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Abstract 

Wireless sensor networks represent an important component of distributed 

pervasive computing infrastructure supporting a range of applications including health, 

military, environmental monitoring, civil structure monitoring, smart homes, etc. The 

primary factor driving such pervasive real-world applications is availability of data from 

sensors distributed in the environment. Traditional way of collecting data is to transmit 

the data from sensors to a collection point using wireless radio communications. 

However, the traditional approach is expensive and not always efficient. 

This thesis addresses a major challenge of cost-efficient collection of data from 

wireless sensor networks. Our data collection philosophy is to use mobile devices as 

sensor data collectors. The use of mobile devices as mobile data mules facilitates the 

formation of a mobile access network that can be used by sensors to connect to the 

external world. 

We propose, investigate, develop and validate a sensor data collection framework 

called sGaRuDa which enables interoperable capabilities and takes advantage of existing 

communication and hardware capabilities of the mobile data mule platforms enabling 

them to collect sensor data on-the-run. The sGaRuDa framework incorporates intelligent 

mobile data mule allowing them to dynamically make data collection and delivery 

decisions. The sGaRuDa framework and the corresponding data collection algorithms are 

targeted at sensor networks that use short range radio communication technologies like 

Bluetooth. We have also proposed, implemented and validated a novel three dimensional 

k-Nearest Neighbour query-based sensor data collection approach called 3D-KNN to 

address broadcast-based sensor network communication architectures. The 3D-KNN 

facilitates multi-hop data collection from infrastructure-less wireless sensor networks 

(e.g. Zigbee). 

We propose, develop, implement and validate a dynamic smart spaces modelling 

approach called Ranked-Context Spaces (R-CS). Our smart spaces modelling approach is 

driven by the notion of situation modelling and reasoning about context. Ranked-Context 

Spaces is capable of computing situation-based smart spaces model taking into account 



 

changing contextual information. R-CS is proposed as an extension to Context Spaces 

theory. 

The thesis presents implementation and evaluation details of the proposed 

sGaRuDa framework and the 3D-KNN algorithm. We have demonstrated the feasibility 

and cost-efficiency of the sGaRuDa system framework in real-world environments by 

implementing a proof-of-concept prototype on a range of mobile device platforms, 

namely, Personal Digital Assistants and mobile robot. Extensive evaluation and 

experimentation have been performed to prove the extent of energy conservation using 

the proposed data collection framework and the 3D-KNN algorithm. Finally, we have 

implemented the R-CS system to demonstrate its reasoning ability under uncertainty. 

Experiments based on synthetic sensor data streams have been performed to evaluate the 

proposed Context Spaces extensions incorporated into R-CS. 

During the course of the thesis work, 7 peer-refereed international conference 

papers, 1 peer-refereed workshop paper and 1 journal paper have been produced. One of 

the conference papers was awarded a BEST PAPER AWARD. 
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1  
Introduction 

1.1 Preamble 

Mark Weiser, widely considered the father of ubiquitous computing (Wikipedia, 

2010), expressed a vision for 21st century computing devices (Weiser, 1999). Quoting 

Mark Weiser’s vision from (Weiser, 1999) “the most profound technologies are those 

that disappear. They weave themselves into the fabric of everyday life until they are 

indistinguishable from it.” His vision reflected computing as an integral part of everyday 

human activity/life. Wireless Sensor Networks are one such technological advancement 

that has revolutionised the way of embedding computing devices in physical spaces.  

MIT’s technological review (Huang, 2003) has identified Wireless sensor networks 

(WSN) as “one of the top ten technologies that will change the world”.  

WSN have attracted a considerable amount of research interest in recent years 

(Shen et al., 2001, Culler et al., 2004) facilitated by advances in manufacturing of high 

density electronics. Wireless sensor node is a key component of WSN. The wireless 

sensor node is a tiny, battery powered computing device with sensing, processing, storage 

and communication capability. These aforementioned capabilities of WSN’s have made 

them suitable for a number of application domains including domestic (Smart homes, 

home health care systems (Baker et al., 2007, Srivastava et al., 2001)), military (Akyildiz 

et al., 2002), environmental monitoring (Ramanathan et al., 2005) and 

scientific/industrial (Structural Monitoring (Xu et al., 2004)) applications. For example, 

Grape Networks(2010), a Wireless Sensor Networking company specialising in 

deploying and managing wireless sensor nodes at a commercial scale, have implemented 

WSN technology in vineyards to monitor environmental conditions. 
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The tiny low-powered (battery) sensor nodes deployed within an area have the 

capability to sense environmental parameters and collaborate with other sensors in the 

neighbourhood. Wireless sensor nodes distributed within an area work together to 

achieve single or multiple goals (Shen et al., 2001). The sensing property of sensor nodes 

allows them to gather information from the physical world (e.g. temperature). The sensor 

has on-board capability to process, store or transmit sensed information wirelessly, based 

on application requirements. The advent of WSN has enabled the acquisition of data from 

physical environments which previously was expensive, difficult or even impossible 

(Chu et al., 2006).  WSN has paved the way in realising Mark Weiser’s vision for 21st 

century computing. 

The increased adaptation of WSN across various application domains has resulted 

in generation of massive amounts of data (Shen et al., 2001, Culler et al., 2004). Hence 

collecting data from sensors has been identified as one of the several challenges that need 

to be addressed for large-scale sensor network adoption. The process involving collection 

of the sensed data from the sensor nodes is called “sensor data collection”.  The resource 

constrained nature of sensor nodes make the data collection process more challenging, 

hence embodying the need for energy-efficient data collection techniques.  

A key application area that uses sensor data as its foundation is smart computing 

applications i.e. context-aware systems. Context-aware systems have the capability to 

adapt their behaviour (operation) based on real-world contextual information in order to 

deliver the best service to the user (Hähner et al., 2004). Context-aware applications 

(Loke, 2006) rely on real-world information which is sourced from sensors (physical and 

software). The sensor data from wireless sensors are dynamic i.e. they change over time. 

Hence, the context-aware applications need to have the ability to adapt to changing 

contextual information.  

In this research, we focus on the challenge of energy-efficient sensor data 

collection. In addressing the sensor data collection challenge, we note that 

communication is a major factor that affects sensor lifetime. The lifetime of a sensor 

node is the amount of time the sensor can perform its operations before its battery drains. 

Further, we extend our research by addressing the challenge of dynamically modelling 
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smart spaces1 using data collected from sensors that are embedded within the 

environment. In particular, we introduce the notion of situation-based smart spaces 

modelling where real-world contextual information is used to build a virtual model of the 

physical situation. The rest of the chapter is organised as follows: Section 1.2 presents the 

research motivation. Section 1.3 presents the research aims and contributions. Finally, 

section 1.4 presents a roadmap of the thesis structure. 

1.2 Research Motivation 

Currently there are around 4 billion mobile phones2 (ITU, 2008) in use in the 

world. Many of these devices have enough spare energy to perform operations other than 

regular telephony and internet-based services. Moreover, current day mobile platforms 

come equipped with a plethora of communication technologies including GSM, Wi-Fi, 

Bluetooth, UMTS, etc, capable enough to form a ubiquitous mobile wireless access 

network. A survey conducted over three days at an info-security conference 2006 in 

London (Gostev, 2006) resulted in discovery of more than 2000 Bluetooth enabled 

devices in visible mode. The profuse use of mobile devices equipped with a host of 

communication technologies created the foundation of our vision to use day-to-day 

mobile computing devices as mobile sensor data collectors.  We envision the use of 

mobile computing devices as mobile access points for sensor networks. The ubiquitous 

presence of mobile devices and increased number of sensor network deployments in 

smart environments, facilitates the creation of mobile wireless access networks with 

sufficient bandwidth (available from mobile device communication channels, e.g. GSM, 

UMTS) to support data originating from sensors.  

The use of mobile devices as collectors and carriers of sensor data allows 

application developers to access sensor data from any location instantly which otherwise 

would require specially designed data-sink infrastructure. We take advantage of short-

range communication technologies available on current day mobile devices. Our proposal 
                                                            
1 Smart space is the term used to represent spaces embedded with computing 
infrastructure Satyanarayanan M., 2002. Pervasive computing: vision and challenges. 
Personal Communications, vol. 8, no. 4, pages: 10-17. 
2 We use the mobile phone as a classic example of widely available mobile device 
platforms in everyday life 
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explores the use of mobile devices as a shared access network that can act as data carriers 

for sensor nodes. This approach introduces a new sensor network paradigm facilitating a 

platform for easy adoption of sensor networks in applications which otherwise required 

laborious and expensive network infrastructure. An application scenario illustrating our 

motivation is presented in Figure 1.1. The illustration in Figure 1.1 depicts an industrial 

environment where sensors are distributed at different locations within a building. The 

mobile devices that act as data carriers in the scenario are mobile phones used by factory 

workers who move around within the sensor network environment.  

 

Figure 1.1: Motivation Scenario Example 

Our motivation is further supported by the widespread acceptance of short-range 

communication technologies like Bluetooth. Recent research outcomes validate the 

feasibility of Bluetooth for low-powered sensor network operations (Leopold et al., 

2003). The popularity and adoption of Bluetooth has already made it a ubiquitous 

technology helping us realise our vision of creating a heterogeneous network comprising 

Bluetooth enabled day-to-day mobile devices interacting with sensor nodes deployed 

within smart spaces. Moreover, our vision supports a variety of technologies, Zigbee 

being one such example. The  adoption of 802.15.4 Zigbee (2009a) protocol for wireless 

sensor networks  and development of Zigbee enabled mobile devices (ZigBee, 2007) has 
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further strengthened our vision, extending our approach to future mobile devices. The use 

of day-to-day mobile devices as a vehicle to collect sensor data exploits a mobile device’s 

spare capacity, utilising the mobile access network without the need for dedicated sensor 

data collection infrastructure.  

1.3 Research Objectives and Contributions 

The introduction of day-to-day mobile devices as sensor data collectors opens up 

a number of application possibilities. We use the term day-to-day to embody the class of 

mobile devices available in current day-to-day human activities. These mobile devices 

include smart mobile phones, personal device assistants (PDA), tablets, laptops, mobile 

robots, etc. We aim to take advantage of existing networking capabilities available on 

mobile devices to form a ubiquitous mobile device-based dynamic sensor data collection 

infrastructure. We term these mobile devices mobile data mules. 

Our proposed approach creates the platform for tiny low-powered sensors to 

connect to an access network using mobile devices available within the environment. 

Recent research in the area of Bluetooth-based sensor networks (BSN) have spawned 

new application opportunities (Deventer et al., 2009, Eliasson et al., 2008, Eliasson et al., 

2007) by which, individual sensors connected to the internet provide a range of services 

to the end-user. The wide acceptance of Bluetooth technology and its pervasiveness 

across current day mobile device platforms has helped in realising our vision presented in 

the previous section. Further, advances in the development of Zigbee-based mobile 

devices (ZigBee, 2007) and the large availability of Zigbee-based sensors 

(CrossbowTechnology, 2010a), introduce the need for data collection protocols to suit a 

wide range of sensor network platforms. Hence, in this thesis, we propose data collection 

algorithms targeted at a wide range of sensor network platforms, namely, sensor networks 

with broadcasting capability (Zigbee-based) and sensor networks without broadcasting 

capability (Bluetooth-based). Our approach takes advantage of ubiquitous availability of 

mobile devices within human environments. Hence, it is important and challenging to 

develop energy-efficient data collection protocols that can work on low-powered sensor 

nodes. Moreover, the data collection protocols need to have the capability to work on 

current day mobile devices without modifying the device platform. 
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Further, to validate the importance of the collected sensor data in smart 

environments, we also explore a dynamic smart spaces modelling approach. We use the 

term smart spaces to define pervasive environments embedded with computing device 

having the capability to react to environmental changes. Sensor networks play an 

important role in current world smart spaces as they are the source of valuable data. The 

thesis explores the possibility of a dynamic smart spaces model that adapts to changing 

sensor data (collected by mobile data mules). 

Hence, the aim of this thesis can be summarised as follows: to study, develop, 

implement and evaluate cost-efficient sensor data collection approaches that suit a wide 

range of sensor network platforms using day-to-day mobile devices as mobile data mules 

and to implement and develop a smart spaces modelling technique that adapts 

dynamically using sensor data collected by mobile data mules. 

The aim of this thesis is driven by both real-world sensor network applications 

that require cost-efficient ubiquitous data collection approaches and sensor network 

research which so far has not addressed sensor data collection using day-to-day mobile 

devices highlighted in section 2.3.6. This research can be applied to many application 

domains including health-care and intelligent road networks, to name a few, and has the 

capability to spawn new applications (e.g. district heating application presented in section 

3.6) within the area of pervasive computing. We briefly highlight how the research 

presented in this thesis can benefit health-care. Bluetooth-based sensors have been 

identified to revolutionise health care devices (Wodajo, 2010). Wodajo et.al. (Wodajo, 

2010) puts forward the use of disposable sensors embedded on health care devices that 

can provide real-time patient data to doctors. The use of disposable sensor nodes renders 

a constantly changing sensor network environment that requires new data collection 

approaches. This research addresses the sensor data collection challenge by taking 

advantage of existing mobile device infrastructure available in most urban areas (e.g. 

health care centre). The mobile devices collect the data generated by the health-care 

devices embedded with Bluetooth sensors. The approaches investigated in this thesis 

advances the research in sensor data collection by proposing an architecture that can 

bridge sensor nodes and ubiquitously available mobile devices. In section 3.6 we present 

detailed descriptions of two real-world applications that can take advantage of the sensor 
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data collection technique proposed in this thesis. The real-world examples presented in 

section 3.6 may lead to a new class of sensor network applications which may have not 

been possible in the past. 

To further simplify the overall aim of this thesis we breakdown the objective into 

three research questions. They are: 

1) Is it possible to use day-to-day mobile devices as an energy-efficient 

alternative to collect data from a Bluetooth-based sensor network embedded 

within the environment? 

2) Is it possible to extend the mobile device-based data collection algorithms to 

suit a wider range of sensor network communication architectures 

(broadcasting-based)? 

3) Is it possible to develop a dynamic smart spaces model using newly generated 

sensor data? 

To address these three research questions, the thesis proposes techniques that 

achieve cost-efficient sensor data collection from a class of sensor network platforms. 

Further, we propose a situation-based dynamic context modelling approach based on 

Context Spaces (Padovitz et al., 2004, Padovitz, 2006, Padovitz et al., 2005)  that models 

smart spaces using sensor originated data. Our notion of smart spaces modelling is 

governed by situation modelling. The thesis makes the following contributions to address 

the three research questions. 

1) A sensor data collection framework, namely, sGaRuDa (Jayaraman et al., 

2008a, Jayaraman et al., 2008c, Jayaraman et al., 2008b, Jayaraman et al., 

2007) that can be implemented on day-to-day mobile devices enabling them to 

discover, negotiate, collect and deliver sensor data. The proposed system 

framework incorporates 

a. Algorithms for energy-efficient discovery of Bluetooth-based sensors 

b. A sliding window inspired data collection algorithm to collect data 

from sensors in the presence of multiple independent mobile data 

mules 
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2) A dynamic sensor duty cycle adaptation (activation schedule) (Jayaraman et 

al., 2008a, Jayaraman et al., 2008c, Jayaraman et al., 2008b, Jayaraman et al., 

2007) algorithm used to modify the sensor’s duty cycle on-the-fly, using the 

mobile data mule with the objective to increase the sensor discovery ratio, 

hence reducing sensor energy consumption. The proposed sGaRuDa system 

framework facilitates on-the-fly exchange of the activation schedule. 

3) A novel k nearest neighbour query based sensor data collection algorithm, 

namely, 3D-KNN (Jayaraman et al., 2010a, Jayaraman et al., 2010c, 

Jayaraman et al., 2010b) targeting sensor nodes with broadcasting capabilities 

(e.g. Zigbee). The proposed 3D-KNN algorithm has the ability to work in a 

three dimensionally distributed sensor network. The 3D-KNN algorithm takes 

into consideration sensor location and communication channel quality in a 3D 

space to identify the best set of energy-efficient sensors neighbouring the 

mobile data mule. The 3D-KNN algorithm uses multi-hop sensor data 

collection. The proposed 3D-KNN algorithm is a pioneering work in using 

mobile data mules to employ kNN queries for sensor data collection in a 3D 

sensor network. 

4) A dynamic situation modelling approach, namely, R-CS (Jayaraman et al., 

2009b, Jayaraman et al., 2009a, Jayaraman et al., 2008c), proposed as an 

extension to Context Spaces (Padovitz, 2006, Padovitz et al., 2004, Padovitz 

et al., 2005) that allows dynamic composition of situations based on collected 

sensor data. 

Further, to verify, validate and evaluate the proposed data collection algorithm 

and the smart spaces modelling approach, the thesis makes the following contributions: 

1) Prototype implementation of the sGaRuDa framework and its data 

collection algorithms on real-world mobile devices validating the function 

feasibility of the system. 

2) Demonstrates the cost-efficiency of sGaRuDa by extensive real-world 

experimentations. 
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3) Demonstrates the cost-efficiency of the proposed 3D-KNN algorithm by 

extensive evaluations and experimentation over large-scale wireless sensor 

network environments. 

4) Implements, validates and evaluates the dynamic situation modelling 

extensions incorporated to Context Spaces (Padovitz, 2006). 

Our research methodology is driven by proposing, developing, implementing and 

testing the proposed algorithms and protocols to address the three research questions. Our 

proposed approaches are supported by extensive evaluation outcomes in real-world and 

simulator environments. 

1.4 Thesis Structure 

The thesis is organised into 7 chapters excluding introduction. An illustration of 

the thesis structure is presented in Figure 1.2. 

Chapter 2 presents a literature background on sensor data collection techniques. 

We present a broad background on current state-of-the art wireless sensor networks. 

Further, we present an in-depth literature review of mobile and non-mobile based data 

collection approaches, identifying their shortfalls and building an argument for our 

proposed approaches. Finally, we present a literature review of situation-based context 

modelling approaches identifying the need for a dynamic smart situation modelling 

approach. 

Chapter 3 presents in-depth discussion of the proposed sensor discovery, data 

collection and sensor management algorithms. This chapter is partly based on the 

published papers (Jayaraman et al., 2008a, Jayaraman et al., 2008c, Jayaraman et al., 

2007, Jayaraman et al., 2010b). We propose our system framework, namely, sGaRuDa. 

The proposed system framework can be implemented on current generation mobile 

devices. The system framework primarily targets Bluetooth-based sensors nodes while 

the algorithms proposed for data collection can be extended with relative ease to non-

Bluetooth based networks. 
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Figure 1.2: Thesis Structure 

Chapter 4 extends the proposed system framework by introducing k nearest 

neighbour-based three dimensional sensor data collection (3D-kNN) algorithm using 

mobile data mules. This chapter is based on published papers (Jayaraman et al., 2010a, 

Jayaraman et al., 2010c, Jayaraman et al., 2010b, Jayaraman et al., 2008b). The proposed 

3D-kNN algorithm aims at cost-efficient discovery and data collection from broadcast-

based sensor nodes. We present a detailed discussion of the sensor discovery and multi-

hop data collection algorithms. 

Chapter 5 presents the proposed Context Spaces extensions that are implemented 

in our R-CS reasoning system. This chapter is based on the published papers (Jayaraman 

et al., 2009b, Jayaraman et al., 2009a, Jayaraman et al., 2008c). The proposed extension 

allows R-CS to compose situations on-the-fly enabling increased reasoning accuracy. We 

also discuss introduction of additional metrics into R-CS to increase the reasoning 

confidence under uncertainty. 

Chapter 6 presents implementations of the proposed system framework 

(sGaRuDa), the 3D-kNN algorithm and R-CS (Context Spaces extensions). We present a 

detailed discussion of sGaRuDa (the proposed data collection framework) 
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implementation on real-world devices (personal digital assistant) and sensor node 

(Mulle). The 3D-kNN algorithm has been implemented within a simulator environment. 

We present a detailed discussion of the simulator environment and the 3D-kNN 

implementation. Finally, we present the details of JAVA implementation of R-CS. 

Chapter 7 presents extensive evaluations and experimental results of the systems 

presented in Chapter 3, Chapter 4 and Chapter 5 respectively. We perform real-world 

experimentations to prove the feasibility of sGaRuDa supported by real-world evaluation 

outcomes to validate the efficiency of the proposed algorithms. Similarly, we discuss the 

results of extensive evaluation of the 3D-kNN algorithm in our simulator environment 

simulated over large-scale sensor networks. The outcome of the 3D-kNN algorithm is 

compared with a non-mobile kNN-based sensor data collection algorithm to validate its 

cost-efficiency. Finally, we present evaluation results of R-CS comparing the 

experimental outcomes with Context Spaces validating the proposed extensions. 

Chapter 8 concludes the thesis with pointers to possible future works.  
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2  
Sensor Data Collection 

Approaches and Context 
Modelling - A Literature Review  
2.1 Introduction 

A major focus of this dissertation is to address key challenges in sensor data 

collection. The advent of sensor networks, primarily driven by advances in 

manufacturing of high density electronics, is hindered by slow developments in battery 

technologies. The energy (battery power) constrained nature of sensors is a major 

consideration in the development of data collection protocols. This chapter presents a 

survey on sensor data collection techniques available in the literature. In section 2.2, we 

present an overview on wireless sensors network (WSN) operations identifying key 

challenges. Sections 2.3 and 2.4 present current literature on sensor data collection 

approaches. Finally, sections 2.5 and 2.5.2 discuss current literature on situation-based 

context modelling and reasoning approaches identifying the importance of dynamic 

situation modelling. 

2.2 Wireless Sensor Networks 

2.2.1 Overview 

A wireless sensor network (WSN) is a collection of components that work 

together to achieve single or multiple goals (Vieira et al., 2003, Burke et al., 2006). A 

major component of WSN is distributed, autonomous, tiny devices called wireless sensor 

nodes. Wireless sensor nodes are equipped with on-board sensing, communication and 
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data processing capabilities (Akyildiz et al., 2002). The sensor essentially is an atomic 

unit (Kumar, 2003) comprising the capabilities mentioned earlier. Kumar (Kumar, 2003) 

uses the term “Atomic Computing Particle” to describe sensors. Sensor networks help 

forming a fully connected information space (Kumar, 2005, Kumar, 2003). The research 

in the area of sensor networks was pioneered by UC Berkeley researchers (Culler et al., 

2004) who were instrumental in developing the MICA mote sensor platform 

(CrossbowTechnology, 2010a) . The sensor node has the capability to work with a 

variety of sensors ranging from mechanical, thermal, biological, chemical, optical and 

magnetic sensors (Yick et al., 2008). In most cases, the primary power source of a sensor 

node is a battery though recent research initiatives have explored secondary power 

sources like solar panels (Alippi et al., 2008, Kansal et al., 2007). Going by Moore’s Law 

(Pinto, 2002) - number of transistors on a chip doubles every 18 months and Gilder’s 

Law (Pinto, 2002) – communication bandwidth triples every year – a theory for battery 

life prediction is unavailable. This limitation in power always remains the primary 

challenge in sensor design and operation. 

Early research in wireless integrated network sensor (sensor networks) (Pottie et 

al., 2000, Asada et al., 1998, Bult et al., 1996) was motivated by pervasive computing 

application requirements to bridge the physical and virtual worlds. Sensors are an 

excellent technological advancement that made this requirement a reality. They 

facilitated monitoring and collecting physical world parameters that were fed into virtual 

world pervasive applications. The Smart kindergarten (Srivastava et al., 2001) project is 

one such example of a pervasive application dependent on sensor inputs. A simple 

wireless sensor network is illustrated in Figure 2.1. Though sensor networks share a 

number of ad-hoc network characteristics (Frodigh et al., 2000), algorithms employed in 

traditional ad-hoc networks cannot be straight-forwardly adapted to sensor network 

requirements.  

A typical WSN has little or no network infrastructure information (Yick et al., 

2008). In most applications WSN’s are deployed within a dense area in an ad-hoc 

manner. Based on the type of network deployment, they can be classified into structured 

and un-structured. A deployment depicted in Figure 2.1 is classified as un-structured 

while planned deployment in specific locations is classified structured. The 
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sink/gateway/base station is another important component of WSN. It is a centralized 

component to which sensed data is transmitted for further processing/decision making. In 

this thesis, we use the terms sink and base station interchangeably. 

 

Figure 2.1: A Simple Wireless Sensor Network Deployment 

2.2.2 Sensor Node Components/Operations 

A sensor node is made of four main components, namely, physical sensor, battery, 

communication radio and processor each associated with a key operation: 

Sensing: The process of measuring the physical phenomenon is sensing. A wireless 

sensor can be equipped with different types of sensors based on applications 

requirement. The sensing unit in a sensor may have more than one type of sensor 

installed. The sensing unit is responsible in managing various sensors converting 

electrical signals generated by changes in physical environment into raw sensed 

data. This raw data can be saved to an on-board memory or transmitted to a central 

processing station wirelessly. For example, a temperature sensor has the ability to 

measure temperature within the deployed environment. Sampling performed by the 

sensor i.e. sensing the change in the parameter measured can be classified into 

Periodic and On-Request. A periodic sampling of data is performed over a time 

cycle (e.g. sample temperature every 2 minutes). This involves waking-up the 

sensing device, measuring the parameter and storing the raw data. On-Request 

sampling of data is controlled by the application. This is on-demand sampling 

where the sensor performs sampling after receiving a request from the application. 
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Power Management: Power Management manages available power sources by 

performing energy-efficient sensor operations. Sensors are energy-constrained 

devices that depend on efficient battery usage for extended lifetimes. Power 

management schemes employed can use battery voltage information to extend the 

life of the sensor (Park et al., 2002). The most common energy source for sensor 

nodes is battery while concurrent research into harvesting energy from the 

environment is being explored. Amirtharajah et al. (2004) and Roundy et al. (2004) 

explore harvesting energy from environmental vibrations while (Kansal et al., 2007, 

Kansal et al., 2003, Alippi et al., 2008) investigates solar cells. Table 2.1 provides a 

summary of power density available from various energy sources. The data 

presented in Table 2.1 is a summary of experimental results obtained from (Rabaey 

et al., 2000, Vieira et al., 2003).  

Energy Source Power Density Energy Density 

Battery (rechargeable 
lithium) 

 300 mWh/cm3 (3 
- 4 V) 

Solar (outdoors) 15 mW/cm2 (direct sun) 

0.15mW/cm2 (cloudy day) 

 

Solar (indoors) 0.006 mW/cm2 (standard 
office desk) 

0.57 mW/cm2 (< 60W desk 
lamp) 

 

Vibrations 0.01 - 0.1 mW/cm3  

Table 2.1: Comparing Power from Various Energy Sources 

Power-efficient sensor operation is by far the most important design constraint and 

requires every protocol, function of the sensor to abide with this design 

consideration. A number of Dynamic Power Management (DPM) approaches are 

presented in (Lin et al., 2006, Passos et al., 2005, Sinha et al., 2001, Wang et al., 

2001). The principle behind DPM is to dynamically shutdown sensor components 

when no events occur. An event is defined as a variation in the sensed 

phenomenon. A key issue is when to turn-off/on the sensor components. For 

example, while performing a periodic sensing operation, turning off the processor 

during non-sensing period would save energy. On the other hand returning the 
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sensor components from sleep consumes energy and time. Hence, there is always a 

trade-off between energy and time spent in turning-off and turning-on the sensor 

components (Lin et al., 2006). 

Communication: The sensor node is equipped with a radio that allows it to exchange 

data with neighbouring sensors and the base station (sink).  The data exchange 

between sensors or a sensor and base station takes place in three possible ways: 1) 

unicast: one-to-one - one sender communicates with one receiver, 2) multi-cast: 

one-to-group - one sender communicates with a selected group of receivers and 3) 

broadcast: one-to-all - one sender communicates with all receivers that are within 

the communication range. We argue, communication is the major energy 

consuming component in a sensor node compared to the other functional 

components (Raghunathan et al., 2002). Simulation results presented in (Shnayder 

et al., 2004) validate our argument. Hence energy-efficient use of the radio is the 

primary criterion for any communication protocol design. The sensor radio 

component determines its communication characteristics. Though radio frequency 

(RF) has been the widely used transmission media (Pottie et al., 2000, 

CrossbowTechnology, 2010a) optical medium has also been employed by 

SmartDust (Kahn et al., 1999) sensor platform. The antenna size used in RF 

communication needs to be a fraction of the wavelength for efficient operation and 

coverage (Warneke et al., 2002). The miniature design of sensor nodes allows only 

small antennas, thus reducing the size of the antenna results in low antenna gain. 

This design outcome reduces the communication range of sensor nodes. For 

example, a sensor equipped with a Bluetooth (2010c) radio like the Mulle (Eliasson 

et al., 2008) has a communication range of 10 to 100m. A number of 

communication standards have been proposed for sensor networks focusing on 

sensor design requirement for low power consumption. These standards, to name a 

few, include IEEE 802.15.4 (Howitt et al., 2003), Zigbee (2009b), Wibree 

(BluetoothSIG, 2010b), IEEE 802.15.3 (IEEE, 2003.). We have presented a 

summary of radio hardware characteristics in Table 2.2 currently available on most 

sensor platforms. The source of data is a combination of datasheets 

(TexasInstruments, 2010, TexasInstruments, 2007) and experiments (Shnayder et 
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al., 2004, Cordeiro et al., 2006, EISLab, 2010, Polastre et al., 2005). Few radio 

hardware technologies presented in Table 2.2 have the capability to dynamically 

change the receiver sensitivity to improve communication reliability. 

Processing: The processing unit is the brain of the sensor node performing the 

computation and operations of controlling and coordinating the various system 

components. The primary function of the processing unit is to process raw data3 

obtained from the sensing unit and transmit it over the communication channel to 

the network base station (sink) for further processing. 

Characteristic
s 

 

Radio Device 

Carrier 
Frequency 

 

Receiver 
Sensitivity 

Data 
Rate 
(kbps

) 

Range 
(n) 

Current 
Consumption 

(RX)/(TX)        
(mW) 

TR1000 
(MICA Mote) 

916.5 MHz -97dBm 40 100 12  /36 @0dBm 

CC1000 
(MICA 2 / 

BTnode rev3) 

300 to 900 
MHz 

-98dBm 38.4 100 29 / 42 @0dBm 

CC2420 
(MICA 2/ 
MICAz / 

Telos/ Sun 
SPOT/ TMote 

Sky) 

2.4 GHz 

IEEE 
802.15.4 

-95dBm 250 50 /30 
(indoor) 

125 /100 
(outdoor) 

38 / 35 @ 0dBm 

Mitsumi 
WML-C46 

AHR (Mulle) 

2402 - 
2480MHz 
(Bluetooth 

v1.2) 

-80dBm 721 10 47.9 

Table 2.2: Radio Hardware Characteristics 

The energy consumed by the processor to perform operations like process raw 

sensor data, prepare the data for transmission, control the sensor components is 

relatively low compared to the energy spent in communication (Raghunathan et al., 

2002). For example, the MICA mote consumes about 720nJ/bit to transmit data and 

110nJ/bit to receive data while it consumes only 4nJ to perform a single operation 
                                                            
3 Raw data refers to the analog data sensed by the sensing unit which is converted to digital data using 
Analog to Digital convertor (ADC) 
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(Srivastava, 2002). As processing is less expensive compared to communication, it 

is appropriate to process, validate and compress raw data before transmitting it to 

the base station (sink). A number of power management approaches have been 

employed to dynamically change the processor’s speed for energy-efficient 

operation. Dynamic voltage scaling is one such technique employed to dynamically 

change the processor’s voltage resulting in lower clock frequencies depending on 

computational loads (Gutnik et al., 1997). A performance evaluation of energy 

consumed against dynamic clock frequencies is presented in (Chandrakasan et al., 

2002). Table 2.3 presents taxonomy of microprocessor characteristic used in 

current sensor node platforms. The CPU on most sensor platforms has access to 

onboard memory (RAM-Random Access Memory) used to store sensor data.  

Characteristic
s 

 

Micro-
processor 

Bits Clock 
Freque

ncy 

 

Operat
ing 

Voltag
e 

Power (Idle 
Mode) 

mA 

Power (Active 
Mode) 

mA 

Flash 
(Byte

s) 

ATmega128L 
(MICA2 / 
MICAz) 

8 8 MHz 2.7 - 
5.5V 

2.5mA @ 3V, 
4MHz 11mA 

@ 5V, 8MHz - 

5.5mA@ 3V, 
4MHz -  

19mA @ 5V, 
8MHz  

128K 

TI 
MSP430F16X
(Telos / Tmote 

Sky) 

16 8MHz 1.8 - 
3.6 V 

95μA @ 3V, 
1MHz 

22μA @ 3V, 
0MHz 

600μA @ 3V, 
1MHz 

20μA @ 3V, 
4,096Hz 

48K 

Renesas 
M16C / 62C 

(Mulle) 

16 24MHz 
(Mulle 

@ 
10MHz

) 

2.7 to 
5.5 V 

1.8 μA @ 3V, 
32kHz (wait 

mode), 0.7 μA 
@ 3V (stop 

mode) 

14mA @ 5V, 
24MHz 

8mA @ 3V, 
10MHz 

256 
K 

 

Atmel 
AT91RM9200 
(Sun SPOT) 

32 180 
MHz 

1.65V - 
3.6 V 

13.8mA @ 
3.3V, 180MHz 

 

24.4mA @ 
3.3V, 180MHz 

 

128K 

Table 2.3: Characteristics of microprocessors used in current sensor platforms 

The data Table 2.3 has been tabulated from different datasheets (SunMicrosystems, 

2007, Atmel, 2009a, Atmel, 2009b) and experimental outcomes (EISLab, 2010, 

Polastre et al., 2005, Shnayder et al., 2004). The characteristics of microprocessors 
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widely used in sensor platforms presented in Table 2.3 validate Moore’s law i.e. 

Sun SPOT (SunMicrosystems, 2007) uses a 180MHz, 32 bit processor as compared 

to first-generation MICA motes (8 MHz). 

2.2.3 Sensor Platforms 

The previous section provided an introduction to sensors identifying the key 

functional units and their corresponding operations. A number of sensor node hardware 

has been developed in recent years taking into consideration the key design criteria: 1) 

energy-efficient hardware, 2) energy-efficient sensor operation and 3) energy-efficient 

sensor software (operating system/ algorithms). Table 2.4 is an in-depth analysis of 

current state-of-the-art sensor platforms. The summarised data presented in Table 2.4 is 

from Crossbow (CrossbowTechnology, 2010a, CrossbowTechnology, 2010b), ETH 

Zurich (ETH-Zurich, 2007), EISLAB (EISLab, 2010) and Moteiv (Moteiv, 2006). 

2.2.4 Connection-Oriented vs. Connection-Less Sensor 
Network  

In this subsection, we classify sensor network platforms based on the 

communication architecture employed. We use the term “connection-oriented” and 

“connection-less” to classify sensor network platforms. The connection-less approaches 

use radio that relies on fixed communication frequency (channel). This communication 

channel is shared by a number of nodes within the communication radius. The 

connection-oriented approach consists of sensors that use Bluetooth (BluetoothSIG, 

2010a) radio for communication,  where each node in the network uses a separate 

channel to transfer data. Figure 2.2 and Figure 2.3 illustrate the connection-less and 

connection-oriented approach. 

The connection-less approach enables data broadcast without establishing a prior 

connection while the connection-oriented approach requires a connection to be set up 

before any data transfer. The connection-oriented approach came into being with the 

wide acceptance of Bluetooth technology. Bluetooth specification (Erricson, 2010) was 

first developed in 1994 by Ericsson. Bluetooth was initially proposed as a cable 

replacement technology allowing devices to communicate wirelessly. 
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Sensor Platform CPU Radio Available 
Sensors 

Memory Operatin
g System 

MICA 2 
2001 

(CrossbowTechnol
ogy, 2010a, 

Cordeiro et al., 
2006) 

Atmel 
Atmega

128L 

433 MHz or 
868/916 MHz 

Accelerometer 

Ambient Light 

Pressure & 
Temperature 

GPS 

Microphone 

Photo-resistor 

Humidity & 
Temperature 

Thermostat 

4K 
RAM, 

128 
Flash 

Tiny OS 

MICAz 

2004 
(CrossbowTechnol

ogy, 2010a, 
Cordeiro et al., 

2006) 

Atmel 
Atmega

128L 

2.4 GHz IEEE 
802.15.4 

4K 
RAM, 

128 
Flash 

Tiny OS 

Telos 2004 (ETH-
Zurich, 2010, 

CrossbowTechnolo
gy, 2010b) 

TI 
MSP43
0F1611 

2.4 GHz IEEE 
802.15.4 

Humidity 

Temperature 

10K 
RAM, 

48K 
Flash 

Tiny OS 

Moteiv Tmote Sky 
(Moteiv, 2006) 

TI 

MSP43
0F1611 

2.4 GHz IEEE 
802.15.4 

Humidity 

Temperature 

Light 

10K 
RAM, 

48K 
Flash 

Tiny OS 

BTNode 
rev3(ETH-Zurich, 

2007) 

Atmel 
ATmeg
a128L 

433-915 MHz 

& 

Zeevo ZV4002 
Bluetooth  

 64K 
RAM, 

128K 
Flash 

BTnut 
System 

Software 
and 

TinyOS 

Mulle (EISLab, 
2010) 

Renesa
s 

M16C/
62 

Mitsumi 
Bluetooth 2.0 

OR 

802.15.4 - 
ZigBee  

Infra Red (IR), 
Temperature, 

Acceleration/ 
Seismic 

GPS (Lassen 
iQ) 

Pulse (Polar) 

20K 
RAM, 

256 K 

Flash 

Proprieta
ry 

Software. 

TinyOS 
and 

Contiki 
(Dunkels, 

2010) 
support 

Table 2.4: Sensor Node Platforms 

The Bluetooth Special Interest Group (SIG) (2010c) created in 1998 allowed a 

large number of companies to collaborate to improve and standardise the Bluetooth 

specifications. Bluetooth specification allows connectivity between devices from 

different vendors, hence, delivering interoperability across a variety of devices. The 
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Bluetooth specifications are constantly reviewed and updated by the Bluetooth SIG 

(BluetoothSIG, 2010c) with current version being 3.0 + HS. A new version 4.0 of the 

specification is to be released by the end of 2010 (BluetoothSIG, 2010c). Bluetooth uses 

frequency-hopping spread spectrum (BluetoothSIG, 2010a) with time division 

multiplexing access (TDMA). It operates in the 2.4-2.4835 GHz band. The Bluetooth 

radio operates by hopping between 79 frequency channels of 1 MHz each, 1600 times, 

every second. Each time slot has duration of 0.625ms. The Bluetooth specification 

available from Bluetooth.com (BluetoothSIG, 2010a, BluetoothSIG, 2010c) provides 

detailed functioning of Bluetooth. 

 

Figure 2.2: Connection-less multi-hop sensor network 

 

Figure 2.3: Connection-oriented Bluetooth-based sensor network 

2.2.5 Sensor Network Applications 

Sensor networks have certain unique characteristics that open the door for a wide 

range of applications. These characteristics are: 



22   

 

Low-powered: This characteristic of sensor network is both a feature and a design 

requirement. As elaborated in previous section, the sensor components (primarily 

hardware) need to be designed with the focus of low-powered operation. This 

allows the sensor to survive on battery for longer time periods. This is useful, for 

example in traffic monitoring applications (iRoad, 2010, Coleri et al., 2004)  that 

require extended periods of operations without frequent recharging. 

Self Organising / Autonomous: This characteristic of sensor networks makes them 

an excellent choice for applications where manual network configuration is not 

possible. The self organizing capability allows the sensor to adapt itself into the 

existing infrastructure or in new infrastructures. This is useful for example in 

environmental monitoring applications (Steere et al., 2000, Ramanathan et al., 

2005, Rytter, 2003, Werner-Allen et al., 2006, Xu et al., 2004) that require sensors 

deployed in remote locations (forests) to autonomous form a network. 

Wireless Communication: The wireless communication available on the sensor 

allows applications to connect to the sensor without the need to be physically 

present within the monitored environment. This has created opportunities for new 

applications including environmental monitoring, health-care and traffic monitoring 

that depend on data from different locations, something that was previously not 

feasible. 

Distributed Sensing and Processing: We characterise sensor networks as a 

distributed data sensing and processing platform due to their sensing and processing 

characteristics. 

The above characteristics of sensor networks enable acquisition of data from 

distributed locations which previously were expensive, difficult or even impossible (Chu 

et al., 2006). To summarise sensor network applications we have created taxonomy of 

applications presented in Figure 2.4. We classify sensor network applications based on 

their operating characteristics, namely: 
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Figure 2.4: Taxonomy of Sensor Network Applications 

Pro-Active: The sensor wakes up at periodic intervals, collects data and transmits it to 

the base station. The sensor also reacts to events i.e. sudden change in the value of 

the sensed attribute. 

Reactive: In addition to the pro-active functions, the sensor employs actuators to react 

to any sudden change in the parameters monitored. For example, in case of fire in a 
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building, the pro-active mode reports the fire while the reactive mode activates the 

sprinklers within the area of the fire. This mode refers to wireless sensor and actor 

networks (Akyildiz et al., 2004) where the actors perform certain system operations 

based on sensed inputs.  

The list of applications presented in Figure 2.4 range from Habitat monitoring 

(Zhang et al., 2004, Mainwaring et al., 2002), Military Applications (Li et al., 2002, He et 

al., 2004), Traffic Monitoring (iRoad, 2010, Coleri et al., 2004) including Vehicular 

Accident Monitoring and Notification (Acharya et al., 2008), Health Monitoring (Baker 

et al., 2007, Yang, 2010), Environmental and Structural Monitoring (Steere et al., 2000, 

Ramanathan et al., 2005, Rytter, 2003, Werner-Allen et al., 2006, Xu et al., 2004), 

Underwater Sensors (Vasilescu et al., 2005) to Smart Home/ Office applications (Meyer 

et al., 2003, Srivastava et al., 2001, Rabaey et al., 2000) and Human-Centric applications 

(Yap et al., 2005, Huang et al., 2005). The examples provided for each application 

domain highlight some important projects in the area while a plethora of sensor network 

applications surveyed is available in the literature (Arampatzis et al., 2005, Gharavi et al., 

2003, Shen et al., 2001, Xu, 2009). 

2.2.6 Sensor Networks Challenges: A Roadmap 

The previous sections presented a roadmap on sensor operations, current state-of-

the-art sensor platforms and applications. The early adoption of WSN’s across a varied 

range of applications has introduced a series of challenges that need to be addressed for 

long-term adoption of sensor networks. We classify the challenge faced by sensor 

networks into hardware and software. A taxonomical representation of our classification 

is presented in Figure 2.5. Research in the past decade has addressed major challenges 

facing sensor networks including self-organization, data-centric routing, low-power 

hardware design, efficient power management, security, etc. A major focus of this 

dissertation is sensor data collection. A detailed discussion on sensor data collection is 

presented in sections 2.3 and 2.4.  
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Figure 2.5: Sensor Network Challenges- A Roadmap 
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2.3 Data Collection in Wireless Sensor Networks 

Section 2.2 presented a background on sensor network development and 

operations identifying the wide range of sensor applications. We identified the key 

requirement of sensor networks is energy-efficient operation which influences both 

hardware and software design/development. The advent of pervasive computing (Weiser, 

1999) and pervasive computing applications (Burke et al., 2006) has attracted enormous 

research interest in sensor networks. 

The word pervasive which means to pervade4 is defined as “to become diffused 

throughout; every part of”. This definition suits well within the sensor network paradigm 

as deployed sensors fuse themselves within the environment. The data generated by 

sensor nodes is highly valuable. Hence, sensor networks are referred as data-centric 

networks (Al-Karaki et al., 2004) i.e. data is obtained from the sensor network based on 

application requirements. For example, if the requested information is area where 

humidity > 80%, sensors that have humidity reading greater than 80% need to respond. 

These operations of sensor networks require energy-efficient protocols for data collection 

and delivery. We classify sensor data collection approaches into two categories presented 

in Figure 2.6. 

 

Figure 2.6: Broad classification of data collection approaches 

Static Node-Based: We use the term static node-based data collection to classify the 

data collection approaches that employ static sensors/ sinks for data collection. 

                                                            
4 http://www.merriam‐webster.com/dictionary/pervade 
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Mobile Node-Based: We classify the data collection approaches that employ mobile 

data collectors to collect data from sensors as mobile node-based. 

2.3.1 Static Node-Based Sensor-Data Collection Approaches 

The static node-based data collection approaches adapt the operation of ad-hoc 

network routing protocols. The basic principle is to propagate a query into the sensor 

network from the sink and wait for the network to respond with the appropriate data. The 

sensed data can then use two approaches for data delivery, namely, end-to-end and 

aggregated. The end-to-end and data aggregation approaches are illustrated in Figure 2.7. 

The end-to-end approach, as depicted in the Figure 2.7, delivers the un-modified data 

from the source to the sink using a multi-hop strategy, i.e. all the sensed data is routed to 

the sink. The aggregated approach, as depicted in Figure 2.7, employs data aggregation 

i.e. data is combined by intermediate sensors nodes eliminating redundant transmissions.  

As illustrated in Figure 2.7, the end-to-end approach has higher communication 

overheads compared to the in-network aggregation approach which fuses incoming data 

packets from different nodes into one single outgoing data packet. The in-network 

aggregation techniques have proved to be more energy-efficient (Krishnamachari et al., 

2002) than the end-to-end data collection techniques. The in-network aggregation allows 

sensors to inspect relayed packets instead of acting as mere forwarding agents. The data 

collection approaches that employ in-network aggregation techniques can be classified 

based on the type of network infrastructure. Figure 2.8 presents taxonomy of these data 

collection approaches. 

 

Figure 2.7: End-to-End vs. In-Network Aggregation Approaches 
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Figure 2.8: Taxonomy of Static Node-Based Data Collection Approaches 

2.3.1.1 End-to-End Data Collection Approaches 

The end-to-end data collection approaches are adaptation of ad-hoc techniques to 

suit sensor network requirements (Orecchia et al., 2004, Williams et al., 2002, 

Hedetniemi et al., 1988). These approaches are initial research efforts in the area of 

sensor data collection and focus more on data routing which we classify under data 

dissemination and collection i.e., propagating a request into the network and creating a 

route to deliver the collected data. Gossiping and flooding are the classic sensor data 

relaying techniques (Orecchia et al., 2004, Hedetniemi et al., 1988).  

Flooding (Williams et al., 2002) is a simple but expensive technique for sensor 

data collection. It uses a one-to-all (broadcasting) approach. The sink creates a broadcast 

packet that is sent to the entire network. Sensors that are part of the request respond to the 

broadcast message. Sensors which do not belong to the request forward it to neighbouring 

nodes. This approach as stated earlier is very expensive as it requires the entire network 

to be listening to broadcast packets. It also faces the following drawbacks (Heinzelman et 

al., 1999):  

Implosion: Nodes receiving multiple copies of the broadcast messages and sensed 

data.  
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sensor energy rapidly. 
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Gossiping (Haas et al., 2002, Hedetniemi et al., 1988) is an enhancement 

proposed to solve the drawbacks of flooding approach. It solves the implosion problem 

by using random forwarding of a broadcast message to a selective list of neighbours. This 

random selection of neighbours reduces the number of broadcast messages but increases 

response latency. Though gossiping reduces the number of messages exchanged within 

the sensor network, it only manages to reduce the rate of energy depletion. Moreover, 

data overlap problem is not addressed by gossiping. 

Orecchia et al. (2004) handles the drawbacks of gossiping and flooding by 

proposing an Irrigator protocol that pre-computes one-hop neighbours to form a virtual 

topology of the network. Then a gossip based broadcasting protocol, namely, Fireworks 

is used to propagate broadcast messages within the virtual network topology. Irrigator 

approach employs a controlled broadcast, i.e. messages are disseminated to a subset of 

nodes rather than the entire sensor network. The Fireworks protocol decides to broadcast 

a message by tossing a coin. A message is broadcasted to all neighbours with a 

probability p while it is broadcast only to a set of neighbours with the probability 1-p. 

Orecchi et al. (2004) approach to broadcast packets within a restricted set of neighbours 

reduces message transmission but does not reduce energy consumption rather delays the 

energy decay process.  

2.3.1.2 Data Aggregation-Based Collection Approaches 

Data aggregation is a widely accepted paradigm for data-centric sensor networks 

(Krishnamachari et al., 2002, Solis et al., 2006) as opposed to the end-to-end approach 

discussed earlier. Data aggregation combines data from various sources aiming to reduce 

redundancy and hence reducing the number of transmissions required to deliver the data 

to the sink. Data aggregation has been employed in sensor networks by processing data 

within the network, namely, employing the technique called in-network aggregation. The 

three major aggregation techniques (Kulik et al., 2008) are: 1) Packet Merging 

(Concatenation), 2) Partial Aggregation (Aggregator) and 3) Suppression.  

The packet merging (concatenation) technique going by its name combines data 

from different sensors into a single data packet. The partial aggregation (Aggregator) is 

used when data from different sources needs to be combined to compute one output. For 
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example, combining humidity readings from various sensors in the surrounding and 

transmitting only the average value. The suppression technique employs suppression 

operation by discarding redundant data. For example, if a sensor reading does not change 

from previous measurements, the data is not transmitted. 

2.3.1.2.1 Flat Network Structure-Based Approaches 

The flat network structure is a single tier sensor network. The flat network 

structure is also termed a tree-based approach (Nath et al., 2004, Kulik et al., 2008). In 

tree-based approaches, the root node is responsible for sending a query into the network. 

Leaf nodes i.e. child nodes perform data sensing and aggregation while relaying data 

back to the root node. Hence, data from one leaf node propagates to the root via other 

intermediate leaf nodes.  

Sensor Protocol for Information via Negotiation (SPIN) (Kulik et al., 2002, 

Heinzelman et al., 1999) is one of the early approaches for sensor data collection. The 

SPIN approach tries to overcome the shortfalls faced by flooding and gossiping 

approaches by introducing sensor negotiations. The sensor negotiation allows sensors to 

advertise availability of data with interested sensors subscribing to receive data. The 

SPIN protocol works in the following way. Each source sensor node advertises data 

availability to neighbouring nodes. Nodes that are interested in the data send a request to 

receive data. On receiving a request, the source transmits actual data to interested nodes. 

