the mobile data mule its current location

at any instance in time. The EPE is completely software based and only

requires a wireless network interface card to be present on the device being

tracked.

5) JAVA: We use JAVA to implement the data collection framework functions

on the mobile robot. The factor behind the choice of language was attributed

to the fact that ER1 and EPE provide java API’s for robot control and location

information. Hence, we decided to migrate sGaRuDa to JAVA taking

advantage of platform independence and availability of robot control API’s.

The JAVA implementation also proves the platform independent nature of the

proposed data collection architecture.

6.2.2 sGaRuDa: A Practical System Prototype

The implementations of sGaRuDa, the proposed data collection architecture are

divided into three parts:

1) Mulle Sensor Node Implementation

2) Mobile Device Implementations

3) Sink Implementation

The sensor node implementation deals with the software implementations on the

Mulle sensor node platform (Eistec, 2009). The mobile device implementations deal with

implementation on the mobile device and mobile robot platforms. The sink

implementation deals with simple sink functions. The sink implementation is used to test

some of the features that are part of the sGaRuDa architecture e.g. the dynamic activation

schedule. A complete sink implementation may not fit within the scope of this thesis.

Hence, our sink implementation is a restricted to functionality that support sGaRuDa

framework.

170

6.2.2.1 Mulle Sensor Node Platform Implementation

We stated in Chapter 3, the implementation on the sensor node is developed with

sensor characteristics in mind aiming to reduce the workload and hence, improve the

sensor’s life time. The operation performed by the Mulle sensor node is depicted in

Figure 6.4. As depicted in the flowchart, the Mulle sensor node is only expected to

perform its regular functions. No additional task is enforced on the Mulle sensor node.

Figure 6.4: Mulle Sensor Node- Data Flow

Mulle programming was done using C language. We have developed new

modules and modified existing modules to incorporate the functions required by the

sGaRuDa framework. The primary functions that have been implemented on the Mulle

are:

1) A scheduler function that periodically turns on the Bluetooth radio allowing

the Mulle to participate in data collection.

2) An incoming data processing function that performs the following

a. Dynamically receive and update the sensor’s activation schedule

b. Synchronise the sensor’s time with the mobile data mule

c. Exchange data with the mobile data mule using the requested window

size by consecutively reading the data from the flash memory

 171

3) Module to update the sensor node’s name fields based on available energy and

data to be transmitted.

For prototype implementation, we have used the Bluetooth serial port profile

(SPP). One major reason to use SPP is attributed to its ease of connection establishment.

Using other Bluetooth profiles like LAN Access Profile (LAP) introduce TCP/IP

overheads. To keep the implementation on the Mulle simple, we stick to SPP profile.

Figure 6.5 depicts the various modules that have been implemented on the Mulle to

achieve the aforementioned functionality. The yellow coloured boxes represent Mulle’s

functional groups. The boxes in light green represent modules whose existing functions

have been modified or new functions have been added as a part of sGaRuDa framework.

The modules in dark green represent the newly implemented modules.

Figure 6.5: Mulle Modules Implemented

172

The lwBT folder contains the files corresponding to the Bluetooth stack. The file

sdp.c has been modified to add a serial port service. The spi folder has files that relates to

the flash memory on which the Mulle configuration is stored. We have modified the

configuration files to introduce a timer value to control the Bluetooth radio and the

sensing function. The eisconfig.c file defines the configuration and the at45db321d.c

handles reading and writing from the onboard flash memory. Figure 6.6 presents a

sample code of the eisconfig.c file.

void eis_config_default (void) {
 eis_config. bt_interval_s = 60 * 1;
 eis_config.bt_on_time_s = 60 * 3;
 eis_config.windowSize = 0;
 eis_config.bak_r_ptr = 0;
 eis_config.transferDone = 0;
 eis_config.nr_reboots = 0;
 eis_config.max_nr_files = 8000;
 eis_config.samples_per_file = 6;
 eis_config.sample_interval_s = 60 * 1;
 eis_config.w_ptr = 3;
 eis_config.r_ptr = 1;
 eis_config.nr_samples = 0;
 eis_config.min_volt_BT = 3.4;
 }

Figure 6.6: eis_config.c - Code Snippet

The project_files folder has application dependent files primarily the maintask.c.

This module defines the program’s entry point and has the code that functions within the

main loop as depicted in Figure 6.4. The primary purposes of this file are: 1) Enable

timers and interrupts; 2) Read configuration from flash memory during boot; 3) Call

appropriate functions/modules when timer expires; 4) Run a watchdog timer to reboot the

Mulle after execution failure. A code snippet of the maintask.c file is presented in Figure

6.7.

The shared_project_files contains the newly implemented modules related to

sGaRuDa framework. The four main modules that have been implemented are

data_processor.c, send_data.c, update_actv_schedule.c and update_name.c. The bt_spp.c

file handles all serial port related functions i.e. establishing connection, tearing down a

connection, relaying data from the RFCOMM layer to the data_processer.c and sending

 173

data using the send_data.c module over serial port. Figure 6.8 presents code snippets for

the module bt_spp.c.

void maintask(void) {
 /* read system configuration to be used by all subsystems */
 read_config();
 /* turn on the timer output and enable interrupts*/
 tm_set_state(TM_RTC, TM_ACTIVE);
 int2_start();
 int4_start();
 for (;;) {
 /* Handle timers */
 if (KS_inqsema(INT2_SEM) == SEMA_DONE) {
 bt_period++;
 sense_period++;
 //code to check if data needs to be sensed
 if (sense_period == eis_config.sample_interval_s / 60){
 sense_period = 0;
 sensord_sample();
 }
 //code to check if Bluetooth needs to be turned on
 if (bt_period == eis_config.bt_interval_s / 60) {
 bt_period = 0;
 if (lwbt_active !=1){
 //Setting a task to start the Bluetooth radio immediately
 titask_add(TI_RUN_ONCE, 1, lwbt_start, NULL);
 //add task to turn bluetooth off
 titask_add(TI_RUN_ONCE, eis_config.bt_on_time_s * 4,
 lwbt_disconnect, NULL); }}
 } } // for(;;)
} // maintask

Figure 6.7: maintask.c - Code Snippet

The data_processor.c module handles all incoming data request. This module can

also be called the controller as it decides the next corresponding action to be performed

by the Mulle. For example, if the request is for data transmission the module instructs the

send_data.c module to begin data transfer for the specified window size. Figure 6.9

presents code snippets of data_processor.c module.

The update_actv_schedule.c handles the following functions: 1) un-parse the

activation schedule received from the mobile data mule; 2) Update the Mulle with the

new activation schedule. The above functions performed by update_actv_schedule.c are

presented as code snippets in Figure 6.10 and Figure 6.11.

174

err_t com1_recv(void *arg, struct rfcomm_pcb *pcb, struct pbuf *p,
err_t err) {
 char *tempdata;
 u8_t *data;
 struct pbuf *returnp;
 int counter = 0;
 if (p->len > 0){
 while (q) {
 data = (u8_t *)p->payload;
 if (counter >=1) {
 tempdata = realloc(tempdata,strlen(tempdata) +
 strlen(data));
 strcat(tempdata,data); }
 else{
 tempdata = malloc(strlen(data));
 strcpy(tempdata,data); }
 counter ++;
 p = p->next; }
 putchar('\n');
 returnp = processIncomingData(tempdata, pcb); }
 return ERR_OK; }

Figure 6.8: bt_spp.c - Code Snippet

struct pbuf* processIncomingData(char* data, struct rfcomm_pcb *pcb1) {
 char *temppayload, *copiedpayload, *result;
 struct pbuf *returnp;
 struct Date *now;
 char w_size[2];
 if (strncmp(data, "DATE", 4) == 0) {
 now = getDatafromDate (data);
 setDatatoRTC(now); }
 else if (strncmp(data,"BEGIN",5) == 0) {
 printf("Recevied New Activation Schedule\n");
 readActivationSchedule(data); }
 else if (strncmp(data,"STARTD", 6) == 0){
 result = strtok(data," ");
 result = strtok(NULL," ");
 w_size[0] = result[0];
 w_size[1] = '\0';
 if (atoi(result) != 0){
 eis_config.windowSize = atoi(w_size);
 returnp = sendData(data,pcb1); } }
 else if (strncmp(data,"ACK", 3) == 0){
 eis_config.r_ptr = eis_config.r_ptr + eis_config.bak_r_ptr;
 returnp = sendData(data,pcb1); }
 return returnp;
}

Figure 6.9: data_processor.c - Code Snippet

 175

void readActivationSchedule(char *aSchdule) {
 int boolVCALEVENT = 0;
 char *date, *rrule, *desc, *result = NULL;
 char *result1 = NULL, *tempresult = NULL;
 result = strtok(aSchdule,"\n");
 while (result!=NULL){
 if (strncmp(result,"BEGIN:VCALENDAR", 15) == 0){
 result = strtok(NULL,"\n");
 result = strtok(NULL,"\n"); }
 if (strncmp(result,"BEGIN:VEVENT",12) == 0){
 boolVCALEVENT = 1; }
 else if (strncmp(result,"DTSTART",7) == 0){
 date = result; }
 else if (strncmp(result,"RRULE",5) == 0){
 rrule = result; }
 else if (strncmp(result,"DESCRIPTION",11)==0){
 desc = result; }
 else if (strstr(result,":VEVENT") != NULL){
 if (boolVCALEVENT == 1){
 processNewEvent(desc,rrule,date);
 boolVCALEVENT = 0; }
 }
 result = strtok(NULL,"\n");
}}

Figure 6.10: update_actv_schedule.c - Code Snippet 1

void updateEISConfig(int descrip, int period, int duration) {
 //description =0 then its RADIO_LISTEN
 if (descrip == 0){
 //represents the time when the radio will turn on-> periodic
 eis_config.bt_interval_s = 60 * period;
 //represents the time the radio will be on
 eis_config.bt_on_time_s = 60 * duration;
 reboot(); }
 //description = 1 then its sense
 else if (descrip == 1){
 eis_config.sample_interval_s = 60 * period;
 reboot(); }
}

Figure 6.11: update_actv_schedule.c - Code Snippet 2

6.2.2.2 Mobile Data Mule: Device Implementations

The following key functions have been implemented on the mobile device

platforms.

1) Sensor Discovery

2) Sensor Data Collection

176

3) Sensor Data Delivery

Apart from these key functions, the mobile device platform implementation

performs the task of interfacing with the mobile device’s communication and location

sub-system. The two mobile device platform used for the proof-of-concept

implementations are Personal Digital Assistant (PDA) and mobile robot (ER1). The PDA

ran Microsoft Pocket PC 2003. Microsoft.NET framework was used to develop code for

the PDA platform and JAVA was used for the mobile robot platform. The primary

functional modules/classes for both platforms are identical with device-specific

functionality added to each device-specific implementation. For example, the device-

specific implementation for the mobile robot is a module that controls the robot

movement. Figure 6.12 and Figure 6.13 illustrates the package/class diagram for the two

platform implementations. A detailed description of each package implementation is

presented in Appendix A, Figure A2.

Figure 6.12: Package Diagram - Mobile Robot Implemented in JAVA

 177

Figure 6.13: Class Group (Package) Diagram - PDA Implemented in .NET CF

Node Discovery Module: The node discovery module comprises classes that

perform the operations sensor discovery, sensor information storage and sensor node

management. Sensor discovery is performed by connecting to the mobile device’s

Bluetooth stack. The node discovery module also handles parsing and storing of the

sensor information (metadata). The sensor naming convention follows the format

presented in Chapter 3. The sensor repository information is synchronised with the sink

periodically. Figure 6.14 presents code snippet for the sensor node discovery process.

178

Public Function discoverNodes(ByVal _bluetooth As Bluetooth, ByVal
duration as Integer) As ArrayList
 Dim _sensor As Sensor, _sensorAdd As String
 Dim availableNode As New ArrayList
 done = _bluetooth.findDevices(duration)
 If done = True Then
 For i = 0 To deviceList.Count - 1
 Dim sense_name = _bluetooth.getSensorName(deviceList.Item(i))
 found = checkSensorinList(sense_name)
 availableNode.Add(deviceList.Item(i))
 'check if discovered node is already in the node database
 If found = False Then
 _sensorAdd = _bluetooth.getSensorAddress(deviceList.Item(i))
 _sensor = createSensorProfile(sense_name, deviceList.Item(i))
 discoveredDevices.Add(_sensor)
 Else
 For j = 0 To discoveredDevices.Count - 1
 temp = discoveredDevices.Item(j)
 sensorName = readSensorName(sense_name)
 If (sensorName = temp.Name) Then
 temp.LifeTime = 0
 temp.LifeTimeCurrent = True
 End If
 Next
 Next
 Else
 addResult("Search Complete. No Devices Found")
 End If
Return availableNode
End Function

Figure 6.14: Node Discovery - Code Snippet

The _bluetooth.findDevices(duration) function determines the amount of time the

Bluetooth discovery process needs to last. This function implements the shortened

interlaced Bluetooth inquiry scan presented in Chapter 3. The section of code highlighted

in bold manages the dead node problem discussed in Chapter 3. The variable

LifeTimeCurrent determines if a sensor node previously discovered at a particular

location is still active. The value of the LifeTimeCurrent variable is periodically

synchronised with the centralised sink allowing the mobile data mule to determine dead

sensor nodes. The discoveredDevices variable is an array list which is used to represent

the node repository maintained by the mobile data mule.

Communication Manager: This module performs the communication manager

functions of the sGaRuDa framework presented in Chapter 3. It has a set of functions and

classes that creates an interface for the components node discovery and data collection, to

 179

use the Bluetooth stack available on the mobile device. The Bluetooth software

development kit (SDK) used in .NET is BTAccess.NET (BTAccess, 2008). For the

mobile data mule implementation on the mobile robot in JAVA, we used BlueCove

Bluetooth implementation (JSR82) (BlueCove, 2007).

Collector: The collector module performs the role of the data collection module

of the sGaRuDa framework presented in Chapter 3. For data collection, the mobile data

mule employs the proposed window-based data collection algorithm. The window size is

determined based on the computed data collection threshold. In our implementation we

have assumed a window size of 2 for threshold between 0.5 to 0.6, 3 for threshold

between 0.6 to 0.7, 5 for threshold between 0.7 to 0.8 and 7 for threshold above 0.8. This

value is application dependent and can be customised. The collector module uses the

packet structure presented in Chapter 3 which is reproduced in Figure 6.15.

Figure 6.15: Control and Data Messages Format

The control message (refer Figure 6.15) implemented are “STARTD” for starting

data transfer, “BEGIN” to upload a new activation schedule, “DATE” for time

synchronisation and “ACK” for acknowledging data transmission. The Mulle response

codes are “OK” for successful reception that includes control (start data transfer) and data

messages (activation schedule), “NODATA” to terminate data transfer and “NK” for

negative acknowledgement. The data message sent by the Mulle is wrapped in the above

mentioned data structure format. The header part of message has the following

information: 1) date and time when data was sensed, 2) packet number of sensed data, 3)

file format used to store the data and 4) number of samples in each data packet. The

urgent flag is enabled if the data packet requires immediate delivery. The Mulle used for

180

the implementation is equipped with a temperature sensor and hence, the data part of

message contains <temperature, voltage> pairs. Our window-based data collection

approach can be easily extended for other complex data formats. Figure 6.16 presents

code snippets for the data collection function.

Public Function CollectData(ByVal windowSize As Integer, ByVal btDev As
BtDevice, _
 ByVal _bt As Bluetooth, ByVal mydeviceName As String) As Boolean
 Dim sensordataStore As New SensorDataStore
 Dim success As Boolean = false
 Dim sendString As String
 success = _bt.establishSerialConnection(btDev)
 If success = True Then
 sendString = "STARTD " & windowSize
 _bt.sendData(btDev, sendString, logger)
 While dataReceiveComplete = False
 Application.DoEvents()
 End While
 dataReceiveComplete = False
 _bt.disconnectSerialConnection(btDev)
 temp = FinalReceivedData.Split(";")
 For i1 = 0 To temp.Length - 2
 sensordataStore = createSensorData(btDev.DeviceName,
 temp(i1), mydeviceName)
 SensorDataStores.Add(sensordataStore)
 Next
 End If
 Return success
 End Function

Figure 6.16: Data Collection - Code Snippet

In the code presented in Figure 6.16, the sensor data collected from the sensor is

stored into the SensorDataStore class. The SensorDataStore definition is presented in the

detailed class diagram in Figure A1 and A2 in Appendix A. The collector module also

implements a Message Parser module which is responsible for parsing and un-parsing

messages sent and received by the Mulle. For example, it parses the control messages

into a formatted string to be dispatched to the Mulle by the communication manager and

un-parses data and control messages received from the Mulle that require further

processing.

Sink Manager: The sink manager performs functions related to data delivery

module of the sGaRuDa framework presented in Chapter 3. The sink manager handles

communication between the sink and the mobile data mule. The sink manager delivers

 181

data collected from the sensor based on its importance. The sink manager is also

responsible for receiving activation schedule updates from the centralised sink. The

activation schedule is offloaded at the sensor during data collection. The sink manager is

also responsible for periodically synchronise the sensor node repository with the sink.

The period of synchronisation is application dependent and can be increased or decreased

which will directly impact the data delivery latency. Finally, the sink manager handles

mobile data mule registration and de-registration. Data exchange between the mobile data

mule and the centralised sink is message based similar to communication between the

mobile data mule and the sensor node. The communication between the sink and the

mobile data mule has been implemented using sockets in both Microsoft.NET framework

and in JAVA. A detailed list of classes and their functions implemented within the sink

manager package is presented in Figure A1 and A2 in Appendix A. Figure 6.17 presents

code snippet for the sink manager module.

Public Function sendSensorData(ByVal sDs As SensorDataStore) As Boolean
 Dim s As String = "SENSORDATA"
 Dim buf() As Byte =
 System.Text.Encoding.ASCII.GetBytes(s.ToCharArray())
 Dim parser As New Parser, success As Boolean=false
 If connected = True Then
 NetStream = New NetworkStream(ClientSocket)
 Try
 ClientSocket.Send(buf)
 sendData = parser.parseSensorDataStore(sDs)
 Dim buf1() As Byte =
 System.Text.Encoding.ASCII.GetBytes(sendData.ToCharArray())
 ClientSocket.Send(buf1)
 End Try
 End If
 Return success
End Function

Figure 6.17: Data delivery to sink - Code Snippet

Controller: The controller module represents the central controller functionality

of the sGaRuDa framework presented in Chapter 3. The controller is the central

command centre that co-ordinates the activity of each associated module.

Communication between modules is performed by the controller which controls the

sensor discover, sensor data collection and delivery process. We have implemented a

support package, the Common package that is shared among all system modules. The

182

variables within the Common package are instantiated once and are declared global. In

JAVA this functionality is achieved by declaring the variables static while in

Microsoft.NET, the class is defined as a public module. The controller is responsible for

computing the data collection threshold based on the algorithm proposed in Chapter 3.

The parameters used to compute the data collection threshold in the prototype

implementation are distance, received signal strength (RSSI), residual time, sensor

residual energy and amount of sensor remaining data. The RSSI is obtained during

Bluetooth inquiry scan. This avoids the need to make a connection with the sensor to

obtain the RSSI value. The code snippet presented in Figure 6.18 shows the threshold

computation algorithm implemented in .NET CF. To calculate the threshold we have

taken a packet size of 1200 bits. The controller provides functions to access the data

collection platform modules functionality. For example, the controller module has a

function to invoke the node discovery function of the node management module. The

controller module also runs task timers to periodically check for available network

connectivity to the sink to deliver urgent sensor data. In our implementation, we have

used Wi-Fi as the means of data delivery. For evaluation purposes, we define a cost to the

Wi-Fi connection at specific locations within our test environment. Data collected at such

locations will be saved on the mobile data mule for later delivery unless the urgent flag is

set to high (1). The controller module also has a context manager class that handles all

available context information. In the system prototype implementation, the contextual

information used are the mobile data mule’s current location, its future trajectory

information (used to estimate residual time) and the sensor node’s context information

obtained from the sensor node repository. The current location of the mobile data mule is

obtained using Ekahau positioning engine (EPE). The localisation module is

implemented as a separate class in the JAVA implementation. In the VB.NET

implementation the localisation function is integrated with the context manager.

ER1: This is the additional module that has been implemented in JAVA for the

mobile robot platform. The classes in this module handle all communications between the

robot hardware and the data collection framework. The ER1 modules facilitate the

development of application specific plug-ins requiring control over the robot hardware. In

the currently implemented system prototype no additional plug-ins has been

 183

implemented. The ER1 module is used only to control the robot’s movement by making

use of the default application programmable interface (API) available with the SDK.

Since robot navigation and control is a vast research area by itself, our implementation

does not focus on those challenges. Rather, we use existing ER1modules to accomplish

our requirement to move the robot within the building environment. A detailed class

diagram of .NET CF classes implemented on the PDA developed in VB.NET and JAVA

classes implemented on the mobile robot developed in ECLIPSE (Eclipse.Org, 2010) are

presented in the Appendix A.

Public Function computeThreshold(ByVal sEnergy As Decimal, ByVal rssi
As Decimal, _
 ByVal distance As Decimal, ByVal s_rdata As Integer)
 Dim thres As Decimal = 0, rTime, rEnergy , v_max ,
 tempThreshold
 v_max = s_rdata * 1200 / _contextStore.channel_speed
 rTime = (_contextStore.ResidualTime + _contextStore.StaticTime)
 If (rTime > v_max) Then
 tempThreshold = 1
 Else
 tempThreshold = rTime / v_max
 End If
 thres = thres + tempThreshold * _contextStore.wrT
 v_max = _contextStore.Energy
 tempThreshold = sEnergy / v_max
 thres = thres + tempThreshold * _contextStore.wmE
 v_max = _contextStore.Distance
 tempThreshold = 1 - (distance / v_max)
 thres = thres + tempThreshold * _contextStore.wmD
 v_max = _contextStore.RSSI
 tempThreshold = rssi / v_max
 thres = thres + tempThreshold * _contextStore.wmR
 Return thres
 End Function

Figure 6.18: Data Collection Threshold Computation - Code Snippet

6.2.2.3 Data Sink Implementation

The sink within the scope of this thesis is assumed to be a centralised power data

store that handles further processing of sensor data. In the sGaRuDa system prototype

implemented, the sink implementation is to support the proof-of-concept implementation

performing the following function: 1) handle mobile data mule registrations 2) receive

sensor data collected and delivered by mobile data mule, 3) provide feature for sensor

184

inactivity synchronisation among mobile data mules and 4) send new activation schedule

for a single or group of sensors to the mobile data mule.

The sink has been implemented using Microsoft.NET framework developed in

Microsoft Visual Basic.NET. A socket-based server has been implemented to listens to

incoming client (mobile data mule) requests. Figure 6.19 presents code snippet for the

incoming data processing function. The case shown in the code is when new sensor

information is received by the sink. A screen shot of the sink implementation is presented

in Figure 6.20 and a detailed class diagram is presented in Figure 6.21.

Public Sub processIncomingRequest(ByVal buf As String, ByVal nstream As
NetworkStream)
 Select Case returndata
 Case "SENSORINFO"
 sendAck(nstream)
 Do While nstream.DataAvailable
 byte_buff = nstream.ReadByte()
 buffer = buffer & Convert.ToChar(byte_buff)
 Loop
 parser.initialize(buffer)
 Dim thread2 As New System.Threading.Thread(AddressOf
 parser.newSensor)
 thread2.Start()
End Sub

Figure 6.19: Sink Incoming Data Request Processing - Code Snippet

Figure 6.20: Sink implemented in VB.NET – Screenshot

 185

Figure 6.21: Detailed Class Diagram - Sink Implementation

6.3 k-Nearest Neighbour Based Sensor Data
Collection - Implementation

Chapter 4 presented our proposed 3D-KNN sensor data collection algorithm. The

3D-KNN algorithm targets sensor nodes with broadcasting capabilities. The introduction

of broadcasting channel facilitates multi-hop data collection. The 3D-KNN data collection

algorithm can be incorporated straight-forwardly into sGaRuDa. To evaluate the 3D-KNN

algorithm over a large-scale sensor network, we chose a simulator environment. The

simulator environment allows us to validate the cost-efficiency of the proposed 3D-KNN

algorithm under varying system parameters, namely, number of sensor nodes, size of the

area, radio range, signal-to-noise, etc. The 3D-KNN algorithm has been simulated in the

simulator Global Mobile Information System Simulator (GloMoSim) (GloMoSim, 2010,

Nuevo, 2004). In this section, we present an overview of the simulation platform

followed by 3D-KNN algorithm’s implementation details.

186

6.3.1.1 A Scalable Simulation Environment: GloMoSim

GloMoSim is a scalable parallel discrete event simulator for large-scale wireless

and wired networks. It uses Parsec (UCLA, 2009), a C based language developed by the

Parallel Computing Laboratory at UCLA. GloMoSim has the capacity to simulate

wireless sensor networks with up to thousand nodes. It allows simulating multi-hop

wireless communication using ad-hoc networking. The simulator is designed using the

layered Open Systems Interconnection (OSI) network approach. Each layer of the OSI

model is implemented by a set of C files. The functions performed at each layer can be

summarised into 1) send/receive data between layers 2) perform layer level functionality

i.e. physical layer simulates sending data as bits while the network layer simulates the

operation of assembling/disassembling data packets and 3) facilitate data exchange

between nodes within the network.

GloMoSim supports node mobility using random waypoint, random drunken and

group mobility models (Nuevo, 2004). The mobile data mule’s mobility has been

simulated using this feature of GloMoSim. A configuration file config.in is used to setup

the simulation environment. Figure 6.22 presents a sample of the configuration file.

GloMoSim allows sensor nodes to be simulated within a three-dimensional (3D) space as

defined by the terrain-dimension parameter in Figure 6.22. Each sensor node’s location

within the 3D space is defined using x, y, and z co-ordinates. GloMoSim uses two types

of messages to facilitate communication within layers and between nodes. They are non-

packet and packet messages. The non-packet messages are used for inter-layer event

messages and self-schedule timer events. The packet messages are used to send data

messages across layers or across various nodes.

SIMULATION-TIME 15M
SEED 1
TERRAIN-DIMENSIONS (2000, 2000, 2000)
NUMBER-OF-NODES 200
NODE-PLACEMENT UNIFORM

Figure 6.22: GloMoSim Sample Configuration File

The non-packet messages used to enable self-schedule timers provide the

capability to implement in-network data aggregation function. Figure 6.23 illustrates a

 187

sample message structure used during data exchange between nodes and between layers.

The code snippet provided in Figure 6.23 is extracted from the message.h file in the

include folder. Mobility is achieved using a mobility trace file mentioned in the config.in

file. The trace file can be used to mention specific movement patterns for the mobile data

mule. We use this feature to incorporate mobile data mule movements. Figure 6.24

presents a screen dump of the GloMoSim command prompt-based simulation

environment. All simulation outputs are written to the glomo.stat text file.

struct message_str
{
short layerType; // Layer that receives the message
short protocolType, eventType;
char* packet, payLoad;
} message;

Figure 6.23: Message Structure used in Data Exchange

Figure 6.24: GloMoSim Simulator Environment - Screen Dump

6.3.1.2 3D-KNN - Implementation in GloMoSim

In this section, we present the implementation details of the 3D-KNN algorithm in

GloMoSim. The 3D-KNN has been implemented at the network layer of GloMoSim.

Hence, packet processing and response happen at the network layer. This implementation

can be moved to the lower layers, namely, the data link layer as our current

188

implementation does not rely on any network layer specific functionality. Node

addressing is achieved using low-level naming i.e. node-identification number. The

following key functions have been simulated using GloMoSim.

1) A mobile data mule responsible for issuing and processing kNN queries in a

3D environment.

2) Mobility model to support the mobile data mule’s movement within the sensor

network

3) Sensor nodes that respond to incoming kNN queries using in-network

aggregation.

4) Scripts to generate outputs for the 3D-KNN algorithm’s evaluation.

Figure 6.25 presents the 3D-KNN algorithm’s modules implemented in

GloMoSim. The files in GloMoSim have a .pc extension due to the use of the Parsec.

Though the extension used is parsec, the coding follows C syntax. The modules

highlighted in dark green are the primary 3D-KNN modules that have been newly

developed and implemented. The modules highlighted in light green are existing code

that has been modified for the 3D-KNN implementation. The functions of the sensor and

the mobile data mule have been implemented in the sensor.pc and mdm.pc files. The

timer.pc is used for in-network data aggregation. The primary modules shown on the

right in Figure 6.25 are invoked by both sensor and the mobile data mule to perform

various operations including sending/receiving broadcast messages, processing incoming

data, responding to incoming data, computing nearest neighbours using the KNN-

METRIC and collecting data from nearest sensors. The knn.h is the common header file

used by the sensor and the mobile data mule code to invoke functions defined in various

modules. We describe the functionality of each module used by the sensor and the mobile

data mule subsequently.

 189

Figure 6.25: 3D-KNN GloMoSim Simulation Modules

networkinit.pc: This module contains code to initialise the sensor network. It

provides functions to select the mobile data mule within the simulator environment.

Every other node within the network is then initialised as a sensor node. The initial

broadcast message propagated by the mobile data mule is controlled by the

networkinit.pc module. The networkinit.pc is also responsible for setup files required to

produce simulation outputs.

sendmessage.pc: The sendmessage.pc modules handle sending broadcast and uni-

cast messages. The broadcast message is sent with an address to all nodes that are within

the radio range. The uni-cast mode is used when the route to a particular sensor node is

available. It is used during the final data collection phase. Figure 6.26 presents the

190

broadcast message and the data packet structures. Since our approach does not require

any network route information, the broadcast message is used to compute routes between

sensors and the mobile data mule. Each broadcast packet has a nodeList variable. This

variable is appended with sensor route information (route through which the broadcast

information propagated). The reverse-path is used to identify the route to the mobile data

mule. The data packet comprises sensor node’s location and cumulative signal-to-noise

ratio. Figure 6.27 and Figure 6.28 presents code snippets for sending broadcast and uni-

cast messages in GloMoSim. The NetworkIpSendNewPacketWithDelay function is used

to send broadcast/uni-cast packets. The destination type determines the type of packet i.e.

ANY_DEST represents a broadcast packet and dest_addr represents a uni-cast packet

addressed to a specific sensor node. The two message structures presented are used

during the kNN boundary estimation phase. The data packet with sensor information is

used by the mobile data mule to compute nearest neighbours.

typedef struct {
 int bcastId, maxHop, nodecount,
 int nodeList[300];
 double x, y, z;
} intial_broadcast_pckt;
typedef struct {
 int retId; //same as the intial bcastId
 int nodeCount, totalnodes;
 int route[nodeCount];
 double x[nodeCount], y[nodeCount], z[nodeCount];
 double snr;
} data_pckt;

Figure 6.26: 3D-KNN Implementation - Message Packet Structures - Code Snippet

void handleSensorBroadcast(GlomoNode *node, Message *msg)
{ msg=GLOMO_MsgAlloc(node,GLOMO_NETWORK_LAYER,NETWORK_PROTOCOL_I
 P,MSG_NETWORK_BroadcastEvent);
 GLOMO _MsgSend(node,msg,ADVT_INTERVAL);
 NetworkIpSendNewPacketWithDelay(node,ANY_DEST,REAL_TIME
 ,SENSOR_PROTO,IPDEFTTL,(char
*)bcast_pkt,sizeof(intial_broadcast_pckt),(clocktype) DELTA_TIME
* node->nodeAddr/2);
}

Figure 6.27: 3D-KNN Implementation - Sending Broadcast Message - Code Snippet

 191

void sendUniCast(GlomoNode *node, Message *newMsg){
 data_pckt* senddata;
 int i = 0;
 NODE_ADDR dest_addr;
 senddata = (data_pckt*)GLOMO_MsgReturnInfo(newMsg);
 senddata->nodeCount = senddata->nodeCount - 1;
 dest_addr = senddata->route[senddata->nodeCount];
 NetworkIpSendNewPacketWithDelay(node,dest_addr,REAL_TIME,SENSOR_D
 ATA,IPDEFTTL,(char *)senddata,sizeof(data_pckt),(clocktype)
 DELTA_TIME * node- >nodeAddr/2);
}

Figure 6.28: 3D-KNN Implementation - Sending Uni-cast Message - Code Snippet

processmessage.pc: This module performs incoming message processing. The

incoming messages can be classified into two types broadcast messages and data

messages. The data message can be a response to a broadcast message or a response to a

data collection request. The nwip.pc file handles all incoming messages from the MAC

layer. Once the message is received at the network layer, (nwip.pc) it calls the appropriate

function defined in the processmessage.pc module to process the message. Figure 6.29

presents code snippet of the modified nwip.pc file. The functions defined in the

processmessage.pc module are shared by the mobile data mule and the sensor node. The

primary functions defined are handleSensorBroadcast, handleSensorReBroadcast and

sendUniCast. The first two functions perform the following operations: 1) send initial

broadcast message (data mule operation) and 2) receive and forward broadcast messages

(sensor operation). The sendUniCast function is used by both mobile data mule and the

sensors to respond to kNN queries. These functions facilitate the 3D-KNN pre-routing and

data collection phases. Figure 6.30 provides code snippets of the incoming broadcast

information handling function.

collectdata.pc: The collectdata.pc module is used by the mobile data mule to

compute the nearest neighbours based on the KNN-METRIC. It employs the functions

defined in the sort.pc module to sort the nearest neighbour sensor list. The knnmetric.pc

module is used to compute the KNN-METRIC of each sensor. The sendmessage.pc

module is employed by the collectdata.pc module to send modified uni-cast messages to

the k nearest sensors. The modified uni-cast uses the route information collected during

the boundary estimation phase to route data to specific nodes (over multi-hop channels).

Since the cumulative signal-to-noise ratio is used in the KNN-METRIC any sensor which

192

is part of a poor route will not be selected as the nearest neighbour. Further, the

collectdata.pc also uses the proposed prediction algorithm to determine sensors that are

future nearest neighbours. Once at the new location, the sendmessage.pc is employed to

collect data from those sensor nodes.

void NetworkIpLayer(GlomoNode *node, Message *msg) {
 switch (msg->protocolType) {
 case NETWORK_PROTOCOL_IP: {
 switch(msg->eventType) {
 case MSG_NETWORK_BroadcastEvent: {
 handleSensorBroadcast(node, msg);
 break; }
 case MSG_NETWORK_ReBroadcastEvent: {
 handleSensorReBroadcast(node, msg);
 break; }
 case MSG_NETWORK_DATA: {
 sendUniCast(node, msg);
 break; }}
}

Figure 6.29: 3D-KNN Implementation - nwip.pc - Code Snippet

void ProcessIncomingMessage(GlomoNode *node, Message *msg, NODE_ADDR
sourceAddress, double snr){
 Message *newMsg;
 intial_broadcast_pckt* info;
 info = (intial_broadcast_pckt*)GLOMO_MsgReturnPacket(msg);
 nodeAddress = node->nodeAddr;
 if (broadCastReceivedID != info-> bcastId) {
 broadCastReceivedID = info-> bcastId;
 newMsg = GLOMO_MsgAlloc(node,GLOMO_NETWORK_LAYER,
 NETWORK_PROTOCOL_IP,MSG_NETWORK_ReBroadcastEvent);
 GLOMO_MsgInfoAlloc(node, newMsg,sizeof(intial_broadcast_pckt));
 resendinfo = (intial_broadcast_pckt*) GLOMO_MsgReturnInfo(newMsg);
 GLOMO_MsgSend(node,newMsg,ADVT_INTERVAL); }
}

Figure 6.30: 3D-KNN Implementation - Checking Incoming Broadcast Message -
Code Snippet

timer.pc: The timer.pc module is used for in-network data aggregation. The non-

packet messages described earlier are used to implement timers within GloMoSim. The

non-packet messages used in timers are self-addressed i.e. a loop-back. After the

specified delay, the message is delivered back to the sensor node. The arrival of a new

timer message indicates the timer expiry event. Figure 6.31 presents the timer

implementation code used by the sensor node.

 193

void startTimer(GlomoNode *node, clocktype timerDelay){
 Message *newMsg;
 timer_details* timer_pkt;
 newMsg=GLOMO_MsgAlloc(node,GLOMO_NETWORK_LAYER,NETWORK_PROTOCO
 L_IP,MSG_TIMER_EVENTS);

 GLOMO_MsgInfoAlloc(node, newMsg, sizeof(timer_details));
 timer_pkt = (timer_details*)GLOMO_MsgReturnInfo(newMsg);
 timer_pkt->nodeID = node->nodeAddr;
 timer_pkt->state = 0;
 GLOMO_MsgSend(node, newMsg, timerDelay);
}
void checkTimerTimeout(GlomoNode *node, Message *newMsg){
 timer_details* newTimer;
 newTimer = (timer_details*)GLOMO_MsgReturnInfo(newMsg);
 if (newTimer->nodeID == node->nodeAddr) {
 processTimer(node, newMsg);
 }
}

Figure 6.31: 3D-KNN Implementation - Timer Implementation on Sensor - Code
Snippet

radio.pc: The radio.pc, radio_nonoise.pc and radio_accnoise.pc have been

modified to implement a radio model that accurately measures energy consumption of

wireless ad-hoc sensor nodes. This model has been implemented by Margi et al. (Margi et

al., 2006) and the source code is available online. The default radio model of GloMoSim

is oriented towards high-powered ad-hoc mobile devices. The mobility.in, config.in and

nodes.input files are used to configure mobile data mule’s mobility pattern, simulation

environment parameters and node placements within the sensor network respectively.

6.4 R-CS - Implementation

In this section, we present the implementation details of Ranked-Context Spaces

(R-CS) system. We use the term ranked to denote the partitioning approach that uses

context attribute ranks. The implementation of R-CS is built around the Context Spaces

reasoning engine. The following features have been implemented in R-CS. They are:

1) The situation partitioning algorithm used to partition the universal

situation space.

194

2) Incorporating sensor data quality parameters and flexible attribute region

definitions for the context attributes. Algorithm to compute contribution

based on flexible attribute region and sensor data quality.

3) Incorporation of hierarchical attribute region definition and algorithm to

reason hierarchical attribute regions.

4) A graphical user interface that provides the user the ability to

define/simulate sensor inputs, situation spaces and context attribute

regions.

5) Scripts to generate outputs of the reasoning process used in R-CS

evaluation.

Context Spaces has been implemented in JAVA and hence, the extended Context

Spaces implementation, namely, R-CS is also implemented in JAVA. We have used the

CORE (Padovitz, 2006) reasoning engine to implement R-CS features. To implement a

flexible attribute region, we have used a basic logic that provides a region contribution

based on the context state value of the context attribute. Our implementation defines

outer regions as x where x is the flexible region value. For example, if the attribute

region definition is 2 to 4, and the flexible region definition is 0.5, any context state

value for the context attribute within the range 2 to 4 results in a contribution of 1 while

any value within the region 1.5 to 2 and 4 to 4.5 will result in a contribution value from 0

to 1. To determine a value between 0 and 1 we used fuzzy logics.

The overall JAVA package diagram for R-CS implementation is presented in

Figure 6.32. The primary Context Spaces (CS) implementation is defined by the package

core. The core.kernel, core.model are Context Spaces implementation that have been

modified to R-CS functions while the core.gui and corePrxy are R-CS specific

implementations. A detailed class diagram of the implementation is presented Figure A3

in Appendix A.

 195

Figure 6.32: R-CS Implementation - Package Diagram

Situation Space Partition: The situation space partitions are created by

implementing the following classes partition.java and partitionReasoner.java. The

context attribute regions defined in the universal situation space are partitioned by

partition.java class and the partitionReasoner.java is used during reasoning process i.e.

taking into consideration each partition until the required confidence threshold is reached.

Figure 6.33 presents the situation partition code snippet.

public XSpace partition(XSpace sp){
 Vector r = sp.getRegions();
 for (int i=0; i< r.size(); i++){
 XAttributeRegion xa = (XAttributeRegion) r.get(i);
 double w = xa.getWeight();
 for (int j=0;j<pregionList.size(); j++){
 Vector tempRegion = (Vector) pregionList.get(j);
 if (computeRegion(tempRegion, w)){
 xa.setPar_region(j + 1); }}
 System.out.println("Weight : " + xa.getWeight());
 System.out.println("Region based on Weight : " +
xa.getPar_region()); }
 sp.setPregions(region_no);
 return sp; }

Figure 6.33: R-CS Implementation - Situation Partition - Code Snippet

196

The code in Figure 6.33 uses the partition predicate definition to partition the

universal situation space. The code in Figure 6.34 reasons the temporal situation space

computed dynamically from the partitioned universal situation space. The universal

situation space partitions determined by the partition predicate are maintained in the

universal situation space definition. At runtime, to reason a current situation, each

partition in the universal situation space is iteratively explored to compute the overall

confidence. New partitions in the universal situation space are only explored if the

required confidence threshold is not reached using the context attribute within the current

partition.

public Vector reason(XMatrix x, boolean ReReason){
 XMatrix y = null;
 if (ReReason)
 y = reEncodeMatrix(x);
 else
 y = x;
 //We partition the situation space based on Importance
 XMatrix matrix = partitionSituationSpace(y);

 Vector Matrix;
 Matrix = matrix.getMatrix();
 for (int j=0;j< Matrix.size();j++) {
 XStConf xst = null;
 double sum = 0;
 Vector tempMatrix = (Vector) Matrix.get(j);
 XDecoderNew decoder = new XDecoderNew(tempMatrix);
 for (int ii=1; ii<=part.getRegion_no();ii++){
 xst = decoder.decode(st,ii, ReReason);
 sum = sum + xst.getConfidence();
 }
 sum = sum/part.getRegion_no();
 xst.setConfidence(sum);
 reasonedList.add(xst);
 }
 return (computeMaxMin());
}

Figure 6.34: R-CS Implementation: Partition-based Situation Reasoning

The dynamic weight re-computation of context attributes for orthogonal situations

(situations that cannot occur in parallel) is performed during the reasoning process. The

weight re-computation increases the reasoning outcome’s confidence by reducing the

influence of context attributes whose context state value satisfies situations that are

orthogonal. The situation space referred in this instance is the temporal situation space.

As new context attributes from other partitions are added to the temporal situation space,

 197

the weight re-computation algorithm is repeated to reduce the influence of overlapping

context attributes. The code snippet that computes similarities between situations is

presented in Figure 6.35. The code compares attribute regions of situations to compute

the situation similarity co-efficient. The attribute region similarity value is appended to

each attribute region definition which is further used during the weight re-computation

process.

public XSpace compareSituations(XSpace st1, XSpace st2, XState st) {
 XSpace tmpSitutaion = new XSpace(st1.getName(),st1.getThreshold());
 Vector attrs = st1.getRegions(), attrs1 = st2.getRegions();
 double contribution =0, contribution1 = 0;
 for (int i = 0; i< attrs.size() ; i++) {
 boolean similar = false;
 XAttributeRegion region1 = (XAttributeRegion)attrs.get(i);
 XAttributeRegion r = region1.copyValue();
 XAttribute attr = (XAttribute) st.hattributes.get(region1.getName());
 if (attr != null)
 for (int j=0; j< attrs1.size(); j ++) {
 XAttributeRegion region2 = (XAttributeRegion)attrs1.get(j);
 if (region1.getName() == region2.getName())
 contribution1 = computeContribution(st);
 if (contribution == 1)
 ComputeSimilarityCoefficient();
 similar = true; }}
 if (similar)
 tempSitutaion.addAttributeRegion(r, r.getWeight(),
r.getOptional(),true);
 else
 tempSitutaion.addAttributeRegion(r, r.getWeight(),
r.getOptional(),false);
 }
 return tempSitutaion;
}

Figure 6.35: R-CS Implementation - Situation Comparison Code Snippet

Flexible region and sensor inaccuracy heuristics implementation: These two

features implemented in R-CS incorporate flexible attribute region definition and sensor

data quality (data freshness) heuristics. The data freshness considers the life of the

collected sensor data during the reasoning process. The current context attribute (sensor)

definition in Context Spaces has been re-implemented to incorporate the data freshness

heuristic. To implement data freshness in R-CS, we have incorporated a freshness

threshold. This value determines if the data is recent or old. Figure 6.36 presents the

modified context attribute definition code snippet with the proposed data freshness

threshold.