The data advertisement contains meta-data descriptors that describe the available data. To 

achieve this function, SPIN uses three messages, ADV message to advertise meta-data, 

REQ message to place a request and DATA message to send the actual data. The energy 

consumption of SPIN is due to frequent propagation of ADV, REQ and DATA messages 

among interested neighbours. The advertising mechanism of SPIN makes it unsuitable for 

many applications as sensor data is made available only to sensors that are interested. For 

example, if the nodes interested in the data and the source node providing the data are 

separated by intermediate sensors that are not interested in the source data, the data may 

never reach the sensors that are interested. Moreover, frequent exchange of negotiation 

messages increases communication overheads. 
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Intanagonwiwat et al. (2000) propose Directed Diffusion, a well-known paradigm 

for sensor data dissemination and collection. Directed Diffusion is a data-centric protocol 

that diffuses data through the sensor network using naming schemes. The protocol 

functions as follows. An interest message is propagated by the sink into the network 

through neighbouring nodes. The interest message is a query containing parameters like 

location, attribute-value pair, alive-duration, etc. Every receiving node forwards the 

interest packet to its neighbours setting up a gradient path. A gradient path is a reply-link 

path identifying the source of the interest packet. The gradient path is then used to 

determine the route between the sensor data source and the sink. In directed diffusion, 

sensor nodes within the network have the ability to perform data aggregation. Directed 

Diffusion approach enables the network to compute multiple routes to data source from 

the sink, dynamically avoiding overheads to maintain permanent routes. The 

communication involved in Directed Diffusion is only between neighbouring nodes and 

hence does not require a single node to have a map of the entire network infrastructure. 

The energy cost of Directed Diffusion is from computing the gradients dynamically. 

Directed Diffusion differs from SPIN in terms of data collection approach. Directed 

Diffusion uses queries propagation while SPIN requires the sensor to advertise data 

availability. 

Tiny AGgregation (TAG) (Madden et al., 2002) is another popular aggregation 

scheme for sensor data collection. TAG functions in two phases Distribution and 

Collection. The distribution phase is used to distribute the query within the network and 

the collection phase handles collecting aggregated data. To collect data, the sink appoints 

itself as root of the tree. It then broadcasts its level and identifier to the surrounding 

sensors. Each sensor with unassigned level assigns itself a level as an increment to the 

one in the broadcast message. This message is further broadcast with new identifier and 

level. This process continues until the entire network is reached. The parent node sets a 

receive time interval during which it listens to the channel for responses from child 

nodes. Each child node uses the parent’s time interval for synchronisation. In the data 

collection phase, data from the child nodes are gradually propagated towards the sink 

during each parent’s receive interval. Aggregation operation is performed in TAG at 

every level. The primary energy consumption in TAG is the requirement for parent nodes 
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to constantly listen to the channel. To further optimize TAG, Madden et al. propose 

semantic routing tree (SRT) (Madden et al., 2005, Madden et al., 2003) algorithm. SRT 

further optimizes TAG by selectively propagating the broadcast message to a set of 

sensors which fall within the scope of the query. SRT optimizes the distribution phase of 

TAG by reducing the number of messages broadcast. To achieve this, each parent that 

receives the query forwards it to its children only if it satisfies a given predicate. The 

SRT approach is energy-efficient with assumption that parent’s nodes are aware of the 

entire child node’s attributes (sensed values). Maintaining this network infrastructure is 

expensive due to the overheads involved in frequent message exchange.  

2.3.1.2.2 Cluster-Based Approaches 

Cluster-based network structure employs physical clustering techniques i.e. 

sensors are grouped into physical clusters where cluster heads are elected to handle data 

processing, aggregation and additional communication operations. A number of 

clustering techniques employed in sensor networks are presented in the literature (Abbasi 

et al., 2007, Younis, 2004, Bandyopadhyay et al., 2003, Younis et al., 2002, Ghiasi et al., 

2002, Lindsey et al., Heinzelman et al., 2000, Moussaoui et al., 2005). Each cluster 

encloses child nodes that transmit sensed data to the cluster head for further processing 

and delivery. A typical cluster with cluster heads and child nodes is illustrated in Figure 

2.9. The data from the child nodes are transmitted to the cluster head (indicated by the 

lines connecting cluster head and child nodes). The cluster head delivers the data 

collected from the child nodes to the sink. Clustering techniques are similar to tree-based 

techniques but have specific clustering protocols to group sensors into physical clusters. 

The cluster establishment is based on number of parameters e.g. residual energy, 

geographic location, sensor type, etc. The cluster-based approaches also employ a 

different communication strategy than tree-based approaches. In tree-based approaches, 

each sensor in the network transmits the data to the base station (sink) using direct or 

multi-hop technique. In a cluster-based approach, cluster members transmit data to the 

cluster head which transmits the data to the base station directly or via other cluster heads 

(multi-hop clusters). 
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Chien-Chung et al (2001) present Sensor Information Network Architecture 

(SINA), a sensor data collection approach based on querying. In SINA, the sensor 

network is conceptually viewed as a collection of massively distributed objects. SINA 

employs hierarchical clustering in order to improve network lifetime and performance. 

The cluster heads perform information filtering, fusion and data aggregation. SINA uses a 

spreadsheet paradigm for querying and monitoring. In the spreadsheet paradigm, each 

sensor node maintains a logical datasheets consisting of cells. Each cell is uniquely 

named and represents an attribute of the sensor node (e.g. remaining battery power). The 

value stored in a cell can be queried by other nodes in the network using a sensor query 

and tasking language (SQTL), a procedural scripting language designed to be flexible and 

compact. SINA plays the role of a middleware responsible for fetching information from 

the sensor network based on the user queries. 

 

Figure 2.9: Cluster-Based Sensor Network Structure 

Low-Energy Adaptive Clustering Hierarchy (LEACH) (Heinzelman et al., 2000, 

Heinzelman, 2000) was an initial effort towards an adaptive clustering scheme in sensor 

networks. LEACH employs random cluster head rotation to efficiently balance the sensor 

network energy. LEACH operates in multiple rounds with each round performing the 
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operation of cluster formation and data transmission. In cluster formation, a node 

becomes a cluster head based on certain probability. The cluster is then computed taking 

minimum communication energy factor into consideration i.e. a node decides to 

participate in a cluster if the communication energy to communicate with the cluster head 

is least compared to other cluster heads. During data transmission, all nodes transmit data 

to the cluster head at specific time intervals. The cluster head performs data fusion 

(aggregation) before forwarding it to the sink (base station). A variant of LEACH, 

LEACH-Centralised (LEACH-C) is proposed in (Heinzelman et al., 2002), that employs 

a centralised clustering algorithm to reduce the energy spent by non-cluster heads to 

transmit data to cluster heads. To achieve this, sensors transmit location and energy 

information to the base station. The base station then determines average energy 

threshold above which a sensor can become a cluster head. This information is then 

propagated back into the network. LEACH approach is energy-efficient but does not 

guarantee equal distribution of cluster heads. LEACH-C performs better than LEACH 

(Heinzelman et al., 2002), nevertheless a centralised approach may not be feasible for 

many applications.  

Power-Efficient Gathering in Sensor Information Systems (PEGASIS) (Lindsey et 

al., 2005) is a chain-based clustering protocol proposed as an improvement to LEACH. 

PEGASIS employs a greedy algorithm to organise nodes into a chain. In each round, 

exactly one node transmits data to its neighbouring node. This is done using a simple 

token mechanism. Each node receiving data from the neighbour fuses it with its own data 

into a single packet and forwards it to the base station. Nodes in the chain take turns to 

transmit the data to the base station hence spreading the energy consumption uniformly 

across the entire network. PEGASIS like LEACH requires global network knowledge to 

compute the chain.  

Hybrid Energy-Efficient Distributed Clustering (HEED) (Younis, 2004) is 

proposed as an improvement to LEACH by focusing on efficient cluster formation.  

HEED is a multi-hop clustering algorithm i.e. multiple cluster heads are used to relay the 

data to the base station rather than a cluster head - base station communication. HEED 

aims to reduce overheads of cluster head election hence, extending the overall network 

lifetime. It computes clusters based on sensor residual energy and intra-cluster 
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communication cost. The sensor residual energy is used to elect cluster heads while the 

intra-cluster communication cost is used by members to determine the cluster to join. 

HEED evaluation results are favourable compared to LEACH and its variants, 

nevertheless the approach still needs to re-elect cluster heads periodically which proves 

energy inefficient. 

A number of research approaches similar to LEACH, HEED and PEGASIS have 

been proposed extending single level clustering to multi-level clustering. Bandyopadhyay 

et al. (2003) present a hierarchal clustering algorithm that computes multi-level clusters 

enabling multi-hop clustering. Moussaoui et al. (2005) proposes a distributed energy-

efficient clustering hierarchy protocol (DECHP) that uses ideas similar to 

(Bandyopadhyay et al., 2003), employing multi-level cluster heads to relay data from 

cluster members to the base station (sink). The experimental observations of both 

approaches show improved energy-efficiency with increasing clustering levels. On 

contrary, the multi-level clustering approaches introduce additional overheads in constant 

cluster maintenance. 

2.3.1.3 Summary of Static Data Collection Approaches 

This section presented a summary of research in static node-based sensor data 

collection. The use of data aggregation in static node-based data collection has evolved 

into an energy-efficient sensor data collection paradigm. Cluster-based approaches have 

efficiently employed data aggregation to further improve the energy efficiency in data 

collection over tree-based approaches. The major drawback of static-node based 

approaches is the overheads involved in collecting data using a fixed base station. 

Cluster-based approaches introduce more overheads caused by cluster maintenance, 

hence increasing energy consumption. A comparison of the static node-based approaches 

is presented in Table 2.5. 
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Technique 

 

 

Characteristics 

Flooding / 
Gossiping 

Flat Network-Based 
Approach 

Cluster Based Approach 

Data Aggregation NO YES YES 

Query Based NO YES (Certain Approaches) YES 

Energy 
Consumption 

HIGH HIGH Better than Flat 
Network-Based but 
consumes energy in 
cluster maintenance 

Global Network 
Knowledge 

NO NO YES (Most methods 
require global 

information to compute 
efficient clusters) 

Features Simple 
protocol 
extended 

from ad-hoc 
networking 

Robust operation for node 
failures. 

Multi-route capability. 

Does not require global 
network knowledge. 

Single/ Multi-Hop data 
delivery 

Clusters adaptation 
based on sensor residual 

energy. 

Multi-Hop clustering 
capabilities 

Single/ Multi-Hop 
cluster to base station 

communication 

Limitations Leads to 
broadcast 

storms 
(Tseng et al., 

2002). 

Does not 
scale well for 
large sensor 

deployments. 

Energy inefficient for 
changing network 

conditions. 

Some approaches result in 
broadcast storms (Tseng et 

al., 2002). 

 

Requires Global 
Network Knowledge. 

Energy consumption 
during cluster head 

rotation. 

Table 2.5: Summary of Static-Node based Data Collection Approaches 

2.3.2 Mobile Node-Based Data Collection Approach 

The static node-based approaches discussed in the previous section introduced 

energy-efficient data collection approaches for sensor networks with a fixed sink. 

Recently, mobility-based approaches have been explored as an alternative to static node-

based approaches. The mobility-based techniques aim to further improve energy-

efficiency of the data collection process. We use the term “mobile node” to represent the 
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class of mobility enabled platforms/devices that are employed for sensor data collection. 

Introducing mobility to collect sensor data has certain advantages namely: 

Coverage/Connectivity: Use of mobile nodes facilitates data collection from 

disconnected sensor networks. This is applicable in both sparse and dense sensor 

network deployments. In sparse networks two nodes may not be in communication 

range hence requiring sensors to be equipped with long range radio communication 

hardware (Anastasi et al., 2009c, Venkitasubramaniam et al., 2004, Jenkins et al., 

2007, Shah et al., 2003, Jain et al., 2006). This requirement solves coverage 

problems but imposes high energy requirements. In dense networks the problem of 

coverage arises when relay sensors fail or have different duty cycles isolating 

specific parts of the network. One solution to this approach is periodic 

synchronisation between the sensors. Though this is a viable option, it is also high 

energy consuming (Dini et al., 2008). 

Sensor Lifetime: The single-hop/multi-hop strategies employed by static data 

collection approaches depend on intermediate nodes to deliver the data to the sink. 

These approaches were acceptable as early research in sensor networks assumed a 

sensor model with fixed sensor nodes and static sinks, as depicted in Figure 2.9. 

The static node-based multi-hop data collection strategies deplete the energy of 

relay sensor nodes transmitting the data. More specifically, sensor nodes near the 

sink deplete energy at a higher rate than other nodes in the network (Kansal et al., 

2004). Employing mobility-based data collection leverages the idea of mobile 

nodes moving closer to sensor nodes, reducing the number of hops involved in 

transmissions. Reducing multi-hop transmissions reduces the number of packets 

exchanged within the sensor network, hence reducing the overall energy 

consumption. As stated previously communication is a major energy consuming 

operation hence, reducing the overall packet transmission plays a substantial role in 

increasing sensor lifetimes. 

Deploy/ Calibrate/ Recharge Sensors: The introduction of mobility can help to assist 

in a number of sensor operations which previously were impractical. LaMarca et al. 
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(2002a, 2002b) present a novel way of using mobile robots to deploy, calibrate, 

recharge and maintain WSN. Rahimi et al. (2003) present the use of mobility to 

harvest energy. The technique employs mobile sensors with capability to discover 

rechargeable energy sources delivering energy to static energy-depleted sensors. 

(Eliasson et al., 2006, Elson et al., 2003) propose different approaches for time 

synchronization in sensors. 

The range of applications that can take advantage of mobile nodes in sensor 

networks is vast many of which are not practical using static sink-based techniques. A 

typical mobile node-based data collection scenario is presented in Figure 2.10. The 

mobile node moves along a path around the sensor network area collecting data from 

nearby nodes delivering it to the sink.   

 

Figure 2.10: Mobile Node-Based Data Collection 

We classify mobility in sensor networks into the following three types: 

Mobile Sensors: Mobile sensors represent a class of sensors that have the capability to 

move within the sensor network autonomously. The mobile sensors are part of the 

network deployment infrastructure performing operations including mobile sensing, 
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data collection from non-mobile sensor nodes, etc. Mobile sensors inherit the 

advantages of mobility but have specialised requirements for practical realisation 

including specialised hardware for mobility, energy resources to sustain mobility, 

increased costs in design and development and protocols for autonomous 

operations. 

Mobile Sinks: Mobile sink approach exploits mobility by introducing sink/base station 

mobility. This allows the base station (sink) to move around the sensor network 

performing data dissemination and collection. Though making base stations mobile 

is a viable option, it involves overheads in constantly updating the entire network 

with the base station’s location/movements.  

Mobile Data Collectors: Mobile data collectors exploit the existence of mobile nodes 

within the environment to collect sensor data. For example, introducing a specially 

designed mobile robot for data collection (Kansal et al., 2004) or using existing 

mobility enabled objects (e.g. bus, cars) as data collectors (Shah et al., 2003).  The 

mobile data collector acts as a relay node to deliver the data to the sink. It does not 

have sink capabilities. 

Mobile node-based data collection approaches are further classified on the basis 

of mobility pattern employed. The sensor mobility pattern can be broadly classified into 

Random Mobility, Controlled Mobility and Predicted Mobility (Schindelhauer, 2006). 

Our classification is presented in Figure 2.11.  

In random mobility (Shah et al., 2003, Jain et al., 2006) mobile nodes with 

random movement patterns collect sensor data e.g. humans, cars, animals, etc. In 

predicted mobility the mobile node’s movement pattern is fixed (pre-known), for 

example, a data collector mounted on shuttle buses within the campus (Chakrabarti et al., 

2003). In controlled mobility the movement of the mobile node is controlled by the 

application (Basagni et al., 2007, Jea et al., 2005, Kansal et al., 2004) adding flexibility to 

the data collection process. 
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Figure 2.11: Classification of Mobile-Node based Data Collection Approaches 

2.3.3 Mobile Sensor-Based Data Collection 

Mobile sensor networks comprise a distributed collection of sensor nodes with 

locomotion capabilities.  These sensors have the same functionality as the static sensors 

with added capabilities for localisation, navigation, path planning, etc.  

Zebranet (Zhang et al., 2004, Juang et al., 2002) project is a classic example of a 

mobile sensor network. Zebranet system focuses on wildlife tracking, with real life 

implementation monitoring of Zebras. In Zebranet, each animal is equipped with a 

special collar that includes a global positioning system (GPS), dual radio (a short range 

and long range radio), solar panels and rechargeable battery. Data collected from each 

zebra is delivered when the zebra comes within communication proximity of the fixed 

base station (sink). The system also facilitates inter-zebra communication allowing multi-

hop data collection/delivery. The communication protocol employed is simple flooding 

which is energy consuming. Hence, to save energy, a history-based data collection 

scheme is proposed that employs mobile node hierarchies. The hierarchy determines each 

mobile node’s (Zebras) data delivery rate. A higher value indicates higher 

communication contact with the base station and vice-versa. Mobile nodes within 

communication range request for hierarchy level information of peer nodes. Data is 

Random 
Mobility 

Controlled 
Mobility 

Predicted 
Mobility 

Mobile-Node Based Data 
Collection

Mobile - Sink

Mobile Sensors

Mobile Data Collectors
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offloaded to the mobile node with the highest hierarchy level value. This facilitates better 

data delivery rates with lesser energy consumption. The simulation outcomes presented in 

the paper validate the energy-efficient performance of the history-based data collection 

protocol over the flooding approach. A similar approach is extended in (Small et al., 

2003) employing whales as mobile sensors. Small et al (2003) propose Shared Wireless 

Infostation Model (SWIM), a networked architecture that facilitates information 

propagation by means of mobile sources. To this end, the SWIM approach has been 

studied within the scope of biological information acquisition, targeting whale 

monitoring. SWIM employs mobile base stations (termed SWIM stations) that float within 

the area of whale movement. When the whale arrives within close contact of the SWIM 

station, it offloads data collected to the SWIM station. 

More recent research with focus on mobility enabled sensor platforms can be 

found in the literature (Paredis et al., 2002, McMickell et al., 2003, Bergbreiter et al., 

2003, Dantu et al., 2005). Most of these approaches introduce mobility by means of 

specially designed hardware rather than the Zebranet and SWIM approaches discussed 

earlier. The MetroSense project at Dartmouth (Campbell et al., 2006) is one approach that 

focuses on collecting data from mobile sensors. The mobile sensors in this case are high 

powered devices e.g. personal digital assistant (PDA) equipped with sensors. The project 

focuses on people-centric sensing, a term used to represent collaborative data sensed 

from people. CarTel (Hull et al., 2006) is another example of a distributed mobile sensor 

system. CarTel is designed to collect process and deliver data obtained from mobile 

sensors to a central store for further processing and visualisation. The system itself is 

equipped with sensors with imaging and location abilities installed on commuter cars. As 

these commuter cars move randomly, the sensors collect local information (e.g. pictures 

of streets/roads) delivering it to a central sink using delay-tolerant opportunistic networks 

(e.g. WiFi available within the commuter car’s range). The CarTel project aims to 

augment content provided to user with rich valuable information, e.g. a photo of a house 

rather than information about the house’s location. As the CarTel hardware is installed on 

cars, energy-efficient operation is not a key concern for such type of mobile sensors. This 

allows them to be equipped with more powerful communication hardware e.g. WiFi 

cards. Adding mobility to sensors introduces additional challenges of controlling sensor 
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movement autonomously. Use of random mobility eases this problem, but in applications 

where mobile sensors are introduced, the area of mobile sensor research maps closely 

with robotics (Howard et al., 2002).   

2.3.4 Mobile Sink-Based Data Collection 

Mobile Sink approaches discussed in the literature employ mobility to solve the 

problem of non-uniform energy depletion in the sensor network i.e. reduce the burden on 

sensor nodes placed around the sink. These sensors placed around the sink drain energy 

faster than other sensor nodes in the network. A SEnsor Network with Mobile Access 

points (SENMA) is proposed in (Venkitasubramaniam et al., 2004). SENMA employs 

powerful mobile access points equipped with long-range radio communication hardware 

to communicate and collect data from low-powered sensor nodes. An example of one 

such power access point is an unmanned aircraft flying over the sensor network terrain. 

Data collection is done by the mobile access point by sending a wake-up beacon to 

sensors within the terrain. Each sensor activated by the mobile AP starts sending a packet 

with a probability p. SENMA considers single hop data collection using mobile sinks. 

This work is further extended in (Mergen et al., 2006) by optimizing network parameters, 

namely, coverage area, flying altitude and mobile access point trajectory aiming to 

improve data collection efficiency. Some interesting insights highlight the importance of 

channel quality (signal-to-noise ratio) to maximize network lifetime. SENMA approach 

falls within controlled mobility as the case study employing unmanned aircraft presented 

in the paper can be controlled to optimize the data collection process. 

Liang et al. (2005) explores sink mobility in dense sensor networks as against 

SENMA which primarily focuses on sparsely deployed sensor network. They propose 

multiple nodes transmission scheduling algorithm (MTSA-MSSN) that handles 

transmission from multiple nodes that use a single channel for communication. The 

mobile sink modelled in this proposal moves with specific velocity and direction 

collecting data at pre-defined time intervals (predicted mobility). MTSA-MSSSN 

requires nodes to have certain signal-processing capabilities to participate in the 

scheduling process. SENMA focuses more on random channel access while MTSA-

MSSSN focus on time synchronized multiple channel access with higher efficiency. 
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Some mobile sink-based data collection approaches formulate the data collection 

problem as a Linear Programming problem. Gandham et al. (2003) explores mobile sink 

placements using an integer linear programming (ILP) approach in a multi-hop sensor 

network. The data collection operation is divided into rounds and at the beginning of each 

round, the best location for mobile sink placement is determined. The ILP formulation 

aims at minimizing the maximum energy spent by the sensor node during each round to 

communicate with the sink. Gandham et al. (2003) achieves energy-efficient data 

collection by reducing the maximum energy spent at each node which helps as an 

indicator towards the overall network lifetime. Alternatively, Wang et al. (2005) presents 

a similar mobile sink solution that directly formulates the ILP on the overall network 

lifetime.  In this approach, sensors are modelled in a two-dimensional square grid. The 

mobile sink moves within the grid spending a fixed time interval collecting sensor data. 

The objective of the ILP is to determine which node needs to be visited next by the 

mobile sink and the optimal sojourn time at each point. The results of evaluations from 

(Wang et al., 2005, Gandham et al., 2003) indicate the performance improvements using 

mobile sink over static sink approach. Specifically, Wang et al. (2005) claims 500% 

improvement in network lifetime over static sink based approach. The proposed ILP 

approaches mostly follow random mobility patterns with the assumption that mobile sink 

appears equally at every node location (same frequency of visits). Finally, 

Chatzigiannakis et al. (2006) present a mobile sink-based data collection approach with 

focus on studying the impact of mobility patterns and data collection strategies. The 

mobility patterns simulated in the paper include random and predicted mobility while 

data collection strategies explore passive, limited and complete multi-hop routing.  

Kansal et al. (2004) propose the use of mobile robots to achieve sink mobility. To 

this end, the authors propose a prototype implementation of a mobile base station with 

the ability to move within the sensor network along a specific path. The mobile base 

station used (also termed mobile router) is a rugged multi-terrain unmanned ground 

vehicle, namely, Packbot. The robot’s movement is controlled using Simple Interface for 

Robots (SIR), a generic development platform. The robot is equipped with a Stargate 

node processing platform running Linux and a mica mote interface hardware. The 

interface hardware is a mica-mote that can communicate with sensors in the surrounding 
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area. The mobile base station’s movement can be controlled to increase system 

performance. The prototype implementation uses a mica mote (CrossbowTechnology, 

2010a) sensor node. Further, Kansal et al. (2004) explores the following challenges 

involved in data collection when the mobile base station is on-the-move: 1) mobile base 

station’s movement speed influencing data collection and 2) data Collection protocol to 

enable multi-hop data collection. While previously discussed approaches require the base 

station to stay at the node’s location for a constant time, Kansal et al. (2004) employs 

speed control algorithms that can vary the mobile base station’s velocity based on sensor 

nodes in the environment. The algorithm works as follows. An initial exploration round is 

used to determine and collect state information from the set of node within the vicinity of 

the mobile base station. The state information is further used to partition the sensors into 

two sets based on data delivery success percentage. The mobile base station employs a 

stop-and-collect approach for sensor nodes in the first set and a slow-down-and-collect 

approach for sensor nodes in the second set. Finally, a data collection (communication) 

protocol based on directed diffusion (Intanagonwiwat et al., 2000) is proposed to enable 

multi-hop data collection. Nodes that are not in direct contact with the mobile base 

station (sink) offload their data to a node that is in direct contact with the mobile base 

station. The communication protocol employs an acknowledgement scheme to notify 

nodes of successful data delivery. Nodes failing to receive an acknowledgement will re-

transmit their data. Unlike previously discussed sink-based mobile data collection 

approaches, Kansal et al. (2004) present results obtained from real-world experiments 

using the proposed system prototype. Experimental results validate the advantages of 

employing mobility by achieving better data success rate at lesser energy using the 

adaptive speed control algorithm and the modified, directed diffusion approach.  

Jea et al.(2005) extends Kansal et al. (2004) work by introducing multiple mobile 

base stations to alleviate latency in data collection process. Two issues discussed are 

choice of number of mobile base stations and handling shared nodes (nodes within the 

range of both mobile base stations). They propose a load balancing algorithm that 

uniformly distributes the load of the data collection process among available mobile base 

stations. The load balancing process is divided into five parts namely: initialization, 

leader election, load balancing, assignment and data collection. The end result of the load 
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balancing operation is a node list that each mobile base station needs to service (data 

collection operation). This list avoids conflicts from sharable nodes as each shared node 

is assigned specifically to only one mobile base station. The data collection involves the 

mobile base station traversing the network collecting data from its assigned node list. The 

mobile base station sends acknowledgement to nodes it services, which registers the base 

station information. This avoids responding to new broadcast beacons from other mobile 

base stations. 

Somasundara et al. (2006) further explore controlled mobile base station approach 

by proposing a cluster-based communication protocol to collect data from sensor nodes 

that are not in direct contact with the mobile base station. The clustering protocol 

proposed involves a set of network layer algorithms that are responsible for establishing 

clusters during initial exploration of the sensor network by the mobile base station. The 

clusters formed are rooted at the mobile base station. Sensors within the cluster offload 

their data to the cluster heads. The cluster head then employs a round robin delivery 

approach to transfer the data to the mobile base station. The adaptive speed control 

algorithm previously introduced is further extended to be adaptive based on information 

collected from the network. For example, the mobile base station spends more time 

collecting data from the congested part of the network while spending relatively less time 

within uncongested parts of the network. The analytical energy comparison of the mobile 

base station approach validates the use of mobile base station as a viable option for data 

collection in dense sensor networks. 

Ren et al. (2006) present a data collection approach using mobile sinks in a hybrid 

mobile wireless sensor network model. A hybrid wireless sensor network comprises low-

level sensors and high-level mobile devices that perform data sink operations. They 

investigate the influence of number of mobile sinks, velocity, communication radius and 

data collection delay. The delay during the end-to-end data collection is dominated by the 

time the senor node waits for mobile sink to come within communication range. The 

simulation studies three performance metrics, namely, average data delivery delay, data 

success rate and lifetime of the network. The sensor model is assumed to be both sparse 

and densely populated. The simulation also explores data collection using multi-hop 

strategy. The outcomes show significant savings in energy using mobile sink employing 



46   

 

single or multi-hop data collection strategy over static approaches. The mobile data sink 

approach proposed does not investigate any system architectures or data collection 

protocols that can be used in real-world situations. Further, no discussion on the specifics 

of the multi-hop communication strategy employed is presented. 

The main drawback with the sink-based approaches is the need for the entire 

network to be aware of the sink’s changing positions. The ILP-based approach presented 

in (Luo et al., 2005) explores the use of optimal data routing to handle changing sink 

locations with the assumptions that sensors are aware of sink trajectory and the entire 

network topology. Wang et al. (2005) assumes sensors are deployed in a square grid 

while (Gandham et al., 2003) requires network flow (traffic) information at each node to 

decide the best route to the mobile sink. Moreover, the ILP-based approaches require 

sensor network topology information to find an optimal solution for the linear 

programming problem. Further, the sensor nodes need to have the capability to solve the 

ILP in finite time to obtain the best result if not the optimal result. The controlled 

mobility-based (Somasundara et al., 2006, Kansal et al., 2004, Jea et al., 2005) data 

collection approaches provide a good understanding of the challenges involved in 

designing and implementing a real-world mobile base station (sink). This approach 

requires introduction of specially designed mobile hardware with capability to 

continuously traverse the network collecting sensor data. Also, the entire model is based 

on the assumption of the availability of a dedicated mobile base station within the sensor 

network. This requirement may not be feasible in many applications. The basic and 

extended speed control algorithms incorporating network parameters to control the 

mobile base station’s velocity require a training phase for efficient functioning. 

Moreover, multi-hop data collection is efficiently achieved using clustering which 

introduces the drawbacks of cluster-based approaches. In addition clustering introduces a 

training phase to group sensors into different clusters. 

2.3.5 Mobile Data Collector-Based Data Collection 

Mobile data collector synonymously referred to as mobile relays (Anastasi et al., 

2008) or data mules (Shah et al., 2003) by various authors take advantage of mobility for 

energy-efficient sensor data collection. The previously discussed sink-based mobility 
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approaches focus on reducing the load of sensor nodes around the sink. To achieve 

network load balance, sinks move randomly or in pre-defined path over time within the 

sensor network reducing the effect of non-uniform energy depletion.  The use of mobile 

data collectors has been explored in the literature (Jenkins et al., 2007, Shah et al., 2003, 

Chakrabarti et al., 2003, Di Francesco et al., 2010, Curino et al., 2005, Henkel et al., 

2006). The mobile data collector collects data from sensors within its communication 

range. Such a wireless sensor network contains both a sink and a mobile data collector as 

part of the network infrastructure. The data collected by the mobile data collector is 

delivered to the base station/sink which handles further processing of data. Mobile data 

collectors employed for data collection can be introduced into the infrastructure with the 

goal to improve data collection efficiency. This kind of approach gives the system the 

ability to optimise the characteristics of the mobile data collector to achieve pre-defined 

performance goals. For example, changing the path of the mobile data collector 

(controlled mobility environment) aiming to improve the data collection rate within 

certain parts of the network. The base station-based mobility presented in (Kansal et al., 

2004) is one such approach. But this method requires the sink to be constantly available 

within the sensor network. By separating the sink and the data collector, we introduce 

more flexibility into the sensor network architecture. 

Chakrabarti et al. (2003) propose a pioneering effort in employing mobile data 

collectors for sensor data collection. They employ predicted mobility-based technique to 

collect data from sensors that are distributed within an area. In this case, an observer 

whose path is fixed (pre-known) moves around the sensor network periodically. When 

the observer is within the range of the sensor, it initiates communication. Since the sensor 

nodes communicate with the observer only when it is in range, the energy spent in 

collecting data is significantly reduced. The observer is not power-constrained and is 

equipped with long range radio enabling single hop data collection. Hence, each node 

needs to be within the range of the observer to off-load their data. Sensor nodes exploit 

the availability of observer’s path/arrival time to efficiently listen to the communication 

channel only when the observer is within its communication range. The communication 

protocols employed for data collection works in three phases, namely, start-up, steady 

state and failure. The start-up phase operates in two cycles. In the first cycle, sensors 
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listen to the channel waiting for an observer. Once an observer arrives within range, the 

sensors estimate the duration the observer is within range and the frequency of arrival. In 

the second cycle, the observer transmits a beacon to which sensors respond with RTS 

(Request to send). The observer receiving the RTS from a sensor responds with CTS 

(Clear to send). The sensor responds with a small information packet which is 

acknowledged by the observer. Cycle one and two are repeated until the entire network is 

covered. During the steady phase, the data is collected from the sensors by the observer 

by transmitting a wake signal. As the information about sensors and their sleep schedule 

is available with the observer, it prioritizes data collected based on available information. 

A mathematically formulated power comparison between the mobile observer based 

model and static node-based model is presented. Three classic cases are considered, 

namely, mobile observer model, a static sensor model with single hop communication 

and a static sensor model with multi hop strategy. The mobile observer approach 

produces power savings of up to 300 times over single hop static data collection and up to 

3 times over multi hop data collection. Though this approach uses existing mobility to 

collect sensor data energy efficiently, the primary requirement for the proposed system is 

the training phase. This requirement may not be feasible in many application scenarios. 

Further, the approach only characterises single hop data collection. This creates the issue 

of network coverage i.e. every sensor must be equipped with radios powerful enough to 

reach the mobile observer in one hop.    

Shah et al. (2003) propose a data collection architecture that exploits random 

mobility to efficiently collect data from a sparsely deployed sensor network. The data 

collection architecture is made up of three-tiers: 1) lower tier occupied by sensors that 

periodically sense data within the environment, 2) middle tier consisting of Mobile 

Ubiquitous LAN Extensions (MULE). MULE’s are mobile entities that travel around the 

sensor network collecting sensed data when within communication range and 3) top tier 

consisting of access points. The access point is a bridge between the MULE and the sink. 

Data collected from sensors is offloaded to the access point when the MULE is within 

communication range of the access point. The lower tier sensors await the arrival of the 

MULE to off-load collected data. This requires them to be continuously monitoring the 

communication channel. The MULE move independently using a Discrete Random Walk 
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mobility model.  The MULE arrival and data collection process is modelled on queuing 

theory. The system is analysed over key performance metrics, namely, data success rate 

and sensor buffer size. The use of short range one-hop communication technique reduces 

the energy consumed during data transmission. Moreover, the introduction of MULE-

based data collection architecture alleviates the problem of coverage i.e. the requirement 

to either introduce additional access points or deploy more sensors to completely cover 

sparsely deployed sensor networks.  

Jain et al. (2006) further extends the MULE architecture by addressing some of 

the shortfalls of the MULE model (Shah et al., 2003) making it more energy-efficient. 

The previous approach (Shah et al., 2003) worked under the assumption that sensors are 

always listening to the communication channel. This operation is expensive and highly 

energy consuming. Hence, Jain et al. (2006) explore efficient sensor discovery allowing 

sensor to implement duty cycling. The use of duty cycle can further enhance the lifetime 

of the sensor. Moreover, they investigate the data collection phase by analysing the 

influence of MULE’s contact time with the sensor. The contact time is the time the sensor 

and the MULE are within communication range. Finally, the system is analysed with 

various sensor duty cycles and MULE movement patterns. Interestingly, the analytical 

model shows that efficiency in data collection is not substantially affected by low duty 

cycles. Simulation outcomes exhibits energy savings of up to two-orders of magnitude 

using the MULE approach over traditionally static data collection approaches.  

The MULE architecture is the basic foundation in the use of mobile data 

collectors. But, the proposed approach has certain drawbacks. They are: 1) the sensor 

needs to listen to the channel continuously to detect MULE arrival, 2) the system is 

analytically modelled on parameters like sensor buffer, MULE buffer, MULE arrival rate 

with little attention on the actual data collection process, 3) the system model is assumed 

to be distributed in a two dimensional grid where sensors, MULEs and access points 

occupy specific points in the grid. At every clock tick, MULE moves within the grid from 

one point to another, 4) the system model also assumes an error free communication 

channel and 5) the MULE architecture handles only direct (single-hop) communication, 

hence requiring the MULE to cover the entire sensor network. These challenges need to 

be addressed to implement the MULE architecture in real-world applications. The MULE 
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architecture is best suited for delay-tolerant networks (Shah et al., 2003, Jain et al., 2006) 

as the MULE needs to wait until it arrives near an access point to deliver the data. This 

approach causes delay and is also not reliable as MULE might sometimes not arrive at 

the access point at all. 

The most recent work in the area of mobility-based data collection in sparse 

sensor network has been presented by Anastasi et al. (2009b, 2009a). Their (Anastasi et 

al., 2009a) work is motivated by the MULE architecture discussed previously with focus 

on sensor-MULE discovery and data transfer protocol. The problem of sensor-MULE 

discovery arises when sensors working at different duty cycles miss contact with the 

MULE. To this end, they propose a discovery scheme based on periodic wakeups and 

data transfer protocol based on Automatic Repeat ReQuest (ARQ). This approach 

investigates a single-hop data collection strategy where MULE communicates with 

sensors when within communication range. The system model simulates realistic 

message losses experienced in real-world situations. The discovery scheme sends 

periodic beacons allowing sensors within the range to respond. The sensors within the 

range employ an asynchronous sleep/wakeup pattern i.e. sensors wake independently of 

each other, listen to the channel for beacons from the MULE and return to sleep state. 

The data transfer protocol uses a windowing technique where messages are segmented 

into windows. Each windows of messages successfully received is acknowledged by the 

MULE and messages that are lost are retransmitted in subsequent rounds. The simulation 

outcomes based on the analytical model provides a good understanding of duty cycle 

influence on data collection efficiency. The efficiency here is more linked towards data 

success rate i.e. ratio of amount of data available against amount of data collected.  

2.3.6 Summary of Mobile Node-Based Data Collection 
Approaches 

The previous section presented a detailed discussion on mobile node-based data 

collection approaches. As discussed, the use of mobility is advantageous and has a 

number of benefits that have been highlighted. The mobility-based data collection 

approaches discussed in literature are more energy-efficient than static sink-based 

approaches. However both groups of approaches have advantages and drawbacks. For 
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example, the controlled mobility approach requires the introduction of a specially 

designed mobile sink. The mobile sink approach is rewarding but the absence of a static 

sink might result in the network overflowing with collected data when the mobile sink is 

unavailable. Similarly, the mobile sensor-based approaches are suitable for specific 

applications as sensors need to be equipped with appropriate hardware for mobility. 

Finally, the random mobility based approaches use mobile data collectors that exist 

within the environment to perform data collection. These approaches are mostly 

analytical models with little attention on the energy consumed in the actual data 

collection process. Moreover, the proposed mobile data collectors require specific 

hardware to enable them to talk to sensors in the surroundings, for example, short range 

ultra wide band radio (Shah et al., 2003). This may not suit pervasive environments as the 

cost of deploying special hardware on mobile data collectors like buses, cars might be 

expensive. Further, the random mobility-based approaches rely on single-hop 

communication with the requirement that sensors within the network will come in direct 

contact with the MULE. This may not be always practical. We present a comparative 

summary of the previously discussed approaches in Table 2.6 identifying the key merits 

and de-merits of each approach.  

The previously presented literature on mobile node-based data collection has 

addressed the challenges introduced by mobility, namely: 1) mobile node arrival rate 

based on type of mobility i.e., controlled, predicted or random, 2) data success rate based 

on mobile node’s velocity and 3) sensor-data collector discovery. The data collector 

approaches mostly focus on single hop data collection with less or no discussion on 

multi-hop data collection. One of the major contributions of this dissertation is the 

proposal to employ k-Nearest Neighbour queries to collect data from multi-hop sensor 

networks. In the next section, we discuss work related to k-Nearest Neighbour query 

processing in sensor networks. 
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Mobility 
Category 

Mobile Sensor Mobile Sinks Mobile Data 
Collectors 

Algorithms Zebranet (Zhang 
et al., 2004), 

SWIM (Small et 
al., 2003), Cartel 

(2006) 

Controlled Mobility (Kansal et 
al., 2004), 

Hybrid Mobility (Ren et al., 
2006), 

SENMA(Venkitasubramaniam 
et al., 2004), 

MULE (Shah et 
al., 2003) 

Predicted 
Mobility 

(Chakrabarti et 
al., 2003) 

Anastasi et al. 
(Anastasi et al., 

2009b) 

 

Communication 
Mode 

Mostly Single-
Hop. Some 
approaches 
incorporate 
Multi-hop 

Single-Hop. Multi-Hop 
approach achieved using 

clustering 

Single-Hop 
(Direct) 

Mobility Type Random Controlled. Sink decides next 
location 

Random / 
Predicted 

Infrastructure 
Cost 

High High Medium 

Data 
Collection/ 

Delivery Delay 

Medium - High Low - Medium High 

Query Based No Partial/ No No 

Radio Type Connection-Less Connection-Less Connection-Less5 

Cost-Efficient 
Metrics 

No No No 

Sensor Type Connection-Less Connection-Less Connection-Less 

Merits Suitable for 
certain 

applications 
where sensors 

need to be 
mobile. For 

example Zebra 
monitoring. 

 

Reduces multi-hop 
communication, hence 

uniform energy depletion 
within the network. 

Employing clustering can 
leverage on multi-hop data 

collection 

Good energy savings 
compared to static approaches 

Short range single 
hop 

communication. 

Considerable 
energy savings 
due to direct 

communication. 

MULE approach, 
a pioneering work 

                                                            
5 Approaches based on connection-less radio techniques namely radio with 

broadcast channel capability requiring constant listening to the channel (E.g. Mica Mote). 
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(up to 100% improvement in 
network lifetime) 

in proposing 
three-tier data 

collection 
architecture 

 

De-Metrics High 
infrastructure 

cost. 

Requires special 
hardware to 

sustain mobility 
(except in cases 

where mobility is 
achieved by 
applications 
nature. E.g. 
Zebranet) 

Sink is static and 
hence requires 

the mobile sensor 
to arrive at the 

sink. 

Sink require specialized 
hardware for mobility. 

Sink location needs to be 
updated within the network. 

Require complex scheduling 
approaches to achieve low 

delay and good data success 
rate. 

Clustering approach used for 
multi-hop data collection 
requires training and has 
drawbacks of classical 
clustering approaches. 

MULE needs to 
be equipped with 

hardware to 
communicate 
with sensors. 

MULE’s 
analytical model 
is restricted by 

two-dimensional 
grid-based sensor 

occupancy. 

 

 

Table 2.6: Comparison of Mobile Node-Based Data Collection Approaches 

2.4 Data Collection employing k-Nearest 
Neighbour Queries 

k-Nearest Neighbour (kNN) queries have been explored as a solution for sensor 

data collection. kNN queries are a class of spatial queries technique traditionally 

employed in databases to retrieve spatially distributed data (Mouratidis et al., 2005a, 

Mouratidis et al., 2005b, Roussopoulos et al., 1995). A typical kNN query retrieves a list 

of k objects that are closest to a query point Q. For example, find the nearest set of 

restaurants from a given location. The query point is sometimes referred to as the point-

of-interest. The use of kNN queries to determine proximity (closest object) requires some 

form of distance definition (Becker et al., 2005). This can be geometric coordinates (e.g. 

GPS) or symbolic coordinates (e.g. cell-Ids, wireless LAN positioning). In traditional 

databases, a centralised/distributed index has been used to efficiently process kNN 

queries. R-trees (Guttman, 1984) is one such dynamic indexing technique employed in 
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spatial data search. R-tree is a height-balanced tree whose leaf nodes point to individual 

data objects. The idea behind R-tree is to generate a spatial index for a group of objects 

which are geographically related. This index is then used to perform fast spatial search. 

The R-tree is a centralised index maintenance technique that has the feature of 

updating/deleting index entries when object properties change. A search operation 

involves traversing the tree finding results that match the query. Roussopoulos et al. 

(1995) present a branch and bound search technique to process kNN queries over R-trees. 

An R-tree representation is presented in Figure 2.12. Figure 2.12 (left) is the R-tree for 

the corresponding minimum bounding rectangle (MBR) in Figure 2.12 (right). A MBR is 

a minimal rectangle that encompasses all child nodes grouped by their geographical 

location. In case of datasets in databases, the grouping metric can be based on Euclidian 

distance between data objects.  

A sensor network is a classic example of spatially distributed data where kNN 

queries can be employed to improve data collection efficiency. kNN queries are highly 

relevant to sensor network applications (Winter et al., 2004) as they require instantaneous 

retrieval of data for queries like “get the temperature reading of 5 nearest sensor from Q”. 

The use of kNN queries has been studied in sensor networks (Soheili et al., 2005, Winter 

et al., 2005, Wu et al., 2007, Yao et al., 2009, Yao et al., 2006, Demirbas et al., 2003). 

The kNN query processing in sensor networks can be broadly classified into 

infrastructure-based and infrastructure-less approaches. Infrastructure represents the 

topological information (indices) maintained by the sensors to respond to kNN queries. 
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Figure 2.12: R-Tree representation 
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Murat et al., (2003) present Peer-trees, a peer-to-peer index structure to process 

kNN queries in sensor networks. Peer-tree is an energy-efficient de-centralised adaptation 

of R-trees. The peer-tree technique partitions the sensor network into rectangle-shaped 

clusters based on number of nodes. A split operation is employed to split nodes into 

multiple clusters if a given cluster has too many nodes. In peer-tree, the kNN query can 

originate from any point in the network moving towards the root. Since, partition 

information is available to cluster heads the query propagates to other clusters only when 

a result is not found within that cluster. This approach reduces network broadcasting. 

Soheili et al. (2005) propose SPatial IndeX (SPIX), a distributed spatial index approach 

for processing kNN queries. SPIX like R-tree maintains index structures on each sensor 

node allowing it to respond to queries efficiently. The spatial index is created using 

flooding and further maintenance is performed by sensors periodically. The key energy 

consuming function of the index-based approaches is the overhead involved in creating 

and maintaining indices. 

Yao et al. (2006, 2009) propose a technique to track an object closest to the query 

point Q using nearest neighbour queries in sensor networks. The sensor network is 

partitioned into a two-dimensional grid with each node within the grid sending sampled 

data to the grid index node - a node which is closest to the grid centre. The sampled data 

is the location of the tracked object which is sent to the grid index node only when the 

object’s location changes. The search boundary is estimated by routing the query to each 

grid cell until at least one object is found. The distance between the query point and the 

grid cell in which at least one object is found becomes the search area (boundary). An 

expanded search is performed within the estimated search boundary to determine the 

object that is closest to the query point Q. The primary area of energy consumption with 

this approach is the overhead involved in the grid maintenance. Further, grid index nodes 

are assumed to communicate with one another during query computation. This might 

require communication involving nodes around the grid index node leading to non-

uniform energy consumption. 

Winter et al. (2005, 2004) propose partial-infrastructure-based and infrastructure-

based kNN algorithms. The infrastructure-based algorithm is based on the Geo-Routing 

Tree (GRT) protocol. The GRT is similar to R-tree requiring spatial indices to process 
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kNN queries. Each sensor node in the GRT maintains a minimum bounding rectangle 

(MBR) encompassing it and its child nodes. The MBR is computed using geographical 

proximity between sensors. The GRT algorithm works by pruning sensor nodes in MBR 

which are farther away from the query point Q. To prune the sensors that are outside the 

kNN region, it uses MINDIST (Roussopoulos et al., 1995) principle. The MINDIST is the 

distance between the query point P and the closest edge of the MBR. An illustration of 

the MBR was presented previously in Figure 2.12. The issue with the index-based 

approach in dense sensor networks is a large storage requirement to maintain index 

structures on individual nodes. It also has the drawback of high overheads involved in 

maintaining index structures when sensor nodes fail. To improve the performance of the 

GRT based kNN algorithm Winter et al. (2005) propose a partial-infrastructure-based 

kNN algorithm, namely, KBT. KBT uses Greedy Perimeter Stateless Routing (GPSR) 

protocol to route sensor information. The partial-infrastructure-based approach adapts 

well within dynamic environments, e.g. network with mobile sensor networks. The GPSR 

employs perimeter routing when a path to a specific node does not exist i.e. nodes that are 

not in direct contact are reached by forwarding the request along the perimeter of the 

sensor network. KBT employs some approaches including maximum hop distance 

(MHD), NeighbourClass and NeighbourClass2 to determine the kNN search boundary. 

The boundary estimation approaches use the information collected when the query travels 

from the sink to a node close to the query point Q. Further, restricted flooding and timers 

based on fixed TreeHeight are employed to collect data from the sensors. The TreeHeight 

determines the time the parent node needs to wait before its child nodes respond. The 

TreeHeight in simple terms is the maximum hop distance from the query point that 

encloses the set of k nearest neighbours. KBT uses static TreeHeight allocation for data 

collection. Simulation and evaluations results show that KBT performs better than GRT 

for dynamic sensor environments. Moreover, KBT exhibits better energy efficiency than 

its counterpart GRT approach. The use of fixed TreeHeight restricts KBT’s operation.  

The approaches discussed so far require some sort of network 

partition/infrastructure information to process kNN queries. Further, certain approaches 

require cluster formation and maintenance for successful creation/maintenance of indices. 

When a cluster head fails, a re-election algorithm is used to re-elect new cluster heads. 
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These requirements are energy consuming and introduce communication overheads. 

Adapting index-based approaches in sensor networks is expensive due to the amount of 

communication involved in maintaining indices. Moreover, index-based approaches are 

vulnerable to network topology changes. Hence, infrastructure-less sensor query 

processing approaches (Xu et al., 2006, Wu et al., 2007) have been explored to overcome 

index maintenance problems. 

Xu et al. (2006) propose an infrastructure-less technique to process window 

queries in sensor networks. The window query is different from a kNN query as window 

queries focus on collecting data from a set of sensors that are within a query window. 

Though this approach does not investigate kNN query processing directly, it explores 

window query-based data collection which involves identifying sensors within a query 

window in an infrastructure-less sensor network. The query window represented as a 

rectangular region defines the data collection area. To this end, they propose an itinerary 

based data collection scheme called itinerary-based window query execution (IWQE). 

IWQE employs Geo-Routing protocol to route the query towards the query window. 

IWQE introduces the concept of Query nodes (Q-nodes) and Data nodes (D-nodes). The 

Q-node forwards the query to adjacent Q-node within the query window while the D-

nodes respond with sensed data. By employing the itinerary-based forwarding among Q-

nodes, network flooding is reduced improving the energy efficiency of the IWQE 

technique. Performance evaluations of IWQE protocol show improved energy efficiency 

over the infrastructure-based query processing protocols.  

Wu et al. (2007) present an infrastructure-less itinerary-based kNN query 

processing algorithm, namely, DKINN. The DKINN approach is motivated by Xu et al. 

(2006) itinerary-based window query processing technique. DKINN propagates the kNN 

query from the sink to a node closest to the query point P. DKINN employs the concept 

of Q-nodes and D-nodes introduced previously to route the query from the source to a 

node adjacent to Q. While the query routes to the nearest node, it collects network 

information along the path. The kNN boundary is estimated by using the information 

collected during the query propagation phase. The estimated kNN search boundary is then 

searched to compute the k nearest neighbours. The performance evaluation of DKINN 

has been compared with the GRT approach proposed by Winter et al (2005). With 
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assumptions that itinerary-based query propagation is feasible, DKINN seems to perform 

better than GRT approach with good savings in energy. 