198

 public XAttribute(String attributeName, String value, double
errorProb, double freshness)
 {
 this.attributeName = attributeName;
 this.textValue = value;
 this.errorProb = errorProb;
 this.freshness = freshness;
 Date dt = new Date();
 entryTimeStamp = dt.getTime();
 this.errorRange = 1;
 }

Figure 6.36: R-CS Implementation - Context Attribute Definition

To implement flexible attribute regions, inner-outer regions are defined for each

context attribute. Based on the context attribute region definition, the contribution value

of the context attribute within the situation is computed. The contribution of a context

attribute determines the influence (confidence) of the context attribute’s in the reasoned

situation. For implementation and testing purposes we have assigned the inner-outer

region value for all context attributes 0.5. This assumption can be modified allowing

greater control over the reasoning process. Figure 6.37 presents the code snippet to

compute the context attribute’s contribution when the context state value falls within the

inner-outer region.

public double getContributionOuterRegions(double value) throws
PredicateException {
 for (int i = 0; i < subregions.size(); i++) {
 XSubRegion subregion = (XSubRegion) subregions.elementAt(i);
 double contribution = subregion.getContributionOuterRegions(value);
 if (contribution != 0)
 return contribution; }
 return 0; }

Figure 6.37: R-CS Implementation - Flexible Context Attribute Regions

Hierarchical Context Attribute Region Definition: Hierarchical context attribute

regions allow definition relations between situation space definitions. For example, the

defining relationship between the context attribute speed and context attribute age. To

implement hierarchical context attribute regions, we have modified the attribute region

definition in CS to incorporate hierarchical definitions i.e. the ability to add one context

attribute region as a child to another context attribute region. To compute the cumulative

contribution of the hierarchical context attribute regions, the contribution value of every

 199

individual child attributes is computed iteratively. The cumulative contribution of the

parent context attribute is then computed as the sum of child context attribute

contributions. Each child context attribute region is assigned a weight determining its

influence in the total situation outcome.

//Attribute Region Definitions
XAttributeRegion region1 = new XAttributeRegion("Age", true);
Predicate p1 = new Predicate(">=", "20");
Predicate p11 = new Predicate("<=", "30");
Predicate[] predicate1 = { p1, p11 };
region1.addSubRegion(predicate1, 1);

//Define Sub Region
XAttributeRegion region2 = new XAttributeRegion("Speed");
Predicate p2 = new Predicate("<=", 3);
Predicate p21 = new Predicate(">=", 5);
Predicate[] predicates2 = { p2, p21 };
//Add Subregion to parent Region
region1.addSubRegion(predicates2, 1);

//Defining Attribute SubRegions
public void addSubRegion(XAttributeRegion subDim, double weight) {
 subdim.add(subDim);
 subDim.setWeight(weight);
}

Figure 6.38: R-CS Implementation - Hierarchical Context Attribute Region
Definition

Finally, we have implemented a graphical user interface that allows users to test

and evaluate the proposed R-CS system. The interface allows the user to 1) define

situation spaces with corresponding attribute regions; 2) define context attributes (sensor)

with their corresponding context state values and 3) reason different situations using

different expressions e.g. Presentation or Meeting. The user interface also has the

capability to simulate a stream of synthetic context state values for corresponding context

attributes (sensors). Figure 6.39 presents a screen shot of R-CS user interface. The user

interface code also produces text file-based outputs (dumps) used for evaluation.

200

Figure 6.39: R-CS Implementation - User Interface

6.5 Summary

This chapter has presented implementations details of the mobile data mule-based

sensor data collection approaches proposed in Chapters 3 and 4, namely, sGaRuDa

system framework and 3D-KNN algorithm and the Context Spaces extension, R-CS

system proposed in Chapter 5.

A prototype of the sGaRuDa sensor data collection framework has been

implemented on real-world mobile devices, namely, PDA and an ER1 mobile robot. The

development platform used was Microsoft.NET Compact Framework (CF) and JAVA.

We used VB.NET to develop code in the Microsoft.NET CF platform. The wireless

sensor node chosen for the prototype implementation was the Bluetooth Mulle. The code

for the Mulle sensor node was developed in C using the proprietary IAR compiler.

Finally, we implemented a crack-down version of a centralised data sink that acts as the

destination for collected data. The sink was developed in VB.NET. The implementation

of the sGaRuDa framework proved the real-world feasibility of the proposed data

collection architecture. The sGaRuDa system facilitates sensor data collection using real-

world mobile devices without the need for a dedicated data collection infrastructure.

 201

Further, we presented the implementation details of the proposed 3D-KNN

algorithm. The 3D-KNN algorithm was implemented and simulated in GloMoSim, a

parallel discrete event simulator. Simulating 3D-KNN in GloMoSim allowed us to

evaluate the 3D-KNN algorithm within a three-dimensional large-scale sensor network

(up to 1000 sensor nodes).

Finally, we presented implementation details of the proposed R-CS system. R-CS

i.e. ranked Context Spaces was developed in JAVA by wrapping the existing Context

Spaces functionality already implemented using JAVA. We also implemented a simple

graphical interface allowing us to evaluate the R-CS. The proposed R-CS algorithms

were incorporated in R-CS by developing new functionality and modifying existing

Context Spaces functionalities.

202

7
Evaluation of Implemented

sGaRuDa, 3D-KNN and R-CS
7.1 Introduction

In this chapter, we evaluate the proposed sensor data collection framework

sGaRuDa, the 3D-KNN algorithm and the R-CS modelling approach. This chapter is

divided into three main sections focusing on the three main contributions of this thesis. In

each section, we present evaluation criteria followed by experimental results. The three

sections of this chapter are:

1) Evaluating sGaRuDa, the practical system framework for sensor data

collection using mobile data mules targeted at Bluetooth-based sensor

networks. Some parts of the system evaluations presented in section 7.2 are

from the following published papers (Jayaraman et al., 2007, Jayaraman et al.,

2008a)

2) Evaluating 3D-KNN, a k-Nearest Neighbour-based data collection algorithm

using mobile data mules targeted at broadcast-based sensor networks. The

evaluations of the 3D-KNN algorithm presented in section 7.3 are from the

following published papers (Jayaraman et al., 2010a, Jayaraman et al., 2010c,

Jayaraman et al., 2010b)

3) Evaluating R-CS, the dynamic situation-based smart spaces modelling

approach based on Context Spaces. The evaluation of R-CS presented in

section 7.4 are from the following papers (Jayaraman et al., 2009b, Jayaraman

et al., 2009a)

 203

7.2 sGaRuDa: Implementation Evaluation

The key research question that we tried to answer in this thesis is the feasibility of

using mobile devices as a cost-efficient alternative for sensor data collection. In this

section, we present experimental and evaluation outcomes validating the feasibility and

cost-effectiveness of the sGaRuDa framework. We demonstrate the feasibility of the

sGaRuDa framework in real-world scenarios. To validate the cost-efficiency of the

sGaRuDa framework, we perform experiments to evaluate the proposed data collection

and dynamic activation schedule algorithms. The cost-based evaluation comprises the

following components:

1) Energy consumed by sensors during sensor data collection

2) Time spent in discovery i.e. percentage of time the mobile data mule is able to

successfully discover and collect data from neighbouring sensors.

Our test scenario used for system evaluations is a building environment (scenario)

depicted in Figure 7.1. The building environment is a typical example of a real-world

pervasive environment with abundant availability of mobile devices.

Figure 7.1: A Building Scenario used for Evaluation

204

Further, a building environment accurately captures our notion of three-

dimensional sensor network deployment. Another reason to support the choice of

environment is the recent need for environmental monitoring and control in building

especially in large offices. Research shows that average cost of installing a single wired

sensor in a building is $200 (Rabaey et al., 2000). Further, such deployments require a

fixed data collection infrastructure to collect sensor data. This further adds to the

deployment cost. The sGaRuDa system is a cost-efficient alternative as wireless sensors

like Mulle can be deployed with relative ease without the need for a fixed data collection

infrastructure. In such a scenario mobile devices that are within the office space

(environment) can be used as mobile sensor data collectors.

7.2.1 Dynamic Activation Schedule: Implementation
Evaluation

In this section, we evaluate the implementation of the dynamic activation

schedule. We present a scenario that updates the activation schedule of Mulle

dynamically using the mobile data mule. Figure 7.2 presents a flow diagram of the

operations involved between the mobile data mule, the sink and the sensor node (Mulle).

Figure 7.2: Activation Schedule Update - Flow Diagram

 205

The mobile data mule used for the experiment was the personal digital assistant

(PDA). The Mulle was connected to its expansion board to obtain real-time outputs. The

outputs from the Mulle sensor node and the mobile data mule are presented in Figure 7.3

and Figure 7.4. For evaluation and illustration purpose, we have implemented menu

controls on the PDA for various sensor operations. Figure 7.3 depicts output from the

Mulle in real-time. For this experimentation, the activation schedule comprised the

schedule presented in Table 7.1.

Bluetooth Radio Interval Sense Interval

180s wake-up, 60s awake Sample every 60s. 6 samples per file

Table 7.1: Activation Schedule Experiment

Figure 7.3: Activation Schedule Dynamic Update - Mulle Evaluation Screen Shots

206

Figure 7.4: Activation Schedule Dynamic Update - PDA Screen Shot

7.2.2 Evaluating Shortened Bluetooth Discovery

The shortened Bluetooth discovery process is used for quick and efficient device

discovery as against the complete 10.54 seconds discovery process given by Bluetooth

specification (BluetoothSIG, 2010d). This approach was presented in detail in Chapter 3

and the implementation details using restricted search timers were presented in Chapter 6.

In this section, we evaluate the success rate of the discovery process using shortened

interlaced Bluetooth discovery. To determine the best possible Bluetooth discovery time

rather than the standard 10.54 seconds, we performed Bluetooth discovery operation with

4 devices for varying time intervals. In each case, we compute the discovery success

ratio. The discovery success ratio is defined as the ratio between devices that are in

discoverable mode to devices that are successfully discovered. We varied our search

interval between 2 and 4 seconds (at least 60% less than the standard interval). The

respective results are presented in Figure 7.5. The evaluation outcomes presented were

averaged over 10 independent experimental runs with devices at varying distances. Our

evaluation was based on v1.2 of Bluetooth stack specification (BluetoothSIG, 2010d)

available on the PDA. We conclude the following from the results. 1) The use of 3-4

second discovery interval produces 90% discovery success. 2) The 3-4 second discovery

interval is at least 50% less than the Bluetooth specification recommendation and 3) No

modification to the existing Bluetooth stack is required to achieve 90% discovery

 207

success. The experimental outcome validates the advantages of using the shortened

Bluetooth discovery in the sGaRuDa framework. By reducing sensor discovery time, the

overall data collection time also reduces.

Figure 7.5: Discovery Success Ratio

7.2.3 Window-based Data Collection: Implementation
Evaluation

In this section, we evaluate the implementation of the proposed window-based

data collection technique. Our aim is to validate the feasibility of the proposed data

collection protocol in real-world scenarios. The sensor node receives the window size

from the mobile data mule. For experimentation purposes, we have used a window size of

1. Hence, the Mulle sensor node waits for an acknowledgement after every successful

transmission. The Mulle waits for a data transfer request from the mobile data mule. On

receiving a new request with window size w, the Mulle sends w packets before waiting

for an acknowledgement. The underlying link layer is used to identify any disconnection.

When a new data transfer request is received from another mobile data mule, the sensor

starts resending the last unacknowledged packet. The screen dump of the mobile data

mule (Robot platform) after a single round of data collection is presented in Figure 7.6.

The Mulle sensor node screen dump is presented in Figure B1 in Appendix B. In this

experiment, we used a mobile Robot as the mobile data mule. The mobile robot ER1 is

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2 3 4

Su
cc
e
ss
 R
at
io

Time (Seconds)

Discovery Success Ratio

Success Ratio

208

depicted on the right side of Figure 7.6. The screenshot on the left of the Figure 7.6 is a

magnified view of the sGaRuDa software framework running on the robot.

Figure 7.6: Window-based Data Collection: Mobile Robot Screen Shot

The above experimentation presented a data collection run involving a mobile

data mule. The key feature of the proposed data collection algorithm is to facilitate multi-

part data collection in the presence of multiple mobile data mules. A black box of the

experimental setup is presented in Figure 7.7. Figure 7.8 illustrates the working of the

data collection algorithm in the presence of multiple mobile data mules. A flow diagram

is used to represent the arrival of mobile data mules that communicate with the sensor.

Figure 7.7: Disconnected Data Collection - System Setup

 209

Figure 7.8: Flow diagram for disconnected Data Collection

The experimentation parameters are presented in Table 7.2. We use smaller

values for our parameters for ease of screenshot presentation. For this experimentation,

we used a PDA and a mobile robot based data mules. The implementation evaluations are

presented as screen dumps of the PDA and the mobile robot respectively. These screen

dumps are presented in Figure 7.9 and Figure 7.10. In this section we focus on the

implementation evaluation of the window-based data collection protocol in the presence

of multiple mobile data mules. A quantitative evaluation of the data collection algorithm

is presented later.

Parameters Value

Mobile Data Mules 2

Number of Packets 2

Sensors 1

Window Size 1

Table 7.2: Window-based Data Collection - Evaluation Parameters

210

Figure 7.9: Window-based disconnected data collection - Mobile Robot

Figure 7.10: Window-based disconnected data collection - PDA

The data available on the Mulle are collected by the PDA and the mobile robot

during independent data collection runs. The screenshots in Figure 7.9 and Figure 7.10

show the collected sensor data. As described previously, the use of acknowledgements

 211

creates a platform for disconnected data transfer in the presence of multiple mobile data

mules.

7.2.4 Mulle Sensor Node - Energy Consumption Experiments

In this section, we present Mulle control experiment results. The control

experiments focus on the energy consumption of the Mulle during the following

operations: 1) idle/sleeping, 2) listening 3) sensing and 4) communication. These states

have been discussed in detail in Chapter 3. The control experiments on the Mulle were

conducted using Mulle v3 sensor node. The experimental setup comprises an ADC PCI

card connected to the Mulle’s expansion board. The ADC PCI card is used to measure the

energy consumed by the Mulle sensor node. A desktop equipped with LabView

(NationalInstruments, 2008) software was used to record the energy consumed.

Experiment 1: Boot-up/Low-power Mode- In this case, we compute the energy

consumed by the Mulle to perform a boot-up operation. After a successful boot, the

Mulle enters a low-power mode i.e. a state with the properties: 1) Bluetooth radio

turned off and 2) MCU turned off. Result of our experiment is presented in Figure

7.11. In low-power mode the Mulle consumes only 1.4mW.

Figure 7.11: Experiment1: Bluetooth Mulle Boot-up/idle

Experiment 2: Sense- During sense, the Bluetooth radio is turned off and the MCU is

turned on. The energy consumed during a sense operation varies with the type of

sensor used on the Mulle. For example, an accelerometer might consume more

212

energy than the on-board temperature sensor. The experimental result presented in

Figure 7.12 used the on-board temperature sensor. The following operation is

performed by the Mulle to sense a sample of data. They are: 1) change from idle

state to sense state 2) read current temperature and 3) use the on-board analog-to-

digital convertor (ADC) to store the measured temperature to the on-board flash.

For experimentation, the Mulle was programmed to sense every 2 minutes. Each

sense operation consumed 19.82mW of energy. The section marked as a in Figure

7.12 indicates the Mulle’s boot operation. The section marked b indicates the

sensing operation using the on-board temperature sensor. The Mulle enters low-

power mode during the time period between sense intervals.

Figure 7.12: Experiment 2: Mulle Sense Operation

Experiment 3: Bluetooth Listen- During Bluetooth listen, the Bluetooth radio is

powered on and is in listen mode. For the following experiment, the Bluetooth

radio and the MCU were switched on. The Mulle performs frequent inquiry scan

enabling it to respond to any new incoming request. The Mulle only accepts

incoming connection and does not self-initiate a connection. The experimental

result is presented in Figure 7.13. The peaks in the power consumption shown in

Figure 7.13 are due to the back-off between subsequent inquiry scan. The energy

consumed by the Mulle in the Bluetooth listen state was measured to be 27.4mW.

 213

Figure 7.13: Experiment 3: Bluetooth Listen

Experiment 4: Bluetooth Connection: In this state, a Bluetooth connection is

established between the Mulle and the mobile data mule. The MCU, Bluetooth

radio and the real time clock are all powered up. The experimental outcome is

presented in Figure 7.14. The energy consumed by the Mulle during the connection

operation was measured to be 160.61mW per millisecond. We have stated through

the thesis that communication is the major energy consuming operation of a sensor

node. The outcome of our control experiment validates this claim.

Figure 7.14: Experiment 4: Bluetooth Connection

Further, to evaluate the use of threshold-based data collection by the sGaRuDa

framework, we conducted experiments to compare the energy consumed by the Mulle

214

when communicating with a mobile data mule at different locations. The experiment was

conducted for 30 seconds of continuous data exchange between the Mulle and the mobile

data mule. The mobile data mule used for this experimentation was the robot which was

placed in two different locations. The first location was an obstacle free environment

while the other was an obstacle filled environment. The mobile data mule was moving at

a constant speed of 30cm/sec. The result of our experimentation is presented in Figure

7.15. The result presented in Figure 7.15 shows higher energy consumption in an obstacle

filled environment. The energy consumption presented is over every second. From this

result, we prove the influence of obstacles and distance on the power consumed by the

Mulle. The experimental outcome clearly validates our argument that greater distance and

poor channel quality (obstacles) result in higher power consumption. The result supports

our proposed threshold-based data collection approach that considers real-world channel

quality metrics in the data collection process.

Figure 7.15: Experiment 5: Comparing Energy Consumption at varying Distances

7.2.5 Window-Based Data Collection Algorithm: Quantitative
Evaluation

In this section we evaluate the proposed window-based data collection algorithm

quantitatively. The discussion presented in section 7.2.3 evaluated the feasibility of the

proposed window-based data collection in real-world scenarios. To evaluate the data

collection algorithm quantitatively, we perform the following experiment: 1) data

collection in the absence of a window-based technique; 2) data collection using the

proposed window-based technique and 3) data collection using multiple mobile data

 215

mules. The experiments were conducted under varying channel qualities and mobile data

mule movement speeds. The mobile data mule used for experimentation is the mobile

robot whose speed was varied to simulate real-world movements. To achieve varying

channel quality, the mobile robot (data mule) was moved along paths within the building

separated by walls, desks and glass windows. Each experiment was repeated 5

consecutive times and the results were averaged. The parameters used for the

experimentation are presented in Table 7.3. The experimental setup within the building is

depicted in Figure 7.16. The mobile robot moves along the path represented by a red

arrow in the Figure 7.16. At different locations along the mobile data mule’s trajectory

Mulle 1 and Mulle 2 enter and exit the communication range.

Parameters Values

Total number of packets 100

Mobile Data Mule Speed 30 and 50 cm/second

Channel Quality Clear Straight path/Obstacle (walls, doors,
chairs, etc) filled path

Number of Sensors 3

Number of Mobile Data Mules 2

Table 7.3: Window-based Data Collection - Experiment Parameters

Figure 7.16: Windows -based Data Collection - Experimental Setup

216

Experiment 1: In this experiment, we compute the total number of packets

received by the mobile data mule from Mulle after connection establishment using non-

window based communication (case 1) and window-based communication (case 2). The

time the mobile data mule was within the coverage of the sensor nodes (Mulle) was

averaged to be 19 seconds for both cases (window-based and non-window). For this

experimental run, we only considered a single data collection run. A data collection run is

a single traversal of the sensor network by the mobile data mule. The time spent within

the sensor node’s coverage does not include the time involved in discovery. The mobile

data mule, with the help of Ekahau position engine (EPE) and available trajectory

information, estimates the residual time, i.e. time within the radio coverage range of the

sensor node. We assume sensors are location-aware and the location information is

obtained during the discovery phase.

For the experimental run, we used a clear data communication channel (clear line

of sight) between the Mulle and the mobile data mule at 30cm/sec movement speed. At

higher speeds, the communication path between the mobile data mule and the Mulle were

filled with obstacles. The experimentation outcome is presented in Figure 7.17. The

results show that even at higher speeds, at least 50% of the data is collected. Further, at

30cm/sec, the mobile data mule receives more data packets. The results validate the

effect of mobility, speed and poor communication channel quality on the efficiency of

data collection process. The window-based approach collects fewer packets than the non-

window based approach due the use of acknowledgements. In this example, the window

size used was 10. In both cases, using a single data collection run, the estimated time was

not sufficient to collect all the data. To validate the use of multi-part data collection, we

repeated the above experiment with an additional data collection run. The outcome of the

experimentation is presented in Figure 7.18.

The experimental outcome validates the advantage of using the proposed multi-

part data collection approach. As indicated by the experimental outcome, the use of

subsequent data collection runs, without changing any other data collection parameters,

increased the packet collection rate to 100%. With the non-window based approach, the

amount of packets collected remains the same, as none of the data collection parameters

were modified, i.e. the time the sensor and the mobile data mule are in range has not

 217

been modified. The major drawback of the non-window based approach is that Mulle is

not aware of the number of successfully delivered packets. Hence, any disconnection

results in the entire set of data packets being re-transmitted. This is not the case with the

window-based data collection technique. The sensor re-transmits only the lost data

packets.

Figure 7.17: Experiment1: Non-Window based and Window-based Data Collection -
1 Data Collection Run

Figure 7.18: Experiment1: Non-Window based and Window-based Data Collection -
2 Data Collection Runs

Experiment 2: Experiment 2 aims to evaluate the energy efficiency of the

proposed window-based data collection technique by evaluating a scenario involving two

mobile data mules. The experimental setup is similar to the one presented in Figure 7.16.

0

20

40

60

80

100

30 cm/sec 50 cm/sec

N
u
m
b
e
r
o
f
P
ac
ke
ts

Non‐Window Based Data Collection

Window‐Based Data Collection

0

10

20

30

40

50

60

70

80

90

100

30 cm/sec 50 cm/sec

N
u
m
b
e
r
o
f
P
ac
ke
ts

Non‐Window Based Data Collection Window‐Based Data Collection

218

In this experiment, we consider a sequential mobile data mule arrival. The first mobile

data mule stays within the communication range for 10 seconds while the second one stay

until it collects all the available data packets. In case 1, the experiment was conducted

without window-based acknowledgements while in case 2, the experiment was conducted

with a window size of 10. The outcome of the experimentation is presented in Figure

7.19.

The experiment was performed under two situations, a clear line of sight

environment and an obstacle filled environment. In each case, the mobile data mule’s

speed was randomly changed to determine the effect of mobility on the window-based

data collection approach. The result presented in Figure 7.19 is the total time taken to

collect the entire sensor data. The results show the savings in time using the window-

based technique. The results validate the observations made previously in Experiment 1.

Further, the non-window based approach requires at least 30sec to complete the data

collection while the adaptive window-based approach will run to completion during

subsequent data collection cycles/runs. To compute the total energy spent during the

communication we use the experimental result presented in Figure 7.14. We conclude

that, the use of the proposed window-based data collection technique results in at least

25% energy saving (based on Bluetooth energy consumption presented earlier).

Figure 7.19: Experiment2: Non-Window based and Window-based Data Collection

30
32.5

23
26

0

10

20

30

40

Line of Sight Path Obstacle

Ti
m
e
 (
se
co
n
d
s)

Total Time for Data Collection (Lesser the Better)
Speed: 30 to 50 cm/sec

Window‐Based Data Collection Non‐Window based Data Collection

 219

7.2.6 Dynamic Activation Schedule: Quantitative Evaluation

In this section, we evaluate the proposed dynamic activation schedule algorithm

by determining the sensor discovery ratio. The discovery ratio is defined in (1). The

sensor discovery ratio helps to compute an energy consumption graph using the

experimental outcomes. To verify and validate the gain in energy using the proposed

approach, we compare the evaluation outcome with a non-adaptive approach i.e. classic

sensor operation without dynamic duty cycle adaptation based on mobile data mule

arrival.

࢚ࢇࡾ ࢟࢘ࢋ࢜ࢉ࢙ࡰ ൌ
ࢇ࢚ࢀ ࢘ࢋ࢈࢛ࡺ ࢌ ࢛ࢌ࢙࢙ࢋࢉࢉ࢛ࡿ ࢚ࢉࢋ

ࢇ࢚ࢀ ࢘ࢋ࢈࢛ࡺ ࢌ ࢋ࢚࢙ࡸ ࢙ࢇ࢜࢘ࢋ࢚ࡵ
 (7-1)

The ability to change the activation schedule of the Mulle using the mobile data

mule allows the sensor to adapt to changing mobile data mule arrival rate. This is not

feasible in the classic sleep/wake (listen) approach. Moreover, computing the mobile data

mule’s arrival time on the sensor is an expensive process and requires enough

information about data mule arrivals. We use the terms wake and listen inter-changeably

to describe the process of the sensor waking up from the sleep mode and entering the

listen mode. For our experimentation, we have used 3 Mulles and one mobile data mule.

For the mobile data mule arrival we assumed a Poisson arrival process. The experimental

setup is presented in Figure 7.20. The trajectory of the mobile data mule is a straight path

and sensor nodes are placed in a row. This setup in no way restricts our approach for

other sensor deployments. We merely use this setup for ease of experimentation. We

consider two cases, Case 1) No sensor duty cycle adaptation and Case 2) Dynamic sensor

duty cycle (activation schedule) adaptation using the mobile data mule.

Figure 7.20: Experimental Setup - Dynamic Activation Schedule

220

We evaluate the proposed dynamic activation schedule-based discovery by

computing the discovery ratio for the setup presented in Figure 7.20. To compute the

Poisson arrival, we used MATLAB to generate arrival times over unit of time. To provide

an illustrative understanding of the dynamic activation schedule based sensor discovery,

the Mulle sensor’s wake interval, adapted (activation schedule) and non-adapted are

computed and the results are presented as a time series in Figure 7.21 using MATLAB.

The blue dots represent the mobile data mule’s arrival at time T. The red dots show the

adapted sleep/wake schedule of the Mulle. The green dots represent the non-adapted

sleep/wake interval of the Mulle. As illustrated in the figure, the non-adapted sensors

follow a periodic sleep/wake interval. On the contrary, the adapted sensor nodes have a

changing sleep/wake interval based on the mobile data mule arrival. Moreover, as we can

see in the figure, the dynamic activation schedule of the Mulle represented in red has less

wait time before discovering a mobile data mule compared to the non-adapted approach.

The experiment consisted of 4 data collection rounds and was repeated 5 times.

Figure 7.21: Experiment 1: Dynamic Activation Schedule

Based on the result presented in Figure 7.21, we present the result of the

discovery ratio computation in Figure 7.22. As we can see, the adapted approach

(dynamic activation schedule) produces 100% success rate in most cases compared to the

non-adapted approach. The overall discovery percentage using adapted approach is 94%

while the overall discovery percentage using the non-adapted approach is 70%.

Discovering a sensor node allows the mobile data mule to collect the sensor data

immediately, hence reducing the sensor node’s listen duty cycle. The result presented in

 221

Figure 7.21 is used to compute the overall energy consumed during the data collection

process. The total energy spent by the Mulle is given by (7.2)

࢟ࢍ࢘ࢋࡱ ࢇ࢚ࢀ ࢊࢋ࢛࢙
ൌ ࢋࢊࢊ ࢋ࢙ࢋ࢙ࢊ ࢋ࢚࢙ࢊ ࢚ࢉࢋࢉࢊሺࢌ , ሻࢋࢉࢇ࢚࢙ࢊ ∗ ۼ

(7-2)

Where d denotes the duty cycle for the corresponding state i.e. idle, sense, listen

and f (dconnection, distance) denotes the energy spent during connection which is impacted

by distance. N is the total number of connections established between the Mulle and the

mobile data mule.

Figure 7.22: Experiment 2: Discovery Ratio

To evaluate the energy consumed by the Mulle using the dynamic activation

schedule, we only consider the energy spent during the waiting state. We ignore the

energy spent during connection establishment and data exchange. The outcome of our

experiment is presented in Figure 7.23. The result in Figure 7.23 presents the total energy

spent by the Mulle in waiting for the data mule arrival. The result presents the cumulative

energy consumed at the end of each data collection round.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

Discovery/Connection Percentage

Dynamic Activation Schedule No Adaptation

222

Figure 7.23: Experiment 3: Dynamic Activation Schedule

As the result illustrates, the energy consumed by the non-adaptive approach

increases significantly. By contrast, the proposed activation schedule approach adapts

the energy consumption based on the data mule arrival. This is evident from the linear

increase in energy consumption. The experimental outcome verifies and validates the

proposed dynamic activation schedule algorithm’s energy efficiency over the classic non-

adaptive approach. We conclude that using the proposed dynamic activation scheduling,

the lifetime of the sensor node can be extended considerably hence improving the overall

sensor network lifetime. In this experimentation, we did not assume any sensor-sensor

communication. By introducing sensor communication, load balancing can be achieved

whereby only one Mulle is awake during a data collection round. This approach can

further reduce the energy consumed by individual sensors, therefore increasing the

overall sensor network lifetime.

7.3 3D-KNN: kNN-based Data Collection Using
Mobile Data Mules - Evaluations

In this section, we evaluate the cost-efficiency of the 3D-KNN algorithm. We

defined cost-efficiency within the scope of the 3D-KNN algorithm as a function of the

following: 1) energy involved in communication, 2) query processing latency,

(performance) and 3) impact on overall network lifetime (total energy consumed). The

energy spent on communication involves the energy consumed during each phase of the

0

100

200

300

1 2 3 4

Energy Consumption

Dynamic Activation Schedule No Adaptation

 223

3D-KNN algorithm. The energy spent during the final data collection phase varies

depending on the amount of data that needs to be collected from the sensor network.

We use the following key evaluation metrics to validate the cost-efficiency of the

proposed 3D-KNN algorithm. The evaluation metrics used are:

Boundary Estimation: Size of the kNN boundary estimated has a direct impact on the

overall energy consumption i.e. bigger the boundary, more communication is

involved and lesser the boundary, enough sensor nodes may not be covered.

Query Latency: Time taken to issue a kNN query and obtain a result for varying kNN

boundary sizes determined by k.

Energy Consumption: Overall energy consumed by the entire network to process a

kNN query request.

Energy Consumption per Node: Energy consumed by each sensor over a single round

of data collection in the presence of a mobile data mule.

Further, we validate the proposed 3D-KNN prediction algorithm by comparing

the results of the predicted 3D-KNN based data collection algorithm against the non-

predictive 3D-KNN algorithm. Our experimental evaluations were performed in

GloMoSim (2010) details of which were presented in Chapter 6. The parameters

presented in Table 7.4 were used for our experiments. A value of 2.5 was used for c to

compute the KNN-METRIC

Parameter Value

Number of Nodes (N) 20 to 200

Area Size (AT) 1000 x 1000 x 1000

Node Distribution Random

Radio Tx Power 10 dBm to 15 dBm

c 2.5

Mobile Data Mule 1

Mobile Data Mule
Mobility

Trajectory(Using
mobility file)

Table 7.4: GloMoSim Simulation Parameters

224

The sensor network environment simulated was the building scenario presented in

Figure 7.1. Each sensor node is assumed to be location-aware. The sensors during initial

run do not have any knowledge about the network or their neighbouring sensors.

Neighbour discovery is done at runtime when sensors process the kNN query. This rule

makes the proposed 3D-KNN algorithm more flexible to network infrastructure changes.

The wireless sensor nodes are assumed to be static and listening to broadcast messages

using a periodic sleep/wake schedule. Using a periodic wake/sleep schedule might result

in some nodes being unavailable during data collection. This problem can be overcome

using the dynamic activation schedule algorithm proposed and evaluated in previous

sections. The mobile data mule has the ability to move within the sensor network along a

pre-defined path. This path cannot be changed as we assume that mobile data mule

cannot be controlled by the simulation environment. For our evaluations, we only

consider one-shot kNN queries. One-Shot kNN queries are issued only once and the

results are computed based on the query response. Subsequent kNN query is not issued

from the same location. To validate the proposed 3D-KNN algorithm, we have performed

the following experiments:

1) Evaluate the boundary estimation algorithm

2) Evaluate the kNN query processing efficiency

3) Evaluate the energy consumed during kNN query processing

7.3.1 Boundary Estimation Algorithm Evaluation

The kNN query is propagated by the mobile data mule into the sensor network.

The boundary area is estimated by the mobile data mule based on the sample size k. In

this section, we present experimentation by considering a range of values for the sample

size k. Our aim is to validate the computing efficiency of the boundary estimation

algorithm for different values of k. The result of our experiment is presented in Figure

7.24. The result of the boundary estimation algorithm is a set S which comprises at least k

nearest neighbours.

 225

Figure 7.24: 3D-KNN Experiment 1: Boundary Estimation

The key evaluation criterion for the boundary estimation algorithm is the size of

set S. The boundary area comprising s sensors needs to cover at least k sensor nodes such

that k ≤ s. The size of the set S impacts the overall energy consumption. As illustrated by

the evaluation outcome, for a nearest neighbour size k, the estimated boundary set S

covers at least k sensor nodes. The size of the set S is sufficiently large encompassing the

required number of sensors. This is verified by the experimental outcome in case 4. In

case 4, the experiment was conducted with a sensor network capacity of 200 nodes and

for a requested k of size 130, the computed kNN boundary consisted of 140 sensor nodes.

The experimental outcome validates the efficiency of the boundary estimation algorithm.

The efficiency is determined by the size of set S i.e. S is neither too small nor too large.

7.3.2 Query Processing Latency

The query latency is the time taken to process a kNN query for varying sizes of k.

To verify the query performance of the proposed 3D-KNN algorithm, we have performed

experimentation for various sensor network sizes under changing simulator parameters.

To validate the performance of the 3D-KNN algorithm, we have compared the

experimental results of the 3D-KNN algorithm with a static sensor network-based kNN

query processing algorithm, namely, KBT (Winter et al., 2005). The KBT approach is

most relevant to the proposed 3D-KNN as it uses a infrastructure-free approach. Other

techniques employing kNN queries in sensor networks use indices or require special

226

sensor hardware (Wu et al., 2007) to execute the kNN queries. The KBT approach

employs a fixed TreeHeight i.e. the maximum hop distance the query propagates. This

value is assumed to be static and hence influences the kNN boundary. The problem with

this approach is that kNN boundary cannot adapt dynamically for varying values of k. We

implemented the KBT algorithm in GloMoSim using a fixed hop-count technique i.e.

sensors stop broadcasting after a particular number of hops have been reached. We varied

the value of the TreeHeight manually during every simulation run based on the nearest

neighbour size (k). This operation is done dynamically during 3D-KNN execution. The

result of the experimental outcomes is presented in Figure 7.25. The experiment was

conducted by varying the number of sensors from 100 to 200. The value of k was varied

between 30 and 100. The time required to process the kNN query involved the operations

query preparation, query propagation and query response. With KBT, the centralised sink

was fixed at a particular location while in the case of 3D-KNN the mobile data mule’s

location was changed based on the pre-defined trajectory. For increasing size of the

sensor network, the radio range was modified to suit large-scale deployment areas. We

present a short analysis of the results in the following paragraph. To help explaining the

experimentation outcome, we have plotted a trend line over the results.

Figure 7.25: 3D-KNN Experiment 2: Query Latency

The trend line projected over KBT indicates a slightly non-linear increase in time

as the number of nearest neighbours increase. On the contrary, a linear increase in time is

noticed for the 3D-KNN algorithm as the number of nearest neighbours increase. The

primary reason for the increase in time using the KBT algorithm is attributed to the use of

0

0.5

1

1.5

2

2.5

3

3.5

30 60 80 100

Ti
m
e
(s
e
co
n
d
s)

Nearest Neighbour Size (k)

3D‐KNN Query Latency
KBT 3D‐ KNN

 227

fixed TreeHeight while the linear increase in time using the 3D-KNN algorithm is

attributed to the use of dynamic kNN boundary computation. The result clearly proves the

performance advantage of the 3D-KNN algorithm over KBT under the given simulation

parameters. Further, the increase in time impacts the amount of energy spent by the

sensor network to process the kNN query. This influence is investigated in the next

section.

7.3.3 Energy Consumption

In this section, we perform experimentation to evaluate the energy consumption

of the 3D-KNN algorithm. The experimental results presented in this section include the

energy consumed during query preparation, query propagation, query execution and

nearest neighbour computation. To validate the energy-efficiency of the 3D-KNN

algorithm we compare our experimental outcomes with KBT (Winter et al., 2005).

The result of our experimentation includes the energy spent by the mobile data

mule to propagate and process the kNN query. The energy involved in moving the mobile

data mule from one location to another is not taken into consideration. For each

experiment, we changed the value of k (nearest neighbours) to verify the feasibility of the

proposed 3D-KNN algorithm over large-scale sensor networks. Moreover, it also proves

the energy-efficiency of our proposed approach in large-scale sensor networks. The result

of the experimental outcomes is presented in Figure 7.26. We present a short analysis of

the experimental results in the paragraph following Figure 7.26.

Figure 7.26: 3D-KNN Experiment 3: Energy Consumption

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

30 60 80En
e
rg
y
C
o
n
su
m
p
ti
o
n
 (
J)

Nearest Neighbour Size (k)

3D‐KNN Energy Consumption
KBT 3D‐KNN

228

To help the analysis, we have projected trend lines on the experimental results. It

can be noted that increase in energy consumption using KBT is non-linear, while the

increase in energy consumption is linear using the 3D-KNN algorithm. The energy

efficiency of the proposed 3D-KNN algorithm is attributed to the following: 1) the

boundary estimation based on network density that covers at least k sensors, hence,

reducing the total number of message broadcasts in the network; 2) plane rotation and

nearest neighbour selection based on the KNN-METRIC choosing sensor nodes that are

both closer and energy-efficient, (better communication channel). We use KBT’s

experimental outcomes as a benchmark for kNN query processing in sensor networks.

The experimental outcomes clearly validate the energy efficiency of the 3D-KNN

algorithm. Further, under given test environment and our simulation parameters, 3D-

KNN proves to be more energy-efficient than KBT.

To further evaluate the energy consumption of the proposed 3D-KNN algorithm,

we evaluate the neighbour selection algorithm that employs KNN-METRIC for nearest

neighbour selection. To provide an understanding of the performance gain using the

proposed neighbour selection algorithm, we compare 3D-KNN against a basic kNN

(KNN) implementation. The basic kNN uses the same principles as KBT, employing a

fixed TreeHeight (hop count). The only difference though is that basic kNN uses a

modified KNN-METRIC to compute the list of nearest neighbours. The modified KNN-

NETRIC takes only distance into consideration, excluding signal-to-noise ratio (SNR)

parameter. For the evaluation, we compare the selected neighbour list based on the

corresponding metrics. We use two cases for the simulations, Case 1) Basic kNN (KNN)

and Case 2) 3D-KNN.

The simulation results are presented in Figure 7.27. The KNN-METRIC computed

in case 1 is higher than the KNN-METRIC computed in case 2. This is quite obvious since

only distance is taken into account in case 1. In both cases, higher value represents better

performance i.e. higher KNN-METRIC indicates lesser distance in case 1. Similarly,

higher KNN-METRIC in case 2 indicates lesser distance and better SNR. Further, we

discuss two specific cases highlighted in the graph by black circles involving sensor node

5, 6, 8 and 9.

 229

As indicated by the results the sensors have varying KNN-METRIC for

corresponding cases. KNN-METRIC for node 5 is higher than node 6 for case 1. By

contrast, the KNN-METRIC for node 5 is lower than node 6 in case 2. This indicates a

different sensor node selection using the two metrics. The reason behind the difference is

the introduction of SNR parameter in the KNN-METRIC which determines the node

selection process. To elaborate further, assume sensor node 5 is at a lesser distance than

sensor node 6. With the basic KNN approach, sensor node 5 would be selected due to

lesser distance. Using 3D-KNN approach which introduces SNR parameter, the result can

be interpreted as node 5 which is at a lesser distance than node 6 has poor communication

channel quality. Hence, node 6 is a better choice from an energy perspective even though

it is at a farther distance. We come to this conclusion from our previous experimentations

where we have proven that distance and signal quality produces an impact on the overall

energy consumed during communication. The same observation can be made for the

sensor nodes 8 and 9. As stated in chapter 4, the KNN-METRIC can be further extended

by introducing additional parameters that increase the energy-efficiency of the data

collection process.

Figure 7.27: 3D-KNN Experiment 4: Neighbour Selection

7.3.4 Energy Consumption of Individual Sensor Nodes

In this section, we perform experimentation to compute the energy spent by

individual sensors. The experimental result is the outcome of a data collection run. The

experimental setup involves 80 sensors within a 1000 x 1000 x 1000 space. The mobile

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

K
N
N
‐M

ET
R
IC

3D‐kNN: Neighbour Selection
3D‐KNN KNN

230

data mule travels within the sensor network in a known trajectory collecting sensor data.

At each instance, it issues a kNN query, collects query responses, computes nearest

neighbours and collects sensor data. Unlike approaches discussed in the literature (Shah

et al., 2003) the sensors were not distributed in a grid fashion. A random sensor network

deployment was used. The result of our simulation is presented in Figure 7.28.

The noticeable outcome of our experimentation outcome presented in Figure 7.28

is the uniform depletion of energy across the entire sensor network. The illustration was

computed using MATLAB’s 3D bar chart. Though the sensors in the graph are

represented in grids, the experimentation was not performed by placing sensors in grids.

Hence, the position of a sensor in the graph does not correspond to its actual location

within the environment. The nodes with nil energy usage were the sensor nodes that did

not fall within the path of the mobile data mule. These sensors were distributed outside

the kNN boundary. The simulation results presented were averaged from 10 simulation

runs. The energy consumption of individual sensors further validates the energy-

efficiency of the proposed 3D-KNN algorithm.

Figure 7.28: 3D-KNN Experiment 5: Individual Energy Consumption

7.3.5 Energy Consumption with Neighbour Prediction

In this section, we evaluate the proposed neighbour prediction algorithm used by

the mobile data mule to improve the energy efficiency of the data collection process. To

 231

validate the proposed algorithm, we compare the outcome of the neighbour prediction

experimentation with a non-predictive 3D-KNN approach. The non-predictive approach

does not compute future nearest neighbours. Hence, a new kNN query with no reference

to previously discovered sensors is broadcast into the network. Our experimentation setup

is presented in Figure 7.29. The red triangle and the lines indicate the position and the

trajectory of the mobile data mule.

The prediction algorithm is employed by the mobile data mule over the result-set

obtained from the kNN query. The experimental setup consisted of 20 sensors within a

1000 x 1000 x 1000 space as shown in Figure 7.29. The mobile data mule propagates a

kNN query at each location marked by the red triangle. Based on the query response, the

mobile data mule computes future neighbours along its path. This information is then

propagated with the next kNN query at the subsequent location. Sensor nodes receiving

the new broadcast with pre-selected node list send the data directly to the mobile data

mule. The outcome of the experimentation is presented in Figure 7.30. The energy

consumption results are an average of 5 independent data collection runs using both

predictive and non-predictive approaches.

Figure 7.29: 3D-KNN Experiment 6a: Neighbour Prediction Simulation Setup

The experimental results show considerable energy savings using the proposed

prediction algorithm. The prediction-based approach saves up to 35% more energy than

the non-predictive approach. This validates the advantage of using prediction in the 3D-

232

KNN algorithm. Further, savings in energy depicted in this case for a sensor network of

size 20 with a requested k of 15. The sample size 15 almost covers 75% of the sensor

network deployment area. Hence, extending our outcome to large-scale sensor networks

would result in higher energy savings.