The DKINN and IWQE techniques depend on itinerary information to propagate 

query through the network. The itinerary creation and maintenance is feasible only if the 

sensor network is trained to forward data based on pre-computed trajectories (Niculescu 

et al., 2003). The trajectory provides the path the query needs to take, to reach the node 

adjacent to the query point Q. The trajectory computation results in the election of Q-

nodes and D-nodes which are the basis for DKINN and IWQE execution. To pre-

compute the trajectory, the sensors need to be equipped with specialized hardware 

(parallel array antennas) (Niculescu et al., 2003). Further, Q-nodes are similar to cluster 

heads and are responsible for forwarding the query to the next Q-node while collecting 

information from D-nodes within the neighbourhood. Query propagation happens only 

between Q-nodes resulting in non-uniform energy depletion of the sensor network. 

Finally, the requirement of specialized hardware to compute trajectory may not be 

feasible in every sensor network application. Hence, we conclude that window query 

processing technique IWQE and more specifically the kNN query processing technique 

DKINN may apply only to a specific class of sensors. Table 2.7 presents our comparative 

analysis of kNN query processing approaches. 

2.4.1 Summary of Data Collection Techniques Employing 
kNN queries 

The previous section presented the literature on kNN query-based data collection 

techniques in sensor networks. The plethora of research on kNN query processing 

depends on sensor network infrastructure knowledge to efficiently process the query. 

Moreover, the infrastructure-less approaches are tailored for a specific class of sensor 

network applications with special hardware requirements. They assume a classic sensor 

network model i.e. the sink acts as the query source and nodes within the network assume 

the role of co-ordinators managing query processing. Further, current kNN query-based 

data collection approaches assume a two dimensional sensor network. Our proposed 

approach discussed in depth in Chapter 4, investigates the feasibility and efficiency of a 

kNN query-based sensor data collection approach in a three dimensional sensor network 
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using mobile data collectors that have no prior knowledge of the sensor network 

topology. 

Approa
ch 

Sensor 
Mobilit

y 

Mobil
e Data 
Collec

tors 

Cost 
Efficien

cy 
Metrics 

Advantages Limitations 

Infrastr
ucture-
Based 

NO NO NO Better query 
execution 

efficiency due to 
the maintenance of 

indices 

Uses in-network 
aggregation for 
energy-efficient 
query processing 

High cost in maintaining 
indices 

Does not adapt well for 
dynamic networks i.e. cases 

where sensor nodes 
fails/disappear 

Requires training phase to 
generate network index 

Sink based query origination 

Infrastr
ucture-

less 

YES NO NO Adapts well for 
dynamic networks 
e.g. mobile sensors 

On-request 
computation of 

nearest neighbours 

Energy-efficient 
than infrastructure-
based approaches 

Current approaches (Wu et 
al., 2007, Xu et al., 2006) 

require pre-computed 
trajectory to compute routing 

paths. 

Query originates from the 
sink. 

A single node close to the 
point-of-interest needs to be 

elevated to successfully 
process the query. 

Table 2.7: Analysis of kNN Query Processing Approaches in Sensor Networks 

2.5 Context Modelling Approaches 

One of the contributions in this thesis is the proposal of a dynamic situation 

modelling approach based on Context Spaces (Padovitz et al., 2004) theory. Context 

Spaces is a theoretical approach for modelling and reasoning about context, based on 

situations. In the following subsections, we present an overview of context-aware 

computing and explore existing context modelling approaches. 

2.5.1 Context-Aware Computing: Overview 

Mark Weiser’s  vision for 21st century computing devices (Weiser, 1999), laid the 

foundation for the pervasive era of computing - a new computing system paradigm. He 
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coined the term “ubiquitous computing” with the vision of embedding user environments 

with communication and computing capabilities yet making them transparent. Research 

into various streams of pervasive computing has begun to look into various challenges 

concerning realisation of smart pervasive systems. These challenges range from 

architectural and technological challenges (Yoshimi, 2000, Pascoe et al., 1999) to 

security, privacy and social issues (Satyanarayanan, 2000, Bellotti et al., 1993). Of the 

various significant research areas investigated, context-aware computing was identified 

as a key ingredient in realising the pervasive computing vision (Satyanarayanan, 2002). 

In the context of pervasive computing, context-aware computing enables a system to 

adapt its behaviour dynamically in changing environments. The dictionary meaning of 

the term context refers to “That which surrounds, and gives meaning to, something 

else6”. The interest in context-aware computing has given rise to number of definitions 

for context (Brown et al., 1997, Abowd et al., 1999, Chalmers, 2002). A broader 

definition of context given by Dey and Abowd (Abowd et al., 1999) is 

“Context is any information that can be used to characterize the situation of an 

entity. An entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and 

applications themselves.” 

Chalmers (2002) provides another abstraction of context from a more user-based 

perspective as a “circumstances relevant to the interaction between a user and their 

computing environments”. This definition fits into Dey and Abowd’s (1999) generic 

description of context. In real-world situations, context can represent any information that 

enables a system to adapt its operation to achieve pre-defined system goals. For example, 

current temperature in a room is the contextual information that can be used by a heating, 

ventilating and air-conditioning (HVAC) system to adapt its performance to achieve 

ambient temperature settings. Other context includes location of user, location of device, 

current time, device resource e.g. battery level, signal strength, etc. Some example of 

context-aware applications within the domain of pervasive computing that have utilized 

                                                            
6 Dictionary Reference of context: http://dictionary.reference.com/browse/context 
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contextual information to adapt system operations include Active Badges (Want et al., 

1992), Cyberguide (Abowd et al., 1997), Smart Kindergarten (Srivastava et al., 2001).  

Active badge (Want et al., 1992) is a location system designed to compute 

location of people within an office environment. Specially designed badges worn by staff 

in an office are responsible for transmitting information regarding location to a 

centralised server. Cyberguide (Abowd et al., 1997) is another example of a system that 

captures user’s physical location and orientation as contextual information to provide 

appropriate information on user’s current location. An envisioned application is a 

museum tour guide that provides users with information on exhibits based on their 

location and direction in which they are facing. Smart Kindergarten (Srivastava et al., 

2001) envisions an individualised learning environment to enhance education in a smart 

kindergarten. The system comprises sensor-enhanced toys that interact wirelessly with 

other toys and a back-end middleware service that offers data management services. The 

contextual information used in this application includes object locations, children 

location and relative location information i.e. child A is near toy B. Location 

management is a key to context-aware applications. Becker et al. (Becker et al., 2005) 

presents location models for pervasive computing systems for different types of location-

based queries, namely, range queries (e.g. object within a specific area), nearest 

neighbour queries (e.g. find the closest printer), positions queries (e.g. location of 

buildings, bus stops, etc.) and navigational queries (e.g. route from one location to 

another). 

2.5.2 Situation Reasoning and Context Modelling 

A situation is generally defined as “the combination of circumstances at a given 

moment7”. We perceive situation as a combination of contextual information that best 

matches its real-world counterpart. Context modelling is the process of representing 

situations in a system that best symbolises its real-world counterpart. Reasoning allows 

inferring situation occurrence defined in the context model, based on contextual 

information sensed from real-world environments. Hence, situations are high level 

                                                            
7 Dictionary Reference of situation: http://dictionary.reference.com/browse/situation 
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abstractions of context inferred from single/multiple sources based on rules or reasoning 

techniques. 

Akman et al. (1997) present a situation theory based context model. The situation 

theory is a mathematical theory of information that allows situations to be represented as 

discrete items of information (infons). Two types of infons represent situations and their 

relations, namely, factual infons, stating the facts and conditional infons that have rules 

relating facts. Goslar et al. (2004) considers contextual representation of situations based 

on topic maps (Topicmap, 2010). Topic maps allow creation of relationships between 

objects located inside and outside the system. Dey (2001) discusses the importance of 

understanding context by defining situations as an abstraction that describe the states of 

relevant entities. The object oriented Context Composition (CoCo) model (Buchholz et 

al., 2004) uses classes, factory-nodes, operator-nodes and scales (data formats) to 

represent context and situations. Padovitz et al. (2004, Padovitz, 2006) defines situation 

as meta-level description of real-world situations that is inferred from available context. 

Context in this case is a fusion of raw data collected from low-level sensors. Context 

gives relation and meaning to raw data streaming from sensor sources.  

Situation-based reasoning approaches have to take into consideration varying 

degrees of uncertainty. Uncertainty in this case deals with the inherent gap between 

representations of context in real-world against context perceived by the system. A 

context model is a generic way of representing information that can be used to reason 

about context As mentioned before, one of the research challenges addressed in this 

thesis is dynamic situation composition using Context Spaces theory (Padovitz et al., 

2004, Padovitz, 2006, Padovitz et al., 2005). Hence, in this section, we provide a review 

of context modelling techniques based on their underlying principle and inference 

technique. We justify our choice of Context Spaces over other context modelling 

approaches, identifying scope for improvement in Context Spaces which is later 

addressed in this thesis. 

Bayesian reasoning is a statistical inference technique in which known evidence is 

used to compute a degree of belief (probability) of an underlying hypothesis. (Bayes et 

al., 1763). In (Fox et al., 2003), a Bayesian technique is used for location estimation 
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using inaccurate sensor reading. Castro et al. (2000) present another Bayesian approach 

to compute location of indoor devices using signal-to-noise ratio (SNR) between devices 

and base stations. Dempster-Shafer is considered a generalised Bayesian statistical theory 

(Wu et al., 2003). It allows computation of support for a proposition (e.g. this is a 

meeting) using an upper and lower bound of probabilities defined as confidence interval. 

Jian et al. (2007) present a Dempster-Shafer evidence theory-based context-aware 

architecture. The proposed architecture uses planes to group sensors that produce similar 

contextual information. A Dempster-Shafer approach is preferred over Bayesian 

reasoning due to the ability of Dempster-Shafer to account for general uncertainty. 

Further, aggregators and registrars are used to process low-level sensor information and 

present it to context-aware applications that require adaptation advice. Wu et al. (2002) 

present a weighted Dempster-Shafer evidence combination rule to deal with context from 

multiple sensor sources. The idea of using weights introduces the concept of sensor-

reliability. The weights are computed from historical observations on correctness of 

sensor data. This effort is further extended in (Wu et al., 2003) by introducing dynamic 

weights which is adapted continuously based on sensor performance using Kalman 

filtering.  

Fuzzy based approaches have been employed for reasoning about situational 

context. Mäntyjärvi et al. (2002) propose a fuzzy based approach that adapts context 

aware applications based on multiple fuzzy contexts. The use of fuzzy logic (Mendel, 

1995) allows context-aware applications to adapt to state transitions e.g. changing from 

walking state to running state. Byun et al. (2003) extends fuzzy approach by using fuzzy 

decision trees and historical context to handle uncertainty. The use of historical context 

makes the system proactive allowing it to predict user actions intuitively. More recently, 

Haghighi et al. (2009) propose the incorporation of fuzzy logic in Context Spaces 

(Padovitz, 2006). Their approach aims to identify delta level changes in situations useful 

in medical applications. 

Ontology based reasoning approaches have also been explored in the literature 

(Ko et al., 2008, Gu et al., 2004, Chen et al., 2003). Ontology is a formal representation 

of concepts and its relationships within a particular domain (Chen et al., 2003). Ontology 

provides a way to precisely describe domain knowledge and situation information (Ko et 
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al., 2008). Concepts (information) are represented in ontology using ontology languages 

such as OIL8 (Ontology Interface Layer) or DAML9 + OIL (DARPA Agent Markup 

Language). A further standardised language used to represent ontology is Web Ontology 

Language (OWL) which is based on DAML+OIL (Chen et al., 2003, Gu et al., 2004). 

Chen et al. (2003) propose an ontology-based Context Broker Architecture (CoBra) 

which employs agents to acquire, reason and share context. The ontology is divided into 

four categories, namely, people, agents, places and events. The ontology is also used to 

describe the relationship between categories. The architecture is domain specific and 

reasoning deals with detecting and solving inconsistencies between facts. Ranganathan et 

al. (2004) uses predicates to represent context with associated confidences. DAML+OIL 

are used to specify the predicate structure and semantics. The context architecture Gaia 

(Ranganathan et al., 2004), facilitates reasoning using various mechanisms including 

fuzzy logic, probabilistic and Bayesian networks. 

Parallel to context modelling, research in context-aware computing investigates 

context-aware frameworks that ease the task of developing context-aware applications. 

Dey et al. present (2001) Context ToolKit, a framework that allows creation of interfaces 

between devices and software entities that provide contextual information. Five context 

abstractions, namely, Widgets, Interpreters, Aggregators, Services and Discoverers can 

be used by context-aware application developers to prototype applications. The widgets 

acquire data from sensors, interpreter interprets that into high level information and 

aggregator collects related context for a specific entity. Services execute behaviours and 

discoverers maintain a list of services available to the application. Applications use 

discoverers to find specific components or a set of component that match certain criteria. 

This work is extended by Dey and Mankoff (2005) to handle ambiguous context. They 

use the term mediation to refer to the process involved in solving ambiguous context 

involving human computer interaction. In a shell, mediation allows the system to 1) 

identify ambiguous context, 2) provide/obtain feedback to/from the application/user on 

ambiguous context and 3) store feedback and re-use for final context interpretation. A 

plethora of research that facilitates context-aware application development can be found 

                                                            
8 www.ontoknowledge.org/oil/ 
9 www.daml.org/ 
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in the literature (Khedr et al., 2005, Capra et al., 2001, Glassey et al., 2003, Bagci et al., 

2004). 

Review of context modelling approaches presented previously show that current 

approaches are application specific, making it difficult to provide a generic approach for 

context modelling under changing situations. Bayesian approach has the limitation of 

knowing prior probabilities which in many cases may not be feasible. The Fuzzy logic-

based approaches can determine situation states in terms of percentages which may not 

always be useful. For example, concluding that a person has 60% cold and 40% flu may 

not help in many applications. The ontology-based approaches have been used to 

represent context within specific domains. Though ontology-based approaches provide a 

deep understanding of specific domains it may not be feasible to use generic ontology to 

represent a host of domains i.e. a generic representation. 

These shortfalls have been addressed by Context Spaces (Padovitz et al., 2004, 

Padovitz, 2006). Context spaces, is a spatial metaphor-based context modelling approach. 

It uses situations to reflect real-world situations. A situation is represented as a collection 

of context attributes. It uses Multi Attribute Utility Theory (MAUT) based sensor data 

fusion algorithm (ConSpaF) to fuse data from multiple sensor sources. It provides 

powerful reasoning technique to infer situations based on current contextual information. 

Context Spaces Algebra based on Context Spaces model is used to manipulate relations 

between situations. The reasoning approach of Context Spaces takes uncertainties in 

sensed values and significance of context attributes across different application domains 

to compute a confidence measure. The strength of Context Space is its ability to 

generically represent context using spatial metaphors of state and space. Moreover, 

Context Spaces model is developed on the basis of sensor originated data. In this thesis 

we propose techniques for energy-efficient sensor data collection. We then look to extend 

our approach by exploring ways in which collected sensor data can be used to 

dynamically model situations aiding the reasoning process. These strengths of Context 

Spaces supported our choice to use Context Spaces as our basic context model for further 

investigation.  
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2.6 Summary 

Pervasive computing applications are highly dependent on real-world data for 

efficient decision making. These real-world data are available from sensors embedded in 

pervasive environments. In this section, we identified sensor networks as a key 

technology that drives current pervasive computing applications. This opens up the area 

of research that addresses the challenges involved in energy-efficient data collection. The 

energy and processing limitations of sensor nodes justifies the need for energy-efficient 

data collection strategies. In this chapter, we have presented a background on sensor 

networks identifying the current state-of-art technologies. A discussion on current sensor 

node platforms from an energy perspective has been presented identifying the major 

components that drain sensor energy. We identified communication as one of the primary 

energy consuming operations making it a key design consideration for data collection 

protocols. 

We reviewed current data collection approaches based on a broad classification of 

static node-based and mobile-node based techniques. The static node-based approaches 

have been identified to cause sensor hot-spots i.e. sensor nodes near the sink deplete 

energy quickly. Introducing mobility leverages the fact that a mobile node can move 

close to sensor node’s location to collect data. The literature has reviewed mobile data 

collection approaches by broadly classifying them into sink, sensor and data collector 

mobility. The mobile sink approaches are energy rewarding but are more feasible in 

sensor networks that have specifically designed infrastructures. Mobile sensor nodes 

introduce the limitation of specially designed hardware for mobility. Hence, in this 

dissertation, we explore a mobile data collector-based approach. Our mobile data mule 

approach complements Data Mule (Shah et al., 2003) approach and also addresses the 

shortfalls of Data Mule approach elaborated in the literature. Further, we explore a kNN 

based data collection approach using mobile sensor data collectors.  

Mobile data collector-based approaches to sensor data collection using kNN are in 

their infancy. Further, system framework for data collection using mobile data collector 

has not been addressed elaborately in the literature. Our objective is to investigate kNN 

based mobile data collection as a cost-efficient alternative for sensor data collection. 
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More specifically, we note that current approaches in data collection are missing the 

following desirable characteristics: 

 A sensor data collection system framework with energy-efficient sensor 

data collection algorithms applicable in real-world pervasive 

environments. 

 A data collection protocol for energy-efficient multi-hop sensor data 

collection using mobile data mules that have the ability to compute data 

collection decisions on-the-run. 

Finally, we reviewed context modelling and situation-based reasoning approaches 

as a high level application of collected sensor data. We identified Context Spaces 

(Padovitz, 2006) as our choice of context model due to its generic representation of 

context using spatial metaphors. We note that Context Spaces model can be improved 

further by incorporating: 

 A dynamic situation model that can be composed on-the-fly with 

capability to incorporate newly discovered context (using the above 

discussed data collection techniques) 

 Incorporating additional sensor quality information leveraging on existing 

sensor measurement inaccuracies. 
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3  
sGaRuDa10: Sensor Data 

Collection Using Heterogeneous 
Mobile Devices 

3.1 Introduction 

Evolution of pervasive computing paradigm has given rise to the integration of 

intelligent computing devices into physical spaces turning them into smart 

spaces/environments (Lewis, 2004). Sensors are a key element for continual existence of 

smart spaces. We presented a literature survey in Chapter 2 on current approaches that 

addressed challenges involved in sensor data collection. In this thesis, we will be 

employing a mobility-based sensor data collection approach. We identified the key 

benefits in using mobile data collectors for sensor data collection in Chapter 2. The 

introduction of mobility opens up new dimensions in approaching the sensor data 

collection. We also identified gaps in existing approaches and room for improved data 

collection. More specifically we identified the following in current approaches: 

(1) Focus on connection-less sensor network, i.e. sensors equipped with radio 

hardware that have broadcasting capabilities. Research in the area of using 

mobility to collect and deliver sensor data from Bluetooth-based sensor nodes 

is still immature 

(2) Employ mobile sinks for data collection which require frequent location 

updates from the sink to the sensors. This problem has diverged into mobile 

                                                            
10 sGaRuDa is the name of the proposed system. It signifies sensor data carrier 
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sink scheduling problem (Somasundara et al., 2004, Gu et al., 2006). Though 

mobile element scheduling handles energy-efficient sink mobility, the 

approach is specific to sensor network applications where mobile sinks can be 

controlled. 

(3) Absence of a software-based system framework for sensor data collection that 

can be implemented on today’s heterogeneous 11mobile devices. 

(4) Focus on data collection protocols for broadcast-based networks with 

sufficient support lacking for connection-oriented networks (e.g. Bluetooth-

based sensor networks). 

Summing up, current data collection approaches employing mobility lack support 

for connection-oriented sensor networks (Bluetooth-based) as the operation of these 

networks differ significantly from connection-less networks (refer 2.2.4) . Our choice to 

investigate Bluetooth-based sensor networks is driven by the ubiquitous acceptance of 

Bluetooth technology available on most mobile device platforms. Moreover, studies of 

the feasibility of employing Bluetooth-based sensor networks (Nachman et al., 2005, 

Lundberg et al., 2005, Leopold et al., 2003) have shown that with proper use of Bluetooth 

low-power mode (Lundberg et al., 2005), the lifetime of Bluetooth-based sensors can be 

considerably extended. The widespread adaptation of Bluetooth and research initiatives 

in the area of Bluetooth-based sensor networks (BSN) open up a new dimension of sensor 

network applications that can be deployed within pervasive environments with ease. 

In this chapter, we propose sGaRuDa, a system framework that can be 

implemented on multitude of day-to-day computing devices e.g. smart phones, Personal 

Digital Assistants (PDA), laptops, etc, giving them the capability to discover, collect and 

deliver sensor data on-the-fly. Summing up our proposed approach: 

We propose, investigate, implement and evaluate a system framework (sGaRuDa) 

that can run on a multitude of current generation heterogeneous mobile device platforms 

that require no additional hardware to perform cost-efficient sensor data collection. 

                                                            
11 Heterogeneity represents the plethora of different mobile device platforms (hardware and software)  
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The term “cost-efficient” is used to define the overall data collection cost which 

includes both time (processing efficiency) and energy parameters. We use the term 

“heterogeneous” to represent the class of different mobile device platforms.  A good 

sensor data collection system framework needs to have the following desired 

characteristics to achieve cost-efficient sensor data collection: 

Dynamic Device Discovery: The mobile devices in our proposed model are 

current day computing devices. The Bluetooth discovery protocol differs from broadcast-

based sensors. Hence, it is important to analyse and efficiently use the Bluetooth 

discovery protocol to increase system efficiency. 

Data Collection/Delivery Protocol: The use of Bluetooth-based network puts 

forward the requirement to establish a connection before data can be transferred. The 

connection process in Bluetooth is sometimes time consuming, hence requiring protocols 

that can efficiently and effectively use the Bluetooth baseband radio. Further, data 

delivery protocols address delivering sensor data to the sink. 

Intelligence/Context: We defined the term “context” in the literature as “That 

which surrounds, and gives meaning to, something else12”. Context within our 

framework represents sensor and mobile device parameters that are used to arrive at data 

collection decision. For example, sensor location, residual energy, amount of data to be 

transmitted represent sensor context while mobile device location, mobile device velocity 

(state: static/moving), mobile device capabilities (communication) represent mobile 

device context. 

The rest of the chapter is organised as follows. Section 3.2 presents an overview 

of our proposed system. Section 3.3 elaborates on the system components presenting 

details of algorithms proposed for device discovery, data collection and delivery. Section 

3.4 presents examples of real-world application where the proposed approach can be 

employed. The chapter concludes with a summary presented in section 3.5. The system 

framework and the corresponding data collection and sensor adaptation algorithms 

presented in this chapter are extended versions from the following published papers 

                                                            
12 Dictionary.com meaning, http://dictionary.reference.com/browse/context 
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(Jayaraman et al., 2007, Jayaraman et al., 2008a, Jayaraman et al., 2008c, Jayaraman et 

al., 2010b). 

3.2 sGaRuDa: System Architecture Overview 

A recent article by Wodajo (2010) on application of the new Bluetooth 

specification v4.0 in health care sensor devices that require low-powered operations is a 

classic real-world example of the widespread adoption of Bluetooth in pervasive 

environments. The application discussed in (Wodajo, 2010) requires sensors fitted on 

patients to monitor and deliver data over Bluetooth to fixed access points. The low cost of 

Bluetooth hardware (Warneke et al., 2002) and increasing applications have led to a new 

class of disposable wireless sensors requiring new approaches to collect and deliver data. 

Our proposed data collection approach is illustrated in Figure 3.1. The sGaRuDa system 

addresses challenges related to collecting data from a connection-oriented sensor network 

with some similarity and differences from the Data Mule (Shah et al., 2003) architecture.  

The architecture consists of three layers: 

 

Figure 3.1: Overview of Proposed Data Collection Approach 

Sensor layer: The sensor layer comprises of heterogeneous sensors i.e. sensors with 

different sensing capabilities from various manufactures. The sensors in this layer 
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mostly share the common sensor characteristics of low-powered operation but 

might differ in their hardware specification. For example, the layer might comprise 

a combination of Mulle (EISLab, 2010), BTnode (ETH-Zurich, 2007) or Intel mote 

(Nachman et al., 2005). The sensors in this layer primarily use Bluetooth for 

communication while they might be equipped with alternative radios. 

Intelligent Mobile Data Mule Layer: This layer comprises of mobile data mules. The 

mobile data mule represents the class of day-to-day mobile devices that are widely 

available in pervasive computing environments. We term these devices 

“intelligent” since they have the capability to compute data collection decisions 

based on information available within the environment. The data mule is a powerful 

energy-rich device with recharging capability.  

Sink/Base Station Layer: This layer comprises sink/base station responsible for further 

analysis of sensor data. We use the term base station in parallel with the term sink 

since, in the proposed architecture, when the data collector is a mobile phone, the 

base station the mobile device is connected to performs the operation of a sink. The 

sink/base station may or may not have complete knowledge about the sensor 

network architecture but learns it over time. For example, let us consider the case of 

the disposable sensor for medical purposes. When replacing the old sensor with a 

new sensor, sensor information changes. This change is automatically propagated 

to the sink/base station when data from new sensor is delivered by the data mule. 

The communication network deals with communications between sensors, mobile 

data mules and base stations/sinks. The communication between the sensor and mobile 

data mule in our architecture is primarily Bluetooth but our approach can be extended to 

accommodate other radio technologies e.g. Zigbee (2009b). The communication between 

the mobile data mule and the sink/base station can use any existing communication 

infrastructure, namely, GSM/GPRS, UMTS, Wi-Fi, WiMAX etc. The choice of 

communication depends on communication technology available on the data mule. 

The smart phone in Figure 3.1 represents the plethora of mobile devices that have 

the capability to act as intelligent mobile data mules. These devices in real-world may 
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include laptops, PDAs, cars equipped with Bluetooth, etc. We assume that data mules are 

not controlled. But, in situations where the mobile data mule can be controlled, the 

architecture provides flexibility to implement additional modules to take advantage of 

controlled mobility. 

3.3 sGaRuDa: System Overview 

Classic data collection architectures employing Bluetooth (Nachman et al., 2005, 

Handy, 2004) depend on piconets and scatternets. The use of piconets and scatternets 

(refer 2.2.4) enables multi-hop connection-oriented communication without the need of a 

Bluetooth access point. This approach has certain drawbacks: 1) slave nodes need to be 

constantly synchronised (maintain active connection) with the master, 2) dynamic route 

generation requires frequent inquiry and paging which consumes energy and 3) in 

disconnected networks it may not be feasible to install multiple Bluetooth access points 

within the network. This problem worsens when the Bluetooth radio used by the sensors 

is Class B (10 Meters). 

The energy consumption of the connection-oriented (master/slave) operation is 

validated by experimental results presented by Nachman et al. (2005). Nachman et al. 

(2005) concludes that lifetime of the sensor node is reduced to a few days when working 

under a connected network scenario. We introduce mobility-based data collection 

strategy to overcome these drawbacks leveraging on mobility available within the 

environment. 

3.3.1 sGaRuDa: System Framework Black Box 

Figure 3.2 presents an overview of the proposed system framework. The main 

operations involved are discovery, data collection and delivery. The sink is a simple 

representation of a data store which can be extended based on application needs. For 

example, the sink can be a data centre that provides information to a community of users 

depending on user/application requirements. The proposed system can work in 

disconnected mode i.e. the sensor discovery and data collection does not require the 

ubiquitous presence of the centralised sink. But, the availability of the sink can be 

leveraged upon to increase the data collection efficiency. In a disconnect mode, sensor 
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discovery is done locally by the mobile device which is later synchronised with the sink 

whenever sink connectivity becomes available.  

The mobile data mule can employ a range of communication technologies 

including Wi-Fi, WiMAX, GSM, UMTS, etc to communicate with the sink. We illustrate 

the discovery process by a short arrow labelled Discover due to the connection-oriented 

operation of Bluetooth-based sensor network (BSN) presented in section 2.2.4, i.e. device 

discovery does not establish a connection. 

 

Figure 3.2: System Black Framework Overview 

3.4 sGaRuDa: Mobile Data Mule System 
Framework 

Figure 3.3 illustrates the proposed system framework. The system is divided into 

two platforms Mobile Data Mule platform and Data-Collection platform. The Data-

Collection platform is device independent, allowing it to be ported across any mobile 

device. The Mobile Data Mule platform is device dependent hence taking advantage of 

specific mobile device capabilities. For example, if the mobile computing device is a 

mobile robot the device dependent implementation might include a robot control module.  

3.4.1 Mobile Data Mule Platform 

The Mobile Data Mule Platform comprises Location Manager, Communication 

Manager and Profile Manager. The mobile data mule platform acts as an interface 

exposing mobile platforms capabilities to the Data-Collection platform. These 

components are developed based on mobile device capabilities. The Mobile Data Mule 
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platform facilitates easy integration of additional device-specific plug-ins. The 

components of the Mobile Data Mule Platform are discussed below: 

Location Manager: The location manager provides an interface to the mobile data 

mule’s location subsystem. The location subsystem in its simplest form can be a 

GPS or cellular-based (Cell ID) that provides the Data-Collection platform with 

mobile data mule’s path. The capability allows interfacing with other external 

location providing services e.g. real time location service. The interface also 

determines what sort of location information will be available to the Data-

Collection platform. 

 

Figure 3.3: Data Collection System Framework 

Communication Manager: The communication manager is an interface to the mobile 

device’s communication hardware. The minimum communication facility that is 

available on the data mule is Bluetooth allowing it to communicate with underlying 

sensors. The data mule can be equipped with other communication technologies 

like Wi-Fi, UMTS, GSM, etc. The communication capability of the data mule 

determines the data delivery latency. For example, if the data mule is equipped only 
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with Bluetooth and Wi-Fi capability it has to wait till it is within a Wi-Fi network 

to transmit the collected data to the sink/base station. This is acceptable in cases 

where data collection latency is acceptable. In applications where this is not 

acceptable the data mule will not participate in data collection. 

Profile Manager: Our approach is to use day-to-day mobile devices for data 

collection. The priority of the mobile devices is to provide the user with primarily 

device functionality. Sensor data collection is performed only when the device is 

idle or has the resources available for data collection. The profile manager provides 

the Data-Collection platform with information of the data mule’s availability. This 

availability for example may be resource oriented i.e. below a certain battery 

threshold the data mule will not participate in sensor data collection. The system 

provides capabilities to define additional parameters. 

Mobile Device-Specific Plug-in: Mobile device-specific plug-ins is used to expose 

specific mobile device capabilities to the Data-Collection platform. This feature 

introduces flexibility in the proposed system framework. For example, the mobile 

device platform for mobile robot platform is a robot movement controller module. 

This module may be used by the Data-Collection platform to adapt the robot’s 

speed to increase data collection efficiency. This of course will require additional 

modules to be integrated into the Data-Collection platform. 

3.4.2 Data-Collection Platform 

The Data-Collection platform is the core component of the proposed system 

framework. It performs three primary functions, namely: 1) sensor node discovery, 2) 

sensor data collection and 3) sensor data delivery. The three main modules Node 

Discovery, Data Collector and Sink Manager are responsible for handling one of the 

three primary functions. The Central Controller module coordinates between the primary 

modules and is responsible for computing data collection decisions. A detailed discussion 

of each function module is presented in the following sections. 

Node Discovery/Management: The node discovery and management module 

performs handles sensor node discovery and management. The discovery process is 



  77 

 

used to identify sensor nodes within the vicinity of the mobile data mule. For 

example, in a Bluetooth-based sensor network the mobile data mules use Bluetooth 

discovery technique. The node repository is responsible to store sensor node 

information. Newly discovered sensor nodes are added to the repository. The node 

repository periodically synchronises sensor node information with the sink. 

Data Collector: The data collector module is responsible for establishing connection 

with the sensor and collection data from the sensor. The connection is established 

using information collected during the node discovery phase. The Data Collector 

employs a multi-part data collection algorithm. This algorithm facilitates collection 

of sensor data by independent multiple mobile data mules. 

Sink Manager: The sink manager is responsible for buffering and delivering the 

collected data. The buffering operation simply stores collected data from the sensor 

in temporary storage before offloading the same to the sink. It employs techniques 

to identify the communication medium that needs to be employed to deliver data 

efficiently. 

Central Controller and Context Manager: The central controller co-ordinates the 

operations of the above modules. It uses the context manager to store context i.e. 

information relating to the mobile data mule. For example, current location 

(updated as data mule moves), trajectory (path/direction of the mobile data mule), 

communication capabilities, resource availability (battery level). The central 

controller manages the node discovery and the data collection, storage and delivery. 

3.4.3 Node Discovery/Management 

The node discovery module handles node discovery and management. The 

discovery process involves periodic discovery of sensor nodes within the environment. It 

comprises a node-information repository that is used to maintain a local copy of 

discovered sensor information. This information includes sensor id/name, location, duty 

cycle, last successful data collection time, sensor residual energy during last successful 

data collection cycle and sensor Bluetooth address. The node discovery function 
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Bluetooth-based sensor network differs from broadcast-based sensor networks. Hence, in 

the next subsection we analyse the working of the Bluetooth discovery protocol. 

3.4.3.1 Bluetooth Discovery: An Analysis 

A Bluetooth radio has three primary states, namely: STANDBY, CONNECTION, 

PARK; and seven sub-states, namely: page, page scan, inquiry, inquiry scan, master 

response, slave response and inquiry response (BluetoothSIG, 2010d). The inquiry and 

the inquiry scan sub-states belong to the device discovery phase. We present an analysis 

of the inquiry and inquiry scan states as this determines the Bluetooth discovery time.  

The device that wants to be discovered, namely, the sensor enters an inquiry scan 

sub-state. The device performing discovery, in this instance, the mobile data mule enters 

the inquire sub-state. The sensor acts as the slave while the mobile data mule (inquiring 

node) assumes the role of the master. The slave node when in the inquiry scan sub-state 

listens repeatedly for an inquiring node (master). The master node in inquire sub-state 

sends periodic inquiry messages on 32 (dedicated) of the 79 frequencies. This choice of 

frequencies and hopping sequence is determined using the General Inquiry Access Code  

(GIAC) address (BluetoothSIG, 2010d). In each send operation, inquiry messages are 

transmitted in two consecutive time slots of 312.5μs each. The same operation is 

performed during the listen phase resulting in one send/listen time slot lasting for 625μs. 

The inquiry process is illustrated in Figure 3.4. 

.  

Figure 3.4: Bluetooth Inquiry Process 

The 32 frequencies used to broadcast the inquiry message are divided into two 

sets of 16 frequencies, namely, train A and train B. The time taken to send inquiry 

messages across the 16 frequencies (one train) is 10ms. The Bluetooth specification 

suggests each train be repeated at least 256 times (BluetoothSIG, 2010d). Hence, the 
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inquiry on a single train lasts for 2.56 seconds. The sensor node (slave) in the inquiry 

scan sub-state performs two types of scans, namely, standard and interlaced. In standard 

scan, the slave node scans the channel for one time interval of 11.25ms. In interlaced 

scan, two back-to-back scans of 11.25ms time slots is performed. The inquiry scan is 

performed over the 32 dedicated frequencies. The 11.25ms inquiry scan window used by 

the slave node increases the chance of it receiving the inquiry message from the master 

node whose window lasts 10ms. After an inquiry scan, the slave node enters a sleep mode 

before scanning the channel again. This value Tscan according to the specification can be 

less or equal to 2.56s. The master slave inquiry operation is depicted in Figure 3.5. 

 

Figure 3.5: Overlapping inquiry time slots of Master and Slave in a Bluetooth 
inquiry scan 

The master sends inquiry messages over consecutive train A’s via frequencies 

each lasting 10ms. The slave scanning the channel every Tscan seconds on receiving the 

inquiry packet responds to the master within that time slot. The Bluetooth discovery 

operation involving the mobile data mule (master) and the sensor (slave) is illustrated in 

Figure 3.6. The sensor responds to the mobile data mule after successful reception of 

inquiry message. The operation presented in Figure 3.5 illustrates the timeslots overlap 

during the inquiry process while Figure 3.6  illustrates the detailed communication that 

takes place between the sensor and the mobile data mule within one time slot. The 

Frequency Hopping Synchronization (FHS) packet shown in the figure is a special packet 

(BluetoothSIG, 2010d) containing Bluetooth device address, page scan mode, clock 

information (used for synchronisation), etc. 
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Figure 3.6: Bluetooth Discovery Process 

3.4.3.2 Bluetooth Sensor Discovery: Proposed Technique 

The Bluetooth discovery process (inquiry procedure) lasts 10.24 seconds. This 

delay is acceptable in applications where Bluetooth is used as a cable replacement 

technology. Within the scope of sensor network operations more specifically within the 

proposed mobile data mule-based data collection technique, the inquiry scan operation is 

too long. From the previously presented analysis of the Bluetooth discovery protocol, we 

have identified the primary reasons for the long inquiry operation. They are: 1) the sensor 

nodes (slaves) need to back-off Tscan seconds before it can perform another inquiry scan 

and 2) the Bluetooth specification (BluetoothSIG, 2010d) indicates that for a successful 

discovery, the inquiry process needs to be performed over 4 alternating trains which adds 

up to 10.24 seconds. Hence, we propose to use the following two techniques to reduce the 

inquiry time namely:  

1) Use interlaced scan with a Tscan interval of 0 seconds. This allows the 

sensor to continuously scan the channel for short independent durations. 

The use of 0 second back-off increases the probability of a successful 

inquiry by the mobile data mule 

2) Reducing the inquiry time interval. The recommendation of 10.24 second 

inquiry interval includes a back-off interval (Tscan) of 2.56 seconds. By 
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reducing the back-off interval to 0 seconds, the inquiry can be performed 

in 2.56 seconds i.e. 4 times less than the normal inquiry interval. We 

validate our proposal by experimental evaluations presented in Chapter 7. 

Bluetooth discovery process uses the inquiry scan to collect sensor information 

that is further used by the Data-Collection platform to compute data collection decision. 

Bluetooth device’s information is propagated to the master as a part of the inquiry 

process. This information is part of the FHS packet previously discussed. Apart from this, 

a friendly name parameter of size 248 bytes is transmitted by the slave device (sensor). 

Classic Bluetooth operations use the user-friendly names to identify other Bluetooth 

devices. We propose a modified usage of the friendly name parameter. We use the 

friendly name to transmit sensor meta-data i.e. data that describes the particular sensor. 

The 248 byte long friendly name is encoded using UTF-8 standard (BluetoothSIG, 

2010d). This allows a typical Latin character to be encoded in 1 byte. We propose the 

following naming strategy: 

൏ , ݁݉ܽ݊_ݎݏ݊݁ݏ ,ݑݎ݃_ݎݏ݊݁ݏ ,݁ݕݐ_ݎݏ݊݁ݏ ,ݔ ,ݕ ,ݖ ,ݕ݃ݎ݁݊݁_݈ܽݑ݀݅ݏ݁ݎ ݏ݈݂݃ܽ  

sensor_name: Identifies the sensor name. This information is defined before the 

sensor is deployed, though it is not a requirement. The sensor, once deployed, has 

the capability to self-assign a name during the initialisation phase.  

sensor_group: This information identifies the group to which the sensor belongs. The 

grouping can be geographical location based or sensor_type based. This parameter 

can assume a null value during initial sensor deployment. 

sensor_type: The sensor type identifies the kinds of sensors equipped on the particular 

sensor node. For example, sensors of type 1 comprises temperature sensor and 

sensors of type 2 comprise temperature and humidity sensor.  

x,y,z: The sensor location is represented using the three parameters. This information 

is hard-coded in sensor that are within structured deployments while is determined 

using sensor localisation techniques in un-structured deployments. 
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residual_energy: This information indicates the sensors remaining energy. This 

information is updated by the sensor periodically. 

residual_data: This information indicates the remaining number of packets that needs 

to be collected and delivered. 

flags: Flags are application dependent values that vary based on requirements. We 

define certain flags but allow room for extension. The flags that may be pre-defined 

include C-critical, and I-ignore respectively. The critical and ignore flags are used 

to indicate the importance of data stored at the sensor node. 

Figure 3.7 gives an illustrative example of the proposed sensor naming format. 

The total number of bytes used in the given example is 41. The maximum length of the 

name field is 10 bytes with a 3 byte constant that is appended to all sensors allowing 7 

bytes for sensor specific name. As mentioned earlier, this name need not be hardcoded 

but can be computed during deployment. For example, the Bluetooth device address, 

sensor location and sensor type may be used to generate the friendly-name. Since the 

device address is unique, the generated name inherits its uniqueness.  The prefix “EIS” in 

the given example is used to identify specific sensors,  in this case a Mulle (EISLab, 

2010) sensor developed at EIS labs Sweden. The separator operator “@” is used by the 

mobile data mule to parse the friendly-name. 

 

Figure 3.7: Example of proposed sensor naming format  

Reducing the inquiry time only solves one part of the discovery problem. The 

second challenge with discovery involves timely discovery of sensor nodes by the mobile 

data mule i.e. the sensor node needs to be available for communication when the data 

mule is within the communication/collection range. This problem has been analysed by 
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some researchers as a data mule scheduling problem (Somasundara et al., 2004, Gu et al., 

2006) which involves adapting the data mule’s arrival rate to the sensor network’s data 

generation rate. This approach is promising but its scope may be limited to mobile data 

mules that work within a controlled sensor network environment. We use the term 

controlled sensor network environment to represent the class of sensor network 

applications that have a dedicated mobile data collector whose movement can be 

controlled by the application. Our approach addresses the scheduling problem by 

proposing an application-based sensor duty cycle adaptation approach to improve sensor 

discovery rate. 

3.4.3.3 Sleeping Node Problem 

The sleeping node problem occurs when a node that is passive (sleeping) to one 

mobile data mule (may be active to another mobile data mule) is declared inactive. The 

proposed data mule-based data collection approach is targeted at mobile devices that are 

part of smart space environments. Hence, mobile data mule’s arrival is independent of 

each other. This mode of operation significantly differs from previously proposed 

approaches which assume coordinated operation (Shah et al., 2003, Jea et al., 2005). The 

sleep node problem is illustrated in Figure 3.8. Consider a sensor node S which 

communicates with mobile data mule M1 at time t and mobile data mule M2 at time t2. If 

at time t2 + t when mobile data mule M1 tries to communicate with sensor S and does 

not receive a response there arises two possible cases: 1) sensor S is dead 2) sensor S is in 

sleep mode as it offloaded its data at time t2 to M2.  

To handle the sleeping node problem, we propose a sink-assisted synchronisation 

approach. The reason we propose a centralised technique is attributed to the fact that no 

single mobile data mule has complete information about the sensor network. Moreover, 

the mobile data mules perform data collection independent of one another. Hence, it is 

not practical to assume ad-hoc communication capabilities among mobile data mules that 

are part of the network. When a data mule is unable to discover/connect to a sensor, it 

sets an inactivity counter for that particular sensor. The inactivity counter is a value 

associated with each sensor. When the mobile data mule is unable to discover/connect to 

a sensor, it increments the inactivity counter value associated with the sensor. The 
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inactivity counter value of each sensor is synchronised with the sink during the data 

delivery operation. The synchronisation operation compares the inactivity counter value 

stored at sink with the value obtained from the mobile data mule. The final inactivity 

counter value for the sensor S is computed by: 

ሻࡿሺ࢘ࢋ࢚࢛ࢉ ࢚࢚࢟࢜ࢉࢇ

ൌ ൝ 

, ࢋ࢚࢜ࢉࢇ݊݅ݏ ൌ 
,ࢋ࢚࢜ࢉࢇ࢙ ࢋ࢚࢜ࢉࢇ݊݅ݏ  ࢋ࢚࢜ࢉࢇࢋ࢛ࢇ࢚ࢇࢊ

,ࢋ࢚࢜ࢉࢇࢋ࢛ࢇ࢚ࢇࢊ ࢋ࢚࢜ࢉࢇ݊݅ݏ ൏ ࢋ࢚࢜ࢉࢇࢋ࢛ࢇ࢚ࢇࢊ

 (3-1) 

 

Figure 3.8: Sleeping Node Problem 

3.4.3.4 Node Discovery and Management: Algorithm 

The node management module maintains the list of discovered sensor nodes. It 

uses this information to perform data collection during subsequent arrivals. We use XML 

to store the sensor information on the mobile data mule. The use of XML allows us to 

easily share this information with the centralised sink and in certain special cases, with 

other mobile data mules. A sample XML schema is presented in Figure 3.9.  

The mobile data mule’s location tag is used to store location information of the 

data mule. This helps in mapping the list of sensors that were discovered at various data 
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mule locations. The XML schema presented is only a sample with scope for extensions. 

Figure 3.10 presents the node discovery/management module pseudo code. The node 

discovery/management handles sensor node discovery/storage and the sleep node 

problem. A description of the algorithm is presented following Figure 3.10. 

 

Figure 3.9: XML Schema used to represent sensor information in the node 
repository 

 

Figure 3.10: Node Discovery Module - Pseudo Code 

Pseudo Code: Node Discovery/Management 
Input: Node List LN (Node Repository) 
Output: discovered_list 
BEGIN Discover Node 

1 discovered_list = discover(inquiry_time) 
2 for each node n in discovered_list 
3  search for n in LN 
4  if found then 
5   Set inactive_counter = 0 
6  Else 
7   Add n to LN 
8  end if 
9 end for 
10 for each node n in LN not in discovered_list 
11  if (location(n) is within location(mobile_data_mule) 
12   inactive_counter +=1 
13  end if 
14 end for 
15 connect to sink 
16 synchroniseSink(LN) 

END 

<?xml version="1.0"> 
<sensor_info> 
 <sensor_id></sensor_id> 
 <location> 
  <x></x>  
  <y></y> 
  <z></z> 
 </location> 
 <sensor_group></sensor_group> 
 <sensor_type></sensor_type> 
 <residual_energy></residual_energy> 
 <mobile_data_mule_location_id> 
 <mobile_data_mule_location> 
  <x></x> 
  <y></y> 
  <z></z> 
 </mobile_data_mule_location>  
</sensor_info> 
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Step 1 performs the Bluetooth discovery for the specified inquiry time. Steps 2 to 

9 check newly discovered sensor nodes against the node repository. If an existing sensor 

node is discovered, its inactivity counter is set to 0. If a new sensor node is discovered, 

the sensor information is added to the node repository. Steps 10 to 12 increment the 

inactivity counter for sensor nodes that were previously discovered around the mobile 

data mule’s current location. For example, consider the sensor node S was discovered 

when the mobile data mule was at location (x1, y1, z1). S is marked inactive if discovery 

of S fails when the mobile data mule revisits the location (x1, y1, z1). The vicinity in this 

case is determined by the Euclidean distance using a radius of 30 to 100 meters 

(Bluetooth radio range). Step 15 and 16 performs the synchronisation of sensor nodes 

with the sink i.e. synchronising LN with the sink. The synchronise function employs the 

logic presented in section 3.4.3.3 to resolve sensor node inactivity. 

3.4.4 Sensor Data Collection 

The sensor data collection operation involves establishing connection with 

discovered sensors based on information collected during the discovery process. The 

Data Collector module handles this operation. Bluetooth employs the technique called 

paging (BluetoothSIG, 2010d) to establish a connection between the master and slave 

device. The process of paging is similar to the inquiry process described earlier. A 

successful paging operation indicates a successful connection. Since, our chosen sensor 

network platform is Bluetooth-based, establishing a connection is the most energy 

expensive operation. Hence, the challenge is to efficiently collect data by reducing the 

number of connections between the sensor and the data mule. In the proposed approach, 

we consider two cases: 1) a single mobile data mule can collect all the data from the 

sensor and 2) multiple mobile data mules collect data from sensors in parts. The use of 

mobility does not always guarantee single successful data transfer. The Data Mule (Shah 

et al., 2003, Jain et al., 2006) discussed in the literature work under the assumption that 

case 1 is likely feasible in most situations. Moreover, predicted (Chakrabarti et al., 2003) 

and controlled mobility approaches (Somasundara et al., 2006, Kansal et al., 2004, Jea et 

al., 2005) assume a controllable data mule. Our proposed approach employs independent 

mobile data mules as data collectors that may or may not be controllable. Hence, the data 
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collection strategy needs to be independent of data mule control. It also needs to facilitate 

data collection from sensors by independent mobile data mule’s i.e. mobile data mules 

that are not coordinated. To handle data collection using independent data mules we 

propose an adaptive data collection strategy. The mobile data mule is aware of its current 

location, movement direction, velocity and future location. Further, information from the 

sensor is collected during the discovery phase which includes sensor location, amount of 

data remaining, residual energy, etc. To handle the aforementioned data collection criteria 

we propose a sliding window (Tanenbaum, 2002) protocol inspired data collection 

algorithm. The connection-oriented operation of Bluetooth networks eliminates channel 

sharing problem as a dedicated channel is used between the mobile data mule and the 

sensor node. The proposed approach breaks the data transfer operation into multiple 

rounds. By breaking the data transmission into multiple parts/rounds, the sensor is able to 

clear its buffer partially, instead of waiting for a single data mule to collect all the data. 

3.4.4.1 Adaptive Data Collection 

The proposed adaptive data collection strategy uses contextual information to 

determine sliding window acknowledgement intervals. The window determines the 

number of packets transmitted between acknowledgements. Since, Bluetooth is 

connection-oriented, a disconnection is detected by the Bluetooth link layer 

(BluetoothSIG, 2010d). Once a disconnection is detected, the sensor stops sending any 

further packets. Figure 3.11(a) presents an illustration of successful data collection using 

the proposed adaptive data collection algorithm. The start (w) parameter is used to signal 

the sensor to start sending data packets. The parameter w determines the size of the 

window after which the sensor needs to wait for an acknowledgement from the mobile 

data mule. Due to the connection-oriented operation of Bluetooth, data packets 

transmitted between the sensor and the mobile data mule arrive sequentially. The type of 

Bluetooth packet used is application dependent. Figure 3.11(b) illustrates the operation of 

the adaptive data collection when a Bluetooth disconnection occurs during data 

transmission. In the figure, a Bluetooth disconnection occurs when packet 4 is being 

transmitted. The Bluetooth disconnection is depicted as a cross. When mobile data mule 
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2 begins data collection, the adaptive data collection algorithm resumes data transmission 

from packet 3 as it successfully received acknowledgement for packets 1 and 2. 