Figure 7.30: 3D-KNN Experiment 6b: Neighbour Prediction

7.4 R-CS (Context Spaces Extensions) -
Evaluation

In this section, we evaluate the proposed Context Spaces (Padovitz et al., 2004)

extensions incorporated in R-CS allowing R-CS to dynamically model smart spaces using

collected sensor data. The smart spaces in Context Spaces are represented as situations.

Situation inference is made possible using contextual information from sensor sources.

We evaluate the following features of R-CS: 1) Hierarchical context attribute regions, 2)

Sensor quality metric incorporation into the Context Spaces error computation algorithm

and 3) Dynamic situation modelling using partitioned situation spaces.

Our experimentation results are based on synthetic sensor values using our R-CS

simulator presented in Chapter 6. The simulator facilitates defining sensor sources,

situation spaces and context state values. Further, the simulator can be used to reason and

infer situations based on continuous streams of synthetic sensor data. In each experiment,

we define situations with corresponding context attributes. The confidence computed is to

0

0.03

0.06

0.09

0.12

0.15

0.18

Without Prediction With Prediction

E
n

er
gy

 C
on

su
m

pt
io

n
 (

J)

Overall Energy Consumption for k = 15

 233

determine the occurrence of a situation based on available evidence i.e. context state

values from sensor. For example, consider two situations playing and resting defined

with the context attribute heart rate. Depending on the value of heart rate at instance t it

is possible to determine the occurrence of the situation playing or resting. The confidence

computed for each situation provides a measure of certainty with which a particular

situation’s occurrence can be inferred.

7.4.1 Hierarchical Context Attribute Regions- Evaluation

R-CS incorporates multilevel context attributes regions by defining relationships

between parent attributes and dependent attributes. For example, reasoning the situation

running/walking using a set of context attributes age, speed, heart rate, etc, the Context

Spaces (CS) model allows us to define the corresponding attribute regions without the

ability to define relationships among them. We argue that defining relationships between

related attributes would increase the reasoning ability of the context-aware system i.e.

speed, heart rate, etc, of a person at an age of 20 to 30 is different from a person at the

age of 40 to 50. By defining specific attribute regions based on parent attribute criteria,

we reduce the uncertainty in the reasoning process.

In our simulation experiment, we model the two situations running and walking

based on the context attribute definition presented in Table 7.5 and Table 7.6. The

simulation experiment takes in consideration an average human being and does deal with

specific categories like athletes, etc., though extending the situation definition using

hierarchical attributes for different categories of human beings is straightforward.

Situation Running Relevance

Attribute Regions 0 to 5

Location "=GYM" "=PARK" "!=OFFICE" 2

Age Sub Regions "20 - 30" "40 - 50" 5

 Speed >= 6 & <= 8 >= 2 & <= 4 5

 Heart Rate
>=93 &
<=146 >=83 & <=131 5

 Systolic BP
>=108 &

<=122 >=112 & <=130 5

Table 7.5: R-CS Experiment 1: Situation Running Definition

234

Situation Walking Relevance

Attribute Regions 0 to 5

Location "=GYM" "=PARK" "=OFFICE" 2

Age Sub Regions "20 - 30" "40 - 50" 5

 Speed >= 3 & <= 5 >= 1 & < 2 5

 Heart Rate
>=93 &
<=143 >=83 & <=127 5

 Systolic BP
>=108 &

<=122 >=112 & <=130 5

Table 7.6: R-CS Experiment 1: Situation Walking Definition

The definition of speed, heart rate and systolic blood pressure (BP) are defined as

sub regions (hierarchical) for the age attribute region. With changing context state value

for age the corresponding attribute region is used to infer the situation. To validate the

use of hierarchical attribute regions we compute the overall confidence for each situation

being inferred by varying the age parameters to satisfy the parent attribute region

predicate. The outcome of the experimentation is presented in Figure 7.31.

Figure 7.31: R-CS Experiment 1: Hierarchical Attribute Region Evaluation

Reasoning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 -
50

20 -
30

40 -
50

20 -
30

Age

C
o

n
fi

d
en

ce

Running

Walking

Identical Parameters.
Changing AGE range

Changing Age Range
and other parameters

 235

During the experimentation, for the first two cases, we used overlapping values

for the dependent context attributes representing the situations walking/running and

changed the age parameter. The outcome of this experiment is reflected in the first 8

outcomes in Figure 7.31. For the rest of the experimentation all the parameters were

changed but were kept within the attribute region definitions. The key observation from

the experimentation is the ability for R-CS to quickly infer situations based on changing

attribute region definitions that are dependent on a parent attribute region. To simulate a

similar scenario in CS, we would need to define individual situations for each case,

namely: 1) “Running – 40 to 50”; 2) “Walking – 40 – 50”; 3) “Running – 20 – 30“; 4)

“Walking – 40 – 50”. Further, a direct comparison with CS is not feasible as CS does not

have the capability to define attribute region relationships.

7.4.2 Sensor Data Quality and Flexible Attribute Region -
Evaluation

In this subsection, we evaluate the proposed sensor data freshness-based error

computation algorithm and the flexible attribute region used to determine the contribution

of a context attribute. We compare the result of our experimentations with Context

Spaces (CS) to validate the importance of introducing sensor data freshness and flexible

attribute regions in the reasoning process. The sensor data freshness and the flexible

attribute regions have been incorporated into the contribution computation function of R-

CS. The simulation experimentation to validate the proposed approach was performed for

the situation presentation. The definition for the situation presentation is presented in

Table 7.7. Outcome of the contribution computation for a sample synthetic data is

presented in Table 7.8.

Situation: Presentation

Attributes Regions Weights

LIGHT “>-=10" "<=20" 0.3

NOISE " > 20 " " < 30" 0.25

PROJECTOR "= ON" "= OFF" 0.35

PEOPLE "> 5 " "< 10 " 0.1

Table 7.7: R-CS Experiment 2: Presentation Situation Definition

236

Freshness Threshold
≥ 2 CS R-CS

Context
Attribute

Attribute
Region

Context
State Error Freshness Contribution

Light 10 to 20 12 90% 1 1 1

Noise 20 to 30 19.95 90% 2 0 1

People 5 to 10 10 100% 3 1 0

Table 7.8: R-CS Experiment 2: Comparing CS and R-CS contribution computation

We discuss two specific cases related to flexible attribute region and sensor data

freshness. The R-CS system computes a contribution of 1 for the context attribute noise,

taking into consideration the outer attribute region definition. For the same context

attribute, Context Spaces compute a contribution of 0. Similarly, for the context attribute

people, CS computes a contribution of 1 while R-CS computes a contribution of 0. This

is due to the introduction of freshness threshold used by R-CS to compute the attribute’s

contribution i.e. sensor data used for reasoning the current situation is old. The outcome

of the experimentation is presented in Figure 7.32. The x-axis indicates the number of

simulation runs. For each simulation run, a different set of sensor value was used. The y-

axis indicates the overall confidence of the reasoned situation computed using CS and R-

CS approaches.

For the simulation, we used a freshness threshold value of 2. The reasoning

process was performed over 6 synthetic data sets. We note some interesting outcomes

from the experimentation which is discussed in detail. The data samples 1, 2, 5 and 6

produce a higher confidence using R-CS approach due to the incorporation of flexible

attribute region. In each of those cases, one or more of the context attributes context state

values, (current value of the sensor), satisfied the outer range of the context attribute

region definition. Since CS does not account for any moderate deviation from the defined

attribute regions, a clear difference in the confidence computed is observed between CS

and R-CS reasoning. Further, with respect to data samples 3 and 4, we note the

confidence computed using R-CS is equal to CS in the first case, while it is lesser than

CS in the second case. In the first case, they are equal because all context state values and

 237

data freshness values are assumed to be within the defined ranges. Hence, CS and R-CS

results are identical. In the second case, the data freshness value of one of the context

attributes was generated to be outside the data freshness threshold. In this case R-CS

detects the loss in data quality, (old sensor data), influencing the overall computed

confidence. The effect of old data does not affect CS reasoning. Even though the

computed confidence using R-CS is less than CS, we claim that R-CS outcome is more

reliable with lesser error when compared to CS. Hence, the introduction of sensor data

quality increases reasoning quality and reliability. This claim is supported and validated

by the experimental outcomes. We also deduce from the experimental result that

incorporating data freshness heuristic greatly increases the reasoning accuracy.

Figure 7.32: R-CS Experiment 2: Evaluating Sensor Data Quality and Flexible
Attribute Region

7.4.3 Dynamic Situation Modelling using Partitioned
Situation Spaces - Evaluation

In this section, we evaluate the proposed dynamic situation modelling technique

that computes temporal situation space definitions on-the-fly using available sensor data.

The dynamic situation composition is achieved using the situation partitioning approach.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

C
on

fi
d

en
ce

Simulation Runs

CS R‐CS

238

Reasoning using dynamic situations is further assisted by the use of dynamic context

attribute weight re-computation algorithm.

To evaluate and validate the dynamic situation modelling approach we perform

experimentation using JAVA-based R-CS implementation. For our experimentation, we

have used six context attributes to define the universal situation space. We used two

universal situation spaces, namely, presentation and meeting for the experimentation. The

context attribute definitions, situation definitions and importance of context attributes

(relevance) are presented in Table 7.9 and Table 7.10. With R-CS implementation

weights can be defined within a specified minimum and maximum range which is then

normalized during the reasoning process.

The partitioned situation space is computed based on the predicate definition

given by the partition conditions (). The partition parameter predicate definition used for

experimentation is 0 < δ < 2 , 2<=δ<3 and 3<δ <=5. The partitioned universal situation

space definitions based on the partition parameter are presented in Table 7.11 and Table

7.12. Based on the partitioned universal situation space the temporal situation space is

computed by R-CS on-the-fly. The temporal situation space computed during the

simulation selects context attributes from corresponding partition based on available

sensor data.

Situation: Presentation Relevance
(0 to 5) Attributes Regions

A1 "= DIM" "! =ON" "! =OFF" 3

A2 " > 1 " " <=3" 3

A3 "= ON" "!= OFF" 2

A4 ">= 2 " "< 8 " 2

A5
"= Presentation
Mode" "= Standby" "!= OFF" 0.8

A6 "= Inside" "!= Outside" 0.9

Table 7.9: R-CS Experiment 3: Situation definitions for Presentation

 239

Situation: Meeting Relevance (0
to 5) Attributes Regions

A1 "!= DIM" "= ON" " !=OFF" 3

A2 " > =2.5 " " <=5" 3

A3 "!=ON" "= OFF" 2

A4 ">4 " "< 10" 2

A5
"!= Presentation
Mode" "= Standby" "= OFF" 0.8

A6 "= Inside" "!= Outside" 0.9

Table 7.10: R-CS Experiment 3: Situation definitions for Meeting

Partition 0 < δ < 2 2<=δ<3 3< δ <=5

Situation Presentation Relevance
(0 to 5)

Partition

Attributes Regions

A1 "= DIM" "!= ON" "!= OFF" 3 P1

A2 " > 1 " " <= 3" 3 P1

A3 "= ON" "!= OFF" 2 P2

A4 ">= 2 " "< 8 " 2 P2

A5

"=
Presentation
Mode"

"=
Standby" "!= OFF" 0.8

P3

A6 "= Inside" "!= Outside" 0.9 P3

Table 7.11: R-CS Experiment 3: Partitioned Situation Space definitions for
Presentation

Situation: Meeting Relevance (0
to 5)

Partition

Attributes Regions

A1 "!= DIM" "= ON" "!= OFF" 3 P1

A2 "> 2.5 " "< =5" 3 P1

A3 "!=ON" "= OFF" 2 P2

A4 " > 4 " " <10" 2 P2

A5

"!=
Presentation
Mode"

"=
Standby
" "= OFF" 0.8

P3

A6 "= Inside" "!= Outside" 0.9 P3

Table 7.12: R-CS Experiment 3: Partitioned Situation Space definitions for Meeting

240

The CS approach would use the attributes in partition 1 to define the situation

space while R-CS uses universal situation space which has the list of all possible context

attributes that can describe the situation. At each step, the reasoning is performed by

expanding the search into subsequent partitions, re-computing weights until the required

confidence threshold is reached. Before we discuss the results of our experimentation we

present the computation involved in computing the confidence using CS and R-CS

approaches for a set of synthetic sensor data. In each case, we compute the overall

confidence of a situation to determine the situation that is currently occurring based on

available context attribute. In this case, using the CS and R-CS model, we try to

determine the occurrence of the situation meeting and presentation.

We compute the confidence for each reasoned situation using sensor values

(“OFF”, 3,) for CS and (“OFF”, 3, “ON”, “5”,”Standby”,”Inside”) for R-CS. As CS

considers only the primary (first) partition, the confidence computed using CS approach

is obtained from context state values for context attributes in partition 1. Further, CS does

allow flexible attribute regions i.e. outer and inner range for attribute regions. The

reasoning process is presented below.

S (Presentation) = {A1, A2} and S (Meeting) = {A1, A2}

CS presentation = A1 * w1 + A2 * w2 = 0.5 * 0 + 0.5 * 1 = 0.5

CS meeting = A1 * w1 + A2 * w2 = 0.5 * 0 + 0.5 * 1 = 0.5

Based on the two context attributes A1 and A2, the confidence computed by CS is

0.5 for each situation. The computed confidence is not sufficient enough to infer the

occurrence of a situation. We now compute the confidence of the two situations using the

R-CS approach. By expanding the search into other partitions, we define a temporal

situation space ST taking partition 1 and partition 2 into consideration. For this

computation, we incorporate flexible context attribute regions. The reasoning outcome is

presented below.

ST (Presentation) = {A1, A2, A3, A4} and ST (Meeting) = {A1, A2, A3, A4}

R-CS Presentation = 0.3 * 0 + 0.3 * 0.8 + 0.2 * 1 + 0.2 * 1 = 0.64

R-CS meeting = 0.3 * 0 + 0.3 * 1 + 0.2 * 0 + 0.2 * 1 = 0.5

 241

The results clearly show improvement in the computed confidence for the

situation presentation. This is attributed to the use of temporal situation spaces. The

temporal situation space dynamically represents the virtual situation using available

context information (defined in other partitions). The result of the experiment validates

R-CS’s advantage over CS. A key observation from our experimentation is the difference

between the confidences of the two situations being reasoned. With CS approach the

difference is 0, while using R-CS the value is 0.14. We argue this may not be sufficient to

infer the situation presentation. Our proposed solution to this problem is the dynamic

weight re-computation approach. The computations related to the weight re-computation

technique for the context attribute in the partitions 1 and 2 are presented in Table 7.13

and Table 7.14.

Temporal Situation: Presentation

Relevanc
e (0 to 5)

Initial
Weight
s

Recom
puted
Weight
s

Normal
ized Attributes Regions

A1 "= DIM" "!= ON"
"!=
OFF" 3 0.3 0.5 0.36

A2 " > 2 " " <= 4" 3 0.3 0.3 0.21

A3 "= ON" "!= OFF" 2 0.2 0.4 0.29

A4 ">= 2 " "< 8 " 2 0.2 0.2 0.14

Table 7.13: R-CS Experiment 3: Weight Re-Computation for Overlapping Regions
(Presentation)

Temporal Situation: Meeting

Relevanc
e (0 to 5)

Initial
Weight
s

Recom
puted
Weight
s

Normal
ized Attributes Regions

A1 "!= DIM" "= ON" "= OFF" 3 0.3 0.5 0.36

A2 "> 2.5 " "<=5" 3 0.3 0.3 0.21

A3 "!=ON" "= OFF" 2 0.2 0.4
0.2857
14

A4 " > 4 " " < =10" 2 0.2 0.2
0.1428
57

Table 7.14: R-CS Experiment 3: Weight Re-Computation for Overlapping Regions
(Meeting)

242

We re-compute the confidence for the situations meeting and presentation using

the newly computed weights. The confidence calculation is presented below. The weight

re-computation is round 2 of the R-CS reasoning technique.

C Presentation = 0.36 * 0 + 0.21 * 0.8 + 0.29 * 1 + 0.14 * 1 = 0.6

C meeting = 0.36 * 0 + 0.21 * 1 + 0.29 * 0 + 0.14 * 1 = 0.35

The following are the inferences from the above results obtained using R-CS. The

computed confidence for the situation presentation reduces by a very small percentage

over round 1. But the difference in the confidence between the two situations has

increased significantly. The weight re-computation algorithm aims to increase the

certainty and hence the accuracy of the reasoning process. The higher the confidence of

the situation being reasoned, the higher is the certainty of its occurrence. Uncertainty in

this case is introduced by how accurately the current situation can be inferred from a list

of other possible situations.

We now present the result of our simulation experimentation for a set of synthetic

sensor data for which confidence is computed using R-CS and CS approaches. For

evaluation, we compute the difference in confidence for the reasoned situation. This

evaluation is used to verify the improvement in the reasoning ability of R-CS over CS.

The simulation outcomes are presented in Figure 7.33, Figure 7.34 and Figure 7.35. The

results are presented in the following format:

1) Figure 7.33 presents the reasoning outcomes using CS for 10 sets of synthetic

sensor values.

2) Figure 7.34 presents the reasoning outcomes using partitioned situation space-

based R-CS approach for the same set of 10 synthetic sensor values.

3) Finally Figure 7.35 presents a comparison of difference in confidence

computed for each situation using CS and R-CS approaches.

 243

Figure 7.33: R-CS Experiment 3 - CS Reasoning Results

The key observations of the experiments are discussed further. From the result

presented in Figure 7.33, we note that difference in the confidence between the situations

being reasoned is less for CS. This reduces Context Spaces ability to infer the occurrence

of the situation with high certainty. By certainty, we refer to the ability of the reasoning

process to infer the situation (currently occurring) correctly. The result presented in

Figure 7.34 shows the outcome of confidence computation using R-CS based reasoning.

By incorporating partitioned situations and weight re-computations, we note that

computed confidence for the situation presentation is higher compared to CS. For

example, in case 3, CS computes a confidence of 0.6 for the situation presentation while

R-CS computes a confidence of 0.7. The result clearly indicates the importance of

dynamic situation modelling based on available context information. The result also

validates the reasoning effectiveness of R-CS over CS approach.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

C
o
n
fi
d
en

ce

CS Reasoning

CS Approach Presentation CS Approach Meeting

244

Figure 7.34: R-CS Experiment 3 - R-CS Reasoning Results

Figure 7.35: R-CS Experiment 3: Difference in Confidence of Reasoned Situations
using CS and R-CS

To further exemplify the improvement in the reasoning process using R-CS, we

have computed the difference in the computed confidences for the situations being

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

C
o
n
fi
d
en

ce

R-CS Reasoning
R‐CS After Weight Tranformation Presentaion

R‐CS After Weight Tranformation Meeting

R‐CS Intial Round Presentation

R‐CS Intial Round Meeting

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10

C
o

nf
id

e
nc

e
D

iff
e

re
nc

e

Confidence Threshold

CS R-CS

 245

reasoned. The graph presented in Figure 7.35 is the outcome of this computation. As the

result indicates, the difference in confidences computed by CS is less than 0.05 in most

cases. This value may not be sufficient to infer the current situation, as the results

indicate the likelihood of occurrence of both situations. Since, the situations are

orthogonal (cannot occur parallel), this is not a possibility. For example, in case 3, the

confidences computed for presentation and meeting using CS is 0.57 and 0.6 and R-CS is

0.7 and 0.4 respectively. With CS reasoning, it may be difficult for the context-aware

system (system that uses the CS context model) to determine the occurring situation as

the confidences of both situations are almost identical. By contrast, with R-CS approach,

the considerable difference in computed confidences increases R-CS reasoning capability

to infer the situation presentation with higher confidence. This is indicated from R-CS

results presented in Figure 7.35. The R-CS results show an average difference of 0.3. The

experimental results verify and validate the enhancement in the reasoning process using

the proposed R-CS model.

7.5 Summary

This chapter has presented outcomes of experiments performed to verify and

validate our algorithms and methodologies proposed in chapters 3, 4 and 5.

Our experimental evaluations of the proposed sensor data collection framework

using day-today mobile devices (mobile data mule) have significant potential for energy

saving. Our approach can be considered as a new paradigm for data collection in future

pervasive environments. Further, our experimental evaluations for data collection using

kNN queries perform better than current sensor kNN query processing algorithms within

our test simulation environment, exhibiting significant savings in sensor energy and

hence increasing sensor network lifetime. Finally the Context Spaces extensions

incorporated in R-CS have been validated with sufficient experimental evaluations. The

results prove the enhanced reasoning ability of R-CS over CS reasoning.

246

8
Conclusions and Future Work

Data collection is a key area that needs to be addressed for widespread adoption

of sensor networks. Sensor networks play a vital role in pervasive computing enabling

sensing data from physical environments. They provide access to environmental data

which in the past may not be feasible. Sensor networks have helped realise the pervasive

computing vision.

This thesis has addressed the challenges of sensor data collection and dynamic

modelling of smart situation spaces using collected sensor data. We conclude the thesis

by highlighting the contributions and the discussing the lessons learnt in addressing the

three research questions presented in section 1.3.