 

(a)                                                (b) 

Figure 3.11: Adaptive Data Collection Algorithm - (a) Successful Data Transfer (b) 
Disconnection Handling 

The primary consideration for the proposed adaptive algorithm is to determine the 

window size w i.e. the acknowledgement interval. A window size of one (w = 1) would 

be the most reliable but not efficient while a window size of n (w = n), where n is a very 

large integer, will prevent the acknowledgement from reaching the sensor before 

disconnection. Hence, it is important to use an efficient window size. To this end, we 

propose the use of contextual information available to the mobile data mule to compute a 

window size on-the-fly. The contextual information represents a set of mobile data mule 

parameters such as speed, trajectory and signal-to-noise ratio (SNR). The context 

information is used to compute a data collection threshold that determines if the mobile 
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data mule has the capability to collect sensor data. Based on the threshold value, a 

suitable window size is computed. The threshold is used to determine the best mobile 

data mule among the available set of mobile data mules. Since, mules are independent 

and we do not assume inter-mule communication, the threshold computation is done at 

the mobile data mule-based on available context information with little or no assistance 

from the sink. 

Consider a set P of context parameters ሼଵ, ,ଶ ଷ  ሽ with a set V of…

valuesሼݒଵ, ,ଶݒ ଷݒ  ሽ. Each context parameter in set P has an associated best case valueݒ…

given byሼݔܽ݉_ݒଵ, ,ଶݔܽ݉_ݒ ଷݔܽ݉_ݒ  ሽ. Set V represents the value of the contextݔܽ݉_ݒ…

parameter at a specific instance in time. Set P represents the ideal case value of the 

corresponding context parameter in set P used to compute the influence (weight) of the 

context parameter. To determine the influence ܫ ∈ ሺ0,1ሻ for a value in set V, we use the 

formulae given below.  

ࡵ ൌ ൞

࢜
࢞ࢇ_࢜

, ࢜ ࢇ࢚࢘࢘ ࢚ ࡵ

 െ 
࢜

࢞ࢇ_࢜
, ࢜ ࢙࢟࢘ࢋ࢜ ࢇ࢚࢘࢘ ࡵ ࢚

 (3-2) 

The computation of I is dependent on the relation between I and v. I 

and v are said to be inversely proportional if increase in value v reduces data 

collection efficiency. Similarly they are directly proportional if increase in v 

increases the data collection efficiency. For example, increase in distance 

would increase the data collection time while increase in SNR indicates better 

channel quality reducing data collection time. To compute the data collection 

threshold (), we propose the use of weighted average. The weights assigned 

to the context parameters are pre-defined and are shared across every mobile 

data mule. The data collection threshold is given by equation (3-3). 

  ൌ 
ܑܟ ∗ ۷ܑ
ܑܟ

ܖ

ܑୀ

 (3-3) 

 

Example: Consider a sensor S with contextual information: residual energy er, 

location (x, y, z) and a mobile data mule M with context information current location (x, 
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y, z), trajectory vector ܶ
ሬሬሬሬԦ, velocity VL, signal-to-noise ratio SNR. The residual time t is 

defined as the remaining time the mobile data mule will stay within the coverage of the 

sensor node calculated using the velocity VL and mobile data collector’s trajectory 

information ܶ
ሬሬሬሬԦ. The calculation of the residual time t can be further explained with the 

help of illustration presented in Figure 3.12. The distance before which the sensor leaves 

the boundary can be estimated as Rd. Since the mobile data mule’s velocity is known, the 

residual time is given by: 

ሻ࢚ሺ ࢋ࢚ ࢇ࢛ࢊ࢙ࢋࡾ ൌ ࢉ࢚ࢇ࢚࢙ࢀ 
ࢊࡾ
ࡸࢂ

 (3-4) 

The parameter Tstatic is estimated as the time the mobile data mule is stationary at 

the specified location. We assume the Tstatic information is available as part of context 

within the environment. For example, consider a data mule waiting at an intersection. 

Using available traffic information obtained from active traffic management systems 

(UTMS, 2010) the time the mobile data mule will be stationary at the intersection can be 

determined. 

 

Figure 3.12: Estimating residual time (t) 

To calculate the value v_max for residual time i.e. maximum time required to 

transmit all the data, we use (5) 

࢚࢞ࢇ_࢜ ൌ
࢞


 (3-5) 
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where x is the amount of data to be transferred and C is the channel capacity. The unit for 

the quantities in this specific example is bits and bits per second. Since, the computation 

of v_max varies for each parameter a generic approach cannot be followed. For example, 

v_max for distance parameter may be maximum radio range. As the value v for radio 

range nears its v_max, the influence I for the parameter distance will tend to 0. Table 3.1 

provides sample data based on the example scenario presented earlier. In the sample data 

we assume total bits to be transferred is 1120 kb and the channel capacity is 56 kb/sec. 

The data collection threshold () for each case is computed.  

Parameters 

 

Sample 
Data 

Distance 
(m) 

 

wi = 0.1 

Residual 
Time 

(seconds) 

wi = 0.5 

Residual 
Energy 

(%) 

wi = 0.2 

SNR 

(dB) 

 

wi = 0.2 

Data 
Collection 
Threshold 

ሺሻ  

1 30 10 80 20 0.476 

2 20 20 70 40 0.806 

Table 3.1: Data Collection Threshold Computation- Sample Data 

The data collection threshold is determined by the mobile data mule independent 

of each other. In a typical real-world situation multiple mobile data mules might compete 

to collect data from the sensor. Hence, we propose a data collection threshold that will 

enable a mobile data mule to collect data. If multiple mobile data mules have data 

collection threshold higher than the pre-set threshold, the data collection mechanism 

employs a first-in-first-out policy. We propose a simple technique used to dynamically 

improve the data collection threshold. More complex techniques e.g. genetic algorithms 

(Mitchell, 1998) may be  employed to further improve this process. A basic approach 

could employ a first-in-first-out (FIFO) policy i.e. the first mobile data mule at the 

location collects the data since no initial threshold value is available.  Subsequently, the 

threshold value along with the data collected is delivered to the sink. The sink compares 

reported threshold value by all mobile data mules for each sensor. With the condition that 

sensor’s energy status is healthy (above 30%) the sink updates mobile data mules with 

new threshold value. The new threshold value is determined to be the highest among 

reported thresholds. As the sensor energy begins to deplete or when the data arrival 

latency of a sensor increases, the sink dynamically reduces the data collection threshold. 
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This operation can also be performed by the sensor by using the flags (refer to section 

3.4.3.2). By setting the flag I (ignore) to 1 the data will be collected by the next available 

mobile data mule ignoring data collection threshold computation. 

The computed data collection threshold is used to determine the window size. The 

higher the threshold, the higher the window size can be and vice versa. Since the 

threshold value is heavily dominated by the residual time t, our observation stands true 

and is supported by experimental runs. The actual mapping of window size to the data 

collection threshold is application dependent i.e. for a threshold range of 0.5 to 0.6 the 

window size can be 10 while for a threshold greater than 0.8 the window size is 20. This 

value is application dependent and can be dynamically updated. The adaptive sensor data 

collection algorithm is presented in Figure 3.13. 

 

Figure 3.13: Sensor Data Collection - Pseudo Code 

Step 1 calls the previously described discover node module which provides the 

list of discovered nodes in the surrounding along with the initial sensor contextual data. 

Step 2 - 3 iterates through the nodes in the discovered list computing the data collection 

threshold for each sensor in the list. Step 4 performs a search in the node list repository to 

determine a minimum threshold for the particular sensor. As we can see, this operation 

works in a disconnected fashion i.e. it does not require the sink’s assistance to complete. 

Step 5 checks if the computed threshold is greater than the pre-defined threshold for the 

particular sensor. Step 6 calls a function that handles establishing connection and 

collecting data from the sensor using the defined window size w. 

Pseudo Code: Sensor Data Collection 
Input: Node List LN (Node Repository) 
BEGIN Data Collection 

1 Discover Node  
2 while k < n (number of nodes in discovered_list) 

3  calculate 
୩
 ൌ  ∑

୵∗ ୍

୵

୬
୧ୀଵ  

4  search for (k in LN) 
5  if  ୩ >  ሺk in Lሻ or (k in LN) = nothing 
6   establishConnection(w) 
7  end if 
8 end while 

END 
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3.4.4.2 Data Exchange: Message Protocol Format 

The previous subsection presented the adaptive data collection algorithm. In this 

section we present details of the proposed data exchange protocol. There are two types of 

messages used for communication, control messages and data messages. The message 

parser component of the data collector module takes care of parsing messages that are 

exchanged between the sensor and the mobile data mule. 

The control messages are used to initiate the data exchange process. Some of the 

control messages include sending window size, requesting sensor to start streaming data, 

sending acknowledgement, etc. Further, the control messages allow dynamic upload and 

download of activation schedule which is discussed later. The data message is used to 

wrap the sensed data with application specific information. For example, in applications 

where the time and date of the sensor data is important, data sensed by the sensor is 

wrapped with time and date parameters. In applications where sensed data over a time 

period is required, the message header information contains timestamp periods. Since a 

generic method may not be applicable for the plethora of sensor network applications, we 

allow room for application specific definition. The control data bit used by the sensor and 

the mobile data mule is 3 bits in length. The message format is depicted in Figure 3.14 

and the control bits used for negotiation are presented in Table 3.2. The control message 

has an optional payload which is used in cases when the window size needs to be 

negotiated with the sensor. 

 

Figure 3.14: Control and Data Messages Format 
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Control Bit Operation 

000 Start Data 

001 Window_Size 

010 Acknowledgement 

011 Wait 

100 Activation_Schedule - Upload 

101 Activation_Schedule - Download 

110 End 

Table 3.2: Control Bits used during Data Collection 

3.4.5 Data Delivery 

The data delivery operation is performed by the sink manager. The data delivery 

handles delivering the collected sensor data to the sink in a timely manner. The data 

delivery modes are restricted by the communication medium available on the mobile data 

mule. For example, a mobile data mule with GSM/GPRS capability can deliver data 

immediately while a mobile robot with WLAN capability needs to wait till it reaches an 

access point to deliver the data. In the proposed approach, the assumption is that mobile 

data mule has sufficient buffer capacity to store sensor data. 

The data delivery module is responsible for identifying when and how data is to 

be delivered to the sink. The data exchange between the sink and the mobile data mule 

uses XML representation. This facilitates easy sharing of sensor data across multiple data 

sinks. The data format as mentioned earlier is application specific. The mobile data mule 

is not responsible for parsing collected data. It only acts as an intermediate relay between 

the sensor and the sink. The sensor data message illustrated in Figure 3.14 uses flags to 

indicate message priority. The sink manager only unpacks the header to determine the 

message delivery priority. It uses appropriate data delivery medium based on message 

priority. The pseudo code for data delivery based on message priorities is presented in 

Figure 3.15. 

The sensor data store connected to the sink manager is a temporary sensor data 

buffer where data collected from the sensor is stored. This buffer is cleared when the data 

is delivered to the sink. The urgent data messages are delivered using priority 

communication that may incur cost e.g. GSM/GPRS. Sensor data that is not urgent is 
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buffered until a cheaper communication source is available e.g. wireless local area 

network (WLAN). The introduction of urgent message aims to reduce the data delivery 

latency which is incurred in approaches proposed in the literature, where the mobile data 

mule needs to wait until it reaches the base station to off-load the data. The range of 

communication technologies available on day-to-day mobile devices alleviates this 

problem allowing timely delivery of high priority sensor data. In the next section we 

propose a novel dynamic sensor adaptation technique. This approach ensures timely 

sensor node discovery (by the mobile data mule) which results in increased sensor node 

lifetime. 

 

Figure 3.15: Data Delivery-based on message priority - Pseudo code 

3.5 Sensor Adaptation using Dynamic Activation 
Schedule 

The discovery process requires the sensor to be constantly listening to the 

communication channel. Continuous listening to the channel increases discovery rate but 

reduces sensor lifetime. As identified in the literature, radio is one of the major energy 

consuming components of the sensor. Our proposed approach facilitates sensor 

adaptation using mobile data mules to improve sensor discovery rate. The term “sensor 

adaptation” refers to the process of changing the sensor’s operational state based on 

application needs. To adapt sensors dynamically we propose the use of activation 

schedule that allows sensors to modify its operations on-the-fly. The term “activation 

Pseudo Code: Sensor Data Delivery 
Input: Collected Data 
BEGIN Data Delivery 

1 for each received message 
2 unpack header data 
3 if urgent_flag is set 
4  while delivery = done 
5   delivery data immediately using quickest  

  medium 
6  end while 
7  delete data from buffer 
8 else 
9  read header timestamp 
10  store (timestamp, data)  
11 end if 

END 
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schedule” refers to a set of instructions that determines the sensor’s operational state. The 

assumption is that activation schedule is generated at the sink using powerful data mining 

(Chong et al., 2008) algorithms. The key challenge is to distribute the activation schedule 

across the entire sensor network. We propose the use of mobile data mules as a solution 

to this problem. The proposed mobile data mule-based dynamic sensor adaptation 

technique has number of applications other than improving discovery rate. For example, 

increasing sensing interval during specific time period based on application requirement.  

The following sections focus on: 1) activation schedule format 2) protocol for 

dynamic exchange and decoding of the activation schedule between sensor and mobile 

data mule and 3) incorporating capabilities into the system to support activation schedule 

exchange. We begin our discussion by providing an overview on sensor operational states 

and transitions. 

3.5.1 Sensor States/Operations and Transitions 

The duty cycle Dc can be defined as the fraction of time the sensor is in an active 

state within a given time window given by (3-6) 

ࢉࡰ ൌ
ࢋ࢚࢜ࢉࢇࢀ
࢝ࢊࢃࢀ

 (3-6) 

Tactive is the amount of time the sensor is in active state and TWindow is the total time 

interval. For example, the duty cycle is 10% if the sensor is active for 6 minutes within a 

60 minute time window. The cumulative duty cycle of the sensor can be estimated by the 

total amount of time the sensor is active. Figure 3.16 presents different sensor states 

modelled using finite state machine (FSM) representation. Each active state of the sensor 

corresponds to a specific sensor operation. The states illustrated in Figure 3.16 are 

highlighted to signify the amount of energy consumed during each corresponding 

operation. The sensor states are: 

Sleep: This is the most power-efficient state where the sensor’s components are put 

into continuous sleep. The only active component during this state is a real time 

clock that sends an interrupt to the microcontroller unit (MCU) when needed. This 

state is also referred to as low-power state. 
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Sense: The sense state represents the operation when the MCU requests the on-board 

sensor (temperature sensor) to perform a sampling operation. This involves the use 

of analog-to-digital convertor (ADC) to convert analog data to digital data. This 

state corresponds to the third most expensive operation performed by the sensor. 

Radio Listen: In this state the MCU turns on the radio device into listening mode. In 

listening mode the sensor node performs a periodic inquiry scan of the channel until 

a successful connection is made. This state corresponds to the second most energy 

consuming operation performed by the sensor. 

Transmit: In this state the connection between the sensor node and the mobile data 

mule is established and data transfer operation is performed. This is the most (first) 

energy expensive operation performed by the sensor. 

 

Figure 3.16: Sensor Node Operational State with State Transitions 

The sense, radio listen and transmit states are cumulatively termed “active states” 

while the sleep state can be termed “passive state”. Since each sensor state consumes 

energy with the sleep state being the most energy-efficient, the sensors need to constantly 

change its state for energy-efficient operation. The state transitions represented in Figure 

3.16 determines how the sensor changes from one state to another. As illustrated in 

Figure 3.16, except for the transmit state, the rest of the states are recursive i.e. the sensor 
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can recursively extend its operation in the specific state. The state transitions are 

described below: 

Sleep-Sense: The sensor moves from sleep state to sense state and vice-versa to 

perform the sense operation. Allowing the sensor node to remain permanently in 

the sense state is energy-expensive. On the contrary extended sleep might result in 

data (sensed data) loss. The trade-off between sleep and the sense state is 

determined by the sensor network application. From his state the sensor can switch 

back to sleep state or change to radio listen state. 

Sense-Radio Listen: This transition happens when the sensed data needs to be 

transmitted immediately to the base station. The radio listen state may switch to the 

sleep state if a successful connection is not made within a pre-determined time 

window. 

Radio Listen-Transmit: This transition happens when the sensor makes a successful 

connection with a data mule in the surrounding. The states transition defines how 

the sensor moves from listen to connected state. 

Each sensor state except the transmit state can switch to the sleep state at any 

point in time. The state transitions depicted as arrows in Figure 3.16. When in the 

transmit state, the sensor has to return to the radio listen state before returning to the sleep 

state. This is done to avoid state transition when a connection (data transfer) is in 

progress. The total active duty cycle is computed as the cumulative sum of time the 

sensor spends in active states. The total energy consumed by the sensor is computed by 

the active and passive duty cycle duration given by (3-7). 

ࢊࢋ࢛࢙ ࢟ࢍ࢘ࢋࡱ ࢇ࢚ࢀ
ൌ ࢋ࢙ࢋ࢙ࡱ ∗ ሻࢋ࢙ࢋ࢙ሺࡰ  ࢋ࢚࢙ ࢊࢇ࢘ࡱ ∗ ሻࢋ࢚࢙ ࢊࢇ࢘ሺࡰ

 ࢚࢙ࢇ࢚࢘ࡱ ∗ ሻ࢚࢙ࢇ࢚࢘ሺࡰ  ࢋࢋ࢙ࡱ ∗  ሻࢋࢋ࢙ሺࡰ
(3-7) 

In the above equation the total energy spent by the sensor in each operational state 

is denoted by E<state> and the total active time in a particular state is given by Dc(<state>).  
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3.5.2 Dynamic Activation Schedule 

The previous section identified sensor states and corresponding state transitions. 

Further, we propose two modes of sensor operations that employ frequent sensor state 

transitions to maximise energy efficiency. The operating modes depicted in Figure 3.17 

are: 

Passive-Reactive mode: In passive mode, the sensor switches the radio to listen state 

permanently. This allows the data to be transferred immediately but is highly 

energy consuming. 

Time Synchronous mode: In time synchronous operation the sensor switches states 

periodically. The time synchronous operation efficiently uses the active and passive 

states. This results in energy-efficient sensor operation. On contrary, alternating 

between passive and active states may result in sensing/data delivery delays. 

 

Figure 3.17: Sensor Operational Modes 
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In time synchronous operational mode the sensor periodically performs state 

transitions at pre-defined time intervals. The use of time synchronous operation mode 

guarantees energy efficiency but may not always guarantee successful sensor discovery 

(by the mobile data mule). This is because the classic time synchronous operation is not 

adaptive. Hence, the sensor listen duty cycle period may not match the mobile data 

mule’s arrival. This results in extended listening periods or sensor buffer overflow 

(collected data overflow). To address these issues we propose a dynamic time 

synchronous operation mode. The dynamic time synchronous operation enables on-the-

fly adaptation of sensor’s duty cycle (active and passive states). The proposed framework 

facilitates on-the-fly sensor duty cycle adaptation. We introduce the term activation 

schedule to define the dynamic time synchronous operation. An activation schedule 

provides the sensor with duty cycle time periods i.e. the duty cycle for each sensor 

operation (state). By mapping the sensor’s listen operation based on the arrival of the 

mobile data mule increases the probability of sensor discovery. Our proposal handles the 

challenges involved in updating the sensor with a new activation schedule. The 

distribution of the activation schedule is performed by the mobile data mule. We assert: 

By enabling sensor adaptation using the proposed dynamic activation schedule 

approach, the sensor discovery rate can be improved. 

To facilitate the exchange of activation schedule between the mobile data mule, 

the sensor and the sink we use an open source iCalendar (Dawson et al., 1998) format. 

The iCalendar allows us to define sensor operations over certain time periods. The use of 

iCalendar also facilitates easy sharing of the activation schedule among mobile data 

mules and sinks. Further, the iCalendar can be published on the internet with relative 

ease. This provides the user with the ability to visualise the entire sensor network. To 

encode sensor operations, namely, sense, listen and sleep into the iCalendar, we use the 

following constructs given by iCalendar specifications (RFC): 

BEGIN: The entry point of the calendar is identified by the BEGIN keyword 

followed by a delimiter and VCALENDAR keyword. 

END: The end of the calendar entry is identified by an END keyword followed by 

a delimiter and a VCALENDAR keyword 
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VERSION: This value determines the version of the iCalendar used. 

VEVENT: It is a calendar component that defines a specific event. An event is an 

operation that is performed periodically over time. It starts with a BEGIN keyword and 

ends with an END keyword. In short, a VEVENT is a daily remainder. Within the 

VEVENT, the following values are used to define the event properties: 

DTSTART: This value is used to identify the date from which the new schedule 

needs to be applied. 

RRULE: This value is used to repeat an operation periodically forever based on 

certain conditions identified by frequency and repetition time. The RRULE has number of 

sub values that can be used to finitely define the frequency of event repetition. We use 

FREQ and BYMINUTE. The FREQ defines how frequent the operation needs to be 

repeated determined by a value. The value can be SECONDLY/MINUTELY/ 

HOURLY/DAILY/WEEKLY/MONTHLY/YEARLY. The BYMINUTE allows the system to 

define how often the operation needs to be repeated within the specified frequency. For 

example, perform sensing every 20 minutes daily. 

DESCRIPTION: This is used to define the sensor operation. 

We use VEVENT’s to define multiple time intervals for various sensor operations. 

As mentioned previously, the proposed framework facilitates easy exchange of activation 

schedule between the sensor and mobile data mule. It also provides protocols and 

algorithms for activation schedule update and exchange. Figure 3.18 is an example of an 

activation schedule using the iCalendar format. The activation schedule has rules for 

radio listen and sense operation. The rule for radio_listen specifies that sensor needs to 

enter listen state every 30 minutes. The radio needs to stay in listen state for a period of 

100 seconds. The COUNT parameter is used to indicate duration. A similar observation 

can be extended to the sense rule. 

The mobile data mule receives activation schedule updates from the sink for an 

individual/group of sensors. The proposed system framework allows upload/download of 

activation schedule to and from the sensor node. The sink can take advantage of the 

availability of computing resources and complex data mining algorithms to compute the 
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activation schedule. Classical sensor self-adaptation approaches (Somasundara et al., 

2004, Younis, 2004, Bandyopadhyay et al., 2003) depend on cluster heads to compute the 

activation schedule. The self-adaptation requires the sensor to collect additional 

adaptation information in addition to its intended sensing operation (e.g. environmental 

monitoring). Moreover, the sensor may not be efficient for the sensor to perform complex 

computations given its resource-constrained operation. Our proposed approach eliminates 

such requirements reducing the workload on individual sensors. Using the proposed 

approach the sensor only needs to have the capability to decode the activation schedule 

(iCalendar). The algorithm presented in Figure 3.19 is used by the sensor to decode the 

activation schedule. The proposed activation schedule only specifies when and how long 

the sensor needs to perform a specific operation. The default state transition after 

performing a specific operation is the sleep state. 

 

Figure 3.18: An Activation Schedule using iCalendar 

3.5.3 Dynamic Activation Schedule: An Example 

The proposed dynamic activation schedule can be employed in real-world 

scenarios. The sink computes activation schedules and the mobile data mule updates the 

sensors with the newly computed activation schedule. We further provide a 

comprehensive example of the dynamic activation schedule operation. We use the 

scenario depicted in Figure 3.20. The scenario is a traffic intersection where sensors are 

deployed to measure environmental phenomena. The sensors do not measure the flow of 

traffic. 

 

BEGIN:VCALENDAR 
VERSION:1 
BEGIN:VEVENT 
DTSTART:20100511T21000Z 
RRULE:FREQ=DAILY;BYMINUTE=30;COUNT=100 
DESCRIPTION: RADIO_LISTEN 
END:VEVENT 
BEGIN:VEVENT 
DTSTART:20100511T21000Z 
RRULE:FREQ=DAILY;BYMINUTE=20 
DESCRIPTION: SENSE 
END:VEVENT 
END:VCALENDAR 
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Figure 3.19: Algorithm to Decode Activation Schedule 

We model the mobile mule arrival as a Poisson process (Cogill, 2009, Virtamo, 

2010) where, a large population of independent mobile data mules arrive between time 

interval ሺ0,  ଵሻ. Using the previously described Poisson arrival process, the probability ofݐ

seeing m mobile data mules can be computed using (3-8). 

ሻ,࢚ሺ ൌ
ሺ࢚ࣅሻ



!
࢚ࣅିࢋ ሻ (3-8) 

Where,  is the arrival rate, m is the expected number of mobile data mule’s and t1 

is the time interval. The function p (t1, m) gives the arrival probability of exactly m data 

mules within the time interval (0, t1). To determine the activation schedule it is important 

to compute the arrival probability of the mobile data mule. This can be computed by first 

determining the probability that no arrival occurs (m=0). Using the computed probability 

for (m=0) the probability that a mobile data mule will arrive within t1 is given by: 

Algorithm 1: Decode Activation Schedule 
Input: iCal.ics (Activation Schedule) 
Output: start, period, duration, operation 
BEGIN Decode_Activation_Schedule 

1. open iCal.ics 
2. while not EOF 
3.  ei = read line 
4.  switch (SecondElement ei) 
5.   case “VEVENT” 
6.   ej = read line 
7.   while FirstElement (ej) not equal “END” 
8.    switch (FirstElement(ej)) 
9.     case “DSTART” 
10.      Set start 
11.     case “RRULE” 
12.      Set period 
13.      Set duration 
14.     case “Description” 
15.      Set operation 
16.    end 
17.   do 
18.  end 
19.  setActivationSchedule(start, period, 

duration,  operation) 
20. do 

END 
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,࢚ሺ ൌ ሻ ൌ  െ ൫࢚ࣅିࢋ൯ (3-9) 

 

Figure 3.20: Dynamic Activation Schedule: An Example 

For example, consider the arrival rate of mobile data mules at an intersection 

(Figure 3.20) is 50 every 60 minutes (1.666 mules/minute). The graph in Figure 3.21 

presents the mobile data mules arrival probability for the time periods (1, 10) minutes. 

From the graph, it can be inferred that for the given data mule arrival rate, the probability 

of data mule arrival every 10 minutes is 0.99. Hence, the sensor can be adapted to listen 

to the communication channel every 10 minutes when frequent data delivery is required. 

By contrast, the sensor can be adapted for a 30 minute listen interval when data delivery 

latency is acceptable. In both cases, the Poisson arrival process is used to adapt the 

sensors listen state. This approach results in extended sensor lifetimes and guarantees 

sensor discovery with high probability. Further, the adaptation algorithm employed at the 

sink can use additional parameters like variable arrival rates during day and night to 

enhance the adaptation outcome.  
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Figure 3.21: Probability of Data Mule Arrival - Poisson Arrival 

3.6 Real-World Applications Scenarios using 
Mobile Data Mules as Sensor Data 
Collectors 

In this section, we discuss two applications where the proposed mobile data mule 

based data collection can be employed without any special infrastructure set up. 

iRoad (iRoad, 2010): iRoad is an on-going research project at Luleå University of 

Technology, Sweden. The project aims in making roads intelligent by integrating road 

surfaces with low-powered, autonomous wireless sensor nodes. The sensors embedded 

into the roads enable sensing parameters that can only be measured physically on the road 

surfaces. The use of sensor networks allows the sensed data to be transferred wirelessly 

for further analysis that would form the backbone of future traffic management systems. 

The sensor used in the iRoad project is the Mulle (EISLab, 2010) sensor node that uses 

Bluetooth for communication. The current Mulle used in the iRoad prototype 

implementation measures road temperature and uses vibration sensor to detect vehicle 

movement in the surroundings. Currently, this approach uses a fixed gateway to relay 

data to the centralised server for further processing and analysis. The Mulle sensor 

installed as a part of the iRoad system is equipped with solar cells allowing the sensor to 

harvest energy from the environment. Though energy is harvested from the environment 
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installing a gateway over current road network is a painstaking and expensive task. 

Further, if the sensor is not able to harvest enough energy for sustained functioning 

(typical in countries like Sweden e.g. solar panel covered with snow) it needs to survive 

on battery to transmit the data. Our proposed system is a potentially advantageous cost-

efficient alternative to the existing iRoad data collection architecture where vehicles can 

act as mobile data mules. Figure 3.21 is a typical example scenario of iRoad system with 

the proposed mobile data mule-based data collection technique. In the iRoad system the 

mobile data mule can be a mobile phone, a laptop or as a futuristic vision a car with the 

capability to use its inbuilt Bluetooth radio hardware. Our approach makes the 

assumption that data collection happens during times when availability of mobile data 

mules is abundant. During non-peak times, the sensor buffers data waiting for mobile 

data mule arrival. Our proposed approach can 

1 Reduce infrastructure and installation cost by using existing mobile 

devices as mobile data mules. These devices are part of the existing 

infrastructure. 

2 Allow adaptation of sensors using dynamic activation schedule. This 

enables sensors to adapt its operation based on mobile data mules’ 

arrivals (e.g. traffic information).  

3 Adapt the sensors based on climatic conditions e.g., the sensors can 

dynamically increase its sensing rate if it can infer with the assistance of 

the mobile data mule the probability that next day is a sunny day. This 

information can be used by the sensor to increase sensing rate and reduce 

data delivery latency as with certain probability it is guaranteed to 

recharge itself the following day. 

District Heating (Deventer et al., 2009): District heating is another key 

application area currently studied at the Luleå University of Technology, Sweden. District 

heating enables heating of house spaces and provides hot water from a single energy 

source to many buildings. The energy from the primary source is routed using pipes to 

apartments and buildings. A heat exchanger installed within the building, called the 

secondary circuit, is used to transfer the energy (Deventer et al., 2009) from the primary 
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source. At the secondary circuit the amount of energy is controlled using a control valve 

which calculates the energy used. The primary and the secondary unit in the current 

system are disconnected. Deventer et al. (Deventer et al., 2009) propose a wireless sensor 

network-based architecture to efficiently control the amount of energy used by the 

secondary circuit.  

A key requirement with the district heating system (currently used in Sweden)  

(Deventer et al., 2009) is to provide online energy usage statistics to end users. Deventer 

et al. (Deventer et al., 2009) have used Mulle sensor nodes to connect the primary and the 

secondary circuits. This integration is built into the secondary circuit which controls 

energy requirement in real-time. The Mulle used in the current approach requires a fixed 

base-station to communicate with the rest of the world. This is feasible in test 

deployments but may not scale well in real-world scenarios. We propose the mobile data 

mule-based data collection approach as a suitable cost-efficient alternative. The mobile 

data mule within the scope of this application may be a mobile phone. The mobile phone 

when within the house can communicate with the Mulle collecting data and deliver it to 

the centralised sink using in-house communication capabilities e.g. wireless local area 

network (WLAN). The proposed dynamic activation schedule technique can be further 

employed to match sensor operation with the mobile device user’s presence. This 

approach further enhances the energy-efficiency of the sensor node. 

3.7 Summary 

This chapter has presented our proposed system framework for sensor data 

collection using independent intelligent mobile data mules. Our framework targets the 

use of day-to-day mobile devices available within pervasive environments as sensor data 

collectors. This architecture is made feasible with the advent of Bluetooth-based sensor 

networks (BSN) and the widespread acceptance of Bluetooth technology. The proposed 

approach employs a restricted Bluetooth discovery protocol to reduce Bluetooth inquiry 

time used to discover sensor nodes within the surrounding. A sliding window based data 

collection algorithm is proposed to achieve sensor data collection using multiple 

independent mobile data mules. Our proposed approach does not require the introduction 

of any special hardware within the sensor network environment/infrastructure. The 



108   

 

proposed system architecture can be implemented on any day-to-day mobile device 

without any specific hardware modifications. Moreover, our proposed approach 

computes data collection decisions on the mobile data mule hence reducing the 

computations on the sensor. Finally, we have proposed the use of dynamic activation 

schedule to adapt the sensor’s duty cycle to increase discovery rate. The activation 

schedule is uploaded from/downloaded to the sensor on-the-fly. A detailed description of 

the activation schedule format and algorithms to supports its exchange between sensor, 

mobile data mule and sink was presented. 

The proposed system framework can be easily adapted in real-world with iRoad 

and District Heating applications as examples. Summing up, our proposed approach is a 

cost-efficient unified architecture for sensor discovery, data collection and delivery using 

day-to-day mobile devices. The proposed system framework works in a decentralised 

fashion making use of the centralised sink resources when available. The proof-of-

concept implementation and evaluation of the sGaRuDa framework is presented in 

Chapter 6. 
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4  
3D-KNN: Sensor Data 

Collection using Nearest 
Neighbour Search in 3D Space 

4.1 Introduction 

In this chapter, we propose 3D-KNN, a k-Nearest Neighbour based approach for 

sensor data collection employed on the mobile data mule. Traditionally, k-Nearest 

Neighbour query has been used to compute a set of nearest object to a given location with 

the assumption that the object are on the same place (two-dimensional). Hence, most k-

Nearest Neighbour approaches employ only distance to compute the nearest neighbour. 

Different from current approaches, we propose the 3D-KNN algorithm that can account 

for sensor distribution in three-dimensional spaces. Moreover, the use of k-Nearest 

Neighbour queries to collect data from sensors has not been used extensively. Further, the 

sGaRuDa framework and the corresponding algorithms proposed in Chapter 3 focus on 

Bluetooth-based sensor networks. Due to large growth and acceptance of Bluetooth, we 

see a potential for the proposed architecture in current pervasive environments. We 

leverage the availability of Bluetooth-based devices to achieve cost-efficient sensor data 

collection. Though we see Bluetooth-based sensor networks as one of the future enablers 

of pervasive environments, in this chapter we propose data collection algorithms that suit 

sensor networks that have broadcasting capabilities. We identify certain limitations of our 

previously proposed data collection system framework before introducing the 3D-KNN 

algorithm. The limitations of the sGaRuDa framework proposed in Chapter 3 are: 
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1) The use of Bluetooth solves the problem of sharing a frequency between 

multiple sensors and mobile data mules. This is good in cases where the 

sensor network is sparsely deployed. In dense sensor network deployments 

Bluetooth can only support a maximum of seven simultaneous connections. 

This restricts data collection in densely deployed large-scale sensor networks. 

2) The use of Bluetooth also restricts multi-hop data communication. The use of 

multi-hop data communication requires additional network setup involving 

maintenance of master and slave nodes. This introduces the challenge of 

identifying the master node within the data collection coverage area. 

3) The advent of Zigbee-based sensors (CrossbowTechnology, 2010a, ZigBee, 

2009a) and Zigbee based mobile devices (ZigBee, 2007) have created new 

opportunities for deploying sensors in smart spaces. For example, sensor 

nodes with dual radios (ETH-Zurich, 2007, EISLab, 2010) i.e. Bluetooth and 

Zigbee, have opened the doors for techniques that use Zigbee based multi-hop 

data routing for control information and Bluetooth for data transfer. 

The proposed sensor data collection approach employs independent mobile data 

mules to facilitate cost-efficient multi-hop data collection. Our data collection approaches 

are still driven by notion of mobility. The proposed 3D-KNN algorithm uses k-Nearest 

Neighbour (kNN) queries for cost-efficient data collection. The use of kNN allows the 

mobile data mule to select a subset of sensors to collect data from. The data collection 

algorithm efficiently uses the underlying sensor network’s broadcasting capability to 

facilitate multi-hop data collection. Our proposed data collection philosophy is further 

supported by the development and availability of Zigbee-based sensors 

(CrossbowTechnology, 2010a, ZigBee, 2009a) and Zigbee-based mobile computing 

devices (ZigBee, 2007). The rest of the chapter is organised as follows. Section 4.2 

provides an overview of kNN query-based data collection with focus on sensor networks. 

Section 4.3 presents a theoretical investigation of Voronoi-based kNN queries motivating 

the need for the 3D-KNN algorithm Section 4.4 presents in-depth discussion of the 3D-

KNN algorithm. Section 4.5 presents a chapter summary. The 3D-KNN algorithm and 

the Voronoi-based kNN queries presented in this chapter are from the following published 
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papers (Jayaraman et al., 2008b, Jayaraman et al., 2010a, Jayaraman et al., 2010c, 

Jayaraman et al., 2010b).   

4.2 kNN Query-based Data Collection 

The proposed data collection approach based on k-Nearest Neighbour queries is 

used to determine a subset of sensors within the sensor network around the mobile data 

mule. We term this subset that encompasses the k nearest neighbours as “collection 

area”. The collection area used in the context of this thesis refers to the area (surface area 

or volume) of the three-dimensional space that encompasses the k nearest sensor nodes. 

The collection area is computed on-the-fly by the mobile data mule. Hence, the boundary 

and the size of the collection area shrinks/expands based on the mobile data mule’s 

movement. Figure 4.1 presents an illustration of the collection area identified by the 

spheres CA1 and CA2 with radius R1 and R2.  

 

Figure 4.1: Collection Area Illustration 

The line marked as trajectory represents the movement path of the mobile data 

mule. As illustrated in the figure the radius of the spheres vary depending on sensor 

coverage and mobile data mule location. The sensor data collection approaches using 

mobile data mules discussed in the literature (Shah et al., 2003, Jain et al., 2006, 

Somasundara et al., 2006, Kansal et al., 2004, Chakrabarti et al., 2003) make specific 
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assumptions that sensor network deployment is two-dimensional. Some approaches (Shah 

et al., 2003, Jain et al., 2006) assumes an error and obstacle free grid-based environment. 

The assumption of three-dimensional space introduces the challenge of energy-efficient 

data collection across different planes given the omni-directional characteristics of radio 

transceivers. The illustration in Figure 4.1 is a classic example of a three-dimensional 

space. For example in Figure 4.1 at the first location the collection area encompasses 

sensors that are above, below and on the mobile data mule’s movement plane. This omni-

directional communication property of radio hardware requires approaches that need to 

compute nearest neighbours, taking into consideration radio communication metrics 

rather than just distance. By introducing radio characteristics with distance, we state that 

collection area comprises a subset of sensor nodes that are not just close but are also 

energy-efficient (good communication channel characteristics) to communicate with. 

4.2.1 k-Nearest Neighbour Query Processing in Sensor 
Networks 

We discuss the theory of k-Nearest Neighbour (kNN) queries more specifically in 

the context of sensor networks without mobile data mules. k-Nearest Neighbour queries 

have been used in sensor networks to retrieve data from sensors surrounding a point of 

interest. The point of interest is a specific location within the sensor network around 

which sensed data is collected. This location is computed by the application running at 

the sink. Chapter 2 discussed the classification of kNN query processing in a sensor 

network based on available network topology information. This infrastructure 

information is maintained using indices as used in traditional databases. Each sensor 

encompasses a set of child nodes grouped by their geographical location. A typical kNN 

query processing in sensor networks illustrated in Figure 4.2 involves the following steps: 

Query Creation: This is the stage where the query request is generated by the 

application. The query contains the point of interest (P) location. 

Query Propagation: The generated query is propagated within the sensor network 

until it reaches a correspondent node adjacent to the point of interest P. 
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Boundary Computation: The sensor node s is now responsible for processing the kNN 

query. To process the query, it first needs to compute a kNN boundary around P. 

Data Collection: Once the boundary is computed, sensor data within this boundary is 

collected and the result is routed to the correspondent sensor node.  

Query Result Propagation: The query result is propagated by the sensor node to the 

sink. 

The correspondent node in Figure 4.2 is depicted in orange. The correspondent 

node is responsible for processing the query on the sink’s behalf. Its operations include 

boundary estimation, query propagation, nearest neighbour selection and result 

propagation. The arrow marks represent the flow of data within the sensor network. 

 

Figure 4.2: kNN Query processing - Overview 

4.2.2 Overview of Proposed k-Nearest Neighbour Approach 

In this subsection, we present an overview of the proposed multi-hop data 

collection approach using kNN queries. We employ kNN queries to a) compute the 
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collection area that comprises a set of sensors around the mobile data mule and b) collect 

data from a subset of sensors within the collection area. We explore multi-hop data 

collection using kNN queries in a sensor network where mobile data mules collect sensor 

data.  

Classic broadcast-based kNN query processing approaches discussed in the 

literature employ static sinks to process kNN queries. Some approaches (Soheili et al., 

2005, Demirbas et al., 2003, Guttman, 1984) depend on the availability of spatial indices 

to process kNN queries while others assume physical clustering (Abbasi et al., 2007, 

Younis, 2004, Bandyopadhyay et al., 2003). The mobility-based data collection 

(Somasundara et al., 2006, Kansal et al., 2004, Jea et al., 2005) approaches that explore 

multi-hop sensor data collection also require physical clusters. Further, other mobility-

based data collection approaches (Chakrabarti et al., 2003, Shah et al., 2003) presented in 

the literature do not deal with multi-hop data collection. They work under the assumption 

that mobile data mule comes in direct contact with sensor nodes. We present a short 

summary to identify the key differences between the proposed data collection approach 

and (Shah et al., 2003, Jain et al., 2006, Somasundara et al., 2006, Kansal et al., 2004, 

Chakrabarti et al., 2003). The summary is an analysis of mobile and static sink-based 

approaches presented in chapter 2. 

1) The mobile data mule functions independently. Each data mule has the 

capability to compute data collection area dynamically. Our proposed system 

does not allocate mobile data mules to specific groups of sensors i.e. fixed 

sensor collection area based on geographical location. 

2) The proposed kNN algorithm does not depend on network infrastructure 

(spatial indices) information to process kNN queries. This reduces the 

overheads introduced by index maintenance. 

3) The proposed kNN algorithm does not require the existence of cluster heads 

within the sensor network infrastructure. Current approaches assume the 

existence of high-powered sensor nodes which act as cluster heads 

(Somasundara et al., 2006, Kansal et al., 2004, Jea et al., 2005). The use of 
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clusters introduces the need for a training phase during which the mobile data 

mule (Jea et al., 2005, Somasundara et al., 2006) collects cluster information. 

This requirement introduces additional overheads caused by cluster 

maintenance. Moreover, this approach is advantageous in the existence of a 

dedicated sensor data collector. In our scenario, we assume the data mules are 

not controlled and act independently. The probability that a data mule may 

visit the same set of sensor nodes is less likely. 

4) The proposed algorithm functions within three-dimensional sensor network 

spaces which is typical of current day sensor network environments e.g. 

buildings. Our approach to investigate a three-dimensional sensor network 

space is motivated by recent research that concludes that sensors are spatially 

distributed (Ganesan et al., 2004). To this end, we propose data collection 

metrics that take into consideration energy consumed while communicating in 

the presence of obstacles (e.g. ceilings, walls). To the best of our knowledge 

our project is a pioneering effort in addressing sensor data collection in three-

dimensional spaces. 

The proposed data collection approach based on kNN queries can be further 

elaborated using the illustration in Figure 4.3. In our proposed approach, the point of 

interest is the mobile data mule. The aim of the query is to compute a set of sensors that 

are around the mobile data mule from which data is collected cost-efficiently. We use the 

term “cost-efficiency” to represent a function of cost parameters including: 1) 

communication (energy), 2) query processing latency (performance) and 3) overall 

network lifetime (total energy consumed). The proposed approach avoids the need for 

cluster heads/correspondent nodes. The mobile data mule performs the tasks of the 

cluster head/correspondent node. The introduction of the mobile data mule removes the 

need for query propagation and result propagation stages as the mobile data mule is 

responsible for collecting and delivering the data to the sink. The mobile data mule has 

the capability to dynamically compute the collection area on-the-run using available 

sensor network infrastructure information. As sensor infrastructure information is 

collected on-the-fly the proposed approach adapts well for changing sensor network 
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topologies. The capability of the mobile data mule to compute the collection area is 

presented in detail in section 4.4. 

 

Figure 4.3: Proposed kNN query-based Data Collection Approach 

4.3 A Theoretical Investigation of Voronoi 
Diagram-based k-Nearest Neighbour Search 

In this section, we present a computational geometry (Mulmuley, 1993) inspired 

approach to process kNN queries. The technique we employ is Voronoi diagrams 

(Aurenhammer, 1991, Sen et al., 2010) and its Delaunay Triangulation. Voronoi 

diagrams have been used to efficiently cluster static sensor networks (Bandyopadhyay et 

al., 2003, Ghiasi et al., 2002) and have been applied to solve (Butler et al., 2003) sensor 

network coverage problems. The sensor network coverage problem addresses placement 

of sensors within the environment such that environmental changes are detected 

uniformly. We explore the use of Voronoi diagram and Delaunay triangulation for 

Bluetooth-based sensor networks.  
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4.3.1 Voronoi Diagram and Delaunay Triangulation 

Definition 4-1: (Voronoi diagram): Given a set P with p1 … pn points on a plane, 

a Voronoi diagram partitions the plane into n convex polygons confining one point each 

such that any point comprising the polygon is always closer to the point pi in the within 

polygon than any other point in the set P. 

The Delaunay triangulation (Aurenhammer, 1991, Sen et al., 2010) is a dual to 

Voronoi diagram and is obtained by connecting the points that share the same vertices in 

the polygon. The Delaunay triangulation, once computed from Voronoi diagram, can be 

used to compute the nearest neighbours and the path connecting them. Figure 4.4 shows 

an example of a Voronoi diagram and the corresponding Delaunay triangulation 

generated in MATLAB.  

4.3.2 k-Nearest Neighbour using Voronoi Diagrams  

We employ Voronoi diagrams to compute the k nearest neighbours around the 

mobile data mule. In the proposed data collection approach the mobile data mule is 

responsible for computing the Voronoi diagram.  

 

Figure 4.4: Voronoi diagram and Delaunay Triangulation 

The Bluetooth inquiry process is used to discover the nodes around the mobile 

data mule. Once this information is available, a Voronoi diagram is computed by the 

mobile data mule. The sensor characteristics collected during the discovery phase are 

used to convert the Voronoi diagram into a weighted Delaunay graph. The weight of the 

Delaunay graph is assigned to the edge that connects the sensor node and the mobile data 

mule. This value is computed using the threshold approach proposed in Chapter 3. The 

threshold takes into consideration the sensor’s distance, its residual energy, amount of 

data, etc. The Voronoi diagram and the Delaunay graph are used to compute the 
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collection area that comprises the k nearest sensor nodes. The data collection is 

performed using the previously proposed multi-part data collection algorithm (refer 

Chapter 3). The Voronoi diagram is not stored at the sensors due to the space complexity 

of Voronoi diagrams (Aurenhammer, 1991). The proposed approach is a theoretical 

investigation of the feasibility of Voronoi diagrams for kNN computation. Our proposed 

Voronoi-based data collection approach is illustrated in Figure 4.5. The Voronoi 

diagrams were computed using MATLAB. Figure 4.5 (left) is an illustration of a sensor 

network with a mobile data mule. The red line depicts the mobile data mule’s trajectory. 

Figure 4.5 (right) shows the corresponding Voronoi diagram. We assume the mobile data 

mule computes collection area at specific locations within the sensor network. These 

locations are marked as red arrows in Figure 4.5.  

In our proposed system, we do not assume a dedicated mobile data mule. Hence, 

when computing the Voronoi diagram two types of sensor nodes need to be taken into 

consideration. They are sensors that are pre-known (node repository) and sensors that are 

newly discovered. Newly discovered nodes can fall into two categories: newly deployed 

and sensors that were passive/sleeping/inactive during previous visits by the mobile data 

mule. Given the dynamic nature of sensor networks and unavailability of network 

topology information, the Voronoi diagram needs to be recomputed at each instance. The 

cost in re-computing the Voronoi diagram is highlighted later in this section. 

 

Figure 4.5: Dynamically Generated Voronoi diagrams for different Mobile Data 
Mule Locations 

The Voronoi-based data collection approach satisfies a static sensor network that 

has the availability of a dedicated mobile data mule. With multiple independent mobile 

data mules, constant re-computation of the Voronoi diagram is expensive. This issue 
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worsens when the size of the sensor network increases. Moreover, the complexity of the 

Voronoi diagram is O(n2 log n) with the best-case complexity using a divide-and-conquer 

approach being O(n log n) (Sen et al., 2010). Also, the Voronoi diagram has a space 

complexity of O(n). The above observations are based on Voronoi computation using 

Fortune’s algorithm (Fortune, 1986). Based on these observations, we identify that 

Voronoi diagrams are more suitable for cases where the re-computation involved is 

minimal e.g. to partition the network (Bandyopadhyay et al., 2003, Ghiasi et al., 2002). 

The use of Voronoi in mobile sensor networks can be justified by the argument that 

mobile sensors are a permanent part of the sensor network, reducing re-computations. In 

our proposed approach the mobile data mules that perform data collection are not 

necessarily part of the sensor network infrastructure. Moreover, there is no guarantee that 

a mobile data mule might periodically visit a specific set of sensors. Further, a single 

mobile data mule might not have information on the entire sensor network. It is hence 

essential to compute the collection area dynamically during every data collection process. 

We investigated the feasibility of Voronoi-based approach for a Bluetooth-based 

sensor network as the number of nodes that mobile data mule can communicate 

simultaneously is restricted to seven. This feature of Bluetooth-based sensor networks 

reduces time and space complexity in computing Voronoi diagrams. In densely deployed 

broadcast-based sensor networks, there is no restriction on the number of simultaneous 

connections. Hence, the time and space complexity of computing Voronoi diagrams 

increase by the order of n. Due to the space and time complexity of Voronoi diagrams for 

changing sensor network topologies, we propose a kNN query processing algorithm that 

uses simplified search and sort techniques with a time complexity of O (log n). In the 

next section, we discuss our proposed kNN-based data collection algorithm within the 

scope of a broadcast-based wireless sensor networks. 

4.4 3D-KNN: A kNN Query-Based algorithm for 
Sensor Data Collection 

In this section, we propose our novel three-dimensional k-Nearest Neighbour 

algorithm, namely, 3D-KNN, for a broadcast-based sensor network. The 3D-KNN 

computes a dynamic collection area using sensor information collected on-the-fly. Our 
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proposed algorithm addresses real-world distribution of sensors by adopting a three-

dimensional sensor network model. The proposed 3D-KNN algorithm considers the 

following: 

1) The mobile data mule is centred about the collection area which encompasses 

a group of sensor nodes 

2) The mobile data mule has no prior knowledge of the sensor network topology 

required to process the kNN query 

3) Query dissemination and data collection is done by the mobile data mule 

4) Sensors employ in-network aggregation to collect data from neighbouring 

nodes. Further, sensors do not have prior knowledge of neighbours as this is 

learned during query execution 

5) Use of real-world radio signal propagation characteristics while computing 

nearest neighbours i.e. taking effect of obstacles and planes in three-

dimensional space 

In the following sections, we first present our sensor network model. Secondly we 

present the proposed 3D-KNN algorithm. Finally, we extend the proposed algorithm by 

introducing a prediction approach based on mobile data mule’s path to improve the data 

collection efficiency. 