8.1 Contributions of the Thesis Work

A system framework for sensor data collection (sGaRuDa): Highlighting the first

research question, we investigated the feasibility of using day-to-day mobile

devices as an energy-efficient alternative to collect and deliver data from sensor

networks using short range communication technologies (e.g. Bluetooth-based

sensor networks). Mobile devices, more specifically mobile phones usually have

enough spare capacity, (battery and processing), resulting from the few hours of

usage. We exploit the spare capacity available on mobile phones to build a mobile

access network for wireless sensor networks. The proposed system framework,

sGaRuDa is a data collection architecture that facilitates day-to-day mobile devices

(e.g. mobile phones) to act as sensor data collectors. The proposed system

facilitates cost-efficient sensor data collection compared to fixed data collection

infrastructure. Moreover, in many applications, the proposed system can function in

the absence of a fixed data collection infrastructure. The use of mobility results in

 247

considerable energy savings. Specifically, the use of mobile data mules can result

in an energy saving in the range of 10% to 40%. This saving in energy can be

directly related to extension in overall network lifetime of at least 10%. Extensive

evaluation and experimentation presented in this thesis verify and validate these

results. Further, the proposed system does not require a dedicated mobile sensor

data collector to be present within the sensor network environment. The system

relies on user mobility and mobile devices within smart spaces to accomplish

sensor data collection. Adopting the proposed sGaRuDa sensor data collection

architecture may result in reduced sensor network setup time, involving less

planning and lesser infrastructure costs. A proof-of-concept implementation was

presented to validate the feasibility of the proposed system in real-world scenarios.

The use of mobile devices as an access network creates much more application

possibilities few of which were presented in the thesis. Based on our

experimentations and prototype implementations, we conclude that it is feasible to

employ mobile devices as a cost-efficient alternative to collect sensor data. The

proposed sGaRuDa architecture has the following advantages:

 sGaRuDa, the system framework, is software based and takes

advantage of ubiquitous availability of Bluetooth. Hence, no special

hardware is required to communicate with the sensor node.

 Mobility is accomplished by taking advantage of user mobility.

Hence, our approach does not require introduction of special

hardware to realise device mobility.

 The sGaRuDa system is interoperable and platform independent. This

has been verified by the prototype implementation.

 At the outset, the proposed sGaRuDa framework has certain limitations that need to

be addressed for widespread adaptation. These limitations include security, privacy

and accounting. We treat the limitations as future research challenges.

A Data Collection algorithm for Broadcast-based Sensor Networks (3D-KNN):

The 3D-KNN algorithm was proposed to address the second research

248

question investigating the extension of the sensor data collection architecture

to suit a range of sensor network platforms with broadcasting capabilities.

The proposed 3D-KNN algorithm facilitates cost-efficient multi-hop

collection of sensor data using mobile data mules. Multi-hop data collection

is facilitated using a k-Nearest Neighbour query processing technique. The

proposed algorithm has the capability to account for real-world

communication channel characteristics (e.g. obstacles, channel error, etc.) in

3D spaces. This feature of 3D-kNN differentiates it from existing approaches

that focus only on distance with the assumption of an error-free

communication channel. We note that the proposed 3D-KNN algorithm is a

pioneering work in the area of kNN-based sensor data collection using mobile

data mules in an infrastructure-less three-dimensional sensor network. We

proposed energy-efficient algorithms for discovery, sensing and data

collection keeping in mind the resource constrained nature of wireless

sensors. We performed experimental evaluation of the 3D-KNN algorithm

within large-scale sensor networks in a simulator environment. The results

validate the extent of energy saving using the proposed 3D-KNN algorithm.

More specifically, the 3D-KNN algorithm had a linear expenditure of energy

for increasing sensor network sizes compared to kNN-based data collection

algorithm in the literature which exhibited a non-linear increase in energy

consumption. Further, the proposed predictive 3D-KNN approach results in

40% savings in energy over the non-predictive approach. This result is

significant and may results in extended sensor network lifetimes. The 3D-

KNN algorithm also proved to be performance oriented, reducing the overall

time required to process the kNN queries. The evaluation outcomes prove the

cost-efficiency (time and energy efficiency) of the 3D-KNN algorithm.

Simulation experiments also verify the suitability of the 3D-KNN algorithm

for large-scale sensor networks. In conclusion, the proposed 3D-KNN

employed by the mobile data mule proves to be more energy-efficient and

performance oriented approach to collect data from broadcast-based sensors.

The 3D-KNN algorithm has the following advantages

 249

 The 3D-KNN algorithm is completely dynamic i.e. no prior network

infrastructure information is required to compute nearest neighbours.

Further, no specific assumption of the sensor network

deployment/topology is made.

 The 3D-KNN algorithms accounts for three dimensional distribution

of sensors in smart spaces.

 The 3D-KNN algorithm addresses real-world radio communication

characteristics like obstacles and interference by taking into account

SNR and device mobility rather than just distance.

A Dynamic Smart Situation Spaces Modelling Approach (R-CS): Finally we

addressed the third research question by developing a dynamic situation-

based context model that has the capability to adapt to changing sensor data.

We proposed R-CS, a ranked-Context Spaces model based on Context

Spaces theory that has the ability to model situations dynamically. The

proposed extensions to Context Spaces theory have been incorporated into R-

CS. Dynamic situation modelling in R-CS is achieved using partitioned and

temporal situation spaces. By introducing dynamic situation space modelling

in Context Spaces, we facilitate reasoning under uncertainty when the real-

world situation definition changes dynamically. We performed experiments

to evaluate, verify and validate the Context Spaces extensions incorporated

into R-CS. The Context Spaces extensions incorporated into R-CS have a

considerable impact on the reasoning outcome. More specifically, R-CS is

able to infer situations with better accuracy. Moreover, R-CS evaluation

results validate the advantage of using dynamic situation modelling to reduce

ambiguity, when a fixed situation space definition as used by Context Spaces

may not be sufficient to infer situations. The R-CS system has the following

advantages:

 R-CS algorithms perform reasoning over adapted situation

definitions, computed using available sensor data (collected and

delivered by mobile data mules).

250

 R-CS model works towards best representing the current situation

rather than relying on fixed situation definitions

 R-CS has the capability to account for sensor data quality and flexible

attribute regions making it more susceptible to changing sensor data.

8.2 Future Work

The research questions addressed in this thesis have created new opportunities for

further research. We highlight some of them in this section.

Pay for Resources: The use of mobile devices as sensor data collectors opens the door

for numerous applications. The proposed approach creates the platform to bridge

low-powered sensors with the external world in an energy-efficient way. The use of

mobile devices creates a new area of work which needs to look into mobile usage

i.e. accounting for resources being used. This might be creating a commercial

model that can be used by Telcos to reward its customers for the use of mobile

devices for sensor data collection. Further, this model can be extended to

enterprises that would need real-time information from pervasive environments at a

low cost.

Security and Privacy: The use of day-to-day mobile devices introduces privacy and

security risks. These concerns need to be addressed for adoption of the sGaRuDa

framework. Security and privacy is an important topic of debate, especially within

environments comprising mobile devices. A number of existing techniques may be

adapted to suit the sGaRuDa system requirements. We suggest this as an interesting

area of future work.

Sensor Errors: Sensor errors play a vital role in the data collection process. For

example, the reported location of a sensor and its actual location might influence

the energy consumption during communication. Current approaches focusing on

sensor localisation fail to address the issue during computation (making decisions

based on sensor data). We suggest this as a future extension to the proposed data

collection algorithms.

 251

Ontology in R-CS: The R-CS reasoning ability can be improved further by introducing

ontology. The use of ontology can reduce uncertainty in cases where the newly

discovered contextual information does not have any relation to the current

situations. In such cases, using ontology, an extensive search can be performed to

determine the relation between newly discovered context and current situation.

252

References
Abbasi A.A. & Younis M., 2007. A survey on clustering algorithms for wireless sensor

networks. Comput. Commun., vol. 30, no. 14-15, pages: 2826-2841.
Abowd G.D., Atkeson C.G., Hong J., Long S., Kooper R. & Pinkerton M., 1997.

Cyberguide: a mobile context-aware tour guide. Wireless Networking, vol. 3, no.
5, pages: 421-433.

Abowd G.D., Dey A.K., Brown P.J., Davies N., Smith M. & Steggles P., 1999. Towards a
Better Understanding of Context and Context-Awareness, In Proceedings of the
1st international symposium on Handheld and Ubiquitous Computing, Karlsruhe,
Germany, pages: 304-307

Acharya D., Kumar V., Garvin N., Greca A. & Gaddis G.M., Year. A sun SPOT based
automatic vehicular accident notification system. In: Information Technology and
Applications in Biomedicine, 2008. ITAB 2008. International Conference on,
2008. 296-299.

Akman V. & Surav M., 1997. The use of situation theory in context modelling,
Computational Intelligence. Computational Intelligence: An International Journal,
vol. 13(3), no., pages: 427–438.

Akyildiz I.F. & Kasimoglu I.H., 2004. Wireless Sensor and Actor Networks: Research
Challenges. Ad Hoc Networks Journal (Elsevier), vol. 2, no. 4, pages: 351-367.

Akyildiz I.F., Weilian S., Sankarasubramaniam Y. & Cayirci E., 2002. A survey on sensor
networks. Communications Magazine, IEEE, vol. 40, no. 8, pages: 102-114.

Al-Karaki J.N. & Kamal A.E., 2004. Routing techniques in wireless sensor networks: a
survey. Wireless Communications, IEEE, vol. 11, no. 6, pages: 6-28.

Alippi C. & Galperti C., 2008. An Adaptive System for Optimal Solar Energy Harvesting
in Wireless Sensor Network Nodes. Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 55, no. 6, pages: 1742-1750.

Amirtharajah R. & Chandrakasan A.P., 2004. A Micropower Programmable DSP Using
Approximate Signal Processing Based on Distributed Arithmetic. IEEE Journal of
Solid-State Circuits, vol. 39, no. 2, pages: 337-347.

Anastasi G., Conti M. & Francesco M., 2009a. An Analytical Study of Reliable and
Energy-Efficient Data Collection in Sparse Sensor Networks with Mobile Relays,
In Proceedings of the 6th European Conference on Wireless Sensor Networks,
Cork, Ireland, pages: 199-215

Anastasi G., Conti M. & Francesco M.D., 2009b. Reliable and energy-efficient data
collection in sparse sensor networks with mobile elements. Perform. Eval., vol.
66, no. 12, pages: 791-810.

Anastasi G., Conti M., Francesco M.D. & Passarella A., 2009c. Energy conservation in
wireless sensor networks: A survey. Ad Hoc Networks, vol. 7, no. 3, pages: 537-
568.

Anastasi G., Conti M., Passarella A. & Pelusi L., 2008. Mobile-relay Forwarding in
Opportunistic Networks. In: IBNKAHLA, M. (ed.) Chapter in Adaptive
Techniques in Wireless Networks. New York (USA): CRC Press. pages:

 253

Arampatzis T., Lygeros J. & Manesis S., 2005. A Survey of Applications of Wireless
Sensors and Wireless Sensor Networks, In Intelligent Control, 2005. Proceedings
of the 2005 IEEE International Symposium on, Mediterrean Conference on
Control and Automation, Limassol, Cyprus, pages: 719 - 724

Asada G., Dong M., Lin T., Newberg F., Pottie G., Marcy H. & Kaiser W., 1998. Wireless
integrated network sensors: Low-power systems on a chip, In Proceedings of the
24th IEEE European Solid-State Circuits Conference, Den Hague, The
Netherlands, pages: 9-12

Atmel, 2009a. AT91RM9200 [Online]. Available:
http://www.atmel.com/dyn/products/Product_card.asp?part_id=2983 [Accessed
29/03/2010].

Atmel, 2009b. ATmega128 - 8-bit Microcontroller with 128K Bytes In-System
Programmable Flash [Online]. Available:
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf [Accessed
29/03/2010].

Aurenhammer F., 1991. Voronoi diagrams- a survey of a fundamental geometric data
structure. ACM Comput. Surv., vol. 23, no. 3, pages: 345-405.

Bagci F., Petold J., Trumler W. & Ungerer T., 2004. Ubiquitous Mobile Agent System in a
P2P-Network, System Support for Ubiquitous Computing, In Workshop at the
Sixth Annual Conference on Ubiquitous Computing (UbiComp’04), Nottingham,
England, pages: 12-15

Baker C.R., Armijo K., Belka S., Benhabib M., Bhargava V., Burkhart N., Minassians
A.D., Dervisoglu G., Gutnik L., Haick M.B., Ho C., Koplow M., Mangold J.,
Robinson S., Rosa M., Schwartz M., Sims C., Stoffregen H., Waterbury A.,
Leland E.S., Pering T. & Wright P.K., 2007. Wireless Sensor Networks for Home
Health Care, In Proceedings of the 21st International Conference on Advanced
Information Networking and Applications Workshops, pages: 832-837

Bandyopadhyay S. & Coyle E.J., 2003. An Energy Efficient Hierarchical Clustering
Algorithm for Wireless Sensor Networks, In IEEE INFOCOM, pages: 1183-1193

Basagni S., Carosi A., Melachrinoudis E., Petrioli C. & Wang Z.M., 2007. Controlled
sink mobility for prolonging wireless sensor networks lifetime. ACM/Elsevier
Journal on Wireless Networks, vol. 54, no. 6, pages: 1895-1822.

Bayes M. & Price M., 1763. An Essay towards Solving a Problem in the Doctrine of
Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a
Letter to John Canton, A. M. F. R. S. Philosophical Transactions, vol. 53, no.,
pages: 370-418.

Becker C. & Dürr F., 2005. On location models for ubiquitous computing. Personal
Ubiquitous Comput., vol. 9, no. 1, pages: 20-31.

Bellotti V. & Sellen A., 1993. Design for Privacy in Ubiquitous Computing
Environments, In Proc. of the Third European Conference on Computer Supported
Cooperative Work (ECSCW'93), pages: 77-92

Bergbreiter S. & Pister K.S.J., 2003. CostBots: An Off-theShelf Platform for Distribuited
Robotics, In Proc. of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots
and Systems, pages: 1632 - 1637

Bluecove, 2007. Available: http://sourceforge.net/projects/bluecove [Accessed
10/01/2007].

254

Bluetoothsig, 2010a. Bluetooth Homepage [Online]. Available:
http://www.bluetooth.com/English/Pages/default.aspx [Accessed 05/05/2010].

Bluetoothsig, 2010b. Bluetooth Low Energy Technology [Online]. Available:
http://www.bluetooth.com/English/Products/Pages/Low_Energy.aspx [Accessed
01/03/2010].

Bluetoothsig, 2010c. Bluetooth Special Interest Group [Online]. Available:
http://www.bluetooth.org [Accessed 26/03/2010].

Bluetoothsig, 2010d. Bluetooth Specification Documents [Online]. Available:
http://www.bluetooth.com/GERMAN/TECHNOLOGY/BUILDING/Pages/Specif
cation.aspx [Accessed 10/05/2010].

Brown P.J., Bovey J.D. & Chen X., 1997. Context-Aware Applications: From the
Laboratory to the Marketplace. IEEE Personal Communications, vol. 4, no. 5,
pages: 58-64.

Btaccess, 2008. Technical Whitepapers - Developing Bluetooth Enabled Applications
using BTAccess [Online]. Available:
http://h21007.www2.hp.com/portal/site/dspp/menuitem.863c3e4cbcdc3f3515b49c
108973a801?ciid=f76d2a73c503b110VgnVCM100000a360ea10RCRD
[Accessed 01/06/2010].

Buchholz T., Krause M., Linnhoff-Popien C. & Schiffers M., 2004. CoCo: dynamic
composition of context information, In The First Annual International Conference
on Mobile and Ubiquitous Systems: Networking and Services, 2004.
MOBIQUITOUS 2004. , pages: 335-343

Buchholz T., Kupper A. & Schiffers M., 2003. Quality of context: What it is and why we
need it, In Proceedings of the 10th HP–OVUA Workshop, Geneva, Switzerland,
pages:

Bult K., Burstein A., Chang D., Dong M., Fielding M., Kruglick E., Ho J., Lin F., Lin T.,
Kaiser W., Marcy H., Mukai R., Nelson P., Newburg F., Pister K.S.J., Pottie G.,
Sanchez H., Stafsudd O., Tan K., Xue S. & Yao J., 1996. Low power systems for
wireless microsensors, In Proceedings of the 1996 international symposium on
Low power electronics and design, Monterey, California, United States, pages:
17-21

Burke J., Friedman J., Mendelowitz E., Park H. & Srivastava M.B., 2006. Embedding
expression: Pervasive computing architecture for art and entertainment.
Pervasive and Mobile Computing, vol. 2, no. 1, pages: 1-36.

Butler Z. & Rus D., 2003. Event-Based Motion Control for Mobile-Sensor Networks.
IEEE Pervasive Computing, vol. 2, no. 4, pages: 34-42.

Byun H.E. & Cheverst K., 2003. Supporting Proactive ‘Intelligent’ Behaviour: the
Problem of Uncertainty, In Proceedings of the UM03 Workshop on User
Modeling for Ubiquitous Computing, Johnstown, PA, pages: 17-25

Campbell A.T., Eisenman S.B., Lane N.D., Miluzzo E. & Peterson R., 2006. People-
Centric Urban Sensing, In Proc. of Second ACM/IEEE Annual International
Wireless Internet Conference (WICON 2006), Boston, Massachusetts, USA,
pages:

Capra L., Emmerich W. & Mascolo C., 2001. Reflective Middleware Solutions for
Context-Aware Applications, In Proceedings of the Third International Conference

 255

on Metalevel Architectures and Separation of Crosscutting Concerns, pages: 126-
133

Castro P. & Munz R., 2000. Managing context data for smart spaces. IEEE Personal
Communications vol. 7, no. 5, pages: 44-46.

Chakrabarti A., Sabharwal A. & Aazhang B., 2003. Using Predictable Observer Mobility
for Power Efficient Design of Sensor Networks, In Proc. of the 2nd International
Workshop on Information Processing in Sensor Networks, Palo Alto, CA, USA,
pages: 129-145

Chalmers D., 2002. Contextual Mediation to support Ubiquitous computing. PhD Thesis,
Imperial College.London

Chandrakasan A., Min R., Bhardwaj M., Cho S. & Wang A., 2002. Power aware wireless
microsensor systems, In Proceedings of the 28th European Solid-State Circuits
Conference, ESSCIRC 2002. , pages: 47-54

Chatzigiannakis I., Kinalis A. & Nikoletseas S., 2006. Sink mobility protocols for data
collection in wireless sensor networks, In Proceedings of the 4th ACM
international workshop on Mobility management and wireless access,
Terromolinos, Spain, pages: 52-59

Chen H., Finin T. & Joshi A., 2003. Using OWL in a Pervasive Computing Broker, In
Workshop on Ontologies in Agent Systems, AAMAS-2003, Melbourne, Australia,
pages:

Chong S.K., Krishnaswamy S., Loke S.W. & Gaben M.M., 2008. Using association rules
for energy conservation in wireless sensor networks, In Proceedings of the 2008
ACM symposium on Applied computing, Fortaleza, Ceara, Brazil, pages: 971-975

Chu D., Deshpande A., Hellerstein J.M. & Hong W., 2006. Approximate Data Collection
in Sensor Networks using Probabilistic Models, In Proceedings of the 22nd
International Conference on Data Engineering, pages: 42-48

Cogill R., 2009. Poisson Processes [Online]. Available:
http://people.virginia.edu/~rlc9s/sys6005/SYS_6005_Poisson_Proc.pdf [Accessed
25/04/2010].

Coleri S., Cheung S.Y. & Varaiya P., 2004. Sensor Networks for Monitoring Traffic, In
Forty-Second Annual Allerton Conference on Commuinication, Control, and
Computing, pages:

Cordeiro C.D.M. & Agrawal D.P., 2006. Ad Hoc And Sensor Networks-Theory and
Applications, World Scientific Publishing Co. Pte. Ltd.

Crossbowtechnology, 2010a. Crossbow Product Reference Guide [Online]. Available:
http://www.xbow.com/Support/Support_pdf_files/Product_Feature_Reference_Ch
art.pdf [Accessed 29/03/2010].

Crossbowtechnology, 2010b. TelosB - TelosB Mote Platform [Online]. Available:
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datashee
t.pdf [Accessed 29/03/2010].

Culler D., Estrin D. & Srivastava M.B., 2004. Overview of Sensor Networks. Computer,
vol. 37, no. 8, pages: 41-49.

Curino C., Giani M., Giorgetta M., Giusti A., Murphy A.L. & Picco G.P., 2005. Mobile
Data Collection in Sensor Networks: The TinyLIME Middleware. Pervasive and
Mobile Computing, vol. 1, no. 4, pages: 446-469.

256

Dantu K., Rahimi M., Shah H., Babel S., Dhariwal A. & Sukhatme G.S., 2005.
Robomote: enabling mobility in sensor networks, In Proceedings of the 4th
international symposium on Information processing in sensor networks, Los
Angeles, California, pages: 404-409

Dawson F. & Stenerson D., 1998. Internet Calendaring and Scheduling Core Object
Specification (iCalendar) [Online]. Available: http://www.ietf.org/rfc/rfc2445.txt
[Accessed 11/05/2010].

Demirbas M. & Ferhatosmanoglu H., 2003. Peer-to-Peer Spatial Queries in Sensor
Networks, In Proceedings of the 3rd International Conference on Peer-to-Peer
Computing, pages: 32

Deventer J.V., Gustafsson J., Delsing J. & Eliasson J., 2009. Wireless Infrastructure in a
District Heating Substation, In 3rd Annual IEEE International Systems
Conference, Vancouver, Canada, pages: 139 - 143

Dey A.K., 2001. Understanding and Using Context. Personal Ubiquitous Comput., vol. 5,
no. 1, pages: 4-7.

Dey A.K., Abowd G.D. & Salber D., 2001. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Computer
Interaction (HCI) Journal, vol. 16, no. 2, pages: 97-166.

Dey A.K. & Mankoff J., 2005. Designing mediation for context-aware applications.
ACM Trans. Comput.-Hum. Interact., vol. 12, no. 1, pages: 53-80.

Di Francesco M., Shah K., Kumar M. & Anastasi G., 2010. An Adaptive Strategy for
Energy-Efficient Data Collection in Sparse Wireless Sensor Networks, In in
Proceedings of 7th European Conference Wireless Sensor Networks, EWSN
2010., Coimbra, Portugal, pages: 322-337

Dini G., Pelagatti M. & Savino I.M., 2008. An Algorithm for Reconnecting Wireless
Sensor Network Partitions, In Proc. of the 5th European conference on Wireless
Sensor Networks (EWSN 2008), Bologna (Italy), pages: 253-267

Doan A., Madhavan J., Domingos P. & Halevy A., 2002. Learning to map between
ontologies on the semantic web, In 11th international World Wide Web
Conference, Honolulu, Hawaii, USA, pages: 662 - 673

Dunkels A., 2010. The Operating System for Embedded Smart Objects - the Internet of
Things [Online]. Available: http://www.sics.se/contiki/ [Accessed 29/03/2010].

Eclipse.Org, 2010. Open Source IDE [Online]. Available: http://www.eclipse.org/
[Accessed 01/06/2010].

Eislab, 2010. The Mulle - A node for Bluetooth Sensor Networks / Development
information [Online]. Available:
http://www.ltu.se/csee/research/eislab/areas/mixedmode/projects/mulle [Accessed
28/03/2010].

Eistec, 2009. Mulle Hardware Guide [Online]. Available:
http://www.eistec.se/docs/Mulle_HW_Guide.pdf [Accessed 10/03/2010].

Ekahau, 2010. WiFi-based tracking [Online]. Available: http://www.ekahau.com/
[Accessed 11/02/2010].

Eliasson J., Lindgren P. & Delsing J., 2008. A Bluetooth-based Sensor Node for Low-
Power Ad Hoc Networks. Journal of Computers, vol. 3, no. 5, pages: 1-10.

 257

Eliasson J., Lindgren P., Delsing J., Thompson S.J. & Cheng Y.-B., 2007. A power
management architecture for sensor nodes, In IEEE Wireless Communications
and Networking Conference, pages: 3008 - 3013

Eliasson J., Lundberg M. & Lindgren P., 2006. Time synchronous Bluetooth sensor
networks, In 3rd IEEE Consumer Communications and Networking Conference,
2006. CCNC 2006. , pages: 336-340

Elson J. & Romer K., 2003. Wireless sensor networks: a new regime for time
synchronization. SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, pages: 149-
154.

Erricson, 2010. Erricson Mobile Platforms [Online]. Available:
http://www1.ericsson.com/solutions/mobileplatforms [Accessed 07/05/2010].

Eth-Zurich, 2007. BTnode rev3 Hardware Reference [Online]. Available:
http://www.btnode.ethz.ch/Documentation/BTnodeRev3HardwareReference
[Accessed 29/03/2010].

Eth-Zurich, 2010. The Sensor Network Museum [Online]. Available:
http://www.snm.ethz.ch/Main/HomePage [Accessed 29/03/2010].

Evolution-Robotics, 2010. Available: http://www.evolution.com/ [Accessed 01/02/2010].
Fortune S., 1986. A sweepline algorithm for Voronoi diagrams, In Proceedings of the

second annual symposium on Computational geometry, Yorktown Heights, New
York, United States, pages: 313-322

Fox D., Hightower J., Liao L., Schulz D. & Borriello G., 2003. Bayesian filtering for
location estimation. IEEE Pervasive Computing, vol. 2, no. 3, pages: 24-23.

Frodigh M., Johansson P. & Larsson P., 2000. Wireless Ad Hoc Networking- The Art of
Networking Without A Network [Online]. Ericsson Review. Available:
http://www.ericsson.com/ericsson/corpinfo/publications/review/2000_04/124.sht
ml [Accessed 01/03/2010].

Gandham S.R., Dawande M., Prakash R. & Venkatesan S., 2003. Energy efficient
schemes for wireless sensor networks with multiple mobile base stations, In Proc.
of IEEE Globecom 2003, San Francisco, CA, pages: 377-381

Ganesan D., Ratnasamy S., Wang H. & Estrin D., 2004. Coping with irregular spatio-
temporal sampling in sensor networks. SIGCOMM Comput. Commun. Rev., vol.
34, no. 1, pages: 125-130.

Gharavi H. & Kumar S.P., 2003. Special issue on sensor networks and applications.
Proceedings of the IEEE, vol. 91, no. 8, pages: 1151-1153.

Ghiasi S., Srivastava A., Yang X. & Sarrafzadeh M., 2002. Optimal Energy Aware
Clustering in Sensor Networks. MDPI Sensors, vol. 2, no. 7, pages: 258-269.

Glassey R., Stevenson G., Richmond M., Nixon P., Terzis S., Wang F. & Ferguson I.,
2003. Towards a Middleware for Generalised Context Management, In First
International Workshop for Middleware for Pervasive and Ad Hoc Computing,
Rio De Janeiro, Brazil, pages: 45-52

Glomosim, 2010. Global Mobile Information Systems Simulator Library [Online].
Available: http://pcl.cs.ucla.edu/projects/glomosim/ [Accessed 01/07/2010].

Google, 2010. Android [Online]. Available: http://www.android.com/ [Accessed
01/06/2010].

258

Goslar K. & Schill A., 2004. Modeling Contextual Information Using Active Data
Structures, In Current Trends in Database Technology - EDBT 2004 Workshops,
pages: 325-334

Gostev A., 2006. Bluetooth: London 2006 [Online]. London. Available:
http://www.securelist.com/en/analysis?pubid=188833782 [Accessed 06/10/2010].

Grapenetworks, 2010. Available: http://www.grapenetworks.com/ [Accessed
01/06/2010].

Gu T., Pung H.K. & Zhang D.Q., 2004. Toward an OSGi-based infrastructure for
context-aware applications. Pervasive Computing, IEEE, vol. 3, no. 4, pages: 66-
74.

Gu Y., Bozdag D., Brewer R.W. & Ekici E., 2006. Data harvesting with mobile elements
in wireless sensor networks. Comput. Netw., vol. 50, no. 17, pages: 3449-3465.

Gutnik V. & Chandrakasan A., 1997. Embedded Power Supply for Low-Power DSP.
IEEE Trans. on VLSI Systems, vol. 5, no. 4, pages: 425-435.

Guttman A., 1984. R-trees: a dynamic index structure for spatial searching, In
Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, Boston, Massachusetts, pages: 47-57

Haas Z., Halpern J. & Li L., 2002. Gossip based ad hoc routing, In Proc. of IEEE
INFOCOM, New York, pages: 1707-1716

Haghighi P.D., Zaslavsky A., Krishnaswamy S., Gaber M.M. & Loke S., 2009. Context-
aware adaptive data stream mining. Intell. Data Anal., vol. 13, no. 3, pages: 423-
434.

Hähner J., Becker C. & Marrón P.J., 2004. Consistent Context Management in Mobile Ad
Hoc Networks, In Proceedings Workshop "Get Connected to the Mobile World -
Data Management in Mobile Environments", Informatik 2004, Ulm, Germany,
pages: 308-313

Handy M., 2004. DCP: A New Data Collection Protocol for Bluetooth-Based Sensor
Networks, In Euromicro Symposium on Digital Systems Design, pages: 566-573

He T., Krishnamurthy S., Stankovic J.A., Abdelzaher T., Luo L., Stoleru R., Yan T., Gu
L., Hui J. & Krogh B., 2004. Energy-efficient surveillance system using wireless
sensor networks, In Proceedings of the 2nd international conference on Mobile
systems, applications, and services, Boston, MA, USA, pages: 270-283

Hedetniemi S.M., Hedetniemi S.T. & Liestman A.L., 1988. A survey of gossiping and
broadcasting in communication networks. Networks, vol. 18, no. 4, pages: 319-
349.

Heinzelman W.B., 2000. Application-specific protocol architectures for wireless
networks. Ph.D. dissertstion, Mass. Inst. Technology.Cambridge

Heinzelman W.B., Chandrakasan A.P. & Balakrishnan H., 2002. An Application-Specific
Protocol Architecture for Wireless Microsensor Networks. IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 1, no. 4, pages:
660 - 670.

Heinzelman W.R., Chandrakasan A.P. & Balakrishnan H., 2000. Energy-Efficient
Communication Protocol for Wireless Sensor Networks, In Proceedings of the
33th Hawaii International Conference on System Sciences, pages: 10

Heinzelman W.R., Kulik J. & Balakrishnan H., 1999. Adaptive protocols for information
dissemination in wireless sensor networks, In Proceedings of the 5th annual

 259

ACM/IEEE international conference on Mobile computing and networking,
Seattle, Washington, United States, pages: 174-185

Henkel D., Dixon C., Elston J. & Brown T.X., 2006. A reliable sensor data collection
network using unmanned aircraft, In Proceedings of the 2nd international
workshop on Multi-hop ad hoc networks: from theory to reality, Florence, Italy,
pages: 125-127

Howard A., Matari´C M.J. & Sukhatme G.S., 2002. An Incremental Self-Deployment
Algorithm for Mobile Sensor Networks. Autonomous Robots, Special Issue on
Intelligent Embedded Systems, vol. 13, no., pages: 113--126.

Howitt I. & Gutierrez J.A., 2003. IEEE802.15.4 low rate-wireless personal area network
coexistence issues, In IEEE Wireless Communications and Networking
Conference (WCNC), pages: 1481–1486

Huang G.T., 2003. Casting the Wireless Sensor Net, MIT’s Magazine of Innovation,
pages: 51–56

Huang J.H., Amjad S. & Mishra S., 2005. CenWits: A sensor-based loosely coupled
search and rescue system using witnesses, In Proceedings of the Third
International Conference on Embedded Networked Sensor Systems (Sensys), San
Diego, CA, pages: 180 - 191

Hull B., Bychkovsky V., Zhang Y., Chen K., Goraczko M., Miu A., Shih E., Balakrishnan
H. & Madden S., 2006. CarTel: a distributed mobile sensor computing system, In
Proceedings of the 4th international conference on Embedded networked sensor
systems, Boulder, Colorado, USA, pages: 125-138

Iarsystems, 2008. IAR Embedded Workbench [Online]. Available:
http://www.iar.com/website1/1.0.1.0/50/1/ [Accessed 01/08/2008].

Ieee 2003. Standard 802.15.3, Wireless medium access control (MAC) and physical layer
(PHY) specifications for high rate wireless person area networks (WPANs).

Intanagonwiwat C., Govindan R. & Estrin D., 2000. Directed diffusion: a scalable and
robust communication paradigm for sensor networks, In Proceedings of ACM
MobiCom, Boston, MA, pages: 56-67

Iroad, 2010. iRoad [Online]. Available: http://www.iroad.se/ [Accessed 27/03/2010].
Itu, 2008. Corporate Annual Report [Online]. Available: http://www.itu.int/dms_pub/itu-

s/opb/conf/S-CONF-AREP-2008-E06-PDF-E.pdf [Accessed 25/10/2009].
Jain S., Shah R., Brunette W., Borriello G. & Roy S., 2006. Exploiting Mobility for

Energy Efficient Data Collection in Wireless Sensor Networks. ACM/Springer
Mobile Networks and Applications, vol. 11, no. 3, pages: 327-339.

Jayaraman P.P., Zaslavsky A. & Delsing J., 2007. Sensor Data Collection Using
Heterogeneous Mobile Devices, In in Proceedings of the IEEE International
Conference on Pervasive Services, Istanbul, Turkey, pages: 161-164

Jayaraman P.P., Zaslavsky A. & Delsing J., 2008a. Cost Efficient Data Collection of
Sensory Originated Data using Context-Aware Mobile Devices, In Ninth
International Conference on Mobile Data Management Workshops. MDMW
2008. , pages: 190-200

Jayaraman P.P., Zaslavsky A. & Delsing J., 2008b. Coverage Area Computation on the
Run for Efficient Sensor Data Collection, In New Technologies, Mobility and
Security, 2008. NTMS '08., Tangier, Morocco, pages: 1-4

260

Jayaraman P.P., Zaslavsky A. & Delsing J., 2008c. Smart Sensing and Sensor Data
Collection on the Move for Modelling Intelligent Environments, In Proceedings of
the 8th international conference, NEW2AN and 1st Russian Conference on Smart
Spaces, ruSMART on Next Generation Teletraffic and Wired/Wireless Advanced
Networking, St. Petersburg, Russia, pages: 306-317

Jayaraman P.P., Zaslavsky A. & Delsing J., 2009a. Dynamic situation modeling and
reasoning under uncertainty, In Proceedings of the 2009 international conference
on Pervasive services, London, United Kingdom, pages: 113-122

Jayaraman P.P., Zaslavsky A. & Delsing J., 2009b. On-the-Fly Situation Composition
within Smart Spaces, In Proceedings of the 9th International Conference on Smart
Spaces and Next Generation Wired/Wireless Networking and Second Conference
on Smart Spaces, St. Petersburg, Russia, pages: 52-65

Jayaraman P.P., Zaslavsky A. & Delsing J., 2010a. Cost-Efficient Data Collection
Approach Using K-Nearest Neighbors in a 3D Sensor Network, In IEEE
International Conference on Mobile Data Management, Kansas City, Missouri,
pages: 183-188

Jayaraman P.P., Zaslavsky A. & Delsing J., 2010b. Intelligent Mobile Data Mules for
Cost-Efficient Sensor Data Collection. International Journal of Next-Generation
Computing, vol. 1, no. 1, pages: 73-90.

Jayaraman P.P., Zaslavsky A. & Delsing J., 2010c. Intelligent Processing of K-Nearest
Neighbours Queries using Mobile Data Collectors in a Location Aware 3D
Wireless Sensor Network, In The Twenty Third International Conference on
Industrial, Engineering & Other Applications of Applied Intelligent Systems
(IEA-AIE 2010), Cordoba, Spain, pages: 260-270

Jea D.D., Somasundara A.A. & Srivastava M.B., 2005. Multiple controlled mobile
elements (data mules) for data collection in sensor networks, In International
Conference on Distributed Computing in Sensor Systems (DCOSS), pages: 244--
257

Jenkins A., Henkel D. & Brown T., 2007. Sensor Data Collection through Unmanned
Aircraft Gateways, In Proc. of the AIAA Infotech@Aerospace 2007 Conference
and Exhibit, California, pages:

Jian Z., Yinong L., Yang J. & Ping Z., 2007. A Context-Aware Infrastructure with
Reasoning Mechanism and Aggregating Mechanism for Pervasive Computing
Application, In IEEE 65th Vehicular Technology Conference, 2007. VTC2007-
Spring., pages: 257-261

Juang P., Oki H., Wang Y., Martonosi M., Peh L.S. & Rubenstein D., 2002. Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences
with ZebraNet. SIGARCH Comput. Archit. News, vol. 30, no. 5, pages: 96-107.

Kahn J.M., Katz R.H. & Pister K.S.J., 1999. Mobile Networking for Smart Dust, In
ACM/IEEE Intl. Conf. on Mobile Computing and Networking (MobiCom 99),
Seattle, WA, pages:

Kansal A., Hsu J., Zahedi S. & Srivastava M.B., 2007. Power management in energy
harvesting sensor networks. ACM Trans actions on Embed. Comput. Syst., vol. 6,
no. 4, pages: 32.

 261

Kansal A., Somasundara A.A., Jea D.D., Srivastava M.B. & Estrin D., 2004. Intelligent
Fluid Infrastructure for Embedded Networks, In ACM MobiSYS’04, Boston,
Massachusetts, USA, pages: 111-124

Kansal A. & Srivastava M.B., 2003. An environmental energy harvesting framework for
sensor networks, In Proceedings of the International Symposiumon LowPower
Electronics andDesign, pages: 481–486

Khedr M. & Karmouch A., 2005. ACAI: Agent-Based Context-aware Infrastructure for
Spontaneous Applications. Journal of Network & Computer Applications, vol. 28,
no. 1, pages: 19-44.

Ko K.E. & Sim K.B., 2008. Development of context aware system based on Bayesian
network driven context reasoning method and ontology context modeling, In
International Conference on Control, Automation and Systems, 2008. ICCAS
2008., pages: 2309-2313

Krishnamachari B., Estrin D. & Wicker S.B., 2002. The Impact of Data Aggregation in
Wireless Sensor Networks, In Proceedings of the 22nd International Conference
on Distributed Computing Systems, pages: 575-578

Kulik J., Heinzelman W.R. & Balakrishnan H., 2002. Negotiation-based protocols for
disseminating information in wireless sensor networks. Wireless Networks, vol. 8,
no. 2/3, pages: 169-185.

Kulik L., Tanin E. & Umer M., 2008. Efficient Data Collection and Selective Queries in
Sensor Networks. GeoSensor Networks: Second International Conference, GSN
2006, Boston, MA, USA, October 1-3, 2006. Springer-Verlag. pages: 25-44

Kumar V., 2003. Sensor: the atomic computing particle. SIGMOD Rec., vol. 32, no. 4,
pages: 16-21.

Kumar V., 2005. Data in Your Space. In: GHOSH, R. & MOHANTY, H. (eds.)
Distributed Computing and Internet Technology. Springer Berlin / Heidelberg.
pages: 39-66

Lamarca A., Koizumi D., Lease M., Sigurdsson S., Borriello G., Brunette W., Sikorski K.
& Fox D., 2002a. Making Sensor Networks Practical with Robots, In First
International Conference on Pervasive Computing, pages: 152-166

Lamarca A., Sigurdsson S., Brunette W., Koizumi D., Lease M., Sigurdsson S.B.,
Sikorski K., Fox D. & Borriello G., 2002b. PlantCare: An Investigation in
Practical Ubiquitous Systems, In Proceedings of the 4th international conference
on Ubiquitous Computing, Goteborg, Sweden, pages: 316 - 332

Leopold M., Dydensborg M.B. & Bonnet P., 2003. Bluetooth and sensor networks: a
reality check, In Proceedings of the 1st international conference on Embedded
networked sensor systems, Los Angeles, California, USA, pages: 103-113

Lewis F.L., 2004. Wireless Sensor Networks. In: COOK, D. J. & DAS, S. K. (eds.) Smart
Environments. pages: 11-46

Li D., Wong K.D., Hu Y.H. & Sayeed A.M., 2002. Detection, classification, and tracking
of targets. IEEE Signal Processing Mag, vol. 19, no., pages: 17-29.

Lin C., He Y.X. & Xiong N., 2006. An Energy-Efficient Dynamic Power Management in
Wireless Sensor Networks, In The Fifth International Symposium on Parallel and
Distributed Computing, 2006. ISPDC '06. , pages: 148-154

262

Lindsey S. & Raghavendra C.S., 2005. PEGASIS: Power-Efficient Gathering in Sensor
Information Networks [Online]. Available:
http://ceng.usc.edu/~raghu/pegasisrev.pdf [Accessed 10/03/2007].

Loke S., 2006. Context-Aware Pervasive Systems, Auerbach Publications.
Lundberg M., Eliasson J., Allan J., Johansson J. & Lindgren P., 2005. Power

characterization of a bluetooth-equipped sensor node, In Proceedings of the First
REALWSN 2005 Workshop on Real-World Wireless Sensor Networks,
Stockholm pages:

Luo J. & Hubaux J.P., 2005. Joint Mobility and Routing for Lifetime Elongation in
Wireless Sensor Networks, In the 24th IEEE INFOCOM, Miami, USA, pages:
1735-1746

M16cflasher, 2008. M16C-Flasher NON-PROFIT-Version [Online]. Available:
http://m16c.cco-ev.de/M16C-Flasher.4.0.html [Accessed 01/06/2008].

Madden S., Franklin M.J., Hellerstein J.M. & Hong W., 2002. TAG: a Tiny AGgregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., vol. 36, no. SI,
pages: 131-146.

Madden S., Franklin M.J., Hellerstein J.M. & Hong W., 2003. The design of an
acquisitional query processor for sensor networks, In Proceedings of SIGMOD,
pages: 491–502

Madden S.R., Franklin M.J., Hellerstein J.M. & Hong W., 2005. TinyDB: an
acquisitional query processing system for sensor networks. ACM Transaction on
Database Syst., vol. 30, no. 1, pages: 122-173.

Mainwaring A., Polastre J., Szewczyk R., Culler D. & Anderson J., 2002. Wireless sensor
networks for habitat monitoring, In ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA'02), Atlanta, GA, pages: 88-97

Mantyjarvi J. & Seppanen T., 2002. Adapting Applications in Mobile Terminals Using
Fuzzy Context Information, In Proceedings of the 4th International Symposium on
Mobile Human-Computer Interaction, pages: 95 - 107

Margi C.B. & Obraczka K., 2006. GloMoSim Energy Consumption Instrumentation
[Online]. Available: http://users.soe.ucsc.edu/~cintia/energy-glomo.html
[Accessed 01/06/2010].

Mcmickell M.B., Goodwine B. & Montestruque L.A., 2003. MICAbot: A Robotic
Platform for Large-Scale Distributed Robotics, In Proc. of the 2003 IEEE, Intl.
Conference on Robotics and Automation, pages: 1600-1605

Mendel J.M., 1995. Fuzzy logic systems for engineering: a tutorial. New York, NY,
ETATS-UNIS: Institute of Electrical and Electronics Engineers. pages: 345-377

Mergen G., Zhao Q. & Tong L., 2006. Sensor Networks With Mobile Access: Energy and
Capacity Considerations. IEEE TRANSACTIONS ON COMMUNICATIONS,
vol. 54, no. 11, pages: 1896 - 1896

Meyer S. & Rakotonirainy A., 2003. A Survey of Research on Context-Aware Homes, In
Proceedings of the Australasian information security workshop conference on
ACSW, Adelaide, Australia, pages: 159-168

Microsoft.Net, 2010. Framework Developer Center [Online]. Available:
http://msdn.microsoft.com/en-us/netframework/default.aspx [Accessed
01/06/2010].

Mitchell M., 1998. An introduction to genetic algorithms, MIT Press Paperback Edition.

 263

Moteiv, 2006. Tmote Sky - Ultra low power IEEE 802.15.4 compliant wireless sensor
module [Online]. Available: http://sentilla.com/files/pdf/eol/tmote-sky-
datasheet.pdf [Accessed 29/03/2010].

Mouratidis K., Papadias D. & Hadjieleftheriou M., 2005a. Conceptual partitioning: an
efficient method for continuous nearest neighbor monitoring, In Proceedings of
the 2005 ACM SIGMOD international conference on Management of data,
Baltimore, Maryland, pages: 634-645

Mouratidis K., Papadias D. & Tao Y., 2005b. A Threshold-Based Algorithm for
Continuous Monitoring of k Nearest Neighbors. IEEE Trans. on Knowl. and Data
Eng., vol. 17, no. 11, pages: 1451-1464.