4.4.1 Network Model and Assumptions 

An illustration of the 3D sensor network model with the presence of a mobile data 

mule is depicted in Figure 4.6. We segment the three-dimensional space into planes. For 

example, in a building environment the planes correspond to the floors/levels. We assume 

that mobile data mule moves along a specific plane and sensor nodes are distributed 

within the three-dimensional space separated by levels (ceiling/walls). Sensor nodes are 

assumed to be location aware. Since radio range has no boundary, the discovered nodes 

can belong to different planes i.e. planes above the mobile data mule or planes below the 

mobile data mule. These planes are represented as plane 1, plane 2 and plane 3 in Figure 

4.6. For illustration purposes, we consider three planes while the approach can be 

extended to p planes. The 3D-KNN algorithm employed by the mobile data mule uses a 
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metric to determine the set of cost-efficient groups of sensor nodes. This metric is 

modelled taking into consideration real-world radio characteristics of sensors collected 

during the discovery process. To simplify our discussion, we assume that sensors 

deployed within the three-dimensional space are homogeneous i.e. they are identical, 

having the same hardware and radio range. However using heterogeneous sensors 

requires no modification to the 3D-KNN algorithm. 

 

Figure 4.6: A Three-Dimensional representation of the KNN Boundary Estimation 
Algorithm 

The mobile data mules in the proposed approach are independent of each other 

and the availability of a sink is not ubiquitous i.e. mobile data mules have the ability to 

work in disconnected mode. In the rest of the chapter, we focus on “Single-Shot” kNN 

queries. Single-Shot kNN queries are issued once and the results are computed based on 

the response. A subsequent kNN query is not issued from the same physical location. This 

differs from continuous kNN queries where multiple queries are broadcasted into the 

network addressed to the same location.  This satisfies our initial claim of mobile data 

mules being independent of each other i.e. result of a query is not shared with other 

mobile data mules in the system. The lifetime of these single-shot KNN queries is 

determined by the amount of time the mobile data mule stays at that location. The 

proposed 3D-KNN algorithm functions in three phases: 

Boundary Estimation: This phase handles estimating the search boundary that 

encompasses the k nearest neighbours. The boundary is computed as a sphere with the 

mobile data mule in the centre. 
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Pre-Routing: The pre-routing phase handles broadcasting initial request messages 

within the estimated kNN boundary. Sensors employ in-network data aggregation to 

reduce the amount of information transmitted. 

Neighbour Selection: This phase selects the cost-efficient k neighbours within the 

estimated kNN boundary. The output of the neighbour selection phase is the cost-

efficient set of sensors. 

4.4.2 3D-KNN: Boundary Estimation Phase 

Definition 4-2: (KNN Boundary Set S): Given a set N of i sensor nodes, location L 

of mobile data mule, a subset S of j sensor nodes represents the KNN Boundary set where 

S  N and |S| ≤ |N| such that for each sensor sj S and each sensor si  N - S, DIST (sj, 

L) ≤ DIST (si, L) and DIST (sj, L) ≤ KNN_BOUNDARY. 

The set N is the set of all nodes within the sensor network. The subset S of j 

sensors that fall within the kNN boundary is computed from N. The kNN boundary 

determines the perimeter of the data collection area. In short, the radius of the collection 

area is given by the KNN_BOUNDARY. It is within the kNN boundary, the search for the 

k nearest neighbours is performed. The subset S introduced in definition 2 is depicted as a 

coloured sphere in Figure 4.6. The straightforward approach to compute the kNN 

boundary is to employ flooding-based techniques (Hedetniemi et al., 1988). By flooding 

the network with broadcast packets, the mobile data mule will have network information 

about the entire sensor network which can be further used to determine the k nearest 

neighbours. Though this approach is reliable, it is expensive, as the entire network is 

flooded with broadcast packets from the mobile data mule. Hence, a more efficient 

approach is to broadcast packets to a subset of sensors (S) within the sensor network. In 

our model, the initial query Q is propagated by the mobile data mule. In our scenario the 

mobile data mule is the point-of-interest. The 3D-KNN boundary estimation algorithm 

computes a sensor boundary around the data mules’ location. We term our boundary 

estimation approach “inside-out” method i.e. the boundary estimation is performed by the 

mobile data mule which is the point-of-interest. Hence, the broadcast query originating at 

the point-of-interest (inside) propagates outwards towards surrounding sensors. This is 
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different from traditional sink approach where the broadcast query originates outside the 

network (from the sink).  

The kNN boundary estimation is one of the challenging steps in an infrastructure-

less sensor network. Since an assumption of uniform distribution over the entire sensor 

network is not appropriate, we assume that nodes are uniformly distributed within the 

computed kNN boundary. This assumption aids in accurately computing the number of 

nodes within the kNN boundary. With this assumption we can determine the density of 

nodes (ND) within the sensor network. The density of the network is the total number of 

sensors within the network and not just active sensors. Hence, to determine the kNN 

boundary that encompasses at least sj sensors, we use (4-1) to compute the surface area 

covered by sj sensors such that sj  S (S ) satisfies the condition loc (sj) is within A 

(area covered by the 3D space). A is the area of the 3D collection space (collection area) 

and loc (sj) is the location of the sensor node sj. Since radio range is represented as a 

sphere, we use equation (4-2) to compute the radius R of the sphere covering at least sj 

sensors. The KNN_BOUNDARY is given by the radius R. Sensors node within the 

KNN_BOUNDARY comprise the set S. 

ࢇࢋ࢘ ࢋࢉࢇࢌ࢛࢘ࡿ ࢋࢉࢇࡿ ࡰ ࢋࢎ࢚ ࢌ ሺሻ ൌ
ࢋࢊࡺ ࢚࢙࢟ࢋࡰ ࡰࡺ ሺ ࢘ࢋ

ሻ
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4.4.3 3D-KNN: Pre-Routing Phase 

Our key assumption is that no network topology information is required to 

process the kNN query. Hence, node discovery needs to be performed within the 

computed kNN boundary. The pre-routing phase performs the following functions: 

 Collect sensor information which includes node location, signal-to-noise 

ratio (a cumulative function for each hop from mobile data mule to 

destination sensor node) and hop distance (from mobile data mule). 
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 Dynamically compute route information to each sensor within the kNN 

boundary 

 Compute perimeter nodes that form the boundary of the collection area. 

To achieve the above functions, a broadcast message is sent by the mobile data 

mule with its location l and KNN_BOUNDARY that determines the radius of the 

collection area. Each broadcast message sent by the mobile data mule has an associated 

broadcast-id which is derived from the mobile data mule’s MAC address to maintain 

uniqueness. Each broadcast message is also associated with a time to live (TTL) to avoid 

delayed arrival of data packets which is typical of real-world communications. The pre-

routing phase function is depicted in Figure 4.7. Note that while we have used a single 

mule representation, this approach can be scaled to multiple mobile data mules. The 

mobile data mule depicted in Figure 4.7 is represented as the yellow star and sensors as 

X. The sensors highlighted in green identify the border nodes i.e. nodes that form the 

perimeter of the kNN boundary. We use a two-dimensional illustration to represent the 

working of the pre-routing phase. 

A sensor node X on receipt of a broadcast message checks if the broadcast 

message was received from the mobile data mule or other sensors. This operation ensures 

that nodes that are in one hop distance from the mobile data mule do not use 

neighbouring nodes to communicate. If the message source is other sensors, the first 

arriving message is saved and the rest of the messages are discarded. The sensor uses the 

TTL value of the broadcast message to identify delayed message arrivals.  

On receipt of a new broadcast message, the sensor nodes use the information in 

the message to determine its distance (D) from the mobile data mule. This distance (D) is 

used to determine if the sensors are within the kNN boundary. Sensors within the kNN 

boundary re-broadcast the message to neighbouring sensors. The re-broadcast message is 

appended with the node’s identification. This information is useful to compute the 

dynamic route. The route information is used by sensors to determine a reverse path to 

the mobile data mule and vice-versa. In order to save energy over multi-hop 

communications, the sensors employ in-network data aggregation. Data aggregation is 
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performed using timers. The timer value is determined as a function of the kNN boundary 

and the node’s distance given by: 

ሻ࢞ࢃሺ ࢘ࢋࢀ ࢚ࢇࢃ ൌ
ࢅࡾࡰࡺࢁࡻ_ࡺࡺࡷ

࢞ࡰ
 (4-3) 

 

Figure 4.7: Pre-Routing phase - Illustration 

Sensor nodes that are outside the kNN boundary cease broadcasting messages 

further into the network. These sensors which are at the border or just outside the kNN 

boundary form the perimeter of the data collection area. The perimeter nodes are shaded 

nodes in Figure 4.7. These nodes initiate response to the broadcast message (query) by 

sending their location and signal-to-noise ratio to the neighbouring node through which it 

received the broadcast message. The same process is performed at each node until the 

requested information reaches the mobile data mule. Sensors that do not receive any 

response from neighbours on timer expiry, forward their information back to the mobile 

data mule. For example, consider the illustration presented in Figure 4.8. For easier 

illustration, only a section of the collection area is shown. In this case, the sensor node X1 

receives the broadcast message from the mobile data mule and forwards it to the 

neighbouring nodes X2, X3, X4. X1 computes a timer value using (4-3). From (4-3), we 

can deduce that timer value of X1 will be greater than the timer values of nodes X2, X3 

and X4 respectively. The node X2, X3 and X4 identifies itself to be outside the kNN 

boundary. Hence, it stops re-broadcasting the message and returns the requested data to 
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node X1. Since X4, X3 and X2 are at varying distances from the mobile data mule their 

timer expiry will result in a tiny offset that helps to avoid contention while 

communicating with X1. The boundary estimation and pre-routing phase pseudo code is 

presented in Figure 4.9 and Figure 4.10. The algorithm is divided into two parts, the 

mobile data mule part and the sensor node part. The sensor node implementation is 

developed taking into consideration their low-powered and resource-constrained nature. 

The 3D-KNN avoids the necessity to run complex algorithms on the sensor nodes. We 

present a description of the boundary estimation and pre-routing pseudo code employed 

by the mobile data mule in the paragraph following Figure 4.8.  The description of the 

sensor node pseudo code is presented in the paragraph following Figure 4.10. 

 

Figure 4.8: Illustration of Pre-Routing 

 

Figure 4.9: Boundary Estimation and Pre-Routing Phase- Mobile Data Mule Pseudo 
Code 

3DKNN – Boundary Estimation and Pre-Routing Phase- Mobile Data Mule 
Pseudo Code 
Input:  Surface Area of the 3D space (A), total number of sensors 
(n), l location of mobile data mule 
Output: SNR, location and hop information of node 
BEGIN 

1 Compute ND = N/AT 
2 Get k 
3 Compute A such that A = k/ND 

4 Compute ܴ ൌ  ට
 ∗ଷ

ସ∗ గ

య
 

5 Compute maxKNNDIST = DIST(l ± R) 
6 Send initial broadcast message(msgID, route, TTL, maxKNNDIST, 

l) 
7 Repeat 
8  listen to channel 
9 Until all data received or TTL reached 

END 
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Step 1, 2 and 3 is used to compute the kNN boundary using sensor network 

density and required k. In step 4, the radius (R) of the sphere enclosing the nearest 

neighbours is computed. Step 5 computes the maximum distance a sensor can be from the 

mobile data mule. This value determines the kNN boundary. Step 6 performs the 

operation of preparing and sending the broadcast messages. Step 7, 8 and 9 perform the 

operation of listening to the channel until all responses from neighbouring nodes are 

received. This operation expires when the TTL of the broadcast message is reached. 

 

Figure 4.10: Boundary Estimation and Pre-Routing Phase- Sensor Node Pseudo 
Code 

Step 1 handles new broadcast messages arriving at the sensor node. Step 2 checks 

if the received broadcast message already exists. Step 3 discards the message if it exists. 

Step 5 computes the distance of the sensor node from the mobile data mule. Step 6 

3DKNN – Boundary Estimation and Pre-Routing Phase- Sensor Node  
Input: Broadcast Message m 
Output: SNR, location and hop count 
BEGIN 

1 For each broadcast message m 
2  if m not from source and m is received 
3   discard m 
4  else 
5  Compute distance D = DIST(n, l) 
6  If D < maxKNNDIST 
7   set timer = maxKNNDIST / distance 
8   add nodeID to route 
9   hopcount ++ 
10   if neighbourList (neci) available 
11    forward broadcast message neci 
12   else 
13    forward broadcast message 
14   end if 
15  Else 
16   mark perimeter node 
17   hopcount ++ 
18   add nodeID to route with a END mark 
19   return location, snr to next node in route 
20  End if 
21 End For 
22 On Timer Expiry 
23  aggregate results of location and snr 
24  return result to next node in route 
25 End 

END 
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checks if this distance is within the kNN boundary. Step 7 sets a timer for data 

aggregation. Steps 8 and 9 add the node’s identification to the broadcast message and 

increments the hop counter. Step 10 checks if a neighbour list exists at the sensor node. 

This is not a requirement for the functioning of the 3D-KNN algorithm. Steps 11 and 13 

handle rebroadcasting of the message to neighbouring nodes.  If the sensor node is 

outside the kNN boundary, step 16 adds the sensor as a perimeter node. Steps 17 and 18 

increment the hop count and adds the node identification to the route part of the broadcast 

message. Finally step 19 initiates return of data (SNR and the location information). 

Steps 22, 23 and 24 describe the timer expiry procedure. When the sensor timer expires, 

it returns aggregated data to its parent node (obtained from the route part of the broadcast 

message). The parent node is the sensor from which the broadcast message was received. 

This process is repeated until the mobile data mule is reached. 

4.4.4 3D-K NN: Neighbour Selection 

The outcome of the pre-routing phase provides the mobile data mule with sensor 

information within the estimated kNN boundary (collection area). To determine the set K 

of k sensors, we propose a sensor selection metric based on sensor information collected 

during the pre-routing stage. 

Definition 4-3: (k-Nearest Neighbours): Given a set S of j sensor nodes, location 

L of mobile data mule, a subset K of k nodes where K  S and j ≤ k such that for each 

sensor sk K and each sensor sj  S - K, KNN-METRIC (sk, L) ≤ KNN-METRIC (sj, L). 

The KNN-METRIC is used to map sensors on different planes onto mobile data 

mule’s plane. We term this approach “plane rotation” i.e. we virtually rotate sensors on 

various planes to a single plane based on the KNN-METRIC metric.  

4.4.4.1 Mapping Technique 

The mapping algorithm uses sensor parameters signal-to-noise ratio (SNR) and 

distance collected during the pre-routing phase to compute a single-valued metric. This 

single valued metric is used to effectively map sensors on different planes (as depicted in 

Figure 4.6) to a reference plane based on real-world radio signal propagation 

characteristics. The reference plane is the plane in which the mobile data mule moves. 
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This plane is the zero reference plane in which, the value of z axis is zero while x and y 

change based on mobile data mule’s movement pattern. Sensors above the reference 

plane take a positive value for z while sensors below the reference plane take a negative 

value for z. The sensors themselves are calibrated based on the reference point governed 

by the deployed space. For example, in a building, sensors z value represents the level in 

which they are present. 

We introduce the term “KNN-METRIC”- a metric computed using sensor nodes 

characteristics including channel quality, interference caused by obstacles and distance. 

The distance (D) is Euclidian distance computed as the distance between the mobile data 

mule and the sensor node given by (4). The location of the mobile data mule and the 

sensor node are given by the coordinates (X1, Y1, Z1) and (X2, Y2, Z2) respectively. The 

KNN-METRIC applied in sensor mapping is computed using (4-5) 

ࡰ ࢋࢉࢇ࢚࢙ࡰ ൌ  ඥሺࢄ െ ሻࢄ
  ሺࢅ െ ሻࢅ

  ሺࢆ െ ሻࢆ
ሻ (4-4) 

ࡵࡾࢀࡱࡹെࡺࡺࡷ ൌ ࢉ ∗
ࢻ ∗ ࡾࡺࡿ

ࢼ ∗ ࢋࢉࢇ࢚࢙ࡰ ሺࡰሻ
 (4-5) 

The SNR value is collected during the pre-routing phase. The SNR for sensors 

that are more than one hop away is computed as a cumulative sum of SNR values 

between each hop. The SNR and the distance parameters are inversely proportional i.e. 

higher SNR represents better channel quality while greater distance increases 

retransmission reducing reliability. These parameters are taken into consideration as they 

are good indicators of energy consumed during communication. For example, with poor 

SNR the sensor needs to increase its radio power to successfully complete the data 

transfer. The same can be observed at the mobile data mule even though energy is not a 

primary concern for the mobile data mule. With the aim to reduce the energy-consumed 

during communication, it is important to select a set of sensors that are energy-efficient to 

communicate. The value c is a constant and α, β are pre-assigned weights. The weights 

are assigned by the sink based on application requirements. To compute a value for the 

constant c, we assume ideal case (computed from simulation outcomes) values for SNR 

and distance such that KNN-METRIC = 1. The ideal case values and hence the value of 
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the constant c can be changed for different deployment environments. We determine c 

from (4-6).  

ࢉ ൌ  ∗ 
.   ∗ 

.  ∗ 
ൌ .  (4-6) 

The KNN-METRIC provides a value that is used to map sensors around the data 

mule based on sensor characteristics. At the end of the mapping stage, the k cost-efficient 

sensor neighbours are computed by using sorting techniques, based on the computed 

KNN-METRIC. Current work discussed in Chapter 2 dealing with kNN queries assumes 

two-dimensional sensor distribution with no consideration for communication channel 

characteristics. They only rely on Euclidian distance for computing nearest neighbours. 

Though the extension of distance-based approaches is straight-forward in 3D planes, we 

argue it is not necessarily energy-efficient. For example, consider a sensor A at a distance 

D1 in a plane below the mobile data mule and sensor B at distance D2 in the same plane 

as the mobile data mule such that D2>D1. Given the channel quality (computed using 

SNR) for B is better than A, the two-dimensional distance-based approach would neglect 

the channel quality parameter influenced by plane separation. It would select A as the 

nearest neighbour. The proposed KNN-METRIC based sensor mapping approach selects 

sensors as a function of both distance and channel quality (SNR), hence selecting sensor 

B as the energy-efficient nearest neighbour. Moreover, current approaches (Yao et al., 

2009, Yao et al., 2006, Winter et al., 2005, Wu et al., 2007) consider error-free 

communication channel which does not hold true in real-world scenarios. Our approach 

can be easily extended to incorporate additional sensor metrics that can improve cost-

efficiency of data collection. For example, introducing the sensor residual energy 

parameters into the KNN-METRIC will result in a set of sensors with the following 

characteristics: 1) distance from the mobile data mule is least, 2) has good 

communication channel quality (SNR) and 3) sufficient energy to successfully complete 

data collection. Further, the selection parameters can be correlated to improve sensor 

selection accuracy i.e. a correlation between the SNR and distance metric can be used to 

dynamically recompute the weights α and β respectively. The algorithm for the k-Nearest 

Neighbour selection phase is presented in Figure 4.11. 
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Figure 4.11: k-Nearest Neighbour Selection- Pseudo Code 

4.4.5 3D-KNN: Neighbour Prediction 

The k nearest neighbours computed during the selection phase form the set of 

energy-efficient sensors within the collection area. To further improve the energy-

efficiency of the data collection process, we propose an extension to the 3D-KNN 

algorithm. We propose the introduction of neighbour prediction. The neighbour 

prediction technique further filters the set K to identify the most cost-efficient set of 

sensor neighbours.  

Definition 4-4: (Predicted Set of Nearest Neighbours PT): The predicted set of 

nearest neighbours P is a set of p nodes where P  K and p ≤ k such that for every sensor 

sp  P and every sensor sk  K-P, DIST (sp, LT) ≤ DIST (sk, LTi) where i = 1 to x and 

hopcount (sp, LT) > 2. 

LT represents the mobile data mule’s current location at time T and LTi represents 

future locations at time T1, T2...Tx. The hopcount represents the number of hops between 

the sensor node and the mobile data mule. A node sp is said to belong to the set P if and 

only if its distance D from the data mule’s current location LT at time T is the less than its 

distances D1, D2, D3 … Dx at time T1, T2, T3 .. Tx. We follow the following rules to 

compute the set P from set K. 

1) Add all sensor sk of set K to set P 

3DKNN – k-Nearest Neighbour selection 
Require: S subset of nodes, k required number of neighbours, mobile 
data mule reference plane and location P (X,Y,Z) and for each node I 
in S its SNR and location X, Y, Z 
BEGIN 

1 For each node I in S 
2  determine current plane 
3  compute Distance D with reference to P 

4  ID = ඥሺܺଶ െ  ଵܺሻ
ଶ  ሺ ଶܻ െ  ଵܻሻ

ଶ  ሺܼଶ െ ܼଵሻ
ଶ 

5  compute KNN-METRIC = 2.5 * (0.4 * ISNR / 0.6 * ID) 
6  add KNN-METRIC to S 
7 End For 
8 Sort S based on KNN-METRIC 
9 if k < S  
10  return top k results from S 
11 end if 

END 
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2) Consider a sensor sp as a future neighbour if and only if  

a. Hop distance between sp and mobile data mule’s current location is 

greater than two 

b. Hop distance between sp and mobile data mule’s future locations at 

time T1, T2, T3... Tx is less than two hop distance. 

The above conditions can be satisfied as it is feasible to estimate the maximum 

hop count between the mobile data mule and the sensor node at time T1, T2, T3 .. Tx using 

the sensor’s radio range and computed distance. For example, if the radio range is 30 

meters and distance is 50 meters then the sensor is at least 1 hop away from the mobile 

data mule. Further, we use a hop count value of 2 as it is less likely that a sensor at a 

future location would be an energy-efficient choice if it is more than two hops away. 

Moreover, the probability of reaching a sensor that is two hops away is much less. The 

radio range is given by the maximum distance between the sensor node and the mobile 

data mule at which direct communication is possible. 

For example, consider the illustration in Figure 4.12. The mobile data mule is 

identified by the yellow coloured star and the sensors are identified by X. The trajectory 

provides the path of the mobile data mule. The two locations represented by the yellow 

star are the locations T and T1 where the mobile data mule stops to compute nearest 

neighbours.  

We consider two cases identified by the node in green and red respectively. In 

case 1, the sensor node X in green is closer at time T1 rather than at time T. Hence, the 

prediction algorithm selects it as a candidate for data collection at time T1. In case 2, the 

previously stated rules are applied. The sensor node X in red is at the same hop distance 

from locations T and T1. Assume the distance between the sensor node and the mobile 

data mule at time T and T1 are 90 and 80 respectively. In terms of distance, the sensor is 

closer at time T1 but the mobile data mule would still require two intermediate hops. 

Hence, it would be more advantageous to collect data from that sensor at time T. The 

nodes that satisfy the two rules are added to the mobile data mule’s predicted next hop 

collection set KLTx where LTx represents future locations and time combinations.  
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Figure 4.12: Nearest Neighbour Prediction- An Illustrative Example 

The set P is an optimised energy-efficient set of sensor nodes from which data is 

collected by spending least overall energy. The prediction algorithm computes distances 

between sensor locations (obtained from kNN query) and the mobile data mule’s future 

locations. Hence, actual SNR values may not be available. Once the mobile data mule 

arrives at location L at time Tx, it piggy-backs the list of nodes whose distances were pre-

computed with the new kNN broadcast message. Each node receiving the message checks 

its node-id against the node list in the broadcast message. If the node-id does not exist, 

the kNN pre-routing phase continues by broadcasting the message to other neighbours. If 

the node-id matches the sensor’s id, it checks for any neighbours that are part of the list. 

In scenarios where a neighbour list does not exist, the sensor node re-broadcasts the 

message and sets a timer based on the kNN boundary. If a neighbour exists, it forwards 

the message to the selected neighbour. On timer expiry, the aggregated data is returned to 

the mobile data mule. The 3D-KNN neighbour prediction algorithm is presented in 

Figure 4.13. A description of the algorithm is presented in the following paragraph. 
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Step 1 iterates through each node sk in the set K which comprises the selected k 

nearest neighbours. Step 2 computes the hop count between sk and the mobile data mule. 

Step 3 checks if the hop count is greater than 2. The nodes that have hop count greater 

than 2 are considered to be possible future neighbours. Step 4 and Step 5 computes the 

distance between the sensor node and the mobile data mule. The DIST function computes 

the Euclidian distance. Step 6 iterates through subsequent locations (L) of the mobile data 

mule given by the vector movሬሬሬሬሬሬሬሬԦ. Step 7 computes the distance between the mobile data 

mule’s subsequent location and sensor sk. Step 8 is used to determine the hop count 

between the mobile data mule’s future location and sensor k. Step 9-11 uses the function 

minimum to find the least of the two computed distance metrics. Step 13 checks if the 

sensor node’s distance from the mobile data mule’s current location is the minimum 

compared to the mobile data mule’s subsequent locations. Step 15 adds the node to the 

current location’s predicted set if the condition is true. Step 17 appends the sensor k and 

the mobile data mule’s future location (location) to the predicted set PTi.  

 

Figure 4.13: 3D-KNN Neighbour Prediction- Pseudo Code 

3DKNN – Energy Efficient Set of Nearest Neighbour Prediction P 
Input: K set of sk nearest nodes, mobile data mule future Locations 
(L) in a Vector  ݉ݒሬሬሬሬሬሬሬሬԦ, mobile data mule current location loc 
Output: Predicted set P 
BEGIN  

1 for each node sk in K 
2  h = hopcount(k, data mule) 
3  if h > 2 then 
4   current_metric= DIST (sk, loc) 
5   min_metric = current_metric 
6   for each L in  ݉ݒሬሬሬሬሬሬሬሬԦ 
7    kDL = DIST (sk, L) 
8    if (kDL / radioRange <= maxHop) 
9     min_metric = MINIMUM (current_metric, 

        min_metric) 
10     set location = L 
11    end if 
12   end for 
13  end if 
14  if (min_metric = current_metric) 
15   Add node to P 
16  else 
17   Add node to PTi (location, sk) 
18  end if 
19 end for 

END 
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4.5 Summary 

In this chapter we have applied the theory of nearest neighbour search in our 

mobile data mule-based sensor data collection. We proposed a novel k-Nearest 

Neighbour based multi-hop sensor data collection algorithm namely, 3D-KNN. The 3D-

KNN has the capability to account for channel quality, distance and sensor parameters in 

a three-dimensional environment. Our proposed 3D-KNN algorithm is an extension to the 

mobile data mule-based data collection architecture presented in Chapter 3. More 

specifically, we focused on extending our data collection approach to a connection-less 

broadcast-based sensor network. The 3D-KNN approach incorporates algorithms to 

discover, collect and deliver sensor data on-the-fly. The 3D-KNN algorithm employed on 

the mobile data mule has the following features: 

a. Employs energy-efficient techniques for sensor node discovery within 

the scope of a connection-less sensor network 

b. Employs a sensor mapping algorithm that maps sensors in different 

planes to a reference plane using the proposed KNN-METRIC 

c. Compute and process kNN queries on-the-fly 

d. Incorporates sensor prediction to further improve the energy efficiency 

of the sensor data collection process. 
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5  
R-CS: Modelling Smart Spaces 

using Smart Sensing 
5.1 Introduction 

Space is defined by Dictionary.com as “the unlimited or incalculably great three-

dimensional realm or expanse in which all material objects are located and all events 

occur.13”A space may be an enclosed area e.g. meeting room, or an open area e.g. 

courtyard. Smart space is the term used to represent spaces embedded with computing 

infrastructure (Satyanarayanan, 2002). Embedding physical spaces with computing 

infrastructure enables sensing and controlling of one world by the other. This computing 

embedded physical space can be visualised as a fully connected information space  where 

data flows from one point to another (Kumar, 2005). Applications that work within smart 

spaces depend on contextual information to perform various tasks. These smart space 

applications are also called context-aware applications (Loke, 2006, Hähner et al., 2004). 

Context is defined as “that which surrounds, and gives meaning to, something else14”. 

Smart spaces are reactive and proactive i.e. they have the capability to react to 

environmental changes by monitoring and analysing the data generated within the 

physical space. For example, controlling the air-conditioning system depending on 

occupants profiles or controlling the software on the occupant’s mobile phone depending 

on his/her location. 

The low-level data required to compute contextual information within smart 

spaces originate from individual or multiple software/hardware-based sensors. Sensor 

                                                            
13 Space: http://dictionary.reference.com/browse/space 
14 Context: The Free On‐line Dictionary of Computing 
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networks play a vital role in smart spaces as they provide sensing capabilities. Our smart 

spaces philosophy is driven by the availability of sensor data which is used to infer high 

level context. For example, using data collected from a temperature sensor, high level 

context like “comfortable temperature” can be reasoned. 

In this chapter, we present a situation-based context reasoning approach. The 

situation-based context model is used to reason about real-world situations based on 

available contextual information. Situation awareness is a flavour of context-aware 

computing that allows applications to adapt to changing environmental situations. For 

example, a situation meeting in the real-world can be defined in the virtual world as a 

collection of context attributes light status, noise and projector status (Padovitz, 2006). 

The values of the context attributes (at a specific time), may be used to infer the 

occurrence of the situation meeting. The possible values for the occurrence of the 

situation meeting can be bright for light, 5 for noise (noise ranges from 0-silent to 5-

noisy) and off for projector status. The values bright, 5 and off are computed from 

hardware/software sensors.  

In previous chapters of this thesis we proposed techniques for cost-efficient 

sensor data collection. The data collection framework, namely, sGaRuDa, facilitates data 

collection from sensors embedded within smart spaces using mobile devices. We term 

our data collection approach smart sensing. The data collected from sensors is dynamic 

i.e. it changes over time. Further, the widespread adoption of sensor networks leads to 

more sensor data generated, stored, processed and used. To address the dynamic 

characteristic of sensor data, we propose a dynamic situation modelling approach that 

composes situation definitions at run-time, based on available sensor data. 

Proposing/exploring a new context model in itself is a big challenge. Hence, in this 

chapter, we choose to extend an existing situation-based context modelling framework, 

namely, Context Spaces (Padovitz, 2006). We propose extensions to Context Spaces to 

enable situation composition on-the-run. This chapter is divided into two main sections. 

The first section provides an overview of Context Spaces. The second section presents 

the proposed Context Spaces extensions published in the following papers (Jayaraman et 

al., 2008c, Jayaraman et al., 2009b, Jayaraman et al., 2009a). 
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5.2 Context-Situation Pyramid 

Our notion of a situational context model can be best captured by the context 

situation pyramid (Padovitz, 2006, Padovitz et al., 2004) depicted in Figure 5.1. 

 

Figure 5.1: Context-Situation Pyramid 

Sensor (Raw Data): This is the lowest level of the context model representing the raw 

data collected from sensory sources. Data at this level does not convey any 

meaning. e.g.: a temperature sensor reporting a value 24.50 C. 

Context:  The middle level represents a collection of information, facts and predictions 

combined with algorithms to interpret and process context. The contextual 

information can be used to represent the state of the system. The state of the system 

changes as context information changes over time. The context is used to compute 

a constrained view of the physical world. 

Situation: The meta-level notion above context which is derived by analysing 

available contextual information. A situation is a more detailed view of the physical 

world situation inferred by reasoning about context. 
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5.3 Theory of Context Spaces 

The theory of Context Spaces (Padovitz, 2006, Padovitz et al., 2004, Padovitz et 

al., 2005) has been proposed on the philosophy of the context situation pyramid. Context 

Spaces use state-space models and geometrical metaphors to represent situations and 

system states in a multi-dimensional space. Context spaces provide the following 

definitions: 

Context Attribute (a): A context attribute is any type of data with a corresponding 

value. A virtual or physical sensor determines the value of the context attribute, e.g. 

temperature is a context attribute. A context attribute is a virtual world representation of a 

hardware/software sensor available within the smart space. 

Application Space ():  A universal set of disclosure (UOD) contains all possible 

context attributes with associated value ranges for any specific application domain. 

Context State (CT = (ܽ
்)): A context state is a set of context attributes and their 

corresponding values at time T. For example, the context state at time T might comprise 

context attributes temperature and humidity with sensor values 200 C and 70% 

respectively. 

Situation Space (S =ܣ
)): A situation space comprises a set of context attributes 

and their corresponding acceptable attribute region values. The context attributes are used 

to define the situation such that it best represents its real-world counterpart. For example, 

a situation meeting can be defined using context attributes light and noise with 

corresponding attribute region values (on, mild) and (5 - 8) respectively. 

Attribute Region (ܣ
): The attribute region defines the possible values the 

corresponding context attribute ai can have within the defined situation. For example, the 

attribute region values for the context attribute noise in a situation meeting can range 

from 5 to 8. 

Figure 5.2 illustrates the Context Spaces approach. In this example, the situation 

is defined using three context attributes (a1, a2, a3). Each context attribute corresponds to 

a specific dimension. The context state at time t1 is represented as C1 and at time t2 as C2 
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respectively. Situation reasoning is performed by comparing the context state at time T 

against pre-defined situation definitions. 

 

Figure 5.2: Three Dimensional (3 context attributes) illustration of Situations and 
Context States 

In Figure 5.2, at time t1 the context state C1is within the situation definition S1 

while at time t2, the context state C2 does not conform to any pre-defined situations. For 

example, suppose a situation presentation is defined over the context attribute projector 

status with corresponding attribute region value on. At time T, if the context state value 

of the projector (computed from sensor attached to the projector) is on, then the context 

state matches the situation definition. This information is used to reason the occurrence of 

the situation presentation. Context spaces proposes Context Spaces Fusion (ConSpaF) 

(Padovitz, 2006), an algorithm to fuse sensor data with context. This algorithm extends 

the geometry-based state-space reasoning approach by incorporating additional heuristics 

that increase Context Spaces ability to reason under uncertainty. We focus on the 

following two heuristics: 

1) Incorporating sensor error caused by sensor inaccuracies 

2) Relevance and contribution functions that identify importance of context 

attributes within a situation. 

The first heuristic identified allows the Context Spaces model to adapt to sensor 

inaccuracies. The second heuristic has two parts, the relevance and the contribution 
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function. The relevance determines the importance of a context attribute within the 

situation i.e. is the attribute important enough to determine the outcome of the reasoned 

situation? Context Spaces uses weights to denote the relevance of a context attribute 

within the situation. The contribution function is used to determine if the context 

attribute’s current context state value falls within the situation’s attribute region 

definition. The contribution function computes a contribution value (0 or 1) for a context 

attribute ai over the region ܣ
 defined in the situation space Sj. To fuse context attributes’ 

relevancies and contributions, Context Spaces propose the use of multi-attribute utility 

theory (MAUT) (Winterfeld et al., 1986). MAUT combines different contributions into a 

single utility value. The single utility value, computed by fusing multiple context 

attributes, determines the certainty of situation being inferred. This certainty is termed 

confidence. 

Example: Consider two contextual attributes a1 and a2, a situation S1 with the 

attribute region values A1 and A2. Let the weights w1, w2 and contributions c1, c2 represent 

the context attribute’s importance and contribution in situation S1. The weights are any 

values between 0 and 1 such that w1 + w2 = 1. The MAUT based utility, confidence for 

situation S1, is computed using ݓଵ ∗ ܿଵ  ݓଶ ∗ ܿଶ.  

In the next section, we present the proposed extensions to Context Spaces. 

5.4 Proposed Extensions to Context Spaces 

The first proposed extension to Context Spaces is the introduction of partitioned 

situation spaces. The situation space is partitioned based on the relevance of the context 

attributes. At runtime, a temporal situation is computed from the partitioned situation 

space based on available contextual information (context state) within the smart space.  

The second extension to Context Spaces is the use of flexible attribute regions. 

The attribute region determines the contribution factor of a corresponding attribute. This 

contribution factor influences the overall confidence in the situation being reasoned. The 

proposed extension adds flexibility to the crisp attribute region definition used in Context 

Spaces. Additionally, we introduce sensor quality metrics, namely, data freshness in the 

error computation algorithm of Context Spaces. 
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The third proposed extension to Context Spaces is the introduction of hierarchical 

situation space definitions. The hierarchical situation space provides a way to define 

relations between attribute regions within a situation. 

We call our proposed system R-CS depicting the use of ranking and partitioning 

in Context Spaces. A detailed description of the proposed extensions is presented in the 

following sections. 

5.5 Dynamic Situation Modelling 

The situation space in Context Spaces (CS) (Padovitz, 2006) is defined using a 

fixed set of context attributes (a1, a2… an) and corresponding attribute region values (A1, 

A2… An). The relevance of each context attribute within the situation is given by weight 

wi such that 

࢝



ୀ

ൌ       ܑ  ܖ  (5-1) 

We argue that in smart spaces, the application must cope with changing 

contextual information. The fixed situation space definition of Context Spaces makes it 

difficult to incorporate new context attributes on-the-fly. The dynamic situation 

composition arises from our argument that fixed situation-based reasoning may not cater 

to smart space applications where new context information appears and disappears over 

time. 

We define a generic situation space called the universal situation space (SU) that 

consists of all possible context attributes and their corresponding attribute region values. 

The universal situation space is an extension to Context Spaces situation space definition. 

The difference is that universal situation space has all possible context attributes that may 

be used to infer the situation while Context Spaces (CS) situation space contains a 

restricted set of the most relevant context attributes. For example, suppose a situation 

meeting is defined in CS over the highly relevant context attributes light, people, and 

noise, the same situation is defined in R-CS over the range of context attributes light, 

people, noise, temperature, door status, humidity, floor pressure (sensor), etc. Some of 
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the context attributes defined in the universal situation space may not have high relevance 

but may be used to determine the situation outcome. E.g. a possible reason for the 

situation car accident could be acute stomach pain for the person driving the car. This 

possibility is rare but cannot be excluded. The universal situation space can be considered 

the universal set of all possible context attributes that represent the situation. The 

proposed R-CS approach does not use the universal situation space during the reasoning 

process as opposed to CS approach. A temporal situation is composed by selecting 

context attributes that are available within the context state and has a corresponding 

attribute region defined in the universal situation space definition. The temporal situation 

space (ST) definition changes over time based on the context state value. For example, 

suppose at time T, the context state value for the context attributes light, temperature and 

humidity are only available, the temporal situation space is composed with attribute 

region definitions corresponding to light, temperature and humidity. 

The temporal situation space computed from the universal situation is used during 

the reasoning process. The context attribute’s relevance given by weight wi is defined as a 

value between a lower and an upper boundary. The lower and upper boundary is 

application specific, e.g., a value 0 to denote least relevance and a value 10 to denote high 

relevance. At runtime, when the temporal situation space (ST) is computed, the weights 

associated with the context attributes are normalised. 

Definition 5-1: Universal Situation Space (SU) – A universal situation space 

consists of all possible sets of context attributes and corresponding attribute region 

values with their associated relevance (importance). 

܃܁ ൌ ሼܟۯ,ܟۯ ሽܖۯܖܟ… (5-2) 

݊݅݉ ݁ݎ݄݁ݓ  ݓ  maxܽ݊݀ 1  ݅  ݊ 

Definition 5-2: Temporal Situation Space (ST) – A temporal situation space at 

time T represents the real world situation that has m context attributes derived from the 

universal situation space SU that matches the context state at time T. 

܂܁ ൌ ሼܟۯ,ܟۯ ሽܕۯܕܟ… (5-3) 
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 ࢚ࢇࢎ࢚ ࢎࢉ࢛࢙ ൏ ∑, ࢝ ൌ ,     ࢁࡿ  ࢀࡿ ࢊࢇ 
ୀ   

The temporal situation space ST provides the situation definition at time T. It is a 

subset of the universal situation space SU . The context attributes of ST are derived from 

the universal situation space. The temporal situation space changes as context state 

evolves. The use of a universal situation space allows context-aware applications to 

define all possible context attributes that best describe the situation. Our proposed 

dynamic temporal situation composition is illustrated in Figure 5.3.  

 

Figure 5.3: Dynamic Situation Composition - Illustrative Example 

For example, consider a situation definition with attributes a, b, c and d. Suppose, 

at time T, if the context state value for the context attribute c is unavailable, CS considers 

the contribution to be 0 hence influencing the overall confidence computation. This is 

attributed to the fact that CS works on fixed situation definitions. The proposed temporal 

situation will dynamically compose a temporal situation based on available context state 

values for context attributes a, b and d. This is illustrated in Figure 5.3 (bottom left) using 

spatial representation. The temporal situation adapts to the smart environment by 

computing a situation with a set of context attributes that best represents the real-world 

situation. 

The universal situation space SU comprises n number of context attributes and 

corresponding attribute region values. To compute the temporal situation space, a 
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straightforward though expensive approach is to use brute force, in other words, search 

all available context attributes defined within the universal situation space. As the 

number of context attributes increase the search complexity increases. Hence, to handle 

this problem, we propose a partitioned universal situation space technique. The 

partitioned approach divides the universal situation space into multiple partitions based 

on the context attribute’s relevance. 

5.5.1 Situation Partition 

Relevance given by weight (wi) determines the importance of the context attribute 

in the universal situation space. The universal situation space is partitioned over the 

context attribute’s relevance. We use a partition function to determine the context 

attribute’s partition membership. The partition function is defined as follows: 

Definition 5-3: A partition function determines the partition membership of a 

context attribute ai with associated relevance given by wi. 

The partition function provides an approach to split the universal situation space 

into multiple partitions. The partition function is defined as a set of conditions  over the 

context attribute’s relevance. For example, suppose a situation S1 is defined using context 

attributes a1, a2 and a3 and associated relevance (wi) 55, 20 and 60 (0 identifying least 

significant and 100 identifying maximum significant). The partition function defined with 

the conditions ( ) 50 < wi ≤ 100 and 0 < wi ≤ 50 will partition the universal situation 

space into two partitions, partition 1 comprising a1, a3 and partition 2 comprising a2. 

The temporal situation space is computed by initially considering the context 

attributes in the first partition. The confidence for the situation being reasoned is 

computed using the temporal situation space definition. If the computed confidence is 

below the confidence threshold (defined as the minimum confidence value used to infer 

the occurrence of the situation), the search continues into subsequent partitions. Hence, 

the temporal situation space shrinks and grows dynamically. The pseudo code to partition 

the universal situation space is presented in Figure 5.4. 

Step 1 iterates through the attribute regions within the situation space. Step 2 and 

3 checks if the relevance associated with the context attribute region satisfies the 
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conditions defined in.  Step 4 adds the partition number to the attribute region defined in 

the universal situation space. 

 

Figure 5.4: Universal Situation Space Partition - Pseudo Code 

The condition for the partition function is determined by the application designer 

while its value can be improved by learning reasoning outcomes at runtime.  Genetic 

algorithm (Mitchell, 1998) based techniques may be employed to aid this process. The 

reason we chose a partitioned situation space approach is to reduce the complexity in 

iterating through all context attributes defined within the situation when the required 

confidence can be reached by considering some partitions. The confidence threshold is 

application defined constant and can be varied. The higher the threshold value the higher 

the confidence in the inferred situation. 

To further improve the reasoning ability of the R-CS approach, we propose a 

weight (relevance) re-distribution technique. The weight re-distribution recomputes 

weights among context attributes within the temporal situation space. The proposed 

weight re-distribution approach is applicable in cases where situations being reasoned 

cannot co-exist. 

Definition 5-4: Orthogonal Situations (Padovitz, 2006): Situation spaces Si and Sj 

are orthogonal denoted by Si ≠ Sj if they do not overlap. 

Orthogonal situations cannot co-exist i.e. they cannot occur in parallel. 

Orthogonal situations Si and Sj may share context attributes but the context state value of 

the same context attribute will not satisfy (contain) respective context attribute regions 

(region of acceptable values) in Si and Sj at the same time. The contain operation refers to 

Pseudo Code: Universal Situation Space Partition 

Input: Universal Situation Space (SU), Partition Condition   
Output: Partitioned Situation Space 
Begin 

1. for each wi  Ai  in SU 
2.  for each condition C in  
3.   if wi satisfies C 
4.    add partition number to Ai  SU 
5.   end if 
6.  end for  
7. end for 

End 
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the context state value of a context attribute falling within the respective attribute region 

in Si. For example, suppose two situations are studying and presentation in a smart room. 

The situation presentation would require the projector to be turned on (attribute region) 

while the situation studying may not require the projector (off). In this case, the situations 

share the context attribute projector but the context state value for projector at time T 

which can either be on or off satisfies only one situation. Given that a studying activity is 

occurring, the situation presentation cannot occur. 

The use of dynamic weight re-computation is to reduce the relevance of context 

attributes whose context state value satisfies (contained) respective attribute regions in 

orthogonal situations (cannot co-exist). For example, suppose situations running and 

walking are defined over the context attribute speed with corresponding attribute region 

values 1 to 3 km/h and 3 to 6 km/h. At time T the context state value for the attribute 

speed is 3. Given, the situations are orthogonal the context state value satisfies attribute 

regions of both situations. Going by definition 4 this is not possible as orthogonal 

situations do not overlap. Since the overlap influences the confidence computation 

(equally satisfying both situations), the proposed weight re-computation aims to reduce 

the effect of overlapping context state values for orthogonal situations. The weight 

reduction factor v is computed using: 

࢜ ൌ
࢞ࢇࡹ ሺ࢝ሻ െ ࡹ ሺ࢝ሻ

࢞ࢇࡹ ሺ࢝ሻ  ࡹ ሺ࢝ሻ
 (5-4) 

wi denotes the relevance of the context attributes in the temporal situation space 

(ST). The max and the min functions compute the maximum and minimum weights of the 

available context attributes. The weights assigned to the context attribute in the temporal 

situation space ST is derived from the universal situation space SU but, the re-computation 

of weights are performed only within the temporal situation space. The re-computed 

weight is not stored in the universal situation space. Hence, the original weight 

distribution of context attributes in SU is preserved. Further, this approach ensures that 

outcome of the temporal situation space weight re-computation adapts to changing 

context states.  
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For example, consider two situations S1and S2 with the context attributes regions 

ଵܣ
ଵ, ܣଶ

ଵ, ܣଷ
ଵ and ܣଵ

ଶ, ܣଶ
ଶ, ܣଷ

ଶ with respective relevance (weights) ݓଵ
ଵ, ݓଶ

ଵ, ݓଷ
ଵ and ݓଵ

ଶ, ݓଶ
ଶ, 

ଷݓ
ଶ are defined as orthogonal situations. Suppose the context state CT for the shared 

context attributes ܽଵ
ଵ and  ܽଵ

ଶ satisfies the corresponding attribute regions ܣଵ
ଵ and ܣଶ

ଵ. The 

outcome of the reasoned situations will be influenced by the relevance of the shared 

context attribute. Since the situations are orthogonal, we argue that by reducing the 

relevance of shared context attribute, the reasoning outcome can be improved. Hence, we 

compute the value v using the weights ݓଵ
ଵ, ݓଶ

ଵ, ݓଷ
ଵ and ݓଵ

ଶ, ݓଶ
ଶ, ݓଷ

ଶ. The value v is then 

added to the context attributes that do not have overlapping context states (satisfying 

attribute regions of both situations). 

The pseudo code for the temporal situation space computation and the weight re-

computation is presented in Figure 5.5 and Figure 5.6. The use of partition introduces 

flexibility by which the application developer can define a range of context attributes 

based on historic information. In most cases, context attributes with the highest relevance 

determine the situation outcome. In cases when the highly relevant context attribute does 

not produce sufficient confidence, other partitions which are less relevant are explored. 

The paragraph following Figure 5.5 gives a description of the temporal situation space 

computation algorithm. 

 

Figure 5.5: Situation partition and temporal situation space - Pseudo Code 

Pseudo Code: Temporal Situation Space Composition 
Input: Universal Situation Space SU 
Output: Temporal Situation Space ST 
Begin 

1. Declare temporal Situation ST 
2. for each partition p in SU 
3.  for each Ai in p 
4.   if Context State CT of ai satisfies Ai 

   add region to ST 
5.   end if 
6.  end for  
7.  computeConfidence(ST) 
8.  if confidence > threshold 
9.   break 
10.  end if 
11. end for 
12.  return ST 

End
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Step 1 declares a temporary situation space. Step 2 iterates through each partition 

of the universal situation space SU. Step 3, 4 and 5 add the context attribute and the 

corresponding region to the temporal situation space if a matching context state value is 

found. Step 7 computes the confidence for the current situation being reasoned using the 

temporal situation space. Step 8 checks if the computed confidence has reached the 

required threshold. If the threshold value is not reached, the temporal situation space 

expands into the next partition. This process is repeated till the required confidence is 

reached.  

 

Figure 5.6: Temporal Situation Weight Re-Computation - Pseudo Code 

We present a description of the weight re-computation algorithm depicted in 

Figure 5.6. Step 1 and 2 determine if the situations S and S' are orthogonal (cannot co-

exist). Steps 3 -10 iterate through every attribute region of the situation spaces S and S' to 

check if the attribute regions overlap. The compare function in step 5 checks if the 

current context state value for a corresponding context attribute overlaps i.e. does the 

current context state value lies within the attribute regions range of the context attribute. 

Step 11 computes the reduction factor v taking into consideration the relevance (weights) 

associated with the context attribute regions in the situation S. Step 12-16 re-computes 

Pseudo Code: Weight Re-Computation 
Inputs: Temporal Situation Space S, Temporal Situations SS 
Begin 

1. for each situation S' in SS 
2.  if S and S' are orthogonal 
3.   for each attribute-region Ai in S 
4.    for each attribute-region Aj in S 
5.     if compare(Ai , Aj ) 
6.      overlap (Ai)= true 
7.     end if 
8.    end for 
9.   end for 
10.  end if 

11.  compute v ൌ
ୟ୶ ሺ୵ሻି ୧୬ ሺ୵ሻ

ୟ୶ ሺ୵ሻା ୧୬ ሺ୵ሻ
   

12.  for each Ai  in S 
13.  if (overlap(Ai) = false)) 
14.   wi = wi + v 
15.   update wi for Ai 
16.  end if 
17. end for 
18. return S 

End 
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the weights of each context attribute region in Situation S that are not overlapping. Step 

18 returns the new temporal situation space S. 