Moussaoui O. & Naïmi M., 2005. A distributed energy aware routing protocol for
wireless sensor networks, In Proceedings of the 2nd ACM international workshop
on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks,
pages: 34-40

Mulmuley K., 1993. Computational Geometry: An Introduction Through Randomized
Algorithms, Prentice Hall.

Nachman L., Kling R., Adler R., Huang J. & Hummel V., 2005. The Intel Mote platform:
a Bluetooth-based sensor network for industrial monitoring, In Proceedings of the
4th international symposium on Information processing in sensor networks, Los
Angeles, California, pages: 437-442

Nath S., Gibbons P.B., Seshan S. & Anderson Z.R., 2004. Synopsis diffusion for robust
aggregation in sensor networks, In Proceedings of the 2nd international
conference on Embedded networked sensor systems, Baltimore, MD, USA,
pages: 250-262

Nationalinstruments, 2008. Product Information: What is NI LabVIEW? [Online].
Available: http://www.ni.com/labview/ [Accessed 01/07/2008].

Niculescu D. & Nath B., 2003. Trajectory based forwarding and its applications, In
Proceedings of the 9th annual international conference on Mobile computing and
networking, San Diego, CA, USA, pages: 260-272

Nuevo J., 2004. A Comprehensible GloMoSim Tutorial [Online]. Available:
www.cs.virginia.edu/~jx9n/courses/cs656/glomoman.pdf [Accessed 01/06/2010].

Ohult C., 2006. lwbt - a lightweight bluetooth stack [Online]. Available:
http://www.csee.ltu.se/˜conny/lwBT [Accessed 15/07/2006].

Orecchia L., Panconesi A., Petrioli C. & Vitaletti A., 2004. Localized Techniques for
Broadcasting in Wireless Sensor Networks, In Workshop on Discrete Algothrithms
and Methods for MOBILE Computing and Communications, Philadelphia, USA,
pages: 41-51

Padovitz A., 2006. Context Management and Reasoning about Situations in Pervasive
Computing. PhD, Monash University, Australia

Padovitz A., Loke S.W. & Zaslavsky A., 2004. Towards a Theory of Context Spaces, In
IEEE International Conference on Pervasive Computing and Communications
Workshops, pages: 38-42

Padovitz A., Loke S.W., Zaslavsky A., Burg B. & Bartolini C., 2005. An Approach to
Data Fusion for Context Awareness. In: DEY, A., KOKINOV, B., LEAKE, D. &
TURNER, R. (eds.) Modeling and Using Context. Springer Berlin / Heidelberg.
pages: 353-367

264

Paredis C., Khosla P.K., Grabowski R. & Navarro-Serment L.E., 2002. Millibots: The
Development of a Framework and Algorithms for a Distributed Heterogeneous
Robot Team. IEEE Robotics & Automation Magazine, vol. 9, no. 4, pages: 31-40.

Park S. & Srivastava M.B., 2002. Dynamic battery state aware approaches for improving
battery utilization, In Proceedings of the 2002 international conference on
Compilers, architecture, and synthesis for embedded systems, Grenoble, France,
pages: 225-231

Pascoe J., Ryan N.S. & Morse D.R., 1999. Issues in developing context-aware
computing. In H-W.Gellersen (eds), Handheld and Ubiquitous Computing, vol.
1707 in LNCS, no., pages: 208-221.

Passos R.M., Coelho C.J.N., Loureiro A.A.F. & Mini R.A.F., 2005. Dynamic Power
Management in Wireless Sensor Networks: An Application-Driven Approach, In
Second Annual Conference on Wireless On-demand Network Systems and
Services. WONS 2005. , pages: 109-118

Pinto J., 2002. The 3 technology laws [Online]. Automation.com. Available:
http://www.jimpinto.com/writings/techlaws.html [Accessed 21/03/2010].

Polastre J., Szewczyk R. & Culler D., 2005. Telos: enabling ultra-low power wireless
research, In Fourth International Symposium on Information Processing in Sensor
Networks. IPSN 2005., pages: 364-369

Pottie G.J. & Kaiser W.J., 2000. Wireless integrated network sensors. Commun. ACM,
vol. 43, no. 5, pages: 51-58.

Rabaey J.M., Ammer M.J., Da Silva J.L., Jr., Patel D. & Roundy S., 2000. PicoRadio
supports ad hoc ultra-low power wireless networking. Computer, vol. 33, no. 7,
pages: 42-48.

Raghunathan V., Schurgers C., Park S. & Srivastava M.B., 2002. Energy-Aware Wireless
Microsensor Networks. IEEE Signal Processing Magazine, vol. no., pages: 40-50.

Rahimi M., Shah H., Sukhatme G., Heidemann J. & Estrin D., 2003. Studying the
Feasibility of Energy Harvesting in a Mobile Sensor Network, In Proceedings of
the IEEE International Conference on Robotics and Automation, pages: 19-24

Ramanathan N., Balzano L., Estrin D., Hansen M., Harmon T., Jay J., Kaiser W. &
Sukhatme G., 2005. Designing Wireless Sensor Networks as a Shared Resource
for Sustainable Development, In First International Conference on Information
and Communication Technologies and Development, pages: 256-265

Ranganathan A., Al-Muhtadi J. & Campbell R.H., 2004. Reasoning about uncertain
contexts in pervasive computing environments. Pervasive Computing, IEEE, vol.
3, no. 2, pages: 62-70.

Ren B., Ma J. & Chen C., 2006. The Hybrid Mobile Wireless Sensor Networks for Data
Gathering, In Proceedings of the international conference on Wireless
communications and mobile computing, Vancouver, British Columbia, Canada,
pages: 1085 - 1090

Renesas, 2008. Microcontroller m16c/62m [Online]. Available:
http://www.renesas.eu/products/mpumcu/m16c/m16c60/m16c62a/m16c62a_root.j
sp [Accessed 08/03/2008].

Roundy S., Wright P.K. & Rabaey J.M., 2004. Energy Scavenging for Wireless Sensor
Networks: With Special Focus on Vibrations, Kluwer Academic Publishers.

 265

Roussopoulos N., Kelley S. & Vincent F., 1995. Nearest neighbor queries, In Proceedings
of the 1995 ACM SIGMOD international conference on Management of data, San
Jose, California, United States, pages: 71-79

Rytter A., 2003. Vibration based inspection of civil engineering structures. ph.d. thesis,
Aalborg univ.Denmark

Satyanarayanan M., 2000. Caching Trust Rather Than Content. Operating System
Review, vol. 34, no. 4, pages: 245 - 246.

Satyanarayanan M., 2002. Pervasive computing: vision and challenges. Personal
Communications, vol. 8, no. 4, pages: 10-17.

Schindelhauer C., 2006. Mobility in Wireless Networks. Invited Talk for SOFSEM, vol.
no., pages.

Sen S. & Kumar A., 2010. Notes in Computational Geometry Voronoi Diagrams
[Online]. Available: http://www.cse.iitd.ernet.in/~ssen/cs852/scribe/Voronoi-
ScribeNotes/voronoi.pdf [Accessed 05/05/2010].

Shah R.C., Roy S., Jain S. & Brunette W., 2003. Data MULEs: Modeling a Three-tier
Architecture for Sparse Sensor Networks, In Proc. IEEE Int’l Workshop on Sensor
Network Protocols and Applications (SNPA 2003), pages: 30-41

Shen C.C., Srisathapornphat C. & Jaikaeo C., 2001. Sensor information networking
architecture and applications. Personal Communications, IEEE, vol. 8, no. 4,
pages: 52-59.

Shnayder V., Hempstead M., Chen B.-R., Allen G.W. & Welsh M., 2004. Simulating the
power consumption of large-scale sensor network applications, In Proceedings of
the 2nd international conference on Embedded networked sensor systems,
Baltimore, MD, USA, pages: 188-200

Sinha A. & Chandrakasan A., 2001. Dynamic power management in wireless sensor
networks. Design & Test of Computers, IEEE, vol. 18, no. 2, pages: 62-74.

Small T. & Haas Z.J., 2003. The shared wireless infostation model: a new ad hoc
networking paradigm (or where there is a whale, there is a way), In Proceedings
of the 4th ACM international symposium on Mobile ad hoc networking \&
computing, Annapolis, Maryland, USA, pages: 233-244

Soheili A., Kalogeraki V. & Gunopulos D., 2005. Spatial queries in sensor networks, In
Proceedings of the 13th annual ACM international workshop on Geographic
information systems, Bremen, Germany, pages: 61-70

Solis I. & Obraczka K., 2006. In network aggregation tradeoffs for data collection in
wireless sensor networks. Int. J. Sen. Netw., vol. 1, no. 3/4, pages: 200-212.

Somasundara A.A., Kansal A., Jea D.D., Estrin D. & Srivastava M.B., 2006. Controllably
Mobile Infrastructure for Low Energy Embedded Networks. IEEE Transactions on
Mobile Computing, vol. 5, no. 8, pages: 958-973.

Somasundara A.A., Ramamoorthy A. & Srivastava M.B., 2004. Mobile Element
Scheduling for Efficient Data Collection in Wireless Sensor Networks with
Dynamic Deadlines, In Proceedings of the 25th IEEE International Real-Time
Systems Symposium, pages: 296-305

Song L. & Hatzinakos D., 2005. Dense wireless sensor networks with mobile sinks, In
IEEE International Conference on Acoustics, Speech, and Signal Processing,
2005. Proceedings. (ICASSP '05). pages: iii/677-iii/680 Vol. 3

266

Srivastava M.B., 2002. Sensor Node Platforms & Energy Issues [Online]. Available:
http://nesl.ee.ucla.edu/tutorials/mobicom02/slides/Mobicom-Tutorial-2-MS.pdf
[Accessed 12/10/2007].

Srivastava M.B., Muntz R. & Potkonjak M., 2001. Smart kindergarten: sensor-based
wireless networks for smart developmental problem-solving environments, In
Proceedings of the 7th annual international conference on Mobile computing and
networking, Rome, Italy, pages: 132-138

Steere D.C., Baptista A., Mcnamee D., Pu C. & Walpole J., 2000. Research challenges in
environmental observation and forecasting systems, In Proceedings of the sixth
annual international conference on Mobile computing and networking, Boston,
Massachusetts, United States, pages: 292-299

Sunmicrosystems, 2007. Sun™ Small Programmable Object Technology (Sun SPOT)
Theory of Operation [Online]. Available:
http://www.sunspotworld.com/docs/Purple/SunSPOT-TheoryOfOperation.pdf
[Accessed 29/03/2010].

Symbianfoundation, 2010. Available: http://www.symbian.org/ [Accessed 01/06/2010].
Tanenbaum A.S., 2002. Computer networks, Upper Saddle River, New Jersey, Prentice

Hall.
Texasinstruments, 2007. CC2420 - Single-Chip 2.4 GHz IEEE 802.15.4 Compliant and

ZigBee™ Ready RF Transceiver, [Online]. Available:
http://focus.ti.com/docs/prod/folders/print/cc2420.html [Accessed 28/03/2010].

Texasinstruments, 2010. CC1000-Single Chip Very Low Power RF Transceiver [Online].
Available: http://focus.ti.com/lit/ds/symlink/cc1000.pdf [Accessed 21/03/2010].

Topicmap, 2010. Whats happening in TopicMap world? [Online]. Available:
www.topicmap.com [Accessed 01/05/2010].

Tseng Y.C., Ni S.Y., Chen Y.S. & Sheu J.P., 2002. The Broadcast Storm Problem in a
Mobile Ad Hoc Network. Wireless Networks, vol. 8, no. 2-3, pages: 153-167.

Ucla, 2009. Parallel Computing Laboratory, PARSEC [Online]. Available:
http://pcl.cs.ucla.edu/projects/parsec [Accessed 01/08/2009].

Utms, 2010. Universal Traffic Management Society of Japan [Online]. Available:
http://www.utms.or.jp/english/index.html [Accessed 01/08/2010].

Vasilescu I., Kotay K., Rus D., Dunbabin M. & Corke P., 2005. Data collection, storage,
retrieval with an underwater sensor network, In Proceedings of the Third
International Conference on Embedded Networked Sensor Systems (Sensys), San
Diego, CA, pages: 154-165

Venkitasubramaniam P., Adireddy S. & Tong L., 2004. Sensor Networks with Mobile
Access: Optimal Random Access and Coding. IEEE Journal on Selected Areas in
Communications, vol. 22, no. 6, pages: 1058- 1068.

Vieira M., Coelho C.N., Jr., Da Silva D.C., Jr. & Da Mata J.M., 2003. Survey on wireless
sensor network devices, In IEEE Conference on Emerging Technologies and
Factory Automation, Belo Horizonte, Brazil, pages: 537 - 544

Virtamo J., 2010. Poisson process [Online]. Available:
http://www.netlab.tkk.fi/opetus/s38143/luennot/E_poisson.pdf [Accessed
25/04/2010].

Wang A. & Chandrakasan A., 2001. Energy efficient system partitioning for distributed
wireless sensor networks, In Proceedings. (ICASSP '01). 2001 IEEE International

 267

Conference on Acoustics, Speech, and Signal Processing, 2001. , pages: 905-908
vol.2

Wang Z.M., Basagni S., Melachrinoudis E. & Petrioli C., 2005. Exploiting Sink Mobility
for Maximizing Sensor Networks Lifetime, In Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, pages: 287.1

Want R., Hopper A., Falcão V. & Gibbons J., 1992. The active badge location system.
ACM Trans. Inf. Syst., vol. 10, no. 1, pages: 91-102.

Warneke B.A. & Pister K.S.J., 2002. MEMS for distributed wireless sensor networks, In
9th International Conference on Electronics, Circuits and Systems, 2002. , pages:
291-294 vol.1

Weiser M., 1999. The computer for the 21st century. SIGMOBILE Mob. Comput.
Commun. Rev., vol. 3, no. 3, pages: 3-11.

Werner-Allen G., Lorincz K., Welsh M., Marcillo O., Johnson J., Ruiz M. & Lees J.,
2006. Deploying a wireless sensor network on an active volcano, In IEEE Internet
Computing 10, pages: 18–25

Wikipedia, 2010. Mark Weiser [Online]. Available:
http://en.wikipedia.org/wiki/Mark_Weiser [Accessed 01/06/2010].

Williams B. & Camp T., 2002. Comparison of broadcasting techniques for mobile ad hoc
networks, In Proceedings of the 3rd ACM international symposium on Mobile ad
hoc networking \& computing, Lausanne, Switzerland, pages: 194-205

Winter J. & Lee W.C., 2004. KPT: a dynamic KNN query processing algorithm for
location-aware sensor networks, In Proceeedings of the 1st international
workshop on Data management for sensor networks: in conjunction with VLDB
2004, Toronto, Canada, pages: 119-124

Winter J., Xu Y. & Lee W.C., 2005. Energy Efficient Processing of K Nearest Neighbor
Queries in Location-aware Sensor Networks, In Proceedings of the The Second
Annual International Conference on Mobile and Ubiquitous Systems: Networking
and Services, pages: 281-292

Winterfeld D. & Edwards W., 1986. Decision Analysis and Behavioural Research,
Cambridge.

Wodajo F., 2010. Bluetooth 4.0 is admitted to the hospital – Potential to revolutionize
health care devices [Online]. Available:
http://www.imedicalapps.com/2010/04/bluetooth-admitted-to-hospital-healthcare-
4/ [Accessed 07/05/2010].

Wu H., Siegel M. & Ablay S., 2003. Sensor fusion using Dempster-Shafer theory II:
static weighting and Kalman filter-like dynamic weighting, In Proceedings of the
20th IEEE Instrumentation and Measurement Technology Conference, 2003.
IMTC '03., pages: 907-912 vol.2

Wu H., Siegel M., Stiefelhagen R. & Jieyang, 2002. Sensor Fusion Using Dempster-
Shafer Theory, In Proceedings of IEEE Instrumentation and Measurement
Technology Conference, Anchorage, USA, pages: 7-12

Wu S.H., Chuang K.T., Chen C.M. & Chen M.S., 2007. DIKNN: An Itinerary-based
KNN Query Processing Algorithm for Mobile Sensor Networks, In IEEE 23rd
International Conference on Data Engineering, 2007. ICDE 2007, pages: 456-465

268

Xu N., 2009. A Survey of Sensor Network Applications [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.9647&rep=rep1&t
ype=pdf [Accessed 10/11/2009].

Xu N., Rangwala S., Chintalapudi K.K., Ganesan D., Broad A., Govindan R. & Estrin D.,
2004. A wireless sensor network For structural monitoring, In Proceedings of the
2nd international conference on Embedded networked sensor systems, Baltimore,
MD, USA, pages: 13-24

Xu Y., Lee W.C., Xu J. & Mitchell G., 2006. ProcessingWindow Queries in Wireless
Sensor Networks, In Proceedings of the 22nd International Conference on Data
Engineering, pages: 70

Yang G.-Z., 2010. Body Sensor Networks (BSN) [Online]. Available:
http://vip.doc.ic.ac.uk/bsn/m621.html [Accessed 20/02/2010].

Yao Y., Tang X. & Lim E.P., 2006. In-network processing of nearest neighbor queries for
wireless sensor networks, In International Conference on Database Systems for
Advanced Applications, Singapore, pages: 35-49

Yao Y., Tang X. & Lim E.P., 2009. Localized monitoring of kNN queries in wireless
sensor networks. The VLDB Journal, vol. 18, no. 1, pages: 99-117.

Yap K.K., Srinivasan V. & Motani M., 2005. MAX: Human-centric search of the physical
world, In Proceedings of the Third International Conference on Embedded
Networked Sensor Systems (Sensys), San Diego, CA, pages: 166-179

Yick J., Mukherjee B. & Ghosal D., 2008. Wireless sensor network survey. Computer
Networks, vol. 52, no. 12, pages: 2292-2330.

Yoshimi B., 2000. On Sensor Frameworks for Pervasive Systems, In Workshop on
Software Engineering for Wearable and Pervasive Computing (SEWPC) at 22nd
International Conference on Software Engineering (ICSE’00), Limerick, Ireland,
pages:

Younis M., Youssef M. & Arisha K., 2002. Energy-Aware Routing in Cluster-Based
Sensor Networks, In Proceedings of the 10th IEEE International Symposium on
Modeling, Analysis, & Simulation of Computer & Telecommunications Systems,
Quebec. Canada, pages: 129-136

Younis O., 2004. HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach
for Ad Hoc Sensor Networks. IEEE Transactions on Mobile Computing, vol. 3,
no., pages: 366-379.

Zhang P., Sadler C.M., Lyon S.A. & Martonosi M., 2004. Hardware design experiences
in ZebraNet, In Proceedings of the SenSys’04, Baltimore, MD, pages: 227-238

Zigbee, 2007. ZigBee connects to mobile phones [Online]. San Ramon, Calif. Available:
http://www.automation.com/content/zigbee-connects-to-mobile-phones [Accessed
01/08/2009].

Zigbee, 2009a. ZigBee Wireless Sensor Applications for Health, Wellness and Fitness
[Online]. Available:
http://www.zigbee.org/imwp/download.asp?ContentID=15585 [Accessed
13/07/2009].

Zigbee, 2009b. ZigBee: wireless control that simply works [Online]. Available:
http://www.zigbee.org [Accessed 10/08/2009].

 269

Appendix A
The detailed class diagram of the implemented classes on PDA has been divided

into two pages for easy representation and clarity.

Figure A1: Detailed Class Diagram - Implementation on PDA (Part 1)

270

Figure A1: Detailed Class Diagram - Implementation on PDA (Part 2)

 271

Figure A2: Detailed Class Diagram - Implementation on Mobile Robot (Part 1)

272

Figure A2: Detailed Class
Diagram - Implementation on

Mobile Robot (Part 2)

 273

Figure A3: R-CS
Implementation - Detailed

Class Diagram (Part 1)

274

Figure A3: R-CS Implementation - Detailed Class Diagram (Part 2)

 275

Appendix B

Figure B1: Window-based Data Collection: Mulle Sensor Dumps

276

Glossary
.NET CF: Microsoft .NET Compact Framework platform supporting software

development for mobile devices

EPE: Ekahau Positioning Engine

ER1: A robot platform built by Evolution Robotics

GSM: Global System for Mobile Communications

GPRS: General Packet Radio Service

GPS: Global Positioning System

LAP: LAN access profile is a Bluetooth profile that enables Bluetooth devices to access a

LAN, WAN or internet via another device

LAN: Local Area Network

Locomotion: The term locomotion means movement or travel

Mobile Data Mule: A mobile device that is used as a vehicle to collect and deliver

sensor data.

Mulle: A Bluetooth-based sensor node developed at EISLab, Lulea, Sweden.

PDA: Personal Digital Assistant

Piconet: A ad-hoc computer network linking one Bluetooth master to seven slave devices

Smart Phone: A mobile phone with advanced computing features than traditional mobile

phones. For example internet-enabled, powerful processing, social networking, etc.

Sink/Base Station: The sink/base station is a centralised location to which collected

sensor data is delivered for further processing.

Scatternet: A collection of one or more piconets.

SPP: Serial port profile is a Bluetooth profile that emulates a serial cable.

SDK: Software development kit

 277

UMTS: Universal Mobile Telecommunications System

Wireless Sensor Node: A tiny battery powered resource constrained device that has the

capability to sense, process, store and wireless transfer data.

Wireless Sensor Network: A collection of wireless sensor nodes, data sinks, and

intermediate mobile node deployed within an area to achieve single or multiple goals.

WLAN: Wireless Local Area Network

WAN: Wide Area Network

WiMAX: Worldwide Interoperability for Microwave Access

Wi-Fi: A trademark of the Wi-Fi Alliance used by manufactures to brand WLAN based

devices based on IEEE 802.11 standard

XML: Extensible Markup Language is a set of rules to encode documents in machine

readable format

Zigbee: A suite of communication protocols for small low-powered devices based on

IEEE 802.15.4