5.5.2 Situation Composition using Dynamically Discovered 
Context Attributes 

One of the key challenges of context-aware systems is to manage uncertainty. 

Uncertainty is the result of incomplete or inadequate information to reason about context. 

Uncertainty can be reduced by discovering additional evidences (contextual information) 

that help the reasoning process. In the previous section, we proposed temporal situation 

spaces that best represent the current situation based on available contextual information. 

As an extension to the partitioned situation spaces, we consider the problem of 

introducing dynamically discovered context into the situation space definition at runtime. 

Dynamically discovered context is defined as information that is available within the 

smart space situation at time T with no corresponding attribute region definition in the 

universal situation space. The challenge involved in such scenarios is:  

1. Computing the relevance of the newly discovered attribute in the current 

situation 

2. Computing the attribute region, also called region of acceptable values, 

used to compute the contribution of the context attribute 

For example, suppose the situation presentation is defined over the context 

attributes a1, a2 and a3. At time T, if a new context attribute a4 is discovered within the 

smart space, the challenge is to determine the attribute region A4 and relevance w4 of the 

context attribute. We investigate a theoretical solution to this problem using situation 

relationships defined in Context Spaces (Padovitz, 2006).  

Context Spaces defines situation relations containment, equi-containment and 

partial containment. We provide a definition of each situation relationship. We refer to 

the two situations as S, S' and the corresponding attribute regions as Ai, Aj' where 1 ≤ i ≤ n 

and 1 ≤ j ≤ m. 

Containment: A situation S is contained in S', iff for each attribute region (Ai) in S 

there is a corresponding attribute region (Aj') in S' such that Ai  Aj' 
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Equi-Containment: Two Situations S and S' are equi-contained, iff Ai = Aj' 

Partial Containment: Two situations S and S' are partially-contained iff S and S' are 

not contained and some attribute regions in S are defined over the same region of 

acceptable value in S'. 

For example, suppose a song is part of an album. The song is defined over the 

context attributes singer and the album is defined over the context attributes singer and 

composer. The song is contained in album since its region of acceptable values (singer) is 

contained within its respective region in album. If we remove the context attribute 

composer from album, the situations will become equi-contained. Alternatively, by 

adding the context attribute lyricist to song, the song and album become partially 

contained as there is not matching attribute region for lyricist in album. 

Our proposed approach performs a search over related situations which have 

matching regions of acceptable values. We argue, by searching related situations it might 

be feasible to compute the attribute region value and relevance (weight) of a context 

attribute. Suppose song and album are partially-contained (refer previous example). A 

new context attribute composer in song will have not have a corresponding region of 

acceptable values. Since song and album are partially-contained, by searching album, a 

suitable region of acceptable value for composer can be computed. We use the terms 

similar and co-exist to represent the type of situation containment. Since there can be 

many partially-contained, contained and equi-contained situations, we use the Jaccard 

similarity coefficient (Doan et al., 2002) to compute similarity between situations. 
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 (5-5) 

X and Y are two situations. P(X, Y) is the number of attribute regions that are 

similar in both situations. ܲሺ തܺ, ܻሻ is the number of attribute regions in X similar to 

attribute regions in Y and ܲሺܺ, തܻሻ is the number of attribute regions in Y similar to 

attribute regions in X. We go by the assumption that in a specific application domain, the 

relevance and attribute region values of a context attribute are shared among similar 
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situations. The Jacard’s coefficient provides a way to find situations in the application 

space that best matches the situation being reasoned. The set of situations that share one 

or more context attribute regions with the situation being reasoned, constitute a situation 

closure.  The similar situations are ranked based on Jacard’s similarity co-efficient which 

is then used to determine the best sets of relevance and acceptable region of values for the 

context attribute. The newly discovered attribute’s relevance and attribute region values 

are incorporated into the temporal situation space. The confidence is recomputed using 

the newly computed temporal situation space. The situation composition using 

dynamically discovered context is illustrated in Figure 5.7. The situation defined using 

two attributes a1 and a2 evolves spatially by incorporating newly discovered context a3. 

 

Figure 5.7: Illustration of Situation Composition with Dynamic Context 

For example, consider the situations presentation and lecture in a smart room. 

These two situations are assumed to have some form of containment (co-exist). The 

situation presentation is defined with the following context attributes and corresponding 

attribute region values projector (on), noise (4 - 7), people (5 - 30) and light (dim). The 

situation lecture is defined with the following context attributes and corresponding 

attribute region values projector (on), noise (1 - 2) and light (dim, bright). At time T, the 

context state values for the following context attributes projector, noise, light and people 

are available. Using the context state values at time T the situation lecture can be 

reasoned within the smart space. While reasoning the situation lecture, the context 
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attribute people is the newly discovered attribute with no corresponding context attribute 

region definition. Using the proposed similarity-based reasoning, the situation 

presentation closely matches the definition of situation lecture. Hence, the attribute 

region and the relevance for the context attribute people are derived from the similar 

situation presentation. The new context attribute is then added to the temporal situation 

space computed at time T. As an extension to the above technique, at a much higher 

level, when sufficient similarity is not reached between situations, ontology-based (Gu et 

al., 2004) matching may be used to strengthen the reasoning process. The pseudo code 

that computes the relevance and the corresponding attribute region value, for the 

dynamically discovered context attribute, is presented in Figure 5.8. A description of the 

pseudo code is presented in the paragraph following Figure 5.8. 

.  

Figure 5.8: Compute newly discovered context attribute’s relevance and attribute 
region value - Pseudo Code 

Step 1 computes the list of situations that can co-exist with the situation being 

reasoned. Step 2 and 3 iterates through each situation in the application space. Step 4 

computes the similarity coefficient between the reasoned situation and the situation in the 

application space. This is denoted as C(S) containing the list of situations similar to the 

reasoned situation S. Step 7 - 9 sorts the situation list (C(S)) based on the similarity 

coefficient. The relevance and attribute region values of the highest ranked situation are 

returned. 

PሺS, sሻ

PሺS, sሻ   PሺSത, sሻ   PሺS, s̅ሻ
 

Pseudo Code: Compute relevance and attribute region for newly 
discovered context attributes 
Input: New Context Attribute ai, Reasoned Situation (S) 
Begin Compute Similar Situations (C(S)) 

1. for each situation s in Application Space() 
2.  if context attribute ai  s 
3.   similarity_coefficient = 

4.  end if 
5. end for 
6. rank (C(S)) 
7. obtain attribute relevance and attribute region  
8. return relevance, attribute region 

End 



154   

 

5.6 Sensor Data Quality and Flexible Attribute 
Region 

The second extension proposed to Context Spaces (CS) is the introduction of 

sensor data quality and flexible attribute regions. These parameters help in computing the 

context attribute’s contribution in the reasoned situation. The contribution determines the 

influence of the context attribute on the outcome of the reasoned situation. For example, 

suppose a situation presentation is defined over the context attribute light with attribute 

region values (dim, bright). If at time T, the context state value for the context attribute 

light is dim, then the contribution of the attribute light in the situation presentation is 1. 

Alternatively, if the context state value is off, then the contribution is 0. The contribution 

of a context attribute is used as evidence to infer the situation. 

To compute the contribution, CS takes into consideration the context attributes 

region and its context state value at time T. If the context state value for the context 

attribute is within the attribute region, it results in a contribution value of 1, otherwise 0. 

The contribution of a context attribute (ai) within the situation S in CS (Padovitz, 2006) is 

computed as 

ࢉ ൌ ଙෝࢇሺܚ۾   ሻ (5-6)

In equation (5-6), Pr is the probability that context attribute ai is within the 

corresponding attribute region Ai. ai represents the sensed value (context state) for the 

context attribute at time T. ܽపෝ  represents the error corrected value given by 

ଙෝࢇ ൌ ࢇ ࢋ (5-7) 

ei is the error in the sensor reading. CS assumes that error is obtained from the 

sensor or from a probability distribution function based on historic sensor data collected. 

The probabilistic approach ensures error/deviation in sensor data does not influence the 

reasoning process. The function used by CS to compute the contribution value is a 

crisp/rigid function i.e. it follows the following criteria 
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ࢉ ൌ ൜
, ଙෞࢇ 

, ݁ݏ݅ݓݎ݄݁ݐ
 (5-8) 

This assumption of CS reduces its reasoning capability in situations where the 

context state value for the context attribute ai at time T is marginally outside the attribute 

region value. For example, suppose the context attribute temperature is defined in the 

situation meeting with a corresponding attribute region value 24 - 27. CS crisp boundary 

approach computes a contribution of 1 if the context state value of temperature is 

between 24 and 27 and 0 if it is outside this range (e.g. 27.01). An illustration of the 

Context Spaces crisp boundary is provided in the earlier example is depicted in Figure 

5.9. 

 

Figure 5.9: CS crisp boundary illustration 

One approach to convert the crisp context attribute region definition into a more 

flexible approach is to use Fuzzy logic and Fuzzy membership functions (Mendel, 1995). 

A typical fuzzy logic-based membership function is depicted in Figure 5.10. Though 

fuzzy logic can be used to compute varying membership values, it is not very useful in 

many application scenarios where a decision has to be made with certain confidence. For 

example, it is not very helpful for a context-aware application to conclude that it is 0.6 

hot and 0.4 cold. Further, the use of fuzzy logic requires precise definition of fuzzy sets 

and membership functions to determine the context attribute’s membership. Moreover, 

fuzzy does not provide a likelihood of occurrence of an event or condition but merely 

provides a value between 0 and 1 where 0 represents no membership, 1 represents 

complete membership and a value between 0 and 1 represents partial membership. 

We propose a fuzzy like approach by extending the crisp region of Context 

Spaces to a flexible-crisp region i.e. defining extended boundary regions around the 

existing attribute region definition. We define outer regions to mean existing attribute 
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region definition but allowing certain deviation while computing the contribution. Our 

contribution function is computed using the following rule 

ࢉ ൌ ቐ

, ଙෞࢇ 
, ଙෞࢇ  ሺ ଙሻ
, ݁ݏ݅ݓݎ݄݁ݐ

 (5-9)  

The value  is the contribution if the context state value of the sensor is within 

the outer attribute region (ܣప ). The value  is application defined which gives the 

application developer the ability to define contributions for context attribute when its 

context state value is just outside the CS defined crisp attribute region. 

 

Figure 5.10: Fuzzy Membership Function 

Example: Consider a context attribute temperature defined with a context 

attribute region value of 22 - 250 C for the situation “GOOD OPERATION”. If the 

context state value for the context attribute temperature is 25.05, CS approach will return 

0. This results in the context-aware application concluding that operating condition is not 

good. This is primarily attributed to the crisp attribute region definition of CS. We apply 

the proposed approach to the same scenario. We define an outer context attribute region 

 ଙሻ of 0.5. In this case, the context state value of 25.05 for the context attribute)

temperature would return the value  rather than 0 as in the case of CS. The proposed 

outer region-based approach allows the application to incorporate deviations in the 

context attribute region definitions. 

The value  is computed using a fuzzy inspired approach. Instead of using fuzzy 

membership functions the context state value in the outer region can be fitted into a 

simple distribution function which can be used to determine the values of. Figure 5.11 

is an illustrative example of how   can be computed using the different distributions. In 
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case 1, the outer region is defined as a crisp region while in case 2, the outer region is 

characterised as a normal distribution. Figure 5.12 illustrates the computation of  for 

different context state values. We have assumed a value of 0.5 for. 

 

Figure 5.11: Distribution function to compute  

 

Figure 5.12: Contribution c for a crisp outer region 

The next proposed extension incorporated in CS is sensor data quality. The sensor 

error heuristic employed by CS relies on pre-defined error probability to compute sensor 

errors given by (6) and (7). The error value ei is adjusted with the sensed value for the 

context attribute ai to compute the error corrected value ܽపෞ. We introduce sensor data 

freshness parameter to determine the quality of the data collected. By data freshness we 

try to answer the question how recent the data is? We do not change our focus into 

quality of context (Buchholz et al., 2003) as that is a topic of research by itself. Our 

approach uses sensor data freshness to identify old sensor data. Sensor data quality is 

important in pervasive environments especially in cases where sensor data is collected 

using mobile data mules. The mobile data mules have their own schedule to deliver data 

to the sink. Hence, the sensor data may not be always recent. By using data freshness 

parameter, the context-aware application obtains the ability to distinguish between old 

and current data. Incorporating the flexible attribute region value and sensor data 

freshness, the new contribution function is given by 

ࢉ ൌ ଙෝࢇሺܚ۾  ሻ ∗   (5-10) ࢙࢙ࢋࢎ࢙ࢋ࢘ࡲ
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The function Pr represents the modified sensor error probability that takes into 

consideration outer attribute region definitions. The Freshness metric is defined using a 

predicate Fp(ai). The outcome of the Freshness metric is given below.  

࢙࢙ࢋࢎ࢙ࢋ࢘ࡲ ൌ ൜
, ࢙ࢋࢌ࢙࢚ࢇ࢙ଙෞࢇ ࡲ
, ݁ݏ݅ݓݎ݄݁ݐ

 (5-11)  

For example, let the predicate Fp(ai) be defined as 0 ≤ hour ≤3. The predicate 

hour is the data freshness metric’s unit. Sensor data for the corresponding context 

attribute ai will result in a contribution value 0 if the data is more than 3 hours old. The 

contribution function given by (5-10) makes the sensor inaccuracy heuristics and the 

sensor data freshness dependent. The sensor inaccuracy heuristic also incorporates 

flexible attribute regions. To handle scenarios where high degree of independence is 

required between sensor error and data quality, we define a modified contribution 

computation function below 

ࢉ ൌ ࢊ ∗ ଙෝࢇሺ࢘ࡼ   ሻ  ࢊ ∗  (5-12) ࢙࢙ࢋࢎ࢙ࢋ࢘ࡲ

d1 and d2 are weights assigned to each sensor heuristics, making them independent 

of each other. Hence, an application can decide which heuristic needs to have a major 

impact on the contribution computation function. Making d2 = 0 will remove the 

influence of sensor data freshness heuristic and vice-versa. 

5.7 Hierarchical Context Attribute Regions 

The final extension proposed to Context Spaces (CS) (Padovitz, 2006) is the 

introduction of hierarchical context attribute regions. CS defines single level context 

attribute regions. This approach falls short in exactly capturing real-world situations 

where context attribute regions are related. By relation, we create the notion of 

dependence i.e. the outcome of one context attribute is based on another. Since situations 

in CS are defined using context attribute regions, we propose a hierarchical approach that 

facilitates relationships between context attribute regions. 

For example when reasoning the situation person running using the context 

attribute speed, CS approach uses context attribute region to define speed for the running 
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person which can range from 5 to 10 km/h. This reasoning approach is sufficient when 

situations are defined at high-level i.e. person running. When situations are required to be 

defined at much finer granularity, the outcome of the person running situation becomes 

highly dependent on the person type i.e. the speed of the person is dependent on the age 

of the person. The value for speed would vary for a person in the age group 15 to 25 and 

a person in the age group 45 to 50. Current CS approach does not provide a way to reason 

situations based on such relationships.  

The proposed hierarchical context attribute regions allow defining relationships 

between attribute regions. The proposed hierarchical attribute region approach has the 

following merits: 1) define situations with finer granularity helping the virtual world to 

model the real-world situation with improved accuracy, 2) improve the reasoning ability 

of the context-aware system. To incorporate multi-level context attribute relationships, 

we introduce the terms “parent” and “child” context attribute regions. Every parent 

attribute region has a corresponding range for its child attribute regions. For example, if 

the parent context attribute region age is between 15 and 25, then the child context 

attribute region speed may have a value 5 to 10 km/h, alternatively, if the parent context 

attribute region age is between 45 and 60, then the child context attribute region speed 

may have the value range 3 to 5 km/h.  

The similar situation can be defined in CS but independently i.e. a situation for a 

person between the age 15 and 25 and a situation for a person between the age 45 and 60. 

Suppose age and speed have a weight of 0.5 assigned to them respectively and the 

attribute region definition defined independently as 45 to 60 and 3 to 5 km/h. For a 

context state value of speed = 6 and age = 50, CS will compute a confidence of 0.5 for 

the situation running. The 0.5 computed by CS can be misleading as the context-aware 

application may not be able to completely exclude the occurrence of the situation 

running. Using the proposed hierarchical attribute region relationships, the contribution 

of the parent context attribute is computed as a function of the child context attributes. 

Hence, the overall contribution using R-CS would be 0. The R-CS approach aids in 

negating the occurrence of the situation running with higher certainty. 
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The proposed approach allows definition of multiple corresponding attribute 

regions for a context attribute within the situation space. Hence, based on the primary 

context attribute’s predicate, the child context attributes predicate changes within the 

situation definition. Further, the overall contribution of the parent attribute is computed 

by computing the cumulative contribution of the child attributes. A real-world situation 

definition using the proposed hierarchical context attribute regions approach is presented 

in Table 5.1. 

Situation:  Running     Relevance 

Context 
Attribute 

Context 
Attribute 
Regions     

(weights) 

0 to 5  

Location "=GYM" "=PARK" "!=OFFICE" 2 

Age Sub Regions "20 - 30" "40 - 50" 5 

  Speed ≥ 6 & ≤ 8 ≥ 2 & ≤ 4 5 

  Heart Rate ≥93 & ≤146 ≥83 & ≤131 5 

  Systolic BP ≥108 & ≤122 ≥112 & ≤130 5 

Table 5.1: Definition of situation “Running” illustrating hierarchical context 
attribute regions 

Consider the primary context attribute ai associated with attribute regions ܣ
ௗ and 

its related sub-attributes adk with associated attribute regions Adk. The notation d 

represents the number of sub attribute regions for the context attribute ai. Each Adk is 

associated with a weight wk that represents the relevance of the context attribute adk 

within the situation. The contribution of each context attribute adk within the situation is 

computed using (5-12). The total contribution of the primary context attribute (ai) is 

given by 

ሻࢇሺࢉ ൌ   ࢊ࢝

࢘

 ୀ

ሻࢊࢇሺࢉ   ܌    (13-5) ܖ

The contribution c (adk) determines the contribution of the kth
 context attribute 

whose corresponding context attribute region is given by the dimension d of the parent 

context attribute ai. As illustrated in Table 5.1, the context attribute (ai) has ܣ
ௗ 
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corresponding attribute regions. d takes the value 2 in the example given in Table 5.1. In 

a generic form, we can represent the attribute region relationship in a matrix given by 


 

 … 
ࢊ


 

 … 
ࢊ


 

 … 
ࢊ

 (5-14)  

The header row represents the number of context attribute region dimensions 

along with their predicates for the context attribute ai. The rows represent the number of 

dependent context attribute regions for the parent attribute ai with corresponding attribute 

region values. 

5.8 Summary 

Sensors both physical and virtual are the key source of data in smart spaces. 

Hence, we require approaches that are capable of modelling real-world situations (smart 

spaces) based on available sensor information. Moreover, these models need to have the 

capability to represent the real-world situations with great detail, allowing context-aware 

applications to reason situational context, i.e. reasoning with the notion of situations. In 

this chapter, we proposed extensions to Context Spaces incorporating dynamic reasoning 

based on available sensor data. Context Spaces’ is a generic context modelling approach 

that uses situations-based reasoning. Since sensor data changes over time and not all data 

are available ubiquitously, it is important for a context model to have some level of 

adaptation. We have proposed the following extensions to Context Spaces with the goal 

to introduce dynamic situation adaptation. 

(1) A dynamic situation-composition approach that models real-world situations 

based on available sensor data. We proposed a technique that employs 

similarity measures to compute relevance and attribute regions for context 

attributes that are dynamically discovered within the smart space. Our 

dynamic situation composition employs situation partitioning, temporal 

situation composition and dynamic weight re-computation algorithms to 

improve reasoning capability under uncertainty. 
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(2) The use of flexible attribute region approach against a crisp attribute region 

definition employed by Context Spaces. This approach aids the reasoning 

process by adding more flexibility and tolerance to sensor values that lie 

within the border of attribute region definition.  

(3) Additional sensor inaccuracy metrics, namely, data freshness. This attribute 

addresses the problem of out-of-date sensor data, increasing the accuracy of 

the reasoning process. 

(4) Hierarchical (multi-level) context attribute regions that facilitate defining 

relationships between contextual attributes. The multi-level context attribute 

provides applications with the ability to define situations with finer 

granularity. 
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6  
Implementation and Prototyping 
of sGaRuDa, 3D-KNN and R-CS 
6.1 Introduction 

In the previous chapters, we proposed a system framework, namely, sGaRuDa 

that enables mobile devices to collect data from sensors distributed within pervasive 

environments. We extended the proposed architecture to suit a wider range of sensors by 

proposing 3D-KNN, a k nearest neighbour-based sensor data collection algorithm. 

Finally, we proposed a situation-based smart spaces modelling approach, namely, R-CS. 

The modelling approach allows dynamic adaptation of situations based on available 

sensor data. 

In this chapter, we present prototype and algorithm implementations of the 

proposed sensor data collection and smart spaces modelling approaches. This chapter is 

divided into three major sections focusing on the three main contributions of this thesis. 

In each section, we initially present an overview of the development tools followed by 

details of system/algorithm implementations. This chapter is organised as follows: 

Section 6.2 presents the implementation details of the proposed data collection system 

framework sGaRuDa. Section 6.3 presents the implementation of the k-Nearest 

Neighbour based data collection approach namely, 3D-KNN. Finally section 6.4 presents 

the implementation details of the R-CS system. 

6.2 sGaRuDa: Proof-of-Concept Implementation 

Chapter 3 proposed sGaRuDa, a system framework for mobile data mule-based 

sensor data collection. As stated in Chapter 3, our proposed approach does not rely on 
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prior network infrastructure information for sensor data collection. Moreover, the 

proposed system framework does not require any specialised hardware to communicate 

with the underlying sensor network infrastructure. sGaRuDa achieves sensor data 

collection without the need for a fixed data collection infrastructure. The proposed data 

collection algorithms were targeted at Bluetooth-based sensor networks. The use of 

Bluetooth-based sensor networks leverage on the abundant existence of Bluetooth-based 

mobile devices in current real-world environments. This is primarily attributed to the 

wide acceptance of Bluetooth (BluetoothSIG, 2010a) technology across a multitude of 

mobile device platforms (Eliasson et al., 2008, Nachman et al., 2005, Leopold et al., 

2003). 

In this section, we present details of our system prototype implemented on real-

world mobile devices that belong to smart spaces. The implementation on mobile devices 

(PDA) proves the functional feasibility of our proposed sensor data collection 

architecture without the need for specialised hardware for data collection and delivery. 

The implementation scenario is presented in detail in Chapter 7. The detailed discussion 

of implementation and prototyping of sGaRuDa, 3D-KNN and R-CS presented in this 

Chapter is extended from the following published papers (Jayaraman et al., 2007, 

Jayaraman et al., 2008a, Jayaraman et al., 2008c, Jayaraman et al., 2009b, Jayaraman et 

al., 2009a, Jayaraman et al., 2008b, Jayaraman et al., 2010a, Jayaraman et al., 2010c, 

Jayaraman et al., 2010b) 

6.2.1 Development Tools 

6.2.1.1 Mulle Sensor Node 

The underlying sensor network used in our implementation is the Mulle sensor 

node platform. Mulle is a Bluetooth-based sensor node developed at EIS Labs, Lulea 

University of Technology Sweden (EISLab, 2010). The Mulle is a low-powered wireless 

sensor node with the capability to transmit sensor data over Bluetooth (v3.1) or/and 

802.15.4 (Zigbee) (v5.2). Figure 6.1 presents a Mulle sensor node. 
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Figure 6.1: Mulle Sensor Node (adapted from (Eistec, 2009)) 

Hardware: The physical size of the sensor node is 24x26x5mm weighing 5 grams. It 

has a 10MHz Renesas M16 (Renesas, 2008) microcontroller. The radio 

communication hardware available on the Mulle is a Mitsumi Bluetooth module [4] 

and/or an 802.15.4 Zigbee module. The Mulle requires DC power in the range of 

3.5V - 5.5V. The Mulle is equipped with a real-time clock (RTC) which serves the 

following purposes: 1) provides the MCU with a sub-clock and 2) generates timer 

interrupts. The Mulle is also equipped with an onboard flash memory of 2 MB. The 

Mulle has an onboard Dallas DS600 temperature sensor and provides an optional 

26 pin connector to connect a multitude of sensors. The batteries used to power the 

Mulle sensor node are lithium or lithium-ion with capacity ranging from 120 mAh 

to 2200 mAh. The Mulle hardware platform architecture is presented in Figure 6.2. 

 

Figure 6.2: Mulle Hardware Architecture (adapted from (Eistec, 2009)) 

Software: The Mulle comes with open-source software written in C programming 

language. The current available firmware on the Mulle is developed using the IAR 
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workbench (IARSystems, 2008). The software architecture of Mulle allows it to 

efficiently use the Bluetooth low-power modes, Park and Sniff to reduce the overall 

energy consumption hence greatly improving the lifetime of the sensor node. The 

software module provides the capability to change the MCU clock speed from 

10MHz to 1MHz. The Mulle is provided with an expansion board that is used to 

program the Mulle to application requirements. The expansion board is connected 

by USB to the computer running the IAR workbench. A M16C-Flasher 

(M16CFlasher, 2008) is used to reprogram the Mulle using the expansion board. 

Figure 6.3 shows the Mulle expansion board (left) and a screenshot of the M16C 

Flasher application used to reprogram (right) the Mulle. The Mulle software stack 

uses standardised TCP/IP over Bluetooth to transfer sensor data. The use of TCP/IP 

allows Mulle to become part of existing internet infrastructure. This feature though 

requires the availability of a permanent Bluetooth access point to relay sensor data 

from the Mulle to the internet. The Bluetooth stack used by the Mulle is a 

lightweight Bluetooth stack implementation, namely, lwBT (Ohult, 2006). The 

stack supports the following Bluetooth profiles, namely: Dial-up Networking 

(DUN), Serial Port Profile (SPP), Personal Area Networking (PAN) and Local Area 

Network Access Profile (LAP). 

We chose the Bluetooth-based Mulle sensor node platform for prototype 

implementation and experimentation because: 

1) Bluetooth sensor nodes have been proved feasible for low-powered operations 

hence making them suitable for sensor network applications (Leopold et al., 

2003). The Mulle sensor platform belongs to the category of low-powered 

sensor nodes. The operational power characteristics of Mulle is much efficient 

(Lundberg et al., 2005) than other popular Bluetooth-based sensor nodes like 

BTnode (ETH-Zurich, 2007) and iMote (Nachman et al., 2005). The Mulle’s 

sleep time energy consumption is 0.012mW compared to 9.9mW for BTnode 

and 9mW for iMote sensor platforms respectively. A detailed analysis of 

Mulle’s power consumption is presented in the evaluation section of the 

thesis. 
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2) Mulle uses C programming with open source stack implementation making it 

feasible to extend/develop new functionality. 

 

Figure 6.3: Mulle Expansion Board and Mulle Development Environment 

3) The use of standardised Bluetooth stack and Bluetooth profiles provides 

interoperable capabilities. This feature allows Mulle to communicate with 

current-day consumer mobile devices with no additional hardware/software 

requirements. The BTnode and the iMote software architectures use 

customised Bluetooth stack to communicate with other sensors and the base 

station. Hence, inter-operability with current day mobile device platforms may 

not be directly possible. 

6.2.1.2 Software and Hardware Toolkits 

The data collection framework presented in Chapter 3 has been implemented on 

two classes of mobile devices: 1) A personal digital assistant (PDA) which exemplifies 

the class of current day smart mobile device platforms and 2) A mobile robot that 

represents the class of mobility-enabled devices that could be part of future pervasive 

environments. The mobile robot used in our implementation is assumed to be part of the 

pervasive environment and requires no special hardware to communicate with the sensor. 

Further, the mobile robot implementation is also used as an emulator to emulate smart 

mobile devices movements in real-world scenarios. The software and hardware 

development tools/kits used in the development of the system prototype includes: 
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1) Microsoft.NET Framework and Microsoft .NET Compact Framework (CF) 

(Microsoft.NET, 2010): We have used the Microsoft.NET and .NET CF 

platforms to develop our system prototypes. The .NET CF allows 

development of managed applications for resource constrained devices like 

PDA. We have used the .NET framework to simulate a simple sink operation. 

The collected sensor data is delivered by the mobile data mule to the sink. The 

.NET CF based application can be ported to a multitude of current-day smart 

mobile device platforms. Our proposed system architecture is not restricted by 

the development platform and can be migrated to any other mobile device 

platforms e.g. Symbian (Java) (SymbianFoundation, 2010), Android (Google, 

2010), etc. The development in .NET CF was done using VisualBasic.NET 

platform. 

2) BTAccess.NET (BTAccess, 2008) and BlueCove (BlueCove, 2007): The 

BTAccess.NET software development kit (SDK) provides mobile devices 

running the .NET CF platform the ability to communicate and control the 

Bluetooth hardware. The BTAccess.NET provides, application programmable 

interfaces (API) to managed applications hiding the underlying un-managed 

Bluetooth code functions. We have used BlueCove library (BlueCove, 2007) 

for the robot-based sensor data collector implementation. BlueCove is a Java 

library (JSR-82) for Bluetooth that works on most devices that support Java 

and has a supporting Bluetooth stack implementation. BlueCove stack is used 

to communicate and control the Bluetooth hardware present on the robot 

platform. 

3) ER1 Robot Platform(Evolution-Robotics, 2010): The ER1 is an off-the-shelf 

robot platform developed by Evolution Robotics. The ER1 build is completely 

customisable based on application requirements. The robot hardware is 

equipped with infrared sensors for obstacle avoidance, a web-camera for 

vision and two motors controlling the robot’s movement. ER1 comes 

equipped with a software development kit, the Evolution Robotics Software 

Platform (ERSP). ERPS allows software based control of the ER1 hardware. 

The heart of the ER1 is a laptop that controls the entire system functionality. 
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4) Ekahau Positioning Engine (Ekahau, 2010): Ekahau position engine (EPE) is 

a software-based location system that uses wireless access point to triangulate 

device locations. In our implementation, we use EPE as an indoor global 

positioning system (GPS) providing the mobile data mule its current location 

at any instance in time. The EPE is completely software based and only 

requires a wireless network interface card to be present on the device being 

tracked. 

5) JAVA: We use JAVA to implement the data collection framework functions 

on the mobile robot. The factor behind the choice of language was attributed 

to the fact that ER1 and EPE provide java API’s for robot control and location 

information. Hence, we decided to migrate sGaRuDa to JAVA taking 

advantage of platform independence and availability of robot control API’s. 

The JAVA implementation also proves the platform independent nature of the 

proposed data collection architecture. 

6.2.2 sGaRuDa: A Practical System Prototype 

The implementations of sGaRuDa, the proposed data collection architecture are 

divided into three parts: 

1) Mulle Sensor Node Implementation 

2) Mobile Device Implementations 

3) Sink Implementation 

The sensor node implementation deals with the software implementations on the 

Mulle sensor node platform (Eistec, 2009). The mobile device implementations deal with 

implementation on the mobile device and mobile robot platforms. The sink 

implementation deals with simple sink functions. The sink implementation is used to test 

some of the features that are part of the sGaRuDa architecture e.g. the dynamic activation 

schedule. A complete sink implementation may not fit within the scope of this thesis. 

Hence, our sink implementation is a restricted to functionality that support sGaRuDa 

framework.  
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6.2.2.1 Mulle Sensor Node Platform Implementation 

We stated in Chapter 3, the implementation on the sensor node is developed with 

sensor characteristics in mind aiming to reduce the workload and hence, improve the 

sensor’s life time. The operation performed by the Mulle sensor node is depicted in 

Figure 6.4. As depicted in the flowchart, the Mulle sensor node is only expected to 

perform its regular functions. No additional task is enforced on the Mulle sensor node. 

 

Figure 6.4: Mulle Sensor Node- Data Flow 

Mulle programming was done using C language. We have developed new 

modules and modified existing modules to incorporate the functions required by the 

sGaRuDa framework. The primary functions that have been implemented on the Mulle 

are: 

1) A scheduler function that periodically turns on the Bluetooth radio allowing 

the Mulle to participate in data collection. 

2) An incoming data processing function that performs the following 

a. Dynamically receive and update the sensor’s activation schedule 

b. Synchronise the sensor’s time with the mobile data mule 

c. Exchange data with the mobile data mule using the requested window 

size by consecutively reading the data from the flash memory 
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3) Module to update the sensor node’s name fields based on available energy and 

data to be transmitted. 

For prototype implementation, we have used the Bluetooth serial port profile 

(SPP). One major reason to use SPP is attributed to its ease of connection establishment. 

Using other Bluetooth profiles like LAN Access Profile (LAP) introduce TCP/IP 

overheads. To keep the implementation on the Mulle simple, we stick to SPP profile. 

Figure 6.5 depicts the various modules that have been implemented on the Mulle to 

achieve the aforementioned functionality. The yellow coloured boxes represent Mulle’s 

functional groups. The boxes in light green represent modules whose existing functions 

have been modified or new functions have been added as a part of sGaRuDa framework. 

The modules in dark green represent the newly implemented modules. 

 

Figure 6.5: Mulle Modules Implemented 
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The lwBT folder contains the files corresponding to the Bluetooth stack. The file 

sdp.c has been modified to add a serial port service. The spi folder has files that relates to 

the flash memory on which the Mulle configuration is stored. We have modified the 

configuration files to introduce a timer value to control the Bluetooth radio and the 

sensing function. The eisconfig.c file defines the configuration and the at45db321d.c 

handles reading and writing from the onboard flash memory. Figure 6.6 presents a 

sample code of the eisconfig.c file. 

void eis_config_default (void) { 
 eis_config. bt_interval_s = 60 * 1; 
  eis_config.bt_on_time_s = 60 * 3; 
  eis_config.windowSize = 0; 
  eis_config.bak_r_ptr = 0; 
  eis_config.transferDone = 0; 
  eis_config.nr_reboots = 0; 
    eis_config.max_nr_files = 8000; 
  eis_config.samples_per_file = 6; 
  eis_config.sample_interval_s = 60 * 1; 
   eis_config.w_ptr = 3; 
  eis_config.r_ptr = 1; 
  eis_config.nr_samples = 0; 
  eis_config.min_volt_BT = 3.4;    
 } 

Figure 6.6: eis_config.c - Code Snippet 

The project_files folder has application dependent files primarily the maintask.c. 

This module defines the program’s entry point and has the code that functions within the 

main loop as depicted in Figure 6.4. The primary purposes of this file are: 1) Enable 

timers and interrupts; 2) Read configuration from flash memory during boot; 3) Call 

appropriate functions/modules when timer expires; 4) Run a watchdog timer to reboot the 

Mulle after execution failure. A code snippet of the maintask.c file is presented in Figure 

6.7. 

The shared_project_files contains the newly implemented modules related to 

sGaRuDa framework. The four main modules that have been implemented are 

data_processor.c, send_data.c, update_actv_schedule.c and update_name.c. The bt_spp.c 

file handles all serial port related functions i.e. establishing connection, tearing down a 

connection, relaying data from the RFCOMM layer to the data_processer.c and sending 
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data using the send_data.c module over serial port. Figure 6.8 presents code snippets for 

the module bt_spp.c. 

void maintask(void) { 
 /* read system configuration to be used by all subsystems */ 
 read_config();  
  /* turn on the timer output  and enable interrupts*/ 
 tm_set_state(TM_RTC, TM_ACTIVE); 
 int2_start();   
 int4_start(); 
 for (;;) { 
  /* Handle timers */ 
 if ( KS_inqsema(INT2_SEM) == SEMA_DONE) { 
   bt_period++; 
   sense_period++;     
   //code to check if data needs to be sensed 
   if (sense_period == eis_config.sample_interval_s / 60){ 
    sense_period = 0; 
    sensord_sample();  
   } 
   //code to check if Bluetooth needs to be turned on       
   if (bt_period == eis_config.bt_interval_s / 60) { 
    bt_period = 0;                 
    if (lwbt_active !=1){ 
    //Setting a task to start the Bluetooth radio immediately 
     titask_add(TI_RUN_ONCE, 1, lwbt_start, NULL); 
     //add task to turn bluetooth off 
     titask_add(TI_RUN_ONCE, eis_config.bt_on_time_s * 4,  
     lwbt_disconnect, NULL); }} 
   }  } // for(;;) 
} // maintask 

Figure 6.7: maintask.c - Code Snippet 

The data_processor.c module handles all incoming data request. This module can 

also be called the controller as it decides the next corresponding action to be performed 

by the Mulle. For example, if the request is for data transmission the module instructs the 

send_data.c module to begin data transfer for the specified window size. Figure 6.9 

presents code snippets of data_processor.c module. 

The update_actv_schedule.c handles the following functions: 1) un-parse the 

activation schedule received from the mobile data mule; 2) Update the Mulle with the 

new activation schedule. The above functions performed by update_actv_schedule.c are 

presented as code snippets in Figure 6.10 and Figure 6.11. 

 

 



174   

 

err_t com1_recv(void *arg, struct rfcomm_pcb *pcb, struct pbuf *p, 
err_t err) { 
 char *tempdata; 
 u8_t *data; 
 struct pbuf *returnp; 
 int counter = 0; 
 if (p->len > 0){    
  while (q) {    
   data = (u8_t *)p->payload; 
    if (counter >=1) { 
     tempdata = realloc(tempdata,strlen(tempdata) +    
          strlen(data)); 
     strcat(tempdata,data);  } 
    else{ 
     tempdata = malloc(strlen(data)); 
     strcpy(tempdata,data);  } 
    counter ++; 
    p = p->next;  } 
   putchar('\n'); 
   returnp = processIncomingData(tempdata, pcb); } 
 return ERR_OK;  } 

Figure 6.8: bt_spp.c - Code Snippet 

 

struct pbuf* processIncomingData(char* data, struct rfcomm_pcb *pcb1) { 
 char *temppayload, *copiedpayload, *result; 
 struct pbuf *returnp; 
 struct Date *now; 
 char w_size[2]; 
 if (strncmp(data, "DATE", 4) == 0) { 
  now = getDatafromDate (data);     
  setDatatoRTC(now); } 
 else if (strncmp(data,"BEGIN",5) == 0) { 
  printf("Recevied New Activation Schedule\n"); 
  readActivationSchedule(data);  } 
 else if (strncmp(data,"STARTD", 6) == 0){ 
  result = strtok(data," "); 
  result = strtok(NULL," ");  
  w_size[0] = result[0]; 
  w_size[1] = '\0'; 
  if (atoi(result) != 0){ 
   eis_config.windowSize = atoi(w_size);     
   returnp = sendData(data,pcb1);  } } 
 else if (strncmp(data,"ACK", 3) == 0){ 
  eis_config.r_ptr = eis_config.r_ptr + eis_config.bak_r_ptr; 
  returnp = sendData(data,pcb1);  } 
 return returnp;   
} 

Figure 6.9: data_processor.c - Code Snippet 
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void readActivationSchedule(char *aSchdule) { 
 int boolVCALEVENT = 0; 
 char *date, *rrule, *desc, *result = NULL; 
 char *result1 = NULL, *tempresult = NULL; 
 result = strtok(aSchdule,"\n"); 
 while (result!=NULL){  
  if (strncmp(result,"BEGIN:VCALENDAR", 15) == 0){ 
   result = strtok(NULL,"\n"); 
   result = strtok(NULL,"\n");  } 
  if (strncmp(result,"BEGIN:VEVENT",12) == 0){ 
   boolVCALEVENT = 1;  } 
  else if (strncmp(result,"DTSTART",7) == 0){ 
   date = result;  } 
  else if (strncmp(result,"RRULE",5) == 0){       
   rrule = result;  } 
  else if (strncmp(result,"DESCRIPTION",11 )==0){ 
   desc = result;  } 
  else if (strstr(result,":VEVENT") != NULL){ 
   if (boolVCALEVENT == 1){ 
    processNewEvent(desc,rrule,date); 
    boolVCALEVENT = 0;  } 
  }  
  result = strtok(NULL,"\n");      
}} 

Figure 6.10: update_actv_schedule.c - Code Snippet 1 

void updateEISConfig(int descrip, int period, int duration) { 
 //description =0 then its RADIO_LISTEN 
 if (descrip == 0){ 
 //represents the time when the radio will turn on-> periodic 
 eis_config.bt_interval_s = 60 * period;  
 //represents the time the radio will be on 
 eis_config.bt_on_time_s = 60 * duration; 
 reboot(); }  
 //description = 1 then its sense 
 else if (descrip == 1){ 
 eis_config.sample_interval_s = 60 * period; 
 reboot();  } 
} 

Figure 6.11: update_actv_schedule.c - Code Snippet 2 

6.2.2.2 Mobile Data Mule: Device Implementations 

The following key functions have been implemented on the mobile device 

platforms. 

1) Sensor Discovery  

2) Sensor Data Collection 
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3) Sensor Data Delivery 

Apart from these key functions, the mobile device platform implementation 

performs the task of interfacing with the mobile device’s communication and location 

sub-system. The two mobile device platform used for the proof-of-concept 

implementations are Personal Digital Assistant (PDA) and mobile robot (ER1). The PDA 

ran Microsoft Pocket PC 2003. Microsoft.NET framework was used to develop code for 

the PDA platform and JAVA was used for the mobile robot platform. The primary 

functional modules/classes for both platforms are identical with device-specific 

functionality added to each device-specific implementation. For example, the device-

specific implementation for the mobile robot is a module that controls the robot 

movement. Figure 6.12 and Figure 6.13 illustrates the package/class diagram for the two 

platform implementations. A detailed description of each package implementation is 

presented in Appendix A, Figure A2. 

 

Figure 6.12: Package Diagram - Mobile Robot Implemented in JAVA 
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Figure 6.13: Class Group (Package) Diagram - PDA Implemented in .NET CF 

Node Discovery Module: The node discovery module comprises classes that 

perform the operations sensor discovery, sensor information storage and sensor node 

management. Sensor discovery is performed by connecting to the mobile device’s 

Bluetooth stack. The node discovery module also handles parsing and storing of the 

sensor information (metadata). The sensor naming convention follows the format 

presented in Chapter 3. The sensor repository information is synchronised with the sink 

periodically. Figure 6.14 presents code snippet for the sensor node discovery process. 
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Public Function discoverNodes(ByVal _bluetooth As Bluetooth, ByVal 
duration as Integer) As ArrayList 
 Dim _sensor As Sensor, _sensorAdd As String 
 Dim availableNode As New ArrayList 
 done = _bluetooth.findDevices(duration) 
 If done = True Then 
  For i = 0 To deviceList.Count - 1                
  Dim sense_name = _bluetooth.getSensorName(deviceList.Item(i)) 
  found = checkSensorinList(sense_name) 
  availableNode.Add(deviceList.Item(i)) 
  'check if discovered node is already in the node database 
   If found = False Then 
   _sensorAdd = _bluetooth.getSensorAddress(deviceList.Item(i)) 
   _sensor = createSensorProfile(sense_name, deviceList.Item(i)) 
   discoveredDevices.Add(_sensor)                     
  Else 
  For j = 0 To discoveredDevices.Count - 1 
     temp = discoveredDevices.Item(j) 
     sensorName = readSensorName(sense_name) 
    If (sensorName = temp.Name) Then 
     temp.LifeTime = 0 
     temp.LifeTimeCurrent = True 
    End If 
  Next 
  Next 
 Else 
  addResult("Search Complete. No Devices Found") 
 End If 
Return availableNode 
End Function 

Figure 6.14: Node Discovery - Code Snippet 

The _bluetooth.findDevices(duration) function determines the amount of time the 

Bluetooth discovery process needs to last. This function implements the shortened 

interlaced Bluetooth inquiry scan presented in Chapter 3. The section of code highlighted 

in bold manages the dead node problem discussed in Chapter 3. The variable 

LifeTimeCurrent determines if a sensor node previously discovered at a particular 

location is still active. The value of the LifeTimeCurrent variable is periodically 

synchronised with the centralised sink allowing the mobile data mule to determine dead 

sensor nodes. The discoveredDevices variable is an array list which is used to represent 

the node repository maintained by the mobile data mule. 

Communication Manager: This module performs the communication manager 

functions of the sGaRuDa framework presented in Chapter 3. It has a set of functions and 

classes that creates an interface for the components node discovery and data collection, to 
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use the Bluetooth stack available on the mobile device. The Bluetooth software 

development kit (SDK) used in .NET is BTAccess.NET (BTAccess, 2008). For the 

mobile data mule implementation on the mobile robot in JAVA, we used BlueCove 

Bluetooth implementation (JSR82 ) (BlueCove, 2007). 

Collector: The collector module performs the role of the data collection module 

of the sGaRuDa framework presented in Chapter 3. For data collection, the mobile data 

mule employs the proposed window-based data collection algorithm. The window size is 

determined based on the computed data collection threshold. In our implementation we 

have assumed a window size of 2 for threshold between 0.5 to 0.6, 3 for threshold 

between 0.6 to 0.7, 5 for threshold between 0.7 to 0.8 and 7 for threshold above 0.8. This 

value is application dependent and can be customised. The collector module uses the 

packet structure presented in Chapter 3 which is reproduced in Figure 6.15. 

 

Figure 6.15: Control and Data Messages Format 

The control message (refer Figure 6.15) implemented are “STARTD” for starting 

data transfer, “BEGIN” to upload a new activation schedule, “DATE”  for time 

synchronisation and “ACK” for acknowledging data transmission. The Mulle response 

codes are “OK” for successful reception that includes control (start data transfer) and data 

messages (activation schedule), “NODATA” to terminate data transfer and “NK” for 

negative acknowledgement. The data message sent by the Mulle is wrapped in the above 

mentioned data structure format. The header part of message has the following 

information: 1) date and time when data was sensed, 2) packet number of sensed data, 3) 

file format used to store the data and 4) number of samples in each data packet. The 

urgent flag is enabled if the data packet requires immediate delivery. The Mulle used for 
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the implementation is equipped with a temperature sensor and hence, the data part of 

message contains <temperature, voltage> pairs. Our window-based data collection 

approach can be easily extended for other complex data formats. Figure 6.16 presents 

code snippets for the data collection function. 

Public Function CollectData(ByVal windowSize As Integer, ByVal btDev As 
BtDevice, _ 
    ByVal _bt As Bluetooth, ByVal mydeviceName As String) As Boolean 
     Dim sensordataStore As New SensorDataStore 
      Dim success As Boolean = false 
      Dim sendString As String 
      success = _bt.establishSerialConnection(btDev) 
      If success = True Then 
       sendString = "STARTD " & windowSize 
         _bt.sendData(btDev, sendString, logger) 
         While dataReceiveComplete = False 
                Application.DoEvents() 
         End While 
         dataReceiveComplete = False 
         _bt.disconnectSerialConnection(btDev) 
         temp = FinalReceivedData.Split(";") 
         For i1 = 0 To temp.Length - 2 
          sensordataStore = createSensorData(btDev.DeviceName,                       
                      temp(i1), mydeviceName) 
         SensorDataStores.Add(sensordataStore) 
         Next            
     End If 
      Return success 
 End Function 

Figure 6.16: Data Collection - Code Snippet 

In the code presented in Figure 6.16, the sensor data collected from the sensor is 

stored into the SensorDataStore class. The SensorDataStore definition is presented in the 

detailed class diagram in Figure A1 and A2 in Appendix A. The collector module also 

implements a Message Parser module which is responsible for parsing and un-parsing 

messages sent and received by the Mulle. For example, it parses the control messages 

into a formatted string to be dispatched to the Mulle by the communication manager and 

un-parses data and control messages received from the Mulle that require further 

processing. 

Sink Manager: The sink manager performs functions related to data delivery 

module of the sGaRuDa framework presented in Chapter 3. The sink manager handles 

communication between the sink and the mobile data mule. The sink manager delivers 
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data collected from the sensor based on its importance. The sink manager is also 

responsible for receiving activation schedule updates from the centralised sink. The 

activation schedule is offloaded at the sensor during data collection. The sink manager is 

also responsible for periodically synchronise the sensor node repository with the sink. 

The period of synchronisation is application dependent and can be increased or decreased 

which will directly impact the data delivery latency. Finally, the sink manager handles 

mobile data mule registration and de-registration. Data exchange between the mobile data 

mule and the centralised sink is message based similar to communication between the 

mobile data mule and the sensor node. The communication between the sink and the 

mobile data mule has been implemented using sockets in both Microsoft.NET framework 

and in JAVA. A detailed list of classes and their functions implemented within the sink 

manager package is presented in Figure A1 and A2 in Appendix A. Figure 6.17 presents 

code snippet for the sink manager module. 

Public Function sendSensorData(ByVal sDs As SensorDataStore) As Boolean 
    Dim s As String = "SENSORDATA" 
  Dim buf() As Byte =    
  System.Text.Encoding.ASCII.GetBytes(s.ToCharArray()) 
    Dim parser As New Parser, success As Boolean=false 
    If connected = True Then 
     NetStream = New NetworkStream(ClientSocket) 
    Try 
     ClientSocket.Send(buf) 
     sendData = parser.parseSensorDataStore(sDs) 
     Dim buf1() As Byte =    
   System.Text.Encoding.ASCII.GetBytes(sendData.ToCharArray()) 
     ClientSocket.Send(buf1)  
    End Try 
    End If 
    Return success 
End Function 

Figure 6.17: Data delivery to sink - Code Snippet 

Controller: The controller module represents the central controller functionality 

of the sGaRuDa framework presented in Chapter 3. The controller is the central 

command centre that co-ordinates the activity of each associated module. 

Communication between modules is performed by the controller which controls the 

sensor discover, sensor data collection and delivery process. We have implemented a 

support package, the Common package that is shared among all system modules. The 
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variables within the Common package are instantiated once and are declared global. In 

JAVA this functionality is achieved by declaring the variables static while in 

Microsoft.NET, the class is defined as a public module. The controller is responsible for 

computing the data collection threshold based on the algorithm proposed in Chapter 3. 

The parameters used to compute the data collection threshold in the prototype 

implementation are distance, received signal strength (RSSI), residual time, sensor 

residual energy and amount of sensor remaining data. The RSSI is obtained during 

Bluetooth inquiry scan. This avoids the need to make a connection with the sensor to 

obtain the RSSI value. The code snippet presented in Figure 6.18 shows the threshold 

computation algorithm implemented in .NET CF. To calculate the threshold we have 

taken a packet size of 1200 bits. The controller provides functions to access the data 

collection platform modules functionality. For example, the controller module has a 

function to invoke the node discovery function of the node management module. The 

controller module also runs task timers to periodically check for available network 

connectivity to the sink to deliver urgent sensor data. In our implementation, we have 

used Wi-Fi as the means of data delivery. For evaluation purposes, we define a cost to the 

Wi-Fi connection at specific locations within our test environment. Data collected at such 

locations will be saved on the mobile data mule for later delivery unless the urgent flag is 

set to high (1). The controller module also has a context manager class that handles all 

available context information. In the system prototype implementation, the contextual 

information used are the mobile data mule’s current location, its future trajectory 

information (used to estimate residual time) and the sensor node’s context information 

obtained from the sensor node repository. The current location of the mobile data mule is 

obtained using Ekahau positioning engine (EPE). The localisation module is 

implemented as a separate class in the JAVA implementation. In the VB.NET 

implementation the localisation function is integrated with the context manager. 

ER1: This is the additional module that has been implemented in JAVA for the 

mobile robot platform. The classes in this module handle all communications between the 

robot hardware and the data collection framework. The ER1 modules facilitate the 

development of application specific plug-ins requiring control over the robot hardware. In 

the currently implemented system prototype no additional plug-ins has been 
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implemented. The ER1 module is used only to control the robot’s movement by making 

use of the default application programmable interface (API) available with the SDK. 

Since robot navigation and control is a vast research area by itself, our implementation 

does not focus on those challenges. Rather, we use existing ER1modules to accomplish 

our requirement to move the robot within the building environment. A detailed class 

diagram of .NET CF classes implemented on the PDA developed in VB.NET and JAVA 

classes implemented on the mobile robot developed in ECLIPSE (Eclipse.Org, 2010) are 

presented in the Appendix A. 

Public Function computeThreshold(ByVal sEnergy As Decimal, ByVal rssi 
As Decimal, _ 
    ByVal distance As Decimal, ByVal s_rdata As Integer) 
        Dim thres As Decimal = 0, rTime, rEnergy , v_max ,  
           tempThreshold  
        v_max = s_rdata * 1200 / _contextStore.channel_speed 
        rTime = (_contextStore.ResidualTime + _contextStore.StaticTime) 
        If (rTime > v_max) Then 
            tempThreshold = 1 
        Else 
            tempThreshold = rTime / v_max 
        End If 
        thres = thres + tempThreshold * _contextStore.wrT 
        v_max = _contextStore.Energy 
        tempThreshold = sEnergy / v_max 
        thres = thres + tempThreshold * _contextStore.wmE 
        v_max = _contextStore.Distance 
        tempThreshold = 1 - (distance / v_max) 
        thres = thres + tempThreshold * _contextStore.wmD 
        v_max = _contextStore.RSSI 
        tempThreshold = rssi / v_max 
        thres = thres + tempThreshold * _contextStore.wmR 
        Return thres 
    End Function 

Figure 6.18: Data Collection Threshold Computation - Code Snippet 

6.2.2.3 Data Sink Implementation 

The sink within the scope of this thesis is assumed to be a centralised power data 

store that handles further processing of sensor data. In the sGaRuDa system prototype 

implemented, the sink implementation is to support the proof-of-concept implementation 

performing the following function: 1) handle mobile data mule registrations 2) receive 

sensor data collected and delivered by mobile data mule, 3) provide feature for sensor 
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inactivity synchronisation among mobile data mules and 4) send new activation schedule 

for a single or group of sensors to the mobile data mule.  

The sink has been implemented using Microsoft.NET framework developed in 

Microsoft Visual Basic.NET. A socket-based server has been implemented to listens to 

incoming client (mobile data mule) requests. Figure 6.19 presents code snippet for the 

incoming data processing function. The case shown in the code is when new sensor 

information is received by the sink. A screen shot of the sink implementation is presented 

in Figure 6.20 and a detailed class diagram is presented in Figure 6.21.  

Public Sub processIncomingRequest(ByVal buf As String, ByVal nstream As 
NetworkStream) 
  Select Case returndata 
   Case "SENSORINFO" 
   sendAck(nstream) 
   Do While nstream.DataAvailable 
    byte_buff = nstream.ReadByte() 
    buffer = buffer & Convert.ToChar(byte_buff) 
   Loop 
   parser.initialize(buffer) 
   Dim thread2 As New System.Threading.Thread(AddressOf  
           parser.newSensor) 
   thread2.Start() 
End Sub 

Figure 6.19: Sink Incoming Data Request Processing - Code Snippet 

 

Figure 6.20: Sink implemented in VB.NET – Screenshot 
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Figure 6.21: Detailed Class Diagram - Sink Implementation 

6.3 k-Nearest Neighbour Based Sensor Data 
Collection - Implementation 

Chapter 4 presented our proposed 3D-KNN sensor data collection algorithm. The 

3D-KNN algorithm targets sensor nodes with broadcasting capabilities. The introduction 

of broadcasting channel facilitates multi-hop data collection. The 3D-KNN data collection 

algorithm can be incorporated straight-forwardly into sGaRuDa. To evaluate the 3D-KNN 

algorithm over a large-scale sensor network, we chose a simulator environment. The 

simulator environment allows us to validate the cost-efficiency of the proposed 3D-KNN 

algorithm under varying system parameters, namely, number of sensor nodes, size of the 

area, radio range, signal-to-noise, etc. The 3D-KNN algorithm has been simulated in the 

simulator Global Mobile Information System Simulator (GloMoSim) (GloMoSim, 2010, 

Nuevo, 2004). In this section, we present an overview of the simulation platform 

followed by 3D-KNN algorithm’s implementation details. 
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6.3.1.1 A Scalable Simulation Environment: GloMoSim 

GloMoSim is a scalable parallel discrete event simulator for large-scale wireless 

and wired networks. It uses Parsec (UCLA, 2009), a C based language developed by the 

Parallel Computing Laboratory at UCLA. GloMoSim has the capacity to simulate 

wireless sensor networks with up to thousand nodes. It allows simulating multi-hop 

wireless communication using ad-hoc networking. The simulator is designed using the 

layered Open Systems Interconnection (OSI) network approach. Each layer of the OSI 

model is implemented by a set of C files. The functions performed at each layer can be 

summarised into 1) send/receive data between layers 2) perform layer level functionality 

i.e. physical layer simulates sending data as bits while the network layer simulates the 

operation of assembling/disassembling data packets and 3) facilitate data exchange 

between nodes within the network. 

GloMoSim supports node mobility using random waypoint, random drunken and 

group mobility models (Nuevo, 2004). The mobile data mule’s mobility has been 

simulated using this feature of GloMoSim. A configuration file config.in is used to setup 

the simulation environment. Figure 6.22 presents a sample of the configuration file. 

GloMoSim allows sensor nodes to be simulated within a three-dimensional (3D) space as 

defined by the terrain-dimension parameter in Figure 6.22. Each sensor node’s location 

within the 3D space is defined using x, y, and z co-ordinates. GloMoSim uses two types 

of messages to facilitate communication within layers and between nodes. They are non-

packet and packet messages. The non-packet messages are used for inter-layer event 

messages and self-schedule timer events. The packet messages are used to send data 

messages across layers or across various nodes. 

SIMULATION-TIME     15M 
SEED                1 
TERRAIN-DIMENSIONS  (2000, 2000, 2000) 
NUMBER-OF-NODES     200 
NODE-PLACEMENT      UNIFORM 

Figure 6.22: GloMoSim Sample Configuration File 

The non-packet messages used to enable self-schedule timers provide the 

capability to implement in-network data aggregation function. Figure 6.23 illustrates a 
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sample message structure used during data exchange between nodes and between layers. 

The code snippet provided in Figure 6.23 is extracted from the message.h file in the 

include folder. Mobility is achieved using a mobility trace file mentioned in the config.in 

file. The trace file can be used to mention specific movement patterns for the mobile data 

mule. We use this feature to incorporate mobile data mule movements. Figure 6.24 

presents a screen dump of the GloMoSim command prompt-based simulation 

environment. All simulation outputs are written to the glomo.stat text file. 

struct message_str 
{ 
short layerType; // Layer that receives the message 
short protocolType, eventType; 
char* packet, payLoad; 
} message; 

Figure 6.23: Message Structure used in Data Exchange 

 

Figure 6.24: GloMoSim Simulator Environment - Screen Dump 

6.3.1.2 3D-KNN - Implementation in GloMoSim 

In this section, we present the implementation details of the 3D-KNN algorithm in 

GloMoSim. The 3D-KNN has been implemented at the network layer of GloMoSim. 

Hence, packet processing and response happen at the network layer. This implementation 

can be moved to the lower layers, namely, the data link layer as our current 
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implementation does not rely on any network layer specific functionality. Node 

addressing is achieved using low-level naming i.e. node-identification number. The 

following key functions have been simulated using GloMoSim. 

1) A mobile data mule responsible for issuing and processing kNN queries in a 

3D environment. 

2) Mobility model to support the mobile data mule’s movement within the sensor 

network 

3) Sensor nodes that respond to incoming kNN queries using in-network 

aggregation. 

4) Scripts to generate outputs for the 3D-KNN algorithm’s evaluation. 

Figure 6.25 presents the 3D-KNN algorithm’s modules implemented in 

GloMoSim. The files in GloMoSim have a .pc extension due to the use of the Parsec. 

Though the extension used is parsec, the coding follows C syntax. The modules 

highlighted in dark green are the primary 3D-KNN modules that have been newly 

developed and implemented. The modules highlighted in light green are existing code 

that has been modified for the 3D-KNN implementation. The functions of the sensor and 

the mobile data mule have been implemented in the sensor.pc and mdm.pc files. The 

timer.pc is used for in-network data aggregation. The primary modules shown on the 

right in Figure 6.25 are invoked by both sensor and the mobile data mule to perform 

various operations including sending/receiving broadcast messages, processing incoming 

data, responding to incoming data, computing nearest neighbours using the KNN-

METRIC and collecting data from nearest sensors. The knn.h is the common header file 

used by the sensor and the mobile data mule code to invoke functions defined in various 

modules. We describe the functionality of each module used by the sensor and the mobile 

data mule subsequently. 
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Figure 6.25: 3D-KNN GloMoSim Simulation Modules 

networkinit.pc: This module contains code to initialise the sensor network. It 

provides functions to select the mobile data mule within the simulator environment. 

Every other node within the network is then initialised as a sensor node. The initial 

broadcast message propagated by the mobile data mule is controlled by the 

networkinit.pc module. The networkinit.pc is also responsible for setup files required to 

produce simulation outputs. 

sendmessage.pc: The sendmessage.pc modules handle sending broadcast and uni-

cast messages. The broadcast message is sent with an address to all nodes that are within 

the radio range. The uni-cast mode is used when the route to a particular sensor node is 

available. It is used during the final data collection phase. Figure 6.26 presents the 
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broadcast message and the data packet structures. Since our approach does not require 

any network route information, the broadcast message is used to compute routes between 

sensors and the mobile data mule. Each broadcast packet has a nodeList variable. This 

variable is appended with sensor route information (route through which the broadcast 

information propagated). The reverse-path is used to identify the route to the mobile data 

mule.  The data packet comprises sensor node’s location and cumulative signal-to-noise 

ratio. Figure 6.27 and Figure 6.28 presents code snippets for sending broadcast and uni-

cast messages in GloMoSim. The NetworkIpSendNewPacketWithDelay function is used 

to send broadcast/uni-cast packets. The destination type determines the type of packet i.e. 

ANY_DEST represents a broadcast packet and dest_addr represents a uni-cast packet 

addressed to a specific sensor node. The two message structures presented are used 

during the kNN boundary estimation phase. The data packet with sensor information is 

used by the mobile data mule to compute nearest neighbours. 

typedef struct {  
 int bcastId, maxHop, nodecount,  
 int nodeList[300]; 
 double x, y, z; 
} intial_broadcast_pckt; 
typedef struct { 
 int retId; //same as the intial bcastId 
 int nodeCount, totalnodes; 
 int route[nodeCount]; 
 double x[nodeCount], y[nodeCount], z[nodeCount]; 
 double snr; 
} data_pckt; 

Figure 6.26: 3D-KNN Implementation - Message Packet Structures - Code Snippet 

 

void handleSensorBroadcast(GlomoNode *node, Message *msg) 
{ msg=GLOMO_MsgAlloc(node,GLOMO_NETWORK_LAYER,NETWORK_PROTOCOL_I
 P,MSG_NETWORK_BroadcastEvent); 
 GLOMO _MsgSend(node,msg,ADVT_INTERVAL);
 NetworkIpSendNewPacketWithDelay(node,ANY_DEST,REAL_TIME 
 ,SENSOR_PROTO,IPDEFTTL,(char 
*)bcast_pkt,sizeof(intial_broadcast_pckt),(clocktype)  DELTA_TIME 
* node->nodeAddr/2); 
} 

Figure 6.27: 3D-KNN Implementation - Sending Broadcast Message - Code Snippet 

 



  191 

 

void sendUniCast(GlomoNode *node, Message *newMsg){  
 data_pckt* senddata;  
 int i = 0; 
 NODE_ADDR dest_addr;  
 senddata = (data_pckt* )GLOMO_MsgReturnInfo(newMsg); 
 senddata->nodeCount = senddata->nodeCount - 1; 
 dest_addr = senddata->route[senddata->nodeCount]; 
 NetworkIpSendNewPacketWithDelay(node,dest_addr,REAL_TIME,SENSOR_D
 ATA,IPDEFTTL,(char *)senddata,sizeof(data_pckt),(clocktype) 
 DELTA_TIME * node- >nodeAddr/2);     
} 

Figure 6.28: 3D-KNN Implementation - Sending Uni-cast Message - Code Snippet 

processmessage.pc: This module performs incoming message processing. The 

incoming messages can be classified into two types broadcast messages and data 

messages. The data message can be a response to a broadcast message or a response to a 

data collection request. The nwip.pc file handles all incoming messages from the MAC 

layer. Once the message is received at the network layer, (nwip.pc) it calls the appropriate 

function defined in the processmessage.pc module to process the message. Figure 6.29 

presents code snippet of the modified nwip.pc file. The functions defined in the 

processmessage.pc module are shared by the mobile data mule and the sensor node. The 

primary functions defined are handleSensorBroadcast, handleSensorReBroadcast and 

sendUniCast. The first two functions perform the following operations: 1) send initial 

broadcast message (data mule operation) and 2) receive and forward broadcast messages 

(sensor operation). The sendUniCast function is used by both mobile data mule and the 

sensors to respond to kNN queries. These functions facilitate the 3D-KNN pre-routing and 

data collection phases. Figure 6.30 provides code snippets of the incoming broadcast 

information handling function.  

collectdata.pc: The collectdata.pc module is used by the mobile data mule to 

compute the nearest neighbours based on the KNN-METRIC. It employs the functions 

defined in the sort.pc module to sort the nearest neighbour sensor list. The knnmetric.pc 

module is used to compute the KNN-METRIC of each sensor. The sendmessage.pc 

module is employed by the collectdata.pc module to send modified uni-cast messages to 

the k nearest sensors. The modified uni-cast uses the route information collected during 

the boundary estimation phase to route data to specific nodes (over multi-hop channels). 

Since the cumulative signal-to-noise ratio is used in the KNN-METRIC any sensor which 
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is part of a poor route will not be selected as the nearest neighbour. Further, the 

collectdata.pc also uses the proposed prediction algorithm to determine sensors that are 

future nearest neighbours. Once at the new location, the sendmessage.pc is employed to 

collect data from those sensor nodes. 

void NetworkIpLayer(GlomoNode *node, Message *msg) { 
  switch (msg->protocolType) {  
  case NETWORK_PROTOCOL_IP: { 
  switch(msg->eventType) { 
      case  MSG_NETWORK_BroadcastEvent: {          
     handleSensorBroadcast(node, msg); 
     break;         } 
    case  MSG_NETWORK_ReBroadcastEvent: {        
       handleSensorReBroadcast(node, msg); 
     break;         } 
      case  MSG_NETWORK_DATA: {        
     sendUniCast(node, msg); 
     break;   }}  
} 

Figure 6.29: 3D-KNN Implementation - nwip.pc - Code Snippet 

void ProcessIncomingMessage(GlomoNode *node, Message *msg, NODE_ADDR 
sourceAddress, double snr){ 
 Message *newMsg; 
 intial_broadcast_pckt* info; 
 info = (intial_broadcast_pckt*)GLOMO_MsgReturnPacket(msg); 
 nodeAddress = node->nodeAddr;  
 if (broadCastReceivedID != info-> bcastId) {    
    broadCastReceivedID = info-> bcastId; 
  newMsg = GLOMO_MsgAlloc(node,GLOMO_NETWORK_LAYER,     
 NETWORK_PROTOCOL_IP,MSG_NETWORK_ReBroadcastEvent); 
  GLOMO_MsgInfoAlloc(node, newMsg,sizeof(intial_broadcast_pckt)); 
  resendinfo = (intial_broadcast_pckt* ) GLOMO_MsgReturnInfo(newMsg); 
  GLOMO_MsgSend(node,newMsg,ADVT_INTERVAL);   } 
} 

Figure 6.30: 3D-KNN Implementation - Checking Incoming Broadcast Message - 
Code Snippet 

timer.pc: The timer.pc module is used for in-network data aggregation. The non-

packet messages described earlier are used to implement timers within GloMoSim.  The 

non-packet messages used in timers are self-addressed i.e. a loop-back. After the 

specified delay, the message is delivered back to the sensor node. The arrival of a new 

timer message indicates the timer expiry event. Figure 6.31 presents the timer 

implementation code used by the sensor node. 
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void startTimer(GlomoNode *node, clocktype timerDelay){ 
 Message *newMsg; 
 timer_details* timer_pkt;   
 newMsg=GLOMO_MsgAlloc(node,GLOMO_NETWORK_LAYER,NETWORK_PROTOCO
 L_IP,MSG_TIMER_EVENTS);    
  
 GLOMO_MsgInfoAlloc(node, newMsg, sizeof(timer_details)); 
 timer_pkt = (timer_details* )GLOMO_MsgReturnInfo(newMsg); 
  timer_pkt->nodeID = node->nodeAddr; 
 timer_pkt->state = 0; 
  GLOMO_MsgSend(node, newMsg, timerDelay);     
} 
void checkTimerTimeout(GlomoNode *node, Message *newMsg){ 
 timer_details* newTimer; 
 newTimer = (timer_details*)GLOMO_MsgReturnInfo(newMsg); 
 if (newTimer->nodeID == node->nodeAddr) { 
  processTimer(node, newMsg); 
 } 
} 

Figure 6.31: 3D-KNN Implementation - Timer Implementation on Sensor - Code 
Snippet 

radio.pc: The radio.pc, radio_nonoise.pc and radio_accnoise.pc have been 

modified to implement a radio model that accurately measures energy consumption of 

wireless ad-hoc sensor nodes. This model has been implemented by Margi et al. (Margi et 

al., 2006) and the source code is available online. The default radio model of GloMoSim 

is oriented towards high-powered ad-hoc mobile devices. The mobility.in, config.in and 

nodes.input files are used to configure mobile data mule’s mobility pattern, simulation 

environment parameters and node placements within the sensor network respectively. 

6.4 R-CS - Implementation 

In this section, we present the implementation details of Ranked-Context Spaces 

(R-CS) system. We use the term ranked to denote the partitioning approach that uses 

context attribute ranks. The implementation of R-CS is built around the Context Spaces 

reasoning engine. The following features have been implemented in R-CS. They are: 

1) The situation partitioning algorithm used to partition the universal 

situation space. 
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2) Incorporating sensor data quality parameters and flexible attribute region 

definitions for the context attributes. Algorithm to compute contribution 

based on flexible attribute region and sensor data quality. 

3) Incorporation of hierarchical attribute region definition and algorithm to 

reason hierarchical attribute regions. 

4) A graphical user interface that provides the user the ability to 

define/simulate sensor inputs, situation spaces and context attribute 

regions.  

5) Scripts to generate outputs of the reasoning process used in R-CS 

evaluation. 

Context Spaces has been implemented in JAVA and hence, the extended Context 

Spaces implementation, namely, R-CS is also implemented in JAVA. We have used the 

CORE (Padovitz, 2006) reasoning engine to implement R-CS features. To implement a 

flexible attribute region, we have used a basic logic that provides a region contribution 

based on the context state value of the context attribute. Our implementation defines 

outer regions as x where x is the flexible region value. For example, if the attribute 

region definition is 2 to 4, and the flexible region definition is 0.5, any context state 

value for the context attribute within the range 2 to 4 results in a contribution of 1 while 

any value within the region 1.5 to 2 and 4 to 4.5 will result in a contribution value from 0 

to 1. To determine a value between 0 and 1 we used fuzzy logics. 

The overall JAVA package diagram for R-CS implementation is presented in 

Figure 6.32. The primary Context Spaces (CS) implementation is defined by the package 

core. The core.kernel, core.model are Context Spaces implementation that have been 

modified to R-CS functions while the core.gui and corePrxy are R-CS specific 

implementations. A detailed class diagram of the implementation is presented Figure A3 

in Appendix A. 
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Figure 6.32: R-CS Implementation - Package Diagram 

Situation Space Partition: The situation space partitions are created by 

implementing the following classes partition.java and partitionReasoner.java. The 

context attribute regions defined in the universal situation space are partitioned by 

partition.java class and the partitionReasoner.java is used during reasoning process i.e. 

taking into consideration each partition until the required confidence threshold is reached. 

Figure 6.33 presents the situation partition code snippet. 

public XSpace partition(XSpace sp){ 
  Vector r = sp.getRegions(); 
  for (int i=0; i< r.size(); i++){ 
   XAttributeRegion xa = (XAttributeRegion) r.get(i); 
   double w = xa.getWeight(); 
   for (int j=0;j<pregionList.size(); j++){ 
    Vector tempRegion = (Vector) pregionList.get(j); 
    if (computeRegion(tempRegion, w)){  
     xa.setPar_region(j + 1 );  }} 
   System.out.println("Weight : " + xa.getWeight()); 
   System.out.println("Region based on Weight : " + 
xa.getPar_region()); } 
  sp.setPregions(region_no); 
  return sp; } 

Figure 6.33: R-CS Implementation - Situation Partition - Code Snippet 
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The code in Figure 6.33 uses the partition predicate definition to partition the 

universal situation space. The code in Figure 6.34 reasons the temporal situation space 

computed dynamically from the partitioned universal situation space. The universal 

situation space partitions determined by the partition predicate are maintained in the 

universal situation space definition. At runtime, to reason a current situation, each 

partition in the universal situation space is iteratively explored to compute the overall 

confidence. New partitions in the universal situation space are only explored if the 

required confidence threshold is not reached using the context attribute within the current 

partition. 

public Vector reason(XMatrix x, boolean ReReason){      
 XMatrix y = null; 
 if (ReReason) 
   y = reEncodeMatrix(x); 
 else 
  y = x; 
 //We partition the situation space based on Importance 
 XMatrix matrix = partitionSituationSpace(y);     
  
 Vector Matrix; 
 Matrix = matrix.getMatrix(); 
 for (int j=0;j< Matrix.size();j++) { 
  XStConf xst = null; 
  double sum = 0; 
  Vector tempMatrix = (Vector) Matrix.get(j);     
  XDecoderNew decoder = new XDecoderNew(tempMatrix); 
  for (int ii=1; ii<=part.getRegion_no();ii++){  
   xst  = decoder.decode(st,ii, ReReason); 
   sum = sum + xst.getConfidence();      
  } 
  sum = sum/part.getRegion_no(); 
  xst.setConfidence(sum); 
  reasonedList.add(xst);  
 } 
 return (computeMaxMin()); 
} 

Figure 6.34: R-CS Implementation: Partition-based Situation Reasoning 

The dynamic weight re-computation of context attributes for orthogonal situations 

(situations that cannot occur in parallel) is performed during the reasoning process. The 

weight re-computation increases the reasoning outcome’s confidence by reducing the 

influence of context attributes whose context state value satisfies situations that are 

orthogonal. The situation space referred in this instance is the temporal situation space. 

As new context attributes from other partitions are added to the temporal situation space, 
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the weight re-computation algorithm is repeated to reduce the influence of overlapping 

context attributes. The code snippet that computes similarities between situations is 

presented in Figure 6.35. The code compares attribute regions of situations to compute 

the situation similarity co-efficient. The attribute region similarity value is appended to 

each attribute region definition which is further used during the weight re-computation 

process. 

public XSpace compareSituations(XSpace st1, XSpace st2, XState st) { 
 XSpace tmpSitutaion = new XSpace(st1.getName(),st1.getThreshold());   
 Vector attrs = st1.getRegions(), attrs1 = st2.getRegions(); 
 double contribution =0,  contribution1 = 0; 
 for (int i = 0; i< attrs.size() ; i++) { 
  boolean similar = false; 
   XAttributeRegion region1 =   (XAttributeRegion)attrs.get(i); 
  XAttributeRegion r = region1.copyValue(); 
  XAttribute attr = (XAttribute) st.hattributes.get(region1.getName()); 
  if (attr != null)   
   for (int j=0; j< attrs1.size(); j ++) { 
    XAttributeRegion region2 = (XAttributeRegion)attrs1.get(j); 
    if (region1.getName() == region2.getName()) 
     contribution1 = computeContribution(st); 
    if (contribution == 1) 
     ComputeSimilarityCoefficient(); 
     similar = true;  }}    
  if (similar) 
   tempSitutaion.addAttributeRegion(r,  r.getWeight(), 
r.getOptional(),true); 
  else 
   tempSitutaion.addAttributeRegion(r, r.getWeight(), 
r.getOptional(),false);  
  } 
  return tempSitutaion; 
} 

Figure 6.35: R-CS Implementation - Situation Comparison Code Snippet 

Flexible region and sensor inaccuracy heuristics implementation: These two 

features implemented in R-CS incorporate flexible attribute region definition and sensor 

data quality (data freshness) heuristics. The data freshness considers the life of the 

collected sensor data during the reasoning process. The current context attribute (sensor) 

definition in Context Spaces has been re-implemented to incorporate the data freshness 

heuristic. To implement data freshness in R-CS, we have incorporated a freshness 

threshold. This value determines if the data is recent or old. Figure 6.36 presents the 

modified context attribute definition code snippet with the proposed data freshness 

threshold. 
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  public XAttribute(String attributeName, String value, double 
errorProb, double freshness) 
  { 
 this.attributeName = attributeName; 
 this.textValue = value; 
 this.errorProb = errorProb; 
 this.freshness = freshness; 
 Date dt = new Date(); 
 entryTimeStamp = dt.getTime(); 
 this.errorRange = 1; 
  } 

Figure 6.36: R-CS Implementation - Context Attribute Definition  

To implement flexible attribute regions, inner-outer regions are defined for each 

context attribute. Based on the context attribute region definition, the contribution value 

of the context attribute within the situation is computed. The contribution of a context 

attribute determines the influence (confidence) of the context attribute’s in the reasoned 

situation. For implementation and testing purposes we have assigned the inner-outer 

region value for all context attributes 0.5. This assumption can be modified allowing 

greater control over the reasoning process. Figure 6.37 presents the code snippet to 

compute the context attribute’s contribution when the context state value falls within the 

inner-outer region. 

public double getContributionOuterRegions(double value) throws 
PredicateException  { 
 for (int i = 0; i < subregions.size(); i++) { 
  XSubRegion subregion = (XSubRegion) subregions.elementAt(i); 
  double contribution = subregion.getContributionOuterRegions(value); 
  if (contribution != 0) 
   return contribution; } 
 return 0; }   

Figure 6.37: R-CS Implementation - Flexible Context Attribute Regions 

Hierarchical Context Attribute Region Definition: Hierarchical context attribute 

regions allow definition relations between situation space definitions. For example, the 

defining relationship between the context attribute speed and context attribute age. To 

implement hierarchical context attribute regions, we have modified the attribute region 

definition in CS to incorporate hierarchical definitions i.e. the ability to add one context 

attribute region as a child to another context attribute region. To compute the cumulative 

contribution of the hierarchical context attribute regions, the contribution value of every 
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individual child attributes is computed iteratively. The cumulative contribution of the 

parent context attribute is then computed as the sum of child context attribute 

contributions. Each child context attribute region is assigned a weight determining its 

influence in the total situation outcome. 

//Attribute Region Definitions 
XAttributeRegion region1 = new XAttributeRegion("Age", true);  
Predicate p1 = new Predicate(">=", "20"); 
Predicate p11 = new Predicate("<=", "30"); 
Predicate[] predicate1 = { p1, p11 }; 
region1.addSubRegion(predicate1, 1); 
 
//Define Sub Region 
XAttributeRegion region2 = new XAttributeRegion("Speed"); 
Predicate p2 = new Predicate("<=", 3); 
Predicate p21 = new Predicate(">=", 5); 
Predicate[] predicates2 = { p2, p21 }; 
//Add Subregion to parent Region 
region1.addSubRegion(predicates2, 1); 
 
//Defining Attribute SubRegions 
public void addSubRegion(XAttributeRegion subDim, double weight) { 
  subdim.add(subDim); 
  subDim.setWeight(weight);  
} 

Figure 6.38: R-CS Implementation - Hierarchical Context Attribute Region 
Definition 

Finally, we have implemented a graphical user interface that allows users to test 

and evaluate the proposed R-CS system. The interface allows the user to 1) define 

situation spaces with corresponding attribute regions; 2) define context attributes (sensor) 

with their corresponding context state values and 3) reason different situations using 

different expressions e.g. Presentation or Meeting. The user interface also has the 

capability to simulate a stream of synthetic context state values for corresponding context 

attributes (sensors). Figure 6.39 presents a screen shot of R-CS user interface. The user 

interface code also produces text file-based outputs (dumps) used for evaluation. 
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Figure 6.39: R-CS Implementation - User Interface 

6.5 Summary 

This chapter has presented implementations details of the mobile data mule-based 

sensor data collection approaches proposed in Chapters 3 and 4, namely, sGaRuDa 

system framework and 3D-KNN algorithm and the Context Spaces extension, R-CS 

system proposed in Chapter 5. 

A prototype of the sGaRuDa sensor data collection framework has been 

implemented on real-world mobile devices, namely, PDA and an ER1 mobile robot. The 

development platform used was Microsoft.NET Compact Framework (CF) and JAVA. 

We used VB.NET to develop code in the Microsoft.NET CF platform. The wireless 

sensor node chosen for the prototype implementation was the Bluetooth Mulle. The code 

for the Mulle sensor node was developed in C using the proprietary IAR compiler. 

Finally, we implemented a crack-down version of a centralised data sink that acts as the 

destination for collected data. The sink was developed in VB.NET. The implementation 

of the sGaRuDa framework proved the real-world feasibility of the proposed data 

collection architecture. The sGaRuDa system facilitates sensor data collection using real-

world mobile devices without the need for a dedicated data collection infrastructure. 
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Further, we presented the implementation details of the proposed 3D-KNN 

algorithm. The 3D-KNN algorithm was implemented and simulated in GloMoSim, a 

parallel discrete event simulator. Simulating 3D-KNN in GloMoSim allowed us to 

evaluate the 3D-KNN algorithm within a three-dimensional large-scale sensor network 

(up to 1000 sensor nodes). 

Finally, we presented implementation details of the proposed R-CS system. R-CS 

i.e. ranked Context Spaces was developed in JAVA by wrapping the existing Context 

Spaces functionality already implemented using JAVA. We also implemented a simple 

graphical interface allowing us to evaluate the R-CS. The proposed R-CS algorithms 

were incorporated in R-CS by developing new functionality and modifying existing 

Context Spaces functionalities.  
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7  
Evaluation of Implemented 

sGaRuDa, 3D-KNN and R-CS 
7.1 Introduction 

In this chapter, we evaluate the proposed sensor data collection framework 

sGaRuDa, the 3D-KNN algorithm and the R-CS modelling approach. This chapter is 

divided into three main sections focusing on the three main contributions of this thesis. In 

each section, we present evaluation criteria followed by experimental results. The three 

sections of this chapter are: 

1) Evaluating sGaRuDa, the practical system framework for sensor data 

collection using mobile data mules targeted at Bluetooth-based sensor 

networks. Some parts of the system evaluations presented in section 7.2 are 

from the following published papers (Jayaraman et al., 2007, Jayaraman et al., 

2008a) 

2) Evaluating 3D-KNN, a k-Nearest Neighbour-based data collection algorithm 

using mobile data mules targeted at broadcast-based sensor networks. The 

evaluations of the 3D-KNN algorithm presented in section 7.3 are from the 

following published papers (Jayaraman et al., 2010a, Jayaraman et al., 2010c, 

Jayaraman et al., 2010b) 

3) Evaluating R-CS, the dynamic situation-based smart spaces modelling 

approach based on Context Spaces. The evaluation of R-CS presented in 

section 7.4 are from the following papers (Jayaraman et al., 2009b, Jayaraman 

et al., 2009a) 
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7.2 sGaRuDa: Implementation Evaluation 

The key research question that we tried to answer in this thesis is the feasibility of 

using mobile devices as a cost-efficient alternative for sensor data collection. In this 

section, we present experimental and evaluation outcomes validating the feasibility and 

cost-effectiveness of the sGaRuDa framework. We demonstrate the feasibility of the 

sGaRuDa framework in real-world scenarios. To validate the cost-efficiency of the 

sGaRuDa framework, we perform experiments to evaluate the proposed data collection 

and dynamic activation schedule algorithms. The cost-based evaluation comprises the 

following components:  

1) Energy consumed by sensors during sensor data collection 

2) Time spent in discovery i.e. percentage of time the mobile data mule is able to 

successfully discover and collect data from neighbouring sensors. 

Our test scenario used for system evaluations is a building environment (scenario) 

depicted in Figure 7.1. The building environment is a typical example of a real-world 

pervasive environment with abundant availability of mobile devices.  

 

Figure 7.1: A Building Scenario used for Evaluation 
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Further, a building environment accurately captures our notion of three-

dimensional sensor network deployment. Another reason to support the choice of 

environment is the recent need for environmental monitoring and control in building 

especially in large offices. Research shows that average cost of installing a single wired 

sensor in a building is $200 (Rabaey et al., 2000). Further, such deployments require a 

fixed data collection infrastructure to collect sensor data. This further adds to the 

deployment cost. The sGaRuDa system is a cost-efficient alternative as wireless sensors 

like Mulle can be deployed with relative ease without the need for a fixed data collection 

infrastructure. In such a scenario mobile devices that are within the office space 

(environment) can be used as mobile sensor data collectors. 

7.2.1 Dynamic Activation Schedule: Implementation 
Evaluation 

In this section, we evaluate the implementation of the dynamic activation 

schedule. We present a scenario that updates the activation schedule of Mulle 

dynamically using the mobile data mule. Figure 7.2 presents a flow diagram of the 

operations involved between the mobile data mule, the sink and the sensor node (Mulle). 

 

Figure 7.2: Activation Schedule Update - Flow Diagram 
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The mobile data mule used for the experiment was the personal digital assistant 

(PDA). The Mulle was connected to its expansion board to obtain real-time outputs. The 

outputs from the Mulle sensor node and the mobile data mule are presented in Figure 7.3 

and Figure 7.4. For evaluation and illustration purpose, we have implemented menu 

controls on the PDA for various sensor operations. Figure 7.3 depicts output from the 

Mulle in real-time. For this experimentation, the activation schedule comprised the 

schedule presented in Table 7.1. 

Bluetooth Radio Interval Sense Interval 

180s wake-up, 60s awake Sample every 60s. 6 samples per file 

Table 7.1: Activation Schedule Experiment 

 

Figure 7.3: Activation Schedule Dynamic Update - Mulle Evaluation Screen Shots 
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Figure 7.4: Activation Schedule Dynamic Update - PDA Screen Shot 

7.2.2 Evaluating Shortened Bluetooth Discovery 

The shortened Bluetooth discovery process is used for quick and efficient device 

discovery as against the complete 10.54 seconds discovery process given by Bluetooth 

specification (BluetoothSIG, 2010d).  This approach was presented in detail in Chapter 3 

and the implementation details using restricted search timers were presented in Chapter 6. 

In this section, we evaluate the success rate of the discovery process using shortened 

interlaced Bluetooth discovery. To determine the best possible Bluetooth discovery time 

rather than the standard 10.54 seconds, we performed Bluetooth discovery operation with 

4 devices for varying time intervals. In each case, we compute the discovery success 

ratio. The discovery success ratio is defined as the ratio between devices that are in 

discoverable mode to devices that are successfully discovered. We varied our search 

interval between 2 and 4 seconds (at least 60% less than the standard interval). The 

respective results are presented in Figure 7.5. The evaluation outcomes presented were 

averaged over 10 independent experimental runs with devices at varying distances. Our 

evaluation was based on v1.2 of Bluetooth stack specification (BluetoothSIG, 2010d) 

available on the PDA. We conclude the following from the results. 1) The use of 3-4 

second discovery interval produces 90% discovery success. 2) The 3-4 second discovery 

interval is at least 50% less than the Bluetooth specification recommendation and 3) No 

modification to the existing Bluetooth stack is required to achieve 90% discovery 
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success. The experimental outcome validates the advantages of using the shortened 

Bluetooth discovery in the sGaRuDa framework. By reducing sensor discovery time, the 

overall data collection time also reduces. 

 

Figure 7.5: Discovery Success Ratio 

7.2.3 Window-based Data Collection: Implementation 
Evaluation 

In this section, we evaluate the implementation of the proposed window-based 

data collection technique. Our aim is to validate the feasibility of the proposed data 

collection protocol in real-world scenarios. The sensor node receives the window size 

from the mobile data mule. For experimentation purposes, we have used a window size of 

1. Hence, the Mulle sensor node waits for an acknowledgement after every successful 

transmission. The Mulle waits for a data transfer request from the mobile data mule. On 

receiving a new request with window size w, the Mulle sends w packets before waiting 

for an acknowledgement. The underlying link layer is used to identify any disconnection. 

When a new data transfer request is received from another mobile data mule, the sensor 

starts resending the last unacknowledged packet. The screen dump of the mobile data 

mule (Robot platform) after a single round of data collection is presented in Figure 7.6. 

The Mulle sensor node screen dump is presented in Figure B1 in Appendix B. In this 

experiment, we used a mobile Robot as the mobile data mule. The mobile robot ER1 is 
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depicted on the right side of Figure 7.6. The screenshot on the left of the Figure 7.6 is a 

magnified view of the sGaRuDa software framework running on the robot. 

 

Figure 7.6: Window-based Data Collection: Mobile Robot Screen Shot 

The above experimentation presented a data collection run involving a mobile 

data mule. The key feature of the proposed data collection algorithm is to facilitate multi-

part data collection in the presence of multiple mobile data mules. A black box of the 

experimental setup is presented in Figure 7.7. Figure 7.8 illustrates the working of the 

data collection algorithm in the presence of multiple mobile data mules. A flow diagram 

is used to represent the arrival of mobile data mules that communicate with the sensor. 

 

Figure 7.7: Disconnected Data Collection - System Setup 
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Figure 7.8: Flow diagram for disconnected Data Collection 

The experimentation parameters are presented in Table 7.2. We use smaller 

values for our parameters for ease of screenshot presentation. For this experimentation, 

we used a PDA and a mobile robot based data mules. The implementation evaluations are 

presented as screen dumps of the PDA and the mobile robot respectively. These screen 

dumps are presented in Figure 7.9 and Figure 7.10. In this section we focus on the 

implementation evaluation of the window-based data collection protocol in the presence 

of multiple mobile data mules. A quantitative evaluation of the data collection algorithm 

is presented later. 

Parameters Value 

Mobile Data Mules 2 

Number of Packets 2 

Sensors 1 

Window Size 1 

Table 7.2: Window-based Data Collection - Evaluation Parameters 
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Figure 7.9: Window-based disconnected data collection - Mobile Robot 

 

Figure 7.10: Window-based disconnected data collection - PDA 

The data available on the Mulle are collected by the PDA and the mobile robot 

during independent data collection runs. The screenshots in Figure 7.9 and Figure 7.10 

show the collected sensor data. As described previously, the use of acknowledgements 
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creates a platform for disconnected data transfer in the presence of multiple mobile data 

mules.  

7.2.4 Mulle Sensor Node - Energy Consumption Experiments 

In this section, we present Mulle control experiment results. The control 

experiments focus on the energy consumption of the Mulle during the following 

operations: 1) idle/sleeping, 2) listening 3) sensing and 4) communication. These states 

have been discussed in detail in Chapter 3. The control experiments on the Mulle were 

conducted using Mulle v3 sensor node. The experimental setup comprises an ADC PCI 

card connected to the Mulle’s expansion board. The ADC PCI card is used to measure the 

energy consumed by the Mulle sensor node. A desktop equipped with LabView 

(NationalInstruments, 2008) software was used to record the energy consumed. 

Experiment 1: Boot-up/Low-power Mode- In this case, we compute the energy 

consumed by the Mulle to perform a boot-up operation. After a successful boot, the 

Mulle enters a low-power mode i.e. a state with the properties: 1) Bluetooth radio 

turned off and 2) MCU turned off. Result of our experiment is presented in Figure 

7.11. In low-power mode the Mulle consumes only 1.4mW. 

 

Figure 7.11: Experiment1: Bluetooth Mulle Boot-up/idle 

Experiment 2: Sense- During sense, the Bluetooth radio is turned off and the MCU is 

turned on. The energy consumed during a sense operation varies with the type of 

sensor used on the Mulle. For example, an accelerometer might consume more 
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energy than the on-board temperature sensor. The experimental result presented in 

Figure 7.12 used the on-board temperature sensor. The following operation is 

performed by the Mulle to sense a sample of data. They are: 1) change from idle 

state to sense state 2) read current temperature and 3) use the on-board analog-to-

digital convertor (ADC) to store the measured temperature to the on-board flash. 

For experimentation, the Mulle was programmed to sense every 2 minutes. Each 

sense operation consumed 19.82mW of energy. The section marked as a in Figure 

7.12 indicates the Mulle’s boot operation. The section marked b indicates the 

sensing operation using the on-board temperature sensor. The Mulle enters low-

power mode during the time period between sense intervals. 

 

Figure 7.12: Experiment 2: Mulle Sense Operation 

Experiment 3: Bluetooth Listen- During Bluetooth listen, the Bluetooth radio is 

powered on and is in listen mode. For the following experiment, the Bluetooth 

radio and the MCU were switched on. The Mulle performs frequent inquiry scan 

enabling it to respond to any new incoming request. The Mulle only accepts 

incoming connection and does not self-initiate a connection. The experimental 

result is presented in Figure 7.13. The peaks in the power consumption shown in 

Figure 7.13 are due to the back-off between subsequent inquiry scan. The energy 

consumed by the Mulle in the Bluetooth listen state was measured to be 27.4mW. 
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Figure 7.13: Experiment 3: Bluetooth Listen 

Experiment 4: Bluetooth Connection: In this state, a Bluetooth connection is 

established between the Mulle and the mobile data mule. The MCU, Bluetooth 

radio and the real time clock are all powered up. The experimental outcome is 

presented in Figure 7.14. The energy consumed by the Mulle during the connection 

operation was measured to be 160.61mW per millisecond. We have stated through 

the thesis that communication is the major energy consuming operation of a sensor 

node. The outcome of our control experiment validates this claim.  

 

Figure 7.14: Experiment 4: Bluetooth Connection 

Further, to evaluate the use of threshold-based data collection by the sGaRuDa 

framework, we conducted experiments to compare the energy consumed by the Mulle 
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when communicating with a mobile data mule at different locations. The experiment was 

conducted for 30 seconds of continuous data exchange between the Mulle and the mobile 

data mule. The mobile data mule used for this experimentation was the robot which was 

placed in two different locations. The first location was an obstacle free environment 

while the other was an obstacle filled environment. The mobile data mule was moving at 

a constant speed of 30cm/sec. The result of our experimentation is presented in Figure 

7.15. The result presented in Figure 7.15 shows higher energy consumption in an obstacle 

filled environment. The energy consumption presented is over every second. From this 

result, we prove the influence of obstacles and distance on the power consumed by the 

Mulle. The experimental outcome clearly validates our argument that greater distance and 

poor channel quality (obstacles) result in higher power consumption. The result supports 

our proposed threshold-based data collection approach that considers real-world channel 

quality metrics in the data collection process. 

 

Figure 7.15: Experiment 5: Comparing Energy Consumption at varying Distances 

7.2.5 Window-Based Data Collection Algorithm: Quantitative 
Evaluation 

In this section we evaluate the proposed window-based data collection algorithm 

quantitatively. The discussion presented in section 7.2.3 evaluated the feasibility of the 

proposed window-based data collection in real-world scenarios. To evaluate the data 

collection algorithm quantitatively, we perform the following experiment: 1) data 

collection in the absence of a window-based technique; 2) data collection using the 

proposed window-based technique and 3) data collection using multiple mobile data 



  215 

 

mules. The experiments were conducted under varying channel qualities and mobile data 

mule movement speeds. The mobile data mule used for experimentation is the mobile 

robot whose speed was varied to simulate real-world movements. To achieve varying 

channel quality, the mobile robot (data mule) was moved along paths within the building 

separated by walls, desks and glass windows. Each experiment was repeated 5 

consecutive times and the results were averaged. The parameters used for the 

experimentation are presented in Table 7.3. The experimental setup within the building is 

depicted in Figure 7.16. The mobile robot moves along the path represented by a red 

arrow in the Figure 7.16. At different locations along the mobile data mule’s trajectory 

Mulle 1 and Mulle 2 enter and exit the communication range. 

Parameters Values 

Total number of packets 100 

Mobile Data Mule Speed 30 and 50 cm/second 

Channel Quality Clear Straight path/Obstacle (walls, doors, 
chairs, etc) filled path 

Number of Sensors 3 

Number of Mobile Data Mules 2 

Table 7.3: Window-based Data Collection - Experiment Parameters 

 

Figure 7.16: Windows -based Data Collection - Experimental Setup 
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Experiment 1: In this experiment, we compute the total number of packets 

received by the mobile data mule from Mulle after connection establishment using non-

window based communication (case 1) and window-based communication (case 2). The 

time the mobile data mule was within the coverage of the sensor nodes (Mulle) was 

averaged to be 19 seconds for both cases (window-based and non-window). For this 

experimental run, we only considered a single data collection run. A data collection run is 

a single traversal of the sensor network by the mobile data mule. The time spent within 

the sensor node’s coverage does not include the time involved in discovery. The mobile 

data mule, with the help of Ekahau position engine (EPE) and available trajectory 

information, estimates the residual time, i.e. time within the radio coverage range of the 

sensor node. We assume sensors are location-aware and the location information is 

obtained during the discovery phase.  

For the experimental run, we used a clear data communication channel (clear line 

of sight) between the Mulle and the mobile data mule at 30cm/sec movement speed. At 

higher speeds, the communication path between the mobile data mule and the Mulle were 

filled with obstacles. The experimentation outcome is presented in Figure 7.17. The 

results show that even at higher speeds, at least 50% of the data is collected. Further, at 

30cm/sec, the mobile data mule receives more data packets. The results validate the 

effect of mobility, speed and poor communication channel quality on the efficiency of 

data collection process. The window-based approach collects fewer packets than the non-

window based approach due the use of acknowledgements. In this example, the window 

size used was 10. In both cases, using a single data collection run, the estimated time was 

not sufficient to collect all the data. To validate the use of multi-part data collection, we 

repeated the above experiment with an additional data collection run. The outcome of the 

experimentation is presented in Figure 7.18.  

The experimental outcome validates the advantage of using the proposed multi-

part data collection approach. As indicated by the experimental outcome, the use of 

subsequent data collection runs, without changing any other data collection parameters, 

increased the packet collection rate to 100%. With the non-window based approach, the 

amount of packets collected remains the same,  as none of the data collection parameters 

were modified,  i.e. the time the sensor and the mobile data mule are in range has not 
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been modified. The major drawback of the non-window based approach is that Mulle is 

not aware of the number of successfully delivered packets. Hence, any disconnection 

results in the entire set of data packets being re-transmitted. This is not the case with the 

window-based data collection technique. The sensor re-transmits only the lost data 

packets.  

 

Figure 7.17: Experiment1: Non-Window based and Window-based Data Collection - 
1 Data Collection Run 

 

Figure 7.18: Experiment1: Non-Window based and Window-based Data Collection - 
2 Data Collection Runs 

Experiment 2: Experiment 2 aims to evaluate the energy efficiency of the 

proposed window-based data collection technique by evaluating a scenario involving two 

mobile data mules. The experimental setup is similar to the one presented in Figure 7.16. 
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In this experiment, we consider a sequential mobile data mule arrival. The first mobile 

data mule stays within the communication range for 10 seconds while the second one stay 

until it collects all the available data packets. In case 1, the experiment was conducted 

without window-based acknowledgements while in case 2, the experiment was conducted 

with a window size of 10. The outcome of the experimentation is presented in Figure 

7.19.  

The experiment was performed under two situations, a clear line of sight 

environment and an obstacle filled environment. In each case, the mobile data mule’s 

speed was randomly changed to determine the effect of mobility on the window-based 

data collection approach. The result presented in Figure 7.19 is the total time taken to 

collect the entire sensor data. The results show the savings in time using the window-

based technique. The results validate the observations made previously in Experiment 1. 

Further, the non-window based approach requires at least 30sec to complete the data 

collection while the adaptive window-based approach will run to completion during 

subsequent data collection cycles/runs. To compute the total energy spent during the 

communication we use the experimental result presented in Figure 7.14. We conclude 

that, the use of the proposed window-based data collection technique results in at least 

25% energy saving (based on Bluetooth energy consumption presented earlier). 

 

Figure 7.19: Experiment2: Non-Window based and Window-based Data Collection 
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7.2.6 Dynamic Activation Schedule: Quantitative Evaluation 

In this section, we evaluate the proposed dynamic activation schedule algorithm 

by determining the sensor discovery ratio. The discovery ratio is defined in (1). The 

sensor discovery ratio helps to compute an energy consumption graph using the 

experimental outcomes. To verify and validate the gain in energy using the proposed 

approach, we compare the evaluation outcome with a non-adaptive approach i.e. classic 

sensor operation without dynamic duty cycle adaptation based on mobile data mule 

arrival. 

࢚ࢇࡾ ࢟࢘ࢋ࢜ࢉ࢙ࡰ ൌ  
ࢇ࢚ࢀ ࢘ࢋ࢈࢛ࡺ ࢌ ࢛ࢌ࢙࢙ࢋࢉࢉ࢛ࡿ ࢚ࢉࢋ

ࢇ࢚ࢀ ࢘ࢋ࢈࢛ࡺ ࢌ ࢋ࢚࢙ࡸ ࢙ࢇ࢜࢘ࢋ࢚ࡵ
 (7-1) 

The ability to change the activation schedule of the Mulle using the mobile data 

mule allows the sensor to adapt to changing mobile data mule arrival rate. This is not 

feasible in the classic sleep/wake (listen) approach. Moreover, computing the mobile data 

mule’s arrival time on the sensor is an expensive process and requires enough 

information about data mule arrivals. We use the terms wake and listen inter-changeably 

to describe the process of the sensor waking up from the sleep mode and entering the 

listen mode.  For our experimentation, we have used 3 Mulles and one mobile data mule. 

For the mobile data mule arrival we assumed a Poisson arrival process. The experimental 

setup is presented in Figure 7.20. The trajectory of the mobile data mule is a straight path 

and sensor nodes are placed in a row. This setup in no way restricts our approach for 

other sensor deployments. We merely use this setup for ease of experimentation. We 

consider two cases, Case 1) No sensor duty cycle adaptation and Case 2) Dynamic sensor 

duty cycle (activation schedule) adaptation using the mobile data mule. 

 

Figure 7.20: Experimental Setup - Dynamic Activation Schedule 
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We evaluate the proposed dynamic activation schedule-based discovery by 

computing the discovery ratio for the setup presented in Figure 7.20. To compute the 

Poisson arrival, we used MATLAB to generate arrival times over unit of time. To provide 

an illustrative understanding of the dynamic activation schedule based sensor discovery, 

the Mulle sensor’s wake interval, adapted (activation schedule) and non-adapted are 

computed and the results are presented as a time series in Figure 7.21 using MATLAB. 

The blue dots represent the mobile data mule’s arrival at time T. The red dots show the 

adapted sleep/wake schedule of the Mulle. The green dots represent the non-adapted 

sleep/wake interval of the Mulle. As illustrated in the figure, the non-adapted sensors 

follow a periodic sleep/wake interval. On the contrary, the adapted sensor nodes have a 

changing sleep/wake interval based on the mobile data mule arrival. Moreover, as we can 

see in the figure, the dynamic activation schedule of the Mulle represented in red has less 

wait time before discovering a mobile data mule compared to the non-adapted approach. 

The experiment consisted of 4 data collection rounds and was repeated 5 times.  

 

Figure 7.21: Experiment 1: Dynamic Activation Schedule 

Based on the result presented in Figure 7.21, we present the result of the 

discovery ratio computation in Figure 7.22. As we can see, the adapted approach 

(dynamic activation schedule) produces 100% success rate in most cases compared to the 

non-adapted approach. The overall discovery percentage using adapted approach is 94% 

while the overall discovery percentage using the non-adapted approach is 70%. 

Discovering a sensor node allows the mobile data mule to collect the sensor data 

immediately, hence reducing the sensor node’s listen duty cycle. The result presented in 
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Figure 7.21 is used to compute the overall energy consumed during the data collection 

process. The total energy spent by the Mulle is given by (7.2) 

࢟ࢍ࢘ࢋࡱ ࢇ࢚ࢀ ࢊࢋ࢛࢙
ൌ  ࢋࢊࢊ  ࢋ࢙ࢋ࢙ࢊ   ࢋ࢚࢙ࢊ  ࢚ࢉࢋࢉࢊሺࢌ , ሻࢋࢉࢇ࢚࢙ࢊ ∗  ۼ

(7-2) 

Where d denotes the duty cycle for the corresponding state i.e. idle, sense, listen 

and f (dconnection, distance) denotes the energy spent during connection which is impacted 

by distance. N is the total number of connections established between the Mulle and the 

mobile data mule.  

 

Figure 7.22: Experiment 2: Discovery Ratio 

To evaluate the energy consumed by the Mulle using the dynamic activation 

schedule, we only consider the energy spent during the waiting state. We ignore the 

energy spent during connection establishment and data exchange. The outcome of our 

experiment is presented in Figure 7.23. The result in Figure 7.23 presents the total energy 

spent by the Mulle in waiting for the data mule arrival. The result presents the cumulative 

energy consumed at the end of each data collection round. 
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Figure 7.23: Experiment 3: Dynamic Activation Schedule 

As the result illustrates, the energy consumed by the non-adaptive approach 

increases significantly.  By contrast, the proposed activation schedule approach adapts 

the energy consumption based on the data mule arrival. This is evident from the linear 

increase in energy consumption. The experimental outcome verifies and validates the 

proposed dynamic activation schedule algorithm’s energy efficiency over the classic non-

adaptive approach. We conclude that using the proposed dynamic activation scheduling, 

the lifetime of the sensor node can be extended considerably hence improving the overall 

sensor network lifetime. In this experimentation, we did not assume any sensor-sensor 

communication. By introducing sensor communication, load balancing can be achieved 

whereby only one Mulle is awake during a data collection round. This approach can 

further reduce the energy consumed by individual sensors, therefore increasing the 

overall sensor network lifetime. 

7.3 3D-KNN: kNN-based Data Collection Using 
Mobile Data Mules - Evaluations 

In this section, we evaluate the cost-efficiency of the 3D-KNN algorithm. We 

defined cost-efficiency within the scope of the 3D-KNN algorithm as a function of the 

following: 1) energy involved in communication, 2) query processing latency, 

(performance) and 3) impact on overall network lifetime (total energy consumed). The 

energy spent on communication involves the energy consumed during each phase of the 
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3D-KNN algorithm. The energy spent during the final data collection phase varies 

depending on the amount of data that needs to be collected from the sensor network. 

We use the following key evaluation metrics to validate the cost-efficiency of the 

proposed 3D-KNN algorithm. The evaluation metrics used are:  

Boundary Estimation: Size of the kNN boundary estimated has a direct impact on the 

overall energy consumption i.e. bigger the boundary, more communication is 

involved and lesser the boundary, enough sensor nodes may not be covered. 

Query Latency: Time taken to issue a kNN query and obtain a result for varying kNN 

boundary sizes determined by k. 

Energy Consumption: Overall energy consumed by the entire network to process a 

kNN query request. 

Energy Consumption per Node: Energy consumed by each sensor over a single round 

of data collection in the presence of a mobile data mule. 

Further, we validate the proposed 3D-KNN prediction algorithm by comparing 

the results of the predicted 3D-KNN based data collection algorithm against the non-

predictive 3D-KNN algorithm. Our experimental evaluations were performed in 

GloMoSim (2010) details of which were presented in Chapter 6. The parameters 

presented in Table 7.4 were used for our experiments. A value of 2.5 was used for c to 

compute the KNN-METRIC 

Parameter Value 

Number of Nodes (N) 20 to 200 

Area Size (AT) 1000 x 1000 x 1000 

Node Distribution Random 

Radio Tx Power 10  dBm to 15 dBm 

c 2.5 

Mobile Data Mule 1 

Mobile Data Mule 
Mobility 

Trajectory(Using 
mobility file) 

Table 7.4: GloMoSim Simulation Parameters 
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The sensor network environment simulated was the building scenario presented in 

Figure 7.1.  Each sensor node is assumed to be location-aware. The sensors during initial 

run do not have any knowledge about the network or their neighbouring sensors. 

Neighbour discovery is done at runtime when sensors process the kNN query. This rule 

makes the proposed 3D-KNN algorithm more flexible to network infrastructure changes. 

The wireless sensor nodes are assumed to be static and listening to broadcast messages 

using a periodic sleep/wake schedule. Using a periodic wake/sleep schedule might result 

in some nodes being unavailable during data collection. This problem can be overcome 

using the dynamic activation schedule algorithm proposed and evaluated in previous 

sections. The mobile data mule has the ability to move within the sensor network along a 

pre-defined path. This path cannot be changed as we assume that mobile data mule 

cannot be controlled by the simulation environment. For our evaluations, we only 

consider one-shot kNN queries. One-Shot kNN queries are issued only once and the 

results are computed based on the query response. Subsequent kNN query is not issued 

from the same location. To validate the proposed 3D-KNN algorithm, we have performed 

the following experiments: 

1) Evaluate the boundary estimation algorithm 

2) Evaluate the kNN query processing efficiency 

3) Evaluate the energy consumed during kNN query processing 

7.3.1 Boundary Estimation Algorithm Evaluation 

The kNN query is propagated by the mobile data mule into the sensor network. 

The boundary area is estimated by the mobile data mule based on the sample size k. In 

this section, we present experimentation by considering a range of values for the sample 

size k. Our aim is to validate the computing efficiency of the boundary estimation 

algorithm for different values of k. The result of our experiment is presented in Figure 

7.24. The result of the boundary estimation algorithm is a set S which comprises at least k 

nearest neighbours.  
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Figure 7.24: 3D-KNN Experiment 1: Boundary Estimation 

The key evaluation criterion for the boundary estimation algorithm is the size of 

set S. The boundary area comprising s sensors needs to cover at least k sensor nodes such 

that k ≤ s. The size of the set S impacts the overall energy consumption. As illustrated by 

the evaluation outcome, for a nearest neighbour size k, the estimated boundary set S 

covers at least k sensor nodes. The size of the set S is sufficiently large encompassing the 

required number of sensors. This is verified by the experimental outcome in case 4.  In 

case 4, the experiment was conducted with a sensor network capacity of 200 nodes and 

for a requested k of size 130, the computed kNN boundary consisted of 140 sensor nodes. 

The experimental outcome validates the efficiency of the boundary estimation algorithm. 

The efficiency is determined by the size of set S i.e. S is neither too small nor too large. 

7.3.2 Query Processing Latency 

The query latency is the time taken to process a kNN query for varying sizes of k. 

To verify the query performance of the proposed 3D-KNN algorithm, we have performed 

experimentation for various sensor network sizes under changing simulator parameters. 

To validate the performance of the 3D-KNN algorithm, we have compared the 

experimental results of the 3D-KNN algorithm with a static sensor network-based kNN 

query processing algorithm, namely, KBT (Winter et al., 2005). The KBT approach is 

most relevant to the proposed 3D-KNN as it uses a infrastructure-free approach. Other 

techniques employing kNN queries in sensor networks use indices or require special 
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sensor hardware (Wu et al., 2007) to execute the kNN queries. The KBT approach 

employs a fixed TreeHeight i.e. the maximum hop distance the query propagates. This 

value is assumed to be static and hence influences the kNN boundary. The problem with 

this approach is that kNN boundary cannot adapt dynamically for varying values of k. We 

implemented the KBT algorithm in GloMoSim using a fixed hop-count technique i.e. 

sensors stop broadcasting after a particular number of hops have been reached. We varied 

the value of the TreeHeight manually during every simulation run based on the nearest 

neighbour size (k). This operation is done dynamically during 3D-KNN execution. The 

result of the experimental outcomes is presented in Figure 7.25. The experiment was 

conducted by varying the number of sensors from 100 to 200. The value of k was varied 

between 30 and 100. The time required to process the kNN query involved the operations 

query preparation, query propagation and query response. With KBT, the centralised sink 

was fixed at a particular location while in the case of 3D-KNN the mobile data mule’s 

location was changed based on the pre-defined trajectory. For increasing size of the 

sensor network, the radio range was modified to suit large-scale deployment areas. We 

present a short analysis of the results in the following paragraph. To help explaining the 

experimentation outcome, we have plotted a trend line over the results. 

 

Figure 7.25: 3D-KNN Experiment 2: Query Latency  

The trend line projected over KBT indicates a slightly non-linear increase in time 

as the number of nearest neighbours increase. On the contrary, a linear increase in time is 

noticed for the 3D-KNN algorithm as the number of nearest neighbours increase. The 

primary reason for the increase in time using the KBT algorithm is attributed to the use of 
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fixed TreeHeight while the linear increase in time using the 3D-KNN algorithm is 

attributed to the use of dynamic kNN boundary computation. The result clearly proves the 

performance advantage of the 3D-KNN algorithm over KBT under the given simulation 

parameters. Further, the increase in time impacts the amount of energy spent by the 

sensor network to process the kNN query. This influence is investigated in the next 

section. 

7.3.3 Energy Consumption 

In this section, we perform experimentation to evaluate the energy consumption 

of the 3D-KNN algorithm. The experimental results presented in this section include the 

energy consumed during query preparation, query propagation, query execution and 

nearest neighbour computation. To validate the energy-efficiency of the 3D-KNN 

algorithm we compare our experimental outcomes with KBT (Winter et al., 2005). 

The result of our experimentation includes the energy spent by the mobile data 

mule to propagate and process the kNN query. The energy involved in moving the mobile 

data mule from one location to another is not taken into consideration. For each 

experiment, we changed the value of k (nearest neighbours) to verify the feasibility of the 

proposed 3D-KNN algorithm over large-scale sensor networks. Moreover, it also proves 

the energy-efficiency of our proposed approach in large-scale sensor networks. The result 

of the experimental outcomes is presented in Figure 7.26. We present a short analysis of 

the experimental results in the paragraph following Figure 7.26. 

 

Figure 7.26: 3D-KNN Experiment 3: Energy Consumption 
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To help the analysis, we have projected trend lines on the experimental results. It 

can be noted that increase in energy consumption using KBT is non-linear, while the 

increase in energy consumption is linear using the 3D-KNN algorithm. The energy 

efficiency of the proposed 3D-KNN algorithm is attributed to the following: 1) the 

boundary estimation based on network density that covers at least k sensors, hence, 

reducing the total number of message broadcasts in the network; 2) plane rotation and 

nearest neighbour selection based on the KNN-METRIC choosing sensor nodes that are 

both closer and energy-efficient, (better communication channel). We use KBT’s 

experimental outcomes as a benchmark for kNN query processing in sensor networks. 

The experimental outcomes clearly validate the energy efficiency of the 3D-KNN 

algorithm. Further, under given test environment and our simulation parameters, 3D-

KNN proves to be more energy-efficient than KBT. 

To further evaluate the energy consumption of the proposed 3D-KNN algorithm, 

we evaluate the neighbour selection algorithm that employs KNN-METRIC for nearest 

neighbour selection. To provide an understanding of the performance gain using the 

proposed neighbour selection algorithm, we compare 3D-KNN against a basic kNN 

(KNN) implementation. The basic kNN uses the same principles as KBT, employing a 

fixed TreeHeight (hop count). The only difference though is that basic kNN uses a 

modified KNN-METRIC to compute the list of nearest neighbours. The modified KNN-

NETRIC takes only distance into consideration, excluding signal-to-noise ratio (SNR) 

parameter. For the evaluation, we compare the selected neighbour list based on the 

corresponding metrics. We use two cases for the simulations, Case 1) Basic kNN (KNN) 

and Case 2) 3D-KNN. 

The simulation results are presented in Figure 7.27. The KNN-METRIC computed 

in case 1 is higher than the KNN-METRIC computed in case 2. This is quite obvious since 

only distance is taken into account in case 1. In both cases, higher value represents better 

performance i.e. higher KNN-METRIC indicates lesser distance in case 1. Similarly, 

higher KNN-METRIC in case 2 indicates lesser distance and better SNR. Further, we 

discuss two specific cases highlighted in the graph by black circles involving sensor node 

5, 6, 8 and 9.  
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As indicated by the results the sensors have varying KNN-METRIC for 

corresponding cases. KNN-METRIC for node 5 is higher than node 6 for case 1. By 

contrast, the KNN-METRIC for node 5 is lower than node 6 in case 2. This indicates a 

different sensor node selection using the two metrics. The reason behind the difference is 

the introduction of SNR parameter in the KNN-METRIC which determines the node 

selection process. To elaborate further, assume sensor node 5 is at a lesser distance than 

sensor node 6. With the basic KNN approach, sensor node 5 would be selected due to 

lesser distance. Using 3D-KNN approach which introduces SNR parameter, the result can 

be interpreted as node 5 which is at a lesser distance than node 6 has poor communication 

channel quality. Hence, node 6 is a better choice from an energy perspective even though 

it is at a farther distance. We come to this conclusion from our previous experimentations 

where we have proven that distance and signal quality produces an impact on the overall 

energy consumed during communication. The same observation can be made for the 

sensor nodes 8 and 9. As stated in chapter 4, the KNN-METRIC can be further extended 

by introducing additional parameters that increase the energy-efficiency of the data 

collection process. 

 

Figure 7.27: 3D-KNN Experiment 4: Neighbour Selection 

7.3.4 Energy Consumption of Individual Sensor Nodes 

In this section, we perform experimentation to compute the energy spent by 
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data mule travels within the sensor network in a known trajectory collecting sensor data. 

At each instance, it issues a kNN query, collects query responses, computes nearest 

neighbours and collects sensor data. Unlike approaches discussed in the literature (Shah 

et al., 2003) the sensors were not distributed in a grid fashion. A random sensor network 

deployment was used. The result of our simulation is presented in Figure 7.28. 

The noticeable outcome of our experimentation outcome presented in Figure 7.28 

is the uniform depletion of energy across the entire sensor network. The illustration was 

computed using MATLAB’s 3D bar chart. Though the sensors in the graph are 

represented in grids, the experimentation was not performed by placing sensors in grids. 

Hence, the position of a sensor in the graph does not correspond to its actual location 

within the environment. The nodes with nil energy usage were the sensor nodes that did 

not fall within the path of the mobile data mule. These sensors were distributed outside 

the kNN boundary. The simulation results presented were averaged from 10 simulation 

runs. The energy consumption of individual sensors further validates the energy-

efficiency of the proposed 3D-KNN algorithm. 

 

Figure 7.28: 3D-KNN Experiment 5: Individual Energy Consumption 

7.3.5 Energy Consumption with Neighbour Prediction 

In this section, we evaluate the proposed neighbour prediction algorithm used by 

the mobile data mule to improve the energy efficiency of the data collection process. To 



  231 

 

validate the proposed algorithm, we compare the outcome of the neighbour prediction 

experimentation with a non-predictive 3D-KNN approach. The non-predictive approach 

does not compute future nearest neighbours. Hence, a new kNN query with no reference 

to previously discovered sensors is broadcast into the network. Our experimentation setup 

is presented in Figure 7.29. The red triangle and the lines indicate the position and the 

trajectory of the mobile data mule. 

The prediction algorithm is employed by the mobile data mule over the result-set 

obtained from the kNN query. The experimental setup consisted of 20 sensors within a 

1000 x 1000 x 1000 space as shown in Figure 7.29. The mobile data mule propagates a 

kNN query at each location marked by the red triangle. Based on the query response, the 

mobile data mule computes future neighbours along its path. This information is then 

propagated with the next kNN query at the subsequent location. Sensor nodes receiving 

the new broadcast with pre-selected node list send the data directly to the mobile data 

mule. The outcome of the experimentation is presented in Figure 7.30. The energy 

consumption results are an average of 5 independent data collection runs using both 

predictive and non-predictive approaches. 

 

Figure 7.29: 3D-KNN Experiment 6a: Neighbour Prediction Simulation Setup 

The experimental results show considerable energy savings using the proposed 

prediction algorithm. The prediction-based approach saves up to 35% more energy than 

the non-predictive approach. This validates the advantage of using prediction in the 3D-
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KNN algorithm. Further, savings in energy depicted in this case for a sensor network of 

size 20 with a requested k of 15. The sample size 15 almost covers 75% of the sensor 

network deployment area. Hence, extending our outcome to large-scale sensor networks 

would result in higher energy savings. 

 

Figure 7.30: 3D-KNN Experiment 6b: Neighbour Prediction 

7.4 R-CS (Context Spaces Extensions) - 
Evaluation 

In this section, we evaluate the proposed Context Spaces (Padovitz et al., 2004) 

extensions incorporated in R-CS allowing R-CS to dynamically model smart spaces using 

collected sensor data. The smart spaces in Context Spaces are represented as situations. 

Situation inference is made possible using contextual information from sensor sources. 

We evaluate the following features of R-CS: 1) Hierarchical context attribute regions, 2) 

Sensor quality metric incorporation into the Context Spaces error computation algorithm 

and 3) Dynamic situation modelling using partitioned situation spaces.  

Our experimentation results are based on synthetic sensor values using our R-CS 

simulator presented in Chapter 6. The simulator facilitates defining sensor sources, 

situation spaces and context state values. Further, the simulator can be used to reason and 
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determine the occurrence of a situation based on available evidence i.e. context state 

values from sensor. For example, consider two situations playing and resting defined 

with the context attribute heart rate. Depending on the value of heart rate at instance t it 

is possible to determine the occurrence of the situation playing or resting. The confidence 

computed for each situation provides a measure of certainty with which a particular 

situation’s occurrence can be inferred. 

7.4.1 Hierarchical Context Attribute Regions- Evaluation 

R-CS incorporates multilevel context attributes regions by defining relationships 

between parent attributes and dependent attributes. For example, reasoning the situation 

running/walking using a set of context attributes age, speed, heart rate, etc, the Context 

Spaces (CS) model allows us to define the corresponding attribute regions without the 

ability to define relationships among them. We argue that defining relationships between 

related attributes would increase the reasoning ability of the context-aware system i.e. 

speed, heart rate, etc, of a person at an age of 20 to 30 is different from a person at the 

age of 40 to 50. By defining specific attribute regions based on parent attribute criteria, 

we reduce the uncertainty in the reasoning process. 

In our simulation experiment, we model the two situations running and walking 

based on the context attribute definition presented in Table 7.5 and Table 7.6. The 

simulation experiment takes in consideration an average human being and does deal with 

specific categories like athletes, etc., though extending the situation definition using 

hierarchical attributes for different categories of human beings is straightforward.  

Situation Running     Relevance 

Attribute Regions     0 to 5 

Location "=GYM" "=PARK" "!=OFFICE" 2 

Age Sub Regions "20 - 30" "40 - 50" 5 

  Speed >= 6 & <= 8 >= 2 & <= 4 5 

  Heart Rate 
>=93 & 
<=146 >=83 & <=131 5 

  Systolic BP 
>=108 & 

<=122 >=112 & <=130 5 

Table 7.5: R-CS Experiment 1: Situation Running Definition 
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Situation Walking     Relevance 

Attribute Regions     0 to 5 

Location "=GYM" "=PARK" "=OFFICE" 2 

Age Sub Regions "20 - 30" "40 - 50" 5 

  Speed >= 3 & <= 5 >= 1 & < 2 5 

  Heart Rate 
>=93 & 
<=143 >=83 & <=127 5 

  Systolic BP 
>=108 & 

<=122 >=112 & <=130 5 

Table 7.6: R-CS Experiment 1: Situation Walking Definition 

The definition of speed, heart rate and systolic blood pressure (BP) are defined as 

sub regions (hierarchical) for the age attribute region. With changing context state value 

for age the corresponding attribute region is used to infer the situation. To validate the 

use of hierarchical attribute regions we compute the overall confidence for each situation 

being inferred by varying the age parameters to satisfy the parent attribute region 

predicate. The outcome of the experimentation is presented in Figure 7.31. 

 

Figure 7.31: R-CS Experiment 1: Hierarchical Attribute Region Evaluation 
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During the experimentation, for the first two cases, we used overlapping values 

for the dependent context attributes representing the situations walking/running and 

changed the age parameter. The outcome of this experiment is reflected in the first 8 

outcomes in Figure 7.31. For the rest of the experimentation all the parameters were 

changed but were kept within the attribute region definitions. The key observation from 

the experimentation is the ability for R-CS to quickly infer situations based on changing 

attribute region definitions that are dependent on a parent attribute region. To simulate a 

similar scenario in CS, we would need to define individual situations for each case, 

namely: 1) “Running – 40 to 50”; 2) “Walking – 40 – 50”; 3) “Running – 20 – 30“; 4) 

“Walking – 40 – 50”. Further, a direct comparison with CS is not feasible as CS does not 

have the capability to define attribute region relationships. 

7.4.2 Sensor Data Quality and Flexible Attribute Region - 
Evaluation 

In this subsection, we evaluate the proposed sensor data freshness-based error 

computation algorithm and the flexible attribute region used to determine the contribution 

of a context attribute. We compare the result of our experimentations with Context 

Spaces (CS) to validate the importance of introducing sensor data freshness and flexible 

attribute regions in the reasoning process. The sensor data freshness and the flexible 

attribute regions have been incorporated into the contribution computation function of R-

CS. The simulation experimentation to validate the proposed approach was performed for 

the situation presentation. The definition for the situation presentation is presented in 

Table 7.7. Outcome of the contribution computation for a sample synthetic data is 

presented in Table 7.8.  

Situation: Presentation      

Attributes Regions   Weights   

LIGHT “>-=10" "<=20" 0.3  

NOISE " > 20 " " < 30" 0.25   

PROJECTOR "= ON" "= OFF" 0.35   

PEOPLE "> 5 " "< 10 " 0.1   

Table 7.7: R-CS Experiment 2: Presentation Situation Definition 
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Freshness Threshold 
≥ 2 CS R-CS 

Context 
Attribute 

Attribute 
Region 

Context 
State Error Freshness Contribution 

Light 10 to 20 12 90% 1 1 1 

Noise 20 to 30 19.95 90% 2 0 1 

People 5 to 10 10 100% 3 1 0 

Table 7.8: R-CS Experiment 2: Comparing CS and R-CS contribution computation 

We discuss two specific cases related to flexible attribute region and sensor data 

freshness. The R-CS system computes a contribution of 1 for the context attribute noise, 

taking into consideration the outer attribute region definition. For the same context 

attribute, Context Spaces compute a contribution of 0. Similarly, for the context attribute 

people, CS computes a contribution of 1 while R-CS computes a contribution of 0. This 

is due to the introduction of freshness threshold used by R-CS to compute the attribute’s 

contribution i.e. sensor data used for reasoning the current situation is old. The outcome 

of the experimentation is presented in Figure 7.32. The x-axis indicates the number of 

simulation runs. For each simulation run, a different set of sensor value was used. The y-

axis indicates the overall confidence of the reasoned situation computed using CS and R-

CS approaches. 

For the simulation, we used a freshness threshold value of 2. The reasoning 

process was performed over 6 synthetic data sets. We note some interesting outcomes 

from the experimentation which is discussed in detail. The data samples 1, 2, 5 and 6 

produce a higher confidence using R-CS approach due to the incorporation of flexible 

attribute region. In each of those cases, one or more of the context attributes context state 

values, (current value of the sensor), satisfied the outer range of the context attribute 

region definition. Since CS does not account for any moderate deviation from the defined 

attribute regions, a clear difference in the confidence computed is observed between CS 

and R-CS reasoning. Further, with respect to data samples 3 and 4, we note the 

confidence computed using R-CS is equal to CS in the first case, while it is lesser than 

CS in the second case. In the first case, they are equal because all context state values and 
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data freshness values are assumed to be within the defined ranges. Hence, CS and R-CS 

results are identical. In the second case, the data freshness value of one of the context 

attributes was generated to be outside the data freshness threshold. In this case R-CS 

detects the loss in data quality, (old sensor data), influencing the overall computed 

confidence. The effect of old data does not affect CS reasoning. Even though the 

computed confidence using R-CS is less than CS, we claim that R-CS outcome is more 

reliable with lesser error when compared to CS. Hence, the introduction of sensor data 

quality increases reasoning quality and reliability. This claim is supported and validated 

by the experimental outcomes. We also deduce from the experimental result that 

incorporating data freshness heuristic greatly increases the reasoning accuracy. 

 

Figure 7.32: R-CS Experiment 2: Evaluating Sensor Data Quality and Flexible 
Attribute Region 
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Reasoning using dynamic situations is further assisted by the use of dynamic context 

attribute weight re-computation algorithm. 

To evaluate and validate the dynamic situation modelling approach we perform 

experimentation using JAVA-based R-CS implementation. For our experimentation, we 

have used six context attributes to define the universal situation space. We used two 

universal situation spaces, namely, presentation and meeting for the experimentation. The 

context attribute definitions, situation definitions and importance of context attributes 

(relevance) are presented in Table 7.9 and Table 7.10. With R-CS implementation 

weights can be defined within a specified minimum and maximum range which is then 

normalized during the reasoning process. 

The partitioned situation space is computed based on the predicate definition 

given by the partition conditions (). The partition parameter predicate definition used for 

experimentation is 0 < δ < 2 , 2<=δ<3 and 3<δ <=5. The partitioned universal situation 

space definitions based on the partition parameter are presented in Table 7.11 and Table 

7.12. Based on the partitioned universal situation space the temporal situation space is 

computed by R-CS on-the-fly. The temporal situation space computed during the 

simulation selects context attributes from corresponding partition based on available 

sensor data. 

Situation: Presentation   Relevance 
(0 to 5) Attributes Regions     

A1 "= DIM" "! =ON" "! =OFF" 3 

A2 " > 1 " " <=3"  3 

A3 "= ON" "!= OFF"  2 

A4 ">= 2 " "< 8 "  2 

A5 
"= Presentation 
Mode" "= Standby" "!= OFF" 0.8 

A6 "= Inside" "!= Outside" 0.9 

Table 7.9: R-CS Experiment 3: Situation definitions for Presentation 
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Situation: Meeting     Relevance (0 
to 5) Attributes Regions     

A1 "!= DIM" "= ON" " !=OFF" 3 

A2 " > =2.5 " " <=5"  3 

A3 "!=ON" "= OFF"  2 

A4 ">4 " "< 10"  2 

A5 
"!= Presentation 
Mode" "= Standby" "= OFF" 0.8 

A6 "= Inside" "!= Outside" 0.9 

Table 7.10:  R-CS Experiment 3: Situation definitions for Meeting 

Partition 0 < δ < 2 2<=δ<3 3< δ <=5   

Situation Presentation   Relevance 
(0 to 5) 

Partition 

Attributes Regions      

A1 "= DIM" "!= ON" "!= OFF" 3 P1 

A2 " > 1 " " <= 3"  3 P1 

A3 "= ON" "!= OFF"  2 P2 

A4 ">= 2 " "< 8 "  2 P2 

A5 

"= 
Presentation 
Mode" 

"= 
Standby" "!= OFF" 0.8 

 

P3 

A6 "= Inside" "!= Outside" 0.9 P3 

Table 7.11: R-CS Experiment 3: Partitioned Situation Space definitions for 
Presentation 

Situation: Meeting     Relevance (0 
to 5) 

Partition 

Attributes Regions       

A1 "!= DIM" "= ON" "!= OFF" 3 P1 

A2 "> 2.5 " "< =5"  3 P1 

A3 "!=ON" "= OFF"  2 P2 

A4 " > 4 " " <10"  2 P2 

A5 

"!= 
Presentation 
Mode" 

"= 
Standby
" "= OFF" 0.8 

 

P3 

A6 "= Inside" "!= Outside" 0.9 P3 

Table 7.12: R-CS Experiment 3: Partitioned Situation Space definitions for Meeting 
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The CS approach would use the attributes in partition 1 to define the situation 

space while R-CS uses universal situation space which has the list of all possible context 

attributes that can describe the situation. At each step, the reasoning is performed by 

expanding the search into subsequent partitions, re-computing weights until the required 

confidence threshold is reached. Before we discuss the results of our experimentation we 

present the computation involved in computing the confidence using CS and R-CS 

approaches for a set of synthetic sensor data. In each case, we compute the overall 

confidence of a situation to determine the situation that is currently occurring based on 

available context attribute. In this case, using the CS and R-CS model, we try to 

determine the occurrence of the situation meeting and presentation.  

We compute the confidence for each reasoned situation using sensor values 

(“OFF”, 3,) for CS and (“OFF”, 3, “ON”, “5”,”Standby”,”Inside”) for R-CS. As CS 

considers only the primary (first) partition, the confidence computed using CS approach 

is obtained from context state values for context attributes in partition 1. Further, CS does 

allow flexible attribute regions i.e. outer and inner range for attribute regions. The 

reasoning process is presented below.  

S (Presentation) = {A1, A2} and S (Meeting) = {A1, A2} 

CS presentation = A1 * w1 + A2 * w2 = 0.5 * 0 + 0.5 * 1 = 0.5 

CS meeting = A1 * w1 + A2 * w2 = 0.5 * 0 + 0.5 * 1 = 0.5 

Based on the two context attributes A1 and A2, the confidence computed by CS is 

0.5 for each situation. The computed confidence is not sufficient enough to infer the 

occurrence of a situation. We now compute the confidence of the two situations using the 

R-CS approach. By expanding the search into other partitions, we define a temporal 

situation space ST taking partition 1 and partition 2 into consideration. For this 

computation, we incorporate flexible context attribute regions. The reasoning outcome is 

presented below. 

ST (Presentation) = {A1, A2, A3, A4} and ST (Meeting) = {A1, A2, A3, A4} 

R-CS Presentation = 0.3 * 0 + 0.3 * 0.8 + 0.2 * 1 + 0.2 * 1 = 0.64 

R-CS meeting = 0.3 * 0 + 0.3 * 1 + 0.2 * 0 + 0.2 * 1 = 0.5 
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The results clearly show improvement in the computed confidence for the 

situation presentation. This is attributed to the use of temporal situation spaces. The 

temporal situation space dynamically represents the virtual situation using available 

context information (defined in other partitions). The result of the experiment validates 

R-CS’s advantage over CS. A key observation from our experimentation is the difference 

between the confidences of the two situations being reasoned. With CS approach the 

difference is 0, while using R-CS the value is 0.14. We argue this may not be sufficient to 

infer the situation presentation. Our proposed solution to this problem is the dynamic 

weight re-computation approach. The computations related to the weight re-computation 

technique for the context attribute in the partitions 1 and 2 are presented in Table 7.13 

and Table 7.14. 

Temporal Situation: Presentation 

Relevanc
e (0 to 5) 

Initial 
Weight
s 

Recom
puted 
Weight
s 

Normal
ized Attributes Regions     

A1 "= DIM" "!= ON"
"!= 
OFF" 3 0.3 0.5 0.36 

A2 " > 2 " " <= 4"  3 0.3 0.3 0.21 

A3 "= ON" "!= OFF" 2 0.2 0.4 0.29 

A4 ">= 2 " "< 8 "  2 0.2 0.2 0.14 

Table 7.13: R-CS Experiment 3: Weight Re-Computation for Overlapping Regions 
(Presentation) 

Temporal Situation: Meeting 

Relevanc
e (0 to 5) 

Initial 
Weight
s 

Recom
puted 
Weight
s 

Normal
ized Attributes Regions     

A1 "!= DIM" "= ON" "= OFF" 3 0.3 0.5 0.36 

A2 "> 2.5 " "<=5"  3 0.3 0.3 0.21 

A3 "!=ON" "= OFF" 2 0.2 0.4 
0.2857
14 

A4 " > 4 " " < =10" 2 0.2 0.2 
0.1428
57 

Table 7.14: R-CS Experiment 3: Weight Re-Computation for Overlapping Regions 
(Meeting) 
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We re-compute the confidence for the situations meeting and presentation using 

the newly computed weights. The confidence calculation is presented below. The weight 

re-computation is round 2 of the R-CS reasoning technique. 

C Presentation = 0.36 * 0 + 0.21 * 0.8 + 0.29 * 1 + 0.14 * 1 = 0.6 

C meeting = 0.36 * 0 + 0.21 * 1 + 0.29 * 0 + 0.14 * 1 = 0.35 

The following are the inferences from the above results obtained using R-CS. The 

computed confidence for the situation presentation reduces by a very small percentage 

over round 1. But the difference in the confidence between the two situations has 

increased significantly. The weight re-computation algorithm aims to increase the 

certainty and hence the accuracy of the reasoning process.  The higher the confidence of 

the situation being reasoned, the higher is the certainty of its occurrence. Uncertainty in 

this case is introduced by how accurately the current situation can be inferred from a list 

of other possible situations. 

We now present the result of our simulation experimentation for a set of synthetic 

sensor data for which confidence is computed using R-CS and CS approaches. For 

evaluation, we compute the difference in confidence for the reasoned situation. This 

evaluation is used to verify the improvement in the reasoning ability of R-CS over CS. 

The simulation outcomes are presented in Figure 7.33, Figure 7.34 and Figure 7.35. The 

results are presented in the following format: 

1) Figure 7.33 presents the reasoning outcomes using CS for 10 sets of synthetic 

sensor values. 

2) Figure 7.34 presents the reasoning outcomes using partitioned situation space-

based R-CS approach for the same set of 10 synthetic sensor values.  

3) Finally Figure 7.35 presents a comparison of difference in confidence 

computed for each situation using CS and R-CS approaches. 
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Figure 7.33: R-CS Experiment 3 - CS Reasoning Results 

The key observations of the experiments are discussed further. From the result 

presented in Figure 7.33, we note that difference in the confidence between the situations 

being reasoned is less for CS. This reduces Context Spaces ability to infer the occurrence 

of the situation with high certainty. By certainty, we refer to the ability of the reasoning 

process to infer the situation (currently occurring) correctly. The result presented in 

Figure 7.34 shows the outcome of confidence computation using R-CS based reasoning. 

By incorporating partitioned situations and weight re-computations, we note that 

computed confidence for the situation presentation is higher compared to CS. For 

example, in case 3, CS computes a confidence of 0.6 for the situation presentation while 

R-CS computes a confidence of 0.7. The result clearly indicates the importance of 

dynamic situation modelling based on available context information. The result also 

validates the reasoning effectiveness of R-CS over CS approach. 
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Figure 7.34: R-CS Experiment 3 - R-CS Reasoning Results 

 

Figure 7.35: R-CS Experiment 3: Difference in Confidence of Reasoned Situations 
using CS and R-CS 

To further exemplify the improvement in the reasoning process using R-CS, we 

have computed the difference in the computed confidences for the situations being 
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reasoned. The graph presented in Figure 7.35 is the outcome of this computation.  As the 

result indicates, the difference in confidences computed by CS is less than 0.05 in most 

cases. This value may not be sufficient to infer the current situation, as the results 

indicate the likelihood of occurrence of both situations. Since, the situations are 

orthogonal (cannot occur parallel), this is not a possibility. For example, in case 3, the 

confidences computed for presentation and meeting using CS is 0.57 and 0.6 and R-CS is 

0.7 and 0.4 respectively. With CS reasoning, it may be difficult for the context-aware 

system (system that uses the CS context model) to determine the occurring situation as 

the confidences of both situations are almost identical. By contrast, with R-CS approach, 

the considerable difference in computed confidences increases R-CS reasoning capability 

to infer the situation presentation with higher confidence. This is indicated from R-CS 

results presented in Figure 7.35. The R-CS results show an average difference of 0.3. The 

experimental results verify and validate the enhancement in the reasoning process using 

the proposed R-CS model. 

7.5 Summary 

This chapter has presented outcomes of experiments performed to verify and 

validate our algorithms and methodologies proposed in chapters 3, 4 and 5.  

Our experimental evaluations of the proposed sensor data collection framework 

using day-today mobile devices (mobile data mule) have significant potential for energy 

saving. Our approach can be considered as a new paradigm for data collection in future 

pervasive environments. Further, our experimental evaluations for data collection using 

kNN queries perform better than current sensor kNN query processing algorithms within 

our test simulation environment, exhibiting significant savings in sensor energy and 

hence increasing sensor network lifetime. Finally the Context Spaces extensions 

incorporated in R-CS have been validated with sufficient experimental evaluations. The 

results prove the enhanced reasoning ability of R-CS over CS reasoning. 
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8  
Conclusions and Future Work 

Data collection is a key area that needs to be addressed for widespread adoption 

of sensor networks. Sensor networks play a vital role in pervasive computing enabling 

sensing data from physical environments. They provide access to environmental data 

which in the past may not  be feasible. Sensor networks have helped realise the pervasive 

computing vision. 

This thesis has addressed the challenges of sensor data collection and dynamic 

modelling of smart situation spaces using collected sensor data. We conclude the thesis 

by highlighting the contributions and the discussing the lessons learnt in addressing the 

three research questions presented in section 1.3. 

8.1 Contributions of the Thesis Work 

A system framework for sensor data collection (sGaRuDa): Highlighting the first 

research question, we investigated the feasibility of using day-to-day mobile 

devices as an energy-efficient alternative to collect and deliver data from sensor 

networks using short range communication technologies (e.g. Bluetooth-based 

sensor networks). Mobile devices, more specifically mobile phones usually have 

enough spare capacity, (battery and processing), resulting from the few hours of 

usage. We exploit the spare capacity available on mobile phones to build a mobile 

access network for wireless sensor networks. The proposed system framework, 

sGaRuDa is a data collection architecture that facilitates day-to-day mobile devices 

(e.g. mobile phones) to act as sensor data collectors. The proposed system 

facilitates cost-efficient sensor data collection compared to fixed data collection 

infrastructure. Moreover, in many applications, the proposed system can function in 

the absence of a fixed data collection infrastructure. The use of mobility results in 
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considerable energy savings. Specifically, the use of mobile data mules can result 

in an energy saving in the range of 10% to 40%. This saving in energy can be 

directly related to extension in overall network lifetime of at least 10%. Extensive 

evaluation and experimentation presented in this thesis verify and validate these 

results. Further, the proposed system does not require a dedicated mobile sensor 

data collector to be present within the sensor network environment. The system 

relies on user mobility and mobile devices within smart spaces to accomplish 

sensor data collection. Adopting the proposed sGaRuDa sensor data collection 

architecture may result in reduced sensor network setup time, involving less 

planning and lesser infrastructure costs. A proof-of-concept implementation was 

presented to validate the feasibility of the proposed system in real-world scenarios. 

The use of mobile devices as an access network creates much more application 

possibilities few of which were presented in the thesis. Based on our 

experimentations and prototype implementations, we conclude that it is feasible to 

employ mobile devices as a cost-efficient alternative to collect sensor data. The 

proposed sGaRuDa architecture has the following advantages: 

 sGaRuDa, the system framework, is software based and takes 

advantage of ubiquitous availability of Bluetooth. Hence, no special 

hardware is required to communicate with the sensor node. 

 Mobility is accomplished by taking advantage of user mobility. 

Hence, our approach does not require introduction of special 

hardware to realise device mobility. 

 The sGaRuDa system is interoperable and platform independent. This 

has been verified by the prototype implementation. 

 At the outset, the proposed sGaRuDa framework has certain limitations that need to 

be addressed for widespread adaptation. These limitations include security, privacy 

and accounting. We treat the limitations as future research challenges. 

A Data Collection algorithm for Broadcast-based Sensor Networks (3D-KNN): 

The 3D-KNN algorithm was proposed to address the second research 
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question investigating the extension of the sensor data collection architecture 

to suit a range of sensor network platforms with broadcasting capabilities. 

The proposed 3D-KNN algorithm facilitates cost-efficient multi-hop 

collection of sensor data using mobile data mules. Multi-hop data collection 

is facilitated using a k-Nearest Neighbour query processing technique. The 

proposed algorithm has the capability to account for real-world 

communication channel characteristics (e.g. obstacles, channel error, etc.) in 

3D spaces. This feature of 3D-kNN differentiates it from existing approaches 

that focus only on distance with the assumption of an error-free 

communication channel. We note that the proposed 3D-KNN algorithm is a 

pioneering work in the area of kNN-based sensor data collection using mobile 

data mules in an infrastructure-less three-dimensional sensor network. We 

proposed energy-efficient algorithms for discovery, sensing and data 

collection keeping in mind the resource constrained nature of wireless 

sensors. We performed experimental evaluation of the 3D-KNN algorithm 

within large-scale sensor networks in a simulator environment. The results 

validate the extent of energy saving using the proposed 3D-KNN algorithm. 

More specifically, the 3D-KNN algorithm had a linear expenditure of energy 

for increasing sensor network sizes compared to kNN-based data collection 

algorithm in the literature which exhibited a non-linear increase in energy 

consumption. Further, the proposed predictive 3D-KNN approach results in 

40% savings in energy over the non-predictive approach. This result is 

significant and may results in extended sensor network lifetimes. The 3D-

KNN algorithm also proved to be performance oriented, reducing the overall 

time required to process the kNN queries. The evaluation outcomes prove the 

cost-efficiency (time and energy efficiency) of the 3D-KNN algorithm. 

Simulation experiments also verify the suitability of the 3D-KNN algorithm 

for large-scale sensor networks. In conclusion, the proposed 3D-KNN 

employed by the mobile data mule proves to be more energy-efficient and 

performance oriented approach to collect data from broadcast-based sensors. 

The 3D-KNN algorithm has the following advantages 
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 The 3D-KNN algorithm is completely dynamic i.e. no prior network 

infrastructure information is required to compute nearest neighbours. 

Further, no specific assumption of the sensor network 

deployment/topology is made. 

 The 3D-KNN algorithms accounts for three dimensional distribution 

of sensors in smart spaces. 

 The 3D-KNN algorithm addresses real-world radio communication 

characteristics like obstacles and interference by taking into account 

SNR and device mobility rather than just distance. 

A Dynamic Smart Situation Spaces Modelling Approach (R-CS): Finally we 

addressed the third research question by developing a dynamic situation-

based context model that has the capability to adapt to changing sensor data. 

We proposed R-CS, a ranked-Context Spaces model based on Context 

Spaces theory that has the ability to model situations dynamically. The 

proposed extensions to Context Spaces theory have been incorporated into R-

CS. Dynamic situation modelling in R-CS is achieved using partitioned and 

temporal situation spaces.  By introducing dynamic situation space modelling 

in Context Spaces, we facilitate reasoning under uncertainty when the real-

world situation definition changes dynamically. We performed experiments 

to evaluate, verify and validate the Context Spaces extensions incorporated 

into R-CS. The Context Spaces extensions incorporated into R-CS have a 

considerable impact on the reasoning outcome. More specifically, R-CS is 

able to infer situations with better accuracy. Moreover, R-CS evaluation 

results validate the advantage of using dynamic situation modelling to reduce 

ambiguity, when a fixed situation space definition as used by Context Spaces 

may not be sufficient to infer situations. The R-CS system has the following 

advantages:  

 R-CS algorithms perform reasoning over adapted situation 

definitions, computed using available sensor data (collected and 

delivered by mobile data mules). 
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 R-CS model works towards best representing the current situation 

rather than relying on fixed situation definitions 

 R-CS has the capability to account for sensor data quality and flexible 

attribute regions making it more susceptible to changing sensor data.  

8.2 Future Work 

The research questions addressed in this thesis have created new opportunities for 

further research. We highlight some of them in this section. 

Pay for Resources: The use of mobile devices as sensor data collectors opens the door 

for numerous applications. The proposed approach creates the platform to bridge 

low-powered sensors with the external world in an energy-efficient way. The use of 

mobile devices creates a new area of work which needs to look into mobile usage 

i.e. accounting for resources being used. This might be creating a commercial 

model that can be used by Telcos to reward its customers for the use of mobile 

devices for sensor data collection. Further, this model can be extended to 

enterprises that would need real-time information from pervasive environments at a 

low cost. 

Security and Privacy: The use of day-to-day mobile devices introduces privacy and 

security risks. These concerns need to be addressed for adoption of the sGaRuDa 

framework. Security and privacy is an important topic of debate, especially within 

environments comprising mobile devices. A number of existing techniques may be 

adapted to suit the sGaRuDa system requirements. We suggest this as an interesting 

area of future work. 

Sensor Errors: Sensor errors play a vital role in the data collection process. For 

example, the reported location of a sensor and its actual location might influence 

the energy consumption during communication. Current approaches focusing on 

sensor localisation fail to address the issue during computation (making decisions 

based on sensor data). We suggest this as a future extension to the proposed data 

collection algorithms.  



  251 

 

Ontology in R-CS: The R-CS reasoning ability can be improved further by introducing 

ontology. The use of ontology can reduce uncertainty in cases where the newly 

discovered contextual information does not have any relation to the current 

situations. In such cases, using ontology, an extensive search can be performed to 

determine the relation between newly discovered context and current situation. 
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Appendix A 
The detailed class diagram of the implemented classes on PDA has been divided 

into two pages for easy representation and clarity. 

 

Figure A1: Detailed Class Diagram - Implementation on PDA (Part 1) 
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Figure A1: Detailed Class Diagram - Implementation on PDA (Part 2) 
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Figure A2: Detailed Class Diagram - Implementation on Mobile Robot (Part 1) 
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Figure A2: Detailed Class 
Diagram - Implementation on 

Mobile Robot (Part 2) 
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Figure A3: R-CS 
Implementation - Detailed 

Class Diagram (Part 1) 
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Figure A3: R-CS Implementation - Detailed Class Diagram (Part 2) 
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Appendix B 

 

Figure B1: Window-based Data Collection: Mulle Sensor Dumps 
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Glossary 
.NET CF: Microsoft .NET Compact Framework platform supporting software 

development for mobile devices 

EPE: Ekahau Positioning Engine 

ER1: A robot platform built by Evolution Robotics 

GSM: Global System for Mobile Communications 

GPRS: General Packet Radio Service 

GPS: Global Positioning System 

LAP: LAN access profile is a Bluetooth profile that enables Bluetooth devices to access a 

LAN, WAN or internet via another device 

LAN: Local Area Network 

Locomotion: The term locomotion means movement or travel 

Mobile Data Mule: A mobile device that is used as a vehicle to collect and deliver 

sensor data. 

Mulle: A Bluetooth-based sensor node developed at EISLab, Lulea, Sweden. 

PDA: Personal Digital Assistant 

Piconet: A ad-hoc computer network linking one Bluetooth master to seven slave devices 

Smart Phone: A mobile phone with advanced computing features than traditional mobile 

phones. For example internet-enabled, powerful processing, social networking, etc. 

Sink/Base Station: The sink/base station is a centralised location to which collected 

sensor data is delivered for further processing. 

Scatternet: A collection of one or more piconets. 

SPP: Serial port profile is a Bluetooth profile that emulates a serial cable. 

SDK: Software development kit 
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UMTS: Universal Mobile Telecommunications System 

Wireless Sensor Node: A tiny battery powered resource constrained device that  has the 

capability to sense, process, store and wireless transfer data. 

Wireless Sensor Network: A collection of wireless sensor nodes, data sinks, and 

intermediate mobile node deployed within an area to achieve single or multiple goals. 

WLAN: Wireless Local Area Network 

WAN: Wide Area Network 

WiMAX: Worldwide Interoperability for Microwave Access 

Wi-Fi: A trademark of the Wi-Fi Alliance used by manufactures to brand WLAN  based 

devices based on IEEE 802.11 standard   

XML: Extensible Markup Language is a set of rules to encode documents in machine 

readable format 

Zigbee: A suite of communication protocols for small low-powered devices based on 

IEEE 802.15.4 




